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1. My name is Jacob Robert Munford. I am over the age of 18, have personal 

knowledge of the facts set forth herein, and am competent to testify to the 

same. 

 

2. I earned a Master of Library and Information Science (MLIS) from the 

University of Wisconsin-Milwaukee in 2009. I have over ten years of 

experience in the library/information science field. Beginning in 2004, I 

have served in various positions in the public library sector including 

Assistant Librarian, Youth Services Librarian and Library Director. I have 

attached my Curriculum Vitae as Appendix A. 

 

3. During my career in the library profession, I have been responsible for 

materials acquisition for multiple libraries. In that position, I have cataloged, 

purchased and processed incoming library works. That includes purchasing 

materials directly from vendors, recording publishing data from the material 

in question, creating detailed material records for library catalogs and 

physically preparing that material for circulation. In addition to my 

experience in acquisitions, I was also responsible for analyzing large 

collections of library materials, tailoring library records for optimal catalog 
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search performance and creating lending agreements between libraries 

during my time as a Library Director.  

 

4. I am fully familiar with the catalog record creation process in the library 

sector. In preparing a material for public availability, a library catalog record 

describing that material would be created. These records are typically 

written in Machine Readable Catalog (herein referred to as “MARC”) code 

and contain information such as a physical description of the material, 

metadata from the material’s publisher, and date of library acquisition. In 

particular, the 008 field of the MARC record is reserved for denoting the 

date of creation of the library record itself. As this typically occurs during 

the process of preparing materials for public access, it is my experience that 

an item’s MARC record indicates the date of an item’s public availability. 

 
5. I have reviewed Exhibit EX1008, an article by B. Yang and J.F. Bohme 

entitled “Reducing The Computations of the Singular Value Decomposition 

Array Given By Brent and Luk” (hereto referred to as ‘Yang’) as presented 

in SIAM Journal On Matrix Analysis and Applications Volume 12, Issue 4. 

 
6. Attached hereto as YA01 is a true and correct copy of the spine, publication 

data, title page and complete ‘Yang’ from SIAM Journal On Matrix Analysis 
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and Applications from the University of Pittsburgh library. In comparing 

YA01 to Exhibit EX1008, it is my determination that Exhibit EX1008 is a 

true and correct copy of ‘Yang’. 

 
7. Attached hereto as YA02 is a true and correct copy of the MARC record 

describing SIAM Journal On Matrix Analysis and Application from the 

University of Pittsburgh’s library. I secured this record myself from the 

library’s online catalog. The 008 field of this MARC record indicates SIAM 

Journal On Matrix Analysis and Application was first cataloged by the 

University of Pittsburgh library as of September 9, 1987. The item holdings 

indicate this journal was held in perpetuity since September 1987. This item 

record also indicates the library’s collection includes the Volume 12, Issue 4 

publication of SIAM Journal On Matrix Analysis and Application containing 

“Yang”.  

 
8. The date stamp on page 4 of YA01 indicates this journal was processed by 

library staff as of November 1991. Considering this information in concert 

with the record data from YA02, it is my determination that the Volume 12, 

Issue 4 edition of SIAM Journal On Matrix Analysis and Application was 

made available and accessible to the public by the University of Pittsburgh 

library shortly after initial publication and certainly no later than November 
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1991. Based on journal availability, it is my determination that ‘Yang’ was 

made available and accessible to the public shortly after initial publication 

via SIAM Journal On Matrix Analysis and Application. 

  

9. I have been retained on behalf of the Petitioner to provide assistance in the 

above-illustrated matter in establishing the authenticity and public 

availability of the documents discussed in this declaration. I am being 

compensated for my services in this matter at the rate of $100.00 per hour 

plus reasonable expenses.  My statements are objective, and my 

compensation does not depend on the outcome of this matter. 

 

10. I declare under penalty of perjury that the foregoing is true and correct. I 

hereby declare that all statements made herein of my own knowledge are 

true and that all statements made on information and belief are believed to 

be true; and further that these statements were made the knowledge that 

willful false statements and the like so made are punishable by fine or 

imprisonment, or both, under Section 1001 of Title 18 of the United States 

Code. 
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Dated: 7/31/19 
 

 
     
 
Jacob Robert Munford 
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APPENDIX A



Appendix A - Curriculum Vitae

Education

University of Wisconsin-Milwaukee - MS, Library & Information Science, 2009
Milwaukee, WI

● Coursework included cataloging, metadata, data analysis, library systems, 
management strategies and collection development.

● Specialized in library advocacy and management.

Grand Valley State University - BA, English Language & Literature, 2008
Allendale, MI

● Coursework included linguistics, documentation and literary analysis.
● Minor in political science with a focus in local-level economics and 

government.

Professional Experience

Library Director, February 2013 - March 2015
Dowagiac District Library
Dowagiac, Michigan

● Executive administrator of the Dowagiac District Library. Located in 
Southwest Michigan, this library has a service area of 13,000, an annual 
operating budget of over $400,000 and total assets of approximately 
$1,300,000.

● Developed careful budgeting guidelines to produce a 15% surplus during the 
2013-2014 & 2014-2015 fiscal years.

● Using this budget surplus, oversaw significant library investments including 
the purchase of property for a future building site, demolition of existing 
buildings and building renovation projects on the current facility.

● Led the organization and digitization of the library's archival records.
● Served as the public representative for the library, developing business 

relationships with local school, museum and tribal government entities.
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● Developed an objective-based analysis system for measuring library services 
- including a full collection analysis of the library's 50,000+ circulating 
items and their records.

 
November 2010 - January 2013
Librarian & Branch Manager, Anchorage Public Library
Anchorage, Alaska

● Headed the 2013 Anchorage Reads community reading campaign including 
event planning, staging public performances and creating marketing 
materials for mass distribution.

● Co-led the social media department of the library's marketing team, drafting 
social media guidelines, creating original content and instituting long-term 
planning via content calendars.

● Developed business relationships with The Boys & Girls Club, Anchorage 
School District and the US Army to establish summer reading programs for 
children.

June 2004 - September 2005, September 2006 - October 2013
Library Assistant, Hart Area Public Library
Hart, MI

● Responsible for verifying imported MARC records and original MARC 
cataloging for the local-level collection as well as the Michigan Electronic 
Library.

● Handled OCLC Worldcat interlibrary loan requests & fulfillment via 
ongoing communication with lending libraries. 

Professional Involvement

Alaska Library Association - Anchorage Chapter
● Treasurer, 2012

Library Of Michigan
● Level VII Certification, 2008
● Level II Certification, 2013
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Michigan Library Association Annual Conference 2014 
● New Directors Conference Panel Member

Southwest Michigan Library Cooperative
● Represented the Dowagiac District Library, 2013-2015

Professional Development

Library Of Michigan Beginning Workshop, May 2008
Petoskey, MI

● Received training in cataloging, local history, collection management, 
children’s literacy and reference service.

Public Library Association Intensive Library Management Training, October 2011
Nashville, TN

● Attended a five-day workshop focused on strategic planning, staff 
management, statistical analysis, collections and cataloging theory.

Alaska Library Association Annual Conference 2012 - Fairbanks, February 2012
Fairbanks, AK

● Attended seminars on EBSCO advanced search methods, budgeting, 
cataloging, database usage and marketing.
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SIAM J. MATRIX ANAL. APPL. © l99l Society for Industrial and Applied Mathematics
Vol, 12. No, 4. pp. 713—725. October I991 009

REDUCING THE COMPUTATIONS OF THE SINGULAR VALUE

DECOMPOSITION ARRAY GIVEN BY BRENT AND LUK*

B. YANGT AND J. F. BOHMET

Abstract. A new, efficient, two-plane rotation (TPR) method for computing two-sided rotations involved
in singular value decomposition (SVD) is presented. It is shown that a two-sided rotation can be evaluated by
only two plane rotations and a few additions. This leads to significantly reduced computations. Moreover, if
coordinate rotation digital computer (CORDIC) processors are used for realizing the processing elements (PEs)
of the SVD array given by Brent and Luk, the computational overhead of the diagonal PEs due to angle
calculations can be avoided. The resulting SVD array has a homogeneous structure with identical diagonal and

oil-diagonal PEs. Similar results can also be obtained if the TPR method is applied to Luk’s triangular SVD
array and to Stewart’s Schur decomposition array.

Key words. singular value decomposition, systolic arrays, CORDIC, two-sided rotations, VLSI

AMS(MOS) subject classification. 15Al8

1. Introduction. One important problem in linear algebra and digital signal pro-

cessing is the singular value decomposition (SVD). Typical applications arise in beam-

forming and direction finding, spectrum analysis, digital image processing, etc. [1]. Re-

cently, there has been a massive interest in parallel architectures for computing SVD

because of the high computational complexity of SVD, the growing importance of real-

time signal processing, and the rapid advances in very large scale integration (VLSI) that

make low-cost, high-density and fast processing memory devices available.

There are different numerically stable methods for computing complete singular

value and singular vector systems of dense matrices, for example, the Jacobi SVD method,

the QR method, and the one-sided Hestenes method. For parallel implementations, the

Jacobi SVD method is far superior in terms of simplicity, regularity, and local com-

munications. Brent, Luk, and Van Loan have shown how the Jacobi SVD method with

parallel ordering can be implemented by a two-dimensional systolic array [2] , [3]. Various

coordinate rotation digital computer (CORDIC) realizations ofthe SVD array have been

,. reported by Cavallaro and Luk [4] and Delosme [5], [6].

The Jacobi SVD method is based on, as common for all two-sided approaches,

applying a sequence of two-sided rotations to 2 X 2 submatrices of the original matrix.

The computational complexity is thus determined by how to compute the two-sided

rotations. In most previous works, a two-sided rotation is evaluated in a straightforward

manner by four plane rotations, where two of them are applied from left to the two

column vectors of the 2 X 2 submatrix and the other ones are applied from right to the

row vectors, respectively. In the diagonal processing elements (PEs), additional operations

for calculating rotation angles are required. This leads to an inhomogeneous array ar-

chitecture containing two different types of PBS.

In this paper, we develop a two-plane rotation (TPR) method for computing two-

sided rotations. We show that the above computational complexity can be reduced sig-

nificantly because each two-sided rotation can be evaluated by only two plane rotations

and a few additions. Moreover, the SVD array given by Brent and Luk becomes ho-

mogeneous with identical diagonal and off-diagonal PEs when CORDIC processors are

 

‘ Received by the editors September 28, 1989; accepted for publication (in revised form) August 2, 1990.
T Department of Electrical Engineering, Ruhr-Universitat Bochum, 4630 Bochum, Germany.
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used. In a recent work [6], Delosme has also indicated this possibility in connection

with “rough rotations” independently. He has taken, however, a different approach that

is based on encoding the rotation angles. He has still required four plane rotations on

the off-diagonal PEs while diagonal and off-diagonal operations can be overlapped.

Our paper is organized as follows. In § 2, we briefly reexamine Jacobi’s SVD method

and Brent and Luk’s SVD array. Then, we develop the TPR method in § 3. The CORDIC

algorithm is described in § 4, where in particular CORDIC scaling correction techniques .

are discussed and examples of scaling-corrected CORDIC sequences are given. In § 5,a

unified CORDIC SVD module for all PEs of the SVD array is presented. This module

is compared to those proposed by Cavallaro, Luk, and Delosme in § 6. Finally, we stres

the applicability of the TPR method to several other problems.

2. Jacobi SVD method. In this paper, we consider real, square, and nonsymmetric

matrices. Let M 6 RN" N be a matrix of dimension N. The SVD is given by

( 1 ) M = U2 V T,

where U e RNXN and V 6 R” X” are orthogonal matrices containing the left and right (‘
singular vectors, and 23 6 R” x N is a diagonal matrix of singular values, respectively. The

superscript Tdenotes matrix transpose. Based on an extension of the Jacobi eigenvalue

algorithm [7], Kogbetliantz [8] and Forsythe and Henrici [9] proposed to diagonalize

M by a sequence of two-sided rotations,

d4

(1
cl

(2) M0=M, Mk+1=UliMka (k=0,l,2,--'). 8C

Uk and Vk describe two rotations in the (i, j )-plane ( 1 § 1' < j é N), where the rotation

angles are chosen to annihilate the elements of Mk at the positions (i, j) and (j, 1‘).

Usually, several sweeps are necessary to complete the SVD, where a sweep is a sequence

of N(N - l )/ 2 two-sided rotations according to a special ordering of the N(N ~ l)/2

different index pairs (i, j).

For sequential computing on a uniprocessor system, possibly the most frequently

used orderings are the cyclic orderings, namely, the cyclic row ordering

at

at

st<

,0;

(3) (i,j)=(l,2),(1,3), ,(1,N).(2,3), ,(2.N), ,(N— lJV) 5’88
or the equivalent cyclic column ordering. Sameh [10] and Schwiegelshohn and Thiele

[1 l] have shown how to implement the cyclic row ordering on a ring-connected ora

mesh-connected processor array. Recently, a variety of parallel orderings have beende

veloped. Luk and Park [ 12] have shown that these parallel orderings are essentially equiv-

alent to the cyclic orderings and thus share the same convergence properties.

Brent and Luk have suggested a particular parallel ordering and developed a square

systolic array consisting of [N/ 2] X [N/ 2] PBS for implementing the Jacobi SVD method

(Fig. 1 ). To do this, the matrix M is partitioned into 2 X 2 submatrices. Each PE contains

one submatrix and performs a two-sided rotation

(4) B=R(01)TAR(02).

where R(

a“ an bl] blZ)5 A = and B:( ) (C121 022) (b2: bzz
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FIG. 1. The SVD array given by Brent and Luk.

denote the submatrix before and after the two-sided rotation, respectively, and

cos 0 sin 6

—sin 6 cos 6(6) R(0)=(
describes a plane rotation through the angle 6. At first. the diagonal PEs (symbolized by

adouble square in Fig. l ) generate the rotation angles to diagonalize the 2 X 2 submatrices
(bn = b2, = 0) stored in them. This means that 0. and 62 are first calculated from the
elements of A and then relation (4) is used to compute b“ and bzz. We call this the

generation mode. Then, the rotation angles are sent to all off-diagonal PBS in the following
way: the angles associated to the left-side rotations propagate along the rows while the
angles associated to the right-side rotations propagate along the columns. Once these
angles are received, the off—diagonal PEs perform the two-sided rotations (4) on their
stored data. We call this the rotation mode. Clearly, if we compute the rotation mode

straightforwardly, we require four plane rotations. For the generation mode, additional
operations for calculating 61 and 02 are required.

3. TPR method for computing two-sided rotations. In order to develop the TPR

method for computing two-sided rotations more efficiently, we first discuss the com-

mutative properties of two special types, the rotation-type and the reflection-type, of
2X 2 matrices. We define

(7) M“°={( x y)x,y€R] and mwf=[(x y)—y x y —x

The former is called rotation-type because it has the same matrix structure as a 2 X 2

plane rotation matrix. Similarly, the latter is called reflection-type because it has the
same matrix structure as a 2 X 2 Givens reflection matrix [13 ]. Note that x and y must

not be normalized to x2 + y2 = 1. Using the above definitions, the following results can

be shown by some elementary manipulations.

LEMMA 1. IfAl e of!“ and A2 6 all“, then AA; = A2Al 6 Jim.
LEMMA 2. IfA. e ear“ and A2 6 all“, then AlAz = AzTA. e all”.
In particular, if we consider two plane rotations, we know the following.
LEMMA 3. If R(0.) and R(62) are plane rotations described by (6), then

R(01)R(02) = R(01 + 02) and R(01)TR(02) = R(02 — 01)-
Now, we give a theorem describing the rotation mode of the TPR method.
THEOREM. If the 2 X 2 matrix A and the two rotation angles 0. and 62 are given,

then the two-sided rotation (4) can be computed by two plane rotations, ten additions,

 x,yeR]. 
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andfour scalings by %:

(8) P1=(022+an)/2, p2=(022—an)/2,
€11=(021—6112)/2, 42=(azr+aiz)/2,

(9) 0—=02—0I9 6+=02+012

(“new (“W“),t] (11 [2 £12

b=r—r, b=—-t+t,
(11) ll 1 2 12 1 2

b21=ti+t2, b22=rl+r2-

Proof Using (8), the matrix A can be reformulated as

AZA1+A2=(p1 -q.)+(—pz (12).‘1] P1 42 P2

Clearly, R (01 ), R(02) in (4) and A, are elements of a” '°‘ while A2 belongs to 11'“. This
leads to the following reformulation of the matrix B by using Lemmas 1—3:

B=R(0,)TAR(02)

= RU),)TA,R(62)+R(0,)TA2R(02)

= R(0.)TR(02)Al +R(01)TR(62)TA2

=R(02—01)A1+R(62+01)TA2

=R(0_)(pl _(I1)+R(0+)T(—P2 (12)41 I71 42 172

r —l — t

= ( l 1 ) + ( r2 2).t 1 r 1 12 ’2

This completes the proof.

The generation mode of the TPR method follows directly from the above theorem. ‘
COROLLARY. If the 2 X 2 matrix A is given, we can diagonalize A and calculate '

the corresponding rotation angles 0. and 02 by two Cartesian-to-polar coordinates con~
versions, eight additions, andfour scalings by %:

 

 
 

Pi:(022+an)/2, P2=(022_a11)/2, (18)
(12) finw

412(021‘012)/2, q2=(a2,+a12)/2, (19)
(13) r1=sign(p1)Vpi+qi, rz=sign(p2)Vp%+q%, Th

0— = arctan (41/111), 0+ = arctan (612/122), .'Equ

(14) 01=(0+—0—)/2, 02=(0++0_)/2, '-(20‘
(15) bllzr1_r2a b22:rl+r2- ‘

Proof. Regarding (11), bn = b2] = 0 is equivalent to [1 = 12 = 0. Equation (13):
follows then from ( 10). This completes the proof. :

In equation (13), we choose the rotation through the smaller angle. All vectors
lying in the first or the fourth quadrant are rotated onto the positive x—axis, and all vectors,
lying in the second and the third quadrant are rotated onto the negative x—axis. For.
vectors on the y-axis, the rotation direction is arbitrary. Thus, the generated rotation.
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mgles 6_ and 6+ satisfy |6_ | , |6+| é 90°. This results in

(16) l0.| §90° and l02| é90°,

due to ( 14).

Equation (16) is important with respect to the convergence of the Jacobi SVD

method. Forsythe and Henrici [9] have proven the convergence for cyclic orderings if

the rotation angles 0, and 02 are restricted to a closed interval inside the open interval

(-90°, 90°). They have also demonstrated that this condition may fail to hold, i.e., 01

1and 02 may be :90°, if the off-diagonal elements blz and 1721 in (5) have to be exactly
annihilated. As a remedy, they suggested an under- or overrotation by computing the

two-sided rotation (4) with angles (1 — 7)01 and (l — 7)02 (—1 < 7 < 1) and proved

itsconvergence. In practice, however, the finite machine accuracy in the real arithmetic

allows only an approximative computation of the rotation angles and implies under— or

overrotations. So the Jacobi SVD method converges without using under- or overrotations

asshown by the experimental results of Brent, Luk, and Van Loan [3]. In case ofCORDIC

implementations, the effect of implicit under— or overrotations is more apparent. The

angles i90° can never be exactly calculated because of the limited angle resolution arc—

tan (2””) of the CORDIC algorithm, where p denotes the mantissa length.

 
 
 
 
 
 

 

 
 

 
 
 
 

 

 
 
 

 
 

 
 
 

 
 

 
 

 
 

 

4. The CORDIC algorithm. In the previous section, we have seen that the main

operations of the TPR-method are plane rotations and Cartesian-to-polar coordinates

conversions. These operations can be carried out by multiplier—adder—based processors

supported by software or special hardware units. An alternative approach is the use of

dedicated processors that usually map algorithms more effectively to hardware. The

CORDIC processor is such a powerful one for calculating trigonometric functions.

The CORDIC algorithm was originally designed by Volder [14] as an iterative pro-

cedure for computing plane rotations and Cartesian-to-polar coordinates conversions. It

was later generalized and unified by Walther [15], enabling a CORDIC processor to

calculate more functions, including hyperbolic functions, as well as multiplications and

divisions. In the following, we consider Volder’s CORDIC algorithm because only trig-

onometric functions are involved in SVD applications.

The CORDIC algorithm consists of iterative shift-add operations on a three-com-
ponent vector,

xi + 1

yi + 1

(18) z,-+.=z,-—ea,-a,- (0<6,-<l;a,-=:l;e=il;i=0,l,---,n—~1),

 

(x,- — ciéiyi) = 1 ( cos(a,-) —a,- sin (ai) )(x[)y; + aiéixi cos (01,-) a,- sin ((1,) cos (at) y,-

in which the iteration stepsize 6,- is defined by

(19) 5,-=tan(a,-)=2—S(”.

The set of integers {S(i)} parametrizing the iterations is called CORDIC sequence.

Equation ( 17) can be interpreted, except for a scaling factor of

(20) k,= 1 =V1+5,2,
cos (01,)

 

asa rotation of (xi, y,)T through the angle a., where the sign a,- = i1 gives the rotation
direction. After n iterations, the results are given by

x" cos a —sin oz x0

<2” ( )=K(- )( )’yn sm :1 cos a y0

(22) 2,. = 20 — ea,

22
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with the overall scaling factor K = H,- k,- and the total rotation angle a = Z,- 0.01;. Now,

if the CORDIC sequence satisfies the following convergence condition
"—1

(23) (Xi_ Z a,-§a,,-l (i=0,l,"',n_2),
j= i+ l

we can choose the sign parameter

[—sign (xiyl) fOFJ/n ‘* 0,(24) 0i = ,
Sign (52,-) for 2,, -> 0

to force y" or 2,, to zero, provided that the input data x0, yo, and 20 he in the conver-

gence region

(25) C= Z on;'1“ {larctan (yo/x0)| fern—>0,(=0 IZol forzn—>0.

In this way, two different types of CORDIC trigonometric functions can be computed

(Table 1). In the mode y,, —> 0, the Cartesian coordinate (x0, yo) of a plane vector is l

converted to its polar representation, where the parameter c = i1 determines the sign

of the phase angle calculated. When z,I —> 0, a given plane vector is rotated through the

angle 20, where e = i1 controls the rotation direction.

In Table l, the principal value larctan (yo/xo)| é 90° of the inverse tangent function

is calculated when computing Cartesian-to-polar coordinates conversions. Correspond-

ingly, x" may be positive or negative according to the sign of x0. So, it is guaranteed that

a vector is always rotated through the smaller angle onto the x—axis in accordance with

(13). In this case, a convergence region of C 2 90° is sufficient for the generation mode
of the two-sided rotation.

One main drawback of the CORDIC algorithm is the need of correcting the seal-

ing factor K that arises during the iterations (17). For example, if we use Volder’s

CORDIC sequence

(26) {S(i)}={0,1,2,3,"',p—l,p},

with n 2 p + l CORDIC iterations for a mantissa accuracy of 2‘”, the scaling factoris

K z 1.64676. Compensating this undesired scaling effect with a minimum number of

computations is of particular importance.

Clearly, multiplying x" and y" in Table l by K‘1 will degrade the algorithm per-
formance substantially. Most of the scaling correction issues are based on shift-add oper-

ations. For a two-sided rotation that is implemented by four plane rotations, each matrix

element undergoes two plane rotations so that the total scaling factor to be corrected

is K2. In this case, Cavallaro and Luk [16] have pointed out that there is a simple

systematic approach for scaling correction when using the CORDIC sequence (26).

They proposed to use [12/41 scaling iterations of the type x <— x — 2‘ij with j e] =
{1, 3, 5, - - - , Zip/41 — l} and one shift operation 2“. The remaining scaling erroris

TABLE 1

CORDIC trigonometric functions (a = i1).

 

  
 

x" = K sign (X0) VX%+y%

2,, = 20 + e arctan (yo/x0)
 x" = K(xo cos 2.; — cyo sin 20)

y,, = K(exo sin 20 + yo cos 20)
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bounded by 2'” ‘ 1,1

(27) 1-2—'1‘[(1—2—21)-K2
jEJ  ‘1—2—'1‘[(1—2—21‘)-fi(1+2—2")<21“.jeJ [:0

This approach, however, fails in the TPR method. Here, each matrix element un-

dergoes only one plane rotation. The scaling factor to be corrected is thus K rather than

K2. In order to solve this more difficult problem, different techniques have been developed
in the literature. Haviland and Tuszynski [17] used similar scaling iterations as Cavallaro

and Luk. Ahmed [18] repeated some CORDIC iterations to force K to a power of the

machine radix. Delosme [19] combined both methods of Haviland, Tuszynski, and

' Ahmed for minimizing the number ofcomputations. Deprettere, Dewilde, and Udo [20]
suggested the double-shift concept.

We designed a computer program [2]] for a systematic search of CORDIC

sequences. We allow shifts parameters S(i) (i = 0, l, , n — l) with differences

S(i + l) — S(i) e {0, 1, 2} to provide more optimization freedom. For an efficient

scaling correction, we require that the scaling factor K be corrected by a sequence of m,
shift-add operations,

 
 
 
 

 

 
 

 
 
 
 
 
 

 

 
 

 

(23) 24“” Ti (1+ HOW—Tm) ‘ K: 1 + AK (T(j)int€gers, 11(1') = 1‘1)-
i=15

These additional scaling iterations are parametrized by the set of signed integers

{T(0), n( 1)T( 1), ~-- , n(nk)T(nk)}. The total number of iterations is L = n + nk.

In (28), AK denotes the remaining relative scaling error after the scaling correction.

. We emphasize that this is a systematic error with a constant sign. By contrast, the other

two types of CORDIC errors, the angular error due to the limited angle resolution and

the rounding error, are of statistical nature because they may be positive or negative.

The scaling error is thus more critical with respect to error accumulation when repeated

CORDIC operations on the same data have to be computed as in SVD applications.

Roughly speaking, the total scaling error after k CORDIC function calls increases linearly

with k, a fact that has been verified by our numerical experiments. For this reason, we
require |AK | to be much smaller than 2‘”.

We found catalogues of CORDIC sequences with complexity comparable to those

of Cavallaro and Luk. In the following, five examples for different mantissa lengths p =

16, 20, 24, 28, and 32, including the total number of iterations L = n + nk, the convergence

region C, and the remaining scaling error AK are given:

(nus-o'-

p=162 {S(i)}={0123~~~1516},

{n(j)T(j)}={1+2—5+9+10}, L=17+4, C~100°, AKAfl—mor’z

p=20z {S(i)}={0123--- 1920},

{n(j)T(j)}={l+2—5+9+10+16},

L=21+5, C~100°, AKz2‘23‘05,

 

‘When replacing [12/41 by [(p — l)/4l or [(p + 1)/4l, the upper bound in (27) becomes 2'” or 2"”,
respectively.

2When appending an additional scaling iteration with 17(5)T(5) = +16, the scaling accuracy can be
enhanced to AK z 2‘”.
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p=24: {S(i)}={1123345566788910---2324},

{n(j)T(j)}={O—2+6}, L=29+2, C~91°, AKz—Z’zm,

p=28: {S(i)}={l123345566788910111213141415---2728},

{n(j)T(j)}={0—2+6}, L=34+2, C~9l°, AK~2‘32-53,

p=32: {S(i)}={001333456789910---3132},

{n(j)T(j>}={1—3—8+16—25—27},

L=36+5, C~145°, AKm—2'39‘93.

Remember that in order to meet the convergence condition (23) and to providea

convergence region C a 90°, the minimum number of CORDIC iterations is p + 1. So,

for all CORDIC sequences given above, the number L — (p + l ) of additional iterations

for scaling corrrection is p/4. Moreover, except for the first CORDIC sequence, the

remaining scaling error IAKI is significantly smaller than 2‘”. This leads to improved

numerical properties compared with other CORDIC sequences reported in the literature.

We also remark that if the symmetric eigenvalue problem is considered for which a

convergence region of C ; 45° is suflicient [2], the total number of CORDIC iterations

L can be further reduced. An example that is nearly identical to the last CORDIC sequence

given above is

p=32z {S(i)}={1333456789910--- 3132},

{n(j)T(j)}= {0—3-8+l6-25-27},

L=34+5, Cm 55°a AKz _2-39-93_

For comparison, Delosme [5] has also given an optimized CORDIC sequence for the

same situation. His sequence requires one iteration more (L = 40) and achieves a scaling

accuracy ofAK z 2‘33'16.

We suspect that similar results can also be obtained by using Deprettere’s double

shift concept. However, this method requires a slightly increased hardware complexity

and will not be discussed in this paper.

5. CORDIC implementation of the SVD PEs. For easy illustration, we first introduce

a CORDIC processor symbol as shown in Fig. 2. The descriptions inside the box determine

uniquely the function mode of the CORDIC processor according to Table 1. The output

data x and y are assumed to be scaling corrected.

It is now simple to map the operations (8 )—( l 1 ) and ( 12 )—( 15) of the TPR method

onto a two CORDIC processor architecture. In Fig. 3, the diagonal PEs of the SVD array

are implemented by two CORDIC processors and eight adders. The dotted inputs ofthe

adders represent negated inputs. Because the diagonal PEs work in the generation mode,

' pr:

 
FIG. 2. CORDIC symbol.
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FIG. 3. CORDIC implementation of the diagonal PE 0f the SVD array.

both CORDIC processors are driven in the “y -> 0” mode for computing Cartesian-to-

polar coordinates conversions. In Fig. 4, the off-diagonal PEs working in the rotation

mode are implemented by two CORDIC processors and ten adders. Here, the CORDIC

processors are driven in the “z —> 0” mode for performing plane rotations.

Obviously, both CORDIC implementations have nearly the same architecture. All

PEs of the SVD array can thus be implemented by one unified CORDIC SVD module

(Fig. 5) without considerably increased hardware cost. The different computation modes

of the diagonal and off-diagonal PEs are easily “programmed” by one control bit. The

resulting SVD array is similar to that in Fig. l, but homogeneous with identical PEs.

We remark that Fig. 5 is more a “graphic program” describing the sequence of

operations to be computed rather than a hardware block diagram. We show in the fol-

lowing that the 12 adders that are paired into three pre-butterflys and three post-butterflys

an be integrated into the two CORDIC processors without separate hardware realizations.

The Jacobi SVD method is a recursive method. Each PE of the SVD array has to exchange

data with its diagonal neighbors. Because ofthis data dependency, only recursive CORDIC

processors can be used here. This is an arithmetic unit consisting of mainly three adders
and two barrel-shifters. It carries out the L iterations of the CORDIC algorithm in L

cycles by using data feedback. The two CORDIC processors contained in one CORDIC

SVD module require six adders altogether. So, it is natural to modify the CORDIC

processor architecture slightly and to use the existing six adders for computing both the

pre-butterfly and the post-butterfly operations. The resulting CORDIC SVD module has

 
FIG. 4. CORDIC implementation ofthe off-diagonal PE 0f the SVD array.
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pre—butterflys post—butterflys

  
Fla. 5. A unified CORDIC SVD module for implementing all His ofthe SVD array.

the hardware complexity of two recursive CORDIC processors and requires a total com-
putation time of L + 2 iterations.

In Fig. 6, the principal architecture of such a two CORDIC processor SVD module

is shown. The dashed lines and boxes represent the additional hardware components
  

 

 

  
FIG. 6. The principal architecture ofthe unified CORDIC SVD module.
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enabling the CORDIC processors to compute the butterfly operations. It is easily verified
that the upper four adders devoted to x and y can perform the following types ofoperations
2"): i 2'1 y (pre—butterfly), x i y (post-butterfly), x i 2'5y (CORDIC iteration) and
xi 2"x (scaling iteration) while the lower two adders devoted to 2 can compute 2"21
i242; (pre-butterfly), z. i 22 (post-butterfly), and z i at (CORDIC iteration), re-
spectively. The cross switch between the registers “Y,” and “X2” is needed to exchange
data when the CORDIC SVD module switches from the pre-butterfly operations into

the CORDIC iterations or from the CORDIC iterations into the post-butterfly operations,

respectively. Then, we see from Fig. 3 that the output data pairs of the pre-butterflys are
(p, p2) and (q,, qz), while the desired input data pairs for the CORDIC iterations are
(pl, q.) and (pz, (12), respectively. So, 172 and (11 have to be exchanged.

6. Comparisons. We now compare the new CORDIC SVD module with those pro-

posed by Cavallaro and Luk [4] and Delosme [5 ]. Let Acsvd and Tcsvd denote the area
and time complexity ofa CORDIC SVD module and Ami,C and Twrdic those ofa CORDIC

processor, respectively. Cavallaro and Luk have shown that their most efficient parallel
diagonalization method requires Acsvd -~ ZZAcmdic and Tom m 3Tcord;C for the diagonal
PBS and Acsvd m ZAWdic and Tcsvd m 2Tcmdic for the off-diagonal PEs. By using the TPR

method, we require Tcsvd z 2AwrdiC and Tcsvd z Tcom for all PEs. In other words, having

approximately the same hardware complexity, the computation time is reduced by more
than 50 percent.

A comparison to Delosme’s method is more difficult because he follows a quite

different approach. Therefore, only rough performance estimates are given here. In our

method, we compute the rotation angles explicitly. After these computations have been

completed in the diagonal PBS, the angles propagate to the off-diagonal ones. We assume

that the propagation from one PE to its neighbors takes one cycle Tcyde, the time required
for computing one CORDIC iteration. This implies local communications without

broadcasting data. At the beginning of the second propagation cycle, the angles reach

the diagonal neighbors of the diagonal PEs which complete their computations after
Tm. This means that the diagonal PEs have to wait for a delay time Tdelay = cycle +

Tm. before they can exchange data with their diagonal neighbors.3 The total time elapsed
between two adjacent activities at each PE is thus Tcsvd + Tdelay = 2Tcsvd + Tcycle z 2 Tum“c

because Tcycle is negligible with respect to deic = L- Tcycle.
Delosme does not compute the rotation angles explicitly. He rather calculates en-

codings of the angles, i.e., sequences of signs : 1, and sends them to the off-diagonal PEs.
This enables overlap of diagonal and off-diagonal rotations because the encoding signs

are recursively obtained and become available before the completion of diagonal oper-

ations. Accordingly, no delay time is required ( Tdela,y = 0), provided that the SVD array

size (the half of the matrix size) is smaller than the number of CORDIC scaling iterations

at (for details, see [5]). The drawback is, however, that the TPR method cannot be

applied to the off-diagonal PEs. Four plane rotations are hence required, resulting in
Tm = 2TcordiC for two CORDIC processors in one module. In other words, the time

complexities Tcsvd + Tdelay of both methods are nearly identical and equal 2710,“. If,
however, multiple problems are interleaved, the fraction of idle time that is 50 percent
in our case can be reduced to almost zero. In such a situation, our method provides the

double speed compared with Delosme’s one.

lule I

 

3 1f the propagation time is assumed to be Tcm, we get the well-known result Tdday = 2de given by Brent
and Luk [2].
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In terms of area complexity, both CORDIC SVD modules contain two CORDIC

processors. Our module consists of essentially six adders, four barrel shifters, and one

ROM table containing n angle values. Delosme’s architecture requires four carry-save
adders, four adders, and eight barrel shifters. So, as a rough estimate, both SVD modules

have the same order of area complexities.

Perhaps the most important advantage of Delosme’s approach is the 2-bit wide

horizontal and vertical data connections for sending angle encodings serially rather than

sending the full angle values in parallel. The prices are the upper bound of the SVD array

size depending on the number of CORDIC scaling iterations, the relatively complicated
timing, and a nonregular CORDIC architecture design. We also mention that while

Delosme’s method presumes a CORDIC implementation, the TPR method is applicable
to other computing architectures.

7. Other applications of the TPR method. Another advantage of the TPR method

seems to be the relatively wide range of applications. We indicate some of them in the

following.

For the SVD of a rectangular matrix, a well-known method is first to triangularize

the matrix by QR decomposition and then to apply the Jacobi SVD procedure to the

triangular factor. Luk [22] has shown that both steps can be implemented by one triangular

systolic array. Each PE contains a 2 X 2 submatrix. It applies two plane rotations (through
the same angle) to the two column vectors at the QR step and a two-sided rotation at

the SVD step. For computing the SVD step, the PE can be realized by the CORDIC

SVD module, as before. On the other side, the two CORDIC processors contained in

the module are also appropriate to perform the two-plane rotations of the QR step. The

CORDIC SVD module presented in this paper thus provides a suitable PE for Luk’s

triangular SVD array.

Stewart [23] has proposed a square systolic array for computing the Schur decom-

position (SD) of a non-Hermitian matrix which, for example, is useful for evaluating
the eigenvalues of the matrix. His approach is similar to the Jacobi SVD method. It is

based on applying a sequence of two-sided rotations to 2 X 2 submatrices, where the left

and right rotation angles are identical to make the diagonal submatrices upper triangular.

While the diagonal PEs perform operations different from those in SVD, the off-diagonal

PEs have exactly the same computational task as in SVD computing. Therefore, the

CORDIC SVD module can also be used in Stewart’s SD array.

Even in sequential computations on a uniprocessor system, one can still apply the

TPR method to reduce the computational complexity of two-sided rotations.

8. Conclusion. We have investigated a novel algorithm for computing two-sided

rotations requiring only two plane rotations and a few additions. This results in signifi-

cantly reduced computations of various SVD and SD methods. For parallel implemen-

tations, we have presented a unified CORDIC SVD module for implementing all PEs of

the SVD array given by Brent and Luk. This leads to a homogeneous array architecture

that is simpler in hardware and offers twice the computational speed of that of Cavallaro

and Luk. Moreover, we have pointed out that the same CORDIC SVD module can be

efficiently used in other array architectures, such as Luk’s triangular SVD array and

Stewart’s SD array.
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