UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Google LLC
Petitioner
V.
UNILOC 2017 LLC
Patent Owner
U.S. Patent No. 8,407,609

Filing Date: August 21, 2009
Issue Date: March 26, 2013

Case No. IPR2020-00115

DECLARATION OF DR. JEFFREY CHASE, Ph.D.
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW OF UNITED
STATES PATENT NO. 8,407,609

Page 1 of 244 GOOGLE EXHIBIT 1003

TABLE OF CONTENTS

L. INTRODUCTION ..ccooueiiruicsuncssenssassssnsssasssssssss 1
II. BACKGROUND AND QUALIFICATIONS.....ccovesveesserssarsssesssesssesssssssnses 2
III. MATERIALS REVIEWED.......ccuiinininnninninsensssisssisssnssssssssssssssssssssssssssse 6
IV. LEGAL STANDARDS....utttitiiinrennsnissansssnsse 7
WA NN 113 103 o 1310) 1 SO SR URUURRUURRPRRN 8

B, ODVIOUSIIESS.eeiiiiiiieiieeiie ettt sttt st 9

V. LEVEL OF ORDINARY SKILL IN THE ART........ccceceesersersveecsuecsuecanes 13
VI. THE ’609 PATENTccceevviiviinrnicsnncsecssessssncssicssessssssssssssssssssssssssssssssssssesss 15
A. Overview of the 609 Patent...........ccccevieniiiiiinienienieieeeeee e 15

B. Challenged Claimsccceeeiuiieiieeriiecieeeiee et 19

C. Claim CONStIUCHON.eerteeriieriieriieeie ettt ettt e 21

VII. OVERVIEW OF PRIOR ART REFERENCES.........cinvinvrcsnecsaecnnes 22
Al HAYWATA ..ottt 22

B, MidAIEtON. ... e 29

O 1/ TSRS 31

VIII. CLAIMS 1-3 OF THE ’609 PATENT ARE UNPATENTABLE........... 35
A. Ground 1: Hayward anticipates claim 1..........cccccooevieeiiieeeiiieeeieee 35

1. CLalm 1ot 35

B. Ground 2: Hayward and Middleton render obvious claim 1 62

1. CLalm 1ot 62

C. Ground 3: Hayward, or Hayward and Middleton, and Ryan
render obvious claims 2 and 3.........ccceeeeiiieiiieniieeee e 74

Page 2 of 244

1. [2] “The method of claim 1, wherein the storing
comprises incrementing a stored value dependently upon
the TECRIVING.” .ooieiiiieiie ettt e aeeeens 74
2. [3] “The method of claim 2, wherein the received data is
indicative of a temporal cycle passing.”cccceceeeevveevueeennnenns 77
IX. CONCLUSION ..coiiiiicricssenssnisssncssncssssssssssssssssesss 77
i

Page 3 of 244

I, Dr. Jeffrey Chase, Ph.D., declare as follows:

1. Introduction

1. My name is Dr. Jeffrey Chase. I have been asked to submit this
declaration on behalf of Google LLC (“Google” or “Petitioner”) in connection with
a petition for inter partes review of U.S. Patent No. 8,407,609 (“the 609 patent™),
which I understand is being submitted to the Patent Trial and Appeal Board of the
United States Patent and Trademark Office by Google.

2. I have been retained as a technical expert by Google to study and
provide my opinions on the technology claimed in, and the patentability or non-
patentability of, claims 1-3 of the *609 patent (“the Challenged Claims™).

3. This declaration is directed to the Challenged Claims of the 609
patent and sets forth certain opinions I have formed, the conclusions I have
reached, and the bases for each.

4. Based on my experience, knowledge of the art at the relevant time,
analysis of prior art references, and the understanding a person of ordinary skill in
the art would have of the claim terms, it is my opinion that each of the Challenged
Claims of the 609 patent is unpatentable over the prior art references discussed

below.

Page 4 of 244

II. Background and Qualifications

5. I am a Professor at Duke University in the Computer Science
Department. I have studied and practiced in the field of computer science for over
35 years. During this time, I have worked as a software developer, computer
systems researcher, and computer science professor. I have been teaching
Computer Science at Duke since 1995.

6. I received my Doctor of Philosophy (Ph.D.) degree in the field of
Computer Science from the University of Washington in Seattle in 1995. 1
received my Masters of Science (M.S.) degree in Computer Science from the
University of Washington in 1989. As a graduate student at the University of
Washington, I conducted research on new operating system models for secure data
sharing. I earned my Bachelor of Arts (B.A.) degree as a double major in
Mathematics and Computer Science from Dartmouth College.

7. From 1985 through 1994 (before and during graduate school), |
worked as a software design engineer at Digital Equipment Corporation (“DEC”),
earning the title Senior Software Engineer in 1987. While at DEC, I developed
operating system kernel software for networked file services in DEC’s Unix
operating system product, Ultrix.

8. Upon receiving my Ph.D. degree, | joined the faculty of Duke

University in the Department of Computer Science as an Assistant Professor.

Page 5 of 244

Since becoming a professor, I have conceived and led a number of research
projects and published widely in leading research forums in the areas of operating
systems and network services including high-performance Web systems and cloud
computing. [earned tenure at Duke University in 2002, and was promoted to Full
Professor in 2006. I teach courses for undergraduate and graduate students at
Duke on various related subjects: operating systems, networking and networked
systems, distributed systems, and Internet technology and society. I have
supervised the research of fourteen completed Ph.D. dissertations in the field of
Computer Science. I have also supervised the research of twenty students who
earned Master’s degrees at Duke.

9. My work has focused on software systems for efficient, secure, and
reliable sharing of resources and information in computer networks ranging from
clusters (e.g., cloud computing services) to the global Internet. I have conducted
research and developed software relating to networked data sharing including
cloud computing and high-performance Web systems and storage. 1 am a named
inventor on eleven U.S. patents and a co-author of over 100 published research
papers on related topics in peer-reviewed technical publications or conferences in
the field of Computer Science.

10. I have served on editorial program committees for leading annual

academic conferences in networked computer systems, cloud computing, storage,

Page 6 of 244

Web technologies, and related areas. For example, I was invited to serve on the
editorial program committee for the Association for Computing Machinery (ACM)
Symposium on Cloud Computing (SoCC) multiple times (most recently in 2019)
and co-chaired the SoCC committee in 2011. SoCC and other related venues are
sponsored by the ACM, a leading professional society, of which I am a lifetime
member. | have had similar roles in other related academic venues.

11. Iconducted research in various Web technologies early in the Web
computing era (mid-1990s) and up until the time the provisional application
leading to the *609 patent was filed (2008). I have taught certain Web technologies
in my courses, including Web service technologies based on the Java programming
language, and I developed Java-based Web application software as part of my
research (e.g., the Web interface for Shirako, an early cloud computing system, in
2005-2007). Much of my research during this period focused on technologies for
high-performance Web services and led into my later research on cloud computing.

12. Thave also participated in a number of industry collaborations. I am a
named co-inventor of patents relating to Web caching and resource management in
Web services resulting from these collaborations. While a collaborator at AT&T
Corporation in 1996, I developed early technology for Web caching, patented as
U.S. Patent No. 5,944,780 entitled “Network with Shared Caching.” In

collaboration with IBM Corporation from 2000-2003, I developed technology

Page 7 of 244

covered by seven patents relating to adaptive resource management and request
routing for hosted Web services.

13. In the course of my research, I have gained exposure to client-side
Web technologies used to build these Web services. For example, the *609 patent
describes Java applet technology and its use to add programmatic functions—such
as tracking—that run in a user computer’s browser as it displays a Web page.
When the Java applet technology was first coming into use (around 1996—-1998), 1
collaborated with IBM Corporation to develop a tool that could “instrument” or
inject new code elements directly into compiled Java “bytecode” as it loads into a
browser or other process. This collaboration was described in, for example:

e G. Cohen, J. Chase & D. Kaminsky, Automatic Program
Transformation with JOIE, USENIX TECHNICAL CONFERENCE (June
1998); and

e G. Cohen & J. Chase, An Architecture for Safe Bytecode Insertion,
available at https://www2.cs.duke.edu/ari/joie/.

14. Additional details about my employment history, fields of expertise,
awards, publications, and other activities are further included in my curriculum
vitae (which I have been told is Ex. 1004 to Google’s petition).

15. Iam being compensated for services provided in this matter at my

customary rate, plus travel expenses. My compensation is not conditioned on the

Page 8 of 244

conclusions I reach as a result of my analysis or on the outcome of this matter.
Similarly, my compensation is not dependent upon and in no way affects the
substance of my statements in this declaration.

16. I have no financial interest in Petitioner or any of its subsidiaries. |
also do not have any financial interest in Patent Owner Uniloc 2017 LLC. I do not
have any financial interest in the *609 patent and have not had any contact with the
named inventor of the *609 patent (Tod C. Turner).

III. Materials Reviewed

17. In forming my opinions regarding the *609 patent, I reviewed the
following materials:

e The *609 patent (which I have been told is Ex. 1001 to Google’s
petition);

e U.S. Patent App. Pub. No. 2004/0045040 to Hayward (“Hayward,”
which I have been told is Ex. 1005 to Google’s petition);

e U.S. Patent App. Pub. No. 2002/0111865 to Middleton (“Middleton,”
which I have been told is Ex. 1006 to Google’s petition);

e U.S. Patent No. 6,421,675 to Ryan (“Ryan,” which I have been told is

Ex. 1007 to Google’s petition);

Page 9 of 244

e Defendant Google LLC’s Claim Term Disclosure in Uniloc 2017 LLC
v. Google LLC, No. 2:18-cv-00502 (E.D. Tex. Sep. 24, 2019) (which |
have been told is Ex. 1008 to Google’s petition);

e Plaintiffs’ Preliminary Claim Constructions and Identification of
Extrinsic Evidence Pursuant to P.R. 4-2 in Uniloc 2017 LLC v. Google
LLC, No. 2:18-cv-00502 (E.D. Tex. Sep. 24, 2019) (which I have been
told is Ex. 1009 to Google’s petition);

e DAVID FLANAGAN, JAVASCRIPT: THE DEFINITIVE GUIDE 255 (5th ed.
2006) (attached as Appendix A); and

e CLARK S. LINDSEY ET AL., JAVATECH (2005) (attached as Appendix B);

e Aleksander Malinowski & Bogdan Wilamowski, Internet Technology
as a Tool for Solving Engineering Problems, PROCEEDINGS OF
IECON’01: THE 27" ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL
ELECTRONICS SOCIETY 1622 (2001) (attached as Appendix C).

IV. Legal Standards

18. Iam not an attorney and have not been asked to offer my opinion on
the law. However, as an expert offering an opinion on whether the claims in the
’609 patent are patentable, I have been told that I am obliged to follow existing

law.

Page 10 of 244

A. Anticipation

19. Ihave been told the following legal principles apply to analysis of
patentability pursuant to 35 U.S.C. § 102, a provision in the patent law regarding
anticipation. I have been told that, in an inter partes review proceeding, patent
claims may be deemed unpatentable if it is shown by preponderance of the
evidence that they were anticipated by one or more prior art patents or
publications.

20. Ihave been told that for a claim to be anticipated under § 102, every
limitation of the claimed invention must be disclosed by a single prior art
reference, viewed from the perspective of a person of ordinary skill in the art.

21. Thave been told that a claim is unpatentable as anticipated under
§ 102(b) if the claimed invention was “patented or described in a printed
publication in this or a foreign country or in public use or on sale in this country,
more than one year prior to the date of the application for patent in the United
States.”

22. T have been told that a claim is unpatentable as anticipated under
§ 102(e) if “the invention was described in (1) an application for patent, published
under section 122(b), by another filed in the United States before the invention by
the applicant for patent or (2) a patent granted on an application for patent by

another filed in the United States before the invention by the applicant for patent,

Page 11 of 244

except that an international application filed under the treaty defined in section
351(a) shall have the effects for the purposes of this subsection of an application
filed in the United States only if the international application designated the United
States and was published under Article 21(2) of such treaty in the English
language.”

B. Obviousness

23. I have been told the following legal principles apply to analysis of
patentability pursuant to 35 U.S.C. § 103(a), a provision in the patent law
regarding obviousness that reads “[a] patent may not be obtained although the
invention is not identically disclosed or described as set forth in section 102, if the
differences between the subject matter sought to be patented and the prior art are
such that the subject matter would have been obvious at the time the invention was
made to a person having ordinary skill in the art to which said subject matter
pertains.” I have been told that, in an inter partes review proceeding, patent claims
may be deemed unpatentable if it is shown by a preponderance of the evidence that
they were rendered obvious by one or more prior art patents or publications.

24. When considering the issues of obviousness, I have been told that I
am to do the following:

a. Determine the scope and content of the prior art;

Page 12 of 244

b. Ascertain the differences between the prior art and the claims at
1ssue;

C. Resolve the level of ordinary skill in the pertinent art; and

d. Consider evidence of secondary indicia of non-obviousness (if
available).

25. Thave been told that the relevant time for considering whether a claim
would have been obvious to a person of ordinary skill in the art is the time of
alleged invention, which I have assumed is shortly before the provisional
application leading to the *609 patent was filed.

26. I have been told that obviousness is a determination of law based on
underlying determinations of fact. I have been told that these factual
determinations include the scope and content of the prior art, the level of ordinary
skill in the art, the differences between the claimed invention and the prior art, and
secondary considerations of non-obviousness.

27. 1have been told that any assertion of secondary indicia must be
accompanied by a nexus between the merits of the invention and the evidence
offered.

28. I have been told that a reference may be combined with other
references to disclose each element of the invention under § 103. I have been told

that a reference may also be combined with the knowledge of a person of ordinary

10

Page 13 of 244

skill in the art and that this knowledge may be used to combine multiple
references. I have also been told that a person of ordinary skill in the art is
presumed to know the relevant prior art. I have been told that the obviousness
analysis may account for the inferences and creative steps that a person of ordinary
skill in the art would employ.

29. In determining whether a prior art reference could have been
combined with another prior art reference or other information known to a person
having ordinary skill in the art, I have been told that the following principles may
be considered:

a. A combination of familiar elements according to known methods is
likely to be obvious if it yields predictable results;

b. The substitution of one known element for another is likely to be
obvious if it yields predictable results;

c. The use of a known technique to improve similar items or methods in
the same way is likely to be obvious if it yields predictable results;

d. The application of a known technique to a prior art reference that is
ready for improvement, to yield predictable results;

e. Any need or problem known in the field and addressed by the
reference can provide a reason for combining the elements in the

manner claimed;

11

Page 14 of 244

f. A person of ordinary skill often will be able to fit the teachings of
multiple references together like a puzzle; and

g. The proper analysis of obviousness requires a determination of
whether a person of ordinary skill in the art would have a “reasonable
expectation of success”—not “absolute predictability” of success—in
achieving the claimed invention by combining prior art references.

30. TIhave been told that whether a prior art reference renders a patent
claim unpatentable as obvious is determined from the perspective of a person of
ordinary skill in the art. I have been told that there is no requirement that the prior
art contain an express suggestion to combine known elements to achieve the
claimed invention, but a suggestion to combine known elements to achieve the
claimed invention may come from the prior art, as filtered through the knowledge
of one skilled in the art. In addition, I have been told that the inferences and
creative steps a person of ordinary skill in the art would employ are also relevant to
the determination of obviousness.

31. Thave been told that, when a work is available in one field, design
alternatives and other market forces can prompt variations of it, either in the same
field or in another. I have been told that if a person of ordinary skill in the art can
implement a predictable variation and would see the benefit of doing so, that

variation is likely to be obvious. I have been told that, in many fields, there may

12

Page 15 of 244

be little discussion of obvious combinations, and in these fields market demand—
not scientific literature—may drive design trends. I have been told that, when
there is a design need or market pressure and there are a finite number of
predictable solutions, a person of ordinary skill in the art has good reason to pursue
those known options.

32. Thave been told that there is no rigid rule that a reference or
combination of references must contain a “teaching, suggestion, or motivation” to
combine references. But I also understand that the “teaching, suggestion, or
motivation” test can be a useful guide in establishing a rationale for combining
elements of the prior art. I have been told that this test poses the question as to
whether there is an express or implied teaching, suggestion, or motivation to
combine prior art elements in a way that realizes the claimed invention, and that it
seeks to counter impermissible hindsight analysis.

V. Level of Ordinary SKkill in the Art

33. Thave been asked to provide a definition for the level or ordinary skill
in the art. [have been informed that several factors are considered in assessing the
level of ordinary skill in the art, including: (1) the types of problems encountered
in the art; (2) the prior art solutions to those problems; (3) the rapidity with which
innovations are made; (4) the sophistication of the technology; and (5) the

educational level of active workers in the field. Based on my experience and

13

Page 16 of 244

considering these factors, my opinion is that a person of ordinary skill in the art
(“POSA”) at the time of the filing of the provisional application leading to the 609
patent would have had either (a) a Master’s or doctoral degree in computer science,
electrical engineering, or a similar discipline involving relevant experience; or
(b) a Bachelor’s degree in computer science, electrical engineering, or a similar
discipline and at least two years additional relevant experience. Working in the
design and implementation of networked computing systems constitutes relevant
work experience. Examples of such work in networked computing systems could
include work in networked computing communication and data streaming.

34. I have not analyzed the priority date of the 609 patent, but I note that
the earliest claim of priority listed on the face of the *609 patent is August 21,
2008, the filing date of U.S. Provisional Patent Application No. 61/090,672.
Because all of the prior art discussed in this declaration pre-dates August 21, 2008,
I have assumed for simplicity that August 21, 2008, is the priority date for the 609
patent. I have therefore also treated this date as the date from which to assess the
knowledge available to a person of ordinary skill in the art. I note that I was at least

a person or ordinary skill in the art as of this date.

14

Page 17 of 244

VI. The ’609 Patent

A. Overview of the 609 Patent

35. The 609 patent describes a method for tracking digital media
presentations delivered to a user’s computer. *609 patent, Abstract. The method is
carried out by the system shown in annotated Figure 1, below, which includes a
user computer 20, a 34 and 32, and a file

server 36, all of which are connected by a network 40.

Fig. 1

RETWORR

5 w
o
-
a
‘I—_._Z'__EE
e
‘\<

36. The *609 patent teaches that “a user of a device 20 may request [a

web] page 200 from content server 34 using a browser application,” “[s]erver 34

15

Page 18 of 244

may provide page 200 to the requesting computer 20,” and “[a] user may enter a
search term.” Id. at 4:57-61, 5:29-34. “Responsively thereto,” the 609 patent
explains, “content server 34 may request database server 32 to identify which
presentations should be used to populate page 200 according to the entered search
term(s).” Id. at 5:34-37.

37. “Server 34 may then provide such a populated page 200 to the
requesting user computer 20.” Id. at 5:37-39. An example web page 200 showing
“aggregate[d] . . . video content for presentation to users of computers 20 is

shown in Figure 2, below.

Fig. 2 o

Wbk = Diodwser name!

s o W howse [sodh |
1"'_: SELECT A CATEQDRY _,I:_ 210
| Colmgary 1 Colngory 2 Cokagery 3 Rankang 1 i .
| | Calzgory 4 Colsgory § Cotsgory 8 Ranking 2
| Camegsey T Caliegaey B Calegery 9
216 = | £] ¥ 220
e — S
[ty ew o S AL) AUDID) VIDED |
225] " -]
o L] Pagerary [afafalofv] I
- — - — |
230 %, | — 117 | M : 240
\."—-—J."'_ | ' | pat: Torizz= _._--—"'r
- ,IIE |Godes |
| 235' Cwescnpdon _I] 285
230 — T B e | 240
i ..I.- [L — i
L= Dl XY YRETEE —'l‘T_JI 270
Snriess [!
| L [Descripior_______ — 13
JE— S 4
2an =g, | | 11| e | I ,..fz':'
L
\%_—--' | — | Dawm: WXYIZEEZ T 276
| | | Saties:
] I ||:'l."'°alﬂilli'l.:ll' IR
e b o . I S A

16

Page 19 of 244

38. As Figure 2 illustrates, “presentations 265, 270, 275” may be shown.
Id. at 4:38-40. Then, “a user may select a populated presentation (e.g., 265, 270,
or 275, FIG. 2)” and, “[i]n response thereto, server 34 may request file server 36 . .
. stream . . . the selected presentation to the requesting user’s computer 20, such as
via web page 200 in a conventional manner.” Id. at 5:20-25.

39. A “[w]eb page 900,” shown in Figure 9 below, “may be provided to
user’s computer [20] responsively to user selection of a presentation shown on a
populated web page 200.” Id. at 11:61-64. On the web page 900, a “portion 930

[green] may be utilized to playback the selected presentation in a conventional

Fig. 9 /—eau

. _Illl'n"Etl-ﬁ'l t‘.:'. ¥ |._1'_r:'l:'-‘:'r-'-’-£-_!}r":' n_.iulr"F' . FEE _-:_-. ; :_"-_.I e _-__.._.'__l : :r P e i T

J-EE-CI

240

Titla:
Dand, BN YIEELZ

Caras; .
Dgcripilion;

17

Page 20 of 244

manner, e.g., by . . . streaming the content to a media player application or plug-
in.” Id. at 12:1-5.

40. The *609 patent states “it may be desirable to know . . . how long a
user actually watched, and/or listened, to a presented program.” /Id. at 11:47-52.
For example, where advertisements are displayed in the web page alongside the
presentation, “it may be desirable to be able to reliable [sic] identify how long the
media was actually . . . played, in order to appropriately value portions [of the web
page] as available advertising billboard space.” Id. at 12:5-10.

41. But while Hayward discloses tracking how a user views a media file,
including how long the media file was played, the 609 patent claims “[sJuch
knowledge is not conventionally available.” Id. at 13:47-48. The 609 patent
tracks how the user views the digital media presentation using a “timer applet.” Id.
at 12:66-67.

42. As shown in Figure 10, below right, the timer applet “may be used to
indicate each time some temporal time period, such as 10, 15, or 30 seconds,
elapses.” Id. at 13:6-9. “[W]hen the applet determines the predetermined

temporal period has elapsed, . . . system 30 may log receipt of this indication, such

18

Page 21 of 244

as by using database server 32.” Id. at
13:10-13. In some embodiments, the
applet may cause “identifying data” to be
transmitted with the indication. /d. at
13:14-16. The identifying data may be
“logged, such as by using database
server 32.” Id. at 13:22-23.

43. Based on the logged data, it
may be determined “that a viewer began
viewing a particular show at a certain

time,” as well as “when a user began

Fig. 10

1000 ﬂ‘

LOA0 PAGE

/j_ 1010

&>

Y

1020

1030 ‘1_“

TRAMSMIT
DATA

viewing a different page, or show, thereby providing knowledge of how long a

particular viewer spent on a particular page.” Id. at 13:43-48.

44. The *609 patent recognizes the value of this information to

advertisers. Using this information, the 609 patent envisions, “an increasing scale

of payments for advertising displayed on a given page” could be determined,

“correspondent to how long a viewer or viewers remain, or typically remain, on

that particular page.” Id. at 13:49—-14:2.

B. Challenged Claims

45. Google challenges claims 1-3.

19

Page 22 of 244

46. For convenience, the Challenged Claims are reproduced below. 1

have added reference numerals for ease of reference:

Claim

Claim Language

1[a]. A method for tracking digital media presentations delivered
from a first computer system to a user’s computer via a network

comprising:

[1b]. providing a corresponding web page to the user’s
computer for each digital media presentation to be

delivered using the first computer system;

[Lc]. providing identifier data to the user’s computer using

the first computer system,;

[1d]. providing an applet to the user’s computer for each
digital media presentation to be delivered using the first
computer system, wherein the applet is operative by the

user’s computer as a timer;

[1e]. receiving at least a portion of the identifier data from
the user’s computer responsively to the timer applet each
time a predetermined temporal period elapses using the

first computer system; and

[11]. storing data indicative of the received at least portion

of the identifier data using the first computer system;

Page 23 of 244

20

Claim

Claim Language

[1g]. wherein each provided webpage causes
corresponding digital media presentation data to be
streamed from a second computer system distinct from the
first computer system directly to the user’s computer

independent of the first computer system,;

[1h]. wherein the stored data is indicative of an amount of
time the digital media presentation data is streamed from

the second computer system to the user’s computer; and

[11]. wherein each stored data is together indicative of a
cumulative time the corresponding web page was

displayed by the user’s computer.

[2] The method of claim 1, wherein the storing comprises

incrementing a stored value dependently on the receiving.

[3] The method of claim 2, wherein the received data is

indicative of a temporal cycle passing.

C. Claim Construction

47. 1have been told that claim terms in inter partes review proceedings

are to be given their ordinary and accustomed meaning as understood by a person

of ordinary skill in the art. In my analysis of the Challenged Claims, I have

therefore applied the plain and ordinary meaning as understood by a person of

ordinary skill in the art. I understand that Petitioner and Patent Owner have

Page 24 of 244

21

offered various constructions in related litigation. Ex. 1008; Ex. 1009. For
purposes of this proceeding, it is my opinion that the Board does not need to
expressly construe the claims because it is my opinion that the Challenged Claims
are unpatentable under both parties’ constructions.

VII. Overview of Prior Art References
A. Hayward
48. I note that Hayward was published on March 4, 2004, which was

more than one year before August 21, 2008. I am told that makes Hayward prior

art to the 609 patent under § 102(b).
100A 122

116 g MEDIA FILE
(7 INDEX AND LOG
SYSTEM

ADVERTISEMENT
SYSTEM

(

120

Page 25 of 244

49. Hayward teaches “a method of displaying video data using an
embedded media player page.” Hayward, Abstract. As shown in annotated
Figure 1A above, Hayward’s method is carried out by a system including a
client 110, a 118 and 122, and a
media file source 116, all of which are connected by the Internet 114. While

118 and 122 are shown
separately, Hayward explains that these systems may be “combined physically
within one . . system[]” in some embodiments. /d. 0030.

50. In Hayward, “[a] user of client 110 accesses customer system 118
through Internet 114,” and “customer system 118 transmits a web page to
client 110 through Internet 114.” Id. §0025. The transmitted web page includes “a
media file search prompt” where the user may enter a search request, such as
“Pear]l Harbor” and “movie trailer.” Id. 490026, 0028. “The search request is
received by customer system 118 and is transmitted to media file index and log
system 122” Id. 90028.

51. The media file index and log system 122 “includes a database having
indexed therein a plurality of media files,” each of which is identified by “a unique
identifier for the media file.” Id. §0027. When the search request is transmitted by
the customer system 118, the media file index and log system 122 searches “for

indexed media files that satisfy the search request” and “transmits the results to

23

Page 26 of 244

customer system 118.” Id. 90028. The search results include “the playing length
of each video file, the URI address of each video file, encoding bit rate of the video
file, file format, a database identifier unique to each video file, frame dimensional
data for each video file, or any other information contained within the database.”
1d.

52. The customer system 118 transmits the search results to client 110 “as
a Web page that preferably includes a list of links to media files located at media
file sources 116.” Id. The client 110 displays the web page with the search results
to the user. Id.

53. The user may “view the video data contained within a video file listed
in the search results displayed to the user by clicking a link to one of the video
files.” Id. 40029. When the user clicks a link for a selected media file, “the
customer system 122 instructs the client to request [an] embedded media player
page from the customer system 122.” Id.

54. Figure 2, annotated below, shows an embedded media player

page 200.

24

Page 27 of 244

zm M—, |2

[SWGINGFISH PLAYER - TCE (NDYPROXYY CECn) DB
‘MK\W WHERE YOU WIN AT PAYING LESS 1 (3] (X |
COMPNEVORSAVINGS CUCK
BEFORE YOUSHOPRETAL® HERE

gL} DD SHNGASICOUM ml_____ }—om

= 5\ - i

< A% p0GPILESM 210b
T NG ! “
208

R D T - 201
m oo EM

=

- —
[>] 340ktys 0 >0 O <Emmr @ @D
216 | {AUNCH EXTERNAL VIEWER ADD TO FAVORITES—— 212

SOURCE : 12.28.177.7:8080

2 M) <+ FG.2

55. The embedded media player page 200 “includes a reference to a

functional media player object” that can play the selected media file. /d. §0031.
The media player “is an application that outputs audio and video files that are
either stored locally in a multimedia device, or are streamed/downloaded from a
remote storage site via a communications interface.” Id. 40002. The media player
is “embedded” because it is “viewed . . . within a data display,” like a web page.
1d. 90002. For example, in Figure 2, a “video display area 202” is included within
the web page 200. Id. 50032.

56. In Hayward, the “display code” for the web page may include

“scripting that calls [the] media player, resident on the client, as an object for

25

Page 28 of 244

embedding within the data display.” Id. §0002. Hayward defines “scripting” as
“server or client-side programming which supplements a static HTML page.” 1d.
90017. Hayward contemplates that the “scripting” could be, for example, “Java”
or “JavaScript.” Id.

57. In Hayward, the embedded media player page may locate a media file
at the media file source 116 and stream the media file, which may be output by the
media player. Id. 0046. For example, a media file titled “thestream.asx” may be
“found and streamed by the media player from a media file source 116 located at
‘thestreamhost.com’ through Internet 114.” Id. In particular, HTML code of the
embedded media player page may find and stream the media file using a source
command, such as “SRC=http://thestreamhost.com/thestream.asx.” Id. 490044,
0046. The streamed media file may then be “outputted by the embedded media
player in a window 202,” as shown in annotated Figure 2 above.

58. In some embodiments, Hayward teaches, the “embedded media player
page also facilitates the collection of data in connection with the playing of a
media file.” Id. §0057. Hayward’s data collection is described in connection with
Figure 5, below right. As shown, “[a]t step 502, the embedded media player page

instructs the client 110 to transmit a media file identification message to a log

26

Page 29 of 244

server of the media file index and log
system 122.” Id. 0058. The media file
identification message is transmitted
“substantially proximate in time to when
the media file begins to play in the
embedded media player of the embedded
media player page.” Id. 40059. The media
file identification message may include
“the Internet Protocol (IP) address of the
user, . . . the IP address or Universal
Resource Locator of client 110, the domain
address of the customer system 118 that
transmitted the embedded media player

page at the client 110, a unique identifier to

500 —~——

TRANSMIT EMBEDDED
MEDIA PLAYER PAGE
TO MEDIA DEVIGE

v

502 ~~——

TRANSMIT MEDIA FILE
IDENTIRCATION
MESSAGE TO LOG SERVER

504~ ~—

v

STORE MESSAGE
INFORMATION IN LOG
FOR MEDIA FILE

v

Em.._‘-"""--—-"

TRANSMIT SUBSEQUENT

MESSAGE TO LOG SERVER

WHILE EMBEDDED MEDIA
PLAYER PAGE OPEN

v

508 A

RECORD TIME STAMP
FOR SUBSEQUENT
MESSAGE IN LOG
FOR MEDIA FILE

FIG. 5

the media file (such as a unique identifier of the media file used in the media fil[e]

index and log system 122 and received along with a search results page) . . . and

the ranking (if any) of the media file within the search results page, and a session

identifier indicating the communications thread between client 110 and customer

system 118.” Id. §0058.

59. The media file index and log system 122 in Hayward “maintains a

27

Page 30 of 244

respective log for each indexed media file.” Id. The media file index and log
system 122 “records that the media file has been selected for playing by a user.”
Id. In particular, at step 504, the media file index and log system 122 stores “the
information contained within the media file identification message in the media
file’s respective log,” including a “time stamp” that identifies “the time at which
the media file identification message was transmitted.” Id.

60. Hayward teaches that “[t]he embedded media player page also
preferably includes scripting to instruct the client 110 to transmit at least one
subsequent message at step 506 while the embedded media player page remains
open.” Id. 0060. As noted above, Hayward defines “scripting” as “server or
client-side programming which supplements a static HTML page.” Id. §0017.
Hayward contemplates that the “scripting” could be, for example, “Java” or
“JavaScript.” Id. As shown at step 506, the subsequent messages are transmitted
to “the log server of the media file index and log system 122.” Id. §0061. The
subsequent messages are transmitted “at predetermined time intervals while the
embedded media play page remains open,” such as “every thirty seconds.” /d.
190060-0061. At step 508, a time stamp for the at least one subsequent message is
stored in the log associated with the media file.” /d. §0060.

61. Asnoted above, “[t]he media file index and log system 122 preferably

indexes and maintains logs for a plurality of media files.” Id. §0062. “When the

28

Page 31 of 244

logs maintained by the media file index and log system 122 are populated with
sufficient data,” Hayward teaches, “this data can be processed . . . to provide
valuable information,” including “raw popularity data” that “allows for the ranking
of the popularity of media files that are indexed in the media file index and log
system 122, based at least in part on the ranking results.” Id.

62. Hayward recognizes that “much information can be gleaned about the
user and the playing event” from the time stamps stored in a media file’s log at the
media file index and log system 122. Id. 0063. In particular, Hayward teaches,
“by calculating the difference in time between the first and last time stamps for a
media file during a selected playing session recorded in the log, the approximate
length of time that the embedded media player page was left open by the user can
be calculated.” Id. Hayward recognizes that this information may be valuable to,
for example, an advertiser whose advertisement was displayed while the embedded
media player page was open. Id. §0064. This information may also determine
“how pertinent or relevant a played media file was to a user’s initial search
request.” Id.

B. Middleton

63. I note that Middleton was published on August 15, 2002, which was
more than one year before August 21, 2008. I am told that makes Middleton prior

art to the 609 patent under § 102(b).

29

Page 32 of 244

64. Middleton describes an applet, downloaded to a user’s web browser,
that tracks the user’s interactions with an object on a web page. Middleton,
Abstract. The applet tracks, for example, a “time [the object is] displayed on [the]
page.” Middleton, Abstract; see also id. §0037.

65. The applet in Middleton takes the form of “Java™ code 44 that
includes instructions to be run while [a] user computer 20a is displaying the web
page.” Id. 90026. In particular, the Java™ code 44 “includes an applet program
and data for tracking and logging the activities of the user in memory 24 while the
user is viewing the Web page.” Id. 0029. Middleton’s applet “permits the authors
of the advertisement 39 to better understand how the users interact with the Web
page advertisement.” Id. 90029.

66. Figure 2, below right, shows how the applet allows an advertiser to
track “the elapsed time that [an] element 48 [of the advertisement 39] has been

displayed on the page.” Id. 0037. In state 104, Middleton teaches, “user activities

30

Page 33 of 244

with respect to objects within the
advertisement 39 may begin to be
tracked by logging information in
local memory locations 24 at the
client 20.” Id. 90036. The “elapsed
time” 1s tracked in state 106. When
“state 120 1s entered . . . the activity
log 60 is sent from the local
memory 24 by the applet 44 back to
a server,” which “may or may not be
the same server []| from which the
Web page 46 was originally
downloaded.” Id. 90045.

67. According to Middleton,

[START }—~10{]

101

START
APPLET

i

102

ESTABLISH LIST

v

OF OBJECTS!
REGIONS
¥ 104
LOG -
ACTIVITIES [
106
| ELAPSEDTIME |,
OBJECT DISPLAYED
108
—» MOUSEHOVER _|—
110
——= MOUSE CLICK —
112
——»{ MOUSE LOGATION
114
MICROMACRO o
TIME ”
116
o PAGE .
REQUESTED >
120
TRANSMIT -
. LOG >
118) EVENT
YES LEAhNO
PAGE
z FIG. 2

this information may be valuable to an advertiser, who may wish to understand

“what motivates users to pay initial attention to and/or otherwise interact with Web

page advertising.” Id. §0010.

C. Ryan

68. I note that Ryan issued on July 16, 2002, which was more than one

year before August 21, 2008. I am told that makes Ryan prior art to the 609 patent

Page 34 of 244

under § 102(b).

69. Ryan describes a search engine that includes a server and a database.
Ryan, 1:23-29. In Ryan, when a user enters a search command at a personal
computer, the server receives the search command, uses it to search the database,
and provides search results, such as a list of web pages, to the user’s personal
computer for display to the user. Id. at1:23-30. The search engine could be used
to provide, for example, videos. Id. at 36:64—67.

70. A problem with search engines, Ryan notes, is that they fail to take
into account “any measure of the actual users’ opinions” regarding the search
results, even though it would “directly benefits the advertiser, because it allows for
content to be targeted in real time based upon various criteria.” Id. at 1:66-2:4,
4:57-60. Accordingly, Ryan proposes determining a “relevance” to the user of a
web page selected from the search results. /d. at 9:17-18.

71. As Ryan explains, “[d]epending on the relevance of the site, the user
may spend time reading, downloading exploring further pages, embedded links and
so forth, or if the site appears irrelevant/uninteresting, the user may return directly
back to the search results after a short period.” Id. at 9:17-22. So Ryan uses a
“Java applet” to record a “date-time” when the user selects a site. /d. at 8:63—67,
9:41-56. “The time difference between the two selections,” Ryan teaches, “is

recorded as the difference between two . . . time data 132 from subsequent

32

Page 35 of 244

selections from the list of web page searches.” Id. at 9:22-25. This time
difference is recorded as ““surfer trace data on the popularity of web pages.” Id. at
9:29-30.

72. From the surfer trace data, the server generates a “cumulative surfer
trace table,” shown below. Id. at 13:62—14:3. The cumulative surfer trace table is
updated each time a user selects a web page from the search results. Id. at 16:10—

16.

TABLE 4

Each row is one surfer trace and the combined rows are the cumulative
surfer trace

[P Number User ID Keyword URL (webpage) Date-time

33

Page 36 of 244

73. Ryan’s server also maintains a table, shown below, linking web pages
with keywords entered in search commands. /d. at 12:16—41. This table includes
“the cumulative number of significant visits (hits) to each URL addresses
corresponding to each key-word,” which Ryan calls “weighting factor X.” Id. at
12:27-29. The weighting factor X “is a measure of the popularity of the URL for
each keyword and is determine [sic] from the surfer traces.” Id. at 12:29-31. The
weighting factor X may be “increment[ed] . . . based on the time spent at the web
page,” Ryan teaches. Id. at 16:40—41. “The longer the time spent the more this

increments the value of X.” Id. at 16:41-42.

TABLE 3

Links between information suppliers (web-pages) and information requests
{key-words)

Key-word Key-word Key-word Keyv-word EKey-word

URL XY Z

address 1

URL X. Y. 7
address 2

URL Y. 7

address 3

URL Y 7

address 4

URL Y. Z XY Z
address 3

URL

address 6

URL

address 7

34

Page 37 of 244

VIII. Claims 1-3 of the ’609 Patent are Unpatentable
A. Ground 1: Hayward anticipates claim 1

1. Claim 1

a. [1a] “A method for tracking digital media
presentations delivered from a first computer system
to a user’s computer via a network comprising:”

74. In my opinion, a POSA would have understood Hayward to disclose
this element.

75. T understand the “user’s computer” to refer to the user computers 20
shown in Figure 1, annotated below. I understand the “first computer system” to
be the 34 and 32, which are connected to the

user computers 20 via the network 40.

Fig. 1

35

Page 38 of 244

76. Hayward discloses “a method of displaying video data using an
embedded media player page.” Hayward, Abstract. The embedded media player
page is provided by a “customer system” to a “client” where the video data is
displayed. Id. 90031. Hayward’s “embedded media player page also facilitates the
collection of data in connection with the playing of a media file.” Id. §0057. This
data is collected from the client by a “media file index and log system.” Id. §0058.

77. In Hayward, the method is implemented in a “system of
interconnected computer system networks,” as shown in Figure 1, annotated
below. Id. 40019. Each of the computer system networks 102, such as that labeled

in , 1s connected to the client 110 via the Internet 114. Id.

36

Page 39 of 244

COMPUTER
PROCESSOR UNIT "’g

114

102

—--———————---—n--——————-—--

104~ COMPUTEH COMPUTER
PHOCESSDFI UNIT 104~ PROCESSOR UNIT

1 1
i N :
I ! |
I ! i
S :
- gg ! : i Qgg |
| ! |
|- | | i
N | : :
— } l
i ! |
| l |

COMPUTER SYSTEM NETWORK COMPUTER SYSTEM NETWORK

FIG. 1

78. In my opinion, Hayward teaches that one of the computer systems 102
in Figure 1, such as that labeled in above, may include both a
118 and 122, as shown in Figure 1A,
annotated below. Id. 90024. In particular, Hayward teaches that each of
118 and 122 may take the form of a
computer system 102, and Hayward teaches that these systems may be “combined
physically within one . . system[]” in some embodiments. /d. 90030.

79. Hayward also teaches that the first computer system (

37

Page 40 of 244

118 and 122) and the user’s computer

(client 110) are connected via a network (internet 114).

100A 1.E2
114 r "
116 g MEDIA FILE
i 7 INDEX AND LOG
SYSTEM
MEDIA
FILE
SOURCE
ADVERTISEMENT
SYSTEM
g (
CUSTOMER
SYSTEM 120
110)
\
118

FIG. 1A

80. In my opinion, a POSA would have understood Hayward’s customer
system 118 and media file index and log system 122 to disclose the claimed “first
computer system”’; would have understood Hayward’s client 110 to disclose the
claimed “user’s computer”; and would have understood Hayward’s Internet 114 to
disclose the claimed “network.” Further, because Hayward teaches a method for

tracking a media file displayed using an embedded media player page provided by

38

Page 41 of 244

the customer system 118 to the client 110 via the Internet 114, in my opinion
Hayward discloses “[a] method for tracking digital media presentations delivered
from a first computer system to a user’s computer via a network.”

b. [1b] “providing a corresponding web page to the

user’s computer for each digital media presentation to
be delivered using the first computer system;”

81. In my opinion, Hayward discloses providing a corresponding web
page (e.g., the embedded media player page) to the user’s computer (e.g., the
client 110) for each digital media presentation to be delivered using the first
computer system (e.g., the customer system 118).

82. Hayward teaches that a user can search for media files by providing a
search request to the customer system 118 through the client 110. Hayward,
90028. The customer system 118 receives the search request and transmits it to the
media file index and log system 122, which “searches local and remote databases
for indexed media files that satisfy the search request” to generate “search results.”
Id. The “search results” include ““a database identifier unique to each video file.”
Id. The media file index and log system 122 provides the search results to the
customer system 118, and the customer system 118 provides the search results to
the client 110 for display to the user. /d.

83. When the user selects one of the search results, the client 110 requests

the embedded media player page from the customer system 118. Id. §0029. The

39

Page 42 of 244

embedded media player page is then “transmitted from customer system 118
through Internet 114 and displayed to the user by a client 110.” Id. 40031.

84. The embedded media player page is “displayed as a Web page in a
browser window” at the client 110 and “includes a reference to a functional media
player object” to play the selected media file. /d. 490024, 0031. An example
embedded media player page is shown in Figure 2 of Hayward, below. As shown,
the embedded media player page “includes video display area 202 (when the

embedded player plays video files).” Id. 40032.

rm m"_“\ 'Lm
[SINGINGFISH PLAYER - 7CE (NOYPROXYJCE.COM) DOX
GRAND S, N(SAVING™ 0% 0FF/ [WHERE YOU WIN AT PAYING LESS
- "COMPARE YOUR SVINGS GLICK
: BEFORE YOU SHOP RETAIL* HERE
S o Y —
Wt ANYTHING THAT MOVES szm 2l 0
< 0% M—> D0GPILESM zfm:
W~ {
NS 208
20
Wl D - 201
m oo EM
7 ¥ ﬁi_
[] 310 tps § (] >0 O <> @ @D
216—{|-LAUNCH EXTERNAL VIEWER ADD TO FAVORITESI—— 212
SOURCE : 12.28.1777:8080
—*
b fe # < FIG. 2

85. In my opinion, Hayward’s embedded media player page discloses the

claimed “corresponding web page.” Because Hayward discloses that customer

40

Page 43 of 244

system 118 provides the embedded media player page to client 110, and that the
embedded media player page facilitates display of the media file selected by the
user, in my opinion Hayward discloses “providing a corresponding web page to the
user's computer for each digital media presentation to be delivered using the first
computer system.”

c. [1c] “providing identifier data to the user’s computer
using the first computer system”

86. In my opinion, Hayward discloses providing identifier data (e.g., a
unique identifier for the media file and a session identifier) to the user’s computer
(client 110) using the first computer system (customer system 118 and media file
index and log system 122).

87. Hayward teaches that “[a] user of client 110 accesses customer
system 118 through Internet 114,” and “customer system 118 transmits a web page
to client 110 through Internet 114.” Hayward, 40025. The transmitted web page
includes “a media file search prompt” where the user may enter a search request,
such as “Pearl Harbor” and “movie trailer.” Id. 990026, 0028. “The search request
is received by customer system 118 and is transmitted to media file index and log
system 122.” Id. 0028. When the search request is transmitted by the customer
system 118, the media file index and log system 122 searches “for indexed media
files that satisfy the search request” and “transmits the results to customer

system 118.” Id. 0028. The search results include “the playing length of each
41

Page 44 of 244

video file, the URI address of each video file, encoding bit rate of the video file,
file format, a database identifier unique to each video file, frame dimensional data
for each video file, or any other information contained within the database.” Id.
90028. This “unique identifier for the media file” is “associated with the media
file” and used to identify the media file in the media file index and log system 122.
1d. 990027, 0054, 0058, Fig. 5. In my opinion, the claimed “identifier data” could
include Hayward’s unique identifier for the media file.

88. Hayward further teaches that the user may “view the video data
contained within a video file listed in the search results displayed to the user by
clicking a link to one of the video files.” Id. §0029. When the user clicks a link
for a selected media file, “the customer system 122 instructs the client to request
[an] embedded media player page from the customer system 122.” Id. A POSA
would have understood from Hayward that, in connection with the providing the
embedded media player page to the client 110, the customer system 122 would
provide the client 110 with a session identifier. Hayward references a “session
identifier indicating the communication thread between client 110 and customer
system 118 that the client 110 sends in the media file identification message. /d.
10058. A POSA would have understood that, in order for the client 110 to send
this session identifier in the media file identification message, the client 110 would

have had to receive it from the customer system 118 in connection with the

42

Page 45 of 244

embedded media player page. In my opinion, the claimed “identifier data” could
include Hayward’s session identifier.

89. Because Hayward thus discloses providing, for example, a unique
identifier for the media file and a session identifier to the client 110 using the
customer system 118, in my opinion Hayward discloses “providing identifier data
to the user’s computer using the first computer system.”

d. [1d] “providing an applet to the user’s computer for
each digital media presentation to be delivered using

the first computer system, wherein the applet is
operative by the user’s computer as a timer”

90. In my opinion, Hayward discloses providing an applet (“scripting,” as
defined in Hayward) to the user’s computer (client 110) for each digital media
presentation (video file) to be delivered using the first computer system (customer
system 118 and media file index and log system 122), wherein the applet is
operative by the user’s computer (client 110) as a timer.

91. In Hayward, when the user clicks a link for a selected media file, “the
customer system 122 instructs the client to request [an] embedded media player
page from the customer system 122,” and the media player displays the selected
media file. Hayward, 990029, 0046.

92. According to Hayward, the embedded media player page also
“facilitates the collection of data in connection with the playing of the video file.”

1d. J0057. In particular, “the embedded media player page instructs the client 110
43

Page 46 of 244

to transmit a media file identification message to [the] media file index and log
server 122.” Id. 40058. Additionally, the embedded media player page “instruct[s]
the client 110 to transmit at least one subsequent message . . . while the embedded
media player page remains open.” Id. §0060.

93. Hayward states that the embedded media player page instructs the
client 110 to send the subsequent messages using “scripting.” Id. Hayward
defines “scripting,” as used in Hayward, as “server or client-side programming
which supplements a static HTML page.” Id. §0017. Hayward contemplates that
its “scripting” could be, for example, “Java” or “JavaScript.” Id. In my opinion, a
POSA would have understood that “client-side programming” in “Java” that
“supplements a static HTML page” includes applets. Accordingly, in my opinion,
a POSA would have understood Hayward to disclose that the embedded media
player page uses an applet to instruct the client 110 to send the subsequent
messages.

94. Just as Hayward states that “[t]he embedded media player page . . .
instruct[s] the client 110 to transmit at least one subsequent message,” Hayward
states that “the embedded media player page instructs the client 110 to transmit
[the] media file identification message.” Id. 440058, 0060. But while Hayward
states that the embedded media player page instructs the client 110 to send the

subsequent messages using “scripting,” Hayward does not state how the embedded

44

Page 47 of 244

media player page instructs the client 110 to send the media file identification
message. /d. In my opinion, a POSA would have understood from Hayward that,
as with the subsequent messages, the embedded media player page uses “scripting”
to instruct the client 110 to send the media file identification message. As noted
above, Hayward contemplates that its “scripting” could be, for example, “Java”
which a POSA would have understood to include applets. Id. §0017. Accordingly,
in my opinion, a POSA would have understood Hayward to disclose that the
embedded media player page uses an applet to instruct the client 110 to send the
media file identification message.

95. In my opinion, the scripting in Hayward that instructs the client 110 to
send the media file identification message and the subsequent messages discloses
the claimed “applet.” Like the claimed applet, which is “provid[ed] . . . to the
user’s computer for each digital media presentation to be delivered using the first
computer system,” Hayward’s scripting is provided to the client 110 in each
embedded media player page through which a selected media file is displayed.
Further, like the claimed applet, which is “operative by the user’s computer as a
timer,” Hayward’s scripting is operative by the client to instruct the client to send
the subsequent messages “at predetermined time intervals.” Id. 40060; see also id.

29 ¢¢

0061 (“periodic intervals,” “every thirty seconds™).

96. Because a POSA would have understood Hayward to disclose

45

Page 48 of 244

providing an applet to client 110 in each embedded media player page and using
the applet to instruct the client 110 to send the media file identification message
and the subsequent messages to the media file index and log system 122 at
predetermined time intervals, in my opinion a POSA would have understood
Hayward to disclose “providing an applet to the user’s computer for each digital
media presentation to be delivered using the first computer system, wherein the
applet is operative by the user’s computer as a timer.”
e. [1e] “receiving at least a portion of the identifier data
from the user’s computer responsively to the timer

applet each time a predetermined temporal period
elapses using the first computer system”

97. In my opinion, Hayward discloses receiving at least a portion of the
identifier data (the unique identifier for the media file) from the user’s computer
(client 110 in Hayward) responsively to the timer applet (“scripting”) each time a
predetermined temporal time period elapses using the first computer system
(customer system 118 and media file index and log server 122).

98. Asnoted above in connection with [1¢], in my opinion the claimed
“identifier data” could include Hayward’s unique identifier for the media file.
Accordingly, in my opinion, the unique identifier for the media file also discloses
the claimed “at least a portion of the identifier data.”

99. In Hayward, “the embedded media player page instructs the client 110

to transmit a media file identification message to [the] media file index and log

46

Page 49 of 244

server 122.” Hayward, §0058. Hayward states that the media file identification
message “should at least identify to the log system 122 the media file that is to be
played by the embedded media player page.” Id. For example, Hayward’s media
file identification message may include the “unique identifier for the media file
(such as a unique identifier of the media file used in the media fil[e] index and log
system 122 and received along with the search results page.” Id.

100. Hayward’s client 110 further sends the “subsequent messages” to the
media file index and log system 122. Id. §0061. In my opinion, a POSA would
have understood that the subsequent messages, like the media file identification
message, would have uniquely identified the media file. This is because
Hayward’s media file index and log system 122 indexes ““a plurality of media
files,” each of which is identified by “a unique identifier for the media file,” and
“maintains a respective log for each indexed media file.” /d. 40027, 0058. When
a subsequent message is received in Hayward, “a time stamp for the . . .
subsequent message is stored in the log associated with the media file.” Id. 0060.
In my opinion, a POSA would have understood that, to store the time stamp in the
“log associated with the media file,” the subsequent message would need to
uniquely identify the media file, like the media file identification message does.
This similarity between the subsequent messages and the media file identification

message 1s consistent with Hayward’s description of each as “an HTTP request to

47

Page 50 of 244

the media file index and log system 122 for a one-pixel GIF file.” Id. 440059,
0061. Just as the unique identifier for the media file is “appended to the HTTP
request” that is the media file identification message, a POSA would have
understood Hayward to teach that the unique identifier for the media file is
appended to the HTTP requests that are the subsequent messages. Id. This would
have allowed the time stamps for the subsequent messages to be “stored in the log
associated with the media file” by the media file index and log system 122, as
Hayward describes. 1d. 90060.

101. As discussed above, in my opinion Hayward discloses using an applet
to instruct the embedded media player page to send the subsequent messages to the
media file index and log system 122 at predetermined time intervals. Accordingly,
in my opinion, Hayward discloses that the media file index and log system 122
receives the unique identifier for the media file from the client 110 responsively to
the applet each time a predetermined temporal period elapses.

102. Because a POSA would have understood Hayward to disclose the
media file index and log system 122 receiving the subsequent messages including
the unique identifier for the media file sent using the applet at the client 110 each
time a predetermined temporal time period elapses, in my opinion a POSA would
have understood Hayward to disclose “receiving at least a portion of the identifier

data from the user’s computer responsively to the timer applet each time a

48

Page 51 of 244

predetermined temporal period elapses using the first computer system.”
f. [1f] “storing data indicative of the received at least

portion of the identifier data using the first computer
system”

103. In my opinion, Hayward discloses storing data (entries at the media
file index and log system 122 relating to the media file information message and
subsequent messages) indicative of the received at least portion of the identifier
data (unique identifier for the media file) using the first computer system
(customer system 118 and media file index and log system 122).

104. In Hayward, the “media file index and log system 122 preferably
maintains a respective log for each media file.” Hayward, §0058. When the media
file identification message is received, the media file index and log system 122
“records that the media file has been selected for playing by a user, preferably by
storing, at step 504 [in Figure 5, below right] the information contained within the
media file identification message in the media file’s respective log.” Id. This
information includes the unique identifier for the media file, a “time stamp

. 1dentifying the time at which the media file identification message was

49

Page 52 of 244

transmitted,” and “the time that the media file identification message was

received.” Id.

105. Similarly, Hayward discloses that a TRANSMIT EMBEDDED
500 —~— MEDIA PLAYER PAGE
: : TO MEDIA DEVICE
time stamp for each subsequent message is T
: : : : TRANSMIT MEDIA FILE
“stored in the log associated with the media file,” s02-—~—{ IDENTIRCATION
MESSAGE TO LOG SERVER
as shown in Figure 5, right. Id. §0060. As noted x

STORE MESSAGE
S04 1 INFORMATION IN LOG

above in connection with [1e], in my opinion a FOR MTM FILE
POSA would have understood that, to store the a5 | msﬂgg'iﬁE&U&"H
WHILE EMBEDDED MEDIA
. PLAYER PAGE OPEN
time stamp in the “log associated with the media)
file,” as Hayward contemplates, the subsequent 508 ~~—_| “E:%%@Hé"&uﬂé‘n”"
MESSAGE IN LOG
, . FOR MEDIA FILE
message would need to uniquely identify the
media file. In my opinion, a POSA would have FIG. 5

understood that the stored time stamps for the
subsequent messages in Hayward are indicative of the unique identifier for the
media file because their storage in the “log associated with the media file”
indicates the media file.

106. Because Hayward discloses storing the unique identifier for the media
file and the time stamp for the media file identification message, as well as the
time stamps for the subsequent messages, in the log associated with the media file

at the media file index and log system 122, in my opinion Hayward discloses

50

Page 53 of 244

“storing data indicative of the received at least portion of the identifier data using
the first computer system.”
g. [1g] “wherein each provided webpage causes
corresponding digital media presentation data to be
streamed from a second computer system distinct

from the first computer system directly to the user’s
computer independent of the first computer system”

107. In my opinion, Hayward discloses wherein each provided webpage
(embedded media player page) causes corresponding digital media presentation
data (media file) to be streamed from a second computer system (media file
source 116) distinct from the first computer system (customer system 118 and
media file index and log system 122) directly to the user’s computer (client 110)

independent of the first computer system.

51

Page 54 of 244

108. In Hayward, the media file is streamed directly to the client 110 by a
media file source 116, as shown in annotated Figure 1A below. Media file
source 116 “is accessible through Internet 114 and provides at least one media file

through Internet 114 for playing on client 110.” Hayward, 40021.

100A 122

MEDIA FILE |

INDEX AND LOG
SYSTEM

T

ADVERTISEMENT
SYSTEM

(

120

CUSTOMER
SYSTEM

)]
Y
118

FIG. 1A

109. Hayward describes an example in which a media file,
“thestream.asx,” 1s streamed to the client 110 from a media file source 116,
“thestreamhost.com.” Id. 440042—-0046. When a user selects a search result in the
embedded media player page, “[a] file entitled ‘thestream.asx’ is found and
streamed by the media player from [the] media file source 116 located at
‘thestreamhost.com’ through Internet 114 via a SRC command.” /d. §0046. “The

file ‘thestream.asx’,” Hayward discloses, “is outputted by the embedded medial
52

Page 55 of 244

player.” Id.

110. In my opinion, a POSA would have understood from Hayward’s
example that the media file, “thestream.asx,” is streamed from the media file
source 116 directly to the client 110 independent of the customer system 118 and
media file index and log system 122. “[T]he embedded media player reference[s]”
the media file, “thestream.asx,” using, for example, a “SRC command™:

SRC="http://thestreamhost.com/thestream.asx”
1d. 190044, 0046.

111. In my opinion, a POSA would have understood that a SRC command
causes a web browser at a client (here, the client 110) to fetch a media file (here,
“thestream.asx’’) from a content source (here, media file source 116) located at the
Internet domain or address given in the universal resource locator (“URL”)
specified by the command (here, http://thestreamhost.com/thestream.asx). A
POSA would have understood that the URL in the SRC command may specify any
domain or address on the Internet and has no relation to a content server providing
the web page in which the media file is ultimately embedded and displayed. Thus,
a POSA would have understood that Hayward encompasses an embodiment in
which the media file is streamed from the media file source 116 directly to the
client 110 independent of the customer system 118 and media file index and log

system 122.

53

Page 56 of 244

112. In my opinion, a POSA would also have understood Hayward to
encompass an embodiment in which the media file source 116 is distinct from the
customer system 118 and media file index and log system 122, as shown in
Figure 2. Hayward discloses that the media file source 116, like the

118 and 122, may be “connected to
Internet 114 and may be configured as [a] computer system network 102,” shown
in Figure 1 to be distinct. /d. §0024. In my opinion, a POSA would have
understood from Hayward’s SRC command that the media file source 116, to
which the URL points, may be a second computer system distinct from the first
computer system (customer system 118 and media file index and log system 122).
In particular, when embedding content in a Web page with an HTML SRC
directive, there is no requirement that the source URL shares a domain with the
source of the containing page, or that the two content sources are controlled or

operated by the same party: they may be unrelated.

54

Page 57 of 244

COMPUTER
PROCESSOR UNIT "’@

114

1
I
;'104"' | PHSEE%E%BEBNH i " \iwh | Pngg&%ﬁm
i v 105 i 2 i - AN 106
1024:_____‘3_“_”5"1"_’@'3?’_3151“'_'*’_51‘?”_“5__-_.5 | CWPESSTMIENOK

FIG. 1

113. Because Hayward encompasses an embodiment in which the

embedded media player page causes the media file to be streamed from the media

file source 116 directly to the client 110 independent of the 118
and 122, and in which Hayward’s media file
source 116 1is distinct from the 118 and

122, in my opinion Hayward discloses “wherein each provided webpage
causes corresponding digital media presentation data to be streamed from a second

computer system distinct from the first computer system directly to the user’s

55

Page 58 of 244

—— ——— - —— " - ———

computer independent of the first computer system.”!
h. [1h] “wherein the stored data is indicative of an
amount of time the digital media presentation data is

streamed from the second computer system to the
user’s computer”

114. In my opinion, Hayward discloses that the stored data (entries at the
media file index and log system 122 relating to the media file identification
message and the subsequent messages) is indicative of an amount of time the
digital media presentation data (media file) is streamed from the second computer

system (media file source 116) to the user’s computer (client 110).

'T have been told that Google has proposed construing “a second computer system
distinct from the first computer system” as a second computer system unrelated to
the first computer system and not commonly controlled or operated by the same
party,” while Uniloc has proposed a plain and ordinary meaning. Ex. 1008 at 10;
Ex. 1009 at 2. In my opinion, Hayward discloses [1h] under either of these
constructions. As noted above, Hayward encompasses an embodiment in which
the media file source 116 in Hayward is unrelated to the customer system 118 and
media file index and log system 122. Hayward, 0024, Fig. 1. Hayward also
discloses an embodiment in which the media file source 116, on the one hand, and
the customer system 118 and media file index and log system 122, on the other, are

not commonly controlled or operated by the same party. Id. §0024.

56

Page 59 of 244

115. Asdiscussed above in [1f], Hayward’s media file index and log
system 122 stores a “time stamp . . . identifying the time at which the media file
identification message was transmitted,” and “the time that the media file
identification message was received” in a log associated with the media file.
Hayward, 90058. Similarly, Hayward discloses that a time stamp for each
subsequent message is “stored in the log associated with the media file.” 1d.
10060.

116. In my opinion, a POSA would have understood from Hayward that
the “time stamp . . identifying the time at which the media file identification
message was transmitted” in Hayward is indicative of a time a streaming file is
buffered and begins to play. This is because in Hayward “[t]he media file
identification message is preferably transmitted to the media file index and log
system 122 substantially proximate in time to when the media file begins to play in
the embedded media player of the embedded media player page, particularly in the
case of streaming media files which are typically buffered for a period of time
before play begins.” Id. 0059.

117. Further, in my opinion, a POSA would have understood from
Hayward that the time stamps for the subsequent messages in Hayward are
indicative of a time the embedded media player page is open once the media file

begins to play. The subsequent messages are sent “at predetermined time intervals

57

Page 60 of 244

while the embedded media player page remains open.” Id. 0060. As Hayward
explains, “by calculating the time difference between the first and last time stamps
for a media file during a selected playing session recorded in the log, the
approximate length of time that the embedded media player page was left open by
the user can be calculated.” Id. 90063.

118. Still further, in my opinion, a POSA would have understood from
Hayward that the time stamps for the subsequent messages in Hayward are
indicative of a time a streaming media file is played. This is because Hayward
encompasses embodiments in which the embedded media player page is open at
the client 110 for an amount of time that is less than or equal to the playing time of
the media file. /d. A POSA would have understood that, in these embodiments,
each time stamp of a subsequent message would indicate not only that the
embedded media player page was open, but also that the media file was being
played.

119. Finally, in my opinion, a POSA would have understood from
Hayward that the time stamps for the media file identification message and the
subsequent messages are indicative of an amount of time the media file data is
streamed from the media file source 116 to the client 110. I have been told that
Google has proposed construing “is indicative of an amount of time the digital

media presentation data is streamed from the second computer system to the user’s

58

Page 61 of 244

computer” as “equates to the amount of time that a digital media presentation data
is transferred as a substantially steady and continuous stream from the second
computer,” while Uniloc has proposed giving this term its plain and ordinary
meaning. Ex. 1008 at 7; Ex. 1009 at 2. In my opinion, Hayward discloses [1h]
under either of these constructions. Regarding Google’s construction, in my
opinion a POSA would have understood that Hayward encompasses embodiments
in which the entirety of a media file is streamed to and displayed by the user’s
computer. A POSA would further have understood that the time stamps in these
embodiments would equate to the amount of time that the media file was
transferred as a substantially steady and continuous stream from the media file
source 116. This is because, in such embodiments, the time that the media file was
transferred would equate to the time that the media file was displayed. Hayward,
910059. A POSA would have understood that, in Hayward’s system, the
transferring of the media file as a substantially steady and continuous stream will
precede the display of the media file by a buffering window. As Hayward
explains, “streaming media files . . . are typically buffered for a period of time
before play begins.” Id. A POSA would further have understood that, in
embodiments where the entirety of the media file is streamed to and displayed by
the user’s computer, the display of the media file will continue after the

transferring of the media file is complete by a period of time that equates to the

59

Page 62 of 244

buffering window. That is, in these embodiments, the time that the media file was
transferred will equate to the time that the media file was displayed but will be
shifted by the buffering window. To the extent Uniloc contends the plain and
ordinary meaning of this term focuses on a play time, rather than a transfer time, of
the “digital media presentation data,” in my opinion Hayward teaches that the time
stamps for the subsequent messages can be used to calculate “the approximate
length of time that the embedded media player page was left open by the user.” /Id.
10063.

120. This understanding of Hayward is consistent with Hayward’s
definition of “[s]treaming media files” as those “delivered over the Internet or
other network environment to a client and playback on the client begins before the
delivery of the entire file is completed.” Id. 40022. This understanding of
Hayward 1s also consistent with the example media file formats Hayward
expressly contemplates, including “REALAUDIO™, REALVIDEO#,
MICROSOFT WINDOWS MEDIA FORMAT™, FLASH™, [and] APPLE
QUICKTIME™.” Id. §0023.

121. Because the media file identification message in Hayward thus
indicates when the media file begins to play in the embedded media player page,
and each subsequent message in Hayward thus indicates that the embedded media

player is still open during the predetermined interval, in my opinion a POSA would

60

Page 63 of 244

have understood Hayward to disclose that “the stored data is indicative of an
amount of time the digital media presentation data is streamed from the second
computer system to the user’s computer.”

i. [1i] “wherein each stored data is together indicative

of a cumulative time the corresponding web page was
displayed by the user's computer”

122. In my opinion, Hayward discloses that each stored data (entries at the
media file index and log system 122 relating to the media file identification
message and the subsequent messages) is together indicative of a cumulative time
the corresponding web page (embedded media player page) was displayed by the
user’s computer (client 110).

123. Hayward discloses that the media file index and log server 122 stores
a “time stamp . . . identifying the time at which the media file identification
message was transmitted,” and “the time that the media file identification message
was received” in a log associated with the media file. Hayward, 90058. Similarly,
Hayward discloses that a time stamp for each subsequent message is “stored in the
log associated with the media file.” Id. §0060. Hayward explains that “by
calculating the difference in time between the first and last time stamps for a media
file during a selected playing session recorded in the log, the approximate length of
time that the embedded media player page was left open by the user can be

calculated.” Id. 40063.

61

Page 64 of 244

124. Because Hayward thus discloses that the media file identification
message and the subsequent messages are indicative of how long the embedded
media player page was open at client 110, in my opinion Hayward discloses that
“each stored data is together indicative of a cumulative time the corresponding web
page was displayed by the user’s computer.”

B. Ground 2: Hayward and Middleton render obvious claim 1

1. Claim 1

a. [1a] “A method for tracking digital media
presentations delivered from a first computer system
to a user’s computer via a network comprising:”

125. In my opinion, Hayward discloses this element, as described in
Section VIIL.A.1.a.

b. [1b] “providing a corresponding web page to the
user’s computer for each digital media presentation to
be delivered using the first computer system;”

126. In my opinion, Hayward discloses this element, as described in
Section VIIL.A.1.b.

c. [1c] “providing identifier data to the user’s computer
using the first computer system”

127. In my opinion, Hayward discloses this element, as described in
Section VIIL.A.1.a.

d. [1d] “providing an applet to the user’s computer for
each digital media presentation to be delivered using

62

Page 65 of 244

the first computer system, wherein the applet is
operative by the user’s computer as a timer”

128. In my opinion, Hayward and Middleton would have rendered obvious
to a POSA providing an applet (applet 44 in Middleton) to the user’s computer
(client 110) for each digital media presentation (media file) to be delivered using
the first computer system (customer system 118 and media file index and log
system 122), wherein the applet is operative by the user’s computer (client 110) as
a timer.

129. 1In Hayward, when the user clicks a link for a selected media file, “the
customer system 122 instructs the client to request [an] embedded media player
page from the customer system 122,” and the media player displays the selected
media file. Hayward, 990029, 0046.

130. According to Hayward, the embedded media player page also
“facilitates the collection of data in connection with the playing of the video file.”
1d. 0057. In particular, “the embedded media player page instructs the client 110
to transmit a media file identification message to [the] media file index and log
server 122.” Id. 90058. Additionally, the embedded media player page “instruct[s]
the client 110 to transmit at least one subsequent message . . . while the embedded
media player page remains open.” Id. §0060.

131. Hayward states that the embedded media player page instructs the

client 110 to send the subsequent messages using “scripting.” As discussed above

63

Page 66 of 244

in Section VIII.A.1.d, it is my opinion that a POSA would have understood from
Hayward that, as with the subsequent messages, the embedded media player page
uses “scripting” to instruct the client 110 to send the media file identification
message. Hayward defines “scripting,” as used in Hayward, as “server or client-
side programming which supplements a static HTML page.” Id. §0017. Hayward
contemplates that its “scripting” could be, for example, “Java” or “JavaScript.” Id.
132. Like the claimed applet, which is “operative by the user’s computer as
a timer,” Hayward’s scripting is operative by the client to instruct the client to send
the subsequent messages “at predetermined time intervals.” Id. §0060; see also id.

99 ¢¢

0061 (“periodic intervals,” “every thirty seconds™). From the media file
identification message and the subsequent messages, Hayward teaches, “much
information can be gleaned about the user and the playing event,” such as “the
approximate length of time that the embedded media player page was left open.”
1d. 90063.

133. As noted above in Section VIII.A.1.d, it is my opinion that a POSA
would have understood that Hayward defines “scripting,” as used in Hayward, to
include applets. But even if not, it would have been obvious to a POSA to use an
applet to send the media file identification message and subsequent messages in

Hayward, because it was well known at the time the provisional application

leading to the *609 patent was filed to use applets to track a user’s viewing of

64

Page 67 of 244

content in a web page as evidenced by, for example, Middleton.

134. Middleton describes a “Web page” that includes an object, such as an
advertisement. Middleton, §0028. Middleton’s web page includes “Java™
code 44 that includes instructions to be run while [a] user computer 20a is
displaying the web page.” Id. §0026. The Java™ code 44 “includes an applet
program and data for tracking and logging the activities of the user in memory 24
while the user is viewing the Web page.” Id. §0029. For example, the applet may
permit an advertiser to track “the elapsed time that [an] element 48 [of the
advertisement 39] has been displayed on the page.” Id. §0037. In this manner,
“[t]he applet program 44 . . . permits the authors of the advertisement 39 to better
understand how the users interact with the Web page advertisement.” Id. §0029.

135. In my opinion, a POSA would have been motivated and would have
found it obvious to implement Hayward’s media file identification message and
subsequent messages using an applet, as in Middleton, because (1) Hayward shows
that JavaScript and a Java applet were known alternatives for adding a feature to a
web page; (i1) Hayward’s scripting and Middleton’s applet add similar tracking
features in similar web pages; and (iii) a POSA would have understood that an
applet would have provided technical benefits to Hayward’s customer system 118
and media file index and log system 122.

136. A POSA would have known at the time the provisional application

65

Page 68 of 244

leading to the *609 patent was filed that JavaScript and a Java applet were
identified and predictable alternatives for adding a feature to a web page. See, e.g.,
Appendix C at 1623 (listing among the “MOST COMMONLY USED NETWORK
PROGRAMMING TOOLS” Java and JavaScript; characterizing Java and
JavaScript as “well-developed network programming tools available today.”).
Hayward itself recognizes this. As Hayward explains, “programming which
supplements a static HTML page” could be written either in JavaScript or as a Java
applet. Hayward, 90017.

137. Moreover, a POSA would have recognized that Hayward’s scripting
and Middleton’s applet add similar tracking features in similar web pages. Like
Hayward’s embedded media player page, which is displayed in “a browser, such as
Microsoft Internet Explorer, of a client,” and facilitates display of a media file, id.
140031-0032, Middleton’s web page i1s downloaded using “browser program

software such as . . . Microsoft Internet Explorer™”

and facilitates display of an
advertisement that includes “graphics, pictures, or words,” Middleton, 440011,
0024. And, like Hayward’s scripting, which permits tracking of “the approximate
length of time that the embedded media player page was left open,” Hayward,
10063, Middleton’s applet permits tracking of “the elapsed time that [an]

element 48 [of the advertisement 39] has been displayed on the page,” Middleton,

90037. In my opinion, a POSA would have found it obvious to use an applet, like

66

Page 69 of 244

Middleton’s, to generate the media file identification messages and the subsequent
messages to track the length of time the embedded media player page is open, just
as the applet is used in Middleton to track how long the advertisement has been
displayed.

138. In my opinion, a POSA would have understood that an applet would
have provided technical benefits to Hayward’s customer system 118 and media file
index and log system 122 at the time the provisional application leading to the
’609 patent was filed. Based on my experience, a POSA would have known that
one benefit was that Java applets allowed for the creation of “threads.” See, e.g.,
Appendix B at 253; Appendix C at 1625. JavaScript did not. See, e.g.,

Appendix A at 255 (“The core JavaScript language does not contain any threading
mechanism, and client-side JavaScript does not add any.”) With threads, a
programmer could separate an activity into multiple tasks that execute concurrently
(e.g., in parallel) on different threads. Appendix B at 253. One advantage of using
threads was that a short-running task (e.g., reacting to a user’s mouse click) could
be completed quickly while a long-running task (e.g., a file download) continued to
make progress. Id. In my experience, Java achieved this concurrency with
minimal programmer effort.

139. Based on my experience, a POSA would have known that another

benefit was that Java applets provided class-based inheritance. See, e.g.,

67

Page 70 of 244

Appendix B at 91-93. JavaScript did not. Appendix A at 157 (noting that
JavaScript has prototype-based, rather than class-based, inheritance). A “class” in
Java was source code that defined data values and methods. Appendix B at 58.
Class-based inheritance meant that new classes could be created that inherited, or
copied, the data values and methods defined in another class, thereby reducing the
size of the class definition. /d. at 91-93. Class-based inheritance also allowed for
“overriding,” in which a programmer copied some, but not all, of the methods
defined in another class. Id. at 94. In this manner, the programmer could take
advantage of the reduced class definition while still tailoring a new class to a
specific need. Id.

140. In my experience, these and other benefits of Java were appealing to
programmers and provided significant advantages for large software systems like
Hayward’s customer system 118 and media file index and log system 122. See,
e.g., Appendix C at 1630 (“Java can be used on the client side as well as on the
server side. IT allows implementing a complex functionality of a larger program
by using object oriented and well-structured language.”). As one example,
threading allowed for modularization, in which distinct threads were used to carry
out distinct processes, even if the processes were to run concurrently. See, e.g.,
Appendix B at 253. In my experience, such modularization could simplify the

development and maintenance of large software systems like Hayward’s customer

68

Page 71 of 244

system 118 and media file index and log system 122, because it allowed a discrete
code element to be designed, implemented, and/or modified without affecting the
myriad other aspects of the software.

141. Based on my experience, a POSA would have known that still another
benefit was that Java applets were faster than some other technologies, including
JavaScript. See, e.g., Appendix C at 1625 (describing as a “feature” that “ensured
success and increased importance” of Java that it is “fast”). JavaScript was an
interpreted, rather than compiled language, meaning the source code itself was
passed with a web page, and the browser at the client converted it to machine code
upon receipt. Id. at 1624 (“JavaScript is an interpretive language and the scripts
run as the Web page is downloaded and displayed.”). As a result, JavaScript was
inherently slower than Java applets.

142. Based on my experience, it is my opinion that a POSA would also
have understood that an applet would have provided additional technical benefits
to Hayward’s customer system 118 and media file index and log system 122 in
embodiments where the media player is embedded using an applet. Hayward
teaches that, in some embodiments, “a functional media player applet may
accompany a data page download, and the data page is configured to embed the
media player generated by the applet.” Hayward, 0002. In these embodiments, a

POSA would have been motivated to send the media file identification message

69

Page 72 of 244

and the subsequent messages using an applet as well, because in my experience
using consistent technologies between the media player and the subsequent
messages would simplify the design and maintenance of the customer system 118
and the media file index and log system 122.

143. Because Hayward thus teaches providing scripting to the client 110 in
the embedded media player page for each video file delivered using the customer
system 118, and that the scripting sends messages at predetermined time intervals,
and in my opinion a POSA would have found it obvious and would have been
motivated to use an applet, as in Middleton, to send Hayward’s subsequent
messages, in my opinion a POSA would have understood Hayward and Middleton
to render obvious “providing an applet to the user’s computer for each digital
media presentation to be delivered using the first computer system, wherein the
applet is operative by the user’s computer as a timer.”

e. [1e] “receiving at least a portion of the identifier data
from the user's computer responsively to the timer

applet each time a predetermined temporal period
elapses using the first computer system”

144. In my opinion, Hayward and Middleton teach receiving at least a
portion of the identifier data (the unique identifier for the media file in Hayward)
from the user’s computer (client 110 in Hayward) responsively to the timer applet
(applet 44 in Middleton) each time a predetermined temporal time period elapses

using the first computer system (customer system 118 and media file index and log

70

Page 73 of 244

server 122 in Hayward).

145. In Hayward, the media file index and log system 122 receives
subsequent messages sent using the scripting at the client 110 each time a
predetermined temporal time period elapses. In my opinion, as discussed above in
Section VIII.A.1.e, a POSA would have understood that the subsequent messages
would have uniquely identified the media file. Hayward’s media file index and log
system 122 indexes “a plurality of media files,” each of which is identified by “a
unique identifier for the media file,” and “maintains a respective log for each
indexed media file.” Hayward, 490027, 0058. When a subsequent message is
received in Hayward, “a time stamp for the . . . subsequent message is stored in the
log associated with the media file.” Id. §90060. In my opinion, a POSA would
have understood that the subsequent messages uniquely identify the media file so
that the media file index and log system 122 can store the time stamp in the “log
associated with the media file.”

146. In my opinion, the POSA would have understood Hayward to suggest
that the subsequent message could uniquely identify the media file by including,
for example, the unique identifier for the media file. Hayward teaches that each of
the media file identification message and the subsequent messages takes the form
of “an HTTP request to the media file index and log system 122 for a one-pixel

GIF file.” Id. 990059, 0061. And Hayward states that the unique identifier for the

71

Page 74 of 244

media file is “appended to the HTTP request” that is the media file identification
message. Id. §0059. In my opinion, a POSA would have understood Hayward to
suggest that the HTTP request that is each subsequent message, like the HTTP
request that is the media file identification message, similarly appends the unique
identifier for the media file. This would have allowed the time stamps for the
subsequent messages to be “stored in the log associated with the media file” by the
media file index and log system 122, as Hayward describes. Id. at 0060.

147. In my opinion, a POSA would have found it obvious and would have
been motivated to use an applet, as in Middleton, to send Hayward’s subsequent
messages, as described in Section VIIL.B.1.d.

148. Because in my opinion a POSA would have understood Hayward to
teach the media file index and log system 122 receiving subsequent messages
including the unique identifier for the media file sent using the scripting at the
client 110 each time a predetermined temporal time period elapses, and in my
opinion a POSA would have found it obvious and would have been motivated to
use an applet, as in Middleton, to send Hayward’s subsequent messages, it is my
opinion that a POSA would have understood Hayward and Middleton to teach
“receiving at least a portion of the identifier data from the user's computer
responsively to the timer applet each time a predetermined temporal period elapses

using the first computer system.”

72

Page 75 of 244

f. [1f] “storing data indicative of the received at least
portion of the identifier data using the first computer
system”

149. In my opinion, Hayward discloses this element, as described in
Section VIII.A.1.f.

g. [1g] “wherein each provided webpage causes
corresponding digital media presentation data to be
streamed from a second computer system distinct
from the first computer system directly to the user’s
computer independent of the first computer system”

150. In my opinion, Hayward discloses this element, as described in
Section VIIL.A.1.g.

h. [1h] “wherein the stored data is indicative of an
amount of time the digital media presentation data is
streamed from the second computer system to the
user’s computer”

151. In my opinion, Hayward discloses this element, as described in
Section VIII.A.1.h.
i. [1i] “wherein each stored data is together indicative

of a cumulative time the corresponding web page was
displayed by the user's computer”

152. In my opinion, Hayward discloses this element, as described in

Section VIII.A.1.1.

73

Page 76 of 244

C. Ground 3: Hayward, or Hayward and Middleton, and Ryan render
obvious claims 2 and 3

1. [2] “The method of claim 1, wherein the storing comprises
incrementing a stored value dependently upon the
receiving.”

153. In my opinion, Hayward, as discussed in Ground 1, or Hayward and
Middleton, as discussed in Ground 2, and Ryan teach that the storing (storing the
time stamps for the subsequent messages in Hayward) comprises incrementing a
stored value (weighting factor X in Ryan) dependently upon the receiving.

154. As discussed above in Section VIII.A.1.e (or Section VIII.B.1.e), in
my opinion Hayward discloses (or Hayward and Middleton teach) an applet at the
client 110 that sends subsequent messages to the media file index and log
system 122. Hayward also teaches that a time stamp for each subsequent message
1s “stored in the log associated with the media file” at the media file index and log
server 122. Hayward, §0060. “[B]y calculating the difference in time between the
first and last time stamps for a media file during a selected playing session
recorded in the log, the approximate length of time that the embedded media player
page was left open by the user can be calculated.” Id. §0063.

155. Ryan teaches that the weighting factor X may be “increment[ed] . . .
based on the time spent at the web page,” as determined from the surfer trace data

indicating “the difference between two time date/time data 132 from subsequent

selections from the list of web page searches.” Ryan, 9:22-25,16:40-41. In Ryan,
74

Page 77 of 244

“[t]he longer the time spent” at the web page, “the more this increments the value
of X.” Id. at 16:41-42.

156. In my opinion, a POSA would have found it obvious to modify
Hayward’s media file index and log server 122 to increment a stored value, like
Ryan’s weighting factor X, dependently upon receiving the subsequent messages.
Hayward’s (or Hayward and Middleton’s) applet at the client 110 sends
subsequent messages to the media file index and log system 122. In my opinion, it
would have been obvious to a POSA to modify the media file index and log
system 122 to increment a stored value based on their receipt. The POSA would
have known to do so based on Ryan, as Ryan’s server increments weighting factor
X based on surfer trace data received from an applet at the user’s personal
computer. Id. at 8:63-67, 9:22-30, 9:41-56, 16:40-41.

157. In my opinion, Ryan itself would have motivated the POSA to modify
Hayward’s media file index and log server 122 to increment a stored value, like
Ryan’s weighting factor X. Ryan highlights the value to advertisers of knowing
not only how long a user spent on a web page, as indicated by the “surfer trace
data,” i.e., “[t]he time difference between [] two selections” from a list of search
results, but also how interesting a web page is to users, as indicated by the
weighting factor X. Id. at 9:22-30, 12:22-30. Ryan shows that the weighting

factor may provide a distinct value from the surfer trace data, insofar as it may

75

Page 78 of 244

only reflect users showing sufficient interest in a web page. For instance, in Ryan,
while surfer trace data may be collected for a web page view of any length, the
weighting factor X may be incremented only when “the user exceed[s] a specified
time at a location.” Id. at 16:34-39.

158. Like Ryan, Hayward contemplates providing valuable data to
advertisers, but the time stamps for the media file identification message and the
subsequent messages stored in Hayward’s media file index and log system 122
only indicate, for example, how long the embedded media player page was
displayed. Hayward, 40064. Based on Ryan, a POSA would have been motivated
to modify Hayward’s media file index and log system 122 to also store data
indicating how interesting the digital media presentation displayed by the
embedded media player page is to users. In my opinion, looking to Ryan, the
POSA would have been motivated to modify Hayward’s media file index and log
system 122 to store a value akin to weighting factor X in Ryan and to increment
the stored value dependently on receipt of the subsequent messages.

159. Because Ryan thus discloses incrementing the weighting factor X
based on received surfer trace data indicating how long a user spent at a web page,
and in my opinion a POSA would have been motivated and would have found it
obvious to modify Hayward’s media file index and log server 122 to increment a

stored value as in Ryan based on receipt of the subsequent messages, it is my

76

Page 79 of 244

opinion that a POSA would have understood that the combination of Hayward (or
Hayward and Middleton) and Ryan renders obvious that “the storing comprises
incrementing a stored value dependently upon the receiving.”

2. [3] “The method of claim 2, wherein the received data is
indicative of a temporal cycle passing.”

160. In my opinion, Hayward discloses that the received data (subsequent
messages) is indicative of a temporal cycle (“predetermined interval™) passing.

161. In Hayward, each subsequent message is sent “at [a] predetermined
time interval[],”such as “every thirty seconds.” Hayward, {0060—-0061. A time
stamp for each subsequent message is “stored in the log associated with the media
file.” Id. §0060.

162. Because Hayward thus teaches that the subsequent messages are sent
at predetermined time intervals and stored with time stamps by the media file index
and log system 122, in my opinion Hayward discloses that “the received data is
indicative of a temporal cycle passing.”

IX. Conclusion

163. As discussed above, it is my opinion that the Challenged Claims of
the *609 patent are not patentable.

164. In signing this declaration, I recognize that the declaration will be
filed as evidence in a contested proceeding before the Patent Trial and Appeal

Board of the United States Patent and Trademark Office. I also recognize that |

77

Page 80 of 244

may be subject to cross-examination in the proceeding and that cross-examination
will take place within the United States. If cross-examination is required of me, |

will appear for cross-examination within the United States during the time allotted
for cross-examination.

165. Ireserve the right to supplement my opinions in the future to respond
to any arguments that Patent Owner raises and to account for new information as it
becomes available to me.

166. 1 declare that all statements made herein of my own knowledge are
true and that all statements made on information and belief are believed to be true;
and further that these statements were made with the knowledge that willful false
statements and the like so made are punishable by fine or imprisonment, or both,

under Section 1001 of Title 18 of the United States Code.

Executed on this 31st day of October 2019, in Durham, North Carolina.
Con .‘ s’q » N ()
NN TR

By:) T
Dr. Jeffrey S. Chase

78

Page 81 of 244

APPENDIX A

Page 82 of 244

Activate Your Web Pages

The Definitive Guide

O,REILLY‘ David Flanagan

Page 83 of 244

FIFTH EDITION

JavaScript
The Definitive Guide

David Flanagan

O'REILLY"

Befjing « Cambridge - Farnham - KBln + Sebastopal « Taipei « Tokyo

Page 84 of 244

JavaSeript: The Definitive Guide, Fifth Edition
by David Flanagan

Copyright © 2006, 2002, 1998, 1997, 1996 O'Relly Media, Inc. All nghts reserved.
Prneed m che Unated Staies of America.

Published by OReilly Media, Inc., 1003 Gravenstein Highway North, Sebastopal, CA 95472,

O Reilly books may be purchased for educational, business, or sales promotional use. Online edinions
are also available for most tiles (safun.orelly.com), For more information, contact our
corporave/institwrional sabes deparomeni: (800) $56-%938 or corporatr@oreily.com.

Editer: Dichra Cameron Indexer: Ellcn Trowman-Z. aig
Production Editor: Sanders Kleanfeld Cover Designer: Edie Freedman
Copyeditor: Mary Annc Weeks Mayo Interior Designer: Duavad Futato
Proofreader: Sanders Klanfeld Mlustrators: Robert Romano and Jessamyn Read
Printing Histery:
August 1996: Biera Edmion.
Janimary 1997 second Edmion.
June 1998: Third Edinon.
January 2002 Fourth Edirion,
August 2006: Fifth Edition.

Mutshell Handbook, the Nutshell Handbook logo, and the O Reilly logo are segistered trademarks of
O Reilly Medha, Inc. JavaScript: The Definitive Guide, the image of a Javan rhinoceros, and relased rade
dress are trademarks of O Reilly Media, Inc. Java™, all Java-based tradema rks an d logos, and
JavuScrpt™ are erademarks or regisvered trademarks of Sun Microsyseems, Inc., in the United States
and other countries. O Reilly Media, Inc. is independent of Sun Microsystems,

Moilla and Firefox are registered tndemarks of the Mozilla Foundation, Mescape and Netscape
Mavagaror are registered rrademarks of Amenca Online, Inc. Internet Explorer and the Internet Explo rer
Logn arc tradermarks and tradenames of Microsoft Corporation, All orher product names and logos are
trademarks of their respective owners.

Many of the designanions wsed by manufscrarers and sellers ro distinguish thieir produces are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Madia, | ne. wos aware of a
trademark claim, the designations have been printed in caps or imitial caps.

While every precaution has been taken in the preparation of this book, the publisher and autho r asswme
o responsdbility for errors or omissions, or for damages resulting from the use of the information
conained herein

ISBN: 978-0-396-10199-2
[M] [s/09]

Page 85 of 244

CHAPTER 9
Classes, Constructors, and Prototypes

JavaScript objects were introduced in Chaprer 7. That chaprer wreared each object as
a unique set of properties, different from every other object. In many object-oriented
programming languages, it 1s possible 1o define a dass of objecrs and then creare
individual objecis that are imstances of that dass. You might define a class namved
Complex to represent and perform arithmetic on complex numbers, for example. A
Complex object would represent a single complex number and would be an instance
of that class.

JavaScript does not support true classes the way that languages like Java, C++, and
C# do.” 5ull, however, it is possible to define pseudoclasses in JavaScnpe. The wols
for doing rhis are constructor funcions and protorype objects. This chaprer explains
constructors and prototypes and includes examples of several JavaScript pscudo-
dasses and even pseudosubclasses.

For lack of a better term, | use the word “dass™ informally in this chapter. Be care-
ful, however, that you don't confuse these informal classes with the true dasses of
JavaScript 2 and other languages.

9.1 Constructors

Chapter 7 showed you how 1o create a new, empiy object either with the object -
eral {} or with the following expression:

niew Object()
You have also seen other kinds of JavaScript objects created with a similar synitax:

VAT aITay = mew Array(10);
var todsy = mew Date();

The new operator must be followed by a function invocation. It creates a new obpect,
with no properties and then invokes the function, passing the new object as the value
of the this keyword. A funcnion designed 1o be used with the mew operator 1s called a

* Tree classes are planned lor lavaSonpe 10, however.
15

Page 86 of 244

constructor function or simply a constructor. A constructor's job 15 to miciahze a
newly created object, setting any properties that need 1o be set before the object is
used. You can define your own constructor function, simply by writing a function
that adds propertics o this. The following code defines a constructor and then
invokes it rwice with the new operator 1o create two new objecrs:
ff Define the comstructor.
7 Note how [t indtialires the object referred to by “this®.
function Bectamgle{w, h) {
this.width = w;
this.height = h;
ff Wote: no return statement here

}

/i Irwoke the comstructor to Create two Rectangle cbjects.

i1 We pass the width and height to the comstructor

/7 so that 1t cam Initialize each mew object appropriately.

var rectl = mew Rectamgle(2, 4); /1 pectl = { width:2, height:d |;

var rect? = mow Rectangle(8.5, 11); /7 mextl = { width:§.5, height:11 };
Notice how the constructor uses its arguments to initiahize propernes of the object
referred 10 by the this keyword. You have defined a class of obyecrs simply by defin-
ing an appropnate constructor function; all objects created with the Rectangle()
constructor are now guaranteed o have initalized width and height properties. This
means that you can write programs that rely on this fact and wear all Recangle
objects uniformly. Because every constructor defines a class of objects, it is stylisn-
cally important 1o give a constructor funcrion a name that indicates the class of
objects it creates. Creanng a recrangle with new Rectangle(1,2) 15 a lot more intuinive
than with new init_rect(1,2), for example.

Constructor functions typically do not have revurn values. They initialize the object
passed as the value of this and return nothing. However, a construcror is allowed o
return an object value, and, if it does so, that retumed object becomes the value of
the new expression. In this casc, the object thar was the value of this is smply

9.2 Prototypes and Inheritance

Recall trom Chapter 8 that a method i1s a funcnon that 1s invoked as a property of an

object. When a function is invoked in this way, the object through which it s

accessed becomes the value of the this keyword. Suppose vou'd like 1o compute the

area of the rectangle represented by a Rectangle object. Here is one way to do it
function conpulsdresifiectangle(r) { retusn r.width * r.height; |}

This works, but it is not objecr-oniented. When using objects. it is bemer 10 invoke a
method on the object rather than passing the object to a funcnion. Here's how to do that:

I Create & Rectangle object

var r = new Bectangle(d.s, 11);

IF hdd & method ta 1t

r.atea = function() { retum this.uidth * this.height; }

Prototypes andinbentance | 151

Page 87 of 244

A Now inveke the method te compute the area
war & = v.areaf);

Having to add a method to an object before you can invoke it is silly, of course. You
can improve the situation by ininalizing the area property to refer 1o the arca com-
puting function in the constructor. Here is an improved Rectangle() constructor:
function Rectangle(w, h) {
this.width = w;
this.height = h;
this.area = function]) { retum this.sidth * this.height; }
)

With this new version of the constructor, you can write code like this:

A How Big is & sheet of U.5. Letter paper in square inchesd

war = new Bectangle(8.5, 11);

var a = r.area();
This solution works better but is still not optimal. Every rectangle created will have
three properties. The width and height properties may be different for each rectan-
gle, but the area of every single Rectangle object always refers to the same function
(someone might change it, of course, but you usually intend the methods of an
object to be constant). It 1s mefficient to use regular propernes for methods thar are
intended 1o be shared by all objects of the same class (that is, all objects creared with

the same constructor).

There is a solution, however. It tums out that every JavaScript object includes an
internal reference to another object, known as its prototype object. Any properties of
the prototype appear to be properties of an object for which it is the prowtype.
Another way of saying this is that a JavaScript object inherits properties from s
prototype.

In the previous section, | showed that the new operator creates a new, empty object
and then invokes a constructor function as a method of that object. This is not the
complete story, however. After creating the empry object, new sets the prototype of

that object. The prototype of an object is the value of the prototype property of s
constructor function. All functions have a prototype property that is automarically

created and initialized when the function is defined. The imtial value of the
prototype property is an object with a single property. This property is named
constructor and refers back w the constructor funciion with which the prototype 1s
associated. (You may recall the constructor property from Chaprier 7; this is why
every object has a constructor property.) Any properties you add to this prototype
object will appear to be propernes of objects imnalized by the constructor.

This is clearer with an example. Here again is the Rectangle() constructor:

#f The constructor fumction fnitializes those properties that
A will be different for each imstance.
function Rectangle(w, h) {
this.width = w;
this.height = h;
}

152 | Chapter® Classes, Constrectors, and Prototypes

Page 88 of 244

/i The prototype object holds methods aad other propertiec that
A7 should Be shared by each instamce.
Rectangle.prototype.area = function() { retum this.width * this.beight; }

A constructor provides a name for a “class™ of objects and initializes pro pernies, such
as width and height, that may be different for each instance of the class. The proto-
type object is associated with the constructor, and each object initialized by the con-
structor inherits exactly the same set of properties from the prototype. This means
that the prototype obpect 1s an ideal place for methods and other constant properncs.

It can also be uscful to use prototype-based inhentance without constructors and
classes. The following simple function creates a new object with a spedfied proto-
type. That is, it creates a new object that inhents from, or is an "heir” of s argument”:
/f Create and return an object that has p as its prototype
function beir(p) {
function #[){} /7 A demwy comstrector function
{.pratatype = p; /7 Specify the prototype object we want
return new #(); /7 Invoke the comstructor to create new object

)

Notwe that inhentance occurs automarically as part of the process of looking up a
property value. Properties are not copied from the prototvpe object into new objects;
they merely appear as if they were properties of those objects. This has two impor-
tant implications. First, the use of prototype objects can dramarically decrease the
amount of memory required by cach object because the object can inhent many of us
properties, The second implication is that an object inherits properties even if they
are added to its prototype after the object is created. This means that it is possible
(though not necessarily a good idea) to add new methods to existing classes.

Inherited properties behave just like regular properties of an object. They are enu-
merated by the for/in loop and can be tested wath the in operator. You can distin-
guish them only with the Object . hasOwnProperty() method:

var r = mew Rectangle{l, 3);

r.hasOwnProper ty(“width™); // trwe: width is a direct property of 1

I, hasOwn® roperty(“area®); A false: area is an inherited property of 1
“area” inm 1} A trew: “area” is & property of x

9.2.1 Reading and Writing Inherited Properties

Each class has onc prototype object, with one set of properties. Bur there are poten-
nally many instances of a class, cach of which imhents those prototype propermes.
Because one prototype property can be inherived by many objects, JavaScript must
enforce a fundamental asymmetry between reading and writing property values.
When you read property p of an object o, JavaScript first checks to see if o has a
property named p. If it does not, it next checks o see if the prototype object of 0 has
a property named p. This is what makes prototype-based inheritance work.

* Douglas Crockiond calls this funceion «literal=0bject .createJo/ Literaly and descrbes e s bogpatianas-
o gl v dfond o omiprogony pal him!

Proto types and Inberitance | 153

Page 89 of 244

When you write the value of a property, on the other hand, JavaScrpt doés not use
the prototype object, To see why, consider what would happen if it did: suppose you
try to set the value of the property 0.p when the object o does not have a property
named p. Further suppose that JavaScript goes ahead and looks up the property p in
the prototype object of o and allows you to set the property of the prototype. Now
you have changed the value of p for a whole class of objects—not ar all what you
intended.

Thercfore, property inheritance occurs only when you read property values, not
when you write them. If you set the property p in an object o that inherits thar prop-
erty from its prototype, what happens is that you create a new property p directly in
0. Now that o has its own property named p, it no longer inhernits the value of p from
its prototype, When you read the value of p, JavaScript first looks at the properties of
o. Since it hinds p detined in o, it doesn’t need o search the prototype object and
never finds the value of p defined there, We sometimes say that the property pin o
“shadows™ or “hides” the property p in the prototype object. Prototype inheritance
can be a confusing topic. Figure 9-1 illustrates the concepts discussed here,

Because prototype properties are shared by all objects of a class, it generally makes
sense 10 use them to define only properties that are the same for all objects within
the class. This makes prototypes ideal for defining methods. Other properties with
constant values (such as mathematical constants) are also suitable for definition with
prototype propertics. If your class defines a property with a very commonly used
default value, you might define this propenty and its default value in a protwrype
object. Then, the few objects thar want 1o deviate from the defaule value can create
their own private, unshared copies of the property and define their own nondetault
values.

9.2.2 Extending Built-in Types

It is not only user-detined classes that have prototype objects, Built-in classes, such as

String and Date, have protorype objects wo, and you can assign values o them. For

example, the following code defines a new method that is available for all Scring objeces:
/i Retumms true if the last character is ¢

String.prototype.endaith = function(c) {
return (¢ == this.charht{this.length-1))

Having defined the new endsWith() method in the String prototype object, you can
use it like this:

war message = "hello world™;

nessage.endiwith(*h') /7 Keturns false

nessage andiWith("d') /F Returns Lree
There is a strong argument against extending built-in types with your own methods;
if you do so, you are essentially creating your own custom version of the core Java-
Script APL. Any other programmers who have to read or maintain your code will
likely find it confusing if your code includes methods they have never heard of,

154 | Chapter®: Chasses, Constructons, and Prototypes

Page 90 of 244

c.area() oy ATED R S0 C I, 50 ek e Wene'ythe defleition of ar ea.

Read Ihe e propeity of C iy e Y JSESOLISAY WATH ¢ Fetum e vl sl werd
pemperty of ¢ il
A\ Cincle abjet, € '
LI T

c.pl = & T T ST P
Wntethe p i progery al €. property of ¢ ol
L
#ﬂ#l The pestalype sibjert,
s 1. Clrele. prot otyps
ie . area = Clrcle_area
ye-30 pl = 3.34159

pl = 4

Pl and T e defined |8 ¢ Rl w0 you
—ope BT e valley o bnd Bieer, wiagt
Botherg b4 ek 18 I Brotatype abe

e

=00
y - 0.0

8= c.pl®.r*c.1;
Beid M pl and 1 graperamal

a = dpi®d.rtd.r p PL 0 nat detned in d iuelf, w0 cueck the o v etmncn of pi Mo
Beadd e | ansd 1 grapersies of o profotype adgec Mssoated withd . 14 B e s 0w vl 3
difinesd in . ub el et vailie wilbaif pepirty ofd

Tk i1 Tt peTACE

Figure 9- 1. Objects and protorypes

Unless you are creating a low-level JavaScript framework that you expect to be
adopred by many other programmers, it is probably best 1o stay away from the pro-
totype objects of the built-in types

Note that you must never add properties to Object . prototype. Any propernies or meth-
ods you add are enumerable with a for/in loop, and adding them to Object.prototype
makes them visible in every single JavaScript object. An empty object, {}, is expected
to have no enumerable propernes. Anything added 1o Dbject. prototype becomes an
enumerable property of the empty object and will bkely break code that uses objecs

A% assOCiative arrays.

The rechnique shown here for extending built-in object types is guaranteed 1o work
only for core JavaScript “native objects.” When JavaScript is embedded in some con-
text, such as a web browser or a Java application, it has access w addivonal "host
objects” such as objects that represent web browser document content. These host

Proto types and Inhertance | 153

Page 91 of 244

objects do nor rypically have constructors and protorype objecrs, and you usually
cannot extend them.

There is one case in which it is safe and useful 10 extend the protorype of a built-in
native class: to add standard methods w a prototype when an old or incompatible
JavaScript implementation lacks them. For example, the Funct fon. apply{) method is
missing in Microsoft Internet Explorer 4 and 5. This is a precty important funcrion,
and you may see code like this to replace it:

AIE 4 B % dont Enplement Function.apply().
ff This workaround {3 based on code by Aaron Boodman.
if (VPumction.prototype.apply) {
ff Invake this functlom as & method of the specifled object,
passing the specified parameters. Me have to use eval() to do this
Functisn.protatype. apply = functlon{object, parsmeters) {
var ¥ = this; ff The function to invoke
var @ = object || window; /1 The object to imveke it on
var args = parameters || []; /7 The arguments ta pass

f Temporarily make the functiom inte a method of o
{f To do this we use a property nene that is unlikely to exist
o._% apply §_~ 1}

A We will use eval() to inweke the method. To do this we'we got
1 te write the isvocation as a strimg. First build the argusent list.

var stringlrgs = [];
for(var L = 0; 1 < amgs.length; 14s)
stringlags[i] = "args|” « 4 « *]";

/i Concatenate the argument strings into a conma-separated list.
var arglist = strimgArgs,join(*,");

{7 Now budld the entive method call string
var methodcall = “a._§_apply §_(" + arglist « *};%;

f Use the eval() function te make the methodcall
var result = eval(methodcall);

{f Unbind the functisn from the object
delete o._% apply §_;

H hnd return the result
return result;

| F
}

As another example, consider the new array methods implemented in Firefox 1.5
(see Section 7.7.10). If you want to use the new Array.map() method but also want
your code to work on platforms that do not support this method natively, you can
wse this code for companibiliny:

A hrray.map() inwokes & function f on each element of the array,

15 | Chapter % Classes, Constrectors, and Prototypes

Page 92 of 244

/1 Tetumning 3 mew artdy of the values that result from éach fusction
A call. If map() i3 called with two asguments, the function f
M is iewoked a3 a method of the second argument. shen invoked, ()
I is passed } arguments. The first is the value of the array
/f element. The second s the inden of the array element, and the
A third is the array itself. In mest cases it nesds to use omly the
A Fint asgement.
if {ldryay.prototype.map) {
Array.prototype.map » function(f, thisObject) {
var results - [];
for(war lem = this.length, § = 0; § « len; des) |
redults push(f.call{thisonject, this(i], 1, this));

return results;
}
]

9.3 Simulating Classes in JavaScript

Although JavaScript supports a datatype called an object, it does not have a formal
noton of a class. This makes it quire different from classic objecr-onented languages
such as C++ and Java. The common conception about object-oriented program-
ming languages is that they are strongly typed and support class-based inhernitance.
By these cntena, it is casy to dismiss JavaScnipe as not being a true abject-onented
language. On the other hand, you've seen thar JavaScript makes heavy use of objects,
and it has its own type of prototype-based inheritance. JavaScript is a true object-
oriented language. It draws mspiration from a number of other (relatively obscure)
objecr-onented languages that use protorype-based inheritance instead ot class-based
inheritance.

Although JavaScript is not a class-based object-onented language, it does a good job
of simulating the features of class-based languages such as Java and C++, I've been
using the term class informally throughout this chaprer. This section more formally
explores the parallels between JavaScnpe and true class-based inhentance languages

such as Java and Ce+’

Let’s start by defining some basic terminology. An olject, as vou've already seen, is a
data structure that contains various pieces of named data and may also contain vani-
ous methods 1o operate on those picces of data. An object groups related values and
methods into a single convenient package, which generally makes programming
casier by increasing the modularity and reusability of code. Objects in JavaScript may
have any number of properties, and properties may be dynamically added o an
object. This is not the case in strictly typed languages such as Java and C++. In those

* Your shouwhd resd thas sectson cven f you are ot famlusr wuh those lenguages and thae sivle of obgo-
onernied progemmrg,

Simulatn g Classes in lavasaipt | 197

Page 93 of 244

languages, each object has a predefined set of properries,” where each property is of a
predefined type. When you use JavaScript objects 1o simulate class-based program-
ming techniques, you generally define in advance the set of properties for each object
and the type of data that each propeny holds.

In Java and C++, a class defines the structure of an object. The class specifies exactly
what ficlds an object contains and what types of data each holds. It also defines the
methods that operate on an object. JavaScript does not have a formal notion of a
class, but, as shown carlier, it approxamates classes with its constructors and ther
prototype ohjects.

In both JavaScript and class-based object-oriented languages, there may be multiple
objects of the same class. We often say that an object is an instance of its class. Thus,
there may be many mstances of any class. Sometimes the term instantiate is used w
describe the process of creating an object (i.e., an instance of a class).

In Java, it is a common programming convention to name classes with an initial capi-
tal letter and to name objects with lowercase leters. This convention helps keep
classes and objects distinct from each other in code, and it is useful 1o follow in Java-
Script programming as well. Previous sections of this chaprer, for example, have
defined a Rectangle class and created instances of that class with names such as rect.

The members of a Java class may be of four basic types: instan ce properties, i nstamce
methods, class properties, and class methods. In the following sections, we'll explore
the ditferences berween these types and show how they are simulated in JavaScripe.

9.3.1 Instance Properties

Every object has its own separave copics of its instance propertics. In other words, il
there are 10 objects of a given class, there are 10 copies of each instance property. In
our Rectangle class, for example, every Recrangle object has a property width that
specifies the width of the rectangle. In this case, width is an instance propeny. Simoe
each object has its own copy of the instance properties, these properties are accessed
through individual objects. If r is an object that is an instance of the Rectangle class,
for example, its width is referred to as:

T.width
By default, any object property in JavaScript is an instance property. To truly simu-

late traditional class-based objecr-onented programming, however, we will say thar
instance properties in JavaScript are those properties that are created and initalized
by the constructor function,

* Thiey are wioally called “felds™ i Jova and Cot, buz 1) refer to them as propertes hene smce chat s the
JavaSerps termmology,

158 | Chapter®: Classes, Constrectors, and Prototypes

Page 94 of 244

9.3.2 Instance Methods

An instance method s much like an instance propeny, except that it is a merhod
rather than a data value. (In Java, functions and methods are not data, as they are in
JavaScript, so this distinction is more dear.) Instance methods are invoked on a par-
ticular object, or instance. The area() method of our Rectangle dass is an instance
method. It is invoked on a Rectangle object 1 hike this:

a = r.areaf);

The implementation of an mstance method uses the this keyword o refer to the
object or instance on which it is invoked. An instance method can be invoked for any
instance of a class, but this does not mean that each object contains its own private
copy of the method, as it does with instance propemies. Insiead, each instance
method is shared by all instances of a class. In JavaScript, an instance method for a
class is defined by setung a property in the constructor’s prototype object 1o a2 func-
tion value. This way, all objects created by that constructor share an inhented refer-
ence to the function and can invoke it using the method-invocation syntax shown
carhier.

9.3.2.1 Instance methods and this

If you are a Java or C++ programmer, you may have noticed an importam difference
between instance methods in those languages and instance methods in JavaScript. In
Java and C++, the scope of instance methods includes the this object. The body of
an arca method in Java, for example might simply be:

return widith * height;
In JavaScript, however, you've seen that you must expliady speafy the this key-
word for these propermies:

return this.width * this.beight;

If you find it awkward to have to prefix cach instance field with this, you can use the
with statement (covered in Section 6.18) in each of your methods. For example:
Rectangle.prototype.area = function() {
with{this) {
retumn width®height;

}
}

9.3.3 (lass Properties

A class property in Java is a property thart is associated with a <lass wself, rather than
with each instance of a class. No maner how many instances of the class are cremed,
there 1s only one copy of each class property. Just as instance properties are accessed
through an instance of a class, class properties are accessed through the class iself.
Number .MAX_VALUE is an example of a class property in JavaScript: the MAX_VALUE prop-

Simulating Classes in lavascript | 159

Page 95 of 244

erty is accessed through the Number class. Because there 1s only one copy of each
class property, dass properties are essenuially global. What is nice about them, how-
ever, is that they are associated with a class, and they have a logical niche—a posi-
tion in the JavaScrnipt namespace where they are not likely to be overwnitien by other
properties with the same name. As is probably clear, you simulate a class property
JavaScript simply by defining a property of the constructor function itself. For exam-
ple, 1o create a class property Rectangle.UNIT to store a special 1x] rectangle, you can
do the following:
Rectangle UNIT = new Rectangle(1,1);

Rectangle is a constructor function, but because JavaScnipt functions are objects, you
can create propernics of a funcnion just as you can create propernics of any other
object.

9.3.4 (ass Methods

A class method is associated with a class rather than with an instance of a class. Class
methods are invoked through the class itself, not through a particular instance of the
class. The Date.parse() method (which you can look up in Part I11) is a class
mcthod. You always mvoke it through the Date constructor object rather than
through a parnicular instance of the Dare class.

Because class methods are invoked through a constructor function, the this key-
word does not refer 10 any particular instance of the dass. Instead, it refers w the
constructor funcnion itself. (Typically, a class method does not use this arall)

Like class properties, class methods are global. Because they do not operate on a par-
ncular object, class methods are generally more casily thought of as funcnions that
happen 1o be invoked through a class. Again, associating these funcrions with a class
gives them a convenient niche in the JavaScript namespace and prevents namespace
collsions. To define a class method m JavaScnpe, ssmply make the approprare func-
tion a property of the constructor.

9.3.5 Example: A Circle Class

The code in Example 9-1 is a constructor funcrion and protorype object for creating
objects that represent circles. It comtains examples of instance properties, instance
methods, class properties, and dlass methods.

Example 9-1. A circle class

JF e begin with the comtructon

function Circle{radius) {
M 1 la an Imitance property, defined and initialized in the comtructer.
this.r » radius;

|

160 | (hapter ¥ (lavses, (onstrecton, and Prototypes

Page 96 of 244

Example 0.1, A circle class (contimied)

A Cirele.Pl 1s & class property--1t is a property of the constructer fumction.
Circle.PI = 3,14159;

A Here ls an Insténce method that computes a clrcle's area.
Circle.prototype.area = function() { return Circle Pl * this.t * this.t; }

ff This class method takes two Circle sbjects and returns the
/F one that has the larger radius.
Circle.max = functiom(a,b) {

if (a.r » bor) return a;

else return b;

}

ff Here 1s some code that uses each of these flelds:

var ¢ = new Clrele{l.0); f¢ Create an instance of the Circle <lass

€I = 2.2; ff Set the r instance property

var a = c.areaf); A Iewoke the areal) instance method

var ® = Math.exp{Circle.Pl); // Use the Pl class property in our own computation
var d = mew Clrcle(1.2); /¢ Create another Circle instance

var bigger = Circle.max(c,d}; // Use the max() class method

9.3.6 Example: Complex Numbers

Example 9-2 1s another example, somewhat more formal than the last, that defines a
class of objects in JavaScnpt. The code and the comments are worth careful scudy.

Example 9.2. A complex mumber class

I||I

* Conplex. ju:

* This file defirgs a Comples class te represent conplen numbers.
* Recall that a complex number is the sum of & real punber and an
* imaginary number and that the inaginary mumber i is the

* jguare root of -1.

=

Ir.

" The 4irct step in dri‘lnlr‘ a clazs ix def'i.n".ﬂ: the conttructar

* function of the class, This constructer should imitialize any

= instance properties of the object. These are the sssentlal

* “state variables® that make each instance of the class different.

'd
function Complex{real, imaginary) {
this.x = real; £l The real part of the nusber
this.y = Imaginazy; 7/ The Imsginary part of the number
1
I'I‘

* The second step in defining o class is defining its imstance

* methads (and posslbly other properties) In the protetype cbject
* of the constructor. Any properties defined in this abject will

* be inherited by all instances of the class. Mote that instance

Simulatin g Classes in JavaScript | 181

Page 97 of 244

Example 9.2, A complex mimber class icontimied)

= methods operate om the this keyword. For many methods,

* ng gther argunents are necded.
L

ff Return the magnitude of 3 complex number. This is defined
A as its distence from the origin (0,0) of the complex plame.

Complex. prototype.magnitude = function) {
return Math, sqre(this.v*this.x + this.y*this.y);
5

/7 Retern & complex mumber that is the negative of this one.
Complex. prototype.negative = function() {

return new Complex{-this.xn, -this.y);
| H

#f add a complex rumber to this ome and return the sum in a new object.
Complex.prototype.add = function(that) {

return new Complex{this.x « that.x, this.y + that.y);
I

£ Mmultiply this complex mumber by another and return the product as a
#f rew Complex object.
Complex. prototype.multiply = function(that) {
Teturn new Complex{this.x * that.x - this.y ™ that.y,
this.x * that.y + this.y * that.x);

I

#f Corvert a Complex object to a string in & useful way.
A This ds invoked when & Complex object s wsed as & string.
Camplex. prototype.taStzing = function() {
return “{* « this.x + *,° « this.y » *}%;
k

/7 Test whether this Complex object has the same value as another.
Complex. prototype.eguals = function(that) {

retum this.x == that.x B this.y == that.y;
t

ff Retwrn the real portionm of a complex number. This function
A is imvoked when & Complex object is treated as & prinitive wvalee.
Comples. prototype.valusdf = function() { returm this.x; }

Jfl

* The third step In defining a class is to define class methods,

® gonstamts, and any seeded class properties as preperties of the

* constructor function itself (instead of s propertie: of the

= prototype object of the constructor). Mote that class methods

* do mot use the this keyward: they operate only om thelr arguments.
*

A Add two complex members and Tetumm the result.

#f Contrast this with the instance wethod add()
Complex.sum = function (a, b) {

162 | Chapter®: Chasses, Constrectors, and Prototypes

Page 98 of 244

Example 0.2, A complex mumber ¢lass icomtmied)

return new Complex{a.x + bax; d.y + bay);

|5

A Multiply two conples munberd and retuin the prodect.
/f Contract with the inctance method maltiply()
Complex.product s fumction(a, b) {
return new Complex{a.x * b.x = a.y ® by,
aE Y bay + ay * bix);

|H

fF Here are some useful predefined complex numbers.

A They are defined as class properties, and thelr mames are In wppercase
ff to indicate that they are intended to be constants (although it is not
A poasible to make JavaScript properties read-only).

Complex.JERD = new Complex(0,0);

Complox.(ME = new Complex(],0);

Complea.l = new Complex(0,1);

9.3.7 Private Members

A common feature of traditional object-oriented languages such as Java and Co+ s
that the properties of a class can be declared private so thar they are available only ro
the methods of the class and cannot be manipulated by code outside of the class. A
common programming technique called data encapsulation makes properties private
and allows read and wnite access vo them only through special accessor methods. Java-
Script can simulate this using closures (an advanced ropic, covered in Section 8.8), but
to do so, the accessor methods must be stored on cach object instance; they cannot be
inherited from the protorype objecr.

The tollowing code illustrates how this is done. It implements an immutable Rectan-
gle object whose width and height can never be changed and are available only
through accessor methods:
funct fon |-'h.|tpblqllthh|:u, h) {
f¢ This constructor does not store the width and height propert ies
A kn the cbject Lt Inltialiees. [Dnstead, it sisply defines
/i accessar methods im the ohject. These methods are closures and
A the width snd helght values are captured In thelr scope chalma.
this.getWidth = function]) { roturn w; }
this,getieight = fusction() { retum h; }
)

A Hote that the class cam have regular methods In the prototype object.
InmutableRectangle. prototype.area = function() {

return this.getWwidehi) * this.getHeight();
)i

Douglas Crockiord is generally credited as the first person to discover (or at least o
publish) this rechnique for defining private properties. His original discussion is ac
httpaifwww.crockford. comfiavascriptiprivate hemi.

Simulating Classes in JavaScript | 163

Page 99 of 244

9.4 Common Object Methods

When defining a new JavaScript class, there are several methods that vou should
always consider defiming. These methods are detailed in the subsections that tollow.

9.4.1 ThetoString() Method

The idea behind toString() 1s that each class of objects has s own parxicular string
representation, so it should define an appropnate toString{) method 1o convert
objects to that string form. When you define a class, vou should define o toString()
method for it so that instances of the class can be converted 10 meaningiul strings.
The string should contain information about the object being converted because this
is useful for debugging purposes. If the sining representation is chosen carefully, i
can also be usetul in programs themselves, Additnonally, you might consider adding a
static parse() method to your class to parse a string output by toString () back into
object form.

The Complex class of Example 9-2 includes a toString() method, and the following
code shows a toString() method you can define for a Circle class:

Circle.prototype, tobtring = function () {

return *[Circle of radius * + this.r + ", centered at ("
+ this.x + ", * + this.y =+ “).]%;

)
With this toString() method defined, a typical Circle object might be converted to
the stnng “|Circle of radius 1, centered at (0, 0).]°.

9.4.2 The valueOf() Method

The valuedf{) method is much like the toString() method, but it is called when
JavaScnipt needs to convert an object to some primitive type other than a string—
typically, a number. Where possible, the funciion should return a priminve value
that somehow represents the value of the object referred to by the this keyword,

By definition, objects are not primitive values, so most objects do not have a primi-
tive equivalent. Thus, the default valueOf() method defined by the Object class per-
torms no conversion and simply returns the object on which it is invoked. Classes
such as Number and Boolean have obvious priminve equivalents, so they overmde
the valuedf() method 1o return appropriate primitive values, This is why Number
and Boolean objects can behave so much like their equivalent primicive values.

Occasionally, you may define a class that has some reasonable primitive equivalent.
In this case, you may want to define a custom value0f() method for the class. In the
Complex class of Example 9-2, you'll see that a valuedf() method was defimed that
returned the real part of the complex number. Thus, when a Complex object is used

164 | Chapter® Classes, Constrectors, and Prototypes

Page 100 of 244

in a numenc context, it behaves as if it were a real number withour its imaginary
component. For example, consider the following code:

war & = nes Complend(§,d);

var b = new Complexn(l,1);

var ¢ = Complen.sum{a,b); /7 ¢ 1% the complex rumber {7,5])

var d = a + b; A d s the mumber 7

Ome note of caution about defining a valueOf() method: the valuedf() method can, in some cir-
cumstances, take priority over the toString() method when comverting an objeat w a serimg,
Thus, when you define a value0f() method for a class, you may need o be more explice about
callng the toString() method when vou want 1o force an objear of thar dass 1o be converted w
astring, To continue with the Complex example:

alert(®c = * # ¢); AF Uses valeeOF(); displays "¢ = 7°
alert("c = * » c.toftring()); /f Displays “c = {7,5}"

9.43 Comparison Methods

JavaScnpt equality operators compare objects by reference, not by value, That s, given rwo
object references, they look o see i both references are 10 the same object. They do not chedk o
see if two different obyects have the same property names and valwes. [t s often usetul to be able
to compane wo objects for equality or even for relanve onder (as the ¢ and » operators do). I you
define a class and want to be able to compare instances of that class, you should define appropn-
are methods 1o perform those compansons.

The Java programming language uses methods for object comparison, and adopting the Java
conventions is a common and useful thing o do i JavaScript. To enable instanoes of your ¢l ass
tw be vested bor equality, define an inseance method named equals(). It should take a single angu-
ment and retum true if that angument is equal 1o the object it is imvoked on. OF course it s up o
your 1o decicle what “equal™ means in the conrext of your own class, Typically, you simply com-
pare the instance properties of the two objects w ensure that they have the same values, The
Complex class m Example 9-2 has an equals() method of thas sore.

It is sometimes usetul o compare objects according to some ordering, That is, tor
some classes, it 1s possible to say that one instance is “less than™ or “greater than”
another instance. You might order Complex numbers based on their magni tude(),
tor example. On the other hand, it is not clear that there is a meaningful ordering of
Circle objects: do you compare them based on radius, X coordinate and Y coordi-
nate, or some combination of these?

I you try 10 use objects with JavaScript's relanon operators such as < and <=, JavaScript first calls
the valueOf() method of the objects and, if this method returns a prmitve value, compares
those values. Simce our Complex dass has a valuedf() method that revurms the real part of a
complex number, instances of the Complex class can be compared as if they were real numibers
with no imaginary part. This may or may not be what vou acrually want. To compane obyects
according to an explicithy defined ordering of your own choosing, you can (again, following Java
convennion) define a method named compareTo().

Common Dbject Methods | 145

Page 101 of 244

The compareTo{) methad should accepe a single angument and compare it w0 the objeer on
which the method is invoked. If the this object is less than the argument object, compareTo()
should return a value les that zero. if the this object is preater than the argument object, the
meethod should revum a value greater than zero, And if the two objecs are equal, the method
should rerum zero. These conventions about the resum value are impomant, and they allow you

to substitute the following expressions for relanonal and equality operators:

Replace this With this

ach a.compareTo(b) < @
ai=b a.compareTo(b) <= 0
axh a.compareTo(b) > 0
a»b a.compareTolb) »= 0
4 == b a.compareTo(b) == O
alzh a.comparaTo(b) != 0

Here is a compareTo{) method for the Complex class in Example 9-2 that compares
complex numbers by magnitude:
Complex.prototype.compareTa = function(that) {
£# If we aren’t given an argument, or are passed & value that
ff does mot have a magnitude() method, throw an exception
£ B alternative would be to retura -1 or 1 in this case to say
£ that al]l Complex abjects are always less than ar greater than

£ any other values.
if (Ithat || !that.magnitude || typeof that.magnitwde != “functien”)
throw new Error(“bad argument to Complex.compareToe()”);

f# This subtraction trick yeturms a valee less then, equal to, o
/1 greater than zere. It is useful in many compareTo{) methods.
peturn this.nagnitude() - that.nagnitude();

)

Ome reason o compare instances of a class 1 so that arrays of those mstances can be sored ino
some order. The Array.sort() method acoepes as an opional argument a companson funcrion
that uses the same retum-value comvennons as the compareTol) method. Given the compareTaf)
method shown, it is easy to sort an array of Complex objects with code like this:

complexbunbers sort{functlan{a,b) [returs a.compazeTa(b): }):

Sorting is important enough thar you should consider adding a static compare()
method to any class for which you define a compareTa() instance method. One can

easily be defined in rerms of the other. For example:
Complex.compare = function{a,b) { return a.conpareTalb); };

With a method like this defined, sorting becomes ssampler:
complextunbers . sort{Conplex . compare) ;

166 | Chapter®: (lasses, Constrectors, and Prototypes

Page 102 of 244

Nonce that the compareTol) and compare() methods shown here were not included in the ong-
nal Complex dass of Example 9-2. Thae s because they are not conssstent wich the equals()
method that was defined in thae ecample. The equals() method says that rwo Complex obyecs
are expaal only if both their real and imaginary parts are the same. But the compareTo() method
retumns zero for any two complex numbers that have the same magninude . Both the mumbers
140 and 0+1i have the same magninade, and these wo values are equal according ©
compareTo() but not according 10 equals(). If you wiise equals() and compareTo() methods lor
the same Class, it is 2 good idea o malee them conssstent. Inconsissert notons of equabity can be
a permicious source of bugs. Here s a compareTo{) method that defines an ondering consistent
with the exasting equals() method:
M Compare complex mumbers first by their real part. [their real
i/ parts aze equal, compare them by complex part
Complex.prototype.compareTa = function(that) {
var result = this.x - that.x; // compare Teal wiing sebtraction
if (result == o) Ff if they are egual. ..
result = this.y - that.y; #f then compare imagimary parts
#f Wow our result is © If and only iF this.equals(that)
return result;

b;

9.5 Superclasses and Subclasses

Java, C++, and other class-based objectr-onented languages have an exphicit concept
of the chass herarchy. Every class can have a superclass from which it inherits proper-
tics and methods. Any class can be extended, or subclassed, so that the resulting sud-
class mherts s behavior, As shown previously, JavaScnpt supports protorype
inheritance instead of class-based inheritance. Sall, JavaScript analogies 10 the class
hierarchy can be drawn. In JavaScript, the Object class is the most generic, and all
other classes are specialized versions, or subclasses, of it. Another way 1o say this s
that Object is the superclass of all the built-in classes, and all classes inherit a few
basic methods from Object.

Recall that objects inhent properties from the prototype object of their construcvor.
How do they also inhent properties from the Object class? Remember that the proto-
type object is nself an object; it is creaved with the Object() constructor. This means
the prototype object itsell inherts properties from Object . prototype! Prototype-based
inheritance is not limated to a single protorype object; instead, a chain of prototype
objects is involved. Thus, a Complex object inhents propermies from Complex. prototype
and from Object.prototype. When vou look up a property in a Complex object, the
object itself is searched firse. If the property s not found, the Complex . prototype object
is scarched next. Finally, if the property s not found in thar obyect, the Object.
prototype object is scarched.

Saperclises and Subclates | 187

Page 103 of 244

Note that because the Complex pratatype object is searched before the Object proto-
type object, properties of Complex. prototype hide any properties with the same name
in Ob ject.prototype. For example, in the Complex class of Example 9-2, a toString()
method was defined in the Complex., prototype object. Object .prototype also defines a
method with this name, but Complex objects never see it because the definition of

toString() in Complex. prototype is found first.

The classes shown so far in this chapter are all direcr subdasses of Obgect. When necessary,
however, it is possible o subcass any other class. Recall the Rectangle dass shown earlier in the
chapter, for example. It had properties that represent the width and height of the rectangle but
o properties descrbing its position. Suppose you want to create a subclass of Rectangle in onder
to add fields and methods relared o the posinon of the rectangle. To do this, use the hedr()
method of Section 9.2 1o create a prototype for the new class thae imherits from Rec tangle,

prototype.
Example 9-3 repeats the defimition of a simple Rectangle dlass and then extends it o define a

Example 9-3. Subclassing a JavaScrpt class

ff Here is a simple Rectangle class.
A It has a width and beight and can conpute its owm area
function Rectangle(w, b) {
this.width = w;
this.height « h;
}
Rectangle.prototype.area = function() { retum this.width * this.heighty }

ff Here is how we might subclass it
fF Flrst, we defime & the subclass constructer.
function Positicnediectangleiw, h, =, y) {
A First, Invoke the superclass comstructor om the new object
A so that Lt cam Inltlalize the widih and I-re!.ljt.
A We use the call method so that we inwoke the comstructor as a
A methed of the object to be initialized.
A This is called comstructer chaining.
Rectangle.call(this, w, h});

#f Now store the position of the upper-left cormer of the rectamgle
this.x = x;
this.y = y;

b

ff Create a prototype for the subclass that inherits from the prototype
ff of the superclass. We do this with the heir() fusction.
function helr{p) {

fumction F(){}

f.prototype = p;

return new £();

Positionediectangle. prototype = helr(Rectangle.prototype);

168 | Chapter® Classes, Comstrectors, and Prototypes

Page 104 of 244

Example 9-3. Subclassing a JavaScrpt class (contimuied)

fF Since the subclass prototype object was created with the helr() fusction,
ff it does mot hawe a meaningful comstructor property. 5o set that new.
PFositionedRectangle.prototype . constructor = PositiomedRectangle;

ff tiow that we've configered the prototype object for our subclass,
I wi can add instance metheds te it.
Pesit ionedRectangle.prototype.containg = function{n,y) {
returm {x » this.x A&
¢ thiv.x +» this.width &&
y » thin.y A&
y © this.y + this.height);
k

As you can see from Example 9-3, creating a subclass in JavaScnpe is not as simple as
creating a class that inherits directly from Object. First, there is the issue of invoking
the superclass constructor from the subclass construcror. Take care when you do this
that the superclass constructor is invoked as a method of the newly created object.
(You may want to review Section 8.6.4 on the call() and apply() methods of func-
nons.) Next, there are the incks required 1o ser the protorype object of the subclass
constructor. You must explicitly create this prototype object as an instance of the
superclass, then explictly set the constructor property ol the prototype object,
Opoonally, you may also wane to delete any properties that the superdass construc-
tor created in the prototype object because what's important are the properties that
the prototype object inherits trom ifs prototype.

Having defined this PositionedRectangle class, you can use it with code like this:

val T = néw Positionediectangle(2,2,2,1);
print(r.comtaims(3,3)); /7 irvoke sn imitance method
print(r.aveal)); If invoke an inkerited imstance method

ff e the imstance fields of the class:
printr.m + =, " & r.y + °, T & rowldth + °, 7 & p.height);

fF Qur object is an instance of all 3 of these classes
print(r Imnstanceof PositiomedRectargle A3

r imstanceot Rectangle BS

r instanceof Object);

9.5.1 Constructor Chaining

In the example just shown, we saw that the PositionedRectangle() constructor bunc-
tion needed to explicitly invoke the superclass constructor function. This is called
constructor chaming and s quite common when creanng subclasses, If you prefer not
to explicitly refer 1o 1o the superclass constmuctor from the subclass constructor, you
can add a property named superclass to the subclass constructor:;

Peditionsectangle, iupsrclaii = Bectangle;

Saperclaises and lubcases | ™

Page 105 of 244

With this property defined, vou can use arguments.callee. superclass in place of an
explicit reference 1o Rectangle, and chain w the superclass constructor with boiler-
plate code like this:

arpenenis.calles. superclaas.call{this, w, h)

arguments.callee always refers to the currently executing function, (See section 8.2,
2.1). While you might be tempted 10 use this.constructor.superclass instead, it
won't work: if someone creates a subclass of PositionedRectangle, then this.
constructor will refer 10 the new subclass constructor, not 10 PositionedRectangle.

9.5.2 Invoking Overridden Methods

When a subclass defines a method that has the same name as a method in the super-
class, the subclass overndes that method. This is a relatively common thing o do
when creanng subclasses of oastng cdasses. Anynme you define a toString()
method for a class, you overnde the toString() method of Object, for example.

A method that overndes another often wants 10 augment the funcoonalicy of the
overmidden method instead of replacing it alogether. To do that, a method must be
able o invoke, or chain to, the method that it overndes

Let's consader an example. Suppose the Rectangle dass had defined a toString()
method (as it should have in the first place):

Rectangle.prototype. toString = function() {

return *[* « this.width « "," « this.beight + *]";

}
If you give Rectangle a toString() method, you really must override that method in
PositionedRectangle so that instances of the subclass have a stnng representanion
that reflects all their properties, not just their width and haght properties.
PosinonedRectangle is a simple enough class that its toString() method can just
return the values of all properties. But for the sake of example, let’s handle the posi-

ton properties and delegate o s superclass for the width and height properties.
Here is what the code might look like:

Pouitionedectangle.prototype. toString = function() {
retugn *(" & this.x ¢ "7 & this.y « ") " « /1 our ields
Rectangle.prototype. toltring.call(this); // chain to superclass
}

The superclass’s implementation of toString() is a property of the superclass’s pro-
totype object. Note that vou can’t nvoke it directly. Invoke it with call() so that

you can specify the object on which it should be called. The toString() method
we're using as an example does not ukr-pm:ml.hunfywmt L0 pass argu-

ments to an overndden method add the arguments to the invocation of call().

MNote that invoking the toString() method through Rectangle . prot otype works even
if the Recrangle class is modified to remove its toString() method. In that case the

170 | Chapter®: Classes, Constrectors, and Prototypes

Page 106 of 244

protorype object of the Rectangle class inhenis o toString() method of Obyect, and
the code will chain to that method instead.

We will revurn to chaining in Example 9-10, which simplifics method chaining using
arguments.callee as we did for constructor chaining above.

9.6 Extending Without Inheriting

The discussion of creating subclasses earlier in this chapter explains how o create a
new class that inherits the methods of another. JavaScript s such a flexible language
that subclassing and mhentance are not the only way w extend a dass. Since Java-
Script functions are data values, you can ssmply copy (or “bommow™) the funcnons
from one class for use in another. Example 9-4 shows a funcuion that borrows all the
methods in one class and refers to them in the prototype object of another class.

Example 9-4. Borrowsng methods from one (ass for wse by another

£/ Borrow methodi frem one class for we by snother.
ff The arpuments should be the comstrnuctor functions for the classes.
ff Methods of built-in types such a5 Object, Arvay, Date, and Begiap are
/7 met erumerable and cannot be borrowed with this method.
function borrosfethods (borrosfrom, addTo) {
var from = borrowfrom.protetype; /7 protetype cbhject to borrow from
var to = addlo.prototype; /1 prototype chject to ewtend

for{m in frem) { // Loop through all properties of the prototye
if (typeof from{m] I= “fusction™) contimue; // igrore monfusctions
talm] = from{n]: /7 borrew the method
}
}

Many methods are tied strongly 1o the class thar defines them, and it makes no sense
to try to use them in other classes. But it is possible to write some methods geneni-
cally =o that they are suitable for use by any class, or by any dass that defines certain
propertics. Example 9-5 includes two classes that do nothing bur define uscful
methods that other classes can borrow. Classes like these thar are designed for bor-

rowing are called mixin (lasses or mixins.

Example 9-5. Moom classes with genevic methods for borrowing

FF This class fsn't pood for much on {t: own. But it docs define a
£/ generic toStrimgl) method that may be of interest to other classes.
function GesericTeString() {}
GenericToString. protetype. toString = function{) {
var props = [];
for(var name in this) {
if ("this.hasDenProperty(name)) contine;
var valee = this[name];
VAT & = name ¢
suitch(typeof value) {

Lrtending Without inheriting | 171

Page 107 of 244

Example 0.5, Mixm classes with penenic methads for borrounng (comtimued)
case 'function':
$ == "fumction”;
break;
case ‘object’:
if (value instanceof Array) s += “array”
else s += walue.toString();
break;
default:
% += String(value);
break;
}
props.push{s};

, retumn “(" + props.jein(®, ") + "}";

£ This misin elsss defimss an eguals() method that can compars
ff sinmple objects for equality.
function GemericEguals{) {}
Genericiquals.prototype.equals = function(that) {
if (this = that) retum true;

I this and that ave equal only if this has all the properties of
£ that and dogsn”t have any additiomal properties
£ Note that we dom"t do desp conparlson. Prepertly values
/f must be === to each other. 50 properties that refer to objects
4 must refer to the same obfject, mot cbjects that are egquals()
var propalnThat = o;
for(war name in that) {

propalnThates;

it (this[mame] l== that[name]) return false;
}

I Mow make sure that this cbject doesn’t have additional props
wvar propslnThis = &;
for{nane in this) propsInThises;

£ TF this has additional properties, then they are mot equal
if (propsInThis != propsInThat) retum false;

I The two chjects appear to be egual.
return true;
}

Here is a simple Recrangle class thar borrows the toString() and equals() methods
defined by the mixin classes:

/i Here is a simple Rectamgle class.
function Rectangle(x, y, w, h) {

this.x = x;
this.y = y;
this. width = w;
this.height = h;

}
172 | Chapter%: (lasses, Comstructor, and Prototypes

Page 108 of 244

Rectangle.prototype.area = function() { retum this.width * this.meight;)

/I Barres some more methods for it
borrowMethads (CenerlcEquals, Rectangle);
borrowMethads (CenerlcToString, Rectangle);

Neither of the mians shown have a constructor function, but it is possible 10 bor-
row constructors as well. In the following code, a new class is created named
ColoredRectangle. It inherits rectangle functionality from Recrangle and borrows a
constructor and a method from a mixin named Colored:

0 This aixin has & method that depends om Lts constructor. Bath the

ff constructer and the method must be borrowed.

function Colered(c) { this.celer = ¢; }
Colored.protetype. getCalor = function{) { return thisi.celer; }

/I Define the constructor for a new class.

function ColeredRectangle(x, y, w, h,) {
Rectangle.call(this,n,y,w,h); 7/ Dovoke superclass constructor
Colored.call(this, ¢); A and borTow the Colomed constyuctor

/1 Set wp the prototype object to lnherit methods from Reclamgle
ColoredRectangle.prototype = heir{Rectangle.prototype);
ColoredBectangle. prototype. constiuctor « Colaredfectangle;

ff And borTom the methods of Colored for our mew class

borrowMethods(Colored, Colarediectangle);
The ColoredRectangle class extends (and inherits methods from) Rectangle and bor-
rows methods from Colored. Recrangle itself inhents from Object and borrows trom
GenencEquals and GenencToSming. Although any kind of strict analogy is i mpossi-
ble, you can think of this as a kind of multiple inheritance, Since the ColoredRectangle
class borrows the methods of Colored, instances of ColoredRectangle can be consid-
ered instances of Colored as well. The instanceof operator will not report this, but in
Secnion 9.7.3, we'll develop a more general method for determiming whether an object
inherits from or borrows from a specified class.

9.7 Determining Object Type

JavaScript is loosely tvped, and JavaScript objects are even more loosely ryped. There
are a number of techniques you can use 1o determine the type of an arbicrary value in
JavaScript.

The most obvious rechnique is the typeof operator, of course (see Section 5.10.2 for
details). typeof is usetul primarily for distinguishing primitive types from objects.
Ihere are a few quarks 1o typeof. First, remember that typeof mull is “object™, while
typeof undefined is “undefined”. Also, the type of any armay 1s “object™ because all
arrays are objects. However, the type of any function is “function”, even though
tunctions are objects, too.

Determining Object Type | 173

Page 109 of 244

9.7.1 instanceof and constructor

Onee you have determined that a value is an object rather than a primitive value or a
function, you can use the instanceof operator to learn more about it. For example, of
« is an array, the following evaluates to true:

x instamcesf Array

The left side of instanceof is the value to be tested, and the right side should be a
constructor function that defines a class, Note that an object is an instance of its own
class and of any superclasses. 5o, for any object o, 0 instanceof Object i1s always true.
Interestingly, instanceof works for functions, so for any function f, all chese expres-
SMOMS are true:

typeof f == “function”

f instanceaf Funmction
f instamceof Object

If you want to test whether an object 18 an instance of one specific class and not an
instance of some subclass, you can check its constructor property. Consider the fol-
lowing code:

var d = new Dat=(); /f A Date abject; Date extends Dbject

war isobject = d instanceof Object; ff ewaluates to true
var realobject = d.comstructer==Object; // evaluates to false

9.7.2 Object.toString() for Object Typing

One shortcoming of the instanceof operator and the constructor property is that they
allow you to test an object only against classes you already know about. They aren’t
useful to inspect unknown objects, as yvou might do when debugging, for example. A
useful trick that uses the default implementation of the Object.toString() method
can help in this case,

As shown in Chapter 7, Object defines a default toString() method. Any class thae
does not define its own method inherits this default implementation. An interesting
feature of the default toString() method is that it reveals some mternal tvpe infor-
mation about built-in objects. The ECMAScript specification requires that this
default toString() method always returns a string of the form:

[object class]

class is the internal type of the object and usually corresponds to the name of the
constructor function for the object. For example, arrays have a eloss of “Array”,
functions have a class of “Function”, and Date objects have a class of “Date”. The
built-in Math object has a class of “Math”, and all Error objects (including instances
of the various Error subclasses) have a class of “Error™. Client-side JavaScript
objects and any other objects defined by the JavaScript implementation have an
implementation-defined class (such as “Window™, “Document”, or “Form™),
Objects of user-defined types, such as the Circle and Complex classes defined earlier

174 | Chapter % Classes, Constrectors, and Prototypes

Page 110 of 244

in this chaprer, always have a class of “Object”, however, so this toString() rech-
nique is useful only for built-in object types.

Since most classes override the defaulr toString() method, you can't invoke it
directly on an object and expect to find its class name. Instead, you refer to the
defaulr function explicitly in Object.prototype and use apply() 1o mvoke it on the
object whose rype you're interested in:

Dbject.prototype,toString.applylc); /7 Always invokes the default toString()

This technique 15 used in Example 9-6 1o define a funcnion that provides enhanced
“type of” funcrionality. As noted earlier, the tosString() method does not work tor
user-defined classes, so in this case, the function checks for a string-valued property
ot the constructor named classname and returns its value it it exists.

Example 9-6. Enlanced typeof testing

tunction getTypeix) {
£F 1F w is null, returm “nwll™
if (x == null) retern “mall":

#f Next try the typeot operator

var t = typeof x;

£ IF the result is not vague, return it
if (t 1= "object™) return t;

£F Otherwise, » 15 an object. Use the default toString() method to

I/ get the class valee of the abject.

var ¢ = Object.prototype.toString.apply(x); // Retumns "[object class]®

£ = . dubitring (B, ¢.length-1): A Strip off “[ob{ect” and)"

f1F the class is not a vague ome, return it.
if (e '= "Dbject") retusn ¢

£ 1F we get here, ¢ 15 "Object”. OCheck to see if
I the valur x is really just a gemeric object.
if (x.constructor == Object) meturm c; /F Okay the type really is "Object”

/' For wser-defined classes, look for a string-valued property of

A the condtrwcter named classname.

if (n.constructor B x.comstructar.classname B8 // IFf class has a name
typeof w.comstructor.classmame == "strimg™) // and it is a string
return x.comstructor.classnane; £ then peturs it.

A 1F we really can't flgure it out, say so.
return “cunknown types”:

Determining Object Type | 175

Page 111 of 244

973 DuckTyping

There is an old saving: “If it walks like a duck and quacks hke a duck, it"s a dudk!”
Translated into JavaScnpe, this aphonsm is not nearly so cvocanve. Tryv it this way:
“If it implements all the methods defined by a class, it is an instance of that dlass.” In

flexible, loosely typed languages like JavaScripe, this is called duck typing: if an object
has the propernies defined by class X, vou can trear it as an instance of class X, even of
it was not acrually creaved wirh the X{) constructor funcrion.”

Duck typing 1s particularly useful in conjuncnon with classes that “borrow™ meth-
ods from other classes. Earlier in the chapter. a Rectangle class borrowed the imple-
mentation of an equals() method from another dass named Genmu.Equ:ls. Thus,
you can consider any Rectangle instance o also be an mstance of

The instanceof operator will nor report this, but you can define a method thar will.
Example 9-7 shows how.

Example 9.7. Testing whether an obsect borrows the methods of @ dass

£ Return tree 1 each of the method propertiss is c.prototype have besn

/f borrowed by o. If o is 3 fenction rather tham an object, we

{1 test the prototype of o rather than o itself.

7 lote that thiz fimction requires methods to be coplsd, not

iF reimplemented. If 3 class borrows 2 method and them owerrides it,

£ this method will return false.

fumction borrows(o, c) {
ff If we are an instance of something, then of course we have its metheds
if (o imtancesf c) returm tree;

A It is impossible to test whether the methods of a built-im type hawe
/7 been borTowed, since the methods of built-in types are not emmerable.
/F We return undefined in this case as a kind of "] don™t know™ answer
/F inatesd of thoowing an exception. Undefined behaves much Like falie,
Af bt can be distinpuithed from false if the caller needs to.
if {c == Array || ¢ == Boolean || ¢ == Date || ¢ == Error ||

£ =s Function || ¢ == Mumber || £ s« RegExp || ¢ == String)

return wndefined;

it (typeof o — “fenction™) o - a.prototype;

val proio = C.pretotype;

for{var p in proto) {
#f Tgnare properties that ame mot functioms
if (typeof proto[p] '= “fenctien™) contiree;
i¥ (o]p] '= prete{p]) returm Falie;

return true;

* The verm “dick typing” has been popularised by the Buby programming linguage. A more formal name =
allomonpherm.

176 | Chapter® Classes, Constractors, and Prototypes

Page 112 of 244

The barrows() method of Example 9-7 is relatively serict: i requires the abject o ta
have exact copies of the metheds defined by the class ¢, True duck typing is more
Hexible: o should be considered an instance of ¢ as long as it provides methods that
look like methods of c. In JavaSeript, “look like™ means “have the same name as”
and (perhaps) “are declared with the same number of arguments as.” Example 9-8
shows a method thar tests for this.

Example 9.8, Testing whelher an object provides imethods

A Return trug 19 o has methods with the same name and arity as all
ff methady In c.prototype. Otherwise, return false. Throws an esception
AO0F ¢ ds 8 bullt-in type with nonenumerable methods.
functlon prevides{o, c) {
HOTF o actually is an dnstance of ¢, It obviously leoks like
if (o instanceof c) return true;

ffIF & constructor was passed initead of an object, use its prototype
i (typeof o == "function") o = a.prototype;

A The methods of bullt-in types are not enumerable, and we return
A undefined. Otherwise, any object would appear to provide any of
A the bullt-in types.
if (¢ == Array || € == Boolesn || € == Date || € == Erzer ||
£ == Function || ¢ == Munber || ¢ == RegEsp || ¢ == String)
return undefined;

var proto = ¢.prototype;

for(var p in proto) { #/ Loeop through all properties In c.prototype
M Ignore properties that are not functlons
if (typeof protalp] 1= “"functien") continue;
f61F o dows not have & property by the same nane, return false
it {I{p in o)) return false;
A If that property is not a functlon, retumn false
it {typeof ofp] |= "fumction™) return false;
AF1F the two functions are mot declared with the same number
M of arguments, return false.
if (olp).length |= proto[p].length) return false;

I

£ 1F all the netheds check out, we can finally retumn true.
return true;

!

As an example of when duck typing and the provides() method are useful, consider
the compareTo() method described in Section 9.4.3. compareTe() is not a method thae
lends itself to borrowing, but it would seill be nice it we could easily test for objects
that are comparable with the compareTo() method. To do thes, define a Comparable
class:

function Comparablel) {]

Comparable.prototype.compareTo = function(that) {
thros “Comparable.compareTo() is abstract. Den't invoke it1%;

Determining Object Type | 177

Page 113 of 244

This Comparable class is abstract: its method 1sn'r designed o actually be invoked
but simply 10 define an AP1. With this class defined, however, you can check if two
objects can be compared like this:

{1 Check whether objects o and p can be conpared

£ They nust be of the same type, and that type must be comparable

if {o.constructor == p.comstructor A& prowides{o, Comparable)) {
war arder = o.compareTalp);
}

Note that both the borrows() and provides() funcrions presented in this secrion
return undefined if passed any core JavaScript built-in type, such as Array. This s
because the properties of the prototype objects of the built-in types are not enumera-
ble with a for/in loop. If those functions did not explicitly check for built-in types
and return undefined, they would think thar these buili-in rypes have no methods
and would always returm trve for built-in types.

The Array rype 15 one that is worth considening speaially, however. Recall from Sec-
tion 7.8 that many array algorithms (such as iterating over the elements) can work
fine on objects that are not true arrays but are array-like. Another application of duck
typing is to determine which objects look like arrays. Example 9-9 shows one way w
do .

Example 9.9, Testing for arrap-like objects

function isArraylike{z) {
if (x imstancesf Array) return tyue; 7/ Real arrays are array-like
if (1{"length™ in x)) return false; 7/ Arrays must have a length property
if (typeof x.length |= “rumber”) return false: // Length must Be & nunber
it (x.length < 0) retum false; /! and nonncgative
if (x.lergth > 0) {
/f IF the array is nonempty, it must at a minimum
ff have a property defined whose mame is the number length-1
if ("{x.length-1} in x}) return false;
}
Tetumm true;

9.8 Example: A defineClass() Utility Method

This chapter ends with a defineClass() unhty funcoon that tics together the prewi-
ous discussions of constructors, prototypes, subclassing, and borrowing and chain-
ing. Example 9-10 defines the function and Example 9-11 shows how it can be used.

Example 9-10. “A atility function for defining classes
III..

* definellass() -- 2 wtility function for definimg JavaScript classes.

® This function expects a single object as its omly arpewent. It defines
* a new JavaScript class based on the data in that object and retumns the
® constructor fumctiom of the new class.

178 | (hapter®: Classes, Comstructors, and Prototypes

Page 114 of 244

Example 9-10, °A utility function for defimng classes

‘l.l

The abject passed as an argument should have some or all of the
fellowing properties:

@ @ @ =

name: the name of the class belng defined,
1f specified, this value will be stored in the classname
proparty of the returmed comstructor ocbject.

extend: The comitrectar of the clasy to be extended. The returned
constructor automatically chaims to this function. This value
is stored in the superclass property of the constructor abject.

fmit: The Initlalization function for the class. If deflmed, the
comtructar will pass all of its arguments to this fusction.
The comstructor also autematically inwokes the superclass
comstructor with the same arguments, so this #function must espect
the same arguments, in the sime order, as the superclass
constructor, and can add additional arguments at the end.

methads: An object that specifies the instance methods (and other
non-method properties for the class. The propertles of
this object become properties of the prototype. Metheds
are glvea an overtldes property for chalaleg, They <an
call *chain{this, arguments)” to lowoke the methed they
override. This function adds properties to the methads in
this object, so you may motl pass the same method In bwo
invocations of defineClass().

@ @ ® @ #® W & ® @ ® ® 8 ® W & W @

stablcs: An cbject that specifies the statlc methods (and other statlc
properties) fer the class. The properties of this sbject become
properties of the constructer functios,

" B F " " R R O O W

li_'i
function definellass{data) {
/F Extract some properties from the argument cbject
war extend = data,extend;
varT superclass = extend || Object;
war init = data.indt;
var classnane = data.mame || “Urnamed class”;
var methods = data.methods || {};
var statics = data.statics || {);

#f Make & conitructor function that chalns to the supercless comstructon
/f and them calls the initialiration method of this class.
A This will become the return valee of this defimeClass() nethed.
var censtructer - fumctlon() {
if {estend) extend.apply(this, arguments); /¢ Initialize superclass
if (indt) Init.applyl(thls, asguments); /¢ Initlalize ourielf
k

/i Copy static properties to the constructor fumction
if (data.statics)
far{vir p In data.statici) conatmuctor|p] = data.staticip];

Exampile: A defineClassi) Utility Method | 179

Page 115 of 244

Example 010, ‘A wtility fumction for defimng classes

'flll

A Set superclass and classname properties of the comstrector
congtructon. wperclais = superclass;

constructor.classname = classname;

/1 Create the object that will be the protolype for the class.

#f This rew object sust isherit from the superclass prototype.

war proto = (superclass =« Object]) ¥ () : helr(superclass.prototype);

I Copy imitance methods (asd other properties) to the prototype object.

foar(var p in methods) { /1 Far each name in methods sbject
if (p == “toString™) costinue; // Mandled below
wal m o« methads[p]; Af This is the value to copy

it (typeof m == “function™) { /7 I¥ it is 2 functios
m.overrides » proto[p); /7 Eemember anything it overrides

B e = P A Tell It what its neme {5
B0l = COnatructor; A Tell it what class owns it.
}
protofp] = m; /7 Then store im the prototype

A In TE; & for/in loop won't erumerate properties that have the same nave
i i non-esumerable Object methods like toStrisg(). As a partdal
#f work-ayound, we handle the toString methed apecially
if (methods.hasOunProperty(~teString™)) { // IE Dontnem bug
methods . LoSte ing. overrides = proto. toString;
methods. toString.neme = “toString”;
methods . toString. oumer » constructor;
proto.toString - metheds.toString;

/1 ALl sbjects should know whe their comstructor was
proto.constiuctor = constructer;

A hed the comstructor must keow what its prototype is
constTuCtor . protetype = proto;

/1 Fimally, retumn the comitrector function
return comstructer;

}

.
* Return a raw object with p as its prototype
=
function heir{p) {
functiom h{){}
b.prototypesp;
return new h();
I

F
* Chain from the calling function to the Ffunctiom en its owerrides property.
* Ievoke that method on the Tirst argument. The second arpument sust be the

180 | Chapter ¥ Clavses. Constractos. and Prototypes

Page 116 of 244

Example 9.10, °A utility function for defimng ¢lasses

Ifii

* argunents object of the calling function: its callee property is used to

® determine what fumction is dolng the chainlng. The third argument 1s an

* optional arvay of values to pass to the overridden methed. 1f omitted,
the second argument is used instead, passing all of the caller's arguments
on ta the owerrlddem method.

:

This method returns the return value of the overricden method oT
thross “Chadnfrror® if mo overrldden method could be found

* Typical Invocatiosm: chain{this, arguments)
* To pass different arga: chain(this, apguments, [w, h])
o'}
function chain{e, args, pass) |
var ¥ = atgs.calles; /¢ The calling function.
var g = f,overrides; f The function it chains to.
var a = pass || args; /7 The argunents we'll pass to s
if (g) veturn g.apply(o, a); /+ Call o.gl(a) and retum its value as ours,
else throw "ChaimExyor” {f Complain 1f nothing to overyide

}

Example 9-11 shows sample code that uses the defineClass() funcrion.

Example 9-11, Using che defineClass() funcrion ,

/4 A very slmple Rectamgle class
var Rectangle = definellass({
name: “Rectangle”,
init: function{w,h) {

this.w = w)

this.h = hj
h
mirthodi: |

area: function{) { weturn this.w * this.h; },

taString: fmction() { retumm *[" + this.e « *,* & this.h + *]* }
}

3 F

#f A wgheclass of Ier.l.lnglz
var PositionedRectangle = defineClass({
name: “PositionedRectangle”,
extend: Rectangle,
init: function{w,h,x,¥) {
i hutomatle chaln here: Rectamgle,.eall(this w b, x,y)
this.x = u;
this.y = ¥i
b
methods : |
islnside: fumction(n,y) {
return x 5> this.n B x ¢ this.n + this.w B
y » this.y 8B y « this.y + this.h;
bs
taString: fumction() {

Example: A deflmeslass| | Unility Method |

Page 117 of 244

1

Example 9.11. Uang the defineClags() funcnon icontinued)

A& very slmple Rectangle clads
return chain(this, arpuments) + “(" ¢ this.x « “," + this.y + ")";
}
}
|§H

var Colarediectangle = defineClans(|
name i “Colored@ectangle”,
extend: PositionedBectangle,
init: fenction(w,h,x,y,c) { this.c = g; },
methods: |

teString: fusction() { setumn this.c + ": * « chain{this,argunents))

182 | Chapter® (lanses. Constructon, and Prototypes

Page 118 of 244

CHAPTER 13
JavaScript in Web Browsers

The first part of this book described the core JavaScript language. Part [moves on to
JavaScript as used within web browsers, commonly called client-side JavaScript.”
Most of the examples you've seen so far, while legal JavaScript code, have no particu-
lar conrexr; they are JavaScripr fragments that run in no specitied environment. This
chapter provides thar conrext. Ir starts with an overview of the web browser pro-
gramming environment. Next, it discusses how to actually embed JavaScript code
within HTML documents, using <scripts tags, HTML event handler ateributes, and
JavaScript URLs. These secrions on embedding JavaScripr are followed by a section
thar explains the client-side JavaScripr execurion model: how and when web brows-
ers run JavaScript code. Next are sections that cover three important topics in Java-
Script programming: compatibility, accessibility, and security. The chaprer
concludes with an short description of web-related embeddings of the JavaScript lan-
guage other than client-side JavaScripr.

When JavaScript is embedded in a web browser, the browser exposes a powerful and
diverse set of capabilities and allows them to be scripted, The chaprers that follow
Chapter 13 each focus on one major area of client-side JavaScript funcrionaliry:

» Chapter 14, Scripting Browser Windows, explains how JavaScript can script web
browser windows by, for example, opening and closing windows, displaying dia-
log boxes, causing windows to load specified URLs, or causing windows w go
back or forward in their browsing history. This chapter also covers other, miscel-
laneous features of client-side JavaScript that happen to be associated with the
Window object in client-side JavaScripe,

* Chapter 15, Scripting Documents, explains how JavaScript can interact with the
document content displaved within a web browser window and how it can find,
insert, delete, or alver content within a document.

* The term client-stde JavaScript is keft over from the days when JavaScript was used in only two places: web
hrrowwsers (clients) and web servers. As Javascripe 18 adopred a5 a scripring language in more and more envi-
ponments, the rerm cleni-side makes less and less sense hecause it doesn’s specify the client side of whar,
Mevertheless, Ull continue 1o use the term in this book.

135

Page 119 of 244

* Chapter 16, Cascading Style Sheets and Dynamic HTML, covers the interaction
of JavaScripr and C55 and shows how JavaScript code can alrer the presentation
of a document by scripting CS5 styles, classes, and stylesheets. One particularly
potent result of combining scripting with CS5 is Dynamic HTML {or DHTML)
m which HTML content can be hidden and shown, moved, and even ammared.

* Chapter 17, Events and Event Handling, explains events and event handling and
shows how Javascripr adds interactiviey to a web page by allowing it 1o respond
T user's inpur,

* Chapter 18, Forms and Form Elements, covers forms within HTML decuments
and shows how Javascripr can gacher, validare, process, and submir user inpur
with forms,

* Chapter 19, Cookies and Client-Side Persistence, shows how JavaScript scripts
can persistently store dara vsing HTTF cookies.

* Chapter 20, Scripting HTTP, introduces HTTP scripting {commonly known as
Ajax) and demonstrates how JavaScript can communicate with web servers.

* Chapter 21, JavaScript and XML, shows how [avaScript can create, load, parse,
transform, query, serialize, and extrace informartion from XML documents.

= Chapter 22, Scripted Client-Side Graphics, demonstrates common JavaScripe
image-manipulation techniques that can create image rollovers and animations
in webh pages. It also demonstrates several techniques tor dynamically drawing
vecror graphics under [avaSeripr control,

* Chapter 23, Scripting Java Applets and Flash Movies, explains how JavaScript can
interact with Java applers and Flash movies embedded inoa web page.

13.1 The Web Browser Environment

To understand client-side JavaScripr, you must understand the programming cnvi-
ronment provided by a web browser. The following sections inroduce three impor-
tant features of that programming environment:

* The Window ohject thar serves as the global object and global execurion con-
text for client-side JavaScript code
= The client-side chject hierarchy and the Document Ohject Model that forms a
part of it
* The event-driven programming model
These secrions are followed by a discussion of the proper role of [avaScript in web
application development.

236 | Chapter1d: JavaScriptin Web Browsers

Page 120 of 244

13.1.1 The Window as Global Execution Context

The primary rask of a web browser is o display HT ML documents in a window. In
clicnt-side Javascripr, the Document object represents an HTML document, and the
Window object represents the browser window (or frame} that displays the docu-
ment. While the Document and Window objects are both impartant 1o client-side
Javascnpt, the Window objecr 15 more important for one substanoial reason: the
Window ohyjecr 1s the global objecr in client-side programming,

Recall from Chaprer 4 thar in every implemencarion of JavaScripr there is alwavs a
global object ar the head of the scope chain; the properties of this global object are
global variables. In client-side JavaScript, the Window object is the global object.
The Window object defines a number of properties and methods thar allow you to
manipulate the web browser window. [t also defines properdices thar refer to other
important objects, such as the document property for the Document object, Finally,
the Window olyject has vwo sell-referential properties, window and self. You can use
either global variable to refer directly to the Window object.

Since the Window object is the global object in client-side JavaScripe, all global vari-
ables are defined as properties of the window. For example, the following two lines
of code perform essennally che same funcoon:

WAT answel = 42; A Declare and initialize a global wariable

window.answer = 42; /F Create a ned property of the Window ebject
The Window object represents a web browser window (or a frame within a window;
in client-side |avaScript, top-level windows and frames arc essentially equivalent). Ie
is possible to write applicarions thar use multiple windows (or frames), Each win-
dow involved in an application has a unigue Window abject and defines 2 unigue
execution context for client-side JavaScript code. In other words, a global variable
declared by JavaScript code in one window is not a global variable within a second
window. However, Javascripr code in the second window can access a global wvari-
able of the first window, subjecr 1o cerain security restrictions. These issues are con-
sidered in derail in Chaprer 14,

13.1.2 The Client-Side Object Hierarchy and the DOM

The Window object is the key object in client-side JavaScript. All other client-side
objects are accessed via this object. For example, every Window object defines a
document property that refers o the Document objecr associated with the window
and a location property thar refers 1o the Locarion objecr associared with the win-
dow. When a web browser displays a framed document, the frames[] array of the
top-level Window object contains references to the Window abjects that represent
the frames. Thus, in client-side Javascripr, the expression document refers o the Dioc-
wrment ohject of the current window; the expression frames 1] . document refers o the
Document object of the second frame of the current window.

The Web Browser Environment | H-]'-

Page 121 of 244

i |
3
=
T
]
-
5

The Document abjecr (and other client-side JavaScripr objects) also have properties
that refer o other objects. For example, every Document object has a forms[] array
containing Form objeces that represent any HTML forms appearing in the docu-
ment. To refer to one of these forms, vou might write:

window. dacument .. farms [0

To continue with the same example, cach Form object has an elements[] array con-
raiming ohjecrs thar represent the various HTML form elements (inpur ficlds, bur-
tons, etc.) that appear within the form. [n extreme cases, you can write code tha
refers to an object at the end of a whole chain of objects, ending up with expressions
as complex as this one:
parent. frames[0] . document, forms (0] .elements[3].options[2]. text

As shown earlier, the Window object is the global object ar the head of the scope
chain, and all client-side objects in JavaScript are accessible as properties of other
objects. This means that there is a hierarchy of JavaScripr objects, with the Window
ohject ar its root, Figure 13-1 shows this hierarchy,

sel#, window,
== parent, top
vafings Window shists

| navigator
Brvgaior chject

| frames|]
aray of Windew abjects I forma[] elements]]
— o F2m oh ey ot HTWL farme
& EhTI’II'ﬂItI_hi.L'I:
| | locstion i
The ernsies | | anchors] e
Current ik il T
Windew | | history
Histarp oigject I_ links[]
aerip of Link abfects
—————————
| document
Destument ohjax | i!l!t![]
armay ol Ima e abfects
I ———————————
| SCTEER
Seseen chjecl | applets]]
arnay of appheis
e ——

Figaere 13=1, The elivn-side object Rierarchy and Level 0 DOM

738 | Chapter13: JavaScriptin Web Browsers

Page 122 of 244

More thar Figure 13-1 shows just the abjecr properties thar refer o other abjecrs,
Maost of the objects shown in the diagram have methods and properties other than
t]'llilbl! 5':](.'“-1].

Many of the objects picrured in Figure 13-1 descend from the Document object. This
subtree of the larger cient-side object hierarchy is known as the document object
model (DOM), which is interesting because it has been the focus of a standardiza-
rion efforr, Figure 13-1 illustrares the Document ohjeces thar have become de facra
standards because they are consistemtly implemented by all major browsers, Collec-
tively, they are known as the Level 0 DOM because they form a base level of docu-
ment functionality thar JavaScript programmers can rely on in all browsers. These
basic Document objects are covered in Chaprer 13, which also explains a more
advanced document abject model thar has been standardized by the W3C, HTML
forms are pare of the DOM but are specialized encugh that they are covered in their
own chapter, Chaprer 15.

13.1.3 The Event-Driven Programming Model

In the early days of compuring, compurer programs often ran in barch mode; they
read in a barch af dara, did some compuration on thar dara, and then wrote our the
results. Later, with time-sharing and text-based rerminals, limited kinds of interactiv-
ity became possible; the program could ask the user for input, and the user could
type in dara. The computer then processed the dara and displayed the resuls
onscreen.

Mowadays, with graphical displays and pointing devices such as mice, the situation
is different, Programs are generally event-driven; they respond to asynchronous user
input in the form of mouse clicks and keystrokes in a way that depends on the posi-
don of the mouse pointer. A web browser is just such a graphical environment. An
HTML document contains an embedded graphical wser interface (GUT), so client-
side JavaScript uses the event-driven programming maodel.

It 15 perfectly possible vo write a smanc JavaScript program thar does not accepr user
inpur and does exactly the same thing every time it is run, Sometimes this sorr of
program is useful. More often, however, you'll wane to write dynamic programs that
interact wich the user. To do chis, you muse be able o respond o user inpur.

In client-side JavaScripe, the web browser nothies programs of user input by generat-
ing events. There are various rvpes of evenrs, such as keysroke evenrs, mouse motion
events, and so on, When an event occurs, the web browser atrempts w invoke an
appropriate event handler function to respond to the event. Thus, to write dynamic,
interactive client-side JavaScript programs, you must define appropriate event han-
dlers and register them with the svstem, so that the browser can invoke them ac
APPrOPTIATe [mes,

The Web Browser Environment | 233.

Page 123 of 244

]
3
=
el
o
&

If yvou are mot already accustomed ro the evenr-driven programming model, it can
vake a livtle gerring used o, In the old model, you wrote a single, monolichic block of
code that followed some well-defined flow of contral and ran o completion from
beginning to end. Event-driven programming stands this model on its head. In event-
driven programming, you write a number of independent (bur mutaally interacring)
event handlers. You do not invoke these handlers directly bur allow the svsrem o
invoke them ar the appropriate times. Since they are wiggered by the user’s input, the
handlers are invoked at unpredicrable, asynchronous times. Much of the time, your
program 1s not running at all but merely sicing, wainng for the system ta invoke one
of 115 event handlers.

The scctions that follow explain how [avascope code 15 embedded within HTML
files. It shows how o define both stanc blocks of code thar rum svnchronously from
start to finish and event handlers thar are invoked asynchrenously by the system,
Events and cvent handling are discussed again in Chapeer 15, and then events are
covered in decail in Chaprer 17.

13.1.4 The Role of JavaScript on the Web

The increducton o this chaprer included a lisc of the web browser capabilites thar
can be scripted with client-side JavaScripe. Note, however, that listing whar Java-
Seript can be used for is not the same as explaining what JavaSeript ought to be used
for, This section attempes o explain the proper role of JavaScnpt in web application
development.

Wb browsers display HTML-soructured rexe sryled with O55 sryleshecrs, HTML
defines the contene, and €55 supplies the presentation, Properly used, Javascripr
adds behavior to the content and its presentation. The role of JavaScript is to
enhance a user's browsing experience, making it easier to obtain or transmit infor-
mation. The user™s experience should nor be dependent on JavaSenpt, but Java-
Scripr can serve o facilivare thar experience. Javascripe can do this in any number of
ways. Here are some examples:

= Crearing visual effects such as image rollovers thar subtly guide a user and help

with page navigation
= Sorring the columns of a table to make ir easier for a user 1o find what he needs

= Hiding certain content and revealing derails selectively as the vser “drills down™
into thar content

+ Streamlining the browsing experience by communicating directly with a web
server 50 that new intormarion can be displayed withour requiring & complere
page reload

240 | Chapter13: JavaScriptin Web Browsers

Page 124 of 244

13.1.5 Unobtrusive JavaScript

A nmew client-side programming paradigm known as unobtrusive JavaScripe has been
paining currency within the web development communiry, As its name implies, this
paradigm holds that JavaScript should not draw actention to irselt; it should not
obtrude.” It should not obtrude on users viewing a web page, on content authors cre-
arimg, HTML markup, or on weh designers creanng HTML cemplares or O35
stvlesheers,

There is no specific formula for wrinng unohimusive Javasorpr code, However, a
number of helpful pracrices, discussed elsewhere in this book, will put you on the
right track.

The first goal of unobtrusive JavaScript is o keep JavaScript code separate from
HTML markup. This keeps content separate from behavior in the same way that
putting Cs% in external seylesheets keeps concene separace from presentation. To
achieve this goal, vou put all vour [avaScnpr code in exrernal files and include those
files into your HTML pages with ¢<sexipt src=» tags (see Section 13.2.2 for details). If
you are strict about the separation of content and behavior, you won't even include
Javascript code in the event-handler attributes of your HTML files. Instead, you will
write [avascripr code (in an external file) char regisrers event handlers on the HTML
elements thar need themn (Chaprer 17 describes how 1o do this).

As a corollary o this goal, vou should strive to make vour external files of Javascripr
code as modular as possible using techniques described in Chaprer 10, This allows
you to include multiple independent modules of code into the same web page with-
out worrying about the variables and funcrions of one module overwriting the vari-
ables and funcrions of another,

The second goal of unohtrusive JavaScripr is thar it must degrade gracefully. Your
seripts should be conceived and designed as enhancements o HTML content, bur
that content should sill be available without your JavaScript code (as will happen,
for example, when a user disables JavaScript in her browser). An important tech-
nique for graceful degradanon is called feature testing: hefore raking any acrions,
your JavaScript modules showld first ensure char the client-side fearures they require
are available in the browser in which the code is running. Feature testing is a com-
patibility technigue deseribed i more detail in Section 13.6.3.

A third goal of unobtrusive JavaSeript is that it muse not degrade the accessibility of
an HTML page (and ideally it should enhance accessibility). If the inclusion of Java-
Seripr code reduces the accessibility of web pages, thar JavaSonpr code has obrruded
on the disabled users who rely on accessible web pages. JavaScript accessibility is
described in more detail in Section 13.7,

* F0berade™ is anoabscure synonyim fer Cmrede,” The Amernican Heritage dictionary cines: "To impose,, .on
athers with undue insistence or without myitation.”

The Web Browser Environment | 241

Page 125 of 244

|
3
=
-
."a)
o
5

Orher formularions of unobirusive JavaScripn may include orher goals in addition o
the three described here. One primary source from which to learn more abour unob-
trusive scripting is “The [avaScript Manifeses,” published by the DOM Scripring
Task Farce at hitpafdomscripting. webstandards.orgpage_id=2.

13.2 Embedding Scripts in HTML

Client-side JavaScript code is embedded within HTML documents in a number of
WAy
* Berween a pair of <scripts and </scripts tags
* From an external file specified by the sre artribure of a ¢seripts g
* Inan event handler, specified as the value of an HTML attribure such as onclick
AT QMmoUse0veT

* Ina LIRL thar wses the special javascript: protocol

This secrion covers ¢scripty rags. Evenr handlers and JavaScript URLs are covered
larer in the chaprer,

13.2.1 The <script> Tag

Client-side JavaSeript scripts are part of an HTML file and are coded within <scripts
and ¢/scripts tags:

dscripts

A Your Javabcript code goes here

<iscripty
In XHTML, the content of a ¢<scripts tag is treated like any other coneent. If your
Javascrpt code contains the < or & characters, these characters are interpreted as
XML markup. For this reason, 1t s best o put all JavaScripr code within a CDATA
section if you are using XHTML:

gscripty ol [CONTA 44 ¥eur JawaScript code poes here

1Jzesscripts
A single HTML document may contain any number of ¢seripts elements. Multiple,
separate scripes are executed in the order in which they appear within the document
(see the defer atcribute in Section 13,24 for an exception, however). While separate
seriprs within a single file are execured ar different dmes during the loading and pars-
ing of the HTML file, they constitute part of the same JavaScript program: functions
and variables defined in one sceipt are available wo all scripts that follow in the same
file. For cxample, you can have the following scnpe in the cheads of an HTMIL. page:

cscriptafunction sguare(x) { return x*x; bosscripts

M2 | Chapter1d: JavaScriptin Web Browsess

Page 126 of 244

Later in the same HTML page, vou can refer 1o the squarel) funcrion, even though
it's in a different script block. The context that mateers is the HTML page, not the
script block:”

iscriptralert(squars(2));«/scripty

Example 13-1 shows a sample HTML file that includes a simple JavaScript program.
More the ditference berween this example and many of the code fragmenes shown
earlier in this book: this one is integrared with an HTML file and has a clear conrexr
in which it runs. Note also the use of 2 language atribure in the ¢scripty tag; this is
explained in Section 13.2.3.

Exampde 13-1. A simple favaScript program in an HTML file

chiml s
cheads
ctitle:Today's Date«/titles
<seript language="Javadcript™s
£ Define a function fer later use
function print todeys datel) {
var d = new Date]); £ Get today®s date and time
docunent swrlted, telecalestringl 1): #F Insert it iate the dacument
}
fscripty
< heady
chndys
The date and time are:<brs
wseript lamguage="JavaScript™s
{F Hew call the functicn we defined above
print_todays datef);
cSECTiphs
S hadyr
¢ htmls

Example 13-1 also demonstrates the document.write{) funcdon. Client-side Java-
Scripr code can use this function to outpur HTML rexr into the document ar the
locanon of the script (see Chaprer 15 for further deails on this method), Noce thar
the possibility that scripts can generate output for insertion inte the HTML docu-
ment means that the HTML parser must interpret JavaScript scripts as part of the
parsing process. [t is not possible o simply concatenate all seript text in a document
and run it as one large scripr after the document has been parsed becanse any scripe
within a document may aleer the document (see the discussion of the defer arrribure
in Section 13.2.4),

* The alert(} huncrien used here is a simple way to display ourput in clienc-side JavaScript: iconverns its angu-
miene o sring aned displays thar sring in s pop-up dialog box, See Section 14,5 for degails on the alert{)
micthed, and see Example 15-9 for an alwemaniseg to alert]) char does mot popoap a dialog e thar muost be
clicked away.

Embedding Scripts ImHTML | 243

Page 127 of 244

i |
3
=
s
o
»

13.2.2 Scripts in External Files

The ¢scriptr tag suppores a src attribure thar specibies the URL of a file conraming
Javascript code. It is used like this:

cscript sro=". . f L scripbsdutil. gt rafscripty

& Javascript file opically has a s extension and contains pure [avaScripr, withour
¢scxripts tags or any other HTML.

A escripty tag with the sre atribute specified behaves exactly as if the contents of
the specified JavaScript file appeared directly berween the <scripts and ¢/seripts
tags. Any code or markup that appears between these tags is ignored. Note that the
closing </script: tag is required even when the src areribute is specified, and there is
no Javascript berween the (seripty and «/script> tags,

There are a number of advanrages to using the s arribure:

* v simplifies vour HTML files by allowing vou 1o remove large blocks of |ava-
Script code from them—that is, it helps keep content and behavior separate,
Using the sre attribute is the cornerstone of unobrrusive JavaSeript program-
ming. (See Section 13.1.5 for more on this programming philosophy.)

* When you have a function or other JavaScript code used by several different
HTML files, you can keep it in a single file and read it into each HTML file that
needs 1. This makes code mainenance much easier.

* When JavaScript functions are used by more than one page, placing them in a
separare [avascnpt file allows them o be cached by che browser, making them
load maore quickly. When [avaScript code is shared by mulriple pages, the time
savings of caching more than outweigh the small delay required for the browser
to open a separate network connection to download the JavaScript file the firse
time it is reqguested.

* Because the sre ateribute takes an arbitrary URL as its value, a JavaScript pro-
gram or web page from one web server can employ code exported by other web
servers. Muoch Interner advertsing relics on this facr.

This last poant has importane securicy impheatons. The same-origin secunty policy
described in Secrion 13.8.2 prevenrs Javaseripr in a document from one domain from
interacting with convent from another domain. However, notice that the origin of the
seript itself does not matter: only the origin of the document in which the script is
embedded. Therefore, the same-origin policy does not apply in this case: JavaSeript
code can mteract with the document in which o 15 embedded, even when the code
has a different origin than the document. When vouw use the src arribure o include a
scripe in your page, you are giving the authoer of thar seripe (and the webmaster of the
domain from which the script is loaded) complete control over your web page.

M4 | Chapter13: lavaScriptin Web Browsers

Page 128 of 244

13.2.3 Specifying the Scripting Language

Although Javascripr was the original scripring language for the Web and remains the
most common by far, it is nor the only one, The HTML specification 15 language-
agnostic, and browser vendors can support whatever seripting languages they
choase. In practice, the only alternative o JavaScript 15 Microsoft's Visual Basic
Scripring Edirion,” which is supparted by Interner Explorer.

Since there is more than one possible scripring language, vou muse tell the web
browser what language your scripts are written in. This enables it to interprer the
scripes correctly and vo skip scripts wrinten in languages thar it does not know how 1o
interpret. You can specify the default scripting language for a file with the HTTP
Content-Script-Type header, and you can simulate this header with the HTML
¢matar rag. To specify thar all your scripts are in JavaScripe (unless specified ather-
wise], just pur the following tag in the <heads of all your HTML documents:

<meta http-equiv="Content-Script-Type" content="textsjavascript”s
In practice, browsers assume that JavaScript is the default scripting language even if
your server omits the Content-Script-Type header and your pages omit the «metas
tag. If you do not specify a default scripting language, however, or wish to override
your default, vou should use the type anribure of the ¢scripts rag

sCTipt Types"text/javascript™ o/ scripts
The rradinional MIME cype for Javabcoripr programs is “rext/javascripe”™. Another type
thar has been used is “application/x-javascript™ (the “x-" prefix indicares thar ir is an
experimental, nonstandard type). RFC 4329 standardizes the “texv/javascript” type
because it is in commoen use. However, because JavaScript programs are not really texe
documents, it marks this type as obsalete and recommends “applicadon/javaseript”
(wirthout the == instead. Ar the nme of this wriring, “application/javascript”™ is nor
well supported, however, Once it has become well suppored, the most appropriate
¢scripty and ¢metar tags will be:

dscript ty_pe-'app-]i:.:t:im.l'jauar.-:ript":u:.":l:ri.pt:-

cmeta htip-equiv="Content-Script-Type" content="application/javascript™s
When the ¢scripts: tag was first introduced, it was a nonstandard exrension to
HTML and did not support the type amribure, Instead, the scripting language was
defined with the language awribure. This attribute simply specifies the common
name of the scripung language. If you are wrinng JavaSeript code, use the language
ateribute as follows:

4script languape-"lavaScript™s

£ lavaScript code goes here
dfscripts

* Also knovam as VEScripr. The only browser that suppores VBScripr is Inremer Explarer, so scripes wricten m
this language are nor portable, VEScripe interfaces wirh HTML obpecrs the same way [avasonp does, bur
ke oo longuage itself has a diffesent smtas than JavaScripe. VBSeript 15 nos documented mothis book.

Embedding ScriptsmHTML | 245

Page 129 of 244

i]
3
-
=
5l
o
o

And if you are writing a script in VBScripr, use the arrribute like this:

<script language="vBScript™:
Y WBSCript code goes here (" 1s a comment character like /¢ in Jawascript)
<fscripts
The HTML 4 specificacion standardized the <scripts tag, bur it deprecated the
language atrribure because there 15 no standard ser of names for scripring languages,
Sometimes you'll see ¢scripts tags thar use the type atribute for standards compli-
ance and the language attribute for backward compatibility with older browsers:

fucript type="text/javascript” language-"JavaScript®sofucripts

The language attribute is sometimes used o specify the version of JavaScript in
which a script is written, with tags like these:

cscript languape="JlavaScriptl.2 o/ scripty

cecript language="lavascriptl. 5 ¢ soripts

In theory, web browsers ignore scripts written in versions of JavaScripe that they do
not support. That is, an old browser that does not support JavaSeripe 1.5 will not
attempt to run a script that has a language attmbute of “JavaScripel.57. Older web
browsers respect this version number, bur because the core [avascript language has
remained stable for a number of years, many newer browsers ignore any version
number specified with the language awribure,

13.2.4 The defer Attribute

As mentioned earlier, a script may call the document. write{) method o dynamically
add content o a document. Because of this, when the HTML parser encounters a
scripr, it must normally sop parsing the document and wait for the scripr o exe-
cute, The HTML 4 standard defines a defer atribure of the <scripty ag o address
this preblem.

If you write a script thar dees not produce any document output—for example, a
script that defines a function but never calls document.write(}—you may use the
defer attribute in the ¢<scripts tag as a hint to the browser that it is safe o continue
parsing the HTML document and defer execurion of the scripr unnl ir encounrers a
script that cannot be deferred. Deferring a script is particularly wseful when it is
loaded from an external file; iof s not deterred, the browser muost waie unril the
script has loaded before it can resume parsing the contaning document. Deferring
may result in improved performance in browsers that take advantage of the defer
atribute, In HTML the defer atriburte does not have a value; it simply must be
present in the tag:

cneript defers

L ﬁny lawascript code that does mot call dnnunert_uritﬁ[]
«fscripts

246 | Chapter13: JavaScriptin Web Browsers

Page 130 of 244

In XHTML, however, a value is required:
script defer="defer"»¢/scripts

At the nime of this writing, Interner Explorer is the only browser thar uses the defer
arrribute, Ir does this when i is combined with the sTc arrribute. It does nor imple-
ment it quite correctly, however, because deflerred scripis are always deferred unil
the end of the document, instead of simply being deferred unmnl the nexe nondeferred
seripr is encountered. This means rhar deferred scriprs in [E are execured our of order
and must not define any functions or set any variables that are required by the non-
deferred scripts that follow.

13.2.5 The <noscript> Tag

HTML defines the <noscripts element to hold content that should be rendered only
if [avaScript has been disabled in the browser. [deally, you should 1o cratr vour web
pages 5o thar Javascripr serves as an enhancement only, and the pages “degrade
gracefully” and stll function withour TavaScript, When this is not possible, however,
you can use <noscripts vo notify the wsers that JavaScripe is required and possibly to
provide a link to alternative content.

13.2.6 The </script> Tag

You may ar some point find vourself writing a scripe that uses the document write)
method or innerHTML property o ourput some other scripr (oypically into another
window or frame). It you do this, you'll need to output a ¢/scripts rag to terminate
the script wou are creating. You must be caretul, though: the HTML parser makes no
arempt o understand your Javascripr code, and if i sees the soring “<fscnpe=" 1n
your cede, even if it appears within quotes, it assumes thar it has found the closing
tag of the currently running seript. To avoid this problem, simply break up the ag
into pleces and write it out using an expression such as "</" + "scripts":

¢scripts

1. document write]” cscripts”);

flodocunent owrited " documant writel' ch2xThis 15 the quoted scriptefha:")");

1. document writed" o + "script:");
wiscripts

Alrernarively, vou can escape the /£ in «/scripty with a hackslash:
fl.document saritel " wscripts™);

In KHTML, scriprs are enclosed in CDATA scorions, and this problem wich closing
¢fseripts tags does not oceur.

Embedding Scripts mHTML | 247

Page 131 of 244

i |
3
=
T
'a]
o
5

13.2.7 Hiding Scripts from Old Browsers

When Javascnpt was new, some hrowsers did nor recognize the «scripts tag and
would therefore (correctly) render the content of this rag as rexr. The user visiting the
web page would see JavaScript code formatted into big meaningless paragraphs and
presented as web page content! The workaround to this problem was a simple hack
that used HTML comments imside the scripe tag. JavaScript programmers habitually
wrare their scriprs like this:
csexipt lamguage="Jlawascript"s
¢l-- Begin HTHL comment that hides the script
fF JawaScript statements ge here
£ s
£ s

A End HTHL comment that hides the script --»
LFSEELpLy

Or, more compactly, like this:

Laeriptsel--

M script body goes here

fi--xadseripts
In order 1o make this work, client-side JavaScripr tweaks the core JavaScrpr lan-
guage slightly so that the character sequence <1 -- at the beginning of a script behaves
just like /72 it introduces a single-line comment.

The brovasers that r|:L|'|.1ir|:|J this comme neing hack are |u-ng gone, but you wil pm]:m-
bly still encounter the hack in existing web pages.

13.2.8 Nonstandard Script Attributes

Microsofr has defined rwo completely nonstandard armmbures for the ¢scripts rag
thar waork only in Interner Explarer. The event and for arrribures allow vou to define
event handlers using the ¢scripts tag. The event attribute specifies the name of the
event to be handled, and the for atribute specifies the name or [D of the element for
which the event is o be handled, The contene of the script is execured when the
specified event occurs on the specified element.

These atrributes work only in 1E, and their funcricnality can easily be achieved in
other ways. You should never use them; they are mentioned here only so that you
will know what they are if you encounter them in existing web pages.

13.3 EventHandlers in HTML

JavaScript code in a seript 15 executed once: when the HITML file that contains it is
read into the web browser. A program that uses only this sort of static script cannot
dvnamically respond 1o the user. More dvnamic programs define evenr handlers thar

248 | Chapter13: JawaScriptin Web Browsers

Page 132 of 244

are auromatically invoked by the web browser when certaim evenes occur—for exam-
ple, when the user clicks on a burton within a form. Because events in client-side
JavaScript originate from HTML objects (such as buttons), event handlers can be
e, to define an event handler thar is

defined as ateributes of those objects. For examp
invoked when the user clicks on a checkbox in a form, vou specify the handler code
as an atribuce of the HTML rag thar defines the checkbox:

<imput type="checkbox" name="options” value="pifturap”

DﬂE]:il:k-'E_'if"tHIﬂp = this.checked; "

¥
What's of mrerest here 15 the onclick arcribute, The soring value of the onclick
arrribure mav contain one or more JavaScript stacements, 1f there is more than one
statemnent, the statements must be separaved from each other with semicelons. When
the specified event—in this case, a click—occurs on the checkbox, the JavaScripe
code within the string is executed.

While you can include any number of JavaScript statements within an event-handler
definition, a commaon rechnigue is 1o simply use evenr-handler acmibures o invoke
funcrions thar are defined elsewhere within <scripts rags. This keeps most of your
actual JavaScript code within scripts and reduces the need o mingle JavaSeripr and
HTML.

Mote that HTML event-handler atiributes are not the only way to define JavaScripe
event handlers, Chaprer 17 shows thar ic is passible to specify Javascripr evenr han-
dlers for HTML elements using JavaScript code in a cscripty mg. Some JavaScripe
developers argue that HTML event-handler arrributes should never be used—that
truly unobtrusive JavaSeript requires a complete separation of content from behav-
ior. According to this style of Javascripr coding, all Javascripr code should be placed
in exrernal files, referenced from HTML with the sre arcribure of ¢scripts rags. This
external JavaScript code can define wharever event handlers it needs when it runs.

Events and event handlers are covered in much more derail in Chaprer 17, bt vou'll
see them used in a variety of examples before then. Chapter 17 includes a compre-
hensive list of event handlers, but these are the most common:

onclick
This handler is supported by all button-like form elements, as well as <a» and
<arear tags. [tis miggered when the user clicks on the element. If an enclick han-
dler returns false, the browser does not perform any defaulr acrion associared
with the button or link; for example, it doesn’t follow a hyperlink (for an <as
rag) or submit a form (for a Submit butcen).

onmausedomn, crmauselp
These two event handlers are a lot like onclick, but they are triggered separately
when the user presses and releases a mouse button, respectively. Most docu-
ment elements support these handlers.,

EventHandlersinHTML | 249

Page 133 of 244

- |
3
=
.
2]
o
3

ONMOUSECVET, enmouseout
These two event handlers are rriggered when the mouwse pointer moves over ar
ok UF dl LiUL'LI.I]'IL'[I.t 1.'|.L‘[]'Il‘.'|lt., I.'L‘!:-PL‘L'ti.\'E.I:f'_

onchange
This event handler is supported by the <inputs, ¢selects, and <textarea> ele-
ments. It is triggered when the user changes the value displayed by the element
and then tabs or otherwise moves focus our of the element.

onload
This event handler may appear on the <bodys rag and is rriggered when the docu-
ment and irs exrernal conrent (such as images) are fully loaded, The onload han-
dler is often used 1o wrigger code thar manipulares the document content because
it indicates that the document has reached a stable state and is safe to modify.

For a realistic example of the use of event handlers, take another look at the interac-
tive loan-payment seript in Example 1-3. The HTML form in this example contains a
number of event-handler anmbures. The body of these handlers is simple: they sim-
plv call the caleulatel) funcnon defined elsewhere wirthin a <scripts.

13.4 JavaScriptin URLs

Anocher way thar |avaScripr code can be included on the client side is in a URL fol-
lvwing the javascript: psendoprotacol specifier. This special prococol tvpe specifies
that the body of the URL is an arbitrary string of JavaScript code to be run by the
JavaScript interpreter. It is treated as a single line of code, which means that stare-
ments must be separared by semicolons and thar 7 *¢ comments must be used in
place of /f comments. A Javascripr URL might look like this:
jawascriptivar noW = new Datel); "chi=The time is:c/his" & now;

When the browser loads one of these JavaScripr URLs, it execures the Javascripe
code contained in the URL and uses the value of the last JavaScript statement or
expression, converted to a string, as the contents of the new document o display.
This string value may contain HTML tags and is tormateed and displayed just like
any other documenr loaded into the browser.

Javascripr LURLs may also contain JavaScripr stacements thar perform actions bur
rerurn no value, For example:

jawascriptialert|“Hello Worldi™)

When this sorm of URL is loaded, the browser excoutes the JavaScripn code, bur
because there is no value 1o display as the new document, it does not modify the cur-
rently displayed document.

Often, you'll want to use a JavaScript URL o execute some JavaScript code without
alrering the currencly displaved document. Ta do this, be sure thar the last starement
in the URL has no retarn value, One way to ensure this is o use the void operator ro

350 | Chapter13: JavaScriptin Web Browsers

Page 134 of 244

explicitly specify an undefined return value, Simply use the starement void o) ar the
end of your JavaScript URL. For example, here is a URL thar opens a new, blank
browser window without altering the contents of the current window:

javascript iwindow. open(“about :hlank™); volid o;

Without the voild operator in this URL, the return value of the Window.open()
methad call would be converred to a stnng and displayved, and the currene document
wonld be overwricten by a document thar appears something like chis;
[abject Window]

You can use a Javascnpe URL anvwhere you’d use a regular URL. One handy way to
wse this synrax is o rype it directly inte the Location field of vour browser, where
you can test arbitrary JavaScript code without having to open your editor and create
an HTML file containing the code.

The javascript: pseudoprotocol can be used with HTML attributes whose value
should be a URL. The href attribute of a hyperlink is one such case. When the user
clicks on such a hink, the specified JavaScripr code is execured. In this context, the
Tavascript URL is essennially a substimre for an onclick event handler, (More thar
using either an onclick handler or a JavaScript URL with an HTML link is normally
2 bad design choice; use a burton instead, and reserve links for loading new docu-
ments.) similarly, a JavaScripr URL can be used as the value of the action arrribure of
a ¢ferm> tag so that the JavaScript code in the URL is executed when the user sub-
imits the form.

JavaScript URLs can also be passed o methods, such as Windew.open{) (see
Chapter 14), that expect URL arguments.

13.4.1 Bookmarklets

One particularly importane use of javascript: URLs is in bookmarks, where chey
form wseful mini-lavaScript programs, or fookmarklets, char can be casily launched
from a menu or toolbar of bookmarks, The following HTML snippet includes an <a»
tag with a javaseript: URL as the value of its href attribute. Clicking the link opens
a simple JavaScript expression evaluator that allows you to evaluate expressions and
execute starements in the context of the page:

<a href="javascript:
war &= "", ¢ = "M f% Ewpresilen to evaluate and the result *F
de {
f* Display expression and result amd ask for a new espression *f
& = prompb{“Expression: " + & + "' + o+ *Nn", &l
try { ¥ = "Result: " + eval(e); } /" Try to evaluate the expression *¢
catchies) { T = ex; } £ 0y remember the srror instead *f
b whilele); #* Continue wntil ne expression entered ar Cancel clicked */f
wold 0 f* This prevents the current docuwment from being overwritten =/
'y
lawvascript Evaluator
“far

JavaSeriptinURts | 251

Page 135 of 244

- |
3
=
T
2]
o
&

More thar even though this JavaScnpe URL 15 wrntmen across mulnple lines, the
HTML parser wreats it as a single line, and single-line // comments will not work in
it. Here's what the link looks like with comments and whitespace seripped out:
fa hrefajavascript:var ea"" ra"";da{s-prompt|“Exprescion: "se+"in"srs"wn" e);
trp{r="Result: "+evalie);catchiex){r=ex; Hiwhilefe);void 0;'2]% Evaluator«/az
A limk like this is usetul when hardcoded into a page that you are developing bur
becomes much more useful when stored as a hookmark thar you can ren on any
page. Typically you can store a bookmark by right-clicking on the link and selecring
Bookmark This Link or some similar option. In Firefox, you can simply drag the link
tar your bookmarks toolbar.

The client-side JavaScript techniques covered in this book are all applicable to the
creation of beokmarklers, but bookmarklers themselves are not covered in any derail.
If wou are imtngued by the possibilities of these iole programs, v an Interner search
for *bookmarklers™, You will find a number of sites thar host many interesting and
usetul bookmarklets.

13.5 Execution of JavaScript Programs

The previous sections discussed the mechanics of integrating JavaScript code into an
HTML file. Mow the following secrions discuss exactly how and when thar inte-
grared Javascripr code is execured by the [avaScrpt interpreter.

13.5.1 Executing Scripts

TavaScript statements that appear berween <scripty and «</scripts tags are executed
in the order that they appear in the seript. When a file has more than one script, the
seripts are executed in the order in which they appear (with the exception of scripts
with the defer anmbure, which 1E execures out of order), The JavaScripr code
cscripts 1ags is execured as parr of the documenrt leading and parsing process,

Any escripty element thar does not have a defer armbure may call the document . writel)
methed (described in detail in Chaprer 13). The text passed 1o this methed is inserved
into the document ar the location of the scripts. When the script is finished executing,
the HTML parser resumes parsing the document, starting with any text output by the
SCTIpL.

Scriprs can appear in the ¢heads or the cbodys: of an HTML document. Scriprs in the
cheady rypically define funcrions o be called by orher code. They may also declare
and initialize variables that other code will use. [t is common for scripts in the <head>
of a document to define a single function and then register that function as an onload
event handler for larer execurion. Iris legal, bur uncommaon, ro call document . writef)
in the chead> of a document.

352 | Chapter13: JavaScriptin Web Browsers

Page 136 of 244

Scripes in the chodyr of o document can do everything that scripes in the cheads can
do. It is more common 1o see calls 1o document.write{) in these scripts, however,
Scripts in the «<body> of a document may also {using techniques described in
Chapter 15) access and manipulate document elements and document content that
appear hefore the scripr. As described later in this chaprer, however, documenr ele-
ments are not guaranteed o be available and stable when the scriprs in the <bodys are
executed. If a script simply defines funcrions and variables 1o be used later and does
not call document.write) or otherwise attempt to modify document content, con-
vention dicrares thatr it should appear in the <heads of the document instead of the

chody.

As previously mentioned, 1E execures scripts with the defer atoribute our of order,
These scripts are run after all nondeferred seripts and afrer the document is fully
parsed, but before the onload event handler is eriggered.

13.5.2 The onload Event Handler

Adter the document is parsed, all scripts have run, and all auxiliary content (such as
images) has loaded, the browser fires the onload evenr and runs any JavaSenpr code
that has been registered with the Window objecr as an onload event handler. An
onload handler can be registered by setting the enload attribute of the <body> tag. Itis
also possible (using technigues shown in Chapter 17} for separate modules of Java-
Scripr code e register their own onload evene handlers. When more than one onload
handler is registered, the browser invokes all handlers, bur there 15 no guarantee
about the order in which they are invoked,

When the onload handler is wriggered, the document is fully loaded and parsed. and
any document element can be manipulated by JavaScript code. For this reason, Java-
Seript modules that modify decument content oypically contain a funceion w per-
form the modificadon and event-regisrration code thar arranges for the functon o
be invoked when the document is fully loaded.

Because onlead event handlers are invoked after document parsing is complete, they
must not call document.writef). Instead of appending to the current document, any
such call would instead begin a new document and overwrite the current document
before the user even had a chance o view ir

13.5.3 Event Handlers and JavaScript URLs

When documenr loading and parsing ends, the onload handler is irigeered, and Java-
Seript execution enters its event-driven phase. During this phase, event handlers are
executed asynchronously in response to user input such as mouse motion, mouse
clicks, and key presses. JlavaScript URLs may be invoked asynchronously during chis
phase as well, if, for example, the user clicks an a link whose href armibure uses the
javascript: pseudoprotocel.

Execution of JavaScript Programs | 253

Page 137 of 244

& |
3
=
-
.3}
o
3

¢scTipts elements are rvpically used o define funcrions, and evenr handlers are vpi-
cally used to invoke these funcrions in response to user input. Event handlers can
define functions, of course, but this is an uncommon {and not very useful) thing to

'IJ.IZZI.

It an event handler calls document.write() on the document of which it is a part, it
will overwrite thar document and begin a new one. This 15 almost never whart is
intended, and, as a rule of thumb, event handlers should never call this method. Nor
should they call funcrions than call this method. The exceprion, however, is in muli-
window applications in which an event handler in one window invokes the write()
method of the document of a ditfferent window. (See Section 148 for more on mula-
window Javascript applicarions,)

13.5.4 The onunload Event Handler

When the user navigates away from a web page, the browser riggers the onunload
event handler, giving the [avaScript code on thar page one final chance to run. You
can dehne an onunload handler by sctting the onunload attribute of the <bodys tag or
with other event-handler registranon rechniques described in Chaprer 17.

The onunload cvent enables vou o unde the effeces of your enload handler or other
scripes in vour web page, For example, if vour applicanon opens up a secondary
browser window, the onunload handler provides an opportunity 1o close that win-
dow when the user leaves your main page. The onunload handler should not run any
time-consuming operation, nor should it pop up a dialog box. It exists simply to per-
form a guick cleanup operanion; running ic should not slow down or impede the
WSEr"s TRANSIIan o 4 new page.

13.5.5 The Window Object as Execution Context

All scripus, event handlers, and JavaScript URLs in a document share the same Win-
dow object as their global object. JavaScript variables and functions are nothing
maore than propertes of the global abject. This means thar a funcoon declared in one
¢seripty can be invoked by the code in any subsequent ¢scripts,

Since the onload event is not wiggered unul after all scripts have executed, every
onlead event handler has access wo all functions defined and vanables declared by all
scripts in the document.

Whenever a new document is loaded into a window, the Window object for that
window is restored o its defaule srate: any properties and functions defined by a
scripe in the previeus document are delered, and any of the standard system proper-
ties that may have been altered or overwritten are restored. Every document begins
with a clean slate. Your scripts can rely on this; they will not inherit a corrupred envi-
ronment from the previous document. This also means that any variables and func-
tinns your scriprs define persist only undl the document is replaced wich & new one.

354 | Chapter13: JavaScriptin Web Browsers

Page 138 of 244

The properties of a Window object have the same lifetime as the document that con-
tains the JavaScript code that defined those properties, A Window object itself has a
longer lifetime; it exists as long as the window it represents exists. A reference to a
Window ohject remains valid regardless of how many web pages the window loads
and unloads. This is relevant only for web apphicarions thar use mulriple windows ar
frames. In this case, |avaScript code in one window or frame may maintain a refer-
ence 1o another window or frame, Thar reference remains valid even if the ather win-
dow or frame loads a new document.

13.5.6 Client-Side JavaScript Threading Model

The core JavaSceripr language does nor conrain any threading mechanism, and clicnr-
side Javascript does nor add any. Client-side JavaScripr is (or behaves as if it is)
single-threaded. Document parsing stops while scripes are loaded and executed, and
web browsers stop responding to user input while event handlers are being executed.

Single-threaded execution makes for much simpler scripting: you can write code
with the assurance that rwo evenr handlers will never run ar the same time. You can
manipulate decument conrent knowing thar no other thread is arrempung o modify
it ar the same time.,

Single-threaded execurion also places a burden on [avaScript programmers: it means
that JavaScript seripts and event handlers must not run for woo leng. 1§ a scripr per-
forms a computationally intensive task, it will introduce a delay into document load-
ing, and the user will not see the document content uneil the script completes. 1f an
event handler performs a computationally intensive task, the browser may become
nonresponsive, possibly causing the wser to think thar iv has crashed.”

If wour application must perform enough compurarion w cawse a notceable delay,
you should allow the document o load fully before performing that compuration,
and you should be sure to notfy the user that computation is underway and that the
browser 1s not hung. If it 1s possible to break your computation down into discrete
subrasks, vou can wse merthods such as setTimeout() and setInterval{) (see
Chapter 14) to run the subtasks in the background while updating a progress indica-
tor that displays feedback ro the user.

13.5.7 Manipulating the Document During Loading

While a document is being loaded and parsed, JavaSenpe code in a ¢scripts element
can insert content into the document with document write(). Ocher kinds of docu-
ment manipulation, using THOM scripting techniques shown in Chaprer 15, may or
may not be allowed in <scripts rags.

* Snme hrowsers, such as Fireiox, guard againss denial-of-service arcacks and accideneal intinite Ieops, and
prompr the user if & scrips or event handler takes ton beng ta rum. This grees the user the chance 1o abor a
rumavway sonpl.

Executhen of JavaScript Programs | 255

Page 139 of 244

|
3
=
-
3}
o
3

Mosr browsers scem o allow scriprs o manipulare any document elemenes thar
appear before the <script> rag. Some JavaScript coders do this routinely. However,
no standard requires it to work, and there is a persistent, if vague, belief among some
experienced [avaScript coders that placing document manipulation code within
¢scripts rags can cause problems (perhaps only occasionally, only with some brows-
ers, or omly when a documenr is reloaded or revisited with the hrowser's Back
button).

The only consensus that exists in this gray area is thar it is safe vo manipulate the
document once the onload event has been eriggered, and this is what most JavaSeripe
applications do: they use the onload handler o migger all document modifications. |
presemt a utility rourine for registering onload event handlers in Example 17-7,

In documenrs that conrain large images or many images, the main document may be
parsed well before the images are loaded and the onlead evenr is wriggered. In this
case, you might want to begin manipulating the document before the onload event.
One technique {whose satery 1s debated) 1s to place the manipulation code at the end
of the document. An [E-specific technique 15 to put the document manipulanon code
in a ¢scripty thar has both defer and src anmbures, & Firefox-specific echnique is
to make the document-manipulation code an event handler for the undocumented
DOMContentLoaded event, which is fired when the document is parsed bur before
external abjeces, such as images, are fully loaded.

Another gray area in the JavaScript execution model is the question of whether event
handlers can be invoked before the docoment 15 fully Inaded. Our discussion of the
Javascript execurion model has so far concluded thar all event handlers are always
triggered after all scripts have been execured. While this typically happens, it is not
required by any standard. If a document is very long or is being loaded over a slow
netwark connection, the browser might parmally render the document and allow the
wser to hegim interacring with it {and mggering event handlers) before all scriprs and
onload handlers have run. 1f such an event handler invokes a function that is not yer
defined, 1t will fail. (This is one reason to define all functions in scripts in the <head:
of a document.) And if such an event handler arcempts o manipulate a part of the
document thar has nor ver heen parsed, it will fail. This scenario is uncommon in
practice, and it is not usually worth the exira coding effort required e aggressively
protect against it

13.6 Client-Side Compatibility

The web browser is a universal platform for hosting applications, and JavaScript is
the language in which those applications are developed. Fortunately, the JavaSeripe
language is standardized and well-supported: all modern web browsers suppaore
ECMAScript v3, The same can not be said for the plarform irself. All web browsers
display HTML, of course, but they differ in their supporr for other standards such as

356 | Chapter13: JavaScriptin Web Browsers

Page 140 of 244

OS5 (Cascading Sryle Sheers) and the DOM. And although all modern browsers
include a compliant JavaScript interpreter, they differ in the APls they make avail-
able to client-side JavaSeript code.

Compatibility issues are simply an unpleasant fact of life for client-side JavaScript
programmers. The JavaScrpt code you write and deploy may be run in various ver-
sions of various browsers running on various operating systems. Consider the per-
murations of popular operating systems and browsers: Incerner Explorer on
Windows and Mac 05" Firefox on Windows, Mac OS5, and Linux: Safari on Mac
05 and Opera on Windows, Mac 05, and Linux. If you want to support the cur-
rent version of each browser plus the previous two versions, muldply these nine
browser/O35 pairs by three, for a toral of 27 browser/version/ 05 combinations. The
only way to be absolutely sure that vour web application runs on all 27 combina-
Hons is oo test it in each. This is a daunting task, and in practice, the testing is often
done by the users after the applicarion is deployed!

Before you reach the testing phase of application development, you must write the
code. When programming in JavaScript, knowledge of the incompartibilitics among
browsers is crucial for creating comparible code, Unfortunarely, producing a defini-
tive listing of all known vendor, version, and platform incompartibilities would be an
enormous task. It is beyond the scope and mission of this book, and o my knowl-
edge, no comprehensive client-side JavaScript test suite has ever been developed.
You can find browser comparibilicy informacien enline, and here are rwao sites thar |
have found useful:

htipsfwww.guirksmadeorghdom/
This is [reelance web developer Peter-Paul Koch's web site. His DOM compati-
bility tables show the compatibility of various browsers with the W3C DOM.
hitp:fwebdevoutnetfbrowser_support.php
This site by David Hammond is similar to quirksmede.org, but its comparibility
tables are more comprehensive and (at the time of this writing) somewhat more
up-to-dare. In addition o DOM compatibilicy, it also races browser compliance
with the HTML, C55, and ECMAScripr standards,

Awareness of incomparibilicies is only the first step, of course, The subsections thar
follow demonstrate techniques you can use to work around the incompatibilities you
Encaunter.

13.6.1 The History of Incompatibility

Client-side JavaScript programming has always been about coping with incompati-
bility. Knowing the history provides some useful context. The early days of web pro-
gramming were marked by the “browser wars”™ between Newscape and Microsoft,

* 1E tor Mac is being phased auc, which is a blessing because it & substancially different from 1E for Windows.

(Hent-Side Compatibitiy | 257

Page 141 of 244

o]
-
]
o
]
N
3

This was an intense burst of developmenr, in often incomparible directions, of the
browser environment and client-side JavaScript APIs, Incompatibility problems were
at their worst at this point, and some web sites simply gave up and rold their visitors
which browser they needed to use to access the sice.

The browser wars ended, with Microsoft holding a dominant market share, and web
standards, such as the [OM and U355, started o take hold. A period of stability (or
stagnarion) followed while the Nerscape hroswser slowly morphed inte the Firefox
browser and Microsoft made a few incremental improvements to its browser. Stan-
dards support in both browsers was good, or ar lease good enough for compatible
web applications o be written.

At the time of this writing, we seem to be at the start of another burse of browser
innovation. For example, zll major browsers now suppore scripred HTTP reguests,
which form the cornerstone of the new Ajax web applicacion architecture (see
Chaprer 20). Microscft is working on Internet Explorer 7, which will address a num-
ber of long-standing security and €55 compatibiliey issues. IE 7 will have many user-
visible changes bur will not, apparently, break new ground for web developers.
Orher browsers are breaking new ground, however, For example, Safar and Firefox
support a <canvas» tag for scripted client-side graphics (see Chaprer 22). A consor-
tum of browser vendors (with the neeable absence of Microsoft) known as
WHATWG (whatwg.org) is working to standardize the <canvass tag and many other
extensions o HTML and che DOM,

13.6.2 A Word about “Modern Browsers”

Client-side JavaScript is a moving rarger, especially if we're indeed entering a period
of rapid evelution. For this reason, 1 shy away in this book from making narrow
statements about particular versions of paricular browsers. Any such claims are
likely to be outdated hefore [can wrice a new edinon of the book. A printed boolk
like this simply cannot be updared as cften as necessary 1o provide a useful guide 1o
the compatibility issues thar affect the current crop of browsers.

You'll find, therefore, that 1 often hedge my statements with purposely vague lan-
guage like “all modern browsers™ {or sometimes “all modern browsers excepr [E™).
At the time of this wnting, the loose ser of *modern browsers” includes: Firefox 1.0,
Firefox 1.5, IE 5.3, 1E 6.0, 5afan 2.0, Opera 8, and Opera 8.3, This is nor a guaran-
tee that every statement in this book about “modern browsers” is wue for each of
these specific browsers. However, it allows you to know what browsers were current
technology when this book was written.

13.6.3 Feature Testing

Feature testing (sometimes called capability testing) 15 a powerful rechnigque for cop-
ing with imcompartibilicies. [f vouw wane to use a feamre or capabilicy thar may nor be

358 | Chapter13: JavaScriptin Web Browsers

Page 142 of 244

supported by all browsers, include code in vour scripr thar tesrs o see whether thar
feature is supported. If the desired fearure is not supported on the current platform,
either do not use it on that platform or provide alternative code that works on all

platforms.

You'll see feature testing again and again in the chapters that tollow. In Chaprer 17,
for example, chere is code thar looks like this:

if {elemert.addEvertlistener) { /F Test for this WIC method before uwsing it
elenent . addEventlistener | keydown", handler, falsea):
alement addEventlistensr“keypress®, handler, falie);

elie if (element.attachEvent) { /f Test for this IF method befars wsing it
element . attachEvent{"onkeydown”, handler);
element.attachEvent| onkeypress", handler);

}

else { /f Otherwise, fall back on a wniversally supporied technique
elensnt.onkeydown = elenent.cnkeypress = handler;

}
Chapter 20 describes yet another approach o feature testing: keep trying alterna-
tives until you find one thar does notr throw an exceprion! And, when yvou find an
altermarive thar works, remember it for furure use. Here is a preview of code from
Example 20-1:

A This 15 & list of XMLHttpRequest creatlon fumctlons te try

HTTP. factaries = [
function{) { return new XMLHttpReguest{): }.
functian{) { return new ActiveXDbject(“Mssnll.XMLETTP*); 1,
Ffunction{) { return new ActiveXbbject("MHicrosoft. MLHTTR"); |

Ii

A when we find a factory that werks, store it here
HTTP. factary = null;

A Create amd return a new MMLHEtpRegquest abject.

i

A The first time we're called, try the list of factery functions until
A owe find one thal returns a nonmull walue and does not thriow an

A eception, Once we find a working factory, remesber it for later use,
HITP . newRequest = functiond } { #* fection body emitted */ |

A commor, but ourdated, example of feature resting thar vou may still encounter in
existing code is used to determine which DOM a browser supports. It often occurs in
DHTML code and usually looks something like chis:

it {dn-cl.nrnt.grt'E]rﬂrntH:,"[d] { 4 If the W30 0O0M APT is s.u|1|:.|n-|'tm:.|J
£ do oaur DHTHML using the WIC DOW APl

)
else if (document.all) { A IF the TE 4 APT is supported,
£ do suy DHTML using the IE 4 AFI
}
else if {decument.layers] q £ I the Netscape 4 AFL is supported,

(lent-Side Compatibliity | 259

Page 143 of 244

]
3
=
a
3l
=
»

A4 do the DHTHML effect (as best we can) usirg the Metscape 4 APL

}

clse { A Otherwise, OHTHL is not supported,
A osa provide a statie alternatiwe to DHTML

}

Code like this is ourdated because almost all browsers di:plu:.-‘l:d tudn}r support the
WAL DOM and irs document . getElementById() function.

The impoertant thing abour the feature-testing technique is chat it results in code that
is not ticd o a specific list of hbrowser vendors or browser version numbers. I works
with the ser of browsers thar exist woday and should continue w work with futare
browsers, whatever feature sets they implement. Note, however, that it requires
browser vendors not to define a property or method unless that property or method
is fullv tuncoional. If Microsoft were to detine an addEventHandler() mechod thac
only partially implemented the W3C specification, it would break a lor of code thar
uses feature testing before calling addEventHandlex().

The decument.all property shown in this example deserves a special mention here. The
document . all[] array was introduced by Microsoft in IE 4. It allowed JavaScripr code
to refer oo all elements of a document and ushered in a new era of client-side program-
ming. It was never standardized and was superseded by document . getElementByTd{). v
is still used in existing code and has often been used (incorrectly) to derermine whether
a seript is running in 1E with code like this:
it {decument.all) |
£ We're running in TE

!
else |

A We're in some pther browser
]

Because there is sll a lor of extant code thar uses document.all, the Firefox browser
has added support for it so that Firefox can work with sites that were previously [E-
dependent. Because the presence of the all property is often used for browser derec-
rion, Firefox pretends thar it does nar suppore the property, 5o even though Firefox
does support document.all, the if statement in the following script behaves as if the
all property does not exist, and the scripe displays a dialog box containing the text
“Firetox":
if {decument.all) alert{"IE"}; elsc alert{"Firefox");

This example illustrates thar the feature-testing approach does not work if the
browser actively lies to vou! It alse shows thar web developers are nort the only ones
plagued by compatibility issues. Browser vendors must also go through contortions
for compatibility.

260 | Chapter13: JavaScriptin Web Browsers

Page 144 of 244

13.6.4 Browser Testing

Feature resting is well suited 1o checking tor support of larre functiional areas. Yoo
can use it to derermine whether a browser suppores the W3C evenc-handling model
or the IE event-handling model, for example. On the other hand, sometmes you may
need to work around individual bugs or quirks in a particular browser, and there
may be no easy way 1o rest for the existence of the bug. In this case, you need to cre-
are a platform-specific workaround thar is ted o a particular browser vendor, ver-
sion, or operating system [or some combination of the three).

The way to do this in client-side JavaScripr is with the Navigator object, which you'll
learn about in Chapter 14, Code that determines the vendor and version of the cur-
rent browser is often called a browser sniffer or a client sniffer. A simple example is
shown in Example 14-3. Client sniffing was a common client-side programming tech-
nique in the early davs of the Web when the Metscape and [E platforms were incom-
patible and diverging. Now thar the comparibility sitvation has stabilized, client
snitfing has fallen out of favor and should be used only when absolutely necessary.

Mote that client sniffing can be done on the server side as well, with the web server
choasing what JavaScript code to send based on how the browser identifies itself in
its User-agent header.

13.6.5 Conditional Comments in Internet Explorer

In pracrice, you'll find char many of the incomparibilities in clienc-side Javascripe
programming turn out to be [E-specific. That is, you must write code in one way tor
IE and in another wav tor all other browsers. Although vou should normally avead
browser-specific extensions thar are nort likely ro be standardized, |IE supports condi-
tional comments in both HTML and JavaScript code thar can be useful,

Here is whar conditnonal comments in HTML look like. Mornice the wicks played
with the closing delimiter of HTML comments:

4l--[Lf IE]=

This content is actually inside an HTML comment.
It will only be displayed in IE.

il [endif]--2

l--[1f gte IE &]»

This confent will only be displayed by IE & and later.
< | [endif]--»

gl--[if IIE]> 2--3

This iz noxmal HTML content, but IE will not display it
because af the comment above and the comment below.

gl--3 ¢l [endif]--»

This is normal content, displayed by all browsers.

Clent-Side Compatibiiity | 261

Page 145 of 244

|
3
=
.ol
sl
o
&

Condirional comments are also supporred by 1Es JavaScripr inrerprerer, and C and
C++ programmers may find them similar to the #ifdef/#endif funcrionality of the C
preprocessor, A JavaScript conditional comment in IE begins with the text /ice_on
and ends with the text @/, (The cc in cc_on stands for conditional compilation.) The
followang conditional comment includes code thar is execured only in 1E:

SHBoe_an
Bif (@ jucript)

£ This code is inside a 15 comwent but is executed in IE,
alert(“In IE"};

Bend

L)
Inside a conditional comment, the keywords @if, Belse, and gend delimit the code
that is to be conditionally execcuted by IE's JavaScript interprecer. Most of the time,
you necd only the simple conditional shown above: @i (@ jscript). [Scripr is
Microsoft’s name for its JavaScript interpreeer, and the 8 jscript variable is always
true in [E.

With clever interleaving of conditional comments and regular JavaScript comments,
you can set up one block of code o run in 1E and a ditferent Block to ran in all other
brrovasers:
SHECE_an
gif (p_jscript)
A This code is inside a conditional comment, which is also a
£ regular Jawascript comment. IE rums 1t but other browsers ignore it.
alert('¥ou are using Internet Explorer);
Belse*/
£ This cade 1s no longer lnside & JavaScript coment, but Lo atill
£/ inside the IF conditional comment. This means that all browsers
At except IE will run this cede.
alert('You ars not using Internet Explorer”);
SEend
gy
Conditional comments, in both their HTML and Javascripr forms, are complerely
nonstandard. They are sometimes a useful way to achieve compatibility with IE,
however.

13.7 Accessibility

The Web is a wonderful tool for disseminating information, and JavaScript pro-
grams can enhance access to that informarion. Javasonpt programmers must be care-
ful, however: it is easy 1o write JavaScript code thar inadvertently dendes informarion
to visitors with visual or physical handicaps.

262 | Chapter13: JavaScrigtin Web Browsers

Page 146 of 244

Blind users may use a form of “assistive rechnology™ known as a screen reader o
convert written words to spoken words, Some screen readers are JavaScript-aware,
and others work best when JavaScript is turned off. If you design a web sice that
requires JavaScript to display its information, you exclude the users of these screen
readers. (And you have also excluded anyone who browses with a mobile device,
such as a cell phene, thar does not have Javabenpr support, as well as anyone else
whe intentionally disables JavaScripr in his browser.) The proper role of JavaScript is
to enhance the presentation of information, not to take aver the presentation of that
information. A cardinal rule of JavaScript accessibility is to design your code so that
the weh page on which i is used will snll funcrion (at least in some form) with the
TavaScript interpreter turned off.

Anorher impaorrant accessibility concern s for wsers who can use the keyboard bur
cannot use (or choose not w use) a pointing device such as a mouse. If you write
JavaScript code that relies on mouse-specific events, you exclude users who do not
wse the mouse, Web browsers allow keyboard traversal and activation of a web page,
and vour Javascripr code should as well, And ar the same time, you should nor write
code thar requires keyboard input either, or you will exclude users who cannot use a
keyboard as well as many users of tablet PCs and cell phone browsers. As shown in
Chaprer 17, [avascripr supports device-independent events, such as onfocus and
onchange, as well as device-dependent events, such as onmouseosver and onmousedosm,
For accessibility, you should faver the device-independent events whenever possible.

Crearing accessible web pages is a nontrivial problem withour clear-cur salurions, Ar
the time of this writing, debate continues on how to best use JavaScript wo foster,
rather than degrade, accessibility. A full discussion of JavaScript and accessibility is
bevond the scope of this book. An Internet search will yield a lot of informarion on
this topic, much of it couched in the form of recommendartions from autheritative
sources. Keep in mind that both client-side JavaScript programming practices and
assistive technologies are evolving, and accessibility guidelines do not always keep
up.

13.8 JavaScript Security

Interner security i a hroad and complex ficld. This scction focuses on clicne-side
JavasScript security issues,

13.8.1 What JavaScript Can't Do

The introducrion of JavaScript interpreters inte web browsers means thar loading a
web page can cause arbitrary JavaScript code we be executed on your computer,
Secure web browsers—and commonly used modern browsers appear 1o be relatively
SCCUre—TESNCT SCHPS in vanous ways e prevent malicious code from reading confi-
denrial dara, alvering vour dara, or compromising vour privacy,

JavaSalpt Security | 263

Page 147 of 244

]
]
=
T
3}
o
5

Tavascnpr's first line of defense againsr malicious code is thar the language simply
does not support certain capabilities. For example, client-side JavaScript does not
provide any way o read, write, or delete files or directories on the client computer.
With no File object and no file-access functions, a JavaScript program cannot delete
@ uscr's data or plant viruses on a user’s system.

The second hine of detense 15 that Javascripr imposes restrictions on certain features
that it does support, For example, client-side JavaScript can scripr the HTTE prome-
col w exchange data with web servers, and it can even downloead data from FITP and
other servers. But JavaScript does not provide general networking, primitives and
cannot open a socket to, or accept a connection trom, another host.

The tollowing list includes other teatures that may be restricted. Note thar this is not
a definicive list. Different browsers have different restrictions, and many of chese
restricrions mav be user-configurahle:

* A Javascript program can open new browser windows, bur, to prevent pop-up
abuse by advertisers, many browsers resorict this fearure so thar it can happen
only in response to a user-initiated event such as a mouse click.

= A Javascrpr program can close browser windows thar it opened iself, bur it is
not allowed o close other windows without user confirmation. This prevents
malicious scripts from calling self.clese{) o close the user’s browsing win-
dow, thereby causing the program o exit.

* A JavaScript program cannot obscure the destination of a link by setting the sta-
tus line text when the mouse moves over the link. (It was common in the past to
provide additional informarion about a link in the status line. Abuse by phishing
scams has caused many browser vendors to disable this capabilicy.)

* A script cannot open a window that is too small (oypically smaller than 100 pix-
els on a side) or shrink o window roo small, Similarly, a script cannoer move a
window off the screen or create a window thar is larger than the screen. This pre-
vents seripts from opening windows that the user cannot see or could easily
overlook; such windows could contain scripes that keep running afeer the user
thinks they have stopped. Alse, a script may not creace a browser window with-
ot a titlebar or status line because such a window could spoof an operanng dia-
log box and rrick the user into entering a sensitive password, for example.,

* The value property of HTML FileUpload elements cannot be ser, If this prop-
erty could be ser, a seript could set it to any desired lilename and cause the form
to upload the contents of any specified file (such as a password file) to the server.

= A seript cannot read the content of documems loaded from different servers than
the document that contains the script. Similarly, a script cannot register event
listeners on documents from ditferent servers. This prevents scripts from snoop-
ng an the vser's inpurt (such as the kevarrokes thar constmce a password entry)
to other pages. This restriction is known as the same-origin policy and is
described in more detail in the next section.

264 | Chapter13: JavaScript in Web Browsess

Page 148 of 244

13.8.2 The Same-Origin Policy

The same-origin policy 15 a sweeping security restriction on what web content Java-
Scripr code can interact with. It typically comes into play when a web page uses mul-
tple frames, includes <iframes tags, or opens other browser windows. [n this case,
the same-origin policy governs the interactions of JavaScript code in one window ar
frame with other windows and frames. Specifically, a scripr can read anly the proper-
ries of windows and documents thar have the same ongin as the documenr thar con-
tains the script (see Section 14.8 o learn how o use JavaScript with muliple
windows and frames).

The same-origin policy also comes up when senpting HTTP with the XMLHupRequest
object. This object allows client-side JavaScript code to make arbitrary HTTP requests
bur only o the web server from which the containing, document was loaded (sec
Chaprer 20 for more on the XMLHupReguest object).

The origin of a document is defined as the protocal, host, and porr of the URL from
which the document was loaded. Documents loaded from different web servers have
different origins. Documents loaded through ditferent ports of the same host have
different ongins. And a document loaded with the http: protocol has a different ori-
gin than anc loaded with the https: proocol, even it they come from che same web
SCTVED.,

It is important oo understand thar the origin of the scripr itself 15 noc relevane o the
same-origin policy: what marters is the origin of the decument in which the script is
embedded. Suppose, for example, that a script from domain A is included (using the
src property of the <scripts rag) in a web page in domain B, Thar scripr has full
access 1o the content of the document thar conains it 1 the scripr opens 2 new win-
dow and loads a second document from domain B, the scripe also has full access o
the content of that second document. But if the script opens a third window and
leads a document from domain C {or even from domain A) into it, the same-origin
policy comes into effect and prevents the scripr from accessing this documenr,

The same-arigin policy does not actually apply to 2ll properties of all ohjects in a win-
dow from a different origin. Bur iv daes apply o many of them, and, in particular, i
applies 1o pracically all the properties of the Document object (see Chaprer 15). Fue-
thermore, different browser vendors implement this security policy somewhat ditfer-
ently. (For example, Firefox 1.0 allows a scripr 1o call history. back() on different-
origin windows, bur |E & docs nor) For all intenes and purposes, therefore, you
should consider any window thar contains a document from another server 1o be off-
limits to your scripts. If your script opened the window, your scripe can close i, but it
cannot “look maide”™ the window i any way.

The sa fme-origin]:l-ulil_'}r i5 NECESSATY b0 Prevent scripts from 5tl:£||in[_r, proprictary infor-
marion. Withour this resmriction, a malicious seripr (loaded through a firewall into a
browser on a secure corporate intranet) might open an empry window, hoping to

JavaSarlpt Security | 265

Page 149 of 244

i
]
=
.
]
o
&

rrick the user into vsing thar windoew 1o browse files on the intraner. The malicious
script would then read the content of that window and send it back to its own server.
The same-crigin policy prevents this kind of behavior,

In some circumstances, the same-origin policy is oo restrictive. It poses particular
problems for large web sites that use more than one server. For example, a seripe
from home example.com might legitimacely want o read properties of a document
lpaded from developer.example.com, or scripts from orders.example.com might need
to read properties from documents on eatalog.example.com. To support large web
sites of this sort, you can use the domain property of the Document object. By default,
the domain property contains the hosmame of the server from which the document
was loaded, You can set this properey, but only to a soing thar is a valid domain suf-
fix of itself. Thus, if demadn is originally the string “home.example.com™, you can set
it to the string “example.com™, but not to “home.example” or “ample.com™. Tur-
thermore, the domain value must have at least one dot in it you cannot set it o
“com”™ or anv ather top-level domain.

If twvn windows (or frames) conrain scripes char ser domain o the same value, the same-
origin policy is relaxed for these rwo windows, and each window can interacr with the
other. For example, cooperating scripts in documents loaded from orders.example.com
and catalog.example.com might set their document . domain properties to “example.com”,
thereby making the documents appear to have the same origin and enabling each doc-
wnent oo read propertics of the other,

13.8.3 Saipting Plug-ins and ActiveX Controls

Although the core JavaScript language and the basic client-side object model lack the
filesysvem and networking features that most malicious code requires, the sitwation is
not guite as simple as it appears. In many web browsers, JavaScript is used as a
“script engine” tor other software componenes, such as ActiveX controls in Interner
Explorer and plug-ins in other browsers, This exposes important and powerful fea-
tures to client-side scripes. You'll see examples in Chapter 20, where an ActiveX con-
trol is used for seripting HTTP, and in Chapters 19 and 22, where the Java and Flash
plug-ins are used for persistence and advanced chient-side graphics.

There are security implications o being able to scripr ActiveX conrrols and plug-ins.
Java applees, for example, have access o low-level nerworking capahbilities. The Java
security “sandbox™ prevents applets from communicating with any server other than
the one from which they were loaded, so this does not open a security hole. Bur it
exposes the basic problem: if plug-ins are scriptable, you must truse not just the web
browser's security architecrure, bur also the plug-in's security architecrure. In prac-
rice, the Java and Flash plug-ins seem o have robust security and do nor appear o
introduce security issues into client-side JavaScript. ActiveX scripting has had a more
checkered past, however. The IE browser has access to a variety of scriptable ActiveX
contrals that are part of the Windows operating system, and in the past some of

266 | Chapter13: LavaScriptin Web Browsers

Page 150 of 244

these scriprable conrrols have included exploimable security hales. At the rime of this
writing, however, these problems appear to have been resolved.

13.8.4 Cross-Site Scripting

Cross-site scripting, or K55, is a term for a category of security issues in which an
attacker injects HTML tags or scripts into a target web site. Defending against X55
arcacks 15 typically the job of server-side web developers. However, client-side Java-
Scripr programmers must also be aware of, and defend against, cross-site scripting.

A weh page is valnerable o cross-site scripring if it dynamically generares document
content and bases thar conent on user-submirced daca withour first *sanivizimg™ thar
data by removing any embedded HTML rags from it. As a trivial example, consider
the following web page that uses JavaScript to greet the user by name:

iscripts

war nane = decodelB IComponent (Windod, location, search. substring (e}l || *":
document owritef“Bello © + name);

<fscripts

This ewo-line script uses window.location.search to cbrain the portion of its own
URL thar begins with 7. It uses docusent . write() o add dynamically generared con-
tent to the document. This page is intended to be invoked with a URL like this:

hitbp s/ St enample . comfgreet. hinl #rans<David

When used like this, it displays the rext “Hello David”. But consider what happens
when it is invoked with this URL:

http:/ S, example comfpreat . htnl fnane=E3lscriptEiEalert (" David' }X3C scriptEsE
With this URL, the script dynamically generates another scripe (%3C and %3E are
codes for angle brackers)! In this case, the injecred scripr simply displays a dialog
oo, which is relatvely benign. Bur consider this case:

http:/fsitedsgreet himl tname=RICscript src=siteBlevil.jsRIELI0 scriptiit

Cross-site scripting attacks are so called because more than one sire is involved. Site
B {or even site C) includes a spedially crafted link {like the one above) to site A that
injects a script from site B. The scripe eviljs is hosted by the evil site B, but it is now
embedded in site A, and can do abselutcly anyrhing 1t wants wich site A's conrenr. Ie
might deface the page or cause it to malfuncrion (such as by inidaring one of the
denial-of-service artacks described in the nexr section). This would be bad for site A's
customer relations. More dangerously, the malicious script can read cookies stored
by site A {perhaps account numbers or other personally identifying informarion) and
send thar dara back o siee B The injecred script can even rack the user’s keysmrokes
and send rthar data back 1o sire B.

In general, the way o prevent X85 aracks 15 o remove HTML tags from any
untrusted data before using it o create dynamic document content. You can fix the

JavaSarlgt Security | 267

Page 151 of 244

|
3
=
il
a]
o
5

greetditm! file shown earlicr by adding chis line of code ro remove the angle brackers
around escripty rags.

mafe = nane.veplacefafg, "Rt).replace{s:fg, "hgtit);

Cross-site scripting enables a pernicious vulnerabiliny whose roors go deep into the
architecture of the Web. It is worth understanding this vulnerability in depth, bu
further discussion is beyond the scope of this book. There are many online resources
to help you defend against cross-site scripting. One imparant primary source 1s the
original CERT Advisery about this problem: hitp:fwww.cert orgladvisorics/iCA-2000-
02, html,

13.8.5 Denial-of-Service Attacks

The same-vrigin policy and other security restrictions described here do a good job
of preventing malicious code from damaging vour dara or compromising vour pri-
vacy. They do nor protect against brure-force denial-of-service arracks, however. If
you visit a malicious web site with JavaScript enabled, thar site can tie up your
browser with an infinite loop of alert() dialog boxes, forcing you to use, for exam-
ple, the Unix kill command or the Windows Task Manager to shut your browser
diown.

A malicious site can also atcempe oo tie wp vour CPU wich an infinice loop or mean-
ingless computanon. Some browsers (such as Firefox) derecr long-running scripts
and give the wser the option to stop them. This defends against accidental infinire
loops, but malicious code can use rechnigues such as the window. setInterval() com-
mand o avoid being shur down. A similar atcack ries up your system by allocating
lows of memory,

There is no gemeral way thar web browsers can prevent this kind of ham-handed
attack. In pracrice, this is not a common problem on the Web since no one returns to
a site that engages in this kind of seripting abuse!

13.9 Other Web-Related JavaScript Embeddings

In addition o client-side JavaScript, the JavaScript language has other web-related
embeddings. This book does not cover these other embeddings, but you should
know enough about them so chat you don't confuse them with chiene-side JavaScrpe:
Ulser scripting
Liser scripting is an innovacon in which vser-defined scriprs are applied
HTML documents before they are rendered by the browser. Rather than being
solely under the control of the page author, web pages can now be controlled by
the page visitor as well. The best-known example of user seripting is cnabled by
the Greasemonkey exrension o the Fircfox web browser (hetpeffgreasemonkey.
mogdev.org), The programming environment exposed o user scriprs s similar

268 | Chapter13: JavaScriptin Web Browsers

Page 152 of 244

to, but nor the same as, the cien-side programming environment. This boaok
will not teach vou how 10 write Greasemonkey user scripts, but learning client-
side JavaScript programming can be considered a prerequisite to learning user
SCTIPTIng.

AVG
SVG (Scalable Vector Graphics) is an XML-based graphics format that permits
embedded JavaScript scriprs. Chient-side JavaScript can scripr che HTML docu-
ment within which it is embedded, and JavaScripr code embedded in an SVG file
can script the XML elements of that document. The material in Chaprers 15 and
17 is relevant o SVG scripting but is not sufficient: the DOM for SVG differs sub-
stantially from the HTML DOM.
The SVG specification is at hitpfwww.ud org/ TRISVG. Appendix B of this spec-
ification defines the SVG DOM. Chapter 22 uses cliene-side [avaScript embed-
ded in an HTML document 1o create an SY G decument thar 15 embedded inoan
H' I L documenr. Since the Javascripr code 15 ourside the VG document, this is
an example of regular client-side JavaScript rather than SVG embedding of Java-
Script.

XUL
KUL is an XML-based grammar for describing user interfaces. The GUI of the
Firefox web browser is defined with XUL documents. Like SVG, the XUL gram-
mar allows Javahoript scripts. As with 5%, the matenal in Chaprers 15 and 17 1s
relevant o XUL programming, However, JavaScript code in a XUL document
has access o different objects and APls, and is subject to a different security
maodel than cliens-side JavaSeript code. Learn more about XUL at hittp:fheuw.
mozilla.org/projectsfeal and hitpafvww xulplanet.com.

|
3
=
. i
a]
o
=y

ActiomScript

ActionSeript is a JavaScript-like language (descended from the same ECMA-
scripr specificanion bur evalved in an objecr-oriented direction) used in Flash
mowvies, Mast of the core Javascript marerial in Part | of this book is relevant o
ActionScript programming. Flash is not XML- or HTML-based, and the APIs
exposed by Flash are wnrelated to those discussed in this book. This book
includes examples of how client-side JavaScripr can seript Flash movies in Chap-
ters 149, 22, and 23, These examples necessanly include small snippers of Action-
script code, bur the focus is on the use of regular client-side JavaScript o
interact with that code.

Other Web-Related Javasoript Embeddings | 269

Page 153 of 244

Web Programming JavaScripl

O'REILLY"
JavaScript: The Definitive Guide

This Fifth Edition is completely revised and expanded 10 cover JavaScript as it is used
in wodday’s Web 2.0 applications. This book is both an example-driven progra mmer's
guicke and a keep-on-your-desk reference, with new chaplers that explain everything
you need 1o know 10 get the most out of JavaScript, including:

& Seriplod HTTP amd Ajx ¢ Namespaces in JavaScript—aossential when

* XML processing writing complex programs

e Classes, closures, persistence, Flash, and

¢ Client-sidde graphics using the <canvas> tag
JavaScript embedded in Java applications

Part | explains the core JavaScripl language in detail. If you are new o JavaScript, it will reach you
the language. Il you are already a JavaScript programmer, Part | will sharpen your skills and deepen
your understancling of the language.

Part 1l explains the scripting environment provided by web browsers, with a focus on DOM scripting
with unobtrusive JavaScript. The broad and deep coverage of cliont-side JavaScript is illustrated with
many sophisticaled examples that demonstrate how Lo:

s Generale a table of contents for an HTML * [Define keyboand shoncouts for web
document applications

* [Dsplay DHTML animations ¢ Create Ajax-enabled ool tips

s Automate form validation ¢ Use XPath and XSLT on XML documents

s Draw dynamic pic chans koacked with Ajax

s Make HTML clements draggable * And much more
Part 11 is a complete reference for core JavaSceript. It documenis every class, obyeot, constructo,
method, funclion, property, and constant defined by JavaScript 1.5 and ECMAScripl version 3,

Part IV is a reference for client-side JavaScripy, covering legacy web browser APIs, the stindard Level
2 IXOM APL, and emerging standards such as the XMLHupRequest olwect and the <canvas> tag
More than 300,000 Enascript programmers around the world have made this their indispensable
reference book for building JavaScript applications.

A musit-bave reference for expert favascripi programmers. . well-organized and detailed.”
—Brendan Eich, creator of JlavaScript

www.oreilly.com

Us 34999 CAN 354 99
15BN-10: D-598-10199-4

158N=13: 97T8=0=598=10199=2
Safari roue
AN FREE 45-

78059 1u1wzl i“"l w Online El:l?t?:n

Page 154 of 244

APPENDIX B

Page 155 of 244

CAMBRIDGE

L
J
(2
—
S
-~
S

Clark S. Lindsey, Johnny S. Tolliver,

and Thomas Lindblad

l

MOR: s om—— e

S .%bm%i .JJ....W Bl 1

JavaTech

An Introduction to Scientific and Technical
Computing with Java

Clark S. Lindsey, Johnny S. Tolliver
and Thomas Lindblad

~ % CAMBRIDGE

¥4’ UNIVERSITY PRESS

Page 157 of 244

Page 158 of 244

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S&o Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521821131

© C. S. Lindsey, J. S. Tolliver and T. Lindblad 2005

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

ISBN-13 978-0-521-82113-1 hardback
ISBN-10 0-521-82113-4 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party internet websites referred to in this publication, and does not guarantee

that any content on such websites is, or will remain, accurate or appropriate.

s

Content;

Preface
Acknowledge
Part1 Int
1 Introducti
1.1 Whatis
1.2 History
1.3 Version:
1.4 Java—o
1.5 Java fea
1.6 Real-wc
1.7 The Jav:
1.8 Getting
1.9 Change:
1.10 Web Co
Referen
Resourc
2 Language
2.1 Introduc
2.2 Langua

2.3 A simpl
2.4 Comme

2.5 Data tyg
2.6 Strings

2.7 Express
2.8 Operato
2.9 Stateme

2.10 Casts ar
2.11 Floating
2.12 Progran
2.13 Basic m
2.14 Web Co

Resourc

y with the first
g to the bins.
1e histograms,
rth. Functions
ping to deter-
.0 instances of
it is, and you
jetails in your

yther program,
xtract just that
sulation aspect
7ith procedural

onal introduc-
‘ences between
mory manage-

nd engineering
es and demon-
ial on OOP in
ing techniques

n Introduction

th edn, Sun

1 Guide, March

raining/

Chapter 4
More about objects in Java

4.1 Introduction

Chapter 3 introduced the basic concepts of classes and objects in Java such as the
class definition, instantiation, and object reference. We emphasized the analogy of
classes with data types, but the class approach allows for more than just defining a
new data type. Java allows you to build upon, or inherit from, a class to create a new
child class, or subclass, with additional capabilities. In this chapter we introduce
class inheritance in Java. Inheritance involves the overriding (not overloading)
of constructors and methods, abstract classes and interfaces, polymorphism, the
object class, and the casting of object references to sub- or superclass types.
We discuss each of these concepts in detail.

This chapter also includes additional discussion of arrays and how to use
them for vectors and matrices in mathematical operations. The chapter ends with
a couple of examples of classes for technical applications. We create an improved
complex number class and also an enhanced Histogram class.

4.2 Class inheritance

A key feature of object-oriented programming concerns the ability of a class
to inherit from an existing class, retaining all the features of the base class but
adding new features, thus creating a subclass with increased capabilities. Here
class B inherits from class &, also known as “extending” class A (thus the Java
keyword extends):

Page 159 of 244

92 More about objects in Java

public class A {
intl i =)0
void doSomething () {

i EwEy

Class A }

T class B extends A {

int j = 0;
Class B void doSomethingMore () {
3 = 10;

i+=3;

—

The diagram on the left indicates the class hierarchy. By convention the superclass
is on top, subclasses are below, and the arrow points upwards from the subclass
to the superclass The subclass B has all the data and methods from class 2 plus
the new data and methods added by B. We can think of class B as having the data
and methods equivalent to an imaginary class (let’s call it BA") shown here:

class BA {

int 1 = 0;

int j = 0;

void doSomething () {
i =5;

}
void doSomethingMore ()
j = 10;

i+= 3;

By using inheritance we get the features of the imaginary class BA without having
to duplicate the code from the base class A. We can now create instances of class
B and access methods and data in both class B and class A:

B b =new B (); // Create an instance of class B
b.doSomething () ;

b.doSomethingMore (); // And a method defined in class B

// Access a method defined in class A

Another class can, in turn, inherit from class B, as shown here with class C:

Page 160 of 244

Cla:

Cla:

Clas

Here the doEve
from class A an
of class C canu
and B.
Inheritance ¢
shortly that the
the ability to re
(The terms sup:
are used interck
Class inheri
direct superclas
a chaining fash
does not permi
one direct pare
Java to create a

Clas

C2

There are time
tionally omitte
multiple classi
later, do perm:
class inheritan

superclass
e subclass
ass A plus
1g the data
vn here:

wut having
ces of class

ss B
1 class A
lass B

lass C:

4.2 Class inheritance

class C extends B {
Class A :
int k;
void doEvenMore () {
Class B doSomething () ;
doSomethingMore ();
RFE T ESE
}
Class C }

Here the doEvenMore () method internally calls the doScmething () method
from class A and the doSomethingMore () method from class B. An instance
of class C can use the class ¢ data and methods and also those of both classes A
and B.

Inheritance does more than just reduce the size of the class definitions. We see
shortly that the inheritance mechanism offers several new capabilities including
the ability to redefine, or override, a method in the superclass with a new one.
(The terms superclass, base class, and parent class all mean the same thing and
are used interchangeably, as are the terms subclass and child class.)

Class inheritance in Java is strictly linear. A subclass may extend only one
direct superclass, though all of that parent’s superclasses get inherited as well in
a chaining fashion, as shown in the class C example above. Unlike C++, Java
does not permit multiple class inheritance, which is inheriting from more than
one direct parent class. That is, given two classes X and Y, it is not possible in
Java to create a class Z that extends both X and Y.

X C ass ¥
\

Class

Clas

There are times that multiple class inheritance could be useful, but it was inten-
tionally omitted by the Java designers because correctly implementing and using
multiple class inheritance is fraught with difficulty. Java interfaces, to be discussed
Jater, do permit multiple inheritance, providing many of the benefits of multiple
class inheritance without the drawbacks.

Page 161 of 244

93

94

Page 162 of 244

More about objects in Java

4.2.1 Overriding

A common situation is when a class is needed that provides most of the func-
tionality of a potential superclass except one of the superclass methods doesn’t
do quite the right thing. Adding a new method with a different name in a sub-
class doesn’t really solve the problem because the original superclass method
remains accessible to users of the subclass, thereby resulting in a source of errors
should a user inadvertently use the original name instead of the new name. What
is really needed is a way to change the behavior of that one superclass method
without having to rewrite the superclass. Often we may not even have the super-
class source code, making rewriting it impossible. Even if we do have the source
code, rewriting it would be the wrong approach. That method in the superclass
is assumed to be completely appropriate for the superclass and should not be
changed. We wish to change the behavior of the method only for instances of our
subclass, retaining the existing behavior for instances of the superclass and other
subclasses that expect the original behavior of the method.

Java provides just this capability in a technique known as overriding. Over-
riding permits a subclass to provide a new version of a method already defined in
a superclass. Instances of the original superclass (and other subclasses) see the
original method. Instances of the overriding subclass see the new (overridden)
method. In fact, overriding is often the whole reason to create a subclass.

Overriding occurs when a subclass method exactly matches the signature (the
method name, return type, and parameter types) of a method in a superclass. If
the return type is different, a compile-time error occurs. If the parameter list is
different, then overloading occurs (already discussed in Chapter 3), not overrid-
ing. In the next section we discuss the differences, which are very important, but
first we give an example of overriding. In the code below, we see that subclass
Child overrides the method doSomething () in class Parent:

public class Parent {
int parent.int = 0;
void doSomething (int i) ¢{

parent_int = i;

class Child extends Parent {
int child_int = 0;

void doSomething (int i) {
child_int = 10;

parent_int = 2 * 1i;

When
doSomé
in class

Parel
Chilc
c.do!
p.do!

On the
instanct
Java au
referen:

The

Pare

p.do

This ¢
type P.
Chilc
able p
class o
superc
type P
is the
referer

Thi
the bas
throug
in the .

The
oriente
C, and

4.2 Class inheritance 95

When we have an instance of class Child, an invocation of the method
doSomething () results in a call to the overridden doSomething () code

f the func-))
i in class Child rather than Parent:
yds doesn’t
¢ in a sub-
1ss method o
se of errors Parent p = new Parent (); // Create instance of class Parent
ame. What Child c¢ = new Child (); // Create instance of class Child
1ss method ¢.doSomething (5); // The method in class Child is invoked.
. the super- p.doSomething (3); // The method in class Parent is invoked.
the source
superclass g .
P On the other hand, if we call the doSomething () method on a Parent
wuld not be : o . ..
¢ instance, then the original doSomething () code from class Parent is invoked.
nces of our : . 4 P
Java automatically invokes the correct method based on the type of the object
s and other
reference.
. The real power of overriding, however, is illustrated by this code:
ling. Over-
/ defined in
ies) see the o , . :
. Parent p = new Child (); // Create an instance of Child
yverridden)
// but use a Parent type reference.
lass.
sature (the p.doSomething (); // Though the Parent type reference
perclass. If . // is used, the Child class's doSomething()
neter list is // is executed.

10t overrid-
sortant, but

\at subclass . .]
This code has created an instance of class Child but declared it to be of

type Parent. Doing so is legal when child is a subclass of Parent, since
Child has all the methods and data of type Parent. Even though the vari-
able p is declared to be the superclass type, it actually references the sub-
class object. So the subclass method is executed rather than the method in the
superclass. This happens because the instance p really is of type Child, not
type Parent. The actual type of the object referred to by an object reference
is the type that it is “born as,” not the type of variable that holds the object
reference.

This feature is very useful when, for example, the elements of an array of
the base class type contain references to instances of various subclasses. Looping
through the array and calling a method that is overridden will result in the method
in the subclass being called rather than the method in the base class.

The following code illustrates this so-called polymorphic feature of object-
oriented languages. We begin with a superclass named A and three subclasses B,
¢, and D, all of which override the doSomething(y method from A (classes C

Page 163 of 244

96

Page 164 of 244

More about objects in Java

and D could be direct subclasses of A or they could be indirect subclasses of A by
subclassing B).
A[] a = new A[3]; // Class A type array with three elements

al[0] = new B ()}; // Create an instance of class B but use

// an A reference since the array is

// type A.
all) = new C (); // Ditto for C
al2) = new D (); // And D

for (int i=0; i < 3; i++) {// Call doSomething() for each
// element of the A array.
af{i].doSomething (); // Though the A type reference is used,
// the overriding doSomething () method
// of the actual referenced object is
// invoked.

It is important to understand that even though the array type is that of the super-
class 2, the code used for the doSomething () methods is that of the actual
object that is referenced in each array element, not the code for the method in the
A base class.

4.2.2 Overriding versus overloading

It is important to note how overriding differs from overloading. The latter refers
to reusing the same method name but with a different parameter list and was
explained in Chapter 3. Briefly, if a class contains two (or more) methods of the
same name but with different parameter lists, all those methods are said to be
overloaded. The compiler automatically decides which method to call based on
the parameters used when the method is invoked. What was not mentioned in
Chapter 3 is that overloading can occur across inherited classes. If a subclass
reuses a method name from a parent class but changes the parameter list, then
the method is still overloaded, just as if both methods appeared in the same class.
(Note that via inheritance both methods really do appear in the subclass; the
fact that the source code appears in two different places makes no difference.) In
overloading, the new method does not replace the superclass method; it just reuses
the name with a different parameter list. Calling the method with the original
parameter list invokes the original method; calling it with the new parameter list
invokes the new method.

Confusing overriding and overloading is a vexing error, both for novices and
experienced Java developers. If a subclass attempts to override a method in a

superclas
overloade

public
int

voi

class

VO.

Here v
doSome
changec
version
den it.]
instanct

Pare
Chil
p.dc

Theca
isani
overlo
Event
of the
source

Th
super:
corres

ses of A by

lements

ul

each

is used,
method
act is

"the super-
"the actual
thod in the

atter refers
st and was
10ds of the
said to be
Il based on
ntioned in
a subclass
i list, then
same class.
belass; the
erence.) In
Jjustreuses
he original
-ameter list

ovices and
lethod in a

4.2 Class inheritance

superclass but doesn’t use the exact same parameter list, then the method is really
overloaded, not overridden. We illustrate this with the following example:

public class Parent {

int 1 = 0;
void doSomething (int k) {
i=k;

}

class Child extends Parent {
void doSomething (long k) {
i =2 * k;

Here we created class child with the intention of overriding the
doSomething (int k) method in class Parent but we mistakenly
changed the int parameter to a long parameter as shown. Then the Child
version of doSomething () has overloaded the Parent version, not overrid-
den it. Look what happens when we attempt to call doSomething () from an

instance of Child:

Parent p = new Parent (); // Create a Parnet instance.
child ¢ = new Child (); // Create a Child instance.
p.doSomething (5); // The method in Parent is invoked,
// as expected.
c.doSomething (3); // The method in Parent, not Child, is
// invoked, probably not as expected.

The call to ¢ . doSomething (3) passesan int parameter, notalong (aliteral 3
is an int;to makeita long,an 1 or L must be appended, asin 3L). Therefore the
overloaded method that takes an int is invoked, not the Child version expected.
Even though we have explicitly asked for ¢ .doSomething (), the int version
of the method named doSomething () gets invoked — again, the fact that the
source code happens to appear in the superclass makes no difference.

This error is often difficult to uncover. It occurs most often when an overridden
superclass method is changed while forgetting to make the same change in the
corresponding overriding subclass methods at the same time.

Page 165 of 244

97

98 I\/Iore.abo_ut objects in Java

4.2.3 The @override annotation in J2SE 5.0

One of the annotations available with the addition of the metadata facility in Java
Version 5.0 (see Chapter 1) greatly reduces the chance of accidentally overloading
when you really want to override. The @override annotation tells the compiler
that you intend to override a method from a superclass. If you don’t get the
parameter list quite right so that you’re really overloading the method name, the
compiler emits a compile-time error. This annotation is used as follows:

public class Parent
int i = 0;
void doSomething (int k) {
i = k;

class Child extends Parent {
@Override
void doSomething (long k) {
i =2 Mk;

The metadata facility in Java 5.0 supports simple and complex annotation types,
which are closely related to Java interfaces (discussed in Section 4.5). Some anno-
tation types define member methods and member variables and require parameters
when used. However, the @0verride annotation is just a marker interface (see
Section 4.5.3). It has no members, and thus accepts no parameters when used,
as shown above. It must appear on a line by itself and indicates that the method
name on the next line should override a method from a superclass. If the method
signature on the next line isn’t really an overriding signature, then the compiler
complains as follows:

Parent.java:10: method does not override a method from its
superclass

@Override

A
1 error

By using @0verride each time you intend to override a method from a super-
class, you are safe from accidentally overloading instead of overriding.

Page 166 of 244

424 TI

Perhaps yo
However, y
rather than
thing that 1
subclass.
When i1
superclass
data with t
doSomettl
using sup-

public
int
void

i

class ¢
int

void

m

You cannc
deep as in

This usag
overridde)

Note t}
with the s,
useful anc
recommei

ty in Java
erloading
compiler
’t get the
name, the
s:

ition types,
ome anno-
parameters
erface (see
when used,
the method
the method
1€ compiler

rom its

om a super-
ag.

4.2 Class inheritance

4.2.4 The this and super reference operators

Perhaps you need to create a subclass that overrides a method in the base class.
However, you want to take advantage of code already in the overridden method
rather than rewriting it in the overriding method. That is, you want to do every-
thing that the original method did but add some extra functionality to it for the
subclass.

When in a subclass, the special reference variable super always refers to the
superclass object. Therefore, you can obtain access to overridden methods and
data with the super reference. In the following code class Child overrides the
doSomething () method in class Parent but calls the overridden method by
using super . doSomething ():

public class Parent {
int i = 0;

~

void doSomething
i =5;

class Child extends Parent {
int j=0;
void doSomething
j = 10;
// call the overridden method
super.doSomething (R
j += i; // then do something more

~

You cannot cascade super references to access methods more than one class
deep as in

j = super . super .doSomething () ; // Error!! Not a valid use of
/ /super

This usage would seem logical but it is not allowed. You can only access the
overridden method in the immediate superclass with the super reference.

Note that you can also “override” data fields by declaring a field in a subclass
with the same name as used for a field in its superclass. This technique is seldom
useful and is very likely to be confusing to anyone using your code. Its use is not

recommended.

Page 167 of 244

99

100

Page 168 of 244

More about objects in Java

A related concept is known as shadowing in which a local variable has the
same name as a member variable. For example,

public class Shadow {

int x = 1;

void someMethod () {
int x = 2;

}

}

Here the x inside someMethod () shadows the member variable x in the class
definition. The local value 2 is used inside someMethod () while the member
variable value 1 is used elsewhere. Such usage is often a mistake, and can certainly
lead to hard-to-find bugs. This technique is not recommended. In fact, the variable
naming conventions explained in Chapter 5 are designed to prevent accidental
shadowing of member variables.

We can also explicitly reference instance variables in the current object with
the thi s reference. The code below illustrates a common technique to distinguish
parameter variables from instance or class variables:

public class A {
int =:
void doSomething (int x) {
// x holds the value passed in the parameter list.
// To access the instance variable x we must
¢ specify it with 'this'.
this.x = x;

Here the local parameter variable shadows the instance variable with the same
name. However, the this reference in this . x explicitly indicates that the left-
hand side of the equation refers to the instance variable x instead of the local
variable x from the parameter list.

4.3 More about constructors

In Chapter 3 we discussed the basics of constructors, including the overloading
of constructors. Here we discuss some additional aspects of constructors.

4.3.17 this()

In addition to the this reference, there is also a special method named this ()
which invokes constructors from within other constructors. When a class holds

overloaded c
basic initializ
tasks. Rather
loaded consti
the initializat

For examg

class Tes
int x,

int i,

Test |

X =

The first con
(the other tv
constructor r
include redu
which execu

The parar
constructor (
types). In thi
int argumer
in a construc

4.3.2 su

There is anot
asubclass, it
(we discuss |
tiple overloa
structor gets
with super
For exam
Testl has

able has the

-in the class
the member
>an certainly
.the variable
it accidental

object with
ydistinguish

.ist.

th the same
hat the left-
of the local

yverloading

‘tors.

ied this ()
class holds

4.3 More about constructors

overloaded constructors, typically they include one constructor that carries out
basic initialization tasks and then each of the other constructors does optional
tasks. Rather than repeating the initialization code in each constructor, an over-
loaded constructor can invoke this () to call another constructor to carry out
the initialization tasks.

For example, the following code shows a class with two constructors:

class Test {
int x,y;

int i,k;

Test (int a, int b) {
X = a;

y = b;

Test (int a, int b, int ¢, int d) {
this (a,b);// Must be in first line
1i=c¢;

k = df

The first constructor explicitly initializes the values of two of the data variables
(the other two variables receive the default 0 value for integers). The second
constructor needs to initialize the same two variables plus two more. Rather than
include redundant code, the second constructor first invokes this (a, b),
which executes the first constructor, and then initializes the other two variables.

The parameter list in the invocation of this () must match that of the desired
constructor (every constructor must have a unique parameter list in number and
types). In this case, this (a, b) matches that of the first constructor with two
int arguments. The invocation of this () must be the first executable statement
in a constructor and cannot be used in a regular method.

4.3.2 super ()

There is another special method named super (). When we create an instance of
asubclass, its constructor plus a constructor in each of its superclasses are invoked
(we discuss below the invocation sequence of the constructors). If there are mul-
tiple overloaded constructors somewhere in the chain, we might care which con-
structor gets used. We choose which overloaded superclass constructor we want
with super ().

For example, in the following code, class Test2 extends class Test1, class
Testl has a one-argument constructor and a two-argument constructor while

Page 169 of 244

101

102

Page 170 of 244

More about objects in Java

the constructor in class Test?2 takes three parameters. Which constructor in
the superclass should be invoked? It is unwise to leave it to the compiler to
“ouess.” (Actually, the compiler does not guess; it follows specific rules, which
we discuss later.) Let’s suppose that our design requires that the two-argument
constructor in Test1 be called. Therefore, the Test2 constructor invokes the
second constructor in class Test1 by using super(a, b).Had we wanted the
one-argument constructor, we would use super (a)or super (b).

class Testl {
int i;
int 3j;
Testl(int i)
{this.i = 1i;}

Testl (int i, int Jj) {
this.i = 1i;

TRis,.3" = I

class Test2 extends Testl {
float x;

Test2 (int a, int b, float c) {
super (a, b); // Must be first statement

X = C;

As with this (), the parameter list identifies which of the overloaded construc-
tors in the superclass to invoke. And as with this (), the super () invocation
must occur as the first statement of the constructor and cannot appear in regular
methods.

Do not confuse the this and super references with the this() and
super () constructor operators. The this and super references are used to
gain access to data and methods in a class and superclass, respectively, while the
this () and super () constructor operators indicate which constructors in the
class and superclass to invoke.

4.3.3 Construction sequence

When you instantiate a subclass, the object construction begins with an invo-
cation of the constructor in the topmost base class and initializes downward

through the
constructor.
multiple co
is that, unle
ZEero-argum

Let’s beg
structors. Ir
generates a
the case of ¢
constructors:
explicitly ir
argument c«
provided in
“free” const

If the sur
does not ge
utilize supe
there is no z
must emplo
constructors

Ifthe sub
one of the st
constructor1
sequence of
to which co1

The exai
invoked for
constructors

public ¢
publi«

7/

/'

nstructor in
compiler to
-ules, which
ro-argument
invokes the
> wanted the
).

ed construc-
) invocation
ar in regular

his() and

are used to
ly, while the
uctors in the

rith an invo-
s downward

4.3 More about constructors

through the constructors in each subclass until it reaches the final subclass
constructor. The question then arises: if one or more of the superclasses have
multiple constructors, which constructor does the JVM invoke? The answer
is that, unless told otherwise with super (), the JVM will always choose the
zero-argument constructor.

Let’s begin with the simplest case of a superclass definition without any con-
structors. In this case, as we learned in Chapter 3, the compiler automatically
generates a zero-argument constructor that does nothing. Almost as simple is
the case of a superclass with an explicit zero-argument constructor and no other
constructors. In both of these cases, the subclass constructor does not need to
explicitly invoke super () because the JVM automatically invokes the zero-
argument constructor in the superclass — either the zero-argument constructor
provided in the superclass source code if there is one, or the default do-nothing
“free” constructor if no explicit constructor is provided.

If the superclass contains one or more explicit constructors, then the compiler
does not generate a free zero-argument constructor. A subclass that does not
utilize super () to choose one of the existing constructors fails to compile since
there is no zero-argument superclass constructor to use. Therefore, the subclass
must employ a super () with a parameter list matching one of the superclass
constructors.

Ifthe subclass also holds several constructors, each must invoke a super () to
one of the superclass constructors (or perhaps use this () to refer to a subclass
constructor that does use super ()). The compiler and JVM figure out the proper
sequence of constructors to call as the subclass instance is being built according
to which constructor is used with the new operator.

The example code here shows two different sequences of constructors
invoked for the case of a base class and two subclasses, all with overloaded
constructors:

public class Constructapp3 {
public static void main (String(] args) {

// Create two instances of Test2
// using two different constructors.

System.out.println ("First test2 object");
Test2 test2 = new Test2 (1.2, 1.3);

System.out.println (" \nSecond test2 object");
test2 = new Test2 (true, 1.2, 1.3);

Page 171 of 244

103

104

Page 172 of 244

More about objects in Java

class Test {
int 1i;
double d;
boolean flag;

// No-aryg constructor
Test () {
d=1.1;
flag = true;
System.out.println

// One-arg constructor
Test (int j) {

this ();

bl = j;

System.out.println

("In Test{)"):

("In Test(int 3j)");

/** Testl is a subclass of Test **/

class Testl extends Test
int k;
// One-arg constructor
Testl (boolean b) {
super (3);
flag = b;
System.out.println
}

// Two-arg constructor

{

("In Testl(boolean b)");

Testl (boolean b, int j) {

this (b);
k= 3;
System.out.println

("In Testl(boolean b, int j)");

/** Test2 is a subclass of Testl. **/

class Test2 extends Testl {

double x,y;

// Two-arg constructor

Test2 (double x, double y) {

super (false);

this
this
Syst

// Thre
Test2 (
super
flag
Syste
"I

The output of

First tes
In Test()
In Test(i
In Testl(
In Test2(

Second te
In Test ()
In Test(i
In Testl(
In Testl({
In Test2|{

This illustrate
of the Test:

4.4 Abst

For some apj
instantiate. I
the base clas
contain enou
behavior has
base class.

4.4 Abstract methods and classes 105

this.x
this.y = vyi
System.out.println ("In Test2 (double x, double y)");

X7

il

// Three-arg constructor
Test2 (boolean b, double x, double y) {
super (b, 5);
flag = b;
System.out.println (
"In Test2 (boolean b, double x, double y)");

The output of ConstructApp3 goes as:

First test2 object

In Test ()

In Test(int J)

In Testl(boolean b)

In Test2 (double x, double y)

Second test2 object

In Test ()

In Test(int j)

In Testl(boolean b)

In Testl(boolean b, int J)

In Test2(boolean b, double x, double Yy)

This illustrates the different sequence of constructors invoked according to which
i of the Test2 constructors we choose.

4.4 Abstract methods and classes

For some applications we might need a generic base class that we never actually
instantiate. Instead, we want always to use subclasses of that base class. That is,
the base class handles behavior that is common to all the subclasses but does not
contain enough data or behavior to be useful on its own. In a sense, the common
behavior has been “factored out” of the subclasses and moved to the common
1 base class.

Page 173 of 244

106 More about objects in Java

In the following standard example, we create a base class Shape, which define
provides a method that calculates the area of some 2D shape: instant
called

public class Shape { The
double getArea () { types

: return 0.0; differe

} follow

to difft

The Shape class itself does almost nothing. To be useful, there must be subclasses
of Shape defined for each desired 2D shape, and each subclass should override

getArea () to perform the proper area calculation for that particular shape. We pesy
illustrate with two shapes — a rectangle and a circle. i
public class Rectangle extends Shape { 1
double ht = 0.0; }
double wd = 0.0; lI
|
public double getArea () { This v
return ht*wd; that ca
} means
public void setHeight (double ht) { the bas
this.ht = ht; The
} and err
pub.l'ic void setwidth (double wd) { getAr
) this.wd = wd; The ab
) follow
uses 1ts
public class Circle extends Shape { Since t
double r =0.0; can do
public double getArea () { A
return Math.PI * r * r; abstr
} In fact,
public void setRadius (double 1) { will en
this.r = r; marker
) and giv
} Intt
declara
The subclasses Rectangle and Circle extend Shape and each overrides the here:
getArea () method. We could define similar subclasses for other shapes as well.
Each shape subclass requires a unique area calculation and returns a double Bt
value. The default area calculation in the base class does essentially nothing but | 3
it must be declared to return a double for the benefit of the subclass methods fl -]
that do return values. Since its signature requires that it return something, it was

Page 174 of 244

>e, which

subclasses
1d override
“shape. We

overrides the
1apes as well.
18 a double
y nothing but
lass methods
athing, it was

4.4 Abstract methods and classes

defined to return 0.0. In practice, since the superclass Shape should never be
instantiated, only the subclasses, then the superclass getArea () will never be
called anyway.

The capability to reference instances of Rectangle and Circle as Shape
types uses the advantage of polymorphism (see Section 4.2.1) in which a set of
different types of shapes can be treated as one common type. For example, in the
following code, a Shape array passed in the parameter list contains references
to different types of subclass instances:

void double aMethod (Shapel[]l shapes) {
areaSum = 0.0;
for (int i=0; i < shapes.length; i++) o
areaSum += shapes[i].getArea ();

This method calculates the sum of all the areas in the array with a simple loop
that calls the getArea () method for each instance. The polymorphic feature
means that the subclass-overriding version of getArea () executes, not that of
the base class.

The careful reader will have observed that the technique used above is messy
and error-prone. There is no way, for instance, to require that subclasses override
getArea (). And there isno way to ensure that the base class is never instantiated.
The above scheme works only if the subclasses and the users of the Shape class
follow the rules. Suppose someone does instantiate a Shape base class and then
uses its getArea () method to calculate pressure, as in the force per unit area.
Since the area is 0.0, the pressure will be infinite (or NaX). The Java language
can do much better than that.

A much better way to create such a generic base class is to declare a method
abstract. This makes it explicit that the method is intended to be overridden.
In fact, all abstract methods must be overridden in some subclass or the compiler
will emit errors. No code body is provided for an abstract method. It is just a
marker for a method signature, including return type, that must be overridden
and given a concrete implementation in some subclass.

In the above case, we add the abstract modifier to the getArea () method
declaration in our Shape class and remove the spurious code body as shown
here:

public abstract class Shape {
abstract double getArea ();:

Page 175 of 244

107

108

Page 176 of 244

More about objects in Java

Note that if any method is declared abstract, the class must be declared abstract as
well or the compiler will give an error message. The compiler will not permit an
abstract class to be instantiated. An abstract class need not include only abstract
methods. It can also include concrete methods as well, in case there is common
behavior that should apply to all subclasses. In fact, a class marked abstract is
not required to include any abstract methods. In that case, the abstract modifier
simply prevents the class from being instantiated on its own. Abstract classes,
unlike interfaces (see next section), can also declare instance variables. As an
example, our abstract Shape class might declare an instance variable name:

public abstract class Shape {
String name;
abstract double getArea ();
String getName () {

return name;

Here each subclass inherits the name instance variable. Each subclass also inherits
the concrete method getName () that returns the value of the name instance
variable.

When an abstract class does declare an abstract method, then that method
must be made concrete in some subclass. For example, let’s suppose that class
is abstract and defines method doSomething (). Then class B extends A but
does not provide a doSomething () method:

abstract class A {
abstract void doSomething () ;
}
class B extends B {
// Fails to provide a concrete implementation
// of doSomething ()
void doSomethingElse () {. . .}

In this case, the compiler complains as follows:

B is not abstract and does not override abstract method
doSomething() in A class B extends A {
N

This message indicates that not overriding doSomething () in class B is okay if
B is declared to be abstract too. In fact, that is true. If we don’t want B to provide
doSomething (), then we can declare B abstract as well:

abstrac
absta

}

abstrac
/1 D¢
// ol

void

This code
instantiatec
subclass of
methods:

class C
A/BNE:
void

4.5 Inte

As discuss
more than

class

There are ¢
lead to pro
classes inc
parameter

Interfac
problems. .
The metho
they are ab
than exte
that impler
method (o

In the .
run(). Ar
run().

abstract as
t permit an
\ly abstract
s common
stractis
«t modifier
ict classes,
sles. As an

P name:

Iso inherits
e instance

1at method

hat class A
znds A but

-hod

B is okay if
to provide

4.5 Interfaces

abstract class A {
abstract void doSomething ();

}

abstract class B extends A {
// Does not provide a concrete implementation
/! of doSomething ()
void doSomethingElse () (. . .}

This code compiles without errors. Of course, classes A and B may never be
instantiated directly (since they are abstract). Eventually, there must be some
subclass of A or B that provides a concrete implementation of all the abstract
methods:

class C extends B {
// Provides a concrete implementation of doSomething()
void doSomething () (. . .}

4.5 Interfaces

As discussed in Section 4.2, Java does not allow a class to inherit directly from
more than one class. That is,

class Test extends AClass, BClass // Error!!

There are situations where multiple inheritance could be useful, but it can also
lead to problems; an example is dealing with the ambiguity when the inherited
classes include methods and fields with the same identifiers (i.e. the names and
parameter lists).

Interfaces provide most of the advantages of multiple inheritance with fewer
problems. An interface is basically an abstract class but with all methods abstract.
The methods in an interface do not need an explicit abstract modifier since
they are abstract by definition. A concrete class implements an interface rather
than extends it, and a class can implement more than one interface. Any class
that implements an interface must provide an implementation of each interface
method (or be declared abstract).

In the example below, Runnable is an interface with a single method:
run(). Any class thatimplements Runnable must provide an implementation of

run().

Page 177 of 244

109

110 More about objects in Java

class Test extends Applet implements Runnable {

public void run () {

}

public interface Runnable ({
public void run ();

To implement multiple interfaces, just separate the interface names with a
comma:

class Test extends Applet implements Runnable, AanotherInterface

{

If two interfaces each define a method with the same name and parameter list,
this presents no ambiguity since both methods are abstract and carry no code
body. In a sense, both are overridden by the single method with that signature in
the implementing class.

Any class that implements an interface can be referenced as a type of that
interface, as illustrated by this code:

class User implements Runnable {
public void run () {

class Test {
public static void main (String[] args) {
Runnable r = new User {();

Here the class User implements Runnable, so it can be referenced in a variable
of type User or in a variable of type Runnable as shown. The value of using
the type Runnable instead of User is illustrated in the next section.

Page 178 of 244

451 I

The term
because th
is, they ca
For exa
independe
could corr
implemen
which hols

public
puk
}

We want t
provideac
whether a
In the
Relay an
getStat

class "
publ
Sv

sv

SV

Ec

class 1
bool
// I
bool

st

class
bool«

es with a

terface

imeter list,
ry no code
ignature in

ype of that

n a variable
ue of using
L.

4.5 Interfaces

4.5.1 Interfacing classes

The term interface is a very suitable name for these kinds of abstract classes
because they can provide a systematic approach to adding access to a class. That
is, they can provide a common interface.

For example, say that we have classes Relay and Valve that are completely
independent, perhaps written by two different programmers. The class Test
could communicate easily with both of these classes if they were modified to
implement the same interface. Let’s define an interface called Switchable,
which holds a single method called getState (), as in

public interface Switchable {
public boolean getState ():
}

We want both the Relay and Valve classes to implement Switchable and
provideagetState () method thatreturnsa value true or false that indicates
whether a relay or a valve is in the on or off state.

In the code below we show the class Test that references instances of
RelayandValve as Switchable types. Test can then invoke their respective
getState () methods to communicate with them.

class Test {
public static void main (String[] args) {

Switchable[] switches = new Switchablef{2];

switches[0]

new Relay ();
switches[1l] = new Valve ();

for (int i=0; i < 2; i++) {
if (switches[i].getState ()) doSomething (i);

class Relay implements Switchable {
boolean setting = false;
// Implement the interface method getState()
boolean getState () {

return setting;

other code .

class Valve implements Switchable {
boolean valveOpen = false;

Page 179 of 244

111

112

Page 180 of 244

More about objects in Java

// Implement the interface method getState()
boolean getState () {
return valveOpen;

other code .

interface Switchable {
boolean getState ();

So we see that an interface can serve literally to interface otherwise incompatible
classes together. The modifications required for the classes Relay and Valve
involve only the implementation of the interface Switchable. Class Test
illustrates how we can treat instances of Relay and Valve both as the type
Switchable and invoke getState () to find the desired information for the
particular class. If additional classes that represent other components with on/off
states are created for our system simulation, we can ask that they also implement
Switchable.

Note that if we don’t have the source code for Valve and Relay, we could still
create subclasses of them and have those subclasses implement Switchable.
For example,

class Switchablevalve extends Valve implements Switchable {
boolean getState () {

4.5.2 Interfaces for callbacks

With the C language, programmers often use pointers to functions for tasks
such as passing a pointer in an argument list. The receiving function can use the
pointer to invoke the passed function. This technique is referred to as a “callback”
and is very useful in situations where you want to invoke different functions
without needing to know which particular one is being invoked or when library
code needs to invoke a function that is supplied by a programmer using the
library.

For exampl
an x axis value
example). The
is passed to it

Java, howe
object referen
interfaces for ¢
facein its para
programmer p
an object refer
required inter{
invoked.

In the follc
invokes the ge
of any class tt
aFunc (). Th
C. The only di

public cle
public
Switc
switc
switc

switc

// Pa
for
aF

// Rece
void aF

if (s

See

453 Mor

Interfaces can
ods declared i
Unlike classes

sompatible
nd valve
Jass Test
1s the type
ion for the
with on/off
implement

s could still
tchable.

1able {

s for tasks
can use the
“callback”
t functions
hen library
r using the

4.5 Interfaces

For example, a plotting function could receive a pointer to a function that takes
an x axis value as an argument and returns a value for the v axis (sin(x), cos(x), for
example). The plotting function could then plot any such function whose pointer
is passed to it without knowing explicitly the name of the function.

Java, however, does not provide pointers (actual memory addresses), only
object references. A reference cannot refer to a method. Instead, Java provides
interfaces for callbacks. In this case, a library method holds a reference to an inter-
face in its parameter list and then invokes a method declared in that interface. The
programmier provides a class that implements the required interface and provides
an object reference to the library method. When the library method invokes the
required interface method, the concrete implementation in the provided object is
invoked.

In the following code we see that the aFunc (Switchable sw) method
invokes the getState () method of the Switchable interface. An instance
of any class that implements the switchable interface can thus be passed to
aFunc (). This technique provides the same generality as pointer callbacks in
C. The only drawback is that a class must implement the interface.

public class TestCallBack {
public static void main(String {1 args){
Switchable[] switches = new Switchable[3];

switches[0] = new Relay():
switches[1l] = new Relay();
switches[2] = new Valve();

// Pass Switchable objects to aFunc ()
for (int i=0; i < 3; i++) {

aFunc (switches(il):
}

1
// Receive Switchable objects and call their getState ()

void aFunc (Switchable sw) {
if (sw.getState (}) doSomething ();

—

See previous example for Relay and Valve definitions.

4.5.3 WNore about interfaces

Interfaces can extend other interfaces, much like class inheritance. All the meth-
ods declared in the super-interface are effectively present in the sub-interface.
Unlike classes, however, interfaces can participate in multiple inheritance. The

Page 181 of 244

113

114 More about objects in Java

following code shows an interface extending two interfaces at once using acomma
in the extends clause:

public interface A {. . .}
public interface B {. . .}
public interface C extends A, B {. . .}

An interface can also contain data fields, and those fields can be seen by
implementing classes. Any data fields in an interface are implicitly static and
£inal though those qualifiers need not appear. Thus data fields in interfaces are
effectively constants and, by convention, are best declared using all uppercase

characters.
Placing constants in an interface is a common, though not recommended,

practice. As an illustration of the convenience of this technique, consider the
MyConstants interface shown here:

public interface MyConstants {
final static double G = 9.8;
final static double C = 2.99792458el0;

The following Calculations class implements MyConstants and so can
refer to the constants directly:

class Calculations implements MyConstants {l
// Can directly use the constants defined
// in the MyConstants interface
public double calc (double t) {
double y = 0.5*G*t*t;
return y;

If we instead made MyConstants a class, we would need to reference the
constants with a class name prefix as follows:

double y = 0.5 * MyConstants.G * £ o*ot;

This obviously becomes awkward if you have a long equation with lots of con-

stants taken from other classes.
However, despite its usefulness, using an interface just to hold constants is not
recommended since it really is an abuse of the interface concept. An interface full

Page 182 of 244

of nothing bu
to do. And a ¢
anything —it i
would be mo:
that the class
For these 1t
is the recomm
refer to those
the “static imyj
import keyw
Another in
either method
can be useful
operator to de
imply some qi
to indicate wh
Section 4.6.3)
We discuss
that interface
any class can
implementatio
must also be p

4.6 More

In this section
objects with ar
method.

4.6.17 Com

In Chapter 2 we
operation and t
same concepts

as with primiti
Consider a sup

class Fru:

class Pine

Let £ be a vari
assign the Pin

1g a comma

be seen by
tatic and
terfaces are
| uppercase

ommended,
onsider the

s and so can

sference the

lots of con-

1stants 1s not
interface full

4.6 More about classes

of nothing but constants does not define a type, as a proper interface is expected
to do. And a class that “implements” such an interface isn’t really implementing
anything — it is just using the constants in the interface (perhaps a uses keyword
would be more appropriate). Seeing the implements keyword should imply
that the class actually implements something.

For these reasons, the use of a class instead of an interface to define constants
is the recommended practice, accepting the need for the more verbose syntax to
refer to those constants. We note that J2SE 5.0, in fact, solves this problem with
the “static import” facility, which we explain in Chapter 5 after discussing the
import keyword.

Another interesting feature of interfaces is that an interface need not contain
either method declarations or data. It can be completely empty. Such an interface
can be useful as a “marker” of classes. That is, you can use the instanceof
operator to determine if a class is of the particular marker type, which then can
imply some quality of the class. One can use the empty Cloneable interface
to indicate whether a class overrides the clone () method from Object (see
Section 4.6.3) to make copies of instances of the class.

We discuss access rules and modifiers in the next chapter but here we note
that interface methods and constants are implicitly public. This means that
any class can access the methods and constants in the interface. The concrete
implementations of interface methods in classes that implement the interface
must also be public otherwise the compiler will complain.

4.6 More about classes

In this section we continue our introduction to the basics of class definitions and
objects with an examination of casting, the Object class, and the toString ()
method.

4.6.1 Converting and casting object references

In Chapter 2 we discussed the topic of mixing different primitive types in the same
operation and the need in some cases to explicitly cast one type into another. The
same concepts apply when dealing with objects instead of primitives. Sometimes,
as with primitives, the type conversion is automatically handled by the compiler.
Consider a superclass Fruit with a subclass Pineapple:

class Fruit {. . .}
class Pineapple extends Fruit {. . .}

Let £ be a variable of type Fruit and p be of type Pineapple. Then we can
assign the Pineapple reference to the Fruit variable:

Page 183 of 244

115

116

Page 184 of 244

More about objects in Java

class Conversion {
Fruit £;
Pineapple p;
public void convert () {
p = new Pineapple ();
f = p;

The compiler automatically handles the assignment since the types are compati-
ble. That is, the type Fruit can “hold” the type PineapplesinceaPineapple
“is a” Fruit. Such automatic cases are called conversions.

A related automatic conversion is with interfaces. Let the class Fruit imple-

ment the Sweet interface:

interface Sweet {. . .}
class Fruit implements Sweet {. . .}

Then we see that a variable of type Fruit can be automatically converted
to a variable of type Sweet. This makes perfect sense since a Fruit “is”

Sweet.
Fruit f;
Sweet s;
public void good_convert (GRS
s = f; // legal conversion from class type to interface type

}

However, an attempt to convert from the interface type to the class type does not
compile:
public void bad_convert () {

f = s: // illegal conversion from interface type to class type

}

As with primitives, if the compiler cannot perform an automatic conversion, an
explicit cast is required. In most cases you can force the compiler to permit the
desired type conversion by using a cast. Like with primitive types, the class type
that an object is being cast to is enclosed in parentheses in front of the object
reference. Doing so essentially tells the compiler to ignore the apparent type
incompatibility and proceed anyway. If the types really are incompatible then
runtime errors will ensue.

For example, let BClass be a subclass of AClass. Let AClass hold
aMethod (), which, of course, is inherited by BClass. In addition, bMethod ()

is a new method in BClass.

class :

void

class I
voi

}
In the folloy

as a parame
of BClass.

public 1
obj.al
if (o

—r

We see that
whether that
However, to
use the ins
then cast to 1
it cannot finc

4,6.2 Ca:

The casting
There are cor
to catch atten
we have clas:
the other an
nonsensical t
permit it ever
types” error1
Casts that
class or to on
be cast to aln
type. There a:
details), but t;
The compi
time rules pe
These runtim
with the new
at runtime.

e compati-
Lneapple

1it imple-

converted

[I39% 1)

‘ruit “18

face type

pe does not

:lass type

wersion, an
» permit the
e class type
f the object
parent type
yatible then

lass hold
>Method ()

4.6 More about classes

class AClass {
void aMethod () {. . .}

class BClass extends AClass {
void bMethod () {. . .}
}

In the following code, miscMethod () is declared to receive an ACLass object
as a parameter. When used, the actual object passed in might in fact be an instance
of BClass, which is perfectly legal since BClass is a subclasses of AClass.

public void miscMethod (AClass obj) {
obj.aMethod ();
if (obj instanceof BClass) ((BClass)obj).bMethod ();

We see that we can invoke aMethod () on the object received in the parameter list
whether that object is an AClass oraBClass since both types have this method.
However, to invoke the bMethod (), we need first to check the object type. We
use the instanceof operator to find out if the object really is a BClass and
then cast to BClass if appropriate. Without the cast the compiler complains that
it cannot find bMethod () in the AClass definition.

4.6.2 Casting rules

The casting rules can be confusing, but in most cases common sense applies.
There are compile-time rules and runtime rules. The compile-time rules are there
to catch attempted casts in cases that are simply not possible. For instance, suppose
we have classes A and B that are completely unrelated — i.e. neither inherits from
the other and neither implements the same interface as the other, if any. It is
nonsensical to attempt to cast a B object to an A object, and the compiler does not
permit it even with an explicit cast. Instead, the compiler issues an “inconvertible
types” error message.

Casts that are permitted at compile-time include casting any object to its own
class or to one of its sub- or superclass types or interfaces. Almost anything can
be cast to almost any interface, and an interface can be cast to almost any class
type. There are some obscure cases (see the Java Language Specification for the
details), but these common sense rules cover most situations.

The compile-time rules cannot catch every invalid cast attempt. If the compile-
time rules permit a cast, then additional, more stringent rules apply at runtime.
These runtime rules basically require that the object being cast is compatible
with the new type it is being cast to. Else, a ClassCastException is thrown
at runtime.

Page 185 of 244

117

118

Page 186 of 244

More about objects in Java

4.6.3 The Object class

All classes in Java implicitly extend the class Object. That is,

public class Test

...}
is equivalent to

public class Test extends Object

{. . .1

So, all Java objects are instances of Object. This ability to treat all objects as
one type provides the ultimate in polymorphism. An example of this usage is the
ArrayList class, which is a part of the java.util package (we discuss Java
packages in Chapter 5). The ArrayList class can hold any object type. The
ArrayList.add () method isused to input objects into the ArrayList. The
parameter list for the add () method is declared to receive an Object parameter.
That way, any object type can be added, since all object types always inherit from
the Object base class. When an element is retrieved from the ArrayList, it
is of type Object and should be cast to the type necded.

A simpler example is the following case, where the parameter type of
miscMethod () is Object so any class whatsoever can be provided in a method
calltomiscMethod (). InsidemiscMethod () we decide what type the received
object reference really is and call appropriate methods based on that type. Except
for the case where we want to invoke a method belonging to the Object class,
we need to cast the object to one of the classes that we expect as a parameter
before we can invoke a method or access a field in that class.

public void miscMethod (Object obj) {

if (obj instanceof AClass) ((AClass)obj) .aMethod ();
if (obj instanceof BClass) ((BClass)obj) .bMethod ()
if (obj instanceof CClass) ((CClass)obj) .cMethod ();

}

The Object class provides several methods that are useful to all of its subclasses.
A subclass can also override these methods to provide behavior unique to the
particular subclass. These methods include:

e clone ()- produces copies of an object. (See Web Course Supplements.)

e equals (Object obj) — tests whether an object is equal to the object obj. The
default is to test simply whether ob7 references the same object (i.e. a shallow equals),
not whether two independent objects contain identical properties. This method is often
overridden to perform a deep equals as in the String class, which tests whether the
strings actually match.

® toString
consists of ¢
hash code o
illuminating
o finalize
this object.
needed befc
¢ getClass
Web Course
® hashCode

The followit
Chapter 8. T
block:

e notify (°
chosen by tl
notifyAl:

compete for
® wait () —
waits forar
* wait (lox
specified tin
® wait (lor

specified to

(We note tha:
nanosecond ¢

4.6.4 Obj

We discussec
You can also

System.c

then that obje
output. All ¢
This default
with the clas:

However,
provide outp
classes in the
and classes tl

objects as
sage is the
scuss Java
type. The
List. The
parameter.
therit from
wyList, it

xr type of
1amethod
1e received
pe. Except
ect class,
parameter

0 ;
();
();

subclasses.
ique to the

)

:t obj. The
low equals),
‘hod is often
whether the

4.6 More about classes

e toString ()- provides a string representation of this object. The default for a class
consists of a string constructed from the name of the class plus the character “@"plus a
hash code of the object in hex format. This method is often overridden to provide more
illuminating information. (See the next sectior.)

finalize ()- called by the garbage collector when there are no more references to

this object. You can override this method to take care of any housecleaning operations

needed before the object disappears.

s getClass ()- gets the runtime class of the object, returned as a Class type (see the
Web Course Chapter 5: Supplements section for a discussion of the Class class).

e hashCode ()-— generates a hash code value unique for this object.

The following methods involve thread synchronization that we introduce in
Chapter 8. They can only be called from within a synchronized method or code
block:

e notify ()— called by a thread that owns an object’s lock to tell a waiting thread, as
chosen by the JVM, that the lock is now available.
notifyall () - similar to notify () but wakes all waiting threads and then they

compete for the lock.
e wait () — the thread that owns the lock on this object releases the lock and then
waits for anotify () ornotifyall () to get the lock back.

wait (long msecs) — same as wait () but if a notify fails to arrive within the
specified time, it wakes up and starts competing for the lock on this object anyway.

wait (long msecs, int nanosecs)— same as wait (long msecs) but

specified to the nanosecond.

(We note that most operating systems do not provide a clock that is accurate to a
nanosecond and some not even to a few milliseconds.)

4.6.4 Objects to strings

We discussed in Chapter 3 how to convert primitive types to and from strings.
You can also convert any Java object to a string. If you just print any object, as in

System.out.println (someObjectReference);

then that object’s toString () method is called automatically to produce string
output. All objects inherit the toString () method from the Object class.
This default version of toString () from Object produces a string beginning
with the class name with certain data values appended to it.

However, the toString () method typically is overridden by most classes to
provide output in a more readable format customized for that class. Most of the
classes in the Java core class libraries provide sensible toString () methods,
and classes that you write should too for convenience when printing.

Page 187 of 244

119

120

Page 188 of 244

More about objects in Java

You can call the toString () method directly, or, alternatively, the *+”
operator calls the toString () method whenever the variable refers to an object.
For example, consider

Double aDouble = 5.0;
String aDoubleString = "aDouble = " + aDouble;

The plus operator in the second line invokes the toString () method of the
Double object aDouble. This results in aDoubleString referencing the
string *aDouble = 5.0".

4.7 WNore about arrays

Here we look at other aspects of Java arrays and at tools to use with them. Note
that like much of Java syntax, arrays at first glance seem very similar to those
in C/C+-. However, there are several differences from these languages in how
Java arrays are built and how they work.

4.7.1 Object arrays

In the previous chapter we introduced arrays of primitive types, which generally
behave in the manner that is expected of such arrays. For example, to create an
array of ten integers we could use the following:

int[] iArray = new int[10];

This sets aside ten int type memory locations, each containing the value 0.

For arrays of objects, however, the array declaration only creates an array of
references for that particular object type. It does not create the actual objects
of that type. Creating the objects themselves requires an additional step. For
example, let’s say we want to create an array of five String objects. We first
create a String type array:

String[] strArray = new String[5];

When the array is created, five memory locations are set aside to contain object
references of the String type with the expectation that each reference will
eventually “point” to a String object. But initially, each element contains the
special nu11 reference value; that is, it points nowhere. So if we followed the
above declaration with an attempt to use a String method, as in

int numChars = strArray{0].length ();
an error message results:

Exception in thread "main" java.lang.NullPointerException at
ArrayTest.main (ArrayTest.java:8)

Before using
element to re

strArray
strArray
strArra}
strArray

strArray

This code se
Note that
objects:

strArray

That is, the s

4.7.2 Arr

A copy of an
as shown her

System.¢

Here src is
same type).
src_posit
ber of eleme
situation occ
beyond their
thrown at ru
object arrays
source array.

4.7.3 Mu

In Java, mult
reference to
array as follc

String|(
This is equiv

String
str[0]
str[l]
str[2]

ly, the “+”
to an object.

sthod of the
rencing the

them. Note
lar to those
ages in how

:h generally
to create an

value 0.

an array of
tual objects
al step. For
sts. We first

ntain object
‘erence will
contains the
ollowed the

leption at

4.7 More about arrays

Before using the array elements, we must first create an object for each array
element to reference. For example,

strArray[0] = new String ("Alice");
strArray[l] = new String ("Bob");
strArray([2] = new String ("Cindy");
strArray(3] = new String ("Dan");
strArray([4] = new String ("E4d");

This code sets each element to reference a particular string.
Note that there is an alternative declaration that only works for String
objects:

strArray[0] = "Alice";

That is, the string literal "Alice" is equivalentto new String ("Alice").

4.7.2 Array copying

A copy of an array can be made with the static method System.arrayCopy ()
as shown here:

System.arraycopy (Object src, int src_position,
Object dst, int dst_position, int length)

Here src is the array to be copied and dst is the destination array (of the
same type). The copy begins from the array element at the index value of
src_position and starts in destination at dst -position for length num-
ber of elements. If the value of the length parameter is too long, or if any
situation occurs such that either the source or destination arrays are accessed
beyond their actual array length, then an IndexOutOfBoundsException is
thrown at runtime. This optimized method works for primitive arrays as well as
object arrays. It even handles the case where the destination array overlaps the
source array.

4.7.3 WMulti-dimensional arrays

In Java, multi-dimensional arrays are arrays of arrays. That is, each element is a
reference to an array object. For example, we could declare a two-dimensional
array as follows:

string[][] str = new String([3][2];
This is equivalent to

String [1{] str = new Stringl[3]I[];

str[0] = new Stringl[2];
str[1]) = new Stringl[2];
str[2] = new Stringl[2];

Page 189 of 244

121

122

Page 190 of 244

More about objects in Java

However, we don’t need to keep the sub-array lengths the same. This also works:

str[0] = new Stringl2];
str[l] = new Stringl[33];
strl2] = new String([444];

We can combine the string array declaration and initialization, as in

str[0] = new String[]{"alice", "bob"};

str(l] = new String[]{”cathy", "don", "ed“};

str[2] = new String[]{“fay", "grant", "hedwig", “ward"};
System.out.println ("str[1][2],stxr{2]([3] = " +

str(1][2] + strl2]1[31);
The print statement would show

str([1]1(1],str[2]1[3] = edward

4.7.4 More about arrays as objects

As mentioned earlier, arrays in Java are objects. An array inherits Object and
possesses an accessible property — length — that gives the number of elements
in the array. For example, if a method uses Object as a parameter, as in

void aMethod (Object obj) {. . .}

then an array can be passed as the actual parameter since an array is a subclass
of Object:

int[] i_array = new int[10];

aMethod (i_array);

To make arrays appear in a convenient and familiar form (as in C, for example),
the language designers provided brackets as the means of accessing the array
elements as already seen above. Without brackets, an array class would have to
provide a method such as getElementAtTndex () to access array elements.
For example,

String string_one = str_array.getElementAtIndex (1);
Fortunately, the simpler syntax using brackets was chosen instead:
String string-one = strArrayl[l];

Since arrays are objects, arrays are somewhat more complicated in Java than
in other languages, but the class structure also provides important benefits. For
example, each use of an array element results in a check on the element number,

and if the e
run-time ex:
Thus, un
and write to
program bu
since the pre
hand, there
up when do

475 M:

Vectorandr
engineering
out operatio

Note tha
java.uti:
discussed at
both adding
useful, but t

4.7.5.1 N
The elemen
vector, as in

double [
double|[

We then ne
product:

double
doub!
for |
dot
}

retur

Note that a
null and thai

Several n
carry out ve
of these.

1so works:

fd"};

yject and
f elements
3in

a subclass

- example),
3 the array
ald have to
r elements.

1 Java than
anefits. For
:nt number,

4.7 More about arrays

and if the element exceeds the declared length of the array, an out of bounds
run-time exception is thrown.

Thus, unlike in C or C++, a program cannot run off the end of an array
and write to places in memory where it should not. This avoids a very common
program bug and source of security attacks that can be difficult to track down
since the problem may not show up until well after the write occurs. On the other
hand, there is some performance penalty in the bounds checking that can show
up when doing intensive processing with arrays.

4.7.5 Mathematical vectors and matrices

Vector and matrix operations are obviously standard tools throughout science and
engineering. Here we look at some ways to use Java arrays to represent and carry
out operations for vectors and matrices.

Note that the Java core language includes a class called Vector in the
java.util package (see Chapter 10). Vector is similar to the ArrayList
discussed above (see Section 4.6.3); both provide a dynamic list that allows for
both adding and removing elements. ArrayList and Vector are often quite
useful, but they are slow and not intended for mathematical operations.

4.7.56.1 Mathematical vectors
The elements of a floating-point array can represent the component values of a
vector, as in

]

double[] vecl {0.5,0.5,0.5};
double[] vec2 = {1.0,0.0,0.2};

We then need methods to carry out various vector operations such as the dot
product:

double dot (double[] a, doublel[]l b) {
double dot_prod = 0.0;
for (int i=0; i < a.length; i++) {
dot_prod += alil*blil];
}

return dot_prod;

}

Note that a more robust method would check that the vector arguments are not
null and that the array lengths are equal.

Several numerical libraries are available that provide classes with methods to
carry out vector operations. The Web Course Chapter 4 provides links to several
of these.

Page 191 of 244

123

124

Page 192 of 244

More about objects in Java

4.7.5.2 Matrices
The obvious approach for matrices is to use arrays with two indices:

double[][] dMatrix = new double[n] [m];

However, as indicated by the discussion in Section 4.7.2, this does not produce
a true two dimensional array in memory but is actually a one-dimensional array
of references to other one-dimensional arrays, each of which can be located in a
different area of memory.

In the C language, moving from one element to the nextina 2D array requires
only incrementing a memory pointer. This does not apply for Java, which uses
an indirect referencing approach that causes a performance penalty, especially if
the matrix is used in intensive calculations.

One approach to ameliorate this problem to some extent is to use a 1D array.
The code below shows how one might develop a matrix class to use a 1D array
for 2D operations. A sophisticated compiler can optimize such a class and in
some cases provide better performance than a standard Java two-dimensional

array.

public class Matrix2D {
private final double[] fMat;

private final int £fCols;:
private final int fRows;
private final int fCol;
private final int fRow;

public Matrix2D (int rows, int cols) {
fCols = cols;
fRows = rows;
fMat= new double[rows * cols]:

/** vy = row number, ¢ = column number **/
public double get (int r, int c) {
return fMat[r * fCols + cl;

/** ¥ = row number, ¢ = column number **/
public double set (int r, int ¢, double val) {
fMat[r * fCols + c] = val;

other methods, e.g. to fill the array, access &

subset of elements, etc.

4.8 Impt

In the Chapt
complex nui
like to add t
rather than n
can still use
number clas

public c

double
double
£¥* ICc
* %
Comple
real

/** Ge
public
{retur
public

{retur

/** De
public
real

imag

/** De
public
real
imag

/** De

**/
public

doub
doub

retu

4.8 Improved complex number class 125

4.8 Improved complex number class

In the Chapter 3 we created a class with the bare essentials needed to represent
complex numbers. Here we expand on that class. For example, we would often
like to add two complex numbers and put the sum into another complex number
rather than modify one of the current complex objects. Because of overloading we
can still use the add () method name. A new, improved version of our complex
number class appears here:

produce
nal array
sated in a

/ requires
hich uses public class Complex {
secially if
double real;

1D array. double imag;

1D array
ss and in

/** Constructor that initializes the real & imag .values
**/
Complex (double r, double i

nensional " .
real = r; imag = 1;

/** Getter methods for real & imaginary parts **/
public double getReal ()

{return real;}

public double getImag ()

{return imag;}

/** Define an add method **/
public void add (Complex cvalue) {
real = real + cvalue.real;

imag = imag + cvalue.imag;

/*% Define a subtract method. **/
public void subtract (Complex cvalue)
real = real - cvalue.real;
imag = imag - cvalue.imag;

/** Define a static add method that returns a

* a new Complex object with the sum.

**/

public static Complex add (Complex cvaluel,

Complex cvalue2) {

double r = cvaluel.real + cvalue2.real;

s a double i = cvaluel.imag + cvalue2.imag;

return new Complex (r, i):

Page 193 of 244

126

Page 194 of 244

More about objects in Java

/** Define a static subtract method that returns a
* a new Complex object with the difference.

**/
public static Complex subtract (Complex cvaluel,
Complex cvalue2) {

double r = cvaluel.real - cvalue2.real;
double i = cvaluel.imag - cvalue2.imag;
return new Complex (r, i);

}

} // class Complex

Here the new static add () and subtract () methods each create anew complex
object to hold the sum and difference, respectively, of the two input complex
objects. The operand objects are unchanged by the method.

As we discussed in Chapter 3, a static method is invoked by giving the name
of the class and the dot operator. Unfortunately, in Java, unlike C++, we cannot
override the + operator and create a special + operator for complex addition. The
following code shows how to add two complex numbers together using our static
add () method:

public class ComplexTest {

public static void main (String[] args) {
// Create complex objects
Complex a = new Complex (1.0, 2.1);
Complex b = new Complex (3.3, 1.2});

Complex ¢ = Complex.add (a, b); // ¢ now holds a + b

other code .

The Web Course Chapter 4 gives a more complete version of the class (e.g. it
includes modulus, multiplication, etc.).

4.9 Random number generation

Random values can be obtained from the Math class using the method
public static double random ()
This method produces pseudo-random double values in the range

0.0 <= r < 1.0

The first t:
current tin
The je
generators
the option:
The me

® nextInt
e nextInt
® nextBoc

® nextGat

The last th

491 R

The Randc
the constrt
the algorit]

Randon
thateventu
sequence. .
eventually
to the rand:
are said to

To insu1
all implem
returns the

The line

Xitr =

As discusst
produce ra
long. The 1

Also, if
as points in
but instead
and possib.
shuffle the

In Java

0x
11
m = 248

C

The actual

v complex
: complex

the name
we cannot
lition. The
:our static

lass (e.g. it

4.9 Random number generation

The first time it is invoked, it initializes the seed with a value derived from the
current time.

The java.util.Random class provides a more extensive set of random
generators. Two constructors —Random () and Random (long seed) —offer
the options of initialization from the current time or from a specific seed value.

The methods in the Random class include:

e nextInt () —integersintherange 0 <= r < 2**32

e nextInt (int n) —integersintherange 0 <= r < n

e nextBoolean (int n) —randomly chosen true/false

e nextGaussian () —random double values with mean 0.0 and sigma of 1.0

The last three methods first became available with Java 1.2.

4.9.1 Random number algorithm

The Random class uses a linear congruential algorithm [1,2] with a 48-bit seed. If
the constructor Random (long) or the setSeed (long) method is invoked,
the algorithm uses only the lower 48 bits of the seed value.

Random number generator formulas actually produce a sequence of numbers
that eventually repeat. For the same seed value a formula always produces the same
sequence. A seed simply selects where in the sequence to start. The generator will
eventually repeat that seed value and start the same sequence again. Compared
to the randomness of physical fluctuations, such as in radio noise, these formulas
are said to produce pseudo-random numbers.

To insure that applications ported to different platforms give the same results,
all implementations of Java must use the same algorithm so that the same seed
returns the same sequence regardless of the platform.

The linear congruential formula in Java goes as

Xi4p = (@ * X3 + ¢) mod m

As discussed in the references, you should use such formulas with care. They can
produce random number sequences of a length up to m but not necessarily that
long. The length depends on the set of a, ¢, and m values chosen.

Also, if you grab consecutive sequences of numbers of K length, and plot them
as points in K-dimensional space, they do not fully populate the volume randomly
but instead lie on K-1dimensional planes. There are no more than m*/* planes
and possibly less. If you need to create points in a space this way, you should
shuffle the values obtained from the generator. [2]

In Java the values in the linear congruential formula in Random are

a = Ox5DEECE66DL
c = 11
m= 2% — 1.

The actual code in next (int lbits) goes as

Page 195 of 244

127

128

Page 196 of 244

More about objects in Java

synchronized protected int next (int bits) {
seed = (seed * OxS5DEECE66DL + OxBL) & ((1L << 48) - 1);
return (int) (seed >>> (48 - bits));

}

Here the mod operation comes via the AND operation since m in this case has all
47 bits set to 1.

This method is protected (see Section 5.3.3, Access Rules). The public
random number methods accessible by all classes use the next () method. For
example, nextInt ()simply includes the statement

return next (32);

The nextLong () method invokes next (32), shifts the result by 32 bits to the
left, invokes next (32) again and then ORs the two values together to obtain a
64-bit random number:

return ((long)next (32) << 32) + next (32);
The nextFloat () method provides valuesintherange 0. 0f <= x < 1.0f:
return next (24) / ((float) (1 << 24));

ThenextDouble () methodprovides valuesintherange 0.0d <= x < 1.0d
using the statement

return (((long)next (26) << 27) + next (27))/(double) (1L << 53)
The nextBoolean () method uses the statement
return next (1)!= 0;

See the java.util.Random class specification for more detailed descriptions
of the algorithms used for these and the other next Xxx () methods.

4.10 Improved histogram class

Here we make a subclass of the BasicHist class discussed in Chapter 3.
The class definition below shows that Bet terHist inherits from BasicHist,
obtaining the properties of the latter while providing new capabilities.

Note how the constructor invokes super () to select a constructor in the base
class. Also, we see how the new methods in the subclass can access the data
variables in the base class. (In the next chapter we discuss access modifiers such
as private, which prevents subclasses from accessing a field or method.)

We add several methods to our histogram that provide various parameters
specifying the histogram. Also, a calculation of the mean and standard deviation
of the distribution in the histogram is included.

/**
pub
{reil

pub

{ret

s
pub

/**
pub
1

fi

pall

/*4
pub

13

4.10 Improved histogram class 129
- 1) /** A simple histogram class to count the frequency of
* yalues of a parameter of interest. **/
class BetterHist extends BasicHist
{
.ase has all /** This constructor initializes the basic elements of
* the histogram.
The public o) . , .)
public BetterHist (int numBins, double lo, double hi) {
tethod. For super (numBins, lo, hi);
}
/** Get the low end of the fange. 553 7
bits to the public double getLo ()
to obtain a IZStucapio
/** Get the high end of the range. **/
public double getHi ()
{return hi;}
< 1.0f:
/** Get the number of entries in the largest binz X/
public int getMax () {
int max = 0;
¢t < 1.0d
for (int i=0; i < numBins; i++)
if (max < bins[i]) max = bins(i];
L << 53) return max;
}
| /*% Get the number of entries in the smallest bin. **/
public int getMin ()}
int min = getMax ();
escriptions I Ml . . '
for (int i=0; i < pnumBins; i++)
if (min > bins[i]) min = bins[i]:
return min;
!
Chapux 3. /*+ Get the total number of entries **/
sicHist, public int getTotal (). {
int total = 0;
" for (int i=0; i < numBins; i++)
in the base total += bins(i];
ss the data l return total;
fifiers such)
thOd) /** Get the average and std. dev. of the distribution. **/
parameters public double [] getStats () {

int total = 0;

d deviation

Page 197 of 244

130

Page 198 of 244

More about objects in Java

double wtTotal = 0;
double wtTotal2 = 0:
double [] stat = new double[2];
double binwidth = range/numBins;

for (int i=0; i < numBins; i++) {
total += bins(i];
double binMid = (i - 0.5) * binwidth + 1o;
wtTotal += bins(i] * binMid;
wtTotal2 += bins[i] * binMid * binMid;

if (total > 0) {
stat[0] = wtTotal/total;
double avZ = wtTotal2/total;
stat[l] = Math.sqgrt (av2 - stat[0] *stat[0]);

}

else {
stat[0}) = 0.0;
stat[1] = -1.0;

}

return stat;

} // getStats
} // class BetterHist

411 Understanding OOP

Chapters 3 and 4 present the fundamentals of class definitions and objects. In
Chapter 5 we look at how classes are organized into files and directories and how
the JVM locates classes. If you find that object-oriented programming (O0P)
remains somewhat vague, your understanding of the concepts involved will
deepen as you see OOP techniques applied to graphics, threading, I/O, and other
areas in subsequent chapters. We return to class structure, design, and analysis
in Chapter 16 where we give a brief overview of the Unified Modeling Language
(UML). UML provides a systematic approach to the design of classes and to
analysis of the interactions among objects. We then use UML to design a set of
classes for a distributed computing example.

4.12 Web Course materials

The Web Course Chapter 4: Supplements section provides more discussion of
inheritance and the overriding and overloading features. There is also discussion
of security aspects of Java including the checking of code by the JVM during
class loading. It also gives a brief overview of the security manager.

The Cha
programs fi
number ger
section con

Referenc

[1] Donald!
Volume .
[2] W. H. Pr
C: The ¢
available

Resource

Ronald Mak, .
Computing,

Resources 131

The Chapter 4: Tech section provides additional discussion and demonstration
programs for the vector/matrices in Java, the complex number class, random
number generation, and the improved histogram class. The Chapter 4: Physics
section continues with a tutorial on numerical computing techniques with Java.

References

[1] Donald Knuth, The Art of Computer Programming: Semi-numerical Algovithms
Volume 2, 3rd edn, Addison-Wesley, 1997.

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in
C: The Art of Scientific Computing, Cambridge, 1992. (Subsequent versions are
available for Fortran 90 and C++.)

Resources

Ronald Mak, Java Number Cruncher: The Java Programmer s Guide to Numerical
Computing, Prentice Hall, 2003.

bjects. In
rand how
g (OOP)
lved will
and other
| analysis
_anguage
ss and to
n a set of

ussion of
iscussion
M during

Page 199 of 244

Supplements
<. Inaddition,
3.

1 applet with
‘orm random
‘the rejection
rovides more

non-uniform
tom distribu-

:s/.
un

2ms,

Chapter 8
Threads

8.1 Introduction

Threads in Java are processes that run in parallel within the Java Virtual Machine.
When the JVM runs on a single real processor the parallelism is, of course,
only apparent because of the high speed switching of threads in and out of the
processor. Yet even in that case, threading can provide significant advantages.
For example, while one thread deals with a relatively slow I/O operation such as
downloading a file over the network, other threads can do useful work. Threads
can assist in modularizing program design. An animation can assign different
threads to rendering the graphics, to sound effects, and to user interactions so
that all of these operations appear to take place simultaneously. Furthermore, a
JVM can assign Java threads to native OS threads (but isn’t required to) and on
a multiprocessor system it could thus provide true parallel performance.

Java makes the creation and running of threads quite easy. We will concentrate
on the basics of threading and only briefly touch on the subtle complications that
arise when multiple threads interact with each other and need to access and modify
common resources. Such situations can result in data race, deadlock, and other
interference problems that result in distorted data or hung programs.

8.2 Introduction to threads

In Java you can create one or more threads within your program just as you can
run one or more programs in an operating system [1-4]. Most JVMs, in fact,
take great advantage of threads for such tasks as input/output operations and
user-interface event handling. Since the Java garbage collector always runs in a
separate thread, even the simplest Java program is actually multithreaded.

In the previous chapters we saw that Java applications begin when the JVM
invokes the main () method. (The application itself runs as a thread in the JVM.)
Instead of a main (), the thread processes begin and end with a method named
run (). You place code in run() to control the operations that you wish to
accomplish with the thread. The thread lives only as long as the process remains
within run (). When the thread process returns from the run (), the thread is
dead and cannot be resurrected.

Page 200 of 244

2563

254 Threads

You create a thread class in one of two ways;

1. Create a subclass of the Thread class and override the run () method.

2. Create a class that implements the Runnable interface, which has only one method:
run (). Pass a reference to this class in the constructor of Thread. The thread then
calls back to this run () method when the thread starts.

In .the following sections we examine these two thread creation techniques
further.

8.2.1 Thread creation: subclass

Creating a subclass of Thread offers the most conceptually straightforward
approach to threading. In this approach the subclass overrides the run () method
with the code you wish to process. The following code segments illustrate this
approach.

The class MyThread extends the Thread class and overrides the method
run () with one that contains a loop that prints out a message until a counter
hits 20.

public class MyThread extends Thread
{
public void run () {
int count = 0;

while (true) {
System.out.println ("Thread alive");

// Print every 0.1l0sec for 2 seconds
try {
Thread.sleep (100);

}
catch (InterruptedException e) {}
count++;
if (count >= 20) break;

}

System.out.println ("Thread stopping"};

urAmriun
} // class MyThread

“In MyApplet shown below, the start () method creates an instance of the
MyThread class and invokes the thread’s start () method. This will in turn
invoke the run () method. The thread goes into a loop and prints a message every
100 ms using the Thread class static method sleep (long time), where time

Page 201 of 244

is in millisec
process exits

/** Demo

public c

/** A;

%/

public

7/
MyT.

The diagra:
MyThread

Create’
| | myTh
Then in

to launc

N
Figure 8.1

Creates an it
applet invok
returns but
run () meth
dies (i.e. ca

one method:
e thread then

techniques

ightforward
1() method
lustrate this

the method
il a counter

ince of the
¥ill in turn
3sage every
where time

8.2 Introduction to threads

is in milliseconds. The thread then dies — i.e. it cannot be restarted — once the
process exits from run ().

/** Demo threading with Runnable implementation.**/
public class MyApplet extends java.applet.Applet
{

/** Applet’'s start method creates and starts a thread.

*x/

public void start () {

// Create an instance of MyThread.
MyThread myThread = new MyThread ();

// Start the thread
myThread.start ();
} // start

public void paint(java.awt.Graphics g) {
g.drawString ("Thread Demo 120 #20] ¢

}
} // class MyApplet

The diagram in Figure 8.1 shows schematically how the main thread and
MyThread thread run in parallel.

MyApplet |

myThread=new MyThread() —————® MyThread [\
Then mvoke [‘ ’

myThread.start () -f+—— P start () returns anq a
to launch thread process [| new process begins with

i invocalion of run () m |

this MyThread object.

| run ()

| Process dies when ‘
l run () [nishes. |

—

|
~ ‘ Create Thread subclass object | |
|

Figure 8.1 This diagram illustrates threading with a Thread subclass. MyApplet
creates an instance of MyThread, which extends Thread and overrides run (). The
applet invokes the start () method for the MyThread object. The starc () method
returns but the thread process continues independently with the invocation of the
run() method in MyThread. When the th read process returns from run () the thread
dies (i.e. cannot be started again).

Page 202 of 244

255

256 Threads

8.2.2 Thread creation: Runnable

In the second threading technique a class implements the Runnable interface
and overrides its run () method. This approach is often convenient, especially
for cases where you want to create a single instance of a thread, as in an animation
for an applet. You pass a reference to the Runnable object via the constructor
of Thread and when it starts, the thread calls back to the run () method. As
before, the thread process dies after exiting run ().

The following code segment illustrates this approach. Here MyRunnableAp-
plet implements the Runnable interface. The start () method creates an
instance of the Thread class and passes a reference to itself (with the “this”
reference) in the thread’s constructor. When it invokes the start () method for
the thread, the thread will invoke the run () method in MyRunnableApplet.

/** Demo threading with Runnable implementation. **/
public class MyRunnableApplet extends java.applet.Applet
implements Runnable

/** Applet's start method creates a thread. **/
public void start () {

// Create an instance of Thread with a
// reference to this Runnable instance.
Thread thread = new Thread (this);

// Start the thread

thread.start ();

} // start

/** Override the Runnable run() method. **/
public void run () {
int count = 0;
while (true) {
System.out.println ("Thread alive");
// Print every 0.10sec for 5 seconds
try{
Thread.sleep(100);
} catch (InterruptedException e) {}
count++;
if (count >= 50) break;
}
System.out.printin ("Thread stopping");
} // run

public void paint (java.awt.Graphics g) {

Page 203 of 244

}
} // cla

The diagran

8.2.3 Th

The choicet
application
does not all:
Applet or
The run ()
For example
also need to

Extendin
specialized
case is whe:

[My
| Create T
| | referenc
‘ thre

| Then inv

I ‘ to launct

Figure 8.2
MyRunnable
Thread and
use the namr
applet invok
process con
applet objec
dies.

8.2 Introduction to threads 257

g.drawString ("Thread demo 2",20,20);

e interface }

especially } // class MyRunnableApplet

1 animation

sonstructor

nethod. As The diagram in Figure 8.2 shows schematically how this approach works.

=Bl EEp 8.2.3 Thread subclass vs. Runnable

creates an

1€ “this” | The choice between these two thread creation techniques depends on the particular

method for | application and what seems most appropriate and convenient for it. Since Java

Applet. | does not allow multiple inheritance, an applet class that is already a subclass of
' Applet or JApplet can become multithreaded by implementing Runnable.

The run () method will have access to the variables and methods of the class.
& For example, an applet animation may need parameters for Initialization and may
e

also need to invoke methods from the applet.

Extending Thread applies well to the situation where you want to create a
specialized thread class that does not need to extend any other class. A common
case is where many worker threads are needed such as in a server program that

‘ MyRunnableApplet

| Create Thread object and pass

| | reference to this Runnable object. ‘
| thread=new Thread(this) —b—of—p= Thread

| | - Constructor saves reference
to Runnable object.

| Then invoke |
| thread.start () ;—:_**P- start () returns and a

| | tolaunch thread process : new process begins with

| mnvocation of run () in the
Runnable object

‘ run () -——— runnable.run ()

The process dies when
‘ 1 run() retums |

Figure 8.2 This diagram illustrates threading with a Runnable class.
MyRunnableapplet implements the Runnable interface and it creates an instance of
Thread and passes in the constructor a reference to itself as a Runnable object. (We
use the name “runnable” for the reference variable to the Runnable object.) The
applet invokes the staxt () method for the thread and it returns while the thread
process continues independently with the invocation of the run() method in the
applet object. When the thread process returns from the applet’s run() the thread
dies.

Page 204 of 244

258

Page 205 of 244

Threads

assigns a worker to service each client that connects to it. When the client signs
off, the threaded worker process assigned to it dies.

8.3 Stopping threads

A thread dies in three ways:

e it returns from run ()
e the stop () method is invoked (this method is now deprecated)
e it is interrupted by a runtime exception

The first approach is always the preferred way for a thread to die. In the examples
shown above in Section 8.2, we used a flag variable in a loop to tell the run method
to finish. We recommend this approach to killing a thread.

Do not use the Thread method stop () to kill a thread. The stop () method
has been deprecated. That means that it still exists in the class definition but is
officially marked as obsolete and should be avoided. The stop () method causes
the thread to cease whatever it is doing and to throw a ThreadDeath exception.
This can leave data in an unknown state. For example, the thread might be midway
through setting the values of a group of variables when the thread was stopped.
This will leave some variables with new values and some with old values. Other
processes using those variables might then obtain invalid results. Furthermore, an
instruction involving a long or double type value can require two operations
in the JVM, which moves data in 32-bit chunks. So a thread stop might occur
after the first operation and leave the value in an indeterminate state. These kinds
of errors will be difficult to track down since the effect may not be seen until the
processing reaches another part of the program.

As mentioned earlier, the best way to stop a thread is to signal that the pro-
cessing should return from run (). Setting a flag can usually accomplish this. A
loop can check the flag after each pass and escape from the loop with the flag
switches. This allows for the process to finish what it is doing in a controlled
manner. In previous examples we set a boolean flag. In the applet below we use
the thread reference instead of a separate flag variable. Setting the reference to
null signals for the end of a loop in run () and also allows the garbage collector
to reclaim the memory used by the thread.

public class MyApplet extends Applet implements Runnable
{

Thread fMyThread;

public void init () {

publi
if

els

publi
£My

void
whi

}
Y // My.

Remember
unrelated tc
method in -
control the
loaded (not
loaded). Th
any live thr
stop () is
loads a new
Furtherr
inthe Thre
You can obt
signaling fc
creating a 1
thread died
finished.

8.4 Mul

An operati
for multith

8.4 Multiprocessing issues 259

client signs ;

public void start () {
if (fMyThread!= null) {
fMyThread.start ();
}
else
fMyThread = new Thread (this);

public void stop () {
¢ examples fMyThread = null;
run method }
() method void.run (O {
I ——— while (fMyThread!= null) ({
thod causes)
L exception.)
be midway } /7 MyApplet
as stopped.
lues. Other
\ermore, an Remember that the start () and stop () methods in the Applet class are
operations unrelated to methods with the same names in the Thread class. Like the init ()
aight occur method in the Applet class, these are just methods that allow the browser to
Chese kinds control the applet. The browser invokes start () each time the applet page is

loaded (note that init () is only invoked the first time the applet web page is
loaded). The applet’s stop () is a good place to do housecleaning such as killing
any live threads. Always explicitly stop your threads in applets when the applet

en until the

1at the pro-
Jlish this. A stop () is called. Otherwise, they may continue running even when the browser
ith the flag loads a new web page.

controlled Furthermore, do not use the deprecated suspend () and resume () methods
Jow we use in the Thread class for the same reasons given for not using the stop () method.

You can obtain effective suspend/resume operations by killing the thread (that is,

eference to
signaling for it to return safely from the processing in the run () method) and

ze collector
creating a new one with the same values of the variables as when the previous
thread died. The new thread will then simply continue from where the last one
finished.
lable

8.4 Multiprocessing issues

An operating system executes multiple processes in a manner similar to that
for multithreading except that each process stack refers to a different program

Page 206 of 244

260

Page 207 of 244

Threads

in memory rather than code within a single program. The Java Virtual Machine
(JVM) controls the threads within a Java program much as the machine operating
system controls multiple processes.

In some JVM implementations, threads are directly assigned to native pro-
cesses in the operating system. Furthermore, in operating systems that support
multiple physical processors, the threads can actually run on different processors
and thus achieve true parallel processing.

Multiprocessing in Java with threads is relatively straightforward and provides
for great flexibility in program design. The JVM handles most of the details of
running threads but your program can influence the sharing of resources and
setting priorities for multiple threads.

8.4.1 Sharing resources

Just as in an operating system, when multiple threads need to share a processor
or other resources, the JVM must provide a mechanism for a thread to pause
and allow other threads the opportunity to run. The two basic designs for context
switching of threads are:

® preemptive or time-slicing — give each thread fixed periods of time to run
¢ non-preemptive or cooperative — a thread decides for itself when to surrender control

Generally, the preemptive approach is the most flexible and robust. A misbehav-
ing thread cannot hog all the resources and possibly freeze the whole program.
Unfortunately, the ‘context switching design is not specified currently for Java
and so different JVMs do it differently. Thus you should design your multi-
threaded code for either possibility if you expect to distribute your program for
general use.

For example, you can explicitly add pauses to your threads to ensure they
share the processing. The static method yield () in the Thread class tells the
currently executing thread to pause momentarily and let other threads run. The
static method sleep (long millis), where millis is in milliseconds, tells
the currently executing thread to pause for a specific length of time. There is
also the overloaded version method sleep(long millis, int nanos),
where the sleep time equals mi1llis in milliseconds plus nanos in nanosec-
onds. (Most platforms, however, cannot specify time that accurately.) With these
two methods, you can ensure that when your program runs in a non-preemptive
environment, the threads will release control at suitable points in the thread code.

The resources needed for each thread is another aspect of multiprocessing
to consider when creating a high number of threads. The maximum number of
threads depends on the stack space needed per thread and the amount of memory
available. The stack size default is 400 XB. For a 1 gigabyte address space this

should allow
itself plus any
an OutOfMes

8.4.2 Set

Every thread
trolled using
can be expec
ority threads.
the JVM imp
ity to JVM di
speed and res
resources.
The JVM 3
ing capabiliti:
Even among
details of that
and perhaps :
certain is tha
the thread scl
more threads
take into acc
thread is perl
Over a long
scheduled mu
at any given
a higher prio:
not a reliable
another. (See
which expanc
of thread exe
With thos
getPriori
Thread clas

® MIN_PRIOF
® NORM_PRIC
® MAX_PRIOF

The default |
threads alwar

it Machine
s operating

1ative pro-
@at support
processors

d provides
: details of
yurces and

processor
1 to pause
‘or context

er control

misbehav-
} program.
y for Java
our multi-
'ogram for

wsure they
5s tells the
s run. The
onds, tells
. There is
nanos),
| nanosec-
With these
reemptive
read code.
yrocessing
wmber of
fmemory
space this

' 8.4 Multiprocessing issues

should allow up to 2500 tiny threads, but in practice, because the thread code
itself plus any memory allocated for objects a thread uses takes up memory too,
an outOfMemoryError will usually occur far sooner.

8.4.2 Setting priorities

Every thread has an integer priority value between 1 and 10 that can be con-
trolled using methods in the Thread class. Generally, higher priority threads
can be expected to be given preference by the thread scheduler over lower pri-
ority threads. However, the implementation of thread scheduling is left up to
the JVM implementation. This lack of specificity provides maximum flexibil-
ity to JVM designers since Java can be implemented on platforms with limited
speed and resources and also on platforms with multiple processors and extensive
resources. '

The JVM implementation must work within the native platform’s multithread-
ing capabilities, which might or might not include native multithreading features.
Even among host operating systems that natively support multiple threads, the
details of that support are sure to be different among different operating systems
and perhaps among different hardware platforms. About all that can be said for
certain is that higher priority threads should receive preferential treatment by
the thread scheduler compared to threads with lower priority. However, if two or
more threads are waiting for processor resources, the thread scheduler miay also
take into account how long the threads have been waiting. The highest priority
thread is perhaps likely to be the first to be scheduled, though not necessarily.
Over a long enough sampling time, higher priority threads will, on average, be
scheduled more often than lower priority threads, but that does not mean that
at any given time a lower priority thread might have control of the CPU while
a higher priority thread is waiting. In general, changing Java thread priorities is
not a reliable way to attempt to force one thread to always have preference over
another. (See Section 24.4 for a discussion of the real-time specification for Java,
which expands the number of priority levels to 28 and requires strict enforcement
of thread execution according to priority settings.)

With those caveats, you can get and set a thread’s priority with the
getPriority() and setPriority() methods in the Thread class. The
Thread class defines three constants:

e MIN_PRIORITY
e NORM_PRIORITY
e MAX_PRIORITY

The default priority is Thread .NORM_PRIORITY, which is 5, although new
threads always inherit the priority value of the creating thread. The following

Page 208 of 244

261

262

Page 209 of 244

Threads

code increments a thread’s priority to one unit higher than the normal priority:

Thread threadX = new Thread (this);
threadX.setPriority (Thread.NORM_PRIORITY + 1);
threadX.start ();

Attempting to set a thread’s priority below MIN_PRIORITY or above
MAX_PRIORITY results in an IllegalArgumentException.

For muitiple threads in a non-preemptive system, once one of them starts
running it will continue until one of the following happens:

e sleeps via an invocation of sleep ()

e yields control with yield()

o waits for a lock in a synchronized method (synchronization is discussed in the next
section)

e blocks on I/O such as a read () method waiting for data to appear

e terminates with a return from run ()

We will discuss synchronization and the wait () method in the following section.

8.5 Using multiple threads

Programs for some tasks become much easier to design with threads, sometimes
with lots of threads. We’ve already mentioned animations, and in Part II we will
see that client/server systems lend themselves naturally to multithreaded design —
the server can spin off a new thread to service each client. Some mathematical
algorithms, such as sorting and prime searching, also work well with multiple
threads working on different segments of the problem. On multiprocessor sys-
tems, JVMs can take advantage of true parallel processing and provide significant
speedups in performance for multithreaded applications.
There are basically four situations in which multiple threads operate:

1. Non-interacting threads — the actions of the threads are completely independent and
do not affect each other.

2. Task splitting — each thread works on a separate part of the same problem, such as
sorting different sections of a data set, but do not overlap with each other.

3. Exclusive thread operations — the threads work on the same data and must avoid
interfering with each other. This requires synchronization techniques.

4. Communicating threads — the threads must pass data to each other and do it in the
correct order.

The latter two cases can entail complex and often subtle interference problems
among the threads. We look in more detail at these four cases in the following
sections.

8.56.1 Nt

The simple
dently with
such a case
the values ¢
for demons

/** Dem
* cal¢
class I
{
ints £
joee i
ints £
Outpu

/i TRCon:
IntCount
f1d =
fMaxI
foutp
} 7/ cte

/** Sim

public s
while
fOutp
}

} // cle

The progra
interface di:
tons (see Fi
which creat

import -
import

import

public ¢

8.5 Using mulitiple threads 263
priority: 8.5.1 Non-interacting threads
The simplest situation with multiple threads is when each thread runs indepen-
dently without interacting with any other thread. Below is a simple example of
such a case. We have one Thread subclass called IntCounter that prints out
the values of an integer counter. We could do a more interesting calculation but
for demonstration purposes this will suffice.
or above
/** Demo Thread class to show how threads could do
1em starts * calculations in parallel. **/
class IntCounter extends Thread
{
int £Id=0;
int fCounter = 0;
in the next int fMaxIter = 0;
Outputable fOutput;
/** Constructor to initialize parameters. **/
IntCounter (int id, Outputable out) {
1g section. fId = id;
fMaxIter = 100000
fOoutput = out;
} // ctor
;ometimes
11 we will /** Simulate a calculation with an integer sum.**/
d design— publ%c void run () {
hematical while (fCo?nter < maxIter) fCounter++;
. foutput.println ("Thread" + fId + ": sum = " + fCounter) ;
1 multiple | }
essor Sys- ‘ } // class IntCounter
significant {
!
N i The program NonInteractApplet, which implements the Outputable

interface discussed in Chapter 6, provides a text area and “Go” and “Clear” but-
Sadontiand tons (see Figure 8.3). Clicking on “Go” invokes the applet’s start () method,
| which creates three instances of this Thread subclass and starts them:

:1m, such as E

|
must avoid i import javax.swing.*;

| import java.awt.*;

. i rt java.awt.event.¥*;
do it in the | PSS J
public class NonInteractApplet extends JApplet

problems implements Outputable, ActionListener
following {

Build interface .

Page 210 of 244

264

Figure 8.3 Display of the
NonInteractApplet
program. The Go button
has been pushed several
times to illustrate the
different order in which
the threads finish.

Page 211 of 244

Threads

// Pushing Go button leads to the invocation of this button
public void start () {
// Create 3 instances of each of the Thread subclass
IntCounter icl = new IntCounter (1, this);
IntCounter ic2 = new IntCounter (2, this);
IntCounter ic3 = new IntCounter (3, this);

// Start the threads
icli.start ();
ic2.start {);
ic3.start ();
} // start
} // class NonInteractApplet

In the output shown in Figure 8.3 you see that the threads can finish in a different
order for each press of “Go”. The order depends on the time allocated to each
thread and on what kind of thread scheduling the JVM uses. You can experiment
with different thread priorities by adding code to set the priorities of the three
thread instances differently. For instance, set 1c1 to a high priority and ic3 toa
low priority before starting the threads

icl.setPriority (Thread.MAX_PRIORITY) ;
ic2.setPriority (Thread.NORM_PRIORITY) ;
ic3.setPriority (Thread.MIN_PRIORITY) ;

Start: |2
Thread 1; suiv = 100000

Thread 3. surm = 100000
Thread 2: surm = 100000 |
Start: |
Thread 2: surn= 100000
Thread 2: sum=100000 |
Thread 1: sum = 100000

Start;
Thread 2 surn = 100000 |
Thread 1: sum= 100000 |
Thread 3: sum = 100000 |

Stant:
Thread 2: surn = 100000 |
Thread 3: sutm = 100000
Thread 1: sur = 100000 |
Start: '

Thread 1: summ = 100000
Thread eonm=d00000 1}

4]

Go J! Clear |

8.5.2 Tas

The next le
problem but
mteger valu
using differe
the specifiec

In the ex:
snippet belc
positive non

e
* Thre
* in a
Y
class Ma
{
int .
int £3
int f(
Qutput

/** Cons
* what
i
MatHunte
int [
int i
Qutput
) {
fIlo=:
fJlo=;
fMatr:
foutpt
Yy i/

button

sS

a different
ed to each
:xperiment
f the three
dic3toa

8.5 Using multiple threads

8.5.2 Task splitting

The next level in complexity involves multiple threads working on the same
problem but on separate, non-interfering parts. For example, given a particular
integer value, a program could find the number of primes up to that value by
using different threads to work on different sections of the range between 1 and
the specified value.

In the example here, we use the task-splitting technique to scan a matrix. The
snippet below shows a class that searches a matrix and counts the number of
positive non-zero elements:

/**
« Thread class to count the number of non-zero elements
* in a section of a matrix.
i“x/
class MatHunter extends Thread
{
int []1(] fMatrix;
int fIlo, fIhi, fJlo, fJhi;
int fOnes=0;

Outputable fOutput;

/** Constructor gets the matrix and the indices specifying

* what section to examine.
oy

MatHunter (
int [][] imat,
int i1, int i2, int 3jl., int j2,
Outputable out

) {
fIllo=il; £Ihi=i2;
fJlo=3jl; fJhi=j2;

fMatrix = imat;
fOutput = out;
Y ¥p/ ‘ctor

/** Examine a section of a 2D matrix and
*+ count the number of non-zerc elements,
?*/
public void run () {
for (int i=fIlo; i <= fIhi; i++) {
for (int j=fJlo; J <= £Jhi; j++) {
if (fMatrix([il{j] > 0) fOnes++;
}
yield ();

Page 212 of 244

265

266 Threads

}
foutput.println ("# ones =" + fOnes + "for i =" +
fIlo + "to" + fIhi + "& j =" + £Jlo + "to" + fJhi);
} // run

} // class MatHunter

The program TaskSplitApplet creates a matrix with a random distribution
of zero and non-zero elements. It then creates four instances of MatHunter, one
for each quadrant of the matrix. Each instance works on the same problem but in
a separate, independent section of the matrix.

public class TaskSplitApplet extends JApplet
implements Outputable, ActionListener

Build the interface .

public void start () {
int[][] imat = new int[2000][2000];

for (int i=0; i < 2000; i++) {
for (int j=0; j < 2000; j++) {
if (Math.random() > 0.5) imat[i)({j]) = 1;

}
MatHunter mhl = new MatHunter (imat,0,999,0,999,this);
MatHunter mh2 =

new MatHunter (imat,0,999,1000,1999, this);
MatHunter mh3 =

new MatHunter (imat,1000,1999,0,999,this);
MatHunter mh4 =

new MatHunter (imat,1000,1999,1000,1899,this);

Println ("Start:");
mhl.start ();
mh2.start ();
mh3.start ();
mhd.start ();
} // start
} // class TaskSplitApplet

Figure 8.4 shows the results of different threads finishing in a different order each
fime the “Go” button is pressed.

Page 213 of 244

Start
#ones = 5004
| #ones=500C
| #ones = 5007
| #ones = 5004
Start
#ones=5000
#ones = 4089
#ones = 499§
\ #ones=5000
Start
| #ones= 4998
| # anes = 4998
#ones = 4998
| # ones = 4999
Start:
\ # ones = 5005
L#ones = 499F
y ——

Figure84 [
result in a dif

8.5.3 Ex

Threading b
with each o1
processes bc
from an exa
a number in
ity is empty
from Cavit
would alterr
special step:
the Cavity
still full.

This type
do its task w
nization sch:
in single fil¢
occur.

In this ca
to invoke eit
lock on the ¢
other thread
lock termino
The term mc

fJhi);

listribution
inter, one
blem but in

,this);

i order each

8.5 Using multiple threads

|Start -
ones=500459 fori=010999 &j=0to 399
#ones=500010f0ri= 010999 &j= 1000 to 1999
#ohes=4600734 fori=1000t0 1999 & j= 010 8999
ohes = 500422 fori= 1000 to 1999 &j= 1000 to 184

Starl:
ones = 500036 fori=1000to 1999 &j=1000to 194
#ones=498996fori=010 999 &j= 010 999 =

; #ones = 499807 fori=0to 999 & j=1000 to 1939

[#ones=500080 fori=100010 1999 &)= 010 999

Start:

| #ones= 489307 fori= 010 999 &j=0to 999

| #ones= 499852 fori=10001t0 1939 &j= 0 to 998

| #ones=499832fori=010 989 &j=100010 1999

| #ones= 499988 fori=10001t0 1999 & j=1000to 194

|Stan:

r#anes:SOOSS?fori:Dto 999 & j=0ta 999 —

nglmjp_‘q‘;,.-ig,qﬁﬂ]_rnm =t 909 & i = 1.000.10.1.0¢ (i,_i x|
1 il IR

=

E Cle.ar |

Figure 8.4 Display of TaskSplitaApplet program. Pressing the “Go” button can
result in a different sequence in the completion times of the thread each time.

8.5.3 Exclusive thread operations

Threading becomes trickier when threads perform operations that can conflict
with each other. For example, Figure 8.5 depicts a situation where two thread
processes both want to access an object but for different purposes (this is derived
from an example in the Sun Java Tutorial). The Filler thread wants to put
a number into the bin variable in the Box. It can only do so when the cav-
ity is empty. The Getter, on the other hand, wants to tetrieve the number
from Cavity and leave the Cavity empty. Ideally, Filler and Getter
would alternate their calls to the methods put () and get (). However, if no
special steps are taken, it is quite easy for Getter to invoke get () when
the Cavity is empty and for Filler to invoke put () when the Cavity is
still full.

This type of situation is called a data race because each thread is racing to
do its task without waiting for the other thread to finish its activity. A synchro-
nization scheme prevents this problem. Synchronization forces threads to wait
in single file at the method or code block of an object where the conflict can
occur.

In this case, this means that the Box object only allows one thread at a time
to invoke either its put () or get (). It is as if only one thread object owns the
lock on the door to a Box object. That thread must give up the lock before any
other thread can access any synchronized method on the object. (Note that the
lock terminology is by convention. Giving up the key might be more illuminating.
The term monitor is also used.)

Page 214 of 244

267

268

Threads

1 Filler | l Getter l
(@) ~—
put () O get ()
bin Box
('b) l Filler ' [Getter |
put () @ get()
bin Box
© | Filler 1 I Getter
put() @ get()
bin Box
Figure 8.5 (a) The Filler and Getter threads need to access the bin in the Box.

The Getter needs, however, to wait till the bin is filled. (b) While the Filler places a
value in the bin via the synchronized put () method, the Getter cannot invoke the
synchronized get () method. (c) Similarly, the Filler must wait till the Getter
finishes invoking the get () method before it can invoke put ().

In the following code for the Box class, we see that the get () and put ()
methods are prefaced by the modifier synchronized. This indicates that only
one thread can invoke either of these methods at the same time for the same object.
That is, during the time that a thread executes, say, the get () method, no other
thread can execute either the get () or put () method for the same Box object.

public class Box

{

private int fBin;

private boolean fFilled = false;
Outputable fOutput;

xR
* &

Box

Constructor obtains reference to Outputable object,

(Outputable out) {

fOoutput = out;

Page 215 of 244

VARE FI:
public
whi

—

fFi.
f0out
not:
retu

Y /7 ¢

Fux Tf
public
whil

&3

fBin

fFil

fout
noti

,‘ /7 jol

} 7/ clas

We want to e
interference |
one Box obje
different Box

This code
thread invoke
object becaus
1s granted the
check is made
already true (
Similarly, dur
wait () isin
and remains a

8.5 Using multiple threads 269

} // ctor

/** If bin is not filled, wait for it to be. **/
public synchronized int get () {
while (!fFilled){
try {
wait ();
}
catch (InterruptedException e) {}
}
frilled = false;
foutput.println ("Get value:" + £fBin);
notifyAll ();
return fBin;
Y // get

/** If bin is filled, wait for it to be emptied. **/
public synchronized void put {(int value) {
while (fFilled) {
try {
wait ();
}
catch (InterruptedException e) {}
}

1 the Box.
ler places a fBin = value;
invoke the fFilled = true:
Getter fOutput.println ("Put value: " + £Bin);

notifyall ();

} // put
and put () } // class Box

tes that only
P We want to emphasize that each instance of Box has its own lock. There is no
106,50 O =% interference problem among different Box objects. If a thread owns the lock on
Box object.

one Box object, this does not prevent another thread from owning the lock on a
different Box object.

This code also illustrates the wait () and notifyAll () methods. When a
thread invokes put () or get (), it will wait until it is granted the lock for that
object because of the presence of the synchronized keyword. Once the thread
is granted the lock, it continues on through the method. Inside the method, a
check is made on the fFilled flag. When attempting a put (), if fFilledis
>bject. already true (i.e. if the bin is already full), then an explicit wait () is invoked.
; Similarly, during a get (), if £Filled is false (i.e. if the bin is empty), then
wait () is invoked. Invoking wait () means that the thread gives up the lock
{ and remains at that point in the method until notified to continue.

Page 216 of 244

270

Page 217 of 244

Threads

Let’s suppose that the Filler thread finds that fFilled = true during
the put () method; that thread will go into a wait state. Since £Filled is true,
the Getter thread passes the fFilled test in the get ()} method, obtains the
£Bin value, sets the fFilledflagto false,and invokesnotifyall () before
itreturns. The notifyall () method causes all threads in a wait state to attempt
to acquire the lock. When the lock is released by the Get ter in the synchronized
get () method, the Fillex thread can acquire the lock and continue on through
the put () method and fill the bin again.

The following code shows the Filler class. In the run () method, a loop
puts a value into the box and then pauses for a random period of time before doing
it again. For each pass of the loop, the put () invocation results in the printing
of a message via the Outputable reference.

public class Filler extends Thread

{

private Box £Box;

pubiic Filler (Box b) {

fBox = b;
}
public void run () {
for (int i=0; i < 10; i++) {
fBox.put (i);
try {
sleep ((int) (Math.random (} ~ 100));
}
catch (InterruptedException e) {}
} /7 run

} // class Filler

The following code shows the Get ter class. The loop in its run () method will
continue until it gets ten values from the box. Note, however, that the process will
experience occasional wait states in the get () method in Box to give time for
the Filler to do its job.

public class Getter extends Thread
{

private Box fBox;

private int fNumber;

public Getter (Box b) {
fBox = b;

[Putvalue:
IGet value:
[Putvalue: 1
[Betvalue:
Putvalue: 2
iGet value:
Futvalue: 2
Getvalue: !
[Putvalue:
[Getvalue; «
Futvalue:
[Getvalue:
[Putvalue:
iGet value:
[F‘ut value:
iGetvalue:
|Putvalue:
IGetvalue:
[Putvalue:
Getvalue:

T L

7

M e T

~

P

|
L.

Figure 8.6
as they fill

publ
ir
fc

Y //
L=V e

The snipp
and a Get
output. We
threads ea

public

ue during
ad is true,
ibtains the
() before
to attempt
«chronized
»n through

od, a loop
fore doing
1e printing

nethod will
yrocess will
ve time for

8.5 Using multiple threads 271

Putvalue: 0
[Getvalue: 0
IPutvalue: 1
Getvalue: 1
Put value: 2
Getvalue: 2
Putvalue: 3
Getvalue: 3
Putvalue: 4
Getvalue; 4
Putvalue: 5
Gefvalue: §
Putvalus: 6
Getvalue: 6
Putvalue: 7
Getvalue: 7
Putvalue: 8
Gelvalue: 8
Putvalue: 9
Getvalue: 9

:L Go J'! Clear |

Figure 8.6 The output of the Filler and Getter threads for the ExclusiveApplet
as they fill and retrieve a bin value in a Box object.

}

public void run () {
int value = 0;
for (int i=0;"i''< 10; i++) {

fNumber = fBox.get ();

}

Yo/ fpxun

} // class Getter

The snippet from ExclusiveApplet shown below creates a Box,a Filler,
and a Getter object and then starts the two threads. Figure 8.6 shows a typical
output. We see that the synchronization prevents a data race situation and the two
threads each complete their respective tasks.

public class ExclusiveApplet extends JApplet
implements Outputable, ActionListener

Build the interface

Page 218 of 244

272

Page 219 of 244

Threads

/** Create Filler and Getter thread instances and start
* them filling and getting from a Box instance. **/

public veid start () {

Box b = new Box (this);
Filler f1 = new Filler (b);
Getter bl = new Getter (b);
fl.start ();
bl.start ();

} // start

} // class ExclusiveApplet

8.5.4 Communications among threads

In the previous section, we discussed the case where multiple threads try to access
an object and can step on each other if not properly synchronized. Here we look
at the even trickier situation where a thread needs to access data in another thread
and must also avoid a data race situation.

The standard example for communicating threads is the producer/consumer
paradigm. The producer object invokes its own synchronized method to create
the data of interest. The consumer cannot invoke the producer’s get () method,
which is also synchronized, until the producer has finished with its creation
method. The producer, in effect, locks its own door to the consumer until it
finishes making the data. (Imagine a physical store that locks its doors and does
not allow shoppers in while restocking the shelves.) Similarly, while the consumer
gets the data from the producer, it obtains the lock and prevents the producer from
generating more data until the consumer is finished.

Below we illustrate this paradigm with a program in which the Sensor class
represents the producer thread and Da taGet ter represents the consumer thread.
An instance of Sensor obtains its data (here just clock readings) in a loop in
run () via calls to the synchronized sense () method. The data goes into a
buffer array. A thread can invoke get () in Sensor to obtain the oldest data in
the buffer. The indices are set up to emulate a FIFO (First-In-First-Out) buffer.
When the buffer is full, the Sensor thread waits for data to be read out (that is,
it gives up the lock by calling the wait () method).

To obtain the data, a DataGetter instance invokes the synchronized get ()
method in the Sensor instance. If no new data is available, it will give up the
lock and wait for new data to appear (that is, when noti£yall () is invoked in
the sense () method).

This snippet from DataSyncaApplet creates the sensor and starts it. Then a
DataGetter is created and started.

public

/7% C
* s
‘k*/
publi
/7
Ser

5.¢

//
/7
Dat
dg.
Y 7/

Y /7 cl

The sensc
the number
ment of a1
should go.
The fGet:
DataGett
than the M2
then the se
When the 1
walke the S«
no longer a
data. Other

import
/x*
* This
* that
xf
public
.
{
// Si

priva

start
k*/'

y to access
re we look
ther thread

/consumer
1 to create
) method,
'8 creation
er until it
s and does
s consumer
jucer from

1sor class
ner thread.
1a loop in
roes into a
lest data in
Jut) buffer.
ut (that is,

zed get ()
sive up the

invoked in

sit. Then a

8.5 Using multiple threads

public class DataSyncApplet extends JApplet
implements Outputable, ActionListener

Build the interface

/** Create Sensor and DataGetter thread instances and
* start them filling and getting from a Box instance.
k(’/
public void start() {
/] Create the Sensor and start it
Sensor s = new Sensor (this);

s.start ();

// Create DataGetter and tell it to obtain
// 100 sensor readings.
DataGetter dg = new DataGetter (s, 100, this);
dg.start ();
} // start

} // class DataSyncApplet

The Sensor (see code below) produces one data value (just a string containing
the number of milliseconds since the program began) and stores it in an ele-
ment of a buffer array. The fBufIndex keeps track of where the next value
should go. When it reaches the end of the array, it will circle back to the start.
The fGetIndex marks the value in the buffer that will be sent next to the
DataGetter. The £GetIndex should never fall farther behind £BufIndex
than the MAXGAP value (set here to 8). If the lag reaches the value of fMaxGap
then the sensor goes into a loop with an invocation of wait () for each pass.
When the DataGetter invokes the get () method, the notifyall () will
wake the Sensor thread from its wait state and it will check the lag again. If it is
no longer at the maximum, the process leaves the wait loop and produces more
data. Otherwise, it loops back around and invokes wait () again.

import java.util.*;
/**
*» This class represents a sensor producing data
+ that the DataGetter objects want to read.
*/
public class Semnsor extends Thread
{
// Size of the data buffer.
private static final int BUFFER_SIZE = 10;

Page 220 of 244

273

274

Page 221 of 244

Threads

// Don’'t let data production get more than

// 8 values ahead of the DataGetter

private static final int MAXGAP = 8;

private String [] fBuffer;

private int fBufIndex = 0; // sensor data buffer index
private int fGetIndex = 0; // data reading index
private final long fStart = System.currentTimeMillis ();

boolean fFlag = true;
Outputable fOutput;
/*+* Constructor creates buffer. Gets Outputable ref. **/
Sensor (Outputable out) {
fOutput = out;
fBuffer = new String [BUFFER_SIZE];
}
/** mpurn off sensor readings. **/
public void stopbata () {
fFlag = false;
/%% Take sensor readings in a loop until flag set false.
S
publicnvoidtrunyi(ieed
// Measure the parameter of interest
while (fFlag) sense ();

/** Use clock readings to simulate data. **/

private final String simulateData () {
return "' + (int) (System.currentTimeMillis () —
start) ;

/** Use indices fBufIndex, fGetIndex, and the lag()
* method to implement a first-in-first-out (FIFO)
* buffer. **/
synchronized void sense () {
// Don’t add more to the data buffer until the getIndex
// has reached within the allow range of bufIndex.
while (lag () > MAXGAP)
try {wait ();}
catch (Exception e) {}
}
fBuffer[fBufIndex] = simulateData ();
foutput .println("Sensor ["+ (fBufIndex) + "] ="
+ fBuffer [fBufIndex]);

fl

/
i3
nc
Y /7

/ * %k

-~

int
ir
ii
re

}

o
sync
/i
wl

}
TC

i
St
£C
4
i1
re
Y 7/

Y // ¢
The Date
gets its m.
DataSyn
import
s BT
 To
~ gS:
* ev

8.5 Using multiple threads 275

// Increment index to next slot for new data

| fBufIndex++;

‘ // Circle back to bottom of array if reaches top
ndex i if (fBufIndex == BUFFER_SIZE) fBufIndex = 0;

i notifyAll ();
is (); + i } // sense

/** Calculate distance the DataGetter is running behind
* the production of data. **/

int lag () {

2, 2]] int dif = fBufIndex — fGetIndex;
if (dif < 0) dif += BUFFER_SIZE;
return dif;

}

/** Get a data reading from the buffer. **/

synchronized String get () {
| // When indices are equal, wait for new data.
while (fBufIndex == fGetIndex) {
try{ wait(); }
false. catch (Exception e) {}
}
notifyAll ();

// Get data at current index
String data = fBuffer[fGetIndex];

// Increment pointer of next datum to get.

fGetIndex++;

) - // Circle back to bottom of array if reaches top
if (fGetIndex == BUFFER_SIZE) fGetIndex = 0;
return data;

} // get

) } // class Sensor

The DateGetter grabs a data value from the sensor after random delay until it
getIndex gets its maximum number of data values. Figure 8.7 shows typical output from

ex. DataSync.

import java.util.*

/** This class obtains sensor data via the get ()} method.
*+ To simulate random accesses to the sensor, it will
* sleep for brief periods of different lengths after
* every access. After the data is obtained, this thread

Page 222 of 244

276

Page 223 of 244

Threads

* will stop the sensor thread. **/
public class DataGetter extends Thread
{

Sensor fSensor;

Qutputable fOutput;

int fMaxData = 1000;

int fDataCount = 0;

-~

DataGetter (Sensor sensor, int maxNum, Outputable out)
fSensor = sensor;
fMaxData = maxNum;
fOutput = out;
}
/** Loop over sensor readings until data buff filled. **/
public void run () {
Random r = new Random () ;
while (true) {
String data = fSensor.get():

foutput .println(fDataCount++ + ". Got: " + data) ;

/! Stop both threads if data taking finished.

if (fDataCount >= fMaxData) {
fSensor.stopData ();
break;

i

// Pause briefly bhefore access the

// data again.

try
sleep (r.nextInt ()} % 300);

}

catch (Exception e) {}

}
} // run

Y // class DataGetter

8.6 Animations

A popular task for a thread in Java is to control an animation. A thread process
can direct the drawing of each frame while other aspects of the interface, such as
responding to user input, can continue in parallel.

The Drop2Dapplet program below illustrates a simple simulation of a
bouncing ball using Java 2D drawing tools. The applet creates a thread to direct
the drawing of the frames of the animation as the ball falls and bounces on the

floor and g
subclass of
the ball. Dr

The app
a thread to
first does s¢
animation.
method in
frame. If th
method, thy

import
import

import
(AT e

(5 5™
public

// Wi

£) {

| process
,such as

ion of a
to direct
3s on the

8.6 Animations

[g-e?nsor[O] =0
11=0

iSensor(|
|_Sensnr[2] =0 A
Sensot(3] =0 |
0.Gat: 0 |

'SensSensor(6) =0
|0r[5] =0
|_Sensor[?] =0
Sensot[8]=0
iSensor[Ql =0
Sensor(0] = 235
1. Got: 0
lSensor[ﬂ =485 i
[2.Got: 0 ||
|

L

1

!
Sensor(4]= 0 ‘ -

3. Got: 0

iSensor[Z] =435
Sensor(3] = 625 |
4, Got. 0
15.Got. 0 |
!Sen'sor[#] =625
B.Got0

Go || Clear

floor and gradually comes to a rest (see Figure 8.8). The interface consists of a
subclass of JPanel called Drop2DPanel and a button to initiate a new drop of
the ball. Drop2DPanel displays the ball and calculates its position.

The applet implements Runnable and in the start () method it creates
a thread to which it passes a reference to itself. The applet’s run () method
first does some initialization and then enters a loop that draws each frame of the
animation. The loop begins with a 25 millisecond pause using the static sleep ()
method in the Thread class. Then the Drop2DPanel is told to paint the next
frame. If the drop is done, the process jumps from the loop and exits the run ()
method, thus killing this thread.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/** This applet implements Runnable and uses a thread
* to create a simple dropped ball demonstration.**/
public class Drop2DApplet extends JApplet
implements Runnable, ActionListener

// Will use thread reference as a flag

277

Figure 8.7 Output of the
DataSyncApplet program
with sensor and
DataGetter classes.

Figure 8.8 The
Drop2DApplet program
demonstrates how to
create a simple
animation by simulating
a dropped ball that
bounces when it hits the
floor and gradually
comes to rest.

Page 224 of 244

278

Page 225 of 244

Threads

Thread fThread = null;
Drop2DPanel fDropPanel;
JButton fDropButton;

/** Build the interface. *=/
public void init () {
Container content_pane = getContentPane ();

Content _pane.setLayout (new BorderLayout ()];

// Create an instance of DropPanel
fDropPanel = new Drop2DPanel ();
// Add the Drop2DPanel tc the content pane.

Content_pane.add (BorderLayout.CENTER, fDropPanel);

// Create a button and add it
fDropButton = new JButton ("Drop"):;
fDropButton.addActionListener (this);

Content_pane.add (BorderlLayout.SOUTH, fDropButton) ;

Y // init

/** Start when browser is loaded or button pushed.
public void start () {
'/ If the thread reference not null then a
// thread is already running. Otherwise, create
// a thread and start it.
if (fTthread == null) {
fThread = new Thread (this);
fThread.start () ;
¥
} // start

/== Applet’'s stop method used to stop thread. **/

public void stop () {
// Setting thread to null will cause loop in
// run() to finish and kill the thread.
fThread = nuli;

} // stop

/** Button command, **/
public void actionPerformed (ActionEvent ae){
if (fDropPanel.isDone ()) start ():

o

/** The thread loops to draw each frame of drop. *
public void run () {
// Disable button during drop
fDropButton.setEnabled (false);

£,

>

/

*

/i
whi

1/

fDr
BANAY

} /7 cle

The Drop2
the ball for
reverses the
friction. Ewt
is done.

import
import
import

1mport

/BFOThi ¢

public «

{
// Pa
doubl
/7 Co
doubl
doubl
doubl
/{ st
doubl
// Fr
doubl
Wil EiL
noole

8.6 Animations 279

// Initialize the ball for the drop.
fDropPanel .reset ();

// Loop through animation frames
while (fThread!= null) {
// Sleep 25msecs between frames
try{Thread.sleep (25);
}
catch (InterruptedException e) ({}
// Repaint drop panel for each new frame
fDropPanel .repaint ();

T if (fDropPanel.isDone ()) £fThread = null;
i }
// Enable button for another drop
fDropButton.setEnabled (true);
"y } // actionPerformed

} // class DropApplet

** /

The Drop2DPanel class is shown below. The panel calculates the position of
the ball for each increment of time between the frames and redraws the ball. It
reverses the ball when it hits the floor and also subtracts some speed to simulate
friction. Eventually, the ball comes to a rest and sets a flag that the drop simulation
is done.

import javax.swing.*;
import java.awt.*;
import java.text.*;

import java.util.*;

/+* This JPanel subclass displays a falling ball. **/
public class Drop2DPanel extends JPanel

{

| // Parameters for the drop

! double fY = 0.0, £Vy = 0.0;

// Conversion factor from cm to drawing units
double fYConvert = 0.0;

double fXPixel= 0.0, fYPixel = 0.0,

double fRadius = 0.0 fDiam = 0.0;

// starting point for ball in cm

double £fYO0 = 1000.0;

// Frame dimensions.

double fFrameHt, fFrameWd;

// Flag for drop status :
boolean fDropDone = false;

Page 226 of 244

280

Page 227 of 244

Threads

Ellipse2D fBall;

/** Reset paraméters for a new drop. **/
void reset () {

fFrameHt = getHeight ():

fFramewd = getWidth ();

fXPixel = getWidth ()/2;
fy = £Y0; fvy = 0.0;

// Conversion factor from cm to pixels
// Start the ball about 20% from the top.
fYConvert = fFrameHt / (1.2 * £Y0};

// Choose a size for the ball relative

// to height of drawing area.

fRadius = (int) ((0.1 * fYy0) * fY¥YConvert);
fDiam = 2 * fRadius;

// Make the ball
fBall = new Ellipse2D.Double (fXPixel-fRadius,
fyPixel-fRadius,
fDiam, fDiam);
setBackground (Color.WHITE) ;
fDropDone = false;
} // reset

/** Draw the ball at its current position. **/
public void paintComponent (Graphics g) {
super.paintComponent (g);
Graphics2D g2 = (Graphics2D)g;
// Antialiasing for smooth surfaces.

g2 .setRenderingHint (RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON) ;

// Determine position after this time increement

calcPosition ();
// Move the ball.

fBall.setFrame (fXPixel-fRadius, fYPixel-fRadius,

fDiam, fDiam) ;
// Want a solid red ball.
g.setColor (Color.RED);
g2.fill(fBall);
// Now draw the ball
g2.draw (fBall);

}// paint

/** Calcu

void calc

// Inci
double
// Calc
Ty =8 £}
fvy =1
// Conxy
fyPixel
// Rewve
if ((£)Y
£1
/7
f3
/i
/1
ii
}

}
} // calc

/** Provi
public bc
return
1
} // class

8.7 Timers

A timer provide
timer can:

¢ signal the redray
® issue periodic re
e trigger a single 1

As we saw in the
own simple time:
action for a give

8.7 Timers 281

}// paintComponent

/*+ Calculate the ball position in the next frame. **/
void calcPosition () {

// Increment by 25 millseconds per frame

double dt = 0.025;

// Calculate position and velocity at each step
fy = fY + fvy * dt — 490.* dtc * dt;
fUy = fVy — 980.0 * dt;

// Convert to the pixel coordinates
fyPixel = fFrameHt — (int) (fY * fYConvert);

// Reverse direction when ball hits bottom.
if ((fYPixel + fRadius) >= (fFrameHt-1)) {
fVy = Math.abs (fVy):
// Subtract friction loss
fvy — = 0.1 * fVy;
// Stop when speed at bottom drops W
// below an arbitrary limit -
if (fvy < 15.0) |
fDropDone = true;

}

} // calcPosition

/** Provide a flag on drop status. **/
public boolean isDone () {
return fDropDone;

}
} // class Drop2DPanel

LIASING,

8.7 Timers
ment

A timer provides for periodic updates and scheduling of tasks. For example, a

timer can:
iius,

» signal the redrawing of frames for an animation
e issue periodic reminders as with a calendar application
e trigger a single task, e.g. an alarm, to occur at a particular time in the future

As we saw in the previous section, with the Thread class you could create your
own simple timer using the Thread.sleep (long millis) method todelay
action for a given amount of time. This approach, however, has some drawbacks.

Page 228 of 244

282

7:16:10 PM

Figure 8.9 The
ClockTimerl and
ClockTimer2 programs,
which both provide a
current time display like
that shown here, illustrate
the use of
java.util.Timer and
javax.swing.Timer,
respectively.

Page 229 of 244

Threads

For periodic events, if the duration of processing in between the sleep periods
varies significantly, then the overall timing will vary with respect to a clock. Also,
if you need several timer events, the program will require several threads and this
will use up system resources.

Java provides two timer classes [5-7]:

* javax.swing.Timer came with the Swing packages and is useful for such tasks as
prompting the updating of a progress bar *
e java.util.Timer anditshelperclass java.util.TimerTask provide for general

purpose timers with more features than the Swing timer

These timers can provide multiple timed events from a single thread and thus
conserve resources. They also have useful methods such as scheduleAt-
FixedRate (TimerTask task, long delay, long period)injava.
util.Timer. This method will set events to occur periodically at a fixed rate
and ties them to the system clock. This is obviously useful for many applications
such as a countdown timer and an alarm clock where you don’t want the timing
to drift relative to absolute time.

8.7.1 Jjava.util.Timer and TimerTask

The Timer and TimerTask combo in java.util offers the most general
purpose timing capabilities and includes a number of options. A Timer object
holds a single thread and can control many TimerTask objects. The TimerTask
abstract class implements the Runnable interface but it does not provide a
concrete run () method. Instead you create a TimerTask subclass to provide
the concrete run () method with the code to carry out the task of interest.

In the example below, we create a digital clock using a timer to redraw a
time display every second. The clock display uses DateFormatPanel, which
we describe in Chapter 10 when discussing the date classes. Whenever this
panel is drawn it displays the current time. The applet adds an instance of this
panel to its content pane and in the start () method creates an instance of
java.util.Timer.

A subclass of TimerTask called UpdateTask overrides the run () method
and simply tells the panel to redraw itself. UpdateTask is defined as an inner
class here and has access to the clock panel reference. The timer schedules
calls to the UpdateTask every 1000 milliseconds. Figure 8.9 shows the clock
display.

import javax.swing.*;
import java.awt.*;

import java.util.*;

/** This applet implements Runnable and uses a thread

* to
public
{

java

// Ne

Datel

publ:
Co

/7
fC

//
co

publ
/7
1

4
1/
f1

/**

publ
/7
f1

e/ / o

(Note tha
necessary
fTimer y
Whether w

8.7 Timers 283

:p periods * to create a digital clock. **/
ock. AIS('J, public class ClockTimerl extends Japplet
Is and this {

java.util.Timer fTimer;

// Need panel reference in run().
DateFormatPanel fClockPanel:;

ch tasks as
public void init () {

forgeneral Container content_pane = getContentPane) g

// Create an instance of DrawingPanel

1 and thus

fClockPanel = new DateFormatPanel ();
duleAt-
mjava. // BAdd the DrawingPanel to the contentPane.
ﬁ)'(ed rate content _pane.add (fClockPanel};
yplications }
the timing

public void start () {

// Create a timer.

frimer = new java.util.Timer ();
st general // Start the timer immediately and then repeat calls
rer object // to run in UpdateTask object every second.
merTask fTimer.schedule (new UpdateTask (), 0, 1000);

. }
provide a :
to provide
/** Stop clock when web page unlocaded. **/
srest. ! .
q public void stop () {

) T8 raVY a // Stop the clock updates.
.1, which fTimer.cancel ();
:never this 1
nce of this
nstance of /** Use the inner class technique to define the

* TimerTask subclass to update the clock.**/
() method class UpdateTask extends java.util.TimerTask ({
as an inner public void run () {
schedules fClockPanel.repaint ();

s the clock)

} // class ClockTimerl

(Note that since we import both javax.swing.* and java.util.* it is
necessary to use the fully qualified type java.util.Timer when declaring the
frimer variable. Without the full qualification, the compiler would not know
whether we wanted javax .swing.Timer or java .util.Timer.)

Page 230 of 244

284

Page 231 of 244

Threads

8.7.2 javax.swing.Timer

Although it has fewer options, the javax.swing.Timer can do some of the
same basic timing tasks as java.util.Timer. Below we show another version
of the digital clock except that it uses javax.swing.Timer. This timer con-
tacts an ActionListener after every time period rather than a TimerTask
object. Here the applet implements the ActionListener interface. The con-
structor for the timer takes as arguments the update period value and the reference
to the applet. The timer is then started and after every second the actionPer-
formed () method will be invoked and the clock panel repainted. The applet’s
stop () method stops the timer.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

/** This applet implements Runnable and uses a thread
* to create a digital clock. **/
public class ClockTimer2 extends JApplet

implements ActionListener
javax.swing.Timer fTimer;

// Need panel reference in runf).
DateFormatPanel fClockPanel;

public void init () {

Container content_pane = getContentPane ();

// Create an instance of DrawingPanel
fClockPanel = new DateFormatPanel (};

// Add the DrawingPanel to the contentPane.
content _pane.add (fClockPanel);

public void start () {
// Send events very 1000ms.

fTimer = new javax.swing.Timer (1000, this);

// Then start the timer.
fTimer.start ();

// T
publ:
Ob
if

// 5
publ

8.8 Col

Java Rele:
concurren
tures beyc
the new g
have expla

8.9 We

The Web (
and examj
new java

In the |
and subcls
histogram
to simulat
tools in Ja
of entries

This in
oriented
classes, ar
ical answe
option tha
classes. Er
refactorin,
mon supe
section. T

ome of the
her version
timer con-
imerTask
:. The con-
e reference
tionPer-
‘he applet’s

8.9 Web Course materials

// Timer creates an action event.

public void actionPerformed (ActionEvent e) {
Object source = e.getSource ();
if (source == fTimer)

fClockPanel.repaint ();

// Stop clock when web page unloaded
public void stop () {
// Stop the clock updates.
fTimer.stop ();

}
} // class ClockTimer2

8.8 Concurrency utilities in J2SE 5.0

Java Release 5.0 adds numerous enhancements to the threading control and
concurrency features of Java. Some of the enhancements are advanced fea-
tures beyond the scope of this book, and others require an understanding of
the new generics feature of 5.0. So we defer discussion of these until after we
have explained generics in Chapter 10.

8.9 Web Course materials

The Web Course Chapter 8: Supplements section provides additional information
and examples dealing with threading. This includes additional discussion of the
new java.util.concurrent tools available with Java 5.0.

In the Chapter 8: Tech section we expand the number of histogram classes
and subclasses as we add new capabilities. For example, we create an adaptive
histogram class that can expand its range limits as new data arrives. We use timers
to simulate the reading of data to plot in a histogram. We also discuss sorting
tools in Java and use them to sort the bins in a histogram according to the number
of entries in the bins. We use a thread to animate the sorting of a histogram.

This increase in histogram classes illustrates a common challenge in object-
oriented programming: when to modify existing classes, when to create sub-
classes, and when to create whole new classes. Subclasses would seem the log-
ical answer for an OOP environment but many small revisions for every new
option that comes along can quickly lead to an unmanageable plethora of sub-
classes. Eventually, your entire class design may need to be re-worked (also called
refactoring, with the implication that common parts are factored out into a com-
mon superclass). We discuss class design and refactoring further in the Tech
section. The Physics section looks at issues involved in animating simulations.

Page 232 of 244

285

286

Page 233 of 244

Threads

References

[1] Scott Oaks, Heary Wong, Java Threads, 2nd edn, O’Reilly, 1999.

[2] Lesson: Threads: Doing Two or More Tasks At Once — The Java Tutorial, Sun
Microsystems, http://java.sun.com/docs /books/tutorial/
essential/threads/.

How to Use Threads in Creating a GUI with JEC/Swing — The Java Tutorial, Sun
Microsystems, http://java.sun. com/docs /books/tutorial/uiswing/

3

—

misc/threads.html.

AWT Threading Issues — Java 2 Platform, Standard Edition, API Specification,
http://java.sun.com/j2se/1. 5/docs/api/.

[5] Using the Timer and TimerTask Classes — The Java Tutorial, Microsystems,

http://java.sun. com/docs/books/tutorial/uiswing/misc/

4

[}

timer.html.
[6) Using Timers to Run Recurring or Future Tasks on a Background Thread, JDC Tech Tips,
May 30, 2000, http://Jjava.sun. com/developer/TechTips/2000/
tt0530.html#tip2.
John Zukowski, Using Swing. Timers, JDC Tech Tips, May 21,2002,
http://java.sun. com/developer/JDCTechTips/2002/t£0521. html.

[7

—

Chapte!
Java ir

9.1 Intrc

Java provide
on the conc
one directio
correspondi
output strea
into a progr:
a network p
in data throl

The bulk
in Figure 9.
OutputsSt:
output tasks
add more ca
as afile or ¢
filtering the

Package:

e java.io
e java.nic
concept of
other entity
capabilitie

° java.ne!

java.ut:
® java.ut:
® javax. 1'.1
1/0, incluc
Chapter 1:

Java /O is ¢
[1,2]. Here

Javatechisa practical introduction to the java programming language with an
emphasis on the features that bepefit technical computing, such as platform
independence, extensive graphics capabilities, multi-threading, and t00ls to
develop network and distributed computing software and embedded processor
applications.

The book is divided into three parts. The first part presents the basics of
object-oriented programming in Java and then examines topics such as graphical
interfaces, thread processes, 110, and image processing. The second part begins
with a review of network programming and develops Web client-server exar nples
for tasks such as monitoring of remote devices. The focus then shifts to
distributed computing with RMI, which allows programs on different platforms to
exchange objects and call each other's methods. CORBA is also discussed and a
survey of web services is presented. The final part examines how Java programs
can access the local platform and interact with hardware, Topics include
combining native code with Java, communication via serial lines, and
programming embedded processors.

JavaTech demanstrates the ease with which java can be used to create
powerful network applications and distributed computing applications, It can be
used as a textbook for introductory- or intermediate- level programming courses,
and for more advanced students and researchers who need to learn Java for a
particular task.

The book is supported by an extensive website with instructional
materials, applets and application codes:

www.cambridge.org/9780521821131

» applets and application codes

o EXercises

« extensive references

« resources and tips

« starter and demo programs

« supplementary material for advanced users
« updated regularly

Cover illustration: a space radar image of the summits of two large voicanoes, Mt Merbabu (mid center)

and Mt Merapi (lower center), in central java. Indonesia 1 ava finws of different ages Aid suifdee toughness
appear In shades of green and yellow surrounding the summit. This rmage was taken on October 10, 1994 by the
Spacebourne Imaging Radar -C/X-Band Synthetic Aperture Radar on the space shuttle Endeavour

Courtesy of NASA |PL / Visible Earth

Cover designed by Hart McLeod

Page 234 of 244

CLARK S. LINDSEY runs his
own company, which develops
Java applications, web
publications, and educational
tools and materials.

JOHNNY S, TOLLIVER
develops robust Web services
software and GPS
applications at Oak Ridge
National Laboratory. He is a
sun Certified Java
Programmer

THOMAS LINDBLAD isa
professor in the Department
of Physics at the Royal
Institute of Technology.
Stockholm, where he
researches techniques in data
analysis in high data rate
systems.

CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

ISBN 0-521-82113-4

9 “?80521 821131

APPENDIX C

Page 235 of 244

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

Internet Technology as a Tool for Solving Engineering Problems

Aleksander Malinowski
Department of Electrical and Computer Engineering
Bradley University, Peoria, Illinois 61625, USA

olekmali@ieee.org, http://cegt201.bradley.edu/~olekmali/

Abstract - This tutorial covers all primary technologies
that can be used for Web programming with
applications to the Internet based data acquisition and
system control. The presentation is divided into two
parts. The first part discusses several programming
languages as programming tools. It provides in depth
discussion of the tasks that are best to implement with
and on the advantages versus challenges associated
with particular cases. The following tools are covered:
HTML, JavaScript, Java Applets, Cookies, CGI,
PERL, PHP, native languages (C/C++), and Web
server configuration for security. Special emphasis is
given to PERL and JAVA. Several programming
examples for client, server and client-server
applications are provided. The fragments of code are
selected so that they provide good jumpstart to
programming in particular languages for anybody with
good programming skills in any programming
language (preferably C++ or C). Advantages and
disadvantages of different computer languages are
discussed so a proper programming platform for
different applications and task can be chosen.

I. SYSTEM ARCHITECTURE CONSIDERATIONS

During software development, it is important to
justify which part of the software should run on the client
machine and which part should run on the server.
Sometimes even the very fundamental client-server
architecture must be reconsidered in favor of a peer to peer
decentralized structures. The decision about the
architecture can be made either based on the process
control strategy or based on the information storage.

In case of the process control approach, the first
approach is used when there each of the controlled objects
can considered to be separate from possible other similar
objects. The latter architecture is more beneficial in case
of many controlled objects that cooperate with each other.
When the information storage is considered then client
server is favored over peer to peer communication in cases
where information must be centralized, or is easier to
manage when it is centralized.

Even between these two models, there may be a
hybrid. Consider an instance when one controls a process
that is implemented by many objects that cooperate with
each other. The controller either deals with each object
separately using a client-server approach, or deals only
with one object and then relies on the peer to peer

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 236 of 244

1622

Bogdan Wilamowski
College of Engineering at Boise
University of Idaho, Boise, Idaho 83712, USA
wilam@jeee.org, http://nn.uidaho.edw/

architecture to carry out the request. The latter case adds
additional complexity of dealing with a distributed server.

II. COMPONENT PARTITIONING AND DATA FLOW

Once a particular architecture is chosen, the
component partitioning needs to be considered. Peer to
peer architecture usually yields symmetry of all objects.
The decisions are made for client-server based on several
factors:

e Amount of memory and CPU power available for
server and clients. These restrictions may be imposed
by technological or cost restrains.

Available bandwidth of the network connection.

Connection reliability and latency, especially in case

of closing the control loop via network.

e Fase of installation or no need to preinstall any
specific component on a client machine.

It is possible to develop two dedicated software
components, one for server, and another one for a client
and preinstall both. However, other strategies allow for
more flexibility such as an automatic installation or update
of the client side-software from the server. The latter
approach requires storage of the client software
components on the server object, possibly increasing the
memory requirements and the initial network traffic when
a new client must to be installed or updated.

Regardless from the choice of just in time
downloaded or preinstalled client the software designer
must make choices regarding partitioning the tasks
between the server and the client. In case of control, the
best results are achieved when the control loop is closed
locally on the server that is installed on the controlled.
The Internet bandwidth is already adequate for many
applications if their data flow is carefully designed.
Furthermore, the bandwidth limitation will significantly
improve with time. It is therefore important to develop
methods, which take advantage of networks and then
platform independent browsers. This would require
solving several issues, such as:

e Minimization of the amount of data which must be
sent by a network

Task partitioning between the server and client
Selection of programming tools used for various tasks
Development of special user interfaces

Use of multiple servers and job sharing among them
Security, privacy and, in case of pay per use, account
handling

e Portability of software used on servers and clients

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

e Distributing and installing network packages on
several servers

Fig. 1 illustrates an example of software component
partitioning for a semiautonomous remote controlled
robot. This particular application utilizes several client-
server partitions for multiple components. In addition, the
network server is at the same time the client in the relation
to the thin embedded server that controls the robot
movements on the lowest software level.

e e]
! Robot Control i) it "
| Client Applet |~ | i ¢ Receiver

{ Client side A !

I

Control Server i..... ¢ Video feed I

imertace 1o netioort) | “! Web gervee i transmitter I
e e | i 4

| i ;]

Saphira - i+ Client side I

Robot Interface { [program storage; : I

Figure 1. Example of client —server component partition.

Choosing the right set of software tools to implement
the components of the system is the next dilemma to be
solved after the decisions about the data flow among the
software components that are distributed in the network
are made. This.problem is addressed in the next section.

III. MOST COMMONLY USED NETWORK

PROGRAMMING TOOLS
Although it is possible to develop network
applications using solely C++, or other compiled

languages, it is much easier to develop networked
applications using dedicated software tool for each
component. There are several well-developed network-
programming tools available today [1]. These tools
include HTML, JavaScript, VBScript, Java, ActiveX,
Common Gateway Interface (CGI) and PERL or C++,
Active Server pages (ASP) and PHP. 1t is essential to
make a correct decision which programming language
should be used for which part of the software package.
Short characterizations of different network programming
tools are given below.

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 237 of 244

1623

A. Hypertext Markup Language

Hypertext Markup Language (HTML) was originally
designed to describe a document layout regardless of the
displaying device, its size, and other properties [2]. It can
be incorporated into networked application front-end
development either to create form-based dialog boxes or as
a tool for defining the layout of an interface, or
wraparound for Java applets or ActiveX components. In a
way, HTML can be classified as a programming language
because the document is displayed as a result of the
execution of its code. In addition scripting language can
be used to define simple interactions between a user and
HTML components [3]{4]. Several improvements to the
standard language are available: Cascading style sheets
(CSS) allow very precise description of the graphical view
of the wuser interface; Compressed HTML allows
bandwidth conservation but can only be used by Microsoft
Internet Explorer. HTML is also used directly as it was
originally intended — as a publishing tool for instruction
and help files that are boundled with the software.

<1DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>

<TITLE>This is the title for this Web
Page</TITLE>

<META HTTP-EQUIV="Content-Type“
CONTENT="text/html; charset=iso-8859-1">

<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<META NAME="ROBOTS" CONTENT="INDEX, NOFOLLOW">
<META NAME="Author" CONTENT="BMW & AM">

<META NAME="Description" CONTENT="This is
displayed by the search engine">

<META NAME="KeyWords"
CONTENT="search engine kewoards, html">

</HEAD>

<BODY BGCOLOR="white" TEXT="black">
<H1>This isg the title</Hl>

<P ALIGN="left”>This is ﬁhe body of
this Web page.

go
<P ALIGN="center”>Another paragraph and

<FONT COLOR="red" FACE="Ariel,helvetica"
SIZE="+1">a different font

<!-- this is a coment -->
</BODY>
</HTML>

Figure 2. Typical HTML source code.

The HTML code shown in Fig.2 illustrates the nature
of this language. The control structures are called tags. A
tag is identified by < and > and us used to control the
meaning and format that is used to display the information.
Most of the tags are used in pairs, for example <Bopby> and
</BopY> marks the beginning and the end of the section
that should be displayed as a Web page. Each tag may
have several attributes. For example the two of many

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

attributes of <Bopy ..> are color setting BGcoLor and TEXT.
Inside the body of the page tags are used to provide text
formatting. <P...> denotes a new paragraph, and is one of
only a few tags that do not need the complementing and
end tag </p>. <Hn> indicates the n-th header or section
title of the n-th level. In addition to those and many other
logical information tags, there are several tags that porvide
only instruction regarding the way the text is to be
displayed, for example <roNT.> tag. Although it is
possible to set a particular font size in points, it is strongly
recommended to alter the readers preference using relative
sizes like +1 in the example above. The reader should be
able to adjust the display to her preferences so that it is
easy to read.

The anchor tag <a ..> is the most important feature of
the HTML. This implements the very idea of hypertext —
the links. The HREP attribute instructs the Web browser
about the location of another page that must be loaded in
case the reader clicks on the text enclosed until .

The header portion of the Web page that is marked
by <HEAD> and </HEAD> may seam not to be that important.
Information enclosed there may be very important for Web
browsers, proxy systems or search engines. The example
in Fig. 2 instructs the Web browser always to check for the
new version of the Web page (no-cache), and defines the
font set (8859-1) that is very important when the Web
page displays any non-English characters. The other tags
(robots, author, keywords and description) are sued by
search engines to enhance the automatic classification of
the Web page. :

B. JavaScript

HTML itself lacks even basic programming
constructs such as conditional statements or loops. A few
scripting interpretive languages were developed to allow
for use of programming in HTML [2]. They can be
classified as extensions of HTML and are used to
manipulate or dynamically create portions of HTML code.
One of the most popular among them is JavaScript. The
only drawback is that although JavaScript is already well
developed still there is no one uniform standard. Different
Web browsers may vary a little in the available functions
[4]. JavaScript is an interpretative language and the scripts
are run as the Web page is downloaded and displayed.
There is no strong data typing or function prototyping.
Yet the language includes support for object oriented
programming with dynamically changing member
functions. JavaScript programs can also communicate
with Java applets that are embedded into an HTML page.

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 238 of 244

1624

B[JavaScript Applicatio
R4
: *

<SCRIPT language="JavaScript">

helowordi

// this comment goes to the end of the line
alert("hello worldti");

// end hiding comment

</SCRIPT>

<NOSCRIPT>No script support found</NOSCRIPT>

Figure 3. A simple example of JavaScript code.

JavaScript is part of the HTML code. It can be
placed in both header and body of a Web page. The script
starts with <script language="JavaScript"> line. This
example generates an alert dialog box shown above the
code.

One of the most useful applications of JavaScript is
verification of the filled form before it is submitted on-
line. That allows for immediate feedback and preserves
the Internet bandwidth as well as lowers the Web server
load. Fig. 4 shows a sample code of an HTML form and
its interaction with JavaScript that responds immediately.

B3t calculator - Netscape '
i Fle Edt ¥ . Communiator

1 |tz.75%3.4+478.

© calculate

R :
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html>
<head>
<TITLE>Calculator</TITLE>
</head>
<body>

<form name="forml">

<input type="text" name="textl" size="36">

<input type="button" name="buttonl®
value="calculate"®
onclick=document.forml.text2.value

=eval (document. forml.textl.value)>

<input type="text" name="text2">

<input type="reset" value="clear">

</form>

</body>

</html>

Figure 4. A Web page with JavaScript based calculator.

The next example shows a more powerful calculator,
which is capable to compute even complicated functions.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

Note that all computations are done not on the server but

on the client computer. The web page generated is similar

to this shown in the previous example but it is much more
powerful. Its view and source code is shown in Fig. 5.

I == ke b AP R4
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html>
<head>
<TITLE>Calculator</TITLE>
</head>
<body>
<script language="JavaScript">
function math() {
var s=document.forml.textl.value;

"Math.abs");
"Math.sin");

sl=s.replace("abs",
s82=gl.replace("gin",
"Math.cos");
"Math.sqrt");
"Math.tan") ;
®*Math.atan");
"Math.asin") ;
"Math.acos");
"Math.exp") ;
“Math.floor");
"Math.log") ;
"Math.max") ;
"Math.min") ;
"Math.pow") ;

"Math.random") ;

s83=82.replace("cos",

s4=83.replace("sqrt",
85=84.replace("tan",

g6=85.replace("atan",
s87=86.replace("asin",
sB8=87.replace("acos",
89=88.replace("exp",

810=89.replace("floor",
811=810.
sl2=s1l.
813=812
8l4=s813
815=s814.

replace("log",
replace ("max",
.replace("min",
.replace ("pow",

replace ("random",

sl6=815.replace("round", "Math.round");
document.forml.text2.value=eval (816) ;

}

</script>

<form name="forml">
<input type="text" name="textl" size=36>

<input type="button" name="buttonl"
value="calculate" onclick="math()">

<input type="text" name="text2">

<input type="reset" value="clear">
</form>

</body>

</html>

Figure 5. A Web page with advanced calculator.

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 239 of 244

1625

C. Visual Basic Script

If the client-side software development is limited to
Microsoft Windows and Microsoft Internet Explorer then
VBScript may be used instead of JavaScript. The
disadvantage is the lack of portability that is offered by
this tool. However, that downside is compensated by ease
of communicating with ActiveX components and
possibility to use programs and libraries available to the
operating system [2].

D. Java

Java is an object oriented programming language
compiled in two stages. The first stage of compilation, to
so-called byte-code, is performed during the code
development. Byte-code can be compared to machine
code instructions for a microprocessor [5]. Because no
processor understands directly byte-code instructions,
interpreters, called Java Virtual Machines (JVM) were
developed for various microprocessors and operating
systems. At some point JVM were improved so that
instead of interpreting the code they do perform the second
stage of compilation, directly to the machine language.
However, to cut down the initial time to run the program
the compilation is done only as necessary (just in time
(JIT)) and there is no time for extensive code optimization
[6]. At current state of art of JIT technology, programs
written in Java run about two to five times slower than
their C++ counterparts. Adding a JVM to a Web browser
allowed embedding software components that could be run
on different platforms [5][7].

Several features ensured success and increasing
importance of this programming tool:

e similarity to C and C++ - a lot of existing
programmers can switch relatively easily [S5][7][8][9]

e support of C++ objects — suitability for large projects
(5181091

e simplified features — less complex than C++, easier to
learn and utilize correctly [7][8][9]

o large standard set of libraries, including graphical
libraries that can be used on multiple OS platforms
(71091

e built in network libraries and some IP protocols
(71[9](10]

e simple, platform independent multithreading — not as
powerful as in C or C++ but much simpler [7][9]

e availability of fast JVM that use JIT compiler
technology — only two times slower than C++ [6][7]

o ability to control the level of security buy enabling or
disabling certain libraries that come with JVM

e availability of non-portable features by linking
functions in machine language of a particular system
9]

e Smaller requirements for flash memory in the
embedded systems due to compactness of byte-code
(but more volatile memory is required)

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

Despite all those great advantages, there are a few
problems of implementation that prevents Java from being
used everywhere.

e itis still at least two to five times slower than C++ [6]

e multithreading does not have all features available to
C or C++ programs [7][8]

o Most of implementations of JVM do not allow real
time running due to garbage collector type of the
memory management [6]

e Much higher memory requirements for JVM and
running program (but smaller footprint of applications
stored in flash memory versus C/C++)

D. ActiveX

Microsoft developed ActiveX as another technology
allowing for the automatic transfer of software over the
network [2][11]. ActiveX, however, can be executed
presently only on a PC with a Windows operating system,
thus making the application platform dependent. Although
this technology is very popular already, it does not allow
for the development of applications running on multiple
platforms. ActiveX components can be developed in
Microsoft Visual Basic or Microsoft Visual C++. There
are the only choice in cases when Java is too slow, or
when some access to the operating system functionality or
devices supported only by Windows OS is necessary. The
easy access to the operating system form an ActiveX
component makes it impossible to provide additional
security by limiting the features or resources available to
the components.

Fig. 6 shows one of the simplest possible programs
written in Java that also demonstrates use of functions.
Since the language is strongly object oriented, all
functionsmust be embedded in a class.

public class Test {
public static void main(String args[]) {
// a comment
procedure (“Hello programmer!”);
}
private static void procedure(String s) {
_ System.out.println(s);
}
}
Figure 6. Code for a simple application written in Java.
Fig. 7 and Fig. 8 show a template for an applet
written in Java. Applets are run embedded in Web pages.
Fig. 7 shows how to embed the applet in HTML.

<APPLET CODEBASE="." CODE="Test.class"
WIDTH="200" HEIGHT="100">
</APPLET>

Figure 7. Embedding an applet in a Web page.

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 240 of 244

1626

Function paint() is called from the operating
system environment whenever the graphics needs to be
redrawn. Functions init () and start() are called when
the applet is initialized. All computations should be
initialized there and then carried on in a separate thread.
Function stop() is called when the applet need to be
stopped. All computations that were initialized in start ()
and carried on in another threads must be stopped then.
This simple applet does not do anything besides painting a
text and drawing two horizontal lines.

// a sample applet template

import java.applet.Applet;

import java.awt.Graphics;

public class Test extends Applet {
public veoid init() {

}
public void start() {
}
public void paint(Graphics g) {
g.drawLine (10,30, 120, 30);
g.drawLine (10,60, 120, 60)};
g.drawString ("Hello Programmer!", 10, 50);
}
public void stop() {
}

}

Figure 8. A template for an applet written in Java.
E. CORBA and DCOM

CORBA (Common Object Request Broker
Architecture) is a technology developed in the early 90's
for network distributed applications. It is a protocol for
handling distributed data, which has to be exchanged
among multiple platforms [12][13]. A CORBA server or
servers must be installed to access distributed data.
CORBA in a way can be considered as a very high-level
application programming interface (API). It allows
sending data over the network, sharing local data that are
registered with the CORBA server among multiple
programs. Microsoft developed its own proprietary API
that works only in Windows operating system. It is called
DCOM and can be used only in ActiveX technology
[11][{14].

F. Common Gateway Interface

CGlI, which stands for Common Gateway Interface,
can be used for the dynamic creation of web pages. Such
dynamically created pages are an excellent interface
between a user and an application run on the server [2][9]
[15]. CGI program is executed when a form embedded in
HTML is submitted or when a program is referred directly
via a Web page link. The Web server that receives a
request is capable of distinguishing whether it should
return a Web page that is already provided on the hard

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

drive or run a program that creates one. Any such
program can be called a CGI script. CGI describes a
variety of programming tools and strategies. All data

processing can be done by one program, or one or more
other programs can be called from a CGI script. The name
CGI script doe not denote that a scripting language must
be used. However, developers in fact prefer scripting
languages, and PERL is the most popular one.

Because of the nature of the protocol that allows for
transfer of Web pages and execution of CGI scripts there
is a unique challenge that must be faced by a software
developer. Although users working with CGI-based
programs have the same expectations as in case of local
user interface, the interface must be designed internally in
entirely different way. The Web transfer is a stateless
process. That means, that no information is sent by Web
browsers to the Web servers that identify each user. Each
time the new user interface is sent as a Web page, it must
contain all information about the current state of the
program. That state is recreated each time a new CGI
script is sent and increases the network traffic and time
latency caused by limited bandwidth and time necessary to
process data once again.

In addition, the server side software must be prepared
for inconsistent data streams. For example, a user can
back off through one or more Web pages give a different
response to a particular dialog box and execute the same
CGI script. At the time of the second execution of the
same script, the data sent back with the request may
already be out of synchronization from the data kept on
server. Therefore, additional validation mechanisms must
be implemented in the software that are not necessary in
case of a single program.

G. PERL

PERL is an interpretive language dedicated for text
processing. It is primarily used as a very advanced
scripting language for batch programming and for text data
processing [2](16][17]. PERL interpreters have been
developed for most of existing computer platforms and
operating systems. Modern PERL interpreters are in fact
not interpreters but compilers that precompile the whole
script before running it.

PERL was originally developed for Unix as a
scripting language that would allow for automation of
administrative tasks. It has many very efficient string,
data stream and file processing functions. Those functions
make it especially attractive for CGI processing that deals
with reading data from the networked streams, executing
external programs, organizing data, and in the end
producing the feedback to the user in the form of a text
based HTML document that is sent back as an update of
the user interface [2][15]. Support of almost any possible
computing platform and OS and existence of many
program libraries makes it a platform independent tool.

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 241 of 244

1627

Fig. 9 and Fig. 10 show an example of a data form
that is filled in by a user on a remote computer (client).
After the form shown in Fig. 9 is completed, the user
clicks the “SEND” submit button. All data is transferred
to the server and forwarded to the CGI script that is
specified in the form tag in the action attribute. The
source code of the CGI program is shown in Fig. 10. The
program reads the data, processes them, and generates a
Web page that is a feedback to the user.

| 3 Netscape
“Fle £dt View

~. "Search! Netscape " P

This is & presentation for IECON'O1 Al
in Denwver, Colorado

fNovember 29 to December 01, 2001

' & Male € Fermale

| ‘Send |

- Docume; =R R ARV
http://nn.uidaho.edu/csp/cgil.pl"

<FORM action=
method="get">
<INPUT TYPE="text"
Description

name="name" >

<TEXTAREA name="description" rows=5 cols=40>
</TEXTAREA>

<INPUT type="radio" name="sex" value="male">Male

<INPUT type="radio" name="sgex"
value="female">Female

<INPUT type="submit" value="Send"><INPUT
type="reset">

</FORM>

Figure 9. Data form implemented in HTML.

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

B

}{?{Netsce S
File Edt * View Go Communicator 'Help

Back' *Farwaid * Relosd " Home - Search- Netscape
Hello

Welcome to the first CGI example

-

 pr

The name wasHello
The description was: i
This is a presentation for IECON'01 in Denver, Colorado

Novembher 29 to December 01, 2001 i
The sex selected: male

= . Pocument: ' =f 4
#lc:\progra~1l\perl\bin\perl.exe
use sgtrict;

use CGI gw(:standard);

print header;

print <<labell;

<H1> Hello </Hl>
Welcome to the first CGI example <P>
labell

print "The name was", param('name'), "
";
print "The description was:
",
param(‘'description'), "
";

print "The sex selected: ",

param('sex'), "<P>";

Figure 10. A CGl-script written in PERL that handles data

received from the form shown in Fig. 9.

The PERL code above uses CGI library with param
function and this way reading data from the form is very
simple. For example param('name*) returns a string that
was typed in the text field named name (see the HTML
code above). param('sex') returns the name of the radio
button pressed. param('description') returns a string
that was typed in the text area named description. The
PERL code generates a new screen on the client computer
as shown above the code.

Please note that there are two ways of displaying
messages of the client computer. The first
print <<labell;
<H1> Hello </H1>
Welcome to the first CGI example <P>
labell

sends entire HTML code between lines print <<labell;

and labell. The other way is to use print statement and
send HTML code line by line using print statements.

H. Active Server Pages

The concept of CGI scripts is centered on the idea
that a program that is external to the Web server is run on
the request made by a client. Then an HTML based reply

is generated and sent back as the part of the outcome of the
execution. Active- Server Pages (ASP) provide the same
functionality with the exception that the external program
or programs are embedded into the skeletons of Web
pages [18]. Those pages are preprocessed by the Web
server before they are forwarded to the client, and the
outcome of the embedded scripts is included.

In case of a CGI script, a reply to the user by sending an
HTML based Web page is its significant portion. It makes
sense then to provide also tools for embedding the scripts
inside HTML instead of embedding HTML inside print
statements in the CGI script. ASP technology is nothing
else but shifting the way the server side programs are
organized.

1. PHP

PHP is a scripting language like PERL. In fact, its
syntax resembles PERL. The main difference lays in the
set of standard built in libraries that support generation of
HTML code, processing data from and to the Web server,
and handling cookies. The same functionality can be
accessed in PERL by inclusion of one or more libraries.
PHP can be sued either as a classical CGI scripting
language or as an implementation of ASP technology [18].
Since certain frequently used functionality is built in
directly into the language, it is more efficient to use. In
general any specialized tool will be somewhat more
efficient for one particular task it was designed for, instead
of other powerful but general purpose tools. PHP has been
very popular for the last three years.

L PHP Scrlpt Netspe :
“Flle. Edit~ View Go Comwnunicator Help..

| Hi!
I'm using PHP!

2 plus 3 equal 5

==
<HTML>
<HEAD><TITLE>PHP Script</TITLE></HEAD>
<BODY>

<?

echo “"<Hl>Hi!

I'm using PHP!</H1>";

$a = 2; $b = 3; $c=%a+5$b;

echo "$a plus $b equal $c </p>";
?>

</BODY>

</HTML>

Figure 11. A simple server side script in PHP.

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1628

Page 242 of 244

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

PHP script (between <? and ?>) can be easily
incorporated into HTML code as illustrated in Fig. 11.
Instead of <2 and ?> one can use <?php and ?>, or <script
language="php"> and </scripts. The script is run by the
Web server on the server side, before the Web page is
transferred through the Internet to the browser.

Fig. 12 shows another example of PHP
programming. This time PHP is used to generate an
HTML form. It is more concise than HTML and thus
faster to develop and less likely to contain errors, but add
to the load of the server computer. The resulting form is
shown above the source code.

3 Calculator - Netscape

" File, Edit View :Go Communicator

Calculator

Value 1. [47 o
Value 2: [3 ;
€ add

€ subtract

€ multiply

€ divide
““Calculaté:

<HTML>
<HEAD><TITLE>Calculator</TITLE></HEAD>
<BODY>

<hl>Calculator</hl>

<FORM METHOD="post" ACTION="calculator.php">

Value 1: <INPUT TYPE="text" NAME="vall"></br>
Value 2: <INPUT TYPE="text" NAME="vall2"></br>
<INPUT TYPE="radio" NAME="calc" VALUE="add">

add

<INPUT TYPE="radio" NAME="calc" VALUE="sub">

subtract

<INPUT TYPE="radio" NAME="calc" VALUE="mul">

multiply

<INPUT TYPE="radio"™ NAME="calc" VALUE="div">

divide</br>

<INPUT TYPE="submit" NAME="submit"

VALUE="Calculate">
</FORM>
</BODY>
</HTML>

Figure 12. PHP utilized to generate a form in HTML.

When the form is submitted, the Web server needs to
run a CGI script. Since a Web page merged with PHP can
function as a program the PHP-based page can be used for
the form processing as shown in Fig. 13. The Web page
that is generated in the reply is shown above the source
code.

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 243 of 244

1629

“Fle” Edt "View 'Go C

| The result of the calculation 1s: 15.666666666667

'E?FQE:“S'”
<?
if (($vall == ") || ($val2 == "n) || ($cale
==nn)) {

header ("Location:
http://nn2/cal_fm.htm") ;

exit;
}
if ($calc == "add") {$r = S$vall + $val2;}
else if ($cale == "sub") {$r= $vall-$val2;}
else if ($calc == "mul") {$r = $vall+*$val2;}
else if ($calc == "div") {$r = $vall/$val2;}
?>
<HTML><HEAD>

<TITLE>Calculation Result</TITLE> </HEAD>
<BODY>

The result of the calculation is:
2>

</BODY>
</HTML>

<? echo "$r";

Figure 13. PHP utilized for Cgi scripting.

One of the principles of the correct coding is
enclosing all source code that implements a particular
functionality in one place. This can be applied to PHP.
The code shown in Fig. 14 works both as HTML form
generator and as the data processor in case it is called back
by the generated form.

<HTML> <HEAD> <TITLE>AIO Form</TITLE> </HEAD>
<BODY>

<?

$formstring = "

<FORM METHOD=\"post\" ACTION=\"$PHP_SELF\">
Value 1: <INPUT TYPE=\"text\" NAME=\"vall\"></br>
Value 2: <INPUT TYPE=\"text\" NAME=\"val2\"></br>

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"add\"> add

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"sub\"> subtract

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"mul\"> multiply

<INPUT TYPE=\"radio\" NAME=\"calc\"
VALUE=\"div\"> divide</br>

<INPUT TYPE=\"submit\" NAME=\"gubmit\"
VALUE=\"Calculate\">

</FORM>

";

if ($submit) {

if ($calc == "add") {$r = $vall + $val2;}
else if ($calc == "sub”) {$r= $vall-$val2;}
else if ($calc == "mul") {$r = $vall*$val2;}

IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

else if ($cale == n"div") {$r = $vall/$val2;}
echo "The result of the calculation is: $r";
} else {

echo "S$formstring®;

}

?>

Figure 14 Utilizing the sdame code both for HTML-form
generation and data processing in CGI-script mode.

J. Cookies

A cookie is a piece of data stored in the client
computer. When a request is sent to a server to get an
HTML file, some cookies may be transmitted with that
request. The server may send different data depending on
the information retrieved from the user. Furthermore,
JavaScript is also capable of browsing through all the
cookies stored by the user machine [19]. This information
may be used to enhance performance, for example by
remembering the user's preferences. This very useful
feature, however, is sometimes abused by some Internet
providers, who can spy on the user by analyzing what
kinds of web pages are being used.

IV. CONCLUSION

Given limited time and space that was allocated to
this tutorial most of the important programming tools that
can be applied to solving engineering problems were
discussed. Client-server architecture and the system
partitioning that were discussed in the introductory
sections must be applied to a particular problem. Then
based on need one or more tools has to be selected to
implement client and server. HTML and JavaScript is
generated on the server but utilized on the client side. CGI
and ASP with PERL and PHP are stored and utilized on
the server. Java can be used on the client side as well as
on the server side. It allows implementing a complex
functionality of a larger program by using object oriented
and well-structured language.

If you are interested in more detailed examples or
would like to participate in a 45 hour course offered by
Bradley University as a long distance course please visit
the Web site that is located at:
http://cegt20l.bradley.edu/~olekmali/courses/

and follow the EE-WEB-2000 link to the course materials.

V. REFERENCES

For more information on particular topics discussed
in this tutorial please refer to the following source
materials that are recommended by the authors:

0-7803-7108-9/01/$10.00 (C)2001 IEEE

Page 244 of 244

1630

(1]
(2]

[3]

[4]
[3]
(6]

[13]

(14]
[15]
[16]
[17]

(18]

(19]

Kaplan, G., “Ethernet's winning ways,” [EEE
Spectrum, January 2001, pp. 113-115.

Jamsa K., Lalani S., Weakley S., Web Programming,
Jamsa Press, Las Vegas, NV, 1996.

Goodman, D., Dynamic HTML, The Definitive
Reference, O'Reilly & Associates, Sebastopol, CA,
1997.

Flanagan D., JavaScript, The Definitive Guide,
O'Reilly & Associates, Sebastopol, CA, 1997.

Van der Linden P., Not Just Java, Prentice Hall and
Sun Microsystems, Palo Alto, CA, 1998.

Web Page: Hank Shiffman, Boosting Java
Performance: Native Code and JIT Compilers,
http://www.disordered.org/Java-JIT.html,
posted in 1998, last time visited in 2001.

Van der Linden P., Just Java 2, Prentice Hall and
Sun Microsystems, Palo Alto, CA, 1998.

Web Page: Hank Shiffman, Making Sense of Java,
http://www.disordered.org/Java-QA.html,
posted in 1998, last time visited in 2001.

Hall, M., Brown, L., Core Web Programming 2 ed,
Prentice Hall, Upper Saddle River, NJ, 2001.
Harold, E. R., Java Network Programming, O'Reilly,
Sebastopol, CA, 1997.

Roff, I.T., ADO: ActiveX Data Objects, O'Reilly &
Associates, Sebastopol, CA, 2001.

Object management Group, The Common Object
Request Broker: Architecture and Specification, v.
2.2, published by Object Management Group,
February 1998.

Object management Group Web Site
http://www.corba.org/,

posted in 1997, visited in 2001.

Thai, T.L., Oram, A., Learning Dcom, O'Reilly &
Associates, Sebastopol, CA, 1999.

Guelich, S., CGI Programming with PERL, 2" ed,
O'Reilly & Associates, Sebastopol, CA, 2000.

Wall L., Christiansen, T., Orwant, J., Programming
PERL, 3 ed, O'Reilly & Associates, 1996.
Holzner, S., PERL Black Book, Coriolis Group,
1999.

Atkinson, L., Core PHP Programming: Using PHP to
Build Dynamic Web Sites, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 2000.

CookieCentral.Com, Cookie Central, URL:
http://www.cookiecentral.com/,

posted in 1996, visited in 2001.

