
 

 
 

UNITED STATES PATENT AND TRADEMARK OFFICE 
____________________ 

 
 

BEFORE THE PATENT TRIAL AND APPEAL BOARD 
 

____________________ 
 

Google LLC 
 

Petitioner 
 

v. 
 

UNILOC 2017 LLC 
 

Patent Owner 
 

U.S. Patent No. 8,407,609 
Filing Date: August 21, 2009 
Issue Date: March 26, 2013 

 
____________________ 

 
Case No. IPR2020-00115 

 
 
 

DECLARATION OF DR. JEFFREY CHASE, Ph.D. 
IN SUPPORT OF PETITION FOR INTER PARTES REVIEW OF UNITED 

STATES PATENT NO. 8,407,609

Page 1 of 244 GOOGLE EXHIBIT 1003



 

 
 

TABLE OF CONTENTS 

I. INTRODUCTION ......................................................................................... 1 

II. BACKGROUND AND QUALIFICATIONS .............................................. 2 

III. MATERIALS REVIEWED .......................................................................... 6 

IV. LEGAL STANDARDS .................................................................................. 7 

A. Anticipation ........................................................................................... 8 

B. Obviousness ........................................................................................... 9 

V. LEVEL OF ORDINARY SKILL IN THE ART ........................................13 

VI. THE ’609 PATENT ......................................................................................15 

A. Overview of the ’609 Patent ................................................................15 

B. Challenged Claims ..............................................................................19 

C. Claim Construction..............................................................................21 

VII. OVERVIEW OF PRIOR ART REFERENCES .......................................22 

A. Hayward ..............................................................................................22 

B. Middleton .............................................................................................29 

C. Ryan .....................................................................................................31 

VIII. CLAIMS 1–3 OF THE ’609 PATENT ARE UNPATENTABLE ...........35 

A. Ground 1: Hayward anticipates claim 1 ..............................................35 

1. Claim 1 ......................................................................................35 

B. Ground 2: Hayward and Middleton render obvious claim 1 ..............62 

1. Claim 1 ......................................................................................62 

C. Ground 3: Hayward, or Hayward and Middleton, and Ryan 
render obvious claims 2 and 3 .............................................................74 

Page 2 of 244



 

ii 
 

1. [2] “The method of claim 1, wherein the storing 
comprises incrementing a stored value dependently upon 
the receiving.” ...........................................................................74 

2. [3] “The method of claim 2, wherein the received data is 
indicative of a temporal cycle passing.” ...................................77 

IX. CONCLUSION ............................................................................................77 

 
 

Page 3 of 244



 

 
 

I, Dr. Jeffrey Chase, Ph.D., declare as follows: 

I. Introduction 

1. My name is Dr. Jeffrey Chase. I have been asked to submit this 

declaration on behalf of Google LLC (“Google” or “Petitioner”) in connection with 

a petition for inter partes review of U.S. Patent No. 8,407,609 (“the ’609 patent”), 

which I understand is being submitted to the Patent Trial and Appeal Board of the 

United States Patent and Trademark Office by Google. 

2. I have been retained as a technical expert by Google to study and 

provide my opinions on the technology claimed in, and the patentability or non-

patentability of, claims 1–3 of the ’609 patent (“the Challenged Claims”). 

3. This declaration is directed to the Challenged Claims of the ’609 

patent and sets forth certain opinions I have formed, the conclusions I have 

reached, and the bases for each. 

4. Based on my experience, knowledge of the art at the relevant time, 

analysis of prior art references, and the understanding a person of ordinary skill in 

the art would have of the claim terms, it is my opinion that each of the Challenged 

Claims of the ’609 patent is unpatentable over the prior art references discussed 

below. 

Page 4 of 244



 

2 
 

II. Background and Qualifications 

5. I am a Professor at Duke University in the Computer Science 

Department.  I have studied and practiced in the field of computer science for over 

35 years.  During this time, I have worked as a software developer, computer 

systems researcher, and computer science professor.  I have been teaching 

Computer Science at Duke since 1995.   

6. I received my Doctor of Philosophy (Ph.D.) degree in the field of 

Computer Science from the University of Washington in Seattle in 1995.  I 

received my Masters of Science (M.S.) degree in Computer Science from the 

University of Washington in 1989.  As a graduate student at the University of 

Washington, I conducted research on new operating system models for secure data 

sharing.  I earned my Bachelor of Arts (B.A.) degree as a double major in 

Mathematics and Computer Science from Dartmouth College.   

7. From 1985 through 1994 (before and during graduate school), I 

worked as a software design engineer at Digital Equipment Corporation (“DEC”), 

earning the title Senior Software Engineer in 1987.  While at DEC, I developed 

operating system kernel software for networked file services in DEC’s Unix 

operating system product, Ultrix.   

8. Upon receiving my Ph.D. degree, I joined the faculty of Duke 

University in the Department of Computer Science as an Assistant Professor.  

Page 5 of 244



 

3 
 

Since becoming a professor, I have conceived and led a number of research 

projects and published widely in leading research forums in the areas of operating 

systems and network services including high-performance Web systems and cloud 

computing.  I earned tenure at Duke University in 2002, and was promoted to Full 

Professor in 2006.  I teach courses for undergraduate and graduate students at 

Duke on various related subjects: operating systems, networking and networked 

systems, distributed systems, and Internet technology and society.  I have 

supervised the research of fourteen completed Ph.D. dissertations in the field of 

Computer Science.  I have also supervised the research of twenty students who 

earned Master’s degrees at Duke.   

9. My work has focused on software systems for efficient, secure, and 

reliable sharing of resources and information in computer networks ranging from 

clusters (e.g., cloud computing services) to the global Internet.  I have conducted 

research and developed software relating to networked data sharing including 

cloud computing and high-performance Web systems and storage.  I am a named 

inventor on eleven U.S. patents and a co-author of over 100 published research 

papers on related topics in peer-reviewed technical publications or conferences in 

the field of Computer Science. 

10. I have served on editorial program committees for leading annual 

academic conferences in networked computer systems, cloud computing, storage, 

Page 6 of 244



 

4 
 

Web technologies, and related areas.  For example, I was invited to serve on the 

editorial program committee for the Association for Computing Machinery (ACM) 

Symposium on Cloud Computing (SoCC) multiple times (most recently in 2019) 

and co-chaired the SoCC committee in 2011.  SoCC and other related venues are 

sponsored by the ACM, a leading professional society, of which I am a lifetime 

member.  I have had similar roles in other related academic venues.   

11. I conducted research in various Web technologies early in the Web 

computing era (mid-1990s) and up until the time the provisional application 

leading to the ’609 patent was filed (2008).  I have taught certain Web technologies 

in my courses, including Web service technologies based on the Java programming 

language, and I developed Java-based Web application software as part of my 

research (e.g., the Web interface for Shirako, an early cloud computing system, in 

2005-2007).  Much of my research during this period focused on technologies for 

high-performance Web services and led into my later research on cloud computing.   

12. I have also participated in a number of industry collaborations.  I am a 

named co-inventor of patents relating to Web caching and resource management in 

Web services resulting from these collaborations.  While a collaborator at AT&T 

Corporation in 1996, I developed early technology for Web caching, patented as 

U.S. Patent No. 5,944,780 entitled “Network with Shared Caching.”  In 

collaboration with IBM Corporation from 2000–2003, I developed technology 

Page 7 of 244



 

5 
 

covered by seven patents relating to adaptive resource management and request 

routing for hosted Web services.   

13. In the course of my research, I have gained exposure to client-side 

Web technologies used to build these Web services.  For example, the ’609 patent 

describes Java applet technology and its use to add programmatic functions—such 

as tracking—that run in a user computer’s browser as it displays a Web page.  

When the Java applet technology was first coming into use (around 1996–1998), I 

collaborated with IBM Corporation to develop a tool that could “instrument” or 

inject new code elements directly into compiled Java “bytecode” as it loads into a 

browser or other process.  This collaboration was described in, for example: 

• G. Cohen, J. Chase & D. Kaminsky, Automatic Program 

Transformation with JOIE, USENIX TECHNICAL CONFERENCE (June 

1998); and   

• G. Cohen & J. Chase, An Architecture for Safe Bytecode Insertion, 

available at https://www2.cs.duke.edu/ari/joie/. 

14. Additional details about my employment history, fields of expertise, 

awards, publications, and other activities are further included in my curriculum 

vitae (which I have been told is Ex. 1004 to Google’s petition). 

15. I am being compensated for services provided in this matter at my 

customary rate, plus travel expenses. My compensation is not conditioned on the 

Page 8 of 244



 

6 
 

conclusions I reach as a result of my analysis or on the outcome of this matter. 

Similarly, my compensation is not dependent upon and in no way affects the 

substance of my statements in this declaration. 

16. I have no financial interest in Petitioner or any of its subsidiaries. I 

also do not have any financial interest in Patent Owner Uniloc 2017 LLC. I do not 

have any financial interest in the ’609 patent and have not had any contact with the 

named inventor of the ’609 patent (Tod C. Turner). 

III. Materials Reviewed 

17. In forming my opinions regarding the ’609 patent, I reviewed the 

following materials:  

• The ’609 patent (which I have been told is Ex. 1001 to Google’s 

petition); 

• U.S. Patent App. Pub. No. 2004/0045040 to Hayward (“Hayward,” 

which I have been told is Ex. 1005 to Google’s petition);  

• U.S. Patent App. Pub. No. 2002/0111865 to Middleton (“Middleton,” 

which I have been told is Ex. 1006 to Google’s petition);  

• U.S. Patent No. 6,421,675 to Ryan (“Ryan,” which I have been told is 

Ex. 1007 to Google’s petition);  

Page 9 of 244



 

7 
 

• Defendant Google LLC’s Claim Term Disclosure in Uniloc 2017 LLC 

v. Google LLC, No. 2:18-cv-00502 (E.D. Tex. Sep. 24, 2019) (which I 

have been told is Ex. 1008 to Google’s petition); 

• Plaintiffs’ Preliminary Claim Constructions and Identification of 

Extrinsic Evidence Pursuant to P.R. 4-2 in Uniloc 2017 LLC v. Google 

LLC, No. 2:18-cv-00502 (E.D. Tex. Sep. 24, 2019) (which I have been 

told is Ex. 1009 to Google’s petition); 

• DAVID FLANAGAN, JAVASCRIPT: THE DEFINITIVE GUIDE 255 (5th ed. 

2006) (attached as Appendix A); and 

• CLARK S. LINDSEY ET AL., JAVATECH (2005) (attached as Appendix B); 

• Aleksander Malinowski & Bogdan Wilamowski, Internet Technology 

as a Tool for Solving Engineering Problems, PROCEEDINGS OF 

IECON’01: THE 27TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL 

ELECTRONICS SOCIETY 1622 (2001) (attached as Appendix C). 

IV. Legal Standards 

18. I am not an attorney and have not been asked to offer my opinion on 

the law. However, as an expert offering an opinion on whether the claims in the 

’609 patent are patentable, I have been told that I am obliged to follow existing 

law.  

Page 10 of 244



 

8 
 

A. Anticipation 

19. I have been told the following legal principles apply to analysis of 

patentability pursuant to 35 U.S.C. § 102, a provision in the patent law regarding 

anticipation. I have been told that, in an inter partes review proceeding, patent 

claims may be deemed unpatentable if it is shown by preponderance of the 

evidence that they were anticipated by one or more prior art patents or 

publications. 

20. I have been told that for a claim to be anticipated under § 102, every 

limitation of the claimed invention must be disclosed by a single prior art 

reference, viewed from the perspective of a person of ordinary skill in the art.  

21. I have been told that a claim is unpatentable as anticipated under 

§ 102(b) if the claimed invention was “patented or described in a printed 

publication in this or a foreign country or in public use or on sale in this country, 

more than one year prior to the date of the application for patent in the United 

States.” 

22. I have been told that a claim is unpatentable as anticipated under 

§ 102(e) if “the invention was described in (1) an application for patent, published 

under section 122(b), by another filed in the United States before the invention by 

the applicant for patent or (2) a patent granted on an application for patent by 

another filed in the United States before the invention by the applicant for patent, 

Page 11 of 244



 

9 
 

except that an international application filed under the treaty defined in section 

351(a) shall have the effects for the purposes of this subsection of an application 

filed in the United States only if the international application designated the United 

States and was published under Article 21(2) of such treaty in the English 

language.” 

B. Obviousness 

23. I have been told the following legal principles apply to analysis of 

patentability pursuant to 35 U.S.C. § 103(a), a provision in the patent law 

regarding obviousness that reads “[a] patent may not be obtained although the 

invention is not identically disclosed or described as set forth in section 102, if the 

differences between the subject matter sought to be patented and the prior art are 

such that the subject matter would have been obvious at the time the invention was 

made to a person having ordinary skill in the art to which said subject matter 

pertains.”  I have been told that, in an inter partes review proceeding, patent claims 

may be deemed unpatentable if it is shown by a preponderance of the evidence that 

they were rendered obvious by one or more prior art patents or publications. 

24. When considering the issues of obviousness, I have been told that I 

am to do the following: 

a. Determine the scope and content of the prior art; 

Page 12 of 244



 

10 
 

b. Ascertain the differences between the prior art and the claims at 

issue; 

c. Resolve the level of ordinary skill in the pertinent art; and 

d. Consider evidence of secondary indicia of non-obviousness (if 

available).   

25. I have been told that the relevant time for considering whether a claim 

would have been obvious to a person of ordinary skill in the art is the time of 

alleged invention, which I have assumed is shortly before the provisional 

application leading to the ’609 patent was filed. 

26. I have been told that obviousness is a determination of law based on 

underlying determinations of fact.  I have been told that these factual 

determinations include the scope and content of the prior art, the level of ordinary 

skill in the art, the differences between the claimed invention and the prior art, and 

secondary considerations of non-obviousness. 

27. I have been told that any assertion of secondary indicia must be 

accompanied by a nexus between the merits of the invention and the evidence 

offered. 

28. I have been told that a reference may be combined with other 

references to disclose each element of the invention under § 103.  I have been told 

that a reference may also be combined with the knowledge of a person of ordinary 

Page 13 of 244



 

11 
 

skill in the art and that this knowledge may be used to combine multiple 

references.  I have also been told that a person of ordinary skill in the art is 

presumed to know the relevant prior art.  I have been told that the obviousness 

analysis may account for the inferences and creative steps that a person of ordinary 

skill in the art would employ. 

29. In determining whether a prior art reference could have been 

combined with another prior art reference or other information known to a person 

having ordinary skill in the art, I have been told that the following principles may 

be considered: 

a. A combination of familiar elements according to known methods is 

likely to be obvious if it yields predictable results; 

b. The substitution of one known element for another is likely to be 

obvious if it yields predictable results; 

c. The use of a known technique to improve similar items or methods in 

the same way is likely to be obvious if it yields predictable results; 

d. The application of a known technique to a prior art reference that is 

ready for improvement, to yield predictable results; 

e. Any need or problem known in the field and addressed by the 

reference can provide a reason for combining the elements in the 

manner claimed; 

Page 14 of 244



 

12 
 

f. A person of ordinary skill often will be able to fit the teachings of 

multiple references together like a puzzle; and 

g. The proper analysis of obviousness requires a determination of 

whether a person of ordinary skill in the art would have a “reasonable 

expectation of success”—not “absolute predictability” of success—in 

achieving the claimed invention by combining prior art references. 

30. I have been told that whether a prior art reference renders a patent 

claim unpatentable as obvious is determined from the perspective of a person of 

ordinary skill in the art.  I have been told that there is no requirement that the prior 

art contain an express suggestion to combine known elements to achieve the 

claimed invention, but a suggestion to combine known elements to achieve the 

claimed invention may come from the prior art, as filtered through the knowledge 

of one skilled in the art.  In addition, I have been told that the inferences and 

creative steps a person of ordinary skill in the art would employ are also relevant to 

the determination of obviousness. 

31. I have been told that, when a work is available in one field, design 

alternatives and other market forces can prompt variations of it, either in the same 

field or in another.  I have been told that if a person of ordinary skill in the art can 

implement a predictable variation and would see the benefit of doing so, that 

variation is likely to be obvious.  I have been told that, in many fields, there may 

Page 15 of 244



 

13 
 

be little discussion of obvious combinations, and in these fields market demand—

not scientific literature—may drive design trends.  I have been told that, when 

there is a design need or market pressure and there are a finite number of 

predictable solutions, a person of ordinary skill in the art has good reason to pursue 

those known options. 

32. I have been told that there is no rigid rule that a reference or 

combination of references must contain a “teaching, suggestion, or motivation” to 

combine references.  But I also understand that the “teaching, suggestion, or 

motivation” test can be a useful guide in establishing a rationale for combining 

elements of the prior art.  I have been told that this test poses the question as to 

whether there is an express or implied teaching, suggestion, or motivation to 

combine prior art elements in a way that realizes the claimed invention, and that it 

seeks to counter impermissible hindsight analysis. 

V. Level of Ordinary Skill in the Art 

33. I have been asked to provide a definition for the level or ordinary skill 

in the art.  I have been informed that several factors are considered in assessing the 

level of ordinary skill in the art, including: (1) the types of problems encountered 

in the art; (2) the prior art solutions to those problems; (3) the rapidity with which 

innovations are made; (4) the sophistication of the technology; and (5) the 

educational level of active workers in the field. Based on my experience and 

Page 16 of 244



 

14 
 

considering these factors, my opinion is that a person of ordinary skill in the art 

(“POSA”) at the time of the filing of the provisional application leading to the ’609 

patent would have had either (a) a Master’s or doctoral degree in computer science, 

electrical engineering, or a similar discipline involving relevant experience; or 

(b) a Bachelor’s degree in computer science, electrical engineering, or a similar 

discipline and at least two years additional relevant experience.  Working in the 

design and implementation of networked computing systems constitutes relevant 

work experience.  Examples of such work in networked computing systems could 

include work in networked computing communication and data streaming.   

34. I have not analyzed the priority date of the ’609 patent, but I note that 

the earliest claim of priority listed on the face of the ’609 patent is August 21, 

2008, the filing date of U.S. Provisional Patent Application No. 61/090,672.  

Because all of the prior art discussed in this declaration pre-dates August 21, 2008, 

I have assumed for simplicity that August 21, 2008, is the priority date for the ’609 

patent.  I have therefore also treated this date as the date from which to assess the 

knowledge available to a person of ordinary skill in the art. I note that I was at least 

a person or ordinary skill in the art as of this date. 

Page 17 of 244



 

15 
 

VI. The ’609 Patent  

A. Overview of the ’609 Patent 

35. The ’609 patent describes a method for tracking digital media 

presentations delivered to a user’s computer.  ’609 patent, Abstract.  The method is 

carried out by the system shown in annotated Figure 1, below, which includes a 

user computer 20, a content or web server 34 and database server 32, and a file 

server 36, all of which are connected by a network 40.   

36. The ’609 patent teaches that “a user of a device 20 may request [a 

web] page 200 from content server 34 using a browser application,” “[s]erver 34 

Page 18 of 244



 

16 
 

may provide page 200 to the requesting computer 20,” and “[a] user may enter a 

search term.”  Id. at 4:57–61, 5:29–34.  “Responsively thereto,” the ’609 patent 

explains, “content server 34 may request database server 32 to identify which 

presentations should be used to populate page 200 according to the entered search 

term(s).”  Id. at 5:34–37.   

37. “Server 34 may then provide such a populated page 200 to the 

requesting user computer 20.”  Id. at 5:37–39.  An example web page 200 showing 

“aggregate[d] . . . video content for presentation to users of computers 20” is 

shown in Figure 2, below.   

Page 19 of 244



 

17 
 

38. As Figure 2 illustrates, “presentations 265, 270, 275” may be shown.  

Id. at 4:38–40.  Then, “a user may select a populated presentation (e.g., 265, 270, 

or 275, FIG. 2)” and, “[i]n response thereto, server 34 may request file server 36 . . 

. stream . . . the selected presentation to the requesting user’s computer 20, such as 

via web page 200 in a conventional manner.”  Id. at 5:20–25.   

39. A “[w]eb page 900,” shown in Figure 9 below, “may be provided to 

user’s computer [20] responsively to user selection of a presentation shown on a 

populated web page 200.”  Id. at 11:61–64.  On the web page 900, a “portion 930 

[green] may be utilized to playback the selected presentation in a conventional 

Page 20 of 244



 

18 
 

manner, e.g., by . . . streaming the content to a media player application or plug-

in.”  Id. at 12:1–5.   

40. The ’609 patent states “it may be desirable to know . . . how long a 

user actually watched, and/or listened, to a presented program.”  Id. at 11:47–52.  

For example, where advertisements are displayed in the web page alongside the 

presentation, “it may be desirable to be able to reliable [sic] identify how long the 

media was actually . . . played, in order to appropriately value portions [of the web 

page] as available advertising billboard space.”  Id. at 12:5–10.   

41. But while Hayward discloses tracking how a user views a media file, 

including how long the media file was played, the ’609 patent claims “[s]uch 

knowledge is not conventionally available.”  Id. at 13:47–48.  The ’609 patent 

tracks how the user views the digital media presentation using a “timer applet.”  Id. 

at 12:66–67.   

42. As shown in Figure 10, below right, the timer applet “may be used to 

indicate each time some temporal time period, such as 10, 15, or 30 seconds, 

elapses.”  Id. at 13:6–9.  “[W]hen the applet determines the predetermined 

temporal period has elapsed, . . . system 30 may log receipt of this indication, such 

Page 21 of 244



 

19 
 

as by using database server 32.”  Id. at 

13:10–13.  In some embodiments, the 

applet may cause “identifying data” to be 

transmitted with the indication.  Id. at 

13:14–16.  The identifying data may be 

“logged, such as by using database 

server 32.”  Id. at 13:22–23. 

43. Based on the logged data, it 

may be determined “that a viewer began 

viewing a particular show at a certain 

time,” as well as “when a user began 

viewing a different page, or show, thereby providing knowledge of how long a 

particular viewer spent on a particular page.”  Id. at 13:43–48.   

44. The ’609 patent recognizes the value of this information to 

advertisers.  Using this information, the ’609 patent envisions, “an increasing scale 

of payments for advertising displayed on a given page” could be determined, 

“correspondent to how long a viewer or viewers remain, or typically remain, on 

that particular page.”  Id. at 13:49–14:2.   

B. Challenged Claims 

45. Google challenges claims 1–3.   

Page 22 of 244



 

20 
 

46. For convenience, the Challenged Claims are reproduced below.  I 

have added reference numerals for ease of reference: 

Claim Claim Language 

1 

1[a]. A method for tracking digital media presentations delivered 

from a first computer system to a user’s computer via a network 

comprising: 

[1b]. providing a corresponding web page to the user’s 

computer for each digital media presentation to be 

delivered using the first computer system; 

[1c]. providing identifier data to the user’s computer using 

the first computer system; 

[1d]. providing an applet to the user’s computer for each 

digital media presentation to be delivered using the first 

computer system, wherein the applet is operative by the 

user’s computer as a timer;  

[1e]. receiving at least a portion of the identifier data from 

the user’s computer responsively to the timer applet each 

time a predetermined temporal period elapses using the 

first computer system; and 

[1f]. storing data indicative of the received at least portion 

of the identifier data using the first computer system;  

Page 23 of 244



 

21 
 

Claim Claim Language 
[1g]. wherein each provided webpage causes 

corresponding digital media presentation data to be 

streamed from a second computer system distinct from the 

first computer system directly to the user’s computer 

independent of the first computer system;  

[1h]. wherein the stored data is indicative of an amount of 

time the digital media presentation data is streamed from 

the second computer system to the user’s computer; and 

[1i]. wherein each stored data is together indicative of a 

cumulative time the corresponding web page was 

displayed by the user’s computer. 

2 
[2] The method of claim 1, wherein the storing comprises 

incrementing a stored value dependently on the receiving. 

3 
[3] The method of claim 2, wherein the received data is 

indicative of a temporal cycle passing. 

 
C. Claim Construction 

47. I have been told that claim terms in inter partes review proceedings 

are to be given their ordinary and accustomed meaning as understood by a person 

of ordinary skill in the art. In my analysis of the Challenged Claims, I have 

therefore applied the plain and ordinary meaning as understood by a person of 

ordinary skill in the art.  I understand that Petitioner and Patent Owner have 

Page 24 of 244



 

22 
 

offered various constructions in related litigation. Ex. 1008; Ex. 1009.  For 

purposes of this proceeding, it is my opinion that the Board does not need to 

expressly construe the claims because it is my opinion that the Challenged Claims 

are unpatentable under both parties’ constructions. 

VII. Overview of Prior Art References 

A. Hayward 

48. I note that Hayward was published on March 4, 2004, which was 

more than one year before August 21, 2008.  I am told that makes Hayward prior 

art to the ’609 patent under § 102(b). 

Page 25 of 244



 

23 
 

49. Hayward teaches “a method of displaying video data using an 

embedded media player page.”  Hayward, Abstract.  As shown in annotated 

Figure 1A above, Hayward’s method is carried out by a system including a 

client 110, a customer system 118 and media file index and log system 122, and a 

media file source 116, all of which are connected by the Internet 114.  While 

customer system 118 and media file index and log system 122 are shown 

separately, Hayward explains that these systems may be “combined physically 

within one . .  system[]” in some embodiments.  Id. ¶0030. 

50. In Hayward, “[a] user of client 110 accesses customer system 118 

through Internet 114,” and “customer system 118 transmits a web page to 

client 110 through Internet 114.”  Id. ¶0025.  The transmitted web page includes “a 

media file search prompt” where the user may enter a search request, such as 

“Pearl Harbor” and “movie trailer.”  Id. ¶¶0026, 0028.  “The search request is 

received by customer system 118 and is transmitted to media file index and log 

system 122 . . . .”  Id. ¶0028.   

51. The media file index and log system 122 “includes a database having 

indexed therein a plurality of media files,” each of which is identified by “a unique 

identifier for the media file.”  Id. ¶0027.  When the search request is transmitted by 

the customer system 118, the media file index and log system 122 searches “for 

indexed media files that satisfy the search request” and “transmits the results to 

Page 26 of 244



 

24 
 

customer system 118.”  Id. ¶0028.  The search results include “the playing length 

of each video file, the URI address of each video file, encoding bit rate of the video 

file, file format, a database identifier unique to each video file, frame dimensional 

data for each video file, or any other information contained within the database.”  

Id.   

52. The customer system 118 transmits the search results to client 110 “as 

a Web page that preferably includes a list of links to media files located at media 

file sources 116.”  Id.  The client 110 displays the web page with the search results 

to the user.  Id.   

53. The user may “view the video data contained within a video file listed 

in the search results displayed to the user by clicking a link to one of the video 

files.”  Id. ¶0029.  When the user clicks a link for a selected media file, “the 

customer system 122 instructs the client to request [an] embedded media player 

page from the customer system 122.”  Id.   

54. Figure 2, annotated below, shows an embedded media player 

page 200. 

Page 27 of 244



 

25 
 

55. The embedded media player page 200 “includes a reference to a 

functional media player object” that can play the selected media file.  Id. ¶0031.  

The media player “is an application that outputs audio and video files that are 

either stored locally in a multimedia device, or are streamed/downloaded from a 

remote storage site via a communications interface.”  Id. ¶0002.  The media player 

is “embedded” because it is “viewed . . . within a data display,” like a web page.  

Id. ¶0002.  For example, in Figure 2, a “video display area 202” is included within 

the web page 200.  Id. ¶0032.   

56. In Hayward, the “display code” for the web page may include 

“scripting that calls [the] media player, resident on the client, as an object for 

Page 28 of 244



 

26 
 

embedding within the data display.”  Id. ¶0002.  Hayward defines “scripting” as 

“server or client-side programming which supplements a static HTML page.”  Id. 

¶0017.  Hayward contemplates that the “scripting” could be, for example, “Java” 

or “JavaScript.”  Id.   

57. In Hayward, the embedded media player page may locate a media file 

at the media file source 116 and stream the media file, which may be output by the 

media player.  Id. ¶0046.  For example, a media file titled “thestream.asx” may be 

“found and streamed by the media player from a media file source 116 located at 

‘thestreamhost.com’ through Internet 114.”  Id.  In particular, HTML code of the 

embedded media player page may find and stream the media file using a source 

command, such as “SRC=http://thestreamhost.com/thestream.asx.”  Id. ¶¶0044, 

0046.  The streamed media file may then be “outputted by the embedded media 

player in a window 202,” as shown in annotated Figure 2 above.   

58. In some embodiments, Hayward teaches, the “embedded media player 

page also facilitates the collection of data in connection with the playing of a 

media file.”  Id. ¶0057.  Hayward’s data collection is described in connection with 

Figure 5, below right.  As shown, “[a]t step 502, the embedded media player page 

instructs the client 110 to transmit a media file identification message to a log 

Page 29 of 244



 

27 
 

server of the media file index and log 

system 122.”  Id. ¶0058.  The media file 

identification message is transmitted 

“substantially proximate in time to when 

the media file begins to play in the 

embedded media player of the embedded 

media player page.”  Id. ¶0059.  The media 

file identification message may include 

“the Internet Protocol (IP) address of the 

user, . . . the IP address or Universal 

Resource Locator of client 110, the domain 

address of the customer system 118 that 

transmitted the embedded media player 

page at the client 110, a unique identifier to 

the media file (such as a unique identifier of the media file used in the media fil[e] 

index and log system 122 and received along with a search results page) . . . and 

the ranking (if any) of the media file within the search results page, and a session 

identifier indicating the communications thread between client 110 and customer 

system 118.”  Id. ¶0058.   

59. The media file index and log system 122 in Hayward “maintains a 

Page 30 of 244



 

28 
 

respective log for each indexed media file.”  Id.  The media file index and log 

system 122 “records that the media file has been selected for playing by a user.”  

Id.  In particular, at step 504, the media file index and log system 122 stores “the 

information contained within the media file identification message in the media 

file’s respective log,” including a “time stamp” that identifies “the time at which 

the media file identification message was transmitted.”  Id. 

60. Hayward teaches that “[t]he embedded media player page also 

preferably includes scripting to instruct the client 110 to transmit at least one 

subsequent message at step 506 while the embedded media player page remains 

open.”  Id. ¶0060.  As noted above, Hayward defines “scripting” as “server or 

client-side programming which supplements a static HTML page.”  Id. ¶0017.  

Hayward contemplates that the “scripting” could be, for example, “Java” or 

“JavaScript.”  Id.  As shown at step 506, the subsequent messages are transmitted 

to “the log server of the media file index and log system 122.”  Id. ¶0061.  The 

subsequent messages are transmitted “at predetermined time intervals while the 

embedded media play page remains open,” such as “every thirty seconds.”  Id. 

¶¶0060–0061.  At step 508, a time stamp for the at least one subsequent message is 

stored in the log associated with the media file.”  Id. ¶0060.   

61. As noted above, “[t]he media file index and log system 122 preferably 

indexes and maintains logs for a plurality of media files.”  Id. ¶0062.  “When the 

Page 31 of 244



 

29 
 

logs maintained by the media file index and log system 122 are populated with 

sufficient data,” Hayward teaches, “this data can be processed . . . to provide 

valuable information,” including “raw popularity data” that “allows for the ranking 

of the popularity of media files that are indexed in the media file index and log 

system 122, based at least in part on the ranking results.”  Id. 

62. Hayward recognizes that “much information can be gleaned about the 

user and the playing event” from the time stamps stored in a media file’s log at the 

media file index and log system 122.  Id. ¶0063.  In particular, Hayward teaches, 

“by calculating the difference in time between the first and last time stamps for a 

media file during a selected playing session recorded in the log, the approximate 

length of time that the embedded media player page was left open by the user can 

be calculated.”  Id.  Hayward recognizes that this information may be valuable to, 

for example, an advertiser whose advertisement was displayed while the embedded 

media player page was open.  Id. ¶0064.  This information may also determine 

“how pertinent or relevant a played media file was to a user’s initial search 

request.”  Id.   

B. Middleton 

63. I note that Middleton was published on August 15, 2002, which was 

more than one year before August 21, 2008.  I am told that makes Middleton prior 

art to the ’609 patent under § 102(b). 

Page 32 of 244



 

30 
 

64. Middleton describes an applet, downloaded to a user’s web browser, 

that tracks the user’s interactions with an object on a web page.  Middleton, 

Abstract.  The applet tracks, for example, a “time [the object is] displayed on [the] 

page.”  Middleton, Abstract; see also id. ¶0037.   

65. The applet in Middleton takes the form of “JavaTM code 44 that 

includes instructions to be run while [a] user computer 20a is displaying the web 

page.”  Id. ¶0026.  In particular, the JavaTM code 44 “includes an applet program 

and data for tracking and logging the activities of the user in memory 24 while the 

user is viewing the Web page.”  Id. ¶0029.  Middleton’s applet “permits the authors 

of the advertisement 39 to better understand how the users interact with the Web 

page advertisement.”  Id. ¶0029.  

66. Figure 2, below right, shows how the applet allows an advertiser to 

track “the elapsed time that [an] element 48 [of the advertisement 39]  has been 

displayed on the page.”  Id. ¶0037.  In state 104, Middleton teaches, “user activities 

Page 33 of 244



 

31 
 

with respect to objects within the 

advertisement 39 may begin to be 

tracked by logging information in 

local memory locations 24 at the 

client 20.”  Id. ¶0036.  The “elapsed 

time” is tracked in state 106.  When 

“state 120 is entered . . . the activity 

log 60 is sent from the local 

memory 24 by the applet 44 back to 

a server,” which “may or may not be 

the same server [] from which the 

Web page 46 was originally 

downloaded.”  Id. ¶0045.   

67. According to Middleton, 

this information may be valuable to an advertiser, who may wish to understand 

“what motivates users to pay initial attention to and/or otherwise interact with Web 

page advertising.”  Id. ¶0010.   

C. Ryan 

68. I note that Ryan issued on July 16, 2002, which was more than one 

year before August 21, 2008.  I am told that makes Ryan prior art to the ’609 patent 

Page 34 of 244



 

32 
 

under § 102(b). 

69. Ryan describes a search engine that includes a server and a database.  

Ryan, 1:23–29.  In Ryan, when a user enters a search command at a personal 

computer, the server receives the search command, uses it to search the database, 

and provides search results, such as a list of web pages, to the user’s personal 

computer for display to the user.  Id. at1:23–30.  The search engine could be used 

to provide, for example, videos.  Id. at 36:64–67.   

70. A problem with search engines, Ryan notes, is that they fail to take 

into account “any measure of the actual users’ opinions” regarding the search 

results, even though it would “directly benefits the advertiser, because it allows for 

content to be targeted in real time based upon various criteria.”  Id. at 1:66–2:4, 

4:57–60.  Accordingly, Ryan proposes determining a “relevance” to the user of a 

web page selected from the search results.  Id. at 9:17–18.   

71. As Ryan explains, “[d]epending on the relevance of the site, the user 

may spend time reading, downloading exploring further pages, embedded links and 

so forth, or if the site appears irrelevant/uninteresting, the user may return directly 

back to the search results after a short period.”  Id. at 9:17–22.  So Ryan uses a 

“Java applet” to record a “date-time” when the user selects a site.  Id. at 8:63–67, 

9:41–56.  “The time difference between the two selections,” Ryan teaches, “is 

recorded as the difference between two . . . time data 132 from subsequent 

Page 35 of 244



 

33 
 

selections from the list of web page searches.”  Id. at 9:22–25.  This time 

difference is recorded as “surfer trace data on the popularity of web pages.”  Id. at 

9:29–30.   

72. From the surfer trace data, the server generates a “cumulative surfer 

trace table,” shown below.  Id. at 13:62–14:3.  The cumulative surfer trace table is 

updated each time a user selects a web page from the search results.  Id. at 16:10–

16. 

Page 36 of 244



 

34 
 

73. Ryan’s server also maintains a table, shown below, linking web pages 

with keywords entered in search commands.  Id. at 12:16–41.  This table includes 

“the cumulative number of significant visits (hits) to each URL addresses 

corresponding to each key-word,” which Ryan calls “weighting factor X.”  Id. at 

12:27–29.  The weighting factor X “is a measure of the popularity of the URL for 

each keyword and is determine [sic] from the surfer traces.”  Id. at 12:29–31.  The 

weighting factor X may be “increment[ed] . . . based on the time spent at the web 

page,” Ryan teaches.  Id. at 16:40–41.  “The longer the time spent the more this 

increments the value of X.”  Id. at 16:41–42.   

 

Page 37 of 244



 

35 
 

VIII. Claims 1–3 of the ’609 Patent are Unpatentable 

A. Ground 1: Hayward anticipates claim 1 

1. Claim 1 

a. [1a] “A method for tracking digital media 
presentations delivered from a first computer system 
to a user’s computer via a network comprising:” 

74. In my opinion, a POSA would have understood Hayward to disclose 

this element.  

75. I understand the “user’s computer” to refer to the user computers 20 

shown in Figure 1, annotated below.  I understand the “first computer system” to 

be the content or web server 34 and database server 32, which are connected to the 

user computers 20 via the network 40.   

 

Page 38 of 244



 

36 
 

76. Hayward discloses “a method of displaying video data using an 

embedded media player page.”  Hayward, Abstract.  The embedded media player 

page is provided by a “customer system” to a “client” where the video data is 

displayed.  Id. ¶0031.  Hayward’s “embedded media player page also facilitates the 

collection of data in connection with the playing of a media file.”  Id. ¶0057.  This 

data is collected from the client by a “media file index and log system.”  Id. ¶0058.   

77. In Hayward, the method is implemented in a “system of 

interconnected computer system networks,” as shown in Figure 1, annotated 

below.  Id. ¶0019.  Each of the computer system networks 102, such as that labeled 

in orange, is connected to the client 110 via the Internet 114.  Id.   

Page 39 of 244



 

37 
 

78. In my opinion, Hayward teaches that one of the computer systems 102 

in Figure 1, such as that labeled in orange above, may include both a customer 

system 118 and media file index and log system 122, as shown in Figure 1A, 

annotated below.  Id. ¶0024.  In particular, Hayward teaches that each of customer 

system 118 and media file index and log system 122 may take the form of a 

computer system 102, and Hayward teaches that these systems may be “combined 

physically within one . .  system[]” in some embodiments.  Id. ¶0030.  

79. Hayward also teaches that the first computer system (customer 

Page 40 of 244



 

38 
 

system 118 and media file index and log system 122) and the user’s computer 

(client 110) are connected via a network (internet 114).   

80. In my opinion, a POSA would have understood Hayward’s customer 

system 118 and media file index and log system 122 to disclose the claimed “first 

computer system”; would have understood Hayward’s client 110 to disclose the 

claimed “user’s computer”; and would have understood Hayward’s Internet 114 to 

disclose the claimed “network.”  Further, because Hayward teaches a method for 

tracking a media file displayed using an embedded media player page provided by 

Page 41 of 244



 

39 
 

the customer system 118 to the client 110 via the Internet 114, in my opinion 

Hayward discloses “[a] method for tracking digital media presentations delivered 

from a first computer system to a user’s computer via a network.” 

b. [1b] “providing a corresponding web page to the 
user’s computer for each digital media presentation to 
be delivered using the first computer system;” 

81. In my opinion, Hayward discloses providing a corresponding web 

page (e.g., the embedded media player page) to the user’s computer (e.g., the 

client 110) for each digital media presentation to be delivered using the first 

computer system (e.g., the customer system 118).   

82. Hayward teaches that a user can search for media files by providing a 

search request to the customer system 118 through the client 110.  Hayward, 

¶0028.  The customer system 118 receives the search request and transmits it to the 

media file index and log system 122, which “searches local and remote databases 

for indexed media files that satisfy the search request” to generate “search results.”  

Id.  The “search results” include “a database identifier unique to each video file.”  

Id.  The media file index and log system 122 provides the search results to the 

customer system 118, and the customer system 118 provides the search results to 

the client 110 for display to the user.  Id.   

83. When the user selects one of the search results, the client 110 requests 

the embedded media player page from the customer system 118.  Id. ¶0029.  The 

Page 42 of 244



 

40 
 

embedded media player page is then “transmitted from customer system 118 

through Internet 114 and displayed to the user by a client 110.”  Id. ¶0031.   

84. The embedded media player page is “displayed as a Web page in a 

browser window” at the client 110 and “includes a reference to a functional media 

player object” to play the selected media file.  Id. ¶¶0024, 0031.  An example 

embedded media player page is shown in Figure 2 of Hayward, below.  As shown, 

the embedded media player page “includes video display area 202 (when the 

embedded player plays video files).”  Id. ¶0032.   

 

85. In my opinion, Hayward’s embedded media player page discloses the 

claimed “corresponding web page.”  Because Hayward discloses that customer 

Page 43 of 244



 

41 
 

system 118 provides the embedded media player page to client 110, and that the 

embedded media player page facilitates display of the media file selected by the 

user, in my opinion Hayward discloses “providing a corresponding web page to the 

user's computer for each digital media presentation to be delivered using the first 

computer system.” 

c. [1c] “providing identifier data to the user’s computer 
using the first computer system” 

86. In my opinion, Hayward discloses providing identifier data (e.g., a 

unique identifier for the media file and a session identifier) to the user’s computer 

(client 110) using the first computer system (customer system 118 and media file 

index and log system 122). 

87. Hayward teaches that “[a] user of client 110 accesses customer 

system 118 through Internet 114,” and “customer system 118 transmits a web page 

to client 110 through Internet 114.”  Hayward, ¶0025.  The transmitted web page 

includes “a media file search prompt” where the user may enter a search request, 

such as “Pearl Harbor” and “movie trailer.”  Id. ¶¶0026, 0028.  “The search request 

is received by customer system 118 and is transmitted to media file index and log 

system 122.”  Id. ¶0028.  When the search request is transmitted by the customer 

system 118, the media file index and log system 122 searches “for indexed media 

files that satisfy the search request” and “transmits the results to customer 

system 118.”  Id. ¶0028.  The search results include “the playing length of each 

Page 44 of 244



 

42 
 

video file, the URI address of each video file, encoding bit rate of the video file, 

file format, a database identifier unique to each video file, frame dimensional data 

for each video file, or any other information contained within the database.”  Id. 

¶0028.  This “unique identifier for the media file” is “associated with the media 

file” and used to identify the media file in the media file index and log system 122.  

Id. ¶¶0027, 0054, 0058, Fig. 5.  In my opinion, the claimed “identifier data” could 

include Hayward’s unique identifier for the media file.   

88. Hayward further teaches that the user may “view the video data 

contained within a video file listed in the search results displayed to the user by 

clicking a link to one of the video files.”  Id. ¶0029.  When the user clicks a link 

for a selected media file, “the customer system 122 instructs the client to request 

[an] embedded media player page from the customer system 122.”  Id.   A POSA 

would have understood from Hayward that, in connection with the providing the 

embedded media player page to the client 110, the customer system 122 would 

provide the client 110 with a session identifier.  Hayward references a “session 

identifier indicating the communication thread between client 110 and customer 

system 118” that the client 110 sends in the media file identification message.  Id. 

¶0058.  A POSA would have understood that, in order for the client 110 to send 

this session identifier in the media file identification message, the client 110 would 

have had to receive it from the customer system 118 in connection with the 

Page 45 of 244



 

43 
 

embedded media player page.  In my opinion, the claimed “identifier data” could 

include Hayward’s session identifier.   

89. Because Hayward thus discloses providing, for example, a unique 

identifier for the media file and a session identifier to the client 110 using the 

customer system 118, in my opinion Hayward discloses “providing identifier data 

to the user’s computer using the first computer system.” 

d.  [1d] “providing an applet to the user’s computer for 
each digital media presentation to be delivered using 
the first computer system, wherein the applet is 
operative by the user’s computer as a timer” 

90. In my opinion, Hayward discloses providing an applet (“scripting,” as 

defined in Hayward) to the user’s computer (client 110) for each digital media 

presentation (video file) to be delivered using the first computer system (customer 

system 118 and media file index and log system 122), wherein the applet is 

operative by the user’s computer (client 110) as a timer. 

91. In Hayward, when the user clicks a link for a selected media file, “the 

customer system 122 instructs the client to request [an] embedded media player 

page from the customer system 122,” and the media player displays the selected 

media file.  Hayward, ¶¶0029, 0046.   

92. According to Hayward, the embedded media player page also 

“facilitates the collection of data in connection with the playing of the video file.”  

Id. ¶0057.  In particular, “the embedded media player page instructs the client 110 

Page 46 of 244



 

44 
 

to transmit a media file identification message to [the] media file index and log 

server 122.”  Id. ¶0058.  Additionally, the embedded media player page “instruct[s] 

the client 110 to transmit at least one subsequent message . . . while the embedded 

media player page remains open.”  Id. ¶0060.   

93. Hayward states that the embedded media player page instructs the 

client 110 to send the subsequent messages using “scripting.”  Id.  Hayward 

defines “scripting,” as used in Hayward, as “server or client-side programming 

which supplements a static HTML page.”  Id. ¶0017.  Hayward contemplates that 

its “scripting” could be, for example, “Java” or “JavaScript.”  Id.  In my opinion, a 

POSA would have understood that “client-side programming” in “Java” that 

“supplements a static HTML page” includes applets.  Accordingly, in my opinion, 

a POSA would have understood Hayward to disclose that the embedded media 

player page uses an applet to instruct the client 110 to send the subsequent 

messages.   

94. Just as Hayward states that “[t]he embedded media player page . . . 

instruct[s] the client 110 to transmit at least one subsequent message,” Hayward 

states that “the embedded media player page instructs the client 110 to transmit 

[the] media file identification message.”  Id. ¶¶0058, 0060.  But while Hayward 

states that the embedded media player page instructs the client 110 to send the 

subsequent messages using “scripting,” Hayward does not state how the embedded 

Page 47 of 244



 

45 
 

media player page instructs the client 110 to send the media file identification 

message.  Id.  In my opinion, a POSA would have understood from Hayward that, 

as with the subsequent messages, the embedded media player page uses “scripting” 

to instruct the client 110 to send the media file identification message.  As noted 

above, Hayward contemplates that its “scripting” could be, for example, “Java” 

which a POSA would have understood to include applets.  Id. ¶0017.  Accordingly, 

in my opinion, a POSA would have understood Hayward to disclose that the 

embedded media player page uses an applet to instruct the client 110 to send the 

media file identification message.   

95. In my opinion, the scripting in Hayward that instructs the client 110 to 

send the media file identification message and the subsequent messages discloses 

the claimed “applet.”  Like the claimed applet, which is “provid[ed] . . . to the 

user’s computer for each digital media presentation to be delivered using the first 

computer system,” Hayward’s scripting is provided to the client 110 in each 

embedded media player page through which a selected media file is displayed.  

Further, like the claimed applet, which is “operative by the user’s computer as a 

timer,” Hayward’s scripting is operative by the client to instruct the client to send 

the subsequent messages “at predetermined time intervals.”  Id. ¶0060;  see also id. 

¶0061 (“periodic intervals,” “every thirty seconds”).   

96. Because a POSA would have understood Hayward to disclose 

Page 48 of 244



 

46 
 

providing an applet to client 110 in each embedded media player page and using 

the applet to instruct the client 110 to send the media file identification message 

and the subsequent messages to the media file index and log system 122 at 

predetermined time intervals, in my opinion a POSA would have understood 

Hayward to disclose “providing an applet to the user’s computer for each digital 

media presentation to be delivered using the first computer system, wherein the 

applet is operative by the user’s computer as a timer.”   

e.  [1e] “receiving at least a portion of the identifier data 
from the user’s computer responsively to the timer 
applet each time a predetermined temporal period 
elapses using the first computer system” 

97. In my opinion, Hayward discloses receiving at least a portion of the 

identifier data (the unique identifier for the media file) from the user’s computer 

(client 110 in Hayward) responsively to the timer applet (“scripting”) each time a 

predetermined temporal time period elapses using the first computer system 

(customer system 118 and media file index and log server 122).   

98. As noted above in connection with [1c], in my opinion the claimed 

“identifier data” could include Hayward’s unique identifier for the media file.  

Accordingly, in my opinion, the unique identifier for the media file also discloses 

the claimed “at least a portion of the identifier data.”   

99. In Hayward, “the embedded media player page instructs the client 110 

to transmit a media file identification message to [the] media file index and log 

Page 49 of 244



 

47 
 

server 122.”  Hayward, ¶0058.  Hayward states that the media file identification 

message “should at least identify to the log system 122 the media file that is to be 

played by the embedded media player page.”  Id.  For example, Hayward’s media 

file identification message may include the “unique identifier for the media file 

(such as a unique identifier of the media file used in the media fil[e] index and log 

system 122 and received along with the search results page.”  Id.   

100. Hayward’s client 110 further sends the “subsequent messages” to the 

media file index and log system 122.  Id. ¶0061.  In my opinion, a POSA would 

have understood that the subsequent messages, like the media file identification 

message, would have uniquely identified the media file.  This is because 

Hayward’s media file index and log system 122 indexes “a plurality of media 

files,” each of which is identified by “a unique identifier for the media file,” and 

“maintains a respective log for each indexed media file.”  Id. ¶¶0027, 0058.  When 

a subsequent message is received in Hayward, “a time stamp for the . . . 

subsequent message is stored in the log associated with the media file.”  Id. ¶0060.  

In my opinion, a POSA would have understood that, to store the time stamp in the 

“log associated with the media file,” the subsequent message would need to 

uniquely identify the media file, like the media file identification message does.  

This similarity between the subsequent messages and the media file identification 

message is consistent with Hayward’s description of each as “an HTTP request to 

Page 50 of 244



 

48 
 

the media file index and log system 122 for a one-pixel GIF file.”  Id. ¶¶0059, 

0061.  Just as the unique identifier for the media file is “appended to the HTTP 

request” that is the media file identification message, a POSA would have 

understood Hayward to teach that the unique identifier for the media file is 

appended to the HTTP requests that are the subsequent messages.  Id.  This would 

have allowed the time stamps for the subsequent messages to be “stored in the log 

associated with the media file” by the media file index and log system 122, as 

Hayward describes.  Id. ¶0060. 

101. As discussed above, in my opinion Hayward discloses using an applet 

to instruct the embedded media player page to send the subsequent messages to the 

media file index and log system 122 at predetermined time intervals.  Accordingly, 

in my opinion, Hayward discloses that the media file index and log system 122 

receives the unique identifier for the media file from the client 110 responsively to 

the applet each time a predetermined temporal period elapses. 

102. Because a POSA would have understood Hayward to disclose the 

media file index and log system 122 receiving the subsequent messages including 

the unique identifier for the media file sent using the applet at the client 110 each 

time a predetermined temporal time period elapses, in my opinion a POSA would 

have understood Hayward to disclose “receiving at least a portion of the identifier 

data from the user’s computer responsively to the timer applet each time a 

Page 51 of 244



 

49 
 

predetermined temporal period elapses using the first computer system.” 

f. [1f] “storing data indicative of the received at least 
portion of the identifier data using the first computer 
system” 

103. In my opinion, Hayward discloses storing data (entries at the media 

file index and log system 122 relating to the media file information message and 

subsequent messages) indicative of the received at least portion of the identifier 

data (unique identifier for the media file) using the first computer system 

(customer system 118 and media file index and log system 122).   

104. In Hayward, the “media file index and log system 122 preferably 

maintains a respective log for each media file.”  Hayward, ¶0058.  When the media 

file identification message is received, the media file index and log system 122 

“records that the media file has been selected for playing by a user, preferably by 

storing, at step 504 [in Figure 5, below right] the information contained within the 

media file identification message in the media file’s respective log.”  Id.  This 

information includes the unique identifier for the media file, a “time stamp 

. .  identifying the time at which the media file identification message was 

Page 52 of 244



 

50 
 

transmitted,” and “the time that the media file identification message was 

received.”  Id.   

105. Similarly, Hayward discloses that a 

time stamp for each subsequent message is 

“stored in the log associated with the media file,” 

as shown in Figure 5, right.  Id. ¶0060.  As noted 

above in connection with [1e], in my opinion a 

POSA would have understood that, to store the 

time stamp in the “log associated with the media 

file,” as Hayward contemplates, the subsequent 

message would need to uniquely identify the 

media file.  In my opinion, a POSA would have 

understood that the stored time stamps for the 

subsequent messages in Hayward are indicative of the unique identifier for the 

media file because their storage in the “log associated with the media file” 

indicates the media file.   

106. Because Hayward discloses storing the unique identifier for the media 

file and the time stamp for the media file identification message, as well as the 

time stamps for the subsequent messages, in the log associated with the media file 

at the media file index and log system 122, in my opinion Hayward discloses 

Page 53 of 244



 

51 
 

“storing data indicative of the received at least portion of the identifier data using 

the first computer system.” 

g.  [1g] “wherein each provided webpage causes 
corresponding digital media presentation data to be 
streamed from a second computer system distinct 
from the first computer system directly to the user’s 
computer independent of the first computer system” 

107. In my opinion, Hayward discloses wherein each provided webpage 

(embedded media player page) causes corresponding digital media presentation 

data (media file) to be streamed from a second computer system (media file 

source 116) distinct from the first computer system (customer system 118 and 

media file index and log system 122) directly to the user’s computer (client 110) 

independent of the first computer system.   

Page 54 of 244



 

52 
 

108. In Hayward, the media file is streamed directly to the client 110 by a 

media file source 116, as shown in annotated Figure 1A below.  Media file 

source 116 “is accessible through Internet 114 and provides at least one media file 

through Internet 114 for playing on client 110.”  Hayward, ¶0021.   

109. Hayward describes an example in which a media file, 

“thestream.asx,” is streamed to the client 110 from a media file source 116, 

“thestreamhost.com.”  Id. ¶¶0042–0046.  When a user selects a search result in the 

embedded media player page, “[a] file entitled ‘thestream.asx’ is found and 

streamed by the media player from [the] media file source 116 located at 

‘thestreamhost.com’ through Internet 114 via a SRC command.”  Id. ¶0046.  “The 

file ‘thestream.asx’,” Hayward discloses, “is outputted by the embedded medial 

Page 55 of 244



 

53 
 

player.”  Id.   

110. In my opinion, a POSA would have understood from Hayward’s 

example that the media file, “thestream.asx,” is streamed from the media file 

source 116 directly to the client 110 independent of the customer system 118 and 

media file index and log system 122.  “[T]he embedded media player reference[s]” 

the media file, “thestream.asx,” using, for example, a “SRC command”: 

SRC=“http://thestreamhost.com/thestream.asx” 

Id. ¶¶0044, 0046.   

111. In my opinion, a POSA would have understood that a SRC command 

causes a web browser at a client (here, the client 110) to fetch a media file (here, 

“thestream.asx”) from a content source (here, media file source 116) located at the 

Internet domain or address given in the universal resource locator (“URL”) 

specified by the command (here, http://thestreamhost.com/thestream.asx).  A 

POSA would have understood that the URL in the SRC command may specify any 

domain or address on the Internet and has no relation to a content server providing 

the web page in which the media file is ultimately embedded and displayed.  Thus, 

a POSA would have understood that Hayward encompasses an embodiment in 

which the media file is streamed from the media file source 116 directly to the 

client 110 independent of the customer system 118 and media file index and log 

system 122. 

Page 56 of 244



 

54 
 

112. In my opinion, a POSA would also have understood Hayward to 

encompass an embodiment in which the media file source 116 is distinct from the 

customer system 118 and media file index and log system 122, as shown in 

Figure 2.  Hayward discloses that the media file source 116, like the customer 

system 118 and media file index and log system 122, may be “connected to 

Internet 114 and may be configured as [a] computer system network 102,” shown 

in Figure 1 to be distinct.  Id. ¶0024.  In my opinion, a POSA would have 

understood from Hayward’s SRC command that the media file source 116, to 

which the URL points, may be a second computer system distinct from the first 

computer system (customer system 118 and media file index and log system 122).  

In particular, when embedding content in a Web page with an HTML SRC 

directive, there is no requirement that the source URL shares a domain with the 

source of the containing page, or that the two content sources are controlled or 

operated by the same party: they may be unrelated. 

Page 57 of 244



 

55 
 

113. Because Hayward encompasses an embodiment in which the 

embedded media player page causes the media file to be streamed from the media 

file source 116 directly to the client 110 independent of the customer system 118 

and media file index and log system 122, and in which Hayward’s media file 

source 116 is distinct from the customer system 118 and media file index and log 

system 122, in my opinion Hayward discloses “wherein each provided webpage 

causes corresponding digital media presentation data to be streamed from a second 

computer system distinct from the first computer system directly to the user’s 

Page 58 of 244



 

56 
 

computer independent of the first computer system.”1 

h.  [1h] “wherein the stored data is indicative of an 
amount of time the digital media presentation data is 
streamed from the second computer system to the 
user’s computer” 

114. In my opinion, Hayward discloses that the stored data (entries at the 

media file index and log system 122 relating to the media file identification 

message and the subsequent messages) is indicative of an amount of time the 

digital media presentation data (media file) is streamed from the second computer 

system (media file source 116) to the user’s computer (client 110).   

 
1 I have been told that Google has proposed construing “a second computer system 

distinct from the first computer system” as a second computer system unrelated to 

the first computer system and not commonly controlled or operated by the same 

party,” while Uniloc has proposed a plain and ordinary meaning.  Ex. 1008 at 10; 

Ex. 1009 at 2.  In my opinion, Hayward discloses [1h] under either of these 

constructions.  As noted above, Hayward encompasses an embodiment in which 

the media file source 116 in Hayward is unrelated to the customer system 118 and 

media file index and log system 122.  Hayward, ¶0024, Fig. 1.  Hayward also 

discloses an embodiment in which the media file source 116, on the one hand, and 

the customer system 118 and media file index and log system 122, on the other, are 

not commonly controlled or operated by the same party.  Id. ¶0024.   

Page 59 of 244



 

57 
 

115. As discussed above in [1f], Hayward’s media file index and log 

system 122 stores a “time stamp . . . identifying the time at which the media file 

identification message was transmitted,” and “the time that the media file 

identification message was received” in a log associated with the media file.  

Hayward, ¶0058.  Similarly, Hayward discloses that a time stamp for each 

subsequent message is “stored in the log associated with the media file.”  Id. 

¶0060.   

116. In my opinion, a POSA would have understood from Hayward that 

the “time stamp . .  identifying the time at which the media file identification 

message was transmitted” in Hayward is indicative of a time a streaming file is 

buffered and begins to play.  This is because in Hayward “[t]he media file 

identification message is preferably transmitted to the media file index and log 

system 122 substantially proximate in time to when the media file begins to play in 

the embedded media player of the embedded media player page, particularly in the 

case of streaming media files which are typically buffered for a period of time 

before play begins.”  Id. ¶0059.   

117. Further, in my opinion, a POSA would have understood from 

Hayward that the time stamps for the subsequent messages in Hayward are 

indicative of a time the embedded media player page is open once the media file 

begins to play.  The subsequent messages are sent “at predetermined time intervals 

Page 60 of 244



 

58 
 

while the embedded media player page remains open.”  Id. ¶0060.  As Hayward 

explains, “by calculating the time difference between the first and last time stamps 

for a media file during a selected playing session recorded in the log, the 

approximate length of time that the embedded media player page was left open by 

the user can be calculated.”  Id. ¶0063.   

118. Still further, in my opinion, a POSA would have understood from 

Hayward that the time stamps for the subsequent messages in Hayward are 

indicative of a time a streaming media file is played.  This is because Hayward 

encompasses embodiments in which the embedded media player page is open at 

the client 110 for an amount of time that is less than or equal to the playing time of 

the media file.  Id.  A POSA would have understood that, in these embodiments, 

each time stamp of a subsequent message would indicate not only that the 

embedded media player page was open, but also that the media file was being 

played.   

119. Finally, in my opinion, a POSA would have understood from 

Hayward that the time stamps for the media file identification message and the 

subsequent messages are indicative of an amount of time the media file data is 

streamed from the media file source 116 to the client 110.  I have been told that 

Google has proposed construing “is indicative of an amount of time the digital 

media presentation data is streamed from the second computer system to the user’s 

Page 61 of 244



 

59 
 

computer” as “equates to the amount of time that a digital media presentation data 

is transferred as a substantially steady and continuous stream from the second 

computer,” while Uniloc has proposed giving this term its plain and ordinary 

meaning.  Ex. 1008 at 7; Ex. 1009 at 2.  In my opinion, Hayward discloses [1h] 

under either of these constructions.  Regarding Google’s construction, in my 

opinion a POSA would have understood that Hayward encompasses embodiments 

in which the entirety of a media file is streamed to and displayed by the user’s 

computer.  A POSA would further have understood that the time stamps in these 

embodiments would equate to the amount of time that the media file was 

transferred as a substantially steady and continuous stream from the media file 

source 116.  This is because, in such embodiments, the time that the media file was 

transferred would equate to the time that the media file was displayed.  Hayward, 

¶0059.  A POSA would have understood that, in Hayward’s system, the 

transferring of the media file as a substantially steady and continuous stream will 

precede the display of the media file by a buffering window.  As Hayward 

explains, “streaming media files . . . are typically buffered for a period of time 

before play begins.”  Id.  A POSA would further have understood that, in 

embodiments where the entirety of the media file is streamed to and displayed by 

the user’s computer, the display of the media file will continue after the 

transferring of the media file is complete by a period of time that equates to the 

Page 62 of 244



 

60 
 

buffering window.  That is, in these embodiments, the time that the media file was 

transferred will equate to the time that the media file was displayed but will be 

shifted by the buffering window.  To the extent Uniloc contends the plain and 

ordinary meaning of this term focuses on a play time, rather than a transfer time, of 

the “digital media presentation data,” in my opinion Hayward teaches that the time 

stamps for the subsequent messages can be used to calculate “the approximate 

length of time that the embedded media player page was left open by the user.”  Id. 

¶0063.   

120. This understanding of Hayward is consistent with Hayward’s 

definition of “[s]treaming media files” as those “delivered over the Internet or 

other network environment to a client and playback on the client begins before the 

delivery of the entire file is completed.”  Id. ¶0022.  This understanding of 

Hayward is also consistent with the example media file formats Hayward 

expressly contemplates, including “REALAUDIOTM, REALVIDEO#, 

MICROSOFT WINDOWS MEDIA FORMATTM, FLASHTM, [and] APPLE 

QUICKTIMETM.”  Id. ¶0023.   

121. Because the media file identification message in Hayward thus 

indicates when the media file begins to play in the embedded media player page, 

and each subsequent message in Hayward thus indicates that the embedded media 

player is still open during the predetermined interval, in my opinion a POSA would 

Page 63 of 244



 

61 
 

have understood Hayward to disclose that “the stored data is indicative of an 

amount of time the digital media presentation data is streamed from the second 

computer system to the user’s computer.”   

i.  [1i] “wherein each stored data is together indicative 
of a cumulative time the corresponding web page was 
displayed by the user's computer” 

122. In my opinion, Hayward discloses that each stored data (entries at the 

media file index and log system 122 relating to the media file identification 

message and the subsequent messages) is together indicative of a cumulative time 

the corresponding web page (embedded media player page) was displayed by the 

user’s computer (client 110). 

123. Hayward discloses that the media file index and log server 122 stores 

a “time stamp . . . identifying the time at which the media file identification 

message was transmitted,” and “the time that the media file identification message 

was received” in a log associated with the media file.  Hayward, ¶0058.  Similarly, 

Hayward discloses that a time stamp for each subsequent message is “stored in the 

log associated with the media file.”  Id. ¶0060.  Hayward explains that “by 

calculating the difference in time between the first and last time stamps for a media 

file during a selected playing session recorded in the log, the approximate length of 

time that the embedded media player page was left open by the user can be 

calculated.”  Id. ¶0063.   

Page 64 of 244



 

62 
 

124. Because Hayward thus discloses that the media file identification 

message and the subsequent messages are indicative of how long the embedded 

media player page was open at client 110, in my opinion Hayward discloses that 

“each stored data is together indicative of a cumulative time the corresponding web 

page was displayed by the user’s computer.” 

B. Ground 2: Hayward and Middleton render obvious claim 1 

1. Claim 1 

a. [1a] “A method for tracking digital media 
presentations delivered from a first computer system 
to a user’s computer via a network comprising:” 

125. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.a. 

b.  [1b] “providing a corresponding web page to the 
user’s computer for each digital media presentation to 
be delivered using the first computer system;” 

126. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.b. 

c.  [1c] “providing identifier data to the user’s computer 
using the first computer system” 

127. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.a. 

d. [1d] “providing an applet to the user’s computer for 
each digital media presentation to be delivered using 

Page 65 of 244



 

63 
 

the first computer system, wherein the applet is 
operative by the user’s computer as a timer” 

128. In my opinion, Hayward and Middleton would have rendered obvious 

to a POSA providing an applet (applet 44 in Middleton) to the user’s computer 

(client 110) for each digital media presentation (media file) to be delivered using 

the first computer system (customer system 118 and media file index and log 

system 122), wherein the applet is operative by the user’s computer (client 110) as 

a timer. 

129. In Hayward, when the user clicks a link for a selected media file, “the 

customer system 122 instructs the client to request [an] embedded media player 

page from the customer system 122,” and the media player displays the selected 

media file.  Hayward, ¶¶0029, 0046.   

130. According to Hayward, the embedded media player page also 

“facilitates the collection of data in connection with the playing of the video file.”  

Id. ¶0057.  In particular, “the embedded media player page instructs the client 110 

to transmit a media file identification message to [the] media file index and log 

server 122.”  Id. ¶0058.  Additionally, the embedded media player page “instruct[s] 

the client 110 to transmit at least one subsequent message . . . while the embedded 

media player page remains open.”  Id. ¶0060.   

131. Hayward states that the embedded media player page instructs the 

client 110 to send the subsequent messages using “scripting.”  As discussed above 

Page 66 of 244



 

64 
 

in Section VIII.A.1.d, it is my opinion that a POSA would have understood from 

Hayward that, as with the subsequent messages, the embedded media player page 

uses “scripting” to instruct the client 110 to send the media file identification 

message.  Hayward defines “scripting,” as used in Hayward, as “server or client-

side programming which supplements a static HTML page.”  Id. ¶0017.  Hayward 

contemplates that its “scripting” could be, for example, “Java” or “JavaScript.”  Id.  

132. Like the claimed applet, which is “operative by the user’s computer as 

a timer,” Hayward’s scripting is operative by the client to instruct the client to send 

the subsequent messages “at predetermined time intervals.”  Id. ¶0060; see also id. 

¶0061 (“periodic intervals,” “every thirty seconds”).  From the media file 

identification message and the subsequent messages, Hayward teaches, “much 

information can be gleaned about the user and the playing event,” such as “the 

approximate length of time that the embedded media player page was left open.”  

Id. ¶0063.   

133. As noted above in Section VIII.A.1.d, it is my opinion that a POSA 

would have understood that Hayward defines “scripting,” as used in Hayward, to 

include applets.  But even if not, it would have been obvious to a POSA to use an 

applet to send the media file identification message and subsequent messages in 

Hayward, because it was well known at the time the provisional application 

leading to the ’609 patent was filed to use applets to track a user’s viewing of 

Page 67 of 244



 

65 
 

content in a web page as evidenced by, for example, Middleton.   

134. Middleton describes a “Web page” that includes an object, such as an 

advertisement.  Middleton, ¶0028.  Middleton’s web page includes “JavaTM 

code 44 that includes instructions to be run while [a] user computer 20a is 

displaying the web page.”  Id. ¶0026.  The JavaTM code 44 “includes an applet 

program and data for tracking and logging the activities of the user in memory 24 

while the user is viewing the Web page.”  Id. ¶0029.  For example, the applet may 

permit an advertiser to track “the elapsed time that [an] element 48 [of the 

advertisement 39] has been displayed on the page.”  Id. ¶0037.  In this manner, 

“[t]he applet program 44 . . . permits the authors of the advertisement 39 to better 

understand how the users interact with the Web page advertisement.”  Id. ¶0029.   

135. In my opinion, a POSA would have been motivated and would have 

found it obvious to implement Hayward’s media file identification message and 

subsequent messages using an applet, as in Middleton, because (i) Hayward shows 

that JavaScript and a Java applet were known alternatives for adding a feature to a 

web page; (ii) Hayward’s scripting and Middleton’s applet add similar tracking 

features in similar web pages; and (iii) a POSA would have understood that an 

applet would have provided technical benefits to Hayward’s customer system 118 

and media file index and log system 122.   

136. A POSA would have known at the time the provisional application 

Page 68 of 244



 

66 
 

leading to the ’609 patent was filed that JavaScript and a Java applet were 

identified and predictable alternatives for adding a feature to a web page.  See, e.g., 

Appendix C at 1623 (listing among the “MOST COMMONLY USED NETWORK 

PROGRAMMING TOOLS” Java and JavaScript; characterizing Java and 

JavaScript as “well-developed network programming tools available today.”).  

Hayward itself recognizes this.  As Hayward explains, “programming which 

supplements a static HTML page” could be written either in JavaScript or as a Java 

applet.  Hayward, ¶0017.    

137. Moreover, a POSA would have recognized that Hayward’s scripting 

and Middleton’s applet add similar tracking features in similar web pages.  Like 

Hayward’s embedded media player page, which is displayed in “a browser, such as 

Microsoft Internet Explorer, of a client,” and facilitates display of a media file, id.  

¶¶0031–0032, Middleton’s web page is downloaded using “browser program 

software such as . . . Microsoft Internet ExplorerTM” and facilitates display of an 

advertisement that includes “graphics, pictures, or words,” Middleton, ¶¶0011, 

0024.  And, like Hayward’s scripting, which permits tracking of “the approximate 

length of time that the embedded media player page was left open,” Hayward, 

¶0063, Middleton’s applet permits tracking of “the elapsed time that [an] 

element 48 [of the advertisement 39] has been displayed on the page,” Middleton, 

¶0037.  In my opinion, a POSA would have found it obvious to use an applet, like 

Page 69 of 244



 

67 
 

Middleton’s, to generate the media file identification messages and the subsequent 

messages to track the length of time the embedded media player page is open, just 

as the applet is used in Middleton to track how long the advertisement has been 

displayed.   

138. In my opinion, a POSA would have understood that an applet would 

have provided technical benefits to Hayward’s customer system 118 and media file 

index and log system 122 at the time the provisional application leading to the 

’609 patent was filed.  Based on my experience, a POSA would have known that 

one benefit was that Java applets allowed for the creation of “threads.”  See, e.g., 

Appendix B at 253; Appendix C at 1625.  JavaScript did not.  See, e.g., 

Appendix A at 255 (“The core JavaScript language does not contain any threading 

mechanism, and client-side JavaScript does not add any.”)  With threads, a 

programmer could separate an activity into multiple tasks that execute concurrently 

(e.g., in parallel) on different threads.  Appendix B at 253.  One advantage of using 

threads was that a short-running task (e.g., reacting to a user’s mouse click) could 

be completed quickly while a long-running task (e.g., a file download) continued to 

make progress.  Id.  In my experience, Java achieved this concurrency with 

minimal programmer effort.   

139. Based on my experience, a POSA would have known that another 

benefit was that Java applets provided class-based inheritance.  See, e.g., 

Page 70 of 244



 

68 
 

Appendix B at 91–93.  JavaScript did not.  Appendix A at 157 (noting that 

JavaScript has prototype-based, rather than class-based, inheritance).  A “class” in 

Java was source code that defined data values and methods.  Appendix B at 58.  

Class-based inheritance meant that new classes could be created that inherited, or 

copied, the data values and methods defined in another class, thereby reducing the 

size of the class definition.  Id. at 91–93.  Class-based inheritance also allowed for 

“overriding,” in which a programmer copied some, but not all, of the methods 

defined in another class.  Id. at 94.  In this manner, the programmer could take 

advantage of the reduced class definition while still tailoring a new class to a 

specific need.  Id.   

140. In my experience, these and other benefits of Java were appealing to 

programmers and provided significant advantages for large software systems like 

Hayward’s customer system 118 and media file index and log system 122.  See, 

e.g., Appendix C at 1630 (“Java can be used on the client side as well as on the 

server side.  IT allows implementing a complex functionality of a larger program 

by using object oriented and well-structured language.”).  As one example, 

threading allowed for modularization, in which distinct threads were used to carry 

out distinct processes, even if the processes were to run concurrently.  See, e.g., 

Appendix B at 253.  In my experience, such modularization could simplify the 

development and maintenance of large software systems like Hayward’s customer 

Page 71 of 244



 

69 
 

system 118 and media file index and log system 122, because it allowed a discrete 

code element to be designed, implemented, and/or modified without affecting the 

myriad other aspects of the software.   

141. Based on my experience, a POSA would have known that still another 

benefit was that Java applets were faster than some other technologies, including 

JavaScript.  See, e.g., Appendix C at 1625 (describing as a “feature” that “ensured 

success and increased importance” of Java that it is “fast”).  JavaScript was an 

interpreted, rather than compiled language, meaning the source code itself was 

passed with a web page, and the browser at the client converted it to machine code 

upon receipt.  Id. at 1624 (“JavaScript is an interpretive language and the scripts 

run as the Web page is downloaded and displayed.”).  As a result, JavaScript was 

inherently slower than Java applets.   

142. Based on my experience, it is my opinion that a POSA would also 

have understood that an applet would have provided additional technical benefits 

to Hayward’s customer system 118 and media file index and log system 122 in 

embodiments where the media player is embedded using an applet.  Hayward 

teaches that, in some embodiments, “a functional media player applet may 

accompany a data page download, and the data page is configured to embed the 

media player generated by the applet.”  Hayward, ¶0002.  In these embodiments, a 

POSA would have been motivated to send the media file identification message 

Page 72 of 244



 

70 
 

and the subsequent messages using an applet as well, because in my experience 

using consistent technologies between the media player and the subsequent 

messages would simplify the design and maintenance of the customer system 118 

and the media file index and log system 122.   

143. Because Hayward thus teaches providing scripting to the client 110 in 

the embedded media player page for each video file delivered using the customer 

system 118, and that the scripting sends messages at predetermined time intervals, 

and in my opinion a POSA would have found it obvious and would have been 

motivated to use an applet, as in Middleton, to send Hayward’s subsequent 

messages, in my opinion a POSA would have understood Hayward and Middleton 

to render obvious “providing an applet to the user’s computer for each digital 

media presentation to be delivered using the first computer system, wherein the 

applet is operative by the user’s computer as a timer.”   

e. [1e] “receiving at least a portion of the identifier data 
from the user's computer responsively to the timer 
applet each time a predetermined temporal period 
elapses using the first computer system” 

144. In my opinion, Hayward and Middleton teach receiving at least a 

portion of the identifier data (the unique identifier for the media file in Hayward) 

from the user’s computer (client 110 in Hayward) responsively to the timer applet 

(applet 44 in Middleton) each time a predetermined temporal time period elapses 

using the first computer system (customer system 118 and media file index and log 

Page 73 of 244



 

71 
 

server 122 in Hayward).   

145. In Hayward, the media file index and log system 122 receives 

subsequent messages sent using the scripting at the client 110 each time a 

predetermined temporal time period elapses.  In my opinion, as discussed above in 

Section VIII.A.1.e, a POSA would have understood that the subsequent messages 

would have uniquely identified the media file.  Hayward’s media file index and log 

system 122 indexes “a plurality of media files,” each of which is identified by “a 

unique identifier for the media file,” and “maintains a respective log for each 

indexed media file.”  Hayward, ¶¶0027, 0058.  When a subsequent message is 

received in Hayward, “a time stamp for the . . . subsequent message is stored in the 

log associated with the media file.”  Id. ¶¶0060.  In my opinion, a POSA would 

have understood that the subsequent messages uniquely identify the media file so 

that the media file index and log system 122 can store the time stamp in the “log 

associated with the media file.”   

146. In my opinion, the POSA would have understood Hayward to suggest 

that the subsequent message could uniquely identify the media file by including, 

for example, the unique identifier for the media file.  Hayward teaches that each of 

the media file identification message and the subsequent messages takes the form 

of “an HTTP request to the media file index and log system 122 for a one-pixel 

GIF file.”  Id. ¶¶0059, 0061.  And Hayward states that the unique identifier for the 

Page 74 of 244



 

72 
 

media file is “appended to the HTTP request” that is the media file identification 

message.  Id. ¶0059.  In my opinion, a POSA would have understood Hayward to 

suggest that the HTTP request that is each subsequent message, like the HTTP 

request that is the media file identification message, similarly appends the unique 

identifier for the media file.  This would have allowed the time stamps for the 

subsequent messages to be “stored in the log associated with the media file” by the 

media file index and log system 122, as Hayward describes.  Id. at ¶0060. 

147. In my opinion, a POSA would have found it obvious and would have 

been motivated to use an applet, as in Middleton, to send Hayward’s subsequent 

messages, as described in Section VIII.B.1.d. 

148. Because in my opinion a POSA would have understood Hayward to 

teach the media file index and log system 122 receiving subsequent messages 

including the unique identifier for the media file sent using the scripting at the 

client 110 each time a predetermined temporal time period elapses, and in my 

opinion a POSA would have found it obvious and would have been motivated to 

use an applet, as in Middleton, to send Hayward’s subsequent messages, it is my 

opinion that a POSA would have understood Hayward and Middleton to teach 

“receiving at least a portion of the identifier data from the user's computer 

responsively to the timer applet each time a predetermined temporal period elapses 

using the first computer system.” 

Page 75 of 244



 

73 
 

f. [1f] “storing data indicative of the received at least 
portion of the identifier data using the first computer 
system” 

149. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.f. 

g.  [1g] “wherein each provided webpage causes 
corresponding digital media presentation data to be 
streamed from a second computer system distinct 
from the first computer system directly to the user’s 
computer independent of the first computer system” 

150. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.g. 

h.  [1h] “wherein the stored data is indicative of an 
amount of time the digital media presentation data is 
streamed from the second computer system to the 
user’s computer” 

151. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.h. 

i.  [1i] “wherein each stored data is together indicative 
of a cumulative time the corresponding web page was 
displayed by the user's computer” 

152. In my opinion, Hayward discloses this element, as described in 

Section VIII.A.1.i. 

Page 76 of 244



 

74 
 

C. Ground 3: Hayward, or Hayward and Middleton, and Ryan render 
obvious claims 2 and 3 

1. [2] “The method of claim 1, wherein the storing comprises 
incrementing a stored value dependently upon the 
receiving.” 

153. In my opinion, Hayward, as discussed in Ground 1, or Hayward and 

Middleton, as discussed in Ground 2, and Ryan teach that the storing (storing the 

time stamps for the subsequent messages in Hayward) comprises incrementing a 

stored value (weighting factor X in Ryan) dependently upon the receiving.   

154. As discussed above in Section VIII.A.1.e (or Section VIII.B.1.e), in 

my opinion Hayward discloses (or Hayward and Middleton teach) an applet at the 

client 110 that sends subsequent messages to the media file index and log 

system 122.  Hayward also teaches that a time stamp for each subsequent message 

is “stored in the log associated with the media file” at the media file index and log 

server 122.  Hayward, ¶0060.  “[B]y calculating the difference in time between the 

first and last time stamps for a media file during a selected playing session 

recorded in the log, the approximate length of time that the embedded media player 

page was left open by the user can be calculated.”  Id. ¶0063.   

155. Ryan teaches that the weighting factor X may be “increment[ed] . . . 

based on the time spent at the web page,” as determined from the surfer trace data 

indicating “the difference between two time date/time data 132 from subsequent 

selections from the list of web page searches.”  Ryan, 9:22–25, 16:40–41.  In Ryan, 

Page 77 of 244



 

75 
 

“[t]he longer the time spent” at the web page, “the more this increments the value 

of X.”  Id. at 16:41–42.   

156. In my opinion, a POSA would have found it obvious to modify 

Hayward’s media file index and log server 122 to increment a stored value, like 

Ryan’s weighting factor X, dependently upon receiving the subsequent messages.  

Hayward’s (or Hayward and Middleton’s) applet at the client 110 sends 

subsequent messages to the media file index and log system 122.  In my opinion, it 

would have been obvious to a POSA to modify the media file index and log 

system 122 to increment a stored value based on their receipt.  The POSA would 

have known to do so based on Ryan, as Ryan’s server increments weighting factor 

X based on surfer trace data received from an applet at the user’s personal 

computer.  Id. at 8:63–67, 9:22–30, 9:41–56, 16:40–41.   

157. In my opinion, Ryan itself would have motivated the POSA to modify 

Hayward’s media file index and log server 122 to increment a stored value, like 

Ryan’s weighting factor X.  Ryan highlights the value to advertisers of knowing 

not only how long a user spent on a web page, as indicated by the “surfer trace 

data,” i.e., “[t]he time difference between [] two selections” from a list of search 

results, but also how interesting a web page is to users, as indicated by the 

weighting factor X.  Id. at 9:22–30, 12:22–30.  Ryan shows that the weighting 

factor may provide a distinct value from the surfer trace data, insofar as it may 

Page 78 of 244



 

76 
 

only reflect users showing sufficient interest in a web page.  For instance, in Ryan, 

while surfer trace data may be collected for a web page view of any length, the 

weighting factor X may be incremented only when “the user exceed[s] a specified 

time at a location.”  Id. at 16:34–39.   

158. Like Ryan, Hayward contemplates providing valuable data to 

advertisers, but the time stamps for the media file identification message and the 

subsequent messages stored in Hayward’s media file index and log system 122 

only indicate, for example, how long the embedded media player page was 

displayed.  Hayward, ¶0064.  Based on Ryan, a POSA would have been motivated 

to modify Hayward’s media file index and log system 122 to also store data 

indicating how interesting the digital media presentation displayed by the 

embedded media player page is to users.  In my opinion, looking to Ryan, the 

POSA would have been motivated to modify Hayward’s media file index and log 

system 122 to store a value akin to weighting factor X in Ryan and to increment 

the stored value dependently on receipt of the subsequent messages.   

159. Because Ryan thus discloses incrementing the weighting factor X 

based on received surfer trace data indicating how long a user spent at a web page, 

and in my opinion a POSA would have been motivated and would have found it 

obvious to modify Hayward’s media file index and log server 122 to increment a 

stored value as in Ryan based on receipt of the subsequent messages, it is my 

Page 79 of 244



 

77 
 

opinion that a POSA would have understood that the combination of Hayward (or 

Hayward and Middleton) and Ryan renders obvious that “the storing comprises 

incrementing a stored value dependently upon the receiving.” 

2. [3] “The method of claim 2, wherein the received data is 
indicative of a temporal cycle passing.” 

160. In my opinion, Hayward discloses that the received data (subsequent 

messages) is indicative of a temporal cycle (“predetermined interval”) passing.   

161. In Hayward, each subsequent message is sent “at [a] predetermined 

time interval[],”such as “every thirty seconds.”  Hayward, ¶¶0060–0061.  A time 

stamp for each subsequent message is “stored in the log associated with the media 

file.”  Id. ¶0060.   

162. Because Hayward thus teaches that the subsequent messages are sent 

at predetermined time intervals and stored with time stamps by the media file index 

and log system 122, in my opinion Hayward discloses that “the received data is 

indicative of a temporal cycle passing.”   

IX. Conclusion 

163. As discussed above, it is my opinion that the Challenged Claims of 

the ’609 patent are not patentable. 

164. In signing this declaration, I recognize that the declaration will be 

filed as evidence in a contested proceeding before the Patent Trial and Appeal 

Board of the United States Patent and Trademark Office.  I also recognize that I 

Page 80 of 244



 

78 
 

may be subject to cross-examination in the proceeding and that cross-examination 

will take place within the United States.  If cross-examination is required of me, I 

will appear for cross-examination within the United States during the time allotted 

for cross-examination. 

165. I reserve the right to supplement my opinions in the future to respond 

to any arguments that Patent Owner raises and to account for new information as it 

becomes available to me. 

166. I declare that all statements made herein of my own knowledge are 

true and that all statements made on information and belief are believed to be true; 

and further that these statements were made with the knowledge that willful false 

statements and the like so made are punishable by fine or imprisonment, or both, 

under Section 1001 of Title 18 of the United States Code. 

Executed on this 31st day of October 2019, in Durham, North Carolina. 

 

           By:           
       Dr. Jeffrey S. Chase 
 

 

Page 81 of 244



APPENDIX A 

Page 82 of 244

APPENDIX A

Page 82 of 244



Page 83 of 244

Activate Your Web Pages

opegetow:: 1rsa=aehae eetsFl= *Fi
xa.

fkia
im

f 7= i =
oy
o,

a
a)

5 bi Sale 
The Definitive Guide

O'REILLY" David Flanagan

Page 83 of 244



Page 84 of 244

FIFTH EDITION

JavaScript
The Definitive Guide

David Flanagan

O'REILLY”
Beijing « Cambridge - Famham + Koln « Sebastopol + Taipei « Tokyo

Page 84 of 244



Page 85 of 244

JavaScript: The DefinitiveGuide, Fifth Edition
by David Flanagan

Copyright © 2006, 1002, 1998, 1997, 1996 O'Reilly Media, Inc, All nghts reserved.
Paneed on the United Starnes of America.

Published by O'Reilly Media, Inc., 1003 Gravenstein Highway North, Sebastopol, CA 95472,

(Reilly books may be purchased for educational, business, or sales promotional usc. (Online editions
are also available for most titles (safari.oreiliycom), For more information, contact our
corporare/institunional sabes depamment: (B00) 998-9998 of corporate@orcilly.com.

Editor: Debra Cameron Indexer: Ellen Trowman-Z. aig
Production Editor: Sanders Kleinfeld CoverDesigner: Edbe Freedman
Copyeditor: Mary Anne Weeks Mayo Interior Designer: Daved Furato
Proofreader: Sanders Kleinfeld Ulustratars: Robert Romaneand Jessamyn Read

Printing History:

August 1996: Reta Edition.

January 1947: Second Edition.

June 1998: Third Edition.

January 2002: Fourth Edition,

August 20ie- Fitth Edirion,

Nutshell Handbook, the Nutshell Handbook logo, and the OReilly logo ane registered trademarks of
(Reilly Med, Inc. JavaScript: The Definitive Guide, the image ofa Javan thincecros, and relaged trade
dress are trademarks of OReilly Media, Inc. Java™, all Java-based trademarks and logos, and
JavaSenpe™ are trademarks or egetered trademarks of Sun Microsyanema, Inc, in the United Stones
and other countries, OReilly Media, Inc. is independent of Sun Microsystems,

Mozilla and Firefox are regisncred trademarks of the Mozilla Foundation. Neticape and Netscape
Navigatorare registered trademarks of Amenca Online, Inc. Internet Explorer and the Internet Explorer
Loge ore trademarks and tradenames of Microsoft Corporation, All other product names and logos are
trademarks of their napective Owners.

Many ofthe designarions ased by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, lnc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation ofthis book, the publisher and author assume
no respomubility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 978-(1-596-10199-2

[Mi] [5109]

Page 85 of 244



Page 86 of 244

CHAPTER 9

Classes, Constructors, and Prototypes

JavaScript objects were introduced in Chapter 7. That chapter treated cach object as
a unique set of properties, different from every other object. In many object-oriented
programming languages, it ts possible to define a class of objects and then create
individual objects that are instances of that class. You might define a class named
Complex to represent and perform arithmetic on complex numbers, for example. A
Complex object would represent a single complex number and would be an instance
of that class.

JavaScript does not support truc classes the way that languages like Java, C++, and
C# do.” Sul, however, it ts possible to define pseudoclasses in JavaScnpt. The tools
tor doing this are constructor functions and prototype objects. This chapter explains
constructors and prototypes and includes examples of several JavaScript pseudo-
classes and even pseudosubclasses.

For lack of a better term, | use the word “class” informally in this chapter. Be care-
ful, however, that you don't confuse these informal classes with the true classes of
JavaSenpt 2 and other languages.

9.1 Constructors

Chapter 7 showed you how to create a new, empty object ether with the object lit-
eral {} or with the following expression:

hee Object( }

You have also seen other kinds ofJavaScript objects created with a similar syntax:

var array = new Array(i0);
var today = sew Date( );

The new operator must be followed by a function invocation. It creates a new object,
with no properties and then invokes the function, passing the mew object as the value
of the this keyword. A function designed to be used with the mew operator ts called a

* Tine classes are planned for lavaSeripe 10, however.

1s

Page 86 of 244



Page 87 of 244

constructor function or simply a constructor. A constructor’s job is to imirialize a
newly created object, setting any properties that need to be set before the objectis
used. You can define your own constructor function, simply by writing a function
that adds properties to this. The following code defines a comstructor and then
invokes m nwiee with the new operator tw create two new objects:

Af Define the constructer.

ff Hote bow it initializes the object referred te by "this".
function Eectargle(u, h) [

thiswidth = wy

this height = hy;
// Mote: no return statement here

}

#/ Inwoke the constructor to create two Rectangle objects.
‘/ We pass the wddth ond height te the coms tructar
ff so that 1t cam mitialize each new object appropriately.
War Fecti = sew Rectangle(?, 4); ff recti = { width:2, height:4 };
war rect? = sew Rectangle(3.5, 21); // rect? = { width:8.5, height: 11 };

Notice how the constructor uses its arguments to initialize properties of the object
referred to by the this keyword. You have defined a class of objects simply by defin-
ing an appropriate constructor function; all objects created with the Rectangle( )
constructor are now guaranteed to have initialized width and height properties. This
means that you can write programs that rely on this fact and treat all Rectangle
objects uniformly. Because every constructor defines a class of objects, it is stylisti-
cally important to give a constructor function a name that wmdicates the class of
objects it creates. Creating a rectangle with new Rectangle(1,2) ts a lot more intuitive
than with new init_rect(1,2), for example.

Constructor functions typically do not have return values. They initialize the object
passed as the value of this and return nothing. However, a constructor is allowed to
return an object value, and, if mt does so, that returned object becomes the walue of
the new expression. In this case, the object that was the value of this is simply

9.2 Prototypes and Inheritance
Recall trom Chapter 8 that a method is a function that is invoked as a property of an
obpect. When a funcion is invoked in this way, the object through which it is
accessed becomes the value of the this keyword. Suppose you'd like to compute the
area of the rectangle represented by a Rectangle object. Here is one way to do it:

function conputedseaDffectangle(r) { retur f.uidth * r.height; }

This works, but it is not object-oriented. When using objects, it is better to invoke a
method on the object rather than passing the object to a funcnon. Here's how vo do thar:

i! Create a Rectangle object
war © = new Rectangle(3.5, 11);
/f Add a method te it

r.apea = function( ) {| retum this.width * thisheight; }

Proto typesandinberttance | 151

Page 87 of 244

 



Page 88 of 244

if Wow invoke the method te compute the area
WEF 4 = F.areal );

Having to add a method to an object before you can invoke it is silly, of course. You
can improve the situation by initializing the area property to refer to the area com-
puting function in the constructor. Here is an improved Rectangle( ) constructor:

function Rectangle(w, h) {
this.width = wi;
this. height = hj
this.anea © function() { retum this width * this.height; }

)

With this new version of the constructor, you can write code like this:

é? How big ds a aheet of U.5. Letter paper in square inches?
war t= new Rectangle(i.$, 11);
var a = T,area( );

This solution works better but is still not optimal. Every rectangle created will have
three properties. The width and height properties may be different for each rectan-
gle, but the area of every single Rectangle object always refers to the same function
(someone might change it, of course, but you usually intend the methods of an
object to be constant), It ts efficient to use regular properties for methods that are
intended to be shared by all objects of the same class (that is, all objects creared with
the same constructor).

There is a solution, however, It turns out that every JavaScript object includes an
internal reference to another object, known as its prototype object. Any properties of
the prototype appear to be properties of an object for which it is the provotype.
Another way of saving this is that a JavaScript object inherits properties from its
prototype.

In the previous section, | showed that the new operator creates a new, empty object
and then invokes a constructor function as a method of that object. This is not the
complete story, however. After creating the empty object, new sets the prototype of
that object. The prototype of an object is the value of the prototype property of its
constructor function. All functions have a prototype property that is automatically
created and initialized when the function is defined. The initial value of the

prototype property is an object with a single property. This property is named
constructor and refers back to the constructor function with which the provorype is
associated. (You may recall the constructor property from Chapter 7; this is why
every object has a constructor property.) Any properties you add to this prototype
object will appear to be propernes of objects initialized by the constructor.

This is clearer with an example. Here again is the Rectangle( ) constructor:

ff The constructor function initializes thase properties that
ff will be different for each instance.

function Rectangle(w, h) {
this.width = w;
this. height = h;

}

152 | Chapter: Classes, Constrectors, andPrototypes

Page 88 of 244



Page 89 of 244

if The prototype abject holds methods aad other properties that
ff should be shared by each instance.
Rectangle.pretotype.area = function() { retum this.width * this.height; }

A constructor provides a mame for a “class” of objects and initializes properties, swch
as width and height, that may be different for cach instance of the class. The proto-
type object is associated with the constructor, and each object initialized by the oon-
structor inherits exactly the same set of properties from the prototype. This means
that the prototype object ts an weal place for methods and other constant propertics.

It can also be useful to use prototype-based inheritance without constructors and
dasses. The following simple function creates a new object with a specified protw-
type. Thatis, it creates a new object that inherits from, or is an “heir” of its argument’:

ii Create and return an object that has p os its protetype
function heir(p) {

function #(){}  // A dummy constructor function
f.pratetype «= p; // Specify the pretetype object we want
retern new #(); // [evoke the constructor to create new object

}

Note that inheritance occurs automatically as part of the process of looking up a
property value. Properties are mo? copied from the prototype object into new objects;
they merely appear as if they were properties of those objects. This has two impor-
tant implications. First, the use of prototype objects can dramatically decrease the
amount of memory required by each object because the object can inhent many of its
properties, The second implication is chat an object inherits properties even if they
are added to its prototype after the object is created. This means that it is possible
(though not necessarily a good idea) to add newmethods to existing classes.

Inherited properties behave just like regular properties of an object. They are enw-
merated by the for/in loop and can be tested with the in operator. You can distin-
guish them only with the Object ..hasOwProperty( ) method:

var r= new Rectangle(z, 1);
f.hatienPreperty(“width"); // true: width is a direct property of 1
r hapten?property(“area”); ff false: area is an inherited property of 7
“area” in 3; ‘i tru: “area” is a property of 9

9.2.1 Reading and Writing Inherited Properties
Each class has one prototype object, with one set of properties. But there are poten-
tially many instances of a class, cach of which inhents those prototype propertics.
Because one prototype property can be inherited by many objects, JavaScript must
enforce a fundamental asymmetry between reading and writing property values.
When you read property p of an object o, JavaScript first checks to see if o has a
property named p.If it does not, it next checks to see if the prototype object of o has
a property named p. This is what makes prototype-based inheritance work.

* Douglas Crockiond calle this function <literalthject.create(}</ literals and describes it at bnipoavae-
cnipt tovkjord« omvprotorypal heel

Probe typesandinbertance | 153

Page 89 of 244

 



Page 90 of 244

When you write the value of a property, on the other hand, JavaScript does not use
the prototype object, To see why, consider what would happen if it did: suppose you
try to set the value of the property op when the object o does not have a property
named p. Further suppose that JavaScript goes ahead and looks up the property p in
the prototype object of o and allows you to set the property of the prototype. Now
you have changed the value of p for a whole class of objects—nort at all what you
intended.

Therefore, property inheritance occurs only when you read property values, not
when you write them. If you set the property p in an object o that inherits that prop-
erty from its prototype, what happens is that you create a new property p directly in
o. Now that o has its own property named p, it no longer inherits the value of p from
its prototype, When you read the value of p, JavaScript first looks at the properties of
o. Since it finds p detined in o, it doesn't need to search the prototype object and
never finds the value of p defined there, We sometimes say that the property p in o
“shadows” or “hides” the propery p in the prototype object, Prototype inheritance
can be a confusing topic. Figure 9-1 illustrates the concepts discussed here.

Because prototype properties are shared by all objects of a class, it generally makes
sense to use them to define only properties that are the same for all objects within
the class. This makes prototypes ideal for defining methods. Other properties with
constant values (such as mathematical constants) are also suitable for definition with

prototype properties. If your class defines a property with a very commonly used
default value, you might define this property and its default value in a protorype
object. Then, the few objeces that want to deviate from the default value cam create
their own private, unshared copies of the property and define their own nondetault
values,

9.2.2 Extending Built-in Types
It is not only user-defined classes that have prototype objects. Built-in classes, such as
String and Date, have prototype objects too, and you can assign values to them. For
example, the fallowing code defines a new method thatis available for all Scring objects:

/? Returns true if the last character is ¢

Strirg.prototype.endsdith = function(c) {
return (¢ == this.chardt( this. length-1))

)

Having defined the new endsWith( ) method in the String prototype object, you can
use it like this:

vir meddage «© "hello world™;
message. endswith("h') ff Returns false
neiuage.endswith('d') ff Returns true

There is a strong argument against extending built-in types with your own methods;
if you do so, you are essentially creating your own custom version of the core |awa-
Seript APL. Any other programmers who have to read or maintain your code will
likely find it confusing if your code includes methods they have never heard of,

154 | Chapter 9: Classes, Comstractors, andPrototypes

Page 90 of 244



Page 91 of 244

c.area() oenvenge SDE A at GeteD ITC MeeAT, SeME Here's ther defiertoefore,
Read the ence property ofc (APeRTLyfaecaeopSeaE Feuiereltwerea

[peeperty ofc tur.

 
 
 

 
 

 
 

c.pl = 4; eee PE eed dete” ie, wo createaew
Werte the pil propertyafc, Preeparrty oF oc orwell

'

ACircleabject,© The poeta hype einjert,
ad, Cirele.prot of

area = om Te area
pi = 5.14159 

pi andr ave defined oc aed eo you can
core FEB)er walle yop fined tree, eieet

bothering te ined 1a the pratetyperabet

maediaee
= 3.0

a= c.pl"c.r*e. 1;
Beadep and © preperieetc

ae dpi*dr'dr je PE ena itive inva Piet, wo chee tte ge Here otheaetticnafpi Meta
Beadtepd ated 7 grepericetd. Prtotpeobec elatedwth rly bh eahae aifarene realya

defined ind. un retuen Maat vale wetait (eepery afd.
Hamid oy ord a uecary

Figure 9]. Objects and progotypes

Unless you are creating a low-level JavaScript framework that you expect to be
adopred by many other programmers, it is probably best to stay away from the pro-
totype objects of the built-in rypes

Note that you must never add properties vo Object .prototype. Any properties or meth-
ods you add are enumerable with a for/in loop, and adding them to Object.prototype
makes them visible in every single JavaScript object. An empty object, (}, is expected
to have no enumerable properties. Anything added to Object. prototype becomes an
enumerable property of the empty object and will likely break code that uses objects
iS ISOCMtIVE arrays.

The technique shown here for extending built-in object types is guaranteed to work
only for core JavaScript “native objects.” When JavaScript is embedded in sorne con-
text, such as a web browser or a Java application, it has access to additional “host
objects” such as objects that represent web browser document content. These hast

Proto typesandinberttance | 155

Page 91 of 244



Page 92 of 244

objects do not typically have constructors and protorype objects, and you usually
cannot extend them.

There is one case in which it is safe and useful to extend the prototype of a built-in
native class: to add standard methods to a prototype when an old or incompatible
JavaScript implementation lacks them. For example, the Function. apply) method is
missing in Microsoft Internet Explorer 4 and 5. This is a pretty important function,
and you may see code like this to replace it:

// 12 48 5 don’t inplement Punction.apaly( ).
ff This workaraund is baged on code by Aaron Poodman.
if (!Fumction.protetype.apoly) {

*! Tnvake this function a4 4 method of the specified object,
fi! passing the specified parameters. We have to use eval() to do this
Function.protatype.apply = fumetlon(abject, parameters) {

var f = this: ff The function to inveie

vat o = object || window; ‘? The object to imveke it on
vir args = parameters || []; ¢/ The arguments to pass

‘/ Temporarily make the function inte a method of o
‘f Te do this we wee @ property nane that is unlikely to exist
o. tapplyt= f;

‘? We will use eval() to invoke the method. To do this we'we got
‘/ te write the invocation as a string, First build the argument list.
war stringdrgs = [];
for(war i= 0; i ¢ angs.length; i++)

stringhrgs[i] = “args[" + i+ *)";

‘/ Concatenate the angument strings into a comma-separated list.
var arglist = atringArgs, joln(*,");

‘? Now build the entire method call string
vir methodcall = “oa, §_apply_§_(° + arglist * “);";

‘/ Use the ewal() function to make the methodeal]
war result = eval (methodcall);

‘f Unbind the function fran the object
delete o._$anply_$_;

‘/ And return the result

retum result;

hi
}

As another example, consider the new array methods implemented in Firefox 1.5
(see Section 7.7.10). If you want to use the mew Array.map() method but also want
your code to work on platforms that do not support this method natively, you can
wee this code for compatibility:

‘/ Array.map() invokes a function f on each element of the array,

160 | Chapter %: Classes, Comstrectors, andPrototypes

Page 92 of 244



Page 93 of 244

i? Teturming a new array of the values that result from each function
ff call, Tf map() is called with tuo arguments, the function 4
/f is iewoked as a methed of the second argument. when jimeoked, {( )
// ds passed } arguments. The first ia the value of the array
‘f element, The second is the index of the array element, and the

‘i third is the array itself. In most copes it needa to ute only the
ff Firat aggument.
if (larray.protetype.map) {|

Array.pretotype.map « fusction({, thisdeject) |
war rewults = |);
for(var len = this.lergth, i = 0; i « len; ies) {

retults.push(f.call(thisdeject, this[i), 1, this);

returm results;

}
}

9.3 Simulating Classes in JavaScript
Although JavaScript supports a datatype called an object, it docs not have a formal
notion of a class. This makes it quite different from classic object-onented languages
such as C++ and Java. The common conception about object-oriented program-
ming languages is that they are strongly typed and support class-based inheritance.
By these criteria, it is easy to dismiss JavaScript as not being a truce object-oriented
language. On the other hand, you've seen that JavaScript makes heavy use of objects,
and it has its own type of prototype-based inheritance. JavaScript is a true object-
oriented language. It draws imspiration from a number of other (relatively obscure)
object-onented languages that use protorype-based inheritance instead of class-based
inheritance.

Although JavaScript is not a class-based object-oriented language, it docs a good job
of simulating the features of class-based languages such as Java and C++. I've been
using the term class informally throughout this chapter. This section more formally
explores the parallels between JavaScript and true class-based inhertance languages
such as java and C++."

Let's start by defining some basic terminology. An object, as you've already seen, is a
data structure that contains various pieces of named data and may also contain vani-
ous methods to operate on those pieces of data. An object groups related values and
methods into a single convenient package, which generally makes programming
easier by increasing the modularity and reusability of code. Objects in JavaScript may
have any number of properties, and properties may be dynamically added to an
object. This is not the case in strictly typed languages such as Java and C++. In those

* You shoukd read the sconen even if you anc not familar wih thow languages and that wyle of obext-
coneriec| poretornerereg,

Simulating Clases injavascript =| 157

Page 93 of 244

 



Page 94 of 244

languages, ¢ach object has a predefined set of propertics, where cach propertyis of a
predefined type. When you use JavaScript objects to simulate class-based program:
ming techniques, you generally define in advance the set of properties for each object
and the type of data that cach property holds.

In Java and C++, a class defines the structure of an object. The class specifies exactly
what fields an object contains and what types of data each holds. It also defines the
metheds that operate on an object. JavaScript does not have a formal notion of a
class, but, as shown carlier, it approximates classes with its constructors and their
prototype objects.

In both JavaScript and class-based object-oriented languages, there may be multiple
objects of the same class. We often say that an object is an instance of its class. Thus,
there may be many instances of any class, Sometimes the term instantiate ts used to
describe the process of creating an object (i.c., an instance of a class).

In Java, it is a common programming convention to name classes with an initial capi-
tal leer and to name objects with lowercase lewers. ‘This convention helps keep
classes and objects distinct from each other in code, and it is useful to follow in Java-
Script programming as well. Previous sections of this chaprer, for example, have
defined a Rectangle class and created instances of that class with names such as rect.

The members of a Java class may be of four basic types: instance properties, instance
methods, class properties, and class methods. In the following sections, we'll explore
the ditierences between these types and show how they are simulated in JavaScript.

9.3.1 Instance Properties
Every object has its own separate copies of its instance properties. In other words, if
there are 10 objects of a given class, there are 10 copies of each instance property. In
our Rectangle class, for example, every Rectangle object has a property width thar
specifies the width of the rectangle. In this case, width is an instance property. Since
each object has its own copy of the instance properties, these properties are accessed
through individual objects. If ris an object that is an instance of the Rectangle class,
for example, its width is referred vo as:

r.width

By default, any object property in JavaScript ts an mstance property. Totruly simu-
late tradinional class-based object-onented programming, however, we will say thar
instance properties in JavaScript are those properties that are created and initialized
by the constructor function.

* Theyare wiually called “fields” in Java and Ce, bur 1 refer oo them as propernes hene simce that om the
Javahonpt termmolopr.

156 | Chapter: Classes, Comstrectors, andPrototypes

Page 94 of 244



Page 95 of 244

9.3.2 Instance Methods

An instance method ts much like an instance property, except thar it is a method

rather than a data value. (In Java, functions and methods are not dara, as theyare in
JavaScript, so this distinction is more clear.) Instance methods are invoked on a par-
ticular object, or instance. The area() method of our Rectangle class is an instance
method. It is invoked on a Rectangle object r like this:

ae r.area( )y

The implementation of an imstance method uses the this keyword to refer to the
object or instance on which it is invoked, An instance method can be invoked for any
instance of a class, but this does not mean that each object comtains its own private
copy of the method, as it does with instance properties. Instead, each instance
method is shared by all instances of a class. In JavaScript, an instance method for a
class is defined by setting a property in the constructor’s prototype object to a func-
non value. This way, all objects created by that constructor share an inherted refer-
ence to the function and can invoke it using the method-invocation syntax shown
earher.

9.3.2.1 Instance methods and this

If you are a Java or C++ programmer, you may have noticed an important difference
between instance methods in those languages and instance methods in JavaScript. In
Java and C++, the scope of instance methods includes the this object. The body of
an area method in Java, for example might simplybe:

return width * height;

In JavaScript, however, you've seen that you must explicitly specify the this key-
word for these properties:

return this.width * this.height;

lf you find it awkward to have toprefix cach instance field with this, you can use the
with statement (covered in Section 6.18) in each of your methods. For example:

Rectangle.sretotype.area = function(} |
with(this) {

Tetum width*height;
}

}

9.3.3 Class Properties
A class property in Java is a property that is associated with a class mself, rather than
with each instance of a class. No matter how manyinstances of the class are created,
there ts only one copy of each class property. Just as instance properties are accessed
through an instance of a class, class properties are accessed through the class itseli.
Number .MAXVALUE is an example of a class property in JavaScript: the MAX_VALUE prop-

SimulatingClawes in avascript | 159

Page 95 of 244

 



Page 96 of 244

erty is accessed through the Number class. Because here is only one copy of each
class property, class properties are essentially global. What is nice about them, how-
ever, is chat they are associated with a class, and they have a logical niche—a pasi-
non in the JavaScnpt namespace where they are not likely to be overwritten by other
properties with the same name. As is probably clear, you simulate a class property in
JavaScript simply by defining a property of the constructor function itself, For exam-
ple, to create a class property Rectangle. UMIT to store a special Ix] rectangle, you can
do the following:

Rectargle.UWIT = new Rectangle(i,1);

Rectangle is a constructor function, but because JavaScript functions are objects, you
can create propertics of a function just as you can create propertics of any other
object.

9.3.4 Cass Methods

A class method is associated with a class rather than with an instance of a class. Class

methods are invoked through the class itself, not through a particular instance of the
class. The Date.parse() method (which you can look up in Part [I]) is a class
method. You always invoke it through the Date constructor object rather than
through a particular instance of the Date class.

Because class methods are invoked through a constructor function, the this key-
word does not refer to any particular instance of the class. Instead, it refers to the
constructor function itself. (Typically, a class method does not use this ar all.)

Like class properties, class methods are global, Because they do not operate on a par-
ticular object, class methods are generally more casily thought of as fumchons that
happen to be invoked through a class. Again, associating these functions with a class
gives them a convenient niche in the JavaScript namespace and prevents namespace
collisions. To detine a class method m JavaScript, amply make the appropriate bunc-
non a property of the constructor.

9.3.5 Example: A Circle Class
The code in Example 9-1 is a constructor function and protorype object for creating
objects that represent circles. It comtains examples of instance properties, instance
methods, class properties, and class methods.

Example 9-1. A circle clans

‘fe begin with the contructer
function Circle(radies) {

‘fof da an inetance property, defined and initialized in the comtructor.
thin. = radian;

}

Woo | Chapter Classes, Constractons, and Prototypes

Page 96 of 244



Page 97 of 244

Example 9.1, A circle class (continued)

ff Cirele.Pl is a class property--1t is a property of the constructor function,
Circle.PL = $.14159;

ff Here is an instante nethad that conputes a clrcle’s ares.
Circle.protetype.area = function( ) { return Circle.Fl * this.r * this.r; }

f/f This class method takes two Circle objects and returns the
ff one that has the larger radius.
Circle.max = function(a,b) {

if (a.r > bor) return a;
else return bj

}

‘f Here is some code that uses each af these fielda:

var ¢ = new Clrele(i.0); f/ Create an instance of the Circle class

cer = 2.23 f/ Set the r instance property
VOI a = €.aneal ): ff Invoke the areal) instance method
vat © = Math.emp(Circle.Pl); #/ Use the Pl class property in cur own computation
var d@ = new Clrele({1.2); /? Create another Circle instance
war bigger = Circle.maz(e,d); // Use the max() class method

9.3.6 Example: Complex Numbers
Example 9-2 is another example, somewhat more formal than the last, that defines a
class of objects in JavaScript. The code and the comments are worth careful study,

Example 9.2. A complex muniber class
i?

* Conplem. js:
* This file defings a Complex class to represent complex numbers.
* Recall that a complex number is the dum of a real nunber and an

* imaginary number and that the inaginary number i is the
* square root of «1,
/

i?

* The first step in defining a class is defining the constructar
* function of the class. This constructer showld initialize any
* instance properties of the object. These are the essential
* “state variables* that make each instance of the class different.
*/

function Complen(real, imaginary) {
this.« = real; ff The real part of the number
this.y = imaginary; f/ The dawginary part of the number

}

f*

* The second step in defining a class is defining its instance
* methods (and possibly other properties) in the protetype object
"of the constructor. Any properties defined in this object will
* be inherited by all instances of the class. Note that instance

Simulatio-g Classesin JavaScript | 161

Page 97 of 244



Page 98 of 244

Example 9-2. A complex mumiber class (continued)

" methods operate on the this keyword. For many methods,
"no other arguments are needed.
“y

‘f Return the magnitude of a complex number. This is defined
ff as its distance from the origin (0,0) of the conplex plane.
Conples.prototypemagnitude = functian{) {

Tetum Math. sqrt(this.«*this.0 # this.y*this.y);
hi

i? Return a complex sumber that is the negative of this one.
Comples.prototype.negative = functian() {

return new Complex(-this.e, -this.¥);
};

ff Add a complex number ta this one and return the sun in a new object.
Complex. prototype.add = function(that) {

return new Complex(this.« * that.2, this.y + that.y)j;

ff Maltiply this complex number by another and return the product as a
f? pew Complex object.
Conplex.prototype.multiply = function(that) {

Tetum few Complen(this.a " that.a - this.y * that.y,
this. * that.y + this.y * that.a);

I

ff Convert a Canples object to a string in a useful way.
ff This is invoked wien a Complex object is used as a string.
Complesx.prototype.toString = funetion( ) {

return “{" «© this.2 + "," « this.y « *}*;
hs

ff Test wether this Complew object has the same value as another.
Comples.prototype.equals = function(that) {

retumm this.x == that.« Bi this.y == that.y;
I

‘f Return the real portion of a conplex number. This function
‘fis invoked when a Complex object is treated ai a prinitive value.
Comples.prototype.valueOf = function() { return this.a; }

7

* The third step in defining a class is to define class methods,
* constants, and any seeded class properties as properties of the
* constructor function itself (instead of as properties of ‘the
* prototype object of the constructor). Note that class methods
"de mot use the this keyword: they operate only om thelr argunents.
“f

ff add two complex rambers and retum the result.
#f Contrast this with the instance method addi( }
Complex.sun = function (a, &) {

162 | Chapter: Classes,Constrectons, andPrototypes

Page 98 of 244



Page 99 of 244

Evample 9.2, A complex momber class (comtimued)

return new Complen(a.e 4+ bok, a.y * Biy)}
hi

‘/ Raltiply two complex pumnbera and return the product.

‘! Contrast with the instance method multiply( )
Conplées.product «= fumction(a, &) {

return new Complex(a.e * box © acy © by,
an * boy * ay * bem);

}s

‘! Here are dome useful predefined complex numbers.
ff They ape defined at class properties, and thelr sanea are in uppercase
‘f to indicate that they are intended to be constants (although it is not
ff poiaible to make JavaScript properties read-only).
Complex. ZERO = new Complex (0,0);
Complex.0WE = new Conplew( 4,0);
Complez.0 = new Conples(O,i);

9.3.7. Private Members

A common feature of traditional object-oriented languages such as Java and C++ is
thar the properties of a class can be declared private so that they are available only to
the methods of the class and cannot be manipulated by code ourside of the class. A
common programming technique called data encapsulation makes properties private
and allows read and write access to them only through special accessor methocls. Java-
Script can simulate this using closures (an advanced topic, covered in Section 4.8), bur
to do so, the accessor methods must be stored on cach object instance; they cannot be
inherited from the prototype object,

The following code illustrates howthis is done. It implements an immutable Rectan-
gle object whose width and height can never be changed and are available only
through accessor methods:

function Tmnutablefectangle(w, bh)
ff This constructor does not store the width and height properties
// in the object it Initializes. setead, it simply defines
‘/ accessor methods in the object. These methods are closures and
// the width and height valued are captured in thal scope chains.
this.getwidth = funetion() { return w; )
this. getHelght - fumction() { return hy }

}

ff Hote that the class can have regular methods in the prototype ob ject.
Ineutabletectangle.protetype.area = funetian() {

return this.gethidth( }) * this.getHeight( );
hi

Douglas Crocklord is generally credited as the first person to discover (or at least to
publish) this technique for defining private properties, His original discussion is at
hitps//wuw.crock/ord.com/javascript/privatehemi,

Simulating Clases in JavaScript | 16)

Page 99 of 244

 



Page 100 of 244

9.4 Common Object Methods
When defining a new JavaScript class, there are several methods. that you should
always consider defining. These methods are detailed in the subsections that follow.

9.4.1 The toString( ) Method
The idea behind toString( ) is that cach class of objects has its own particularstring
representation, so it should define an appropriate toString{ ) method to convert
objects co that string form. When you define a class, you should define a toString( )
method for it so that instances of the class can be converted to meaningtul strings,
The string should contain information about the object being converted because this
is useful tor debugging purposes. lf the string representation is chosen. carefully, ir
canalso be uselul in programs themselves. Additionally, you might consider adding a
static parse( ) method to your class to parse a string ourput by toString () back into
object form.

The Complex class of Example 9-2 includes a toString( ) method, and the following
code shows a toString( ) method you can define for a Circle class:

Circle. prototype, toitring = function () {
return “(Circle of radius “+ this.r +", centered at ("

¢this,g +", “« this.y ¢ “).)°;
}

With this toString( ) method defined, a typical Circle object might be converted to
the string “|Carcle of radius 1, centered at (0, 0),)”.

9.4.2 The valueOf() Method

The valueOf() method is much like the toString() method, but it is called when
JavaScript needs to convert an object to some primitive type other than a string—
typically, a number, Where possible, the function should return a primitive value
that somehow represents the value of the object referred to by the this keyword,

Bydefinition, objects are not primitive values, so most objects do not have a primi-
tive equivalent, Thus, the default valueOf() method defined by the Object class per-
forms no conversion and simply returns the object on which it is invoked. Classes
such as Number and Boolean have obvious priminve equivalents, so they override
the valueOF() method to return appropriate primitive values. This is why Number
and Boolean objects can behave so muchlike their equivalent primitive values.

Occasionally, you may define a class that has some reasonable primitive equivalent,
In this case, you may want to define a custom valuef#() method for the class. In the
Complex class of Example 9-2, you'll see that a valuedf() method was detimed that
returned the real part of the complex number. Thus, when a Complex object is used

164 | Chapter ®: Classes, Constractors, andPrototypes

Page 100 of 244



Page 101 of 244

in a numeric context, it behaves as if ir were a real number without its imaginary
component. For example, consider the following code:

var a = new Complen(§,4);
var b = new Complem(2,1);
var ¢ » Complex.aum(a,b); ¢/ c is the complex number (7,5)
var d= a + b; ‘fod la the sumber 7

One note of caution about defining a valueOf() method: the valueOf() method can, in some cir-
cumstances, take priority over the toString() method when converting am object twa sering.
Thus, when you define a valueOf() method for a class, you may need to be more explicit about
calling the teString() method when you wantto force an object of thar class to be converted mo
astring, To continue with the Complex example:

alert("c = * # ¢}; ff Uses valuett( ); displays “ec = 7*
alert("c = * « ¢,toftring());  ¢! Displays “¢ = (7,5}°

9.4.3. Comparison Methods
JavaSenpt equality operators compare objects by reference, not by value, That is, given ewo
object references, they look to seeif both references are to the same object. They do not check to
see it two different objects have the same property names and values. [ts often useful to be able
to compare ewo objects or equality or even bor relative order (as the ¢ and » operators do). If you
define a class and want to be able to compare instances of that class, you should define appropr-
ave methoxls to perform those comparsons.

The Java programming language uses methods for object comparison, ancl adopting the Java
conventionsis a commonand useful ching wo do in JavaScript. To enable instanoes of yourclass
to be rested tor equality, define an instance method named equals(), It should take a single argu
ment and retum true if that angument is equal to the object it is invoked on. OF course it is upeo
you 10 decide what “equal” means in the context of your own class, Typically, you simply oom-
pare the instance properties of the two objects oo ensure that they have dhe same values, The
Complex class in Example 9-2 has an equals() method of this sort.

It is sometimes useful to compare objects according to some ordering, That is, tor
some classes, it is possible to say that one instance is “less than” or “greater than”
another instance. You might order Complex numbers based on their magni tude),
tor example. On the other hand, it is not clear that there is a meaningful ordering of
Circle objects: do you compare them based on radius, X coordinate and Y coordli-
nate, or some combination of these?

If you ty to use objects with JavaSenpr’s relanon operators such as < aind <=, JavaSoript first culls
the valueOf() method of the objects and, if this method returns a primitive value, compares
those values. Since our Complex class has a valueOf() method that returns the real part ofa
complex number, instances of the Complex class can be compared as if they were real numbers
with no imaginary part. This may or may not be what you actually want. To compane objects
according to an explicithy defined ordering of your own choosing, you can (again, following Jawa
convennon) define a method named compareTo( ).

Common Object Methods | 165

Page 101 of 244



Page 102 of 244

The conpareTo() method should accepr a single angument and compare it to the abject on
which the method is invoked. If the this object is less than the argument object, compareTo()
should retum a value less that zero. If the this object is greater than the argument object, the
method should retum a value greater than zero. And if the two objects are equal, the method
should retum zero. These conventions about che return value are important, and they allow you
to substitute the following expressions for relanonal and equality operanors:

Replace this With this

ach a.compareTo(bh) < 6

acs b a.compareto(b) c= 0

aah a.compareTo(b) > 0

amb a.compareto(b) >= o

ae b a.compareTo(b) «= 0

aleb a.compareTo(b) != 6

Here is a compareTo{ ) method for the Complex class in Example 9-2 that compares
complex numbers by magnitude:

Complex.protetype.compareto = function(that) {
J? 7f we anen"t given an argument, of are pasted a walue that
f? does not hawe a magnitude() method, throw an exception
/? an altemative would be to return -1 or i in this case to say
/? that all Complex objects are always less than of greater than
J? any other walues.
if (that || 'that.magnitude || typeof that.magnitude != “funct ion")

thras new Exror(*bad argument to Complex.compareTof )“);

ff? This subtraction trick returns a value less than, equal te, of
fé greater than zero. [t is useful in many comparelo( ) methods.
return this.magnitude() - that.nagnitude( );

}

One reason to compare instances of a class is so thar arrays of those instances can be sorted into
some order. The Array.sort() method accepes as an optional angumert a comparison function
that uses the same retum-valuc conventions as the conpareTo( ) metho. Coiwen che compareTot )
method shown, it is easy to sort an array of Complex objects with onde like this:

complesBunbers ort(function{a,b) { return a.compareTa(b): })s

Sorting is important enough that you should consider adding a static compare( )
method to amy class for which you define a compareTo( ) instance method. One can
easily be defined im terms of the other. For example:

Complex.compare = furction(a,b) { return a.canpareTo{b); };

With a method like this defined, sorting becomes simpler:

complex¥unbers .sort(Complex.compare);

te | «Chapter $: Classes, Constrectors, andPrototypes

Page 102 of 244



Page 103 of 244

Nonce that che compareTo() and campare() methods shown here were not inchided in the orig-
nal Complex cass of Example 9-2. That is because they are not comsistent with the equals()
method that was defined in that example. The equals() method says that nwo Complex objects
are equal only if both their real and imaginary parts are the same. Bur the compareTo() method
retums zero for any two complex numbers that have the same magnitude. Both the mumbers
140) and 01 have the same magnitude, and these nwo values are equal acoording w
compareTo( ) but not according to equals(). If you wrine equals() and comparelo( ) methods for
the same Class, it is a good idea to make them comstent. Inconsistent notions ofequality can be
a pemicious source of bugs. Here is a compareTo() method that defines an ordering comsrsient
with the existing equals( ) method:

ff Compare complex numbers first by their real part. [f their real
éf parts are equal, compare them by complex part
Complex.protetype.comparelo = function(that) {

war result = thit.a - that.; // compare real using sebtraction
if (result == 6) ‘! i? they ane equal...

retult = this.y - that.y; // then compare imaginary parts
f? owe cur retult is O if and milly if thid equala(that)
return result;

EF

9.5 Superclasses and Subclasses
Java, C++, and other class-based object-onented languages have an explicit concept
of the class hierarchy, Every class can have a superclass from which it inherits proper-
ties and methods. Any class can be extended, or subclassed, so that the resulting stab-
class inherits its behavior, As shown previously, Javascnpt supports prototype
inheritance instead of class-based inheritance. Sull, JavaScript analogies to the class
hierarchy can be drawn. In JavaScript, the Object class is the most generic, and all
other classes are specialized versions, or subclasses, of it. Another way to say this is
that Object is the superclass of all the built-in classes, and all classes inherit a few
basic methods from Object.

Recall that objects inherit properties from the prototype object of their constructor.
How dothey also inherit properties from the Object class? Remember that the provo-
type object is itself an object; it is created with the Object( ) constructor. This means
the prototype object itself inherits properties from Object. prototype! Provorype-based
inheritance is not limited to a single prototype object; instead, a chain of prototype
objeces is involved. Thus, a Complex object inherits propertics from Complex.prototype
and from Object.prototype. When you look up a property in a Complex object, the
object itself is searched first. If the property ts not found, the Complex. prototype object
is searched next. Finally, if the property is not found in that object, the Object.
prototype object is searched.

Superaiasse:and Subclaies | 167

Page 103 of 244

 



Page 104 of 244

Nore that because the Complex prototype object is searched before the Objece proto-
type object, properties of Complex. prototype hide any properties with the same name
in Object. prototype. For example, in the Complex class of Example 9-2, a toString( )
method was defined in the Complex ,prototype object. Object prototype also defines a
method with this name, but Complex objects never see it because the definition of
toString( ) in Complex.prototype is found first.

‘The classes shown so far in this chapter are all direct subclisses of Object. When necessary,
however, it is posable to subclass any other class. Recall the Rectangle class shown earlier in the
chapter, for example. It had properties that represent the width and height of the rectangle but
ne properties describingits position. Suppose you want to create a subclass of Rectangle in onder
to add fields and methods related to the posinon of the rectangle. To do this, use the heir)
method of Section 92 to create a prototype for the mew class that inherits from Rec tangle.
prototype.

Example 9-3 repeats the definition of a simple Rectangle class and then extends it so define a

Example 9-4. Subclassing a JavaScript class

ff Here is a simple @ectangle class.
fF It has a width and height and can compute its own area
function Gectangle(w, b) {

this width » wij

this height = h;
}
Gectangle.prototypa.area = function{) | retum this.width * this.height; }

‘? Here is bow we might subclass it
ff Plrat, we define a the subclass constructor.

function Positionedtectangle(w, h, =, ¥) {
ff Firat, invoke the superclass comatructer on the new object
é#/ so that Lt can initialize the width and height.
é/ We use the call method so that we invoke the constructor as a

ff method of the object to be initialized.
ff This is called constructor chaining.
fectangle call(this, w, th);

ff Now store the position of the upper-left corner of the rectangle
this.2 = x;

thit.y = ¥;
}

‘! Create @ prototype for the subclass that inherits from the prototype
‘of the superclass, We do this with the hein() fusction.
function heir(p) {

function #(){}
{.prototype = p;
tetum mew f();

}

Pos itionedfectangle.protetype = helr(Rectangle.protetype);

te =| Chapter: Classes, Constrectors, andPrototypes

Page 104 of 244



Page 105 of 244

Example 9-5. Subclassing a JavaScrpt class (continued)

‘Ff Since the subclass prototype object was created with the heir() fusction,
‘f it docs mot have a meamingful constructor property. 40 oct thet now.
Positionediectangle.prototype constructor = Pos ltionedtectangle;

f/f ow that we've configured the prototype object for our subclass,
/) we can add initance metheds ta it.

Pos itionedRectangle.protetype.containa = function(s,y) {
returm (x > thig.s BB

a ¢ this.a + this.width bf

y » this.y M
y ¢ this.y « this height);

h;

As you can see from Example 9-3, creating a subclass in JavaScript is not as simple as
creating a class chat inherits directly from Object. First, there is the issue of irwoking
the superclass constructor from the subclass constructor. Take care when you do this
that the superclass constructor is invoked as a method of the newly created object.
(You may want to review Section 4.6.4 on the call() and apply() methods of func-
nons,) Next, there are the tncks required to set the protorype object of the subclass
constructor. You must explicitly create this prototype object as an instance of the
superclass, then explicitly set the constructor property of the prototype object.
Optionally, you may also want to delete amy properties that the superclass construc:
tor created in the prototype object because what's important are the properties that
the prototype object inherits trom ifs prototype,

Having defined this PositionedRectangle class, you can use it with code like this:

War © = fem Pouitionedtectangle(),2,1,1);
print(r.comtaina($,5)); ¢/ invoke an inatance method
print(r.area{ }); ‘/ iweke an inherited iaitance method

‘! ee the isstance fields of the class:

print(r.. +", "+7.y #°, ~ + Tanld@th + *, * + g.hedgnt);

ff Qur object is am instance of all 1 of these classes
print(r inatanceo? PositionedRectangle 44

r instanceof Rectangle B4
F instances? Object);

9.5.1 Constructor Chaining
In the example just shown, we saw that the PositionedRectangle( ) constructor func:
tion needed to explicitly invoke the superclass constructor function. This is called
constructor chaining and is quite common when creating subclasses. If you prefer not
to explicitly refer to to the superclass constructor from the subclass consiructor, you
can add a property named superclass to the subclass constructor:

Poiitiongdtectangle,iupercladi = Rectangle:

Sopertlase:aed Subclass =| 1h

Page 105 of 244

 



Page 106 of 244

With this property defined, you can wse arguments .callee.superclass in place of an
explicit reference to Rectangle, and chain to the superclass constructor with boiler-
plate code like this:

atguments.callee.superclais.call (this, «, h)

arguments.callee always refers to the currently executing function. (See section 8.2.
2.1). While you might be tempted to use this.constructor.superclass instead, it
won't work: if someone creates a subclass of PositionedRectangle, then this.
constructor will refer to the new subclass constructor, not 10 PositionedRectangle.

9.5.2 Invoking Overridden Methods
When a subclass defines a method that has the same name as a method in the super-
class, the subclass owerndes that method. This is a relatively common thing w do
when creating subclasses of cxtsting clases. Anytime you define a toString()
method for a class, you overnde the toString( ) method of Object, for example.

A method that overndes another often wants to augment the functionality of the
overridden method instead of replacing it altogether. To do that, a method must be
able to invoke, or chain to, the method that it overrides

Let's consider an example. Suppose the Rectangle class had defined a toString()
method (as it should have in the first place):

Rectangle.prototype.tedtring = functian( ) {
return “(* + this.width + "," + this.height + “]";

li you give Rectangle a toString() method, you really must override that method in
PositionedRectangle so that instances of the subclass have a string representation
that reflects all their properties, not just their width and height propertics.
PositionedRectangle is a simple enough class that its toString() method can just
return the values of all properties. But for the sake of example, let's handle the posi-
tion properties and delegate to its superclass for the width and height properties.
Here is what the code might look like:

Poitionedtectangle.prototype.toitring = furction() {
return “(" + this.a + °,” + this.y + ") " « ff oar fields

tectangle.prototype.toString.call (this); // chain to superclass

The superclass's implementation of toString( ) is a property of the superclass's pro-
totype object. Note that you can't invoke it directly. Invoke it with call() so that
you can specify the object on which it should be called. The toString( ) method
we're using as an example does not take arguments, but if you want to pass argu-
ments to an overridden method add the arguments to the invocation ofcall().

Note that invoking the toString( ) method through Rectangle .prototype works even
if the Rectangle class is modified to remove its toString( ) method. In that case the

170) |) Chapter ®: Classes, Constrectors, and Prototypes

Page 106 of 244



Page 107 of 244

prototype object of the Rectangle class inherits to toString( ) method of Object, and
the code will chain to that method instead.

We will return to chaining in Example 9-10, which simplifies method chaining using
arguments.callee as we did for constructor chaining above.

9.6 Extending Without Inheriting
The discussion of creating subclasses earlier in this chapter explains how vo create a
new class that inherits the methods of another. JavaScript is such a flexible language
that subclassing and inheritance are not the only way to extend a class. Since Jawa-
Script functions are data values, you can simply copy (or “borrow”) the funcnons
from one class for use in another. Example 9-4 shows a function that borrows all the
methods in one class and refers to them in the prototype object of another class.

Example 9-4, Borrowing methods fron one class for we by another

ff Borrow methods from one clais for use by another.
ff The arguments should be the comstructer functions for the classes.
ff Methods of built-in types such a: Deject, Array, Oste, and Begisp are
ff not erumerable and cannot be borrowed with this method.

function borrasethods (borrawfros, addTo) |

war from = bortosFrom.protetype; // protetype object to borrow from
war to = addTo.prototype; if protetype object to extend

for(e ie from) { // Loop through all properties of the protetye
if (typeof from[m) |= “fusction") continue; // ignore nonfuactions
tole) = 4rom[nj; // borrea the method

}

h

Many methodsare tied strongly to the class that defines them, and it makes no sense
to try to use them in other classes. But it is possible to write some methods generi-
cally so that they are suitable for use by any class, or by amy dass that defines certain
propertics. Example 9-5 includes two classes that do nothing but define useful
methods that other classes can borrow. Classes like these that are designed for bor-
rowing are called mixin classes or mixins.

Example 9-5, Mixin classes woth generic methods for borrowing

ff This class isn't good for quch on its awn. But it does define a
f/ generic toString[) methad that may be of interest to other classes.
function GesericToitring() {}
Gerriclostring.protetype.teitring = functian( ) {

var props = |);
for(var name in this) [

if (!this.hashenFroperty(mame)) continue;
var valve = this[nane);
Var a = name « *:"

wmitch( typeof value) |

[vteaging Without Inmeriting | 171

Page 107 of 244

 



Page 108 of 244

Example 9.5, Mixin classes with generic methods for borrowing (comtinned)
case ‘fumction" :

aot “function;
break:

ease ‘object’:
if (value instanceof Array) & = “array”
else 4 += walue.teString( );
break;

default;

a+ String(value);
break;

props .push(s);

, retum "{" + props. join(", ") + "}":
ff This mixin class defines an equals() method that can compare
‘/ simple objects for equality.
function Generictguals( ) {}
Genericiquals.prototype.equals = fumction(that) {

if (this == that) retum true;

#/ this and that are equal only if this has al] the properties of
ff that and dogaa"t have any additional properties
ff Note that we don’t do deep conparlion. Property values
é/ must be === to each other. So properties that refer to objects
é/ muat refer to the game object, sot chjecta that are equala({ )
war propalnThat = 6;
for(war name in that) {

propsInThate+;
i? (this[name)] |<< that[nane]) return false;

}

ff fos mabe sure that this object doesn’t have additional props
war propainThis = 6;
for(nane in this) propsInThise+;

ff Tf this has additional properties, then they are sot equal
if (propsiInvhis |= propsinThat) retum false;

/f The two chjects appear te be equal.
Tetum tree;

}

Here is a simple Rectangle class that borrows the toString( ) and equals( ) methods
defined by the mixin classes:

ff Here is a simple Rectangle class.
function Rectangle(x, y, w, A) {

this. = a:
this.y = y;
this.width = w;
this. height = hf;

)

172) | Chapter: Glasses, Comstractors, andPrototypes

Page 108 of 244



Page 109 of 244

Kectangle.pretotype,area = furction() { return this.width * this.neight: }

‘f forrod some more methods for it

horranfethads(GenericEquala, Rectangle);
borrowlethads (GenericToString, Rectangle);

Neither of the mixins shown have a constructor function, but it is possible to bor-
row constructors as well. In the following code, a mew class is created named
ColoredRectangle. It inherits rectangle functionaliry from Rectangle and borrows a
constructor and a method from a mixin named Colored:

/? This minin had a method that depends om its constructor. Both the
‘! canttructer and the method must be borrowed.

function Colered(c) { this.color = cj )

Colored.protetype.getCalar = function({) { return this.coler; }

‘/ Cefine the constructor for » new class.

function ColeredRectangle(x, y, w, h, ©) [
Rectangle.call(thit,«,y.a.0); /? Lavoke auperclass constructor
Colored. call (this, ¢); ‘i and borrow the Colored constyuctor

‘/ Set up the prototype abject to inherit methods from Rectangle
Coloredtectangle.protetype = heir(Rectangle prototype);
Colorediectangle.prototype.constructor = Colaredtectangle;

// And borrow the methods of Colored for our new class

borrawletheds (Colored, Colaredtectangle);

The ColoredRectangle class extends (and inherits methods from) Rectangle and bor-
rows methods from Colored. Rectangle itself inhents from Object and borrows from
GenericEquals and GenericToSuning. Although any kind of serict analogy is impossi-
ble, you can think of this as a kind of multiple inheritance. Since the ColoredRectangle
class borrows the methods of Colored, instances of ColoredRectangle can be consid-
ered instances of Colored as well. The instanceof operator will not report this, but in
Section 9.7.3, we'll develop a more general methodfor determining whether an object
inherits from or borrows from a specified class.

9.7 Determining Object Type
JavaScript is loosely typed, and JavaScript objects are even more loosely typed. There
are a number of techniques you can use to determine the type of an arbitrary value in
JavaScript.

The most obvious technique is the typeof operator, of course (see Section 5, 10,2 for
details). typeof is useful primarily for distinguishing primitive types from objects.
Chere are a few quirks to typeof. First, remember that typeof null is “object”, while
typeof undefined is “undefined”. Also, the type of any array is “object” because all
arrays are objects. However, the type of any function is “function”, even though
tunctions are objects, too,

Determining Object Type | 173

Page 109 of 244

 



Page 110 of 244

9.7.1 instanceof and constructor

Once you have determined that a value is an object rather than a primitive value ora
function, you can use the instanceof operator to learn more abour it. For example, if
xis an array, the followingevaluates to true:

x instances Array

The left side of instanceof is the value to be tested, and the right side should be a
constructor function that defines a class. Note that an object is an instance of its own
class and of any superclasses. So, for any abject o, o instanceof Object ts always true.
Interestingly, instanceof works for functions, so for any function f, all these expres-
S2ons are true:

typeof f ae “function”
f instamceaf Function

f instanceof Object

If you want to test whether an object is an instance of one specific class and not an
instance of some subclass, you can check its constructor property. Consider the fol-
lowing code:

var d = new Datel); ff A Date object; Date extends Gihject
wat isobject - d instanceof Object; ff ewaluates to true
var realobject = d.constructer==(bject; // ewaluates to false

9.7.2 Object.toString( ) for Object Typing
One shortcoming of the instanceof operator and the constructor property is that they
allow you co test an object only against classes you already know abour. They aren't
useful to inspect unknown objects, as you might do when debugging, for example. A
useful crick that uses the default implementation of the Object. toString( ) method
can help in this case,

As shown in Chapter 7, Object detines a default toString() method, Any class that
does not define its own method inherits this default implementation. An interesting
feature of the default toString( ) method is that it reveals sorne internal type infor-
mation about built-in objects. The ECMAScript specification requires that this
default toString() method always returnsa string of the form:

[object class]

class is the internal type of the object and usually corresponds to the name of the
constructor function for the object. For example, arrays hawe a closs of “Array”,
functions have a class of “Function”, and Date objects have a closs of “Date”. The
built-in Math object has a class of “Math”, and all Error objects (including instances
of the various Error subclasses) have a class of “Error”. Client-side JawaSeript
objects and any other objects defined by the JavaScript implementation have an
implementation-defined class (such as “Window", “Document”, or “Form”),
Objects of user-defined types, such as the Circle and Complex classes defined earlier

174 | Chapter %: (asses, Constractors, andPrototypes

Page 110 of 244



Page 111 of 244

in this chapter, always have a class of “Object”, however, so this toString( ) tech-
niqueis useful onlyfor built-in object types.

Since most classes override the default toString() method, you can't inwoke it
directly on an object and expect to find its class name. Instead, you reter to the
default function explicitly in Object.prototype and use apply() ta invoke it on rhe
object whose type you're interested in:

Object.prototype. toString .apply(o); // Always invokes the default toString! )

This technique is used in Example 9-6 to define a function that provides enhanced
“type of” functionaliry. As noved earlier, the toString( ) method does not work for
user-defined classes, so in this case, the function checks for a string-valued property
ot the constructor named classname and returns its value it it exists.

Example 9-6, Enhanced typeof testing

function getType(x) {
ff Tf a as null, return “null”
if (a 22 null) retern “null:

ff Next try the typeot operator
war t = typeof sj

ff If the result is not vague, return it
if (t t= “object") return t;

if Othemige, «0 is an object. Use the default teString() method to
ff get the class value of the object.
war c « Object.prototype.toString.apply(a); // Returns “[object class)*
ce c.gubstring (B, ¢.length-1): é/ Strip of f “[object" and “)"

ff Tf the class is not a vague one, return it.
if (ce t= "Object") return ¢;

ff If we get here, c is “Object”. (Check to see if
ff the value x is really just @ generic object.
if (x.constructor == Object) return cy; // Okay the type really is “Object”

ff For user-defined classes, look for a string-valued property of
ff the conptructer named classrane.

if (a.censtructor AA x.convtructar.claianame 44 // Tf class hot a mame
typeof s.constructor.classnane == “string") // and it is a string
return «.constructor.classnane; ff then return it.

ff 1? we really can't figure it out, say 50,
return ““unmknown types";

Determining Object Type | 175

Page 111 of 244

 



Page 112 of 244

9.7.3 Duck Typing
There is an old saying: “If it walks like a duck and quacks like a duck, it’s a duck!”
Translated into JavaScnpt, this aphorism is not nearly so evocative. Try it this way:
“Ié it implements all the methods defined by a class, it is an instance of that class.~ In
flexible, loosely ryped languages like JavaScript,this is called duck ryping: if an object
has the properties defined by class X, you can treat it as an instance of class X, even if
it was not actually created with the X( ) constructor function.”

Duck typing is parncularly useful in conjunction with classes that “borrow” meth-
ods from other classes. Earlier in the chapter, a Rectangle class borrowed the imple-

mentation of an equals() method from another class named GenericEquals. Thus,
you can consider any Rectangle instance to also be an mstance of
The instanceof operator will nor report this, but you can define a method that will.
Example 9-7 shows how.

Example 9.7. Testing whether an object borrows the methods ofa class

f/ Return true if each of the method properties in c.prototype have been
‘? borrowed by o. If o is a function rather than an object, we
é? test the protetype of o rather than o itself.
éf fete that this function requires methods te be copied, not
ff rermplemented. If a class borrows a method and thes overrides it,
ff this method will return false.

fumction borrean(o, c) {
ff If we are an instamce of something, then of course we have its methods
if (o instenceef c) return trac;

ff It is impossible to test whether the methods of a built-in type have
if been borrowed, since the methods of built-in types ave not esumerable.
/f ide return undefined in this case as a kind of “7 don"t know” anewer

é/ ingtead of throwing an exception. Undefined behaved much Like false,
if but can be distinguished from false if the caller needs to.
if (c == Array || c == Boolean || c == Date |] c = Error ||

¢ «= Function |] ¢ == Momber || c = Regimp || c o= String)
return undefined;

if (typect © =- “function”) o - o.proetotype;
Wal Proto = C.pretetype;
for(var p in proto) {

‘f Tgnore properties that are sot functions
if (typeaf prote[p] != “functian") contiree;
if (o[p] != prete[p]) return false;

return true;

* The term “dock typeng” has been popolarized by the Ruby programming language. A sore formal name 5
allomorpkom.

176) |) Chapter: Classes, Constrectors, andPrototypes

Page 112 of 244



Page 113 of 244

The borrows( ) method of Example 9-7 is relatively strict: ir requires the object o to
have exact copies of the methods defined by the class ¢, True duck typing is more
flexible: o should be considered an instance of ¢ a5 long as it provides methods that
look like methods of ¢. In JavaSeript, “look like” means “have the same name as"
and (perhaps) “are declared with the same number of arguments as.” Example 9-8
shows a method that tests for this.

Example 9.8. Testing whether an object provides imethads

‘? Return true if o has methods with the same name and arity as all
‘? methods in c.proatetype. Otherwise, peturm falae. Throws an caception
ff if ¢ is a built-in type with norerumerable methods,
function provides(a, ¢) {

ff Tf o actually is an instance of c, it obviously looks like ¢
if (o ingtanceof c) return true;

ff Tf a constructor was passed instead of an object, use its prototype
if (typeof o == “fanction") a = a.prototype;

é/ The methods of built-in types are not enunerable, and we return
ff undefined. Otherwise, any abject would appear to provide any of
é/ the bullt-in types.
if (¢ os Array || ¢ = Boolean || c o= Date || ¢ o= Error ||

e == Function || ¢ == Number || &¢ == Regéxp || ¢ == String}
return undefined;

var proto = c.prototype;
for(var p in proto) { #/ Loop through all properties In c.prototype

‘f Tgnore properties that are not functions
if (typeof proto[p] '* “function") continue;
/f Tf o dowd not have a property by the dane pane, return false
if ('{p in o)) return false;
ff Tf that property is not a function, retum falae
if (typeof ofp) l= “functlon") return fale;
/f Tf the two functions are not declared with the sane number

‘f of argunents, return falae,
if {a[p].length l= prote[p].length) return false;

}

ff Tf all the methods check owt, we can finally return true,
returm true;

I

As an example of when duck typing and the provides( ) method are useful, consicler
the compareTo( ) method described in Section 9.4.3. compareTo( ) is not a method that
lends itself to borrowing, but it would still be nice if we could easily test for objects
that are comparable with the conpareTo( ) method. To do this, define a Comparable
class:

function Conparable{} []
Comparable.prototypr.campareto = function(that) {

thro “Comparable, conpareTo() is abstract. Don't invoke it!";
}

Determining ObjectType | 17

Page 113 of 244



Page 114 of 244

This Comparable class is abstract: its method isn’t designed to actually be invoked
but simply to define an API. With this class defined, however, you can check if nwo
objects can be compared like this:

ff Check whether objects o and p can be compared
ff They must be of the same type, and that type must be comparable
if {a.constructor == p.comstructer 44 provides(o, Comparable)» {

war order - o.compareTa(p);
t

Note that both the borrows( ) and provides() functions presented in this section
return undefined if passed any core JavaScript built-in type, such as Array. This is
because the properties of the prototype objects of the built-in types are mot enumeta-
ble with a for/in loop. lf those functions did not explicitly check for built-in types
and return undefined, they would think that these built-in types have no methods
and would always rerurn true for built-in types.

The Array type is one that ts worth considenng specially, however. Recall from Sec-
tion 7.8 that many array algorithms (such as iterating over the elements) can work
fine on objects that are not true arrays but are array-like. Another application of duck
typing is to determine which objects look like arrays. Example 9-9 shows one way co
do it.

Example 9.9. Testing for array-like objects

function isArraylike({=) |
if (x instanceof Array) return true; // Real arrays are array: like
if ()¢* length" in 2)) return false; // Arrays mst have a length property
if (typeof x.length |= “number") return false; // Length mat be 4 number
if (x.length < 0) return false; if and nonnegative
if (x.length > Oo) {

‘fT? the array is momempty, it must at 2 einiaue
f/f have a property defined whose name is the number lenpth—-1
if (!((x.length-1) in =)) return false;

}
Tetum true;

9.8 Example: A defineClass() Utility Method
This chapter ends with a defineClass{ ) utlity funcnion that ties together the prewi-
ous discussions of constructors, prototypes, subclassing, and borrowing and chain-
ing. Example 9-10 defines the function and Example 9-11 shows how it can be used.

Example 9-10. “A atilityfunction for defining classes
fae

* detinetlass() -- a atility function for defining JavaScript classes.=

* This function expects a single object as its only argument. It defines
“anew Javaicript class based on the data in that object and returns the
" constructor function of the mew class.

178 | Chapter: Classes, Comstrectors, andPrototypes

Page 114 of 244



Page 115 of 244

Evanple 9.10, °A utilityfinction for defining clases
fet

The object pasted as an argument should have some of all of the
following properties:

fane: the ae oF the clade being defined,
If specified, this value will be stored in the clavenane
property of the returned constractor object.

extend: The contractor of the clase to be extended, The returned

coatructor automatically chains to this function, This value
is stored in the superclass property of the canutyurter abject,

init: The Initialization function for the class. If defined, the
conmtructor will pass all of its arguments te this function.
The constructor also automatically inwokes the superclass
conatructar with the aane arguments, to this function suit expect
the sam argusents, in the same order, as the superclass
constructor, and can add additional arguments at the end.

netheds: An object that specifies the instance methods (ard other
non-nethed properties for the claga, The properties of
this object become properties of the prototype. Methadds
are given an overrides property for chaining, They can
call *chain(this, arguments)" to invoke the method they
override, This function adds properties to the methods in
this object, so you may mot pads the sane methed in two
invecations of define(lasa().

ie®#@*oeeirhUcChUchTrhUcDhUvFhUhFhUchFDhUhMhUcDhUhhUh!hUmhU
statics: An object that specifies the statle methods (and other static

properties) for the class. The properties of this object become
properties af the conatructar function.

.=i*=*=&#
ony

function defineClass(data) {
if Extract tome properties from the argument object
var extend = data.extend;

war superclass = extend || Object;
var init = data. init:

war clasinane = data.name || “Uneamed class";
war methods «© data.methods || {};
war statics = data.staties || {);

i} Aake a commtructar function that chains to the superclass comitructar
ff and then calls the initialization method of this class.

ff This will become the return walee of this definetlasa() method,
war constructor = furction() {

if (extend) extend.apply(this, arguments); // Initialize superclass
if (init) init.apply(this, argunents); ff Indtlalize ourself

h;

if Copy atatic properties te the constructor function
if (data.statics)

for(var p in data.atatics) conatructor(p] = data.atatica[p |;

Example: A defineClass/ | Utility Method |

Page 115 of 244

19

 



Page 116 of 244

Example 9.10. “A wnhetyfumetion for defining clasers
sal

é/ Set superclaaa ad clasiname properties of the contractor
comitructor. daperclai: = supercliia;
comtructor.classname = classname;

‘/ Create the object that will be the prototype for the class.
ff This new object must inherit from the superclass prototype.
war proto « (superclass «=< Object) | (} : heda(superclass.prototype);

i! Copy instance methods (aed other properties) to the prototype object.
for(var p in methods) [ ‘/ For each name in methods object

if (p == “toString") continue; // Handled below
war © « methods|p); A! This is the walue to copy
if (typeof = <= “function”) { // If it is a function

s.oertides = protol[p); // Remember anything it owerrides
S.name = p; fi? Tell it what ita mone de
f.aner = contractor; ff Tell it what clase aang it.

}
proto[p]) = =; ff Then store in the prototype

}

‘/ Tn TE, «2 for/in loop won't enumerate properties that have the tame sare
i! as non-enumerable Object methods Like toString(). As a partial
if work-anound, we handle the toitring methed ipecially
if (methods .hasQerProperty(“teString”)) { // IE Dontinam bug

methods. toString.overrides = proto. toitring;
methods. tohtring.name - “fodtring’;
methods. toitring.cumer « constructor;
proto. tedtring = aetheds.todtring;

‘7 All objects should know who their comtructor was
proto.comtructor = constructor;

é/ And the contractor aust beow what iti prototype is
Comtructor.protetype = proto;

‘/ Finally, retum the comstrector function
return constructor;

}

fee

* fetern a new object with p as its prototype
/

function beir(p) {
function hi}{}
b.prototypesp;
reture mew h();

h

=

* Chain from the calling function to the function on its owerridea property.
* Tevere that eethod on the first argument. The second arguement mint be the

Iso) |) Chapter? Classes, Constrectors, and Prototypes

Page 116 of 244



Page 117 of 244

Fvanple 9.10, ‘A utility function for defining classes
fee

* arguments object of the calling function: its callee property ia used to
determine what function is doing the chaining. The third argument is an
optional array of values to past to the overridden method, If omitted,
the cecond argument 15 weed instead, passing all of the caller's arguments
on ta the overridden method.

This nethod returns the return value of the overridden method oF
throa “Chainkrror’ if no owerridden method could be found

Typical invocation: chain(this, arguments)
*To pase different args: choin(this, anguments, [w, h])
a

function chain(o, args, pads) |
var f = args.cal lee; /f The calling function.
wal g = f,.overrides; ff The function it chains to.
wal & = pas \| args; if The argunents we'|] pass to 4
if (g) return g.apply(o, aj); // Call o.g(a) and return its value as ours,
else throw “ChainError” // Complain if nothing to override

}

Example 9-11 shows sample code that uses the defineClass( ) function.

Frame 9-00, Using the defimet Lose ) function ,

ff & very gimple Rectangle class
var Rectangle = define lasa({

fname: “Rectangle”,
init: function(w,h) {

this.w = Wj

this.h = hy
I,
methods: |

area: furnction() { return thid.w * thia.h; },
tostring: funetion() { retumm “[" + this.we *,* © this,h w *]" }

yi:

‘fA subelasa of Rectangle
var PositionedRectangle = defineClass({

name: “PositionedRectangle” ,
extend: Rectangle,
init: function(w,h,=,¥) {

ff dutenatie chain here; Rectangle,call(this,w,h,=,¥)
this. = ©]

this.y = ¥]
lh,
methods: {

jaIngide: function(s,y) {
return a > this.s AR ow ¢ this.a © this.e Bo

y > this.y OB y ¢ this.y @ this,hj
)s
teString: function() {

Example: A defimestilass| | Utility Method | 181

Page 117 of 244



Page 118 of 244

Example 9.11. Using the defineClass() fimcnion (contmued)

é? ik wery dimple Bectangle clais
return chain(this, arguments) + “(" + this.a e °,° + this.y ¢ ")";

}

}
hi

war Coloreditectangle = defineClasa({
fanei “Coloredtectangle”,
extend: Poulthaneditectangle,
init: function(e,h,a,y,t) { this.c = cj },
methods: {

tedtring: fusction() { retum this.c # “: * © chain(this,argunents))

182 | Chapter ®: Classes, Constractors, andPrototypes

Page 118 of 244



Page 119 of 244

CHAPTER 13

JavaScript in Web Browsers

Thefirst part of this book described the core JavaScript language. Part I] moves on to
JavaScript as used within web browsers, commonly called client-side JavaScript.”
Most of the examples you've seen so far, while legal JavaScript code, have no particu-
lar context; they are JavaScript fragments that run in ne specitied environment. This
chapter provides that context. It starts with an overview of the web browser pro-
pramming environment. Next, it discusses how to actually embed JavaScript code
within HTML documents, using <script tags, HTML event handler attributes, and
JavaScript URLs. These sections on embedding JavaScript are followed by a section
that explains the client-side JavaScript execution model: how and when web brows-
ers run JavaSeript code. Next are sections that cover three important topics in Java-
Script programming: compatibility, accessibiliry, and security. The chapter
concludes with an short description of web-related embeddings of the JavaScript lan-
guage other than client-side JavaScript,

When JavaScript is embedded in a web browser, the browser exposes a powerful and
diverse set of capabilities and allows them to be scripted, The chapters that follow
Chapter 13 each focus on one major area of client-side JavaScript functionality:

© Chapter 14, Scripting Browser Windows, explains how JavaScript can script web
browser windows by, for example, opening and closing windows, displaying dia-
log boxes, causing windows to load specitied URLs, or causing windows to go
back or forward in their browsing history. This chapter also covers other, miscel-
laneous features of client-side JavaScript that happen to be associated with the
Window object in client-side JavaScript.

* Chapter 15, Scripting Documents, explains how JavaScript can interact with the
document content displayed within a web browser windowand how it canfind,
insert, delete, or alter content within a document.

* The term clien-side favaSeripe is belt over from the days when JavaScript was used in only two places: web
browsers (clients) and web servers. As JavaScripe is adopred asa scripting language in more and more envi-
ronments, the erm client-side makes less and less sense because it doesn't specify the client side of whas,
Nevertheless, Cl continue to use the termin this book.

iu5

Page 119 of 244



Page 120 of 244

* Chapter 16, Cascading Style Sheets and Dynamic HTML, covers the interaction
af JavaScript and CSS and shows howJavaSeript code can alter the presentation
of a document byscripting C55 styles, classes, and stylesheets. One particularly
potent result of combining scripting with CSS is Dynamic HTML {or DHTML)
in which HTML content can be hidden and shown, moved, and cven animated.

* Chapter 17, Events and Event Handling, explains events and event handling and
shows how JavaSeripe adds interactivity to a web page by allowing it to respond
To a user's input,

* Chapter 18, Forms and Form Elements, covers forms within HTML documents
and shows how Javatcript can gather, validace, process, and submit user inpuc
with forms.

* Chapter 19, Cookies and Client-Side Persistence, shows how JavaScript scripts
can persistently store data using HTTP cookies.

* Chapter 20, Scripting HTTP, introduces HTTP scripting (commonly known as
Ajax} and demonstrates how Javahcript can communicate with web servers.

* Chapter 21, JavaScript and XML, shows howJavaScript can create, load, parse,
transform, query, serialize, and extract informacion from XML documencs.

* Chapter 22, Scripted Client-Side Graphics, demonstrates common JavaSeripe
image-manipulation techniques that can create image rollovers and animations
in web pages. It also demonstrates several techniques tor dynamically drawing
vector graphics under JavaScript control,

* Chapter 23, Scripting lava Applets and Flash Movies, explains howJavaScript can
interact with Java applecs and Flash movies embedded in a web page.

13.1 The Web Browser Environment

To understand client-side JavaScript, you must understand the programming envi-
ronment provided by a web browser. The following sections introduce three inpor-
tant features of that programming environment:

* The Window object that serves as the glabal object and global execution con-
text for client-side JavaSeript code

* The client-side object hierarchy and the Document Object Model that forms a
part ofit

* The event-driven programming model

These sections are followed by a discussion of the proper role of JavaScript in web
application development.

23600 | Chapter 13: JavaScript in Web Browsers

Page 120 of 244



Page 121 of 244

13.1.1 The Window as Global Execution Context

The primary cask of a web browser is to display HTML documents im a window. In
client-side Javahcrips, the Document object represenes an HTML document, and the
Window object represents the browser window (or frame) that displays the docu-
ment. While the Document and Windowobjects are both important to client-side
JavaScript, the Windowobject is more important for one substancial reason: the
Window object is the global object in client-side programming,

Recall from Chapeer 4 that in every implementarion of JavaScript there is always a
global object at the head of the scope chain; the properties of this global object are
global variables. In client-side JavaScript, the Window object is the global object.
The Window object defines a number of properties and methods that allow you to
manipulate the web browser window. [t also defines properties that refer co other
important objects, such as the document property for the Document object, Finally,
the Window object has two self-referential properties, window and self. You can use
either global variable to refer directly to the Windowobject.

Since the Window object is the global abject in client-side JavaScript, all global vari-
ables are detined as properties of the window. For example, the following twolines
of code perform essentially che same function:

WaT anewel > 42; ff? Qeclare and initialize a global variable
windew.arnswer = 42-0 /% Create a new property of the Windew abject

The Windowobject represents a web browser window(or a frame within a window;
in client-side JavaScript, top-level windows and frames are essentially equivalent). Ir
is possible to write applications thar usc multiple windows (or frames}, Each win-
dow invelved in an application has a unique Windowobject and defines a unique
execution context for client-side JavaScript code. In other words, a global variable
declared by JavaScript code in one windowis not a global variable within a second
window. However, JavaSernpe code in the second window can access a global vari-
able of the first window, subject to certain security restricnions. These istics are con-
sidered in detail in Chapter14.

13.1.2 The Client-Side Object Hierarchy and the DOM
The Window object is the key object in client-side JavaScript. All other client-side
objects are accessed via this object. For example, every Window object defines a
document property that refers co the Document object associated with the window
and a lecation property thar refers to the Location objecr associared with che win-
dow. When a web browser displays a framed document, the frames[] array of the
top-level Window object contains references to the Window objects that represen
the frames. Thus, in chene-side Javahcript, the expression document refers to the Doec-
uiment object of the current window; the expression frames [1].document refers to the
Document object of the second frame of the current window.

The Web BrowserEnvironment | 27

Page 121 of 244

hi|
EF=]
a
a=
= 



Page 122 of 244

The Document objece (and other chent-side JavaScript objects) also have properties
that reter to other objects. For example, every Document object has a forms[) array
containing Form objeces that represent any HTML forms appearing in the docu-
ment. To refer to one of these forms, you might write:

window. dacument. farms { oO]

To continue with the same example, each Form object has an elements[] array con-
raining objects thar represenc the various HTML form clements (input fields, but-
tons, ete.) that appear within the form. In extreme cases, you can write code that
refers to an object at the end of a whole chain of objects, ending up with expressions
as complex as this one:

parent. frames[0] document. forms[G] elements [3].aptians[2]. text

As shown earlier, the Window object is the global object at the head of the scope
chain, and all client-side objects in JavaScript are accessible as properties of other
objects. This means that there is a hierarchy of JavaScripr objects, with the Window
object at its root. Figure 13-1 shows this hierarchy.

elt, window,
parent, top

vanas Window ehiacts
 

navigator
Byvigaior object

franes |]
arty of Wind ow abjects forms [] elements]

arcay of HTbIL fareaed leea 

   
location

The Location object anchors []
Current array efAnchor ebjects
Window

links[]
aeray of Link objects

images [|array aT [rmaag e objects |

Applets] |array of applets

Figure (3-1, The cliertestae object hierarchy and Level O DOM

238 | Chapter 13: Javatcriptin Web Browsers

Page 122 of 244



Page 123 of 244

Nore thar Figure 13-1 shows just the object properties that refer to other objects,
Most of the objects shown in the diagram have methods and properties other than
those shown,

Many of the objects pictured in Figure 13-1 descend fromthe Document object. This
subtree of the larger client-side object hierarchy is known as the document object
model (DOM, which is interesting because it has been the focus of a standardiza-
tion effort. Figure 13-1 Wlustrates the Document objeces that have become de facta
standards because they are consistently implemented byall major browsers, Collec-
tively, they are known as the Level 0 DOM because they form a base level of doeu-
ment functionality that JavaScript programmers can rely on in all browsers. These
basic Document objects are covered in Chapter 15, which also explains a more
advanced document abject model thar has been standardized by the W3C. HTML
forms are part of the DOMbut are specialized enough that they are coveredin their
own chapter, Chapter 18.

13.1.3 The Event-Driven Programming Model
In the early days of computing, computer programs often ran in batch mode; they
read in a batch af data, did some computation on thar data, and then wrote our the
results. Later, with time-sharing and text-based terminals, limited kinds of interactiv-
ity became possible; the program could ask the user for input, and the user could
type in data. The computer then processed the data and displayed the results
onscreen.

Nowadays, with graphical displays and pointing devices such as mice, the situation
is different, Programs are generally event-driven; they respond to asynchronous user
input in the form of mouse clicks and keystrokes in a way that depends on the posi-
tion of the mouse pointer. A web browser is just such a praphical environment. An
HTML document contains an embedded graphical user interface (C:U1), so cliemt-
side JavaScript uses the event-driven programming model.

[tis perfectly possible to write a static JavaScript program that does nor accept user
input and does exactly the same thine every time it is run. Sometimes this sore of
programis useful. More often, however, you'll want co write dynamic programs that
interace with che user. To de chis, you must be able to respond to user input.

In client-side JavaSeript, the web browser notifies programs of user input by generat-
ing events, There are various tpes of evenes, such as keystroke events, mouse motion
events, and sa on, When an event occurs, the web browser attempts to invoke an
appropriate event handler funetion to respond te the event. Thus, ta write dynamic,
interactive client-side JavaScript programs, you must define appropriate event han-

 

dlers and register them with the system, so chat the browser can invoke them at
APPropriare crimes.

The Web BrowserEnvironment | 239

Page 123 of 244

|
E—]
<a
al-%
= 



Page 124 of 244

If you are mor already accustomed co the event-driven programming model, it can
take a lithe getting used co. In the old model, you wrote a single, monolithic block of
code that followed some well-defined How of control and ran to completion from
beginning to end. Event-driven programming stands this model on its head. In event-
driven programming, you write a number of independent (but mutually interacting)
event handlers. You do nor invoke these handlers directly but allow the svatem pa
inveke them at the appropriate times. Since they are triggered by the user's input, the
handlers are invoked at unpredictable, asynchronous times. Much of the time, your
program is not running at all but merely sitting, waiting for the system to inveke one
of its event handlers.

The sections that follow explain how JavaScripe code is embedded within HTML.
files. It shows how to define both static blocks of code that run synchronously from
start to finish and event handlers that are invoked asynchronously by the system.
Events and evene handling are discussed again in Chapter 15, and then events are
covered in decail im Chapter 17.

13.1.4 The Role of JavaScript on the Web
The intreduction to this chapter included a list of the web browser capabilities thar
can be scripted with client-side JavaScript. Note, however, that listing what Java-
Seript can be used for is mot the same as explaining what JavaScript ought to be used
for. This section attempts to explain the proper role of JavaScnpe in web application
development.

Web browsers display HTML-structured text styled with CSS stylesheets. HTML
defines the content, and CSS supplies the presentation, Properly used, JavaScript
adds behavior ta the content and its presentation. The rale of JavaScript is to
enhance a user's browsing experience, making it easier to ebtain or transmit infor-
mation. The users experience should not be dependent on JavaScript, but Java-
Seripe can serve co facilitate that experience. JavaScnpe can do chis in any nunber of
Wely's. Here are SOM €xa071 ples:

* Creating visual effects such as image rollovers that subtly guide a user and help
with page navigation

* Sorting the columns of a table oo make it easier for a user to find what he needs

® Hiding certain content and revealing details selectively as the user “drills down"
inte thar conrent

* Streamlining the browsing experience by communicating directly with a web
server so that new information can be displayed without requiring a complete
page reload

240 | Chapter 13: JavaScriptlin Web Browsers

Page 124 of 244



Page 125 of 244

13.1.5 Unobtrusive JavaScript

Anewclient-side programming paradigm known as unobtrvsive favadcript has been
gaining currency within the web development community. ss its name implies, this
paradigm holds that JavaScript should not draw attention to itself; it should not
obtrude.” It should not obtrude on users viewing a web page, om content authors cre-
ating HTML markup, or on web designers creating HTML templates or CSS
stylesheets.

There is ne specific formula for writing unobtrusive Javascnpr code. However, a
number of helpful practices, discussed elsewhere in this book, will put you on the
right track.

The first goal of unobtrusive JavaScript is to keep JavaScript code separate from
HTML markup. This keeps content separate from behavior in the same way that
putting CSS in extemal stylesheets keeps concent separate from presentation. To
achieve this goal, you put all your JavaScripe code in exrernal files and include those
files into your HTML pages with <script src=> tags (see Section 13.2.2 for details). If
you ate strict about the separation of content and behavior, you won't even include
JavaScript code in the event-handler attributes of your HTMLfiles. Instead, you will
write Javabcript code (in an external tile) that registers event handlers on the HTML.
elemenns that need them (Chaprer 17 describes how to do this}.

Asa corollary to this goal, vou should strive to make your external files of JavaSeripr
code as modular as possible using techniques described in Chapter 10, This allows
you to include multiple independent modules of code into the same web page with-
out worrying about the variables and functions of one module overwriting the vari-
ables and functions of another,

The second goal of unobtrusive JavaScript is that it must degrade gracefully. Your
scripts should be conceived and designed as enhancements to HTML conrent, but
that content should still be available without your JavaScript code (as will happen,
for example, when a user disables JavaScript in her browser). An important tech-
nique for graceful degradation is called feature testing: before taking any actions,
your JavaScript modules should first ensure chat the client-side features they require
are available in the browser in which the code is running. Feature testing is a cam-
patibility technique described in more detail in Section 13.6.3.

A third goal of unobtrusive JavaScript is that it must not degrade the accessibility of
an HTML page (and ideally it should enhance accessibility). If the inclusion of Java-
Seript code reduces the accessibilicy of web pages, that JavaScnpe code has obtruded
on the disabled users who rely on accessible web pages. JavaScript accessibility is
described in more detail in Section 13,7,

* SObrrude” is an obscure synonym bor “mired.” The American Hertage doccionary cies: “Te impose, .on
others with undue insistence or without imvication.*

The Web BrowserEnvironment | 241

Page 125 of 244

=a}
E]a
a
al—%
= 



Page 126 of 244

Other formulations of unobtrusive JavaScript may include other goals in addition to
the three described here. One primary source from which to learn more about unob-
trusive scripting is “The JavaScript Manifesto,” published by the DOMScripting
Task Force at hittp/domscripting. webstandards.org/Jpage_id=2.

13.2 Embedding Scripts in HTML
Client-side JavaSeript code is embedded within HTML documents in a number of
Ways!

* Betweena pair of ¢script> and </script> tags

* From an external file specified by the sre attribute of a <seript> tag

* Inan event handler, specified as the value of an HTML attribure such as onclick
OF OMMOUs Over

* Ina URL that uses the special javascript: protocol

This section covers ¢script> tags. Event handlers and JavaScript URLs are covered
larer in the chapter.

13.2.1 The <script> Tag
Client-side JavaSeript seripts are part of an HTML file and are coded within ¢seript>
and </script> tags:

tscripts

ff Your Javaheript code goes here
ifseripts

In XHTML, the content of a ¢seript> tag is treated like any other conrent. If your
JavaScript code contains the < or & characters, these characters are interpreted as
XML markup. For this reason, it is best to pur all Javascript code within a CDATA
sectionif you are using KHTML:

eseripts<!(ODATA[/* Your JavaScript code goes here
]]pefseripts

A single HTML document may contain any number of <seript> elements. Multiple,
separate seripes are executed in the order in which they appear within the document
(see the defer attribute in Section 13.2.4 for an exception, however). While separate
scripes within a single file are executed at different tines during the loading and pars-
ing of the HTML file, they constiture part of the same JavaScript program: functions
and variables defined in one script are available to all scripts that followin the same
file. For example, you can have the following senpr in the cheads of an HTML page:

“script>tunction square({x) { return wa; fee scripts

242 | Chapter 13: JavaScript in Web Browsers

Page 126 of 244



Page 127 of 244

Later in the same HTML page, vou can refer to the squaref ) function, even though
it's in a different senipt block. The context that matters is the HTML page, not the
script block:

cecriptealert (square(2))se/scripts

Example 13-1 shows a sarnple HTMLfile that includes a simple JavaScript program.
Note the difference between this example and many of the code fragments shown
earlier in this book: this oneis integrated with an HTML file and has a clear context
in which it runs. Nove also the use of a language atiribure in the ¢seript> tag; chis is
explained in Section 13.2.3.

Example 13-1, A simple favescript propram in an HTML file
thinls
cheads

etitle;Today's Date</title,
cacript Language="Javaicript">
‘/ Define a function for later use

function print_tadaysdate{) f{
var d= new Dated); ff Get today’s date and tine
document .weitefd.teLocalestring{ }): ff Insert it inte the dacumertt

}
</script>
¢fhead>

chodys
The date and time are:<brs

tacript Language="Javascript">
‘f Mow call the function we defined above

orint_tadaysdatel 4:
</script>
</body>
<html:

Example 13-1 also demonstrates the document.write{) function. Client-side Java-
Seript code can use this function to ourput HTML text into the document at the
location of the script (see Chaprer 15 for further derails on this method), Nore thar
the possibility that scripts can generate output for insertion into the HTML docu-
ment means that the HTML parser must interpret JavaScript scripts as part of the
parsing process. [tis not possible to simply concatenate all seript text in a document
and run it as one large script after the document has been parsed because any sempe
within a document may alter the document (see the discussion of the defer artribure
in Section 13.2.4),

* The alert } hunction used here isa simple wayto display output in client-side JavaScript: incomvertsits angu-
ment toa sring and displavs thar string ina pop-up dialog box, See Section 14.5 for deqails on the alert? }
method, and ce Example 15-9 for an alvernative co alert } char does ner pop up a dialog box than must be
clicked away.

Embedding Scriptsim HTML | 243

Page 127 of 244

-i|
A=
=
"aa
* 



Page 128 of 244

13.2.2 Scripts in External Files

The «scripts tag supports a sre attnbuce that specifies the URL of a file containing
JavaScript code. It is used like this:

ascript sre="../.a/scripts/util.js"sa/scripte

A JavaScript file wpically has a.js extension and contains pure JavaScript, without
éseript> tags or any other HTML.

A <seript> tag with the sre attribute specified behaves exactly as if the contents of
the specified JavaScript file appeared directly between the <script> and </seript>
tags. Any code or markup that appears between these tags is ignored. Note that the
closing </script> tag is required even when the sre attribute is specified, and thereis
no Javascript between the «scripts and </script> tags.

There are a number of advantages to using the sre accribure:

* It simplifies your ATML files by allowing vou to remove large blacks of Java-
Script code from them—that is, it helps keep content and behavior separate,
Using the sre attribute is the cornerstone of unebtrusive JavaSeript program-
ming. (See Section 13.1.5 for more on this programming philosophy.)

* When you have a function or other JavaScript code used by several different
HTML files, you can keep it im a single file and read it into each HTML file that
needs it. This makes code maintenance much easier.

* When JavaScript functions are used by more than one page, placing them in a
separate favaScript file allaws them to be cached by the browser, making chem
load more quickly. When JavaScript code is shared by multiple pages, the time
savings of caching more than outweigh the small delay required for the browser
to open a separate network connection to download the JavaScript file the first
time it is requested.

* Because the sre attribute takes an arbitrary URL as its value, a JavaScript pro-
gram or web page from one web server can employ code exported by other web
servers. Much Internet advertising relies on this fact.

This last point has important security implications. The same-origin security policy
described in Secrion 13.8.2 prevents Javadenpr in a document from one domain from
interacting with content from another domain. However, notice that the origin of the
scripe itself does not matter: only the origin of the document in which the script is
embedded. Therefore, the same-orgin policy does not apply in this case: JavaSeripe
code can interact with the document in which iris embedded, even when che code

has a different origin than the document. When you use the sre accribate to include a
script in your page, you are giving the author of that seripe (and the webmaster of the
domain from which the script is loaded) complete control over your web page.

244 | Chapter 13: JavaScript in Web Browsers

Page 128 of 244



Page 129 of 244

13.2.3 Specifying the Scripting Language

Although Javahcript was the original scripting language for the Web and remains the
mest common by far, it is nor the only one. The HTML specificanon is language-
agnostic, and browser vendors can support whatever scripting languages they
choose. In practice, the only alternative to JavaScript is Microsoft's Visual Basic
Scripting Edition, which is supported by Internet Explorer.

Since there is more than one possible scripting language, vou muse cell the web
browser what language your scripts are written in. This enables it co interpret the
scripts correctly and co skip seripts written in languages that it does not knowhowto
interpret. You can specify the default scripting language for a file with the HTTP
Content-Script-Type header, and you can simulate this header with the HTML
«meta tag. To specify that all your scripts are in JavaScnpe (unless specified other-
wise), just pur the following tag in the <head> of all your HTML documents:

<neta http-equiv="Content-Script-Type" content="textsjavascript" >

In practice, browsers assume that JavaScript is the default scripting language evenif
your server omits the Content-Seript-Type heacer and your pages ont the <meta»
tag. If you do not specify a detaule scripting language, however, or wish to override
your default, you should use the type actnbute of the «scripts rag:

script types "texts javascript s4/scripty

The traditional MIME cype for JavaScript programs ts “text/Javascripe”. Another type
that has been used is “application’s-javascripe” (the “x-" prefix indicates thar ir is an
experimental, nonstandard type). RFC 4329 standardizes the “text/javascript" type
because it is in common use. However, because JavaScript programs are not really text
decuments, it marks this type as obsolete and recommends “application/javaseript"
(without the “x-") instead. Arche time of this writing, “applicationsjavascripe” is nor
well supported, however, Once it has become well supported, the most appropriate
escripts and <meta> tags will be:

eseript tyge-"application/ javascript"></scripts
émeta httip-equiv="Cantent-Script-Type" cantent="applications javascript"»

When che «scripts tag was first introduced, it was a nonstandard extension to
HTML and did not support the type attribure. Instead, the scripting language was
defined with the language attribute. This attribute simply specifies the common
name of the scripting language. H you are writing JavaSeript code, use the Language
attribute as follows:

eseript language-"JavaScript'>
ff JavaScript code goes here

tfeeripts

* Also known as VESeripe. The only browser thar supports VBSeripe ts [ntermer Explorer, $0 scripes written in
chis Lataguape ape flat portable. VBSeripe interfaces woth HTML oye the Sane way Javascript cloves, byt
the core language itself has a ciflerent stax than Javabeript. VR Secript 1 net decumcnped in this book.

Embedding Scripts in HTML | 245

Page 129 of 244

=|
EF=
-
aa
* 



Page 130 of 244

And if you are writing a seriptin WBSeripr, use the atcribute like this:

<script language="VpScript">
"WESeript code goes here (" is a comment character Like // in JavaSeript}

éfscripts

The HTML 4 specification standardized the <script> tag, bur it deprecated the
language attribute because there is no standared ser of mannes for scripting languages,
Sometimes you'll see <script» tags that use the type atrribute for standards compli-
ance and the language attribute for backward compatibility with older browsers:

gscript types" texts javascript” languages" JavaScript" ></script>

The language attribute is sometimes used to specify the version of JavaScript in
which a script is written, with tags like these:

script languape="JavaScriptl.2°se/ scripts
<script language="Javascripti.$"s4/ scripts

In theory, web browsers ignore scripts written in versions of JavaSenpe thar they do
hot support. That is, an old browser that does not support JavaSeripe 1.5 will not
attempt to rum a script that has a language attribute of “JavaSeriptl.5”. Older web
browsers respect this version number, but because the core JavaScript language has
remained stable for a number of years, many newer browsers ignore amy version
number specified with the language attribute,

13.2.4 The defer Attribute

As mentioned earlier, a script may call the document.write() method to dynamically
add content to a document. Because of this, when the HTML parser encounters a
scTIpt, it must normally stop parsing the document and wait for the script to exe-
cute. The HTML 4 standard defines a defer attribute of the <script: tag to address
this problem.

If you write a seript that does not produce any document ourpur—for example, a
script that defines a function but never calls document.write( )—you may use the
defer attribute in the ¢script> tag as a hint to the browser thatit is safe co continue
parsing the HTML document and defer execucion of the script until it encounters a
script that cannot be deferred, Deferring a script is particularly useful when it is
loaded from an external file; if it is not deterred, che browser must wait until the
sevipt has loaded before it can resume parsing the containing document. Deferring
may result in improved performance in browsers that take advantage of the defer
attribute. In HTML the defer attribute does not have a value; it simply must be
present in the tag:

geeript defers
fi Any JavaScript code that dors mot cal] document.writel |

afscripts

246 | Chapter 13: JavaScript in Web Browsers

Page 130 of 244



Page 131 of 244

In RHTML, however, a value ts required:

aseript defer="defer"+<c/script>

Atche time of this writing, Intermec Explorer is the only browser thar uses the defer
attribute, Ir does this when it is combined with the sre attribute. Ir does por imple-
ment it quite correctly, however, because deferred scripts are always deferred until
the end of the document, instead of simply being deterred until the next nondeterred
script is encountered. This means that deferred scripts in LE are execured our of order
and must not define any functions or set any variables that are required by the non-
deferred scripts that follow.

13.2.5 The <noscript> Tag
HTML detines the <noscript> element to hold content that should be rendered only
if JavaScripe has been disabled in the browser. Ideally, you should to craft your web
pages so that JavaScnpe serves as an enhancement only, and the pages “degrade
gracefully” and still function without JavaScript. When this is not possible, however,
you can use <noscript> to notify the users that JavaSeript is required and possibly to
provide a link to alternative content.

13.2.6 The </script> Tag
You may at some point find vourself writing a scnpe that uses the document.write }
method of innerHTMl property to curput some other script (typically into another
window or frame). IE you do this, you'll need to output a ¢/seript> tag to terminate
the script vou are creating. You must be caretul, chough: the HTML parser makes no
arcempt to understand your JavaScript code, and if it sees the string “<y'scnpr>” in
your code, even if it appears within quotes, it assumes that it has found the closing
tag of che currently running seripe. To avoid this problem, simply break up the tag
inte pieces and write it out using an expression such as "«/" + “seripts":

escripts

Fi document write"<scripts" p;
fi.docunent weite("document wrlte('ch2>This is the quated gerlpteshis "4";
fi document -write("<f" + “seripte");

a/seripts

Alternatively, you can escape the / in ¢/seripts with a backslash:

Fi.document write("<\fscript: }:

In KHTML, seripes are enclosed in CDATA sections, and this problem with closing
é/seripts tags does not occur.

Embedding Scripts in HTML | 247

Page 131 of 244

=|
EI=]
i
al—/
= 



Page 132 of 244

13.2.7 Hiding Scripts from Old Browsers

When Javaicnpt was mew, some browsers did not recognize the «scripts tag and
would therefore (correctly) render the consent of this tag as text. The user visiting the
web page would see JavaScript code formatted into big meaningless paragraphs and
presented as web page content! The workaround cothis problem was a simple hack
that used HTML comments inside the scripe tag. Javahcript programmers habitually
wrate their scripts like this:

<seript language="JavaScript">
al-- Begin HTAL comment that hides the seript

‘? JavaScript statenents go here
ff a
fe 5

‘fF End HTML comment that hides the script -->
ifscripts

Or, more compactly, like this:

deeripts¢l--
ff seript body gors here
Jf--eefscripts

In order to make this work, client-side JavaScript tweaks the core JavaScript lan-
guage slightly so that the character sequence <!-- at the beginning of a script behaves
just like #2 it introduces a single-line comment.

The browsers that required this comme reiag hack are long pore, but you will proba-
bly still encounter the hack in existing web pages.

13.2.8 Nonstandard Script Attributes
Microsoft has defined ovo completely nonstandard artnbutes for the «scripts rag
that work only in Incermet Explorer. The event and for attributes allowyou to define
event handlers using the <seript> tag. The event attribute specifies the name of the
event to be handled, and the for attribute specifies the name or [D of the element for
which the event is to be handled. The content of the script is executed when the
specified event accurs on the specified element.

These attributes work only in JE, and their functionality can easily be achieved in
other ways. You should never use them; they are mentioned here only so that you
will know what they are if you encounter them in existing web pages.

13.3 Event Handlers in HTML

JavaScript code in a seript is executed once: when the HTML tile that contains it is
read into the web browser. A program that uses only this sort of static script cannot
dynamically respond ta the user. More dynamic programs define event handlers thar

248 | Chapter 13: JavaScriptlin Web Browsers

Page 132 of 244



Page 133 of 244

are automatically inveked by the web browser when certain events o¢cur—for exam-
ple, when the user clicks on a button within a form, Because events in client-side
JavaScript originate from HTML objects (such as buttons), event handlers can be
defined as attributes of those objects. Por example, to define an event handler that is
inveked when the user clicks on a checkbox in a form, vou specify the handler code
as an attribuce of the HTML tag that defines the checkbox:

 

<input type="checkbox" name="options" value="giftwrap”
cnclick="piftwrap = this.checked;*

2

What's of interest here is the onclick atcribute. The string value of the onclick
attribute may contain one or more JavaScript statements, If there is more than one
statement, the statements must be separated from each other with semicolons. When
the specified event—in this case, a click—oceurs om the checkbox, the JavaSeript
code within the string is executed.

While you can include any number of JavaScript statements within an event-handler
definition, a common technique is to simply use event-handler acrnbutes to invoke
functions that are defined elsewhere within <script> tags. This keeps most of your
actual JavaScript code within scripts and reduces the need to mingle JavaScript and
HTL.

Note that HTML event-handler attributes are not the only wayto define JavaScript
event handlers, Chapter 17 shows that iris possible co specify Javascript even han-
dlers for HTML elements using JavaScripr code in a <seripty tag. Some Jawaderipr
developers argue that HTML event-handler attributes should mever be used—that
truly unobtrusive JavaSeript requires a complete separation of content from behav-
ior. According ta this style of JavaScript coding, all JavaScript code should be placed
in extemal files, referenced from HTML with the sre atcribure of ¢scripts tags. This
external JavaScript code can define whatever event handlers it needs when it rans,

Events and event handlers are covered in much more detail in Chapter 17, but you'll
see them used in a variety af examples before then. Chapter L? includes a compre
hensive list of event handlers, but these are the most common:

onelick

This handler is supported byall butten-like form elements, as well as ¢a> and
¢aTea? tags. [tis tiggered when the user clicks on the elemenc. [fan onclick han-
dler returns false, the browser does not perform anv default action associated
with the button or link; for example, it doesn’t follow a hyperlink (for an <a>
tag) or submit a form (for a Subooit butcon).

onmeusedonn, OMmouseup

These two event handlers are a lot like onclick, but they are triggered separately
when the user presses and releascs a mouse button, respectively. Most docu-
ment elements support these handlers.

Event Handlers InHTML | 249

Page 133 of 244

|
a=I
a
ao
a 



Page 134 of 244

onmouseover, onmouseout

These two event handlers are triggered when the mouse pointer moves over or
out of a document element, respectively.

onchange

This event handler is supported by the <input>, <select>, and <textarea> ele-
ments. [t is triggered when the user changes the value displayed by the element
and then tabs or otherwise moves focus our of the elemenc.

onload

This event handler may appear on the cbodys tag and is triggered when the docu-
ment and irs extemal content (such as images) are fully loaded, The onload han-
dler is often used to trigger code that manipulates the document content because
it indicates that the document has reached a stable state and is safe to modify.

For a realistic example of the use of event handlers, take another look at the interac:
tive loan-paymentseript in Example 1-3. The HTML torm in this example contains a
number of event-handler attnbutes. The body of these handlers is simple: they sim-
ply call che calculate( ) function defined elsewhere within a «scripts.

13.4 JavaScript in URLs
Another way that Javahcript code can be included on the client side is ina URL fol-
lowing the javascript: pseudoprorocol specifier. This special prococel wpe specifies
that the body of the URL is an arbitrary string of JavaScript code to be run by the
JavaScript interpreter. It is treated as a single line of code, which means thar state-
ments must be separated by semicolons and thar ¢* *f comments must be used in
place of /f comments. A Javateripr URL might look like chis:

javascriptivar now = new Datel J; "chisThe time isic/his” + roy

When the browser loads one of these JavaScripr URLs, it execures the JavaScript
code contained in the URL and uses the value of the last JavaScript statement or
expression, converted to a string, as the contents of the new document to display.
This string value may contain HTML tags and is formatted and displayed just like
any other document loaded into the browser.

JavaScript URLs may also contain JavaScript staremencs that perform actions bur
return no value, For example:

javascriptialert( "Helle World!"

When this sort of URL is loaded, the browser executes the JavaScript code, bur
because there is no value to display as the new document, it does mot modify the cur-
rently displayed document.

Often, you'll want to use a JavaScript URL to execute some JavaScript code without
altering the currently displayed document. To do this, be sure that the last stapenvenct
in the URL has no return value. One way to ensure this is to use the void operararpa

250 | Chapter 13: Javatcriptin Web Browsers

Page 134 of 244



Page 135 of 244

explicitly specify an undefined return walue, Simply use the starement void oO; at the
end of your JavaScript URL. For example, here is a URL that opens a new, blank
browser wind Ler without alte ring, the OONTENTS at the current witl daw:

javascript:windew.open("abaut-:blank"); void a;

Without the void operator in this URL, the return value of the Window.opent )
method call would be converted to a string and displayed, and the current document
would be overwritten by a document that appears somerching like this:

[object Window]

You can use a javaScnpe URL anvwhere you'd use a regular URL. One handy way co
use this syntax is co type it directly inte che Loeation field of vour browser, where
you can test arbitrary JavaScript code without having to open your editor and create
an HTML file containing the code.

The javascript: pseudoprotocel can be used with HTML attributes whose value
should be a URL. The href attribute of a hyperlink is one such case. When the user
clicks om such a link, che specified JavaScript code is executed. Im this context, the
JavaScript URL is essentially a substitute for an onclick event handler, (Note that
using either an onclick handler or a JavaScript URL with an HTML link is normally
a bad design choice; use a button instead, and reserve links for loading mew docu-
mencs.) Similarly, a JavaScript URL can be used as the value of the action arcribute of
a <formtag so thar the JavaScript code in the URL is executed when the user sub-
inits the form.

JavaScript URLs can also be passed to methods, such as Window.open{) (see
Chapter 14), that expect URL arguments.

13.4.1 Bookmarklets

One particularly importance use of javascript: URLs is in bookmarks, where chey
form useful mini-JavaScript programs, or bookmarklets, chat can be casily launched
from a menu or toolbar of bookmarks, The following HTML snippet includes an <a>
tag with a javascript: UBL as the value ofits href attribute. Clicking the link opens
a simple JavaScript expression evaluator that allows you to evaluate expressions and
enecute stapements in the content of the page:

ta hrete"javascript:
var ee 8) pe "8s S* Expression ta evaluate and the result */
do {

f* Display expression and result and ask for a new expression */
@ = prompt{"Expressian: “+ # + “\n" + r+ “4n", @);
try {roo "Result: "+ ewalfe); } /* Try to evaluate the expression */
catch{ex) [ r= ex: } "Or vewenber the errer instead */

bewhilefe); /* Continue until ne expression entered or Cancel clicked */
void O; Y* This prevents the current document fran being avarwritten "/
‘+

JavaScript Evaluator
iar

javaScriptinURis | 251

Page 135 of 244

=|
Ey=
—
acL
a 



Page 136 of 244

Nore that even though this JavaSeripe URL is written across multiple lines, the
HTML parser treats it as a single line, and single-line // comments will not work in
it. Here's what the link looks like with comments and whitespace stripped out:

da href=" javagerigtivar @=°" re""sda{e=prompt("Expreseian: “se+"\n"erein" a):
tryire"Result: "sevalle); }catch(ex){reex:}hwhile{e};vaid O;'s)5 Evaluatore/as

A link like this is uwsetul when hardcoded into a page that you are developing bur
becomes much more useful when scored as a bookmark that you can run on any
page. Typically you can store a bookmark byright-clicking on the link and selecting,
Bookmark This Link or some similar option. In Firefox, you can simply drag the link
to your bookmarks toolbar.

The client-side JavaScript techniques covered in this book are all applicable to the
creation of bookmarklets, but bookmarklecs themselves are not covered in anydetail.
lf vou are intigued by the possibilities of these lithe programs, try an Internet search
for “bookmarklers’, You will find a muniber of sites chat host many interesting armed
useful bookmarklets.

13.5 Execution ofJavaScript Programs
The previous sections discussed the mechanics of integrating JavaScript code into an
HTwIL file. Now the following sections discuss exactly how and when thar inte-
grated JavaScript code is execuced by the JavaScript interpreter.

13.5.1 Executing Scripts
JavaScript statements that appear between <script> and </script> tags are executed
in the order that they appear in the seript. Whena file has more than one script, the
seripes are executed in the order in which they appear (with the exception of scripts
with the defer attibuce, which JE executes out of order). The Javahcript code in
qseripts tags is executed as part of the document loading and parsing process.

Any <seripts element thar does nor have a defer armbure maycall the document .writel }
method (described in detail in Chaprer 15). The text passed to this method is inserted
into the document at the location of the scripts. When the script is finished executing,
the HTML parser resumes parsing the document, starting with any text output by the
Script.

Scripts can appear in the <head> or the <body> of an HTML document. Scripts in the
chead> typically define functions to be called by other code. They may also declare
and initialize variables that other code will use. It is common for scripts in the <head>
of a document to define a single function and then register that function as an onload
evence handler for later execution. Iris legal, but uncommon, to call document .writet }
in the <head> of a document.

252 | Chapter 13: JavaScriptin Web Browsers

Page 136 of 244



Page 137 of 244

Seripts in the <bedys of a document can do everything thar seriprs in the ¢heads can
do. It is more commen to see calls to document.write) in these seriprs, however.
Scripts in the <body> of a document may also (using techniques described in
Chapter 15) access and manipulate document elements and document content that
appear before the script. As desenbed later in this chapter, however, document ele-
nents are nor guaranteed co be available and stable when the scripts in che <body> are
executed, If a script simply defines functions and variables to be used later and does
nat call document.write( ) or otherwise attempt ta modify document content, con-
vention dictares thar it showld appear in the <head> of the document instead of the
cbody>.

As previously mentioned, IE execures scripts with the defer accribute our of order,
These scripts are run alter all nondelerred scripts and after the document is fully
parsed, but before the onload event handler is triggered.

 

13.5.2 The onload Event Handler

After the document is parsed, all scripts have run, and all auxiliary content (such as
images) has loaded, the browser fires the onload event and runs any JavaScnpe code
that has been registered with the Window object as an onload event handler, sAn
onlead handler can be registered by setting the onload ateribute of the <body> tag. [t is
also possible (using techniques shown in Chapter |?) for separate modules of Java-
Seript code to register their own onload event handlers. When more than one onload
handler is registered, the browser invokes all handlers, bur there is oo guarantee
about the order in which theyare invoked,

When the onload handler is triggered, the docunvent is fully loaded and parsed, amd
any document element can be manipulated by JavaScript code. For this reason, Java-
Seript modules that modify document content typically contain a function to per-
form the modification and event-registration code that arranges for the function co
be invoked when the document is fully loaded,

Because onlead event handlers are invoked after document parsing is complete, they
must not call document.write( }. Instead of appending to the current document, any
such call would instead begin a new document and overwrite the current document
before the user even had a chance to wewir.

13.5.3 Event Handlers and JavaScript URLs
When document loading and parsing ends, the onload handler is triggered, and lava-
Seript execution enters its event-driven phase, During this phase, event handlers are
executed asynchronously in response to user input such as mouse motion, mouse
clicks, and key presses. JavaScript URLs may be invoked asynchronously during this
phase as well, if, for example, the user clicks on a link whose href attribute uses the
javascript: pseudoprorocal.

Execution of JavaScript Programs | 253

Page 137 of 244

|
a=
a
a]="
a 



Page 138 of 244

éscript> elements are typically used to define functions, and event handlers are twpi-
cally used to inveke those functions in response to user input. Event handlers can
define functions, of course, but this is an uncommon (and not very useful) thing, to
de,

Lf an event handler calls document.write( ) on the documenc of which it is a part, it
will averwrite that document and begin a new one. This is almost never what is
intended, and, as a rule of thumb, event handlers should nevercall this method. Nar

should they call functions thar call this method. The exception, however, is in multi-
window applications in which an event handler in one window invokes the write{ )
method of the document of a ditherent window. (See Section 14.8 for more on mulli-
window JavaScript applicarions,)

13.5.4 The onunload Event Handler

When the user navigates away [rom a web page, the browser triggers the onunload
event handler, giving the JavaScript code on that page one final chance to run. You
can define an onunload handler bysetting the onunload attribute of the <body> tag or
with other event-handler registration techniques described in Chapter 17.

The onunload event enables you co unde the effeces of your onload handler or other
serip)es in your web page, For example, if vour applicanon opens up a secondary
browser window, the onunlead handler provides an opportunity to close that win-
dow when the user leaves your main page. The onunload handler should not run any
time-consuming operation, nor should it pop up a dialog box.It exists simply to per-
form a quick cleanup operation: running it should not slaw down or impede the
user's TTaNsition toa new page.

13.5.5 The Window Object as Execution Context
All scripts, event handlers, and JavaScript URLs in a document share the same Win-
dew object as their global object. JavaScript variables and functions are nothing
more than properties of the global object. This means thar a funetion declared in one
escript> can be invoked by the code in any subsequent <seript>,

Since the onload event is not triggered until after all scripts have executed, every
onload event handler has access toall functions defined and variables declared byall
scripts in the document.

Whenever a new document is loaded into a window, the Window object for that
window is restored to its detault state: any propertics and tumctions detined by a
seripe in the previews document are deleted, and any of the standard system proper-
ties that may have been altered or overwritten are restored, Every document begins
with a clean slate. Your scripts can rely on this; they will not inherit a corrupted envi-
ronment from the previous document. This also means that any variables and funce-
tons your scripts define persist only uncil the document 1s replaced with a newome.

254 | Chapter 13: JavaScriptin Web Browsers

Page 138 of 244



Page 139 of 244

The properties of a Window object have che samelifetime as che document that con-
tains the JavaScript code that defined those properties, A Window object itself has a
longer lifetime; it exists as long as the windowit represents exists. A reference to a
Window object remains valid regardless of how many web pages the windowloads
and unloads. This is relevant only for web applications chat use multiple windows or
frames. In this case, JavaScript code in one window or frame may maintain a refer-
ence to another windowor frame, That reference remains valid even if the other win-

dowor frame loads a new document.

13.5.6 Client-Side JavaScript Threading Model

The core JavaScript language dees nor contain any threading mechanism, and clicmt-
side JavaScript does not add any. Client-side JavaScript is for behaves as if it is)
single-threaded. Document parsing stops while scripts are loaded amd executed, and
web browsers Step responding to user input while Ewell handlers are being EXECU tec.

Single-threaded execution makes for much simpler scripting: you can write code
with che assurance that two event handlers will never rum at the same time. You can

manipulate document content knowing that no other threadis attempting to modify
it at the same time,

Single-threaded execunion also places a burden om JavaScript programmers: it means
that JavaScript seripts and event handlers must not run for too long. If a seripe per-
forms a computationally intensive task, it will introduce a delay into document load-
ing, and the user will not see the document content until the script completes. If an
event handler performs a computationally intensive task, the browser may become
hontesponsive, possibly causing the wser co chink chat it has crashed.”

If your application must perform enough computation to cause a noriceable delay,
you should allow the document to load fully before performing that computation,
and you should be sure to notify the user that computation is underway and that the
browser is not hung. [fit is possible to break your computation down inte discrete
subrasks, you can use methods such as setTimeout() and setInterval() (see
Chapter 14) to run the subtasks in the background while updating a progress indica-
tor that displays feedback to the user.

13.5.7 Manipulating the Document During Loading

While a document is being loaded and parsed, JavaScrpe code in a ¢scripts element
can insert content into the document with document .write(). Other kinds of docu-
ment manipulation, using DOMscripting techniques shown in Chapter 15, may or
nay not be allowed in <script> tags.

Some browsers, such as Firedox, puatd agains: denial-of-service artacks and accidental intinive loops, and
prompt che wser if scrips or event handler sakes coo bong co run. This pives the user dhe chance te abort a
funy Scope.

Execution of JavaScript Programs | 255

Page 139 of 244

|
EF=
—
a]="
7 



Page 140 of 244

Most browsers seem oo allow scripes to manipulate any document clemenes thar
appear before the <script> tag, Some JavaScript coders do this routinely. However,
ne standard requires it to work, and there is a persistent, if vague, belief among some
experienced JavaScript coders that placing document manipulation code within
escript> tags can cause problems (perhaps only occasionally, only with some brows-
ers, or only when a document is reloaded of revisited with the browser's Hack
button).

The only consensus that exists in this gray area is that it is safe to manipulate the
document once the onload event has been triggered, and this is what most JavaSeript
applications de: they use the onload handler to trigger all document modifications. |
present a utility routine for registering onload evenc handlers in Example 17-7.

In documents that contain large images or many images, the main document may be
parsed well before the images are loaded and the onload evene is triggered. In this
case, you might want to begin manipulating the document before the onload event.
One technique (whose satery is debated) is to place the manipulation code at the end
of the document. An [E-specific technique is to put the document manipulation code
ina <script» chat has both defer and sre actributes. A Firefox-specific rechnique is
to make the document-manipulation cade an event handler for the undocumented
DOMContentLoaded event, which is fired when the document is parsed but betore
external objects, such as images, are fully loaded.

Another gray area in the JavaScript execution model is the question of whether event
handlers can be invoked before the document is fully loaded. Our discussion of the
JavaScript execution model has so far concluded thar all event handlers are always
triggered alter all scripts have been executed. While this typically happens, it is not
required by any standard. [f a document is very long or is being loaded over a slow
network connection, the browser might partially render the document and allowthe
user to begin interacting with it (and triggering evene handlers) before all scripts and
onload handlers have run. If such an event handler invokes a function that is not yet
defined, it will fail. (This is one reason to define all functions in scripts in the <head>
of a document.) And if such an event handler attempts to manipulate a part of the
document that has not yer been parsed, it wall fail. This scenario is uncommon in
practice, and it is not usually worth the extra coding effort required to aggressively
protect against it.

13.6 Client-Side Compatibility
The web browser is a universal plattornm for hosting applications, and JavaScript is
the language in which those applications are developed. Fortunately, the JavaSeripe
language is standardized and well-supported: all modern web browsers suppore
ECMAScript v3. The same can not be said for the plattorm itself. All web browsers
display HTML, of course, but theydiffer in their support tor other standards such as

256 | Chapter 13: Javagcriptin Web Browsers

Page 140 of 244



Page 141 of 244

CSS (Cascading Soyle Sheees) and the DOM. And although all modern browsers
include a compliant JavaScript interpreter, they differ in the APIs they make avail-
able to client-side JavaSeript code.

Compatibility issues are simply an unpleasant fact of life tor client-side JavaScript
programmers. The JavaScript code you write and deploy may be run in various ver-
sions of various browsers TUNMing on various operating systems. Consider che per-
mutations of popular operating systems and browsers: Internet Explorer on
Windows and Mac OS," Firefox on Windows, Mac OS, and Linux: Safari on Mac

OS; and Opera on Windows, Mac 05, and Linux. If you want to support the cur-
rent version of each browser plus the previous two versions, multiply these nine
browsers pairs by three, for a total of 27 browsen/version/(S combinations. The
only way to be absolutely sure that your web application runs on all 27 combina-
tions is bo test it in each. This is a daunting task, and in practice, the testing is often
done bythe users after the application is deployed!

Before you reach the testing phase of application development, you must write the
code. When programming in JavaScript, knowledge of the incompatibilitics among
browsers is crucial for creating compatible code, Untortunarely, producing a defini-
tive listing of all known vendor, version, and plattorm incompatibilities would be an
enormous task. lt is beyond the scope and mission of this book, and to my knowl-
edge, no comprehensive client-side JavaScript test suite has ever been developed.
You can find browser comparibility informacion online, and here are nwo sites thar |
have found useful:

hitpefwirew.quirksimodeoargtdern/
This is freelance web developer Peter-Paul Koch's web site. His DOM compati-
bility tables showthe compatibility of various browsers with the W340 DOM.

httipswebdevout.aelfbrowser_suppart.php
This site by David Hammond is similar to quirksmede.org, but its compatibility
tables are more comprehensive and (at the time of this writing) somewhat more
up-to-darce. In addition ta DOM companibility, it also races browser compliance
with the HTML, CS, and ECMASeripe standards,

Awareness of incompatibiliries is only the first step, of course, Che subsections that
follow demonstrate techniques you can use to work around the incompatibilities you
ENMCOUNTEr.

13.6.1 The History of Incompatibility
Client-side JavaScript programming has abways been about coping with incompati-. pr prog B ¥ PIng P

bility, Knowing the history provides some useful context. The early days of web pro-
Eramming were marked by the “browser wars” between Netscape and Microsoft,

* TE tor Mac is being phased our, which is a blessing because it is subsrancially difterenc trom JEtar Windows.

(lient-Skdetompatibility | 257

Page 141 of 244

pi|
EFa
a
ai
5 



Page 142 of 244

This was an intense burst of development, in often incompatible directions, of the
browser environment and client-side JavaScript APIs. Incompatibility problems were
at their worst at this point, and some web sites simply gave up and cold their visitors
which browser they needed ta use to access the site.

The browser wars ended, with Microsoft holding a dominant market share, and web
standards, such as the (KOM and (S55, started to take hold. A period of stability for
stagnanon) followed while the Netscape browser slowly morphed into the Firefox
browser and Microsoft made a few incremental improvements to its browser. Stan-
dards support in both browsers was good, or at least good enough for compatible
web applications to be written.

At the time of this writing, we seem to be at the start of another burst of browser
innovation. For example, all major browsers now support scripted HTTF requests,
which form the cornerstone of the new Ajax web application architecmure (see
Chapter 20), Microsott is working on Internet Explorer 7, which will address a num-
ber of long-standing security and CSS compatibility issues. IE 7 will have many user-
visible changes bur will not, apparencly, break new ground for web developers.
Other browsers are breaking new ground, however. For example, Safari and Firefox
support a <canvas> tag for scripted client-side graphics (see Chapter 22), A consor-
tium of browser venders Owith the notable absence of Microsoft) known as

WHATWG(whatwy_org) is working te standardize the ¢canvas> tag and many other
extensions to HTML and the (Ceo.

13.6.2 A Word about “Modern Browsers”

Client-side JavaScript is a moving targer, especially if we're indeed entering a period
of rapid evolution, For this reason, | shy away in this book from making narrow
statements about particular versions of particular browsers. Any such claims are
likely ta be outdated before | can write a new edition of the book. A printed book
like this simply cannot be updared as often as necessary to provide a uselul guide to
the compatibility issues that affect the current crop of browsers.

You'll find, therefore, that 1 often hedge my statements with purposely vague lan-
guage like “all modern browsers” (or sometimes “all modern browsers except LE").
At the time of this writing, the loose set of “modern browsers” includes: Firefox 1.0,
Firefox 1.5, 1E 3.4, [E 4.0, Safan 2.0, Opera 8, and Opera 8.5. This is nor a puaran-
tee that every statement in this book about “modern browsers” is true for each of
these specific browsers. However, it allows you to know what browsers were current
technology when this book was written.

13.6.3 Feature Testing

Feature testing (sometimes called capahilicy testing) is a powerful technique for cop-
ing with incompatibilines. Lf you wane co use a feature or capabiliry thar may not be

258 | Chapter 13: JavaScript in Web Browsers

Page 142 of 244



Page 143 of 244

supported by all browsers, include code in your script that tests to see whether thar
feature is supported. If the desired feature is not supported on the current platform,
either do noe use it on that platform or provide alternative code that works on all
plattorms.

You'll see feature testing again and again in the chapters that follow. In Chapter 17,
for example, there is code thar looks like this:

if (element .addEventListener) { // Test for this WaC method before using it
elenent .addEventListener("keydown", handler, false);
element addiventListener(“keypress", handler, false};

else if felement.attachEvent} [ /% Test for this IE method befare using it
element attachEvent{*onkeydown", handler);
elenent.attachEvent{"onkeypress", handler);

}
else { /#/ Otherwise, fall back on a universally supported technique

elanent onkeydown = elenent.onkeypress = handler;
}

Chapter 20 describes yet another approach to feature testing: keep trying alterna-
tives until you find one that does not throw an exception! And, when youfind an
altemarive thar works, remember it for future use. Here is a preview of code from
Example 20-1;

ff This ds a List of MALHttpRequest creation functiens te try
HTTP.factories = [

furctian{ ) [ raturn new MMLHttpRequest( J; },
function{ { return new ActivexOiject("“Mseml2.X4LHTTP" 4: },
function{ 3 [ return new ActiveXOoject("Nicrosoft.¢MLHTTP"); }

];

ff When we find a factory that works, store it here
HTTP. factory = null;

Jf Create and retura a new XMLHttpRequest abject.
fi

ff The first time we're called, try the list of factory functions until
ffowe find one that returns a nonnull value and does not throw an

ff exception, Once we find a working factory, remember it for later use.
HITE newequest = function? } {| ¢* fuction body omitted */ |

Acommon, but outdated, example of feature vesting, thar you maystill encounterin
existing code is used to determine which DOM a browser supports. [t often occurs in
BHTML code and usually looks something like this:

it (document. petE lementhyTd) { #f Tf the ac OOM APT is supported,
ff do aur DHTML using the WO DOM APT

}
else if (document.all) { ff If the IE 4 API is supported,

/? da aur DHTML using the IE 4 API
}
else if (dacument.layers} j ff If the Netscape 4 AFI is supported,

(lient-SkdeCompatibility | 259

Page 143 of 244

ps}
EF=
a
a=
a 



Page 144 of 244

/? do the DHTML effect [a5 best we can) using the Metsecape 4 APL
}
else { #f Otherwise, OHTAL is not supported,

ff sa provide a static alternative to DHTAL
}

Code like this is outdated because almost all browsers deployed today support the
WoC) DOMand its document.petElementByTd( ) function.

The important thing about the feature-testing technique is that it results in code that
isnot tied to a specihe lst of browser vendors or browser version numbers. It works
with the sec of browsers that exist today and should continue to work with future
browsers, whatever feature sets they implement. Note, however, that it requires
browser vendors not to define a property or method unless that property or method
is fully functional. [If Microsoft were to define an addEventHandler{ ) method that
only partially implemented the W3C specification, it would break a lot of code that
uses feature testing before calling addeventHandler( ).

The decument.all property shownin this example deserves a special mention here. The
document.all[] array was introduced by Microsoft in JE 4. It allowed JavaScript code
ta tefer ee all elements of a document and ushered in a newera of chent-sicde program-
ming. Ip was never standardized and was superseded by document.getElementByTdd ). Ir
is still used in existing code and has often been used (incorrectly) co determine whether
a script is running in IE with code like this:

if {docunent.all) {
ff We're running in TE

I
else {

ff We're in sane other browser

}

Because there is sulla lot of extant code that uses document.all, the Firefox browser

has added support for it so that Firefox can work with sites that were previously [E-
dependent. Because the presence of the all property is often used for browser depee-
tion, Firefox pretends thar it does nar support the property, 50 even though Firefox
does support document.all, the if statement in the following script behaves as if the
all property does not exist, and the script displays a dialog box containing the text
“Firefox”:

if {decunent.all) alert{"IE"}; else alert("Firefox") ;

This example illustrates that the feature-testing approach does nor work if the
browser activelylies co you! It also shows that web developers are not the only ones
plagued by compatibility issues. Browser vendors must also go through contortions
for compatibility.

260 | Chapter 13: JavaScript in Web Browsers

Page 144 of 244



Page 145 of 244

13.6.4 Browser Testing

Feature testing is well suited to checking for support of large fumetional areas. You
can use it to determine whether a browser supporcs the WAC) event-handling model
or the IE event-handling model, for example. On the other hand, sometimes you may
need to work around individual bugs or quirks in a particular browser, and there
may be no casy way to test for the existence of the bug. In this case, you need to cre-
are a platform-specific workaround thar is tied to a particular browser vendor, ver-
sion, oF Operating system (or some combinationofthe three).

The way to do this in client-side JavaScript is with the Navigator object, which you'll
learn about in Chapter 14. Code that determines che vendor and version of the cur-
rent browser is often called a browser sniffer or a client sniffer. A simple example is
shown in Example 14-3. Client snitting was a common chenet-side programming tech-
nique in the early days of the Web when the Netscape and LE plattorms were incom-
patible and diverging. Now that the compatibility situation has stabilized, client
sniffing has fallen out of faver and should be used only when absolutely necessary.

Nore that client sniffing can be done on the server side as well, with the web server
choosing what JavaScript code to send based on how the browser identifies itself in
its User-Agent header.

13.6.5 Conditional Commentsin Internet Explorer
In practice, you'll find that many of the incomparibilities in client-side JavaSeripr
programming turn out to be IE-specific. That is, you must write code in one way tor
IE and in another way for all other browsers. Although you should normally avoid
browser-specific extensions thar are not likely to be standardized, IE supports condi-
Honal comments in both HTML and JavaScript code that can be useful.

Here is whar conditional comments in HTML look like. Notice the wicks played
with the closing delimiter of HTML comments:

al--[if IE]>
This content is actually inside an HTML comment.
It will only be displayed im [E.
al[endif]-=9

al--[if ate IE 6]>
This cantent will only be displayed by IE 6 and later.
<![endif]-->

el--[if IIE]> ¢--»
This is normal HTML centent, but IE will not display it
because of the comment above and the comment below.

<l-- <l [endif ]-->

This is mormal content, displayed by all browsers.

(lient-Skde Compatibility | 261

Page 145 of 244

=e]
EI=]

al-7
= 



Page 146 of 244

Conditional comments are also supported by [E's JawaSeript interprerer, and © and
C++ programmers mayfind themsimilar to the #ifdet/#endif functionalicy of the C
preprocessor. A JavaScript conditional comment in IE begins with the text /*@cc_on
and ends with the text @*/. (The ce in cc_on stands for conditional compilation.) The
following conditional comment includes code that is execuced only in IE:

/*icc_om
aif (@ jseript)

ff This code is inside a J5 coment but is executed in IE,

alert({"In IE"};

Bend

ay

Inside a conditional comment, the keywords Pif, @else, and @end delimit the code
that is to be conditionally executed by IE's JavaScript interpreter. Most of the time,
you need only the simple conditional shown above: Gif (@jscript). [Script is
Microsoft’s name for its JavaScript interpreter, and the @ jseript variable is always
true in IE.

With clever interleaving of conditional comments and regular JavaSeript comments,
you can set up one block of code co run in TE and a different block to run in all other
browsers:

J *ice_om
if (pjseript)

4? This code is inside a conditional comment, which is alsa a

ff regular JavaScript comment. IE runs it but other browsers ignore it.
alert( You are using Internet Explerer);

Belse*s

ff This code is no longer inside a JavaScript coment, but ls still
ff inside the [TE conditional comment. This means that all browsers

ff except IE will run this code,
alert(*¥ou are not using Internet Explorer);

/*Bend
ate

Conditional comments, in both their HTML and JavaSeripe forms, are completely
nonstandard. They are sometimes a useful way to achieve compatibility with IE,
however.

13.7 Accessibility
The Web is a wonderful tool for disseminating information, and JavaScript pro-
grams can enhance access to chat information. JavaScript programmers must be care-
ful, however: it is easy po write JavaScript code that inadvertently denies information
to visitors with visual or physical handicaps.

22 | Chapter 13: Javatcriptin Web Browsers

Page 146 of 244



Page 147 of 244

Blind users may use a form of “assistive technology” known as a screen reader ro
convert written words to spoken words, Some screen readers are JavaScript-aware,
and others work best when JavaScript is turned off. If you design a web site that
requires JavaScript ctodisplay its information, you exclude the users of these screen
readers. (And you have also excluded anyone who browses with a mobile device,
such as a cell phone, that does not have JavaScript support, as well as anyone else
who intentionally disables JavaScript in his browser.) The proper role of JavaScript is
to enhance the presentation of information, not to take over the presentation of that
information. A cardinal rule of JavaScript accessibility is to design your code so that
the web page on which it is used will still function [at least in some form) with the
JavaScript interpreter turned olf.

Another important accessibility concern is for wsers who can use the keyboard bur
cannot use (or choose not to use) a pointing device such as a mouse. If you write
JavaScript code that relies on mouse-specific events, you exclude users who do not
use the mouse, Web browsers allow keyboard traversal and activanion of a web page,
and vour JavaSeripe code should as well, And at the same time, you should not write
code that requires keyboard input either, or you will exclude users who cannot use a
keyboard as well as many users of tablet PCs and cell phone browsers. As shown in
Chapter 17, JavaScnpe supports device-independent events, such as onfocus and
onchange, as well as device-dependenc events, such as onmouseover and onmousedamn,
For accessibility, you should faver the device-independent events whenever possible.

Creating accessible web pages is a nontrivial problem withour clear-cut soalucions. At
the time of this writing, debate continues on how to best use JavaScript co foster,
rather than degrade, accessibility. A full discussion of JavaScript and accessibilityis
beyond the scope of this book. An Internet search wall yield a lot of information on
this topic, much of it couched in the form of recommendations from authoritative
sources. Keep in mind that beth client-side JavaScript programming practices and
assistive technologies are evolving, and accessibility guidelines do not always keep
up.

13.8 JavaScript Security
Internet security is a broad and comples ficld. This section focuses on client-side
JavaScript security issues,

13.8.1 What JavaScript Can't Do
The introduction of JavaScript interpreters into web browsers means that loading a
web page can cause arbitrary JavaScript code to be executed om your computer.
Secure web browsers—and commonly used modern browsers appear to be relatively
§@CUle—Testrict Scripts in Various ways oo prevent malicious code fram reading confi-
dential data, altering your data, or compromising your privacy,

JavaScript Security | 263

Page 147 of 244

se}
a=|
a
ad7
j 



Page 148 of 244

JavaScript's first line of defense against malicious code is that the language simply
does not support certain capabilities. For example, client-side JavaScript does not
provide any way to read, write, or delete files or directories on the client computer.
With ne File object and no file-access functions, a JavaScript program cannot delete
a user's data or plant viruses On a Users sysbenn.

The second line of detense is thar JavaScript imposes restrictions on certain fearures
that it dacs support, For example, client-side JavaScript can script the HTTP proro-
col to exchange data with web servers, and it can even download data fram FTF atid
other servers. But JavaScript does not provide general networking, primitives and
cannot open a socket to, or accept a connection from, another host.

The following list includes other teatures that may be restricted. Note that this is not
a definitive list. Different browsers have different restrictions, and many of these
restrictions may be user-configurable:

* A javasenpe program can open new browser windows, but, to prevent pop-up
abuse by advertisers, many browsers restrict this feature so chat it can happen
only in response to a user-initiated event such as a mouse click.

* A JavaSonpe program can clase browser windows thar it opened itself, bur it is
not allowed to close other windows without user confirmation. This prevents
malicious scripts from calling self.close({) to close the user’s browsing win-
dow, thereby causing the program to exit.

* A JavaScript program cannot obscure the destination of a link by setting the sta-
tus line text when the mouse moves over the link. (It was common in the past to
provide additional information abour a link in the status line. Abuse by phishing
scams has caused many browser vendors co disable this capabilicy.)

* Acscript cannot open a windowthar is com small (oypically smaller than 100 pix-
els on a side) or shrink a window too small, Similarly, a script cannot move a
windowoff the screen or create a windowthat is larger than the screen. This pre-
vents scripts from opening windows that the user cannot see or could easily
everlook; such windows could contain scripts that keep running after the user
thinks they have stopped. Also, a script may not creare a browser window with-
cut a tidebar or status line because such a window could spoof an operating dia-
log box and trick the user into entering a sensitive password, for example.

* The value properry of HTML FileUpload elements cannot be set. [f this prop-
erty could be set, a seript could set it to any desired filename and cause the form
to upload the contents of anyspecified file (such as a password file) to the server.

* Aseript cannot read the content of documents loaded from different servers than
the document that contains the script. Similarly, a script cannot register event
listeners on documents trom different servers. This prevents scripts from snoop-
ing on the user's input (such as the kevstrokes that conscirute a password entry)
to other pages. This restriction is known as the same-origin policy and is
described in more detail in the next section.

264 | Chapter 13: JavaScriptin Web Browsers

Page 148 of 244



Page 149 of 244

13.8.2 The Same-Origin Policy
The same-origin policy is a sweeping security restriction on what web content Java-
Seript code can interact with. Ir rypically comes into play when a web page uses mul-
tiple frames, includes <iframe> tags, or opens other browser windows. In this case,
the same-origin policy governs the interactions of JavaScript code in one windowor
frame with other windows and frames. Specifically, a secript can read only the proper-
ties of windows and documents that have the same origin as the document chat con-
tains the script (see Section 14.8 to learn how to use JavaScript with multiple
windows and frames).

The same-origin policy also comes up whenscripting HTTP with the XMLHttpRequest
object. This object allows client-side JavaScript code to make arbitrary HTTP requests
bur only to the web server from which che containing document was loaded (sec
Chapter 20 for more on the XMLHttpRequest object).

The origin of a document is defined as the protocol, host, and port of the URL from
which the document was loaded. Documents loaded from different web servers have

different origins. Documents loaded through different ports of the same host have
different origins. And a document loaded with the http: protocol has a different ori-
gin than one loaded with the https: protocol, even if they come from che same web
Server,

It is important co understand that the origin of the script itself is not relevance co the
same-origin policy: what matters is the origin of the document in which the seript is
embedded. Suppose, for example, that a script from domain A is included (using the
arc property of the <seript> tag) in a web page in domain B. That serpre has full
access to the content of the document that contains it, If the seripr opens a new win-
dow and loads a second document from domain B, the seript also has full access bo
the content of that second document. But if the seript opens a third window and
loads a document from domain C {or even from domain A) into it, the same-origin
policy comes into effect and prevencs the script from accessing this document,

The same-origin policy does not actually apply to all properties of all objects in a win-
dow from a different origin, Buc ic does apply to many of them, and, in particular, it
applies to practically all the properties of the Document abject (see Chapter 15). Fur-
thermore, different browser vendors implement this security policy somewhat ditter-
ently. (For example, Firefox 1.0 allows a script to call history. back() on different-
origin windows, bur IE 6 does not.) For all intents and purposes, therefore, you
should consider any window that contains a document from another server ta be off-
limits to your scripts. If your script opened the window, your script can clase it, butit
cannor “look inside” the window in any way.

The sa me-Origin policy if TMCESSaTy bo Prevent scripts from stealing proprietary infer-
mation. Withour this restriction, a malicious seript (loaded through a firewall into a
browser on a secure corporate intranet) might open an empey window, hoping to

JavaScript Security | 265

Page 149 of 244

pi
aa
a
ai
a 



Page 150 of 244

ick the user into using thar window ro browse files on the intranet. The malicious
scripe would then read the content of thar windowand send ir back to its own server,
The same-origin policy prevents this kind of behavior.

In some circumstances, the same-origin policy is too restrictive. It poses particular
problems for large web sites that use more than one server. For example, a seript
from home.cxample.com might legitimately want to read propertics of a document
loaded from developer.example.com, or scripts from orders.example.com might need
to read properties fram documents on catalog.exarmnple.com, To support large web
sites of this sort, you can use the demain property of the Document object. By default,
the domain property contains the hostname of the server from which the document
was loaded. You can set this property, but only to a string that is a valid domain suf-
fix of itself, Thus, if demain is originally the string “home.example.com”, you can set
it to the string “example.com”, but nat to “home.example” or “ample.cam”. Fur-
thermore, the domain value must have at least ome dot in it; you cannot set it to
“com” or any other cop-lewel domain.

lf ovo windows (or frames}! contain scripts char set domain to the same value, the same-
origin policy is relaxed for chese nwo windows, and each window can interact with che
other. For example, cooperating scripts in documents loaded from orders.example.com
and cafalog.example.com might set their document.domain properties to “example.com”,
thereby making the documents appear to have the same origin and enabling each doc-
ument to read propertics of the ocher.

13.8.3 Scripting Plug-ins and ActiveX Controls
Although the core JavaScript language and the basic client-side object model lack the
filesystem and networking features that most malicious code requires, the situation is
net quite as simple as it appears. In many web browsers, JavaScript is used as a
“script engine” for other software component, such as Actives) controls in Interne
Explorer and plug-ins in other browsers, This exposes important and powerful fea-
tures to client-side scripts. You'll see examples in Chapter 20, where an ActiveX con-
trol is used for scripting HTTP, and in Chapters 19 and 22, where the Java and Flash
plug-ins are wsed for persistence and advanced client-side graphics.

There are security implications to being able co script Activex controls and plug-ins.
Java applers, for example, have access to low-level nerworking capabilities. The Java
security “sandbox” prevents applets from communicating with any server other than
the one from which they were loaded, so this does not open a security hole. But it
exposes the basic problem: if plug-ins are scriptable, you must trust not just the web
browser's security archiceccure, but also the plug-in's security architecture. In prac-
nice, the Java and Flash plug-ins seem to have robust securicy and doa nor appear to
introduce security issues into client-side JavaScript. ActiveX scripting has had a more
checkered past, however. The IE browser has access to a variety of scriptable Activex
controls that are part of the Windows operating system, amd in the past some of

266 | Chapter 13: JavaScript in Web Browsers

Page 150 of 244



Page 151 of 244

these scriptable controls have included exploitable secuntty holes. Ar the time of chis
writing, however, these problems appear to have been resolved.

13.8.4 Cross-Site Scripting
Cross-site scripting, or XSS, is a term for a category of security issues in which an
attacker injects HTML tags or scripts into a target web site. Defending against XS5
attacks is cypically the job of server-side web developers. However, clicnt-side Java-
Seript programmers must also be aware of, and defend against, cross-site scripting.

Acweb page is walnerable to cross-site scripring if it dynamically generates document
content and bases that content on user-submitted data without first “sanitizing” that
data by removing any embedded HTML tags fromit. As a trivial example, consider
the following web page that uses JavaScript to greet the user by name:

¢scripts

var name = decedeuR Component (window. location. search. substring(@)) || “":
document.write{"Hello " + mame};
<fgcript>

This ovo-line script uses window.location.seatch co obtain the portion of its own
URL that begins with ?. It uses document .write( ) to add dynamically generated con-
tent to the document. This page is intended to be invaked with a UBL like this:

http: ‘few. example. compreet.htal Pranesfavid

When usedlike this, it displays the texe “Hello David”. But consider what happens
when itis invoked with chis URL:

http: ‘www. example. com'prest.hinl iname-Eplscripthybalert (*David' }X3C/scriptbse

With this URL, the seripe dynamically generates another script (23C amd ¥3E are
codes for angle brackets)! In this case, che injected! script simply displays a dialog
box, which is relatively benign. But consider this case:

http:fsitedgreet tml inamessyCscript src=siteB/ewil. jse3Fhacsscripteye

Cross-site scripting attacks are so called because more than one sine is invalved, Site
B (or even site C) includes a specially crafted link (like the one above) to site A that
injects a seript from site B. The seript evilis is hosted by the evil site B, but it is now
embedded in site A, and can do absolutely anything it wants with site A's concent.It
might deface the page or cause it to malfunction (such as by ininaring one of the
denial-of-service attacks described in the next section), This would be bad for site A’s

customer relations. More dangerously, the malicious script can read cookies stored
by site A (perhaps account numbers or other personally identifying information) and
send that data back to site A. The injected scmpet can even crack the user's kevscrokes
and send that data back to site B.

In general, the way to prevent RSS amacks is to remove HTML tags from any
untrusted data before using it to create dynamic document content. You can fix the

JavaScript Security | 267

Page 151 of 244

=i.|
5=]
7
a-7
7 



Page 152 of 244

greetitm! fle shown earlier by adding chis line of code to remove the angle brackets
around <script> tags.

name = nané.replace(fesg, “klt;“l.ereplacelss.g, “bets "4s

Cross-site scripting enables a pernicious vulnerabilicy whose roots go deep into the
architecture of the Web, It is worth understanding this vulnerability in depth, but
further discussion is beyond the scope of this book. There are many online resources
ro help you defend againar cross-site scripting. One imporrant primary source is the
original CERT Advisery about this problem: fttp://www.cert.org/advisories(CA-2000-
02 htnl,

13.8.5 Denial-of-Service Attacks

The same-origin policy and other security restrictions described here do a good job
of preventing malicious code from damaging your data or compromising vour pri-
vacy. They do nor protect against brute-force demial-of-service arracks, however, If
you visit a malicious web site with JavaSeripe enabled, thar site can tie up your
browser with an infinite loop of alert(} dialog boxes, forcing you to use, for exam-
ple, the Unix kill command or the Windows Task Manager to shut your browser
down.

A malicious site can also ateempe oo tie wp your CPU with an infinite loop or mean-
ingless computation. Some browsers (such as Firefox) detect long-running scripts
and give the user the option to step them. This defends against accidental infinite
loops, but malicious code can use techniques such as the window. setInterval ( ) com-
mand to avoid being shut down. A similar attack ties up your system by allocating
lors of memory,

There is oo general way that web browsers can prevent this kind of ham-handed
attack. In practice, this is nora common problem on the Web since no one returns to
a site that engages in this kind of seripting abuse!

13.9 Other Web-Related JavaScript Embeddings
In addition to client-side JavaScript, the JavaScript language has other web-related
embeddings. This book does not cover these other embeddings, but you should
know enough about them so chat you don't confuse them with client-side JavaScripe:

User scripting
Liser scripting is an innewanion in which user-defined scripts are applied ro
HTML documents before they are rendered by the browser. Rather than being
silely under the control of the page author, web pages can now be controlled by
the page visitor as well. The best-known example of user scripting is enabled by
the Greasemonkey extension to the Firefox web browser (litteereasemonkey,
mozdevorg), The programming environment exposed to user seriprs is similar

268 | Chapter 13: JavaScript in Web Browsers

Page 152 of 244



Page 153 of 244

to, but nor the same as, the client-side programming environment. This book
will not teach you how to write Greasemonkeyuser scripts, but learning client-
side JavaScript programming can be considered a prerequisite to learning user
scripting.

4VG

SVG (Sealable Veetor Graphics) is an XML-based graphics format that permits
embedded Javascript scnpts. Client-side JavaScript can script the HTML docu-
ment within which it is embedded, and Javascript code embedded in an $Vfile
can script the XML elemenes of that document. The material in Chapters 15 and
L? is relevant to SVG scripting but is not sufficient: the DOM for SVG differs sub-
stantially from the HTML DOM.

The VG specification is at hitp:/fwww.w3.org/TRISVG,. Appendix B of this spec-
ification defines the SVG DOM. Chapter 2) uses client-side JavaScript embed-
ded in an HTML document to create an SVG) document that is embedded in an

HTML document, Since the JavaSeripe code is outside che SVG document, this is
an example of regularclient-side JavaScript rather than SVG embedding of Java-
Scrip.

AUL

XUL is an XML-based grammar for describing user interfaces. The GUI ot the
Firefox web browser is defined with XUL documents. Like SVG, the XUL gram-
mar allows JavaScript scripts. As with SVG, the matenal in Chapters 15 and 17 is
relevant to SUL programming. However, javascript code in a MUL document
has access to different objects and APIs, and is subject to a different security
model than client-side JavaScript code. Learn more about XUL at hittpswww.
mozilla.org/projects‘xel and hitpsiwwwxelplanet.com.

=|
5=|

al-%
a 

ActianScnpe
ActionScript is a JavaScripe-like language (descended from the same ECMA-
Serpe specitication but evelved in an object-oriented direction) used in Flash
mowies, Mast of the core JavaScript material in Part | of this book is relevant ro
ActionScript programming. Flash is moat XML- or HTML-based, amd the APIs
exposed by Flash are unrelated to those discussed in this book. This book
includes examples of how client-side JavaScript can script Flash movies in Chap-
ters 1%, 22, and 23. These examples necessanly include small snippers of Action-
Script code, but the focus is on the use of regular client-side JavaScript ta
interact with that code.

Other Web-Related JavaScriptEmbeddings | 269

Page 153 of 244



Page 154 of 244

=

Web Programming, Javascripu

O’REILLY*

JavaScript: The Definitive Guide
This Fifth Edition is completely revised and expanded to cover JavaScript as it is wsed

in today's Web 2.0 applications. This book is both an examphe-driven programmer's
guide and a keep-on-your-desk reference, with new chapters that explain ewerything
you need to know to get the most out of JavaScript, inchocding:

 

 
* Scripted HTTP anc Ajax * Namespaces in javaScripi—esscntial when

* XML processing writing complex programs
© Classes, closures, persistence, Flash, and® Client-side graphics using the <canvas> tag

JavaScript embedded in Java applications

Part | explains the core JavaScript language in detail. If you are new to JawaSoript, at will teach you
the language. If you are already a JavaScript programmer, Part | will sharpen your skills and deepen
your understanding of the language.

Part I explains the scripting environment provided by web browsers, with a focus on DOM scripting
with unobtrusive JavaScript. The broad and deep coverage of client-sicle JavaScript is Dhustrated) with

many sophisticated examples that demonstrate how to:

* Generate a table of contents for an HTML. * Define keyboard shortcuts for web
document applications

* Display DHTML animations ® Create Ajax-enalted tool tips

* Automate form validation * Use XPath ancl XSLT on XML documents

* Draw dynamic pic charts heoxcherc! withAjax
* Make HTML clements draggable * And much more

Part U1 is a complete reference for core JavaScript. bt documents every class, object, consiroctcw,
method, function, property, and constant defined by JavaScript 1.5 and BCMASecript verskon 3.

Part [Vis a eeference for client-side JavaScript, covering legacy web browser APIs, the stanclard Level
2 DOMAPI, and emerging standards such as the XMLHttpRequest object and the <canvas> tag.

More than 40,000 JavaScript programmers around the world have made this their indispensable
reference book for building JavaScript applications.

“A must-have referencefor expertJavaScript programmers, ..well-organized ana detailed.”
=—rendan Bich, creator ofJavascript

www.oreilly.com

US $49.99 CAN $4499

18ON-10: 0-596-10199-6

ISQN-13: 978-0-596-10199-2 Safari includes4999
—__—— FREE 45-1A000) sessrereas Deine cate

Page 154 of 244



APPENDIX B 

Page 155 of 244

APPENDIX B

Page 155 of 244



Page 156 of 244

an5 TadceyGRTAYS.en
and ThomasLindblad

CAMBRIDGE

Page 156 of 244

 



Page 157 of 244

JavaTech

An Introduction to Scientific and Technical

Computing with Java

Clark S. Lindsey, JohnnyS.Tolliver
and ThomasLindblad

== CAMBRIDGE
“cu” UNIVERSITY PRESS

  

 
Page 157 of 244



Page 158 of 244

 

Page 158 of 244

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S40 Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Publisbed in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information onthis title: www.cambridge.org/978052 1821131

©C.8.Lindsey,J. S. Tolliver and T. Lindblad 2005

This publicationis in copyright. Subjectto statutory exception
and to the provisions ofrelevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdomat the University Press, Cambridge

A catalog recordfor this publicationis available from the British Library

Library ofCongress Cataloging in Publication data

ISBN-13 978-0-521-82113-1 hardback
ISBN-10 0-521-82113-4 hardback

 

Cambridge University Press has no responsibility for the persistence or accuracy of URLsfor
external or third-party internet websites referred to in this publication, and does not guarantee
that any content on such websites is, or will remain, accurate or appropriate.

 
—

Content:

Preface

Acknowledge

PartI Int

1 Introducti

1.1 Whatis

1.2 History
1.3 Version:

14 Java—o

1.5 Java fea

1.6 Real-wc

1.7 The Jav:

1.8 Getting

19 Change:
1,10 Web Co

Referen

Resource

2 Language
2.1 Introduc

2.2 Langua;
2.3. A simpl
2.4 Comme

2.5 Data tyt
2.6 Strings
2.7 Express
2.8 Operato
2.9 Stateme

2.10 Casts ar

2.11 Floating
2.12 Progran
2.13 Basic m

2.14 Web Co
Resource



Page 159 of 244

y with the first
g to the bins.
ie histograms,
rth. Functions

ping to deter-
‘0 instances of

it is, and you
jetails in your

rather program,
xtract just that
sulation aspect

7ith procedural

onal introduc-

‘ences between

mory manage-

ad engineering
es and demon-

ial on OOP in

ing techniques

n Introduction

th edn, Sun

1 Guide, March
raining/

Chapter 4

More about objects in Java

4.1 Introduction

Chapter3 introduced the basic concepts of classes and objects in Java such as the
class definition, instantiation, and object reference. We emphasizedthe analogy of
classes with data types, but the class approach allowsfor morethanjust defining a
new data type. Java allowsyouto build upon,orinherit from,a class to create anew
child class, or subclass, with additional capabilities. In this chapter we introduce
class inheritance in Java. Inheritance involves the overriding (not overloading)
of constructors and methods, abstract classes and interfaces, polymorphism,the
object class, and the casting of object references to sub- or superclass types.
We discuss each of these concepts in detail.

This chapter also includes additional discussion of arrays and how to use
ther for vectors and matrices in mathematical operations. The chapter ends with
a couple of examplesofclasses for technical applications. We create an improved
complex. numberclass and also an enhanced Histogram class.

4.2 Class inheritance

A key feature of object-oriented programming concerns the ability of a class
to inherit from an existing class, retaining all the features of the base class but
adding new features, thus creating a subclass with increased capabilities. Here
class B inherits from class A, also known as “extending” class A (thus the Java
keyword extends):

 
Page 159 of 244



Page 160 of 244

 
92 More aboutobjects in Java

public classA {
int 1 = 9;

void doSomething () {
a abe

Class A }

7 class Bextends A {
int j = 0;

Class B void doSomethingMore () {
3 = 10;
i += 3;

 
Thediagram ontheleft indicates the class hierarchy. By convention the superclass
is on top, subclasses are below, and the arrowpoints upwards from the subclass
to the superclass The subclass 8 hasall the data and methods fromclass A plus
the new data and methods added by B. We canthink of class B as having the data
and methods equivalent to an imaginaryclass(let’s call it “BA” ) shown here:

class BA {
int i = 0;

0;int j =

void doSomething () f{
1 = 5;

}
void doSomethingMore () {

j = 10;

io+= 4;

By using inheritance weget the features of the imaginary class BA without having
to duplicate the code fromthe base class A. We can now create instances ofclass
B and access methodsanddata in bothclass B and classA:

Bb = new B (}; // Create an instance of class B
b.doSomething ();

b.doSomethingMore (); // And a method defined in class B

// Access a method defined in class A

Anotherclass can, in turn, inherit from class B, as shown here with class C:

Page 160 of 244

Cla:

Cla:

Clas

Here the doEve

from class A an

of class C canu

and B.

Inheritance ¢

shortly that the
the ability to re

(The terms sup
are used interck

Class inheri

direct superclas
a chaining fash
does not permi
one direct pare
Java to create a

Clas

Q

There are time

tionally omitte
multipleclass i
later, do perm:
Class inheritan



Page 161 of 244

4.2 Class inheritance 93

class C extends B { i
Class A ;int k;

void doEvenMore () {

Class B doSomething ();
doSomethingMore ();

ksit+j:
}

Class C

Here the doEvenMore () methodinternally calls the doSomething() method
from class A and the doSomethingMore() method from class B. An instance
of class C canuse the class c data and methods and also those of both classes A

 

and B.

superclass Inheritance does more than just reduce the size of the class definitions. We see
e subclass shortly that the inheritance mechanism offers several new capabilities including
ass A plus the ability to redefine, or override, a method in the superclass with a new one.
ig the data (The terms superclass, base class, and parent class all mean the same thing and
vn here: are used interchangeably, as are the terms subclass and child class.)

Class inheritance in Javais strictly linear. A subclass may extend only one
direct superclass, though all of that parent’s superclasses get inherited as well in
a chaining fashion, as shown in the class C example above. Unlike C+-, Java
does not permit multiple class inheritance, which is inheriting from more than
one direct parent class. Thatis, given two classes X and Y, it is not possible in
Java to create a class Z that extends both x andY.

x C ass Y¥

. NG
out having Class
ces of class

Clas 
_i A There are times that multiple class inheritance could be useful, but it was inten-
eae tionally omitted by the Java designers because correctly implementing and using

multiple class inheritanceis fraught withdifficulty. Java interfaces, to be discussed
later, do permit multiple inheritance, providing many ofthe benefits of multiple

‘lass C: class inheritance without the drawbacks.

 
Page 161 of 244



Page 162 of 244

 
94

Page 162 of 244

More about objects in Java

4.2.1 Overriding

A commonsituation is when a class is needed that provides most of the func-

tionality of a potential superclass except one of the superclass methods doesn’t
do quite the right thing. Adding a new method with a different name in a sub-
class doesn’t really solve the problem because the original superclass method
remains accessible to usersofthe subclass, thereby resulting in a source of errors
should a user inadvertently use the original name instead of the new name. What
is really needed is a way to change the behavior of that one superclass method
without having to rewrite the superclass. Often we may not even have the super-
class source code, making rewriting it impossible. Even if we do have the source
code, rewriting it would be the wrong approach. That method in the superclass
is assumed to be completely appropriate for the superclass and should not be
changed. We wishto change the behaviorof the method only for instances of our
subclass, retaining the existing behaviorfor instances of the superclass and other
subclasses that expect the original behavior of the method.

Java provides just this capability in a technique known as overriding. Over-

riding permits a subclass to provide a new version of a method already defined in
a superclass. Instances of the original superclass (and other subclasses) see the
original method. Instances ofthe overriding subclass see the new(overridden)
method.In fact, overriding is often the whole reason to create a subclass.

Overriding occurs when a subclass method exactly matchesthe signature(the
method name,return type, and parameter types) of a method in a superclass.If
the return type is different, a compile-time error occurs. If the parameterlist is
different, then overloading occurs (already discussed in Chapter3), not overrid-
ing. In the next section we discuss the differences, which are very important, but
first we give an example of overriding. In the code below, we see that subclass
Child overrides the method doSomething() inclass Parent:

public class Parent {
int parenctuint = 0;

void doSomething (int i) f{
parent_int = i;

class Child extends Parent {
int child_int = 0;

void doSomething (int i) {
child_int = 10;

parent_int = 2 4 1;
us

When +
dosSome

in Class

Parel

Chii«
c.do:

e.do:

On the

instanci

Java au

referen:

The

Pare

p.do

This c:

type P.
Chilé

able p
class 0

superc

type P
is the

referer

Thi

the bas

throug
in the ,

The

Oriente

Cc, and



Page 163 of 244

4.2 Class inheritance 95

When we have an instance of class Child, an invocation of the method
doSomething() results in a call to the overridden doSomething() code

f the func- ; :
; in class Child rather than Parent:yds doesn’t

e in a sub-

iss method “4 os

se of errors Parent p = new Parent (); // Create instance of class Parent
ame. What Child c = new Child (); // Create instance of class Child
iss method c.doSomething (5); // The method in class Child is invoked.
: the super- p.doSomething (3); // The method in class Parent is invoked.
the source

superclass ; .
i tb On the other hand, if we call the doSomething () method on a Parentmild not be , a . .f instance,then the original doSomething () code from class Parent is invoked.neces of our ; : z :Java automatically invokes the correct method based on the type of the object

s and other reference.

. The real power ofoverriding, however, is illustrated by this code:
ling. Over-
’ defined in

xes) see the | ; ; ,. | Parent p = new Child (); // Create an instance of Child
overridden) /f but use a Parent type reference.
lass.

mature (the p.doSomething (); // Though the Parent type reference
perclass.If. // is used, the Child class’s doSomething()
neter list is /f is executed.
10t overrid-

!
dortant, but
iat subclass . . :

| This code has created an instance of class Child but declared it to be of
type Parent. Doingsois legal when Child is a subclass of Parent,since
Childhas all the methods and data of type Parent. Even though the vari-

! able p is declared to be the superclass type, it actually references the sub-
class object. So the subclass method is executed rather than the method in the
superclass. This happens because the instance p really is of type Child, not
type Parent. The actual type of the object referred to by an object reference

i is the type that it is “born as,” not the. type of variable that holds the object
reference.

: This feature is very useful when, for example, the elements of an array of
the base class type contain referencesto instances ofvarious subclasses. Looping
throughthe array and calling a methodthat is overridden will result in the method
in the subclass being called rather than the method in the base class.

The following codeillustrates this so-called polymorphic feature of object-
oriented languages. We begin with a superclass named A and three subclasses B,
¢, and D,all of whichoverride the doSomething( ) method fromA (classes C

 
Page 163 of 244



Page 164 of 244

 
96

Page 164 of 244

More about objects in Java

and D could be direct subclasses ofA or they could be indirect subclasses ofA by
subclassing B).

A[] a = new A[3]; // Class A type array with three elements

alQ] = new B (); // Create an instance of class B but use

// an A reference since the array is
// type A.

afl] = new C (); // Ditto for Cc
a[2) = new D (); // And D

for (int i=0; i < 3; i++) {// Call GoSomething() for each
// element of the A array.

a{i].doSomething (); // Though the A type reference is used,
// the overriding doSomething(} method
// of the actual referenced object is
// invoked.

It is important to understand that even thoughthe array type is that of the super-
class a, the code used for the doSomething() methodsis that of the actual

object that is referenced in each array element, not the code for the method in the
A base class.

4.2.2 Overriding versus overloading

It is important to note how overriding differs from overloading. The latter refers
to reusing the same method namebut with a different parameter list and was

explained in Chapter 3. Briefly, if a class contains two (or more) methods of the
same name but with different parameterlists, all those methods are said to be
overloaded. The compiler automatically decides which methodto call based on
the parameters used when the method is invoked. What was not mentioned in
Chapter 3 is that overloading can occur across inherited classes. If a subclass
reuses a method name from a parent class but changes the parameterlist, then
the methodisstill overloaded, just as if both methods appeared in the same class.

(Note that via inheritance both methods really do appear in the subclass; the
fact that the source code appears in two different places makes no difference.) In
overloading, the new methoddoesnot replace the superclass method;itjust reuses
the name with a different parameter list. Calling the method with the original
parameterlist invokesthe original method; calling it with the new parameterlist
invokes the new method.

Confusing overriding and overloading is a vexing error, both for novices and
experienced Java developers. If a subclass attempts to override a method in a

 
superclas
overloade

public
int
voi

Here v

dosome

changec
version

denit. |
instance

Pare

Chil

p.de

Theca

isan i

overlo

Even1

of the
source

Th

super
corre:



Page 165 of 244

ses ofA by

lements

wi

each

is used,
method

act is

‘the super-
the actual

thod in the

atter refers

st and was
iods of the

said to be

ll based on

mtioned in

a subclass

r list, then
sameclass.

bclass; the

erence.) In

Just reuses

he original
‘ameterlist

ovices and

iethod in a

 

 

4.2 Class inheritance

superclass but doesn’t use the exact same parameterlist, then the method is really
overloaded, not overridden. Weillustrate this with the following example:

public class Parent {
int i = 0;

void doSomething (int k) {(
i= k;

}

class Child extends Parent {
void doSomething (long k) {

i=2* k;

Here we created class Child with the intention of overriding the
doSomething (int k) method in class Parent but we mistakenly
changed the int parameter to a Long parameter as shown. Then the Child
version of doSomething() has overloaded the Parent version, not overrid-
den it, Look what happens whenwe attemptto call doSomething() from an
instance of Child:

Parent p = new Parent ()7 // Create a Parnet instance.
Child c = new Child (); // Create a Child instance.
p.doSomething (5); /f/ The method in Parent is invoked,

// as expected.

c.doSomething (3); // The method in Parent, not Child, is
// invoked, probably not as expected.

The calltoc . doSomething (3) passes an int parameter, nota long (a literal 3
is an int; to make ita Long, an 1 or L must be appended, asin 3L). Therefore the
overloaded methodthat takes an intis invoked, not the Child version expected.
Even though we have explicitly asked for c.doSomething({), the int version
of the method named doSomething () gets invoked — again, the fact that the
source code happensto appearin the superclass makes no difference.

Thiserroris often difficult to uncover.It occurs most often when an overridden
superclass method is changed while forgetting to make the same change in the
corresponding overriding subclass methodsat the same time.

Page 165 of 244

97



Page 166 of 244

 
98 More about objects in Java

4.2.3. The @override annotation in J2SE 5.0 4.2.4 TI

Oneof the annotationsavailable with the addition of the metadata facility in Java Perhaps yo

when youreally wantto override. The @Override annotation tells the compiler rather than
Version 5.0 (see Chapter1) greatly reduces the chance ofaccidentally overloading However,)

that you intend to override a method from a superclass. If you don’t get the thing that 1
parameterlist quite right so that you’re really overloading the method name,the subclass.
compiler emits a compile-time error. This annotation is used as follows: When i

superclass
data witht

public class Parent { doSomett

int i = 0; using sup:
void doSomething (int k) { }

i =k: |

} public
} int

void

class Child extends Parent f{ FL

@override }
void doSomething (long k) { t }

1° =12. “ak;

} class ¢€

} } int
void

j

The metadata facility in Java 5.0 supports simple and complex annotationtypes, | !
whichare closely related to Java interfaces (discussed in Section 4.5). Some anno- s
tation types define member methods and membervariables and require parameters 3
whenused. However, the @Override annotationis just a marker interface (see }
Section 4.5.3). It has no members, and thus accepts no parameters when used, ) }
as shown above. It must appear on a line by itself and indicates that the method
nameon the nextline should override a method from a superclass. If the method
signature on the nextline isn’t really an overriding signature, then the compiler You cannc
complains as follows: deep as in

j = s1

Parent.java:10: method does nat override a method from its
superclass

@override This usag
7 overridde)

—_- Notett
with thes.

By using @Override eachtime you intend to override a method from a super- useful anc
class, you are safe from accidentally overloading instead ofoverriding. recommel

Page 166 of 244



Page 167 of 244

ty in Java
erloading

compiler
*t get the
name, the
s:

ition types,
rome anno-

parameters
erface (see
when used,

the method

the method

1e compiler

rom its

om a super-

ag.

  
4.2 Class inheritance

4.2.4 The this and super reference operators

Perhaps you needto create a subclass that overrides a method in the base class.
However, you wantto take advantage of code already in the overridden method
rather than rewriting it in the overriding method. That is, you want to do every-
thing that the original method did but add someextra functionality to it for the
subclass.

Whenina subclass, the special reference variable super alwaysrefers to the
superclass object. Therefore, you can obtain access to overridden methods and
data with the superreference.In the following code class Child overrides the
doSomething() methodin class Parent but calls the overridden method by
using super .doSomething():

public class Parent {
int i = 0;

~void doSomething
i =5;

class Child extends Parent {
int 3=0;

yoid doSomething () {
j = 10;

// Call the overridden method
super .doSomething {};

j t= i; // then do something more

You cannot cascade super references to access methods more than one class
deep as in

j= super. super .doSomething (); // RBrror!! Not a valid use of
//super

This usage would seem logical but it is not allowed. You can only access the
overridden methodin the immediate superclass with the super reference.

Note that you can also “override” data fields by declaring a field in a subclass
with the same nameas used fora field in its superclass. This technique is seldom
useful andis very likely to be confusing to anyone using your code.Its use is not
recommended.

Page 167 of 244

99

 



Page 168 of 244

 
100

Page 168 of 244

More about objects in Java

A related concept is known as shadowing in whicha local variable has the
same name as a membervariable. For example,

public class Shadow {
int x = 1;

void someMethod () {
ant x = 2;

}
I

Here the x inside someMethod () shadows the membervariable x in the class

definition. The local value 2 is used inside someMethod() while the member

variable value 1 is used elsewhere. Suchusageis often a mistake, and can certainly
lead to hard-to-find bugs. This techniqueis not recommended. Infact, the variable
naming conventions explained in Chapter 5 are designed to prevent accidental
shadowing of membervariables.

Wecan also explicitly reference instance variables in the current object with
the this reference. The code belowillustrates a commontechniqueto distinguish

parametervariables from instanceor class variables:

public class A {
int x;

void doSomething (int x) {
// x holds the value passed in the parameter list.
// To access the instance variable x we must

// specify it with 'this'.
this.x = x;

Here the local parameter variable shadowsthe instance variable with the same
name. However, the this reference in this .x explicitly indicates that the left-
hand side of the equation refers to the instance variable x instead ofthe local
variable x from the parameterlist.

4.3 More about constructors

In Chapter 3 we discussed the basics of constructors, including the overloading
of constructors. Here we discuss some additional aspects of constructors.

4.3.1 this()

In addition to the this reference,there is also a special method named this ()
which invokes constructors from within other constructors. When a class holds

overloaded c

basic initializ

tasks. Rather

loaded consti

the initializat

For examy

class Tes
int x,
int i,

Thefirst con

(the other tv
constructor r

include redu

which execu

The parar
constructor(

types). In thi
int argume!
in a construc

4.3.2 sut

Thereis anot

asubclass,it

(we discuss|

tiple overloa
structor gets

with super
For exam

Testi has



Page 169 of 244

able has the

- in the class

the member

2an certainly
_the variable
it accidental

object with
) distinguish

th the same

hatthe left-

of the local

owerloading
‘tors.

ied this ()
class holds

 

4.3 More about constructors

overloaded constructors, typically they include one constructor that carries out
basic initialization tasks and then each of the other constructors does optional

tasks. Rather than repeating the initialization code in each constructor, an over-
loaded constructor can invoke this () to call another constructor to carry out
the initialization tasks.

For example, the following code shows a class with two constructors:

class Test {

int x,y;
int i,k;

Test (int a, int b) {
x = a;

y=;

Test (int a, int b, int c, int d) {
this (a,b);// Must be in first line
L=o¢;
k = d;

Thefirst constructor explicitly initializes the values of two of the data variables
(the other two variables receive the default 0 value for integers). The second
constructor needsto initialize the same two variables plus two more. Rather than

include redundant code, the second constructor first invokes this (a, b),

which executes the first constructor, and then initializes the other two variables.

The parameterlist in the invocation of this () must match that of the desired
constructor (every constructor must have a unique parameterlist in number and
types). In this case, this (a, b) matchesthat of the first constructor with two
int arguments. The invocation of this () mustbethefirst executable statement
in a constructor and cannot be used in a regular method.

4.3.2 super()

There is another special method named super(). When wecreate an instance of
asubclass,its constructorplus a constructorin eachofits superclassesare invoked
(we discuss below the invocation sequenceofthe constructors). If there are mul-
tiple overloaded constructors somewhere in the chain, we might care which con-
structor gets used. We choose which overloaded superclass constructor we want
with super ().

For example,in the following code, class Test2 extends class Test1, class
Testi has a one-argument constructor and a two-argument constructor while

Page 169 of 244



Page 170 of 244

 
102

Page 170 of 244

More about objects in Java

the constructor in class Test2 takes three parameters. Which constructor in
the superclass should be invoked? It is unwise to leave it to the compiler to
“suess.” (Actually, the compiler does not guess;it follows specific rules, which
we discuss later.) Let’s suppose that our design requires that the two-argument
constructor in Testbe called. Therefore, the Test 2 constructor invokes the
second constructor in class Test1 by using super(a, b). Had we wanted the
one-argument constructor, we would use super (a) or super (b).

class Testl {
int i;

int Jj;

Testl(int i)

{this.i = i;}

Testl (int i, int j) ¢{
this.i = 1:

this.j = Jj;

class Test2 extends Testl {
float x;

Test2 (int a, int b, float c) ft

super (a, b); // Must be first statement
x = Cj

As with this (), the parameterlist identifies which of the overloaded construc-
tors in the superclass to invoke. And as with this (), the super () invocation
must occut as the first statement of the constructor and cannot appear in regular
methods.

Do not confuse the this and super references with the this() and
super () constructor operators. The this and super references are used to
gain access to data and methodsin a class and superclass, respectively, while the
this() and super () constructor operators indicate which constructors in the
class and superclass to invoke.

4.3.3 Construction sequence

When youinstantiate a subclass, the object construction begins with an invo-
cation of the constructor in the topmost base class and initializes downward

 
through the
constructor.

multiple co
is that, unle
zero-argum

Let’s beg
structors. Ir

generates a
the case of :
constructors

explicitly ir
argument cc

provided in
“free” const

If the sur

does not ge

utilize supe
there is no z

must emplo
constructors

If the sub

one ofthe st
constructor!

sequence of
to which coi

The exai

invoked for
constructors

public c

publi:

if

/f

Sy:
Tes

Sys
tes



Page 171 of 244

nstructor in

compiler to
cules, which

ro-argument
invokes the

> wanted the

).

ed construc-

) invocation

ar in regular

his() and
are used to

ly, while the
uctors in the

rith an invo-

s downward

4.3 More about constructors

through the constructors in each subclass until it reaches the final subclass
constructor. The question then arises: if one or more of the superclasses have
multiple constructors, which constructor does the JVM invoke? The answer
is that, unless told otherwise with super (), the JVM will always choose the
zero-argument constructor.

Let’s begin with the simplest case of a superclass definition without any con-
structors. In this case, as we learned in Chapter 3, the compiler automatically
generates a zero-argument constructor that does nothing. Almost as simple is
the case of a superclass with an explicit zero-argument constructor and noother
constructors. In both of these cases, the subclass constructor does not need to

explicitly invoke super () because the JVM automatically invokes the zero-
argument constructor in the superclass — either the zero-argument constructor
provided in the superclass source codeif there is one, or the default do-nothing
“free” constructor if no explicit constructor is provided.

If the superclass contains one or more explicit constructors, then the compiler
does not generate a free zero-argument constructor. A subclass that does not
utilize super () to chooseoneofthe existing constructors fails to compile since
there is no zero-argumentsuperclass constructor to use. Therefore, the subclass
must employ a super () with a parameter list matching one of the superclass
constructors.

If the subclass also holds several constructors, each must invoke a super () to

one of the superclass constructors (or perhaps use this () to refer to a subclass
constructor that does use super() ). The compiler and JVM figure out the proper
sequence of constructorsto call as the subclass instance is being built according
to which constructor is used with the new operator.

The example code here shows two different sequences of constructors
invoked for the case of a base class and two subclasses, ail with overloaded
constructors:

public class ConstructApp3 {
public static void main (String{] args) ¢

// Create two instances of Test2

// using two different constructors,

System.cut.printin ("First test2 object");
Test2 test2 = new Test2 (1.2, 1.3);

System.out.println ("\nSecond test2 object");
testZ = new Test2 (true, 1.2, 1.3);

Page 171 of 244

103

 



Page 172 of 244

 
104 More aboutobjects in Java

class Test { this
int i; this
double d; Syst
boolean flag; }

// No-arg constructor // Thre
Test () { Test2 (

d= 1.1; super

flag = true; flag
System.ocut.println ("In Test()"); Syste

} "T
}

/f One-arg constructor }
Test (int j) {

this ();

1 = 7;
‘ 5 F e output ofSystem.cut.println ("In Test(int j)"); Th P

 
} |

} }
First tes
In Test ()

/** Testi is a subclass of Test **/ In Test (i
class Testi extends Test { In Testl(

int k; In Test2 (
// One-arg constructor

Testl (boolean b) { Second te
super (3); In Test ()
flag = b; In Test (i
System.out.println ("In Testl(boolean b)"); In Testl({

} In Testi (
// Two-arg constructor In Test2(
Testl (boolean b, int j) {

this (b);

Pare This illustrat
System.out.println ("In Testl(boolean b, int j)"); of the Testz

}

}

4.4 Abst

/** Test2 is a subclass of Testl. **/
For some apy

class Test2 extends Testl { instantiate. h

| the base clas

contain enou

behavior has

base class.

double x,y;
// Two-arg constructor
Test2 (double x, double y) {

super (false);

Page 172 of 244



Page 173 of 244

4.4 Abstract methods and classes 105

this.x Ki

this.y = y:

System.out.printin ("In Test2 (double x, double y)");

// Three-arg constructor

Test2 (boolean b, double x, double y) {
super (b, 5);
flag = b;

System.out-.printin (
"In Test2 (boolean b, double x, double y)");

The output of ConstructApp3 goesas:

First test2 object
In Test ()

In Test(int j)
In Testi (boolean b)

In Test2(double x, double y)

Second test2 object
In Test ()

In Test(int j)
In Testi (boolean b)

In Testl {boolean b, int j)

In Test2(boolean 5, double x, double y)

Thisillustratesthe different sequenceofconstructors invoked according to which
"Vi of the Test2 constructors we choose.

4.4 Abstract methods and classes

For someapplications we might need a generic base class that we never actually
instantiate. Instead, we wantalways to use subclasses of that base class. Thatis,
the base class handles behavior that is commonto all the subclasses but does not
contain enough data or behaviorto be useful on its own. In a sense, the common
behavior has been “factored out” of the subclasses and moved to the common
base class.

 
Page 173 of 244



Page 174 of 244

 
106

Page 174 of 244

More about objects in Java

In the following standard example, we create a base class Shape, which
provides a method that calculates the area of some 2D shape:

public class Shape {
double getArea () {

return 0.0;

}

The Shapeclassitselfdoes almost nothing. Tobe useful, there must be subclasses
of Shape defined for each desired 2D shape, and each subclass should override
getArea () to perform the properarea calculation forthat particular shape. We
illustrate with two shapes — a rectangle anda circle.

public class Rectangle extends Shape {
doubie ht = 0.0;

double wd = 0.0;

public double getArea () {
return ht*wd;

}

public void setHeight (double ht) {
this. ht = ht;

}

public void setwidth (double wd) {
this.wd = wd;

public class Cirele extends Shape {
double r =0.0;

public double getArea () ¢
return Math.PI * r * ¥;

}

public void setRadius (double r) {
this.r = rj;

The subclasses Rectangle and Circle extend Shape and each overrides the
getArea() method. We could define similar subclasses for other shapes as well.
Each shape subclass requires a unique area calculation and returns a double
value. The default area calculation in the base class does essentially nothing but
it must be declared to return a double for the benefit of the subclass methods
that do return values. Since its signature requiresthat it return something, it was

define:

instant

called

The

types 1
differe

follow

to diffe

voic

This ir

that ca
means

the bas

The

and err

getAr

The ab

follow

uses its

Since t

can do

Ar
abstr

In fact,
will en

marker

and giv
In tt

declara

here:

publ
on



Page 175 of 244

oe, which

subclasses

Id override

‘shape. We

overrides the

iapes as well.
1s a double

y nothing but
lass methods

ething, it was

4.4 Abstract methods and classes

defined to return 0.0. In practice, since the superclass Shape should never be
instantiated, only the subclasses, then the superclass getArea (} will never be
called anyway.

The capability to reference instances of Rectangle and Circle as Shape
types uses the advantage of polymorphism(see Section 4.2.1) in whicha set of
different types of shapes can be treated as one commontype. For example, in the
following code, a Shape array passed in the parameter list contains references
to different types of subclass instances:

void double aMethod (Shape[] shapes) {
areaSum = 0.0;

for (int i=0; i < shapes.length; i++) {
areaSum += shapes[i].getArea ();

This method calculates the sum ofall the areas in the array with a simple loop
that calls the getArea() method for each instance. The polymorphic feature
meansthat the subclass-overriding version of getArea () executes, not that of
the base class.

The careful reader will have observed that the technique used above is messy
and error-prone. There is no way,for instance,to require that subclasses override
getArea ().And there is no way to ensure that the base class is neverinstantiated.
The above scheme works only if the subclasses and the users of the Shape class
follow the rules. Suppose someonedoesinstantiate a Shape base class and then
uses its getArea () methodto calculate pressure, as in the force per unit area.
Since the area is 0.0, the pressure will be infinite (or NaN). The Java language
can do muchbetter than that.

A much better way to create such a generic base class is to declare a method
abstract. This makesit explicit that the method is intended to be overridden.
In fact, all abstract methods must be overridden in some subclass or the compiler
will emit errors. No code body is provided for an abstract method.It is just a
marker for a method signature, including return type, that must be overridden
and given a concrete implementation in some subclass.

In the above case, we add the abstract modifier to the getArea() method
declaration in our Shape class and remove the spurious code body as shown
here:

public abstract class Shape {
abstract double getArea ();

Page 175 of 244

107

 



Page 176 of 244

 
108

Page 176 of 244

More aboutobjects in Java

Notethat if any methodis declared abstract, the class must be declaredabstract as
well or the compiler will give an error message. The compilerwill not permit an
abstract class to be instantiated. An abstract class need not include only abstract
methods.It can also include concrete methods as well, in case there is common

behaviorthat should apply to all subclasses.In fact, a class marked abstractis
not required to include anyabstract methods.In thatcase, the abstract modifier
simply prevents the class from being instantiated on its own. Abstractclasses,
unlike interfaces (see next section), can also declare instance variables. As an
example, our abstract Shapeclass might declare an instance variable name:

public abstract class Shape {
String name;
abstract double getArea ()};

String getName () {
return name;

Here each subclass inherits the name instancevariable. Each subclassalso inherits
the concrete method getName() that returns the value of the name instance
variable.

When an abstract class does declare an abstract method, then that method
must be made concrete in some subclass. For example,let’s suppose that class A
is abstract and defines method doSomething(). Then class B extends A but

does not provide a doSomething() method:

abstract class A {

abstract void doSomething ();

}
class B extends A {

// Fails to provide a concrete implementation
// of doSomething (}

void doSomethingFlse ({) {. . .)

In this case, the compiler complains asfollows:

Bis not abstract and does not override abstract method

doSomething() in A class B extends A {
A

 
This messageindicates that not overriding doSomething() in class Bis okayif
B is declared to be abstracttoo. In fact, that is true. If we don’t wantB to provide

doSomething (), then we can declare B abstract as well:

 

 

abstrac
absti

}
abstrac

/?i De

{fol
void

This code

instantiatec

subclass of
methods:

class C

// PB:
void

4.5 Inte

Asdiscuss:

more than:

class

There are :

lead to pro
classes inc

parameter
Interfac

problems. ,
The metho

they are ab
than exte

that implet
method (01

In the «

Yrun(). Ar

run(),



Page 177 of 244

abstract as

t permit an

ily abstract
is common

stract is

:t modifier

ict classes,
les. As an
+name:

lso inherits

e instance

iat method

hat class A

ends A but

shod

Bis okay if

to provide

 

4.5 Interfaces 109

abstract class A {

abstract void doSomething ();

}
abstract class B extends A {

// Does not provide a concrete implementation
{/ of doSomething ()

void doSomethingElse () {. . .}

This code compiles without errors. Of course, classes A and B may never be
instantiated directly (since they are abstract). Eventually, there must be some
subclass of A or B that provides a concrete implementation ofall the abstract
methods:

class C extends B {

// Provides a concrete implementation of doSomething (}
void doSomething () {. . .}

4.5 Interfaces

As discussed in Section 4.2, Java does not allow a class to inherit directly from
more than one class. Thatis,

class Test extends AClass, BClass // Error!!

There are situations where multiple inheritance could be useful, but it can also
lead to problems; an exampleis dealing with the ambiguity when the inherited
classes include methods andfields with the sameidentifiers (i.e. the names and
parameter lists).

Interfaces provide most of the advantages of multiple inheritance with fewer
problems. Aninterfaceis basically an abstract class but with all methodsabstract.
The methods in an interface do not need an explicit abstract modifier since
they are abstract by definition. A concrete class implements an interface rather
than extendsit, anda class can implement more than oneinterface. Any class
that implements an interface must provide an implementation of each interface
method (or be declared abstract).

In the example below, Runnable is an interface with a single method:
xun(). Anyclass that implements Runnable must provide an implementation of
run().

 
Page 177 of 244



Page 178 of 244

 
110 More about objects in Java

class Test extends Applet implements Runnable {

public void run () {

}

public interface Runnable (
public void run |);

To implement multiple interfaces, just separate the interface names with a
comma:

class Test extends Applet implements Runnable, AnotherInterface
{

If two interfaces each define a method with the same name and parameterlist,

this presents no ambiguity since both methods are abstract and carry no code
body. In a sense, both are overridden by the single method with that signature in
the implementing class.

Any class that implements an interface can be referenced as a type of that
interface, as illustrated by this code:

class User implements Runnable {

public void run () {

class Test {

public static void main (String[] args) {
Runnable r = new User ();

Here the class User implements RunnablLe,soit can be referenced inavariable
of type Useror in a variable of type Runnableas shown. The value of using
the type Runnable instead of User isillustrated in the next section.

Page 178 of 244

 

 

4.5.1. Ir

The term

because th

is, they ca
For exa

independe
could corr

implemen
which hol:

public
puk

t

We want t

provide ac
whether a

In the

Relay an

getstat

class °

publ
Sv
sv
sv

Ec

class ]
bool

a
bool

re

class
bool:



Page 179 of 244

ies with a

terface

meterlist,

ry no code
ignature in

ype of that

na variable

ue of using
lL

4.5 Interfaces

4.5.1 Interfacing classes

The term interface is a very suitable name for these kinds of abstract classes
because they can provide.a systematic approach to adding accessto a class. That
is, they can provide a common interface.

For example, say that we have classes Relay and Valvethat are completely
independent, perhaps written by two different programmers. The class Test
could communicate easily with both of these classes if they were modified to
implement the same interface. Let’s define an interface called Switchable,
which holds a single methodcalled getState (), asin

public interface Switchable {
public boolean getState ();

}

We want both the Relay and Valve classes to implement Switchable and
provideagetState() method that returnsavalue true or false that indicates
whether a relay or a valveis in the on oroff state.

In the code below we show the class Test that references instances of
Relay and Valve as Switchable types. Test can then invoketheir respective
getState () methods to communicate with them.

class Test {

public static void main (String[] args) {
Switchable[] switches = new Switchable[2];
switches [0] new Relay ();

switches{1l] = new Valve ();

for (int i=O; i < 2; i++) {

if (switches[i].getState ()) doSomething (1);

class Relay implements Switchable {
boolean setting = false;

// Implement the interface method getState()
boolean getState () {

return setting;

other code .

class Valve implements Switchable {
boolean valveOpen = false;

Page 179 of 244

111

 



Page 180 of 244

 
112 More about objects in Java

// Implement the interface method getState({)
boolean getState {) {

return valveOpen;

other code .

interface Switchable {

boolean getState ();

So we see that an interface can serveliterally to interface otherwise incompatible
classes together. The modifications required for the classes Relay and Valve

involve only the implementation of the interface Switchable. Class Test

illustrates how we can treat instances of Relay and Valve both as the type
Switchable and invoke getState() to find the desired information for the

particular class. If additional classes that represent other components with on/off

states are created for our system simulation, we can askthat they also implement
Switchable.

Note that ifwe don’t have the source code for Valve and Relay,we couldstill

create subclasses of them and have those subclasses implement Switchable.

For example,

class SwitchableValve extends Valve implements Switchable {
boolean getState (} {

4.5.2 Interfaces for callbacks

With the C language, programmers often use pointers to functions for tasks

such as passing a pointer in an argumentlist. The receiving function can use the

pointer to invoke the passed function. This technique is referredto as a “callback”

and is very useful in situations where you want to invoke different functions

without needing to know which particular one is being invoked or when library

code needs to invoke a function that is supplied by a programmer using the
library.

Page 180 of 244

For examp!
an x axis value

example). The
is passed toit

Java, howe

object referen
interfaces for¢

face in its para
programmerp

an object refer

requiredinter{
invoked.

In the follc

invokes the ge

of any class tk
aFunc(). Th

C. The only di

public clé
public

Switc
switc

swite
switc

// Pa
for

aF

// Rece
void aF

if (s

See

4.5.3. Mor

Interfaces can

ods declared i

Unlike classes



Page 181 of 244

sompatible
ind Valve

lass Test

is the type
ion for the

with on/off

implement

> could still
tchable.

able {

s for tasks

can use the

“callback”

t functions

hen library

r using the

4.5 Interfaces

For example, a plotting function could receive a pointer to a function that takes
an x axis value as an argumentandreturnsa value for the y axis (sin(x), cos(x), for
example). Theplotting function could then plot any such function whose pointer
is passed to it without knowing explicitly the nameof the function.

Java, however, does not provide pointers (actual memory addresses), only
object references. A reference cannot refer to a method.Instead, Java provides
interfacesfor callbacks. In this case,a library method holds a reference to an inter-
face in its parameterlist and then invokes a method declaredin that interface. The
programmerprovides a class that implements the required interface and provides
an object reference to the library method. Whenthe library method invokes the
required interface method, the concrete implementation in the provided objectis
invoked.

In the following code we see that the aFunc (Switchable sw) method
invokes the getState() method of the Switchable interface. An instance
of any class that implements the Switchable interface can thus be passed to
aFunc (). This technique provides the same generality as pointer callbacks in
C. The only drawbackis that a class must implement the interface.

public class TestCallBack {
public static void main(String [] args) {

Switchable[] switches = new Switchable[3];
switches[(0] = new Relay();
switches[1] = new Relay();
switches[2] = new Valve();

// Pass Switchable objects to aFunc ()
for (int i=0; i < 3; i++) {

aFune (switches({i]);

}
ii

// Receive Switchable objects and cail their getState ()
void aFunc (Switchable sw) {

if (sw.getState ()) doSomething ();

See previous example for Relay and Valve definitions.

4.5.3 More about interfaces

Interfaces can extend otherinterfaces, muchlike class inheritance. All the meth-
ods declared in the super-interface are effectively present in the sub-interface.
Unlike classes, however, interfaces can participate in multiple inheritance. The

Page 181 of 244

113

 



Page 182 of 244

 
414 More aboutobjects in Java

following code showsan interface extending two interfaces at once using acomma
in the extends clause:

public interface A {. . .}

public interface B {. . .

public interface C extends A, B{. . .}

An interface can also contain data fields, and those fields can be seen by
implementing classes. Any data fields in an interface are implicitly static and
final thoughthose qualifiers need not appear. Thusdatafields in interfaces are
effectively constants and, by convention, are best declared using all uppercase
characters.

Placing constants in an interface is a common, though not recommended,
practice. As anillustration of the convenience of this technique, consider the
MyConstants interface shownhere:

public interface MyConstants {
final static double G = 9.8;

final static double C = 2.99792458e10;

The following Calculations class implements MyConstants and so can
refer to the constants directly:

class Calculations implements MyConstants {
// Can directly use the constants defined
// in the MyConstants interface

public double calc (double t) {
double y = 0.5*G*t*t;
return y;

If we instead made MyConstants a class, we would need to reference the
constants with a class name prefix as follows:

double y = 0.5 * MyConstants.G ko *F t;

This obviously becomes awkward if you have a long equation with lots of con-
stants taken from other classes.

However, despiteits usefulness, using an interface just to hold constants is not
recommendedsinceit really is an abuse of the interface concept. An interface full

Page 182 of 244

 

of nothing bu
to do. And ac

anything —iti
would be mo:

that the class ;

For these re

is the recomm

refer to those

the “static im,

import keyw
Anotherin

either method

can be useful

operator to de

imply some qi
to indicate wh

Section 4.6.3)
We discuss

that interface

any class can

implementatio
mustalso be p

4.6 More:

Tn this section

objects with ar
method.

4.6.1 Con

In Chapter 2 we

operation and t

same concepts

as with primitin

Consider a sup

class Fru:

class Pine

Let £ be a vari

assign the Pin:



Page 183 of 244

ig acomma

be seen by
tatic and

terfaces are

| uppercase

ommended,
onsider the

3 and so can

2ference the

lots of con-

istants is not

interface full  

4.6 More about classes

of nothing but constants does not define a type, as a proper interface is expected
to do. And a classthat “implements” such an interface isn’t really implementing
anything—it is just using the constants in the interface (perhaps a uses keyword
would be more appropriate), Seeing the implements keyword should imply
that the class actually implements something.

For these reasons, the use of a class instead of an interface to define constants

is the recommendedpractice, accepting the need for the more verbose syntax to
refer to those constants. We note that J2SE 5.0, in fact, solves this problem with

the “static import” facility, which we explain in Chapter 5 after discussing the
import keyword.

Another interesting feature of interfaces is that an interface need not contain
either method declarations or data. It can be completely empty. Such an interface
can be useful as a “marker” of classes. That is, you can use the instanceof

operator to determineif a class is of the particular marker type, which then can
imply some quality of the class. One can use the empty Cloneable interface
to indicate whether a class overrides the clone() method from Object (see

Section 4.6.3) to make copiesof instancesof the class.
We discuss access rules and modifiers in the next chapter but here we note

that interface methods and constants are implicitly public. This means that

any class can access the methods and constants in the interface. The concrete
implementations of interface methods in classes that implement the interface
must also be public otherwise the compiler will complain.

4.6 More about classes

In this section we continue our introduction to the basicsof class definitions and

objects with an examination of casting, the Object class, and the toString ()
method.

4.6.1 Converting and casting object references

In Chapter 2 we discussed the topic ofmixingdifferent primitive typesin the same
operation and the need in somecasesto explicitly cast one type into another. The
same concepts apply when dealing with objects instead ofprimitives. Sometimes,
as with primitives, the type conversion is automatically handled by the compiler.
Consider a superclass Fruit with a subclass Pineapple:

class Fruit {. . .}

class Pineapple extends Fruit {. . .}

Let = be a variable of type Fruit and p be of type Pineapple. Then we can
assign the Pineapple reference to the Fruit variable:

Page 183 of 244

115

 



Page 184 of 244

 
116

Page 184 of 244

Moreabout objects in Java

class Conversion {
Fruit f;

Pineapple p;

public void convert () {
p = new Pineapple ();
£ = p;

The compiler automatically handles the assignment since the types are compati-
ble. Thatis, the type Fruit can “hold”the type Pineapple since a Pineapple
“is a” Fruit. Such automatic cases are called conversions.

A related automatic conversionis with interfaces. Let the class Fruit imple-
ment the Sweet interface:

interface Sweet {. . .}

class Fruit implements Sweet (. . .}

Then we see that a variable of type Fruit can be automatically converted
to a variable of type Sweet. This makes perfect sense since a Fruit “is”
Sweet.

Fruit £;
Sweet Ss;

public void good_convert () f
s = £; // legal conversion from class type to interface type

}

However, an attempt to convert from the interface type to the class type does not
compile:

public void bad_convert () {
f = s; // illegal conversion from interface type to class type

}

As withprimitives, if the compiler cannot perform an automatic conversion, an
explicit cast is required. In most cases you can force the compiler to permit the
desired type conversion by using a cast. Like with primitive types, the class type
that an object is being cast to is enclosed in parentheses in front of the object
reference. Doing so essentially tells the compiler to ignore the apparent type
incompatibility and proceed anyway. If the types really are incompatible then
runtimeerrors will ensue.

For example, let BClass be a subclass of AClass. Let AClass hold
aMethod (), which, of course,is inherited by BClass. In addition, bMethod ()
is anew method in BClass.

 

 

class i

void

class f
vol

}

In the folloy

as a parame

of BClass,

public v
obj .al
if (9)

ke

Wesee that \

whetherthat

However, to
use the ins

thencast to 1

it cannot fine

4.6.2 Ca:

The casting
There are co1

to catch atten

wehaveclas:

the other an

nonsensical t

pernuit it ever

types”error1
Casts that

class or to on

be cast to aln

type. There a:

details), but ti

The compi
time rulespei
These runtim

with the new

at runtime.



Page 185 of 244

‘e compati-
tneapple

iit imple-

convertedcee 9
‘yuit “is

face type

pe does not

tlass type

wersion, an

| permit the
e class type

f the object

parent type
yatible then

lass hold

Method ()

4.6 More aboutclasses

class AClass {

void aMethod () {. . -}

class BClass extends AClass {f{
void bMethod () {. . .}

}

In the following code, miscMethod () is declared to receive an ACLass object
as a parameter. Whenused, the actual object passed in mightin fact be an instance
of BClass, which is perfectly legal since BClass is a subclasses of AClass.

public void miscMethod (AClass obj) {
obj.aMethod ();

if (obj instanceof BClass) (({BClass)obj).bMethod ();

We see that we can invoke aMethod() on the object received in the parameterlist

whetherthat object is an AClass ora BClass since both types havethis method.
However, to invoke the bMethod (), we need first to check the object type. We
use the instanceof operator to find out if the object really is a BCLass and
then cast to BClass ifappropriate. Without the cast the compiler complainsthat
it cannot find bMethod() in the AClass definition.

4.6.2 Casting rules

The casting rules can be confusing, but in most cases common sense applies.
There are compile-time rules and runtime rules. The compile-time rules are there
to catch attempted casts in casesthat are simply not possible. For instance, suppose
wehave classes A and B that are completely unrelated — i.e. neither inherits from

the other and neither implements the same interface as the other, if any. It is
nonsensical to attempt to cast a B object to an A object, and the compiler does not
permit it even with an explicit cast. Instead, the compiler issues an “inconvertible
types” error message.

Casts that are permitted at compile-time include casting any object to its own
class or to one ofits sub- or superclass types or interfaces. Almost anything can
be cast to almost any interface, and an interface can be cast to almost any class
type. There are some obscure cases (see the Java Language Specification for the
details), but these commonsense rules cover mostsituations.

The compile-time rules cannot catch everyinvalid cast attempt. If the compile-
time rules permit a cast, then additional, more stringent rules apply at runtime.
These runtime rules basically require that the object being cast is compatible
with the new typeit is being cast to. Else, a ClassCastExceptionis thrown
at runtime.

Page 185 of 244

117

 



Page 186 of 244

 
118

Page 186 of 244

More about objects in Java

4.6.3 The object class

All classes in Java implicitly extend the class Object. That is,

public class Test
i on -}

is equivalent to

public class Test extends Object
{. . .}

So, all Java objects are instances of Object. This ability to treat all objects as
one type provides the ultimate in polymorphism. An exampleof this usage is the
ArrayList class, which is a part of the java.util package (we discuss Java
packages in Chapter 5). The ArrayList class can hold any object type. The
ArrayList.add() methodis used to input objects into the ArrayList. The
parameterlist for the add (} methodis declared to receive an Obj ect parameter.
That way, any object type can be added, sinceall object types alwaysinherit from
the Object base class. When an elementis retrieved from the ArrayList, it
is of type Object and shouldbe castto the type needed.

A simpler example is the following case, where the parameter type of
miscMethod () isObject so any class whatsoever can be provided in a method
call tomiscMethod (). InsidemiscMethod () we decide whattype the received
object referencereally is and call appropriate methods based onthat type. Except
for the case where we want to invoke a method belonging to the Object class,
we need to cast the object to one of the classes that we expect as a parameter
before we can invoke a methodoraccessa field in that class.

public void miscMethod (Object obj) {
if (obj instanceof AClass) ((AClass) obj).aMethod ();
if (obj instanceof BClass) ((BClass)obj).bMethod ();
4£ (obj instanceof CClass) ((CClass) obj) .cMethod ();

t

The Object class provides several methodsthat are useful toall of its subclasses.
A subclass can also override these methods to provide behavior unique to the

particular subclass. These methodsinclude:

e clone ()—produces copies of an object. (See Web Course Supplements.)
e equals (Object obj) — tests whether an object is equal to the object obj. The

defaultis to test simply whether obj references the same object (i.e. a shallow equals),
not whether two independentobjects contain identical properties. This methodis often
overridden to perform a deep equals as in the String class, which tests whether the
strings actually match.

 
aie

* toString
consists of 2

hash code o

iJluminating
e finalize

this object.
needed befc

* getClass
Web Course

¢ hashCode

The followin

Chapter 8. T
block:

e notify (°

chosenby tl
notifyAll:

compete for
® wait ()-

waits for ar

* wait (lor

specified tin
e wait (lor

specified to

(Wenote tha’
nanosecond :

4.6.4 Ob

Wediscussec

‘You can also

System.c

then that obje

output. All c
This default»

with the clas:

However,

provide outp)
classes in the

and classestl



Page 187 of 244

objects as

sage is the
scuss Java

type. The
sist. The

parameter.
therit from

wyList, it

a type of
1a method

le received

pe. Except
ect class,

parameter

O;

QO;
On

subclasses.

ique to the

)
st obj. The

low equals),
hod is often

whether the

 
4.6 More aboutclasses

* toString ()— provides a string representation ofthis object. The default for a class
consists ofa string constructed from the nameofthe class plus the character “@ "plus a
hash codeofthe object in hex format. This methodis often overridden to provide more
illuminating information. (See the next section.)
finalize ()-called by the garbagecollector when there are no morereferencesto

this object. You can override this method to take care of any housecleaning operations
needed before the object disappears.

® getClass ()—gets the runtimeclassofthe object, returned as a Class type(see the
Web Course Chapter 5: Supplements section for a discussion of the Class class).

* hashCode ()~— generates a hash codevalue unique for this object.

The following methods involve thread synchronization that we introduce in
Chapter 8. They can only be called from within a synchronized methodor code
block:

e notify ()—called by a thread that owns an object’s lock to tell a waiting thread, as

chosen by the JVM,that the lock is now available.
notifyAll ()— similar to notify() but wakes all waiting threads and then they

competefor the lock.
e wait ()— the thread that owns the lock on this object releases the lock and then

waits fora notify() ornotifyAl1 () to get the lock back.

wait (long msecs) — same as wait() but if a notify fails to arrive within the

specified time,it wakes up and starts competing for the lock on this object anyway.
wait (long msecs, int nanosecs)— same as wait (long msecs) but

specified to the nanosecond.

(We note that most operating systemsdo notprovide a clockthatis accurate to a
nanosecond and some not even to a few milliseconds.)

4.6.4 Objects to strings

We discussed in Chapter 3 how to convert primitive types to and from strings.
You can also convert any Java objectto a string. If you just print any object, as in

System.out.println (someObjectReference);

then that object’s toString () methodis called automatically to produce string
output. All objects inherit the toString () method from the Object class.
This default version of toString () from Cbject producesa string beginning
with the class name with certain data values appendedtoit.

However, the toString () methodtypically is overridden by most classes to
provide output in a more readable format customized for that class. Mostofthe
classes in the Java core classlibraries provide sensible toString () methods,
and classes that you write should too for convenience whenprinting.

Page 187 of 244

119

 



Page 188 of 244

 
120

Page 188 of 244

More about objects in Java

You can call the toString() method directly, or, alternatively, the “+”

operatorcalls the toString () method wheneverthe variable refers to an object.
For example, consider

Double aDouble = 5.0;

String aDoubleString = “aDouble = " + aDouble;

The plus operator in the secondline invokes the toString () method of the
Double object aDouble. This results in aboubleString referencing the
string “aDouble = 5.0”.

4.7. More about arrays

Here we look at other aspects of Java arrays and at tools to use with them. Note
that like much ofJava syntax, arrays at first glance seem very similar to those
in C/C-+-+. However, there are several differences from these languages in how
Java arraysare built and howthey work.

4.7.1. Object arrays

In the previous chapter we introducedarrays of primitive types, which generally
behave in the manner that is expected of such arrays. For example, to create an
array of ten integers we could use the following:

int{] iArray = new int[10];

Thissets aside ten int. type memory locations, each containing the value 0.
For arrays of objects, however, the array declaration only creates an array of

references for that particular object type. It does not create the actual objects
of that type. Creating the objects themselves requires an additional step. For
example,let’s say we want to create an array of five String objects. We first
create a String type array:

String[] strArray = new String[5];

Whenthe array is created, five memory locationsare set aside to contain object
references of the String type with the expectation that each reference will
eventually “point” to a String object. Butinitially, each element contains the
special null reference value; thatis, it points nowhere. So if we followed the
above declaration with an attempt to use a String method, as in

int numChars = strArray{0].length ();

an error messageresults:

Exception in thread "main" java.lang.NuliPointerException at
ArrayTest.main (ArrayTest.java:8)

 Before using
elementto re

strArras
strArras
strArra\

strArray
strArray

This code se

Note that

objects:

strArray

Thatis, the s

4.7.2 Arr

A copy of an
as shownhei

System.é

Here src is

same type).
src-_posit
ber of eleme

situation occ

beyondtheir
thrown at ru:

object arrays
source array.

4.7.35 Mu

In Java, mult
reference to

array as follc

String [

This is equiv

String
str[0]
str[1]
str[2]



Page 189 of 244

ly, the “+”

to an object.

sthod of the

rencing the

them. Note

lar to those

ages in how

sh generally
to create an

value 0.

an array of

tual objects

al step. For
cts. We first

ntain object
ference will

zontains the

ollowed the

xeption at

4.7 More aboutarrays

Before using the array elements, we must first create an object for each array
elementto reference. For example,

strArray[0] = new String ("Alice");
strArray[1] = new String ("Bob");
strArray[2] = new String ("Cindy");
strArray[(3] = new String ("Dan");

strArray[4] = new String ("Ed");

This code sets each elementto reference a particular string.
Note that there is an alternative declaration that only works for String

objects:

strArray[0] = "Alice";

Thatis, the string literal "Alice" is equivalenttonew String ("Alice").

4.7.2 Array copying

A copyofan array can be made with the static method System. arrayCopy ()
as shownhere:

System.arraycopy (Object src, int src_position,
Object dst, int dst_position, int length)

Here src is the array to be copied and dst is the destination array (of the
same type). The copy begins from the array element at the index value of
src_position andstarts in destination at dst-position for length num-
ber of elements. If the value of the length parameteris too long, or if any
situation occurs such that either the source or destination arrays are accessed

beyondtheir actual array length,then an IndexOutOfBoundsExceptionis
thrown at runtime. This optimized method worksfor primitive arrays as well as
object arrays. It even handles the case where the destination array overlaps the
source array.

4.7.3. Multi-dimensional arrays

In Java, multi-dimensional arrays are arrays of arrays. That is, each elementis a
reference to an array object. For example, we could declare a two-dimensional
array as follows:

String[][] str = new String[3][2];

This is equivalent to

String []{] str = new String[3]1[];
str[0] = new String[2];
str[1] = new String[2];
str[2] = new String[2];

Page 189 of 244

121

 



Page 190 of 244

 
122

Page 190 of 244

More aboutobjects in Java

However, we don’t need to keep the sub-array lengths the samc. This also works:

str[0] = new String[2];
str[1] = new String[323];
str[2] = new String[444];

We can combinethe string array declaration andinitialization, as in

str[0] = new String[]{"alice", "bob"};
str[1] = new String[}{"cathy", "don", "ea"};
str[2] = new String[]{"fay", "grant", "hedwig", "ward" };

System.out.printin ("str[1][2],str[2] [3] = " +
str(1][2] + str[2][3]);

Theprint statement would show

str(1][1],str[2][3] = edward

4.7.4 More about arrays as objects

As mentioned earlier, arrays in Java are objects. An array inherits Object and
possesses an accessible property — length — that gives the numberof elements
in the array. For example, if a method uses Object as a parameter, as in

void aMethod (Object obj) {. . -}

then an array can be passedasthe actual parameter since an array is a subclass
of Object:

int{] i-array = new int[10];
aMethod (i_array);

To make arrays appear in a convenient and familiar form (asin C, for example),
the language designers provided brackets as the means of accessing the array
elements as already seen above. Without brackets, an array class would haveto
provide a method such as getElementAt Index () to access array elements.
For example,

String string_one = str_array.getElementAtIndex (1);

Fortunately, the simpler syntax using brackets was chosen instead:

String stringone = strArray[1];

Since arrays are objects, arrays are somewhat more complicated in Java than
in other languages, but the class structure also provides important benefits. For
example, each use of an array elementresults in a check on the element number,

and if the e

run-time ex:

Thus, un
and write to

program bu
since the pre
hand, there

up when do

4.7.5 Mie

Vector and r

engineering

out operatio
Note tha

java.uti.
discussed al

both adding
useful, but t

4.7.5.1 WM
The elemen

vector, as in

double[
double [

We then net

product:

double

doub:
for |

doi

}
retur

Note that a

null and thai

Several n

carry out ve
of these.



Page 191 of 244

Iso works:

-a"};

yject and
f elements

sin

a subclass

example),

x the array
ld have to

r elements.

1 Java than

snefits. For

mnt number,

 
4.7 More about arrays

and if the element exceeds the declared length of the array, an out of bounds
run-time exception is thrown.

Thus, unlike in C or C++, a program cannotrun off the end of an array
and write to places in memory where it should not. This avoids a very common
program bug and source of security attacks that can be difficult to track down
since the problem may not show up until well after the write occurs. On the other
hand, there is some performancepenalty in the bounds checking that can show
up when doingintensive processing with arrays.

4.7.5 Mathematical vectors and matrices

Vector and matrix operationsare obviously standardtools throughoutscience and
engineering. Here we look at some ways to use Java arrays to represent and carry
out operations for vectors and matrices.

Note that the Java core language includes a class called Vector in the
java.util package (see Chapter 10). vectoris similar to the ArrayList
discussed above (see Section 4.6.3); both provide a dynamiclist that allows for
both adding and removing elements. ArrayList and Vectoz are often quite
useful, but they are slow and not intended for mathematical operations.

4.7.5.1 Mathematical vectors

The elements of a floating-point array can represent the componentvalues of a
vector, as in

u
double[] vecl (0.5,0.5,0.5};
double[] vec2 = {1.0,0.0,0.2};

We then need methods to carry out various vector operations such as the dot
product:

double dot (double[] a, double[] b) {
double dot_prod = 0.0;

for {int i=0; i < a.length; i++) {
dot_prod += a[i]*b[il;

t
return dot_prod;

}

Note that a more robust method would check that the vector arguments are not

null andthat the array lengths are equal.
Several numericallibraries are available that provide classes with methods to

carry out vector operations. The Web Course Chapter 4 provideslinks to several
of these.

Page 191 of 244

123

 



Page 192 of 244

 
124

Page 192 of 244

More aboutobjects in Java

4.7.5.2 Matrices

The obvious approachfor matricesis to use arrays with two indices:

double[][] dMatrix = new double[n][m];

However, as indicated by the discussion in Section 4.7.2, this does not produce
a truc two dimensional array in memory butis actually a one-dimensionalarray
of referencesto other one-dimensional arrays, each of whichcan belocated in a
different area of memory.

In the C language, moving from one elementto the next in a 2D array requires
only incrementing a memory pointer. This does not apply for Java, which uses
an indirect referencing approachthat causes a performancepenalty, especially if
the matrix is used in intensive calculations.

One approachto ameliorate this problem to some extent is to use a 1D array.
The code below shows howone might develop a matrix class to use a 1D array
for 2D operations. A sophisticated compiler can optimize such a class and in
some cases provide better performance than a standard Java two-dimensional
array.

public class Matrix2D {
private final double[] fMat;

private final int fCols;

private final int fRows;
private final int fCol;
private final int fRow;

public Matrix2D (int rows, int cols) {
fCols = cols;
fRows = rows;

fMat= new double[rows * cols];

/** ¢ = row number, c = column number **/

public double get (int r, int c) {
return fMat{r * fCols + c];

/** vx = row number, c = column number **/

public double set (int ¥, int c, double val) {
fMat[r * fCols + c] = val;

other methods, e.g. to fill the array, access a
subset of elements, etc.

 
4.8 Impt

In the Chapt

complex nul
like to add t

rather thann

can still use

numberclas

public c

double
double

FE* 1Cc
Ks f

Comple
real

/** Ge

public
{retur

public
{retur

i** De

public
real

imac

a! De

public
real

imag

/** De

ae

public

doub

doub
retu



Page 193 of 244

4.8 Improved complex numberclass 125

4.8 Improved complex numberclass

In the Chapter 3 we created a class with the bare essentials needed to represent
complex numbers. Here we expand onthat class. For example, we would often
like to add two complex numbersand put the sum into another complex number
rather than modify one ofthe current complex objects. Because ofoverloading we
canstill use the add() method name. A new, improved version of our complex
numberclass appears here:

: produce
nal array
sated in a

7 requires
hich uses public class Complex {

secially if double real;

double imag;
1D array. | kk 7 + + ; 7
1D array / Constructor that initializes the real & imag.values; al
ss and in

: Complex (double r, double i) {
nensional

 
real = x; imag = i;

/** Getter methods for real & imaginary parts **/
public double getReal ()
{return real; }

| public double getImag ()
{return imag; }

/** Define an add method **/

public void add (Complex cvalue)
real = real + cvalue.real;

imag = imag + cvalue.imag;

/** Define a subtract method. **/

public void subtract (Complex evalue) f{
real = real - cvalue.real;

| imag = imag - cvalue.imag;

/** Define a static add method that returns a
| * anew Complex object with the sum.

eS

public static Complex add (Complex cvaluel,
Complex cvalue2) {

double r = cvaluel.real + cvalue2.real;

sa double i = cvaluel.imag + cvalue2.imag;
return new Complex (r, i);

 
 

Page 193 of 244



Page 194 of 244

 
126 More about objects in Java

/** Define a static subtract method that returns a

* anew Complex object with the difference.
ey

public static Complex subtract (Complex cvaluel,
Complex cvalue2) {

double r = cvaluel.real - cvalue2.real;
double i = cvaluel.imag - cvalue2.imag;
return new Complex (r, i);

i

} // class Complex

Herethe new static add () and subtract () methods each create a new complex

object to hold the sum and difference, respectively, of the two input complex
objects. The operand objects are unchanged by the method.

As we discussed in Chapter 3, a static method is invoked by giving the name
ofthe class and the dot operator. Unfortunately, in Java, unlike C++, we cannot
override the + operator and create a special + operator for complex addition. The
following code shows how to add two complex numbers together using ourstatic
add() method:

public class ComplexTest {

public static void main (String[] args)
// Create complex objects

Complex a = new Complex (1.0, 2.1);
Complex b = new Complex (3.3, 1.2);

Complex c = Complex.add (a, b); // ¢ now holds a +b

other code .

The Web Course Chapter 4 gives a more complete version ofthe class(8.g. it
includes modulus,multiplication, etc.).

4.9 Random numbergeneration

Random values can be obtained from the Math class using the method

public static double random ()

This method produces pseudo-random double valuesin the range

0.0 <= r < 1.0

Page 194 of 244

 

Thefirst t

current tin

The je

generators

the option:
The me

* nextint

e@ nextiInt

e nextBoc

® nextGar

Thelast th

4.9.1 R

The Randk

the constrv

the algorit]
Randon

that eventu

sequence. ;

eventually
to the rand:

are said to

To insu

all implem
returns the

Theline

Xi=

Asdiscusst

produce ra:

long. The |
Also,if

as points in
but instead

and possib.
shuffle the

In Java t

Ox
c= 11

m = 248

The actual



Page 195 of 244

v complex
> complex

the name

we cannot

lition. The

; ourstatic

lass (e.g. it

4.9 Random numbergeneration

The first time it is invoked, it initializes the seed with a value derived from the
current time.

The java.util.Random class provides a more extensive set of random
generators. Two constructors —Random() and Random (long seed) — offer
the optionsofinitialization from the current timeor from a specific seed value.

The methods in the Randomclass include:

* nextInt () —integersinthe rangeQ <= r < 2**32

® nextInt (int n) —integersintherangeO <= r <n

* nextBoolean (int n) —randomly chosentrue/false

* nextGaussian () —random double values with mean 0.0 and sigma of 1.0

Thelast three methodsfirst became available with Java 1.2.

4.9.1 Random number algorithm

The Random class uses a linear congruential algorithm [1,2] with a 48-bit seed. If
the constructor Random (long) or the setSeed (long) methodis invoked,

the algorithm uses only the lower 48 bits of the seed value.
Random number generator formulas actually produce a sequence of numbers

that eventually repeat. For the sameseed value a formula always produces the same
sequence. A seed simply selects where in the sequenceto start. The generator will
eventually repeat that seed value and start the same sequence again. Compared
to the randomnessofphysicalfluctuations, such asin radio noise, these formulas
are said to produce pseudo-random numbers.

To insure that applications portedto different platforms givethe sameresults,
all implementations of Java must use the samealgorithm so that the same seed
returns the same sequence regardlessofthe platform.

The linear congruential formula in Java goes as

Xign = (a * & + ¢) modm

As discussedin the references, you should use stich formulas with care. They can
produce random number sequences of a length up to m but not necessarily that
long. The length dependson theset of a, c, and m values chosen.

Also,ifyou grab consecutive sequences of numbers of K length, and plot them
as points in K-dimensionalspace,they do notfully populate the volume randomly
but instead lie on K-1dimensional planes. There are no more than m‘/* planes
and possibly less. If you need to create points in a space this way, you should
shuffle the values obtained from the generator. [2]

In Java the values in the linear congruential formula in Random are

a = Ox5DEECE66DL
ce = 11

= 2% — 1,

The actual code innext (int bits) goes as

Page 195 of 244

127

 



Page 196 of 244

 
128

Page 196 of 244

More aboutobjects in Java

synchronized protected int next (int bits) {
seed = (seed * OxSDEECE66DL + OxBL) & ((1L << 48) - 1);
return (int) (seed >>> (48 - bits));

}

Here the mod operation comes via the AND operationsince m in this case hasall
47 bitsset to 1.

This method is protected (see Section 5.3.3, Access Rules). The public
random number methods accessible byall classes use the next () method. For

example, next-Int () simply includesthe statement

return next (32);

The nexttong () method invokes next (32), shifts the result by 32 bits to the
left, invokes next (32) again and then ORs the two values together to obtain a
64-bit random number:

return ((long)next (32) << 32) + next (32);

The nextFloat () method provides values intherangeO.0f <= x < 1.08:

return next (24) / ((float) (1 << 24));

ThenextDouble () method provides values intherangeO.0d <= x < 1.0d

using the statement

return (((long)next (26) << 27) + next (27))/(double)(1L << 53)

The nextBoolean() method uses the statement

return next (1)!= 0;

See the java.util.Randomclassspecification for more detailed descriptions
of the algorithms used for these and the other nextXxx () methods.

4.10 Improved histogram class

Here we make a subclass of the BasicHist class discussed in Chapter 3.
Theclass definition below shows that BetterHist inherits from BasicHist,

obtaining the properties ofthe latter while providing new capabilities.
Note how the constructor invokes super() to select a constructorin the base

class. Also, we see how the new methods in the subclass can access the data
variables in the bascclass. (In the next chapter we discuss access modifiers such
as private, which prevents subclasses from accessing a field or method.)

We add several methods to our histogram that provide various parameters

specifying the histogram. Also, a calculation of the mean and standard deviation
of the distribution in the histogram is included.

{**

pub
{ret

pub
{rel

yee

pub
Li

fi

[rr

pub

fe*

pub
in
Ec

ru

fet

pub
3



Page 197 of 244

4.10 Improved histogram class 129

/** K simple histogram class to count the frequency of

 

ni * yalues of a parameter of interest. **/
class BetterHist extends BasicHist
{

case hasall /** This constructor initializes the basic elements of
* the histogram.

The public aa ; . ; :public BetterHist (int numBins, double lo, double hi) {
tethod. For super (numBins, lo, hi);

J

J** Get the low end of the range. x*

bits to the public double getLo ()
to obtain a sar a

/** Get the high end of the range. **/

public double getHi ()
{return hi; }

< 1.0f:
/** Get the number of entries in the largest bins [47
public int getMax () {

int max = 0;

c< 1.0d
for (int i-0; i < numBins; i++)

if (max < bins[i]) max = bins[i];

L << 53) return max;
}

/** Get the number of entries in the smallest bin. **/
public int getMin () {

int min = getMax ();

escriptions . , . : ;for (int i=0; i < numBins; i++)
if (min > bins[i]) min = bins[i];

| return min;
i I

Chapter 3, /** Get the total number of entries **/
sicHist, public int getTotal (). {int total = 0;

“ for (int i=0; i < numBins; i++)
in the base } total += bins(il;
ss the data return total;

lifiers such }

thod.) /** Get the average and: std. dev. of the distribution. **/
parameters public double [] getStats () {int total = 0;
d deviation

 
Page 197 of 244



Page 198 of 244

 
130

Page 198 of 244

More about objects in Java

double wtTotal = 0;
double wtTotal2 = 0;

double [] stat = new double[2];
double binWidth = range/numBins;

for (int i=0; i < numBins; i++) {
total += bins[i!;

double binMid = (i - 0.5) * binwWidth + lo;
wtTotal += bins[i] * binMid;
wtTotal2 += bins[i] * binMid * binMid;

if (total > 0) f{

stat[0] = wtTotal/total;
double avzZ = wtTotal2/total;

stat[1) = Math.sqrt (av2 - stat[0!*stat[0]);
}
else {

stat[0}
stat [1]

}
return stat;

} // getStats

} // class BetterHist

ORO
mela Oh

4.11 Understanding OOP

Chapters 3 and 4 present the fundamentals of class definitions and objects. In
Chapter 5 we look at howclassesare organizedintofiles and directories and how
the JVMlocates classes. If you find that object-oriented programming (OOP)
remains somewhat vague, your understanding of the concepts involved will
deepen as you see OOPtechniques applied to graphics, threading, I/O, and other
areas in subsequent chapters. We return to class structure, design, and analysis
in Chapter 16 where wegive a brief overviewof the Unified Modeling Language
(UML). UML provides a systematic approachto the design of classes and to
analysis of the interactions among objects. We then use UMLto design a set of
classes for a distributed computing example.

4.12 Web Course materials

The Web Course Chapter 4: Supplements section provides more discussion of
inheritance and the overriding and overloading features. Thereis also discussion
of security aspects of Java including the checking of code by the JVM during
class loading.It also gives a brief overview of the security manager.

 
The Cha

programs fi

numberger
section cont

Referenc

[1] Donald]
Volume:

(2] W. H. Pr
C: The

available

Resource

Ronald Mak,.

Computing,



Page 199 of 244

Resources 131

The Chapter 4: Tech section provides additional discussion and demonstration
programs for the vector/matrices in Java, the complex number class, random
numbergeneration, and the improved histogram class. The Chapter 4: Physics
section continues with a tutorial on numerical computing techniques with Java.

References

[1] Donald Knuth, The Art ofComputer Programming: Semi-numerical Algorithms
Volume 2, 3rd edn, Addison-Wesley, 1997.

[2] W. H.Press,B. P, Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in
C: The Art ofScientific Computing, Cambridge, 1992. (Subsequentversions are
available for Fortran 90 and C++.)

Resources

Ronald Mak, Java Number Cruncher: The Java Programmers Guide to Numerical
Computing, Prentice Hall, 2003.

bjects. In
‘and how

ie (OOP)
lved will

and other

| analysis
~anguage
2s and to

oaset of

ussion of

iscussion

M during

 
Page 199 of 244



Page 200 of 244

Supplements

<. In addition,
3.

1 applet with
‘orm random

the rejection
rovides more

non-uniform

tom distribu-

is/.
un

2ms,

 

Chapter 8
Threads

8.1 Introduction

Threads in Java are processesthat run in parallel within the Java Virtual Machine.
When the JVM runs on a single real processor the parallelism is, of course,
only apparent because of the high speed switching of threads in and out of the
processor. Yet even in that case, threading can provide significant advantages.
For example, while one thread deals witha relatively slow I/O operation such as
downloadinga file over the network, other threads can do useful work. Threads
can assist in modularizing program design. An animation can assign different
threads to rendering the graphics, to sound effects, and to user interactions so
that all of these operations appearto take place simultaneously. Furthermore, a
JVM can assign Java threadsto native OS threads (but isn’t required to) and on
a multiprocessor system it could thus provide true parallel performance.

Java makesthe creation and running ofthreads quite easy. We will concentrate
on the basics of threading and only briefly touch on the subtle complications that
arise when multiple threadsinteract with each other and needto access and modify
commonresources. Such situations can result in data race, deadlock, and other
interference problemsthatresult in distorted data or hung programs.

8.2. Introduction to threads

In Java you can create one or more threads within your program just as you can
run one or more programs in an operating system [14]. Most JVMs,in fact,
take great advantage of threads for such tasks as input/output operations and
user-interface cvent handling. Since the Java garbage collector always runs in a
separate thread, even the simplest Java program is actually multithreaded.

In the previous chapters we sawthat Java applications begin when the JVM
invokes the main() method. (The applicationitselfrunsas a thread in the JVM.)
Instead of amain(), the thread processes begin and end with a method named
run(). You place code in run() to control the operations that you wish to
accomplish with the thread. Thethreadlives only as long as the process remains
within run (). Whenthe thread process returns from the run (), the thread is
dead and cannotbe resurrected.

Page 200 of 244

253



Page 201 of 244

 
254

Page 201 of 244

Threads

‘You create a thread class in one of two ways:

1. Create a subclass of the Thread class and override the run() method.

2. Create a class that implements the Runnable interface, which has only one method:
run(). Pass a referenceto this class in the constructor of Thread. The thread then

calls back to this run() method whenthe threadstarts.

In.the following sections we examine these two thread creation techniques
further.

8.2.1. Thread creation: subclass

Creating a subclass of Thread offers the most conceptually straightforward
approachto threading.In this approach the subclass overrides the run () method

with the code you wish to process. The following code segments illustrate this
approach.

The class MyThread extends the Thread class and overrides the method

run() with one that contains a loop that prints out a message until a counter
hits 20.

public class MyThread extends Thread
{

public void run () {
int count = 0;
while (true) {

System.out.println ("Thread alive");

// Print every 0.10sec for 2 seconds
try {

Thread.sleep (100);
}

catch (InterruptedException e) {}
count++;

if (count >= 20) break;
}

System.out.printin ("Thread stopping");
jai fern

} // class MyThread

“In MyApplet shown below, the start () method creates an instance of the

MyThread class and invokes the thread’s start () method. This will in turn

invoke the run () method. The thread goes into a loop andprints a message every
100 msusing the Thread class static method sleep (long time), where time

is in millisex

process exits

/** Demo

public c
{

{tt AL
aa]

public

f/f

MyT:

The diagra:
MyThread

Create '

myTh
| Thenin

to launc

Figure 8.1
Creates an it

applet invok
returns but
xun() meth

dies (i.e. car



Page 202 of 244

one method:

e thread then

techniques

ightforward
1() method
lustrate this

the method

il a counter

ince of the

will in turn

ssage every
where time

8.2 Introduction to threads 255

is in milliseconds. The thread then dies — i.e. it cannot be restarted — once the
process exits from run ().

/** Demo threading with Runnable implementation. **/
public class MyApplet extends java.applet.Applet
{

/** Applet’s start method creates and starts a thread.
ex]

public void start () {

// Create an instance of MyThread.
MyThread myThread = new MyThread ();

f/ Start the thread

myThread.start ();
} // stare

public void paint (java.awt.Graphics g) {
g.drawString ("Thread Demo 1",20,20);

}

} // class MyApplet

The diagram in Figure 8.1 shows schematically how the main thread and
MyThread thread runin parallel.

MyApplet

| Create Thread subclass object [ ==myThread=new MyThread() ——7~ > MyThread
Then mvoke |

myThread.start() —@j——!- WP start () retums anda
new process begins with
invocation of run() m

this MyThread object. |

to launch thread process

run (}
|

Process dies when |
Vv run () finishes.

  
Figure 8.1 This diagram illustrates threading with a Thread subclass. MyApplet
creates an instance of MyThread, which extends Thread and overrides run(). The
applet invokes the start () method for the MyThread object. The start () method
returns but the thread process continues independently with the invocation of the
run() method in MyThread. When the thread process returns from run() the thread
dies (i.e. cannot be started again).

 
Page 202 of 244



Page 203 of 244

 
256 Threads

8.2.2 Thread creation: Runnable g.d

In the second threading technique a class implements the Runnable interface }
and overrides its run () method. This approach is often convenient, especially } // cla
for cases where you wantto create a single instance ofa thread, as in an animation
for an applet. You pass a reference to the Runnable object via the constructor .
of Thread and whenit starts, the thread calls back to the run() method. As The diagran
before, the thread process dies after exiting run ().

The following code segmentillustrates this approach. Here MyRunnableAp- 8.2.3. Th
plet implements the Runnable interface. The start () method creates an
instance of the Threadclass and passesa referenceto itself (with the “this” The choicet
reference) in the thread’s constructor. Whenit invokes the start () method for application
the thread, the thread will invoke the run () method in MyRunnableApplet. does notall:

Applet or
The run ()

/** Demo threading with Runnable implementation. **/ For example
public class MyRunnableApplet extends java.applet.Applet also need to

Extendin

specialized

implements Runnable

/** Applet's start method creates a thread. **/
public void start () { case is whe:

// Create an instance of Thread with a = —

// veference to this Runnable instance. . 7
Thread thread = new Thread ithis); My

| Create T

// Start the tnread | referenc
thread.start (); thre

} /#/ start
| | Theninv

/** Override the Runnable run() method. **/ | | to aunct
public void run () {

int count = 0;
while (true) {

System.out.printin ("Thread alive");

// Print every 0.10sec for 5 seconds | |
try { 1 |

Thread.sleep (100); oe

} catch (InterruptedException e) {[} — :
count++; Figure 8.2
if {count >= 50) break; MyRunnable

i Thread and
System.out.printin ("Thread stopping"); use the narr

} fy xun applet invok
process con

public void paint (java.awt.Graphics g) { apres objec

Page 203 of 244



Page 204 of 244

e interface

especially
Lanimation
constructor

nethod. As

rableAp-
creates an

le “this”

method for

‘Applet.

plet

8.2 Introduction to threads

g.drawString ("Thread demo 2",20,20);
j

} // class MyRunnableApplet

The diagram in Figure 8.2 shows schematically how this approach works.

8.2.3 Thread subclass vs. Runnable

The choice between these two thread creation techniques dependsonthe particular
application and what seems most appropriate and convenientfor it. Since Java
does not allow multiple inheritance, an appletclass that is already a subclass of
Applet or JApplet can become multithreaded by implementing Runnable.
The run(} method will have access to the variables and methods ofthe class.
For example, an applet animation may need parametersfor initialization and may
also need to invoke methods from the applet.

Extending Thread applies well to the situation where you wantto create a
specialized thread class that does not need to extend any other class. A common
case is where many workerthreads are needed suchas in a server program that

MyRunnableApplet

Create Thread object and pass
| reference to this Runnable object. —

thread=new Thread (this) —+—+—Be Thread
| Constructor saves reference|

to Runnable object.

 

Theninvoke
—|— start () retmsanda

thread.start () sg — 1 : .
to launchthread process new process begins with

invocation of run()imthe | |
Runnable object

| | rund <——. — runnable.run()

The process dies when
va run () returns

 
Figure 8.2. This diagram illustrates threading with a Runnable class.
MyRunnableaApplet implements the Runnable interface and it creates an instance of
Thread and passesin the constructor a reference to itself as a Runnable object. (We
use the name “runnable”for the reference variable to the Runnable object.) The
applet invokes the staxt () method for the thread and it returns while the thread
process continues independently withthe invocation of the run() method in the
applet object. When the thread process returns from the applet’s run() the thread
dies.

Page 204 of 244

257

 



Page 205 of 244

 
258

Page 205 of 244

Threads

assigns a worker to service eachclient that connects to it. When the client signs
off, the threaded worker process assignedtoit dies.

8.3 Stopping threads

A thread dies in three ways:

® it returns from run ()

¢ the stop() method is invoked (this method is now deprecated)

¢ it is interrupted by a runtime exception

Thefirst approachis always the preferred way for a thread to die. In the examples
shownabovein Section 8.2, we used a flag variable in a looptotell the run method
to finish. We recommendthis approachto killing a thread.

Do not use the Thread method stop () to kill a thread. The stop () method

has been deprecated. That meansthatit still exists in the class definition butis
officially marked as obsolete and should be avoided. The stop() method causes
the thread to cease whateverit is doing and to throw a ThreadDeath exception.
This can leave data in an unknownstate. For example, the thread might be midway
throughsetting the values of a group of variables when the thread was stopped.
This will leave some variables with new values and some with old values. Other

processesusingthose variables might then obtain invalid results. Furthermore, an
instruction involving a long or double type value can require two operations
in the JVM, which moves data in 32-bit chunks. So a thread stop might occur

after the first operation andleave the value in an indeterminate state. These kinds
of errors will be difficult to track downsincethe effect may not be seen until the

processing reaches anotherpart of the program.
As mentioned earlier, the best way to stop a thread is to signal that the pro-

cessing should return from run (). Setting a flag can usually accomplishthis. A
loop ean checkthe flag after each pass and escape from the loop with the flag
switches. This allows for the processto finish whatit is doing in a controlled
manner. In previous examples weset a booleanflag.In the applet below we use
the thread reference instead of a separate flag variable. Setting the reference to
nul1signals for the end of a loop in run () and also allows the garbage collector
to reclaim the memory used by the thread.

public class MyApplet extends Applet implements Runnable
{

Thread fMyThread;

public void init () {

 
publi

if

els

publi
£My

void

whi

}
}o// My.

Remember

unrelated tc

methodin °

control the

loaded (not

loaded). Th

any live thr

stop() is
loads a new

Furtherr.

inthe Thre

You can obt

signaling fc

creating a1
thread died

finished.

3.4 Mul

An operatil
for multithi



Page 206 of 244

8.4 Multiprocessing issues 259

client signs ;

public void start () {
if (fMyThread!= null) i

fMyThread.start ();
}
else

fMyThread = new Thread (this);
}

public void stop () {

e examples fMyThread = null;
run method }

/() method oe Mf
GaerEbUisis while (£MyThread!= null) {
thod causes }
Lexception. }

be midway } // MyApplet

as stopped.
lues. Other

iermore, an Rememberthat the start () and stop () methods in the Applet class are
operations unrelated to methods with the same names in the Thread class. Like the init ()

aight occur method in the Appletclass, these are just methods that allow the browser to
These kinds control the applet. The browser invokes start () each time the applet page is

loaded (note that init () is only invoked thefirst time the applet web pageis
loaded). The applet’s stop () isa goodplace to do housecleaning suchas killing
any live threads. Always explicitly stop your threads in applets when the applet

en until the

iat the pro-‘lish this. A stop () is called. Otherwise, they may continue running even when the browser
ith the flag loads a new web page.controlled Furthermore, do not use the deprecated suspend ( ) and resume () methods
‘low we use in the Threadclass for the same reasonsgivenfor not using the stop () method.

You can obtain effective suspend/resume operations by killing the thread (that is,
eference to

signaling for it to return safely from the processing in the run() method) and 
ze collector creating a new one with the same values of the variables as when the previous

thread died. The new thread will then simply continue from where the last one
finished.

table

8.4 Multiprocessing issues

An operating system executes multiple processes in a manner similar to that
for multithreading except that each process stack refers to a different program

 
Page 206 of 244



Page 207 of 244

 
260

Page 207 of 244

Threads

in memory rather than code within a single program. The Java Virtual Machine

(JVM)controls the threads within a Java program muchas the machine operating
system controls multiple processes.

In some JVM implementations, threads are directly assigned to native pro-
cesses in the operating system. Furthermore, in operating systems that support
muitiple physical processors, the threads can actually run ondifferent processors
and thus achieve true parallel processing.

Multiprocessing in Java withthreadsis relatively straightforward and provides
for great flexibility in program design. The JVMhandles mostof the details of
running threads but your program can influence the sharing of resources and
setting priorities for multiple threads.

8.4.1. Sharing resources

Just as in an operating system, when multiple threads need to share a processor
or other resources, the JVM must provide a mechanism fora thread to pause
and allow other threads the opportunity to run. The twobasic designs for context
switching of threads are:

¢ preemptive or time-slicing — give eachthread fixed periods of time to run

¢ non-preemptive or cooperative — a thread decidesforitself when to surrendercontrol

Generally, the preemptive approachis the mostflexible and robust. A misbehav-

ing thread cannot hogall the resources and possibly freeze the whole program.
Unfortunately, the context switching design is not specified currently for Java
and so different JVMs do it differently. Thus you should design your multi-
threaded code foreitherpossibility if you expect to distribute your program for
general use.

For example, you can explicitly add pauses to your threads to ensure they
share the processing. The static method yield () in the Threadclasstells the

currently executing thread to pause momentarily and let other threads run. The
static method sleep (long millis), where millis is in milliseconds,tells
the currently executing thread to pause for a specific length of time. There is
also the overloaded version method sleep(long millis, int nanos),
where the sleep time equals millis in milliseconds plus nanos in nanosec-
onds. (Mostplatforms, however, cannot specify time that accurately.) With these
two methods, you can ensure that when your program runs in a non-preemptive
environment, the threads will release control at suitable points in the thread code.

The resources needed for each thread is another aspect of multiprocessing
to consider when creating a high numberof threads. The maximum number of

thrcads depends on the stack space needed perthread and the amount of memory
available. The stack size default is 400 KB. For a 1 gigabyte address space this

 
should allow

itself plus am
an OutOfMel

8.4.2 Set

Every thread

trolled using

can be expec

ority threads.
the JVM imt

ity to JVM di

speed and res
resources.

The JVMi

ing capabiliti
Even among
details of that

and perhaps <
certain is tha

the thread scl

more threads

take into acc:

thread is per!

Overa long «
scheduled m:

at any given

a higherprio:
not a reliable

another. (See

which expan
of thread exe

With tho:

getPriori
Thread clas

® MIN_PRIOF

® NORM_PRIC

® MAX_PRIOF

The default |
threads alwa:



Page 208 of 244

tt Machine

3 operating

iative pro-

vat support
processors

d provides
: details of

yurces and

processor

1 to pause
for context

er control

misbehav-

: program.

y for Java
our multi-

ogram for

sure they
3s tells the

3 tun. The

onds,tells
. There is

nanos),
. nanosec-

With these

reemptive
read code.

wocessing
iumber of

fmemory

space this

‘8.4 Multiprocessing issues

should allow up to 2500 tiny threads, but in practice, because the thread code
itself plus any memory allocated for objects a thread uses takes up memorytoo,
an OutOfMemoryErrorwill usually occur far sooner.

8.4.2 Setting priorities

Every thread has an integer priority value between | and 10 that can be con-
trolled using methods in the Threadclass. Generally, higher priority threads
can be expected to be given preference by the thread scheduler over lower pri-
ority threads. However, the implementation of thread scheduling is left up to
the JVM implementation. This lack of specificity provides maximum flexibil-
ity to JVM designers since Java can be implementedon platforms with limited
speed and resources andalso onplatforms with multiple processors and extensive
resources. :

The JVM implementation must work within the native platform’s multithread-
ing capabilities, which might or might not include native multithreading features.
Even among host operating systems that natively support multiple threads, the
details of that supportare sure to be different amongdifferent operating systems
and perhaps amongdifferent hardware platforms. Aboutall that can be said for
certain is that higher priority threads should receive preferential treatment by
the thread scheduler compared to threads with lowerpriority. However, if two or
more threads are waiting for processor resources, the thread scheduler may also
take into account how long the threads have been waiting. The highestpriority
thread is perhaps likely to be the first to be scheduled, though not necessarily.
Over a long enough samplingtime, higherpriority threads will, on average, be
scheduled more often than lowerpriority threads, but that does not mean that
at any given time a lower priority thread might have control of the CPU while
a higherpriority thread is waiting. In general, changing Java threadpriorities is
not a reliable way to attemptto force one thread to always have preference over
another. (See Section 24.4 for a discussion ofthe real-time specification for Java,
which expands the numberofpriority levels to 28 and requiresstrict enforcement
of thread execution accordingto priority settings.)

With those caveats, you can get and set a thread's priority with the
getPriority() and setPriority() methods in the Thread class. The
Threadclass defines three constants:

® MIN_PRIORITY

* NORM_PRIORITY

e MAX_PRIORITY

The default priority is Thread .NORM_PRIORITY, which is 5, although new
threads always inherit the priority value of the creating thread. The following

Page 208 of 244

261

 



Page 209 of 244

 
262

Page 209 of 244

Threads

code increments a thread’s priority to one unit higherthan the normalpriority:

Thread threadX = new Thread (this);

threadX.setPriority (Thread.NORM_PRIORITY + 1);
threadX.start ();

Attempting to set a thread’s priority below MIN_PRIORITY or above
MAX_ PRIORITYresults in an IllegalArgumentException.

For multiple threads in a non-preemptive system, once one of them starts

 

running it will continue until one of the following happens:

sleeps via an invocation of sleep()

yields control with yield ()

waits for a lock in a synchronized method (synchronization is discussed in the next

section)

blocks on I/O such as a read(}) method waiting for data to appear
terminates with a return from run()

Wewill discuss synchronization and the wait () method inthe followingsection.

8.5 Using multiple threads

Programs for some tasks become mucheasier to design with threads, sometimes
with lots of threads. We’ve already mentioned animations, and in PartII wewill
see that client/server systems lend themselvesnaturally to multithreaded design —
the server can spin off a new thread to service each client. Some mathematical
algorithms, such as sorting and prime searching, also work well with multiple
threads working on different segments of the problem. On multiprocessorsys-
tems, JVMscantake advantage oftrue parallel processing and provide significant

speedups in performance for multithreaded applications.
There are basically four situations in which multiple threads operate:

1. Non-interacting threads — the actions of the threads are completely independentand
do not affect each other.

2. Task splitting — each thread works on a separate part of the same problem, such as

sorting different sections of a data set, but do not overlap with each other.
3, Exclusive thread operations — the threads work on the same data and must avoid

interfering with each other. This requires sytchronization techniques.

4, Communicating threads — the threads must pass data to each other anddoit in the
correct order.

Thelatter two cases can entail complex and often subtle interference problems
amongthe threads. We look in more detail at these four cases in the following
sections.

8.5.1 Ne

The simple

dently with
such a case

the values ¢

for demons

/** Dem
* calc

class Ti

{
ints £
int f

ints £

Outpu

/** Con:

intCouni
fIld =

EMaxI

fOutp
} // eke

/** Sim

public 3
while

foOutp
}

yo // cle

The progra
interface di:

tons (see Fi
which creat

import 7

import
import

public ¢



Page 210 of 244

8.5 Using multiple threads 263

priority: 8.5.1 Non-interacting threads

The simplestsituation with multiple threads is when each thread runs indepen-
dently withoutinteracting with any other thread. Below is a simple example of
such a case. We have one Thread subclass called IntCounterthat prints out

the values of an integer counter, We could do a moreinteresting calculation but
for demonstration purposes this will suffice.

or above

/** Demo Thread class to show how threads could do

1emstarts * calculations in parallel. **/
class ImtCounter extends Thread

{
int f1Id=0;

int fCounter = 0;

in the next int fMaxIter = 0;
Outputable fOutput;

/** Constructor to initialize parameters. **/

| IntCounter (int id, Outputable out) {
1g section. fId = id;

fMaxIter = 100000

fOutput = out;
} // ctor

‘ometimes
. ae i 1 1 1 wk ifIl we will / Simulate a calculation with an integer sum.**/

: | blic void nd design — | ae nf ne
. | while (fCounter < maxIter) fCounter++;‘hematical '
. fOutput.println ("Thread" + fId + ": sum = " + fCounter) ;

1 multiple }
@SSOF SYS- | } // class IntCounter
significant

e: The program NonInteractApplet, which implements the Outputable

: interface discussed in Chapter 6, provides a text area and “Go” and “Clear” but-
pe tons (see Figure 8.3). Clicking on “Go” invokes the applet’s start () method,

which creates three instances of this Thread subclass and starts them:
‘m, such as

must avoid import javax.swing.*;
import java.awt.*;

do it in the import java.awt.event.*;

| public class NonInteractApplet extends JApplet

problems : implements Outputable, ActionListener
following { Build interface .

 
Page 210 of 244



Page 211 of 244

 
264

Figure 8.3 Display of the
NoninteractApplet

program. The Go button
has been pushed several
timesto illustrate the
different order in which
the threads finish.

Page 211 of 244

Threads

// Pushing Go button leads to the invocation of this button
public void start () {

// Create 3 instances of each of the Thread subclass

IntCounter icl = new IntCounter (1, this);

IntCounter ic2 = new IntCounter (2, this);
IntCounter ic3 = new IntCounter (3, this);

// Start the threads
lci.start ();
ic2.start [);
ic3.start {);
} /f start

} // class NonInteractApplet

In the output shownin Figure 8.3 you see that the threads can finish in a different
order for each press of “Go”. The order depends on the time allocated to each
thread and on whatkind of thread scheduling the JVM uses. You can experiment

with different thread priorities by adding code to set the priorities of the three

thread instances differently. For instance, set ic1 to a high priority and ic3 toa

lowpriority before starting the threads

icl.setPriority (Thread.MAX_PRIORITY);
ic2.setPriority (Thread.NORM_PRIORITY) ;
ic3.setPriority (Thread.MIN_PRIORITY);

Start mr
| Thread 1: sum= 100000 |
Thread 3: sum = 100000
Thread 2 surm= 10

Start:
Thread 2: sur = 100
Thread 3: sum = 100
Thread 1: surn = 19000

start:

oe Ss = o

= 2 oo0a
Thread 3: surn = 100000
Thread 1: sum = 100000
Thread 3: sur = 190000

(Start:     
Thread 2: surn = 100000

| Thread 3: sur= 100000
Thread 1: surn = 100000

Start:
| Thread 1: sum = 100000 =
| Thread2cum—Anonmn

  |
|

|
| |

Se

Go || Clear |

 
8.5.2 Tas

The next le

problem but
integer valu

using differe

the specifiec
In the exe

snippet belc
positive non

{me
* Thre

* ina

+e
ciass Ma

{
int f°
int £
int fC

Output

(/** Gons
" what

*e/
MatHunte

int [-
int it

Output
,{

EDlQ—-

fJlo=:
fMatr:

fOucpr
Ye

{** Ep



Page 212 of 244

button

ss

a different

ed to each

‘Xperiment
f the three

dic3toa

 

8.5 Using multiple threads

8.5.2 Task splitting

The next level in complexity involves multiple threads working on the same
problem but on separate, non-interfering parts. For example, given a particular
integer valuc, a program could find the number ofprimes upto that value by
using different threads to work on different sections of the range between 1 and
the specified value.

In the example here, we use the task-splitting technique to scan a matrix. The
snippet below shows a class that searches a matrix and counts the number of
positive non-zero elements:

iR*

* Thread class to count the number of non-zero elements
* in a section of a matrix.

aK Y/

class MatHunter extends Thread

{
int [][] fMatrix;

int fIlo, £Ihi, fJdlo, fJhi;
int fOnes=0;

Outputabie fOutput;

/** Constructor gets the matrix and the indices specifying
* what section to examine.

aa
MatHunter (

int []{() imat,

int i1, int i2, int jl, int j2,
Outputable out

) {
fIllo=il; €Thisi2;

fJlo=jl; fuhi=j2;
fMatrix = imat;

fOutput = out;
} *f/7 ctor

/** Examine a section of a 2D matrix and
* count the number of non-zero elements,

aw]

public void run () f¢
for (int i=fIlo; i <= fIhi; i++) {

for (int j=fdlo; j <= fJhi; j++) {
if (fMatrixfil{j] > 0) fOnest++;

}

yield ();

Page 212 of 244

265

 



Page 213 of 244

 
266 Threads

}

fOutput.printin ("# ones =" + fOnes + “for i =" +
FIlo + "to" + fIhi + "& j =" + fJlo + "to" + fuhi);

} // run
} // class MatHunter

The program TaskSplitAppletcreates a matrix with a random distribution
of zero and non-zero elements. It then creates four instances ofMatHunter, one

for each quadrantofthe matrix. Each instance works on the same problem but in
a separate, independent section of the matrix.

public class TaskSplitApplet extends JApplet

implements Outputable, ActionListener

. Build the interface .

public void start {) {
int([J[] imat = new int[2000] [2000];

for (int i=0; i < 2000; i++) {

for (int j=0; 3 < 2000; j++) {
if (Math.random() > 0.5) imat[iJ{[j] = 1;

}

MatHunter mhl = new MatHunter (imat,0,999,0,999,this);
MatHunter mh2 =

new MatHunter (imat,0,999,1000,1999, this) ;
MatHunter mh3 =

new MatHunter (imat,1000,1999,0,999,this) ;
MatHunter mh4 =

new MatHunter (imat,1000,1999,1000,1999, this) ;

Println ("Start:");
mhi.start ();
mh2.start (};

mh3.start ();
mh4.start ()};

} // start

} // class TaskSplitApplet

Figure 8.4 showsthe results of different threadsfinishing in a different order each
time the “Go” button is pressed.

Page 213 of 244

Start
#ones = $004
#ones = 5000
# ones = 5007

| #ones = 5004
Start

| #ones = $000
# ones = 4989

| #ones = 4996
# ones = 5000

Start
#ones = 4996
# anes = 4998
#oanes = 4998
# ones = 4999

‘Start:
| #ones = 5005

SennaERG

Figure 8.4 C
result in a dif

8.5.3 Ex

Threading b
with each o1

processes be
from an exa

a number in

ity is empty
from Cavit

would alterr

special step:

the Cavity
still full.

This type
do its task w

nization sch:

in single file
occur.

In this ca

to invokeeit

lock on the «

other thread

lock termino

The term me



Page 214 of 244

fdghi);

listribution

inter, one
blem but in

, this);

torder each

 

 

8.5 Using multiple threads

iStart 1a!
| # ones = §00459 fari=0 to 999 &j= Uto 999
| # ones = 500010 fori= Oto 999 &j=1000 to 1999

# anes = 500734 fori= 1000 to 1999 &j=0 to 999 |

| # anes = 00422 fori= 1000 to 1999 &j= 1000 to 189 |Start:
# ones = 500036 fori= 1000 to 1994 &j= 1000 to 199

| # ones = 498996 fori= Oto 999 &j=0 to 999 |
| #ones = 499807 fori=0 ta 999 &j=1000 to 1999

| # ones = 500080 fori= 1000 ta 1899 &j= 0 to 999
(Start:
| #ones = 499307 fori= 0 to 999 &j= 0 to 944
| # ones = 499852 fori= 1000 ta 1999 &j= 0 to 99g |
# ones = 499832 forizOto999&j=1000to1999 | |

| # ones = 499988 for i= 1000 to 1999 &j= 1000 to 199 |\Start:

# ones = $0058? fori=0 ta 999 &j= Oto 99g |
tanes.= ASORMLinei = 0.10.999.8.1= 1,000. to4.080 =

 

 
= ——

| Go || Clear |

Figure 8.4 Display of TaskSplitApplet program. Pressing the “Go” button can
result in a different sequence in the completion times of the thread gach time.

8.5.3 Exclusive thread operations

Threading becomestrickier when threads perform operations that can conflict
with each other. For example, Figure 8.5 depicts a situation where two thread
processes both want to access an object but for different purposes(this is derived
from an example in the Sun Java Tutorial). The Filler thread wants to put
a number into the bin variable in the Box. It can only do so when the cav-

ity is empty. The Getter, on the other hand, wants to retrieve the number

from Cavity and leave the Cavity empty. Ideally, Filler and Getter
would alternate their calls to the methods put () and get (). However, if no

special steps are taken, it is quite easy for Getter to invoke get () when

the Cavity. is empty and for Filler to invoke put () when the Cavityis
still full.

This type of situation is called a data race because each thread is racing to

do its task without waiting for the other threadto finish its activity. A synchro-

nization scheme prevents this problem. Synchronization forces threads to wait

in single file at the method or code block of an object where the conflict can
occur.

In this case, this means that the Box object only allows one thread at a time

to invoke either its put () or get (). It is as if only one thread object owns the

lock on the door to a Box object. That thread must give up the lock before any
other thread can access amy synchronized method on the object. (Note that the
lock terminologyis by convention. Giving up the key might be more illuminating.
The term monitoris also used.)

Page 214 of 244

267



Page 215 of 244

 
268

Page 215 of 244

Threads

 

 
 
Figure 8.5
The Getter needs, however,to waittill the bin is filled. (b) While the Filler places a
value in the bin via the synchronized put () method, the Getter cannotinvoke the
synchronized get () method. (c} Similarly, the Filler must wait till the Getter
finishes invoking the get () method before it can invoke put ().

In the following code for the Box class, we see that the get () and put ()
methods are prefaced by the modifier synchronized. This indicates that only
one thread can invoke either of these methodsat the sametime for the same object.

That is, during the time that a thread executes, say, the get () method, no other
thread can execute either the get () or put () method for the same Box object.

(a)

(b)

©)

bin

bin

 
public class Box
{

private int f£Bin;
private booiean fFilled = faise;

put () C)

 
 

& 
 

put) (@) 
(a) The Filler and Getter threads need io access the hin in the Box.

Outputable fOutput;
/** Constructor obtains reference to Outputable object,

Box

KK

 

(Outputable out) f{
foutput = out;

 
f** T:

public
whi

we

£Fi!
£Oui
not:

rett

J} //e¢

a6" If

public
whil

ce

fBin
fFil
fOut
noti

. // pi
} // clas

We want to e

interference |
one Box obje
different Box

This code

thread invoke

object becaus

is granted the
check is made

alreadytrue (
Similarly, dur
wait() isin
and remains a



Page 216 of 244

8.5 Using multiple threads 269

} // ctor

/** Tf bin is not filled, wait fox it to be. **/

public synchronized int get () {

while (!fFilled){
try {

walt ();
}

catch (InterruptedException e) {}
}
fFilled = false;

fOutput.printin ("Get value:" + fBin);
notifyAll ();
return Bin;

}o¢/ get

/** Tf bin is filled, wait for it to be emptied. **/
public synchronized void put (int value) {

while (fFilled) {

try {
wait ();

}

catch (InterruptedException e) {}
} 1 the Box.

ler places a fBin = value;
invoke the | fFilled = true;
Getter fOutput.println ("Put value: " + f£Bin);

notifyAll ();
} o¢/ put

and put () } // class Box
tes that only

‘cot. . | | |

odma We want to emphasize that each instance of Box has its own lock. There is noer ;
a: interference problem amongdifferent Box objects. [f a thread owns the lock on
Box object. } one Box object, this does not prevent another thread from owning the lock on a

I different Box object.
This code alsoillustrates the wait () andnotifyAl1() methods. When a

thread invokes put () or get (), it will wait until it is granted the lock for that

object because of the presence of the synchronized keyword. Once the thread
is granted the lock, it continues on through the method. Inside the method, a

check is made on the £Filled flag. When attempting a put (), if EFilledis

object. already true (i.e. if the bin is already full), then an explicit wait () is invoked.

Similarly, during a get (), if £Filled is false (i.e. if the bin is empty), then
wait () is invoked. Invoking wait () means that the thread gives up the lock
and remains at that pointin the method until notified to continue.

 
Page 216 of 244



Page 217 of 244

 
270

Page 217 of 244

Threads

Let’s suppose that the Filler thread finds that Filled = true during
the put () method;that thread will go into a wait state. Since Filledis true,
the Getter thread passes the £Filledtest in the get () method, obtains the
£Bin value, sets the £Filled flag to false, and invokes notifyAl11 () before
itreturns. The notifyAll () method causesall threadsin a wait state to attempt
to acquire the lock. Whenthe lockis released by the Get ter in the synchronized
get () method, the Filler thread can acquire the lock and continue on through
the put () method and fill the bin again.

The following code shows the Fillerclass. In the run() method, a loop
puts a value into the box and then pausesfor a random period of time before doing
it again. For each pass of the loop, the put () invocation results in the printing
of a messagevia the Outputable reference.

public class Filler extends Thread
{

private Box =Box;

public Filler (Box b) {
fBox = b;

public void run (} {
for (int i=0; i < 10; i++) ¢{

£Box.put (1);
try {

sleep ((int} (Math.random ()} ~*~ 100));
}

catch (InterruptedException e) {}

bo sun.

} // class Filler

The following code shows the Getter class. The loopin its run () method will
continue until it gets ten values from the box. Note, however, that the process will
experience occasional wait states in the get () method in Box to give time for
the Filler to do its job.

public class Getter extends Thread
{

private Box {fBox;
private int fNumber;

public Getter (Box b) {
£Box = b;

otPut value:
Get value:
Putvalue: 1

jGet value: ¢
Putwalue: 2

iGet value:
Fut value: :
iGet value: :
[Pul value:
iGet value: «

[Put value:
(Get value:
iPut value:
iGet value:
}Put value:
(Get value:
{Put value:
iGet value:
|Put value:
iGet value:

fe

lmmentts
on

retee

Figure 8.6
as theyfill

publ
ir

fc

bff
} f/f ie

The snipp
and a Get

output. We
threads ea

public



Page 218 of 244

ue during
ad is true,
»btains the

.() before

to attempt
wchronized

yn through

od, a loop

fore doing

le printing

nethod will

yrocess will

ve time for

 

 

8.5 Using multiple threads 271

Put value:
Get value:

Put value:
iGet value:
Put value:
Get value:
iPut value:
iGetyalue:
Putvalue:
Get value:
Put value:
Get value:
|Put valug:
Set value:

Put value:
Get value:
Put value:
Get value:
Put value:
Get value:

DanaeanonneewwHAtoS|   
Figure 8.6 The output of the Filler and Getter threads for the Exclusiveapplet
as they fill and retrieve a bin value in a Box object.

}

public void run () {
int value = 0;

for (int i=G; i < 10; it4) {

fNumber = f£Box.get ();
}

} // run
} // class Getter

 
The snippet from ExclusiveApplet shownbelow creates a Box, a Filler,
and a Getter object and then starts the two threads. Figure 8.6 showsa typical
output. We see that the synchronization prevents a data race situation and the two
threads each complete their respective tasks.

public class ExclusiveApplet extends JApplet

implements Outputable, ActionListener

Build the interface

 
Page 218 of 244



Page 219 of 244Page 219 of 244

Threads

/** Create Filler and Getter thread instances and start
* them filling and getting from a Box instance. **/

public void start () {

Box b = new Box (this);
Filler f1 = new Filler (b);
Getter bl = new Getter (b);

fl.start ()
bl.start ()

} // start

i

} // class ExclusiveApplet

8.5.4 Communications among threads

In the previous section, we discussed the case where multiple threadstry to access
an object and can step on eachotherif not properly synchronized. Here we look
at the eventrickier situation where a thread needsto access data in another thread
and mustalso avoid a data race situation.

The standard example for communicating threads is the producer/consumer
paradigm. The producer object invokes its own synchronized methodto create
the data of interest. The consumercannotinvokethe producer’s get ()} method,

which is also synchronized, until the producer has finished with its creation
method. The producer, in effect, locks its own door to the consumer until it
finishes making the data. (Imaginea physical store that locks its doors and does
notallow shoppers in while restocking the shelves.) Similarly, while the consumer
gets the data from the producer,it obtains the /ock and prevents the producerfrom
generating more data until the consumer is finished.

Below weillustrate this paradigm with a programin which the Sensor class
represents the producerthread and DataGet terrepresents the consumer thread.
Aninstance of Sensor obtainsits data (here just clock readings) in a loop in
run() via calls to the synchronized sense() method. The data goes into a
buffer array. A thread can invoke get () in Sensorto obtain the oldest data in
the buffer. The indices are set up to emulate a FIVO (First-In-First-Out) buffer.
Whenthe bufferis full, the Sensor thread waits for data to be read out (thatis,

it gives up the lock by calling the wait () method).
To obtain the data, aDataGetter instance invokes the synchronized get ()

method in the Sensor instance. If no new data is available,it will give up the

lock and wait for new data to appear(that is, when notifyA11() is invoked in
the sense () method).

This snippet from DataSyncAppletcreates the sensor andstarts i. Then a
DataGetteris created andstarted.

 
public

| {** C

| -.
xx /

publi
if
Ser
S.f

df
dd
Dat

dg.
} ff

}o// cl

The Sensc

the number

ment of a |

should go.
The £Get:
DataGett

than the Mz

then the se

Whenthe 1

wake the S«

no longer a
data. Other

import
{rt

| * This

* that
fe f

public.
1

| // Si

| priva



Page 220 of 244

8.5 Using multiple threads 273

|

start public class DataSyncApplet extends JApplet
we implements Outputable, ActionListener

{

| Build the interface

| /** Create Sensor and DataGetter thread instances and
* start them filling and getting from a Box instance,

as

| public void start() {
| // Create the Sensor and start it

Sensor s = new Sensor (this);

| s.start ();

| /f Create DataGetter and tell it to obtain
// 100 sensor readings.

DataGetter dg = new DataGetter (s, 100, this);
dg.start ();

y to access } // start
re we look ea te

ther thread | } #/ class DataSyncApplet

wom The Sensor (seecode below) produces one data value (just a string containing
) method, the number of milliseconds since the program began) and stores it in an ele-
s creation ment of a buffer arrays The fBufIndex keeps track ofwhere the next value
‘er until it should go. Whenit reaches the end of the array, it will circle back to the start.
= and does The £GetIndex marks the value in the buffer that will be sent next to the
consumer DataGetter. The £Get Index should never fall farther behind fBufIndex
ducer from than the MAXGAP value(set here to 8). If the lag reaches the value of fMaxGap

then the sensor goes into a loop with an invocation of wait () for each pass.

asor class When the DataGetter invokes the get () method, the notifyAll () will
ner thread. wake the Sensor thread from its wait state and it will check the lag again.If it is
sA,lo5p in no longer at the maximum, the process leaves the wait loop and produces more

. data. Otherwise, it loops back around and invokes wait () again.
roes into a
lest data in

yut) buffer. import java.util.*;
rut (that is, ie

* This class represents a sensor producing data

red get () * that the DataGetter objects want to read.*/

public class Sensor extends Thread
{

| // Size of the data buffer.

sit. Then a private static final int BUFFER_SIZE = 10;

sive up the
invoked in

 
Page 220 of 244



Page 221 of 244

 
274

Page 221 of 244

Threads

// Don’t let data production get more than
// 8 values ahead of the DataGetter

private static final int MAXGAP = 8;
private String [] fBufter;

private int fBufIndex = 0; // sensor data buffer index
private int fGetIndex = 0; // data reading index
private final long fStart = System.currentTimeMillis ();

boolean fFlag = true;

Outputable fOutput;

/** Constructor creates buffer. Gets OCutputable ref. **/
Sensor (Outputable out) {

fOutput = out;
fButfer = new String [BUFFER_SIZE] ;

}

{** urn off sensor readings. **/

public void stopData () {
£Flag = false;

/** Take sensor readings in a loop until flag set false.
ee

public void run () {
// Measure the parameter of interest
while (fFlag) sense ();

/** Use clock readings to simulate data. **/

private final String simulateData () {
return "" + (int) (System.currentTimeMillis () —
start);

}

/** Use indices f£BufIndex, fGetIndex, and the lag()
* method to implement a first-in-first-out (FIFO)
*Lbuffer. **/

synchronized void sense (} {
// Don’t add more to the data buffer until the getIndex
// has reached within the allow range of bufIndex.
while (lag () > MAXGAP) {

try {wait ();}
catch (Exception e) {}

}

fBuffer(fBufindex] = simulateData (};

fOutput.printin("Sensor["+ (fBufIndex) + "] = "
+ £Buffer[fBufIndex]);

fr

/
ii

} ft

[Rr

int

St

af

£C

/;
i
re

} /7

} fice

The Date

gets its m.
DataSyn

import

f eke Th
* To

asi:
* ev



Page 222 of 244

8.5 Using multiple threads 275

| // Increment index to next slot for new data
| fBufIndex++;

|

|

// Circle back to bottom of array if reaches top

ndex if (fBufIndex == BUFFER_SIZE) fBufIndex = 0;
notifyAll ();

is (); | } // sense

| /** Calculate distance the DataGetter is running behind
* the production of data. **/

int lag () {

er | j int dif = £Bufindex — fGetIndex;

i if (dif < 0) Gif += BUFFER_SIZE;

i return dif;
}

/** Get a data reading from the buffer. **/

synchronized String get () {
// When indices are equal, wait for new data.
while (fBufIndex == fGetIndex) {

try{ wait(); }
false. catch (Exception e) {}

}

notifyAll ();

// Get data at current index

String data = fBuffer[fGetIndex] ;

// Increment pointer of next datum to get.
£GetIndex++t;

)- // Circle back to bottom of array if reaches top
if (£GetIndex == BUFFER_SIZE) fGetIndex = 0;
return data;

} // get
) } // class Sensor

2)

The DateGet ter grabs a data value from the sensor after random delay until it

get Index gets its maximum number ofdata values. Figure 8.7 shows typical output from
ex, DataSynec.

import java.util.*

/** This class obtains sensor data via the get () method.
* To simulate random accesses to the sensor, it will

* sleep for brief periods of different lengths after

* every access. After the data is obtained, this thread

 
Page 222 of 244



Page 223 of 244

 
276 Threads

* will stop the sensor thread. **/

public class DataGetter extends Thread
{

Sensor fSensor;

Outputable fOutput;
int fMaxData = 1000;
int fDataCount = 0;

DataGetter (Sensor sensor, int maxNum, Outputable out) {
fSensor = sensor;

fMaxData = maxNuin;

FOutput = out;
}

/** Loop over sensor readings until data buff filled. **/
public void run () {

Random r = new Random [};

while (true) f

String data = fSensor.get();

fOutput.printin(fDataCount++ + “. Got: " + Gata);

// Stop both threads if data taking finished.
if (fDataCount >= fMaxData) {

fSensor.stopData ();
break;

}

// Pause briefly before access the
// @ata again.
ery

sleep (r.nextint () % 300);
}

catch (Exception e) {}
}

} // yun

} // class DataGetter

8.6 Animations

A populartask for a thread in Java is to control an animation. A thread process
can direct the drawing of each frame while other aspects of the interface, such as
responding to user input, can continuein parallel.

The Drop2DApplet program below illustrates a simple simulation of a
bouncing ball using Java 2D drawingtools. The applet creates a thread to direct
the drawing of the frames of the animation as the ball falls and bounces on the

Page 223 of 244

floor and g:
subclass of

the ball. Dr

The app
a thread to

first does sc

animation.

method in 1

frame. If th

method, thi

import
import
import

f** Thi.
mate ©)

public

f/f Wi



Page 224 of 244

8.6 Animations 277

 
SS —— Figure 8.7 Output of the

[Sensor{d] = 0 i] ot
jsensor{t} = 0 |_| eea pplet program'Sensar[2] = 0 4 with Sensor and
‘Gensar[3] = 0 DataGetter classes.
0. Got: 0
‘Sensor[4] = 0
iSensSensoar[6] = 0 jorls] =O
\Sensor[?] = 0
iSensot[e] = 0

t) ¢{ Sensor{(a] = 0
Sensor(0] = 235

(1. Got 0 |
Sensor] = 485 in
:2. Gat: 0 | | i
3. Gat: 0 a

eeY/ | Sensor(2! = 435 a
| Sensor(3] = 625 i
| 4 Got: 0 wp
| 5. Got 0 | '
| Sensor[d] = 625 |_| tn'6_Got.0 _ a __ ivi ie

): | = - == = hy

| Go Clear Ny
floor and gradually comesto a rest (see Figure 8.8). The interface consists of a
subclass ofJPanel called Drop2DPane1 and a button to initiate a new drop of

| the ball. Drop2DPanel displays the ball and calculates its position.
The applet implements Runnable and in the start () method it creates

a thread to which it passes a reference to itself. The applet’s run() method
| first does someinitialization and then enters a loop that draws each frame of the

animation. The loop begins with a 25 millisecond pauseusingthe static sleep ()
method in the Thread class. Then the Drop2DPanelis told to paint the next

frame.If the drop is done, the process jumps from the loop and exits the run ()
method, thus killing this thread.

import javax.swing.*;
import java.awt.*;

  
import java.awt.event.*;

Figure 8.8 The

| process | /** This applet implements Runnable and uses a thread Drop2DApplet program
, such as * to create a simple dropped ball demonstration.**/ demonstrates how to

public class Drop2DApplet extends JApplet create a simple
ion of a implements Runnable, ActionListener animation by simulatinga droppedball that
to direct . it hi// Will use thread reference as a flag bounces whenit hits the
2s on the floor and gradually

comesto rest.

 
 

Page 224 of 244



Page 225 of 244

 
278

Page 225 of 244

Threads

Thread fThread = null;

Drop2DPanel fDropPanel;
JButton fDropButton;

/** Build the interface. **/

public void init () {
Container content_pane = getContentPane (}j;

Content_pane.setLayout (new BorderLayout ({));

// Create an instance of DropPanel

£DropPanel = new Drop2DPanel ();
// Add the Drop2DPanel to the content pane.

Content_pane.ada (BorderLayout .CENTER, fDropPanel) ;
// Create a button and add it

fDropButton = new JButton ["Drop');

fDropButton.addActionListener (this);
Content_pane.add (BorderLayout.SOUTH, £DropButtor) ;

) ff anit

/** Start when browser is loaded or button pushed. **

public void start ({) {
// Tf the thread reference not nuil then a

// thread is already running. Otherwise, create
// a thread and start it.

if (fTthread == null) {
fThread = new Thread (this);
fThread.start();

}
> ff start

/** Applet's stop method used to stop thread. **/
public void stop {) {

// Setting thread to null will] cause loop in
// vun() to finish and kili the thread.
fThread = nuli;

+ // stop

/** Button command, **/

public void actionPerformed (ActionEvent ae) {
if (fDropPanel.isDone ()) start ();

/** The thread loops to draw each frame of Grop. **/

public void run () {
// Disable button during drop
fDropButton.setEnabled (false);

 

vi

fDr

if
whi

if
fdr

} f/f
} /# cle

The Drop2
the ball for

reverses the

friction. Eve

is done.

import

import
import
import

PEF¢

public «
{

// Pa
doub!]
// Co

doubl
doubl
doubl

st

doubl
f/ PY

doubl
/yll Bil
poole



Page 226 of 244

 
n); '

8.6 Animations

// Initialize the ball for the drop.

f£DropPanel.reset ();

// Loop through animation frames
while (£Thread!= null) {

// Sleep 25msecs between frames

try{Thread,sleep (25);
}

catch (InterruptedException e) {}

// Repaint drop panel for each new frame
fDropPanel.repaint ();

if (f£DropPanel.isDone ()) fiThread = null;
}
// Enable button for another drop

£DropButton.setEnabled (true);
} // actionPerformed
// class DropApplet

| The Drop2DPanelclass is shown below. The panel calculates the position of
the ball for each incrementof time between the frames and redrawstheball. It
reversesthe ball whenit hits the floor and also subtracts some speed to simulate
friction. Eventually, the ball comesto a rest andsetsa flag that the drop simulation
is done.

import javax.swing.*;
import java.awt.*;

import java.text.*;

} import java.util.*;

/** This JPanel subclass displays a falling ball.

public class Drop2DPanel extends JPanel
{

 
 

Page 226 of 244

// Parameters for the drop
double f¥ = 0.0, fVy = 0.9;

// Conversion factor from cm to drawing units
double fYConvert = 0.0;

double £XPixel= 0.0, fYPixel = 0.0,

double fRadius = 0.0. fDiam = 0.0;

// starting point for ball in cm
double fY0 = 1000.0;

// Frame dimensions.
double fFrameHt, fFramewd;

// Flag for drop status
boolean fDropDone = false;

279



Page 227 of 244

 
280

Page 227 of 244

Threads

Ellipse2D £Ball;

/** Reset parameters for a new drop. **/
void reset () {

fFrameHt = getHeight ();
fFramewWd = getWidth ();

£XPixel = getWidth ()/2;
fY = fy0; fvy = 0.0;

// Conversion factor from cm to pixels
// Start the ball about 20% from the top.
fyConvert = fFrameHt / (1.2 * EYO);

// Choose a size for the ball relative
// to height of drawing area.
fRadius = (int) ((0.1 * fY0) * fyConvert);
fDiam = 2 * fRadius;

// Make the ball

EBall = new Ellipse2D.Double (f£XPixel-fRadius,
fYPixel-fRadius,

fDiam, fDiam);

setBackground (Color.WHITE);
fDropDone = false;

} // reset

/** Draw the ball at its current position. **/

public void paintComponent (Graphics g) {
super.paintComponent (g);
Graphics2D g2 = (Graphics2D)g;
// Antialiasing for smooth surfaces.

q2.setRenderingHint (RenderingHints .KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

// Determine position after this time increement
calcPosition ();

// Move the ball.
fBall.setFrame(fxPixel-fRadius, fYPixel-fRadius,

£Diam, FDiam);

// Want a solid red ball.

g.setColor (Color.RED);
g2.f£i11(£Ball);
// Now draw the ball

g2.draw (fBall);

 

}// paint

/** Calcu
void calc

// Inex
double

f/ Calc
fy = f

EVy = 1]

// Con,
fYPixel

// Reve

if ((f£)
£\

/?
£\

fi
fi
ii

}
} // cale

/** Provi

public be
return

}

} // class

8.7 Timers

A timer provide
timer can:

* signal the redray

* issue periodic re

* trigger a single 1

As we saw in the

own simple time:

action for a givel



Page 228 of 244

8.7 Timers 281

}// paintComponent

/** Calculate the ball position in the next frame. **/
void calcPosition () {

| // Increment by 25 millseconds per frame
double dt = 0.025;

// Calculate position and velocity at each step

fy = fY + fvy * dt — 490.* dt * dt;
fvy = fVy — 980.0 * dt;

// Convert to the pixel coordinates
| fYPixel = fFrameHt — (int) (fy * fYConvert);

// Reverse direction when ball hits bottom,

if ((f£¥Pixel + fRadius) >= (fFrameHt-1)) {
fVy = Math.abs (f{Vy);
// Subtract friction loss

fVy — = 0.1 * £Vy;

// Stop when speed at bottom drops Timer fyplets
// below an arbitrary limit

if (fVy < 15.0) ¢
fDropDone = true;

}

} // calcPosition

/** Provide a flag on drop status. **/

 
public boolean isDone () {

return fDropDone;
}

} /f class Drop2DPanel

LIASING,

8.7 Timers
ment

A timerprovides for periodic updates and scheduling of tasks. For example, a
timer can:

jius,
® signal the redrawing of frames for an animation

® issue periodic reminders as with a calendarapplication

° triggera single task, e.g. an alarm,to occurat a particular time in the future

As we saw in the previous section, with the Threadclass you could create your
own simple timer using the Thread.sleep (long millis) method to delay
action for a given amount of time. This approach, however, has some drawbacks.

 
Page 228 of 244



Page 229 of 244

7:16:10 PM

Figure 8.9 The
ClockTimerl and

ClockTimer2 programs,

which both provide a
current time display like
that shownhere,illustrate

java.util.Timer and
javax.swing.Timer,

Page 229 of 244

Threads

For periodic events, if the duration of processing in between the sleep periods
varies significantly, then the overall timing will vary with respect to a clock. Also,
ifyou need several timer events, the program will require several threads andthis
will use up system resources.

Java provides two timerclasses [5-7]:

* javax.swing.Timer came with the Swing packages and is useful for suchtasks as

prompting the updating of a progress bar .
¢ java.util. Timerandits helperclass java.util .TimerTaskprovideforgeneral

purpose timers with more features than the Swingtimer

These timers can provide multiple timed events from a single thread and thus
conserve resources. They also have useful methods such as scheduleAt-
FixedRate(TimerTask task, long delay, long period) injava.
util. Timer. This method will set events to occur periodically at a fixed rate

and ties them to the system clock. This is obviously useful for many applications
such as a countdowntimer and an alarm clock where you don’t want the timing
to drift relative to absolute time.

8.7.1. java.util.Timer and TimerTask

The Timer and TimerTask combo in java.util offers the most general

purpose timing capabilities and includes a numberof options. A Timer object
holds a single thread and can control many TimerTaskobjects. The TimerTask
abstract class implements the Runnable interface but it does not provide a
concrete run() method. Instead you create a TimerTask subclass to provide
the concrete run () method with the code to carry out the task of interest.

In the example below, we create a digital clock using a timer to redraw a
time display every second. The clock display uses DateFormatPanel, which
we describe in Chapter 10 when discussing the date classes. Whenever this
panel is drawnit displays the current time. The applet adds an instanceofthis
panel to its content pane and in the start () methodcreates an instance of
java.util.Timer.

A subclass of Timer'Taskcalled UpdateTaskoverrides the run () method
and simply tells the panel to redraw itself. UpdateTask is defined as an inner
class here and has access to the clock panel reference. The timer schedules
calls to the UpdateTask every 1000 milliseconds. Figure 8.9 shows the clock
display.

import javax.swing.*;
import java.awt.*;
import java.util.*;

/** This applet implements Runnable and uses a thread

 

 
public

java
// Ne
Datel

publ:
Co

fé
fc

‘/
co

—

publ
fi
fT

Tf
fi
£1

pane

publ

(Note than

necessary
fTimer \

whether y



Page 230 of 244

8.7 Timers 283

‘p periods * to create a digital clock. **/

ock. Also, public class ClockTimerl extends Japplet
1s and this {

java.util.Timer fTimer;
// Need panel reference in run().
DateFormatPanel fClockPanel;

 

ch tasks as

public void init () {
for general Container content_pane = getContentPane ();

Cc te an instan f DrawingP. 11 andthus // Crea an in ce oO ingPanefClockPanel = new DateFormatPanel ({);
duleAt-—

injava. | // Bdd the DrawingPanel to the contentPane.

fixed rate content_pane.add (fClockPanel);

yplications

the timing
public void start () {

// Create a timer.

fTimer = new java.util.Timer ();

ist general /f Start the timer immediately and then repeat calls
aoe object // to run in UpdateTask object every second.
merTask fTimer.schedule (new UpdateTask (), 0, 1000) ;

: }
provide a

to provide /** Stop clock when web page unloaded. **/
2rest. , :

dr public void stop () {
> Te aw a | // Stop the clock updates.
.e1, which | fTimer.cancel ();
mever this i }

nce ofthis

nstance of /** Use the inner class technique to define the
| * TimerTask subclass to update the clock.**/

() method class UpdateTask extends java.util.TimerTask {
public void run () {as an inner

schedules

s the clock

fClockPanel.repaint ();

}

} // class ClockTimer1l

(Note that since we import both javax.swing.* and java.util.* it is
necessaryto use thefully qualified type java.util.Timer when declaring the
#T4imervariable. Without the full qualification, the compiler would not know
whether we wanted javax.swing.Timer or java -util.Timer.)

 
 

Page 230 of 244



Page 231 of 244

284

Page 231 of 244

Threads

8.7.2 javax.swing.Timer

Althoughit has fewer options, the javax.swing.Timer can do some ofthe

samebasic timing tasks as java.util .Timer. Below we show anotherversion

of the digital clock except that it uses javax.swing.Timer. This timer con-

tacts an ActionListener after every time period rather than a TimerTask

object. Here the applet implements the ActionListener interface. The con-

structor for the timertakes as arguments the update period value and the reference

to the applet. The timeris then started and after every second the actionPer-

formed () method will be invoked and the clock panel repainted. The applet’s
stop() method stops the timer.

import javax.swing.*;

import java.awt.*;
import java.awt.event.*;

import java.util.*;

/** This applecr implements Runnabie and uses a thread
* to create a digital clock. **/

public class ClockTimer2 extends JApplet
implements ActionListener

javax.swing.Timer fTimer;

// Need panel reference in run/).
DateFormatPanel fClockPanel;

public void init () {
Container content_pane = getContentPane ();

// Create an instance of DrawingPanel
fClockPanel = new DateFormatPanel (};

// Add the DrawingPanel to the contentPane.
content_pane.add (fCLockPanel) ;

public void start () {
// Send events very 1000ms.

fTimer = new javax.swing.Timer (1000, this);

// Then start the timer.
fTimer.start ();

 

 
 

f/f 7:

publ:
ob
if

// Ss

publ

8.8 Cal

Java Rele:
concurren:

tures beyc

the new g:

have expla

8.9 We

The Web €

and exam}
new java

In the |

and subcl:

histogram
to simulat

tools in Ja

of entries

This in

oriented ¢

classes, ar
ical answe

Option tha
classes. Es

refactorin,
mon supe
section. T



Page 232 of 244

omeofthe

her version

timer con-
imerTask

3. The con-

e reference

tionPer-

‘he applet’s

 
8.9 Web Course materials

// Timer creates an action event.

public void actionPerformed (ActionEvent e) {
Object source = e.getSource ();
if (source == fTimer)

fClockPanel.repaint ();

// Stop clock when web page unloaded

public void stop {) {
//f Stop the clock updates.
fTimer.stop ();

}

} // class ClockTimer2

8.8 Concurrencyutilities in J2SE 5.0

Java Release 5.0 adds numerous enhancements to the threading control and

concurrency features of Java. Some of the enhancements are advanced fea-
tures beyond the scope of this book, and others require an understanding of
the new generics feature of 5.0. So we defer discussion of these until after we
have explained generics in Chapter 10.

8.9 Web Course materials

The Web Course Chapter 8: Supplements section provides additional information
and examples dealing with threading. This includes additional discussion of the
new java.util.concurrenttools available with Java 5.0.

In the Chapter 8: Zech section we expand the numberof histogram classes
and subclasses as we add new capabilities. For example, we create an adaptive
histogram class that can expandits range limits as new data arrives. We use timers
to simulate the reading of data to plot in a histogram. We also discuss sorting
tools in Java and use them to sortthe bins in a histogram according to the number
of entries in the bins. We use a thread to animate the sorting of a histogram.

This increase in histogram classesillustrates a common challenge in object-
oriented programming: when to modify existing classes, when to create sub-
classes, and when to create whole new classes. Subclasses would seem the log-
ical answer for an OOP environment but many small revisions for every new

option that comes along can quickly lead to an unmanageable plethora of sub-
classes. Eventually, your entire class design may need to be re-worked(also called
refactoring, with the implication that commonparts arefactored out into a com-
mon superclass). We discuss class design and refactoring further in the Zech
section. The Physics section looks at issues involved in animating simulations.

Page 232 of 244

285

 



Page 233 of 244

 
286

Page 233 of 244

Threads

References

[1] Scott Oaks, Henry Wong, Java Threads, 2nd edn, O'Reilly, 1999.
[2] Lesson: Threads: Doing Two or More Tasks At Once — The Java Tutorial, Sun

Microsysiems, http: //java.sun.com/docs /books/tutorial/
essential/threads/.

[3] Howto Use Threads in Creating a GUI with JFC/Swing — The Java Tutorial, Sun
Microsystems, http: //java.sun. com/docs/books/tutorial/uiswing/
misc/threads.html.

AWT Threading Issues — Java 2 Platform, Standard Edition, API Specification,
http: //java.sun.com/j2se/1. 5/docs/api/.

[5] Using the Timer and TimerTask Classes — The Java Tutorial, Microsystems,
http://java.sun. com/docs/books/tutorial/uiswing/misc/

[4 fans)

cimer. html.

[6] Using Timers to Run Recurring or Future Tasks on a Background Thread, JDC Tech Tips,
May 30, 2000, http: //java.sun. com/ developer /TechTips/2000/
tt0530.html#tip2.

John Zukowski, Using Swing.Timers, JDC Tech Tips, May 21, 2002,
http: //java.sun. com/developer/gDCTechTips/2002/ ttO521.html.

(7oe  

Chapte!

Java il

9.1 Intre

Java provide
on the conc

one directio

correspondi
output strea

into a progr

a network p
in data throv

The bulk

in Figure 9,
Outputst:

output tasks
add more ca

as a file or ¢

filtering the

Package:

e java.io

© java.nic

concept of
otherentit:

capabilitie
® java.nel

java.ut:

® java.ut:

® jJavax.it

T/O, inchuc

Chapter1°

Java 1/O is:

[1,2]. Here



Page 234 of 244

Javatechis a practical introduction to the java programming language with an
NEMA or ceca aMree enol caa ale elevaUTED-aRs (efits PPV a Cel maa
independence, extensive graphics capabilities, multi-threading, andtools to
cio MAT Lanelaare LALOMCLYUM EU Tecte ReneTO LUT TaCOIMELRT Ranetra processor
applications.

Mele)SeeNemOMeCCMMN RUEeGOSEAGIeae
object-oriented programming in Java and then examines topics such as graphical
interfaces, thread processes, /0, and image processing. The second part begins
with a review of network programming and develops Webclient-serve! Coe(sa
for tasks such as monitoring of remote devices. The focus then shifts to
distributed computing with RMI, which allows programs ondifferent platforms to
exchange objects and call each other's methods. CORBAis also discussed and a
ATeM La ACemMCCMLIEMETERcL ne how Java programs
eedS RUAeMCC M naa UilmIr neelmrlente (els
combining native code with Java, communication via serial lines, and
programming embedded processors,

JavaTech demonstrates the ease with which java can be used to create
powerful network applications anddistributed computing applications, It can be
used as a textbook for introductory- or intermediate-level Petra em ae LUEse
and for more advanced students and researchers who needto learn Java fora
EUANmest,e

UTM ole aS TUl HO MCeMMSNMNSicaCMRtalade)
materials, applets and application codes:

www.cambridge.org/9780521821131
* applets and application codes
» EXEFCISeS

SmeedtUSV cmtaceTG

CMC0 10] Ceca UILON ET PS
« starter and demo programs
* supplementary material for advanced users
MULExenaE

eeIPCCMememCaeCraererenaceTaomC large volcanoes, Mt. Merbabu (mid center)
CUMSMeRCIeIe GNCmMERCena ataea Ch COOPOLSMTOUa Tua
appear in shadesof green and yellowsurrounding the summit. This tmage wastaken on October 10, 1994 Aut
Spacebourne Imaging Radar -C/X- Band synthetic Aperture Radaron the space shuttle Endeavour
OASONESWIRE) Tae

(CuaeStoneAe Plae laksa

Page 234 of 244

CLARK S. LINDSEYruns his

own company, which develops
SEN Vee Me yO) 0] ecTAO]Ms a DY
publications, and educational
tools and materials.

Olan IN hayes elm aha a

develops robust Web services
software and GPs

applications at Oak Ridge
Netcom:lel e-1elaanonar
Sun Certified Java
Programmer

THOMAS LINDBLADisa

DOTMMUMCUaN TE
AMI ETOSVaUICE O71
Institute of Technology,
Stockholm, where he

researches techniquesin data
analysis in high data rate
SMTata

CAMBRIDGE
UNIVERSITY PRESS

www.cambridge.org
ISBN 0-521-82113-4

Jn
 



APPENDIX C 

Page 235 of 244

APPENDIX C

Page 235 of 244



IECON'O1: The 27th Annual Conference of the IEEE Industrial Electronics Society 

Internet Technology as a Tool for Solving Engineering Problems 
Aleksander Malinowski 

Department of Electrical and Computer Engineering 
Bradley University, Peoria, Illinois 6 1625, USA 

olekmali@ieee.org, http://cegt20 1 .bradley.edu/-olekmali/ 

Abstract - This tutorial covers all primary technologies 
that can be used for Web programming with 
applications to the Internet based data acquisition and 
system control. The presentation is divided into two 
parts. The first part discusses several programming 
languages as programming tools. It provides in depth 
discussion of the tasks that are best to implement with 
and on the advantages versus challenges associated 
with particular cases. The following tools are covered: 
HTML, JavaScript, Java Applets, Cookies, CGI, 
PERL, PHP, native languages (C/C++), and Web 
server configuration for security. Special emphasis is 
given to PERL and JAVA. Several programming 
examples for client, server and client-server 
applications are provided. The fragments of code are 
selected so that they provide good jumpstart to 
programming in particular languages for anybody with 
good programming skills in any programming 
language (preferably C++ or C). Advantages and 
disadvantages of different computer languages are 
discussed so a proper programming platform for 
different applications and task can be chosen. 

I. SYSTEM ARCHITECTURE CONSIDERATIONS 

During software development, i t  is important to 
justify which part of the software should run on the client 
machine and which part should run on the server. 
Sometimes even the very fundamental client-server 
architecture must be reconsidered in favor of a peer to peer 
decentralized structures. The decision about the 
architecture can be made either based on the process 
control strategy or based on the information storage. 

In case of the process control approach, the first 
approach is used when there each of the controlled objects 
can considered to be separate from possible other similar 
objects. The latter architecture is more beneficial in case 
of many controlled objects that cooperate with each other. 
When the information storage is considered then client 
server is favored over peer to peer communication in cases 
where information must be centralized, or is easier to 
manage when it is centralized. 

Even between these two models, there may be a 
hybrid. Consider an instance when one controls a process 
that is implemented by many objects that cooperate with 
each other. The controller either deals with each object 
separately using a client-server approach, or deals only 
with one object and then relies on the peer to peer 

Bogdan Wilamowski 
College of Engineering at Boise 

University of Idaho, Boise, Idaho 83712, USA 
wilam@ieee.org, http:l/nn.uidaho.edd 

architecture to carry out the request. The latter case adds 
additional complexity of dealing with a distributed server. 

11. COMPONENT PARTITIONING AND DATA FLOW 

Once a particular architecture is chosen, the 
component partitioning needs to be considered. Peer to 
peer architecture usually yields symmetry of all objects. 
The decisions are made for client-server based on several 
factors: 

Amount of memory and CPU power available for 
server and clients. These restrictions may be imposed 
by technological or cost restrains. 
Available bandwidth of the network connection. 
Connection reliability and latency, especially in case 
of closing the control loop via network. 
Ease of installation or no need to preinstall any 
specific component on a client machine. 
It is possible to develop two dedicated software 

components, one for server, and another one for a client 
and preinstall both. However, other strategies allow for 
more flexibility such as an automatic installation or update 
of the client side-software from the server. The latter 
approach requires storage of the client software 
components on the server object, possibly increasing the 
memory requirements and the initial network traffic when 
a new client must to be installed or updated. 

Regardless from the choice of just in time 
downloaded or preinstalled client the software designer 
must make choices regarding partitioning the tasks 
between the server and the client. In case of control, the 
best results are achieved when the control loop is closed 
locally on the server that is installed on the controlled. 
The Internet bandwidth is already adequate for many 
applications if their data flow is carefully designed. 
Furthermore, the bandwidth limitation will significantly 
improve with time. It is therefore important to develop 
methods, which take advantage of networks and then 
platform independent browsers. This would require 
solving several issues, such as: 

Minimization of the amount of data which must be 
sent by a network 
Task partitioning between the server and client 

0 Selection of programming tools used for various tasks 
0 Development of special user interfaces 

Use of multiple servers and job sharing among them 
0 Security, privacy and, in case of pay per use, account 

handling 
0 Portability of software used on servers and clients 

0-7803-7 108-9/01/$10.00 (C)200 1 IEEE 1622 

Page 236 of 244



IECON'O1: The 27th Annual Conference of the IEEE Industrial Electronics Society 

Distributing and installing network packages on 
several servers 
Fig. 1 illustrates an example of software component 

partitioning for a semiautonomous remote controlled 
robot. This particular application utilizes several client- 
server partitions for multiple components. In addition, the 
network server is at the same time the client in the relation 
to the thin embedded server that controls the robot 
movements on the lowest software level. 
c - - - - - - - - - - - - - - - - - - -  

$ 1  
~ Multimedia I Receiver 4 I 

I RobotContml ! 

A I 
I Ctient~pp~et p" 

I I 
1 

~~~~~~~~~~~~~~~~~~~~~ 

Web browser 1 
Client side 

Figure 1. Example of client -server component partition. 
Choosing the right set of software tools to implement 

the components of the system is the next dilemma to be 
solved after the decisions about the data flow among the 
software components that are distributed in the network 
are made. This.problem is addressed in the next section. 

111. MOST COMMONLY USED NETWORK 
PROGRAMMING TOOLS 

Although it is possible to develop network 
applications using solely C++, or other compiled 
languages, it is much easier to develop networked 
applications using dedicated software tool for each 
component. There are several well-developed network- 
programming tools available today [l]. These tools 
include HTML, JavaScript, VBScript, Java, ActiveX, 
Common Gateway Interface (CGI) and PERL or C++, 
Active Server pages (ASP) and PHP. It is essential to 
make a correct decision which programming language 
should be used for which part of the software package. 
Short characterizations of different network programming 
tools are given below. 

0-7803-7 108-9/01/$10.00 (C)200 1 IEEE 1623 

A.  Hypertext Markup Language 

Hypertext Markup Language (HTML) was originally 
designed to describe a document layout regardless of the 
displaying device, its size, and other properties [2]. It can 
be incorporated into networked application front-end 
development either to create form-based dialog boxes or as 
a tool for defining the layout of an interface, or 
wraparound for Java applets or ActiveX components. In a 
way, HTML can be classified as a programming language 
because the document is displayed as a result of the 
execution of its code. In addition scripting language can 
be used to define simple interactions between a user and 
HTML components [3][4]. Several improvements to the 
standard language are available: Cascading style sheets 
(CSS) allow very precise description of the graphical view 
of the user interface; Compressed HTML allows 
bandwidth conservation but can only be used by Microsoft 
Internet Explorer. HTML is also used directly as it was 
originally intended - as a publishing tool for instruction 
and help files that are boundled with the software. 

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 
cHTML> 

<HEAD> 
cTITLE>This is the title for this Web 
Pagec/TITLE> 
cMETA HTTP-EQUIV=nContent-Typen 
CONTENT="text/html; charset=iso-8859-ln> 
cMETA HTTP-EQUIV="Pragman CONTENT=nno-cache"> 

cMETA NAME="ROBOTS" CONTENT="INDEX,NOFOLLOW"s 
cMETA NAME="Authorn CONTENT="BMW & AMn> 
<META NAME="Description" CONTENT="This is 
displayed by the search engine"> 
cMETA NAME="KeyWords' 
CONTENT="search engine kewoards, html"> 
</HEAD> 
<BODY BGCOLOR="white" TEXT="black"> 
cHl>This is the titlec/Hl> 
<P ALIGN="left">This is the body of 
this Web page. 
CA HREF="http://nn.uidaho.edu">go</A> 

cP ALIGN="center">Another paragraph and 
<FONT COLOR="red" FACE="Ariel, helvetica" 
SIZE="+l">a different fontc/FONT> 
e ! - -  this is a coment - - >  

</BODY> 
c/HTML> 

Figure 2. Typical HTML source code. 
The HTML code shown in Fig.2 illustrates the nature 

of this language. The control structures are called tags. A 
tag is identified by c and > and us used to control the 
meaning and format that is used to display the information. 
Most of the tags are used in pairs, for example <BODY> and 
</BODY> marks the beginning and the end of the section 
that should be displayed as a Web page. Each tag may 
have several attributes. For example the two of many 

Page 237 of 244



IECONOI : The 27th Annual Conference of the IEEE Industrial Electronics Society 

attributes of <BODY ... > are color setting BGCOLOR and TEXT. 
Inside the body of the page tags are used to provide text 
formatting. <P.. .> denotes a new paragraph, and is one of 
only a few tags that do not need the complementing and 
end tag </P>. <Hn> indicates the n-th header or section 
title of the n-th level. In addition to those and many other 
logical information tags, there are several tags that porvide 
only instruction regarding the way the text is to be 
displayed, for example <FONT...> tag. Although it is 
possible to set a particular font size in points, it is strongly 
recommended to alter the readers preference using relative 
sizes like +1 in the example above. The reader should be 
able to adjust the display to her preferences so that it is 
easy to read. 

The anchor tag CA ... > is the most important feature of 
the HTML. This implements the very idea of hypertext - 
the links. The HREF attribute instructs the Web browser 
about the location of another page that must be loaded in 
case the reader clicks on the text enclosed until </A>. 

The header portion of the Web page that is marked 
by <HEAD> and </HEAD> may seam not to be that important. 
Information enclosed there may be very important for Web 
browsers, proxy systems or search engines. The example 
in Fig. 2 instructs the Web browser always to check for the 
new version of the Web page (no-cache), and defines the 
font set (8859-1) that is very important when the Web 
page displays any non-English characters. The other tags 
(robots, author, keywords and description) are sued by 
search engines to enhance the automatic classification of 
the Web page. 

B. JavaScript 

<SCRIPT language="JavaScript"> 
// this comment goes to the end of the line 
alert ("hello world! 'I) ; 
// end hiding comment 
</SCRIPT> 
<NOSCRIPT>No script support found</NOSCRIPT> 

Figure 3. A simple example of JavaScript code. 
It can be 

placed in both header and body of a Web page. The script 
starts with <script language=" JavaScript"> line. This 
example generates an alert dialog box shown above the 
code. 

One of the most useful applications of JavaScript is 
verification of the filled form before it is submitted on- 
line. That allows for immediate feedback and preserves 
the Internet bandwidth as well as lowers the Web server 
load. Fig. 4 shows a sample code of an HTML form and 
its interaction with JavaScript that responds immediately. 

JavaScript is part of the HTML code. 

HTML itself lacks even basic programming 
constructs such as conditional statements or loops. A few 
scripting interpretive languages were developed to allow 
for use of programming in HTML [2]. They can be 
classified as extensions of HTML and are used to 
manipulate or dynamically create portions of HTML code. 
One of the most popular among them is JavaScript. The 
only drawback is that although JavaScript is already well 
developed still there is no one uniform standard. Different 
Web browsers may vary a little in the available functions 
[4]. JavaScript is an interpretative language and the scripts 
are run as the Web page is downloaded and displayed. 
There is no strong data typing or function prototyping. 
Yet the language includes support for object oriented 
programming with dynamically changing member 
functions. JavaScript programs can also communicate 
with Java applets that are embedded into an HTML page. 

0-7803-7108-9/01/$10.00 (C)2001 IEEE 

<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.Q//EN"> 
<html> 
<head> 
<TITLE>Calculator</TITLE> 
< / head> 
<body> 
<form name="forml"> 
cinput type="text" name="textl" size="36'><BR> 
c input type= "but ton" name= "but ton1 

value="calculate" 
onclick=document.forml.text2.value 

=eval(document.forml.textl.value)> 

cinput type="text" na1ne='text2~> 
cinput type="reset" value="clear"> 
</€Om> 

</body> 
</html> 

Figure 4. A Web page with JavaScript based calculator. 
The next example shows a more powerful calculator, 

which is capable to compute even complicated functions. 

1624 

Page 238 of 244



IECONO1: The 27th Annual Conference of the IEEE Industrial Electronics Society 

Note that all computations are done not on the server but 
on the client computer. The web page generated is similar 
to this shown in the previous example but it is much more 
powerful. Its view and source code is shown in Fig. 5. 

C. Visual Basic Script 

If the client-side software development is limited to 
Microsoft Windows and Microsoft Internet Explorer then 
VBScript may be used instead of JavaScript. The 

I 
File Ed& View Go Comnnuucator Help 

s i n ( 2 . 3 )  / ( l + e x p  (-2 . Z )  ) +pow(2.7,3.2) 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.Q//ENn> 
chtmlr 
<head> 
cTITLE>Calculatorc/TITLE> 
</head> 
<body> 
cscript language="JavaScript'> 
function math0 { 
var s=document.foml.textl.value; 
sl=s.replace("abs", "Math.abs"); 
s2=s1.replace("sinn, "Math.sin"); 

s3=s2.replace("cosn, "Math.cos"); 

s4=s3.replace("sqrtN, "Math.sqrt"); 
s5=s4.replace("tann, "Math.tan"); 
s6=s5.replace("atanm, "Math.atan"); 
s7=s6.replace("asinn, "Math.asin"); 

88=s7.replace("acos", "Math.acos"); 
s9-sE.replace ("exp", "Math.exp") ; 
slO=s9. replace ("floor", "Math. floor") ; 
sll=slO.replace ("log", "Math.log") ; 
sl2=sll.repla~e(~max". "Math.max"); 
sl3=sl2.replace("min", "Math.min"); 
s14=s13 .replace ("pow", "Math.pow") ; 
s15=s14 .replace("random", 'Math.random") ; 
s16=s15 .replace ("round", "Math.round") ; 
document.foml.text2.value=eval(sl6); 

1 
</scripts 
cf o m  name=" f orml"> 
<input type- text name= text 1 size= 3 6 > 
c input type= "but ton" name= "button1 " 
value='calculate" onclick="math ( ) ">  

cinput type="text' name="text2">cBR> 
cinput type="reset" value="clear"> 
</form> 
</body> 
c/html > 

Figure 5. A Web page with advanced calculator. 

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1625 

disadvantage is the lack of portability that is offered by 
this tool. However, that downside is compensated by ease 
of communicating with ActiveX components and 
possibility to use programs and libraries available to the 
operating system [2]. 

D. Java 

Java is an object oriented programming language 
compiled in two stages. The first stage of compilation, to 
so-called byte-code, is performed during the code 
development. Byte-code can be compared to machine 
code instructions for a microprocessor [5] .  Because no 
processor understands directly byte-code instructions, 
interpreters, called Java Virtual Machines (JVM) were 
developed for various microprocessors and operating 
systems. At some point JVM were improved so that 
instead of interpreting the code they do perform the second 
stage of compilation, directly to the machine language. 
However, to cut down the initial time to run the program 
the compilation is done only as necessary (just in time 
(JIT)) and there is no time for extensive code optimization 
[6]. At current state of art of JIT technology, programs 
written in Java run about two to five times slower than 
their C++ counterparts. Adding a JVM to a Web browser 
allowed embedding software components that could be run 
on different platforms [5][7]. 

Several features ensured success and increasing 
importance of this programming tool: 

similarity to C and C++ - a lot of existing 
programmers can switch relatively easily [5][7][8][9] 
support of C++ objects - suitability for large projects 

simplified features - less complex than C++, easier to 
learn and utilize correctly [7][8][9] 
large standard set of libraries, including graphical 
libraries that can be used on multiple OS platforms 
PIPI 
built in network libraries and some IP protocols 
[71[91[101 
simple, platform independent multithreading - not as 
powerful as in C or C++ but much simpler [7][9] 
availability of fast JVM that use JIT compiler 
technology - only two times slower than C++ [6][7] 
ability to control the level of security buy enabling or 
disabling certain libraries that come with JVM 
availability of non-portable features by linking 
functions in machine language of a particular system 

Smaller requirements for flash memory in the 
embedded systems due to compactness of byte-code 
(but more volatile memory is required) 

[~1[81[91 

[91 

Page 239 of 244



IECONOI: The 27th Annual Conference of the IEEE Industrial Electronics Society 

Despite all those great advantages, there are a few 
problems of implementation that prevents Java from being 
used everywhere. 
0 it is still at least two to five times slower than C++ [6] 

multithreading does not have all features available to 
C or C++ programs [7][8] 
Most of implementations of JVM do not allow real 
time running due to garbage collector type of the 
memory management [6] 
Much higher memory requirements for JVM and 
running program (but smaller footprint of applications 
stored in flash memory versus C/C++) 

D. ActiveX 

Microsoft developed ActiveX as another technology 
allowing for the automatic transfer of software over the 
network [2][11]. ActiveX, however, can be executed 
presently only on a PC with a Windows operating system, 
thus making the application platform dependent. Although 
this technology is very popular already, it does not allow 
for the development of applications running on multiple 
platforms. ActiveX components can be developed in 
Microsoft Visual Basic or Microsoft Visual C++. There 
are the only choice in cases when Java is too slow, or 
when some access to the operating system functionality or 
devices supported only by Windows OS is necessary. The 
easy access to the operating system form an ActiveX 
component makes it impossible to provide additional 
security by limiting the features or resources available to 
the components. 

Fig. 6 shows one of the simplest possible programs 
written in Java that also demonstrates use of functions. 
Since the language is strongly object oriented, all 
functionsmust be embedded in a class. 

public class Test { 
public static void main(String args [ I  { 

// a comment 
procedure ("Hello programmer!") ; 

1 
private static void proredure(String s) { 

Sys tern. out . prin tln ( s) ; 
1 '  

1 
Figure 6. Code for a simple application written in Java. 

Fig. 7 and Fig. 8 show a template for an applet 
written in Java. Applets are run embedded in Web pages. 
Fig. 7 shows how to embed the applet in HTML. 

<APPLET CODEBASEc"." CODEsnTest.claeen 
WIDTH="200" HEIGHT="100"> 

c/APPLET> 

Figure 7. Embedding an applet in a Web page. 

0-7803-7108-9/01/$10.00 (C)2001 IEEE 

Function painto is called from the operating 
system environment whenever the graphics needs to be 
redrawn. Functions init o and start o are called when 
the applet is initialized. All computations should be 
initialized there and then carried on in a separate thread. 
Function stop0 is called when the applet need to be 
stopped. All computations that were initialized in start ( 1  
and carried on in another threads must be stopped then. 
This simple applet does not do anything besides painting a 
text and drawing two horizontal lines. 

// a sample applet template 
import java.applet.Applet; 
import java.awt.Graphics; 

public class Test extends Applet { 
public void init0 { 

1 

I 
public void start0 { 

public void paint(Graphics g) { 
g.drawLine(10,30, 120, 30); 
g.drawLine(10,60, 120, 60); 
g.drawString("Hello Programmer!", 10, 50); 

I 

1 
public void stop0 { 

I 
Figure 8. A template for an applet written in Java. 

E. CORBA and DCOM 

CORBA (Common Object Request Broker 
Architecture) is a technology developed in the early 90's 
for network distributed applications. It is a protocol for 
handling distributed data, which has to be exchanged 
among multiple platforms [12][13]. A C O M A  server or 
servers must be installed to access distributed data. 
C O M A  in a way can be considered as a very high-level 
application programming interface (API). It allows 
sending data over the network, sharing local data that are 
registered with the CORBA server among multiple 
programs. Microsoft developed its own proprietary API 
that works only in Windows operating system. It is called 
DCOM and can be used only in ActiveX technology 
[111[141. 

F. Common Gateway Interface 

CGI, which stands for Common Gateway Interface, 
can be used for the dynamic creation of web pages. Such 
dynamically created pages are an excellent interface 
between a user and an application run on the server [2][9] 
[15]. CGI program is executed when a form embedded in 
HTML is submitted or when a program is referred directly 
via a Web page link. The Web server that receives a 
request is capable of distinguishing whether it should 
return a Web page that is already provided on the hard 

1626 

Page 240 of 244



IECONO1: The 27th Annual Conference of the IEEE Industrial Electronics Society 

drive or run a program that creates one. Any such 
program can be called a CGI script. CGI describes a 
variety of programming tools and strategies. All data 
processing can be done by one program, or one or more 
other programs can be called from a CGI script. The name 
CGI script doe not denote that a scripting language must 
be used. However, developers in fact prefer scripting 
languages, and PERL is the most popular one. 

Because of the nature of the protocol that allows for 
transfer of Web pages and execution of CGI scripts there 
is a unique challenge that must be faced by a software 
developer. Although users working with CGI-based 
programs have the same expectations as in case of local 
user interface, the interface must be designed internally in 
entirely different way. The Web transfer is a stateless 
process. That means, that no information is sent by Web 
browsers to the Web servers that identify each user. Each 
time the new user interface is sent as a Web page, it must 
contain all information about the current state of the 
program. That state is recreated each time a new CGI 
script is sent and increases the network traffic and time 
latency caused by limited bandwidth and time necessary to 
process data once again. 

In addition, the server side software must be prepared 
for inconsistent data streams. For example, a user can 
back off through one or more Web pages give a different 
response to a particular dialog box and execute the same 
CGI script. At the time of the second execution of the 
same script, the data sent back with the request may 
already be out of synchronization from the data kept on 
server. Therefore, additional validation mechanisms must 
be implemented in the software that are not necessary in 
case of a single program. 

G. PERL 

PERL is an interpretive language dedicated for text 
processing. It is primarily used as a very advanced 
scripting language for batch programming and for text data 
processing [2][16][17]. PERL interpreters have been 
developed for most of existing computer platforms and 
operating systems. Modem PERL interpreters are in fact 
not interpreters but compilers that precompile the whole 
script before running it. 

PERL was originally developed for Unix as a 
scripting language that would allow for automation of 
administrative tasks. It has many very efficient string, 
data stream and file processing functions. Those functions 
make it especially attractive for CGI processing that deals 
with reading data from the networked streams, executing 
external programs, organizing data, and in the end 
producing the feedback to the user in the form of a text 
based HTML document that is sent back as an update of 
the user interface [2][15]. Support of almost any possible 
computing platform and OS and existence of many 
program libraries makes it a platform independent tool. 

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1627 

Fig. 9 and Fig. 10 show an example of a data form 
that is filled in by a user on a remote computer (client). 
After the form shown in Fig. 9 is completed, the user 
clicks the "SEND" submit button. All data is transferred 
to the server and forwarded to the CGI script that is 
specified in the form tag in the action attribute. The 
source code of the CGI program is shown in Fig. 10. The 
program reads the data, processes them, and generates a 
Web page that is a feedback to the user. 

Descnpbon 
]This  is  a presentation for IECON'O1 A 
in Denver, Colorado 
November 29 to December 01, 2001 

<FORM action="http://nn.uidaho.edu/csp/cgil.pl" 
method="get"s 
<INPUT TYPE="textn name="name"><BR> 
DescriptioncBR> 
<TEXTAREA name='description" rOWS=5 cols=40> 
C/TEXTAREA>CBR> 
<INPUT type="radio" name="sex" value="male">Male 
<INPUT type="radio" name="sex" 
value="female">Female 
cBR> 
<INPUT type="submit" value="Send">cINPUT 
type="reset'> 
</FORM> 

Figure 9. Data form implemented in HTML. 

Page 241 of 244



IECON'Ol : The 27th Annual Conference of the IEEE Industrial Electronics Society 

1 Hello 
Welcome t o  the fwst CGI example 

The name wasHello 
The descrrption was' < 
This is a presentation for IECON'O1 in Denver, Colorado 
November 29 to  December 01,2001 
The sex selected male 

#!c:\progra-l\perl\bin\perl.exe 
use strict; 
use CGI qw ( : standard) ; 
print header; 
print cclabell; 
cHl>cFONT COLOR="#FF0000"> Hello c/FONT></Hl> 
cB>Welcome to the first CGI example </B>cP> 
labell 
print "The name was", param('name'), "cBR>"; 
print 'The description was:cB>cBR>", 
param('description'),"~BR>c/B>"; 
print "The sex selected: I, 
param ( I sex'  ) , ncP>n ; 

Figure 10. A CGI-script written in PERL that handles data 
received from the form shown in Fig. 9. 

The PERL code above uses CGI library with param 
function and this way reading data from the form is very 
simple. For example param('namet) returns a string that 
was typed in the text field named name (see the HTML 
code above). param ( I sex' returns the name of the radio 
button pressed. param( 'description' ) returns a string 
that was typed in the text area named description. The 
PERL code generates a new screen on the client computer 
as shown above the code. 

Please note that there are two ways of displaying 
messages of the client computer. The first 
print cclabell; 
cHl><FONT COLOR="#FFOOOO"> Hello </FONT></Hl> 
cB>Welcome to the first CGI example c/B>cP> 
labell 

sends entire HTML code between lines print cclabell; 
and labell. The other way is to use print statement and 
send HTML code line by line using print statements. 

H. Active Server Pages 

The concept of CGI scripts is centered on the idea 
that a program that is external to the Web server is run on 
the request made by a client. Then an HTML based reply 

is generated and sent back as the part of the outcome of the 
execution. Active- Server Pages (ASP) provide the same 
functionality with the exception that the external program 
or programs are embedded into the skeletons of Web 
pages [HI .  Those pages are preprocessed by the Web 
server before they are forwarded to the client, and the 
outcome of the embedded scripts is included. 
In case of a CGI script, a reply to the user by sending an 
HTML based Web page is its significant portion. It makes 
sense then to provide also tools for embedding the scripts 
inside HTML instead of embedding HTML inside print 
statements in the CGI script. ASP technology is nothing 
else but shifting the way the server side programs are 
organized. 

I. PHP 
PHP is a scripting language like PERL. In fact, its 

syntax resembles PERL. The main difference lays in the 
set of standard built in libraries that support generation of 
HTML code, processing data from and to the Web server, 
and handling cookies. The same functionality can be 
accessed in PERL by inclusion of one or more libraries. 
PHP can be sued either as a classical CGI scripting 
language or as an implementation of ASP technology [18]. 
Since certain frequently used functionality is built in 
directly into the language, it is more efficient to use. In 
general any specialized tool will be somewhat more 
efficient for one particular task it was designed for, instead 
of other powerful but general purpose tools. PHP has been 
very popular for the last three years. 

I 
I I Fde Edt View Go Cmunicator Hap 

Hi! 
I'm using P H . !  
2 plus 3 equal 5 

cHTML> 
cHEAD>cTITLE>PHP Scriptc/TITLE>c/HEAD> 
<BODY> 
C? 

echo *cHl>cem>Hi! cBR> 

I'm using P H P ! c / ~ ~ > < / H ~ > ~ ~ ;  
$a = 2; $b = 3; $c=$a+$b; 
echo 'cB>$a plus $b equal $c c/B>c/psn; 
?> 

</BODY> 
c/HTML> 

Figure 1 1. A simple server side script in PHP. 

0-7803-7108-9/01/$10.00 (C)2001 IEEE 1628 

Page 242 of 244



IECONO1: The 27th Annual Conference of the IEEE Industrial Electronics Society 

PHP script (between C? and 15) can be easily 
incorporated into HTML code as illustrated in Fig. 11. 
Instead of C? and ?> one can use c?php and ?>, or <script 
language="php"> and </script>. The script is run by the 
Web server on the server side, before the Web page is 
transferred through the Internet to the browser. 

Fig. 12 shows another example of PHP 
programming. This time PHP is used to generate an 
HTML form. It is more concise than HTML and thus 
faster to develop and less likely to contain errors, but add 
to the load of the server computer. The resulting form is 
shown above the source code. 

:.+ -tot xj 
:ile Edit View Go Cmmurucator Help 

Calculator 
Value 1 147 

Value 2 
C add 
C subtract 
C mulbply 

<HTML> 
cHEAD>cTITLE>Calculatorc/TITLE>c/HEAD> 
<BODY> 
chl>Calculatorc/hl> 
<FORM METHOD="post" ACTION="calculator .php"> 
Value 1: <INPUT TYPE='text" NAME="vall">c/br> 
Value 2: <INPUT TYPE="text" NAME="val2'>c/br> 
c INPUT TYPE= 'I radio NAME= 'I cal c " VALUE= 'I add" > 
addcbr> 
<INPUT TYPE="radio" NAME="calc" VALUE="sub"> 
subtract<br> 

multiplycbr> 
<INPUT TYPE="radio" NAME="calc" VALUE="div"> 
dividec/br> 
c INPUT TYPE= 'I submit It NAME= 'I submit 'I 
VALUE="Calculate"> 

INPUT TYPE= 'I radio NAME= " calc 'I VALUE= "mu1 > 

</FORM> 

c /BODY > 

</HTML> 

Figure 12. PHP utilized to generate a form in HTML. 
When the form is submitted, the Web server needs to 

run a CGI script. Since a Web page merged with PHP can 
function as a program the PHP-based page can be used for 
the form processing as shown in Fig. 13. The Web page 
that is generated in the reply is shown above the source 
code. 

0-7803-7 108-9/01/$10.00 (C)2001 IEEE 

File Edit View Go Communicator Help 

The result ofthe calculation is' 15 666666666667 

<? 

if (($Val1 =I " " )  I I ($va12 == " " )  I I ($talc 
= = " " ) )  { 

header ("Location: 
http://nn2/cal-fm.htmn); 

exit ; 

1 
if (Scale == "add") {$r = $Val1 + $va12;} 
else if ($calc == "sub") {$r= Svall-$val2;} 
else if ($talc == "mul") {$r = $vall*$val2;} 
else if ($calc == "div") {$r = $vall/$val2;} 
?>  

<HTML>cHEAD> 
<TITLE>Calculation Resultc/TITLE> </HEAD> 
<BODY> 
The result of the calculation is: c? echo "$rn; 
?> 

c /BODY > 

c/HTML> 

Figure 13. PHP utilized for Cgi scripting. 
One of the principles of the correct coding is 

enclosing all source code that implements a particular 
functionality in one place. This can be applied to PHP. 
The code shown in Fig. 14 works both as HTML form 
generator and as the data processor in case it is called back 
by the generated form. 

<HTML> <HEAD> cTITLE>AIO Form</TITLE> </HEAD> 
<BODY> 
<? 

$formstring = SI 

<FORM METHOD=\"pOSt\" ACTION=\"$PHP-SELF\'> 
Value 1: <INPUT TYPE=\"text\" NAME=\"vall\">c/br> 
Value 2: <INPUT TYPE=\'text\' NAME=\R~a12\">c/br> 
<INPUT TYPE=\"radio\" NAME=\"calc\" 
VALUE=\'add\"> addcbr> 
<INPUT TYPE=\'radio\" NAME=\"calc\" 
VALUE=\ 'I sub\ It > sub trac tcbr > 

<INPUT TYPE=\"radio\i* NAME=\"calc\" 
VALUE=\"mul\"> multiplycbr> 
INPUT TYPE= \ radio\ NAME= \ c alc \ 

VALUE=\'div\"> dividec/br> 
<INPUT TYPE=\"submit\" NAME=\"submit\" 
VALUE=\nCalculate\n> 
</FORM> 

if ($submit) { 
if (Scalc == "add") {$r = $Val1 + $va12;} 
else if ($talc == "sub') {$r= $vall-$va~;) 
else if (Scale == "mul") {$r = $vall*$val2;} 

.. 

1629 

Page 243 of 244



IECONOl: The 27th Annual Conference of the IEEE Industrial Electronics Society 

else if ($calc == "div") {$r = $vall/$val2;} 
echo "The result of the calculation is: $r"; 
} else { 
echo "Sfomstring"; 

1 

Figure 14 Utilizing the sdame code both for HTML-form 
generation and data processing in CGI-script mode. 

J. Cookies 

?> 

A cookie is a piece of data stored in the client 
computer. When a request is sent to a server to get an 
HTML file, some cookies may be transmitted with that 
request. The server may send different data depending on 
the information retrieved from the user. Furthermore, 
JavaScript is also capable of browsing through all the 
cookies stored by the user machine [19]. This information 
may be used to enhance performance, for example by 
remembering the user's preferences. This very useful 
feature, however, is sometimes abused by some Internet 
providers, who can spy on the user by analyzing what 
kinds of web pages are being used. 

IV. CONCLUSION 

Given limited time and space that was allocated to 
this tutorial most of the important programming tools that 
can be applied to solving engineering problems were 
discussed. Client-server architecture and the system 
partitioning that were discussed in the introductory 
sections must be applied to a particular problem. Then 
based on need one or more tools has to be selected to 
implement client and server. HTML and JavaScript is 
generated on the server but utilized on the client side. CGI 
and ASP with PERL and PHP are stored and utilized on 
the server. Java can be used on the client side as well as 
on the server side. It allows implementing a complex 
functionality of a larger program by using object oriented 
and well-structured language. 

If you are interested in more detailed examples or 
would like to participate in a 45 hour course offered by 
Bradley University as a long distance course please visit 
the Web site that is located at: 
http://cegt201.bradley.edu/-olekmali/courses/ 

and follow the EE-WEB-2000 link to the course materials. 

V. REFERENCES 

For more information on particular topics discussed 
in this tutorial please refer to the following source 
materials that are recommended by the authors: 

0-7803-71 08-9/01/$10.00 (C)2001 IEEE 

Kaplan, G., "Ethernet's winning ways," IEEE 
Spectrum, January 2001, pp. 113-1 15. 
Jamsa K., Lalani S., Weakley S., Web Programming, 
Jamsa Press, Las Vegas, NV, 1996. 
Goodman, D., Dynamic HTML, The Dejhitive 
Reference, O'Reilly & Associates, Sebastopol, CA, 
1997. 
Flanagan D., JavaScript, The Definitive Guide, 
O'Reilly & Associates, Sebastopol, CA, 1997. 
Van der Linden P., Not Just Java, Prentice Hall and 
Sun Microsystems, Palo Alto, CA, 1998. 
Web Page: Hank Shiffman, Boosting Java 
Performance: Native Code and JIT Compilers, 
http://www.disordered.org/Java-JIT.htm1, 
posted in 1998, last time visited in 2001. 
Van der Linden P., Just Java 2, Prentice Hall and 
Sun Microsystems, Palo Alto, CA, 1998. 
Web Page: Hank Shiffman, Making Sense of Java, 

posted in 1998, last time visited in 2001. 
Hall, M., Brown, L., Core Web Programming 2"d ed., 
Prentice Hall, Upper Saddle River, NJ, 200 1. 
Harold, E. R., Java Network Programming, O'Reilly, 
Sebastopol, CA, 1997. 
Roff, J.T., ADO: ActiveXData Objects, O'Reilly & 
Associates, Sebastopol, CA, 200 1. 
Object management Group, The Common Object 
Request Broker: Architecture and Specification, v. 
2.2, published by Object Management Group, 
February 1998. 
Object management Group Web Site 

posted in 1997, visited in 200 1. 
Thai, T.L., Oram, A., Learning Dcom, OReilly & 
Associates, Sebastopol, CA, 1999. 
Guelich, S., CGI Programming with PERL, Znd ed., 
O'Reilly & Associates, Sebastopol, CA, 2000. 
Wall L., Christiansen, T., Orwant, J. ,  Programming 
PERL., 3rd ed., O'Reilly & Associates, 1996. 
Holzner, S., PERL Black Book, Coriolis Group, 
1999. 
Atkinson, L., Core PHP Programming: Using PHP to 
Build Dynamic Web Sites, 2nd ed., Prentice Hall, 
Upper Saddle River, NJ, 2000. 
CookieCentral.Com, Cookie Central, URL: 
http://www.cookiecentral.com/, 
posted in 1996, visited in 2001. 

http://www.disordered.org/Java-QA.htm1, 

http://www.corba.org/, 

1630 

Page 244 of 244


