

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

HULU, LLC and

NETFLIX, INC.,

Petitioners,

v.

UNILOC 2017, LLC,

Patent Owner.

Case No. IPR2020-00041
Patent No. 8,407,609

DECLARATION OF MICHAEL FRANZ IN SUPPORT OF PETITION FOR
INTER PARTES REVIEW OF U.S. PATENT NO. 8,407,609

NETFLIX, INC. EXHIBIT 1002

ii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. Qualifications ... 2

1. Education ... 2

2. Work Experience .. 2

3. Publications .. 5

4. Curriculum Vitae .. 6

B. Materials Reviewed .. 6

C. Level of Ordinary Skill in the Art .. 7

D. Summary of Opinions .. 8

II. OVERVIEW OF THE TECHNOLOGY .. 9

A. Priority Date of the Claims ... 9

B. Overview of Relevant Technology When the ’609 Patent Was
Filed .. 10

1. Usage Tracking .. 10

2. Streaming Media .. 18

C. The ’609 Patent .. 22

D. The Challenged Claims .. 26

E. Claim Construction .. 27

1. “Computer System” ... 28

2. “Streamed” ... 29

III. UNPATENTABILITY OF THE ’609 PATENT CLAIMS 30

A. Standards for Invalidity .. 30

1. Obviousness ... 30

B. Ground I: Claims 1-3 were obvious in view of Davis and Choi 32

1. The Davis-Choi Combination .. 32

2. Claim 1 ... 47

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

iii

3. Claim 2: “The method of claim 1, wherein the storing
comprises incrementing a stored value dependently upon
the receiving.” .. 74

4. Claim 3: “The method of claim 2, wherein the received
data is indicative of a temporal cycle passing.” 78

C. Ground II: Claims 1-3 were obvious in view of Siler and Davis 79

1. The Siler-Davis Combination .. 79

2. Claim 1 ... 92

3. Claim 2: “The method of claim 1, wherein the storing
comprises incrementing a stored value dependently upon
the receiving.” .. 103

4. Claim 3: “The method of claim 2, wherein the received
data is indicative of a temporal cycle passing.” 107

IV. CONCLUSION ... 107

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

iv

LIST OF APPENDICES

Appendix A Curriculum Vitae of Michael Franz, Ph.D.

Appendix B Documents Cited

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

1

I. INTRODUCTION

1. I, Michael Franz, have been retained by Petitioners Netflix, Inc.

(“Netflix”) and Roku, Inc. (“Roku”) (collectively, “Petitioners”) to investigate and

opine on certain issues relating to United States Patent No. 8,407,609 (“the ’609

patent”) in their Petition for Inter Partes Review of that patent. The Petition

requests that the Patent Trial and Appeal Board (“PTAB” or “Board”) review and

cancel claims 1-3 of the ’609 patent.

2. The opinions set forth in this declaration are based on my personal

knowledge, my professional judgment, and my analysis of the materials and

information referenced in this declaration and its exhibits.

3. I am being compensated for consulting services including time spent

testifying at any hearing that may be held. I am also reimbursed for reasonable and

customary expenses associated with my work in this case. I receive no other forms

of compensation related to this case. My compensation does not depend on the

outcome of this inter partes review or the co-pending district court litigation, and I

have no other financial interest in this inter partes review.

4. I understand that the ’609 patent has been assigned to Uniloc 2017

LLC.

5. This declaration is based on the information currently available to me.

To the extent that additional information becomes available, I reserve the right to

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

2

continue my investigation and study, which may include a review of documents

and information that may be produced, as well as testimony from depositions that

have not yet been taken.

A. Qualifications

1. Education

6. I completed my undergraduate studies with a Diplomingenieur from

the Swiss Federal Institute of Technology in Zurich (“ETH Zurich”) in 1989. In

1994, I obtained my Doctorate of Technical Sciences from ETH Zurich. My

dissertation was entitled “Code-Generation On-the-Fly: A Key to Portable

Software.”

2. Work Experience

7. I am a tenured Chancellor’s Professor of Computer Science in the

Donald Bren School of Information and Computer Sciences at the University of

California, Irvine (“UCI”). I am also, by courtesy, a Full Professor of Electrical

Engineering and Computer Science in the Henry Samueli School of Engineering at

UCI. In 2016, the University awarded me the title of distinction of “Chancellor’s

Professor.”

8. I have served as a visiting professor at ETH Zurich, the University of

California at Berkeley, the University of Klagenfurt in Austria, and the Technical

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

3

University of Berlin, the Technical University of Brunswick, and the University of

Ulm in Germany.

9. I have been elevated to Fellow of the Institute of Electrical and

Electronics Engineers (IEEE), the global engineering society. Fellow is the highest

of three grades of membership that are awarded based on merit. In every year,

IEEE limits the number of new Fellows to one tenth of one percent of the

membership, which currently stands at about 430,000 members.

10. I have also been elevated to Fellow of the Association for Computing

Machinery (ACM), the global professional society for computer scientists. Fellow

is the highest of ACM’s four grades of membership. ACM’s rules for Fellows are

even more restrictive than IEEE’s, limiting the total number of Fellows in absolute

terms to 1% of the membership, which currently stands at about 100,000 members.

In recent years, ACM has typically elevated no more than 50 individuals to Fellow

status in a single year; in 2015, the year I was advanced, there were 42 new

Fellows.

11. Furthermore, I am a recipient of the IEEE Computer Society’s

Technical Achievement Award, “for pioneering contributions to just-in-time

compilation and optimization and significantly advancing Web application

technology.” At most 5 of these awards are given annually by the IEEE Computer

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

4

Society, the largest of the IEEE’s technical societies with a current membership of

more than 60,000 members. I am also a recipient of the 2019 Humboldt Research

Award, also known as the “Humboldt Prize.” The award, given by the Alexander

von Humboldt Foundation of Germany and funded by the German federal

government, recognizes renowned researchers outside of Germany whose

“fundamental discoveries, new theories or insights have had a significant impact

on their own discipline and who are expected to continue producing cutting-edge

achievements in the future.” It is the highest award given by the Foundation to

researchers based outside of Germany.

12. I have led pioneering research on downloadable code in client-server

settings such as what we today call “Web 2.0.” This research has had a real and

lasting impact on a great many people. I am the co-inventor (with one of my

former Ph.D. students) of the “Trace Tree” compilation technique, for which the

United States Patent and Trademark Office has awarded U.S. Patent No. 8,769,511.

I collaborated with the non-profit Mozilla Foundation to incorporate this technique

into the Firefox web browser, where it became the basis of the “TraceMonkey”

JavaScript engine, eventually used by several hundred million people every day.

13. Over the course of my career so far, I have been the Principal

Investigator on several high-profile research projects with a total budget of almost

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

5

$20M. My expertise in software systems with distinct emphases on performance

and security of client-server and mobile computing has been sought out repeatedly

by the Federal Government, and I have been participating in many high-level

invitation-only meetings on Critical Infrastructure Protection and Cyber Security

organized by the National Intelligence Community, the Department of Defense, the

Department of Homeland Security, and the Department of Energy.

14. I am an Associate Editor of one the flagship journals of the IEEE, the

IEEE Transactions on Dependable and Secure Computing (TDSC), and on the

editorial board of two further peer-reviewed scholarly journals focusing on

software engineering, Software Practice and Experience (SPE) and Computer

Science Research and Development (CSRD). I have served on the program

committees of most major academic conferences that are related to the various

themes of my research. I have served as the primary advisor to 28 completed

Ph.Ds. and currently serve as the primary advisor on 11 further dissertations in

progress.

3. Publications

15. In addition to my dissertation, I co-authored “Automated Software

Diversity,” released in 2015.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

6

16. I have published 35 reviewed journal and magazine articles since

1993, and over 100 conference and workshop papers.

17. I am an inventor on five issued U.S. patents, as well as an additional

patent that has been given a “notice of allowance” but that has not issued yet. I

have one additional U.S. patent application pending.

4. Curriculum Vitae

18. A copy of my curriculum vitae is attached as Appendix A to this

declaration.

B. Materials Reviewed

19. My opinions expressed in this declaration are based on documents and

materials identified in this declaration, including the ’609 patent, the prior art

references and background materials discussed in this declaration, and the other

references specifically identified in this declaration. I have considered these

materials in their entirety, even if only portions are discussed here.

20. I have also relied on my own experience and expertise in Web

technologies.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

7

C. Level of Ordinary Skill in the Art

21. I am not an attorney and offer no legal opinions. I have been

informed about certain aspects of the law for purposes of my analyses and

opinions.1

22. I understand that in analyzing questions of invalidity and infringement,

the perspective of a person having ordinary skill in the art (“POSA”) is often

implicated, and the Court may need assistance in determining that level of skill.

23. I understand that the claims and written description of a patent must

be understood from the perspective of a POSA. I have been informed that the

following factors may affect the level of skill of a POSA: (1) the educational level

of the inventor; (2) the type of problems encountered in the art; (3) the prior-art

solutions to those problems; (4) the rapidity with which innovations are made; (5)

the sophistication of the technology; and (6) the educational level of active workers

in the field. A person of ordinary skill in the art is also a person of ordinary

creativity in the art.

1 I understand that the patent laws were amended by the America Invents
Act (AIA), but that the earlier statutory requirements still apply to pre-AIA patents.
I have been informed that the ’609 Patent is a pre-AIA patent, so the pre-AIA
requirements control. Unless otherwise stated, my understanding of the law about
patent invalidity as set forth in this declaration relates to the pre-AIA requirements.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

8

24. Based on my experience in client-server system design, as well as my

reading of the ’609 Patent, it is my opinion that a person of ordinary skill with

respect to the subject matter of the ’609 Patent at the time of the alleged priority

date of the ’609 Patent in 2008 would have had at least a B.S. degree in computer

science, computer engineering, or electrical engineering (or equivalent experience)

and would have had at least one year of experience with web development,

including the then-current web technologies such as HTML, XML, Java, and

JavaScript. This definition is flexible, and additional educational experience in

computer science could make up for less work experience and vice versa.

25. I am at least a person of ordinary skill in the art and was so on the date

to which the ’609 Patent claims priority (August 21, 2008). As shown by my

qualifications and my curriculum vitae attached as Appendix A, I am aware of the

knowledge and skill possessed by a person of ordinary skill in the art at the time of

the priority date of the ’609 Patent. In performing my analysis, I have applied the

standard set forth above.

D. Summary of Opinions

26. I have reviewed and analyzed the ’609 Patent (Ex. B-1, same as Ex.

1001 in the Petition) as well as prior art references Davis (Ex. B-2, same as Ex.

1003 in the Petition), Choi (Ex. B-3, same as Ex. 1004 in Petition), and Siler (Ex.

B-4, same as Ex. 1005 in Petition).

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

9

27. Based on my review and analysis, it is my opinion that claims 1-3 of

the ’609 Patent are invalid as obvious based on Davis in view of Choi. Based on

my review and analysis, it is also my opinion that claims 1-3 of the ’609 Patent are

invalid as obvious based on Siler in view of Davis.

II. OVERVIEW OF THE TECHNOLOGY

A. Priority Date of the Claims

28. I have been informed that a U.S. patent application may claim the

benefit of the filing date of an earlier patent application if the earlier patent

application disclosed each limitation of the invention claimed in the later-filed U.S.

patent application. I have also been informed that priority is determined on a

claim-by-claim basis so that certain claims of a patent may be entitled to the

priority date of an earlier-filed patent application even if other claims of the same

patent are not entitled to that priority date.

29. I have also been informed that for patent applications filed before

March 16, 2013, a patented claim is invalid if the claimed invention was patented

or described in a printed publication in any country more than one year before the

effective filing date of the claim, regardless of when the applicant conceived of the

claimed invention.

30. I understand that the ’609 Patent claims a priority date of August 21,

2008.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

10

B. Overview of Relevant Technology When the ’609 Patent Was
Filed

1. Usage Tracking

31. In the realm of the Internet and World Wide Web, “usage tracking” is

a term that is generally used to describe various techniques for tracking how users

interact with content accessed over the internet. I will refer to this content as “Web

resources” below, although it includes internet content well beyond simple HTML-

based web pages, including multimedia content, downloadable “Applets” and

scripts, etc. Usage tracking could include counting the number of visits to a

webpage, tracking what parts of the webpage a user clicks on, and many other

possible methods. While there are many different activities that might be tracked,

and many different approaches to performing the tracking, what is thematic of all

types of usage tracking is that the owner, operator, administrator, etc. of some Web

resource wants to see how users interact with the Web resource. But because the

user is located remotely and is only accessible through the Internet and World

Wide Web, the owner, operator, administrator, etc. may have to channel the

tracking through the Web resource itself.

32. My reference to owners, operators, administrators, etc. above reflects

the fact that usage tracking has historically been employed by many different types

of actors. Amateur website publishers often track the number of visits to their

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

11

webpages, which can be implemented entirely server-side. Website administrators

might track not just the number of visits, but how the volume of those visits vary

throughout the day. Other actors have used more sophisticated usage tracking

methods, some of which cannot be implemented solely on the server but require

client-side support.

33. While many different types of actors have employed usage tracking,

the advancement in usage tracking technologies has typically been driven by actors

with some direct monetary interest. It is perhaps not surprising that actors that are

paying or being paid based on user interaction with Web resources have had

significant interest in increasing the accuracy of usage tracking and/or the types of

usage tracking over time.

34. On the Web, the largest class of actors with a direct monetary interest

consists of advertisers. Advertising money in fact has been driving many facets of

the Web and its development over time, and is driving some of the largest

corporations in the Internet economy, such as Google and Facebook. Relating

back to my point above about the motivations to increase usage tracking breadth

and accuracy, advertisers have been very keen to make advancements in usage

tracking since the very beginning of the Web. At one point, it was common for

advertisers to pay a fee based on the number of clicks of their ads (e.g., pay a fee to

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

12

a webpage owner when a user clicks on a banner ad on that webpage). But this is

something of a rudimentary measure of advertising value, so advertisers have

sought better usage tracking metrics to value how much they should pay.

35. I now give an explanation of some of the developments in usage

tracking over time.

36. The World Wide Web became publicly available in 1991. Webpages

were fairly simple at that time, and usage tracking was also pretty rudimentary. In

the early and mid-1990s, usage tracking included things like tracking the number

of times a webpage was visited, and tracking the number of times a link was

clicked. These metrics were fairly easy to implement, even in very simple

webpages.

37. By the late-1990s to the early-2000s, webpages had advanced in

functionality and complexity, and usage tracking advanced along with them. One

significant part of these advancements was the proliferation of downloadable

executable “Applets,” written in languages such as Java, and downloadable

“Scripts,” written in languages such as JavaScript. Both of these allowed more

dynamic functionality on the client side. Java and JavaScript first appeared in

1995 and would ultimately become very popular. With these solutions to

providing “executable content” to a user’s browser it was also possible to perform

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

13

more advanced usage tracking by actually following users’ actions on the users’

computers themselves. So for example, it became possible to determine (by an

Applet or a script running in the background) whether an advertisement was

currently visible on the screen, or whether it might be temporarily scrolled off-

screen or obscured by another window.

38. By 2008 (the ’609 Patent’s claimed priority date), Web technology

had advanced even further. Webpages were highly functional with dynamic

content, streaming media, and other features that are quite similar to Web

technology today. Usage tracking advanced in correspondence, including some

very fine-grained techniques, such as tracking a user’s passive interest in various

parts of a webpage by tracking where the user’s cursor hovers, how long it hovers,

etc.

39. U.S. Patent Application Publication 2002/0165849, Ex. B-10 (“’849

Publication”), which was published in 2002 provided some background on the

state of the art in usage tracking and its motivations from the advertising

community in the early 2000s. The ’849 Publication explained that the Internet

had transformed into a “global marketplace” driven by the use webpages through

the World Wide Web. ’849 Publication, ¶0005. The webpages were formatted

using HTML and included multimedia such as “graphics, audio, and moving

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

14

pictures.” ’849 Publication, ¶0006. The Web was an “increasing attractive

medium for advertising and other business purposes.” ’849 Publication, ¶0006.

“The Internet has emerged as an attractive new medium for advertisers of

information, products and services to reach consumers.” ’849 Publication, ¶0008.

40. In the early 2000s, advertisers typically had to track various metrics to

determine whether the money paid for an advertising listing had been financially

worthwhile. ’849 Publication, ¶0016-0026. Advertisers would “keep track of the

number of clicks that a listing is getting.” ’849 Publication, ¶0021. Advertisers

would track the “click through rate” for a listing. ’849 Publication, ¶0022.

41. But needs remained in the state of the art advertising technology.

These existing approaches were difficult for advertisers to manage. ’849

Publication, ¶0016-0026. And then-common pricing schemes for advertising were

not ideal. ’849 Publication, ¶0012-0015. Advertisers often paid for each

impression for an advertisement (e.g., for each visit to the webpage displaying a

banner advertisement). ’849 Publication, ¶0012. But click through rates were low,

and many of the impressions were for users not interested in the advertised product

or service. ’849 Publication, ¶0013.

42. U.S. Patent 6,108,637, Ex. B-11 (“’637 Patent”), which issued in 2000,

is an example of how practitioners in the field were trying to improve usage

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

15

tracking techniques as a way to address these shortcomings in the field. The ’637

Patent stated that “advertisers have particular interest in knowing how and to what

extent their advertisements are displayed and/or observed, since such knowledge

can be a key element in evaluating the effectiveness of their advertising and can

also be the basis for payment for advertising.” ’637 Patent, 1:35-51. The ’637

Patent also noted the deficiencies of the then-standard usage tracking

(“monitoring” in that reference) approaches. ’637 Patent, 1:52-65. The ’637

Patent sought to address the problems by improving usage tracking on the client

itself, by using a client-side tracking program provided by a server and

downloaded to the client. At the time of the invention, there were generally two

well-known technologies for such “executable content,” programs downloaded

from a server to a client and then executed on the client. The first of these are so-

called “Applets” that are typically represented as programs for the Java Virtual

Machine (JVM) and that are executed by a JVM that is part of the user’s browser.

The other is so called “scripts,” with the JavaScript language being the most

popular browser scripting language. The most important difference between

Applets and Scripts is that Applets are shipped as compiled code (in the case of the

JVM, typically compiled from the Java source language) and are therefore

somewhat harder to reverse engineer, while scripts are shipped in human-readable

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

16

source code form (but today they often are also heavily obfuscated). Hence, an

Applet downloaded to the client could track “whether (and for how long) the

content display is hidden” and “whether the content display is fully hidden or

partially hidden (and for how long the content display is fully and partially hidden,

respectively).” ’637 Patent, 7:4-30, 11:57-12:43.

43. U.S. Patent 7,310,609, Ex. B-14 (“’0609 Patent”), which was filed in

2002, demonstrated other ways in which usage tracking was being improved for

the purposes of advertising. The ’0609 Patent explained that metrics like “the

number of times that the Web page containing the advertisement is displayed”

were used “by the providers of such services and advertisers, typically in order to

calculate advertising rates.” ’0609 Patent, 1:61-65. The ’0609 Patent also

mentioned advertisement click-throughs as a metric used by advertisers. ’0609

Patent, 1:66-2:13. “Advertisers, however, would like not only to count a number

of ‘impressions,’ or how many times their advertisement is seen, but also to find a

way to track how effective their ads are in attracting consumers’ interest in their

products.” ’0609 Patent, 2:9-13.

44. The ’0609 Patent provided a solution to address these needs of

advertisers. The ’0609 Patent disclosed providing a web browser Applet to the

client computer. ’0609 Patent, 2:24-3:5. The Applet would track “how long an

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

17

object is displayed, which objects are selected by a user, which items are

considered by a user according to the amount of time the cursor hovers over the

items, measuring the time of presentation of an element in various ways, and/or

activating hyperlinks.” ’0609 Patent, 2:24-3:5.

45. U.S. Patent 7,089,304, Ex. B-12 (“’304 Patent”), which was filed in

2001, demonstrates that advancements in usage tracking were also being made by

groups other than advertisers. The ’304 Patent disclosed that, according to the

ways that clients were charged for Internet access at the time, Internet service

providers were “traditionally responsible for tracking a client’s usage, if

necessary.” ’304 Patent, 1:38-47. The Internet service provider might track how

long a client accessed the Internet, as well as what services the client

accessed. ’304 Patent, 1:48-2:22. The ’304 Patent disclosed use of a type of

“metering packet” to make this tracking more effective. ’304 Patent, 2:26-3:56.

46. U.S. Patent 6,877,007, B-13 (“’007 Patent”), filed in 2001,

demonstrates that highly detailed usage tracking information was of considerable

interest as a general matter for any business operating on the Web. “It is a truth

universally acknowledge that, in order to succeed, a business must study the habits,

desires, and behavior of its customers. For companies conducting business over

the Internet and the World Wide Web … this necessarily extends to examining and

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

18

measuring their customers’ interaction with their Web sites.” ’007 Patent, 1:14-19.

The ’007 Patent disclosed that this goal could be achieved by providing a tracking

program with a webpage and having the tracking program track the user’s

interaction with the webpage on the client. ’007 Patent, 1:50-2:28. The user’s

interactions are transmitted to a server and can then be later replayed. ’007 Patent,

1:50-2:28.

47. While much more could be said about the multitude of usage tracking

techniques that had been developed by 2008, the techniques highlighted above give

a good overview of how the technology has advanced over time. These examples

also demonstrate that by 2008, tracking how long users interacted in various ways

with various types of content in their web browser were very well-known and

easily implementable by any person of ordinary skill in the field.

48. I use the term “usage tracking” in this declaration, but I note that other

terminology may be used to refer to this domain. I have seen terms like “user

tracking,” “interaction tracking,” “user analytics,” and many others. These other

terms also refer to this general field of tracking the usage of Web resources.

2. Streaming Media

49. The use of streaming media in the World Wide Web was also very

well-developed by 2008. While early webpages tended to be static and simple and

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

19

contain primarily static images or multimedia, this was already changing by the

late-1990s.

50. One way in which streaming media was advancing by the late-1990s

was through standardization processes, with the Internet Engineering Task Force

(IETF) leading some of these efforts. In 1996, the IETF released RFC 1889, which

described Real-time Transport Protocol (RTP), a protocol for performing real-time

delivery of content. The “real-time” part of the delivery in RTP was significant,

because it meant that content could potentially be transferred as it was created and

also that content could potentially be presented as soon as just part of it was

received. RTP did not describe those specifics, because it was a network transport

protocol. But it provided the groundwork on which such applications could be

built.

51. The IETF released complementary specifications with RTP and in the

years the followed. RFC 1889 itself described Real-time Transport Control

Protocol (RTCP), which provided a control layer over the delivery functions

handled by RTP. In 1998, the IETF released RFC 2326, which described Real-

Time Streaming Protocol, which was intended as a protocol for real-time streaming

like RTP and RTCP, but for providing complimentary “network remote control”

functionality. RTP was also itself re-released as RFC 3550 in 2003.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

20

52. Commercial efforts to advance streaming media were also taking

place in the late-1990s. RealNetworks was one of the major early players in this

field and had stable audio streaming technology in commercial use by the end of

the 1990s.

53. Throughout the 2000s and up through 2008, streaming media over the

Internet expanded at an incredible rate. By August 2008, YouTube had been live

for several years and was streaming millions of videos every day. Netflix and

Hulu were offering video streaming services. Streaming audio and video were

commonplace and an increasingly preferred method for delivering audiovisual

content over the Web to users.

54. By August 2008, other complimentary technologies had also

developed related to streaming media. One such technology was the content

delivery network (CDN). CDNs had existed as commercial entities since at least

the late-1990s, when Akamai Technologies was formed. The purpose of CDNs

was and is to reduce latency by storing content “closer” to the end-users. Typically,

CDNs such as Akamai operate so called “edge caches” in many major cities, and

as the name suggests, these servers cache frequently accessed content. User

requests that would normally go to a content provider’s “main” server(s) are

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

21

redirected to these edge-caches instead, typically resulting in a much quicker

response time because the cache is fewer “hops” away from the user.

55. Using CDNs makes particularly much sense for large media content

such as videos, both for a downloading and for a streaming context. In the case

that a video needs to be downloaded fully before it can be played, a video server

that is “far away” from a client (in terms of router hops from the server) might lead

to a long start delay (“high latency”) since the complete video file needs to be

transported to the client first. Such a file would be transmitted as a sequence of

separate packets, and the more “hops” there are between the server and the client,

and the longer the file, the more chances exist that a packet can get lost and needs

to be retransmitted.

56. In the case of streaming video, a “far away” server might lead to

interruption of the video stream if packets get lost or delayed due to retransmission,

or if the buffer size is increased to account for this, a resulting startup delay (high

latency). By placing CDNs “close” to the users, the latency can be reduced

significantly.

57. Through these industry standards, common commercial exploitation,

and supporting technologies, it is possible to see how streaming media, especially

streaming video, had become very well-known by 2008, and something that a

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

22

person of ordinary skill in this field could easily implement without significant

challenges.

C. The ’609 Patent

58. The ’609 Patent describes a type of webpage through which content

can be uploaded, browsed, and viewed. ’609 Patent, Figure 2. The disclosure is

made with respect to standard networking hardware, such as servers and personal

computers. ’609 Patent, Figure 1. The webpage includes a content search

feature. ’609 Patent, Figure 3. The webpage allows a user to upload content. ’609

Patent, Figure 4. The webpage allows a user to associate information with content

that has been uploaded elsewhere. ’609 Patent, Figure 5. The webpage allows a

user to create content, such as an audio show. ’609 Patent, Figures 6-7. The

webpage allows for automated association of information with content that has

been uploaded elsewhere. ’609 Patent, Figure 8. The webpage allows the content

itself to be displayed. ’609 Patent, Figure 9. The webpage allows tracking

information to be sent periodically from a client displaying the webpage to a

server. ’609 Patent, Figure 10.

59. The claims in the ’609 Patent deal with a subset of this disclosure,

namely the part about tracking information. This is described primarily at column

7, lines 15 through 58, column 11, line 37 through column 14, line 8, and in

Figures 9 and 10.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

23

60. In column 7, the ’609 Patent describes tracking various information

for a webpage. The ’609 Patent describes tracking: the number of visitors to a

webpage, a number of visitors for a specific element of content, the number of

pages viewed by a particular user, when a user began watching a presentation of

content, when a user ended watching a presentation of content, and the total time

the user spent on the webpage. ’609 Patent, 7:15-58.

61. The ’609 Patent repeats some of this disclosure in column 11.

The ’609 Patent describes tracking the number of accesses to content, as well as

how long a user actually watches a presentation of content. ’609 Patent, 11:37-58.

62. With respect to Figure 9, the ’609 Patent discloses a webpage for

displaying content and related information. The webpage can include a portion for

displaying the actual content (see references to element 920), as well as portions

for displaying advertisements (see references to element 910 and 940). ’609 Patent,

11:59-12:15. The content can be streamed or downloaded. ’609 Patent, 12:1-5.

63. The ’609 Patent describes two different scenarios for which tracking

information can be generated. If the content is uploaded to the same system that

hosts the webpage, then the tracking information can be gathered on the

server. ’609 Patent, 12:16-35. When the content is uploaded to a different system

than the one that hosts the webpage, it can be harder to gather the tracking

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

24

information. ’609 Patent, 12:36-55, given that the server hosting the webpage does

not have control over the content.

64. In order to have an approach that works regardless of where the

content is hosted, the ’609 Patent has a technique for gathering tracking

information at a client. ’609 Patent, 12:56-14:8. One element of this technique is

to have the client periodically send tracking information back to the server that

hosts the webpage, as depicted in Figure 10, reproduced below. ’609 Patent,

12:56-13:23. And in order to provide this functionality in the client, an Applet

with the timer functionality can be provided from the server hosting the webpage

to the client. ’609 Patent, 12:56-13:9. The server can then store the received

tracking information. ’609 Patent, 13:24-42.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

25

65. The ’609 Patent says that knowledge of how long a user spent on a

webpage was not generally available at the time of the invention, ’609 Patent,

13:43-48, even though this was actually quite well established as explained in the

description of the history of the technology in this declaration, above. As for

motivation for its disclosed usage tracking, the ’609 Patent explains that the

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

26

technique allows improvement in the “scale of payments for advertising displayed”

on the webpage. ’609 Patent, 13:48-14:2.

D. The Challenged Claims

66. I understand that the Petitioners are challenging all of the claims in

the ’609 Patent, which means claims 1-3. I reproduce those claims below, with

small letters added to enumerate the elements of claim 1.

1. A method for tracking digital media presentations
delivered from a first computer system to a user’s
computer via a network comprising:

[a] providing a corresponding web page to the user’s
computer for each digital media presentation to be
delivered using the first computer system;

[b] providing identifier data to the user’s computer using
the first computer system;

[c] providing an applet to the user’s computer for each
digital media presentation to be delivered using the first
computer system, wherein the applet is operative by the
user’s computer as a timer;

[d] receiving at least a portion of the identifier data from
the user’s computer responsively to the timer applet each
time a predetermined temporal period elapses using the
first computer system; and

[e] storing data indicative of the received at least portion
of the identifier data using the first computer system;

[f] wherein each provided webpage causes corresponding
digital media presentation data to be streamed from a
second computer system distinct from the first computer

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

27

system directly to the user’s computer independent of the
first computer system;

[g] wherein the stored data is indicative of an amount of
time the digital media presentation data is streamed from
the second computer system to the user’s computer; and

[h] wherein each stored data is together indicative of a
cumulative time the corresponding web page was
displayed by the user’s computer.

2. The method of claim 1, wherein the storing comprises
incrementing a stored value dependently upon the
receiving.

3. The method of claim 2, wherein the received data is
indicative of a temporal cycle passing.

E. Claim Construction

67. I understand that claim terms generally are construed in accordance

with the ordinary and customary meaning they would have to a POSA at the time

of the invention in light of the claim language, the specification, and the

prosecution history. I understand that dictionaries and other extrinsic evidence

may be considered as well, though such evidence is typically regarded as less

significant than the intrinsic record in determining the meaning of the claim

language

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

28

68. For all terms of the challenged claims of the ’609 patent, I have

interpreted them as they would have been understood by a POSA at the time of the

invention, i.e., August 21, 2008.

69. It is my opinion that the following terms require construction to

address this Petition; I do not address terms that may require construction in the

district court.

1. “Computer System”

70. I agree that the best construction for “computer system” in claim 1 is

“a single computing device or a collection of computing devices having a common

operator or under common control.”

71. I believe this is the most appropriate construction because that is

nearly verbatim the definition given in the ’609 Patent itself. ’609 Patent, 3:52-55.

This definition also comports with how the term “computer system” is used in

claim 1, so I do not see any reason to deviate from the definition given in the

specification. In particular, claim 1 refers to a “first computing system” and a

“second computing system,” with the two “distinct” from one another. ’609 Patent,

14:35-39. This seems to match the third-party hosting of content, as described in

the specification. ’609 Patent, 12:36-45. And the definition given in the

specification clarifies what is different between the two systems.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

29

72. For these reasons, it is my opinion that “computer system” should be

construed as “a single computing device or a collection of computing devices

having a common operator or under common control.”

2. “Streamed”

73. I agree that the best construction for “streamed” is “transferred via a

technique such that the data can be processed as a substantially steady or

continuous sequence.”

74. I believe this is the most appropriate construction because that is very

close to the definition given in the ’609 Patent itself. ’609 Patent, 4:43-47. This

definition also does not conflict with how the term “streamed” is used in the claims,

so I do not see any reason to deviate from the definition given in the specification.

75. The specification defines “streaming” as a way to contrast with

“downloading,” which the specification also defines. ’609 Patent, 4:40-52. The

specification explains that “streaming” is a technique for transferring data in such a

way that it can be processes as a substantially steady or continuous stream, and so

that presentation of the data can be started before all of the data has been

transferred. ’609 Patent, 4:43-47. The specification defines “downloading” as

transmitting data, namely “an entire data file,” between computers. ’609 Patent,

4:48-52. Thus the specification describes both “streaming” and “downloading” as

different types of data transfer.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

30

76. The language of claim 1 also suggests that “streamed” is a type of

data transfer. Namely, claim 1 recites that data is streamed “from a second

computer system” and “to the user’s computer.” ’609 Patent, 14:35-39. This thus

explains a way to transfer data between computers.

77. I understand that another petitioner has requested inter partes review

of the ’609 Patent, and that that petitioner proposed a construction of “streamed”

that focuses on the presentation of content. While “streamed” can be used

colloquially to refer to presentation of content (e.g., “I streamed a movie last

night.”), I do not believe that is the correct construction of “streamed” for the

reasons described above. Nonetheless, I have been asked to also consider the

claims of the ’609 Patent and the prior art in light of a “presentation” type of

streaming as an alternative approach, and I do so in my analysis below.

III. UNPATENTABILITY OF THE ’609 PATENT CLAIMS

A. Standards for Invalidity

1. Obviousness

78. I am informed and understand that a patent cannot be properly granted

for subject matter that would have been obvious to a person of ordinary skill in the

art at the time of the alleged invention, and that a patent claim directed to such

obvious subject matter is invalid under 35 U.S.C. § 103. It is also my

understanding that in assessing the obviousness of claimed subject matter, one

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

31

should evaluate obviousness in light of the prior art from the perspective of a

person having ordinary skill in the art at the time the alleged invention was made

(and not from the perspective of either a layman or a genius in that art). It is my

further understanding that the question of obviousness is to be determined based on:

 The scope and content of the prior art;

 The difference or differences between the subject matter of the claim
and the prior art (whereby in assessing the possibility of obviousness
one should consider the manner in which a patentee and/or a Court
has construed the scope of a claim);

 The level of ordinary skill in the art at the time of the alleged
invention of the subject matter of the claim; and

 Any relevant objective factors (the “secondary indicia”) indicating
nonobviousness, including evidence of any of the following:
commercial success of the products or methods covered by the patent
claims; a long-felt need for the alleged invention; failed attempts by
others to make the alleged invention; copying of the alleged invention
by others in the field; unexpected results achieved by the alleged
invention; praise of the alleged invention by the alleged infringer or
others in the field; the taking of licenses under the patent by others
and the nature of those licenses; expressions of surprise by experts
and those skilled in the art at the subject matter of the claim; and
whether the patentee proceeded contrary to accepted wisdom of the
prior art.

 Any relevant objective factors (the “secondary indicia”) indicating
obviousness: independent invention of the claimed invention by others
before or at about the same time as the named inventor thought of it;
and other evidence tending to show obviousness.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

32

B. Ground I: Claims 1-3 were obvious in view of Davis and Choi

1. The Davis-Choi Combination

a. Davis

79. Davis disclosed a way to perform usage tracking, and in particular a

way to track the number of visits to a webpage and the duration of time that a

webpage is displayed to a user. Davis discloses its techniques in several variations,

but I focus my analysis on the technique described in Figure 4, which is also

described as an extrapolation of Figure 3. Davis, 11:34-13:18, 9:16-11:33. Figure

4 is shown below, with markup added in the form of coloring, shading, and the

numerals 1 through 6.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

33

80. I now summarize the disclosure from Davis for Figure 4 with

reference to the marked-up figure above.

81. The system of Figure 4 includes a Client, Server A, and Server B.

The client is a typical user’s computer. Davis, 5:14-56, 6:1-4. The Server A

provides the webpage displayed to a user, and may host some of the media content

that is displayed in the webpage. Davis, 11:34-12:4. A third-party server may also

provide the media content that is displayed in the webpage. Davis, 11:34-12:4.

The Server B provides the tracking functionality, includes a database to store

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

34

tracking information, and several scripts that cause the tracking functionality to

work. Davis, 11:34-12:50.

82. At the step (1), Server A provides a webpage to the Client. Davis,

11:35-40. This is a standard webpage, such as one using HTML. Davis, 11:34-

12:4. The webpage is provided using standard Internet technology, such as TCP/IP

and HTTP. Davis, 11:34-12:4.

83. At the step (2), the Client renders images or other content that is

embedded in the webpage. Davis, 11:35-47. The image and other content can also

be provided by the Server A, or they can be provided by some other system. Davis,

11:34-12:4. In this sort of arrangement, the Client would determine what image or

other content is embedded based on some reference (e.g., a URL) included in the

HTML of the webpage.

84. At the step (3), the Client uses a link that is embedded in the webpage

to invoke CGI Script 1 that is available on Server B. Davis, 11:47-12:4. The

purpose of CGI Script 1 is to allow the Server B to register the Client. Davis,

11:34-12:4. This will then allow the Server B to associate the tracking information

later received (through CGI Script 2) with a particular Client device. Davis, 11:34-

12:50. Davis explains that this registration and setup can be performed using a

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

35

cookie, which the Server B can create and provide to the Client. Davis, 11:34-

12:50.

85. At the step (4), the Client obtains an Applet from the Server B. Davis,

12:13-21. The Applet is “executable content,” i.e. a mobile program that is

executed on the client and that contains the tracking functionality. Davis, 12:5-50.

An Applet was a well-known functionality at the time of Davis’s disclosure. An

Applet was typically implemented in web browsers as compiled code targeting the

Java Virtual Machine (JVM) that was present (and still is) in most browsers at the

time. The JVM takes the Applet and executes it step by step, similar to how a

microprocessor would execute a program binary instruction by instruction.

86. At the step (5), the Client runs the Applet. Davis, 12:22-26. The

Client runs the Applet in coincidence with the webpage display beginning. Davis,

12:5-50. This will allow the Applet to later determine how long the webpage was

displayed, based on the functionality performed at step (6). Davis, 12:5-50. The

Applet is thus a sort of timer embodied in an Applet. Davis, 12:5-50.

87. At the step (6), the Applet stops executing when the user leaves the

webpage. Davis, 12:26-40. The Applet can then calculate the amount of time the

webpage was displayed by comparing the time that it began execution with the

time that it ended execution. Davis, 12:5-50. The Client then invokes the CGI

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

36

Script 2, which involves providing the tracking information generated by the

Applet at the Client. Davis, 12:5-50. The Server B then stores that tracking

information in a database. Davis, 12:5-50.

88. Similar to the ’609 Patent and much of the advancements in usage

tracking (see description of the technology background above), Davis explained its

motivation as one of monetization. Davis, 11:24-33. In particular, Davis’s

approach could allow better monetization of advertisements displayed on a

webpage. Davis, 11:24-33.

b. Choi

89. Choi disclosed an approach for providing streaming media, and in

particular for recovering from network disruptions that occur while providing the

streaming media. Choi explained that streaming media over networks posed

technical challenges, such as network congestion, packet loss, variable latencies,

and others. Choi, ¶0002-0004. Choi described a way to deal with these

disruptions, which dealt largely with a new type of message, a “reconnect request,”

that a client could send to a server to reestablish the streaming media connection.

Choi, ¶0005-0014. Choi explained that this approach could be implemented with

industry-standard technologies like RTSP, HTTP, and others, including those that I

introduced elsewhere in this declaration. Choi, ¶0006, 0029-0031.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

37

90. Choi explained with respect to Figure 3 that the client and server

could establish a session in which the stream could be transmitted. Choi, Figure 3,

¶0044. A session identifier could be used to identify the session between the client

and server, and a stream identifier could be used to identify the stream of content

being provided from the server to the client. Choi, ¶0044. Choi here is using

“session” to refer to a period of interaction between a specific client and a specific

server. This is similar to the way that Davis uses the CGI Script 1 to start a period

of interaction between the Client and Server B.

91. One feature of Choi’s system is a periodic reporting message that the

client sends to the server. Choi, ¶0047. Choi calls these “state data” or “logging

statistics.” Choi, ¶0047. The data reported from the client to the server allows an

administrator to see what each client is doing at any given time. Choi, ¶0047. The

reporting message includes the logging statistics along with the session identifier

and the stream identifier. Choi, ¶0047. The server can later use the logging

statistics that it stores to help reestablish the connection with the client after a

disruption. Choi, ¶0047-0051.

92. Choi explains that the particular logging statistics that are provided

are in Appendix C of Choi. Choi, ¶0049. Appendix C describes the general

reporting message interaction between the client and the server. Choi, ¶0096-0099.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

38

Choi explains that the interval at which the client will send the reporting messages

is determined based on a “reporting interval parameter” set when in one of the first

messages between the client and the server.

93. Appendix C then includes a Table C1 labeled as “Logging Fields” that

identifies the fields of data reported from the client to the server and stored by the

server. Choi, Table C1. The parameters include a “cs-uri-stream” parameter,

which identifies the “URI stem of the content that was requested.” Choi, Table C1.

The parameters include a “c-starttime” parameter, which identifies the timestamp

“when you played the file in normal mode.” Choi, Table C1. The parameters

include a “c-endtime” parameter, which identifies the timestamp “when the Client

finished playing the file in normal mode.” Choi, Table C1. The parameters

include an “x-duration” parameter, which identifies “How long you tried to receive

the stream (in seconds).” Choi, Table C1. Many other parameters are included in

Table C1.

c. Motivation to Combine

94. Based on my review of Davis and Choi, and based on the background

of the field in August 2008, it is my opinion that a POSA would have been

motivated to, and would have found it obvious to, combine several features

described in Choi into the system described in Davis.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

39

95. First, Davis may not directly and explicitly be describing streaming

content in the webpage provided by Server A. When describing the technique

shown in Figure 4, Davis describes images in the webpage, and that the images are

“fetched.” Davis, 11:34-12:5. In this context, fetching images likely is closer to

“downloading” of the images, rather than “streaming” them.

96. At the same time, Davis explains that other type of content, including

audio and video, can be presented in the webpage. Davis, 7:1-29. So a person of

ordinary skill would have understood that the fetching of images described in

column 11 was one type of resource that could be presented in the webpage, but

not the only type. The person of ordinary skill would have understood that audio

and video were equally as possible to be displayed in the webpage.

97. In situations where audio and video were provided in the webpage,

Davis does not explicitly say that the content is “streamed” to the webpage. But a

person of ordinary skill would have recognized this as a possibility even by the

disclosure of Davis itself. Namely, Davis discloses a variation on its system where

the content is a “live news or entertainment feed.” Davis, 16:63-17:10. As

discussed previously, the use of “live” or “real-time” delivery of continuous

content in the late-1990s through to August 2008 generally implied streaming of

such content. Otherwise, if the user had to fully download the content at once

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

40

ahead of presenting it to the user, it could not realistically be called “live.” Hence,

based on this “live feed” portion of Davis, a person of ordinary skill would have

understood that the content presented in the webpage described with respect to

Figure 4 could also have been streamed to the client.

98. In any case, even ignoring the suggestions of content streaming of

Davis, a person of ordinary skill would certainly have recognized that streaming of

content was a well known method for content delivery in 2008 and was described

in many publications, including the disclosure of Choi. Choi is itself built entirely

around the streaming of content. Choi, ¶0002-0014. Choi not only discloses that

streaming of audio and video was possible, it goes a step further to improve

streaming delivery of content. Choi, ¶0002-0014.

99. By the time Choi was filed in June 2002 and published in December

2003, streaming of audio and video was already extremely well known, as

discussed previously in this declaration. This is implicit in Choi’s own disclosure.

Choi, ¶0002-0014. And this is further evidenced by the fact that such standards as

RTP and RTSP had been described by the IETF some five to ten years earlier, as

discussed elsewhere in this declaration. In fact, Choi is really just a representative

instance showing that streaming of content was well known, if that was not already

evident from Davis.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

41

100. And a person of ordinary skill as of August 2008 would not only have

recognized the possibility of using streaming content in the webpage described

with respect to Figure 3 of Davis, a person of ordinary skill would have been

highly motivated to actually use streaming. First of all, based on the disclosure of

Davis itself, a person of ordinary skill would have recognized that streaming would

be the only viable delivery mechanism in cases where continuous live or real-time

content was being provided, as discussed above. Davis, 16:63-17:10.

101. But even for non-live and non-real-time content, streaming had by

August 2008 become the preferred delivery mechanism for audio and video in

many user-facing Web applications. The reason is because by August 2008,

lengthy audio and video content was being presented in webpages, not just short

clips. Recall the discussion earlier in this declaration regarding the existence of

video streaming services like Hulu and Netflix by August 2008. And it was quite

evident that a user who wanted to view a movie or even a long video on YouTube

did not want to have to start a download and then come back several minutes or

hours later to watch it. Essentially the point of services like YouTube, Netflix, and

Hulu was to deliver video content when the user wanted to watch it—cut out the

delay. Additionally, users typically do not watch every video that they start all the

way to the end – so downloading a complete video only to have the user later skip

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

42

over part of the already downloaded file is a colossal waste of network resources.

So streaming was, by August 2008, what end users preferred and even expected.

In this context, a person of ordinary skill would have been highly motivated to

stream the audio or video content presented in the webpage provided from Server

A to the Client in Davis’s system.

102. A person of ordinary skill in August 2008 would also not have found

it challenging to implement streaming audio or video as a delivery mechanism. As

described previously in this declaration, by August 2008, streaming protocols had

been standardized for a decade, streaming was used in many commercial

implementations, and Davis’s system disclosed that it used the standard Web

technologies that a person of ordinary skill would have been familiar with. Davis,

7:1-29. There were also commercial ready-made components such as Adobe Flash

available almost ubiquitously to make implementation of streaming solutions

simpler. So a person of ordinary skill would have recognized the option of using

streaming content in Davis’s webpage, would have been motivated to use that

delivery mechanism, and would have found it well within his/her skillset to put

together an implementation using available conventional technologies.

103. A second feature disclosed in Choi that a person of ordinary skill

would have been motivated to add, and would have found obvious to add, into

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

43

Davis’s system was the use of a periodic timer to send the tracking information to

the server. As described above, Davis uses a timer Applet that starts running when

a webpage is first loaded, then stops running when the webpage is no longer

displayed. Davis, 12:5-50. It is at this point that the Client sends tracking

information to Server B. Davis, 12:5-50.

104. But this timing approach described in Davis was just one way to

schedule the tracking information reporting messages. A person of ordinary skill

in August 2008 would definitely have recognized several other possible

approaches. One approach would have been to use batch processing. For instance,

the Client could store a series of tracking information throughout the day, and then

send a single message to the Server B at night.

105. Another approach would have been to use a regular, periodic

reporting interval. This approach is the one described by Choi. Choi, ¶0047, 0097.

A person of ordinary skill would have been familiar with this regular, periodic

reporting interval. And a person of ordinary skill would have had no technical

difficulty in implementing such an approach. For instance, Choi explained that the

regular, periodic reporting interval could be used with industry standards like

RTSP. Choi, ¶0006, 0029, 0047. A person having ordinary skill in the field as of

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

44

August 2008 would have recognized several significant benefits with using the

regular reporting approach.

106. As a first reason, Choi discloses that the regular receipt of logging

statistics at the server would make sure logging information was on hand in case

any network disruptions occurred. Choi, ¶0047-0051. This contrasts with the

batch approach or even the approach described in Davis. For example, with the

approach described in Davis, if the user remains on the webpage for a long period

of time, and there is a network disruption during that time, then there is an

increased risk that the tracking information will be lost (e.g., Client observes lost

connection to Server B and thereby does not invoke CGI Script 2 when the

webpage is exited). The longer the time between tracking information reports, the

more likely that something will go wrong.

107. As a second reason, using a predetermined reporting interval would in

some instances be easier to implement than the event-based approach described in

Davis. While Davis’s timer is described as being quite simple, a predetermined

reporting interval was a known technique which was in some ways even simpler.

For a predetermined reporting interval, the implementing code would include

basically two parts: (1) the logic to gather, package, and transmit the tracking

information; and (2) the logic to wait for the predetermined reporting interval. The

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

45

latter part, element (2) as just annotated, is typically just one, two, or three lines of

code in most programming languages. For instance, there is often a “sleep()”

function or something similar in most programming libraries. This is incredibly

simple, and one that basically any college student learning Web-based

programming would be familiar with. A simple, familiar solution would be

appealing to a person of ordinary skill in the field, or really any person in the field.

108. As a third reason, a person of ordinary skill in the field as of August

2008 would have been motivated to implement the predetermined reporting

interval because it was one of basically only two or three potential timing

approaches. As described above, the predetermined timing approach could have

been used, as could have a batch reporting approach or an event-driven approach

as in Davis. Of these three, the batch driven approach would not have been

appealing to a person of ordinary skill in the field. As of August 2008, transactions

and reporting over the Web were increasingly real-time, and batch reporting would

have been considered somewhat counter to this trend. Also, batch reporting would

have greatly increased the risk of delaying or even losing information (e.g., Client

machine crashes, Client machine loses network connection to Server B, or user

explicitly turns off the machine while closing credits are still running to avoid

being charged for a movie).

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

46

109. So a person of ordinary skill would have viewed there as being

basically two simple approaches for implementing the reporting: event-driven

reporting, or a predetermined interval for reporting. Given these limited options, a

person of ordinary skill would have been motivated to try either and both. A Web

programmer would likely try one, perhaps try the other, and see which worked best.

These would not have been difficult schemes to implement. And to the extent that

such a programmer for some reason only wanted to spend time trying one approach,

he/she would have likely implemented the predetermined interval for reporting for

the reasons described above. This is all the more so given that the regular, periodic

reporting approach would be recognizable to a person of ordinary skill as similar to

the well-known “heartbeat” style of status reporting. Ex. B-7, 2:21-28; Ex. B-8,

¶0008-0009; Ex. B-9, ¶0001. The use of regular, periodic “heartbeat” status

reports from a client to a server was very well known and a preferred manner for

maintaining status information about a client at the server in a networked

environment.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

47

2. Claim 1

a. Claim 1 preamble: “A method for tracking digital
media presentations delivered from a first computer
system to a user’s computer via a network
comprising:”

110. It is my opinion that Davis discloses this feature. As discussed

previously, Davis discloses a technique for tracking the display of webpages, and

the content embedded therein, on a Client computer. Davis, 11:34-13:17.

111. The display of content, such as audio or video, in one of these

webpages would be a “digital media presentation.” This is true at least because

audio and video are types of media, which are typically delivered in digital format

in Web-based applications like in Davis. In addition, when the audio or video is

played-back, this would be a form of presentation of the content. Davis explains

that the audio and video content is delivered across a network, such as the Internet.

Davis, 3:14-32, 5:4-13, 6:14-34, 11:34-12:5.

112. Davis also describes a “first computer system.” As explained

previously in this declaration, Davis describe both a Server A and a Server B.

Davis, 11:34-12:5. The Server A provides the webpage, while the Server B

provides the timer Applet and stores the tracking information. Davis, 11:34-12:50.

113. While Davis does not explicitly describe Server A and Server B as

being part of the same “system,” Davis’s description of Server A and Server B was

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

48

consistent with the way that a person of ordinary skill would have understood a

“system” as of August 2008. In particular, a person of ordinary skill in the field

would have understood a “system” in the Web context to often include more than

one computer, as well as computers performing different but complimentary roles.

For instance, a website operator’s “system” might include a web server for serving

web resources, a database server for persisting website information, and any

number of other servers for providing complimentary functionality. As a further

example of the use of larger “systems” of servers, larger web sites would often be

implemented in multiple web servers with a load-balancing server that directs

client requests to the least utilized server. In this vein, Davis’s description of what

amounts to a web server, Server A, and a tracking server, Server B, is wholly

consistent with what would have been a person of ordinary skill’s notion of a

“system” in the Web context in August 2008.

114. This “system” notion of Server A and Server B is further supported by

Davis’s disclosure. For instance, Davis says that the functionality of Server A and

the functionality of Server B could, at least in part, be combined together. Davis,

12:33-50, 17:63-18:7. Davis says that the tracking program could be provided on

the same server as the webpage. Davis, 17:63-18:7. Davis says that the database

of tracking information can be stored on Server B “or elsewhere.” Davis, 12:33-

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

49

50. A person of ordinary skill would have understood from these descriptions in

Davis that the distinction between Server A and Server B need not exist, as long as

the functionality was provided somewhere. And a person of ordinary skill would

have found no technical challenge in moving a database, a tracking program, and

two CGI scripts from one server to another.

115. In addition, Davis described the same sort of entities operating on

Server A and Server B. Davis, 4:15-18, 11:24-33. Namely, Davis says that

“network administrators” and “web site administrators,” both of which could be

associated with the webpages hosted on Server A, would be consumers of the

tracking information stored on Server B. This further supports the notion that

Server A and Server B are in the same system under the ’609 Patent’s definition of

“computer system” as being multiple devices “having a common operator or under

common control.” As a result of these suggestions in Davis, in combination with

the reasons described above, a person of ordinary skill in the field in August 2008

would have understood Server A and Server B to be part of a single “computer

system.”

116. It is also true that, even without relying on Davis’s disclosure that the

two servers can form one computer system, a person of ordinary skill would have

nonetheless found it quite obvious to modify Davis’s system so that they were part

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

50

of the same “computer system.” Namely, for the reasons described above, a

person of ordinary skill would already have understood that Server A and Server B

were complimentary to one another, were operated on by similar entities, and

could exchange functionality responsibilities with one another--all based on the

disclosure of Davis itself.

117. Given this background, a person of ordinary skill would have

understood that it would be beneficial to have a single entity operate and/or control

both Server A and Server B. Namely, if one considers an entity that is a website

administrator, that website administrator would already operate and/or control

what is described as Server A in Davis. That website administrator, assuming

he/she meets the requisite criteria of a person of ordinary skill in the field, would

be motivated to implement the tracking functionality of Davis, due to the monetary

benefits and increased information benefits explained in Davis. In so doing, the

website administrator would then operate and/or control what is described as

Server B in Davis. Being under common operation and/or control, the Server A

and Server B would thereby be in the same “computer system.” This is just one

example of why a person of ordinary skill would have found it obvious to provide

Server A and Server B as a single computer system, and other reasons no doubt

also exist.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

51

b. Claim 1.a: “providing a corresponding web page to
the user’s computer for each digital media
presentation to be delivered using the first computer
system;”

118. It is my opinion that Davis discloses this feature. As discussed above,

the Server A in Davis’s system is the server that provides the webpage. Davis,

11:34-12:5. And as discussed above, the webpage provides a digital media

presentation, such as with audio or video. Davis, 7:1-29, 11:34-12:5. And, as also

discussed above, the Server A is part of the “first computer system” along with

Server B.

119. Focusing on any one digital media presentation, i.e., any given audio

or video resource, there is a corresponding webpage that is provided by Server A.

Namely, the only digital media presentations contemplated by Davis’s disclosure

are the ones that are embedded on some webpage. Davis, 7:1-29, 11:34-12:5.

Audio or video that is not embedded in some webpage would be of no relevance to

Davis’s system, as there would be no way for it to be presented to the user.

120. Hence, every resource of audio or video in Davis’s system is

embedded in some webpage, and so it has some corresponding webpage.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

52

c. Claim 1.b: “providing identifier data to the user’s
computer using the first computer system;”

121. It is my opinion that Davis discloses this feature. Davis actually

describes providing two separate types of identifier data to the Client from the

Servers A and B.

122. First, Davis describes the Server A providing “embedded URLs” in

the webpage to the Client. Davis, 11:34-12:5. These embedded URLs identify

resources that the Client will include in the presentation of the webpage. Davis,

11:34-12:5. As discussed previously in this declaration, Davis describes these

resources as images displayed in the webpage for Figure 4, but a person of

ordinary skill would understand that these resources could also be audio or video

content. Davis, 7:1-29, 16:63-17:10.

123. Second, Davis describes the Server B providing a “client ID” to the

Client as part of the CGI Script 1. Davis, 11:34-12:5. As discussed previously in

this declaration, the CGI Script 1 is used by the Client and Server B to basically

register the interaction of the Client with the Server B. Davis, 11:34-12:5. Part of

that registration is that the Server B checks whether the Client provided a client ID.

Davis, 11:34-12:5. If it did not, then the Server B generates one and provides it to

the Client in the response by the CGI Script 1. Davis, 11:34-12:5.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

53

124. It is also my opinion that when streaming content was used in the

webpage described in Davis, a person of ordinary skill in the field as of August

2008 would have been motivated to provide a “stream identifier” as described in

Choi in the communication between Server A and the Client in Davis.

125. As introduced previously, Choi described that a “session identifier”

and a “stream identifier” would be exchanged between the client and the server as

part of the technique disclosed in Choi. Choi, ¶0044, Figure 3. The session

identifier was used to identify the interaction between the client and the server, and

the stream identifier was used to identify what stream of content the client was

receiving. Choi, ¶0044, Figure 3.

126. The session identifier and stream identifier described in Choi are very

similar to the client identifier and resource-identifying “embedded URLs”

described in Davis. In essence, the session identifier described in Choi performs

largely the same function as the client ID in Davis: they both identify the

interaction between the client device and the server device. Choi, ¶0044, Figure 3;

Davis, 11:34-12:5.

127. Likewise, the stream identifier in Choi and the embedded URLs in

Davis are quite similar in function. The stream identifier in Choi identifies what

stream of content the client is receiving. Choi, ¶0044. The embedded URLs in

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

54

device identify what resources the Client should be retrieving and presenting.

Davis, 11:34-12:5. Thus they both identify the actual content to be presented to

the user.

128. Davis’s use of the terminology “embedded URLs” with respect to

Figure 4 is something of an artifact of the example Davis is describing. As

discussed previously in this declaration, while Davis contemplates providing

streaming media in the webpage provided to the client, the example given in the

description of Figure 4 is just static images. Davis, 11:34-12:5. And when the

resource being presented is simply an image, then an embedded URL would be

sufficient to allow the Client to retrieve and present that content.

129. But when the webpage in Davis was used to provide streaming

content, like audio or video, as described previously in this declaration, a person of

ordinary skill in the field as of August 2008 would have recognized that some

other identifier may be used to carry out the basic interactions described in Davis.

Namely, if the content being presented in the webpage was a stream of content,

then a stream identifier, such as described in Choi, would likely be provided. That

stream identifier might itself be a URL, but it would also be a stream identifier

given that it would be identifying a stream of content being displayed.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

55

130. A person of ordinary skill in the field would also be motivated to have

the Server A of Davis provide a stream identifier to the Client because, as

described later in this declaration, a person of ordinary skill would recognize that

there would be additional types of information that would be worth tracking and

reporting to Server B when the content being presented is a stream of content. In

order to associate that additional tracking information with the correct content, a

person of ordinary skill would recognize that it would be useful to provide an

identifier for that content, a stream identifier.

d. Claim 1.c: “providing an applet to the user’s
computer for each digital media presentation to be
delivered using the first computer system, wherein the
applet is operative by the user’s computer as a
timer;”

131. It is my opinion that Davis discloses this feature. Davis describes

providing a “JAVA applet, the tracking program” from Server B to the Client.

Davis, 12:13-50. The tracking program is then used as a timer to track how long

the webpage is displayed. Davis, 12:13-50. The Client then reports that tracking

information to Server B. Davis, 12:13-50. Thus, Davis describes this feature.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

56

e. Claim 1.d: “receiving at least a portion of the
identifier data from the user’s computer responsively
to the timer applet each time a predetermined
temporal period elapses using the first computer
system; and”

132. It is my opinion that Davis disclosed some parts of this feature, and

that the rest would have been changes that a person of skill in the field would have

been motivated to add to Davis’s system based on what Choi discloses.

133. The most relevant disclosure of Davis with regarding to Figure 4 for

this feature is Davis’s explanation of the tracking program (the Applet) stopping

and then the Client invoking CGI Script 2 on Server B. Davis, 12:5-50. In this

portion, the user navigates away from the webpage, and the tracking program timer

is stopped. Davis, 12:5-50. The Client invokes the CGI Script 2 on Server B,

which is how the Client provides the tracking information about the duration the

webpage was displayed to the Server B. Davis, 12:5-50. Besides the tracking

information, the Client also includes an HTTP request header. Davis, 12:5-50.

Earlier in the disclosure, Davis explained that the HTTP request header would

include various identifying information for the Client, including the client ID.

Davis, 11:59-12:5.

134. In sum, Davis discloses the first computer system (of which Server B

is a part) receiving identifier information in the form of the client ID when the

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

57

when the timer Applet in the form of the tracking program determines that a period

of time has ended, in the form of the time the webpage is displayed ending.

135. However, there is one part of this claim feature that Davis does not

describe. Davis does not describe that the tracking program, the timer Applet,

operates for a predetermined temporal period. But as described previously, a

person of ordinary skill in the field as of August 2008 would have been motivated

to modify Davis to use the periodic reporting approach from Choi. Choi, ¶0047,

0097. Choi in particular discloses that the reporting interval duration is

predetermined during the “initial request” exchanged between the client and the

server. Choi, ¶0097. Therefore, based on the explanation given previously in this

declaration, a person of ordinary skill in the field would have been motivated to

have the Client in Davis send tracking information to the Server B in Davis “each

time a predetermined temporal period elapses.”

136. Based on my previous explanations of the ways in which a person of

ordinary skill in the field as of 2008 would have been motivated to modify Davis,

there are several other elements of tracking information that a person of ordinary

skill would be motivated to include in the message from the Client to the Server B.

This is particularly the case when the content presented in the webpage was

streaming content, as discussed previously. With streaming content, there would

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

58

be additional elements of information that might be useful to include in Server B’s

tracking database.

137. Fist, a person of ordinary skill in the art would have been motivated to

include the “stream identifier,” as disclosed in Choi, in the message from the Client

to Server B in Davis. As discussed previously in this declaration, a person of

ordinary skill would have been motivated to send a stream identifier from Server A

to the Client as a way to identify the streaming content that the Client would be

presenting. With such a modification, a person of ordinary skill would also have

been motivated to include that stream identifier in the tracking information from

the Client to Server B. Davis already disclosed that multiple elements of identifier

information would be included in that message. Davis, 11:59-12:5, 12:33-50.

Such identifier information would be necessary for Server B to associate the

tracking information with some client, some content, some webpage, etc. Thus,

when a stream identifier was one of the relevant elements of identifier information

for the tracking being performed at the Client, the Client would also include that

stream identifier in the tracking information reports to Server B.

138. Second, when the content being presented in the webpage was

streaming content, a person of ordinary skill would have recognized that streaming

content has additional metrics about which usage can be tracked. In particular,

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

59

when Davis describes presenting static images in the webpage, the only metric

Davis describes tracking is duration of display. Davis, 11:34-12:50. This makes

sense, given that, at least when Davis was filed, there were not many more

interactions with a static image that a client could be expected to be able to monitor.

Duration of display was one of only a few possible metrics for a static image (e.g.,

along with number of visits to the webpage).

139. But when Davis describes displaying streaming content, Davis

describes additional metrics that can be tracked. Davis, 16:63-17:10. Davis

describes tracking the amount of data transferred and the amount time for which

content is displayed. Davis, 16:63-17:10. Davis describes the client providing this

additional tracking information back to the server. Davis, 16:63-17:10. Therefore,

a person of ordinary skill would have recognized that additional metrics could be

tracked when the content was being streamed, even within the bounds of Davis’s

own description.

140. A person of ordinary skill could then find in a reference like Choi a

listing of relevant tracking parameters for streaming content. Just as a few

examples, Choi describes having the client report the following tracking

information to the server:

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

60

141. (1) “c-startime”: “The timestamp (in seconds, no fractions when you

played the file in normal mode.” Choi, Table C1.

142. (2) “c-endtime”: “The timestamp (in seconds, no fractions) when the

Client finished playing the file in normal mode.” Choi, Table C1.

143. (3) “x-duration”: “How long you tried to receive the stream (in

seconds).” Choi, Table C1.

144. (4) “Avgbandwidth”: “Average bandwidth (in bytes) at which the

Client was connected to the Server.” Choi, Table C1.

145. (5) “c-bytes”: “Number of bytes received by the Client form the

Server.” Choi, Table C1.

146. Choi describes a client sending this tracking information back to the

server providing the content, but a person of ordinary skill would have recognized

that it would have been valuable to also store such tracking information in a

dedicated tracking information location, like the Server B of Davis. This is clear

for a few reasons.

147. First, Davis itself says that information such as quantity of streaming

data or duration of presenting streaming data is something that should be stored in

a tracking server. Davis, 16:63-17:10. Davis explains that this information might

be used to perform billing to the user of the client machine. Davis, 16:63-17:10.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

61

148. Second, Davis explains that detailed tracking information about the

time of viewing a webpage could be useful to website administrators to determine

the popularity of particular webpages, as well as to set advertising rates for

advertisements embedded in those webpages. Davis, 16:15-62. The same holds

true for streaming content. Determining how long streaming content was

presented, how long streaming content was transferred, and how much streaming

content was transferred would allow website administrators and/or owners of that

streaming content to determine the popularity of its specific streaming content.

Further, with advertisements embedded in streaming content (e.g., a 30-second

video advertisement presented during a video stream), the website administrators

and/or owners of the streaming content could more effectively determine

advertising rates for the streaming content (e.g., require higher rates from

advertisers for displaying advertisements in highly popular video streams).

149. Third, Davis disclosed elsewhere that tracking the duration that a

webpage is displayed would be useful to advertisers in order to “make informed

decisions as to the effectiveness and value of particular Web pages and/or ad

banner.” Davis, 11:13-33. The same holds true for streaming content, for the

reasons just described for website administrators and content owners. Just as

website administrators and content owners would find value in more detailed

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

62

tracking information so as to determine content popularity and inform how much

to charge for advertising, advertisers would want the same information. Davis,

11:13-33. Advertisers are on the other end of the bargain as the website

administrators and/or content owners, so they too would want to make an informed

decision as to how much to pay to place advertisements in various streaming

content (e.g., demand a discount for advertisements placed in streaming content

that is not very popular).

150. For these reasons, it is my opinion that a person of ordinary skill in

the field as of August 2008 would have been motivated to include the detailed

tracking information parameters described in Choi, including those listed above, in

the tracking information reports from the Client to Server B in Davis.

f. Claim 1.e: “storing data indicative of the received at
least portion of the identifier data using the first
computer system;”

151. It is my opinion that Davis discloses this feature. Davis discloses that

the Server B stores the tracking information that it receives form the Client as part

of the CGI Script 2 interaction. Davis, 12:33-50. The Server B stores the

information in a database. Davis, 12:33-13:18. The information is retained in the

database so as to be used by the website administrators, advertisers, etc. that Davis

describes as the consumers of this tracking information. Davis, 12:51-13:18,

11:13-33.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

63

152. Earlier in this declaration, I explained why a person of ordinary skill

in the field as of August 2008 would have been motivated to have the Client send

additional tracking information to the Server B when the content being presented

was streaming content. As I explained, this additional tracking information would

be valuable to website administrators, advertisers, content owners, etc. Thus it is

necessary that the Server B store this additional tracking information when the

Server B receives it from the Client. Otherwise, there would be no way for the

website administrators, advertisers, content owners, etc. to ever actually use the

tracking information. Therefore, it is my opinion that a person of ordinary skill in

the field, when modifying Davis to send additional streaming-specific tracking

information from the Client to the Server B, would also modify Server B to store

that additional tracking information.

g. Claim 1.f: “wherein each provided webpage causes
corresponding digital media presentation data to be
streamed from a second computer system distinct
from the first computer system directly to the user’s
computer independent of the first computer system;”

153. It is my opinion that Davis discloses this feature. As explained

previously, Davis describes the process of Figure 4 as involving the Server A

providing a webpage with embedded URLs referencing resources, and then the

Client fetches the resources at the URLs and displays the webpage. Davis, 11:33-

12:5. As also explained previously, while Davis only describes Figure 4 with the

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

64

example of static images being the resources referenced in the webpage, Davis

makes clear elsewhere that the resources can be audio and video. Davis, 7:1-28.

And as explained previously, a person of ordinary skill in the field as of August

2008 would have been motivated to provide this audio/video in streaming format,

either based on Davis’s own disclosure or as a modification based on the disclosure

of Choi. Davis, 16:63-17:10; Choi, ¶0002-0012.

154. Therefore, the only remaining aspect of this feature not discussed

previously in this declaration is whether the content streamed to the Client in Davis

would be streamed “directly” to the client from a “second computer system” that is

“distinct” from the first computer system (including Servers A and B).

155. First, in Davis’s system, the resource fetched by the Client comes

“directly” from whatever server is hosting it. Davis discloses that the Client

fetches resources using the embedded URLs. Davis, 11:34-51. What this means is

that the Client accesses the embedded URL, which would point to whatever server

is hosting the resource. When the embedded URL (or stream identifier) pointed to

a streaming resource, the process would be the same. Hence, Davis does disclose

that the Client streams content “directly” from whatever server is hosting it.

156. Second, Davis also discloses that the streaming resource can come

from a “second computer system” that is “distinct” from Servers A and B. For

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

65

Figure 4, Davis does describe the images as potentially being stored on Server A,

which would not be a second computer system distinct from the first computer

system. Davis, 11:33-52. But Davis also discloses that the images can be stored

on “any HTTP server on the Internet.” Davis, 11:40-45. In describing the same

feature with respect to Figure 3, Davis discloses that the embedded URLs can point

to “resources located on any server.” Davis, 9:16-33. When the referenced

resource is stored on “any server” or “any HTTP server on the Internet,” that

resource clearly can be stored on some server that is not part of the computer

system of which Servers A and B are a part. To be otherwise would require that

Server A, Server B, and every other computer on the Internet are in the same “first

computer system,” which does not appear to be what the claim is reciting.

157. Hence, Davis disclosed this feature, including the part whereby the

streaming content comes from a second computer system directly to the Client.

h. Claim 1.g: “wherein the stored data is indicative of
an amount of time the digital media presentation data
is streamed from the second computer system to the
user’s computer; and”

158. It is my opinion that the system described in Davis, when modified as

explained previously in this declaration, would include this feature. As explained

previously, while Davis only describes Figure 4 with the example of static images

being the resources referenced in the webpage, Davis makes clear elsewhere that

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

66

the resources can be audio and video. Davis, 7:1-28. As also explained previously,

a person of ordinary skill in the field as of August 2008 would have been

motivated to provide this audio/video in streaming format, either based on Davis’s

own disclosure or as a modification based on the disclosure of Choi. Davis, 16:63-

17:10; Choi, ¶0002-0012. As also explained previously, a person of ordinary skill

in the field would have been motivated to include additional tracking information

parameters in the tracking reports from the Client to the Server B when the

webpage was displaying streaming content. Choi, Table C1. And as explained

previously, the Server B would store those additional tracking information

parameters. Davis, 12:33-13:18. Because these additional tracking information

parameters include parameters that indicate how long streaming content was

streamed from the third-party server (that is, the second computer system as

explained previously), the modifications to Davis’s system described previously

would result in the system including this feature.

159. As explained previously, the streaming-specific tracking information

that a person of ordinary skill would have been motivated to add to the tracking

reports from the Client to the Server B in Davis are described in Table C1 of Choi,

and include the following, among others:

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

67

160. (1) “c-startime”: “The timestamp (in seconds, no fractions when you

played the file in normal mode.” Choi, Table C1.

161. (2) “c-endtime”: “The timestamp (in seconds, no fractions) when the

Client finished playing the file in normal mode.” Choi, Table C1.

162. (3) “x-duration”: “How long you tried to receive the stream (in

seconds).” Choi, Table C1.

163. (4) “Avgbandwidth”: “Average bandwidth (in bytes) at which the

Client was connected to the Server.” Choi, Table C1.

164. (5) “c-bytes”: “Number of bytes received by the Client form the

Server.” Choi, Table C1.

165. As I explained previously, it is my opinion that “an amount of time”

data was “streamed” should be interpreted to mean “an amount of time” the data

was “transferred via a technique such that the data can be processed as a

substantially steady or continuous sequence.” But as also explained previously, I

will analyze this feature under the alternative interpretation that “an amount of

time” the data was “streamed” means “an amount of time” the data was

“presented” on the user’s computer.

166. If “streamed” means “transferred via a technique such that the data

can be processed as a substantially steady or continuous sequence,” then the

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

68

modified system of Davis using the parameters from Table C1 in Choi would

actually include this feature in two distinct ways.

167. First, the parameter “x-duration” is indicative of the amount of time

the streaming content was “streamed” to the client device. Choi, Table C1. Choi

describes the “x-duration” parameter as capturing “How long you tried to receive

the stream (in seconds).” Choi, Table C1. A person of ordinary skill in the field

would understand that this means the amount of time the client device received the

stream of content. The word “tried” used here is significant to Choi’s disclosure,

because Choi deals with situations where there are network disruptions. Choi,

¶0002-0014. Hence, the client device does not always receive the stream of

content. In any case, if there was a network disruption, the client would not be

able to transmit a tracking report to the server.

168. But at least under normal operating conditions where there is not a

network disruption, the “x-duration” value transmitted from the client to the server

would indicate how long the client received the stream of content. And in such

conditions where there is not a network disruption, the amount of time that the

client received the stream is essentially the same as the amount of time the stream

was transferred over the network from the server to the client.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

69

169. To the extent a person of ordinary skill in the field were looking for

further information on the meaning of the x-duration parameter, a guide such as the

July 2008 Windows Media Log Data Structure specification would provide

additional information. Ex. B-6 (“July 2008 MS-WMLOG Specification”). The

July 2008 MS-WMLOG Specification explains that it defines “a syntax for logging

messages.” July 2008 MS-WMLOG Specification, p. 5. “The logging messages

specify information about how a client received multimedia content from a

streaming server. For example, logging messages can specify how many packets

were received and how long it took for the client to receive the content.” July 2008

MS-WMLOG Specification, p. 5. A MS-WMLOG specification, whether the July

2008 version or an earlier one, appears to be the source of the parameters listed in

Table C1 of Choi.

170. The July 2008 MS-WMLOG Specification describes the x-duration

parameter similar to Choi. It states that the parameter “MUST specify the time it

took to receive the content, in seconds.” July 2008 MS-WMLOG Specification, p.

27. This would confirm for a person of ordinary skill in the art that storing the x-

duration parameter in the tracking information database of Server B would result in

stored data indicative of the amount of time streaming content was streamed to the

Client. The Jun 2008 version of the MS-WMLOG specification would also have

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

70

confirmed this understanding by a person of ordinary skill in the field. Ex. B-5

(“June 2008 MS-WMLOG Specification”).

171. Second, the combination of parameters “Avgbandwidth” and “c-

bytes” are indicative of the amount of time the streaming content was “streamed”

to the client device. Choi, Table C1. Choi describes Avgbandwidth as “Average

bandwidth (in bytes) at which the Client was connected to the Server.” Choi,

Table C1. Choi describes c-bytes as “Number of bytes received by the Client from

the Server.” Choi, Table C1. A person of ordinary skill in the field would

recognize that the amount of data transferred divided by the bandwidth would

equal the amount of time that it took to transfer the data. This is inherent in the

meaning of bandwidth. Further, even with a statistic of the bandwidth, i.e., the

average, this quotient would still be indicative of the amount of time that data

transfer took place.

172. The person of ordinary skill in the field as of August 2008 would have

this understanding confirmed by the MS-WMLOG specifications. For instance,

the July 2008 MS-WMLOG Specification described Avgbandwidth as “the

average bandwidth, in bits per second, at which the client received content from

the server.” July 2008 MS-WMLOG Specification, p. 9. This was measured “by

the client from the start of the current session.” July 2008 MS-WMLOG

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

71

Specification, p. 9. “This is only applicable during periods in which the server is

streaming the content.” July 2008 MS-WMLOG Specification, p. 9. The June

2008 MS-WMLOG Specification has similar confirmatory descriptions. June

2008 MS-WMLOG Specification, p. 9.

173. Both specifications have similar confirmatory descriptions for the c-

bytes parameter. July 2008 MS-WMLOG Specification, p. 18; June 2008 MS-

WMLOG Specification, p. 18.

174. Therefore, either in the form of the x-duration value stored by Server

B, or in the form of the stored Avgbandwidth and c-bytes values stored by Server

B, the data stored by Server B would indicate the amount of time the digital media

presentation data was streamed, i.e., transferred, from the server hosting the

streaming content to the Client.

175. If, on the other hand, “streamed” is interpreted to mean “presented,”

then the person of ordinary skill in the field as of August 2008 would recognize

that the combination of the “c-starttime” parameter and “c-endtimte” parameter

described in Choi would indicate the amount of time the streaming content was

“streamed,” i.e., presented. Choi, Table C1. Choi describes c-starttime as “The

timestamp … when you played the file in normal mode.” Choi, Table C1. Choi

describes c-endtime as “The timestamp … when the Client finished playing the file

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

72

in normal mode.” Choi, Table C1. A person of ordinary skill in the field would

have recognized that the difference between c-endtime and c-starttime would

indicate how long the file was played. Thus this difference would indicate how the

amount of time the digital media presentation data was streamed, i.e., presented.

176. I also note that if the amount of time that content is “steamed” means

how long it is presented, then Davis itself actually teaches storing this tracking

information even before any modifications based on Choi. Davis, 16:63-17:10. As

explained at length previously in this declaration, Davis disclosed that when the

content is streaming media, the tracking program should track “the time the

information is displayed.” Davis, 16:63-17:10. Davis discloses that this

information should be tracked because sometimes a user is charged based on “the

amount of information displayed, either according to bit size or time.” Davis,

16:63-17:10. For this additional reason, when Davis’s system described with

respect to Figure 4 was included streaming content in the webpage, a person of

ordinary skill would recognize that the tracking information database stored by

Server B would include stored data that indicates the amount of time the streaming

content was “streamed,” i.e., presented.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

73

i. Claim 1.h: “wherein each stored data is together
indicative of a cumulative time the corresponding web
page was displayed by the user's computer.”

177. It is my opinion that the system described in Davis, when modified as

explained previously in this declaration, would include this feature. As explained

previously, Davis disclosed using the tracking program to track how long a

webpage was displayed on the Client, and that tracking information was

transmitted to the Server B, which stored it. Davis, 12:5-50.

178. Further, to the extent that this feature requires that the Server B stores

multiple tracking information entries for a single webpage visit, a person of

ordinary skill in the field would have recognized that this would result when Davis

was modified based on Choi’s disclosure, as explained previously in this

declaration, to use a predetermined timing interval, as opposed to the event-based

reporting approach disclosed in Davis. Namely, any time that the user of the

Client remained on the webpage for a longer period of time than the predetermined

reporting interval, Choi, ¶0097, the Client would send at least two tracking reports

to the Server B. Hence, the two or more tracking reports stored by the Server B

would together indicate how long the webpage was displayed on the client.

179. A person of ordinary skill in the field would have recognized that the

storage of multiple tracking records would actually be expected, even desirable,

when Davis was modified to use a predetermined reporting interval. As explained

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

74

previously in this declaration, one aspect of the predetermined reporting interval

that would have motivated a person of ordinary skill in the field to use it was the

fact that more frequent tracking reports could be sent to the Server B. The benefit,

as explained, was that there would be more frequent updates on information and

less risk of delaying or even losing tracking information. Hence, a person of

ordinary skill in the field would have been motivated to use a relatively short

predetermined reporting interval, and thus increase the likelihood that two or more

tracking information records would be stored by Server B for a single webpage

visit.

3. Claim 2: “The method of claim 1, wherein the storing
comprises incrementing a stored value dependently upon
the receiving.”

180. It is my opinion that when the system described in Davis was

modified as explained previously in this declaration by as taught by the disclosure

of Choi, a person of ordinary skill in the art would have been motivated to include

this feature in Davis’s system. As explained previously in this declaration, a

person of skill in the art would have been motivated to modify Davis’s system so

that the Client would send tracking reports to the Server B according to a

predetermined timing interval.

181. Davis already disclosed that one way to store tracking information

was to increment a counter each time a tracking report was received by the server.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

75

Davis, 3:42-44. Davis disclosed that, in order to track the number of times that

some particular content, such as an advertisement, had been displayed, the server

could increment a stored counter. Davis, 3:42-53. The same approach could be

used to track the number of times an advertisement was clicked on. Davis, 3:42-53

Thus, a person of ordinary skill would have recognized that it would be possible to

increment a stored counter in Server B of Davis in order to store some types of

tracking information.

182. When Davis’s system was modified as explained previously in this

declaration, a person of ordinary skill would have been motivated to use an

incrementing approach for storing various types of tracking information. For

example, instead of storing multiple tracking records for a single webpage visit,

each indicating the same predetermined timing interval, the Server B could simply

increment a value for “number of intervals” as well as the length of the

predetermined timing interval. For instance, instead of storing 10 tracking records,

each indicating “15 seconds,” the Server B could store one tracking record, which

would indicate “number of intervals” as “10” and “length of interval” as “15

seconds.”

183. A person of ordinary skill would have recognized that the Server B

may still need to store a second tracking record, for example, when the last

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

76

tracking report for the webpage visit indicated a length of the display of the

webpage that was less than the full reporting interval. But a person of ordinary

skill would have recognized that this would allow a reduction of the number of

tracking records from 11 (continuing the previous example) down to two.

184. A person of ordinary skill would have been motivated to use an

incrementing approach as disclosed in Davis for a few reasons.

185. First, Davis already disclosed that this approach was possible, and a

person of ordinary skill would have been likely to choose a familiar approach

recommended by Davis itself.

186. Second, use of a counter is something that any undergraduate student

in computer science or a like field would be very familiar with. Thus, a person of

ordinary skill, who would have at least that level of training, would be motivated to

use known, simple solution to the problem.

187. Third, a person of ordinary of ordinary skill in the field would have

recognized that the incrementing approach would allow a significant reduction in

the size of the database stored by Server B. In the example given just above, the

reduction was on the order of a five-fold decrease in the number of records stored.

This reduction in storage space would provide some marginal benefit to being able

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

77

to store more tracking information in the Server B using the same server

specifications.

188. Fourth, a person of ordinary skill in the field would have recognized

that using the incrementing approach would make it easier and quicker to process

many of the tracking reports that the Server B received from the Client. In

particular, when the Server B received a tracking report from the Client as part of

CGI Script 2 being invoked by the Client, the Server B could execute a simple

update command on the database to increase the “number of intervals” value. If

the tracking database used SQL, for example, a single UPDATE statement could

be used to store the new tracking information. On the other hand, storing each

tracking report as a separate tracking record would require forming and then

inserting a new record into the tracking database each time a tracking report was

received. A person of ordinary skill would have recognized that this would have

required more logic to perform, would introduce more possibilities for error, and

might have consumed more resources on the database.

189. Fifth, a person of ordinary skill would have recognized that storing

fewer tracking information records for each webpage visit would allow simpler and

quicker aggregation of tracking information when the database was later used by

its consumers (e.g., website administrators, advertisers). With the incrementing

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

78

approach, the program that aggregated tracking information for consumption by

the website administrators and advertisers would need to process fewer tracking

records from the database, which would make the aggregation process simpler and

shorter.

4. Claim 3: “The method of claim 2, wherein the received
data is indicative of a temporal cycle passing.”

190. It is my opinion that the system described in Davis, when modified as

explained previously in this declaration, would include this feature. As explained

previously, a person of ordinary skill in the field in August 2008 would have been

motivated to modify the system of Davis to use a predetermined reporting interval

as disclosed in Choi. Choi, ¶0047, 0097. As explained previously, the Server B of

Davis would have received a tracking report at the end of each predetermined

reporting interval when the Client invoked CGI Script 2. As such, when the Server

B received the tracking information due to invocation of CGI Script 2, that receipt

would indicate that a temporal cycle, i.e., the predetermined reporting interval, had

passed.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

79

C. Ground II: Claims 1-3 were obvious in view of Siler and Davis

1. The Siler-Davis Combination

a. Siler

191. The Siler reference disclosed a system that handles streaming media

over a packet switched network. Siler, Abstract. The system tracks “which users

are receiving a particular media stream and how long each of the users receives” it.

Siler, Abstract. Advertisements are added to the stream in real-time based on a

trigger signal. Siler, Abstract.

192. Siler disclosed a system for streaming media from a server to a client

that would track “which users are receiving a particular media stream and how

long each of the users receives” a particular media stream. Siler at Abstract.

193. Siler described its system using Figures 1A and 1B, which I

understand are essentially two halves of a composite Figure 1. The composite

Figure 1 is shown below, with Figures 1A and 1B combined side-by-side.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

80

194. Siler’s system includes three major components, at least with respect

to the subject matter of the ’609 Patent’s claims. A user client 101 is what a user

uses to receive and view streaming content. Siler, ¶0017, 0023-0029. A streaming

server 105 streams the content, including advertisements, to the user client 101.

Siler, ¶0017-0022, 0027. The combination of web server 113 and web server 117

handle various interactions with the user client 101, including storing tracking

information gathered by the user client 101. Siler, ¶0023-0030.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

81

195. Siler describes how the system initially sets up streaming media for

presentation at the user client 101.

196. This starts with the user client 101 displaying a webpage that has links

to various streaming content that is available. Siler, ¶0023. The user clicks one of

these options. Siler, ¶0023. This causes an interaction with web server 113, which

registers the user if the user is not already registered. Siler, ¶0023-0024.

197. The user client 101 then sends a request to the web server 117,

requesting to set up streaming of content associated with the selected link. Siler,

¶0025. The web server 117 retrieves a file with information on the stream, and

sends to file to the user client 101. Siler, ¶0025. The file includes a URL for the

stream. Siler, ¶0025

198. The user client 101 then sends a request to start the stream using the

URL. Siler, ¶0027. The URL points to the streaming server 105. Siler, ¶0027.

The streaming server 105 transmits the stream of content to the user client 101,

along with a stream identifier and/or session identifier. Siler, ¶0027. The user

client 101 presents the stream of content for playback. Siler, ¶0027.

199. Siler discloses that the system performed usage tracking with respect

to the streaming content. Siler discloses this this technique with respect to Figure

1, as well Figure 3, which is shown below with annotations.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

82

200. Siler discloses that the process of Figure 3 is performed by the user

client 101. Siler, ¶0028. At step 301, the user client 101 sends information to the

web server 113. Siler, ¶0028. It does so “automatically” and “on a periodic basis.”

Siler, ¶0028. The information sent to the web server 113 includes the stream

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

83

identifier, the session identifier, and a user identifier. Siler, ¶0028. At steps 303,

305, 307, and 309, the user requests and receives a URL for a rich media

advertisement, receives the rich media advertisement, and then displays it. Siler,

¶0028. At step 311, user client 101 “waits for a prescribed time before repeating

the process.” Siler, ¶0028. After waiting the prescribed time, the user client would

then repeat the process starting at step 301.

201. Siler disclosed actions performed by the web server 113 as part of the

process of gather usage tracking information, for which Siler includes Figure 4.

First, it is the web server 113 that receives the periodic tracking information

messages from the user client 101 as part of the process just described above.

Siler, ¶0028-0029. The web server 113 waits to receive updated information from

the user client 101. Siler, ¶0029. When the web server 113 receives the updated

information from the user client 101, it “passes the information to session tracking

logic 123, for updating the session record for the particular user in step 403.”

Siler, ¶0029. Session tracking logic 123 is shown in Figure 1, and it is shown with

access to session records database 125.

202. Though Siler does not specify in paragraph 0029 that the session

record that is updated by the web server 113 is one that is stored in session records

database 125, that is where a person of ordinary skill in the art would have

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

84

understood the record to be stored. That is true because the session records

database 125 is the only data store shown connected to session tracking logic 123.

Siler, Figure 1. And that is true because Siler says elsewhere that “session tracking

logic 123 creates a record in session records database 125 to track the user’s

session with the selected media stream.” Siler, ¶0026. So, a person of ordinary

skill would have understood that when the user client 101 sends tracking

information to the web server 113 according to Figure 3, the web server 113 causes

the tracking information to be stored in session records database 125.

203. In addition to the above, web server 113 performs the additional steps

of Figure 4 in order to deliver the URL for the rich media advertisement to the user

client 101, as referenced in my previous explanation of Figure 3. Siler, ¶0029.

204. Siler also discloses client computers 145 and 147, shown in Figure 1,

as computers that can view the tracking information stored by the web server 113.

Siler, ¶0030. The tracking information can be viewed in real time. Siler, ¶0030.

The tracking information includes information about “how may people are actually

listening to the content, as well as when they listened and how long they listened.”

Siler, ¶0030.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

85

b. Davis

205. I have provided an explanation of Davis’s disclosure previously in this

declaration, and I refer back to that explanation for the remainder of this

declaration.

c. Motivation to Combine

206. Based on review of Siler and Davis, and based on the background of

the field in August 2008, it is my opinion that a POSA would have been motivated

to combine several features described in Davis into the system described in Siler.

207. One significant reason that a person of ordinary skill would have

looked to the disclosure of Davis to modify Siler’s system is because of a change

that Siler’s own disclosure suggests.

208. In Siler’s primary description of the user client 101, Siler describes a

player application 122 that displays the streaming content and performs activities

such as the usage tracking explained previously. Siler, ¶0025, 0027-0028. Siler

discloses that the player application 122 could use a streaming media client 131

“such as Windows Media Player” to “actually controls the streaming and processes

and decodes the stream … for playback on client computer 101.” Siler, ¶0027. In

other words, Siler discloses that, while the web server 113 can provide a webpage

from which a user selects a stream to view, Siler, ¶0023, the actually streaming of

content can be performed in a separate software application. Siler, ¶0027.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

86

209. But Siler also suggests that a variation on this arrangement of the user

client 101 can be used. Siler, ¶0032. Namely, the “Player application 122 may,

alternatively, be implemented as a web page with active components, with the rich

media advertisements displayed in a frame.” Siler, ¶0032. In other words, Siler

suggests that the application that controls the streaming and usage tracking on the

client 101 could be implemented as a webpage in a browser. Siler, ¶0032.

210. A person of ordinary skill in the field as of August 2008 would have

been motivated by this statement to modify Siler’s system at least in the way Siler

suggests. Namely, a person of ordinary skill would be motivated to implement at

least the session tracking logic 127 and stream control logic 129 as “executable

content” in the web browser 111. As mentioned already, adding functionality to

web pages by way of “executable content,” either in the form of Applets or scripts,

was totally conventional at the time and a common way to add client-side

functionality. Siler, Figure 1, ¶0027. Further, Siler’s primary description of user

client 101 has a streaming media player 131 that may be “embedded in” the player

application 122. Siler, ¶0027. So, a person of ordinary skill would also have

recognized that when implementing the functionality of the player application 122

to be embedded within a webpage, per Siler’s suggestion, it would also be

advantageous or even necessary to implement the streaming media player 131 in a

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

87

webpage. Siler, ¶0027, 0032. Thus, based on Siler’s own disclosure, a person of

ordinary skill in the field would have been motivated to implement the usage

tracking functionality as well as the presentation of streaming content in a webpage

to be viewed in the web browser 111 on the user client 101. One might implement

each of them as a separate Applet, or one could even create a single Applet

combining both of these functionalities.

211. Once a person of ordinary skill in the field was motivated to

implement the player application 122 as a webpage, a person of ordinary skill

would have also been motivated to make other changes that would be benefited by

such a transition to the webpage implementation.

212. First, while Siler does not disclose that the timer logic of Figure 3 of

the user client 101 is implemented as an Applet downloaded from the web servers

113 and 117, a person of ordinary skill in the field would have recognized that a

conventional way of adding functionality to web pages was by way of “executable

content” using either Applets or scripts. A person of ordinary skill in the art would

also have recognized that this would be a beneficial change to make when the

player application 122 was implemented in a webpage. This is true for several

reasons.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

88

213. One reason that a person of ordinary skill would have been motivated

to implement the timer logic from Figure 3 as an Applet downloaded from the web

servers 113 and 117 is because this approach was a well known design, as

evidenced by Davis. Davis, 9:16-45, 10:11-57, 12:13-50. A person of ordinary

skill would have been familiar with implementing logic in an Applet, and so a

person of ordinary skill would have been motivated to implement the tracking

logic timer using that familiar approach.

214. Another reason that a person of ordinary skill would have been

motivated to implement the timer logic from Figure 3 as an Applet downloaded

from the web servers 113 and 117 is because the person of ordinary skill would

have recognized that the program in which it was previously provided, the player

application 122, would no longer be pre-existing on the user client 111. Siler,

¶0032. Once the player application 122 is implemented as a webpage, it would be

necessary to find a new “home” for the logic implementing the timer. A person of

ordinary skill would have recognized that the most logical place to locate this timer

logic would be still with the programming of the player application 122, which is

now implemented in a webpage. A person of ordinary skill would have recognized

that an Applet would be one way to implement the timer logic in relation to the

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

89

webpage performing the functionality of the player application 122, e.g., based on

the disclosure of Davis. Davis, 9:16-45, 10:11-57, 12:13-50.

215. A person of ordinary skill in the field as of August 2008 would have

recognized other benefits of using an Applet to implement the timing logic of

Figure 3. For instance, an Applet implementation would have allowed Siler’s

system to require less software to be pre-installed on the user client 101. This

would have made for a much more “seamless” user experience – installing and

updating software is typically a disruptive activity to most users, and having to do

this just at the time that you would rather want to watch a movie is annoying for

many users. Also, a person of ordinary skill would have understood that an Applet

implementation would have allowed Siler’s system to implement the timer logic of

Figure 3 in a platform-independent way. The timer logic could be downloaded and

operated on the user client 101, regardless of what operating system and browser it

used. Further, by implementing the timer functionality as an Applet served from

the server, the system could keep evolving and updating the implementation of the

timer functionality in a transparent manner while assuring that each user client 101

would always get the updated version each time the user client 101 loaded a

webpage.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

90

216. Second, another change that a person of ordinary skill would have

been motivated to make to Siler’s system when implementing the player

application 122 as a webpage would be to increase the types of usage tracking

performed in the system. Siler already disclosed tracking how many users

accessed streaming content, when users accessed streaming content, and how long

users accessed streaming content. Siler, ¶0030. Siler disclosed that this

information would be tracked for the benefit of content providers and advertisers.

Siler, ¶0030.

217. With the implementation of the player application 122 as a webpage,

Siler, ¶0032, a person of ordinary skill would have also been motivated to track the

duration that the webpage was displayed, because Davis disclosed that. Davis,

11:13-33, 12:13-13:17. A person of ordinary skill would have recognized that,

with the introduction of a webpage to perform the functions of player application

122, there would be a new metric for which usage tracking could be informed. A

person of ordinary skill would have recognized from Davis’s disclosure that

tracking the duration that this webpage was displayed would be beneficial to the

very same users of the tracking information that Siler was already maintaining.

Siler, ¶0030; Davis, 11:13-33, 12:51-13:18.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

91

218. A person of ordinary skill would have found tracking the duration that

the webpage was displayed particularly useful in the case where that webpage

included an additional type of advertisement, such as a banner advertisement.

Davis, 3:14-67, 11:13-33. A person of ordinary skill in the field would have

recognized that Siler’s system was designed to maximize advertisement

presentation and monitoring. Siler, ¶0002-0006, 0017-0020, 0028-0029. Siler’s

system included advertisements spliced into the streaming media. Siler, ¶0017-

0020. Siler’s system included rich media advertisements, which could be

displayed as pop-up images. Siler, ¶0028-0029. A person of ordinary skill would

have recognized that, when the player application 122 was implemented as a

webpage, additional advertisements could be displayed, such as banner

advertisements in the webpage. Davis, 3:14-67, 11:13-33. And a person of

ordinary skill would have been therefore motivated to track the display of those

webpage advertisements using Davis’s technique due to the benefits to

advertisements and website administrators as disclosed in Davis. Davis, 3:14-67,

9:16-45, 11:13-33, 11:34-13:17.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

92

2. Claim 1

a. Claim 1 preamble: “A method for tracking digital
media presentations delivered from a first computer
system to a user’s computer via a network
comprising:”

219. It is my opinion that Siler discloses this feature. Siler describes

tracking the streaming content delivered from the streaming server 105 to the user

client 101. Siler, ¶0028-0030. A person of ordinary skill would have recognized

that the streaming content was a “digital media presentation.” For instance, Siler

describes the streaming content as “audio, and/or audio/video signals” that are

transmitted over a packet network as a “data stream.” Siler, ¶0016-0017.

220. Siler also describes a “first computer system.” As explained

previously in this declaration, Siler describes both a web server 113 and web server

117. Siler, Figure 1, ¶0024-0032. While Siler does not explicitly describe web

server 113 and web server 117 as being part of the same “system,” Siler’s

description of web servers 113 and 117 was consistent with the way a person of

ordinary skill would have understood a “system” as of August 2008.

221. For instance, Siler described that “Web servers 113 and 117 do not

necessarily correspond to physical machines. Rather, they represent different

instances of a web server, which may or may not be running on the same physical

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

93

hardware.” Siler, ¶0032. Hence, Siler explicitly disclosed that web servers 113

and 117 could actually be implemented on the same computer device.

222. In addition, Siler described web servers 113 and 117 interacting with

one another to perform the various registration, tracking, advertising, and other

functions performed by them in Siler’s system. Siler, ¶0025, 0029. At least

because of their functional interactions and the fact that they could be provided

together on a single piece of hardware, a person of ordinary skill would have

understood that web servers 113 and 117 could be provided as a single “system.”

For instance, a single entity could operate and/or control the two web servers 113

and 117 due to their functional interrelation and ability to be deployed together.

b. Claim 1.a: “providing a corresponding web page to
the user’s computer for each digital media
presentation to be delivered using the first computer
system;”

223. It is my opinion that Siler discloses this feature. Siler disclosed that

the user client 111 receives a webpage with a list of streaming resources. Siler,

¶0023. Siler does not explicitly state where that webpage is provided from, but

Siler explains that clicking on one of those links causes information to be sent to

web server 113. Siler, ¶0023. A person of ordinary skill in the field would have

recognized, based on this disclosure, that the web server 113 could have been

provided by the web server 113. This is supported by the fact that a person of

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

94

ordinary skill in the field as of August 2008 would have understood that serving

webpages was one of the functions typically performed by a “web server” as of

August 2008.

224. As explained previously, Siler disclosed that the player application

122 could be implemented as a webpage. Siler, ¶0032. Siler does not explicitly

state where such a webpage would be hosted. But based on the disclosure of Siler

with respect to web server 113 serving other webpages to the user client 101, a

person of ordinary skill in the field would have recognized that the web server 113

could also have served the webpage that implemented the player application 122.

This is again supported by the fact that a person of ordinary skill would have

recognized that a “web server” would typically have served a webpage as of

August 2008. More so, a person of ordinary skill would have recognized that a

“web server” would more typically have provided the functionality of serving a

webpage than would have a “streaming server as of August 2008.

225. A person of ordinary skill in the field would have understood that the

webpage implementing the functionality of the player application 122 and

displaying the streaming content would be a webpage “corresponding” to that

streaming content. First, when the player application 122 was implemented using

a webpage, a person of ordinary skill would have recognized that each stream of

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

95

content provided by streaming server 105 would have to be presented in some

webpage to be viewable by the user of the user client 101. As such, every stream

of content would have a corresponding webpage. Second, Siler already disclosed

that each stream of content could be identified by a different URL. Siler, ¶0025-

0027. Hence, a person of ordinary skill in the field would have considered

implementing a separate viewer webpage for each stream of content, in a way

analogous to the separate URL for each stream as disclosed by Siler. Siler, ¶0025-

0027.

c. Claim 1.b: “providing identifier data to the user’s
computer using the first computer system;”

226. It is my opinion that Siler discloses this feature. Siler disclosed that

the session tracking logic 123 provides a session identifier to the user client 101.

Siler, ¶0026. A person of ordinary skill in the field would understand from the

disclosure of Siler that the session tracking logic 123 would be part of the web

server 113. Siler, Figure 1, ¶0026, 0029, 0032. Alternatively, a person of ordinary

skill would have understood that Siler’s reference to the session tracking logic 123

providing a session identifier to the user client 101 would actually have entailed

the session tracking logic 123 providing the session identifier to the web server

113, which would then provide it to the user client 101. Siler, Figure 1, ¶0026,

0029, 0032.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

96

227. A person of ordinary skill in the field would have understood that the

session identifier from Siler was “identifier data.” This is true at least because

Siler states that the session identifier “uniquely identifies the session.” Siler,

¶0026. Siler also states that the “session identifier for a streaming session can be

used in place of the stream ID to identify the stream that the user is then currently

receiving.” Siler, ¶0027.

d. Claim 1.c: “providing an applet to the user’s
computer for each digital media presentation to be
delivered using the first computer system, wherein the
applet is operative by the user’s computer as a
timer;”

228. It is my opinion that Siler’s system, when modified as explained

previously in this declaration based on the teaches of Siler and Davis, would have

included this feature. As explained previously, a person of ordinary skill would

have been motivated based on the teachings of Siler itself to implement the player

application 122 as a webpage. Siler, ¶0032. And as explained previously, a person

of ordinary skill, when implementing the player application 122 as a webpage,

would have been motivated to implement the timer functionality of Figure 3 as an

Applet downloaded from the web server 113 with the webpage. Siler, Figure 3,

¶0028. Thus, Siler’s system when modified as already explained in this

declaration would include this feature.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

97

229. In particular, the step 311 disclosed by Siler would be implemented by

programming that would be operative as a timer. Siler describes step 311 as the

user client 101 “waits for a prescribed time before repeating the process” of Figure

3. Siler, ¶0028. A person of ordinary skill in the field would have recognized that

timer functionality would have been used to implement this step of waiting for a

period of time.

e. Claim 1.d: “receiving at least a portion of the
identifier data from the user’s computer responsively
to the timer applet each time a predetermined
temporal period elapses using the first computer
system; and”

230. It is my opinion that Siler’s system, when modified as explained

previously in this declaration based on the teaches of Siler and Davis, would have

included this feature. As explained previously, a person of ordinary skill, when

implementing the player application 122 as a webpage, would have been motivated

to implement the timer functionality of Figure 3 as an Applet downloaded from the

web server 113 with the webpage. Siler, Figure 3, ¶0028. Siler disclosed that the

timer functionality causes the user client 101 to “wait[] for a prescribed time.”

Siler, ¶0028. A person of ordinary skill would have understood that a “prescribed”

time was a type of “predetermined” time.

231. Siler also disclosed that the user client 101 transmitted, and the web

server 113 received, tracking information each time the prescribed time elapses.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

98

Siler, Figures 3- 4, ¶0028-0029. Namely, Siler discloses that, after the prescribed

time elapses, the user client “sends periodic information on streaming to server.”

Siler, Figure 3, ¶0028. At the same time, the web server 113 checks whether it has

“Received period information update from user?” Siler, Figure 4, ¶0029. Thus,

Siler disclosed that the first computer system (in the form of web server 113)

received information from the user client 101 after a predetermined time period

elapses.

232. Siler disclosed that the information that the user client 101 sends

periodically to the web server 113 included the session identifier. Siler, ¶0028.

Siler says that the information “preferably includes the user identifier, the session

identifier and the stream identifier.” Siler, ¶0028. As explained previously in this

declaration, the session identifier is the identifier data sent from the first computer

system (in the form of web server 113) to the user client 101.

f. Claim 1.e: “storing data indicative of the received at
least portion of the identifier data using the first
computer system;”

233. It is my opinion that Siler discloses this feature. Siler discloses that,

when the web server 113 receives the periodic tracking information from the user

client 101, it passes the information to the session tracking logic 123. Siler, ¶0029.

Siler discloses that the session tracking logic 123 performs “updating the session

record for the particular user.” Siler, Figure 4, ¶0029. As explained previously in

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

99

this declaration, a person of ordinary skill in the field would have understood that

this update of the session record would entail storing the received information in

the session records database 125. Siler, Figure 1, ¶0026. As such, a person of

ordinary skill in the field would have understood that the first computer system (in

the form of web server 113) would have stored the tracking information

periodically received from the user client 101.

g. Claim 1.f: “wherein each provided webpage causes
corresponding digital media presentation data to be
streamed from a second computer system distinct
from the first computer system directly to the user’s
computer independent of the first computer system;”

234. It is my opinion that Siler discloses this feature. Siler discloses that

the streaming server 105 transmits a data stream “through packet network 103 to

the client computer.” Siler, ¶0017. A person of ordinary skill in the field would

have understood from this description and the illustration in the figures that the

streaming server 105 transmitted the streaming content directly to the user client

101, without passing that content through either of the web servers 113 or 117.

Siler, Figure 1, ¶0017-0020.

235. A person of ordinary skill in the field as of August 2008 would have

understood that the streaming server could be provided as a distinct “computer

system” from the computer system embodied by the web servers 113 and 117.

This is true because Siler describes the web servers 113 and 117 as performing

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

100

distinct functions from streaming server 105. Siler, ¶0017-0020, 0023-0030. In

essence, the web servers perform the setup and tracking of the streaming content,

but leave the actual streaming of the content to the streaming server 105. Siler,

¶0024-0030. A person of ordinary skill in the field would have understood, based

on these differing functions, that the streaming server could be operated by one

entity, while the web servers could be operated by a different entity.

236. For example, Siler discloses that the streaming content could be from

a television station. Siler, ¶0018. In that case, the television station, or perhaps an

owner of the television station, may control the streaming server 105. This would

have made sense so that the content owner could control the access to the

streaming content. A separate content owner (e.g., some other television station or

a radio station as Siler suggests) could operate their own streaming servers 105.

The web servers then could provide a webpage interface for choosing amongst

these different streaming options provided by different streaming servers 105.

Siler, ¶0023. So a person of ordinary skill in the field would have been motivated

to provide the streaming server 105 and the web servers 113 and 117 as separate

systems operated and controlled by separate entities, at least in situation like in this

example.

h. Claim 1.g: “wherein the stored data is indicative of
an amount of time the digital media presentation data

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

101

is streamed from the second computer system to the
user’s computer; and”

237. It is my opinion that Siler discloses this feature. As I explained

previously, it is my opinion that “an amount of time” data was “streamed” should

be interpreted to mean “an amount of time” the data was “transferred via a

technique such that the data can be processed as a substantially steady or

continuous sequence.” But as also explained previously, I will analyze this feature

under the alternative interpretation that “an amount of time” the data was

“streamed” means “an amount of time” the data was “presented” on the user’s

computer.

238. If “streamed” means “transferred via a technique such that the data

can be processed as a substantially steady or continuous sequence,” then Siler

disclosed this feature. Siler disclosed that the tracking information stored by the

web server 113 indicates “which users are receiving a particular media stream and

how long each of the users receives” it. Siler, Abstract. As such, Siler suggests to

a person of ordinary skill in the field that the tracking information can include

tracking how long the user client 101 received the streaming content. Siler also

discloses that the streaming content is received and decoded at the user client for

“nearly simultaneous playback.” Siler, ¶0015. Siler also discloses that the

streaming content can be provided “in real time for immediate streaming.” Siler,

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

102

¶0019. At least in these situations, the amount of time that the user client 101 or

the user thereof “receives” the streaming content is also indicative of how long that

streaming content was transferred by streaming server 105 to the user client 101.

239. If “streamed” means “presented,” then Siler disclosed this feature.

Siler discloses that the tracking information indicates “how many people are

actually listening to the content, as well as when they listened and how long they

listened.” Siler, ¶0030. A person of ordinary skill in the field would have

understood that “how long [a user] listened” to the streaming content was an

indication of how long the streaming content was presented to the user of the user

client 101. A person of ordinary skill would have further been motivated by

Davis’s suggestion to track the duration of streaming content presentation in order

to store such information. Davis, 16:63-17:10. While Siler refers to how long

content was “listened” to, Siler’s approach would be equally applicable to how

long a user “watched” video content.

i. Claim 1.h: “wherein each stored data is together
indicative of a cumulative time the corresponding web
page was displayed by the user's computer.”

240. It is my opinion that the system of Siler, when modified based on the

teachings of Siler and Davis as described previously in this declaration, would

include this feature. As described previously, a person of ordinary skill in the field

would have been motivated to include tracking of the duration that a webpage was

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

103

displayed on the user client 101, in particular of the webpage that implemented the

player application 122, especially when additional advertising such as a banner

advertisement was displayed. Davis, 11:34-13:18. As such, Siler’s system, as

modified based on the teachings of Siler and Davis, would have included this

feature.

241. Further, to the extent that this feature requires that the web server 113

store multiple tracking information entries for a single webpage visit, a person of

ordinary skill in the field would have recognized that this would result when Siler’s

system was modified as explained previously in this declaration. Namely, any

time that the user of the user client 101 remained on the webpage for a longer

period of time than the prescribed time, Siler, Figure 3, ¶0028, the user client 101

would send at least two tracking reports to the web server 113. Hence, the two or

more tracking reports stored by the web server 113 would together indicate how

long the webpage was displayed on the user client 101.

3. Claim 2: “The method of claim 1, wherein the storing
comprises incrementing a stored value dependently upon
the receiving.”

242. It is my opinion that when the system described in Siler was modified

as explained previously in this declaration as taught by Siler and Davis, a person of

ordinary skill in the art would have been motivated to include this feature in Siler’s

system. As explained previously in this declaration, Siler disclosed that the user

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

104

client 101 sent tracking reports to the web server 113 periodically, according to a

prescribed time. Siler, Figure 3-4, ¶0028-0029.

243. Davis disclosed that one way to store tracking information was to

increment a counter each time a tracking report was received by the server. Davis,

3:42-44. Davis disclosed that, in order to track the number of times that some

particular content, such as an advertisement, had been displayed, the server could

increment a stored counter. Davis, 3:42-53. The same approach could be used to

track the number of times an advertisement was clicked on. Davis, 3:42-53 Thus,

a person of ordinary skill would have recognized that it would be possible to

increment a stored counter in web server 113 of Siler in order to store some types

of tracking information.

244. A person of ordinary skill in the field would have recognized that this

incrementing approach could be used by the web server 113 for storing various

types of tracking information. For example, instead of storing multiple tracking

records for a single webpage visit, each indicating the same predetermined time,

the web server 113 could simply increment a value for “number of intervals” as

well as the length of the predetermined time (the “prescribed” time). For instance,

instead of storing 10 tracking records, each indicating “15 seconds,” the web server

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

105

113 could store one tracking record, which would indicate “number of intervals” as

“10” and “length of interval” as “15 seconds.”

245. A person of ordinary skill would have recognized that the web server

113 may still need to store a second tracking record, for example, when the last

tracking report for the webpage visit indicated a length of the display of the

webpage that was less than the full prescribed time. But a person of ordinary skill

would have recognized that this would allow a reduction of the number of tracking

records from 11 (continuing the previous example) down to two.

246. A person of ordinary skill would have been motivated to use an

incrementing approach as disclosed in Davis for a few reasons.

247. First, Davis already disclosed that this approach was possible, and a

person of ordinary skill would have been likely to choose a familiar approach

recommended by Davis.

248. Second, use of a counter is something that any undergraduate student

in computer science or a like field would be very familiar with. Thus, a person of

ordinary skill, who would have at least that level of training, would be motivated to

use known, simple solution to the problem.

249. Third, a person of ordinary of ordinary skill in the field would have

recognized that the incrementing approach would allow a significant reduction in

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

106

the size of the database stored by the web server 113. In the example given just

above, the reduction was on the order of a five-fold decrease in the number of

records stored. This reduction in storage space would provide some marginal

benefit to being able to store more tracking information in the web server 113

using the same server specifications.

250. Fourth, a person of ordinary skill in the field would have recognized

that using the incrementing approach would make it easier and quicker to process

many of the tracking reports that the web server 113 received from the user client

113. In particular, when the web server 113 received a tracking report from the

user client 101, the web server 113 could execute a simple update command on the

database to increase the “number of intervals” value. If the tracking database used

SQL, for example, a single UPDATE statement could be used to store the new

tracking information. On the other hand, storing each tracking report as a separate

tracking record would require forming and then inserting a new record into the

tracking database each time a tracking report was received. A person of ordinary

skill would have recognized that this would have required more logic to perform,

would introduce more possibilities for error, and would have consumed more

resources on the database.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

107

251. Fifth, a person of ordinary skill would have recognized that storing

fewer tracking information records for each webpage visit would allow simpler and

quicker aggregation of tracking information when the database was later used by

its consumers (e.g., website administrators, advertisers). With the incrementing

approach, the program that aggregated tracking information for consumption by

the website administrators and advertisers would need to process fewer tracking

records from the database, which would make the aggregation process simpler and

shorter.

4. Claim 3: “The method of claim 2, wherein the received
data is indicative of a temporal cycle passing.”

252. It is my opinion that Siler discloses this feature. As explained

previously, the web server 113 received data from the user client 101 each time the

“prescribed time” elapsed. Siler, Figures 3-4, ¶0028-0029. As such, when the web

server 113 received the tracking information from the user client 101, a person of

ordinary skill in the art would have understood that it indicated the “prescribed

time” temporal cycle of Figure 3 had passed. Siler, Figures 3-4, ¶0028-0029.

IV. CONCLUSION

253. Based on the foregoing analysis, it is my opinion that claims 1-3 of

the ’609 Patent would have been obvious to a person of ordinary skill in the field

as of August 2008 based on the combination of Davis and Choi.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

108

254. Based on the foregoing analysis, it is my opinion that claims 1-3 of

the ’609 Patent would have been obvious to a person of ordinary skill in the field

as of August 2008 based on the combination of Siler and Davis.

NETFLIX, INC. EXHIBIT 1002

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

109

I hereby declare that all statements made herein of my own knowledge are true and

that all statements made on information and belief are believed to be true; that

these statements were made with knowledge that willful false statements and the

like so made are punishable by fine or imprisonment, or both, under 18 U.S.C.

§ 1001; and further that such willful false statements may jeopardize the validity of

the application or any patent issued thereon. I declare under penalty of perjury

under the laws of the United States of America that the foregoing is true and

correct.

Executed on ____________________ in ______________________.

Michael Franz

NETFLIX, INC. EXHIBIT 1002

franz
October 18th, 2019

franz
Berlin, Germany

Declaration of Michael Franz
In Support of Petition for Inter Partes Review of

U.S. Pat. No. 8,407,609

110

Appendix B

B-1 (Ex. 1001 in the Petition) U.S. Patent No. 8,407,609 B2 to Turner et al.
(“’609 Patent”)

B-2 (Ex. 1003 in the Petition) U.S. Pat. No. 5,796,952 (“Davis”)

B-3 (Ex. 1004 in the Petition) U.S. Pat. Appl. Pub. No. 2003/0236905 A1
(“Choi”)

B-4 (Ex. 1005 in the Petition) U.S. Pat. Appl. Pub. No. 2004/0133467 A1
(“Siler”)

B-5 [MS-WMLOG]: Windows Media Log Data Structure Specification,
Microsoft Corporation, June 18, 2008.

B-6 [MS-WMLOG]: Windows Media Log Data Structure Specification,
Microsoft Corporation, July 23, 2008.

B-7 U.S. Pat. No. 7,089,259.

B-8 U.S. Pat. Appl. Pub. No. 2007/0192652.

B-9 U.S. Pat. Appl. Pub. No. 2007/0294380.

B-10 U.S. Pat. Appl. Pub. No. 2002/0165849.

B-11 U.S. Pat. 6,108,637.

B-12 U.S. Pat. 7,089,304.

B-13 U.S. Pat. 6,877,007.

B-14 U.S. Pat. 7,310,609.

NETFLIX, INC. EXHIBIT 1002

APPENDIX A

NETFLIX, INC. EXHIBIT 1002

APPENDIX A

NETFLIX, INC. EXHIBIT 1002

Michael Franz
444 Computer Science Building
University of California, Irvine

Irvine, CA 92697-3435
franz@uci.edu

Major Research Emphases
• Secure and Trustworthy Computing, Critical Cyber-Infrastructure Protection. Mobile code security; secure and

efficient mobile program representations; code verification. Language-based security. Information flow; system-
level end-to-end security properties. Moving target defenses, automatically generated software diversity, n-
variant systems.

• Software Execution Environments. Compilers, virtual machines, and machine code generation and optimization.
On-the-fly, feedback-directed and continuous compilation and optimization; binary translation; trace-based com-
pilation. Code generation for embedded systems, heterogeneous architectures, and mobile computing; compiling
for low power consumption. Automatic parallelization. Memory management.

• Software Engineering. Software architectures for secure systems; minimizing the trusted code base. Component-
oriented programming languages and their implementation. Software reliability and robustness.

Education
Doctor of Technical Sciences, ETH Zürich, Switzerland; February 1994

Dissertation Title: “Code-Generation On-the-Fly: A Key to Portable Software”
Advisor: Niklaus Wirth

Diplomingenieur, ETH Zürich; May 1989

Academic Appointments
2016 – present Chancellor’s Professor

2006 – present Professor of Computer Science (with tenure)
2001 – 2006 Associate Professor (with tenure)
1996 – 2001 Assistant Professor

Department of Computer Science (since January 2003)
Department of Information and Computer Science (until January 2003)
The Donald Bren School of Information & Computer Sciences
University of California, Irvine

2007 – present Professor of Electrical Engineering & Computer Science (by courtesy)
Department of Electrical Engineering & Computer Science
The Henry Samueli School of Engineering
University of California, Irvine

1994 – 1995 Senior Research Associate (“Oberassistent”) and Lecturer
Institut für Computersysteme
ETH Zürich, Switzerland

Michael Franz CV-1 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Visiting Appointments
since June 2019 Guest Professor (partially on Sabbatical from UC Irvine)

Technical University of Braunschweig, Germany (Host: Prof. Dr. Ina Schäfer)

August 2010 – Visiting Professor (on Sabbatical from UC Irvine)
September 2011 ETH Zurich, Switzerland (Host: Prof. Dr. Thomas Gross)

January – Visiting Researcher (on Sabbatical from UC Irvine)
September 2002 University of California, Berkeley (Host: Prof. Dr. George Necula)

Summer Visiting Professor
Semester 2000 University of Klagenfurt, Austria (Host: Prof. Dr. Laszlo Böszörményi)

Summer Visiting Professor
Semester 1998 University of Ulm, Germany (Host: Prof. Dr. Peter Schulthess)

Major Professional Honors
• Humbold Research Award, Alexander von Humboldt Foundation. This award is granted in recognition of a

researcher’s entire achievements to date to academics whose fundamental discoveries, new theories, or insights
have had a significant impact on their own discipline and who are expected to continue producing cutting-edge
achievements in the future; 2018.

• Fellow, Association for Computing Machinery (ACM), “For contributions to just-in-time compilation and opti-
mization and to compiler techniques for computer security;” 2015.

• Fellow, The Institute of Electrical and Electronics Engineers (IEEE), “For contributions to just-in-time compila-
tion and to computer security through compiler-generated software diversity;” 2015.

• IEEE Computer Society Technical Achievement Award, 2012, “for pioneering contributions to just-in-time com-
pilation and optimization and significantly advancing Web application technology.”

• University of California, Irvine, Distinguished Mid-Career Faculty Award for Research, 2010. This is the
Academic Senate’s highest honor for research. One such award at most is given yearly to an Assistant Professor,
one to an Associate or Full Professor Step I-IV (the ”Mid-Career Award”), and one to a Professor Step V or
higher.

• National Science Foundation CAREER Award, 1997.

• Fulbright Scholarship, 1989.

Teaching Honors
• Dean’s Award for Graduate Student Mentoring, Donald Bren School of Information and Computer Sciences,

UC Irvine, 2007 and 2016.

• Outstanding Professor of the Year Award, Graduating Class of 2007, UC Irvine.

Institutional Affiliations
• Director, Secure Systems and Software Laboratory, Donald Bren School of Information and Computer Sciences,

UC Irvine; since September 2007.

• Charter Faculty Member, The California Institute for Telecommunications and Information Technology (Cal-(IT)2),
one of four California Institutes for Science and Technology.

• Charter Faculty Member, Security Computing and Networking Center (SCoNCe) (previously named Center for
Cyber-Security and Privacy), Donald Bren School of Information and Computer Sciences, UC Irvine.

Michael Franz CV-2 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Noteworthy Contributions With Wide Impact
I am the co-inventor (with my former Ph.D. student Andreas Gal) of the “Trace Tree” compilation technique, which has
been transitioned successfully from academic research into one of the most widely distributed open-source projects.
From version 3.5 (June 2009) onwards, the JavaScript engine in Mozilla’s Firefox browser has been based directly on
my academic research (see publication C.58).

Furthermore, since version 4.0 (March 2011), the Firefox browser additionally contains the “Compartmental Mem-
ory Manager” developed in collaboration between my lab and Mozilla (see publication C.69). No fewer than four of
my former students with completed Ph.D.s are now employed full-time at Mozilla.

Michael Franz CV-3 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Funding

Current Grants and Awards
• Office of Naval Research, N00014-17-1-2782, “Attack Surface Reduction for Binary Programs;” 30th Septem-

ber 2017 – 30th September 2020, $3,157,799 (lead PI. This is a collaborative award with Herbert Bos of Vrije
Universiteit Amsterdam, Netherlands. My share of the award is $2,337,935). PM Dr. Sukarno Mertoguno.

• United States Air Force & Air Force Research Laboratory, FA8750-16-C-0260, “Thunderlane Phase II;” 1st Septem-
ber 2018 – 12th December 2019, $457,672 (sole PI on sub-award for $457,672 from prime contractor Assured
Information Security, Inc. / Adam Hovak).

• DARPA, Cyber Fault-tolerant Attack Recovery (CFAR) Program, FA8750-15-C-0124, “Robust, Assured Diver-
sity for Software Security (RADSS).” In August of 2017, award was increased by $217,597 and the duration
extended to the end of March 2019. The modified award now runs 13th May 2015 – 31st March 2019, $2,199,227
(sole PI on sub-award for $2,199,227 from prime contractor Galois, Inc. / Stephen Magill). PM Dr. John Everett
and Dr. Jacob Torrey.

• National Science Foundation, Secure & Trustworthy Cyberspace (SaTC) Program, CNS-1619211, “TWC:Small:
Hydra—Hybrid Defenses for Resilient Applications: Practical Approaches Towards Defense In Depth;” 1st July 2016
– 30th June 2020, $499,981 (sole PI). PM Dr. Sol J. Greenspan.

• DARPA, Cyber Fault-tolerant Attack Recovery (CFAR) Program, FA8750-15-C-0124, “Robust, Assured Diver-
sity for Software Security (RADSS),” 13th May 2015 – 1st November 2018, $1,975,630 (sole PI on sub-award
for $1,975,630 from prime contractor Galois, Inc. / Stephen Magill). PM Dr. John Everett.

• DARPA, Cyber Fault-tolerant Attack Recovery (CFAR) Program, FA8750-15-C-0085, “RAVEN,” 5th May 2015
– 31st March 2019, $702,271 (sole PI on sub-award for $702,271 from prime contractor Apogee Research, LLC
/ Tiffany Frazier). PM Dr. John Everett.

Past Grants and Awards
• National Science Foundation, Secure & Trustworthy Cyberspace (SaTC) Program, CNS-1513837, “ENCORE—

ENhanced program protection through COmpiler-REwriter cooperation;” 1st July 2015 – 30th June 2018, $1,199,953
(lead PI. This is a collaborative award with Matthias Payer of Purdue University and Kevin Hamlen of The
University of Texas at Dallas. My share of the award is $619,267.) PM Dr. Sol J. Greenspan.

• United States Air Force & Air Force Research Laboratory, FA8750-16-C-0260, “Thunderlane;” 19th Septem-
ber 2016 – 24th May 2017, $45,000 (sole PI on sub-award for $45,000 from prime contractor Assured Informa-
tion Security, Inc. / Philip White).

• National Science Foundation, Computing and Communications Foundations Program, IIP-1439439, “I-Corps:
Hardening Programs Against Cyber Attacks,” 1st June 2014 – 30th November 2015, $50,000 (sole PI). PM
Dr. Rathinda Dasgupta.

• DARPA, I2O Clean-Slate Design of Resilient, Secure Hosts (CRASH) Program & Transformative Apps Program,
D11PC20024, “Defending Mobile Apps Through Automated Software Diversity.” In May of 2014, award
was increased by $247,830 and duration extended to 30th September 2015. The modified award now runs
4th February 2011 – 30th September 2015, $2,095,432 (sole PI). PMs Dr. Howard Shrobe and Dr. Robert
Laddaga.

• DARPA, I2O Mission-Oriented Resilient Clouds (MRC) Program, N66001124014, “Meta-Circular Software
Diversity for Intrusion Tolerant Clouds,” 1st July 2012 – 31st October 2015, $456,809 (sole PI on this sub-
award for $456,809, which is part of a larger project led by Yair Amir awarded to Johns Hopkins University).
PMs Dr. Howard Shrobe and Dr. Robert Laddaga.

Michael Franz CV-4 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• DARPA, I2O Vetting Commodity IT Software and Firmware (VET) Program, N66001-13-C-4057, “Heteroge-
neous Compilations for Detection of Malice in Embedded Systems,” 1st February 2015 – 30th June 2015,
$64,999 (sole PI on sub-award for $64,999 from prime contractor Apogee Research, LLC / Tiffany Frazier).
PM Dr. Timothy Fraser.

• DARPA, I2O Clean-Slate Design of Resilient, Secure Hosts (CRASH) Program & Transformative Apps Program,
D11PC20024, “Defending Mobile Apps Through Automated Software Diversity.” In June of 2012, award was
increased by $467,442 and duration extended by an additional year. Modified award now runs 4th February 2011
– 3rd February 2015, $1,847,602 (sole PI). PMs Dr. Howard Shrobe, Dr. Robert Laddaga, and Dr. Mari Maeda.

• National Science Foundation, Computing and Communications Foundations Program, CCF-1117162, “SHF:
CSR: Small: Fine-Grained Modularity and Reuse of VM Components,” 1st August 2011 – 31st July 2014,
$499,867 (sole PI). PM Dr. Bill Pugh.

• DARPA, Clean-Slate Design of Resilient, Secure Hosts (CRASH) Program & Transformative Apps Program,
D11PC20024, “Defending Mobile Apps Through Automated Software Diversity,” 4th February 2011 – 3rd Febru-
ary 2014, $1,380,162 (sole PI). PMs Dr. Howard Shrobe and Dr. Mari Maeda.

• National Science Foundation, Trusted Computing Program, CNS-0905684, “Next-Generation Infrastructure for
Trustworthy Web Applications,” 1st September 2009 – 31st August 2012, $600,000 (lead PI, award is split
evenly with co-PI C. Flanagan of UC Santa Cruz). PM Dr. Karl Levitt.

• Samsung Telecommunications America, Richardson, Texas, Agreement No. 51070, “Fine-Grained Modularity
and Reuse of Virtual-Machine Components,” 1st January 2011 – 31st December 2011, $349,965 (sole PI).
PM Venky Raju.

• California MICRO Program and industrial sponsor Sun Microsystems, Inc., Project No. 07-127, “Trace Com-
pilation for a Server Java Virtual Machine,” 24th August 2007 – 30th June 2009, $81,500 ($50,000 gift from
sponsor, $31,500 matching cash contribution from MICRO, waiver of overhead charges applies to the total grant
amount; sole PI).

• National Intelligence Community, Enterprise Cyber Assurance Program (NICECAP), FA8750-07-2-0085, “Lever-
aging Parallel Hardware to Detect, Quarantine, and Repair Malicious Code Injection,” 17th May 2007 – 17th Au-
gust 2009, $1,020,375 (sole PI). PM Dr. Carl Landwehr. (This solicitation drew 265 responses, of which 11, including this one, were

funded. Among the 11 funded projects, 4 were from M.I.T. and one each from Carnegie-Mellon, Columbia, Cornell, Stanford, and UT Austin. UC Irvine was

the only university in the competition to receive a grant awarded to a sole Principal Investigator.)

• National Science Foundation, Trusted Computing Program, CNS-0627747, “MLS-VM: Design and Implemen-
tation of a Next-Generation Information-Centric Target Platform for Trusted Internet Computing,” 1st Septem-
ber 2006 – 31st August 2010, $400,000 (sole PI). PM Dr. Helen Gill.

• National Science Foundation, Embedded and Hybrid Systems Program, CNS-0615443, “Virtual-Machine Tech-
niques for Resource-Constrained Devices: Reconciling Reliability With Reusability and Low Development
Costs in the Embedded Systems Space,” 1st July 2006 – 30th June 2010, $300,000 (sole PI). PM Dr. Helen Gill.

• United States Homeland Security Advanced Research Projects Agency (HSARPA), FA8750-05-2-0216, “Adding
Mandatory Access Control to Virtual Machines”, 2nd May 2005 – 1st November 2007, $312,483 (sole PI).
PM Dr. Douglas Maughan. (My proposal was the only one of 80 submissions in the category “Vulnerability Prevention” that got funded by DHS.

Overall, the Homeland Security solicitation drew 583 responses, of which 17, including this one, were funded.)

• National Science Foundation, Information Technology Research (ITR), CCR-0205712, “Virtual Power for a
Wireless Campus: Orchestrated Modeling, Analysis, Composition and Compilation Strategies for Distributed
Embedded Systems,” 1st September 2002 – 31st August 2005, $2,000,796 (lead PI with C. Krintz and R. Wolski
of UC Santa Barbara). PM Dr. Helen Gill. (Award is split $500,000 to Franz, Krintz and Wolski each, with a further $500,000 going to an

internal sub-contract at UC Irvine with Senior Personnel P. Chou, N. Dutt, and T. Givargis.)

Michael Franz CV-5 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• California MICRO Program and industrial sponsor Microsoft Research, Project No. 04-032, “Executing Legacy
Machine Code on a Safe Virtual Machine,” 11th August 2004 – 30th June 2005, $46,881 (waiver of overhead
charges applies to the total grant amount; sole PI).

• Deutsche Forschungsgemeinschaft (DFG) [German National Science Foundation], AM-150/1-3, “SafeTSA:
Entwicklung syntaxorientierter Verfahren zur sicheren und effizienten Ausführung von mobilem Code,” 1st
March 2004 – 28th February 2006, Euro 140,000 (equal co-PI with W. Amme and W. Rossak of the University
of Jena, Germany). (This is a new grant that provides continuing support for an earlier DFG-funded research project listed below.)

• National Science Foundation, Trusted Computing Program, CCR-TC-0209163, “Practical Language-Based Se-
curity, From the Ground Up,” 1st August 2002 – 31st July 2005, $300,000 (sole PI). PM Dr. Carl Landwehr.

• DARPA Information Systems Office, F30602-99-1-0536, “New Approaches to Mobile Code: Reconciling Exe-
cution Efficiency With Provable Security,” follow-on effort, 22nd June 2002 – 30th September 2003, additional
$207,632 (sole PI). PM Dr. Jaynarayan H. Lala.

• National Science Foundation, Operating Systems and Compilers Program, CCR-0105710, “Design and Imple-
mentation of Component-Oriented Programming Languages,” 1st July 2001 – 30th June 2004, $240,000 (sole
PI). PM Dr. Xiaodong Zhang.

• Department of Defense, Critical Infrastructure Protection and High Confidence, Adaptable Software (CIP/SW)
Research Program of the University Research Initiative, N00014-01-1-0854, “A Comprehensive Context for
Mobile-Code Deployment,” 1st May 2001 – 30th September 2004, $981,121, (lead PI with B. Fleisch of UC
Riverside). PMs Frank Deckelman and Dr. Ralph Wachter. (Award is split $793,201 to Franz and $187,920 to Fleisch. According to

the ONR website, “the competition drew 115 white papers, from which 74 proposals were received. After a thorough evaluation by technical expert teams, 20

of these proposals were selected for funding.”)

• Deutsche Forschungsgemeinschaft (DFG) [German National Science Foundation], AM-150/1-1, “SafeTSA:
Entwicklung syntaxorientierter Verfahren zur sicheren und effizienten Ausführung von mobilem Code,” 23rd
August 2001 – 1st February 2004, Euro 135,000 [corresponding to 270,000 Deutsche Marks] (equal Co-PI with
W. Amme and W. Rossak of the University of Jena, Germany).

• National Science Foundation, Next Generation Software Program, EIA-9975053, “TMO Based Modeling and
Design of Reliable Next-Generation Complex Software,” 15th August 1999 – 14th August 2002, $550,000 (with
K. Kim, Principal Investigator, and P. C.-Y. Sheu, Department of Electrical and Computer Engineering, UC
Irvine). PM Dr. Frederica Darema. ($117,000 of the total allocated to co-PI Franz.)

• California MICRO Program and industrial sponsor Microsoft Research, Project No. 99-039, “An Infrastructure
for Dynamic Optimization at Run-Time,” 2nd August 1999 – 30th June 2000, $38,000 (waiver of overhead
charges applies to the total grant amount; sole PI).

• National Science Foundation, Operating Systems and Compilers Program, CCR-9901689, “Graph-Based Mobile-
Code Representations for High-Performance Portable Software,” 1st September 1999 – 31st August 2002,
$180,000 (sole PI). PM Dr. Mukesh Singhal.

• DARPA Information Systems Office, F30602-99-1-0536, “New Approaches to Mobile Code: Reconciling Exe-
cution Efficiency With Provable Security,” 22nd June 1999 – 21st June 2002, $720,741 (sole PI). PM Dr. Jay-
narayan H. Lala.

• National Science Foundation CAREER Award, CCR-9701400, “Dynamic Optimization of Software Component
Systems,” 1st March 1997 – 28th February 2001, $205,000 (sole PI).

Supplementary Awards
• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant

CNS-0905684, Summer 2011, $16,000.

Michael Franz CV-6 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant
CNS-0905684, Summer 2010, $8,000.

• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant
CNS-0627747, Summer 2007, $6,000.

• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant
CNS-0615443, Summer 2007, $6,000.

• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant
CCR-0205712, Summer 2004, $6,000.

• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant
CCR-0205712, Summer 2003, $10,000.

• National Science Foundation, Research Experiences for Undergraduates (REU) Award Supplement for Grant
CCR-9701400, Summer 1998, $5,000.

Unrestricted Gifts
• Oracle Corporation, $100,000; May 2016.

• Qualcomm Corporation, $40,000; May 2015.

• Oracle Corporation, $140,000; August 2014.

• Mozilla Corporation, $83,000; August 2014.

• Oracle Corporation, $33,000; September 2013.

• Adobe Corporation, $25,000; August 2011.

• Google Corporation, $61,000; June 2011.

• Adobe Corporation, $35,000; August 2010.

• Adobe Corporation, $40,000; March 2010.

• Mozilla Corporation, $85,000; December 2009.

• Sun Microsystems, $80,000; May 2009.

• Google Corporation, $50,000; January 2008.

• Mozilla Corporation, $85,000; May 2007.

• Intel Corporation, $30,000; April 2006.

• Intel Corporation, $30,000; June 2005.

• Sun Microsystems Laboratories, $56,031; September 2004

• Intel Corporation, $30,000; July 2004.

• Microsoft Research, $33,183, April 2004.

Other Gifts
• Amazon Corporation., $18,000 in Amazon Web Services credit; September 2012.

Michael Franz CV-7 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Publications

Awarded Patents
P.1 M. Franz (lead), W. Amme, and J. von Ronne; Safe Computer Code Formats And Methods For Generating Safe

Computer Code; United States Patent No. 7,117,488; filed October 2001, issued October 2006.

P.2 M. Franz (lead), A. Gal, and B. Salamat; Multi-Variant Parallel Program Execution to Detect Malicious Code
Injection; United States Patent No. 8,239,8367 B1; filed March 2008, issued August 2012.

P.3 M. Franz (lead), W. Amme, and J. von Ronne; Safe Computer Code Formats And Methods For Generating Safe
Computer Code; United States Patent No. 8,392,897; filed August 2006, issued March 2013.

P.4 A. Gal (lead) and M. Franz; Dynamic Incremental Compiler and Method; United States Patent No. 8,769,511;
filed February 2007, issued July 2014.

P5 M. Franz (lead), A. Homescu, S. Brunthaler, and P. Larsen; Code Randomization for Just-In-Time Compilers;
United States Patent No. 9,250,937; filed November 2014, issued February 2016.

Pending and Provisional Patent Applications
PA.1 M. Franz (lead) and S. Brunthaler; Using Code Replicas and Randomized Control Flow to Enhance Software

Security; United States Patent Application No. 14/535,313; filed November 2014 (Provisional Patent Application
No. 61/900,842, filed November 2013).

PA.2 P. Larsen (lead), S. Brunthaler, and M. Franz; Error Report Normalization; United States Patent Application
No. 15/514,811; filed August 2017 (Provisional Patent Application No. 62/058,485, filed October 2014).

Books
B.2 P. Larsen, S. Brunthaler, L. Davi, A.-R. Sadeghi, and M. Franz; Automated Software Diversity; Morgan &

Claypool, San Rafael, California, ISBN 978-1-6270-5734-9 (paperback), ISBN 978-1-6270-5755-4 (ebook);
December 2015. doi:10.2200/S00686ED1V01Y201512SPT014

B.1 M. Franz; Code-Generation On-the-Fly: A Key to Portable Software, Doctoral Dissertation No. 10497, ETH
Zürich; published in book form by Verlag der Fachvereine, Zürich, ISBN 3-7281-2115-0; March 1994.

Edited Volumes
E.1 M. Franz and P. Papadimitratos (Eds.); Trust and Trustworthy Computing (Proceedings of the 9th International

Conference, TRUST 2016 Vienna, Austria, August 29–30, 2016); Springer, Heidelberg, ISBN 978-3-319-45571-
6 (paperback), ISBN 978-3-319-45572-3 (ebook); August 2016. doi:10.1007/978-3-319-45572-3

Peer-Reviewed Book Chapters
BC.10 S. Crane, A. Homescu, P. Larsen, H. Okhravi, and M. Franz; “Diversity and Information Leaks;” in P. Larsen

and A.-R. Sadeghi (Eds.), The Continuing Arms Race: Code-Reuse Attacks and Defenses, ACM Books, Vol. 18,
Morgan & Claypool Publishers, ISBN 978-1-97000-183-9, pp. 61–81; 2018. doi:10.1145/3129743.3129747

BC.9 T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler, and M. Franz; “Diversifying the Software Stack
Using Randomized NOP Insertion;” in S. Jajodia, A. K. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang,
X. S. Wang (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling, Springer
Advances in Information Security, Vol. 100, ISBN 978-1-4614-5415-1, pp. 151–174; 2013. doi:DOI 10.1007/978-
1-4614-5416-8 8

Michael Franz CV-8 19th September 2019

NETFLIX, INC. EXHIBIT 1002

BC.8 T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal, S. Brunthaler, Ch. Wimmer, and
M. Franz; “Compiler-Generated Software Diversity;” in S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, and
X.S. Wang (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats; Springer,
ISBN 978-1-4614-0976-2, pp. 77–98; September 2011. doi:10.1007/978-1-4614-0977-9 4

BC.7 M. Franz, W. Amme, M. Beers, N. Dalton, P.H. Fröhlich, V. Haldar, A. Hartmann, P. S. Housel, F. Reig,
J. von Ronne, Ch.H. Stork, and S. Zhenochin; “Making Mobile Code Both Safe And Efficient;” in J. Lala (Ed.),
Foundations of Intrusion Tolerant Systems; IEEE Computer Society Press, ISBN 0-7695-2057-X, pp. 337–356;
December 2003. doi:10.1109/FITS.2003.1264941 (Expanded version of conference paper C.15)

BC.6 M. Franz; “A Fresh Look At Low-Power Mobile Computing;” in L. Benini, M. Kandemir, J. Ramanujam (Eds.),
Compilers and Operating Systems for Low Power; Kluwer Academic Publishers, Boston, ISBN 1-4020-7573-1,
pp. 209–220; September 2003. doi:10.1007/978-1-4419-9292-5 12 (Expanded version of conference paper C.18)

BC.5 M. Franz; “Safe Code: It’s Not Just For Applets Anymore;” in L. Böszörményi and Peter Schojer (Eds.),
Modular Programming Languages: Proceedings of the Sixth Joint Modular Languages Conference (JMLC
2003), Klagenfurt, Austria; Springer Lecture Notes in Computer Science, No. 2789, ISBN 3-540-40796-0;
pp. 12–22; August 2003. (Full Text of Invited Keynote Address)

BC.4 J. von Ronne, A. Hartmann, W. Amme, and M. Franz; “Efficient Online Optimization by Utilizing Offline
Analysis and the SafeTSA Representation;” in J. Powers and J. T. Waldron (Eds.), Recent Advances in Java
Technology: Theory, Application, Implementation; Computer Science Press, Trinity College Dublin, Dublin,
Ireland, ISBN 0-9544145-0-0, pp. 233–241; November 2002. (Expanded version of conference paper C.22)

BC.3 M. Franz; “Oberon: The Overlooked Jewel;” in L. Böszörményi, J. Gutknecht, G. Pomberger (Eds.), The School
of Niklaus Wirth: The Art of Simplicity; Morgan Kaufmann, San Francisco; ISBN 1-55860-723-4, pp. 41–53;
September 2000.

BC.2 J. Gutknecht and M. Franz; “Oberon with Gadgets: A Simple Component Framework;” in M. Fayad, D. Schmidt,
R. Johnson (Eds.), Implementing Application Frameworks: Object-Oriented Frameworks at Work; Wiley, ISBN 0-
4712-5201-8, pp. 323–338; September 1999.

BC.1 M. Franz; “Adaptive Compression of Syntax Trees and Iterative Dynamic Code Optimization: Two Basic
Technologies for Mobile-Object Systems;” in J. Vitek and Ch. Tschudin (Eds.), Mobile Object Systems: Towards
the Programmable Internet; Springer Lecture Notes in Computer Science, No. 1222, ISBN 3-540-62852-5,
pp. 263–276; February 1997. doi:10.1007/3-540-62852-5 19

Strongly Reviewed Journal & Magazine Articles
Note: Several conference proceedings have appeared as “special issues” of journals. My contributions to such
journal special issues that contain regular conference proceedings are not included in this section but are listed under
“conference papers” below.

J.36 B. Belleville, W. Shen, S. Volckaert, A.M. Azab, and M. Franz; “KALD: Detecting Direct Pointer Disclosure
Vulnerabilities;” accepted for publication in IEEE Transactions on Dependable and Secure Computing (TDSC);
2019. doi:10.1109/TDSC.2019.2915829

J.35 M. Franz; “Making Multivariant Programming Practical and Inexpensive;” in IEEE Security and Privacy, Vol. 16,
No. 3, pp. 90–94; May 2018. doi:10.1109/MSP.2018.2701161

J.34 N. Burow, S.C. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer; “Control-Flow Integrity P 3:
Protection, Precision, and Performance,” in ACM Computing Surveys (CSUR), Vol. 50, No. 1, Article No. 16;
April 2017. doi:10.1145/3054924

J.33 A. Homescu, T. Jackson, S. Crane, S. Brunthaler, P. Larsen, and M. Franz; “Large-scale Automated Software
Diversity—Program Evolution Redux;” in IEEE Transactions on Dependable and Secure Computing (TDSC),
Vol. 14, No. 2, March/April 2017. doi:10.1109/TDSC.2015.2433252

Michael Franz CV-9 19th September 2019

NETFLIX, INC. EXHIBIT 1002

J.32 G. Wagner, P. Larsen, S. Brunthaler, and M. Franz; “Thinking Inside the Box: Compartmentalized Garbage
Collection;” in ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 38, No. 3, Article
No. 9; May 2016. doi:10.1145/2866576

J.31 P. Larsen, A. Homescu, S. Brunthaler, and M. Franz; “Automatic Software Diversity;” in IEEE Security and
Privacy, Vol. 13, No. 2, pp. 30-37; March 2015. doi:10.1109/MSP.2015.23

J.30 G. Savrun-Yeniceri, W. Zhang, H. Zhang, E. Seckler, C. Li, S. Brunthaler, P. Larsen, and M. Franz; “Efficient
Hosted Interpreters on the JVM;” in ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11,
No. 1, Article No. 9; February 2014. doi:10.1145/2532642

J.29 P. Larsen, S. Brunthaler, and M. Franz; “Security through Diversity: Are We There Yet?;” in IEEE Security and
Privacy, Vol. 12, No. 2, pp. 28–35; March 2014. doi:10.1109/MSP.2013.129

J.28 Ch. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz; “Information Flow Tracking meets Just-
In-Time Compilation;” in ACM Transactions on Architecture and Code Optimization (TACO), Vol. 10, No. 4,
Article No. 38; December 2013. doi:10.1145/2541228.2555295

J.27 G. Wagner, A. Gal, and M. Franz; “Slimming a Java Virtual Machine by way of Cold Code Removal and
Optimistic Partial Program Loading;” in Science of Computer Programming, Vol. 76, No. 11, pp. 1037–1053;
November 2011. doi:10.1016/j.scico.2010.04.008 (Expanded version of conference paper C.53)

J.26 B. Salamat, T. Jackson, G. Wagner, Ch. Wimmer, and M. Franz; “Run-Time Defense Against Code Injection
Attacks Using Replicated Execution;” in IEEE Transactions on Dependable and Secure Computing (TDSC),
Vol. 8, No. 4; July 2011. doi:10.1109/TDSC.2011.18

J.25 W. Amme, J. von Ronne, Ph. Adler, and M. Franz; “The Effectiveness of Producer-Side Machine-Independent
Optimizations for Mobile Code;” in Software—Practice and Experience), Vol. 39, No. 10, pp. 923–946; July 2009.
doi:10.1002/spe.v39:10 (Expanded version of conference paper C.40)

J.24 E. Yardimci and M. Franz; “Mostly Static Program Partitioning of Binary Executables;” in ACM Transactions on
Programming Languages and Systems (TOPLAS), Vol. 31, No. 5, Article No. 17; June 2009. doi:10.1145/1538917.
1538918

J.23 A. Gal, Ch.W. Probst, and M. Franz; “Java Bytecode Verification via Static Single Assignment Form;” ACM
Transactions on Programming Languages and Systems (TOPLAS), Vol. 30, No. 4, Article No. 21, pp. 1–21;
July 2008. doi:10.1145/1377492.1377496

J.22 E. Yardimci and M. Franz; “Dynamic Parallelization of Binary Executables on Hierarchical Platforms;” The
Journal of Instruction-Level Parallelism, Vol. 10, Paper 6, ISSN 1942-9525, pp. 1–24; June 2008.
http://www.jilp.org/vol10/v10paper6.pdf (Expanded version of conference paper C.41)

J.21 M. Franz; “Containing the Ultimate Trojan Horse;” IEEE Security and Privacy, Vol. 5, No. 4, pp. 52–56;
July 2007. doi:10.1109/MSP.2007.77

J.20 W. Amme, J. von Ronne, and M. Franz; “SSA-Based Mobile Code: Implementation and Empirical Evaluation;”
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 4, No. 2, Article No. 13; June 2007.
doi:10.1145/1250727.1250733

J.19 V. Venkatachalam, M. Franz, and Ch.W. Probst; “A New Way Of Estimating Compute Boundedness And Its
Application To Dynamic Voltage Scaling;” International Journal of Embedded Systems (IJES), Vol. 3, No. 1/2,
pp. 17–30; 2007. doi:10.1504/IJES.2007.016030

J.18 V. Venkatachalam and M. Franz; “Power Reduction Techniques For Microprocessor Systems;” ACM Computing
Surveys (CSUR), Vol. 37, No. 3, pp. 195–237; September 2005. doi:10.1145/1108956.1108957

J.17 M. Franz, D. Chandra, A. Gal, V. Haldar, Ch.W. Probst, F. Reig, and N. Wang; “A Portable Virtual Machine
Target For Proof-Carrying Code;” Science of Computer Programming, (Special Issue on Interpreters, Virtual
Machines, and Emulators), Vol. 57, No. 3, pp. 275–294; September 2005. doi:10.1016/j.scico.2004.09.001
(Expanded version of conference paper C.28)

Michael Franz CV-10 19th September 2019

NETFLIX, INC. EXHIBIT 1002

J.16 M. Franz, P.H. Fröhlich, and A. Gal; “Supporting Software Composition at the Programming-Language Level;”
Science of Computer Programming, (Special Issue on New Software Composition Concepts), Vol. 56, Nos. 1–2,
pp. 41–57; April 2005. doi:10.1016/j.scico.2004.11.004

J.15 W. Amme and M. Franz; “Effiziente Codegenerierung für mobilen Code;” Informatik-Spektrum, Vol. 26, No. 4,
pp. 237–246; August 2003. doi:10.1007/s00287-003-0317-1

J.14 T. Kistler and M. Franz; “Continuous Program Optimization: A Case Study;” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), Vol. 25, No. 4, pp. 500–548; July 2003. doi:10.1145/778559.778562

J.13 T. Kistler and M. Franz; “Continuous Program Optimization: Design and Evaluation;” IEEE Transactions on
Computers, Vol. 50, No. 6, pp. 549–566; June 2001. doi:10.1109/12.931893

J.12 T. Kistler and M. Franz; “Automated Data-Member Layout of Heap Objects to Improve Memory-Hierarchy
Performance;” ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 22, No. 3, pp. 490–
505; May 2000. doi:10.1145/353926.353937

J.11 T. Kistler and M. Franz; “A Tree-Based Alternative to Java Byte-Codes;” International Journal of Parallel
Programming, Vol. 27, No. 1, pp. 21–34; February 1999. doi:10.1023/A:1018740018601 (Expanded version of conference

paper C.05)

J.10 M. Franz; “The Java Virtual Machine: A Passing Fad?;” IEEE Software, Vol. 15, No. 6, pp. 26–29; Novem-
ber 1998. doi:10.1109/52.730834

J.09 M. Franz; “Open Standards Beyond Java: On the Future of Mobile Code for the Internet;” Journal of Universal
Computer Science (j.ucs), Vol. 4, No. 5, pp. 521–532; May 1998. doi:10.3217/jucs-004-05-0522 (Expanded version of

conference paper C.08)

J.08 M. Franz; “Java: Anmerkungen eines Wirth-Schülers“ (in German); Informatik-Spektrum, Vol. 21, No. 1, pp. 23–
26; February 1998. doi:10.1007/s002870050086

J.07 M. Franz and T. Kistler; “Slim Binaries;” Communications of the ACM, Vol. 40, No. 12, pp. 87–94; Decem-
ber 1997. doi:10.1145/265563.265576

J.06 M. Franz; “The Programming Language Lagoona: A Fresh Look at Object-Orientation;” Software-Concepts and
Tools, Vol. 18, No. 1, pp. 14–26; March 1997.

J.05 M. Franz; “Dynamic Linking of Software Components;” IEEE Computer, Vol. 30, No. 3, pp. 74–81; March 1997.
doi:10.1109/2.573670

J.04 M. Brandis, R. Crelier, M. Franz, and J. Templ; “The Oberon System Family;” Software—Practice and Experi-
ence, Vol. 25, No. 12, pp. 1331–1366; December 1995.

J.03 M. Franz; “Protocol Extension: A Technique for Structuring Large Extensible Software-Systems;” Software—
Concepts and Tools, Vol. 16, No. 2, pp. 86–94; July 1995.

J.02 M. Franz; “The Case for Universal Symbol Files;” Structured Programming, Vol. 14, No. 3, pp. 136–147;
October 1993.

J.01 M. Franz; “Emulating an Operating System on Top of Another;” Software—Practice and Experience, Vol. 23,
No. 6, pp. 677–692; June 1993.

Strongly Reviewed Conference and Workshop Papers
Note: Several conference proceedings have appeared as “special issues” of journals. They are included in this section
rather than under “journal articles” above, and for faster identification have been marked with an asterisk. Talks
given at conferences are annotated in this section and are not listed again under “presentations” below.

Michael Franz CV-11 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.104 D.K. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and M. Franz; “SoK: Sanitizing for
Security;” in 40th IEEE Symposium on Security and Privacy, San Francisco, California, pp. 187–207; May
2019. doi:10.1109/SP.2019.00010 84 papers accepted out of 673 submissions plus 10 revised papers from the previous year = 12.5%

C.103 D.K. Song, F. Hetzelt, D. Das, Ch. Spensky, Y. Na, S. Volckaert, G. Vigna, Ch. Kruegel, J.-P. Seifert, and
M. Franz; “PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS Boundary;” in 2019
Network and Distributed Systems Security Symposium (NDSS 2019), Internet Society, ISBN 1-891562-55-X,
San Diego, California; February 2019. doi:10.14722/ndss.2019.23176 89 papers accepted out of 521 submissions = 17%

C.102 T. Kroes, A. Altinay, J. Nash, Y. Na, S. Volckaert, H. Bos, M. Franz, and Ch. Giuffrida; “BinRec: Attack Surface
Reduction Through Dynamic Binary Recovery;” in 2018 Workshop on Forming an Ecosystem Around Software
Transformation (FEAST ’18), Toronto, Canada, pp. 8–13; October 2018. doi:10.1145/3273045.3273050

C.101 B. Belleville, H. Moon, J. Shin, D. Hwang, J.M. Nash, S. Jung, Y. Na, S. Volckaert, P. Larsen, Y. Paek, and
M. Franz; “Hardware Assisted Randomization of Data;” in M. Bailey, Th. Holz, M. Stamatogiannakis, and
S. Ioannidis (Eds.), 21st International Symposium on Research in Attacks, Intrusions, and Defenses (RAID 2018),
Heraklion, Crete, Greece, Springer Lecture Notes in Computer Science Vol. 11050, ISBN 978-3-030-00469-9,
pp. 337–358; September 2018. doi:10.1007/978-3-030-00470-5 16 33 papers accepted out of 145 submissions = 23%

C.100 J. Lettner, D.K. Song, T. Park, S. Volckaert, P. Larsen, and M. Franz; “PartiSan: Fast and Flexible Sanitization via
Run-time Partitioning;” in M. Bailey, Th. Holz, M. Stamatogiannakis, and S. Ioannidis (Eds.), 21st International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID 2018), Heraklion, Crete, Greece, Springer
Lecture Notes in Computer Science Vol. 11050, ISBN 978-3-030-00469-9, pp. 403–422; September 2018.
doi:10.1007/978-3-030-00470-5 19 33 papers accepted out of 145 submissions = 23%

C.99 M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert and M. Franz; “Accelerating Dynamically-Typed Languages
on Heterogeneous Platforms Using Guards Optimization;” in T. Millstein (Ed.), 2018 European Conference
on Object-Oriented Programming (ECOOP 2018); Amsterdam, Netherlands, LIPIcs–Leibniz International Pro-
ceedings in Informatics, Vol. 109, ISBN 978-3-95977-079-8, pp. 16:1–16:29; July 2018. doi:10.4230/LIPIcs.
ECOOP.2018.16 26 papers accepted out of 66 submissions = 39%

C.98 T. Park, J. Lettner, Y. Na, S. Volckaert and M. Franz; “Bytecode Corruption Attacks Are Real—And How To
Defend Against Them;” in C. Giuffrida, S. Bardin, and G. Blanc (Eds)., International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA 2018), Paris, France, ISBN 978-3-319-93410-5,
pp. 326–348; June 2018. doi:10.1007/978-3-319-93411-2 15 18 papers accepted out of 59 submissions = 30%

C.97 P. Biswas, A. Di Federico, S.A. Carr, P. Rajasekaran, S. Volckaert, Y. Na, M. Franz, and M. Payer; “Venerable
Variadic Vulnerabilities Vanquished;” in USENIX Security 2017, Vancouver, British Columbia, ISBN 978-1-
931971-40-9, pp. 186–198; August 2017. 85 papers accepted out of 522 submissions = 16%

C.96 S. Volckaert, B. Coppens, B. De Sutter, K. De Bosschere, P. Larsen, and M. Franz; “Taming Parallelism in a
Multi-Variant Execution Environment;” in EuroSys 2017, Belgrade, Serbia, ISBN 978-1-4503-4938-3, pp. 270–
285; April 2017. doi:10.1145/3064176.3064178 41 papers accepted out of 182 valid submissions = 22%

C.95 R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, Th. Hobson, S. Crane, Ch. Liebchen, P. Larsen, L. Davi, M. Franz,
A.-R. Sadeghi, and H. Okhravi; “Address Oblivious Code Reuse: On the Effectiveness of Leakage Resilient
Diversity;” in 2017 Network and Distributed System Security Symposium (NDSS 2017), Internet Society, ISBN 1-
891562-46-0, San Diego, California; February 2017. doi:10.14722/ndss.2017.23477 68 papers accepted out of 423

submissions = 16%

C.94 S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu, P. Larsen, B. De Sutter, and M. Franz; “Secure and
Efficient Application Monitoring and Replication;” in 2016 USENIX Annual Technical Conference (ATC 2016),
Denver, Colorado, ISBN 978-1-931971-30-0, pp. 167–179; June 2016. 47 papers accepted out of 266 submissions = 17.6%

C.93 J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi, A.-R. Sadeghi, T. Holz, and M. Franz;
“Subversive-C: Abusing and Protecting Dynamic Message Dispatch;” in 2016 USENIX Annual Technical Con-
ference (ATC 2016), Denver, Colorado, ISBN 978-1-931971-30-0, pp. 209–221; June 2016. 47 papers accepted out of

266 submissions = 17.6%

Michael Franz CV-12 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.92 K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, Ch. Liebchen, and A.-R. Sadeghi; “Leakage-Resilient Layout
Randomization for Mobile Devices;” in 2016 Network and Distributed System Security Symposium (NDSS 2016),
Internet Society, ISBN 1-891562-41-X, San Diego, California; February 2016. doi:10.14722/ndss.2016.23364
60 papers accepted out of 389 submissions = 15.4%

C.91 S. Crane, S. Volckaert, F. Schuster, Ch. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and
M. Franz; “It’s a TRAP: Table Randomization and Protection against Function Reuse Attacks;” in 22nd ACM
Conference on Computer and Communications Security (CCS 2015), Denver, Colorado, ACM Press, ISBN 978-
1-4503-3832-5, pp. 243–255; October 2015. doi:10.1145/2810103.2813682 128 papers accepted out of 646 submissions =

19.4%

C.90 M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, Ch. Liebchen, M. Negro, M. Qunaibit, and A.-R. Sadeghi;
“Losing Control: On the Effectiveness of Control-Flow Integrity under Stack Attacks;” in 22nd ACM Conference
on Computer and Communications Security (CCS 2015), Denver, Colorado, ACM Press, ISBN 978-1-4503-
3832-5, pp. 952-963; October 2015. doi:10.1145/2810103.2813671 128 papers accepted out of 646 submissions = 19.4%

C.89 G. Savrun-Yeniceri, M. L. Van de Vanter, P. Larsen, S. Brunthaler, and M. Franz; “Efficient and Generic Event-
based Profiler Framework for Dynamic Languages;” in 2015 International Conference on Principles and Prac-
tices of Programming on the Java platform: Virtual machines, Languages, and Tools (PPPJ’15), Melbourne,
Florida, ACM Press, ISBN 978-1-4503-3712-0, pp. 102–112; September 2015. doi:10.1145/2807426.2807435

C.88 C. Stancu, Ch. Wimmer, S. Brunthaler, P. Larsen, and M. Franz; “Safe and Efficient Hybrid Memory Manage-
ment for Java;” in International Symposium on Memory Management 2015 (ISMM’15), Portland, Oregon, ACM
Press, ISBN 978-1-4503-3589-8, pp. 81-92; June 2015. doi:10.1145/2754169.2754185

C.87 S. Crane, Ch. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and M. Franz; “Readac-
tor: Practical Code Randomization Resilient to Memory Disclosure;” in 36th IEEE Symposium on Security and
Privacy, San Jose, California; May 2015. doi:10.1109/SP.2015.52 55 papers accepted out of 407 submissions = 13.5%

C.86 S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz; “Thwarting Cache Side-Channel Attacks Through
Dynamic Software Diversity;” in 2015 Network and Distributed System Security Symposium (NDSS 2015), San
Diego, California; February 2015. doi:10.14722/ndss.2015.23264 51 papers accepted out of 302 submissions = 16.9%

C.85 V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz; “Opaque Control-Flow Integrity;” in 2015
Network and Distributed System Security Symposium (NDSS 2015), San Diego, California; February 2015.
doi:10.14722/ndss.2015.23271 51 papers accepted out of 302 submissions = 16.9%

C.84 M. Murphy, P. Larsen, S. Brunthaler, and M. Franz; “Software Profiling Options and Their Effects on Security
Based Code Diversification;” in First ACM Workshop on Moving Target Defense (MTD 2014), Scottsdale,
Arizona, ACM Press, ISBN 978-1-4503-3150-0, pp. 87–96; November 2014. doi:10.1145/2663474.2663485

C.83 W. Zhang, P. Larsen, S. Brunthaler, and M. Franz; “Accelerating Iterators in Optimizing AST Interpreters;”
in 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA 2014), Portland, Oregon, ACM Press, ISBN 978-1-4503-2585-1, pp. 727–743; October 2014.
doi:10.1145/2660193.2660223 52 papers accepted out of 186 submissions = 28%

C.82 C. Stancu, Ch. Wimmer, S. Brunthaler, P. Larsen, and M. Franz; “Comparing Points-to Static Analysis with
Runtime Recorded Profiling Data;” in 2014 International Conference on Principles and Practices of Program-
ming on the Java platform: Virtual machines, Languages, and Tools (PPPJ 2014), Cracow, Poland, ACM Press,
ISBN 978-1-4503-2926-2, pp. 157–168; September 2014. doi:10.1145/2647508.2647524

C.81 P. Larsen, A. Homescu, S. Brunthaler, and M. Franz; “SoK: Automated Software Diversity;” in 35th IEEE
Symposium on Security and Privacy, San Jose, California, IEEE, ISBN 978-1-4799-4686-0, pp. 276-291; May
2014. doi:10.1109/SP.2014.25 44 papers accepted out of 334 submissions = 13%

C.80 Ch. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz; “Information Flow Tracking meets Just-
In-Time Compilation;” in High Performance and Embedded Architecture and Compilation Conference (HiPEAC
2014), Vienna, Austria; January 2014. doi:10.1145/2541228.2555295

Michael Franz CV-13 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.79 Ch. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz; “CrowdFlow: Efficient Information
Flow Security;” 16th Information Security Conference (ISC 2013), Dallas, Texas); November 2013. Springer
Lecture Notes in Computer Science, Vol. 7807, ISBN 978-3-319-27658-8, pp. 321–340; December 2015.
doi:10.1007/978-3-319-27659-5

C.78 A. Homescu, P. Larsen, S. Brunthaler, and M. Franz; “librando: Transparent Code Randomization for Just-
in-Time Compilers;” in 20th ACM Conference on Computer and Communications Security (CCS 2013), Berlin,
Germany, ACM Press, ISBN 978-1-4503-2477-9, pp. 993–1004; November 2013. doi:10.1145/2508859.2516675
105 papers accepted out of 530 submissions = 19.8%

C.77 G. Savrun-Yeniceri, W. Zhang, H. Zhang, C. Li, S. Brunthaler, P. Larsen, and M. Franz; “Efficient Interpreter
Optimizations for the JVM;” in 2014 International Conference on Principles and Practices of Programming
on the Java platform: Virtual machines, Languages, and Tools (PPPJ’13), Stuttgart, Germany, ACM Press,
ISBN 978-1-4503-2111-2, pp. 113–123; September 2013. doi:10.1145/2500828.2500839

C.76 S. Crane, P. Larsen, S. Brunthaler, and M. Franz; “Booby Trapping Software;” in 2013 New Security Paradigms
Workshop (NSPW 2013), Banff, Canada, ACM Press, ISBN 978-1-4503-2582-0, pp. 95–106; September 2013.
doi:10.1145/2535813.2535824

C.75 E. Hennigan, Ch. Kerschbaumer, P. Larsen, S. Brunthaler, and M. Franz; “First-Class Labels: Using Information
Flow to Debug Security Holes;” in M. Huth, N. Asokan, S. Capkun, I. Flechais, and L. Coles-Kemp (Eds.),
Trust and Trustworthy Computing, 6th International Conference (TRUST 2013), London, United Kingdom,
Springer Lecture Notes in Computer Science, Vol. 7904, ISBN 978-3-642-38907-8, pp. 151–168; June 2013.
doi:10.1007/978-3-642-38908-5 12

C.74 Ch. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz; “Towards Precise and Efficient In-
formation Flow Control in Web Browsers;” in M. Huth, N. Asokan, S. Capkun, I. Flechais, and L. Coles-
Kemp (Eds.), Trust and Trustworthy Computing, 6th International Conference (TRUST 2013), London, United
Kingdom, Springer Lecture Notes in Computer Science, Vol. 7904, ISBN 978-3-642-38907-8, pp. 187–195;
June 2013. doi:10.1007/978-3-642-38908-5 14

C.73 A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz; “Profile-guided Automated Software Diversity,”
in 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2013), Shenzhen,
China, IEEE, ISBN 978-1-4673-5524-7, pp. 204–214; February 2013. doi:10.1109/CGO.2013.6494997
33 papers accepted out of 117 submissions = 28%

C.72 A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz; “Microgadgets: Size Does Matter In Turing-
complete Return-oriented Programming,” in 6th USENIX Workshop on Offensive Technologies (WOOT ’12),
Bellevue, Washington; August 2012. https://www.usenix.org/system/files/conference/woot12/woot12-final9.pdf

C.71 Ch. Wimmer, S. Brunthaler, P. Larsen, and M. Franz; “Fine-Grained Modularity and Reuse of Virtual Machine
Components;” in 11th Annual International Conference on Aspect-Oriented Software Development (AOSD ’12),
Potsdam, Germany, ACM Press, ISBN 978-1-4503-1092-5, pp. 203–214; March 2012. doi:10.1145/2162049.
2162073

C.70 M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, M. Bebenita, A. Gal, Ch. Wimmer, and M. Franz; “The
Impact of Optional Type Information on JIT Compilation Of Dynamically Typed Languages,” in 7th Dynamic
Languages Symposium (DLS 2011), Portland, Oregon, ACM Press, ISBN 978-1-4503-0939-4, pp. 13–24; Octo-
ber 2011. doi:10.1145/2047849.2047853

C.69 G. Wagner, A. Gal, Ch. Wimmer, B. Eich, and M. Franz; “Compartmental Memory Management in a Modern
Web Browser,” in International Symposium on Memory Management 2011 (ISMM’11), San Jose, California,
ACM Press, ISBN 978-1-4503-0263-0; June 2011. doi:10.1145/1993478.1993496

C.68 T. Jackson, B. Salamat, G. Wagner, Ch. Wimmer, and M. Franz; “On the Effectiveness of Multi-Variant Program
Execution for Vulnerability Detection and Prevention;” in 6th International Workshop on Security Measure-
ments and Metrics (MetriSec’10), Bolzano-Bozen, Italy, ACM Press, ISBN 978-1-4503-0340-8, Article No. 7;
September 2010. doi:10.1145/1853919.1853929

Michael Franz CV-14 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.67 M. Franz; “E unibus pluram: Massive-Scale Software Diversity as a Defense Mechanism;” in 2010 Workshop on
New Security Paradigms (NSPW’10), Concord, Massachusetts, ACM Press, ISBN 978-1-4503-0415-3, pp. 7-16;
September 2010. doi:10.1145/1900546.1900550

C.66 M. Bebenita, M. Chang, K. Manivannan, G. Wagner, M. Cintra, B. Mathiske, A. Gal, Ch. Wimmer, and M. Franz;
“Trace-Based Compilation in Execution Environments without Interpreters;” in A. Krall, H. Mössenböck (Eds.),
8th International Conference on the Principles and Practice of Programming in Java 2010 (PPPJ’10), Vienna,
Austria, ACM Press, ISBN 978-1-4503-0269-2, pp. 59–68; September 2010. doi:10.1145/1852761.1852771

C.65 K. Manivannan, Ch. Wimmer, and M. Franz; “Decentralized Information Flow Control on a Bare-Metal JVM;”
in Sixth Annual Workshop on Cyber Security and Information Intelligence Research (CSIIRW’10), Oak Ridge,
Tennessee, ACM Press, ISBN 978-1-4503-0017-9; April 2010. doi:10.1145/1852666.1852738

C.64 T. Jackson, Ch. Wimmer, and M. Franz; “Multi-Variant Program Execution for Vulnerability Detection and
Analysis;” in Sixth Annual Workshop on Cyber Security and Information Intelligence Research (CSIIRW’10),
Oak Ridge, Tennessee, ACM Press, ISBN 978-1-4503-0017-9; April 2010. doi:10.1145/1852666.1852708

C.63 Ch. Wimmer and M. Franz; “Linear Scan Register Allocation on SSA Form;” in The Eighth International
Symposium on Code Generation and Optimization (CGO 2010), Toronto, Canada, ACM Press, ISBN 978-1-
60558-635-9, pp. 170–179; April 2010. doi:10.1145/1772954.1772979

C.62 A. Yermolovich, Ch. Wimmer, and M. Franz; “Optimization of Dynamic Languages Using Hierarchical Layering
of Virtual Machines;” in 5th Symposium on Dynamic Languages (DLS 2009), Orlando, Florida, ACM Press,
ISBN 978-1-60558-769-1, pp. 79–88; October 2009. doi:10.1145/1640134.1640147

C.61 Ch. Wimmer, M. Cintra, M. Bebenita, M. Chang, A. Gal, and M. Franz; “Phase Detection using Trace Compila-
tion;” in 7th International Conference on the Principles and Practice of Programming in Java 2009 (PPPJ 2009),
Calgary, Alberta, ACM Press, ISBN 978-1-60558-598-7, pp. 172–181; August 2009. doi:10.1145/1596655.
1596683

C.60 Ch. Kerschbaumer, G. Wagner, Ch. Wimmer, A. Gal, Ch. Steger, and M. Franz; “SlimVM: A Small Footprint
Java Virtual Machine for Connected Embedded Systems;” in 7th International Conference on the Principles and
Practice of Programming in Java 2009 (PPPJ 2009), Calgary, Alberta, ACM Press, ISBN 978-1-60558-598-7,
pp. 133–142; August 2009. doi:10.1145/1596655.1596678

C.59 M. Bebenita, M. Chang, A. Gal, and M. Franz; “Stream-Based Dynamic Compilation for Object-Oriented
Languages;” in M. Oriol and B. Meyer (Eds.), Objects, Components, Models and Patterns, 47th International
Conference (TOOLS-EUROPE 2009), Zurich, Switzerland, Springer Lecture Notes in Business Information
Processing (LNBIP), Vol. 33, ISBN 978-3-642-02570-9, pp. 77–95; June 2009. doi:10.1007/978-3-642-02571-
6 6

C.58 A. Gal, B. Eich, M. Shaver, D. Anderson, B. Kaplan, G. Hoare, D. Mandelin, B. Zbarsky, J. Orendorff,
J. Ruderman, E. Smith, R. Reitmaier, M. R. Haghighat, M. Bebenita, M. Chang, and M. Franz; “Trace-based
Just-in-Time Type Specialization for Dynamic Languages;” in Programming Language Design and Imple-
mentation (PLDI 2009), Dublin, Ireland, ACM Press, ISBN 978-1-60558-392-1, pp. 465–478; June 2009.
doi:10.1145/1542476.1542528

C.57 B. Salamat, T. Jackson, A. Gal, and M. Franz; “Intrusion Detection Using Parallel Execution and Monitoring of
Program Variants in User-Space;” in EuroSys’09, Nuremberg, Germany, ACM Press, ISBN 978-1-60558-482-9,
pp. 33–46; April 2009. doi:10.1145/1519065.1519071

C.56 M. Franz; “Information-Flow Aware Virtual Machines: Foundations For Trustworthy Computing;” in Cyber-
security Applications and Technologies Conference for Homeland Security (CATCH 2009), Washington, D.C.,
IEEE Computer Society Publications, ISBN 978-0-7695-3568-5, pp. 91–96; March 2009. doi:10.1109/CATCH.
2009.45

Michael Franz CV-15 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.55 M. Chang, E. Smith, R. Reitmaier, A. Gal, M. Bebenita, Ch. Wimmer, B. Eich, and M. Franz; “Tracing for Web
3.0: Trace Compilation for the Next Generation Web Applications;” in 2009 ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE 2009), Washington, D.C., ACM Press, ISBN 978-1-
60558-375-4, pp. 71–80; March 2009. doi:10.1145/1508293.1508304

C.54 L. Wang and M. Franz; “Automatic Partitioning of Object-Oriented Programs for Resource-Constrained Mobile
Devices with Multiple Distribution Objectives;” in The 14th IEEE International Conference on Parallel and Dis-
tributed Systems (ICPADS’08), Melbourne, Victoria, Australia, December 2008. doi:10.1109/ICPADS.2008.84

C.53 G. Wagner, A. Gal, and M. Franz; “SlimVM: Optimistic Partial Program Loading for Connected Embedded
Java Virtual Machines;” in L. Veiga, V. Amaral, N. Horspool, and G. Cabri (Eds.), Principles and Practice of
Programming in Java 2008 (PPPJ 2008), Proceedings of the 6th International Conference, Modena, Italy, ACM
Press, ISBN 978-1-60558-223-8, pp. 117–126; September 2008. doi:10.1145/1411732.1411749 (Best Paper Award)

C.52 A. Yermolovich, A. Gal, and M. Franz; “Portable Execution of Legacy Binaries on the Java Virtual Machine;”
in L. Veiga, V. Amaral, N. Horspool, and G. Cabri (Eds.), Principles and Practice of Programming in Java 2008
(PPPJ 2008), Proceedings of the 6th International Conference, Modena, Italy, ACM Press, ISBN 978-1-60558-
223-8, pp. 63–72; September 2008. doi:10.1145/1411732.1411742

C.51 A. Noll, A. Gal, and M. Franz; “CellVM: A Homogeneous Virtual Machine Runtime System for a Heterogeneous
Single-Chip Multiprocessor;” in 2008 ISCA Workshop on Cell Systems and Applications, Beijing, China; June
2008.

C.50 B. Salamat, A. Gal, and M. Franz; “Reverse Stack Execution in a Multi-Variant Execution Environment;” in 2008
DSN Workshop on Compiler and Architectural Techniques for Application Reliability and Security (CATARS’08),
Anchorage, Alaska; June 2008.

C.49 B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz; “Multi-Variant Program Execution:
Using Multi-Core Systems to Defuse Buffer-Overflow Vulnerabilities;” in 2008 International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS 2008), Barcelona, Spain, IEEE Computer Society
Press, ISBN 978-0-7695-3109-0, pp. 843–848; March 2008. doi:10.1109/CISIS.2008.136

C.48 M. Franz; “Eliminating Trust From Application Programs By Way Of Software Architecture;” in Software
Engineering 2008 (SE 2008), Munich, Germany, Lecture Notes in Informatics (LNI) No. 121, GI-Edition,
Gesellschaft für Informatik, Bonn, ISBN 978-3-88579-215-4, pp. 112–126; February 2008.

C.47 M. Franz; “Understanding and Countering Insider Threats In Software Development;” in P. Kropf, M. Beny-
oucef, and H. Mili (Eds.), 2008 International Montreal Conference on e-Technologies (MCETECH 2008),
Montreal, Canada, IEEE Computer Society Publications, ISBN 978-0-7695-3082-6, pp. 81–90; January 2008.
doi:10.1109/MCETECH.2008.32

C.46 D. Chandra and M. Franz; “Fine-Grained Information Flow Analysis and Enforcement in a Java Virtual Ma-
chine;” in 23rd Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, Florida, IEEE
Computer Society Publications, ISBN 0-7695-3060-5, pp. 463–474; December 2007. doi:10.1109/ACSAC.
2007.37

C.45 M. Bebenita, A. Gal, and M. Franz; “Implementing Fast JVM Interpreters In Java Itself;” in V. Amaral, L. Veiga,
L. Marcelino, and H. C. Cunningham (Eds.), Principles and Practices of Programming in Java, Proceedings
of the 5th International Conference (PPPJ 2007), Lisbon, Portugal, ACM Press, ISBN 978-1-59593-672-1,
pp. 145–154; September 2007. doi:10.1145/1294325.1294345

C.44 A. Gal, M. Bebenita, and M. Franz; “One Method At A Time Is Quite a Waste of Time;” in Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems (ICOOOLPS’2007), Berlin,
Germany, Report No. 2007-5, Technische Universität Berlin, ISSN 1436-9915, pp. 11–16; July 2007.

C.43 M. Franz, A. Gal, and Ch.W. Probst; “Automatic Generation of Machine Emulators: Efficient Synthesis of
Robust Virtual Machines for Legacy Software Migration;” in W.-G. Bleek, J. Raasch, H. Züllighoven (Eds.),
Software Engineering 2007 (SE 2007), Hamburg, Germany, Lecture Notes in Informatics (LNI) No. 105, GI-
Edition, Gesellschaft für Informatik, Bonn, ISBN 978-3-88579-199-7, pp. 83–94; March 2007.

Michael Franz CV-16 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.42 A. Gal, Ch.W. Probst, and M. Franz; “HotpathVM: An Effective JIT Compiler for Resource-Constrained De-
vices;” in Second International Conference on Virtual Execution Environments (VEE 2006), Ottawa, Canada,
ACM Press, ISBN 1-59593-332-6, pp. 144–153; June 2006. doi:10.1145/1134760.1134780

C.41 E. Yardimci and M. Franz; “Dynamic Parallelization of Binary Executables on Hierarchical Platforms;” in Com-
puting Frontiers 2006, Ischia, Italy, ACM Press, ISBN 1-59593-302-6, pp. 127–138; May 2006. doi:10.1145/
1128022.1128040

C.40 Ph. Adler, W. Amme, M. Franz, and J. von Ronne; “Producer-Side Platform-Independent Optimizations and
Their Effects on Mobile-Code Performance;” in The 10th IEEE Annual Workshop on Interaction between
Compilers and Computer Architectures (INTERACT-10), Austin, Texas; February 2006. 14 submitted, 8 accepted

C.39 V. Haldar, D. Chandra, and M. Franz; “Dynamic Taint Propagation for Java;” in Twenty-First Annual Com-
puter Security Applications Conference (ACSAC 2005), Tucson, Arizona, IEEE Computer Society Publications,
ISBN 0-7695-2461-3, pp. 274–282; December 2005. doi:10.1109/CSAC.2005.21

C.38 V. Haldar, D. Chandra, and M. Franz; “Practical, Dynamic Information-Flow for Virtual Machines;” in 2nd
International Workshop on Programming Language Interference and Dependence (PLID’05), London, England;
September 2005.

C.37 A. Gal, Ch.W. Probst, and M. Franz; “Average Case vs. Worst Case Margins of Safety in System Design;” in
Ch. F. Hempelmann, V. Raskin (Eds.), New Security Paradigms Workshop 2005 (NSPW 2005), Lake Arrowhead,
California, ACM Press, ISBN 1-59593-317-4, pp. 25–32; September 2005. doi:10.1145/1146269.1146279

C*.36 A. Gal, Ch.W. Probst, and M. Franz; “Structural Encoding of Static Single Assignment Form;” in 4th Inter-
national Workshop on Compiler Optimization Meets Compiler Verification (COCV’05), Edinburgh, Scotland;
April 2005. Revised post-conference version published as Electronic Notes in Theoretical Computer Science
(ENTCS), Vol. 141, No. 2, pp. 85–102; November 2005. doi:10.1016/j.entcs.2005.02.045

C*.35 W. Amme, J. von Ronne, and M. Franz; “Quantifying the Benefits of SSA-Based Mobile Code;” in 4th Inter-
national Workshop on Compiler Optimization Meets Compiler Verification (COCV’05), Edinburgh, Scotland;
April 2005. Revised post-conference version published as Electronic Notes in Theoretical Computer Science
(ENTCS), Vol. 141, No. 2, pp. 103–119; November 2005. doi:10.1016/j.entcs.2005.02.046

C*.34 A. Gal, Ch.W. Probst, and M. Franz; “Integrated Java Bytecode Verification;” in First International Workshop on
Abstract Interpretation of Object-Oriented Programming Languages (AIOOL’05), Paris, France; January 2005.
Also published as Electronic Notes in Theoretical Computer Science (ENTCS), Vol. 131, pp. 27–38; May 2005.
doi:10.1016/j.entcs.2005.01.020

C.33 V. Haldar and M. Franz; “Symmetric Behavior-Based Trust: A New Paradigm for Internet Computing;” in Carla
Marceau, Simon Foley (Eds.), New Security Paradigms Workshop 2004 (NSPW 2004), White Point, Nova Scotia,
ACM Press, ISBN 1-59593-076-0, pp. 79–84; September 2004. doi:10.1145/1065907.1066039 (This paper was one of

4 papers selected for the “Highlights of NSPW 2004” session at ACSAC 2004.)

C.32 J. von Ronne, N. Wang, and M. Franz; ‘Interpreting Programs in Static Single Assignment Form;” in ACM
SIGPLAN 2004 Workshop on Interpreters, Virtual Machines and Emulators (IVME’04), Washington, D.C.,
pp. 23–30; June 2004. doi:10.1145/1059579.1059585

C.31 M. Beers, Ch.H. Stork, and M. Franz; “Efficiently Verifiable Escape Analysis;” in M. Odersky (Ed.), 18th
European Conference on Object-Oriented Programming (ECOOP 2004), Oslo, Norway, Springer Lecture Notes
in Computer Science, Vol. 3086, ISBN 3-540-22159-X, pp. 75–95; June 2004. doi:10.1007/b98195

C.30 V. Haldar, D. Chandra, and M. Franz; “Semantic Remote Attestation: A Virtual Machine Directed Approach to
Trusted Computing;” in 3rd USENIX Virtual Machine Research & Technology Symposium (VM’04), San Jose,
California, ISBN 1-931971-20-X, pp. 29–41; May 2004. (Best Paper Award)

C.29 Ch.W. Probst, A. Gal, and M. Franz; “Code Generating Routers: A Network-Centric Approach to Mobile Code;”
in 2003 IEEE 18th Annual Workshop on Computer Communications (CCW’2003), Dana Point, California, IEEE
Press, ISBN 0-7803-8239-0, pp. 179–186; October 2003.

Michael Franz CV-17 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.28 M. Franz, D. Chandra, A. Gal, V. Haldar, F. Reig, and N. Wang; “A Portable Virtual Machine Target For Proof-
Carrying Code;” in ACM SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and Emulators (IVME’03),
San Diego, California, pp. 24–31; June 2003. doi:10.1145/858570.858573

C.27 J. von Ronne, A. Hartmann, W. Amme, and M. Franz; “Code Annotation for Safe and Efficient Dynamic Object
Resolution;” in 2003 Workshop on Compiler Optimization meets Compiler Verification (COCV 2003), Warsaw,
Poland, April 2003. doi:10.1016/S1571-0661(05)82597-6

C.26 A. Gal, M. Franz, and D. Beuche, “Learning from Components: Fitting AOP for System Software;” in Sec-
ond AOSD 2003 Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS’2003),
Boston, Massachusetts; March 2003.

C.25 V. Haldar, Ch.H. Stork, and M. Franz; “The Source Is The Proof;” in C. Serban, S. Saydjari (Eds.), in ACM
SIGSAC 2002 Workshop on New Security Paradigms (NSPW 2002), Virginia Beach, Virginia, ACM Press,
ISBN 1-58113-598-X, pp. 69–73; September 2002. doi:10.1145/844102.844114 (This paper was one of 4 papers selected for

the “Best of NSPW 2002” session at ACSAC 2002.)

C.24 V. Haldar and M. Franz; “Towards Trusted Systems, From The Ground Up;” in Tenth ACM SIGOPS European
Workshop: Can We Really Depend On An OS? (EW 2002), Saint-Emilion, France, ACM Press, pp. 251–254;
September 2002. doi:10.1145/1133373.1133426

C.23 M. Franz; “Enhancing Class Files: A Migration Path to Better Mobile-Code Representations;” in D. Bakken
(Ed.), DSN Fast Abstracts, International Conference on Dependable Systems and Networks (DSN 2002), Wash-
ington, D.C., June 2002.

C.22 J. von Ronne, A. Hartmann, W. Amme, and M. Franz; “Efficient Online Optimization by Utilizing Offline
Analysis and the SafeTSA Representation;” in Proceedings of the 2nd Workshop on Intermediate Representation
Engineering for Virtual Machines (IRE 2002), Dublin, Ireland, June 2002.

C.21 D. Chandra, Ch. Fensch, W.-K. Hong, L. Wang, E. Yardimci, and M. Franz; “Code Generation at the Proxy: An
Infrastructure-Based Approach to Ubiquitous Mobile Code;” in Fifth ECOOP Workshop on Object-Orientation
and Operating Systems (ECOOP-OOOSWS 2002), Málaga, Spain, June 2002.

C.20 A. Gal, P.H. Fröhlich, and M. Franz; “An Efficient Execution Model for Dynamically Reconfigurable Component
Software;” in 7th International Workshop on Component-Oriented Programming (WCOP 2002), Málaga, Spain,
June 2002.

C.19 P.H. Fröhlich and M. Franz; “On Certain Basic Properties of Component-Oriented Programming Languages;”
in First OOPSLA Workshop on Language Mechanisms for Programming Software Components, Tampa Bay,
Florida; October 2001.

C.18 M. Franz; “A Fresh Look At Low-Power Mobile Computing;” in Compilers and Operating Systems for Low
Power 2001 (COLP 01), Barcelona, Spain, pp. 15.1–15.6; September 2001.

C*.17 Ch.H. Stork, P. S. Housel, V. Haldar, N. Dalton, and M. Franz; “Towards Language Agnostic Mobile Code;”
in N. Benton and A. Kennedy (Eds.), First Workshop on Multi-Language Infrastructure and Interoperability
(BABEL’01), Florence, Italy; September 2001. Also published as Electronic Notes in Theoretical Computer
Science (ENTCS), Vol. 59, No. 1, pp. 142–157; November 2001. doi:10.1016/S1571-0661(05)80458-X

C.16 W. Amme, N. Dalton, J. von Ronne, and M. Franz; “SafeTSA: A Type Safe and Referentially Secure Mobile-
Code Representation Based on Static Single Assignment Form;” in ACM Sigplan Conference on Programming
Language Design and Implementation (PLDI 2001), Snowbird, Utah, pp. 137–147; June 2001. doi:10.1145/
378795.378825

C.15 W. Amme, N. Dalton, P.H. Fröhlich, V. Haldar, P. S. Housel, J. von Ronne, Ch.H. Stork, S. Zhenochin, and
M. Franz; “Project transPROse: Reconciling Mobile-Code Security With Execution Efficiency;” in The Second
DARPA Information Survivability Conference and Exhibition (DISCEX II), Anaheim, California; IEEE Com-
puter Society Press, ISBN 0-7695-1212-7, pp. II.196–II.210; June 2001. doi:10.1109/DISCEX.2001.932172

Michael Franz CV-18 19th September 2019

NETFLIX, INC. EXHIBIT 1002

C.14 W. Amme, N. Dalton, M. Franz, and J. von Ronne; “A Type-Safe Mobile Code Representation Aimed At
Supporting Dynamic Optimization At The Target Site;” in Third ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-3), Monterey, California, December 2000. (Best Paper Award; additionally and independently,

the paper’s presentation was one of three simultaneous winners of the Best Presentation Award.)

C.13 P.H. Fröhlich and M. Franz; “Stand-Alone Messages: A Step Towards Component-Oriented Programming
Languages;” in J. Gutknecht and W. Weck (Eds.), Modular Programming Languages: Proceedings of the Fifth
Joint Modular Languages Conference (JMLC 2000), Zurich, Switzerland; Springer Lecture Notes in Computer
Science, No. 1891, ISBN 3-540-67958-8, pp. 90–103; September 2000. doi:10.1007/10722581 9

C.12 M. Franz, P.H. Fröhlich, and T. Kistler; “Towards Language Support for Component-Oriented Real-Time Pro-
gramming;” in The Fifth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS’99F), Monterey, California, November 1999; IEEE Computer Society Press, ISBN 0-7695-0616-X;
April 2000. doi:10.1109/WORDSF.1999.842343

C.11 T. Kistler and M. Franz; “Computing the Similarity of Profiling Data: Heuristics for Guiding Adaptive Op-
timizations;” in Proceedings of the Workshop on Profile and Feedback-Directed Optimization, Paris, France,
October 1998.

C.10 M. Franz; “On the Architecture of Software Component Systems;” in R.N. Horspool (Ed.), Systems Imple-
mentation 2000, (Proceedings of the IFIP TC2 WG2.4 Working Conference on Systems Implementation 2000:
Languages, Methods and Tools, Berlin, Germany), Chapman & Hall, ISBN 0-412-83530-4, pp. 207–220; Febru-
ary 1998.

C.09 M. Franz and T. Kistler; “Does Java Have Alternatives?;” in D.J. Richardson and D. Wile (Eds.), Proceedings of
the Third California Software Symposium (CSS’97), Irvine, California, pp. 5–10; November 1997.

C.08 M. Franz; “Beyond Java: An Infrastructure for High-Performance Mobile Code on the World Wide Web;” in
S. Lobodzinski and I. Tomek (Eds.), Proceedings of WebNet 97, World Conference of the WWW, Internet,
and Intranet, Association for the Advancement of Computing in Education; ISBN 1-880094-27-4, pp. 33–38;
October 1997. (Best Paper Award)

C.07 M. Franz; “Run-Time Code Generation as a Central System Service;” in The Sixth Workshop on Hot Topics in
Operating Systems (HotOS VI), IEEE Computer Society Press, ISBN 0-8186-7834-8, pp. 112–117; May 1997.
doi:10.1109/HOTOS.1997.595192

C.06 M. Franz; “Toward an Execution Model for Component Software;” in Proceedings of the First International
Workshop on Component-Oriented Programming (WCOP 1996), subsequently published as M. Mühlhäuser
(Ed.), Special Issues in Object-Oriented Programming: Workshop Reader of the 10th European Conference on
Object-Oriented Programming (ECOOP’96), dpunkt Verlag, Heidelberg, ISBN 3-920993-67-5, pp. 144–149;
March 1997.

C.05 T. Kistler and M. Franz; “A Tree-Based Alternative to Java Byte-Codes;” in Proceedings of the International
Workshop on Security and Efficiency Aspects of Java, Eilat, Israel; January 1997.

C.04 M. Franz; “Compiler Optimizations Should Pay for Themselves;” in P. Schulthess (Ed.), Advances in Modular
Languages: Proceedings of the Joint Modular Languages Conference, Universitätsverlag Ulm, ISBN 3-89559-
220-X, pp. 111–121; September 1994.

C.03 M. Franz; “Technological Steps toward a Software Component Industry;” in J. Gutknecht (Ed.), Program-
ming Languages and System Architectures: Proceedings of the International Conference, Zurich, Switzerland,
Springer Lecture Notes in Computer Science, No. 782, pp. 259–281; March 1994. doi:10.1007/3-540-57840-
4 36

C.02 M. Franz; “Immediate Object-Level Software Reuse on Different Target Architectures using Fast On-The-Fly
Code Generation;” in Position Paper Collection of the Second International Workshop on Software Reusability,
Lucca, Italy; March 1993.

C.01 M. Franz and S. Ludwig; “Portability Redefined;” in Proceedings of the Second International Modula-2 Confer-
ence, Loughborough, England, pp. 216–224; September 1991.

Michael Franz CV-19 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Selected Further Conferences, Workshops, and Other Publications
Note: Technical reports that have subsequently been published as book chapters, conference papers, or journal articles
are not listed again here.

CPC04 E. Yardimci, N. Dalton, Ch. Fensch, and M. Franz; “Azure: A Virtual Machine for Improving Execution
of Sequential Programs on Throughput-Oriented Explicitly-Parallel Processors;” in Proceedings of the 11th
International Workshop on Compilers for Parallel Computers (CPC 2004), Seeon, Germany, Shaker Verlag,
pp. 61–174; July 2004.

PLOS04 A. Gal, Ch.W. Probst, and M. Franz; “Executing Legacy Applications on a Java Operating System;” in Proceed-
ings of the ECOOP Workshop on Programming Languages and Operating Systems 2004 (ECOOP-PLOS 2004),
Oslo, Norway; June 2004.

TR.04-09 A. Gal, Ch.W. Probst, and M. Franz; Complexity-Based Denial of Service Attacks on Mobile-Code Systems;
Technical Report No. 04-09, School of Information and Computer Science, University of California, Irvine;
April 2004.

CPC03 N. Dalton, Ch. Fensch, E. Yardimci, and M. Franz; “A Virtual Machine for Improving Native-Code Execution
on Explicitly Parallel Processors;” in Proceedings of the 10th International Workshop on Compilers for Parallel
Computers (CPC 2003), Amsterdam, The Netherlands, pp. 261–270; January 2003.

CPC01 J. von Ronne, M. Franz, N. Dalton, and W. Amme; “Compile Time Elimination of Null- and Bounds-Checks;” in
Ninth International Workshop on Compilers for Parallel Computers (CPC 2001), Edinburgh, Scotland, pp. 325–
334; June 2001.

TR.98-34 M. Franz and T. Kistler; Splitting Data Objects to Increase Cache Latency; Technical Report No. 98-34, Depart-
ment of Information and Computer Science, University of California, Irvine; October 1998.

TR.90-142 M. Franz; MacOberon Reference Manual; Technical Report No. 142, Departement Informatik, ETH Zürich;
November 1990.

TR.90-141 M. Franz; The Implementation of MacOberon; Technical Report No. 141, Departement Informatik, ETH Zürich;
October 1990.

Michael Franz CV-20 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Professional Activities

Major Honors and Awards
• Humbold Research Award, Alexander von Humboldt Foundation. This award is granted in recognition of a

researcher’s entire achievements to date to academics whose fundamental discoveries, new theories, or insights
have had a significant impact on their own discipline and who are expected to continue producing cutting-edge
achievements in the future. Award of e60,000; 2018.

• Innovator of the Year Award, UCI Applied Innovation & The Beall Family Foundation), Award of $10,000; 2018.

• Fellow, Association for Computing Machinery (ACM), “For contributions to just-in-time compilation and opti-
mization and to compiler techniques for computer security;” 2015.

• Fellow, The Institute of Electrical and Electronics Engineers (IEEE), “For contributions to just-in-time compila-
tion and to computer security through compiler-generated software diversity;” 2015.

• Dean’s Award for Research, Donald Bren School of Information and Computer Sciences, UC Irvine, 2015.

• IEEE Computer Society Technical Achievement Award, 2012, “for pioneering contributions to just-in-time com-
pilation and optimization and significantly advancing Web application technology.”

• IEEE Orange County Chapter Outstanding Engineer Award, 2012.

• University of California, Irvine, Distinguished Mid-Career Faculty Award for Research, 2010. This is the
Academic Senate’s highest honor for research. One such award at most is given yearly to an Assistant Professor,
one to an Associate or Full Professor Step I-IV (the ”Mid-Career Award”), and one to a Professor Step V or
higher.

• Distinguished Scientist, Association for Computing Machinery (ACM), “Created early mobile code system.
Leads key research group on Virtual Machines and Mobile-Code Security. Co-Founder of the ACM Sigplan
VEE Conference;” 2006.

• Senior Member, The Institute of Electrical and Electronics Engineers (IEEE), 2006.

• National Science Foundation CAREER Award, 1997.

• I was awarded a Fulbright Scholarship (for graduate study in the United States) in 1989, but subsequently
declined this award in order to join the research group of Prof. Niklaus Wirth at ETH Zürich.

Service to the Professional Community: Ongoing
• Program Committee Member, 2020 IEEE Symposium on Security and Privacy (“Oakland”), San Francisco,

California; May 2020.

• Program Committee Member, GI SICHERHEIT 2020), Göttingen, Germany; March 2020.

• Program Committee Member, 6th ACM Workshop on Moving Target Defense (MTD 2019), London, England;
November 2019.

• Program Committee Member, 3rd International Workshop on Software Protection (SPRO-2018), London, Eng-
land; November 2018.

• Program Committee Member, 26th ACM Conference on Computer and Communications Security (ACM CCS 2019),
London, England; November 2019.

• Member, IEEE Computer Society Publication Board Best Paper Award (BPA) Committee for IEEE Transactions
on Dependable and Secure Computing (TDSC); since 2019.

• Member, IFIP Working Group 11.10 (“Critical Infrastructure Protection”), 2018 – present.

Michael Franz CV-21 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• Journal Editorial Board Member, IEEE Transactions on Dependable and Secure Computing (TDSC); since
March 2015.

• Journal Editorial Board Member, Software—Practice and Experience (SPE); since July 2010.

• Journal Editorial Board Member, Software-Intensive Cyber-Physical Systems (SICS); since October 2009. Prior
to 2017, the journal was published under the name Computer Science—Research and Development (CSRD)..

• Emeritus Member, IFIP Working Group 2.4 (“Software Implementation Technology”), since July 2018 (previ-
ously, I was a Full Voting Member from 2002 – 2018, and before that, an Observer from 1998 – 2002).

• Charter Faculty Member, Security Computing and Networking Center (SCoNCe) (previously named Center for
Cyber-Security and Privacy), Donald Bren School of Information and Computer Sciences, UC Irvine, May 2005
– present.

• Charter Member, The California Institute for Telecommunications and Information Technology (Cal-(IT)2), one
of four California Institutes for Science and Technology, December 2000 – present.

Service to the Professional Community: Past

Program Committee Member
• 2019 IEEE Symposium on Security and Privacy (“Oakland”), San Francisco, California; May 2019.

• 2018 Dynamic Languages Symposium (DLS18), Boston, Massachusetts; November 2018.

• 25th ACM Conference on Computer and Communications Security (ACM CCS 2018), Toronto, Ontario, Canada;
October 2018.

• 5th ACM Workshop on Moving Target Defense (MTD 2018), Toronto, Ontario, Canada; October 2018.

• 2018 Secure Development Conference (SecDev 2018), Cambridge, Massachussetts, September/October 2018.

• 19th World Conference on Information Security Applications (WISA 2018), Jeju Island, South Korea; August
2018.

• First Workshop on Software Debloating and Delayering (SALAD ’18), Amsterdam, Netherlands; July 2018.

• 38th IEEE International Conference on Distributed Computing Systems (ICDCS 2018), Vienna, Austria; June 2018.

• GI SICHERHEIT 2018), Constance, Germany; April 2018.

• 2017 ACM/IFIP/USENIX International Middleware Conference (Middleware 2017), Las Vegas, Nevada; De-
cember 2017.

• 4th ACM Workshop on Moving Target Defense (MTD 2017), Dallas, Texas; October 2017.

• 2017 Secure Development Conference (SecDev 2017), Cambridge, Massachussetts, September 2017.

• International Symposium on Engineering Secure Software and Systems (ESSoS’17), Bonn, Germany; July 2017.

• 15th International Conference on Applied Cryptography and Network Security (ACNS 2017), Kanazawa, Japan;
July 2017.

• 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, Georgia; June 2017.

• 2017 ACM Asia Conference on Computer and Communications Security (ASIACCS 2017), Abu Dhabi, UAE;
April 2017.

• 8th IEEE International Workshop on Information Forensics and Security (WIFS 2016), Abu Dhabi, UAE;
December 2016.

• 3rd ACM Workshop on Moving Target Defense (MTD 2016), Vienna, Austria; October 2016.

• 2nd International Workshop on Software Protection (SPRO-2016), Vienna, Austria; October 2016.

Michael Franz CV-22 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• 23rd ACM Conference on Computer and Communications Security (ACM CCS 2016), Vienna, Austria; Octo-
ber 2016.

• 2016 International Conference on Principles and Practices of Programming in Java (PPPJ’2016), Lugano,
Switzerland; September 2016.

• Program co-Chair, 9th International Conference on Trust and Trustworthy Computing (TRUST 2016), Vienna,
Austra; August 2016.

• 14th International Conference on Applied Cryptography and Network Security (ACNS 2016), London, United
Kingdom; June 2016.

• International Symposium on Engineering Secure Software and Systems (ESSoS’16), Egham, United Kingdom;
March 2016.

• First IEEE European Symposium on Security and Privacy 2016 (EuroS&P2016), Saarbrücken, Germany; March 2016.

• 2nd ACM Workshop on Moving Target Defense (MTD 2015), Denver, Colorado; October 2015.

• 22nd ACM Conference on Computer and Communications Security (CCS 2015), Denver, Colorado; Octo-
ber 2015.

• 2015 International Conference on Principles and Practices of Programming in Java (PPPJ’2015), Melbourne,
Florida; September 2015.

• 8th International Conference on Trust and Trustworthy Computing (TRUST 2015), Heraklion, Greece; August
2015.

• 1st International Workshop on Software Protection (SPRO-2015), Florence, Italy; May 2015.

• IEEE Workshop on Web 2.0 Security and Privacy 2015 (W2SP’2015), San Jose, California; May 2015.

• International Symposium on Engineering Secure Software and Systems (ESSoS’15), Milan, Italy; March 2015.

• First ACM Workshop on Moving Target Defense (MTD 2014), Scottsdale, Arizona; November 2014.

• 2014 New Security Paradigms Workshop (NSPW 2014), Victoria, British Columbia, Canada; September 2014.

• 2014 International Conference on Principles and Practices of Programming in Java (PPPJ’2014), Krakow,
Poland; September 2014.

• IEEE Workshop on Web 2.0 Security and Privacy 2014 (W2SP’2014), San Francisco, California; May 2014.

• ACM International Conference on Computing Frontiers 2014 (CF 14), Cagliari, Italy; May 2014.

• The Next Generation Malware Attacks and Defense Workshop (NGMAD), New Orleans, Louisiana; December
2013.

• 2013 International Conference on Principles and Practices of Programming in Java (PPPJ’2013), Stuttgart,
Germany; September 2013.

• 2013 New Security Paradigms Workshop (NSPW 2013), Banff, Alberta, Canada; September 2013.

• 6th International Conference on Trust and Trustworthy Computing (TRUST 2013), London, United Kingdom;
June 2013.

• 28th Annual Computer Security Applications Conference (ACSAC 2012), Orlando, Florida; December 2012.

• 2012 New Security Paradigms Workshop (NSPW 2012), Bertinoro, Italy; September 2012.

• 11th International Conference on Generative Programming and Component Engineering (GPCE 2012), Dres-
den, Germany; September 2012.

• 2012 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT 2012), Amsterdam, The
Netherlands; September 2012.

• 5th International Conference on Trust and Trustworthy Computing (TRUST 2012), Vienna, Austria; June 2012.

• Eighth ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 2012), Lon-
don, United Kingdom; March 2012.

Michael Franz CV-23 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• 27th Annual Computer Security Applications Conference (ACSAC 2011), Orlando, Florida; December 2011.

• Program co-Chair, International Workshop on Programming Language And Systems Technologies for Internet
Clients (PLASTIC 2011), Portland, Oregon; October 2011.

• 6th Workshop on Programming Languages and Operating Systems (PLOS 2011), Cascais, Portugal; Octo-
ber 2011.

• Third IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT2011), Boston, Massachusetts;
October 2011.

• 2011 New Security Paradigms Workshop (NSPW 2011), Sonoma, California; September 2011.

• 4th International Conference on Trust and Trustworthy Computing (TRUST 2011), Pittsburgh, Pennsylvania;
June 2011.

• ACM Sigplan Conference on Programming Language Design and Implementation (PLDI 2011), San Diego,
California; June 2011.

• 5th International Multidisciplinary Conference on e-Technologies (MCETECH 2011), Les Diablerets, Switzer-
land; January 2011.

• Program Chair, 26th Annual Computer Security Applications Conference (ACSAC 2010), Austin, Texas; De-
cember 2010. 237 submitted papers, 39 accepted.

• 19th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques (PACT 2010),
Vienna, Austria; September 2010.

• 2010 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT-10), Minneapolis, Minnesota;
August 2010.

• ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems (LCTES 2010),
Stockholm, Sweden; April 2010.

• ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 2010), Pittsburgh,
Pennsylvania; March 2010.

• International Symposium on Engineering Secure Software and Systems (ESSoS 2010), Pisa, Italy; February 2010.

• Program co-Chair, 25th Annual Computer Security Applications Conference (ACSAC 2009), Honolulu, Hawaii;
December 2009.

• 12th Information Security Conference (ISC 2009), Pisa, Italy; September 2009.

• 2009 New Security Paradigms Workshop (NSPW 2009), Oxford, United Kingdom; September 2009.

• 2009 IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT-09), Vancouver, British
Columbia, Canada; August 2009.

• 2009 International Conference on Principles and Practices of Programming in Java (PPPJ’2009), Calgary,
Alberta, Canada; August 2009.

• 47th International Conference on Objects, Models, Components, and Patterns (TOOLS-EUROPE 2009), Zurich,
Switzerland, June/July 2009.

• 4th Montreal Conference on eTechnologies (MCETECH), Ottawa, Canada; May 2009.

• Compiler Construction 2009 (CC 2009), York, United Kingdom; March 2009.

• 2008 IEEE Symposium on Security and Privacy, Oakland, California; May 2008.

• 2008 Annual IEEE Computer Society/ACM International Symposium on Code Generation and Optimization
(CGO 2008), Boston, Massachusetts; March 2008.

• 23rd Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, Florida; December 2007.

• 2007 International Conference on Principles and Practices of Programming in Java (PPPJ’2007), Monte de
Caparica/Lisbon, Portugal; September 2007.

Michael Franz CV-24 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• New Security Paradigms Workshop (NSPW 2007), Washington Valley, New Hampshire; September 2007.

• Workshop on Linguistic Support for Modern Operating Systems (PLOS 2006), October 2006.

• The Second Workshop on Advances in Trusted Computing (WATC’06 Fall), Tokyo, Japan, November-December 2006.

• Seventh Joint Modular Languages Conference (JMLC 2006), Oxford, United Kingdom, September 2006.

• 2006 International Conference on Principles and Practices of Programming in Java (PPPJ’2006), Mannheim,
Germany, September 2006.

• New Security Paradigms Workshop (NSPW 2006), Dagstuhl, Germany, September 2006.

• New Security Paradigms Workshop (NSPW 2005), Lake Arrowhead, California, September 2005.

• ECOOP Workshop on Programming Languages and Operating Systems (ECOOP-PLOS 2005), June 2005.

• Third International Workshop on Compiler Optimization Meets Compiler Verification (COCV 2005), Edinburgh,
Scotland, April 2005.

• 3. Arbeitstagung Programmiersprachen (ATPS 2004) of the German Computer Society (GI), Ulm, Germany,
September 2004.

• ECOOP Workshop on Programming Languages and Operating Systems (ECOOP-PLOS 2004), Oslo, Norway,
June 2004.

• ACM SIGPLAN 2004 Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’04),
Washington, D.C., June 2004.

• Second Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2004), San
Jose, California, March 2004.

• Third International Workshop on Compiler Optimization Meets Compiler Verification (COCV 2004), Barcelona,
Spain, March/April 2004.

• ACM SIGSAC New Security Paradigms Workshop 2003 (NSPW-2003), Ascona, Switzerland, September 2003.

• Sixth Joint Modular Languages Conference (JMLC 2003), Klagenfurt, Austria, August 2003.

• ACM SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and Emulators (IVME’03), San Diego, Cali-
fornia, June 2003.

• Second International Workshop on Compiler Optimization Meets Compiler Verification (COCV 2003), Warsaw,
Poland, April 2003.

• 4th Annual Workshop on Binary Translation (WBT-2002), Charlottesville, Virginia, September 2002.

• Fifth ECOOP Workshop on Object-Orientation and Operating Systems (ECOOP-OOOSWS 2002), Málaga,
Spain, June 2002.

• Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2002), Wash-
ington, D.C., April–May 2002.

• 11th International Conference on Compiler Construction (CC’2002), Grenoble, France, March 2002.

• Fourth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2001),
Magdeburg, Germany, May 2001.

• Fifth Joint Modular Languages Conference (JMLC 2000), Zurich, Switzerland, September 2000.

• Third Workshop on Distributed Communities on the Web (DCW 2000), Quebec City, Canada, June 2000.

• Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000),
Newport Beach, California, March 2000.

• European Symposium on Programming (ESOP 2000), Berlin, Germany, March/April 2000.

• Workshop on Binary Translation (in conjunction with the International Conference on Parallel Architectures and
Compilation Techniques, PACT ’99), Newport Beach, California, October 1999.

Michael Franz CV-25 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• ACM Sigplan 1999 Workshop on Compiler Support for System Software (WCSSS’99), Atlanta, Georgia, May 1999.

• Fourth California Software Symposium (CSS’98), Irvine, California, October 1998.

• Workshop on Principles of Abstract Machines (in conjunction with the joint international symposia SAS’98 and
PLILP/ALP’98), Pisa, Italy, September 1998.

• ACM Sigplan Conference on Programming Language Design and Implementation (PLDI’98), Montreal, Canada,
June 1998.

• Fourth Joint Modular Languages Conference (JMLC’97), Linz, Austria, March 1997.

Session Chair
• 2019 IEEE Symposium on Security and Privacy (“Oakland”), San Francisco, California; May 2019.

• 25th ACM Conference on Computer and Communications Security (CCS 2018), Toronto, Canada; October 2018.

• 38th IEEE International Conference on Distributed Computing Systems (ICDCS 2018), Vienna, Austria; June 2018.

• 2018 ACM Asia Conference on Computer and Communications Security (ASIACCS 2018), Incheon, South
Korea; June 2018.

• Third IEEE European Symposium on Security and Privacy 2018 (EuroS&P2018), London, United Kingdom;
April 2018.

• Usenix Security 2017, Vancouver, British Columbia; August 2017.

• 23rd ACM Conference on Computer and Communications Security (CCS 2016), Vienna, Austria; October 2016.

• First IEEE European Symposium on Security and Privacy 2016 (EuroS&P2016), Saarbrücken, Germany; March 2016.

• 22nd ACM Conference on Computer and Communications Security (CCS 2015), Denver, Colorado; Octo-
ber 2015.

• 10th Conference on High Performance and Embedded Architecture and Compilation (HiPEAC 2015), Amster-
dam, Netherlands; January 2015.

• 6th International Conference on Trust and Trustworthy Computing (TRUST 2013), London, United Kingdom;
June 2013.

• 22nd International Conference on Compiler Construction (CC 2013), Rome, Italy; March 2013.

• 28th Annual Computer Security Applications Conference (ACSAC 2012), Orlando, Florida; December 2012.

• 11th International Conference on Generative Programming and Component Engineering (GPCE 2012), Dres-
den, Germany; September 2012.

• 27th Annual Computer Security Applications Conference (ACSAC 2011), Orlando, Florida; December 2011.

• ACM Sigplan Conference on Programming Language Design and Implementation (PLDI 2011), San Diego,
California; June 2011.

• 26th Annual Computer Security Applications Conference (ACSAC 2010), Austin, Texas; December 2010.

• 19th ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques (PACT 2010),
Vienna, Austria; September 2010.

• ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 2010), Pittsburgh,
Pennsylvania; March 2010.

• 23rd Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, Florida; December 2007.

• Seventh Joint Modular Languages Conference (JMLC 2006), Oxford, United Kingdom, September 2006.

• Invitational Workshop on the Future of Virtual Execution Environments, Armonk, New York; September 2004

• New Security Paradigms Workshop (NSPW 2004), White Point, Nova Scotia, September 2004.

Michael Franz CV-26 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• The Fourth IEEE International Conference on Peer-to-Peer Computing (P2P 2004), Zurich, Switzerland, Au-
gust 2004.

• Southern California Parallel Processing and Computer Architecture Workshop, Los Angeles, California, May 2004.

• Sixth Joint Modular Languages Conference (JMLC 2003), Klagenfurt, Austria, August 2003.

• Ninth International Workshop on Compilers for Parallel Computers (CPC 2001), Edinburgh, Scotland, June 2001.

• Fourth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2001),
Magdeburg, Germany, May 2001.

• Workshop on Binary Translation (in conjunction with the International Conference on Parallel Architectures and
Compilation Techniques, PACT ’99), Newport Beach, California, October 1999.

• ACM Sigplan Conference on Programming Language Design and Implementation (PLDI’98), Montreal, Canada,
June 1998.

• Fourth Joint Modular Languages Conference (JMLC’97), Linz, Austria, March 1997.

Other Service
• Member, IEEE Computer Society Fellows Evaluation Committee; 2019.

• Full Voting Member, IFIP Working Group 2.4 (“Software Implementation Technology”), 2002 – 2018 (elevated
to Emeritus Member in July 2018).

• Member, IFIP Working Group 11.3 (“Data and Application Security and Privacy”), 2008 – 2017.

• Shadow PC Member, 2017 ACM Asia Conference on Computer and Communications Security (ASIACCS 2017),
Abu Dhabi, UAE; April 2017.

• Member, IEEE Computer Society Fellows Evaluation Committee; 2016.

• Nomination Committee Member, MacArthur Fellows Program, John D. and Catherine T. MacArthur Founda-
tion; 2016.

• External Review Committee Member, 28th European Conference on Object-Oriented Programming (ECOOP’2014),
Uppsala, Sweden; July/August 2014.

• External Review Committee Member, ACM Research Conference on Object-Oriented Programming (OOPSLA
2013), Indianapolis, Indiana; October 2013.

• External Review Committee (ERC) Member, ACM Sigplan Conference on Programming Language Design and
Implementation (PLDI 2013), Seattle, Washington; June 2013.

• Paper Shepherd, 2011 New Security Paradigms Workshop (NSPW 2011), Sonoma, California; September 2011.

• Organization Committee Member and Sponsorship co-chair, EuroSys 2011, Salzburg, Austria; March 2011.

• Organizing Committee Member (Student Travel Chair), Fourteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’09), Washington, D.C.; March 2009.

• Panels Chair and Conference Committee Member, 24th Annual Computer Security Applications Conference
(ACSAC 2008), Anaheim, California; December 2008.

• Steering Committee Member, ACM SIGPLAN/SIGOPS/USENIX International Conference Series on Virtual
Execution Environments (VEE), 2004 – 2008.

• Local Arrangements Chair, IFIP WG2.4 Working Meeting, Arrowhead, California, May 2007.

• Local Arrangements Co-Chair, New Security Paradigms Workshop (NSPW 2006), Dagstuhl, Germany, Septem-
ber 2006.

• Founding Steering Committee Co-Chair (with Sam Midkiff of Purdue University), ACM SIGPLAN/SIGOPS/USENIX
International Conference Series on Virtual Execution Environments (VEE), September 2004 – June 2005.

Michael Franz CV-27 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• General Chair, ACM SIGPLAN 2004 Workshop on Interpreters, Virtual Machines and Emulators (IVME 2004),
Washington, D.C., June 2004.

• Observer, IFIP Working Group 2.4, February 1998 – November 2002 (elected to full membership on Novem-
ber 14th).

• Tutorials Chair, ACM Sigplan Conference on Programming Language Design and Implementation (PLDI 2000),
Vancouver, Canada, June 2000.

• Local Arrangements Co-Chair, Third IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2000), Newport Beach, California, March 2000.

• Executive Committee Member, The Institute for Software Research at UC Irvine, July 1999–January 2002.

• Charter Member, The Institute for Software Research at UC Irvine, July 1999.

• Session Organizer and Host, Bay Area Round Table (BART), Palo Alto, California, February 1999.

• Executive Committee Member, Irvine Research Unit in Software (IRUS) [precursor to The Institute for Software
Research], January 1996 – June 1999.

• Swiss Delegate to IFIP Technical Committee No. 2, “Software: Theory and Practice,” 1995–1996 term.

• Program Committee Chair, Oberon Track at the First Joint Annual Conference of the Gesellschaft für Informatik
and the Schweizer Informatiker Gesellschaft, Zürich, September 1995.

• Executive Committee Member, Special Interest Group on Oberon of the Schweizer Informatiker Gesellschaft,
1994–1996.

• Organizing Committee Member, Conference on Programming Languages and System Architectures, Zürich,
March 1994.

Grant Application Review Panel Member
• National Science Foundation, Program on Software and Trusted Computing (SaTC), Arlington, Virginia, Jan-

uary 2016.

• National Science Foundation, Program on Software and Trusted Computing (SaTC), Arlington, Virginia, October
2012.

• National Science Foundation, Program on Software and Trusted Computing (SaTC), Arlington, Virginia, May
2012.

• National Science Foundation, Program on Computer and Network Systems, Arlington, Virginia, April 2009.

• National Science Foundation, Program on Foundations of Computing Processes and Artifacts, Arlington, Vir-
ginia, February 2007.

• National Science Foundation, CAREER Program in CyberTrust, Arlington, Virginia, November 2005.

• National Science Foundation, CAREER Program in Networking and Security, Arlington, Virginia, Novem-
ber 2003.

• National Science Foundation, Program in Embedded & Hybrid Systems, Arlington, Virginia, June 2002.

Invited Keynotes, Presentations and Panels at Conferences
• M. Franz; “Cyber Attacks And Defenses: Trends, Challenges, and Outlook,” CyberSecurity@KAIST Workshop,

Daejeon, South Korea, June 2018.

• M. Franz; “From Fine Grained Code Diversity to Execute-No-Read: The Cat and Mouse Game Between
Attackers and Defenders Continues,” 2nd ACM Workshop on Moving Target Defense (MTD 2015), Denver,
Colorado; October 2014.

Michael Franz CV-28 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• M. Franz; “Biologically Inspired Software Defenses,” Fifteenth High Confidence Software and Systems Confer-
ence (HCSS 2015), Annapolis, Maryland; May 2015.

• M. Franz; “Code Diversity and Biologically Inspired Computer Defenses” (Invited Keynote), TTI/Vanguard
Reprogramming Programming), Arlington, Virginia; September/October 2014.

• M. Franz; “Software Diversity as a Cyber Defense” (Invited Keynote), The Next Generation Malware Attacks
and Defense Workshop (NGMAD), New Orleans, Louisiana; December 2013.

• M. Franz; “Eliminating the Insider Threat in Software Development by Combining Parallelism, Randomization
and Checkpointing” (Invited Keynote Address); Fourth Annual Cyber Security and Information Intelligence
Research Workshop (CSIIRW’08), Oak Ridge National Laboratory, Oak Ridge, Tennessee; May 2008.

• M. Franz; “Security and Privacy in Service Oriented Architectures” (Panelist); 21st Annual IFIP WG 11.3
Working Conference on Data and Applications Security (DBSEC’07), Redondo Beach, California; July 2007.

• M. Franz; “Erinnerungen und Ausblicke: Was haben wir gelernt? Und was soll die nächste Generation lernen?”
(Invited Panelist); Tag der Informatik, ETH Zurich, Switzerland, October 2006.

• M. Franz; “A New Approach to Embedded Java” (Invited Keynote Address); Mobile Information & Communi-
cation Systems, Scientific Conference, Zurich, Switzerland, October 2006.

• M. Franz; “Pervasive Security” (Panelist); Software Security Panel, National Science Foundation, Trusted Com-
puting Program, PI Meeting, Pittsburgh, Pennsylvania; August 2004.

• M. Franz; “Safe Code: It’s Not Just For Applets Anymore” (Invited Keynote Address); Sixth Joint Modular
Languages Conference (JMLC 2003), Klagenfurt, Austria, August 2003.

• M. Franz; “Pervasive Security” (Panelist); Trusted Computing Panel, National Science Foundation, Trusted
Computing Program, PI Meeting, Baltimore, Maryland; August 2003.

• M. Franz; “The Source is The Proof” (Panelist); NSPW Panel, 18th Annual Computer Security Applications
Conference (ACSAC-18), Las Vegas, Nevada; December 2002.

• M. Franz; “Extensible Programming: Ein neues Paradigma für die Softwareentwicklung” (Invited Keynote
Address, in German); Moderne Programmierparadigmen, conference sponsored by Gesellschaft für Informatik,
FH Braunschweig-Wolfenbüttel, Germany; October 1994.

Meeting Participation By Invitation († = I gave a presentation, ‡ = my student gave a presentation, ? = I presented a poster)

Note: Presentations at conferences with proceedings are documented under “Publications“ above and are not listed
again here.

• DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Chantilly, Virginia, January 2018.

• †IFIP WG2.4 Working Meeting, Essex, Vermont, October 2017.

• DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Chantilly, Virginia, May/June 2017.

• †IFIP WG2.4 Working Meeting, Dresden, Germany, December 2016.

• DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Chantilly, Virginia, November 2016.

• DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Arlington, Virginia, April 2016.

• DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Arlington, Virginia, January 2016.

• †M.I.T. Invitational Think-Shop on Multi-Spectrum Metrics for Cyber Defense, sponsored by the National Sci-
ence Foundation, Arlington, Virginia; December 2015.

• DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Arlington, Virginia, November 2015.

Michael Franz CV-29 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• †DARPA Cyber Fault-tolerant Attack Recovery (CFAR) PI Meeting, Arlington, Virginia, August 2015.

• †DARPA Cyber Fault-tolerant Attack Recovery (CFAR) Kick-Off PI Meeting, Arlington, Virginia, May 2015.

• †DARPA Joint Clean-Slate Design of Resilient, Secure Hosts (CRASH) & Mission-Oriented Resilient Clouds
(MRC) PI Meeting, Jacksonville, Florida, September 2014.

• †IFIP WG2.4 Working Meeting, Asilomar, Pacific Grove, California, February 2014.

• †DARPA Joint Clean-Slate Design of Resilient, Secure Hosts (CRASH) & Mission-Oriented Resilient Clouds
(MRC) PI Meeting, San Diego, California, January 2014.

• †M.I.T. Invitational Think-Shop on Multi-Spectrum Metrics for Cyber Defense, sponsored by the National Sci-
ence Foundation, Cambridge, Massachusetts; October 2013.

• Facebook Faculty Summit, Menlo Park, California, August 2013.

• †DARPA Joint Clean-Slate Design of Resilient, Secure Hosts (CRASH) & Mission-Oriented Resilient Clouds
(MRC) PI Meeting, Park Ridge, New Jersey, May 2013.

• ?National Security Agency, First Annual Science of Security (SoS) Community Meeting, National Harbor, Mary-
land, November 2012.

• †DARPA Joint Clean-Slate Design of Resilient, Secure Hosts (CRASH) & Mission-Oriented Resilient Clouds
(MRC) PI Meeting, San Diego, California, November 2012.

• DARPA Mission-oriented Resilient Clouds (MRC) Program, PI Meeting, San Diego, California, October 2012.

• †DARPA Clean-Slate Design of Resilient, Secure Hosts (CRASH) Program, PI Meeting, Boston, Massachusetts,
May 2012.

• DARPA Colloquium on Future Directions in Cyber Security, Arlington, Virginia, November 2011.

• †DARPA Clean-Slate Design of Resilient, Secure Hosts (CRASH) Program, PI Meeting, Arlington, Virginia,
November 2011.

• †2nd Army Research Office (ARO) Workshop on Moving Target Defense, Fairfax, Virginia, October 2011.

• †DARPA Clean-Slate Design of Resilient, Secure Hosts (CRASH) Program, PI Meeting, San Jose, California,
May 2011.

• Microsoft Research Faculty Summit, Redmond, Washington, July 2010.

• †IFIP WG2.4 Working Meeting, Berg en Terblijt, Netherlands, January 2010.

• Networking and Information Technology Research and Development (NITRD) Program, National Cyber Leap
Year Summit, Arlington, Virginia, August 2009.

• †National Intelligence Community, Enterprise Cyber Assurance Program (NICECAP), PI Meeting, Washington,
D.C., September 2008.

• Google Faculty Summit, Mountain View, California, July 2008.

• †National Intelligence Community, Enterprise Cyber Assurance Program (NICECAP), Reverse Site Visit, Jessup,
Maryland, January 2008.

• †NCDI Workshop on Game-changing Solutions for Cyber Security (jointly sponsored by NSF, DHS, IARPA,
NSA, ONR, and OSD), College Park, Maryland, November 2007.

• †National Intelligence Community, Enterprise Cyber Assurance Program (NICECAP), PI Meeting, Boston,
Massachusetts, September 2007.

Michael Franz CV-30 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• U.S. Department of Energy Workshop on Cyber Security Research Needs for Open Science, Bethesda, Maryland,
July 2007.

• †IFIP WG2.4 Working Meeting, Arrowhead, California, May 2007.

• †National Intelligence Community, Enterprise Cyber Assurance Program (NICECAP), Program Kick-Off Meet-
ing, Chantilly, Virginia, March 2007.

• †U.S. Department of Homeland Security, S&T CyberSecurity R&D PI Meeting, Menlo Park, California, Febru-
ary 2007.

• †National Science Foundation Safe Computing Workshop, Albuquerque, New Mexico, November/December
2006.

• †U.S. Department of Homeland Security, S&T CyberSecurity R&D PI Meeting, Arlington, Virginia, August 2006.

• †IFIP WG2.4 Working Meeting, Glasgow, Scotland, July 2006.

• The First Workshop on Advances in Trusted Computing, Tokyo, Japan, March 2006.

• †U.S. Department of Homeland Security, S&T CyberSecurity R&D PI Meeting, Menlo Park, California, Jan-
uary 2006.

• National Science Foundation, Trusted Computing Program, PI Meeting, Newport Beach, California, September
2005.

• †U.S. Department of Homeland Security, BAA 04-17, Program Kick-Off Meeting, Arlington, Virginia, July 2005.

• Microsoft Academic Days in Silicon Valley, Mountain View, California, October 2004.

• Microsoft Research 2004 Faculty Summit, Redmond, Washington, August 2004.

• †Southern California Parallel Processing and Computer Architecture Workshop, Los Angeles, California, May 2004.

• †ONR Critical Infrastructure Protection, Mobile Code Program, Final Review, Annapolis, Maryland, May 2004.

• †IFIP WG2.4 Working Meeting, Brisbane, Australia, March 2004.

• †IFIP WG2.4 Working Meeting, Santa Cruz, California, August 2003.

• †ONR Critical Infrastructure Protection, Mobile Code Program, PI Meeting, Ithaca, New York, July 2003.

• †ONR Critical Infrastructure Protection, Mobile Code Program, Review Meeting, Arlington, Virginia, June 2003.

• DARPA Organically Assured and Survivable Information Systems (OASIS) Program, PI Meeting, Fort Laud-
erdale, Florida, January 2003.

• †ONR Critical Infrastructure Protection, Mobile Code Program, PI Meeting, Irvine, California, January 2003.

• †IFIP WG2.4 Working Meeting, Dagstuhl, Germany, November 2002.

• †DARPA Organically Assured and Survivable Information Systems (OASIS) Program, PI Meeting, Santa Rosa,
California, August 2002.

• †ONR Critical Infrastructure Protection, Mobile Code Program, PI Meeting, State College, Pennsylvania, July 2002.

• †IFIP WG2.4 Working Meeting, Simon’s Town, South Africa, March 2002.

• †Southern California Parallel Processing and Computer Architecture Workshop, Irvine, California, February 2002.

• †ONR Critical Infrastructure Protection, Mobile Code Program, PI Meeting, Melbourne, Florida; January 2002.

Michael Franz CV-31 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• †DARPA Organically Assured and Survivable Information Systems (OASIS) Program, PI Meeting, Santa Fe, New
Mexico; July 2001.

• †ONR Critical Infrastructure Protection, Mobile Code Program, PI Meeting, Arlington, Virginia; July 2001.

• †Symposium on Research in Mobile Computing Systems, Zurich, Switzerland; May 2001.

• †DARPA Organically Assured and Survivable Information Systems (OASIS) Program, PI Meeting, Norfolk,
Virginia; February 2001.

• University of Washington and Microsoft Research Summer Institute 2000, “Accelerating the Pace of Software
Tools Research: Sharing Infrastructure”, hosted by C. Chambers, D. Notkin, A. Srivastava, and B. Zorn; Seattle,
Washington; August 2000.

• †DARPA Intrusion Tolerant Systems (ITS) Program, PI Meeting, Honolulu, Hawaii; July 2000.

• ‡17th Gesellschaft für Informatik (GI) Workshop on Programming Languages and Computing Concepts (with
Special Emphasis on Software Components), Bad Honnef, Germany; May 2000.

• †DARPA Intrusion Tolerant Systems (ITS) Program, PI Meeting, Aspen, Colorado; February 2000.

• †DARPA Intrusion Tolerant Systems (ITS) Program, PI Meeting, Phoenix, Arizona; August 1999.

• National Science Foundation CAREER Program, PI Meeting, Washington, D.C.; January 1999.

• †Southern California Parallel Processing and Computer Architecture Workshop, Irvine, California; March 1998.

• †International Workshop on Component-Oriented Programming, Linz, Austria; July 1996.

• Third International Workshop on Workstation Operating Systems, Key Biscayne, Florida; April 1992.

Administrative Service
• Donald Bren School of Information and Computer Science, Faculty Search Committee, Positions in Systems,

2017–18, 2018–19.

• Donald Bren School of Information and Computer Science, Chair, Computing and Network Policy Committee,
2016–17, 2017–18, 2018–19.

• University of California, Vice Chair, Irvine Campus Council on Planning and Budget, 2015–2016, 2016–2017.

• University of California, Member, Irvine Campus Council on Planning and Budget, 2014–2015.

• Department of Computer Science, Software Engineering Steering Committee, 2013–2014, 2014–2015, 2015–
2016, 2016–2017, 2017–2018.

• Department of Computer Science, CS Graduate Admissions Committee, 2016–2017.

• Department of Computer Science, CS Admission and Graduate Student Planning Committee, 2013–2014, 2014–
2015, 2015–2016.

• University of California, Irvine, 5-year Organized Research Unit Review Committee for the Center for Embedded
Computer Systems (CECS), 2012.

• Donald Bren School of Information and Computer Science, Executive Committee, 2007–2008.

• Donald Bren School of Information and Computer Science, Chair, Computing and Network Policy Committee,
2005–2006, 2006–2007, 2008–2009.

• Donald Bren School of Information and Computer Science, Marketing and Outreach Committee, 2004–2005.

Michael Franz CV-32 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• University of California, Irvine Campus Council on Undergraduate Admissions and Relations with Schools and
Colleges, 2000–2004.

• Donald Bren School of Information and Computer Science, Chair, Faculty Search Committee, Position in Secu-
rity and Cryptography, 2002–2003.

• Donald Bren School of Information and Computer Science, Committee on Graduate Policy, 2002–2003.

• ICS Department, Chair, Committee on Space Policy, 2001–2002.

• ICS Department, Faculty Search Committee, Position in Cryptography and Security, 2000–2001.

• ICS Department, Committee on Graduate Policy, 2000–2001.

• ICS Department, Ad-Hoc Faculty Search Committee, “Systems” Position, 1999–2000.

• ICS Department, Committee on Educational Policy, 1999–2000.

• ICS Department, Executive Committee, 1998–1999.

• ICS Department, Committee on Undergraduate Policy, 1998–1999.

• ICS Department, Faculty Search Committee, Multiple Positions in Interdisciplinary Applications of Computer
Science, 1998–1999. (Committee reviewed 170 applications = 4 linear feet of files and filled three open faculty positions.)

• University of California, Irvine Campus Committee on Undergraduate Admissions and Relations with Schools
and Colleges, 1997–2000.

• ICS Department, Committee on Graduate Policy, 1997–1998.

• ICS Department, Committee on Graduate Admissions, 1997–1998.

• ICS Department, Faculty Search Committee, Position in “Informatics,” 1997–1998.

• University of California, Irvine Campus Representative Assembly, 1996–1997.

• ICS Department, Committee on Personnel, 1996–1997.

• ICS Department, Faculty Search Committee, Position in Software Engineering, 1995–1996.

Michael Franz CV-33 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Teaching Activities

Teaching Awards
• Dean’s Award for Graduate Student Mentoring, Donald Bren School of Information and Computer Sciences,

UC Irvine, 2016, “For his outstanding mentoring of doctoral students over the last decade.”

• Dean’s Award for Graduate Student Mentoring, Donald Bren School of Information and Computer Sciences,
UC Irvine, 2007.

• Outstanding Professor of the Year Award, Graduating Class of 2007, UC Irvine.

Post-Doctoral Habilitation Theses Supervised
• Dr. Christian Herrman, Universität Ulm, Germany; thesis: “Verbesserte prozedurale Programmiersprachen”

(Improved Procedural Programming Languages); March 2007.

Post-Doctoral Fellows Supervised
1. Dr. Wolfram Amme

(January–December 2000; first subsequent position: Privatdozent at the University of Jena, Germany).

2. Dr. Won-Kee Hong
(October 2001–October 2002; first subsequent position: Assistant Professor at Daegu University, South Korea).

3. Dr. Fermin Reig
(October 2001–July 2003; first subsequent position: Postdoc at University of Nottingham, United Kingdom).

4. Dr. Roxana Diaconescu
(January 2003–September 2004; first subsequent position: PostDoc at California Institute of Technology (Cal-
tech), Pasadena, California).

5. Dr. Christian Probst
(January 2003–May 2005; first subsequent position: Assistant Professor at the Technical University of Denmark
(DTU), Lyngby, Denmark).

6. Dr. Andreas Gal
(January 2007–February 2010, first subsequent position: Researcher at Mozilla, Mountain View, California).

7. Dr. Christian Stork
(March 2007–September 2008).

8. Dr. Christian Wimmer
(July 2008–April 2011, first subsequent position: Principal Member of Technical Staff, Oracle Sun Labs,
Redwood Shores, California).

9. Dr. Stefan Brunthaler
(April 2011–June 2015), first subsequent position: Key Researcher at SBA Research, Vienna, Austria).

10. Dr. Per Larsen
(September 2011–June 2015, first subsequent position: Chief Executive Officer of Immunant, Irvine, California).

11. Dr. Stijn Volckaert
(December 2015–July 2018, first subsequent position: Assistant Professor at KU Leuven, Belgium).

12. Dr. Yeoul Na
(since July 2016).

Michael Franz CV-34 19th September 2019

NETFLIX, INC. EXHIBIT 1002

13. Dr. David Gens
(since March 2019).

14. Dr. Adrian Dabrowski
(since May 2019).

Graduated Ph.D. Students (Principal Advisor and Dissertation Committee Chair)
1. Thomas Kistler

(affiliated in April 1995, candidacy: February 1998, final defense: November 1999; thesis: “Continuous Program
Optimization;” first employment after graduation: Transmeta, Inc., Santa Clara, California.

2. Peter H. Fröhlich
(affiliated in September 1998; advanced to candidacy in May 2001; final defense in March 2003; thesis: “The
Structure of Component-Oriented Programming Languages;” first employment after graduation: University of
California, Riverside, California).

3. Jeffery von Ronne
(affiliated in September 1999; advanced to candidacy in February 2003; final defense in July 2005; thesis:
“A Safe and Efficient Machine-Independent Code Transportation Format Based on Static Single Assignment
Form and Applied to Just-In-Time Compilation;” first employment after graduation: University of Texas at San
Antonio).

4. Vivek Haldar
(affiliated in August 2000; advanced to candidacy: November 2002; final defense: February 2006; thesis:
“Semantic Remote Attestation;” first employment after graduation: Google, Santa Monica, California).

5. Efe Yardimci
(affiliated in August 2001; advanced to candidacy: November 2003; final defense: March 2006; thesis: “Ex-
ploiting Parallelism to Improve the Performance of Sequential Binary Executables;” first employment after
graduation: Advanced Micro Devices (AMD), Santa Clara, California).

6. Christian H. Stork
(affiliated in September 1998; advanced to candidacy: May 2001; final defense: August 2006; thesis: “WELL:
A Language-Agnostic Foundation for Compact and Provably Safe Mobile Code;” first employment after gradu-
ation: Postdoc at University of California, Irvine).

7. Deepak Chandra
(affiliated in August 2001; advanced to candidacy: March 2004; final defense: September 2006; thesis: “Infor-
mation Flow Analysis and Enforcement in Java Bytecode;” first employment after graduation: Google, Irvine,
California).

8. Andreas Gal
(affiliated in January 2002; advanced to candidacy: December 2003; final defense: November 2006; thesis:
“Efficient Bytecode Compilation and Verification in a Virtual Machine;” first employment after graduation:
Postdoc at University of California, Irvine).

9. Matthew Beers
(affiliated in September 1999; advanced to candidacy: July 2002; final defense: March 2007; thesis: “Shifting the
Burden of Code Optimization to the Code Producer,” first employment after graduation: Ocean Tomo Intellectual
Capital Equity, San Francisco, California).

10. Ning Wang
(affiliated in September 2001; advanced to candidacy: September 2004; final defense: May 2007; thesis: “From
Assumptions to Assertions: A Sound and Precise Points-to Analysis for the C Language,” first employment after
graduation: Fortify Software, Palo Alto, California).

Michael Franz CV-35 19th September 2019

NETFLIX, INC. EXHIBIT 1002

11. Vasanth Venkatachalam
(affiliated in September 2002; advanced to candidacy: September 2003; final defense: May 2007; thesis: “Self-
Calibrating Processor Speed: A New Feedback Loop For Dynamic Voltage Scaling Control;” first employment
after graduation: Advanced Micro Devices (AMD), Austin, Texas).

12. Lei Wang
(affiliated in June 2001; advanced to candidacy: September 2004; final defense: June 2009; thesis: “Automatic
Program Partitioning to Alleviate Resource Constraints of Object-Oriented Applications;” first employment after
graduation: Microsoft, Redmond, Washington).

13. Babak Salamat
(affiliated in January 2007; advanced to candidacy: May 2007; final defense: June 2009; thesis: “Multi-Variant
Execution: Run-Time Defense Against Malicious Code Injection Attacks;” first employment after graduation:
Yahoo, Sunnyvale, California).

14. Michael Bebenita
(affiliated in January 2007; advanced to candidacy in May 2009; final defense: October 2011; thesis: “Trace-
Based Compilation and Optimization in Meta-Circular Virtual Execution Environments;” first employment after
graduation: Mozilla, Mountain View, California).

15. Gregor Wagner
(affiliated in September 2007; advanced to candidacy in May 2009; final defense: October 2011; thesis: “Do-
main Specific Memory Management in a Modern Web Browser;” first employment after graduation: Mozilla,
Mountain View, California).

16. Mason Liu Chang
(affiliated in June 2007; advanced to candidacy in May 2009; final defense: February 2012; thesis: “Efficient
Analysis and Optimization of Dynamically Typed Languages;” first employment after graduation: Mozilla,
Mountain View, California).

17. Todd Morris Jackson
(affiliated in September 2007; advancement to candidacy in June 2009; final defense: May 2012; thesis: “On
the Design, Implications, and Effects of Implementing Software Diversity for Security;” first employment after
graduation: Google, Mountain View, California).

18. Christoph Kerschbaumer
(affiliated in Summer 2010; advancement to candidacy in November 2011; final defense: March 2014; thesis:
“Probabilistic Information Flow Control in Modern Web Browsers;” first employment after graduation: Mozilla,
Mountain View, California).

19. Eric Hennigan
(affiliated in July 2008; advancement to candidacy in April 2011; final defense: December 2014; thesis: “From
FlowCore to JitFlow: Improving the Speed of Information Flow in JavaScript;” first employment after gradua-
tion: Google, Mountain View, California).

20. Marcelo Cintra
(affiliated in December 2007; advancement to candidacy in November 2009, final defense: April 2015; thesis:
“Just-in-Time Compilation Techniques for Hardware/Software Co-Designed Processors;” first employment after
graduation: Intel, Santa Clara, California).

21. Andrei Homescu
(affiliated in Fall 2010; advancement to candidacy in March 2012, final defense: April 2015; thesis: “Securing
Statically and Dynamically Compiled Programs using Software Diversity;” first employment after graduation:
Immunant, Irvine, California).

22. Codrut Stancu
(affiliated in Summer 2012; advancement to candidacy in May 2013, final defense: May 2015; thesis: “Safe and

Michael Franz CV-36 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Efficient Hybrid Memory Management for Java;” first employment after graduation: Oracle, Redwood Shores,
California).

23. Wei Zhang
(affiliated in Spring 2011; advancement to candidacy in November 2011, final defense: June 2015; thesis: “Ef-
ficient Hosted Interpreters for Dynamic Languages;” first employment after graduation: Twitter, San Francisco,
California).

24. Stephen Crane
(affiliated in Fall 2011; advancement to candidacy in August 2013, final defense: June 2015; thesis: “Enhancing
and Extending Software Diversity;” first employment after graduation: Immunant, Irvine, California).

25. Gulfem Savrun Yeniceri
(affiliated in Fall 2010; advancement to candidacy in January 2013, final defense: November 2015; thesis:
“Efficient Interpreters and Profilers for Hosted Dynamic Languages;” first employment after graduation: Intel,
Santa Clara, California).

26. Julian Lettner
(affiliated in Fall 2013; advancement to candidacy in March 2016, final defense: August 2018; thesis: “Finding
and Mitigating Memory Corruption Errors in Systems Software;” first employment after graduation: Apple,
Cupertino, California).

27. Brian Belleville
(affiliated in Fall 2013; advancement to candidacy in June 2016, final defense: August 2018; thesis: “Security
Applications of Static Program Analysis;” first employment after graduation: Google, Mountain View, Califor-
nia).

28. Mohaned Qunaibit
(since Summer 2014; advancement to candidacy in March 2016, final defense: March 2019; thesis: “Accelerating
Dynamically-Typed Language on Heterogeneous Platforms”).

Graduate Students Supervised as Principal Academic Advisor and Committee Chair
Advanced to Ph.D. Candidacy (in order of advancement date)

1. Joseph Nash (since Summer 2015; advancement to candidacy in May 2018)

2. Taemin Park (since Summer 2015; advancement to candidacy in May 2018)

3. Prabhu Karthikeyan Rajasekaran (since Spring 2015; advancement to candidacy in May 2018)

4. Alexios Voulimeneas (since Summer 2015; advancement to candidacy in June 2018)

5. Anil Altinay (since Summer 2015; advancement to candidacy in June 2018)

6. Paul Kirth (since Fall 2016; advancement to candidacy in March 2019)

7. Dokyung Song (from Fall 2016; advancement to candidacy in May 2019)

Not Yet Advanced to Candidacy (in order of affiliation date)

8. Fabian Parzefall (from Summer 2018)

9. Mitchel Dickerson (from Summer 2018)

10. Matthew Dees (from Summer 2018)

11. Min-Yi Hsu (from Fall 2018)

Michael Franz CV-37 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Graduated Ph.D. Students (Co-Advisor and “Opponent” During Final Dissertation Defense)
1. Christian Wimmer, University of Linz, Austria

(final defense: March 2008; thesis: “Automatic Object Inlining in a Java Virtual Machine”).

2. Stefan Brunthaler, Technical University of Vienna, Austria
(final defense: February 2011; thesis: “Purely Interpretative Optimizations”).

3. Thomas Würthinger, Johannes-Kepler University of Linz, Austria
(final defense: April 2011; thesis: “Dynamic Code Evolution for Java”).

4. Christian Häubl, Johannes-Kepler University of Linz, Austria
(final defense: February 2015; thesis: “Generalized Trace Compilation for Java”).

5. Stijn Volckaert, University of Ghent, Belgium
(final defense: October 2015; thesis: “Advanced Techniques for Multi-Variant Execution”).

Other Ph.D. Students
Dissertation Committee Member

• Byron Hawkins, UC Irvine
(final defense: August 2017; committee chair: Brian Demsky; thesis: “Introspective Intrusion Detection”).

• Andreas Gerstlauer, UC Irvine
(final defense: April 2004, committee chair: Daniel D. Gajski; thesis: “Modeling Flow for Automated System
Design and Exploration”).

• Ana Lucia Velloso Azevedo, UC Irvine
(final defense: October 2002; committee chair: Alexandru Nicolau; thesis: “Annotation-based Compiler Tech-
nology”).

• Chang Liu, UC Irvine
(final defense: August 2002, committee chair: Debra J. Richardson; thesis: “Redundant Arrays of Independent
Components”).

• Martin Burtscher, University of Colorado at Boulder
(final defense: April 2000, committee chair: Benjamin Zorn; thesis: “Improving Context-Based Load Value
Prediction”).

• Jianwen Zhu, UC Irvine
(final defense: September 1999; committee chair: Daniel D. Gajski; thesis: “Behavioral Synthesis from an
Extensible Object Oriented Language”).

Candidacy Committee Member)

• Tyler Kaczmarek, UC Irvine
(candidacy: December 2015; committee chair: Gene Tsudik).

• Lu Fang, UC Irvine
(candidacy: May 2014; committee chair: Guoquing Xu).

• Nicolae Savoiu, UC Irvine
(candidacy: September 1999; committee chair: Alexandru Nicolau).

Michael Franz CV-38 19th September 2019

NETFLIX, INC. EXHIBIT 1002

M.Sc. Students Graduated from UC Irvine with Thesis Option
• Wail Alkowaileet, M.S. thesis committee member, graduated October 2013 (thesis: “NUMA-aware multicore

Matrix Multiplication;” committee chair: Isaac Scherson).

• Alexander Yermolovich, primary M.S. advisor / committee chair, completed M.S. degree in May 2009 (thesis:
“Efficient Execution of Binary and Guest Virtual Machines on Platform Independent Host Virtual Machines”).

• Mason Liu Chang, primary M.S. advisor / committee chair, completed M.S. degree in May 2009 (thesis: “Tracing
for Web 3.0 – Trace Compilation for the Next Generation Web Applications”).

• Songmei Han, primary M.S. advisor, graduated with a M.S. in Computer Science in June 2003 (she also received
a Ph.D. in Cognitive Science, for which Barbara Dosher was the advisor); subsequently a tenure-track Assistant
Professor of Cognitive Science and Computer Science at SUNY Oswego and now Usability Engineer at Apollo
Group.

• Anjum Gupta, M.S. thesis committee member, graduated June 2003 (thesis: Design and Implementation of an
Adaptive Cache on a Configurable Processor; committee chair: Rajesh Gupta).

Other Graduate Advising
• Dixin Zhou, primary M.S. advisor, Spring 2018 – Spring 2019, graduated June 2019.

• Faraz Zaerpoor, primary M.S. advisor, Fall 2016 – Spring 2018.

• Anton Vasick, primary M.S. advisor, Summer 2015 – Spring 2018.

• Mark Murphy, research advisor, Fall 2010 – Fall 2015.

• Divya Varshini Agavalam Padmanabhan, primary M.S. advisor, graduated June 2016.

• Nikhil Gupta, primary M.S. advisor, graduated June 2016.

• Roeland Singer-Heinze, primary M.S. advisor, graduated June 2016.

• Stephen Neisius, primary M.S. advisor, graduated Summer 2014.

• Karthikeyan Manivannan, primary advisor, 2007– 2011.

• Sergiy Zhenochin, primary M.S. advisor / committee chair, graduated Fall 2001.

• Prashant Saraswat, primary M.S. advisor / committee chair, graduated Fall 2001.

• Hans-Christian Stadler, primary M.S. advisor / committee chair, graduated June 1998.

Undergraduate Honors Students Graduated from UC Irvine
• Eric Thomas Parsons (summer research advisor, Summer 2018).

• Muneeb Baig (honors research advisor); graduated Magna Cum Laude and Phi Beta Kappa in 2007; honors
thesis: “Optimizing Array Bound Checking During Trace-Based Compilation”.

• Michael Masukawa (honors research advisor); graduated Summa Cum Laude and Phi Beta Kappa in 2007;
honors thesis: “Dynamic Taint Propagation in Java Web Applications”.

• Jesse Morrow (honors research advisor); graduated Magna Cum Laude and Phi Beta Kappa in 2005.

• Matthew Chu (honors research advisor); graduated Phi Beta Kappa in 2004.

• Zachary Mouri (honors research advisor); graduated Phi Beta Kappa in 2004.

• Ronald Harvest (honors research advisor); graduated Summa Cum Laude and Phi Beta Kappa in 1999.

• Calvin Shen (honors research advisor); graduated Cum Laude in 1999.

Michael Franz CV-39 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Other Undergraduate Advising
• Rasmus Tjalk-Boggild, visiting from DTU Lynby, Denmark, faculty research advisor; Summer 2016.

• Thomas Bourgenolle, visiting from ENSTA ParisTech, Paris, France, faculty research advisor; Summer 2015.

• Martin Imre, visiting from Technical University of Vienna, Austria, faculty research advisor; Summer 2015.

• Dominik Infuehr, visiting from Technical University of Vienna, Austria, faculty research advisor; Summer 2015.

• David Poetzsch-Heffter, visiting from University of Kaiserslautern, Germany, faculty research advisor; Summer
2015.

• Aditiya Verma, visiting from IIT (BHU) Varanasi, India, faculty research advisor; Summer 2015.

• William Lee, Troy Tech Senior Internship, supervisor; Summer 2015.

• Christos Ioannidis, visiting from University of Thessaly, Greece, faculty research advisor; Summer 2014.

• Mohit Mishra, visiting from Indian Institute of Technology, Varanasi, faculty research advisor; Summer 2014.

• Michalis Papamichail, visiting from Aristotle University of Thessaloniki, Greece, faculty research advisor;
Summer 2014.

• Martin Schleiss, visiting from Technical University of Vienna, Austria, faculty research advisor; Summer 2014.

• Henry Elias Hernandez, faculty research advisor, Summer 2014.

• Daniel Nima Salehi, faculty research advisor, Summer 2014.

• Michael Stewart, faculty research advisor, Summer/Fall 2011.

• Jeffrey Bosboom, NSF Research Experiences for Undergraduates Summer Scholar, faculty advisor, 2011.

• Shawn Merrill, NSF Research Experiences for Undergraduates Summer Scholar, faculty advisor, 2011.

• Chris Austin, NSF Research Experiences for Undergraduates Summer Scholar, faculty advisor, 2010.

• Daniel A. Ehrenberg, Carleton University, NSF Research Experiences for Undergraduates Summer Scholar,
faculty advisor, 2010.

• Sean Kocol, honors research advisor, 2009.

• Jonathan Mood, honors research advisor, 2009.

• Adrian Tran, honors research advisor, 2009.

• Yaoxiang Zhou, honors research advisor, 2008.

• Raymond Yu, honors research advisor, 2007/08.

• Stephen C. Reed, California Alliance for Minority Participation in Science (CAMP) Summer Scholar, faculty
advisor, 2004.

Michael Franz CV-40 19th September 2019

NETFLIX, INC. EXHIBIT 1002

Visiting Diploma Students Supervised at UC Irvine
• Urs Fässler, ETH Zürich, Switzerland, co-supervised with Th. Gross; March–September 2012.

• Alen Stojanov, École polytechnique fédérale de Lausanne (EPFL), Switzerland, co-supervised with M. Odersky;
September 2011–March 2012.

• Dominik Lichtenauer, Johannes-Kepler University of Linz, Austria, co-supervised with H. Mössenböck, Septem-
ber 2011–March 2012.

• Stefan Rath, Technische Universität Graz, Austria, co-supervised with Ch. Steger; July–December 2010.

• Franz Maier, Technische Universität Graz, Austria, co-supervised with Ch. Steger; March–September 2010.

• Christoph Kerschbaumer, Technische Universität Graz, Austria, co-supervised with Ch. Steger; March–September 2008.

• Giacomo Amorosa, ETH Zürich, Switzerland, co-supervised with J. Gutknecht; February–August 2008.

• Katharina Seke, Technische Universität Graz, Austria, co-supervised with Ch. Steger; July 2006–October 2006.

• Gregor Wagner, Technische Universität Graz, Austria, co-supervised with Ch. Steger; March 2006–October 2006.

• Albert Noll, Technische Universität Graz, Austria, co-supervised with Ch. Steger; March 2006–September 2006.

• Michael Rauch, Technische Universität Graz, Austria, co-supervised with Ch. Steger; March 2006–September 2006.

• Isabella Thomm, Universität Erlangen-Nürnberg, Germany, co-supervised with W. Schroeder-Preikschat; Novem-
ber 2005–February 2006.

• Michael Stilkerich, Universität Erlangen-Nürnberg, Germany, co-supervised with W. Schroeder-Preikschat; De-
cember 2004–February 2005 and November 2005–February 2006.

• Nicolas Marochow, Fachhochschule Braunschweig-Wolfenbüttel, Germany, co-supervised with R. Rüdiger;
September 2004–January 2005.

• Jan Peterson, Universität Jena, Germany, co-supervised with W. Amme; May–September 2004.

• Tobias Körner, Fachhochschule Braunschweig-Wolfenbüttel, Germany, co-supervised with R. Rüdiger; March–
August 2003.

• Alexander Apel, Universität Jena, Germany, co-supervised with W. Amme; September–November 2003.

• Christian Rattei, Fachhochschule München, Germany, co-supervised with K. Köhler; April–November 2000.

• Joachim Büchse, ETH Zürich, Switzerland, co-supervised with J. Gutknecht,’ 1998.

• M. Burtscher, ETH Zürich, 1996.
(work conducted at Irvine but thesis submitted in Zurich while Franz still had a formal association with ETH)

• M. Dätwyler, ETH Zürich, 1996.
(work conducted at Irvine but thesis submitted in Zurich while Franz still had a formal association with ETH)

Diploma Students Supervised at ETH Zurich († = co-supervised with N. Wirth)

• E. Brandenberger, Oberon Module Interchange auf Intel-Prozessoren, 1996.

• D. Posva, Dynamische Reoptimierung auf einem RISC, 1996.

• M. Sperisen, Executable Content in WWW-Dokumenten: Java, 1996.

• †H. Buchser, Portable Objektfiles und codegenerierender Lader, 1995.

• †H. Domjan, Metaprogrammierung, 1995.

Michael Franz CV-41 19th September 2019

NETFLIX, INC. EXHIBIT 1002

• †O. Dreer, “Slim Binaries” auf Macintosh, 1995.

• †Th. Kistler, Smartest Recompilation, 1995.

• †Ch. Denzler, A Message Mechanism for Oberon, 1993.

• †E. Oertli, Oberon-2 für Macintosh, 1993.

• †I. Posva, Elimination redundanter Tests durch Programmanalyse, 1993.

• †Th. Bühlmann, Call Optimization for the MacOberon Compiler, 1992.

• †S. Ludwig, A Portable Object and Symbol File Format for Oberon, 1991.

• †S. Meier, Zeichenerkennung mittels Strukturanalyse, 1990.

Compact Courses and Tutorial Presentations at Professional Meetings
• M. Franz; Language-Based Security; half-day tutorial presented at the 2006 Joint Modular Languages Confer-

ence (JMLC), Oxford, United Kingdom; September 2006.

• M. Franz; Safe Code: Language-Based Security in a Networked World; one-day tutorial presented to the
Orange County Chapter of the Institute of Electrical and Electronics Engineers (IEEE); Costa Mesa, California;
July 2004.

• M. Franz; A Tutorial On Language Based Security; one-day tutorial presented in the ICS Tutorials Series; UCI
University Club, Irvine, California; July 2003.

• M. Franz (supervisor and chief instructor); Moderne Programmierparadigmen (Modern Programming Paradigms);
3-day compact course, Post-College Education Program, ETH Zürich; September 1995.

• M. Franz; Tutorial on Extensible Programming in Oberon; European Conference on Object-Oriented Program-
ming (ECOOP ’95), Aarhus, Denmark, August 1995.

• M. Franz (supervisor and chief instructor); Moderne Programmierparadigmen (Modern Programming Paradigms);
3-day compact course, Post-College Education Program, ETH Zürich; April 1995.

• M. Franz (supervisor and chief instructor); Programmieren in Oberon (Programming in Oberon); 2-day compact
course, Post-College Education Program, ETH Zürich; September 1994.

• M. Franz (supervisor and chief instructor); Erweiterbare Systeme mit Oberon (Extensible Systems with Oberon);
1-day advanced-level compact course, Post-College Education Program, ETH Zürich; September 1994.

Michael Franz CV-42 19th September 2019

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-1

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-l

NETFLIX, INC. EXHIBIT 1002

USOO84076.09B2

(12) United States Patent (10) Patent No.: US 8,407,609 B2
Turner (45) Date of Patent: Mar. 26, 2013

(54) SYSTEMAND METHOD FOR PROVIDING (58) Field of Classification Search 715/716,
ANDTRACKING THE PROVISION OF AUDIO 715/719, 733, 764, 765, 760; 709/203, 204,
AND VISUAL PRESENTATIONS VIA A 709/217, 231
COMPUTER NETWORK See application file for complete search history.

56 Ref Cited
(75) Inventor: Tod C. Turner, Kenmore, WA (US) (56) eeees e

U.S. PATENT DOCUMENTS
(73) Assignee: LINQware Inc., Kenmore, WA (US) 6,606,102 B1* 8/2003 Odom 71.5/745

2002/0198781 A1* 12/2002 Cobley TO5/14
(*) Notice: Subject to any disclaimer, the term of this 2006/0224693 A1* 10, 2006 Gaidemak et al. 709/217

patent is extended or adjusted under 35 2011/0082754 A1* 4/2011 Shuster TO5/1468
U.S.C. 154(b) by 559 days. * cited by examiner

(21) Appl. No.: 12/545,131 Primary Examiner — Xiomar L. Bautista
(74) Attorney, Agent, or Firm — Cozen O'Connor

(22) Filed: Aug. 21, 2009 (57) ABSTRACT
(65) Prior Publication Data A method for tracking digital media presentations: providing

a corresponding web page for each digital media presentation
US 201O/OOSOO96A1 Feb. 25, 2010 to be delivered; providing identifier data to the user's com

puter; providing a timer applet to the user's computer, and,
storing data indicative of received identifier data; wherein

Related U.S. Application Data each provided webpage causes corresponding digital media
(60) Provisional application No. 61/090,672, filed on Aug presentation data to be streamed from a second computer

21, 2008 sy as system distinct from a first computer system directly to the
s user's computer independent of the first computer system;

(51) Int. Cl. and stored data is indicative of an amount of time the digital
G6F 3/ (2006.01) media presentation data is streamed from the second com
G06F 15/16 (2006.01) puter system to the users computer.

(52) U.S. Cl. 715/760; 715/716; 715/733; 709/231 3 Claims, 10 Drawing Sheets

205 - BROWSE SEARCH
SELECA CATEGORY

Category 2
Category 5
Category 8

Category 1
Category 4
Category 7

25

Category 3
Category 6
Category 9

21 O
Ranking
Ranking 2

220

x New Shows
225 Page of Y

GALLCAUDIO OVIDEO

230 i

Date: XXIYY:27A
Series:
escription:

240

285

230 ite:
Date: XXYYY

Series:
Description:

240

27

Title
Date: XXYYZZZ
Series:

230
24O

275

Description.

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 1 of 10 US 8,407,609 B2

S

S. s

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 2 of 10 US 8,407,609 B2

Fig. 2 A^ 2OO

245 BROWSE SEARCH
205 - w -- warm marr

SEECA CATEGORY - 210
Category 1 Category 2 Category 3 Ranking 1
Category 4 Category 5 Category 6 Ranking 2

8 Category 7 Category 8 Category 9

215 N scaled- ...? 220
x New Shows

225 N Page 1 of y | 123.I.Y
230 - Title. 240

Date: XXIYYZZ
Series:

28 PPn- : 285

23 f | title: 240
Date: XXYYizzzz V
"S- 27O

; Description:

230 It c. -
Dae XXYY:222 275
S
description: :

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 3 of 10 US 8,407,609 B2

MT 2OO

BrowsE SEARCH

Enter Text SEARCH

Series:
Description:

ite:

Date: XXYYZZZZ
escription:

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 4 of 10 US 8,407,609 B2

Fig. 4

40

4.05 41 O
PROVE LOGUSER

LOGON INFO ON

415 REO UEST TO REQUEST 42O
DENT FER

UPLOAD AND FE
CONTENT NFO

425 PROVEDE 430
DENFER
AND FILE OK UPLOAD

NFO

435 440
TRANSMT RECEIVE
CONTEN CONTENT

450 STORE AND
CASSFY
CONTENT

400

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 5 of 10 US 8,407,609 B2

Fig. 5

505 51O.
PROVE LOGUSER
OGON INFO ON

515 RECUEST 52O
REGIS O DENFER

ANDFILE
CONTEN NFO

525 PROVIDE 530
DENT FEER
AND FILE OK NK

NFO

550 STORE AND
CASSY

LINK

v 5OO

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 6 of 10 US 8,407,609 B2

Fig. 6
M 40

605
PROVIDE LOG USER 61O

LOGON INFO ON

82O
815 REQUEST TO RECQUEST

CREATE INFO
CONTENT

630
S25 PROVIDE

NFO OK NFO

SORE AND 635
CLASSFY
CONTENT

S4O NTA NEW" 645
CREATION
SESSION

START
CREATON

CAL 650
AUDIENCE CAL SER

660

STORE 655
6OO CONTENT

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 7 of 10 US 8,407,609 B2

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 8 of 10 US 8,407,609 B2

Fig. 8

40

805 810
PROVIDE OG USER

LOGON INFO ON

REGUEST 82O
815 DENFER

RECUEST TO AND FEED
LINK FEED NFO

830

825 PROVIDE OK FEED
DENT FER
AND FEED

NFO

ACCESS AND 850
STORE FEED
CONTENT

855

860 ACCESS AND
STORE NEW

FEE)
CONTENT

8CO /

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 9 of 10 US 8,407,609 B2

Fig. 9 - so

930

Title:
Date: XXfyYZZZZ
Series:
Description:

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Mar. 26, 2013 Sheet 10 of 10 US 8,407,609 B2

Fig. 10

LOAD PAGE

1OOO Y

OO

1030 TRANSMT
OATA

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
1.

SYSTEMAND METHOD FOR PROVIDING
ANDTRACKING THE PROVISION OF AUDIO

AND VISUAL PRESENTATIONS VIA A
COMPUTER NETWORK

RELATED APPLICATIONS

This application claims priority of U.S. Patent Application
Ser. No. 61/090,673 entitled: CONTENT, TRAFFIC AND
ADVERTISING ENGINE, SYSTEMAND METHOD; Ser.
No. 61/090,680 entitled: SYSTEM AND METHOD FOR
AGGREGATING AND PROVIDING AUDIO AND
VISUAL PRESENTATIONS VIA A COMPUTER NET
WORK; Ser. No. 61/090,678 entitled: CONTENT TRAFFIC
AND ADVERTISING ENGINE, SYSTEM AND
METHOD; Ser. No. 61/090,688 entitled: SYSTEM AND
METHOD OF VALIDATING CONTENT TRAFFIC AND
ADVERTISING IN A COMPUTING APPLICATION AND
ENGINE: Ser. No. 61/090,681 entitled: DYNAMIC READ
THROUGH DATA COLLECTION AND AD DELIVERY
SYSTEMAND METHOD OF SAME: Ser. No. 61/090,684
entitled: SYSTEMAND METHOD FOR TRAFFIC IN A
CONTENT AND ADVERTISING ENGINE; and Ser. No.
61/090,672 entitled: System and Method for Providing and
Tracking the Provision of Audio and Visual Presentations via
a Computer Network, all having common inventor Tod C.
Turner; and each of which is incorporated herein by reference
as if set forth in its respective entirety herein.

FIELD OF THE INVENTION

The present invention relates generally to the provision of
information, and more particularly to the provision of infor
mational, entertainment, educational, business and other
audio and/or audio/visual presentations via a computer net
work.

BACKGROUND OF THE INVENTION

The Internet is a global network connecting millions of
computers and linking users in more than 100 countries into
exchanges of data, news and opinions. Unlike online services,
which are centrally controlled, the Internet is decentralized.
Each Internet enabled computer is independent, such that its
user can choose which Internet services to use and which
local services to make available to the global Internet com
munity.

There are many types of content available via the Internet,
including textual content, graphical content, audio content
and video content. The amount of content available via the
Internet is virtually unlimited. Accordingly, it can prove dif
ficult for a user of an Internet enabled computer to identify
and locate content of a particular type and relating to a par
ticular subject.
A popular Solution to finding desired content is to use a

publicly available search engine. A search engine searches
documents for specified keywords and returns a list of docu
ments where the keywords were found. Typically, a search
engine utilizes a webcrawler to provide documents. An
indexer then typically reads the webcrawler provided docu
ments and creates an index based on the words contained in
each document. Each search engine typically uses its own
methodology to create indices such that, ideally, only mean
ingful results are returned for each query. This is not always
true though due to the complex nature and nuances of human
language and efforts by document authors or providers to fool
or trick the indexer into ranking its documents above those of

5

10

15

25

30

35

2
others. Examples of conventional search engines include
those made available via www.yahoo.com, www.google.com
and www.search.com, all by way of non-limiting example
only.

Accordingly, there is a need for a system and method of
using the Internet as a global network to unite people with
common interests. Such a system and method may be used as
productivity tools for business, and to educate and entertain
COSU.S.

SUMMARY OF THE PREFERRED
EMBODIMENTS

A method for tracking digital media presentations deliv
ered from a first computer system to a user's computer via a
network including: providing a corresponding web page to
the user's computer for each digital media presentation to be
delivered using the first computer system; providing a iden
tifier data to the user's computer using the first computer
system; providing an applet to the users computer for each
digital media presentation to be delivered using the first com
puter system, wherein the applet is operative by the user's
computer as a timer, receiving at least a portion of the iden
tifier data from the user's computer responsively to the timer
applet each time a predetermined temporal period elapses
using the first computer system; and, storing data indicative of
the received at least portion of the identifier data using the first
computer system; wherein each provided webpage causes
corresponding digital media presentation data to be streamed
from a second computer system distinct from the first com
puter system directly to the users computer independent of
the first computer system; and wherein the stored data is
indicative of an amount of time the digital media presentation
data is streamed from the second computer system to the
user's computer.

BRIEF DESCRIPTION OF THE DRAWINGS

Understanding of the present invention will be facilitated
by consideration of the following detailed description of the
preferred embodiments of the present invention taken in con

40 junction with the accompanying drawings, in which like

45

50

55

60

65

numerals refer to like parts:
FIG.1 illustrates a block diagram of a system of networked

computers;
FIG. 2 illustrates an electronic document according to an

embodiment of the present invention;
FIG. 3 illustrates an electronic document according to an

embodiment of the present invention;
FIG. 4 illustrates a flow diagram of a process according to

an embodiment of the present invention;
FIG. 5 illustrates a flow diagram of a process according to

an embodiment of the present invention;
FIG. 6 illustrates a flow diagram of a process according to

an embodiment of the present invention;
FIG. 7 illustrates a block diagram of a system of networked

computers in conjunction with telecommunications devices
according to an embodiment of the present invention;

FIG. 8 illustrates a flow diagram of a process according to
an embodiment of the present invention;

FIG. 9 illustrates an electronic document according to an
embodiment of the present invention; and

FIG. 10 illustrates a flow diagram of a process according to
an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

It is to be understood that the figures and descriptions of
embodiments of the present invention have been simplified to

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
3

illustrate elements that are relevant for a clear understanding
of the present invention, while eliminating, for the purpose of
clarity, many other elements found in typical website and
audio/visual content delivery systems and methods. Those of
ordinary skill in the art may recognize that other elements
and/or steps are desirable and/or required in implementing
the present invention. However, because such elements and
steps are well known in the art, and because they do not
facilitate a better understanding of the present invention, a
discussion of such elements and steps is not provided herein.

For non-limiting purposes of explanation only, "com
puter as referred to herein, refers to a general purpose com
puting device that includes a processor. “Processor as used
herein, refers generally to a device including a Central Pro
cessing Unit (CPU), such as a microprocessor. A CPU gen
erally includes an arithmetic logic unit (ALU), which per
forms arithmetic and logical operations, and a control unit,
which extracts instructions (e.g., code) from memory and
decodes and executes them, calling on the ALU when neces
sary. “Memory, as used herein, refers to one or more devices
capable of storing data, Such as in the form of chips, or other
medium like magnetic or optical discs. Memory may take the
form of one or more random-access memory (RAM), read
only memory (ROM), programmable read-only memory
(PROM), erasable programmable read-only memory
(EPROM), or electrically erasable programmable read-only
memory (EEPROM) chips, by way of further non-limiting
example only. Memory may be internal or external to an
integrated unit including the processor. Memory may be
internal or external to the computer Such memory may store
a computer program, e.g., code or a sequence of instructions
being operable by the processor. Such a computer may
include one or more data inputs. Such a computer may
include one or more data outputs. The code stored in memory
may cause the processor, when executed by the processor, to
set an output to a value responsively to a sensed input.
One type of computer executable code typically stored in

memory so as to be executable by an Internet enabled com
puter is a browser application. For non-limiting purposes of
explanation only, “browser application' or “browser,” as used
herein, generally refers to computer executable code used to
locate and display web pages. Commercially available brows
ers are Microsoft Internet Explorer, Netscape Navigator,
Apple Safari, Google Chrome and Firefox, which all support
text, graphics and multimedia information, including Sound
and video (sometimes through browser plug-in applications).
“Plug-in, as used herein, generally refers to computer
executable code that adds a specific feature or service to a
larger system, in the case of a browser plug-in, the browser
application.
The terms “computer.” “computer device and/or “com

puter system' as used herein may generally take the form of
single computing devices or collections of computing devices
having a common operator or under common control.

According to certain embodiments of the present inven
tion, content may be aggregated for presentation to users.
According to certain embodiments of the present invention,
audio content may be aggregated for presentation to users.
According to certain embodiments of the present invention,
Video content may be aggregated for presentation to users.
According to certain embodiments of the present invention,
audio and video content may be aggregated for presentation
tO uSerS.

Referring now to FIG. 1, there is shown a block diagram of
a system of networked computers 10. The illustrated system
10 includes a plurality of user computers 20, a plurality of

5

10

15

25

30

35

40

45

50

55

60

65

4
network server computers 30 and a network 40 interconnect
ing computers 20, 30 together.

Illustrated system 10 includes personal computing devices
22 and a personal digital assistant computer/web-enabled cell
phone computer 24 by way of non-limiting example only.
Communication links 26 communicatively couple devices 20
with network 40. Links 26 may take the form of wired and/or
wireless communications links, including fiber optic, POTS,
DSL, cable and/or multiple access or GSM based wireless
telephony or data communications systems, for example.
Network 40 may include portions of proprietary and service
provider networks, as well as the Internet, for example. Illus
trated system 10 includes a database server 32, a content or
web server 34 and a file server 36, all by way of non-limiting
example only. Communication links 26 communicatively
couple devices 30 with network 40 as well. “Server', as used
herein, generally refers to a computing device communica
tively coupled to a network and that manages network
resources. A server may refer to a discrete computing device,
or may refer to an application that is managing resources
rather than the entire computing device.

Referring now also to FIG. 2, there is illustrated a web page
200 according to an embodiment of the present invention.
Web page 200 may be provided to computers 20 by comput
ers 30 via network 40. Illustrated web page 200 aggregates
audio and/or video content for presentation to users of com
puters 20.

Referring still to FIG. 2, the particularly illustrated web
page 200 includes a category selector 205, a ranking selector
210, a new content indicator 215, a content type indicator 220,
a page selector 225, particular content graphics 230, particu
lar content type indicators 235 and particular content infor
mation 240 organized under a browser tab 245. Web page 200
may take other forms and/or present different content as is
conventionally achieved in the pertinent arts.

Particular content graphics 230, particular content type
indicators 235 and particular content information 240 are
organized to indicate individual presentations. In the illus
trated embodiment, presentations 265, 270, 275, are respec
tively shown. A user may select Such a presentation for dis
play by selecting an individual presentation for streaming or
downloading, such as by clicking on an indicator 235, 240 or
245. For non-limiting purposes of explanation, “streaming.”
as used herein, generally refers to a technique for transferring
data Such that it can be processed as a Substantially steady or
continuous stream and a user's browser or plug-in can start
presenting the data before the entire file has been transmitted.
For non-limiting purposes of explanation, “downloading, as
used herein, generally refers to a technique for transmitting
data (e.g., an entire data file) between computers, such as
between file server 36 (FIG. 1) and a computing device 22
(FIG. 1). In certain embodiments of the present invention, a
commercially available content (e.g., audio and/or video pod
cast) delivery application, Such as the Flash product available
from Adobe Systems Inc., may be used to provide selected
presentations to users’ computers 20 (FIG. 1).

Referring still to FIGS. 1 and 2, a user of a device 20 may
request page 200 from content server 34 using a browser
application in a conventional manner. Server 34 may provide
page 200 to the requesting computer 20 in a conventional
manner, optionally using database server 32 to populate page
200, for example.

In certain embodiments of the present invention, when a
user selects a category in selector 205, content server 34 may
request database server 32 identify which presentations
should be used to populate page 200 according to the selected
category. Server 34 may then provide such a populated page

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
5

200 to the requesting user computer 20. Examples of catego
ries that may be included and selected using selector 205
include art, autos and vehicles, bloggers and people, celebrity
gossip, comedy, education, gadgets, health, how to and DIY.
legal, music, news, and pets and animals, for example. By
selecting one of these categories, a user may receive pages
200 populated with content according to the selected cat
egory.

In certain embodiments of the present invention, when a
user selects a ranking in indicator 210, content server 34 may
request database server 32 identify which presentations
should be used to populate page 200 according to the selected
ranking. Server 34 may then provide Such a populated page
200 to the requesting user computer 20. Examples of rankings
that may be included and selected using indicator 210 include
most recent presentations and most popular presentations, for
example. By selecting one of these rankings, a user may
receive pages 200 populated with content according to the
selected ranking.

In certain embodiments of the present invention, a user
may select a populated presentation (e.g., 265, 270 or 275,
FIG. 2). In response thereto, server 34 may request file server
36 either stream or download the selected presentation to the
requesting user's computer 20. Such as via a web page 200 in
a conventional manner.

Referring now to FIG.3, there is shown a view of web page
200 when tab 250 is selected. In the illustrated embodiment of
FIG. 3, web page 200 includes a text box 255 and search
button 260 under tab 250. In certain embodiments of the
present invention, when tab 250 is selected, text box 255 and
search button260 may be presented on the user's computer 20
by server 34. A user may enter a search term into window 255
in a conventional manner. A user may then activate search
button 260 in a conventional manner. Responsively thereto,
content server 34 may request database server 32 identify
which presentations should be used to populate page 200
according to the entered search term(s). Server 34 may then
provide Such a populated page 200 to the requesting user
computer 20.
As will be appreciated by those possessing an ordinary

skill in the pertinent arts, there are a number of ways to
aggregate and provide content using web page 200.

In certain embodiments of the present invention, users may
be permitted to directly upload and enter information regard
ing content, e.g., to file server 36 (FIG. 1). In certain embodi
ments of the present invention, users may be permitted to link
presentations housed elsewhere in memory So as to be acces
sible to a computer 20 (FIG. 1) via network 40 (FIG. 1)—es
sentially registering them with database server 32 (FIG. 1). In
certain embodiments of the present invention, presentations
may be created using computers 20, 30. And, in certain
embodiments of the present invention, presentations housed
elsewhere in memory so as to be accessible to a computer 20
(FIG. 1) via network 40 (FIG. 1) may be automatically linked
to—essentially registering them with database server 32
(FIG. 1).

Referring now also to FIG.4, there is shown a flow diagram
of a process 400 according to an embodiment of the present
invention. Process 400 is suitable for permitting users to
directly upload and enter information regarding content. Pro
cess 400 commences with a user providing log on information
using a computer 20 at block 405, which is provided to
computers 30 via network 40, in certain embodiments to
server 34. Computers 30 log the user on at block 410, and
communicates this status to the user via network 40, in certain
embodiments by serving a page 200 (FIGS. 2, 3) to the logged
on user's computer 20.

10

15

25

30

35

40

45

50

55

60

65

6
At block 415, the logged on user requests to upload con

tent, e.g., by interacting in a conventional manner with web
page 200. This request is provided to computers 30 via net
work 40. At block 420, computers 30 request information
regarding the content to be uploaded. In certain embodi
ments, the requested information may include a content title,
date, series information and description, akin to that to be
displayed in a corresponding indicator 240 (FIGS. 2, 3). The
request may further include a file identifier and location of the
content indicative file to ultimately be uploaded. This request
may be communicated to the user's computer 20 via network
40.
At block 425, the user provides at least a portion of the

requested information, which is communicated to computers
30 via network 40. Some or all of the information provided
may be screened or filtered or verified in conventional man
ners at block 430. In certain embodiments of the present
invention, information provided at block 425 may be received
and screened or filtered or verified at block 430 using web
server 34. All or a portion of that information may then be
stored using database server 32, for later use in populating
web pages 200, for example.

At block 430, computers 30 indicate the received informa
tion is suitable for use and confirms the content may be
uploaded. This indication is provided to the user's computer
20 via network 40. At block 435, the user's computer trans
mits the content to computers 30 via network 40, e.g., per
forms a file upload in a conventional manner. The content is
received by computers 30 at block 440. In certain embodi
ments of the present invention, content transmitted and
received at blocks 435, 440 may take the form of media file
suitable for use as a podcast, for example. Such a file may be
received by server 34 for example, and provided to server 36
for storage 450 and later retrieval for downloading and/or
streaming pursuant to a user's interaction with webpage 200
(FIGS. 2, 3), for example. In such a case, server 32 may
associate the stored content indicative information provided
at block 425 with the file stored at block 450.

Referring now also to FIG.5, there is shown a flow diagram
of a process 500 according to an embodiment of the present
invention, Process 500 is suitable for permitting users to link
presentations housed elsewhere in memory So as to be acces
sible to a computer 20 via network 40.

Process 500 commences with a user providing logon infor
mation using a computer 20 at block 505, which is provided
to computers 30 via network 40, in certain embodiments to
server 34. Computers 30 log the user on at block 510, and
communicate this status to the user via network 40, in certain
embodiments by serving a page 200 (FIGS. 2, 3) to the logged
on user's computer 20.
At block515, the logged on user requests to link or register

content, e.g., by interacting in a conventional manner with
web page 200. This request is provided to computers 30 via
network 40. At block 520, computers 30 request information
regarding the content to be linked. In certain embodiments,
the requested information may include a content title, date,
series information and description, akin to that displayed in a
corresponding indicator 240 (FIGS. 2, 3). The request may
further include a file identifier and location of the content
indicative file to be linked. This request may be communi
cated to the user's computer 20 via network 40.
At block 525, the user provides at least a portion of the

requested information, which is communicated to computers
30 via network 40. Some or all of the information provided
may be screened or filtered or verified in conventional man
ners at block 530. In certain embodiments of the present
invention, information provided at block.525 may be received

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
7

and screened or filtered or verified at block 530 using web
server 34. In certain embodiments of the present invention,
the file location data (e.g., an Internet address at which the file
is available) may be checked to see if a valid media file is
located thereat. All or a portion of that information may then
be stored using database server 32, for later use in populating
web pages 200, for example.

At block 530, computers 30 indicate the received informa
tion is suitable for use and confirms the content may be linked.
At block 550 the received information may be stored using
server 32 for later retrieval and use. Server 32 may also
associate the linked content indicative information provided
at block 525 with the file address Stored at block 550.

Certain embodiments of the present invention may provide
the ability to track the number of visitors to the platform of the
present invention, and additionally the number of visitors per
content via the platform of the present invention. Further, the
number of pages viewed by each visitor may additionally be
tracked. Such as in a tabular format, and Such information may
be continuously updated for as long as a user remains on a
given page, that is, for as long as a user continues to watch a
particular show. For example, it may be determined when a
user begins and ends listening to and/or watching a presenta
tion, e.g., a podcast, for example. Where a selected presenta
tion is streamed from computers 30, Such an inquiry may be
relatively simple, by confirming the content streaming is pro
gressing as expected, for example. Where content is housed
elsewhere and linked to by computers 30, such a direct
inquiry may not be readily available though. Tracking may be
performed, for example, via entry into one or more tables of
database server 32 of timed data. At each expiration of a timer,
Such as every 15 seconds, a table entry may be made corre
sponding to the user, the page the user is on, and, to the extent
the user is on the same page as was the user upon the last
expiration of the timer, the user's total time, to the current
time, spent on that same page. The user may be identified by,
for example, any of a number of known methodologies, such
as the information the user used to login, the user's IP address,
the user's response to an identifying query, or the like.

Thus, certain embodiments of the present invention pro
vide a capability to know that a viewer began viewing a
particular show at a certain time, and when a user began
viewing a different page, or show, thereby providing knowl
edge of how long a particular viewer spent on a particular
page. Such knowledge is not conventionally available, and
the provision of such knowledge by certain embodiments of
the present invention allows for an increasing scale of pay
ments for advertising displayed on a given page correspon
dent to how long a viewer or viewers remain, or typically
remain, on that particular page or like pages. Thus, a tabular
tracking of the present invention allows for the knowledge of
how long a viewer spends on a page, what the viewer was
viewing or listening to on the given page, the ads shown while
the viewer was viewing or listening, how long the ads were
shown, and what ads were shownto the view correspondent to
that viewer's identification and/or login.

Referring now also to FIG. 6, there is shown a flow diagram
of a process 600 according to an embodiment of the present
invention. Process 600 is suitable for permitting users to
create presentations, such as by hosting an audio show that
may be recorded to create a podcast, using computers 20, 30.

Process 600 commences with a user providing logon infor
mation using a computer 20 at block 605, which is provided
to computers 30 via network 40, in certain embodiments to
server 34. Computers 30 log the user on at block 610, and

5

10

15

25

30

35

40

45

50

55

60

65

8
communicate this status to the user via network 40, in certain
embodiments by serving a page 200 (FIGS. 2, 3) to the logged
on user's computer 20.
At block 615, the logged on user requests to create content

or host a show, e.g., by interacting in a conventional manner
with web page 200. This request is provided to computers 30
via network 40. At block 620, computers 30 request informa
tion regarding the content to be created. In certain embodi
ments, the requested information may include a content title,
date, series information and description, akin to that dis
played in a corresponding indicator 240 (FIGS. 2, 3). The
request may further include a phone number at which the user
may be reached. This request may be communicated to the
user's computer 20 via network 40.

At block 625, the user provides at least a portion of the
requested information, which is communicated to computers
30 via network 40. Some or all of the information provided
may be screened or filtered or verified in conventional man
ners at block 630. In certain embodiments of the present
invention, information provided at block 625 may be received
and screened or filtered or verified at block 630 using web
server 34. In certain embodiments of the present invention,
the user's phone number may be checked to see if it is valid.
All or a portion of that information may ten be stored at block
635 using database server 32, for later use in populating web
pages 200, for example.
At block 640, the requesting user indicates he would like to

begin creating the presentation, e.g., by interacting in a con
ventional manner with web page 200. This indication is com
municated to computers 30 via network 40. At block 645
computers 30 initiate a new presentation creation session. At
block 650, a voice communications session between comput
ers 30 and the user is commenced. In certain embodiments of
the present invention, a telephone call may be automatically
placed by computers 30 at block 650 to the phone number
indicated at block 625.

Referring now to FIG. 7, there is shown a block diagram of
a system of networked computers and telephones 700. Like
system 10, illustrated system 700 includes personal comput
ing devices 22 and a personal digital assistant/web-enabled
cellular phone computer 24 by way of non-limiting example
only. Communication links 26 communicatively couple
devices 20 with network 40. Links 26 may take the form of
wired and/or wireless communications links, including fiber
optic, POTS, OSL, cable and/or multiple access or GSM
based wireless telephony or data communications systems,
for example. Network 40 may include portions of proprietary
and service provider networks, as well as the Internet, for
example. Illustrated system 10 includes a database server 32,
a content or web server 34 and a file server 36, all by way of
non-limiting example only. Communication links 26 commu
nicatively couple devices 30 with network 40 as well.

System 700 additionally includes conventional telephone
705 associated with (as indicated by label 720) a particular
computing device 22, e.g., by both corresponding to a given
requesting user, for example. In the illustrated embodiment,
phone 705 may be communicatively coupled to computers 30
independent of network 40 (e.g., via 725). In the illustrated
embodiment, phone 705 may be communicatively coupled to
computers 30 via network 40 (e.g., link 710). In certain
embodiments of the present invention phone 705 may take the
form of a POTS phones. In certain embodiments of the
present invention phone 705 may take the form of a VoIP
phone. In certain embodiments of the present invention,
phone 705 may take the form of a cellular phone. In certain
embodiments of the present invention, phone 705 is indepen
dent of the associated computer 22. In certain embodiments

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
9

of the present invention, phone 705 may be communicatively
coupled to computers 30 independent of any connection
between the associated computer 22 and computers 30.

Referring still to FIGS. 6 and 7, a requesting user may be
called at block 650 by computers 30 placing a conventional
telephone call to the phone number provided at block 625.
Upon the call being answered using phone 705, a pre-re
corded audio message indicating the content will be created
may be played. Thereafter, the requesting user, or his desig
nee for example, may speak into phone 705, thereby hosting
a show, for example. Responsively thereto, computers 30 may
digitize the spoken show and store a media file indicative of it
(e.g., using file server 36), as indicated at block 655.

Information provided at block 625 and stored at block 635
may include identifications of intended audience members
for the presentation, e.g., an audience for the show to be
hosted. This additional information may be used at block 660
to initiate analogous telephone calls to those numbers as well.
In this way, a phone audience may hear the show live at a
plurality of locations. For non-limiting purposes of explana
tion, this is shown in FIG.7 as phone 730, which is associated
with computer 24 as designated by label 740.

Such a “dial out functionality allows for an understanding
of where the user/viewer/listener can be reached, located,
and/or may allow for a myriad additional features in the
present invention. For example, a pinpoint geographic loca
tion of broadcastlisteners may be placed on a map, such as via
website 200 to thereby illustrate where other listeners of the
broadcast are specifically located. Such a mapping function
ality may be realized using a commercially available mapping
application, such as Google Maps, for example.

In certain embodiments of the present invention, shows
may be streamed analogously as described above as they are
being recorded, for example.

It should further be understood such a content generation
functionality provides additional advantages. For example,
enhanced telephone conferences may be readily achieved
according to certain embodiments of the present invention.
Such enhanced conferences may exhibitan automatic dial out
to conference attendees, including the host and audience.
Such enhanced conferences may exhibit automatic recording
and archival for later playback as a podcast, for example.
Such enhanced functionalities may advantageously be
achieved without the host having access to any particular
resources other than a general purpose Internet enabled com
puter and a conventional telephone. Such enhanced function
alities may advantageously be achieved without the any audi
ence member having access to any particular resources other
than a conventional telephone. Accordingly, enhanced tele
phone conferencing may be readily achieved.

In certain embodiments of the present invention, certain
portions of aggregated content may have access thereto
restricted to authorized members. For example, information
provided at blocks 425,525 and/or 625 may include an autho
rized group identifier or content password. Such an identifier
and/or password may be stored using database server 32.
Whenauser seeks to playback Such protected content, e.g., by
interacting with web page 200 as set forth above, the user may
need to log in (e.g., analogously to log in at blocks 405, 410.
505, 510, 605, 610) or provide the corresponding password.
Where a group identifier is used, database server 32 may
indicate what groups a logged in user is authorized for, so as
to selectively permit access to protected content to authorized
users. Such groups may, by way of non-limiting example
only, include businesses and other private organizations.

Referring now also to FIG. 8, there is shown a flow diagram
of a process 800 according to an embodiment of the present

10

15

25

30

35

40

45

50

55

60

65

10
invention. Process 800 is suitable for automatically aggregat
ing and linking to presentations housed elsewhere in memory
so as to be accessible to a computer 20 (FIG. 1) via network
40 (FIG. 1)—essentially registering them with database
server 32 (FIG. 1).

Syndication of Internet content is becoming more com
monplace. Really Simple Syndication (RSS) is a family of
Internet feed formats used to publish content that may be
frequently updated, such as podcasts (RSS 2.0). RSS utilizes
a standardized format. An RSS document (sometimes
referred to as a “feed,” “web feed” or “channel”) typically
contains either a Summary of content from an associated web
site or the full text.
An RSS may itself be used to aggregate content from

multiple web sources in one place. RSS content is typically
accessed using an RSS reader application. Such an applica
tion may be a thin, web-page based application or a down
loaded application executed on a users computer (e.g., 20.
FIG. 1). RSS feeds may typically be subscribed to by entering
or selecting the feeds link using the reader. The RSS reader
typically checks the user's subscribed feeds for new content
at predetermined intervals, downloads updates, and provides
a user interface to monitor and view the feeds.

Embodiments of the present invention will be discussed
with regard to RSS 2.0 feeds for non-limiting purposes of
explanation only. It should be recognized that embodiments
of the present invention may be suitable for use with other
types of content (e.g., audio/video) feeds.

Referring again to FIG. 8, process 800 commences with a
user providing log on information using a computer 20 at
block 805, which is provided to computers 30 via network 40,
in certain embodiments to server 34. Computers 30 log the
user on at block 810, and communicate this status to the user
via network 40, in certain embodiments by serving a page 200
(FIGS. 2, 3) to the logged on user's computer 20.
At block 815, the logged on user requests to link an RSS

feed, e.g., by interacting in a conventional manner with web
page 200. This request is provided to computers 30 via net
work 40. At block 820, computers 30 request information
regarding the content to be created. In certain embodiments,
the requested information may include a content title, series
information and description, akin to that displayed in a cor
responding indicator 240 (FIGS. 2, 3). The request may fur
ther include RSS feed identification and/or access informa
tion through which the feed may be accessed. This request
may be communicated to the user's computer 20 via network
40.
At block 825, the user provides at least a portion of the

requested information, which is communicated to computers
30 via network 40. Some or all of the information provided
may be screened or filtered or verified in conventional man
ners at block 830. In certain embodiments of the present
invention, information provided at block 825 may be received
and screened or filtered or verified at block 830 using web
server 34. In certain embodiments of the present invention,
the feed identifier and/or access information may be checked
to see if it is valid. All or a portion of that information may
then be stored at block 850 using database server 32, for later
use in populating web pages 200, for example. At block 850,
the feed may further be accessed to acquire information
regarding and/or either links to or the feed content itself then
present. All of this information may be automatically aggre
gated using computers 30 in accordance with the methods
described herein-above with regard to FIGS. 4 and/or 5.
where the feed information (e.g., RSS associated XML data)
is used in lieu of user provided information. The date and time

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
11

when content is automatically acquired via Such a registered
RSS feed may also be stored at block 850 using computers 30,
e.g., database server 32.

At block 855, computers 30 may determine if new content
exists for one or more feeds stored at block 850. This may be
accomplished in any of a number of conventional manner,
including periodically checking when the feed was last
updated and/or the content available there-through to data
stored at block 850. When new of changed content is found,
the data stored at block 855 may be appended or amended to
reflect the new content.

It should further be understood Such a content acquisition
provides additional advantages. For example, each user wish
ing to identify and view content available via an RSS feed
may conventionally need to obtain and operate an RSS reader
application. Further, each such RSS reader application would
need to access each identified RSS feed. This leads to sub
stantial bandwidth usage, for example. In contrast, certain
embodiments of the present invention permit a user to access
RSS content without the need for his own RSS reader. Fur
ther, embodiments of the present invention only require that
system 30 access each RSS feed, as opposed to each system
30 user computer 20 wishing to access the RSS feeds, leading
to Substantial savings in network resources. Further, certain
embodiments of the present invention allow user to access
and compare content available via RSS feeds they are not
even aware of, e.g., by their interaction with webpage 200 as
discussed above, where webpage 200 includes content added
using the methodology of process 800, for example. Accord
ingly, certain embodiments of the present invention provide
for enhanced content syndication and aggregation, as com
pared to even RSS feeds themselves, for example. And, cer
tain embodiments of the present invention provide for auto
matic aggregation of RSS fed content in combination with
non-RSS fed content in a single application independent of
any user RSS reader application.

In certain embodiments of the present invention, web page
views and/or web site visits (e.g., sessions) may be tracked. A
page view, as used herein, generally refers to a request made
to a web server for a web page, as opposed to just a page
component, such as a graphic, for example. A visit, as used
herein, generally refers to a sequence of web page and/or
component requests from a particular user's computer, within
some predetermined period of time. Commercially available
server log file analysis applications may be used to gather
Such information, for example.

In certain embodiments of the present invention, more
detailed tracking information may be desired. For example, it
may be desirable to know not only that a certain number of
users requested and accessed certain presentations, but also
how long a user actually watched, and/or listened, to a pre
sented program, after selection via webpage 200 (FIGS. 2, 3),
for example. Certain embodiments of the present invention
may provide the ability to track the number of visitors to the
platform of the present invention, and additionally the num
ber of visitors per content via the platform of the present
invention, and additionally information regarding how long
presentations were watched and/or listened.

For example, and referring now to FIG.9, there is shown a
view of a web page 900 according to an embodiment of the
present invention. Web page 900 generally includes portions
910, 920,930 and 940. Web page 900 may be provided to a
user's computer 30 responsively to user selection of a presen
tation shown on a populated web page 200 (FIG. 2). By way
of non-limiting explanation, should a user viewing web page
200 (FIG. 2) select a presentation 265 for viewing and/or
listening, a suitably populated web page 900 may be served

10

15

25

30

35

40

45

50

55

60

65

12
by computers 20. In such a served web page 900, portion 930
may be utilized to playback the selected presentation in a
conventional manner, e.g., by downloading the content into or
streaming the content to a media player application or plug
in. Portions 910,940 may be used to display related informa
tion, such as advertisements for example. In such a case, it
may be desirable to be able to reliable identify how long the
media was actually, or may typically be played, in order to
appropriately value portions 910,920 as available advertising
billboard space. By way of further, non-limiting, example,
while a per-click or per-display pricing schedule for portions
910,940 may be used, where portion 920 is used to play-back
content a typical user watches and/or listens to for ten min
utes, portions 910, 940 may be worth more than where con
tent play-back is typically for less than thirty-seconds.
Where contentis directly stored using an operator's system

(e.g., computers or computer system 20, FIG. 2). Such as by
using the methodology of process 400 (FIG. 4) or process 600
(FIG. 6). Such a tracking may be achieved by tracking
requests from and pages viewed by each visitor, Such as in a
tabular format. As a system operator maintains control over
the operation of system 30 in such a case, system 30 may be
monitored to determine how long data is streamed therefrom,
for example. Data indicative of this period, such as a presen
tation identifier and a value indicative of the time the presen
tation was actually streamed for, may be logged by System 30
(e.g., using database server 32, for example). For example, it
may be determined when a user begins and ends listening to
and/or watching a presentation, e.g., a podcast, by tracking
when a web page was loaded and for example by determining
when streaming of data to such a loaded web page ceases.
Where a selected presentation is streamed from computers
20, such a methodology may be directly implemented by
system 20, by confirming the content streaming is progress
ing as expected, for example.
Where content is not uploaded to an operator's system

(e.g., computers or computer system 20, FIG.2) and is instead
remotely stored from yet aggregated by System 30, e.g., using
the methodology of process 500 (FIG.5) or process 800 (FIG.
8), for example, tracking may not be so straight forward. As
an operator of system 30 does not necessarily exercise control
over the content data storage resource, the operator may not
be able to directly operate the storage resource in a manner to
directly track how long content is streamed therefrom to a
particular user.

In certain embodiments of the present invention, aggre
gated content playback may advantageously be tracked in a
Substantially same manner, regardless of whether it is
streamed from system 30 or otherwise unrelated computer
systems operated by third parties. In certain embodiments of
the present invention, tracking information may be continu
ously or Substantially continuously updated for as long as a
user continues to watch or listen to a particular show, regard
less of whether the content data is streamed from an opera
tor's computer system 30 or a third party's computer system.

Referring now to FIG. 10, there is shown a block diagram
of a process 1000 according to an embodiment of the present
invention. Process 1000 commences with a user's computer
20 receiving a web page from system 20 (FIG. 2) at block
1010. Such a received web page may take the form of page
900 (FIG. 9), for example. As is shown in FIG. 9, page 900
includes portion 930, which may be used to play-back user
selected content via his computer 20 and a Suitable plug-in or
media player, for example. As explained herein, data indica
tive of the content played using portion 920 may be supplied
by System 30 or a third party's computer system. Regardless,
page900 may include a timer applet. “Applet, as used herein,

NETFLIX, INC. EXHIBIT 1002

US 8,407,609 B2
13

generally refers to a software component that runs in the
context of another program, in the case of page 900 of FIG.9.
a web browser. Such an applet may typically used to perform
a specific function or task, usually narrow in scope. In the case
of FIGS.9 and 10, such a timer applet may be used to indicate
when a pre-determined temporal period has elapsed. For
example, such an applet may be used to indicate each time
Some temporal period, such as 10, 15 or 30 seconds, elapses.
Such a timer applet may be started at block 1020.
At block 1030, when the applet determines the predeter

mined temporal period has elapsed, it signals its continued
execution to system 20. In response, system 30 may log
receipt of this indication, such as by using database server 32.
In certain embodiments of the present invention, web page
900 (FIG.9) may be accompanied with identifying data, such
as in form of a cookie. A "cookie.” as used herein, generally
refers to a message provided to a web browser by a web
server. The browser stores the message in a data or text file. In
certain embodiments of the present invention, the applet may
cause the cookie, or associated data, to be transmitted from
the user's computer 20 to system 30, where upon receipt it, or
data associated with it, may be logged, such as by using
database server 32.
By way of further non-limiting example, at each expiration

oftemporal period as determined by the timer applet, such as
every 15 seconds, a table entry may be made of the user, the
page the user is on, and, to the extent the user is on the same
page as was the user upon the last expiration of the timer, the
users total time, to the current time, spent on that same page
using database server 32. The user may be identified by, for
example, any of a number of known methodologies, such as
the information the user used to login, the user's IP address,
the user's response to an identifying query, or the like.

In certain embodiments of the present invention, the timer
applet may cause data indicative of the total time spent on the
web page presenting the presentation that has elapsed. In
certain embodiments of the present invention, the timer applet
may cause data indicative of another temporal cycle having
passed while the web page presents the presentation. In the
latter, a value indicative of the number of cycles that have
passed in database 32 may be incremented each time the data
is received, for example.

Thus, certain embodiments of the present invention pro
vide the capability to know that a viewer began viewing a
particular show at a certain time, and to know when a user
began viewing a different page, or show, thereby providing
knowledge of how long a particular viewer spent on a par
ticular page. Such knowledge is not conventionally available,
and the provision of such knowledge by certain embodiments
of the present invention allows for an increasing scale of
payments for advertising displayed on a given page corre

10

15

25

30

35

40

45

50

14
spondent to how long a viewer or viewers remain, or typically
remain, on that particular page or like pages. Thus, the tabular
tracking of the present invention allows for the knowledge of
how long viewer spends on a page, what the viewer was
viewing or listening to on the given page, the ads shown while
the viewer was viewing or listening, how long the ads were
shown, and what ads were shownto the view correspondent to
that viewer's identification and/or login.

Those of ordinary skill in the art may recognize that many
modifications and variations of the present invention may be
implemented without departing from the spirit or scope of the
invention. Thus, it is intended that the present invention cov
ers the modifications and variations of this invention provided
they come within the scope of the appended claims and their
equivalents.
What is claimed is:
1. A method for tracking digital media presentations deliv

ered from a first computer system to a user's computer via a
network comprising:

providing a corresponding web page to the user's computer
for each digital media presentation to be delivered using
the first computer system;

providing identifier data to the user's computer using the
first computer system;

providing an applet to the user's computer for each digital
media presentation to be delivered using the first com
puter system, wherein the applet is operative by the
user's computer as a timer;

receiving at least a portion of the identifier data from the
user's computer responsively to the timer applet each
time a predetermined temporal period elapses using the
first computer system; and

storing data indicative of the received at least portion of the
identifier data using the first computer system;

wherein each provided webpage causes corresponding
digital media presentation data to be streamed from a
second computer system distinct from the first computer
system directly to the user's computer independent of
the first computer system;

wherein the stored data is indicative of an amount of time
the digital media presentation data is streamed from the
second computer system to the user's computer; and

wherein each stored data is together indicative of a cumu
lative time the corresponding web page was displayed
by the user's computer.

2. The method of claim 1, wherein the storing comprises
incrementing a stored value dependently upon the receiving.

3. The method of claim 2, wherein the received data is
indicative of a temporal cycle passing.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-2

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-2

NETFLIX, INC. EXHIBIT 1002

III
United States Patent 19
Davis et al.

54 METHOD AND APPARATUS FOR
TRACKNG CLIENT INTERACTION WITH A
NETWORK RESOURCE AND CREATING
CLENT PROFILES AND RESOURCE
DATABASE

75) Inventors: Owen Davis, New York; Vidyut Jain.
Brooklyn, both of N.Y.

73) Assignee: Dot Com Development, Inc. New
York, N.Y.

(21) Appl. No.: 821,534
22 Filed: Mar 21, 1997

(S1) int. Cl. G06F 3/00
52 U.S. Cl. .. 395/20054
58) Field of Search 364/DIG. MS File,

364/DIG. 2 MS File: 380/4; 395/2003,
200.31, 200.32, 200.33, 200.54, 280, 381,

670, 680, 712

56) References Cited

U.S. PATENT DOCUMENTS

4,977.594 12/1990 Shear .. 380/4
5,638,443 6/1997 Stefik et al. 38.074
5,675.510 10/1997 Coffey et al. .. 364/514 A
5,682,525 10/1997 Bouve et al. 395/65
5,706.502 l/1998 Foley et al. 395/682
5,708,780 1/1998 Levergood et al. 395/2002
5,710.918 1/1998 Lagarde et al. 395/680
5,715,453 2/1998 Stewart 395/615

OTHER PUBLICATIONS

S. Gundavaram. CGI Programming on the World Wide Web
(O'Reilley & Assoc. Inc.), pp. 202-204.
G. Cornell and S. Horstmann. Core Java (The Sunsoft
Press), pp. 562-579.

ReQUEST FOR RECES MAGES
(S602)

RENER MAGES
(S605)

BEGIN START
METHO ANC
AKENOE OF
CURRENTE

(S608)

The IMG TAG
SERVER (S603)

A

EQUEST For

APPE, TAG
(S504)

SAVE TO RA
THEN N NIT
METC).
NSCENT

MONITOR USER CONACT CGl
ACTION SUCH AS SCRIPT AND
MOUSE CLCKS RECEW
OR KEYBOARD CUSTOIZE

ENTRY NFORMATION
(S609) (S607)

DIFFERENCE AND
TRANSMIT DATA

(S611)

(S60)

CLENT

r REUEST Hital dOCUMENT | (S601)
Resource using.

APPLET USING
c

USR CSTOZE OF
REQUESS to RUN SOP METHOD AND INFORMATION STAS
LEAWEPAGE CALCULATE HE TIME S607C) S611B)

USOO57969.52A

11 Patent Number: 5,796,952
45 Date of Patent: Aug. 18, 1998

Primary Examiner-Robert B. Harrell
Attorney, Agent, or Firm-Adams & Wilks

57) ABSTRACT

A method for monitoring client interaction with a resource
downloaded from a server in a computer network includes
the steps of using a client to specify an address of a resource
located on a first server, downloading a file corresponding to
the resource from the first server in response to specification
of the address, using the client to specify an address of a first
executable program located on a second server, the address
of the first executable program being embedded in the file
downloaded from the first server, the first executable pro
gram including a software timer for monitoring the amount
of time the client spends interacting with and displaying the
file downloaded from the first server, downloading the first
executable program from the second server to run on the
client so as to determine the amount of time the client
interacts with the file downloaded from the first server. using
a server to acquire client identifying indicia from the client.
and uploading the amount of time determined by the first
executable program to a third server. The first executable
program may also monitor time, keyboard events, mouse
events, and the like. in order to track choices and selections
made by a user in the file, and may execute upon the
occurrence of a predetermined event, as well as monitoring
or determining the amount of information downloaded by
the client. The monitored information and client identifying
indicia is stored on a database in a server for use in analysis
and for automatically serving out files assembled according
to user interests and preferences.

71 Claims, 7 Drawing Sheets

CAPURE CEN
DATA ANOSAWEN

DATABASE
(S603A)

SERVERB

SET RESPNSE
HEAOER AND OATA

RETURN BASE
TRANSPAREN (S604)

MAGE
(S603B)

CAPTRESCIENT
NFORMATION CAPTRE

(S607A) CLENT
DATA
AND

SAWEN
DAA
BASE

(S511A)

our YAAASE
TO DETERMENE
HStORCA
PROFLE
(S6078)

Return RERN

NETFLIX, INC. EXHIBIT 1002

ed
s

s
Sn

U.S. Patent

A
n

a.
d a
as

2
l

s
2

Aug. 18, 1998

t &

Sheet 1 of 7

S2

565 ls
g5 Ne
- a
2

SYS (2
WZAS W

() V w

5,796,952

Af7 7

CD
m

OS
O)

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 18, 1998 Sheet 2 of 7 5,796,952

Figure 2

OPERATING
SYSTEM

BROWSER
DIGITAL
SIGNAL

PROCESSOR
21 35 32 33 50

MEMORY MICRO

MNGEMENT Rou
42

CO
37 ROM

FLOPPY KEYBOARD
DSK CONTROLLER

22

4.

AUDO
CONTROLLER

WDEO
CONTROLLER

GRAPHC
DISPLAY

36

HARD MOUSE
DISK CONTROLER

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

5,796,952Sheet 3 of 7Aug. 18, 1998US. Patent

m2:9”.

._.zw_._o

383m55.3E«:53.52::2<mooma256$:

:83mo<azmmm2:$5;NE2.:us:3923mmp<4204<oaz< SUEZ.oz_>m:.zmo_mum—:co<

AmomwvE<mwommoz_xo<m._.55.005.mE..mogm><m._025.05:E<._.wo...mhmmacmmmum:
oz<mN...<:._z_

$8952.62.mmomaowmmmmozmm

mw<m<k<n

38$

.25...O...m><w

m623

383888<E>._wmE<moomn023.05.:mmom30mmcmmzhomo”.hmmzcmmmo".hmmzcmm

\

:83magma;mom538m

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

mmm>mmw

._.zm30

.o_vmv<29:smz<EI:22mozmmmtsus:a:33:332:3:5:“652::

q2.5:.

5,796,952

3°33m=p<pm“.0zmamm

Amoqmvmo<am><m4okmhmmzommmum:

28E

7$353333wz_m><moz<:bvwvmErFFmemaom<5552.68:52:2.22noEoz822w#5232me.25”.Sm><m228:5:mm:2526”.;33$

o<pnkm4am<vseem.%38::025:Ed":wmc<§0Lmuse.hmo”.526mmmmozmm8,zmmémzéh15.55;.g02¢59$:$32333Mmmzonamm9:8::ME$35:Emcza:3,58%.538:llmop.Emacmm22:3<mm>mmmmm<m<p<o:oqm.

z.m><m9255:38I-5.3pzmzoit:wm=._h<okmm30m¢

US. Patent

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

5,796,952Sheet 5 of 7Aug. 18, 1998US. Patent

lm2;:

383m52.3.

oh<53

3.5%,:. 33325.35was.2:.023.3585;2:$9..m1...m5:omm¢<4mME.mm...<._:o..<uoz<SUEZ.._.zm_._o

$83

mmz:.E<._.wmmSCU<simmer;zmI...oz<oz_xo<m._.._.Zm>mmmaoz.m0<n_m><m._o....0m.zo_._.o<whmmacmmmum:
mum:mo“..255

mm<m<h<ooz<mN_..<_.:z_

393$

323952.6.25.2~23z_mwomaommmmmm>mmm532mm

Amuommv2<mcomm02:85:momhmm=0mm

23mm.mmomaommm5:8mo“.5.38....

‘\<52mm
\.

:3332mm;mo...533m

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

5,796,952Sheet 6 of 7Aug. 18, 1998US. Patent

:53

E"

<53:smzs:AVoaz<mozmmmta80m5:me8258m2:2:“5.535mg:m><m._0..3m_“—mEEm20.5582.92no.5:“55:38.33:03.
no322053

mum:

zmnhmmzmzhmm

Aaowmv

2:833.3me

29259.2.>55

5:2:

.33.2235:$520582338.moHM“wzgmmmoE2.8%85.3$822m$553>53925E32:2;SEEfig.8$5.28Ea:mezzo:52.62593wfiwwmfiq_mmazqo20.25.85388:2.22m22.:#2540mmmahnzom2:hzwmmao
nowhozmx<2Dz<002.55.5.3%2.0mm

2<mo._.m><m

38$9:.Amdfiv

$5,:

Emmémzék$88255:.$052.55sz<
22ESE:

mszmmmmhwmmm>mmm

S:6%E:Ioza:8582con.532:.

383mm<m<h<o2.~38oz<<53Emammarzo

mums):hmw30mm

:88532885:.Guam:

mmm>mmm

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

5,796,952Sheet 7 of 7Aug. 18, 1998US. Patent

a

mmm>mmm

2:9h535:83:8
3.525:228:5I:mozmmmtams:mos.mwmflE$.59...—wEEmE:35:2392«53°mum:"a535;.3:5:.8523

32$

32$

 8.34258

2:szm2:hzmmmao5.3%$553”.0Eoz3::E:222522.2_m><moz<223:52"65:03<2522.6E562.8:.m5$5220:$236mo222522.

:23mag8:5:22:58:.:2.22m5.:59;:EE2m><mmzémmfio2.wmomaommm
38$“:35.mo:mm;mos):9:Amiga?3.5.65::5353225025:5.3.:szmmmo".530mm32m.

22593:.

mums):meme

wmzonfimm._.mw8°va
9:nos—v$2.$25:mom20mmmmou—hmmDOmm

<mm>mmm

32$mm<m<h<nz.m><mnz<«:5:33mmahm<o

$92:GmscmmII

hzmzzooo4.2:.—hmuacmmI
NETFLIX, INC. EXHIBIT 1002

5.796,952

METHOD AND APPARATUS FOR
TRACKING CLIENT INTERACTION WITH A
NETWORK RESOURCE AND CREATING
CLENT PROF LES AND RESOURCE

DATABASE

FIELD OF THE INVENTION

The present invention relates to a method and apparatus
for monitoring client use of and interaction with a resource
downloaded from a server on a computer network, for
storing monitored data, for creating a database including
profiles indexed by user and/or resource identity, and for
generating customized resources based upon client profiles.

BACKGROUND OF THE INVENTION

The development of Software packages designed to permit
simplified graphical user interface (GUI)-based access to the
Wealth of electronic information available over the Internet
and the World Wide Web has lead to a dramatic increase in
the amount of information that is currently available over
public computer networks. Unlike the highly controlled
atmosphere of a private computer network, however, it is
difficult to monitor user interaction with network resources
on public networks. As a result, it is difficult for individual
servers on a public network to determine how long indi
vidual users have interacted with their resources, or how
much information has been downloaded. It is equally diffi
cult for individual servers to target specialized information
to a particular audience or to learn the identity of individual
users on a public network
The techniques utilized in many private networks for

monitoring client use and interaction do not lend themselves
to public networks. For example, user access to a server in
private networks is generally obtained through the use of a
unique identification number provided by the server. Details
of individual user interaction with the network are closely
monitored by server-resident processes, and historic data
bases are automatically generated and continually updated to
track the nature and amount of information accessed by
individual users, as well as their connection time. This
information is generally used, for example, to maintain a
subscriber-indexed billing database.

In a public computer network, however, use of server
resident monitoring techniques may be severely limited. In
Some public networks, subscribers are given unlimited
access, via a service provider, to a virtually unlimited
number of servers, and no permanent connection is usually
made between these servers and a client machine. The nature
and amount of information downloaded by individual users
is not easily monitored for each client machine and only
limited information concerning individual user interaction
with the network may generally be captured by a server (i.e.,
so-called network ID and client ID).
Due largely to the lack of advanced monitoring tech

niques available to individual servers on a public network,
the same information is generally served out to all clients on
a completely untargeted basis. In other words, the same
information is generally downloaded to all users that access
a particular resource on a server, irrespective of individual
user interests. There is therefore a need to provide servers on
a public network with the ability to automatically monitor
use of and interaction with resources downloaded by users
So as to facilitate the targeted serving of information.
While various methods are known for obtaining informa

tion concerning user preferences, no such methods are
automatic. For instance, one application, known as a "cus

O

15

20

25

30

35

45

50

55

65

2
tomizable home page", permits users, upon the request of a
Server, to make certain choices. When a user who has done
So contacts that server at a later date, the server assembles
information for downloading to the user in accordance with
the previously-selected choices. More specifically, the user
visits a so-called “Web page” of a particular server where he
or she is asked to fill in a blank form by selecting various
preferences, such as links to favorite Web sites, interests in
entertainment, sports, and the like. The user then submits
this information to the server by clicking the so-called
'submit” button of the fill-in form, which causes the client
to transmit the information to the server. The server returns
a Web page with a response header which creates, or “sets"
an ID field located in a file on the client computer (this file
is known as the "client ID" or "cookie") to include infor
mation about the user's preferences. When the user later
returns to a specified Uniform Resource Locator, or “URL".
on the same server, the "client D' or "cookie" with the
previously-set preference information is transmitted in the
HTTP request header to the server, which can then return a
Web page that is assembled according to the user-specific
information. This application is disclosed, for example, in A.
Gundavaram, CGI Programming on the World Wide Web,
O'Reilly Press, 1996.
While the "customizable home page" facilitates the serv

ing of information on a limited targeted basis, it does not
provide for the automatic determination of user interests.
and inconveniences the user by requesting that he or she
specify various preferences. Moreover, use of a customiz
able home page is limited to individual Web sites and can not
be "spread out" over multiple resources on different servers.
In other words, while a customizable home page may be of
use with respect to the particular resources located on a
single server, it does not serve any purpose for other servers
on a public network. A variation of this technique is used by
some servers to download executable programs. For
instance, one such application disclosed by G. Cornell and
C. S. Horstmann, in Core Java, The SunSoft Press, 1996,
involves the generation of "order forms" on client comput
ers. In this application, the client machine loads a Web page
from a server which has an embedded link to an executable
program that downloads to and executes on the client
machine. Upon execution in the client machine, the program
contacts the server and retrieves a list of goods and associ
ated prices. The program allows the user to order various
goods and requires the user to fill out a form for billing
purposes. The user "clicks" on the submit button of the fill-in
form to transmit the information to the server. Like the
customizable home page, this method of user-specific data
acquisition requires the active participation of the user, and
does not provide for the automatic determination of user
preferences and interests.

In addition to the inability to serve out information on a
targeted basis, which is of enormous concern from a mar
keting standpoint, the limited monitoring capabilities avail
able to individual servers makes it difficult for servers and
administrators to determine how long users have viewed
their resources and how much information has been down
loaded by individual users so as to be able to bill client use
and interaction with network resources and to analyze the
value and effectiveness of such resources. As a result, much
of the information provided by a server over a public
network is the same for all clients. In addition, while it is
currently possible to track a user's links within the same
resource, there is no standard way to track user's links across
multiple resources on different servers. For example, a
common occurrence in public networks is when a user is

NETFLIX, INC. EXHIBIT 1002

5,796,952
3

viewing a first resource and "clicks on" a link to a second
resource located on a different server. In such instances, the
second resource is downloaded and the first resource is
either discarded or held in background. However, there is
generally no uniform way in which to monitor such occur
rences. In addition. while it is currently possible to track the
number of times a particular resource has been accessed, it
has generally not been possible to track the length of time a
particular resource has been viewed by a particular user.
There is also a great deal of other valuable information
concerning user interaction with a resource which would be
useful to administrators, advertisers, marketing profession
als and the like, but which can not be conveniently collected
using current monitoring techniques.
For example, one of the largest public networks, the

"Internet”, has become an extremely popular advertising
tool. Many companies have their own Internet “Web sites"
and have also purchased advertising space within more
popular Web sites of other companies. For instance, many
advertisers purchase so-called "advertising banner" (or "ad
banner") space within the Web page of a popular site.
thereby allowing consumers to "click-through" (i.e. specify
a link) to the Web site of the advertiser. In many cases, the
use of an ad banner substantially increases the advertiser's
exposure. Using the limited monitoring techniques available
to Internet servers, however, it is difficult to determine the
effectiveness of individual Web sites and ad banners. For
instance. known monitoring techniques are generally limited
to determining the number of times a Web page was down
loaded. Similar techniques are used to determine the number
of times an ad banner (which is embedded inside a Web
page) has been displayed, and how many times the banner
was "clicked" on to visit the Web site of the advertiser.

Generally, an ad banner is embedded inside a Web page
located on a first server through the use of the known HTML
 tag. When a client machine passes a TCP/IP request
for the Web page to the first server, the Web page is
downloaded to the client, including the ad banner embedded
using the tag. The tag is used to reference
a resource (i.e., the "ad banner") stored on the same or a
different server which captures the user's ID (via the HTTP
request header) and dynamically returns an ad related image
to the client for display within the Web page. At the same
time, a counter representing the number of times the specific
ad has been displayed is incremented. The ad banner itself
may have an embedded address referring to yet another Web
resource. In such an instance, if the user "clicks" on the ad
banner, the client may load a resource on the second server
which once again captures the user's D and forwards the
user to a Web resource which is appropriate for the displayed
ad (for example, a page on the advertiser's Web site). At the
same time, a counter representing the number of times the
specific ad was clicked on to go to the advertiser's Web site
is incremented.
While Web sites and ad banners have, in some cases, been

valuable marketing tools, the limited monitoring capabilities
available to servers on networks in which no permanent
connection is made between a server and a client (such as the
Internet) has prevented these marketing tools from being
used to their full potential. Since HTTP or Web servers
cannot automatically determine the amount of time and the
frequency at which particular users interact with their
resources. Web site administrators and advertisers cannot
accurately determine the effectiveness of their resources.
Since servers cannot automatically monitor user interaction
and automatically obtain user preferences and interests,
servers cannot assemble and serve resources targeted to
individual user interests.

10

5

25

30

35

50

55

65

4
SUMMARY OF THE INVENTION

In view of the foregoing shortcomings of the prior art, an
object of the present invention is to provide a method for
tracking the use and interaction of a user with a resource
downloaded from a server on a network by use of a tracking
program embedded in the resource and executable by a
client. Another object of the present invention is to transmit
the tracking information from a client to another computer
connected to the network for storage and analysis.

Still another object of the present invention is to create a
database of server resources including, but not limited to, the
number of times a resource has been displayed by clients.
the amount of time displayed, and the type and amount of
information that was displayed or transferred. This informa
tion could be used by network administrators or servers to
analyze the effectiveness of the resources made available on
their network servers.

Yet another object of the present invention is to provide
means for creating a database of user profiles for use by
advertisers and/or marketers to determine the effectiveness
and value of network-based advertisements and/or market
ing resources.

Still yet another object of the present invention is to
provide means for creating a database of user profiles
containing details of individual user interaction with and use
of network resources including for example. Network IDs
(known as "IP address”) and client IDs (known as
"cookies") that have accessed particular resources. the
amount of time spent by users interacting with and/or using
particular resources. and details of choices created by indi
vidual users within a particular resource.

It is still yet another object of the present invention to
provide means for assembling a resource. such as a Web
page or a highly targeted ad banner, in accordance with a
historic user profile.

In order to achieve the above-described and other objects
and advantages, a tracking program is embedded in a file
which is downloaded from a server to a client. The tracking
program need not originate from the same server that sent
the file, and may be obtained, for example. via an embedded
URL that points to a different server. The tracking program
may be part of a larger program that performs other opera
tions (such as displaying animations, playing sounds, etc.).
The tracking program is downloaded from a server and runs
on the client to monitor various indicia, such as elapsed time.
mouse events, keyboard events. and the like. in order to
track the user's interaction with and use of the file or to
monitor choices (such as selections or links to other
resources or files) made by the user while within the file. The
tracking program may also monitor the amount of data
downloaded by the client. Operation of the tracking program
commences after the program is downloaded and any
required initialization occurs.

After monitoring the user's interaction with and use of the
file downloaded from the server, the tracking program then
automatically sends the information acquired from the client
back to a server for storage and analysis. The information
may be sent before or as the client exits the file. or may be
sent in response to a predetermined user action. The infor
mation preferably includes any available client or network
IDs.
The acquired information is preferably stored on a server

and used to build historical profiles of individual users, to
serve out highly targeted information based upon user
profiles, as well as to extract information about how much

NETFLIX, INC. EXHIBIT 1002

5,796,952
S

data was downloaded by a respective client. and how long
or how often specific files were displayed or in use by the
client.

Preferably, the tracking program is implemented in a
network based upon the client/server model, and may be
implemented in a public network such as the Internet or
World WideWeb. The tracking program may monitor use of
and interaction with any of the resources downloaded from
a server, including an executable program, a database file, an
interactive game, a multimedia application, and the like. In
the case of the Internet, for example, the tracked resource
may, for example, be a file such as a Web page or part of a
Web page (such as an ad banner).

In one embodiment of the present invention, the tracking
program is embedded in an HTML document (such as a Web
site. a Web page, or part of a Web page--e.g. an "ad
banner"). ATCP/IP connection is used by a client to pass a
request for the HTML document. The HTML document is
stored in a server running an HTTP service and contains text
and one or more first embedded URLs for pointing to one or
more graphical images located on a server, the images being
embedded inside the HTML document using an HTML
 tag to specify the source URL for an image. The
HTML document also contains a second embedded URL for
pointing to a first executable program that runs on a server,
the first executable program being embedded inside the
HTML document using an HTML tag to specify the
source URL for the program. A second executable program
is also embedded in the HTML document by using a third
URL for pointing to the second executable program. Unlike
the first executable program, the second executable program
is downloaded and runs on the client. The second executable
program is embedded using the proper HTML tag to indicate
that it is a program that is executable on the client.

After the HTML document is downloaded to the client,
the graphical images are fetched using a TCP/IP connection
to server resources specified by the one or more first URLs.
In attempting to fetch the resource associated with the first
executable program, the client causes the program to run on
the server specified by the second URL. Upon execution of
the first executable program, the server captures identifying
indicia from the client, such as any network or client IDs
resident in the HTTP request header sent by the client. The
server stores this information in a client profile database.
The client also fetches the second executable program,

which is the tracking program. The tracking program down
loads to the client, and, after performing any required
initialization, determines the current time. The tracking
program also determines the current time upon the perfor
mance of a predetermined operation on the client computer
by a user, such as leaving the HTML document. After
calculating the amount of time the user interacted with and
displayed the HTML document, i.e., by determining the
difference in time values, the tracking program uploads the
calculated value to the server for storage in the user profile
database.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a computer network in which the
present invention may be implemented;

FIG. 2 is a block diagram of a client computer which is
used in connection with various preferred embodiments of
the present invention;

FIG. 3 is a flowchart diagram of a first embodiment of the
present invention. which is a method for monitoring the
amount of time a Web page is displayed on a client com
puter;

O

5

20

25

35

45

55

65

6
FIG. 4 is a flowchart diagram of a second embodiment of

the present invention, which is a method for monitoring the
amount of time a Web page is displayed on a client com
puter;

FIG. 5 is a flowchart diagram of a third embodiment of the
present invention;

FIG. 6 is a flowchart diagram of a fourth embodiment of
the present invention; and

FIG. 7 is a flowchart diagram of a fifth embodiment of the
present invention.

DETALED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The teachings of the present invention are applicable to
many different types of computer networks and may also be
used, for instance, in conjunction with direct on-line con
nections to databases. As will be appreciated by those of
ordinary skill in the art, while the following discussion sets
forth various preferred implementations of the method and
system of the present invention, these implementations are
not intended to be restrictive of the appended claims, nor are
they intended to imply that the claimed invention has limited
applicability to one type of computer network. In this regard,
the teachings of the present invention are equally applicable
for use in local area networks of all types. wide area
networks, private networks, on-line subscription services,
on-line database services, private networks, and public net
works including the Internet and the World Wide Web.
While the principles underlying the Internet and the World
Wide Web are described in some detail hereinbelow in
connection with various aspects of the present invention,
this discussion is provided for descriptive purposes only and
is not intended to imply any limiting aspects to the broadly
claimed methods and systems of the present invention.
The present invention, although equally applicable to

public and private computer networks, is particularly useful
for performing monitoring functions in connection with
public networks which could not heretofore be performed.
For this reason, implementation of the present invention will
be discussed in detail in connection with the Internet and the
World Wide Web. This discussion is equally applicable to
any network based upon the client/server model.

Accordingly, as will be appreciated by those of ordinary
skill in the art, as used herein, the term "client” refers to a
client computer (or machine) on a network, or to a process,
such as a Web browser, which runs on a client computer in
order to facilitate network connectivity and communica
tions. Thus, for example, a "client machine" can store and
one or more "client processes." The term "user" is used to
broadly refer to one or more persons that use a particular
client machine.

FIG. 1 illustrates a known computer network based on the
client-server model, such as the Internet. The network com
prises one or more "servers" 10 which are accessible by
"clients" 12, such as personal computers, which, in the case
of the Internet, is provided through a private access provider
14 (such as Digital Telemedia in New York City) or an
on-line service provider 16 (such as America On-Line,
Prodigy. CompuServe, the MicrosoftNetwork, and the like).
Each of the clients 12 may run a “Web browser", which is
a known software tool used to access the Web via a con
nection obtained through an Internet access provider. The
servers allow access to various network resources. In the
Internet, for example, a Web server 10 allows access to
so-called “Web sites" which comprise resources in various
different formats. A location of a resource on a server is
identified by a so-called Uniform Resource Locator, or URL.

NETFLIX, INC. EXHIBIT 1002

5.796,952
7

The “World Wide Web” (“Web”) is that collection of
servers on the Internet that utilize the Hypertext Transfer
Protocol (HTTP). HTTP is a known application protocol that
provides users access to resources (which can be informa
tion in different formats such as text, graphics, images.
sound, video, Hypertext Markup Language-"HTML" etc.,
as well as programs). HTML is a standard page description
language which provides basic document formatting and
allows the developer to specify "links" to other servers and
files. Links are specified via a Uniform Resource Locator or
“URL". Upon specification of a link, the client makes a
TCP/IP request to the server and receives information that
was specified in that URL (for example another "Web page”
that was formatted according to HTML) in return. The
information returned may be generated in whole or in part by
a program that executes on the server. Such programs are
typically known as CGI (Common-Gateway-Interface)
scripts and can be written using known programming lan
guages or methods that the server supports, such as PERL or
C++. A typical Web page is an HTML document with text,
"links" that a user may activate (e.g. "click on"), as well as
embedded URLs pointing to resources (such as images,
video or sound) that the client must fetch to fully render the
Web Page in a browser. These resources may not be located
on the same server that the HTML document was sent from
Furthermore, HTTP allows for the transmission of certain
information from the client to a server. This information can
be embedded within the URL, can be contained in the HTTP
header fields, or can be posted directly to the server using
known HTTP methods.

FIG. 2 is a block diagram of a representative "client"
computer. The same or similar computer can also be used for
each of the servers. The system unit 21 includes a system bus
31 to which various components are coupled and by which
communication between the various components is accom
plished. The microprocessor 32 is connected to the system
bus 31 and is supported by a read only memory (ROM) 33
and random access memory (RAM) 34. The ROM 33
contains, among other code. the basic input-output system
(BIOS) which controls basic hardware operations such as
the interaction and the disk drives and the keyboard. The
RAM 34 is the main memory into which the operating
system 60 and application programs, such as a Web browser
62, are loaded and cached 63. The memory management
chip 35 is connected to the system bus 31 and controls direct
memory access operations, including passing data between
the RAM 34 and the hard disk drive 36 and the floppy disk
drive 37. The CD ROM 42, also coupled to the system bus.
31. is used to store a large amount of data, e.g., multimedia
programs or large databases.

Also connected to the system bus 31 are various I/O
controllers; the keyboard controller 38, the mouse controller
39, the video controller 40, and the audio controller 41. The
keyboard controller 38 provides the hardware interface for
the keyboard 22, the controller 39 provides the hardware
interface for the mouse (or other hand-operated input
implement) 23, the video controller 40 provides the hard
ware interface for the display 24, and the audio controller 41
is the hardware interface for the multimedia speakers 25a
and 25b. A modem 50 (or network card) enables commu
nication over a network 56 to other computers over the
computer network. The operating system 60 of the computer
may be Macintosh OS, OS/2. ADX, BE OS or any other
known operating system, and each client computer is some
times referred to as a "client machine", a client "computer".
or simply as a "client."
As noted above, the Internet includes a public network

using the Internet Protocol (TCP/IP) and includes servers 10

O

15

25

30

35

45

50

55

65

8
which are accessible by clients 12. When a Web browser 62
is used to access a file on a server 10, the server 10 may send
information including graphics, instruction sets. Sound and
video files in addition to HTML documents (Web pages) to
the requesting client.

In accordance with the present invention, a tracking
program is embedded in a resource. Such as an HTML
document which is sent from a server to a client based on a
TCP/IP request. The tracking program may originate on a
different server than the resource, in which case it may be
obtained by the client through a TCP/IP request to the other
server. The tracking program executes on a client machine.
and is stored, for example, in RAM. The tracking program
may monitor various indicia. Such as time. mouse events,
keyboard events, and the like, in order to track a user's
interaction with the Web page. Thus, the tracking program
may simply monitor the amount of time the user spends
interacting with the Web page, or may monitor details of
choices (such as links) made by individual users within a
particular Web page.

In some cases, clients will "cache” a resource obtained
over the network (or temporarily store a copy of the resource
on the user's computer), and may use the cached copy of the
resource instead of obtaining it over the Internet when the
resource is needed at a later time (for example, in order to
completely render a Web page). In such cases, neither the
basic operations nor functions of the tracking program nor
the transmission of tracked information to a server, differ
from the cases where cached copies were not used.

In one embodiment of the present invention, a tracking
program is embedded in an HTML of a Web page and
downloaded by a client. The tracking program may monitor
operation of a peripheral input device connected to the client
machine, such as a keyboard or mouse, keep a record of
which choices, if any, are made by a user, and may monitor
the length of time the user has displayed the Web page in
addition to the time spent interacting with a particular part
of it. While in the preferred embodiment, the tracking
program is embedded in an HTML document, those skilled
in the art will recognize that other mechanisms are possible
for embedding the tracking program in the client hardware,
and the patent is not limited to implementation as an
executable program embedded in an HTML document. For
example, the tracking program may be downloaded and
installed in a client process, as would be the case for a
so-called “plug-in" or "helper" application. Alternatively,
the tracking program can be built into a client application or
client process such that it need not be separately downloaded
and installed. In addition, the teachings of the present
invention are not limited to use on the Internet or the World
WideWeb. For instance, the tracking program of the present
invention may be utilized on a so-called "Intranet".
As noted above, a client process, such as a Web browser

running on the client machine, uses a TCP/IP connection to
pass a request to a Web server running an HTTP service (or
"daemon" under the UNDX operating system). The HTTP
service then responds to the request, typically by sending a
Web page formatted in the Hypertext Markup Language, or
HTML to the browser. The browser displays the Web page
using local resources (e.g., fonts and colors). Unless the
tracking program is already resident in the client, it is
embedded in the Web page and downloaded to the client
along with the Web page. The tracking program is executed
after any required initialization has occurred. The tracking
program may monitor the length of time the user remains in
the Web page, or any one or more portions thereof, and may
track some or all mouse and keyboard events to provide

NETFLIX, INC. EXHIBIT 1002

5,796,952

meaningful data to the server concerning the user's interac
tion with the Web page.

In its simplest form, the tracking program is a timer
program linked to an HTML document and is downloaded
and executed on a client when the HTML document is
served to the client in response to a client TCP/IP request.
During or after the client formats and displays the Web page
specified by the HTML document, the tracking program
begins a software timer to monitor the amount of time the
Web page is displayed on the client computer.
When the user leaves the Web page (for example, by

exiting the Web page or "clicking" on a link to another
resource on the same or another server). the tracking pro
gram sends the monitored time to another computer on the
Internet for storage and analysis.
As illustrated, for example, in FIG. 3, the client issues a

TCP/IP request for a Web page located on a Server A(S301).
After a handshaking period, the Server A begins to send the
HTML formatted document, which contains an embedded
URL referencing the tracking program. The client addition
ally issues a TCP/IP request to the Server B referenced by
the embedded URL in order to obtain the tracking program
(S302). The client also makes any other TCP/IP requests
(S303) to obtain any other resources (such as images, video
or sound) needed in order to fully render the Web Page
(S304). Each of such resources are typically referenced by
individual URLs embedded in the HTML document. These
requests need not occur in any specific order and may
reference resources located on any server. In addition, the
information requested may be received in any order. When
the tracking program has been obtained, the client process
(i.e., the Web browser) saves the tracking program to RAM
(S305). After any necessary initialization, the tracking pro
gram initiates a software timer to monitor the amount of time
the Web page is displayed (S306). When the client leaves the
Web page (S307), the tracking program calculates the
amount of time the user has interacted with and displayed
the Web page and sends this information to a server. Other
available client information, such as the network ID and
client ID. or so-called "Cookie" of the client, is also sent to
the server (S308). If desired. other information concerning
the client computer may be automatically acquired and sent
to the server, such as the type of hardware in the client
computer and various resources that are resident on the
client computer.
Due to the technical limitations imposed by the Internet,

the JAVA programming language was applied to the Internet
in 1995 by programmers at Sun Microsystems, Inc. of
Mountain View, Calif. For example, some of the fundamen
tal technology issues facing network programmers and engi
neers are portability, bandwidth and security. Portability
allows the same executable code to run across multiple
operating systems. Bandwidth specifies the amount of infor
mation that can transfer across the network at any time. For
instance, high-speed lines categorized as T1 through T3 can
transmit data at 1.544 through 45 megabits per second,
ISDN lines can transmit data at rates of 64 through 128
kilobits per second, and standard phone lines, over which
most users transmit data, currently transmit using modems at
approximately 28.8 kilobits per second. In the case of a
640x480 pixel window on a computer display that is capable
of displaying images in 256 colors (which requires one byte
per pixel). in order to display the window's contents requires
3.07.200 bytes of data. To create an animation, programs
typically display 15 to 30 different images per second. Given
a 640x480 window. 15 to 30 frames per second would
require 4,608,000 to 9.216,000 bytes per second. Because

O

15

25

30

35

45

50

55

65

10
many users are currently browsing the Web using 28.8
kilobit (or slower) modems. there is simply not enough
bandwidth to download animation screens. As a result, many
Web sites today resemble magazines whose images are for
the most part static (unchanging). However, to satisfy an
audience that spends many hours in front of dynamic
television images. Internet programmers and engineers must
provide a way to animate Web sites. One solution is to
download programs written in the JAVA programming lan
guage that implement the animation.

Animation is only one example of the use of JAVA. Using
JAVA. programmers can create stand alone programs similar
to those that programmers can develop using C-H. and can
also create so-called "applets" that run within a Web
browser. To address security issues, JAVA developers
ensured that a programmer could not develop a computer
virus using a JAVA applet and that an applet could not
arbitrarily transfer information concerning a user's system
(such as a file on the user's system) back to the server. Thus,
JAVA applets have limited operations. For example, a JAVA
applet generally cannot currently read or write files on the
user's system. In this way, an applet cannot store a virus on
a user's disk or arbitrarily read information stored on a
user's disk. In addition, for other security and stability
reasons. JAVA developers eliminated or changed many
features of the C and C-H programming languages, such as
pointers, with which advanced programmers could bypass
JAVA's security mechanisms.
JAVA applets run within a "JAVA-enabled client", such as

Netscape Navigator version 2.0 (Windows 95 or Windows
NT versions only) or later, or Microsoft's Internet Explorer
version 3.0, or later. In addition. Since most users browse
with personal computers running Windows. Macintosh,
UNIX-based systems, and the like, the JAVA developers
designed JAVA to be portable, or "platform-independent".
Thus, the same JAVA applets can be downloaded and run in
any JAVA-enabled client process, irrespective of the plat
form type.
JAVA applets can be used by developers to create

sophisticated, fully interactive multimedia Web pages and
Web sites executable on any JAVA-enabled client. Repre
sentative JAVA applets are disclosed, for example, by O.
Davis, T. McGinn, and A. Bhatani, in Instant Java Applets.
Ziff-Davis Press, 1996.

Since JAVA provides the ability to download complex
programming instructions in the form of applets that are
executable by a JAVA-enabled Web browser, the tracking
program of the present invention may be implemented in the
JAVA programming language. As will be readily appreciated
by those of ordinary skill in the art, however, the teachings
of the present invention are not limited to JAVA applets or
to the JAVA programming language whatsoever. In connec
tion with the Internet, for example, the present invention
may also be implemented in a so-called "Active-X”
environment, in which the tracking program is written as an
Active-X component.
As will be further appreciated by those of ordinary skill in

the art, security restrictions may, in some cases, prevent one
from having direct access to information stored on a client's
hard disk, such as client IDs. In such cases. other means may
be used to obtain this information. For example, when a Web
browser makes a request for information from a server it
typically includes certain information about the client in the
“HTTP request header." The server receiving the request can
obtain and store this information using known means
implemented. for example, in a so-called "CGI script"

NETFLIX, INC. EXHIBIT 1002

5,796,952
11

executable on the server. Therefore, one way of obtaining
client identifying indicia is to embed a request in the HTML
file for another resource on a server that will obtain and store
the indicia. This resource may be a program (such as a CGI
script) that captures relevant information and stores it. This
information can then be combined with information moni
tored by the tracking program to provide a more detailed
knowledge base. This embedded request may be in addition
to the embedded tracking program. Representative CGI
scripts capable of capturing client identifying indicia are
disclosed by A. Gundavaram, in CGI Programming on the
World Wide Web. O'Reilly Press, 1996.

In order to store client-identifying indicia, such as a user's
network ID (IP) and client ID numbers (cookies) and
associated tracking information, a database is set up on a
server. This may be done in any known manner. such as by
using a commercially-available database program designed,
for example, for the high-speed processing of large data
bases. In the case of the tracking program described above.
the information stored in the server database may include the
network ID. client ID, the associated link (the URL of the
Web page), the amount of time the user spent interacting
with the Web page, and any selections or choices made by
the user while interacting with the Web page. Thus, the
above-described tracking program permits Web site admin
istrators and Internet advertisers, for example, to determine
not only the number of user visits or hits made to a particular
Web page, but also permits the accurate determination of the
length of time users have displayed and/or interacted with
their Web page. This is invaluable information to Internet
advertisers, among others, and permits advertisers to make
informed decisions as to the effectiveness and value of
particular Web pages and/or ad banners.
A more particular embodiment of this aspect of the

invention is illustrated in FIG. 4. A Web page (or HTML
document) is requested by the client from a first server A.
using TCP/IP and HTTP protocols (S401). This HTML
document contains text, as well as embedded URLs that
point to graphical images (e.g. GIF format image files) also
located on the first server A. The images, in general, may be
located on any HTTP server on the Internet. These images
are embedded inside the Web page using the known HTML
<MG> tag, which allows one to specify the source URL for
an image, as well as additional information such as size and
other layout parameters. These images will then be fetched
by the client using TCP/IP and HTTP protocols from Server
A (S402) and rendered on the browser (S405). The Web page
(or other Web or HTML document) additionally includes
embedded URLs which point to two resources that reside on
a second server "B". One of the resources is an executable
program, which executes on Server B. and is a CGI script.
This resource is also embedded inside the Web page using
the tag. Thus, in attempting to render the Web page,
the client will automatically fetch this resource (S403),
which forces execution of the CGI script on the second
Server B and the return of information output from the script
to the client. In this case, the information returned to the
client is formatted as an GIF image type which is extremely
small as well as completely transparent (S403B). When the
CGI script executes. it may collect information from the
HTTP request header such as browser type. network ID (IP
address), and if set, client ID ("cookie"), as well as any
additional available information such as time of execution
and the URL of the Web page, and store it in a database-for
example using SQL (S403A, S.404). In step S403B, the CGI
script returns information to the client, which includes a
response header which indicates (among other information).

15

25

30

35

45

55

65

12
that the return type is an image, that this resource should not
be cached by the client. and if no client ID is set and the
client supports it. that a client D is to be set to a value
generated by the script.

In addition, the CGI script may monitor the number of
times the Web page has been accessed in general. On the
other hand, another CGI script located on the same or
another server may be used for this purpose. This process
may be carried out by simply incrementing a counter each
time the resource is accessed, or may be conducted at any
other time by merely counting the number of entries made
in a stored record of requests made for the resource.
The other resource located on Server B is a JAVA applet.

the tracking program. This resource can also be located on
any other server, and is embedded in the Web page using the
known HTML <APPLET) tag. which allows one to specify
the source URL (through the CODE and CODEBASE
parameters) as well as additional size, layout and initializa
tion parameters. The client, in attempting to render the Web
page. will automatically fetch the applet by making a request
to Server B using the TCP/IP and HTTP protocols (S406).
Soon after it has received the JAVA code for the tracking
program, it will first execute the INIT (initialization) method
of the applet (S407) and then the START method. The
START method will make note of the current time using
standard JAVA methods (S408). The STOP method of the
applet which is executed. for example, when the user leaves
the Web page (S409), will compute the difference between
the current time and the time noted during execution of the
START method. This difference, which is the time between
execution of the STOP and execution of the START
methods, is sent to the Server B for storage and analysis
(S410). The information can be sent using standard JAVA
network methods. Such as opening a URL connection to a
second CGI scripton Server B (or any other server) designed
to capture the tracked information (S410A). This second
CGI script can then obtain any information tracked and
transmitted by the applet as well as any available informa
tion in the HTTP request header. This information can be
stored in a database on Server B or elsewhere. If necessary,
the information stored by both scripts may be combined into
one or more complete databases. As will be understood by
those of ordinary skill in the art, acquisition of information
by the server need not be conducted using CGI scripts. For
instance, this information may be acquired by any other
server-resident process designed for this purpose, or may be
uploaded by the tracking program or other client-resident
process, such as by a direct connection to a resource located
on a server (i.e. a database), or by using any other known
process.
The database thus constructed can be indexed by resource

identity and may contain information about users who have
visited the Web page, such as their network and client IDs.
how often they visited the Web page, how long the Web page
was displayed, and so on. Additionally, if the above
mentioned tracking mechanism is implemented across vari
ous Web pages in a particular Web site, the database thus
constructed may contain similar information about the dif
ferent Web pages in the Web site. Similarly, the information
acquired by the tracking program may be combined with a
process for monitoring the number of times the Web
resource has been accessed. An analysis of the data on a
user-indexed basis would facilitate the determination of
individual user interests and the like. On the other hand,
analysis of the data on a resource-indexed basis would allow
the determination of, for example, which Web pages are
viewed the longest and/or most often either by users in

NETFLIX, INC. EXHIBIT 1002

5,796,952
13

general, or by specific users. Thus, it would be possible to
determine if there were different types of users that preferred
different sections of the Web site (because, for example, they
spent more time browsing different sections of the Web site).
Additionally, if the above-mentioned tracking program is
attached to an ad banner that is embedded in multiple Web
pages across different Web sites (as is typically the case with
ad banners), the database thus constructed may contain
information about how often and for how long the different
pages that contained the ad banner were displayed, as well
as more specific information about users that visited those
pages. With this information, advertisers could determine
the accuracy of data supplied to them by Web site admin
istrators about the number of times their ad banner was
displayed, as well as learn how long the Web page contain
ing the ad banner was displayed-a number that would be of
great use in determining the effectiveness of their advertis
ng.

In another embodiment, the software timer of the tracking
program may be initiated or stopped when the user incurs a
keyboard or mouse event, such as by "clicking" on a
specified area of an ad banner. This is illustrated in the
flowchart shown in FIG. 5. Operation of the system in this
embodiment is similar to that shown in FIG. 3. Thus, the
client first issues a TCP/IP request (S501). After a hand
shaking period, a first Server A begins to send an HTML
formatted document, which contains an embedded URL
referencing the tracking program. The client additionally
issues a TCP/IP request to a second Server B referenced by
the embedded URL in order to obtain the tracking program
(S502B). The client also makes any other TCP/IP requests to
obtain any other resources (such as images, video or sound)
needed in order to fully render the Web Page (S502A). Each
of such resources are typically referenced by individual
URLs embedded in the HTML document. These requests
need not occur in any specific order, and the information
requested may be received in any order. When the tracking
program has been obtained, the client process (i.e. the Web
browser) saves the tracking program to RAM (S503B). In
this case, the tracking program commences a software timer
upon the detection of a predetermined user action (S504).
When the user performs another predetermined action
(S505), the tracking program calculates the amount of time
between the predetermined user actions, and sends this
information, along with other available client information, to
the server (S506).

Thus, for instance, the software timer of the tracking
program may be used in monitor the amount of time a user
spends interacting with a portion of a Web page. For
example, if the Web page is provided with an interactive
resource Such as a game or an information resource activated
by clicking on aparticular button, the tracking program may
determine how long a user has interacted with such a
Selection. In the case of a Web page provided with an ad
banner, the tracking program can be designed to monitor the
amount of time a user has interacted with the ad banner.
The tracking program may be used not only to monitor the

time spent by a user in a Web page or an ad banner, but may
also be used to create a more complex "historical" user
profile to permit the server to assemble a Web page or target
an ad banner based upon the diverse interests of respective
SCTS

For example, when a user is exposed to an ad banner
having information targeted to their particular interests, the
user is more likely to interact with that ad banner for a longer
period of time and on a more frequent basis, thereby
increasing the value of that ad banner. In accordance with

5

25

30

35

45

50

55

65

4
the present invention, in order to learn the particular interests
of respective users, an ad banner may include specific
information permitting the user to interact in different ways
with the banner. The ad banner may have pull-down menu
options, clickable buttons or "hot-spots”. keyboard input, or
any number of input mechanisms, whose selection or action
upon in a designated manner causes corresponding events to
take place in the ad banner such as the generation or
Synthesis of Sounds, the display of images, video, or graphic
animations, or the presentation of different types of infor
mation to the user, perhaps with additional choices. Such
information may, for example, include links to interactive
games, links to entertainment information, sports-related
games and/or trivia, and the like, or information concerning
particular goods and services, or means by which to order or
purchase specific goods and services. The more choices that
are made available, the more information that can be
acquired concerning the user's particular interests. Of
course, an unlimited number of possibilities are available.
depending upon the application, and an exhaustive listing of
such possibilities cannot be provided herein.

In this case, the tracking program is downloaded, as
described above, with the HTML document in response to a
TCP/IP client request. As above, the tracking program may
monitor the amount of time the user spends displaying both
the Web page and the ad banner embedded in the Web page
as a whole, but also monitors the user's interaction with the
Web page and the ad banner, such as by monitoring each of
the choices made by the user within the Web page and ad
banner. Thus, for example, if an interactive sports-related
game is included in the Web page, the tracking program will
determine if a user has played the game, what his or her
score was, how long they played the game, and any other
possible information. If a choice of different games, each
directed to a different interest, are made available to users
within the same ad banner, it is possible to determine what
is of most interest to the user by the selection of the game.
In addition, the ad banner may be provided with multiple
links to other, diverse Web sites, such as Web sites relating
to sports, entertainment, general information, technology,
history, and the like. The tracking program monitors which
of the various links are selected and provides this informa
tion to the server. As discussed above, other available client
information may also be sent to the server. This information
is sorted and stored in the server database and may be
analyzed manually or automatically.
The tracked information may be used to assemble

resources geared toward the user's interests. Based upon the
historic user profiles created in the server database, down
loading of information to the same client on a subsequent
visit to the same or different Web page may be done on a
more intelligent basis. For example, users who have previ
ously expressed an interest in sports-related trivia (as indi
cated by their previously tracked behavior) may be served
with information targeted to audiences interested in sports.
Similarly, users who have expressed greater interest in
technology may be served with technology-related informa
tion that would be of much less interest to other users. The
assembly of a resource such as a Web page may be easily
accomplished. For example, the HTML document of the
Web page may include a plurality of embedded resources.
Previous choices made by a user on a particular client
computer and stored in a user profile database may be used
to determine which of the resources is to be downloaded to
that client using simple logical processing instructions. For
instance, a user profile which indicates that a user has a
greater interest in sports-related information than in histori

NETFLIX, INC. EXHIBIT 1002

5,796,952
15

cal information may be used to download sports-related
resources, such as GIF-type images and advertisements.
Since the user has previously expressed a greater interest in
sports. sports-related advertisements may therefore be tar
geted to that user.
A particular implementation of this mechanism is illus

trated in FIG. 6. A Web page is requested by the client from
Server A (S601). This Web page contains text, as well as
embedded images which must be fetched from Server A
(S602) and rendered (S605). In addition, the Web page
contains embedded URLs that point to two resources on
Server B. The first resource is a first CGI script 1, which is
embedded inside the Web page using the standard HTML
 tag (S603). In attempting to render the Web page.
the client will automatically fetch the resource associated
with the tag on Server B, which will result in
execution of the CGI script 1. This CGI script 1 can capture
client information such as Network ID or Client ID (S603A).
The CGI script also returns a transparent image (S603B).
The other resource on Server B is a Java applet, which is

a combination ad banner and tracking program. This may be
stored on any server. In attempting to render the Web page.
the client will automatically fetch the Java code (S604),
download, initialize, and start operation of the applet (S607.
S608). After the applet is initialized, it contacts Server B to
obtain other resources it needs in order to display images.
play sounds, or control its overall look and behavior. In fact,
the applet may obtain these resources by executing one or
more CGI scripts or other processes that reside on Server B
or elsewhere (S607). Based on information provided to these
scripts through standard HTTP methods, including client
information (S607A), such as network and client IDs, any
other information such as the URL of the Web page, as well
as information captured by the CGI script 1, and the previ
ously constructed historical database profile (S607B), dif
ferent information (images, sounds, text, etc.) may be
returned to the applet. Such information can therefore be
selected by the scripts based on Network and/or Client D,
the URL of the Web page, and the previously constructed
client profile. This may be accomplished in the manner
described above.
The STOP method of the applet which is executed, for

example, when the user leaves the Web page (S609), will
compute the difference between the current time and the
time noted during execution of the START method. This
difference, which is the time between execution of the STOP
and execution of the START methods, is sent to the Server
B for storage and analysis (S610). The information can be
sent using standard JAVA network methods, such as opening
a URL connection to a second CGI script on Server B
designed to capture the tracked information (S610A,
S610B). In step S610A, the second CGI script may obtain
any information acquired by the tracking program (i.e., the
JAVA applet), as well as client identifying indicia transmit
ted by the client, such as in the HTTP request header. This
information can be stored in a database on Server B. If
necessary, the information stored by both scripts may be
combined into one more complete databases.

In this embodiment of the present invention, two distinct
databases may be created. The first database is indexable by
resource identity (such as URL), and includes information
such as URL of the Web document, number of times
accessed. identity of clients that accessed the Web
document, amount of time displayed, amount of data
displayed, average time displayed, number of times
accessed, and the like. In the case of an ad banner or other
embedded resource which may be accessed by a link made

10

15

25

30

35

45

50

55

65

16
by a user while browsing another resource, the database may
include additional information such as "click-through rate"
(the number of times the ad banner was clicked on to go to
the Web site of the advertiser), and the like.
A second database that may be created is indexable by

individual client, and includes information concerning indi
vidual client's interests and preferences. These separate
databases may be combined in a single database indexable
by client or resource identity.

In another embodiment, illustrated in FIG. 7, the tracking
program is used to create a database of information about a
Web site (or, if desired, across multiple Web sites on
multiple servers). In this case, the same tracking program is
embedded in multiple Web pages served up by the same
Server A. The tracking program in general originates from a
Server B (but may also originate from Server A). The
tracking program will monitor the time the Web page was
displayed, and may capture any other information available
to it. For example. the tracking program can determine the
URL of the Web page it is embedded in and may determine
the amount of information downloaded by the client.

In particular, a Web page is requested by the client from
Server A (S701). This Web page contains text, as well as
embedded images which must be fetched from Server A
(S702) and rendered (S705). In addition, the Web page
contains embedded URLs that point to two resources on
Server B. The first resource is a CGI script, which is
embedded inside the Web page using the standard HTML
 tag (S703). In attempting to render the Web page.
the client will automatically fetch the resource on Server B.
which will result in execution of a CGI script 1. This CGI
script 1 can capture client information such as Network ID
or Client ID (S703A) and returns a transparent image
(S703B). The other resource on Server B is a Java applet.
This may be stored on any server. In attempting to render the
Web page, the client will automatically fetch the JAVA code,
store it in RAM. initialize, and start operation of the applet
(S707). The START method of the applet is executed and the
applet takes note of the current time (S708). Thereafter, the
applet contacts the Server A and, if security restrictions
allow it, the applet queries the Server A for the page it is
embedded in, determines its size, as well as the URLs of
other embedded resources (such as images or video), and
requests header information about these resources in order to
determine their size (S709). In this case, the tracking pro
gram may determine the size of the fully rendered Web page.
(i.e., the number of bits that must be downloaded in order to
fully render the Web page). If the tracking program is part
of a larger embedded application that displays information
downloaded from a server (such as a live news feed applet).
the tracking program can also monitor the amount of infor
mation downloaded and displayed by the applet. Before or
as the user leaves the Webpage (S710), the tracking program
can transmit this information to Server B for storage and
analysis (S711. S711A, S71B). In this manner, it is possible
to build a database of accurate information concerning how
often different pages of a Web site are requested, how long
they are displayed, and how much information was down
loaded. This information would be of use to Web site
administrators in order to judge the popularity of different
Web pages, as well as for example to set advertising rates for
any embedded advertisements.

In yet another embodiment, the tracking program is used
to assemble a bill for the user's access to information. For
example, users who have access to a live news or entertain
ment feed may be charged according to the amount of
information displayed, either according to bit size or time, or

NETFLIX, INC. EXHIBIT 1002

5.796,952
17

both. Imagine that the tracking program is attached to a live
feed applet. The tracking program monitors the time the
information is displayed and the amount of bits downloaded
and automatically transmits this information back to a server
when the user leaves. Together with the user's ID (client and
network), and billing information that the user was previ
ously requested to enter, it is possible to determine the
correct charge for the user. Similarly, a user could be charged
and billed for time spent on a Web page, as well as amount
of information downloaded by him or her.
The methods embodied in the invention may be used to

create web resources with so-called “persistent" state. That
is, the tracking program. in addition to the client profile
database. may also be used to create a Web resource that
appears to automatically “remember" the user's previous
interactions on the Web resource. This may be implemented
as in FIG. 6. For example, consider a Web page with an
embedded Crossword program which also incorporates
tracking mechanisms. When the page is rendered and the
Crossword program commences, a user is able to use the
keyboard and mouse to fill in letters on the Web page based
on clues that are displayed. At the same time, these choices
are tracked, along with any other information including but
not limited to time. Before or at the time the user leaves the
Web page, the tracked information is sent to a server for
storage (S610). When the user later returns to that page. the
network or client ID is used to automatically fill in the letters
in the crossword that were previously selected (As in
S607-607C).

Although the invention has been described in terms of
preferred embodiments, those skilled in the art will recog
nize that various modifications of the invention can be
practiced within the spirit and scope of the appended claims.
Thus, for example, the scripts used to transfer data need not
be CGI scripts but could be a dedicated server or a direct
connection to the database, such as using JDBC (Java
Database Connectivity) to place data into the database.

In addition, while the preferred embodiments have been
described in connection with JAVA applets that are execut
able on a client, the tracking of user interaction may be
accomplished by a client executable program written in a
language other than JAVA. For example, the teachings of the
present invention may be accomplished using Active-X
components in conjunction with the Internet Explorer Web
browser. In addition, the tracking program need not be a
program that executes on the client computer. For example,
the tracking program may comprise a CGI script located on
a server. Upon execution of the CGI script, the time at which
a Web page is downloaded may be determined. By modi
fying Web browser software using appropriate instructions,
the browser can be used to send a signal to the server that
downloaded the Web page upon the occurrence of a prede
termined user operation (such as exiting the Web page or
clicking on a link to another Web page or resource). In this
manner, a program running on the server can be used to
determine the total time period the user has interacted with
and displayed the Web page.

It should also be appreciated that while the preferred
embodiments of the tracking program use a single database
to store the information, multiple databases could be used to
store and process the information.

In addition, while in the preferred embodiments of the
tracking program the server that originated the tracking
program and the database reside on the same machine. this
is not a requirement of the present invention. The database
may instead reside on a separate machine from that which

O

S

25

35

45

55

65

18
serves the tracking program. Similarly, while in the pre
ferred embodiments the server that originates the network
resource, or Web page (Server A), and the server that
originates the tracking program (Server B) are different
servers, this is not a requirement of the present invention.
The network resource (Web page) and the tracking program
may be served out by the same server.

It should also be appreciated that while in the preferred
embodiments the tracking program uses the HTTP and
TCP/IP protocols, other network data transmission protocols
could be used that implement the same functionality.
Moreover, use of an HTML formatted Web page is not
necessary. The information supplied to the user may not be
in the form of an HTML or Web document such as a Web
page, but can be some other form of information. In
addition, the tracking program need not be downloaded to
the client from the server, but can be an added module to the
client application or Web browser running on the client, or
may be stored elsewhere on the client machine. For
example, in the former case, added modules could be
plug-ins and in the latter case could be referred to as cached
resources. In such cases, the client application or Web
browser would include appropriate means to enable activa
tion of the tracking program and the uploading of a client
profile based upon the user's interaction with a Web page or
network resource.

Moreover, although in the preferred embodiments it is
envisioned that the network resource or Web page is down
loaded from a remote server, this is not a limitation of the
invention. The precise location of the target document or
server is not important. For example, the target document
may even be located on the hard drive of the client machine.

Also, while in the above-described embodiments, the
client profile is created automatically using information
acquired by the tracking program and one or more CGI
scripts and is stored in the server database, the client profile
can be created in a different manner and/or supplemented by
additional information. For example. one such technique for
creating a client profile is through the use of HTML "fill-in"
form tags. In such cases, the client profile is created not by
the tracking program, but instead by the client. Based on the
client profile, the server can serve out information targeted
to the client's interest, as revealed by the fill-in form.

Also, while the preferred embodiments have been
described in the context of Web browser software, the
techniques of the invention apply equally whether the user
accesses a local area network, a wide area network, a public
network, a private network, the Internet, the World Wide
Web, or the like, and whether access to the network is
achieved using a direct connection or an indirect connection.
For example, in connection with the World WideWeb, the
teachings of the present invention apply whether a network
connection is obtained via a direct Internet connection or
indirectly through some on-line service provider. Thus, the
“computer network" in which the invention is implemented
should be broadly construed to include any computer net
Work in which one or more clients is connectable to one or
more servers, including those networks based upon the
client-server model in which a client can link to a "remote”
document (even if that document is available on the same
machine, system, or "Intranet").

It should also be appreciated that while in the preferred
embodiments the tracking program is downloaded with the
Web page from the server, this is not a limitation of the
invention. The tracking program need not be embedded
within an existing Web page, but rather may be embedded

NETFLIX, INC. EXHIBIT 1002

5,796,952
19

within a Web browser or supported elsewhere within the
client itself. Thus, the tracking program may be initiated
whenever a call to a Web page or network resource is made,
such as when a search to a particular URL is initiated, or
when a previously-stored URL is launched.
We claim:
1. In a computer network having one or more servers

connectable to one or more clients, a method of monitoring
the amount of time a user interacts with and displays a file
downloaded from a server, comprising the steps of:

using a client to specify an address of a resource located
on a first server:

downloading a file corresponding to the resource from the
first server in response to specification of the address;

using the client to specify an address of a first executable
program located on a second server, the address of the
first executable program being embedded in the file
downloaded from the first server, the first executable
program including a software timer for monitoring the
amount of time the client spends interacting with and
displaying the file downloaded from the first server;

downloading the first executable program from the second
server to run on the client so as to determine the amount
of time the client interacts with the file downloaded
from the first server;

using a server to acquire client identifying indicia from
the client; and

uploading the amount of time determined by the first
executable program to a third server,

2. A method of monitoring according to claim 1; wherein
the step of using a client to activate a link to a resource
located on a server comprises the step of using a TCP/IP
connection to pass a request for an HTML document from
the client to the server.

3. A method of monitoring according to claim 2; wherein
the HTML document is a Web page formatted in HTML
containing text and one or more embedded URLs for point
ing to a graphical image type located on a server, the image
type being embedded in the HTML document using an
HTML tag to specify the source URL for an image
and predetermined layout parameters.

4. A method of monitoring according to claim 3; wherein
the HTML document further comprises a URL pointing to a
process that executes on a server and being embedded in the
HTML document using an HTML tag; and the step
of downloading includes the steps of attempting to fetch the
resource specified by the HTML tag using the client
by issuing an HTTP request having a request header, execut
ing the process in response to the attempt to fetch by the
client, capturing client-identifying indicia from the HTTP
request header, and storing the client-identifying indicia in a
first database.

5. A method according to claim 4: wherein the process
that executes on a server comprises a CGI script.

6. A method of monitoring according to claim 3: wherein
the HTML document further comprises a URL pointing to a
program that executes on a server and has an address that is
embedded in the HTML document; and the step of down
loading includes the steps of fetching the program with the
client by issuing an HTTP request having a request header,
executing the program in response to fetching by the client,
capturing client-identifying indicia from the HTTP request
header, and storing the client-identifying indicia in a first
database.

7. A method according to claim 1; wherein the first
executable program comprises a software component adding

10

5

25

30

35

45

55

65

20
functionality to a client application and is downloaded from
a server and installed in an application running on the client.

8. A method according to claim 7: wherein the software
component comprises a plug-in or helper-application.

9. A method according to claim 7; wherein the software
component comprises an Active-X component.

10. A method according to claim 1; wherein the step of
using a server to acquire client identifying indicia from the
client comprises the steps of using the client to specify an
address of a second executable program located on a respec
tive server, the address of the second executable program
being embedded in the file downloaded from the first server.
the second executable program including a routine for
acquiring client identifying indicia in response to activation
of an address thereto, and using the respective server to run
the second executable program to acquire client identifying
indicia from the client.

11. A method according to claim 10: wherein the second
executable program is a CGI script.

12. A method according to claim 10; wherein the second
executable program is a JAVA applet that is downloaded and
runs on the client.

13. A method according to claim 1; wherein the step of
specifying an address of the resource includes the step of
using a TCP/IP connection to pass a request having an HTTP
request header containing client identifying indicia to the
second server.

14. A method of monitoring according to claim 13;
wherein the step of acquiring client identifying indicia
includes the step of using the server to acquire the client
indicia from the HTTP request header.

15. A method of monitoring according to claim 1; further
comprising the step of incrementing a count value corre
sponding to the resource in the first server in response to
downloading of the file corresponding to the resource.

16. A method of monitoring according to claim 15; further
comprising the step of storing the count value in a database.

17. A method of monitoring according to claim 1; wherein
the step of acquiring client identifying indicia from the client
comprises the steps of embedding a link to the second
executable program in the file downloaded from the first
server, the second executable program being executable on
the third server, using the client to activate the link to the
second executable program by sending a request having a
request header containing client identifying indicia in an
attempt to fetch the second executable program; using the
third server to execute the second executable program in
response to activation of the link using the server to check
the request header issued by the client to determine if a client
ID has been set for the client, and, if no client D has been
set, setting an ID for the client, and storing the client ID in
a first database.

18. A method according to claim 17; wherein the client ID
comprises a cookie.

19. A method according to claim 1; wherein the first
executable program is cached on the client,

20. A method of monitoring according to claim 1; wherein
the second and fourth servers comprise a single server.

21. A method of monitoring according to claim 1: wherein
the second through fourth servers comprise a single server.

22. A method of monitoring according to claim 1; wherein
the resource located on the first server comprises a Web
document and includes an embedded URL to another
resource located on the second server, the other resource
comprising an ad banner.

23. A method of monitoring according to claim 1: wherein
the resource located on the first server comprises a Web

NETFLIX, INC. EXHIBIT 1002

5,796.952
2

document and includes an embedded URL to another
resource located on a fifth server, the other resource com
prising an ad banner.

24. A method of monitoring according to claim 1; wherein
the step of specifying an address of a resource located on a
first server includes the step of obtaining the resource using
a URL.

25. A method of monitoring according to claim 1: wherein
the file downloaded from the first server is an HTML
document.

26. A method of monitoring according to claim 1; wherein
the resource located on the first server is an HTML
document, and the step of specifying an address of the
resource includes the step of using a TCP/IP connection to
pass a request having an HTTP request header containing
client identifying indicia to the second server.

27. A method of monitoring according to claim 1; further
comprising the step of storing the client identifying indicia
in a first database on a server.

28. A method of monitoring according to claim 1; further
comprising the step of storing the calculated amount of time
in a first database on a server.

29. A method of monitoring according to claim 1; further
comprising the step of storing the address of the resource
located on the first server in a first database.

30. A method of monitoring according to claim 1; further
comprising the steps of storing the client identifying indicia
in a database, storing the calculated amount of time in a
database, and storing the address of the resource located on
the first server in a database.

31. A method according to claim 1; wherein the first
executable program is an applet written in JAVA.

32. A method according to claim 1; wherein the software
timer of the first executable program commences operation
after a predetermined user operation.

33. A method according to claim 1; wherein the first
executable program is downloaded in response to a prede
termined user operation.

34. A method according to claim 1; further comprising the
steps of providing a user of the file with one or more choices
or selections requiring manual entry using an input periph
eral device connected to the client, monitoring choices and
Selections made by the user, sending the information back to
a server and storing the monitored choices and selections in
a database.

35. In a computer network having one or more servers
connectable to one or more clients, a method of monitoring
client use and interaction with a resource located on a server,
comprising the steps of:

using a server to monitor requests for the resource;
downloading a file corresponding to the resource to a

client in response to a request for the resource trans
mitted to the server:

downloading a first executable program to the client, the
address of the first executable program being embedded
in the file downloaded to the client, the first executable
program including a software timer for monitoring the
amount of time the client spends interacting with and
displaying the file;

counting the number of times the file has been down
loaded; and

storing an address of the file, an amount of time the file
has been interacted with and displayed by clients, and
the number of times the file has been downloaded in a
first database on a server.

36. A method of monitoring according to claim 35;
wherein the step of requesting a resource located on a server

1.

15

25

30

35

45

50

55

65

22
comprises the step of using a client to activate a link to a
resource located on a server using a TCP/IP connection to
pass a request for an HTML document from the client to the
Seye.

37. A method of monitoring according to claim 36:
wherein the HTML document is a Web page formatted in
HTML containing text and one or more embedded URLs for
pointing to a graphical image type located on a server, the
image type being embedded in the HTML document using
an HTML tag to specify the source URL for an
image and predetermined layout parameters.

38. A method of monitoring according to claim 37;
wherein the HTML document further comprises a URL
pointing to a process that executes on a server and being
embedded in the HTML document using an HTML
tag; and the step of downloading includes the steps of
attempting to fetch the resource specified by the HTML
<EMG> tag using the client by issuing an HTTP request
having a request header, executing the process in response to
the attempt to fetch by the client, capturing client
identifying indicia from the HTTP request header, and
storing the client-identifying indicia in a first database.

39. A method according to claim 38; wherein the process
that executes on a server comprises a CGI script.

40. A method of monitoring according to claim 38:
wherein the HTML document further comprises a URL
pointing to a program that executes on a server and has an
address that is embedded in the HTML document; and the
step of downloading includes the steps of fetching the
program with the client by issuing an HTTP request having
a request header, executing the program in response to
fetching by the client, capturing client-identifying indicia
from the HTTP request header, and storing the client
identifying indicia in a first database.

41. A method according to claim 35: wherein the first
executable program comprises a software component adding
functionality to a client application and is downloaded from
a server and installed in an application running on the client.

42. A method according to claim 41; wherein the software
component comprises a plug-in or helper-application.

43. A method according to claim 41; wherein the software
component comprises an Active-X component.

44. A method according to claim 35; further comprising
the steps of using the client to specify an address of a second
executable program located on a respective server, the
address of the second executable program being embedded
in the file downloaded from the first server, the second
executable program being a routine for acquiring client
identifying indicia in response to activation of an address
thereto, using the respective server to run the second execut
able program to acquire client identifying indicia from the
client, and storing the client identifying indicia in a database.

45. A method according to claim 44; wherein the second
executable program is a CGI script.

46. A method according to claim 44; wherein the second
executable program is a JAVA applet that is downloaded and
runs on the client.

47. A method according to claim 35; wherein the step of
requesting the resource includes the steps of specifying an
address of the resource using a TCP/IP connection to pass a
request having an HTTP request header containing client
identifying indicia to the second server.

48. A method of monitoring according to claim 47;
wherein the step of acquiring client identifying indicia
includes the step of using the server to acquire the client
indicia from the HTTP request header.

49. A method of monitoring according to claim35; further
comprising the step of incrementing a count value corre

NETFLIX, INC. EXHIBIT 1002

5,796,952
23

sponding to the resource in a server in response to down
loading of the file corresponding to the resource.

50. A method of monitoring according to claim 49; further
comprising the step of storing the count value in a database.

51. A method of monitoring according to claim35; further
comprising the step of acquiring client identifying indicia
from the client by embedding a link to a second executable
program in the file downloaded from the server, the second
executable program being executable on a respective server,
using the client to activate the link to the second executable
program by sending a request having a request header
containing client identifying indicia in an attempt to fetch
the second executable program, using the respective server
to execute the second executable program in response to
activation of the link, using the respective server to check
the request header issued by the client to determine if a client
ID has been set for the client, and, if no client ID has been
set, setting an ID for the client, and storing the client ID in
a database.

52. A method according to claim 51; wherein the client ID
comprises a cookie.

53. A method according to claim 35: wherein the first and
second databases comprise a single database.

54. A method according to claim 53; wherein the step of
downloading a file conresponding to the resource to a client
comprises the steps of assembling a file in accordance with
information stored in the single database.

55. A method according to claim 35; further comprising
the steps of providing a user of the file with one or more
choices or selections requiring entry using an input periph
eral device connected to the client, monitoring choices and
selections made by the user, and storing the monitored
choices and selections in a database.

56. A method according to claim 35; wherein the first
executable program comprises a plug-in application that is
downloaded from a server and installed in an application
running on the client.

57. A method according to claim 35; wherein the first
executable program is cached on the client.

58. A method of monitoring according to claim 35;
wherein the resource located on the server comprises a Web
document and includes an embedded URL to an ad banner
to be displayed within the Web document.

59. A method of monitoring according to claim 35;
wherein the resource located on the server comprises a Web
document and includes an embedded URL to another
resource located on another server, the other resource com
prising an ad banner to be displayed within the Web docu
ment.

60. A method of monitoring according to claim 35:
wherein the step of requesting the resource located on the
server comprises the step of obtaining the resource using a
URL.

61. A method of monitoring according to claim 35;
wherein the file downloaded from the server is an HTML
document.

62. A method of monitoring according to claim 35;
wherein the resource located on the server is an HTML
document, and the step of requesting the resource comprises
the steps of using a TCP/IP connection to pass a request
having an HTTP request header containing client identifying
indicia to the server.

63. A method according to claim 35; wherein the first
executable program is an applet written in JAVA.

64. A method according to claim35; wherein the software
timer of the first executable program commences operation
after a predetermined user operation.

10

15

20

25

30

35

45

50

55

65

24
65. A method according to claim 35; wherein the first

executable program is downloaded in response to a prede
termined user operation.

66. A method according to claim 35; further comprising
the step of assembling a file in accordance with information
stored in the first database.

67. A method according to claim 35; further comprising
the steps of acquiring client identifying indicia from the
client and storing the client identifying indicia in a second
database.

68. A method according to claim 35; further comprising
the steps of determining the amount of data downloaded to
the client, and storing the amount of data downloaded to the
client in the first database.

69. In a computer network having one or more servers
connectable to one or more clients, a method for monitoring
the interaction of a user with a file downloaded from a
server, comprising the steps of:

using a TCP/IP connection to pass a request for an HTML
document from a client to a first server using an HTTP
protocol, the HTML document containing text and
embedded URLs. one or more of the URLs for pointing
to a graphical image located on a second server, the
image being embedded inside the HTML document
using an HTML tag to specify the source URL
for an image and predetermined layout parameters, a
second URL for pointing to a first executable program
that runs on a server, the first executable program being
embedded inside the HTML document using an HTML
 tag to specify the source URL for the program,
and being executable upon the server in response to a
TCP/IP request by a client, and a third URL for pointing
to a second executable program that runs on the client,
the second executable program being embedded inside
the HTML document using an HTML CAPPLETs tag
to specify the source URL for the program and being
executable on a client in response to a TCP/IP request;

downloading the HTML document to the client;
using a TCP/IP connection to fetch the graphical images

located on the second server specified by the one or
more first URLs embedded in the HTML document;

displaying the text and graphical images on the client in
accordance with the formatting and layout parameters
specified in the HTML document;

using a TCP/IP connection to fetch the first executable
program to execute the first executable program on the
server and a return of information output from the first
executable program to the client in the form of a
transparent GIF image type and obtaining information
from the HTTP request header including browser type.
at least one of network D. client D, time of execution
and URL of the HTML document and storing said
information in a database indexed by at least one of the
network ID of the client machine, the client ID of the
client machine, and the URL of the HTML document;

using a TCP/IP connection to fetch the second executable
program for execution on the client, wherein the second
executable program includes a software timer for deter
mining the amount of time the client spends interacting
with the HTML document; and

uploading the time determined by the tracking program to
the server.

70. A method according to claim 69; wherein the infor
mation output from the first executable program to the client
is a transparent image.

NETFLIX, INC. EXHIBIT 1002

5.796,952
25 26

71. In a computer network having one or more servers using the client to monitor the amount of time the user
connectable to one or more clients, a method of monitoring spends interacting with and displaying the file down

loaded from the first server: user interaction with a file downloaded from a server. - - - - - -
comprising the steps of: using a server to acquire client identifying indicia from

the client; and
using a client to specify an address of a resource located 5 uploading the amount of time determined by the first
on a first server; executable program to a server.

downloading a file corresponding to the resource from the
first server in response to specification of the address: :: * : * :

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-3

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-3

NETFLIX, INC. EXHIBIT 1002

(19) United States
US 20030236905A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0236905 A1
Choi et al. (43) Pub. Date: Dec. 25, 2003

(54) SYSTEM AND METHOD FOR
AUTOMATICALLY RECOVERING FROM
FAILED NETWORK CONNECTIONS IN
STREAMING MEDIA SCENARIOS

(75) Inventors: Yejin Choi, Bellevue, WA (US);
Alexandre Grigorovitch, Redmond,
WA (US); Troy Batterberry, Kirkland,
WA (US)

Correspondence Address:
SENNIGER POWERS LEAVITT AND
ROEDEL
ONE METROPOLITAN SQUARE
16TH FLOOR
ST LOUIS, MO 63102 (US)

(73) Assignee: Microsoft Corporation

NETWORKING
CODE

/1 ENCOUNTERS AN
2O2 ERROR

IS
RECONNECT LOGIC

SABLED RECONNECT THE
204

DO NOTATTEMPT
YES TOAUTOMATICALLY EXTRECONNECTS

(21) Appl. No.: 10/179,583

(22) Filed: Jun. 25, 2002

Publication Classification

(51) Int. Cl." ... G06F 15/16
(52) U.S. Cl. .. 709/231
(57) ABSTRACT
A System and method for automatically recover from broken
network connections in Streaming media Scenarios. Server
Software executing on the Server communicates with client
Software executing on the client during the Streaming media
Session. If the Streaming media Session is interrupted, the
Server Software and the client Software exchange messages
to associate the client with a client State Stored by the Server
and to re-synchronize playback of the content.

^ RESUME \ 224-sANs SY "Y

SUBMT LOGGING
PROCESSING | INFO FOR PREVIOUS

CLEN STREAMING
| 222 SEGMENT, AND

210 212 RESET COUNT OF
CONNECTED TO RECONNECT
A W3C SERVER ATTEMPTS

2O6 218
YES

/ SLEEP NITIATE
f BASED

HAS THE CENT NO ENyes / ONTHE \ RECONNEC RENT
SESSION PREVIOUSLY HANDLED BY ALGORITHM, SSYER \sic ESSR

TREAMED FROM THE SERVE RECONNECT AND INCREMENT/ PROTOCOL v
SUCCESSFULLY \ COUNT OF /

ANLOGIC \RECONNECT, g NO
24 /VariEMTs, 220

; - !

216
DOES THE

?t EXIT \ YES - NUMBER OF
RECONNECT RECONNECTATEMPTS

/ w PROCESSING EXCEED THE
228 LIMIT?

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Patent Application Publication Dec. 25, 2003 Sheet 1 of 7

|||NENOdWOO |
|

ÅRHOLISOdE}} ELVIS

||NENOdWOO

XèJO LISOdE}} ELVIS

ILNENOdWOO |NH|TO

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Patent Application Publication Dec. 25, 2003 Sheet 2 of 7

/ ?NISSHOOHd(\ / | 1OHNNOOB, :,

O

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 25, 2003 Sheet 3 of 7 US 2003/0236905 A1

O
D

S
CY) tra H

f
g c
CD
L

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 25, 2003 Sheet 4 of 7 US 2003/0236905 A1

FIG. 4

402 N - N. 403
. Has the N Conti
Server detected that stri.A. and

Na client has disconnected Waiting for client
N abnormally? -1 Commands

Yes 404
N
Pause client state
and Cache client
state in timeOut 410 -

queue
ACCept log

No information

1 N. ls the P t
Has client states No - specific client OCeSS reCOneC

st timer expired? -- N attempting to Sequence of msgs Nu gy- from client
reconnect?

Yes
- 412 . / N 408

Delete client
State

414

Log error

End processing for
Specific session ID

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 25, 2003 Sheet 5 of 7 US 2003/0236905 A1

FIG. 5

502 - - Client initiates
areConnect
using RTSP

Select stream
with session ID
and stream ID

506 - IS N. NO
1 Session ID is
site: - - - ------ 522

504 --

ve Server -- Client --- responds
508 > Does the N No E. eW Submits new

Stream ID Session and Select
match? head Stream neader Command

YeS information

Server responds S-520
510 - say K Submit a

SeeCtOn S DESCRIBE
was 524. Command
- V -

512-s Play command is 526 - Submit new Select
submitted by client Stream Command

Status log 530 - Streaming
516-N information is begins

Submitted 532 v.

518 --> --

?o has successfully
reconnected and has
resumed at the rough

point in the content where
the disconnect OCCurred

Client has successfully
reconnected, but in the
case of the on-demand
Content, the Connection
starts from the beginning

of the Content

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 25, 2003. Sheet 6 of 7 US 2003/0236905 A1

Client initiates
a reConnect 602
using HTTP

Client Submits
Select Stream
COmmand,

Session ID, and
stream ID

606 - N-1s Ys - sessin iDs No
present gn

Nserver
Yes t 618

Server 608 1 N. Opoes the N No responds
< Stream ID with new
\ match? header

information
610

Server responds 622 -- DESEREE
indicating 620 Command
Selection is
SUCCeSSful

Client Submits
Select stream and Submit new Select

stream Command
play Command 624 - and play
in One message Command in

One meSSage
Y.
Streaming begins

Status log 626 -
information is 614
Submitted

Streaming
begins

628
Client has successfully
reCOnnected, but in the
case of the on-demand
Content, the Connection
starts from the beginning

of the Content

Client has successfully
reconnected and has
resumed at the rough

point in the Content where
the disconnect OCCurred

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Patent Application Publication Dec. 25, 2003 Sheet 7 of 7

WELSÅS 9N|| WHECHO | | | | -| 871 SETmGOW|
} | | | | | !

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

SYSTEMAND METHOD FOR AUTOMATICALLY
RECOVERING FROM FAILED NETWORK
CONNECTIONS IN STREAMING MEDIA

SCENARIOS

TECHNICAL FIELD

0001. The present invention relates to the field of stream
ing media. In particular, this invention relates to a System
and method for automatically recovering from failed net
work connections in Streaming media Scenarios.

BACKGROUND OF THE INVENTION

0002 Content streaming includes the streaming of audio,
Video, and/or text data from a network Server to a client
computer on an as-needed basis. The client computer ren
ders the data as it is received from the network server. For
example, audio, Video, or audio/visual coverage of notewor
thy events can be broadcast with Streaming multimedia over
a network Such as the Internet as the events unfold. Simi
larly, television and radio Stations can transmit live content
over the network as Streaming multimedia.
0.003 Streaming media over diverse networks poses a
variety of technical challenges. The network connection
between the server and the client is often subject to adverse
conditions Such as congestion, packet loSS, varying laten
cies, IGMP/ICMP errors, rebooting routers or other net
working devices, rebooting servers, inadvertent reset of TCP
connections, lost modem connections, and temporarily
unplugged network cables. Depending on the severity of the
issue, Some Streaming media players encounter Such adverse
conditions and Subsequently post a critical error to the user
interface. The error is critical in that the user must manually
intervene and re-establish the Streaming Session. Unfortu
nately, in the case of on-demand content, this also means the
user must manually Seek to the position in the content that
was last being viewed, if Seeking in the content is allowed,
after the connection is re-established. Further, when this
Streaming link is disconnected, all the clients and Servers
that are downstream from the disrupted connection are
terminated. The abnormal termination of all downstream
clients can result in Significant lost revenue.
0004 For these reasons, a system for automatically
recovering from a failed Streaming media Session is desired
to address one or more of these and other disadvantages.

SUMMARY OF THE INVENTION

0005 The invention includes a method of streaming
media content from a server to at least one client. In
particular, the invention includes Server Software executing
on the Server communicating with client Software executing
on the client. If the Streaming is interrupted, the Server
Software and the client Software exchange messages to
re-map a State of the client and re-synchronize playback of
the content.

0006 The invention addresses network problems expe
rienced between the client(s) and the server. In addition, the
invention addresses network problems experienced by
Server-to-Server and encoder-to-Server distribution Sce
narios, where the Server is actually a client Streaming from
another source. The Software of the invention allows a
Streaming media client player to automatically attempt to

Dec. 25, 2003

recover from a variety of connection problems with a server
without user intervention. Furthermore, the invention Soft
ware allows the client playing on-demand media to continue
after re-connection at roughly the same point in the media
program when the connection was lost. The client network
ing code uses the Software of the invention to act upon
unexpected errors that are not the direct action of an admin
istrator. The invention includes Software on both the server
and the client as well as Software for a protocol-specific
implementation using real-time streaming protocol (RTSP)
and hypertext transfer protocol (HTTP).
0007 With the invention, servers can withstand longer
network outages without terminating clients. The invention
improves the end-user experience by preventing the user
from having to manually recover from connectivity prob
lems. The fault tolerant functionality improves the end user
experience for Streaming media by more closely mimicking
other content delivery metaphorS Such as television, radio,
Video cassette recorders, digital versatile disk players, etc.
0008. In accordance with one aspect of the invention, a
method streams media content from a Server to at least one
client. The method includes establishing a streaming media
connection between the Server and the at least one client and
Streaming the media content from the Server to the client.
The method further includes receiving, by the client, the
streamed media content from the server. The method
includes Sending a reconnect request from the client to the
Server if the Streaming is interrupted. The method also
includes receiving, by the Server, the reconnect request from
the client and re-establishing the Streaming media connec
tion with the client. The method includes continues with the
Server Streaming the media content and the client receiving
the Streamed media content.

0009. In accordance with another aspect of the invention,
a method Stream media content to at least one client. The
method includes establishing a streaming media connection
with at least one client and Streaming the media content to
the client. The method also includes receiving a reconnect
request from the client if the Streaming is interrupted. The
method further includes re-establishing the Streaming media
connection with the client and continuing to Stream the
media content.

0010. In accordance with yet another aspect of the inven
tion, a method receives media content Streamed from a
Server. The method includes establishing a streaming media
connection with the Server and receiving the media content
streamed from the server. The method also includes trans
mitting a reconnect request to the Server if the receiving is
interrupted. The method further includes re-establishing the
Streaming media connection with the Server and continuing
to receive the Streamed media content.

0011. In accordance with yet another aspect of the inven
tion, one or more computer-readable media having com
puter-executable components in a System wherein a Server
Streams media content to at least one client. The components
include a Server component and at least one client compo
nent. The Server component and the client component
include computer-executable instructions for exchanging
one or more messages to re-map the State of the client and
to re-synchronize playback of the content if the Streaming is
interrupted.
0012. In accordance with yet another aspect of the inven
tion, one or more computer-readable media Store a data

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

Structure representing a reconnect request transmitted by a
client to a Server to re-establish an interrupted Streaming
media Session. The data Structure includes a Session identi
fier identifying the interrupted Streaming media Session and
a stream identifier identifying a media Stream Streamed by
the Server to the client in the interrupted Streaming media
Session.

0013 Alternatively, the invention may comprise various
other methods and apparatuses.
0.014. Other features will be in part apparent and in part
pointed out hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0.015 FIG. 1 is an exemplary block diagram illustrating
a streaming media Scenario.
0016 FIG. 2 is an exemplary flow chart illustrating
operation of client component autoreconnect Software of the
invention.

0017 FIG. 3 is an exemplary block diagram illustrating
a client Sending a reconnect request to a server.
0.018 FIG. 4 is an exemplary flow chart illustrating
operation of Server component autoreconnect Software of the
invention.

0019 FIG. 5 is an exemplary flow chart illustrating the
interaction between the client and the Server during recon
nection via a real-time Streaming protocol.
0020 FIG. 6 is an exemplary flow chart illustrating the
interaction between the client and the Server during recon
nection via a hypertext transfer protocol.
0021 FIG. 7 is a block diagram illustrating one example
of a Suitable computing System environment in which the
invention may be implemented.
0022 Corresponding reference characters indicate corre
sponding parts throughout the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

0023 Software of the invention provides a mechanism
for automatically re-connecting a streaming Server with a
client if Streaming is interrupted during a streaming media
session as illustrated in FIG. 1. This invention includes
Software executing on both the client and one or more
Servers. In particular, the invention includes Server Software
executing on the Server communicating with client Software
executing on the client. If the Streaming is interrupted, the
Server Software and the client Software exchange messages
to re-map a State of the client and re-synchronize playback
of the content.

0024. Referring to FIG. 1, an exemplary block diagram
illustrates a streaming media Scenario. The invention Soft
ware is operable in a System having an optional encoder 102,
an origin server 104, one or more downstream servers 106
Such as downstream Server #1 through downstream Server
#N, an edge server 108, and one or more clients 110 such as
client #1 through client #M. The origin server 104, the
downstream servers 106, and the edge server 108 each
execute a Server Software component 112 while the clients
110 execute a client software component 114. The server

Dec. 25, 2003

component 112 and the client component 114 include com
puter-executable instructions for exchanging one or more
messages to re-map the State of the client 110 and to
re-synchronize playback of the content if the Streaming is
interrupted. Separate State repositories 118 Such as a State
repository Stored by the origin Server 104, a State repository
stored by the downstream servers 106, and a state repository
stored by the edge server 108 store a state of the downstream
server 106 or client 110. For example, the edge server 108
stores a state of the client 110. In addition, each of the
downstream servers 106 and the origin server 104 store a
State for downstream Servers acting as clients. For example,
the downstream Server #1 Stores a State of the edge Server
108. Similarly, the origin server 104 stores a state of the
downstream server #N.

0025 The origin server 104 is the first server the content
flows through on the way to the client 110. The origin server
104 generally receives content from either a file system 116
at 120 or a feed from the encoder 102 at 122. The encoder
102 stores the encoded content in the file system 116 at 124.
If the origin server 104 receives content from the encoder
102, the file system 116 may be bypassed, or the encoded
content may be concurrently stored in the file system 116 at
124. The downstream servers 106 generally receive data
from the origin server 104. In complex distribution scenarios
involving multiple levels of Servers, the downstream Servers
106 may receive and forward content from another server
that is sourcing content from the origin server 104. Since the
data flows from the origin server 104 to the client 110, a
Server is considered downstream from previous Servers. The
edge server 108 is generally the last server in a distribution
scenario. The edge server 108 is downstream from all other
servers in the distribution chain. The edge server 108 is
intended to have direct client connections. For clarity and
simplicity, the edge server 108 will be referred to herein as
server 108, noting that the invention is operable with any
configuration and/or number of servers 104,106, 108.

0026. In addition, the edge server 108 maintains a state
repository Storing a client viewer State of each of the clients
110 (e.g., Storing logging Statistics). The clients 110 transmit
their states to the edge server 108 for storage. The state of
each client 110 is maintained for a preset time period after
a network failure or other interruption in the Streaming.

0027. In one embodiment, the origin server 104 streams
the media content from the file system 116. In an alternative
embodiment, the encoder 102 also executes the server
component 112 to stream content to the origin server 104 as
it is encoded. In such an embodiment, the file system 116
may be bypassed, or the encoded content may be concur
rently stored in the file system 116. Those skilled in the art
will appreciate that the invention is not limited to the
exemplary block diagram of FIG. 1. Instead, it is contem
plated by the inventors that the Software of the invention is
operable in various other client-Server Streaming media
Scenarios not Specifically described herein.

0028. The clients 110 may render or otherwise display or
process the received content via a media player user inter
face (UI). Clients 110 receiving streamed media content for
long periods of time often encounter a variety of network
problems that result in the Server-to-client connection or
Session being lost. With other Systems, a lost connection
requires user intervention to re-establish the link. With the

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

Software of the invention, the clients 110 and the servers 108
attempt to automatically reconnect. If the server 108 was
Streaming Stored content (e.g., from a computer-readable
medium) prior to the session failure, the client 110 can
resume playback at the location in the Stream when the
failure occurred using Statistics Saved prior to the failure. If
the server 108 was streaming live content (e.g., directly from
the encoder 102) prior to the session failure, the client player
UI may not receive and render the content that was Streamed
during the reconnection process. If the reconnection proceSS
occurred relatively quickly, the server 108 may have buff
ered a small amount of the live content, and will deliver that
buffered content to the client 110 if reconnection is Success
ful. AS Such, a user may experience minimal disruption in
the playback.

0029. In one embodiment, communication between the
servers 108 and client 110 in FIG. 1 is implemented using
a real-time streaming protocol (RTSP) and a Session descrip
tion protocol (SDP). RTSP, as described in the Internet
Engineering Task Force (IETF) RFC 2326, the entire dis
closure of which is incorporated herein by reference, is an
application-level protocol for control of the delivery of data
with real-time properties. RTSP provides an extensible
framework to enable controlled, on-demand delivery of
real-time data, Such as audio and Video. Sources of data can
include both live data feeds and stored clips. This protocol
is intended to control multiple data delivery Sessions, pro
vide a means for choosing delivery channels. Such as a user
datagram protocol (UDP), a multicast UDP and a transmis
Sion control protocol, and provide a means for choosing
delivery mechanisms based upon a real-time transport pro
tocol.

0.030. For example, the Real-time Transport Protocol
(RTP), as described in the IETF RFC 1889, the entire
disclosure of which is incorporated herein by reference,
provides end-to-end network transport functions Suitable for
applications transmitting real-time data, Such as audio, Video
or Simulation data, over multicast or unicast network Ser
vices. RTP does not address resource reservation and does
not guarantee quality-of-Service for real-time Services. The
data transport is augmented by a control protocol (RTCP) to
allow monitoring of the data delivery in a manner Scalable
to large multicast networks, and to provide minimal control
and identification functionality. RTP and RTCP are designed
to be independent of the underlying transport and network
layers.

0031) SDP, as described in the IETF RFC 2327, the entire
disclosure of which is incorporated herein by reference, is an
application level protocol intended for describing multime
dia Sessions for the purposes of Session announcement,
Session invitation, and other forms of multimedia Session
initiation. SDP can be used in conjunction with RTSP to
describe and negotiate properties of the multimedia Session
used for delivery of real-time data.

0.032 The invention software supports automatic recon
nection logic 112, 114 for various protocols such as HTTP
(see FIG. 6), RTSP (see FIG. 5), and any proprietary
protocols in the client component 114 and the Server com
ponent 112. The invention software also logs the first
Segment of information received following a Successful
reconnect (e.g., as a status code of 210). The invention
Software Supports broadcast and on-demand modes of opera

Dec. 25, 2003

tion. The automatic reconnection logic 112, 114 can be
tuned/disabled in the server 108 (e.g., to act as a distribution
client) and in the client 110. The invention software staggers
the client reconnect attempt requests over time to prevent the
server 108 from being overwhelmed by thousands of simul
taneous reconnect requests. The reconnecting client 110 is
authenticated and authorized if corresponding Security is
enabled. The reconnecting client 110 resumes at the same
point of a Seekable on-demand playlist element. In one
embodiment, the server 108 maintains a client viewer state
if data has actually been Streamed. This check increases the
difficulty of developing a denial of Service attack. A discon
nection resulting from a client inactivity timeout on the
server 108 does not result in an error immediately displayed
on the client 110. Instead, the client 110 attempts to re-open
the file at the beginning of the playlist once play is pressed.
In one embodiment, a Seek is not possible because the client
viewer state on the server 108 for the previous connection
will no longer be present. In embodiments lacking a client
viewer state present on the server 108, seeking to the
previous playlist entry element in a Server-side playlist may
be disabled. An error displays on the client 110 if the re-open
attempt is unsuccessful.
0033. In one embodiment, the invention Software does
not attempt to automatically reconnect when an administra
tor for the server 108 terminates a connection, when the
Server 108 denies acceSS due to an authentication failure,
when playing content from a web server, or when the Server
108 denies access due to an authorization failure.

0034). In operation, client 110 and server 108 computers
Such as computer 130 execute computer-executable instruc
tions such as those illustrated in FIG. 2 and FIGS. 4-6 to
re-establish a streaming media connection between the
Server 108 and the client 110. The server 108 Streams the
media content to the client 110. The client 110 receives the
streamed media content from the server 108. If the streaming
is interrupted, the client 110 Sends a reconnect request to the
server 108. The server 108 receives the reconnect request
from the client 110. The server 108 and the client 110
re-establish the Streaming media connection. Re-establish
ing includes the Server 108 mapping a reconnecting client
110 with a state maintained by the server 108. Alternatively,
re-establishing includes creating a new Session for Streaming
if no maintained state corresponds to the client 110. The
server 108 continues streaming the media content to the
client 110 over the re-established Streaming media connec
tion.

0035) Client Component Software
0036 Referring next to FIG. 2, an exemplary flow chart
illustrates operation of client component autoreconnect Soft
ware 114 the invention. The client component software 114
acts upon unexpected errors at 202 that are not the direct
action of an administrator. The client component Software
114 operates if the client 110 has successfully streamed from
the server 108 previously at 208 and the error is handled by
reconnect logic 114 at 214.
0037. If thousands of clients 110 attempt to auto-recon
nect at exactly the same time, the server 108 may not be able
to process any of them Successfully. Also, repeated recon
nect attempts can tax the client's processor. Therefore, the
Software of the invention spreads out the timing of the
auto-reconnect requests by clients 110. To prevent all clients

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

110 from overwhelming a streaming media server 108 with
a flood of reconnect requests at exactly the same time, the
client 110 employs software to sleep at 216 between recon
nect attempts. The Sleep duration involves a random com
ponent to help spread reconnect requests when multiple
clients 110 are disconnected at the same time. The sleep
Software is also used to minimize the amount of client
processing required to Successfully reconnect. For example,
if a client 110 continuously reconnects while waiting for a
router to reboot, it could adversely affect the client processor
load. By delaying the transmission of the reconnect request
to the server 108 for a preset time period between reconnect
attempts, both the client 110 and the server 108 are opti
mized. For example, the client software may wait for five
Seconds between failed reconnect attempts and increment a
reconnect counter for each attempt. In one embodiment, the
client 110 attempts to reconnect twenty-five times before
halting. That is, if the reconnect counter exceeds a preset
threshold at 226, the client Software halts the reconnect
attempt and logs an error at 228.
0038. The number of attempts the client 110 retries to
connect is fully configurable through a client application
programming interface (API) and also a uniform resource
locator (URL) modifier. A URL modifier allows a content
provider or other encoder such as encoder 102 to control the
number of reconnect attempts made by the client 110 so that
it is appropriate for the environment. An example of the
URL modifier follows.

0039 mms://server/file.asfWMReconnect=15
0040. In this example, the client 110 will attempt to
reconnect fifteen times (e.g., at 218) before failing with an
error. If the client software successfully reconnects with the
server 108 at 220, logging statistics are sent to the server
108, the reconnect counter is reset to zero at 222, and
Streaming resumes at 224.
0041. There are several mechanisms that trigger the client
110 to attempt a reconnect. A network error detected from
the local protocol Stack or the error Signal Sent by the Server
108 or prolonged no data period (e.g., a starvation timeout)
will potentially trigger the reconnect logic 114. If the error
signal sent by the server 108 denotes that the server 108
intended to disconnect the client 110 deliberately, the client
110 will not attempt to reconnect. The client 110 will attempt
to reconnect even in a paused State in order to maintain the
client viewer status active at the server 108. The player code
fires events to update the Status of the player user interface
to indicate when the client 110 has started (and finished)
reconnecting.

0042. The client 110 does not attempt to automatically
reconnect with the server 108 under various conditions Such
as when the client component 114 and/or the Server com
ponent 112 is disabled at 204. In one embodiment, the client
110 does not attempt to automatically reconnect with the
Server 108 when the server 108 is a World Wide Web
Consortium server at 206. Under Such conditions, the client
110 and the server 108 do not automatically reconnect at 210
and reconnect processing exits at 212.
0043. In a server distribution or a cache/proxy scenario
where one Server is receiving content from the origin Server
104, the downstream server 106 is essentially a client such
as client 110 in that it is streaming content from the origin

Dec. 25, 2003

server 104. In this scenario, the downstream server 106 can
employ auto-reconnect Software to connect back to the
origin server 104 using software similar to the software 114
used by the client 110.
0044) Referring next to FIG. 3, an exemplary block
diagram illustrates the client 110 Sending a reconnect request
302 to the server 108 to re-establish an interrupted streaming
media session. In the exemplary embodiment of FIG. 3, the
reconnect request 302 is a data Structure including a stream
identifier 306 and a session identifier 304. The session
identifier identifies the interrupted Streaming media Session.
For example, the Session identifier may be a 64-bit or a
32-bit value generated by the server 108 and identifies the
client-Server relationship. The Stream identifier identifies a
media stream streamed by the server 108 to the client 110 in
the interrupted Streaming media Session. For example, the
stream identifier may be a 32-bit value generated by the
server 108 to identify a particular stream in the media
COntent.

0045 Server Component Software
0046 Referring next to FIG. 4, an exemplary flow chart
illustrates operation of the Server component autoreconnect
Software 112 of the invention. During the period in which
the server 108 does not detect at 402 that the client 110 has
disconnected abnormally, the server 108 continues stream
ing at 403 and waiting for commands from the client 110. If
the server 108 detects at 402 that the client 110 has discon
nected abnormally, the server 108 employs a variety of
mechanisms to allow the client 110 to reconnect. These
mechanisms are described below.

0047 The client 110 periodically transmits state data
(e.g., logging statistics) to the server 108 for Storage. In
addition, the server 108 tracks the status of each client
viewer state and allows an administrator of server 108 to
determine the state of any client 110. The state data includes
a Session identifier and a Stream identifier corresponding to
the current client-Server Session and the Streams being
delivered, respectively. The server 108 pauses the client state
and maintains the client viewer State for a pre-determined
(e.g. configurable) duration or time period at 404. The client
Viewer State may be Stored or cached in the State repository,
a timeout queue, or the like. Since the client viewer State
consumes server resources, the server 108 will not maintain
the State indefinitely. After determining that the configurable
duration expired at 405, the server 108 removes the client
Viewer State at 412, frees the associated resources, logs an
error at 414, and ends processing at 416 for the current
Session. For example, logging an error at 414 includes the
server 108 generating a log on behalf of the client 110
because the reconnecting client 110 will not Submit a log
(e.g., with status code 210) for content rendered before the
reconnect eVent.

0048 If the client 110 attempts to re-connect or otherwise
re-establish a connection while the client viewer State is
present on the server 108 at 405, the client 110 end-user
experience is optimal. If the server 108 determines at 407
that the client 110 attempting to reconnect is associated with
a cached client state, the server 108 processes at 408 the
reconnect Sequence of messages from the client 110.
0049. The server 108 accepts logging information at 410
from the previous session from the clients 110 that re

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

connect. For example, a client Such as client 110 that Streams
content for one hour loses its connection to the server 108
prior to Successfully Submitting logging information.
Through the invention software, the client 110 reestablishes
the connection back to the server 108 and Submits the
logging information for the previous Segment in addition to
continuing with the Streaming process. Logging information
is data that describes the characteristics of the client 110 and
the rendering information associated with the Streaming
Session. Logging information includes, but is not limited to,
packet loSS Statistics and frame rate rendered. See Appendix
C for an exemplary list and discussion of logging Statistics.

0050 For example, if the client viewer state is available
at the server 108 by the time the client 110 recovers the
connection, and if the client 110 is reconnecting in Streaming
status, the client 110 will submit a log with status code 210.
Apart from the Status code, the content of the log is the same
as a regular log Sent after playback. If the preset time period
has elapsed, the Server component 112 deletes the client
viewer state. After accepting the log from the client 110 at
410, the server 108 resumes streaming at 403.

0051) If the disconnection was the specific intention of
the server 108 and not due to an unforeseen fault, the server
108 will inform the client 110 before disconnecting so that
the client 110 does not try to reconnect unnecessarily. An
example of this might be when an administrator for Server
108 terminates a broadcast program normally. If the specific
client viewer State was for the content which requires
authentication, the server 108 will re-challenge the recon
necting client 110.

0.052 Referring next to FIG. 5, an exemplary flow chart
illustrates the interaction between the client 110 and the
Server 108 during reconnection via a real-time Streaming
protocol. In the embodiment illustrated in FIG. 5, the
Software of the invention is implemented with RTSP. If an
RTSP client such as client 110 is attempting to reconnect at
502 in streaming status, the RTSP client 110 sends at 504
multiple SETUP messages (e.g., reconnect requests 302 with
the session identifier 304 and the stream identifier 306) for
SelectStreams to re-configure the data ports and Stream
parameters. If there is an RTSP proxy, some of the param
eters may get reset. Attempting to re-establish the Session
includes the server 108 searching for the received session
identifier in the State repository. If the received Session
identifier is found at 506 within the state repository, the
server 108 searches at 508 for the received stream identifier
within the state repository. If SelectStreams Succeeds (e.g.,
the Session identifier and Stream identifier are found within
the state repository), the server responds at 510 indicating
that the selection was Successful. In addition, the client 110
sends a PLAY command at 512 to restart streaming at 514.
If the original viewer state could be retrieved, the client 110
sends a log message at 516 (e.g., with a status of 210) to
report the play status before reconnect after the PLAY
command completes. The Streaming resumes at 518 at the
approximate point in the content where the disconnect or
other error occurred.

0.053 If the received stream identifier is not found within
the state repository, the server 108 transmits at 520 one or
more other stream identifiers to the client 110 for selection
by the client 110. The other stream identifiers include the
stream identifiers for any content available from the server

Dec. 25, 2003

108, including the Streams that may have been Streaming
during the failed session. The client 110 transmits at 522 a
playback request to the server 108 where the playback
request Specifies at least one of the other Stream identifiers.
The server 108 then streams the media content associated
with the stream identifiers selected by the client 110.

0054) If the server 108 does not have the viewer state for
the requested Session at 506 (e.g., the Session identifier is not
in the state repository), the server 108 responds with an error
to indicate the session was lost. In this case, the client 110
attempts to re-establish the connection by Submitting a
DESCRIBE command at 524 to retrieve the most recent
Streaming description and then Submits a SelectStream com
mand at 526 and a Play command at 528 based on the new
description. If the viewer status is available at the server 108
but the streaming description that the client 110 retrieved
before being disconnected is no longer current, the Server
108 pushes the most recent information of the requested
URL by Submitting Announce right after accepting Play. If
an RTSP client 110 is reconnecting in paused status, it sends
SelectStreams to re-configure data ports and Stream param
eters. The client 110 sends periodic GET PARAMETERs
for Keep Alives to keep the viewer State active until the user
wants to play again. The command SelectStream may fail if
the requested session on the server 108 was gone, in which
case client 110 will Submit DESCRIBE and retrieve the most
recent Streaming description. In this specific example, there
will be no 210 log message report after reconnect. When
streaming begins at 530, the client 110 has successfully
reconnected. In the case of on-demand content, the stream
ing Starts from the beginning of the content.

0055 Referring next to FIG. 6, an exemplary flow chart
illustrates the interaction between the client 110 and the
server 108 during reconnection via a hypertext transfer
protocol. The flow in FIG. 6 is generally similar to that
described in FIG. 5. In the embodiment illustrated in FIG.
6, the Software of the invention is implemented in HTTP. If
an HTTP client such as client 110 is attempting to reconnect
at 602 in streaming status, the client 110 sends one GET
command at 604 that contains both SelectStreams and Play
information along with the session identifier 304 and the
stream identifier 306. The server 108 attempts to associate
the maintained client viewer state with the client 110 send
ing the reconnect request 302. If the server 108 determines
that the original viewer state on the server 108 still exists
(i.e., the session identifier 304 is present on the server 108
at 606 and the stream identifier 306 is present on the server
108 at 608), the server 108 responds to the client 110
indicating that the selection was successful at 610. Stream
ing begins at 612. The client 110 sends a log message at 614
(e.g., with a 210 status code) to report the play status before
the reconnect event. Whether the requested viewer state is
available or not, the server 108 does not return an error as
in the RTSP implementation. If the requested viewer state is
not available, the server 108 handles the request 302 based
on the most recent Streaming description of the requested
URL. The server 108 includes the most recent streaming
description and the viewer State information in the response
So that the client 110 can detect the current status of the
server 108. That is, the server 108 responds with new header
information at 618. The client 110 Submits a select stream
and play command in one message at 620 and Streaming
begins at 612.

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

0056. If the HTTP client 110 is reconnecting in a paused
status, the client 110 sends OPTIONS for KeepAlives to
keep the viewer State active until the user wants to play
again. In this exemplary implementation, there are no log
messages (e.g., with a status code of 210) reported after
reconnect.

0057) If the client viewer state is in the state repository
accessible by the server 108, the client 110 attempts to
automatically reconnect to the same Session when the con
nection is reestablished, as shown in the network trace listed
in Appendix A.
0.058 When a client 110 attempts to automatically recon
nect to the Same Session after a network outage, the Session
may have expired at 606. In this case, the client 110 makes
a new attempt to connect, this time without including the
session identifier. That is, the client 110 Submits a
DESCRIBE command at 622. The server 108 creates a new
Session and returns the identifier, as shown in the network
trace listed in Appendix B. The client 110 Submits a new
Select Stream command and play command in one message
at 624 and streaming begins at 626. The client 110 has
Successfully reconnected at 628. In the case of on-demand
content, the Streaming Starts from the beginning of the
COntent.

0059) Errors Handled by Auto-Reconnect Software
0060) Errors handled by the auto-reconnect software
include, but are not limited to, the following errors. If any of
the errors listed below initially occur, the reconnect Software
will be triggered:

0061 ERROR CONNECTION ABORTED
0062 ERROR NETNAME DELETED
0063 ERROR CONNECTION INVALID
0064) NSE TIMEOUT
0065. NS E PROXY TIMEOUT
0066 NS E NOCONNECTION
0067 NS ENET READ
0068 NS E CONNECTION_FAILURE
0069 WSAECONNRESET
0070 WSAECONNABORTED
007.1 WSAENETUNREACH
0072 WSAENETDOWN

0073. If any of the errors below occur during a reconnect
attempt, the reconnect Software is repeated (assuming the
maximum number of attempts has not been reached):

0074 ERROR OPERATION ABORTED
0075 ERROR NETWORK UNREACHABLE
0.076 ERROR HOST UNREACHABLE
0077 ERROR PROTOCOL UNREACHABLE
0078 NS E SERVER DNS TIMEOUT
0079) NSE PROXY DNS TIMEOUT
0080 NS E SERVER NOT FOUND
0081) NSE PROXY NOT FOUND

Dec. 25, 2003

0082) NSE CANNOTCONNECT
0083) NSE CANNOT CONNECT TO PROXY
0084 WSAEHOSTUNREACH
0085 WSAETIMEDOUT

0086 The auto-reconnect software 112, 114 is not
invoked for a variety of other errors. The list of errors or
conditions that do not result in a reconnect attempt against
the server 108 includes, but is not limited to, a publishing
point limit is reached, the client 110 fails authentication, the
title is not found, the server 108 or publishing point is
denying new connections, the publishing point is stopped,
the server 108 does not initially respond in time, the admin
istrator for the server 108 terminates the client 110, the
server 108 inactivity timeout feature disconnects the player,
the reconnect Software is disabled, and the server 108 is a
World Wide Web Consortium server.

0087 Logging During an Auto-Reconnect
0088 Logging statistics are used by content distribution
networks (CDNs) to bill customers. As a result, accurate
logging Statistics are critically important for the CDNS to
maximize their revenue opportunities. See Appendix C for
an exemplary list and discussion of logging Statistics. A
complete log entry (e.g., defined by the Status code 200 or
210) reflects what the client 110 actually rendered. There are
Several possible cases that may occur during the Streaming
of media Such as described in the following examples. Those
skilled in the art will note that the Status codes are merely
exemplary, and do not limit the logging aspects of the
invention in any way.
0089. The content may be streamed successfully without
the loss of the connection between the server 108 and the
client 110. In this case, the auto-reconnect Software is not
used and a normal log entry is written.
0090. In another scenario, a server-client connection or a
distribution connection may be temporarily lost for a short
period of time, but then automatically re-established. In this
case, two log entries are written. One log entry contains the
information regarding the content received and played by
the client 110 prior to the disconnect event. For example, this
log entry has a status code of 210. The client 110 information
for this log entry is Submitted during the handshake for the
reconnect request 302. Another log entry occurs following
the Successful completion of the content. This log entry
includes information for the duration of the clip Streamed
immediately after the reconnect occurred. For example, this
log entry has a normal status code of 200.
0091. In another example, the server-client connection or
the distribution connection may be lost and auto-reconnect
Software 112, 114 is either disabled or unable to reconnect
within the allotted number of attempts. This situation results
in one log entry with the status code of 408. The entry
includes information regarding the Segment of content
played prior to the disruption.
0092 Distribution Outages and Client Buffering
0093. In an alternate scenario of the invention, during a
distribution outage, the clients 110 do not receive any
Streamed data. As a result, the Starvation timer on the clients
110 may eventually fire and ultimately result in all the clients
110 attempting to reconnect to the server 108. This situation

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

is undesirable because it greatly increases the load on the
server 108 and lengthens the time required for the clients 110
to recover from the outage. To preclude this situation,
Software of the invention operating on the server 108 fakes
a stream Switch that places the clients 110 in a waiting State
to prevent Starvation during a distribution outage. When the
distribution connection recovers, the server Software 112
Sends another Stream header before Streaming the content.
This mechanism allows the clients 110 to resume playing.
0094) Configurable Settings
0.095. In one embodiment, the server 108 namespace is
used to configure the duration a client State is maintained on
the server 108 after an abnormal disconnect. The following
exemplary namespace parameters tune these timeout values.

0096). “ClientIdTimeoutForPlayer”–(60 SCC
default)

0097) “ClientIdTimeoutForPull” (60 sec default
distribution connections)

0.098 “ClientIdTimeoutForPush” (300 sec default
encoder connections)

0099 Additionally, the software exposes a property (e.g.,
AutoReconnectLimit). A value of Zero disables the auto
reconnect logic 114. A value of (-1) results in autoreconnect
Software attempting to reconnect forever. In addition, the
client software 114 fires events such as WMT RECON
NECT START and WMT RECONNECT END, during the
reconnect process. This information is available to the
higher level player application for display in the UI.
0100 Client Options
0101 The client software exposes an object model prop
erty (e.g., AutoReconnect). The object model property is
adjustable from the default player UI. In one embodiment,
the default value for this property is three. A value of zero
disables the auto-reconnect Software and a value of (-1)
results in auto-reconnect Software attempting to reconnect
forever. In addition, the player UI processes events Such as
WMT RECONNECT START and WMT RECONNECT
END during the reconnect process. This information is then

displayed in the player UI.
0102) Exemplary Operating Environment
0103 FIG. 7 shows one example of a general purpose
computing device in the form of a computer 130. In one
embodiment of the invention, a computer Such as the com
puter 130 is suitable for use in the other figures illustrated
and described herein. Computer 130 has one or more pro
ceSSorS or processing units 132 and a System memory 134.
In the illustrated embodiment, a system bus 136 couples
various System components including the System memory
134 to the processors 132. The bus 136 represents one or
more of any of Several types of bus Structures, including a
memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using
any of a variety of bus architectures. By way of example,
and not limitation, Such architectures include Industry Stan
dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezza
nine bus.

Dec. 25, 2003

0104. The computer 130 typically has at least some form
of computer readable media. Computer readable media,
which include both volatile and nonvolatile media, remov
able and non-removable media, may be any available
medium that can be accessed by computer 130. By way of
example and not limitation, computer readable media com
prise computer Storage media and communication media.
Computer Storage media include Volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for Storage of information Such as
computer readable instructions, data Structures, program
modules or other data. For example, computer Storage media
include RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk Storage or other magnetic
Storage devices, or any other medium that can be used to
Store the desired information and that can accessed by
computer 130. Communication media typically embody
computer readable instructions, data Structures, program
modules, or other data in a data Signal Such as a carrier wave
or other transport mechanism and include any information
delivery media. Those skilled in the art are familiar with the
data Signal, which has one or more of its characteristics Set
or changed in Such a manner as to encode information in the
Signal. Wired media, Such as a wired network or direct-wired
connection, and wireleSS media, Such as acoustic, RF, infra
red, and other wireleSS media, are examples of communi
cation media. Combinations of the any of the above are also
included within the Scope of computer readable media.
0105 The system memory 134 includes computer stor
age media in the form of removable and/or non-removable,
volatile and/or nonvolatile memory. In the illustrated
embodiment, system memory 134 includes read only
memory (ROM) 138 and random access memory (RAM)
140. Abasic input/output system 142 (BIOS), containing the
basic routines that help to transfer information between
elements within computer 130, Such as during Start-up, is
typically stored in ROM 138. RAM 140 typically contains
data and/or program modules that are immediately acces
Sible to and/or presently being operated on by processing
unit 132. By way of example, and not limitation, FIG. 7
illustrates operating System 144, application programs 146,
other program modules 148, and program data 150.
0106 The computer 130 may also include other remov
able/non-removable, Volatile/nonvolatile computer Storage
media. For example, FIG. 7 illustrates a hard disk drive 154
that reads from or writes to non-removable, nonvolatile
magnetic media. FIG. 7 also shows a magnetic disk drive
156 that reads from or writes to a removable, nonvolatile
magnetic disk 158, and an optical disk drive 160 that reads
from or writes to a removable, nonvolatile optical disk 162
such as a CD-ROM or other optical media. Other removable/
non-removable, Volatile/nonvolatile computer Storage media
that can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital Video tape,
Solid state RAM, Solid state ROM, and the like. The hard
disk drive 144, and magnetic disk drive 156 and optical disk
drive 160 are typically connected to the system bus 136 by
a nonvolatile memory interface, Such as interface 166.
0107 The drives or other mass storage devices and their
asSociated computer Storage media discussed above and

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

illustrated in FIG. 7, provide storage of computer readable
instructions, data structures, program modules and other
data for the computer 130. In FIG. 7, for example, hard disk
drive 154 is illustrated as storing operating system 170,
application programs 172, other program modules 174, and
program data 176. Note that these components can either be
the same as or different from operating System 144, appli
cation programs 146, other program modules 148, and
program data 150. Operating system 170, application pro
grams 172, other program modules 174, and program data
176 are given different numbers here to illustrate that, at a
minimum, they are different copies.

0108. A user may enter commands and information into
computer 130 through input devices or user interface Selec
tion devices Such as a keyboard 180 and a pointing device
182 (e.g., a mouse, trackball, pen, or touchpad). Other input
devices (not shown) may include a microphone, joystick,
game pad, Satellite dish, Scanner, or the like. These and other
input devices are connected to processing unit 132 through
a user input interface 184 that is coupled to system bus 136,
but may be connected by other interface and bus structures,
Such as a parallel port, game port, or a Universal Serial Bus
(USB). A monitor 188 or other type of display device is also
connected to System buS 136 via an interface, Such as a video
interface 190. In addition to the monitor 188, computers
often include other peripheral output devices (not shown)
Such as a printer and Speakers, which may be connected
through an output peripheral interface (not shown).
0109 The computer 130 may operate in a networked
environment using logical connections to one or more
remote computers, Such as a remote computer 194. The
remote computer 194 may be a personal computer, a Server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to computer 130. The
logical connections depicted in FIG. 7 include a local area
network (LAN) 196 and a wide area network (WAN) 198,
but may also include other networkS. Such networking
environments are commonplace in offices, enterprise-wide
computer networks, intranets, and global computer networks
(e.g., the Internet).
0110. When used in a local area networking environment,
computer 130 is connected to the LAN 196 through a
network interface or adapter 186. When used in a wide area
networking environment, computer 130 typically includes a
modem 178 or other means for establishing communications
over the WAN 198, such as the Internet. The modem 178,
which may be internal or external, is connected to System
bus 136 via the user input interface 194, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to computer 130, or portions thereof, may
be stored in a remote memory storage device (not shown).
By way of example, and not limitation, FIG. 7 illustrates
remote application programs 192 as residing on the memory
device. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computerS may be used.
0111 Generally, the data processors of computer 130 are
programmed by means of instructions Stored at different
times in the various computer-readable Storage media of the
computer. Programs and operating Systems are typically
distributed, for example, on floppy disks or CD-ROMs.

Dec. 25, 2003

From there, they are installed or loaded into the Secondary
memory of a computer. At execution, they are loaded at least
partially into the computer's primary electronic memory.
The invention described herein includes these and other
various types of computer-readable Storage media when
Such media contain instructions or programs for implement
ing the StepS described below in conjunction with a micro
processor or other data processor. The invention also
includes the computer itself when programmed according to
the methods and techniques described herein.
0112 For purposes of illustration, programs and other
executable program components, Such as the operating Sys
tem, are illustrated herein as discrete blockS. It is recognized,
however, that Such programs and components reside at
various times in different Storage components of the com
puter, and are executed by the data processor(s) of the
computer.

0113 Although described in connection with an exem
plary computing System environment, including computer
130, the invention is operational with numerous other gen
eral purpose or Special purpose computing System environ
ments or configurations. The computing System environ
ment is not intended to Suggest any limitation as to the Scope
of use or functionality of the invention. Moreover, the
computing System environment should not be interpreted as
having any dependency or requirement relating to any one or
combination of components illustrated in the exemplary
operating environment. Examples of well known computing
Systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not
limited to, personal computers, Server computers, hand-held
or laptop devices, multiprocessor Systems, microprocessor
based Systems, Set top boxes, programmable consumer elec
tronics, network PCs, minicomputers, mainframe comput
ers, distributed computing environments that include any of
the above Systems or devices, and the like.
0114. The invention may be described in the general
context of computer-executable instructions, Such as pro
gram modules, executed by one or more computers or other
devices. Generally, program modules include, but are not
limited to, routines, programs, objects, components, and
data Structures that perform particular tasks or implement
particular abstract data types. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote computer Storage media including
memory Storage devices.
0115 The following scenarios illustrate operation of the
Software of the invention.

0116 On-Demand Content
0117. In a server 108 to client 110 network interruption
Scenario, one or more clients Such as clients 110 viewing
on-demand content have their network connection inter
rupted. Automatic reconnect logic 112, 114 minimizes the
impact to each viewer affected by the temporary network
outage. The reconnect logic 112, 114 allows the client 110 to
restart at the point the connection was lost by Seeking to that
point in the file upon Successfully reconnecting to the Server
108. If the content is not seekable, the program element shall
be restarted at the beginning.

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

0118. In a source to server network interruption scenario,
all clients 110 that are streaming on-demand content
obtained from another location by the edge server 108 will
be affected. Automatic reconnect logic 112, 114 minimizes
the impact to all viewers affected by the temporary network
outage. The reconnect logic 112, 114 allows the client 110 to
restart at the point the connection was lost by Seeking to that
point in the file upon Successfully reconnecting to the Server
108. If the content is not seekable, the program element shall
be restarted at the beginning.

0119 Broadcast Content
0120) A source to server network interruption scenario is
routinely encountered by large CDNs. In this scenario, all
clients 110 that are streaming content obtained from another
location by the edge server 108 are affected. If the source
content is live, the customer may experience a gap in the
program even when automatic reconnect logic 112, 114 is
Successful. However, automatic reconnect logic 112, 114
minimizes the impact to all viewers affected by the tempo
rary network outage.

0121. In a server 108 to client 110 network interruption
Scenario, one or more clients Such as clients 110 viewing
broadcast content have their network connection interrupted.
Due to the nature of a broadcast, the customer experiences
a gap in the program even when automatic reconnect logic
112, 114 is Successful. However, automatic reconnect logic
112, 114 minimizes the impact to the specific viewer(s)
affected by the temporary network outage.

0122) The following examples illustrate specific embodi
ments of the invention.

0123 Content Distribution Network Scenario
0.124. Some CDNs have complicated distribution sce
narios involving combinations of origin and distribution
servers such as server 108 using the Internet for some of
their distribution feeds. When temporary problems on the
Internet result in the distribution connection being Severed,
all downstream clients 110 that are Streaming the content are
disconnected. This results in the loss of thousands of clients
110 (and Subsequent lost revenue opportunities often depen
dent upon on Successful usage logging Statistics) when a
network feed is temporarily interrupted.

0.125 The automatic client reconnection software
reduces the Scenarios where clients 110 are dropped due to
distribution network interruptions. For example, Some plat
forms shall Support a temporary distribution network outage
of at least 90 seconds before clients 110 are terminated by
the servers 108 downstream from the distribution network
interruption. Furthermore, assuming the reconnection
attempt is Successful, the logging usage information for
clients 110 is complete. Lost revenue due to network prob
lems will be reduced.

0.126 Listening to an Internet Radio Station All Day

0127. In one example, a user loves to listen to an Internet
Sports radio Station all day at work while working on a

Dec. 25, 2003

computer. Unfortunately, the LAN is notoriously unreliable
(e.g., routers are often rebooted). In addition, the firewall
often times out TCP connections and resets them. The ISP is

also unreliable. Network interruptions often exceed 10 sec
onds. As a result, the user often gets disconnected from the
Internet radio Station Server, and an annoying dialog popS up
forcing a manual reconnect. Sometimes, the user has to try
a few times before reconnecting back to the Internet radio.

0128. The automatic reconnect software of the invention
addresses the problem the user is currently experiencing.
The player employs Software to attempt to reconnect mul
tiple times before popping up an error dialog. A configura
tion option in the player allows the user to Set the number of
attempts. With the invention, the user is able to leave the
player running indefinitely. Movie Scenario

0129. In another example, the user recently subscribed to
a Video-on-demand trial in an assisted-living apartment. The
user typically watches 2-4 action movies per week with
friends. When the user orders a new movie, the CDN
precedes the start of the movie with trailers for other action
movies that the user might be interested in. Because the
CDN mixes and matches these trailers with other customers,
the trailers are separate files (e.g., advanced streaming
format files). The trailers and movie are tied together
Sequentially by using a Server-side playlist dynamically
generated in response to the movie order.

0.130. The user has a cable modem connection that is
Susceptible to occasional temporary outages. Sometimes,
while watching movies, the temporary network outage
causes the TCP connection to be reset or the starvation timer
on the client 110 to fire. With the reconnect Software of the
invention, the user only experiences a pause in the playback
of the movie. The user's player does not display an error
requiring user intervention. The user does not lose the
connection or the location in the Server-side playlist. AS
Such, the user does not need to Search through a Server-side
playlist or view error messages. The user Simply views the
movie without noticing any of the network outages.

0131 When introducing elements of the present inven
tion or the embodiment(s) thereof, the articles “a,”“an,
"the,” and "said” are intended to mean that there are one or
more of the elements. The terms “comprising,”“including.”
and “having are intended to be inclusive and mean that
there may be additional elements other than the listed
elements.

0.132. In view of the above, it will be seen that the several
objects of the invention are achieved and other advantageous
results attained.

0.133 AS various changes could be made in the above
constructions, products, and methods without departing
from the Scope of the invention, it is intended that all matter
contained in the above description and shown in the accom
panying drawings shall be interpreted as illustrative and not
in a limiting Sense.

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
10

R Appendix A

0094. When the client 110 experiences a network outage, it will attempt to
automatically reconnect to the same session when the connection is reestablished, as
shown in the following network trace.

RTSP/1.0 200 OK
Content-Type: application/sdp
Vary: Accept
X-Playlist-Gen-Id: 2
Content-Length: 2781
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 1
Timestamp: 10.0
Server: Server/9.0.0.201
Last-Modified: Wed, 06 Dec 2000 15:38:32 GMT
Cache-Control: content-size="2139795", max-age-86399, must-revalidate, proxy
revalidate
Etag: "2139795"

SETUP rtsp://MyServer.MyDomain.com/welcome2.asf/rtx RTSP/1.0
X-Playlist-Gen-Id: 2
Transport: RTP/AVP/UDPunicast;client port=2576-2577;mode-PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 2
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, ;q-0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
11

RTSP/1.0 200 OK
Transport: RTP/AVP/UDP;unicast;server port-6002-6003;client port=2576
2577;mode=PLAY
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 2
Timestamp: 10.0
Session: 25844.99203:timeout-60
Server: Server/9.0.0.201
Last-Modified: Wed, 06 Dec 2000 15:38:32 GMT
Cache-Control: content-size="2139795", max-age-86399, must-revalidate, proxy
revalidate
Etag: "2139795"
X-Feedback-Stream-d: 35129

SET PARAMETER rtsp://MyServer.MyDomain.com/welcome2.asf RTSP/1.0
Content-Type: application/x-rtsp-udp-packetpair;charset UTF-8
Content-Length: 29
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 3
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, q-0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authcntication: NTLM, Digest, Basic
Timestamp: 1

RTSP/1.0 200 OK
Content-Type: application/x-rtsp-udp-packetpair;charset=UTF-8
Content-Length: 29
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 3
Timestamp: 10
Session: 25844.99203;timeout-60
Server: Server/9.0.0.2.01

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
12

SETUP rtsp://MyServer.MyDomain.com/welcome2.asf/audio RTSP/1.0

X-Playlist-Gen—Id: 2 ' '

Transport: RTP/AVP/UDP;unicast;client_port=2578;ssrc=72b2and;mode=PLAY,

RTP/AVP/TCP;unicast;interleaved=0— 1 ;ssrc=72b2and;mo
de=PLAY

If—Match: "{83A04BDO-FD30—1984—4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01 :21 :57 GMT

CSeq: 4
Session: 2584499203

User—Agent: Player/9.00.00.0201 guid/ADZ60B67—5E90—4E96-AEDO-
30C2D12D7C8B

Accept-Language: en—us, *;q=0.1

Accept-Charset: UTF-8, *;q=0.1

X—Accept—Authentication: NTLM, Digest, Basic
X—Batch: 1:2

Timestamp: 1

SETUP 11sp://MyServer.MyDomain.com/welcome2.asf/stream=5 RTSP/1.0

X-Playlist-Gen-Id: 2

Transport: RTP/AVP/UDP;unicast;client_port=2578;ssrc=4174019d;mode=PLAY,
RTP/AVP/TCP;unicast;interleaved=2—3 ;ssrc=41 74019d;mo
dCZPLAY

If-Match: " {83A04BDO-FD30—1984—4994-0A22CA1 16ED3} "
Date: Fri, 04 May 2001 01:21:57 GMT

CSeq: 5
Session: 2584499203

User-Agent: Player/900000201 guid/AD260B67-5E90-4E96—AEDO-
30C2D12D7C8B

Accept-Language: en-us, *;q=0.1

Accept-Charset: UTF—8, *;q=0.1

X—Accept—Authentication: NTLM, Digest, Basic
X-Batch: 2:2

Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
13

RTSP/1.0 200 OK
Transport:
RTP/AVP/UDP;unicast;source=172.29.232.226;server port=2579;client port=2578;s
src=8ce7466fmode=PLAY
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 4
Timestamp: 10
Session: 25844.99203;timeout=60
Server: Server/9.0.0.2.01
Last-Modified: Wed, 06 Dec 2000 15:38:32 GMT
Cache-Control: content-size="2139795", max-agc=86399, must-revalidate, proxy
revalidate
Etag: "2139795"

RTSP/1.0 200 OK
Transport:
RTP/AVP/UDPunicast;source=172.29.232.226:server port=2579;client port=2578;s
src=bc93c310;mode=PLAY
Date: Fri, 04 May 2001 01:21:57 GMT
CSeq: 5
Timestamp: 1 0.0
Session: 25844.99203;timeout-60
Server: Server/9.0.0.201
Last-Modified: Wed,06 Dec 2000 15:38:32 GMT
Cache-Control: contcnt-size="2139795", max-age-86399, must-revalidate, proxy
revalidate
Etag: "2139795"

PLAYrtsp://MyServer.MyDomain.com/welcome2.asf RTSP/1.0
Bandwidth: 2147483.647
X-Accelerate-Streaming: AccelDuration=10000;AccelBandwidth=891289
X-Playlist-Gen-Id: 2
Date: Fri, 04 May 2001 01:22:00 GMT
CSeq: 6
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Scale: 1
Range: npt=0.000
Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
14

RTSP/1.0 200 OK
Date: Fri, 04 May 2001 01:22:00 GMT
CSeq: 6
Timestamp: 10
Session: 25844.99203;timeout-60
Server: Server/9.0.0.2.01
Range: mpt=0.000-70.891
Scale: 1
X-Accelerate-Streaming: AccelBandwidth=891289; Accel Duration=10000
Speed: 1.000
RTP-Info:
url="rtsp://MyServer.MyDomain.com/welcome2.asf/audio";seq=65450;rtptime-0,
url="rtsp://MyServer.MyDomain.com/welcome2.asf/stream-5";seq65343;rtp
time=0

SET PARAMETER rtsp://MyServer.MyDomain.com/welcome2.asf RTSP/1.0
Content-Type: application/x-Logconnectstats;charset=UTF-8
Content-Length: 171
Date: Fri, 04 May 2001 01:22:00 GMT
CSeq: 7
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
15

RTSP/1.0 200 OK
Date: Fri, 04 May 2001 01:22:00 GMT
CSeq: 7
Timcstamp: 10
Session: 25844.99203;timeout-60
Server: Server/9.0.0.201

Network Outage

SETUP rtsp://MyServer.MyDomain.com/welcome2.asf/audio RTSP/1.0
X-Playlist-Gen-Id: 2
Transport: RTP/AVP/UDP;unicast;client port=2578;ssrc=72b2ae0d;mode-PLAY,
RTP/AVP/UDP;unicast;client port=2578;ssrc=72b2ae0d;m
Ode=PLAY

If-Match: "{83A04BDO-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:22:17 GMT
CSeq: 1
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q 0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

SETUP rtsp://MyServer.MyDomain.com/welcome2.asf/stream=5 RTSP/1.0
X-Playlist-Gen-Id: 2
Transport: RTP/AVP/UDP;unicast;client port=2578;ssrc=41740ft)d;mode=PLAY,
RTP/AVP/UDP;unicast;client port=2578;ssrc-41740?od;m
ode=PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:22:17 GMT
CSeq: 2
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
16

SETUP rtsp://MyServer.MyDomain.com/welcome2.asfrtx RTSP/1.0
X-Playlist-Gen-Id: 2
Transport: RTP/AVP/UDP;unicast;client port=2576-2577; mode=PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:22:17 GMT
CSeq: 3
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

RTSP/1.0 200 OK
Transport:
RTP/AVP/UDP;unicast:source=172.29.232.226;server port=2579;client port=2578;s
src=8ce7466fmode=PLAY
Date: Fri, 04 May 2001 01:22:17 GMT
CSeq: 1
Timestamp: 1 0.0
Session: 25844.99203;timeout-60
Server: Server/9.0.0.201

RTSP/1.0 200 OK
Transport:
RTP/AVP/UDP;unicast;source=172.29.232.226;server port=2579;client port=2578;s
src=bc93c310;mode=PLAY
Date: Fri, 04 May 2001 01:22:19 GMT
CSeq: 2
Timcstamp: 10
Session: 25844.99203;timeout-60
Server: Server/9.0.0.201

RTSP/1.0 200 OK
Transport: RTP/AVP/UDPunicast;server port-6002-6003;client port=2576–
2577;ssrc-6alc5 ?a3;mode=PLAY
Date: Fri, 04 May 2001 01:22:19 GMT
CSeq: 3
Timestamp: 10
Session: 25844.99203;timeout-60
Server: Server/9.0.0.2.01
X-Feedback-Stream-Id: 35129

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
17

PLAY rtsp://MyServer.MyDomain.com/welcome2.asf RTSP/1.0
Bandwidth: 2147483.647
X-Accelerate-Streaming. AccelDuration=18000;AccelBandwidth=891289
X-Playlist-Gen-Id: 2
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:22:19 GMT
CSeq: 4
Session: 25844.99203
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Scale: 1
Range: npt=17.400
Timestamp: 1

RTSP/1.0 200 OK
Date: Fri, 04 May 2001 01:22:19 GMT
CSeq: 4
Timestamp: 10
Session: 25844.99203;timeout-60
Server: Server/9.0.0.201
Range: npt=17.400-70.891
Scale: 1
X-Accelerate-Streaming: Accel Bandwidth=891289.AccelDuration=18000
Speed: 1.000
RTP-Info:
url="rtsp://MyScrver.MyDomain.com/welcome2.asf/audio";seq-79;rtptime=17400,
url="rtsp://MyServer.MyDomain.com/welcome2.asfrtx"seq=65396:rtptime
=17400,
url="rtsp://MyServer.MyDomain.com/welcome2.as?/stream=5";seq=65343;rtptime=1
7400

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
18

Appendix B

0095. When the client 110 attempts to automatically reconnect to the same session
after a network outage, the session may have expired. In this case, the client 110 makes a
new attempt to connect, this timc without including the session ID. The server 108
creates a new session and returns the ID, as shown in thc following network trace.

Network Outage

SETUP rtsp://MyServer.MyDomain.com/welcome2.asf/audio RTSP/1.0
X-Playlist-Gcn-Id: 2
Transport: RTP/AVP/UDP;unicast;client port=2544;ssrc=3c273be8;mode=PLAY,
RTP/AVP/UDP;unicast;client port=2544;ssrc=3c273be8:m
ode-PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3,"
Date: Fri, 04 May 2001 01:17:10 GMT
CSeq: 1
Session: 3243206664
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

SETUP rtsp://MyServer.MyDomain.com/welcome2.asf/stream-5 RTSP/1.0
X-Playlist-Gen-Id: 2
Transport: RTP/AVP/UDP;unicast;client port=2544;ssrc=0fld8dfl;mode=PLAY,
RTP/AVP/UDP;unicast;client port=2544;ssrc=0fld8dfl;m
ode=PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:17:10 GMT
CSeq: 2
Session: 3243206664
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AEDO
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
19

SETUP rtsp://MyServer.MyDomain.com/welcome2.asfrtx RTSP/1.0
X-Playlist-Gen-Id: 2 g t -

Transport: RTP/AVP/UDP;unicast;client port=2542-2543;mode=PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:17:10 GMT
CSeq: 3
Session: 3243206664
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

RTSP/1.0 454 Session Not Found
Date: Fri, 04 May 2001 01:17:10 GMT
CSeq: 1
Timestamp: 10
Server: Server/9.0.0.201

RTSP/1.0454 Session Not Found
Date: Fri, 04 May 2001 01:17:10 GMT
CSeq: 2
Timestamp: 10
Server: Server/9.0.0.2.01

RTSP/1.0 454 Session Not Found
Date: Fri, 04 May 2001 01:17:10 GMT
CSeq: 3
Timestamp: 10
Server: Server/9.0.0.201

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
20

SETUP rtsp://MyServer.MyDomain.com/welcome2.as?/audio RTSP/1.0
X-Playlist-Gen-Id:
Transport: RTP/AVP/UDP;unicast;client port=2546;ssrc=3c273be8;mode=PLAY,
RTP/AVP/TCPunicastinterleaved=0-1;ssrc=3c273be8;mo
de=PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3"
Date: Fri, 04 May 2001 01:17:12 GMT
CSeq: 4
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, ;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

RTSP/1.0 200 OK
Transport:
RTP/AVP/UDP;unicast;source=172.29.232.226;server port=2563;client port-2546;s
src=dabe4914;mode=PLAY
Date: Fri, 04 May 2001 01:17:12 GMT
CSeq: 4
Timestamp: 10.0
Session: 3828318172;timeout-60
Server: Server/9.0.0.2.01
Last-Modified: Wed,06 Dec 2000 15:38:32 GMT
Cache-Control: content-size="2139795", max-age-86399, must-revalidate, proxy
revalidate
Etag: "2139795"

SETUP rtsp://MyServer.MyDomain.com/welcome2.asfstream=5 RTSP/1.0
X-Playlist-Gen-Id:
Transport: RTP/AVP/UDP;unicast;client port=2546;ssrc=0?ld8d fl;mode=PLAY,
RTP/AVP/TCP;unicast;interleaved=0-1;ssrc=0fld8dfl;mo
de-PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3"
Date: Fri, 04 May 2001 01:17:12 GMT
CSeq: 5
Session: 3828318172
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q=0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
21

SETUP rtsp://MyServer.MyDomain.com/welcome2.asfrtx RTSP/1.0
X-Playlist-Gen-Id:
Transport: RTP/AVP/UDP;unicast;client port=2548-2549;mode-PLAY
If-Match: "{83A04BD0-FD30-1984-4994-0A22CA116ED3}"
Date: Fri, 04 May 2001 01:17:12 GMT
CSeq: 6
Session: 3828318172
User-Agent: Player/9.00.00.0201 guid/AD260B67-5E90-4E96-AED0
30C2D12D7C8B
Accept-Language: en-us, *;q-0.1
Accept-Charset: UTF-8, *;q=0.1
X-Accept-Authentication: NTLM, Digest, Basic
Timestamp: 1

RTSP/1.0 200 OK
Transport:
RTP/AVP/UDPunicast;source=172.29.232.226;server port=2563;client port-2546;s
src=2b6c9bcfmode=PLAY
Date: Fri, 04 May 2001 01:17:12 GMT
CSeq: 5
Timestamp: 1 0.0
Session: 3828318172;timeout-60
Server: Server/9.0.0.201
Last-Modified: Wed,06 Dec 2000 15:38:32 GMT
Cache-Control: content-size="2139795", max-age=86399, must-revalidate, proxy
revalidate
Etag: "2139795"

RTSP/1.0 200 OK
Transport: RTP/AVP/UDP;unicast;server port=6002-6003;client port=2548
2549;ssrc=9b973387;mode=PLAY
Date: Fri, 04 May 2001 01:17:12 GMT
CSeq: 6
Timestamp: 10
Session: 3828318172:timeout-60
Server: Server/9.0.0.2O1
Last-Modified: Wed, 06 Dec 2000 15:38:32 GMT
Cache-Control: content-size="2139795", max-age=86399, must-revalidate, proxy
revalidate
Etag: "2139795"
X-Feedback-Stream-Id: 24812

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
22

Appendix C

0096. The client 110 sends out connection related statistics to the server 108 on a regular
basis using the RTSP SET PARAMETER method in a unicast session. The data in the
logging information record is in the form of an XML description (see example below).
0097. The various statistical parameters that remain constant throughout the session
are sent only once at the beginning of the session. The other dynamically changing
parameters are sent regularly, the frequency of reporting set by the statistics reporting
interval parameter sent in the initial request.
I0098. The following example shows a network trace of statistics reporting. The client
110 sends the following information to the server 108.

SET PARAMETER rtsp://test.com/eagles/foo RTSP/1.0
CSeq: 431
Content-Type: application/x-logparameters
Session: 12345

Content-Length: 21 //length of log data
c-pkts received: 1000
c-resendreqs: 15

: //log data

In response to the client 1 10, the server 108 sends the following information.
RTSP/1.0 200 OK

CSeq: 431
Session: 12345;timeout-10

Statistics Parameters

0099. The following table describes exemplary statistics that may be sent from the
client 110 to the server 108 for logging purposes. Some of the statistics are static
parameters (i.e., sent once in the beginning or at the end of the session).

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
23

Table Cl: Logging Fields

Field Meaning Sample data

Client IP address 15756.81.76

Date when Client connected to station 1998-01-09

Time when Client connected to station 05:36:03

Client computer. Note, due to privacy MyServer.MyDomain.co
concerns the client sends up an empty m
value (denoted as a dash character)

cs-uri-stem The URI stcm of the content that was /videos/MyIIomeMovie.

requested. WSW

c-starttime The timestamp (in seconds, no 3285
fractions) when you played the file in
normal modc

c-endtime The timestamp (in seconds, no 10345

fractions) when the Client finished
playing the file in normal mode

X-duration How long you tried to receive the

stream (in seconds)

Avgbandwidth Average bandwidth (in bytes) at which 21429
the Client was conncoted to the Server

protocol The protocol used to access the stream Asful

c-playerid GUID {c579d042-cecc-11d 1

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
24

c-playerversion The player version number 5.1.51.43

c-playerlanguage The language of the Client. This is a el
code for the country

cs(User-Agent) If the player was embedded in a -

browser, this field refers to the browser

type that was used

cs(Refercr) URL to the Web page that the player
was embedded within (if the playcr
was embedded)

c-hostexe The host application, for example, a XYZplayer.exe

Web page in a browser, an applet or
stand-alone media player

c-hostexever Version number of the host application 5.1.5.413

C-OS Client computer's operating system XYZos

c-osversion Version it of the Client's OS 3.0.0.111

Compression Layer-3 audiocodec Audio codec used in stream

vidcocodcc Video codec used to encode the stream Compression Video Co
dec V2

Client computer's CPU XYZProcessor

Codes that describe the Clicnt's status. 200

Mapped to http/rtsp status codes; 200 is
Success, 404 is file not found.

Number of bytes received by the Client 28583
from the Server. C-bytes and sc-bytes

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
25

- - - - - -----

should be the same, if not, there was
packet loss.

c-pkts-received Number of packets received by the O
Client

c-resendreqs The number of requests made by the
Client to receive new packets

c-pkts-recovered- Number of packets that were repaired
ECC and recovered on the Client layer

c-pkts-recovered- Number of packets that were recovered
reSent because they were resent via UDP

c-buffercount Number of times the Client buffered

while playing the stream

c-totalbuffertime The total time (in seconds) the Client

used in buffering the stream

c-quality The measure of how well the stream

was received (on a scale from 0-100%)

Example Logging Record
100100. The following is an example logging information record.

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003
26

Protocol Headers:

SET PARAMETER rtsp://MyServer.MyDomain.com/welcome2.asf RTSP/1.0.
Content-Type: application/x-LogplayStats;charset=UTF-8.
Contcint-Length: 1597. Date: Wed, 14 Mar 2001 17:47:35 GMT.
CSeq: 9.Session: 885575573.
User-Agent: Player/9.0.0.189

Accept-Language: en-us, ;q=0.1.
Accept-Charset: UTF-8, *;q-0.1.
X-Acccpt-Authentication: NTLM, Digest, Basic
Timestamp: 2

Protocol Body:
<XML>.<Summary>0.0.0.0 2001-03-14 17:47:35

rtsp://MyServer.MyDomain.com/welcome2.asf O10 1 200 (94a7f5df 704a-4ee8-a 125
622e5c68f)0f 9.0.0.179 en-US -- XYZplayer.exe 7.0.0.1958 XYZos 5.0.0.2195
XYZProcessor 68 0192000 rtsp UDP Compression Audio Codec V2
Compression Video Codec V3 - - 2400 81 - 1400 00 00 0 1 1 100 ---- rtsp://test
/welcome2.asf</Summary>.

<c-pkts-received 140</c-pkts-received’.
<c-pkts-lost-client>0 </c-pkts-lost-client>
<c-pkts-lost-net-0</c-pkts-lost-net.
<c-pkts-lost-cont-net-0</cpkts-lost-cont-netc.
<c-resendreqs)0</c-resendreqs
<c-pkts-recovered-ECC>0</c-pkts-recovered-ECC>
<c-pkts-recovered-resent>0</c-pkts-recovered-resent>
~c-buffercountD1</c-buffercounts

<c-totalbuffertime>1</c-totalbuffertime>.

<c-quality 100</c-quality>.
<filelength >68</filelength >.
<filesize >0</filesize>.

<audiocodec Compression Audio Codec V2</audiocodec2.

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1 Dec. 25, 2003

TLED

27

<videocodec Compression Video Codec V3</videocodecs.
<c-playerversion>9.0.0.1</c-playervers >.
<c-playerlanguage Den-USS/c-playerlanguage->.
<c-hostexeXYZplayer.exes/c-hostexes.
<c-hostex ever >7.0.0.19.58</c-hostexever).

<cs-url’rtsp://MyServer.MyDomain.com/welcome2.asf-/csurl).
<ContentDescription>.

<CONTENT DESCRIPTION TITLE>Media-/CONTENT DESCRIPTION TI

<Copied MetaData From Playlist File>1</Copied MetaData From PlaylistFiles
<Rating></Rating>.

<CONTENT DESCRIPTION DESCRIPTION-></CONTENT DESCRIPTION
DESCRIPTION>.

<CONTENT DESCRIPTION COPYRIGHT >(c)
1999</CONTENT DESCRIPTION COPYRIGHT->.

<CONTENT DESCRIPTION AUTHOR>Mediak/CONTENT DESCRIPTION
AUTHOR>.

</ContentDescription >

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

What is claimed is:
1. A method of Streaming media content from a Server to

at least one client, Said method comprising:
establishing a streaming media connection between the

Server and the at least one client;

Streaming the media content from the Server to the client;
receiving, by the client, the Streamed media content from

the Server;

Sending a reconnect request from the client to the Server
if Said streaming is interrupted;

receiving, by the Server, the reconnect request from the
client;

re-establishing the Streaming media connection with the
client; and

continuing with Said Streaming the media content and Said
receiving the Streamed media content.

2. The method of claim 1, wherein Said Sending comprises
Sending a reconnect request having a stream identifier and a
Session identifier.

3. The method of claim 1, wherein Said Streaming com
prises maintaining a State of the client.

4. The method of claim 3, wherein Said maintaining
comprises maintaining the State of the client for a preset time
period after said Streaming is interrupted.

5. The method of claim 4, wherein said re-establishing
comprises associating the maintained State with the client
Sending the reconnect request.

6. The method of claim 1, wherein Said streaming com
prises Streaming the media content to the client from a file
System accessible by the Server.

7. The method of claim 1, wherein Said Streaming com
prises Streaming, by the Server, the media content to the
client from another Server.

8. The method of claim 1, further comprising transmitting
state information from the client to the server.

9. The method of claim 1, wherein said streaming com
prises Streaming the media content from the Server to the
client via a real-time Streaming protocol.

10. The method of claim 1, wherein said streaming
comprises Streaming the media content from the Server to
the client via a hypertext transfer protocol.

11. The method of claim 1, wherein one or more com
puter-readable media have computer-executable instructions
for performing the method of claim 1.

12. A method of Streaming media content to at least one
client, Said method comprising:

establishing a Streaming media connection with at least
one client;

Streaming the media content to the client;
receiving a reconnect request from the client if Said

Streaming is interrupted;

re-establishing the Streaming media connection with the
client; and

continuing with Said streaming the media content.
13. The method of claim 12, wherein said streaming

comprises maintaining a State of the client.

28
Dec. 25, 2003

14. The method of claim 13, wherein said maintaining
comprises maintaining the State of the client for a preset time
period after said Streaming is interrupted.

15. The method of claim 14, wherein said maintaining
comprises deleting the State of the client if the preset time
period has elapsed.

16. The method of claim 15, wherein said maintaining
further comprises logging an error.

17. The method of claim 12, wherein one or more
computer-readable media have computer-executable
instructions for performing the method of claim 12.

18. The method of claim 12, wherein said receiving
compriseS receiving a reconnect request having a stream
identifier and a Session identifier.

19. The method of claim 18, wherein said streaming
comprises maintaining a State of the client in a State reposi
tory, and wherein Said re-establishing comprises Searching
for the received Session identifier in the State repository.

20. The method of claim 19, wherein if the received
Session identifier is not found within the State repository,
Said re-establishing further comprises establishing another
Streaming media connection with the client, and Said con
tinuing comprises Streaming the media content associated
with the received stream identifier to the client.

21. The method of claim 19, wherein if the received
Session identifier is found within the State repository, Said
re-establishing further comprises Searching for the received
Stream identifier within the State repository.

22. The method of claim 21, wherein if the stream
identifier is found within the state repository, said continuing
comprises Streaming the media content associated with the
received Stream identifier to the client.

23. The method of claim 21, wherein if the received
Stream identifier is not found within the State repository, Said
re-establishing further comprises transmitting one or more
other stream identifiers to the client for selection by the
client.

24. The method of claim 23, wherein said re-establishing
further comprises receiving a playback request from the
client in response to Said transmitting, Said playback request
comprising at least one of the other Stream identifiers.

25. The method of claim 24, wherein said continuing
comprises Streaming the media content associated with the
received at least one of the other Stream identifiers.

26. A method of receiving media content Streamed from
a Server, Said method comprising:

establishing a streaming media connection with the
Server,

receiving the media content Streamed from the Server;
transmitting a reconnect request to the Server if Said

receiving is interrupted;

re-establishing the Streaming media connection with the
Server; and

continuing with Said receiving the Streamed media con
tent.

27. The method of claim 26, wherein said transmitting
further comprises:

delaying Said transmitting for a preset time period; and

incrementing a reconnect counter.

NETFLIX, INC. EXHIBIT 1002

US 2003/0236905 A1

28. The method of claim 27, further comprising repeating
Said transmitting until Said re-establishing occurs or until the
reconnect counter exceeds a threshold.

29. The method of claim 28, wherein said re-establishing
further comprises resetting the reconnect counter.

30. The method of claim 26, wherein said re-establishing
further comprises transmitting State data to the Server.

31. The method of claim 26, wherein one or more
computer-readable media have computer-executable
instructions for performing the method of claim 26.

32. The method of claim 26, further comprising Sending
State data to the Server to be maintained in a State repository.

33. The method of claim 32, wherein said transmitting
comprises transmitting a reconnect request to the Server
having a Session identifier and a Stream identifier.

34. The method of claim 33, further comprising receiving
a message from the Server indicating that the transmitted
Session identifier was not found within the State repository,
wherein Said re-establishing comprises establishing another
Streaming media connection with the Server, and Said con
tinuing comprises receiving the media content associated
with the transmitted stream identifier from the server.

35. The method of claim 33, further comprising receiving
a message from the Server indicating that the transmitted
Session identifier and the transmitted Stream identifier have
been found within the State repository, wherein Said con
tinuing comprises receiving the media content associated
with the transmitted stream identifier from the server.

36. The method of claim 33, further comprising receiving
a message from the Server indicating that the transmitted
Session identifier was found in the State repository and the
transmitted stream identifier was not found within the state
repository, wherein Said re-establishing further comprises
receiving one or more other Stream identifiers from the
SCWC.

37. The method of claim 36, further comprising selecting
at least one of the other Stream identifiers, and wherein Said
re-establishing further comprises transmitting a playback
request to the Server, Said playback request comprising the
Selected, other Stream identifiers.

38. The method of claim 37, wherein said continuing
compriseS receiving from the Server the media content
asSociated with the Selected, other Stream identifiers.

29
Dec. 25, 2003

39. In a system wherein a server streams media content to
at least one client, one or more computer-readable media
having computer-executable components comprising:

a Server component; and
at least one client component, wherein the Server com

ponent and the client component comprise computer
executable instructions for exchanging one or more
messages to re-map the State of the client and to
re-synchronize playback of the content if the Streaming
is interrupted.

40. The computer-readable media of claim 39, wherein
the Server component comprises computer-executable
instructions for:

establishing a Streaming media connection with at least
one client;

Streaming the media content to the client;
receiving a reconnect request from the client if Said

Streaming is interrupted;
re-establishing the Streaming media connection with the

client; and
continuing with Said Streaming the media content.
41. The computer-readable media of claim 39, wherein

the at least one client component comprises computer
executable instructions for:

establishing a streaming media connection with the
Server,

receiving the media content Streamed from the Server;
transmitting a reconnect request to the server if said

receiving is interrupted;
re-establishing the Streaming media connection with the

Server; and
continuing with Said receiving the Streamed media con

tent.
42. One or more computer-readable media having Stored

thereon a data structure representing a reconnect request
transmitted by a client to a Server to re-establish an inter
rupted Streaming media Session, Said data Structure com
prising:

a Session identifier identifying the interrupted Streaming
media Session;

a stream identifier identifying a media Stream Streamed by
the Server to the client in the interrupted Streaming
media Session.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-4

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-4

NETFLIX, INC. EXHIBIT 1002

US 2004O133467A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0133467 A1

Siler (43) Pub. Date: Jul. 8, 2004

(54) METHOD AND APPARATUS FOR ation-in-part of application No. 09/625,443, filed on
SELECTING STREAMING MEDIA IN Jul. 26, 2000, now abandoned.
REAL-TIME

(76) Inventor: Gregory Aaron Siler, Garland, TX Publication Classification
(US)

(51) Int. Cl. ... G06F 17/60
Correspondence Address:
ROBERTS ABOKHAIR & MARDULA (52) U.S. Cl. .. 705/14; 709/218
SUTE 1000
11800 SUNRISE WALLEY DRIVE
RESTON, VA 20191 (US) (57) ABSTRACT

(21) Appl. No.: 10/463,120
Streaming media over a packet Switched network includes

(22) Filed: Jun. 17, 2003 processes for tracking which users are receiving a particular
media Stream and how long each of the users receives in

Related U.S. Application Data order to collect time line information. Advertisements are
preferably Selected in real-time based on predefined criteria

(63) Continuation of application No. 09/642,037, filed on and Switched, in response to a trigger, in place of a Source
Aug. 18, 2000, now abandoned, which is a continu- Signal during a streaming Session.

User requests
stream by

selecting hyperlink
on web page

20

Client requests
stream from URL

entified in
streaming

information file
231

yes

Streaming server
ls Walid user) transmits stream

stored in user file on
client computer?

23

Client sends
request for

selected stream to with that

server specified in identtreat
link with stream

identifying
information

217

Client stores
Server receives streaml)

request and sends 235
file with streaming

information to
client
29

Send registration
page to client

205

Cliet receives
streaming

information file
and stores it

221

Cient receives
registration page

2O7

Client plays
stream
237

Streat
terminated

239
Client transmits
user registration

informatio
209

request session

223

ew stream lo
received?

Server receives 241
registration
infortation

211

Server creates
record for session

225

yes

Server stores
registration

information in user
database and
creates userID

23

Server returns
sessionio to client

227

Store new stream no
O

243

Seryer sends user
ID for storage in
user file on client

215

Remove streamid
245

Client stores
session D

229

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Jul. 8, 2004 Sheet 1 of 8 US 2004/0133467 A1

FG. A
5

45 USER TRACKING
REPORT 1

53

47 USER TRACKING
REPORT 2

59

57 AD SCHEDULING
INTERFACE

O

22 PLAYER APPLICATION

27 SESSION TRACKING LOGIC

33

29

AD DISPLAY LOGIC

RCH MEDIA AD DISPLAY
WINDOW

n STREAMING MEDIA PLAYER

FIG. A FIG. B. F.G.

35

STREAM CONTROL LOGIC

3.

PACKET
NETWORK

IO3

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Jul. 8, 2004 Sheet 2 of 8 US 2004/0133467 A1

/ OO
WEB
SERVER

ADVERTSNG
SCHEDULING

LOGIC

155 FIG. B

ADVERTISING 39 AD PUSH
SCHEDULING

LOGIC DATABASE

USER
REPORTNG

a - LOGIC O
USER 6

REGISTRATIONA DATABASE
LOG ON LOGIC

SESSION SESSION 25
TRACKING RECORDS

LOGIC DATABASE

STriMING STREAMING
NFORMATION INFORMATION
LOGC FILES

2

- GSH RCH MEDIA 43
ADVERTIS NG AD CONTENT

LOGC FILES

STREAMING
SERVER

STREAMING
ADVERTISEMENTS

AUDIO
TRIGGER FROM AUTOMATION

4 (a SYSTEM CONTER SOURCE

CONTENT

Ior?
O8

NETFLIX, INC. EXHIBIT 1002

User requests
stream by

selecting hyperlink
on web page

2O1

is valid user D
stored in user file on

client computer?
2O3

Send registration
page to client

205

Client receives
registration page

2O7

Client transmits
user registration

information
209

Server receives
registration
information

211

Server stores
registration

information in user
database and
Creates userID

213

Sever sends user
ID for storage in
user file on client

215

Patent Application Publication Jul. 8, 2004

FIGURE 2

Client sends
request for

selected stream to
server specified in
link with stream

identifying
information

217

Server receives
request and sends
file with streaming

information to
client
219

Client receives
streaming

information file
and stores it

22

Request session
D

223

Server creates
record for Session

225

Server returns
session ID to client

227

Client stores
session D

229

Sheet 3 of 8 US 2004/0133467 A1

Client requests
stream from URL

identified in
streaming

infortation file
231

Streaming server
transmits stream

with ID that
identifies stream

233

Client stores
stream D

235

Client plays
stream
237

Stream
terminated?

239

New stream D.
received?

241

yes

Store new strean
D

243

O

Remove stream D.
245

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Jul. 8, 2004 Sheet 4 of 8 US 2004/0133467 A1

Send periodic
information of
streaming to

Sewer
301

Request updated
URL for rich media
ad from Srever

303

Receive URL for
rich media ad

305

Request rich
media ad from
received URL

307

Display rich media
advertisement

309

Wait prescribed
time
311

FIGURE 3

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication

nO

Received period
information update

from user?
401

yes

Update session
record from user

403

S user playing a
streaming

advertisement?
405

O

yes

Determine identity
of streaming
advertisement

based on stream
D

4O7

Update advertising
database to
transmit rich
media ad

. Corresponding to
Streamind ad

409

Figure 4

Jul. 8, 2004 Sheet 5 of 8

TRansmit URL Of
rich media ad to

client
413

Was user playing streaming
ad on last update?

415

yes

Update advertising
dtatbase to

transmit Scheduled
rich media ad to

USe
417

US 2004/0133467 A1

Poll advertising
database for rich
media ad for user

411

O

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Jul. 8, 2004 Sheet 6 of 8 US 2004/0133467 A1

Trigger
signal

received?
501

Select streaming
advertisment based on

predefined criteria

indicate Selected
advertisement for playing

503

FIGURE 5

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Jul. 8, 2004 Sheet 7 of 8 US 2004/0133467 A1

F.G. 6A
5

45 USER TRACKING
REPORT 1

53

47 USER TRACKING
REPORT 2 as a

59 m

57 AD SCHEDULING
INTERFACE

O

WEB BROWSER

22 PLAYER APPLICATION

27 SESSION TRACKING LOGIC

33 AD DISPLAY LOGIC

29 STREAM CONTROL LOGIC H
35 RICH MEDIA AD DISPLAY

3. STREAMING MEDIA PLAYER O. ab o

PACKET
NETWORK

FIG.6A FIG.6B FG6 O3

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Jul. 8, 2004 Sheet 8 of 8 US 2004/0133467 A1

OO 5
/ ADVERTESING 5

SCHEDULINGs s
WEB LOGIC
SERVER

ADVERTSNG AD
SCHEDULING 666
DATABASE

USER
3 REPORTNG

D D sm LOGIC

a USER

REGISTRATIONA DATABASE
LOG ON LOGIC

SESSION SESSION
TRACKING RECORDS

LOGIC DATABASE

GET
STREAMING
INFORMATION

LOGIC
STREAMING
INFORMATION

FILES

GET RCH
MEDIA

ADVERTIS NG
LOGC

RCH MEDA
AD CONTENT

FILES

O5
STREAMING

ADVERTISEMENTS
STREAMING
SERVER

TRAFFIC
MANAGEMENT

SYSTEM

O 663

665

O6

SY TRGGER SIGNAL
DECODER FE coNTENT

F.G. 6B 6O8 664 O7

O9

STREAMNG
ENCODER

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

METHOD AND APPARATUS FOR SELECTING
STREAMING MEDIA IN REAL-TIME

RELATED APPLICATIONS

0001. The present application is a continuation-in-part of
commonly assigned and copending U.S. patent application
Ser. No. 09/625,443, entitled “Method and Apparatus for
Streaming Media', filed on Jul. 26, 2000, the disclosure of
which is hereby incorporated herein by reference.

FIELD OF THE INVENTION

0002 The invention pertains to streaming media over
packet Switched data networks, and more particularly to
Selecting in real-time advertising to be inserted into media
Streams based on predefined criteria.

BACKGROUND OF THE INVENTION

0.003 Streaming is a process for transmitting audio,
Video, audio/video and other types of continuous signals,
which have been digitized, over packetized data networks
Such as the Internet for nearly contemporaneous playback. A
Signal is streamed by encoding the Signal as a Series of data
packets and Sending the data packets over a packet Switched
data network in a manner that Supports contemporaneous or
nearly contemporaneous playback on a host computer using
a player application. Because there are no quality of Service
or deliver guarantees provided by currently adopted Internet
protocols, Streaming applications must provide mechanisms
for dealing with lost and delayed packets, flow control and
encoding and compression, among other problems. Pres
ently, there are Several Streaming Standards and approaches,
including those used by the RealPlayer(R) of RealNetworks,
Inc, the Windows Media PlayerTM of Microsoft Corporation,
and the QuickTime(R) player of Apple Computer, Inc., for
encoding and controlling the Stream. Prerecorded content,
Such as Sound recordings and Video tapes, and “live” con
tent, Such as retransmission of radio and television broad
casts, are presently being transmitted over the Internet using
Streaming. Graphical advertisements are also transmitted for
displaying on a computer Screen in connection with the
playing of the media Stream on the computer. In addition,
audio, Video or other Streaming media advertisements are
Sometimes transmitted prior to transmission of the content.

SUMMARY OF THE INVENTION

0004. The invention has as a general objective improved
methods and apparatus for a System of Streaming audio
and/or Video signals, and in particular improvements con
cerning the use of advertising in connection with Such
Streaming.

0005 According to one feature of an embodiment of a
System for Streaming audio and/or Video signals described
below, audio advertisements are inserted into a third party
content Signal, Such as a terrestrial radio broadcast, at a point
at which the Signal is being turned into a data Stream for
transmission acroSS, at least in part, a packet Switched
network, Such as the Internet, to a user's computer for
contemporaneous playback. The insertion takes place during
the Streaming, not just at the beginning of the Streaming as
prior art methods have done. Thus, advertising may be
inserted, for example, in place of advertising contained in
the original signal. Advertising in a terrestrial radio broad

Jul. 8, 2004

cast, which is targeted to a local audience, can be replaced
in real time, during Streaming, with advertising targeted for
a different audience, Such as a national audience or an
audience with a different demographic profile. To enable
insertion or overlaying of advertisements, a trigger Signal
received from a content provider causes the Streaming to
Switch between a third party content Signal and a local Signal
containing an audio or audio/video insert. In the preferred
embodiment, a first trigger Signal is received indicating that
a Second trigger Signal will Soon be received. In the pre
ferred embodiment, it is the receipt of the Second trigger
Signal that causes the Streaming to Switch between the third
party content Signal and the local Signal containing an audio
or audio/video insert. Furthermore, according to another
inventive feature, graphical advertising files can also be
transmitted for display on the user's computer, for example
in a web browser application and/or Streaming media player,
in conjunction with the Streaming advertisement.

0006 According to another feature of the embodiment of
the System for the Streaming audio and/or Video signals
described below, users of media Streams are tracked as the
Stream is being played, thereby enabling real-time collection
of “time-line' information on a stream's audience, including
exposure to any advertisements placed in the Stream and any
non-streaming advertisements displayed on a computer in
connection with the media Stream. This information may
include how many people are listening or viewing a stream
at any given time, and how long they have been listening.
The invention thus is able to provide information on users
that is more accurate than Sampling methods like those
employed in traditional media. It is also more accurate than
tracking only the commencement of a stream or a user
"clicking through a graphical advertisement displayed
Simultaneously with the Stream. Pricing for the advertising
inserted into a media Stream can thus be determined based
on the actual number of users who hear and/or see the
advertisements. Real time reporting on users may also be
made available to content providers and advertisers. By
further obtaining demographic information from a user, the
invention may be further used to generate real-time infor
mation on the demographic composition of an audience.
Such real time demographic information may be used to
Select in real-time advertising for insertion into the Stream or
display of graphical advertising at the host computer, or
both. Such information may also be used to determine
pricing for the advertising. Furthermore, Selection of adver
tising in real-time may additionally or alternatively be based
on other predefined criteria Such as product code Separation,
frequency of play of a particular advertisement, the interests
of the audience and/or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 Following is a detailed description of a method and
apparatus for Streaming audio and/or Video Signals, made in
reference to the accompanying drawings, of which:

0008 FIG. 1 is a block schematic diagram of a client
Server System for Streaming audio and Video, tracking users
and pushing rich media advertising;

0009 FIG. 2 is a flow diagram representing a set up
process for a streaming Service provided with the System of
FIG. 1;

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

0.010 FIG. 3 is a flow chart representing a process of a
user client for updating advertising displayed in connection
with playing of the Stream;
0.011 FIG. 4 is a preferred embodiment flow chart rep
resenting a process by which a Server updates advertising
displayed in connection with the playing of the Stream;
0012 FIG. 5 is a flow chart for selecting and playing
advertisements in real-time based on predefined criteria; and
0013 FIG. 6 is a block schematic diagram of a client
Server System for Streaming audio and Video, tracking users,
Selecting advertisements in real time and pushing rich media
advertising.

DETAILED DESCRIPTION

0.014. In the following description, like numbers refer to
like parts.
0015. When used herein, the term “computer” refers to
any device capable of communicating over a data network
and decoding for nearly Simultaneous playback of an incom
ing data Stream that is encoded with audio and/or video
Signals. Such a stream is referred to herein as a media
Stream. The audio and/or Video signals, once decoded, may
be played back on the computer or another device for
reproducing the Sound and/or Video represented by the
Signals. A computer may further include or be associated
with a visual display. In the preferred embodiments
described herein, a computer takes the form of a micropro
cessor-based personal computer, that includes a general
purpose microprocessor, temporary program and data Stor
age, Such as random acceSS memory, permanent program
and data Storage, Such as a disk drive, a monitor or other
Visual display for displaying graphics, a Sound card for
decoding and converting digital signals to analog signals,
and a keyboard and/or mouse for receiving data from a user.
However, computerS may also include limited function
“Internet appliances having limited display, data, data input,
and user programming capabilities, Such as personal orga
nizers, telephones and other limited or Special purpose
devices.

0016. The term “packet network” refers generally to one
or more interconnected public and/or private networks that
route packets or frames of data, as opposed to circuit
Switched networks and television or radio broadcast net
works. Packet Network includes the system of intercon
nected computer networks known as the “Internet” that route
data packets using the Internet Protocol (IP) as it exists
presently or in the future.
0017 Referring now to FIG. 1, streaming system 100
provides a streaming Service in which it transmits, or causes
transmission of, audio, and/or audio/video signals as a data
Stream. A client computer 101 functions as a device for a
user to enjoy the Streaming Service. Client computer 101 is
connected directly or indirectly, Such as through a dial up
connection, a wireleSS gateway, a cable modem, a xDSL
modem, or local area network, to packet network 103. The
data stream is transmitted by a streaming server 105 through
packet network 103 to the client computer. Although only
one client computer 101 is illustrated for purposes of expla
nation, the same media Stream may be transmitted to a large
number of client computers or the Server may be transmit
ting media Streams with differing content to different com
puters.

Jul. 8, 2004

0018. The streaming server receives a content signal 107
from a Source and transmits the Signal as a stream to packet
network 103. The signal source may be a terrestrial radio
Station or television Station, or other Service that provides
audio and/or Video programming content. For reasons
explained below, the system 100, in its preferred embodi
ment, may be used to best advantage in transmitting live
radio broadcasts. Streaming encoder 109 digitizes, and if
desirable, formats and encodes the Signal as a stream. Any
type of data transport mechanism may be used to transmit
the content signal to system 100, including those that
transmit the Signal in a digital format. Other processes, not
represented on the figure, handle the transport of the media
Stream over the connection of the Streaming Server to the
packet network.
0019 Content for a media stream, meaning an audio
and/or video signal, is in the preferred embodiment provided
in real time from a Source. In the preferred embodiment, if
the source of content signal 107 is a broadcast radio station
or radio network, the Signal that is broadcast is also being
provided in real time for immediate Streaming. Once the
Signal arrives, an audio automation System immediately
connects it to the streaming encoder 109. The streaming
encoder is in a preferred embodiment, an instance of a Server
component of any Streaming application, Such as Real
Player(R), QuickTime(R) or Windows Media PlayerTM. In
order to insert advertising into the Stream, in real time, a
trigger Signal 106 from the Source is also received. The
trigger Signal can be sent from the Source Separately, Such as
on a different channel, Sent on the same channel as or
otherwise encoded in the content Signal from the Source. The
trigger Signal indicates the Start of a time period in which a
message, Such as an advertisement, a news item, Stock alerts,
an email message, a weather update, a voice mail message
and/or the like may be inserted into the content. For
example, the message may be an audio advertisement for a
radio signal, or an audio/video advertisement for a television
Signal.

0020. In the preferred embodiment, when audio automa
tion System 108 receives a trigger Signal, it plays an adver
tisement that has been queued according to a Schedule or a
predetermined order. In an alternative embodiment, the
advertisements may be Selected in real-time based on a Set
of one or more predefined criteria as discussed in more detail
with reference to FIG. 5. The advertisements are stored in
storage system 110. The playback of the advertisement is
Switched by the audio automation System to Streaming
encoder 109 in place of content signal 107. Thus, it is sent
to all users receiving a stream from the URL that identifies
the Source of the Stream. Once the advertisement is finished,
audio automation system 108 Switches back to the content
signal 107 to provide a signal to the streaming encoder 109,
or plays additional advertisements. A Second trigger Signal
can be sent to indicate conclusion of the time period for
advertisements, or the periods can be set to have a prede
termined duration. In the event that the content signal is
provided by a third party Subscription Service, the trigger can
be used to Signal the Start of a new program that may permit
insertion of an advertisement. An identifier included in the
Stream is changed to indicate that a different Stream, namely
the advertisement, is being Sent.
0021 Although not shown, streaming server 105 may
communicate the media Stream to other Servers and/or one

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

or more distribution networks that are connected to, or part
of, packet network 103, in order to cache and/or geographi
cally distribute the Stream over high Speed networks for
purposes of enhancing delivery of the Signal to each client
computer 101. The stream may also be cached by these other
Services or networks.

0022. The streaming server 105 may also receive signals
from more than one Source and concurrently transmit more
than one media Stream. Furthermore, more than one Stream
ing Server may be used to transmit additional media Streams.
0023 Referring now to FIGS. 1 and 2, to begin use of
the Streaming Service, a client-Server application Such as the
WorldWide Web (or “web”) is used to exchange information
with the user for setting up the service. The following
description will be made in reference to a web server and a
web browser as an example of a client-Server application
used to obtain information about Streaming Services and to
Setup Streaming Services. The Web has an advantage of
being available for almost every type of computer. However,
other client-Server applications can be used to exchange
Set-up information for Streaming Services. Therefore, the
web browser and web server can be replaced by other types
of applications capable of displaying text and/or graphic
information, Such as those that may be required for com
puters with limited display or computing capabilities. Client
computer 101 therefore includes a web browser 111. The
user obtains a web page, Such as an HTML encoded file, on
which one or more links to streaming Services content are
included. At step 201 of the process illustrated by the flow
diagram of FIG. 2, the user requests a Stream by, for
example, Selecting a hyperlink on a web page. The web
browser sends to web server 113 a user identifier, if there is
one Stored in a special user file on the client computer. Web
Server 113 passes the information to registration/log on logic
115, which then validates the user identifier. If no valid user
identifier, or no user identifier at all, is sent, the registration
proceSS causes, as represented by decision Step 203, the web
server 113 to transmit at step 205 a registration page to web
browser 111. At step 207, the web browser on the client
computer displays the registration page. The registration
page requests certain information and includes a form into
which information is entered. Preferably, it includes infor
mation with which to identify the user, Such as an Email
address, a telephone number, a credit card number, a digital
signature and/or other like information. With such identify
ing information, the opportunity for duplicate registrations
can be reduced. Furthermore, the identifying information,
Such as the Email address can be, if desired, authenticated.
The registration page or proceSS may also, if desired, Seek
from the user certain demographic information, Such as age,
gender, income, place of residence, ethnicity, languages
spoken, interests and/or the like.

0024. In the preferred embodiment in step 209, the user
sends the registration information to web server 113. Upon
receiving the registration information in Step 211, Server 113
passes at least a portion of the received information to
registration/log on logic 115 to be Stored in user record
database 116 in Step 213. The database generates a unique
user identifier that is sent to the client computer 101 in step
215.

0.025. Once a user identifier is stored on the client com
puter, the web browser continues with the process at Step

Jul. 8, 2004

217 of setting up the selected media stream for the user. The
web browser sends a request to a second web server 117,
using information associated with the link Selected by the
user at step 201, for information with which to set up the
media stream. Included is information with which to identify
the stream. When, as represented by step 219, this request is
received by web server 117, the stream identifying infor
mation is passed to get Streaming information logic 119,
which then obtains the appropriate file Stored in Streaming
information file directory or database 121. This file is
transmitted by web server 117 to client computer 101. At
Step 221, the client receives and Stores the file. In the
preferred embodiment, this file includes a locator, Such as a
Universal Resource Locator (URL), from which the particu
lar Stream is available. Receiving this file causes, in the
preferred embodiment, a player application 122 to be
launched on client computer 101.
0026. As represented by steps 223 and 225, once a user
identifier is obtained, Session tracking logic 123 creates a
record in Session records database 125 to track the user's
Session with the Selected media Stream. This Session record
includes, but is not limited to, fields for the user identifier,
the time the media Stream was set up, and/or information
that identifies the media stream (e.g. the radio station
broadcast including for example the particular advertise
ment) sent to the user. A session identifier that uniquely
identifies the Session is also generated and Sent by Session
tracking logic 123 to client computer 101 in step 227 for
storage by the client computer in Step 229. The client
computer 101 preferably stores the session identified in
client Session tracking logic 127.
0027. Beginning with step 231 the client requests the
stream from the URL provided in the file received at step
221. For purposes of this description, the URL points to a
Streaming Service on Streaming Server 105, which is trans
mitting the stream from source 107. The streaming server
begins transmitting the Stream to client computer 101 in Step
233, which preferably includes a stream identifier that is
Stored by the Stream control logic 129 of player application
122 on client computer 101 in step 235. Player application
122 has embedded in or linked to it a streaming media client
131, such as Windows Media Player'TM, that actually con
trols the Streaming and processes and decodes the Stream in
step 237 for playback on client computer 101 using its sound
System and/or a connected Sound System. If, as represented
by decision steps 239 and 241, the stream terminates, the
stream identifier is deleted at step 245. If a new stream
identifier is received, it is Stored in Step 243 and the playing
process continues at Step 237. A Session identifier for a
Streaming Session can be used in place of the Stream ID to
identify the Stream that the user is then currently receiving.
0028 Referring now to FIGS. 1 and 3 in step 301, player
application 122 sends information to web server 113. This
information may be automatically Sent on a periodic basis.
This information preferably includes the user identifier, the
session identifier and the stream identifier. This information
is used by ad display logic 133 as part of a request Sent to
tracking web server 113 for an updated URL at step 303 for
a rich media message, Such as an advertisement. This rich
media advertisement may include text, Static graphic com
ponents, and/or active components, and may come from any
third party. For example, Such components may be for
example a video component in MPEG, QT, MOV or other

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

format, a presentation in Flash, an animated GIF and/or the
like. It is preferably displayed in a rich media advertising
window 135, which is in the preferred embodiment a web
browser window that is displayed adjacent a window con
taining controls (such as Volume controls) for player appli
cation 122 on the monitor of the client computer. Thus, when
a user is receiving a media Stream, the user is also viewing
an advertisement. The ad display logic 133 can be imple
mented either as a periodic web page refresh or through
client/server Software. Once the URL for the rich media
advertisement is received in step 305, the rich media adver
tisement is requested in step 307. In step 309, at least a
portion of the received rich media advertisement is dis
played. The player application waits for a prescribed time
before repeating the process, as indicated by Step 311.

0029. The preferred embodiment flow diagram of FIG. 4
represents the process on tracking Server 113 that corre
sponds to the process represented by the flowchart of FIG.
3 that takes place on the client computer 101. This process
will be described in connection with web server 113. How
ever, as previously explained, other client/server Software
can be used to implement this process. Web server 113 waits,
as indicated by decision Step 401, to receive updated infor
mation from the computer of each user that uses the Stream
ing Services. When it receives updated information, web
Server 113 passes the information to Session tracking logic
123, for updating the Session record for the particular user in
step 403. Advertising push logic 137 also receives informa
tion about the Stream that is being played. If, as represented
by Step 405, the user is playing a message, Such as an
advertisement, that has been inserted into the Stream accord
ing to a process that will be described below, the identity of
the Streaming advertisement is available as a stream or
session identifier, as indicated at step 407. Preferably the
Stream identifier is used to look up in the advertising
scheduling database 139 or some other database the URL of
a rich media advertisement that is to be shown at the same
time streaming advertisement is played. In step 409, the
advertising scheduling database 139 is updated with this
information so that, when the advertising push logic 137
polls the database at step 411 for the URL of the advertise
ment to be shown, the URL for this rich media advertisement
is transmitted to the client at step 413. If the user was not
playing a Streaming advertisement at Step 405, but was
playing Such an advertisement during the last update, then it
updates advertising Schedule database to transmit the rich
media advertisement when the advertising push logic polls
the advertising Schedule database, as indicated by StepS 415
and 417. In a preferred embodiment the advertising schedule
database is updated with a previously Scheduled advertise
ment. However, if desired, in alternative embodiments the
advertising Schedule database may be updated with an
advertisement Selected in real-time based on one or more
predefined criteria as discussed in more detail with reference
to FIG. 5. If no streaming advertisement was being played
on the prior update, then step 417 is skipped. Web server 117
is illustrated as providing the rich media advertising files. If
the URL provided by the process of FIG. 4 points to a rich
media advertising file stored in database or file system 143,
then get rich media ad logic 141 retrieves the files for the
advertisement and provides them to web server 117 to send.
However, the URL may also point to any other resource on
packet network 103.

Jul. 8, 2004

0030) Referring now only to FIG. 1, client computers
145 and 147, each running a web browser, are representative
of a feature that permits remote viewing in real time, through
a public packet network, how many people are actually
listening to the content, as well as when they listened and
how long they listened. This feature may be made available
to the content providers and to advertisers, as it also indi
cates who has listened to and/or viewed advertisements.
Thus, it is possible to charge advertisers based not only on
how many people actually saw or heard an advertisement,
but also their demographic profile. In the illustrated
example, user reporting logic 149, in response to a request
from client computers 145 and 147 to web server 113, has
generated different user tracking reports 151 and 153. The
reports have been sent by web server 113 for display
preferably in web browserS on those client computers.

0031 Additionally, advertising can also be scheduled
remotely using Web Server 113 and advertising Scheduling
logic 155. The advertising Scheduling logic creates an inter
face 159 that is displayed on client computer 157. The
interface permits adding, modifying and deleting advertising
Schedules for the rich media advertising.

0032 Web servers 113 and 117 do not necessarily cor
respond to physical machines. Rather, they represent differ
ent instances of a Web Server, which may or may not be
running on the same physical hardware. Similarly, one or
more instances of web servers may be used, and multiple
instances may be distributed in terms of physical location,
depending on loads or other needs of the Service provider or
particular implementation. The logic that is illustrated
namely advertising Scheduling logic 155, advertising push
logic 127, user reporting logic 149, registration/log on logic
115, Session tracking logic 123, get Streaming information
logic 119, and get rich media advertising logic 141
represent classes of computer programs or Scripts which
may have many instances at any given time. They may or
may not run on the Same physical hardware as the web
Servers and thus, too, may be distributed. For example, in the
preferred embodiment, that may be instances of dynamic
link libraries that are invoked by the web browsers. The lines
extending between the various entities in FIG. 1 indicate
message and data flows, and not physical connections.
Player application 122 may, alternatively, be implemented as
a web page with active components, with the rich media
advertisements displayed in a frame.

0033 Referring now to FIGS. 5 and 6, an alternative
embodiment for a client server system 600 for streaming
audio and Video, tracking users, Selecting advertisements in
real time and pushing rich media advertising is shown. The
block schematic diagram of FIG. 6 is substantially the same
as the diagram of FIG. 1. However, the client server system
of FIG. 6 differs in ways described below. A decoder 664 is
provided Such that if the content signal is in a coded or
compressed format, the decoder 664 decodes or decom
presses the signal. Furthermore a decoder 665 is preferably
included between a Switch logic 608 and streaming adver
tisements database 110. Advertisements in the Streaming
advertisements database 110 are preferably stored in a
compressed format and are decoded by decoder 665 prior to
providing to switch 608.

0034 AS indicated by decision step 501 traffic manage
ment logic 663 waits to receive an indication that a trigger

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

has been received. Traffic management logic 663 is imple
mented, for example, as a program or multiple programs
running on one or more computers. In Step 502 one or more
Streaming advertisements are Selected, based on one or more
predefined criteria, to be played during a commercial break
in the content. In step 503, the selected advertisement(s) are
indicated to or identifies for the Switch logic 608. Switch
logic 608, like audio automation system 108, detects the
trigger Signal. However, it also requests from the traffic
management System a Streaming advertisement to play and
then retrieves it from the Streaming advertisements database
110. The Switch logic can be a programmed proceSS on a
computer with multiple Sound cards.
0035) In the preferred embodiment, the traffic manage
ment system 663 writes to the ad scheduling database 139
information identifying which Streaming advertisement was
played and when it was played. Other information, Such as
the criteria used to Select the advertisement and information
for determining which rate to be charged to the advertiser,
can also be written to the ad scheduling database 139 for use
by the billing system 666 to create statements or bills for the
advertisers. This information may include the time of day,
the number of users who received the Streaming advertise
ment (referred to as “impressions”), the demographic infor
mation of the users, the Station identifier, the Spot number
and/or the like. In the preferred embodiment, the cost of the
advertisements are calculated using rates based on cost per
thousand impressions multiplied by the number of impres
SOS.

0036). In a preferred embodiment, the demographic com
position of the users to whom a particular Streaming media
is being transmitted is used as a criteria to Select the
Streaming advertisement. The traffic management logic 663
preferably determines the demographic composition of the
users listening to a particular Stream. Thus, Selection of an
advertisement for Streaming may be, if desired, based on
whether the demographic composition of the users matches
or fits the demographic profile associated with the particular
advertisement. In the illustrated embodiment the demo
graphic composition of the users is determined by the traffic
management logic 663. In the illustrated embodiment, the
traffic management logic 663 accesses the Session records
database 125 and acquires the user identifiers of a plurality
of users associated with a particular Streaming Session. The
user identifiers are used by the traffic management logic 663
to look up the profile of the users Stored in the user records
database 116.

0037 Information about the preferred target audience of
a particular advertisement may be associated with the adver
tisement and Stored in the ad Scheduling database 139 along
with the particular advertisement. Thus, information from
the user database 116 may be used to Select a particular
advertisement to be played. Thus, whether a particular
advertisement is Selected for playing will depend, at least in
part, on the demographic profile, Such as for example the
age, gender, income, place of residence, ethnicity, interests
and/or the like of the users. For example, an advertiser may
have two "spots”, one targeted for one demographic and the
other targeted to a different demographic. The most appro
priate advertisement can be Selected based on which demo
graphic is most prevalent among the users. Furthermore, if
desired, each of these demographic criteria may be given a
particular weight in the Selection process Such that a par

Jul. 8, 2004

ticular demographic criteria is given more importance in the
Selection process. For example, advertisers for local goods
and/or Services may be more interested in the geographical
location of a user, then their income and thus, may assign a
greater weight to the place of residence.

0038. In the illustrate embodiment, predefined criteria
may be used to enforce product code Separation. A product
code indicates the product that a particular Streaming adver
tisement is related to. For example, the Streaming advertise
ment database may include one or more advertisements for
cars from different manufacturers. The product code for all
Such advertisements may be the same indicating that all of
the advertisements relate to cars irrespective of the manu
facturer. A product code Separation criteria can be used to
enforce an advertiser's requirement or preference that Some
number of advertisements or Some amount of time pass
between playing of advertisements of the same product class
or type. Ad Scheduling database 139 may include informa
tion associated with each advertisement, Such as a particular
advertiser's preferences as to product code Separation. In
Such a case, a particular advertiser could specify for example
the number of advertisements or a time period that would
Separate that particular advertiser's advertisement from an
advertisement related to a product having the same or
Similar product code. Use of a product code Separation will,
when Selecting advertisements for play in real-time, prevent
inadvertent violation of the product separation requirements
or preferences.

0039. Additional predefined criteria for selecting may be
based, for example on the frequency of play. Thus, whether
a particular advertisement is Selected for playing in real time
could depend on when that particular advertisement was last
played. The information regarding when a particular adver
tisement was last played could be obtained for example from
the Session records database 125 and/or the Session tracking
logic 127. In the preferred embodiment, the same advertise
ment is not played around the same time everyday. Thus, if
a particular advertisement was played at a particular time the
previous day, then in the preferred embodiment, that same
advertisement would not be played during the same time the
next day.

0040 Alternately, the selection of the advertisement may
precede actual receipt of a trigger to improve performance,
or for other reasons, provided the Selection is made in close
proximity to receiving the trigger Signal. The advertisement
could be streamed to the users upon receiving the trigger.
For example, because in the preferred embodiment, user
Session records are only updated periodically, the traffic
management logic 663 need only periodically generate the
demographic composition of the users. This could improve
the performance of the System in providing advertisements
in real time. Furthermore, if desired, some of the predefined
criteria may be calculated or applied prior to receiving the
trigger Signal while other predefined criteria may be applied
after receiving the trigger signal.

0041. In a preferred embodiment, during the selection
process a first criteria, for example the demographic com
position of the users is applied to a plurality of advertise
ments, Say advertisements Scheduled to be played during a
particular period of the day (for example, evening drive
time) to provide a Subset of the plurality of advertisements.
A Second criteria, Say frequency of play, may then be applied

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

to this Subset of advertisements to provide a Smaller Subset
of advertisements. A third criteria, Say product code Sepa
ration, may then be applied to this Smaller Subset to Select
one or more advertisements to be played. If there are more
than one advertisements that meet all three criteria, then
these advertisements could be played based on a priority
basis or Some other bases.

0.042 Although the real time selection of streaming
advertisements is described above with reference to certain
criteria only, any one or any number of criteria, as well as
other criteria, may be used to Select a streaming advertise
ment in real time. Moreover, it is not necessary that all the
criteria be considered in Selecting the particular advertise
ment to be displayed. Any one or more than one combination
of criteria may be used for Selecting an advertisement to be
played. Furthermore, weights may be assigned to each of the
predefined criteria So that a particular predefined criteria is
given more importance in the Selection process than other
criteria.

0043. In alternative embodiments, a set of advertisements
may be queued in advance with alternate “spots’ provided
based on predefined criteria Such as demographics, or with
the predefined criteria acting as a Screen to prevent playing
of the advertisement. For example, advertisement numbers
1,2,3,4 and 5 may be scheduled to be delivered in that order
in a particular time slot. However, if the traffic management
System determines that advertisement 2 is targeted to teen
age girls while the particular listeners are retired males,
advertisement 2 can be skipped and advertisement 3 is
played or an alternate spot played in place of advertisement
2.

0044) The advertisement selection process as described
above with respect to the flowchart of FIG. 5 provides
certain advantages not provided by prior art Systems. For
example, because it is capable of Selecting in real-time
advertisements to be played, the advertisements may be
better targeted to an advertiser's preferred audience. Fur
thermore, because a user is receiving advertisements for
products and/or Services that it is interested in, the user is
able to receive better information. This may provide a
competitive advantage to the particular content provider,
Such as a radio Station, because the users would prefer
receiving content from a content provider that also provides
them useful information during commercial breaks than a
content provider who does not provide them useful infor
mation during commercial breaks.
004.5 The forgoing description is an example of one
embodiment of the invention. The invention is not, however,
limited to the described and illustrated embodiment. Ele
ments and features of this embodiment may be omitted or
altered, and features and elements added, without departing
from the scope of the invention, which is defined solely by
the appended claims.

What is claimed is:
1. A method for Streaming media over packet networks,

comprising the Steps of:

receiving a first content Signal from a Source;
establishing a streaming Session with a user computer

over a packet Switched data network;

Jul. 8, 2004

Streaming Said first content signal over Said data network
during Said Streaming Session;

in response to a trigger, Selecting in real time a Second
content Signal to be streamed in place of Said first
content signal; and

Streaming Said Selected Second content signal.
2. The method of claim 1, wherein Said Second content

Signal includes advertising information.
3. The method of claim 2, wherein said selection in real

time of Said Second content Signal is based in part on a Set
of predefined criteria.

4. The method of claim 3, wherein at least one criteria of
Said Set of predefined criteria is Selected from the group
consisting of a product code Separation, a frequency of
Streaming, and a demographic profile of a user of Said user
computer.

5. The method of claim 4, wherein said product code
Separation is based in part on a stream identifier associated
with Said Streaming Session, wherein Said Stream identifier
identifies a particular product associated with Said advertis
ing information.

6. The method of claim 3, wherein said advertising
information is Selected from a plurality of advertisements
Stored in a streaming advertisements database, wherein Said
plurality of advertisements are prearranged in a Scheduled
order and Said Selecting Step rearranges Said prearranged
order based on said set of predefined criteria.

7. The method of claim 2, wherein said advertising
information includes an audio component.

8. The method of claim 2, wherein said advertising
information includes a Video component.

9. The method of claim 7, wherein said audio component
is in MP3 format

10. The method of claim 8, wherein video component is
in a format selected from the group consisting of MPEG,
MOV, OT, and animated GIF.

11. A computer program for providing Streaming media
over a packet Switched network to a user computer, the
computer program comprising:

a user component for use by a user computer; and

a provider component on a provider Server for use by a
provider of Said streaming media, wherein Said pro
vider component includes:

code for receiving relevant information from Said user
component,

code for Streaming a content Signal received from a
Source to Said user component;

code for receiving a trigger Signal from Said Source,

code for Selecting, upon receiving Said trigger signal, in
real time content information to be provided to Said
user computer based in part on information received
from Said user component over a packet Switched
data network, wherein Said Selection is based on a
predefined set of criteria; and

code for Streaming Said Selected content information
over Said data network to Said user computer.

NETFLIX, INC. EXHIBIT 1002

US 2004/O133467 A1

12. The computer program of claim 11, wherein Said
Selected information includes a plurality of advertisements
and wherein Said provider component further comprises:

code for rearranging a prearranged order of Streaming Said
plurality of advertisements, wherein Said rearranging is
based on Said predefined set of criteria.

13. A System for Streaming media over packet networks,
comprising:

means for receiving a first content Signal from a Source;

Jul. 8, 2004

means for establishing a streaming Session with a user
computer over a packet Switched data network;

means for Streaming Said first content Signal over Said
data network during Said Streaming Session;

means for Streaming, in response to a trigger, a Second
content Signal, wherein Said Second content Signal to be
Streamed is Selected in real time.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-5

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-S

NETFLIX, INC. EXHIBIT 1002

1 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

[MS-WMLOG]:
Windows Media Log Data Structure

Intellectual Property Rights Notice for Protocol Documentation

▪ Copyrights. This protocol documentation is covered by Microsoft copyrights. Regardless of any

other terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the protocols,
and may distribute portions of it in your implementations of the protocols or your documentation
as necessary to properly document the implementation. This permission also applies to any
documents that are referenced in the protocol documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

▪ Patents. Microsoft has patents that may cover your implementations of the protocols. Neither

this notice nor Microsoft's delivery of the documentation grants any licenses under those or any
other Microsoft patents. However, the protocols may be covered by Microsoft’s Open Specification
Promise (available here: http://www.microsoft.com/interop/osp). If you would prefer a written
license, or if the protocols are not covered by the OSP, patent licenses are available by contacting
protocol@microsoft.com.

▪ Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. This protocol documentation is intended for use in conjunction with publicly available

standard specifications and network programming art, and assumes that the reader either is familiar
with the aforementioned material or has immediate access to it. A protocol specification does not

require the use of Microsoft programming tools or programming environments in order for you to
develop an implementation. If you have access to Microsoft programming tools and environments
you are free to take advantage of them.

Revision Summary

Date Revision History Revision Class Comments

04/03/2007 0.01 MCPP Milestone Longhorn Initial Availability

07/03/2007 1.0 Major MLonghorn+90

07/20/2007 2.0 Major Revised technical content; added example topics.

08/10/2007 2.0.1 Editorial Revised and edited the technical content.

09/28/2007 2.0.2 Editorial Revised and edited the technical content.

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=114384
mailto:protocol@microsoft.com

2 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Date Revision History Revision Class Comments

10/23/2007 2.0.3 Editorial Revised and edited the technical content.

11/30/2007 2.0.4 Editorial Revised and edited the technical content.

01/25/2008 2.0.5 Editorial Revised and edited the technical content.

03/14/2008 2.1 Minor Updated the technical content.

05/16/2008 2.1.1 Editorial Revised and edited the technical content.

06/20/2008 2.2 Minor Updated the technical content.

NETFLIX, INC. EXHIBIT 1002

3 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Table of Contents

1 Introduction .. 5
1.1 Glossary .. 5
1.2 References ... 5

1.2.1 Normative References .. 5
1.2.2 Informative References .. 6

1.3 Relationship to Protocols and Other Structures ... 6

1.4 Applicability Statement .. 7
1.5 Versioning and Localization .. 7
1.6 Vendor-Extensible Fields .. 7

2 Structures .. 8
2.1 Log Data Fields ... 8

2.1.1 audiocodec ... 8
2.1.2 avgbandwidth ... 9

2.1.3 c-buffercount .. 9
2.1.4 c-cpu ... 9

2.1.5 c-dns ... 10
2.1.6 c-hostexe ... 10
2.1.7 c-hostexever ... 10
2.1.8 c-ip ... 10

2.1.9 c-max-bandwidth .. 11
2.1.10 c-os ... 11
2.1.11 c-osversion ... 11
2.1.12 c-pkts-lost-client ... 12
2.1.13 c-pkts-lost-cont-net ... 12
2.1.14 c-pkts-lost-net .. 13
2.1.15 c-pkts-received ... 13

2.1.16 c-pkts-recovered-ECC .. 13
2.1.17 c-pkts-recovered-resent ... 14
2.1.18 c-playerid ... 14
2.1.19 c-playerlanguage ... 15
2.1.20 c-playerversion ... 15

2.1.21 c-quality ... 15
2.1.22 c-rate ... 16

2.1.23 c-resendreqs ... 16
2.1.24 c-starttime ... 17
2.1.25 c-status .. 17

2.1.25.1 Status Code 200 (No Error) ... 17
2.1.25.2 Status Code 210 (Client Successfully Reconnected) .. 17

2.1.26 c-totalbuffertime ... 17

2.1.27 c-channelURL .. 18
2.1.28 c-bytes ... 18
2.1.29 cs-media-name ... 18
2.1.30 cs-media-role .. 19
2.1.31 cs-Referer .. 20
2.1.32 cs-url ... 20
2.1.33 cs-uri-stem ... 20

2.1.34 cs-User-Agent ... 21
2.1.35 cs-user-name .. 22
2.1.36 date ... 22
2.1.37 filelength .. 22
2.1.38 filesize ... 22

NETFLIX, INC. EXHIBIT 1002

4 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.1.39 protocol .. 23
2.1.40 s-content-path .. 23
2.1.41 s-cpu-util .. 23

2.1.42 s-dns ... 24

2.1.43 s-ip ... 24
2.1.44 s-pkts-sent ... 25
2.1.45 s-proxied .. 25
2.1.46 s-session-id .. 25
2.1.47 s-totalclients ... 25
2.1.48 sc-bytes ... 26
2.1.49 time ... 26

2.1.50 transport .. 26
2.1.51 videocodec ... 27
2.1.52 x-duration .. 27

2.2 Logging Message: W3C Syntax ... 28
2.2.1 Basic Logging Syntax ... 28
2.2.2 Extended Logging Syntax ... 28

2.2.3 Connect-Time Logging Syntax ... 29

2.3 Logging Messages Sent to Web Servers ... 29
2.4 Logging Message: XML Schema .. 30
2.5 Legacy Log ... 32

2.5.1 Common Definitions ... 32
2.5.2 Legacy Log in W3C Format ... 34
2.5.3 Legacy Log in XML Format .. 34

2.5.4 Legacy Log Sent to a Web Server .. 34
2.6 Streaming Log .. 34

2.6.1 Common Definitions ... 35
2.6.2 Streaming Log Sent to Windows Media Services .. 36
2.6.3 Streaming Log Sent to a Web Server ... 36

2.7 Rendering Log .. 37
2.7.1 Common Definitions ... 37

2.7.2 Rendering Log Sent to Windows Media Services .. 38
2.7.3 Rendering Log Sent to a Web Server .. 38

2.8 Connect-Time Log ... 39

3 Structure Examples ... 40
3.1 Legacy Logging Message .. 40
3.2 Defining Custom Namespaces in an XML Log .. 41

3.3 Example Streaming Log Messages ... 42
3.4 Example Rendering Log Messages ... 44
3.5 Example Connect-Time Log Message ... 45
3.6 Example Log Sent to a Web Server ... 45
3.7 Parsing Windows Media Log Files... 46

4 Security Considerations ... 47

5 Appendix A: Windows Behavior ... 48

6 Index ... 49

NETFLIX, INC. EXHIBIT 1002

5 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

1 Introduction

This specification defines the Windows Media Log Data Structure, a Microsoft proprietary interface.
The Windows Media Log Data Structure is a syntax for logging messages. The logging messages
specify information about how a client received multimedia content from a streaming server. For
example, logging messages can specify how many packets were received and how long it took for
the client to receive the content.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Advanced Systems Format (ASF)
Globally Unique Identifier (GUID)

The following terms are defined in [MS-WMSP]:

Content
Playlist

Session

Stream
Streaming

The following terms are specific to this document:

Client: The entity that has created the logging message, or an entity that receives a logging
message from a client. In the latter case, the client is a proxy.

Proxy: An entity that can receive logging messages from both a client and a proxy, and/or a

server that is streaming on behalf of another server.

Server: An entity that transfers content to a client through streaming. A server might be able to
do streaming on behalf of another server, thus a server can also be a proxy.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

 We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[ASF] Microsoft Corporation, "Advanced Systems Format Specification", December 2004,
http://download.microsoft.com/download/7/9/0/790fecaa-f64a-4a5e-a430-
0bccdab3f1b4/ASF_Specification.doc

If you have any trouble finding [ASF], please check here.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

NETFLIX, INC. EXHIBIT 1002

%5bMS-GLOS%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89814
http://go.microsoft.com/fwlink/?LinkId=89814
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-GLOS%5d.pdf

6 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

[RFC1945] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0",
RFC 1945, May 1996, http://www.ietf.org/rfc/rfc1945.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2326] Schulzrinne, H., Rao, A., and Lanphier, R., "Real Time Streaming Protocol (RTSP)", RFC
2326, April 1998, http://www.ietf.org/rfc/rfc2326.txt

[RFC2616] Fielding, R., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999,
http://www.ietf.org/rfc/rfc2616.txt

[RFC3066] Alvestrand, H., "Tags for the Identification of Language", RFC 3066, January 2001,
http://www.ietf.org/rfc/rfc3066.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", RFC 3629, November

2003, http://www.ietf.org/rfc/rfc3629.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI):
Generic Syntax", RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC4234] Crocker, D., Ed. and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

1.2.2 Informative References

[MS-MMSP] Microsoft Corporation, "Microsoft Media Server (MMS) Protocol Specification", June
2007.

[MS-MSB] Microsoft Corporation, "Media Stream Broadcast (MSB) Protocol Specification", January
2007.

[MS-RTSP] Microsoft Corporation, "Real-Time Streaming Protocol (RTSP) Windows Media
Extensions", July 2007.

[MS-WMSP] Microsoft Corporation, "Windows Media HTTP Streaming Protocol Specification", March

2007.

[MSDN-WMMETA] Microsoft Corporation, "Windows Media Metafiles",
http://msdn2.microsoft.com/en-us/library/bb248407.aspx

[MSFT-LOGPARSER] Microsoft Corporation, "Log Parser 2.2",
http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-
f8d975cf8c07&displaylang=en

[W3C-EXLOG] World Wide Web Consortium, "Extended Log File Format",
http://www.w3.org/TR/WD-logfile.html

1.3 Relationship to Protocols and Other Structures

The logging messages defined in this specification are used by the Windows Media HTTP Streaming
Protocol and the Real-Time Streaming Protocol (RTSP) Windows Media Extensions. When those two

protocols are used, the logging messages defined by this specification can be encapsulated in
protocol messages specific to the streaming protocol in use. The resulting protocol messages are
sent to either Windows Media Services or to a proxy compatible with the logging message syntax
defined in this specification.

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90335
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90404
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-MMSP%5d.pdf
%5bMS-MSB%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=92758
http://go.microsoft.com/fwlink/?LinkId=90195
http://go.microsoft.com/fwlink/?LinkId=90195
http://go.microsoft.com/fwlink/?LinkId=90561
%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-WMSP%5d.pdf

7 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

It is also possible to send logging messages to an HTTP Web server. This is possible when using the
two streaming protocols mentioned above and when using two other streaming protocols: Microsoft
Media Server (MMS) Protocol and Media Stream Broadcast (MSB) Protocol.

1.4 Applicability Statement

The syntax for logging messages defined by this specification is applicable to implementations of the
four streaming protocols mentioned in section 1.3 .

1.5 Versioning and Localization

None.

1.6 Vendor-Extensible Fields

Logging messages in XML format are vendor-extensible. Any logging information added by a vendor
MUST be encoded using the "client-logging-data" syntax element specified in section 2.4 .

NETFLIX, INC. EXHIBIT 1002

%5bMS-MMSP%5d.pdf
%5bMS-MMSP%5d.pdf
%5bMS-MSB%5d.pdf

8 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2 Structures

Section 2.1 defines fields that can appear in a logging message. Not all fields appear in all logging
messages, however. Section 2.2 defines the syntax of W3C-based logging messages, and section
2.4 defines the syntax of XML-based logging messages.

Section 2.5 defines the legacy logging message type. Section 2.6 defines the streaming log
message type. Section 2.7 defines the rendering log message type. Section 2.8 defines the
connection log message type.

The information contained in a logging message is always specific to a particular session. The extent

of a session is defined by the streaming protocol used by the server. A rendering log message (as
specified in section 2.7) can be sent without streaming from a server, and, in that case, a session
starts when the playback of the playlist starts, and stops when the playback of the playlist stops.

Below are some common Augmented Backus-Naur Form (ABNF) constructions, as specified in
[RFC4234], that are used throughout this specification. Any ABNF syntax rules that are not defined
in [RFC4234] or in this specification may be defined in [RFC1945] or [RFC2616].

date-year = 4DIGIT ; "19xx" and "20xx" typical

date-month = 2DIGIT ; 01 through 12

date-day = 2DIGIT ; 01 through 31

time-hour = 2DIGIT ; 00 through 24

time-min = 2DIGIT ; 00 through 59

time-sec = 2DIGIT ; 00 through 59, 60 if leap second

ip_addr = IPv4address | IPv6address

 ; Defined in Appendix A of RFC3986

ver_major = 1*2DIGIT

ver_minor = 1*2DIGIT ["." 1*4DIGIT "." 1*4DIGIT]

2.1 Log Data Fields

2.1.1 audiocodec

This field SHOULD specify a list of audio codecs used to decode the audio streams accessed by the
client. Each codec MUST be listed only once regardless of the number of streams decoded by that
codec.

The value for audiocodec MUST NOT exceed 256 characters in total length.

The syntax of the audiocodec field is defined as follows:

codec-name= *VCHAR

audiocodec= "-" | (codec-name *(";" codec-name))

Example:

Microsoft_Audio_Codec;Generic_MP3_Codec

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-WMSP%5d.pdf

9 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.1.2 avgbandwidth

This field MUST specify the average bandwidth, in bits per second, at which the client received

content from the server (which may be a proxy), as measured by the client from the start of the

current session. This is only applicable during periods in which the server is streaming the content.
Depending on the streaming protocol used, it might be possible for the session to be in a "paused"
state in which streaming is suspended. The value for avgbandwidth does not account for the
average bandwidth during such periods in which streaming is suspended.

If the notion of an average bandwidth is not applicable, for example, because the client did not
receive any content from the server, then the field MUST be set to "-".

If the numerical value is specified, it MUST be an integer in the range from 0 through

4,294,967,295.

The syntax of the avgbandwidth field is defined as follows:

avgbandwidth= "-" | 1*10DIGIT

Example:

102585

2.1.3 c-buffercount

This field MUST specify the number of times the client buffered while playing the content, counted
from when the client most recently started streaming the content.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-buffercount field is defined as follows:

c-buffercount= 1*10DIGIT

Example:

1

2.1.4 c-cpu

This field MUST specify the type of CPU used by the client computer.

The syntax of the c-cpu field is defined as follows:

c-cpu= 1*64VCHAR

Example:

Pentium

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf

10 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.1.5 c-dns

This field SHOULD be set to "-". The field MAY specify the DNS name of the client sending the

log.<1>

The syntax of the c-dns field is defined as follows:

c-dns= "-"

 | reg-name ; as defined in [RFC3986]

Example:

wmt.test.com

2.1.6 c-hostexe

This field specifies the file name of the host application executed on the client. This field MUST NOT
refer to a .dll, .ocx, or other non-executable file.

The syntax of the c-hostexe field is defined as follows:

c-hostexe= *255VCHAR

Example:

wmplayer.exe

2.1.7 c-hostexever

This field MUST specify the version number of the host application running on the client.

The syntax of the c-hostexever field is defined as follows:

c-hostexever= ver_major "." ver_minor

Example:

6.2.5.323

2.1.8 c-ip

When a client creates a logging message, it SHOULD specify the c-ip field as "-" but MAY specify the

IP address of the client.

If a proxy is forwarding a logging message on behalf of a client, the c-ip field MUST specify the IP
address of the client. The proxy MUST replace the value of the c-ip field that was specified by the
client with the IP address of the client (as known to the proxy).

NETFLIX, INC. EXHIBIT 1002

11 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

The syntax of the c-ip field is defined as follows:

c-ip = "-" | ip_addr

Example:

157.100.200.300

Example:

3ffe:2900:d005:f28b:0000:5efe:157.55.145.142

2.1.9 c-max-bandwidth

This field MUST be set to "-".

The syntax of the c-max-bandwidth field is defined as follows:

c-max-bandwidth ="-"

Example:

-

2.1.10 c-os

This field MUST specify the client's operating system.<2>

The syntax of the c-os field is defined as follows:

OSname= "Windows_98" | "Windows_ME" | "Windows_NT"

 | "Windows_2000" | "Windows_XP" | "Windows"

 | "Windows_Server 2003"

c-os = OSname | 1*64VCHAR

Example:

Windows

2.1.11 c-osversion

This field MUST specify the version number of the client's operating system.

The syntax of the c-osversion field is defined as follows:

NETFLIX, INC. EXHIBIT 1002

12 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

c-osversion= ver_major "." ver_minor

Example:

6.0.0.6000

2.1.12 c-pkts-lost-client

This field MUST specify the number of ASF data packets ([ASF] section 5.2) lost during transmission
from server to client and not recovered at the client layer through error correction or at the network

layer by using the User Datagram Protocol (UDP) resends, counted from when the client most
recently started streaming the content.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-lost-client field is defined as follows:

c-pkts-lost-client= 1*10DIGIT

Example:

5

2.1.13 c-pkts-lost-cont-net

This field MUST specify the largest number of ASF data packets that were lost as a consecutive span
during transmission from server to client and counted from when the client most recently started
streaming the content.

For example, if data packets numbered 1, 4, and 8 are received, and packets 2, 3, 5, 6 and 7 are

lost, then packets 2 and 3 constitute a span of two lost packets, and packets 5, 6 and 7 constitute a
span of three lost packets. In this example, the c-pkts-lost-cont-net field would be set to 3—the
size of the largest span.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-lost-cont-net field is defined as follows:

c-pkts-lost-cont-net= 1*10DIGIT

Example:

2

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=89814

13 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.1.14 c-pkts-lost-net

This field MUST specify the number of ASF data packets lost on the network layer, counted from

when the client most recently started streaming the content. Packets lost at the network layer can

be recovered if the client re-creates them by using forward error correction.

The numerical difference between the value of c-pkts-lost-net and the value of c-pkts-lost-client
MUST be equal to the value of c-pkts-recovered-ECC.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-lost-net field is defined as follows:

c-pkts-lost-net= 1*10DIGIT

Example:

2

2.1.15 c-pkts-received

This field MUST specify the number of ASF data packets that have been correctly received by the
client on the first attempt counted from when the client most recently started streaming the
content. (ASF data packets that were received through error correction code (ECC) recovery or UDP
resends are not included in the c-pkts-received field.)

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-received field is defined as follows:

c-pkts-received= 1*10DIGIT

Example:

523

2.1.16 c-pkts-recovered-ECC

This field MUST specify the number of ASF data packets that were lost at the network layer but were
subsequently recovered, counted from when the client most recently started streaming the content.
The value of this field MUST be equal to the numerical difference between the value of c-pkts-lost-
net and the value of c-pkts-lost-client.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-recovered-ECC field is defined as follows:

c-pkts-recovered-ECC= 1*10DIGIT

Example:

NETFLIX, INC. EXHIBIT 1002

14 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

1

2.1.17 c-pkts-recovered-resent

This field MUST specify the number of ASF data packets that were either recovered because they
were resent through UDP or because they were received out of order.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-recovered-resent field is defined as follows:

c-pkts-recovered-resent= 1*10DIGIT

Example:

5

2.1.18 c-playerid

This field specifies a unique identifier for the client application that originated the request. The
identifier MUST be a GUID. The GUID is expressed in registry format and is not enclosed in
quotation marks, as shown by the ABNF syntax below.

If the client is configured to remain anonymous (that is, not send private information), the client
MUST set the c-playerid field as indicated by the ABNF syntax for the playid_priv syntax element as
shown in the code example below. Otherwise, c-playerid MUST use the syntax for playid_pub as
shown in the code example below. The client MUST choose a value for playid_pub randomly, and the
same value MUST be used for playid_pub in all logging messages created by the client application,
regardless of which content is streamed.

 Furthermore, multiple instances, or incarnations, of the client application MUST use the same value

for the playid_pub syntax element. However, if the client application is shared by multiple users,
and it is possible to determine a user identity or account name of the user launching the client
application, then the value for playid_pub SHOULD be different for each user identity or account
name. For example, multi-user operating systems typically have separate accounts with a distinct
account name for each user, while cellular telephones do not.

If the client uses the playid_priv syntax element, then the client SHOULD choose the value for the

playid syntax element randomly; however, the client MUST use the same playid value for all logging
messages sent for the same session.

The syntax of the c-playerid field is defined as follows:

playid= 12HEXDIG

playid_pub = "{" 8HEXDIG "-" 4HEXDIG "-" 4HEXDIG "-"

 4HEXDIG "-" 12HEXDIG "}"

playid_priv= "{3300AD50-2C39-46c0-AE0A-" playid "}"

c-playerid= playid_pub / playid_priv

NETFLIX, INC. EXHIBIT 1002

%5bMS-GLOS%5d.pdf

15 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Example:

{c579d042-cecc-11d1-bb31-00a0c9603954}

Example (client is anonymous):

{3300AD50-2C39-46c0-AE0A-70b64f321a80}

2.1.19 c-playerlanguage

This field MUST specify the language-country code of the client.

The syntax of the c-playerlanguage field is defined as follows:

c-playerlanguage= Language-Tag

; see section 2.1 of [RFC3066]

Example:

en-US

2.1.20 c-playerversion

This field MUST specify the version number of the client.

The syntax of the c-playerversion field is defined as follows:

c-playerversion = ver_major "." ver_minor

Example:

7.0.1024

2.1.21 c-quality

This field MUST specify the percentage of packets that were received by the client, counted from
when the client most recently started streaming the content.

If cPacketsRendered represents all packets received by the client including packets recovered by
ECC and UDP resend such that:

cPacketsRendered = c-pkts-received + c-pkts-recovered-ECC + c-pkts-

recovered-resent

then the value for the c-quality field MUST be calculated as:

NETFLIX, INC. EXHIBIT 1002

16 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

[cPacketsRendered / (cPacketsRendered + c-pkts-lost-client)] * 100

If the denominator in the above equation evaluates to 0, c-quality MUST be specified as 100.

The syntax of the c-quality field is defined as follows:

c-quality = 1*2DIGIT / "100"

Example:

89

2.1.22 c-rate

This field MUST specify the rate of streaming or playback as a multiplier of the normal streaming or

playback rate.

For example, a value of 1 specifies streaming or playback at the normal rate, while a value of -5
indicates rewind at a speed 5 times faster than real-time, and a value of 5 indicates fast-forward at
a rate 5 times faster than real-time.

For Legacy and Streaming Logs, c-rate MUST be the streaming rate. For Rendering logs, c-rate

MUST be the rendering (playback) rate.

The value of c-rate MUST reflect the rate that was in effect at the beginning of the period covered
by the logging message because streaming or playback might already have ended by the time the
logging message is generated.

The syntax of the c-rate field is defined as follows:

c-rate= ["-"] 1*2DIGIT

Example:

1

2.1.23 c-resendreqs

This field MUST specify the number of requests made by the client to receive lost ASF data packets,
counted from when the client most recently started streaming the content. If the client is not using
UDP resend, the value of this field MUST be "-".

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-resendreqs field is defined as follows:

c-resendreqs= "-"/ 1*10DIGIT

NETFLIX, INC. EXHIBIT 1002

17 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Example:

5

2.1.24 c-starttime

This field MUST specify the time offset, in seconds, in the content from which the client started to

render content. This represents the presentation time of the ASF data packets that the client began
rendering. For live broadcasts, the client MUST set this field to zero.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-starttime field is defined as follows:

c-starttime= 1*10DIGIT

Example:

39

2.1.25 c-status

This field MUST specify a numerical code that indicates the status of the client that creates the

logging message.

The syntax of the c-status field is defined as follows:

c-status= "200" / "210"

Example:

200

2.1.25.1 Status Code 200 (No Error)

This code indicates that the client successfully streamed and submitted the log.

2.1.25.2 Status Code 210 (Client Successfully Reconnected)

This code indicates that the client disconnected and then reconnected to the server.<3>

2.1.26 c-totalbuffertime

This field MUST specify the total time, in seconds, that the client spent buffering the ASF data
packets in the content, counted from when the client most recently started streaming the content. If

the client buffers the content more than once before a log is generated, c-totalbuffertime MUST be

equal to the total amount of time that the client spent buffering the ASF data packets.

The value MUST be an integer in the range from 0 through 4,294,967,295.

NETFLIX, INC. EXHIBIT 1002

18 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

The syntax of the c-totalbuffertime field is defined as follows:

c-totalbuffertime= 1*10DIGIT

Example:

20

2.1.27 c-channelURL

This field MUST specify the URL to the multicast station (.nsc) file (for more information, see [MS-

MSB]) if such a file was used by the client. Whenever an .nsc file is used, this field MUST be
specified, even if the MSB Protocol was not used to stream content.

The syntax of the c-channelURL field is defined as follows:

c-channelURL = "-"

 / URI-reference ; as defined in section 4.1 of [RFC3986].

Example:

http://server/channel.nsc

2.1.28 c-bytes

This field MUST specify the number of bytes received by the client from the server, counted from
when the client most recently started streaming the content.

The value for the c-bytes field MUST NOT include TCP/IP or other overhead added by the network

stack. Higher-level protocols such as HTTP [RFC2616], RTSP [RFC2326], and the MMS Protocol [MS-

MMSP], can each introduce differing amounts of overhead, resulting in different values for the same
content.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-bytes field is defined as follows:

c-bytes= 1*10DIGIT

Example:

28000

2.1.29 cs-media-name

The purpose of this field is to specify the file name of the content or server-side playlist entry that
was streamed or played by the client. For Legacy and Streaming Logs, the value of this field MUST

NETFLIX, INC. EXHIBIT 1002

%5bMS-MSB%5d.pdf
%5bMS-MSB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90335
%5bMS-MMSP%5d.pdf
%5bMS-MMSP%5d.pdf
%5bMS-WMSP%5d.pdf

19 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

be the content or server-side playlist entry that was streamed. For Rendering Logs, it MUST be the
content or server-side playlist entry that was rendered (played).

If the server provided a Content Description, (see, for example, the Windows Media HTTP Streaming
Protocol), and the Content Description contains an entry named

WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_URL, the value of the cs-media-name field
MUST be equal to the value of the WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_URL entry.

Otherwise, if the client is using an Active Stream Redirector (.asx) file (for more information, see
[MSDN-WMMETA]), and the file specifies a logging parameter called "cs-media-name", then the
value of the cs-media-name field in the logging message MUST be equal to the value of the "cs-
media-name" logging parameter in the .asx file. See section 3.2 for an example of how this
parameter is specified in an .asx file.

If none of the above applies, cs-media-name MUST be specified as "-".

The syntax of the cs-media-name field is defined as follows:

cs-media-name= *VCHAR

Examples:

C:\wmpub\wmroot\MyAd2.asf

2.1.30 cs-media-role

The purpose of this field is to specify a value that can be associated with a server-side playlist entry
to signify the role of the playlist entry. For Legacy and Streaming logs, the value of this field MUST

be the role of the server-side playlist entry that was streamed. For Rendering Logs, it MUST be the
role of the server-side playlist entry that was rendered (played).

If the server provided a Content Description, (see, for example, the Windows Media HTTP Streaming
Protocol), and the Content Description contains an entry named

WMS_CONTENT_DESCRIPTION_ROLE, the value of the cs-media-role field MUST be equal to the
value of the WMS_CONTENT_DESCRIPTION_ROLE entry.

Otherwise, if the client is using an Active Stream Redirector (.asx) file (for more information, see

[MSDN-WMMETA]), and the file specifies a logging parameter called "cs-media-role", then the value
of the cs-media-role field in the logging message MUST be equal to the value of the "cs-media-
role" logging parameter in the .asx file. See section 3.2 for an example of how this parameter is
specified in an .asx file.

If none of the above applies, the cs-media-role MUST be specified as "-".

The syntax of the cs-media-role field is defined as follows:

cs-media-role= *VCHAR

Example:

ADVERTISEMENT

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=92758
%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=92758

20 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.1.31 cs-Referer

This field SHOULD specify the URL to the Web page that the client software application is embedded

within, except if the client software application was not embedded in a Web page. If the client

software application is not embedded in a Web page, but an Active Stream Redirector (ASX) file (for
more information, see [MSDN-WMMETA]) was obtained from a Web page, then this field SHOULD be
set to the URL to that Web page.

If none of the above applies, this field MUST be set to "-".

The syntax of the cs-Referer field is defined as follows:

cs-Referer= "-"

 / URI-reference ; as defined in section 4.1 of [RFC3986]

Examples:

http://www.adventure-works.com/default.htm

2.1.32 cs-url

This field MUST specify the URL for the streaming content originally requested by the client.

Note that the value of this field can be different from the URL actually used if the server redirected
the client to a different URL, or if the client decided to use a streaming protocol that is different from
the one indicated by the URL scheme of the original URL.

When the MSB Protocol is used, the "asfm" MUST be used as the URL scheme in the cs-url field.

The syntax of the cs-url field is defined as follows:

cs-url= URI-reference; as defined in section 4.1 of [RFC3986].

Example 1:

mms://www.adventure-works.com/some/content.asf

Example 2:

asfm://239.1.2.3:9000

2.1.33 cs-uri-stem

This field MUST specify the URL actually used by the client. Any query strings MUST be excluded
from the URL. (This means that the value of the cs-uri-stem field is equal to the URL actually used
by the client, truncated at the first "?" character.)

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=92758
%5bMS-MSB%5d.pdf

21 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Note that the value of this field can be different from the URL originally requested by the client if the
server redirected the client to a different URL, or if the client decided to use a streaming protocol
that is different from the one indicated by the URL scheme of the original URL.

When the Media Stream Broadcast (MSB) Protocol is used (for more information, see [MS-MSB]),

the "asfm" MUST be used as the URL scheme in the cs-uri-stem field.

The syntax of the cs-uri-stem field is defined as follows:

cs-uri-stem= URI-reference; as defined in section 4.1 of [RFC3986].

Example:

rtspt://server/test/sample.asf

2.1.34 cs-User-Agent

The purpose of this field is to specify information regarding the client application that is sending the
logging message.

The cs-User-Agent field SHOULD be set to the same value that Internet Explorer specifies on the
User-Agent HTTP protocol header. The field MAY be set differently as long as it adheres to the ABNF
syntax as shown in the code example below.

If a logging message is forwarded by a proxy, the cs-User-Agent field MUST begin with the string
"_via_". The original value specified by the client (which may be another proxy) on the cs-User-
Agent field SHOULD be discarded. The proxy SHOULD include a product token on the cs-User-
Agent field that specifies the brand and version of the proxy.

The syntax of the cs-User-Agent field is defined as follows:

cs-User-Agent= ["_via_HTTP/1.0_"]

 1*(product; [RFC2616] section 3.8

| comment); [RFC2616] section 2.2

Example 1: media player embedded in Internet Explorer 6 on Windows XP SP2:

Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1;_SV1)

Example 2: application based on Windows Media Format 9 Series SDK:

Application/2.3 (WMFSDK/9.0.1234)

Example 3: proxy:

_via_HTTP/1.0_WMCacheProxy/9.00.00.1234

NETFLIX, INC. EXHIBIT 1002

%5bMS-MSB%5d.pdf

22 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.1.35 cs-user-name

This field MUST be set to "-".

The syntax of the cs-user-name field is defined as follows:

cs-user-name= "-"

Example:

-

2.1.36 date

This field MUST specify the current date on the client when the log message is created. The time
MUST be specified in UTC.

The syntax of the date field is defined as follows:

date= date-year "-" date-month "-" date-day

Example:

1997-10-09

2.1.37 filelength

This field MUST specify the length of the ASF file, in seconds. For a live broadcast stream, the value
for filelength is undefined and MUST be set to zero.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the filelength field is defined as follows:

filelength= 1*10DIGIT

Example:

60

2.1.38 filesize

This field MUST specify the size of the ASF file, in bytes. For a live broadcast stream, the value for
the filesize field is undefined and MUST be set to zero.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the filesize field is defined as follows:

NETFLIX, INC. EXHIBIT 1002

%5bMS-GLOS%5d.pdf

23 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

filesize= 1*10DIGIT

Example:

86000

2.1.39 protocol

This field MUST specify the protocol used to stream content to the client.

If the Windows Media HTTP Streaming Media Protocol was used, the value of the protocol field

MUST be "http".

If the RTSP Windows Media Extensions was used, and all ASF data packets were transmitted over
TCP, the value of the protocol field MUST be "rtspt". If some ASF data packets were transmitted
over UDP, the value of the protocol field MUST be "rtspu".

If the MSB Protocol was used, the value of the protocol field MUST be "asfm".

Note The value for protocol can be different from the URL moniker used in the stream request.

The syntax of the protocol field is defined as follows:

protocol= "http" / "rtspt" / "rtspu" / "asfm"

Example:

http

2.1.40 s-content-path

This field MUST be set to "-".

The syntax of the s-content-path field is defined as follows:

s-content-path = "-"

Example:

-

2.1.41 s-cpu-util

When a client creates a logging message, it MUST specify the s-cpu-util field as "-".

If a proxy is forwarding the logging message on behalf of a client (which may be another proxy), the
proxy MUST replace the value of the s-cpu-util field that was specified by the client with the proxy's
current CPU load, in percentage, at the time of forwarding the logging message. If the proxy uses

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-MSB%5d.pdf

24 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

symmetric multi-processing, the CPU load value MUST be calculated as the average for all
processors.

When a numerical value is specified, the value MUST be an integer in the range from 0 through 100.

The syntax of the s-cpu-util field is defined as follows:

s-cpu-util = "-" | 1*2DIGIT | "100"

Example:

40

2.1.42 s-dns

This field SHOULD specify the DNS name of the proxy if a proxy is forwarding the logging message

on behalf of a client (which may be another proxy). The proxy MUST replace the value of the s-dns
field that was specified by the client with its own DNS name or with "-" if the DNS name cannot be
determined.

When a client creates a logging message, it SHOULD specify the s-dns field as "-" but MAY specify
the DNS name of the server that the clientstreamed the content from.

The syntax of the s-dns field is defined as follows:

s-dns= "-"

 | reg-name ; as defined in [RFC3986].

Example:

wmt.adventure-works.com

2.1.43 s-ip

For Legacy and Streaming Logs, this field MUST specify the IP address of the server that the client
streamed the content from.

For Rendering Logs, the field MUST specify the IP address of the proxy if a proxy is forwarding the
logging message on behalf of a client. The proxy MUST replace the value of the s-ip field that was
specified by the client (which may be another proxy) with the IP address used by the proxy when
forwarding the Rendering Log to the server (which may be another proxy).

When a client creates a rendering log, it SHOULD specify the s-ip field as "-" but can specify the IP
address of the server that the clientstreamed the content from.

The syntax of the s-ip field is defined as follows:

s-ip = "-" | ip_addr

NETFLIX, INC. EXHIBIT 1002

25 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Example:

155.12.1.234

2.1.44 s-pkts-sent

This field MUST be set to "-".

The syntax of the s-pkts-sent field is defined as follows:

s-pkts-sent= "-"

Example:

-

2.1.45 s-proxied

This field MUST be set to "1" in a logging message that is being forwarded by a proxy. The client
that creates the logging message MUST set the field to "0" and the proxy MUST change the value to
"1" when it forwards the logging message.

The syntax of the s-proxied field is defined as follows:

s-proxied= "0" / "1"

Example:

1

2.1.46 s-session-id

This field MUST be set to "-".

The syntax of the s-session-id field is defined as follows:

s-session-id= "-"

Example:

-

2.1.47 s-totalclients

When a client creates a logging message, it MUST specify the s-totalclients field as "-".

NETFLIX, INC. EXHIBIT 1002

26 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

If a proxy is forwarding the logging message on behalf of a client (which may be another proxy),
then the proxy MUST replace the value of the s-totalclients field that was specified by the client
with the total number of clients connected to the proxy server (for all target servers combined).

When a numerical value is specified, the value MUST be an integer in the range from 0 through

4,294,967,295.

The syntax of the s-totalclients field is defined as follows:

s-totalclients = "-" | 1*10DIGIT

Example:

201

2.1.48 sc-bytes

This field MUST be set to "-".

The syntax of the sc-bytes field is defined as follows:

sc-bytes= "-"

Example:

-

2.1.49 time

This field MUST specify the current time on the client when the log message is created. The time

MUST be specified in UTC.

The syntax of the time field is defined as follows:

time= time-hour ":" time-min ":" time-sec

Example:

15:30:30

2.1.50 transport

This field MUST specify the transport protocol used to receive the ASF data packets.

The syntax of the transport field is defined as follows:

transport= "UDP" | "TCP"

NETFLIX, INC. EXHIBIT 1002

27 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Example:

UDP

2.1.51 videocodec

This field SHOULD specify a list of video codecs that are used to decode the video streams accessed

by the client. Each codec MUST be listed only once, regardless of the number of streams decoded by
that codec.

The value for videocodec MUST NOT exceed 256 characters in total length.

The syntax of the videocodec field is defined as follows:

codec-name= *VCHAR

videocodec= "-" | (codec-name *(";" codec-name))

Example:

Microsoft_MPEG-4_Video_Codec_V2

2.1.52 x-duration

For Legacy and Rendering Log messages, this field MUST specify how much of the content has been

rendered (played) to the end user, specified in seconds. Time spent buffering data MUST NOT be
included in this value.

Playback at non-normal play speed does not affect the amount of content rendered, when expressed
in time units. For example, if the client was rewinding the content, the x-duration value can be
computed as the absolute value of the difference between the starting presentation time and ending

presentation time.

For Streaming Log messages, the x-duration field MUST specify the time it took to receive the

content, in seconds.

Fractional time amounts MUST be rounded to the nearest larger integer value.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the x-duration field is defined as follows:

x-duration= 1*10DIGIT

Example:

31

NETFLIX, INC. EXHIBIT 1002

28 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.2 Logging Message: W3C Syntax

A World Wide Web Consortium (W3C) format logging message consists of the values of various

fields, each value separated from the next by a single space character. Logging messages that

adhere to this syntax are said to use the W3C format because the syntax is conformant with the
syntax for logging entries in the Extended Log File Format (for more information, see [W3C-
EXLOG]), which is defined by W3C.

Section 2.2.1 specifies the W3C format syntax used in most logging messages. Section 2.2.2
specifies the W3C format syntax used in certain Rendering log messages, and section 2.2.3
specifies the W3C format syntax used in Connect-time log messages.

The sections mentioned above define the ordering of the fields in the W3C format syntax but not

how the values of the fields are assigned. The rules governing the values of the individual fields
depend on the logging message in which the W3C format syntax is used. For example, the s-ip field
is used as defined in section 2.1.43 for some logging messages, while other logging messages
provide an alternate definition of the s-ip field.

All W3C format syntax MUST use the UTF-8 character set as specified in [RFC3629]. In any fields

that specify a URL, such as cs-url, the URL MUST be encoded using percent-encoding, as specified in

[RFC3986] section 2.1.

A single dash character (which is represented by U+002D and by "-" in ABNF syntax) MUST be used
to indicate that the value is empty — that is, it is either not available or not applicable.

All spaces embedded within a field value MUST be replaced by an underscore character (which is
represented by U+005F and by "_" in ABNF syntax). For example, "MPEG Layer-3" would be
transformed into "MPEG_Layer-3" in a W3C-format logging message.

Note Transformations defined in this section are not necessarily reversible. Methods for parsing,

analyzing, or extracting information from logging messages are implementation-specific and are
outside the scope of this specification.

2.2.1 Basic Logging Syntax

Most logging messages contain logging information in W3C format, adhering to the syntax specified
below. The logging information consists of either 44 or 47 fields.

log_data44 = c-ip SP date SP time SP c-dns SP cs-uri-stem SP c-starttime SP

 x-duration SP c-rate SP c-status SP c-playerid SP

 c-playerversion SP c-playerlanguage SP cs-User-Agent SP

 cs-Referer SP c-hostexe SP c-hostexever SP c-os SP c-osversion SP

 c-cpu SP filelength SP filesize SP avgbandwidth SP protocol SP

 transport SP audiocodec SP videocodec SP c-channelURL SP sc-bytes SP

 c-bytes SP s-pkts-sent SP c-pkts-received SP c-pkts-lost-client SP

 c-pkts-lost-net SP c-pkts-lost-cont-net SP c-resendreqs SP

 c-pkts-recovered-ECC SP c-pkts-recovered-resent SP c-buffercount SP

 c-totalbuffertime SP c-quality SP s-ip SP s-dns SP

 s-totalclients SP s-cpu-util

 [SP cs-url SP cs-media-name SP cs-media-role]

2.2.2 Extended Logging Syntax

Certain types of "rendering" log messages (section 2.7) contain logging information in the W3C
format defined below. This logging information consists of 52 fields:

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90561
http://go.microsoft.com/fwlink/?LinkId=90561
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90453

29 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

log_data52 = c-ip SP date SP time SP c-dns SP cs-uri-stem SP c-starttime SP

 x-duration SP c-rate SP c-status SP c-playerid SP

 c-playerversion SP c-playerlanguage SP cs-User-Agent SP

 cs-Referer SP c-hostexe SP c-hostexever SP c-os SP c-osversion SP

 c-cpu SP filelength SP filesize SP avgbandwidth SP protocol SP

 transport SP audiocodec SP videocodec SP c-channelURL SP sc-bytes SP

 c-bytes SP s-pkts-sent SP c-pkts-received SP c-pkts-lost-client SP

 c-pkts-lost-net SP c-pkts-lost-cont-net SP c-resendreqs SP

 c-pkts-recovered-ECC SP c-pkts-recovered-resent SP c-buffercount SP

 c-totalbuffertime SP c-quality SP s-ip SP s-dns SP

 s-totalclients SP s-cpu-util SP cs-user-name SP s-session-id SP

 s-content-path SP cs-url SP cs-media-name SP c-max-bandwidth SP

 cs-media-role SP s-proxied

2.2.3 Connect-Time Logging Syntax

Connect-time log messages (section 2.8) contain logging information in the W3C format defined
below. This logging information consists of eight fields.

log_data8 = c-dns SP c-ip SP c-os SP c-osversion SPdate SP time SP

 c-cpu SP transport

2.3 Logging Messages Sent to Web Servers

Most of the logging messages defined in this specification can be sent to a HTTP Web server. The
URL for the HTTP Web server for which logging messages are submitted can be specified in an
Active Stream Redirector (ASX) file (for more information, see [MSDN-WMMETA]). Some of the
compatible streaming protocols (listed in section 1.3) can also specify the HTTP Web server URL

through mechanisms that are specific to the streaming protocol. The syntax for the logging URL is
defined as follows:

log-URL = Request-URI

The resource that is identified by log-URL MUST be capable of accepting and responding to the HTTP
GET and POST request methods described in this section; however, the methods for doing so are
implementation-specific.

Prior to sending a logging message to a Web server, a client SHOULD send an HTTP GET request to
the specified Web server URL to validate the URL. The logging validation request MUST adhere to

the following ABNF syntax:

web-server-validate = "GET" SP log-URL SP HTTP-Version CRLF

*(VCHAR /CLRF)

The web server's response MUST adhere to the following ABNF syntax:

web-server-validate-response = HTTP-Version "200 OK" CRLF

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=92758

30 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

*(VCHAR / CRLF) "<body><h1>"

("NetShow ISAPI Log Dll" /

("WMS ISAPI Log Dll/"

1*4DIGIT "." 1*4DIGIT "." 1*4DIGIT "." 1*4DIGIT))

*(VCHAR / CRLF) "</h1>" *(VCHAR / CRLF) </body>" *(VCHAR / CRLF)

The client SHOULD send the logging message to the Web server if the server's response adheres to

the syntax for web-server-validate-response, above. If the client sent a request to validate the URL,
and the server's response does not adhere to the syntax for web-server-validate-response, then this
might mean that the URL is invalid. In this case, the client SHOULD NOT send the logging message.

When sending the logging message, the client MUST include the logging message in the body of a
HTTP POST request.

All logging message requests that are sent to a Web server MUST adhere to the following ABNF
syntax:

web-server-request = "POST" SP log-URL SP HTTP-Version CRLF

 *(VCHAR / CRLF)

 web-server-log

The logging message sent in the web-server-request message body MUST adhere to the following

ABNF syntax:

web-server-log = "MX_STATS_LogLine:" SP TAB

 log_data44; defined in section 2.2.1

All HTTP GET and POST requests sent by the client or Web server must be syntactically correct as
per [RFC1945] or [RFC2616]. Any header or content element not explicitly represented in one of the

preceding ABNF syntax examples MUST be ignored by the recipient.

For an example of logging URL validation and the subsequent transmission of a logging message to
a Web server, see section 3.6 .

2.4 Logging Message: XML Schema

Logging messages can be represented in XML. This section defines the schema used by all logging
messages for which an XML representation has been defined with the exception of the Connect-Time
Log. The XML scheme for the Connect-Time Log is defined in section 2.8 .

The XML-format log embeds W3C-format logging information inside the "Summary" XML tag.
Individual logging fields are also represented using their own XML tags.

If the entity that generates the XML-format logging message (that is, the client) has access to a

Content Description, then each name/value pair in the Content Description SHOULD be encoded as

shown by the "contentdescription" syntax element in the ABNF syntax as shown in the code example
below.

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372

31 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

The Content Description is a data structure that is provided by Windows Media Services. If no
Content Description is available to the client, then the "contentdescription" syntax element MUST
NOT be included in the XML-format logging message.

If the entity that generates the XML-format logging message (that is, the client) submits additional

or custom logging information, then it SHOULD be encoded as shown by the "client-logging-data"
syntax element in the ABNF syntax below. For an example illustrating submission of custom logging
information, see section 3.2 .

If no additional logging information is available, the "client-logging-data" syntax element MUST NOT
be included in the XML-format logging message.

The XML-format logging syntax is defined using ABNF as shown in the code example below.
Although not explicitly shown by the syntax, linear white space, including CR LF sequences, is

allowed on each side of XML tags.

xml-tag = 1*ALPHA

cd-name = xml-tag

cd-value = xml-tag

cd-name-value-pair = "<" cd-name ">"

cd-value

 "</" cd-name ">"

contentdescription = "<ContentDescription>"

 *cd-name-value-pair

 "</ContentDescription>"

client-logging-data = "<" xml-tag ">"

 *cdl-name-value-pair

 "</" xml-tag ">"

xml-log = "<XML>"

 "<Summary>" summary-log "</Summary>"

 "<c-ip>" "0.0.0.0" "</c-ip>"

 "<date>" date "</date>"

 "<time>" time "</time>"

 "<c-dns>" c-dns "</c-dns>"

 "<cs-uri-stem>" cs-uri-stem "</cs-uri-stem>"

 "<c-starttime>" c-starttime "</c-starttime>"

 "<x-duration> x-duration "</x-duration>"

 "<c-rate>" c-rate "</c-rate>"

 "<c-status>" c-status "</c-status>"

 "<c-playerid>" c-playerid "<c-playerid>"

 "<c-playerversion>" c-playerversion "</c-playerversion>"

 "<c-playerlanguage>" c-playerlanguage "</c-playerlanguage>"

 "<cs-User-Agent>" cs-User-Agent "</cs-User-Agent>"

 "<cs-Referer>" cs-Referer "<cs-Referer>"

 "<c-hostexe>" c-hostexe "</c-hostexe>"

 "<c-hostexever>" c-hostexever "</c-hostexever>"

 "<c-os>" c-os "</c-os>"

 "<c-osversion>" c-osversion "</c-osversion>"

 "<c-cpu>" c-cpu "</c-cpu>"

 "<filelength>" filelength "</filelength>"

 "<filesize>" filesize "</filesize>"

 "<avgbandwidth>" avgbandwidth "</avgbandwidth>"

 "<protocol>" protocol "</protocol>"

 "<transport>" transport "</transport>"

 "<audiocodec>" audiocodec "</audiocodec>"

 "<videocodec>" videocodec "</videocodec>"

 "<c-channelURL>" c-channelURL "</c-channelURL>"

 "<sc-bytes>" sc-bytes "</sc-bytes>"

 "<c-bytes>" c-bytes "</c-bytes>"

NETFLIX, INC. EXHIBIT 1002

32 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

 "<s-pkts-sent>" s-pkts-sent "</s-pkts-sent>"

 "<c-pkts-received>" c-pkts-received "</c-pkts-received>"

 "<c-pkts-lost-client>" c-pkts-lost-client "</c-pkts-lost-client>"

 "<c-pkts-lost-net>" c-pkts-lost-net "</c-pkts-lost-net>"

 "<c-pkts-lost-cont-net>" c-pkts-lost-cont-net "</c-pkts-lost-cont-net>"

 "<c-resendreqs>" c-resendsreqs "</c-resendreqs>"

 "<c-pkts-recovered-ECC>" c-pkts-recovered-ECC "</c-pkts-recovered-ECC>"

 "<c-pkts-recovered-resent>" c-pkts-recovered-resent "</c-pkts-recovered-resent>"

 "<c-buffercount>" c-buffercount "</c-buffercount>"

 "<c-totalbuffertime>" c-totalbuffertime "</c-totalbuffertime>"

 "<c-quality>" c-quality "</c-quality>"

 "<s-ip>" "-" "</s-ip>"

 "<s-dns>" "-" "</s-dns>"

 "<s-totalclients>" "-" "</s-totalclients>"

 "<s-cpu-util>" "-" "</s-cpu-util>"

 "<cs-url>" cs-url "</cs-url>"

 [contentdescription]

 *client-logging-data

"</XML>"

The syntax only defines the ordering of the fields and the XML tag assigned to each field; it does not

define how the values of the fields are assigned. The rules governing the values of the individual
fields depend on the logging message in which the XML-format syntax is used.

The XML-format logging syntax MUST use the UTF-8 character set, as specified in [RFC3629]. In any
fields that specify a URL, such as cs-url, the URL MUST be encoded using percent-encoding, as
specified in [RFC3986] section 2.1.

A single dash character (which is represented by U+002D and by "-" in ABNF syntax) MUST be used

to indicate that the value is empty — that is, it is either not available or not applicable.

All spaces embedded within a field value MUST be replaced by an underscore character (which is
represented by U+005F and by "_" in ABNF syntax). For example, "MPEG Layer-3" would be
transformed into "MPEG_Layer-3" in a W3C-format logging message.

2.5 Legacy Log

The Legacy Log is also called a combination log because it contains both rendering and streaming

information. The Legacy Log can be either in W3C format or XML format. A Legacy Log can be sent
either to Windows Media Services or to a Web server.

2.5.1 Common Definitions

The following ABNF syntax rules applies to all variants of the legacy log:<4>

s-cpu-util = "-"

c-ip = "0.0.0.0"

s-dns = "-"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ audiocodec

▪ avgbandwidth

▪ c-buffercount

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90453

33 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

▪ c-channelURL

▪ c-cpu

▪ c-dns

▪ c-hostexe

▪ c-hostexever

▪ c-os

▪ c-osversion

▪ c-pkts-lost-client

▪ c-pkts-lost-cont-net

▪ c-pkts-lost-net

▪ c-pkts-recovered-ECC

▪ c-pkts-recovered-resent

▪ c-playerid

▪ c-playerlanguage

▪ c-playerversion

▪ c-quality

▪ c-rate

▪ c-resendreqs

▪ c-starttime

▪ c-status

▪ c-totalbuffertime

▪ cs-Referer

▪ cs-media-name

▪ cs-uri-stem

▪ cs-url

▪ cs-User-Agent

▪ date

▪ filelength

▪ filesize

▪ protocol

NETFLIX, INC. EXHIBIT 1002

34 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

▪ cs-media-role

▪ s-pkts-sent

▪ s-totalclients

▪ sc-bytes

▪ time

▪ transport

▪ videocodec

▪ x-duration

The Legacy Log SHOULD include the optional fields cs-url, cs-media-name, and cs-media-
role.<5>

2.5.2 Legacy Log in W3C Format

The ABNF syntax for a Legacy Log in W3C format that is sent to Windows Media Services is defined
as follows:

legacy-log-W3C = log_data44 ; defined in section 2.2.1

s-ip = "-"

2.5.3 Legacy Log in XML Format

The ABNF syntax for a Legacy Log in XML format that is sent to Windows Media Services is defined
as follows:<6>

legacy-log-XML = xml-log ; defined in section 2.4

summary-log = log_data44 ; defined in section 2.2.1

s-ip = "-"

2.5.4 Legacy Log Sent to a Web Server

The ABNF syntax for a Legacy Log that is submitted to a Web server is defined as follows:

legacy-web-server-log = web-server-log ; defined in section 2.3

The value of the s-ip field MUST be assigned as defined in section 2.1.43 .

2.6 Streaming Log

The Streaming Log specifies how the client received streaming data but not how the client rendered
the data. A Streaming Log can be sent either to Windows Media Services or to a Web server.

NETFLIX, INC. EXHIBIT 1002

35 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.6.1 Common Definitions

The following ABNF syntax rules applies to all variants of the Streaming Log:

audiocodec = "-"

c-ip = "0.0.0.0"

s-cpu-util = "-"

s-dns = "-"

videocodec = "-"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ avgbandwidth

▪ c-buffercount

▪ c-channelURL

▪ c-cpu

▪ c-dns

▪ c-hostexe

▪ c-hostexever

▪ c-os

▪ c-osversion

▪ c-pkts-lost-client

▪ c-pkts-lost-cont-net

▪ c-pkts-lost-net

▪ c-pkts-recovered-ECC

▪ c-pkts-recovered-resent

▪ c-playerid

▪ c-playerlanguage

▪ c-playerversion

▪ c-quality

▪ c-rate

▪ c-resendreqs

▪ c-starttime

▪ c-status

▪ c-totalbuffertime

NETFLIX, INC. EXHIBIT 1002

36 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

▪ cs-Referer

▪ cs-media-name

▪ cs-uri-stem

▪ cs-url

▪ cs-User-Agent

▪ date

▪ filelength

▪ filesize

▪ protocol

▪ cs-media-role

▪ s-pkts-sent

▪ s-totalclients

▪ sc-bytes

▪ time

▪ transport

▪ x-duration

The Streaming Log MUST include the optional fields cs-url, cs-media-name, and cs-media-role.

2.6.2 Streaming Log Sent to Windows Media Services

The Streaming Log sent to Windows Media Services is in XML format and MUST adhere to the

following ABNF syntax:<7>

streaming-log = xml-log ; defined in section 2.4

summary-log = log_data44 ; defined in section 2.2.1

s-ip = "-"

2.6.3 Streaming Log Sent to a Web Server

The ABNF syntax for a Streaming Log that is submitted to a Web server is defined as follows:

streaming-web-server-log = web-server-log; defined in section 2.3

The value of the s-ip field MUST be assigned as specified in section 2.1.43 .

NETFLIX, INC. EXHIBIT 1002

37 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.7 Rendering Log

The Rendering Log describes playback of content by a client and is submitted to the upstream origin

server (or a configured proxy) when the client ends playback. A Rendering Log can be sent either to

Windows Media Services or to a Web server.

2.7.1 Common Definitions

The following ABNF syntax rules apply to all variants of the Rendering Log:

avgbandwidth = "-"

c-buffercount = "-"

c-pkts-lost-client = "-"

c-pkts-lost-cont-net = "-"

c-pkts-lost-net = "-"

c-pkts-received = "-"

c-pkts-recovered-ECC = "-"

c-pkts-recovered-resent = "-"

c-quality = "100"

c-resendreqs = "-"

c-totalbuffertime = "-"

protocol = "Cache"

transport = "-"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ audiocodec

▪ c-channelURL

▪ c-cpu

▪ c-hostexe

▪ c-hostexever

▪ c-ip

▪ c-os

▪ c-osversion

▪ c-playerid

▪ c-playerlanguage

▪ c-playerversion

▪ c-rate

▪ c-starttime

▪ c-status

▪ cs-Referer

NETFLIX, INC. EXHIBIT 1002

38 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

▪ cs-media-name

▪ cs-uri-stem

▪ cs-url

▪ cs-User-Agent

▪ date

▪ filelength

▪ filesize

▪ s-cpu-util

▪ s-dns

▪ cs-media-role

▪ s-pkts-sent

▪ s-totalclients

▪ sc-bytes

▪ time

▪ videocodec

▪ x-duration

The Rendering Log MUST include the optional fields cs-url, cs-media-name, and cs-media-role.

2.7.2 Rendering Log Sent to Windows Media Services

The Rendering Log sent to Windows Media Services is in XML format and MUST adhere to the

following ABNF syntax:

rendering-log = xml-log ; defined in section 2.4

summary-log = log_data52 ; defined in section 2.2.2

The values of the following fields MUST be assigned as defined in section 2.1 : c-max-bandwidth,
cs-user-name, s-content-path, s-ip, s-proxied, and s-session-id.

2.7.3 Rendering Log Sent to a Web Server

The ABNF syntax for a Rendering Log that is submitted to a Web server is defined as follows:

rendering-web-server-log = web-server-log; defined in section 2.3

The value of the c-ip field MUST be assigned as defined in section 2.1.8 . The value of the s-ip
field MUST be assigned as defined in section 2.1.43 .

NETFLIX, INC. EXHIBIT 1002

39 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

2.8 Connect-Time Log

The purpose of the Connect-Time Log is to specify some minimal amount of logging information

about the client. It can be useful in cases where a client starts to stream some content but is

disconnected from the network before it has the opportunity to create a Streaming Log.

If a client sends a Connect-Time Log to the server at the start of the streaming session, the
Connect-Time Log ensures that the server has received at least this minimal logging information in
the case where the client subsequently is disconnected from the network.

Connect-Time Logs are not defined for Web servers. Connect-Time Logs are only defined in XML
format, and the ABNF syntax is as follows:

connect-time-log = "<XML>"

 "<Summary>"

 log_data8 ; defined in section 2.2.3

 "</Summary>"

 "<c-dns>" c-dns "</c-dns>"

 "<c-ip>" c-ip "</c-ip>"

 "<c-os>" c-os "</c-os>"

 "<c-osversion>" c-osversion "</c-osversion>"

 "<date>" date "</date>"

 "<time>" time "</time>"

 "<c-cpu>" c-cpu "</c-cpu>"

 "<transport>" transport "</transport>"

"</XML>"

c-ip = "0.0.0.0"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ c-dns

▪ c-os

▪ c-osversion

▪ date

▪ time

▪ c-cpu

▪ transport

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf

40 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

3 Structure Examples

3.1 Legacy Logging Message

 The following is an example of a legacy logging message in W3C format:

0.0.0.0 2003-09-27 00:27:24 - http://10.194.20.175/mcast1200K 0 42 1

200 {3300AD50-2C39-46c0-AE0A-B4C904C7848E} 9.0.0.2980 en-US

WMFSDK/9.0.0.2980_WMPlayer/9.0.0.3008 - wmplayer.exe 9.0.0.2980

Windows_XP 5.1.0.2600 Pentium 1801 268885194 1255347 http TCP

Windows_Media_Audio_9 Windows_Media_Video_9 - - 6321233 - 4496 0 0 0 0

0 0 1 0 100 - - - -

The following is an example of a legacy logging message in XML format:

<XML>

<Summary>0.0.0.0 2003-09-27 00:27:24 - http://10.194.20.175/mcast1200K 0 42 1 200

{3300AD50-2C39-46c0-AE0A-B4C904C7848E} 9.0.0.2980

en-US WMFSDK/9.0.0.2980_WMPlayer/9.0.0.3008 - wmplayer.exe 9.0.0.2980

Windows_XP 5.1.0.2600 Pentium 1801 268885194 1255347

http TCP Windows_Media_Audio_9 Windows_Media_Video_9

- - 6321233 - 4496 0 0 0 0 0 0 1 0 100 - - - -

http://10.194.20.175/mcast1200K?WMBitrate=6000000 30MinTV_1200k_1s_1s_0Q.wmv -

</Summary>

<c-ip>0.0.0.0</c-ip>

<date>2003-09-27</date>

<time>00:27:24</time>

<c-dns>-</c-dns>

<cs-uri-stem>http://10.194.20.175/mcast1200K</cs-uri-stem>

<c-starttime>0</c-starttime>

<x-duration>42</x-duration>

<c-rate>1</c-rate>

<c-status>200</c-status>

<c-playerid>{3300AD50-2C39-46c0-AE0A-B4C904C7848E}</c-playerid>

<c-playerversion>9.0.0.2980</c-playerversion>

<c-playerlanguage>en-US</c-playerlanguage>

<cs-User-Agent>WMFSDK/9.0.0.2980_WMPlayer/9.0.0.3008</cs-User-Agent>

<cs-Referer>-</cs-Referer>

<c-hostexe>wmplayer.exe</c-hostexe>

<c-hostexever>9.0.0.2980</c-hostexever>

<c-os>Windows_XP</c-os>

<c-osversion>5.1.0.2600</c-osversion>

<c-cpu>Pentium</c-cpu>

<filelength>1801</filelength>

<filesize>268885194</filesize>

<avgbandwidth>1255347</avgbandwidth>

<protocol>http</protocol>

<transport>TCP</transport>

<audiocodec>Windows_Media_Audio_9</audiocodec>

<videocodec>Windows_Media_Video_9</videocodec>

<c-channelURL>-</c-channelURL>

<sc-bytes>-</sc-bytes>

<c-bytes>6321233</c-bytes>

<s-pkts-sent>-</s-pkts-sent>

<c-pkts-received>4496</c-pkts-received>

<c-pkts-lost-client>0</c-pkts-lost-client>

<c-pkts-lost-net>0</c-pkts-lost-net>

<c-pkts-lost-cont-net>0</c-pkts-lost-cont-net>

<c-resendreqs>0</c-resendreqs>

<c-pkts-recovered-ECC>0</c-pkts-recovered-ECC>

NETFLIX, INC. EXHIBIT 1002

41 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

<c-pkts-recovered-resent>0</c-pkts-recovered-resent>

<c-buffercount>1</c-buffercount>

<c-totalbuffertime>0</c-totalbuffertime>

<c-quality>100</c-quality>

<s-ip>-</s-ip>

<s-dns>-</s-dns>

<s-totalclients>-</s-totalclients>

<s-cpu-util>-</s-cpu-util>

<cs-url>http://10.194.20.175/mcast1200K?WMBitrate=6000000</cs-url>

<ContentDescription>

<WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_URL>30MinTV_1200k_1s_1s_0Q.wmv</WMS_CONTENT_DESCR

IPTION_PLAYLIST_ENTRY_URL>

<WMS_CONTENT_DESCRIPTION_COPIED_METADATA_FROM_PLAYLIST_FILE>1</WMS_CONTENT_DESCRIPTION_CO

PIED_METADATA_FROM_PLAYLIST_FILE>

<WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_DURATION>1800501</WMS_CONTENT_DESCRIPTION_PLAYLIS

T_ENTRY_DURATION>

<WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_START_OFFSET>1450</WMS_CONTENT_DESCRIPTION_PLAYLI

ST_ENTRY_START_OFFSET>

<WMS_CONTENT_DESCRIPTION_SERVER_BRANDING_INFO>WMServer/9.0</WMS_CONTENT_DESCRIPTION_SERVE

R_BRANDING_INFO>

</ContentDescription>

</XML>

The following is an example of how a legacy log may appear as sent to a Web server:

MX_STATS_LogLine: 0.0.0.0 2000-06-14 01:18:58 -

mmsu://foo.microsoft.com/testfile.wma 30 1 1 200 {35301A88-93D3-4F3A-

A284-30F7A611CD23} 7.0.0.1938 en-US - - wmplayer.exe 7.0.0.1938

Windows_2000 5.0.0.2195 Pentium 225 4551684 1528 mms UDP - - - - 29868

- 4 0 0 0 0 0 0 0 0 100 172.29.237.102 - - -

3.2 Defining Custom Namespaces in an XML Log

An Active Stream Redirector (.asx) file (for more information, see [MSDN-WMMETA]) can be used to

append log data to the XML log structure. Vendors may define any number of custom namespaces
and name-value pairs in the "client-logging-data" structure, as specified in section 2.4 , following

the Content Description structure.

The following example illustrates how to add the cs-media-role field (section 2.1.30) by using an
.asx file:

<ASX version="3.0">

 <ENTRY>

 <TITLE> My Title </TITLE>

 <Author> My Author </Author>

 <PARAM name="log:cs-media-role" value="Advertisement" />

 <REF href="http://www.foo.MyDomain.com/live" />

 </ENTRY>

</ASX>

The additional and/or custom logging information is specified through the use of the PARAM
element. To use the PARAM element in this way, the NAME attribute is set to "log:" followed by a log
field name and a corresponding VALUE attribute. The log field specified in the NAME attribute is set

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=92758

42 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

to the value of the VALUE attribute. If the log does not already contain a field with the specified
name, it will be added.

An XML namespace has to be defined for each custom log field specified in an .asx file. This
namespace is appended to the NAME attribute and is separated from the field name by a second

colon (":"). Because everything after the second colon is treated as a namespace, the field name
should not contain a colon.

The following example illustrates the specification of custom log fields using an .asx file:

<ASX version="3.0">

 <ENTRY>

 <TITLE> My Title </TITLE>

 <Author> My Author </Author>

 <PARAM name="log:vendor-field1:VendorNameSpace" value="Value1" />

 <PARAM name="log:vendor-field2:VendorNameSpace" value="Value2" />

 <REF href="http://www.foo.MyDomain.com/live" />

 </ENTRY>

</ASX>

When an XML log is sent to a server for this .asx file, the new namespace is inserted after the
Content Description section, as shown in the following example (many log fields extraneous to this
example have been omitted for brevity and clarity):

<XML>

 <Summary>0.0.0.0 2003-09-27 00:27:24 ... </Summary>

 <c-ip>0.0.0.0</c-ip>

 <date>2003-09-27</date>

 <time>00:27:24</time>

 ...

 <ContentDescription>

 ...

 </ContentDescription>

 <VendorNameSpace>

 <vendor-field1>Value1</vendor-field1>

 <vendor-field2>Value2</vendor-field2>

 </VendorNameSpace>

</XML>

3.3 Example Streaming Log Messages

The following is an example of a Streaming Log in XML format:

<XML>

<Summary>0.0.0.0 2006-05-01 21:34:01 -

http://foo.microsoft.com/content.wmv 4 0 1 200 {3300AD50-2C39-46c0-

AE0A-3E0B6EFB86DC} 10.0.0.3802 en-US

Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)_(WMFSDK/10.0.0.3802)

_WMPlayer/10.0.0.4019 http://bar.microsoft.com iexplore.exe

6.0.2900.2180 Windows_XP 5.1.0.2600 Pentium 130 638066 - http TCP - - -

-0 - 0 0 0 0 0 0 0 0 0 100 - - - -

NETFLIX, INC. EXHIBIT 1002

43 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

http://foo.microsoft.com/content.wmv - -</Summary>

<c-ip>0.0.0.0</c-ip>

<date>2006-05-01</date>

<time>21:34:01</time>

<c-dns>-</c-dns>

<cs-uri-stem>http://foo.microsoft.com/content.wmv</cs-uri-stem>

<c-starttime>4</c-starttime>

<x-duration>0</x-duration>

<c-rate>1</c-rate>

<c-status>200</c-status>

<c-playerid>{3300AD50-2C39-46c0-AE0A-3E0B6EFB86DC}</c-playerid>

<c-playerversion>10.0.0.3802</c-playerversion>

<c-playerlanguage>en-US</c-playerlanguage>

<cs-User-

Agent>Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)_(WMFSDK/10.0.0.3802)_WMPlayer/10

.0.0.4019</cs-User-Agent>

<cs-Referer>http://bar.microsoft.com</cs-Referer>

<c-hostexe>iexplore.exe</c-hostexe>

<c-hostexever>6.0.2900.2180</c-hostexever>

<c-os>Windows_XP</c-os>

<c-osversion>5.1.0.2600</c-osversion>

<c-cpu>Pentium</c-cpu>

<filelength>130</filelength>

<filesize>638066</filesize>

<avgbandwidth>-</avgbandwidth>

<protocol>http</protocol>

<transport>TCP</transport>

<audiocodec>-</audiocodec>

<videocodec>-</videocodec>

<c-channelURL>-</c-channelURL>

<sc-bytes>-</sc-bytes>

<c-bytes>0</c-bytes>

<s-pkts-sent>-</s-pkts-sent>

<c-pkts-received>0</c-pkts-received>

<c-pkts-lost-client>0</c-pkts-lost-client>

<c-pkts-lost-net>0</c-pkts-lost-net>

<c-pkts-lost-cont-net>0</c-pkts-lost-cont-net>

<c-resendreqs>0</c-resendreqs>

<c-pkts-recovered-ECC>0</c-pkts-recovered-ECC>

<c-pkts-recovered-resent>0</c-pkts-recovered-resent>

<c-buffercount>0</c-buffercount>

<c-totalbuffertime>0</c-totalbuffertime>

<c-quality>100</c-quality>

<s-ip>-</s-ip>

<s-dns>-</s-dns>

<s-totalclients>-</s-totalclients>

<s-cpu-util>-</s-cpu-util>

<cs-url>http://foo.microsoft.com/content.wmv</cs-url>

<cs-media-name>-</cs-media-name>

<cs-media-role>-</cs-media-role>

</XML>

The following is an example of how a Streaming Log may appear as sent to a Web server:

MX_STATS_LogLine: 0.0.0.0 2000-06-14 01:18:58 -

mmsu://foo.microsoft.com/testfile.wma 30 1 1 200 {35301A88-93D3-4F3A-

A284-30F7A611CD23} 7.0.0.1938 en-US - - wmplayer.exe 7.0.0.1938

Windows_2000 5.0.0.2195 Pentium 225 4551684 1528 mms UDP - - - - 29868

- 4 0 0 0 0 0 0 0 0 100 172.29.237.102 - - -

mmsu://foo.microsoft.com/testfile.wma - -

NETFLIX, INC. EXHIBIT 1002

44 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

3.4 Example Rendering Log Messages

The following is an example of a Rendering Log in XML format:

<XML>

<Summary>0.0.0.0 2006-05-01 21:34:01 -

http://foo.microsoft.com/content.wmv 4 0 1 200 {3300AD50-2C39-46c0-

AE0A-3E0B6EFB86DC} 10.0.0.3802 en-US

Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)_(WMFSDK/10.0.0.3802)

_WMPlayer/10.0.0.4019 http://bar.microsoft.com iexplore.exe

6.0.2900.2180 Windows_XP 5.1.0.2600 Pentium 130 638066 - Cache -

Windows_Media_Audio_9 Windows_Media_Video_9 - - 0 - - - - - - - - - -

100 - - - - - - - http://foo.microsoft.com/content.wmv - - - 0

</Summary>

<c-ip>0.0.0.0</c-ip>

<date>2006-05-01</date>

<time>21:34:01</time>

<c-dns>-</c-dns>

<cs-uri-stem>http://foo.microsoft.com/content.wmv</cs-uri-stem>

<c-starttime>4</c-starttime>

<x-duration>0</x-duration>

<c-rate>1</c-rate>

<c-status>200</c-status>

<c-playerid>{3300AD50-2C39-46c0-AE0A-3E0B6EFB86DC}</c-playerid>

<c-playerversion>10.0.0.3802</c-playerversion>

<c-playerlanguage>en-US</c-playerlanguage>

<cs-User-Agent>Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)

_(WMFSDK/10.0.0.3802)_WMPlayer/10.0.0.4019</cs-User-Agent>

<cs-Referer>http://bar.microsoft.com</cs-Referer>

<c-hostexe>iexplore.exe</c-hostexe>

<c-hostexever>6.0.2900.2180</c-hostexever>

<c-os>Windows_XP</c-os>

<c-osversion>5.1.0.2600</c-osversion>

<c-cpu>Pentium</c-cpu>

<filelength>130</filelength>

<filesize>638066</filesize>

<avgbandwidth>-</avgbandwidth>

<protocol>Cache</protocol>

<transport>-</transport>

<audiocodec>Windows_Media_Audio_9</audiocodec>

<videocodec>Windows_Media_Video_9</videocodec>

<c-channelURL>-</c-channelURL>

<sc-bytes>-</sc-bytes>

<c-bytes>0</c-bytes>

<s-pkts-sent>-</s-pkts-sent>

<c-pkts-received>-</c-pkts-received>

<c-pkts-lost-client>-</c-pkts-lost-client>

<c-pkts-lost-net>-</c-pkts-lost-net>

<c-pkts-lost-cont-net>-</c-pkts-lost-cont-net>

<c-resendreqs>-</c-resendreqs>

<c-pkts-recovered-ECC>-</c-pkts-recovered-ECC>

<c-pkts-recovered-resent>-</c-pkts-recovered-resent>

<c-buffercount>-</c-buffercount>

<c-totalbuffertime>-</c-totalbuffertime>

<c-quality>100</c-quality>

<s-ip>-</s-ip>

<s-dns>-</s-dns>

<s-totalclients>-</s-totalclients>

NETFLIX, INC. EXHIBIT 1002

45 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

<s-cpu-util>-</s-cpu-util>

<cs-url>http://foo.microsoft.com/content.wmv</cs-url>

<cs-media-name>-</cs-media-name>

<cs-media-role>-</cs-media-role>

</XML>

The following is an example of how a Rendering Log may appear as sent to a Web server:

MX_STATS_LogLine: 0.0.0.0 2000-06-14 01:18:58 -

mms://foo.microsoft.com/test.wma 30 1 1 200 {35301A88-93D3-4F3A-A284-

30F7A611CD23} 7.0.0.1938 en-US - - wmplayer.exe 7.0.0.1938 Windows_2000

5.0.0.2195 Pentium 225 4551684 1528 Cache - - - - - 29868 - - - - - - -

- - - 100 - - - - mms://foo.microsoft.com/test.wma - -

3.5 Example Connect-Time Log Message

The following is an example of a Connect-Time Log message in XML format:

<XML>

<Summary>- 0.0.0.0 Windows 6.0.0.6000 2006-08-30 13:18:44 Pentium

TCP</Summary>

<c-dns>-</c-dns>

<c-ip>0.0.0.0</c-ip>

<c-os>Windows</c-os>

<c-osversion>6.0.0.6000</c-osversion>

<date>2006-08-30</date>

<time>13:18:44</time>

<c-cpu>Pentium</c-cpu>

<transport>TCP</transport>

</XML>

3.6 Example Log Sent to a Web Server

 The following is an example of a client validating a logging URL and subsequently transmitting a

logging message to the Web server:

GET /scripts/wmsiislog.dll HTTP/1.1

User-Agent: NSPlayer

Host: WebServer:8080

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 200 OK

Connection: close

Date: Wed, 27 Jun 2007 02:54:23 GMT

Server: Microsoft-IIS/6.0

Content-Type: text/html

<head><title>WMS ISAPI Log Dll/9.00.00.3372</title></head>

<body><h1>WMS ISAPI Log Dll/9.00.00.3372</h1></body>

POST /scripts/wmsiislog.dll HTTP/1.1

NETFLIX, INC. EXHIBIT 1002

46 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

Content-Type: text/plain;charset=UTF-8

User-Agent: NSPlayer

Host: WebServer:8080

Content-Length: 424

Connection: Keep-Alive

Cache-Control: no-cache

MX_STATS_LogLine: .0.0.0.0 2007-06-27 02:52:39 - asfm://239.192.50.29:30864 0 39 1 200

{3300AD50-2C39-46c0-AE0A-0572F2EA5330} 10.0.0.4054 en-US

WMFSDK/10.0.0.4054_WMPlayer/10.0.0.4036 - wmplayer.exe 10.0.0.3802 Windows_XP 5.1.0.2600

Pentium 229 10413011 411536 asfm UDP Windows_Media_Audio_9.2 -

http://WebServer:8080/multicast.nsc - 2170350 - 182 0 0 0 0 0 0 1 3 100 239.192.50.29 - -

- http://WebServer:8080/multicast.nsc - -

HTTP/1.1 200 OK

Server: Microsoft-IIS/6.0

Date: Wed, 27 Jun 2007 02:54:23 GMT

Connection: close

3.7 Parsing Windows Media Log Files

Microsoft Log Parser 2.2 is a tool that queries text-based data and other system data sources,
including Windows Media log files. For more information, see [MSFT-LOGPARSER].

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90195

47 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

4 Security Considerations

A server that receives a logging message SHOULD validate the syntax of the fields. For example, the
server should check that logging fields that are supposed to contain numerical data really do so, and
that no invalid characters, such as control characters, are present. Invalid fields or characters could
cause any tools that process the logging information to malfunction.

NETFLIX, INC. EXHIBIT 1002

48 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

5 Appendix A: Windows Behavior

The information in this specification is applicable to the following versions of Windows:

▪ Windows NT

▪ Windows 2000

▪ Windows XP

▪ Windows Server 2003

▪ Windows Vista

▪ Windows Server 2008

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional behavior
in this specification prescribed using the terms SHOULD or SHOULD NOT implies Windows behavior
in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term

MAY implies that Windows does not follow the prescription.

<1> Section 2.1.5: Windows Media Player 6.4 specifies the DNS name in the c-dns field.

<2> Section 2.1.10: On Windows Vista, c-os is set to "Windows".

<3> Section 2.1.25.2: Windows Media Player 6.4, Windows Media Format 7.0 SDK, Windows Media

Format 7.1 SDK, and Windows Media Player for Windows XP never specify status code 210.

<4> Section 2.5.1: Windows Media Player 6.4 specifies its own IP address in the c-ip field.
Windows Media Format 7.0 SDK, Windows Media Format 7.1 SDK, and Windows Media Player for
Windows XP specify their own IP address in the c-ip field depending on the current setting of a
configuration value in the user interface.

<5> Section 2.5.1: Windows Media Player 6.4, Windows Media Format 7.0 SDK, Windows Media

Format 7.1 SDK, and Windows Media Player for Windows XP never include the three optional fields.

<6> Section 2.5.3: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, and
Windows Vista do not include the "contentdescription" and "client-logging-data" syntax elements in
the XML-format logging message when using RTSP [MS-RTSP].

<7> Section 2.6.2: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, and
Windows Vista do not include the "contentdescription" and "client-logging-data" syntax elements in
the XML-format logging message when using RTSP [MS-RTSP].

NETFLIX, INC. EXHIBIT 1002

%5bMS-RTSP%5d.pdf
%5bMS-RTSP%5d.pdf

49 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

6 Index

A

Applicability
audiocodec
avgbandwidth

B

Basic logging syntax

C

c-buffercount
c-bytes
c-channelURL

c-cpu
c-dns
c-hostexe
c-hostexever
c-ip (section 2.1.8, section 2.1.9)
Connect-time log
Connect-time logging syntax
c-os
c-osversion
c-pkts-lost-client
c-pkts-lost-cont-net
c-pkts-lost-net
c-pkts-received
c-pkts-recovered-ECC
c-pkts-recovered-resent
c-playerid
c-playerlanguage
c-playerversion
c-quality
c-rate
c-resendreqs
cs-media-name
cs-media-role
cs-Referer
c-starttime
c-status
cs-uri-stem
cs-url
cs-User-Agent
cs-user-name
c-totalbuffertime

D

date

E

Examples
legacy logging message example
overview
parsing Windows Media log files example

Extended logging syntax

F

Fields - vendor-extensible
filelength
filesize

G

Glossary

I

Informative references
Introduction

L

Legacy log
common definitions
overview
sent to Web server
W3C format
XML format

Legacy logging message example
Localization
Log data fields
Logging message - W3C syntax
Logging message - WXML schema
Logging message sent to Web servers

N

Normative references

P

Parsing Windows Media log files example
protocol

R

References
informative
normative
overview

Relationship to other protocols
Rendering log

common definitions
overview
sent to Web server
sent to Windows Media Services

S

sc-bytes
s-content-path
s-cpu-util

NETFLIX, INC. EXHIBIT 1002

50 / 50

[MS-WMLOG] – v20080618
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, June 18, 2008

s-dns
Security
s-ip
s-pkts-sent
s-proxied
s-session-id
Status Code 200 (No Error)
Status Code 210 (Client Successfully Reconnected)
s-totalclients
Streaming log

common definitions
overview
sent to Web server
sent to Windows Media Services

Structures
connect-time log
legacy log
log data fields
logging message - W3C syntax
logging message - XML schema
logging message sent to Web servers
overview
rendering log

streaming log

T

time
transport

V

Vendor-extensible fields
Versioning
videocodec

W

Windows behavior

X

x-duration

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-6

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-6

NETFLIX, INC. EXHIBIT 1002

1 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

[MS-WMLOG]:
Windows Media Log Data Structure

Intellectual Property Rights Notice for Protocol Documentation

▪ Copyrights. This protocol documentation is covered by Microsoft copyrights. Regardless of any

other terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the protocols,
and may distribute portions of it in your implementations of the protocols or your documentation
as necessary to properly document the implementation. This permission also applies to any
documents that are referenced in the protocol documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

▪ Patents. Microsoft has patents that may cover your implementations of the protocols. Neither

this notice nor Microsoft's delivery of the documentation grants any licenses under those or any
other Microsoft patents. However, the protocols may be covered by Microsoft’s Open Specification
Promise (available here: http://www.microsoft.com/interop/osp). If you would prefer a written
license, or if the protocols are not covered by the OSP, patent licenses are available by contacting
protocol@microsoft.com.

▪ Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. This protocol documentation is intended for use in conjunction with publicly available

standard specifications and network programming art, and assumes that the reader either is familiar
with the aforementioned material or has immediate access to it. A protocol specification does not

require the use of Microsoft programming tools or programming environments in order for you to
develop an implementation. If you have access to Microsoft programming tools and environments
you are free to take advantage of them.

Revision Summary

Date Revision History Revision Class Comments

04/03/2007 0.01 MCPP Milestone Longhorn Initial Availability

07/03/2007 1.0 Major MLonghorn+90

07/20/2007 2.0 Major Revised technical content; added example topics.

08/10/2007 2.0.1 Editorial Revised and edited the technical content.

09/28/2007 2.0.2 Editorial Revised and edited the technical content.

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=114384
mailto:protocol@microsoft.com

2 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Date Revision History Revision Class Comments

10/23/2007 2.0.3 Editorial Revised and edited the technical content.

11/30/2007 2.0.4 Editorial Revised and edited the technical content.

01/25/2008 2.0.5 Editorial Revised and edited the technical content.

03/14/2008 2.1 Minor Updated the technical content.

05/16/2008 2.1.1 Editorial Revised and edited the technical content.

06/20/2008 2.2 Minor Updated the technical content.

07/25/2008 2.3 Minor Updated the technical content.

NETFLIX, INC. EXHIBIT 1002

3 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Table of Contents

1 Introduction .. 5
1.1 Glossary .. 5
1.2 References ... 5

1.2.1 Normative References .. 5
1.2.2 Informative References .. 6

1.3 Structure Overview ... 6

1.4 Relationship to Protocols and Other Structures ... 6
1.5 Applicability Statement .. 7
1.6 Versioning and Localization .. 7
1.7 Vendor-Extensible Fields .. 7

2 Structures .. 8
2.1 Log Data Fields ... 8

2.1.1 audiocodec ... 8

2.1.2 avgbandwidth ... 9
2.1.3 c-buffercount .. 9

2.1.4 c-cpu ... 9
2.1.5 c-dns ... 10
2.1.6 c-hostexe ... 10
2.1.7 c-hostexever ... 10

2.1.8 c-ip ... 10
2.1.9 c-max-bandwidth .. 11
2.1.10 c-os ... 11
2.1.11 c-osversion ... 11
2.1.12 c-pkts-lost-client ... 12
2.1.13 c-pkts-lost-cont-net ... 12
2.1.14 c-pkts-lost-net .. 13

2.1.15 c-pkts-received ... 13
2.1.16 c-pkts-recovered-ECC .. 13
2.1.17 c-pkts-recovered-resent ... 14
2.1.18 c-playerid ... 14
2.1.19 c-playerlanguage ... 15

2.1.20 c-playerversion ... 15
2.1.21 c-quality ... 15

2.1.22 c-rate ... 16
2.1.23 c-resendreqs ... 16
2.1.24 c-starttime ... 17
2.1.25 c-status .. 17

2.1.25.1 Status Code 200 (No Error) ... 17
2.1.25.2 Status Code 210 (Client Successfully Reconnected) .. 17

2.1.26 c-totalbuffertime ... 17
2.1.27 c-channelURL .. 18
2.1.28 c-bytes ... 18
2.1.29 cs-media-name ... 18
2.1.30 cs-media-role .. 19
2.1.31 cs-Referer .. 20
2.1.32 cs-url ... 20

2.1.33 cs-uri-stem ... 20
2.1.34 cs-User-Agent ... 21
2.1.35 cs-user-name .. 22
2.1.36 date ... 22
2.1.37 filelength .. 22

NETFLIX, INC. EXHIBIT 1002

4 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.1.38 filesize ... 22
2.1.39 protocol .. 23
2.1.40 s-content-path .. 23

2.1.41 s-cpu-util .. 23

2.1.42 s-dns ... 24
2.1.43 s-ip ... 24
2.1.44 s-pkts-sent ... 25
2.1.45 s-proxied .. 25
2.1.46 s-session-id .. 25
2.1.47 s-totalclients ... 25
2.1.48 sc-bytes ... 26

2.1.49 time ... 26
2.1.50 transport .. 26
2.1.51 videocodec ... 27
2.1.52 x-duration .. 27

2.2 Logging Message: W3C Syntax ... 27
2.2.1 Basic Logging Syntax ... 28

2.2.2 Extended Logging Syntax ... 28

2.2.3 Connect-Time Logging Syntax ... 29
2.3 Logging Messages Sent to Web Servers ... 29
2.4 Logging Message: XML Schema .. 30
2.5 Legacy Log ... 32

2.5.1 Common Definitions ... 32
2.5.2 Legacy Log in W3C Format ... 34

2.5.3 Legacy Log in XML Format .. 34
2.5.4 Legacy Log Sent to a Web Server .. 34

2.6 Streaming Log .. 34
2.6.1 Common Definitions ... 35
2.6.2 Streaming Log Sent to Windows Media Services .. 36
2.6.3 Streaming Log Sent to a Web Server ... 36

2.7 Rendering Log .. 37

2.7.1 Common Definitions ... 37
2.7.2 Rendering Log Sent to Windows Media Services .. 38
2.7.3 Rendering Log Sent to a Web Server .. 38

2.8 Connect-Time Log ... 39

3 Structure Examples ... 40
3.1 Legacy Logging Message .. 40

3.2 Defining Custom Namespaces in an XML Log .. 41
3.3 Example Streaming Log Messages ... 42
3.4 Example Rendering Log Messages ... 44
3.5 Example Connect-Time Log Message ... 45
3.6 Example Log Sent to a Web Server ... 46
3.7 Parsing Windows Media Log Files... 46

4 Security Considerations ... 47

5 Appendix A: Windows Behavior ... 48

6 Index ... 49

NETFLIX, INC. EXHIBIT 1002

5 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

1 Introduction

This specification defines the Windows Media Log Data Structure, a Microsoft proprietary interface.
The Windows Media Log Data Structure is a syntax for logging messages. The logging messages
specify information about how a client received multimedia content from a streaming server. For
example, logging messages can specify how many packets were received and how long it took for
the client to receive the content.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Advanced Systems Format (ASF)
Globally Unique Identifier (GUID)

The following terms are defined in [MS-WMSP]:

Content
Playlist

Session

Stream
Streaming

The following terms are specific to this document:

Client: The entity that has created the logging message, or an entity that receives a logging
message from a client. In the latter case, the client is a proxy.

Proxy: An entity that can receive logging messages from both a client and a proxy, and/or a

server that is streaming on behalf of another server.

Server: An entity that transfers content to a client through streaming. A server might be able to
do streaming on behalf of another server, thus a server can also be a proxy.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

1.2.1 Normative References

 We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[ASF] Microsoft Corporation, "Advanced Systems Format Specification", December 2004,
http://download.microsoft.com/download/7/9/0/790fecaa-f64a-4a5e-a430-
0bccdab3f1b4/ASF_Specification.doc

If you have any trouble finding [ASF], please check here.

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary", March 2007.

NETFLIX, INC. EXHIBIT 1002

%5bMS-GLOS%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89814
http://go.microsoft.com/fwlink/?LinkId=89814
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-GLOS%5d.pdf

6 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

[RFC1945] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer Protocol -- HTTP/1.0",
RFC 1945, May 1996, http://www.ietf.org/rfc/rfc1945.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[RFC2326] Schulzrinne, H., Rao, A., and Lanphier, R., "Real Time Streaming Protocol (RTSP)", RFC
2326, April 1998, http://www.ietf.org/rfc/rfc2326.txt

[RFC2616] Fielding, R., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999,
http://www.ietf.org/rfc/rfc2616.txt

[RFC3066] Alvestrand, H., "Tags for the Identification of Language", RFC 3066, January 2001,
http://www.ietf.org/rfc/rfc3066.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", RFC 3629, November

2003, http://www.ietf.org/rfc/rfc3629.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI):
Generic Syntax", RFC 3986, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC4234] Crocker, D., Ed. and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

1.2.2 Informative References

[MS-MMSP] Microsoft Corporation, "Microsoft Media Server (MMS) Protocol Specification", June
2007.

[MS-MSB] Microsoft Corporation, "Media Stream Broadcast (MSB) Protocol Specification", January
2007.

[MS-RTSP] Microsoft Corporation, "Real-Time Streaming Protocol (RTSP) Windows Media
Extensions", July 2007.

[MS-WMSP] Microsoft Corporation, "Windows Media HTTP Streaming Protocol Specification", March

2007.

[MSDN-WMMETA] Microsoft Corporation, "Windows Media Metafiles",
http://msdn2.microsoft.com/en-us/library/bb248407.aspx

[MSFT-LOGPARSER] Microsoft Corporation, "Log Parser 2.2",
http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-
f8d975cf8c07&displaylang=en

[W3C-EXLOG] World Wide Web Consortium, "Extended Log File Format",
http://www.w3.org/TR/WD-logfile.html

1.3 Structure Overview

The Windows Media Log Data Structure is a syntax for logging messages. The logging messages
specify information about how a client received multimedia content from a streaming server.

1.4 Relationship to Protocols and Other Structures

The logging messages defined in this specification are used by the Windows Media HTTP Streaming
Protocol and the Real-Time Streaming Protocol (RTSP) Windows Media Extensions. When those two

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90335
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90404
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-MMSP%5d.pdf
%5bMS-MSB%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=92758
http://go.microsoft.com/fwlink/?LinkId=90195
http://go.microsoft.com/fwlink/?LinkId=90195
http://go.microsoft.com/fwlink/?LinkId=90561
%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
%5bMS-RTSP%5d.pdf

7 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

protocols are used, the logging messages defined by this specification can be encapsulated in
protocol messages specific to the streaming protocol in use. The resulting protocol messages are
sent to either Windows Media Services or to a proxy compatible with the logging message syntax

defined in this specification.

It is also possible to send logging messages to an HTTP Web server. This is possible when using the
two streaming protocols mentioned above and when using two other streaming protocols: Microsoft
Media Server (MMS) Protocol and Media Stream Broadcast (MSB) Protocol.

1.5 Applicability Statement

The syntax for logging messages defined by this specification is applicable to implementations of the
four streaming protocols mentioned in section 1.4 .

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

Logging messages in XML format are vendor-extensible. Any logging information added by a vendor
MUST be encoded using the "client-logging-data" syntax element specified in section 2.4 .

NETFLIX, INC. EXHIBIT 1002

%5bMS-MMSP%5d.pdf
%5bMS-MMSP%5d.pdf
%5bMS-MSB%5d.pdf

8 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2 Structures

Section 2.1 defines fields that can appear in a logging message. Not all fields appear in all logging
messages, however. Section 2.2 defines the syntax of W3C-based logging messages, and section
2.4 defines the syntax of XML-based logging messages.

Section 2.5 defines the legacy logging message type. Section 2.6 defines the streaming log
message type. Section 2.7 defines the rendering log message type. Section 2.8 defines the
connection log message type.

The information contained in a logging message is always specific to a particular session. The extent

of a session is defined by the streaming protocol used by the server. A rendering log message (as
specified in section 2.7) can be sent without streaming from a server, and, in that case, a session
starts when the playback of the playlist starts, and stops when the playback of the playlist stops.

Below are some common Augmented Backus-Naur Form (ABNF) constructions, as specified in
[RFC4234], that are used throughout this specification. Any ABNF syntax rules that are not defined
in [RFC4234] or in this specification may be defined in [RFC1945] or [RFC2616].

date-year = 4DIGIT ; "19xx" and "20xx" typical

date-month = 2DIGIT ; 01 through 12

date-day = 2DIGIT ; 01 through 31

time-hour = 2DIGIT ; 00 through 24

time-min = 2DIGIT ; 00 through 59

time-sec = 2DIGIT ; 00 through 59, 60 if leap second

ip_addr = IPv4address | IPv6address

 ; Defined in Appendix A of RFC3986

ver_major = 1*2DIGIT

ver_minor = 1*2DIGIT ["." 1*4DIGIT "." 1*4DIGIT]

2.1 Log Data Fields

2.1.1 audiocodec

This field SHOULD specify a list of audio codecs used to decode the audio streams accessed by the
client. Each codec MUST be listed only once regardless of the number of streams decoded by that
codec.

The value for audiocodec MUST NOT exceed 256 characters in total length. If the codec name is
not available, then the field MUST be set to "-".

The syntax of the audiocodec field is defined as follows:

codec-name= 1*255VCHAR

audiocodec= "-" | (codec-name *(";" codec-name))

Example:

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-WMSP%5d.pdf

9 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Microsoft_Audio_Codec;Generic_MP3_Codec

2.1.2 avgbandwidth

This field MUST specify the average bandwidth, in bits per second, at which the client received
content from the server (which may be a proxy), as measured by the client from the start of the

current session. This is only applicable during periods in which the server is streaming the content.
Depending on the streaming protocol used, it might be possible for the session to be in a "paused"
state in which streaming is suspended. The value for avgbandwidth does not account for the
average bandwidth during such periods in which streaming is suspended.

If the notion of an average bandwidth is not applicable, for example, because the client did not
receive any content from the server, then the field MUST be set to "-".

If the numerical value is specified, it MUST be an integer in the range from 0 through

4,294,967,295.

The syntax of the avgbandwidth field is defined as follows:

avgbandwidth= "-" | 1*10DIGIT

Example:

102585

2.1.3 c-buffercount

This field MUST specify the number of times the client buffered while playing the content, counted
from when the client most recently started streaming the content.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-buffercount field is defined as follows:

c-buffercount= 1*10DIGIT

Example:

1

2.1.4 c-cpu

This field MUST specify the type of CPU used by the client computer.

The syntax of the c-cpu field is defined as follows:

c-cpu= 1*64VCHAR

Example:

NETFLIX, INC. EXHIBIT 1002

10 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Pentium

2.1.5 c-dns

This field SHOULD be set to "-". The field MAY specify the DNS name of the client sending the
log.<1>

The syntax of the c-dns field is defined as follows:

c-dns= "-"

 | reg-name ; as defined in [RFC3986]

Example:

wmt.test.com

2.1.6 c-hostexe

This field specifies the file name of the host application executed on the client. This field MUST NOT
refer to a .dll, .ocx, or other non-executable file.

The syntax of the c-hostexe field is defined as follows:

c-hostexe= *255VCHAR

Example:

wmplayer.exe

2.1.7 c-hostexever

This field MUST specify the version number of the host application running on the client.

The syntax of the c-hostexever field is defined as follows:

c-hostexever= ver_major "." ver_minor

Example:

6.2.5.323

2.1.8 c-ip

When a client creates a logging message, it SHOULD specify the c-ip field as "-" but MAY specify the
IP address of the client.

NETFLIX, INC. EXHIBIT 1002

11 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

If a proxy is forwarding a logging message on behalf of a client, the c-ip field MUST specify the IP
address of the client. The proxy MUST replace the value of the c-ip field that was specified by the
client with the IP address of the client (as known to the proxy).

The syntax of the c-ip field is defined as follows:

c-ip = "-" | ip_addr

Example:

157.100.200.300

Example:

3ffe:2900:d005:f28b:0000:5efe:157.55.145.142

2.1.9 c-max-bandwidth

This field MUST be set to "-".

The syntax of the c-max-bandwidth field is defined as follows:

c-max-bandwidth ="-"

Example:

-

2.1.10 c-os

This field MUST specify the client's operating system.<2>

The syntax of the c-os field is defined as follows:

OSname= "Windows_98" | "Windows_ME" | "Windows_NT"

 | "Windows_2000" | "Windows_XP" | "Windows"

 | "Windows_Server 2003"

c-os = OSname | 1*64VCHAR

Example:

Windows

2.1.11 c-osversion

This field MUST specify the version number of the client's operating system.

NETFLIX, INC. EXHIBIT 1002

12 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

The syntax of the c-osversion field is defined as follows:

c-osversion= ver_major "." ver_minor

Example:

6.0.0.6000

2.1.12 c-pkts-lost-client

This field MUST specify the number of ASF data packets ([ASF] section 5.2) lost during transmission

from server to client and not recovered at the client layer through error correction or at the network
layer by using the User Datagram Protocol (UDP) resends, counted from when the client most
recently started streaming the content.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-lost-client field is defined as follows:

c-pkts-lost-client= 1*10DIGIT

Example:

5

2.1.13 c-pkts-lost-cont-net

This field MUST specify the largest number of ASF data packets that were lost as a consecutive span
during transmission from server to client and counted from when the client most recently started
streaming the content.

For example, if data packets numbered 1, 4, and 8 are received, and packets 2, 3, 5, 6 and 7 are
lost, then packets 2 and 3 constitute a span of two lost packets, and packets 5, 6 and 7 constitute a
span of three lost packets. In this example, the c-pkts-lost-cont-net field would be set to 3—the

size of the largest span.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-lost-cont-net field is defined as follows:

c-pkts-lost-cont-net= 1*10DIGIT

Example:

2

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=89814

13 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.1.14 c-pkts-lost-net

This field MUST specify the number of ASF data packets lost on the network layer, counted from

when the client most recently started streaming the content. Packets lost at the network layer can

be recovered if the client re-creates them by using forward error correction.

The numerical difference between the value of c-pkts-lost-net and the value of c-pkts-lost-client
MUST be equal to the value of c-pkts-recovered-ECC.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-lost-net field is defined as follows:

c-pkts-lost-net= 1*10DIGIT

Example:

2

2.1.15 c-pkts-received

This field MUST specify the number of ASF data packets that have been correctly received by the
client on the first attempt counted from when the client most recently started streaming the
content. (ASF data packets that were received through error correction code (ECC) recovery or UDP
resends are not included in the c-pkts-received field.)

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-received field is defined as follows:

c-pkts-received= 1*10DIGIT

Example:

523

2.1.16 c-pkts-recovered-ECC

This field MUST specify the number of ASF data packets that were lost at the network layer but were
subsequently recovered, counted from when the client most recently started streaming the content.
The value of this field MUST be equal to the numerical difference between the value of c-pkts-lost-
net and the value of c-pkts-lost-client.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-recovered-ECC field is defined as follows:

c-pkts-recovered-ECC= 1*10DIGIT

Example:

NETFLIX, INC. EXHIBIT 1002

14 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

1

2.1.17 c-pkts-recovered-resent

This field MUST specify the number of ASF data packets that were either recovered because they
were resent through UDP or because they were received out of order.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-pkts-recovered-resent field is defined as follows:

c-pkts-recovered-resent= 1*10DIGIT

Example:

5

2.1.18 c-playerid

This field specifies a unique identifier for the client application that originated the request. The
identifier MUST be a GUID. The GUID is expressed in registry format and is not enclosed in
quotation marks, as shown by the ABNF syntax below.

If the client is configured to remain anonymous (that is, not send private information), the client
MUST set the c-playerid field as indicated by the ABNF syntax for the playid_priv syntax element as
shown in the code example below. Otherwise, c-playerid MUST use the syntax for playid_pub as
shown in the code example below. The client MUST choose a value for playid_pub randomly, and the
same value MUST be used for playid_pub in all logging messages created by the client application,
regardless of which content is streamed.

 Furthermore, multiple instances, or incarnations, of the client application MUST use the same value
for the playid_pub syntax element. However, if the client application is shared by multiple users,

and it is possible to determine a user identity or account name of the user launching the client
application, then the value for playid_pub SHOULD be different for each user identity or account
name. For example, multi-user operating systems typically have separate accounts with a distinct
account name for each user, while cellular telephones do not.

If the client uses the playid_priv syntax element, then the client SHOULD choose the value for the

playid syntax element randomly; however, the client MUST use the same playid value for all logging
messages sent for the same session.

The syntax of the c-playerid field is defined as follows:

playid= 12HEXDIG

playid_pub = "{" 8HEXDIG "-" 4HEXDIG "-" 4HEXDIG "-"

 4HEXDIG "-" 12HEXDIG "}"

playid_priv= "{3300AD50-2C39-46c0-AE0A-" playid "}"

c-playerid= playid_pub / playid_priv

NETFLIX, INC. EXHIBIT 1002

%5bMS-GLOS%5d.pdf

15 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Example:

{c579d042-cecc-11d1-bb31-00a0c9603954}

Example (client is anonymous):

{3300AD50-2C39-46c0-AE0A-70b64f321a80}

2.1.19 c-playerlanguage

This field MUST specify the language-country code of the client.

The syntax of the c-playerlanguage field is defined as follows:

c-playerlanguage= Language-Tag

; see section 2.1 of [RFC3066]

Example:

en-US

2.1.20 c-playerversion

This field MUST specify the version number of the client.

The syntax of the c-playerversion field is defined as follows:

c-playerversion = ver_major "." ver_minor

Example:

7.0.1024

2.1.21 c-quality

This field MUST specify the percentage of packets that were received by the client, counted from

when the client most recently started streaming the content.

If cPacketsRendered represents all packets received by the client including packets recovered by
ECC and UDP resend such that:

cPacketsRendered = c-pkts-received + c-pkts-recovered-ECC + c-pkts-

recovered-resent

then the value for the c-quality field MUST be calculated as:

NETFLIX, INC. EXHIBIT 1002

16 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

[cPacketsRendered / (cPacketsRendered + c-pkts-lost-client)] * 100

If the denominator in the above equation evaluates to 0, c-quality MUST be specified as 100.

The syntax of the c-quality field is defined as follows:

c-quality = 1*2DIGIT / "100"

Example:

89

2.1.22 c-rate

This field MUST specify the rate of streaming or playback as a multiplier of the normal streaming or

playback rate.

For example, a value of 1 specifies streaming or playback at the normal rate, while a value of -5
indicates rewind at a speed 5 times faster than real-time, and a value of 5 indicates fast-forward at
a rate 5 times faster than real-time.

For Legacy and Streaming Logs, c-rate MUST be the streaming rate. For Rendering logs, c-rate

MUST be the rendering (playback) rate.

The value of c-rate MUST reflect the rate that was in effect at the beginning of the period covered
by the logging message because streaming or playback might already have ended by the time the
logging message is generated.

The syntax of the c-rate field is defined as follows:

c-rate= ["-"] 1*2DIGIT

Example:

1

2.1.23 c-resendreqs

This field MUST specify the number of requests made by the client to receive lost ASF data packets,
counted from when the client most recently started streaming the content. If the client is not using
UDP resend, the value of this field MUST be "-".

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-resendreqs field is defined as follows:

c-resendreqs= "-"/ 1*10DIGIT

Example:

NETFLIX, INC. EXHIBIT 1002

17 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

5

2.1.24 c-starttime

This field MUST specify the time offset, in seconds, in the content from which the client started to
render content. This represents the presentation time of the ASF data packets that the client began

rendering. For live broadcasts, the client MUST set this field to zero.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-starttime field is defined as follows:

c-starttime= 1*10DIGIT

Example:

39

2.1.25 c-status

This field MUST specify a numerical code that indicates the status of the client that creates the
logging message.

The syntax of the c-status field is defined as follows:

c-status= "200" / "210"

Example:

200

2.1.25.1 Status Code 200 (No Error)

This code indicates that the client successfully streamed and submitted the log.

2.1.25.2 Status Code 210 (Client Successfully Reconnected)

This code indicates that the client disconnected and then reconnected to the server.<3>

2.1.26 c-totalbuffertime

This field MUST specify the total time, in seconds, that the client spent buffering the ASF data
packets in the content, counted from when the client most recently started streaming the content. If
the client buffers the content more than once before a log is generated, c-totalbuffertime MUST be
equal to the total amount of time that the client spent buffering the ASF data packets.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-totalbuffertime field is defined as follows:

NETFLIX, INC. EXHIBIT 1002

18 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

c-totalbuffertime= 1*10DIGIT

Example:

20

2.1.27 c-channelURL

This field MUST specify the URL to the multicast station (.nsc) file (for more information, see [MS-
MSB]) if such a file was used by the client. Whenever an .nsc file is used, this field MUST be

specified, even if the MSB Protocol was not used to stream content.

The syntax of the c-channelURL field is defined as follows:

c-channelURL = "-"

 / URI-reference ; as defined in section 4.1 of [RFC3986].

Example:

http://server/channel.nsc

2.1.28 c-bytes

This field MUST specify the number of bytes received by the client from the server, counted from
when the client most recently started streaming the content.

The value for the c-bytes field MUST NOT include TCP/IP or other overhead added by the network
stack. Higher-level protocols such as HTTP [RFC2616], RTSP [RFC2326], and the MMS Protocol [MS-
MMSP], can each introduce differing amounts of overhead, resulting in different values for the same
content.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the c-bytes field is defined as follows:

c-bytes= 1*10DIGIT

Example:

28000

2.1.29 cs-media-name

The purpose of this field is to specify the file name of the content or server-side playlist entry that

was streamed or played by the client. For Legacy and Streaming Logs, the value of this field MUST
be the content or server-side playlist entry that was streamed. For Rendering Logs, it MUST be the

content or server-side playlist entry that was rendered (played).

NETFLIX, INC. EXHIBIT 1002

%5bMS-MSB%5d.pdf
%5bMS-MSB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90372
http://go.microsoft.com/fwlink/?LinkId=90335
%5bMS-MMSP%5d.pdf
%5bMS-MMSP%5d.pdf
%5bMS-WMSP%5d.pdf

19 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

If the server provided a Content Description, (see, for example, the Windows Media HTTP Streaming
Protocol), and the Content Description contains an entry named
WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_URL, the value of the cs-media-name field

MUST be equal to the value of the WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_URL entry.

Otherwise, if the client is using an Active Stream Redirector (.asx) file (for more information, see
[MSDN-WMMETA]), and the file specifies a logging parameter called "cs-media-name", then the
value of the cs-media-name field in the logging message MUST be equal to the value of the "cs-
media-name" logging parameter in the .asx file. See section 3.2 for an example of how this
parameter is specified in an .asx file.

If none of the above applies, cs-media-name MUST be specified as "-".

The syntax of the cs-media-name field is defined as follows:

cs-media-name= *VCHAR

Examples:

C:\wmpub\wmroot\MyAd2.asf

2.1.30 cs-media-role

The purpose of this field is to specify a value that can be associated with a server-side playlist entry
to signify the role of the playlist entry. For Legacy and Streaming logs, the value of this field MUST
be the role of the server-side playlist entry that was streamed. For Rendering Logs, it MUST be the
role of the server-side playlist entry that was rendered (played).

If the server provided a Content Description, (see, for example, the Windows Media HTTP Streaming
Protocol), and the Content Description contains an entry named
WMS_CONTENT_DESCRIPTION_ROLE, the value of the cs-media-role field MUST be equal to the
value of the WMS_CONTENT_DESCRIPTION_ROLE entry.

Otherwise, if the client is using an Active Stream Redirector (.asx) file (for more information, see
[MSDN-WMMETA]), and the file specifies a logging parameter called "cs-media-role", then the value
of the cs-media-role field in the logging message MUST be equal to the value of the "cs-media-

role" logging parameter in the .asx file. See section 3.2 for an example of how this parameter is
specified in an .asx file.

If none of the above applies, the cs-media-role MUST be specified as "-".

The syntax of the cs-media-role field is defined as follows:

cs-media-role= *VCHAR

Example:

ADVERTISEMENT

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=92758
%5bMS-WMSP%5d.pdf
%5bMS-WMSP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=92758

20 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.1.31 cs-Referer

This field SHOULD specify the URL to the Web page that the client software application is embedded

within, except if the client software application was not embedded in a Web page. If the client

software application is not embedded in a Web page, but an Active Stream Redirector (ASX) file (for
more information, see [MSDN-WMMETA]) was obtained from a Web page, then this field SHOULD be
set to the URL to that Web page.

If none of the above applies, this field MUST be set to "-".

The syntax of the cs-Referer field is defined as follows:

cs-Referer= "-"

 / URI-reference ; as defined in section 4.1 of [RFC3986]

Examples:

http://www.adventure-works.com/default.htm

2.1.32 cs-url

This field MUST specify the URL for the streaming content originally requested by the client.

Note that the value of this field can be different from the URL actually used if the server redirected
the client to a different URL, or if the client decided to use a streaming protocol that is different from
the one indicated by the URL scheme of the original URL.

When the MSB Protocol is used, the "asfm" MUST be used as the URL scheme in the cs-url field.

The syntax of the cs-url field is defined as follows:

cs-url= URI-reference; as defined in section 4.1 of [RFC3986].

Example 1:

mms://www.adventure-works.com/some/content.asf

Example 2:

asfm://239.1.2.3:9000

2.1.33 cs-uri-stem

This field MUST specify the URL actually used by the client. Any query strings MUST be excluded

from the URL. (This means that the value of the cs-uri-stem field is equal to the URL actually used
by the client, truncated at the first "?" character.)

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=92758
%5bMS-MSB%5d.pdf

21 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Note that the value of this field can be different from the URL originally requested by the client if the
server redirected the client to a different URL, or if the client decided to use a streaming protocol
that is different from the one indicated by the URL scheme of the original URL.

When the Media Stream Broadcast (MSB) Protocol is used (for more information, see [MS-MSB]),

the "asfm" MUST be used as the URL scheme in the cs-uri-stem field.

The syntax of the cs-uri-stem field is defined as follows:

cs-uri-stem= URI-reference; as defined in section 4.1 of [RFC3986].

Example:

rtspt://server/test/sample.asf

2.1.34 cs-User-Agent

The purpose of this field is to specify information regarding the client application that is sending the
logging message.

The cs-User-Agent field SHOULD be set to the same value that Internet Explorer specifies on the
User-Agent HTTP protocol header. The field MAY be set differently as long as it adheres to the ABNF
syntax as shown in the code example below.

If a logging message is forwarded by a proxy, the cs-User-Agent field MUST begin with the string
"_via_". The original value specified by the client (which may be another proxy) on the cs-User-
Agent field SHOULD be discarded. The proxy SHOULD include a product token on the cs-User-
Agent field that specifies the brand and version of the proxy.

The syntax of the cs-User-Agent field is defined as follows:

cs-User-Agent= ["_via_HTTP/1.0_"]

 1*(product; [RFC2616] section 3.8

| comment); [RFC2616] section 2.2

Example 1: media player embedded in Internet Explorer 6 on Windows XP SP2:

Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1;_SV1)

Example 2: application based on Windows Media Format 9 Series SDK:

Application/2.3 (WMFSDK/9.0.1234)

Example 3: proxy:

_via_HTTP/1.0_WMCacheProxy/9.00.00.1234

NETFLIX, INC. EXHIBIT 1002

%5bMS-MSB%5d.pdf

22 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.1.35 cs-user-name

This field MUST be set to "-".

The syntax of the cs-user-name field is defined as follows:

cs-user-name= "-"

Example:

-

2.1.36 date

This field MUST specify the current date on the client when the log message is created. The time
MUST be specified in UTC.

The syntax of the date field is defined as follows:

date= date-year "-" date-month "-" date-day

Example:

1997-10-09

2.1.37 filelength

This field MUST specify the length of the ASF file, in seconds. For a live broadcast stream, the value
for filelength is undefined and MUST be set to zero.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the filelength field is defined as follows:

filelength= 1*10DIGIT

Example:

60

2.1.38 filesize

This field MUST specify the size of the ASF file, in bytes. For a live broadcast stream, the value for
the filesize field is undefined and MUST be set to zero.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the filesize field is defined as follows:

NETFLIX, INC. EXHIBIT 1002

%5bMS-GLOS%5d.pdf

23 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

filesize= 1*10DIGIT

Example:

86000

2.1.39 protocol

This field MUST specify the protocol used to stream content to the client.

If the Windows Media HTTP Streaming Media Protocol was used, the value of the protocol field

MUST be "http".

If the RTSP Windows Media Extensions was used, and all ASF data packets were transmitted over
TCP, the value of the protocol field MUST be "rtspt". If some ASF data packets were transmitted
over UDP, the value of the protocol field MUST be "rtspu".

If the MSB Protocol was used, the value of the protocol field MUST be "asfm".

Note The value for protocol can be different from the URL moniker used in the stream request.

The syntax of the protocol field is defined as follows:

protocol= "http" / "rtspt" / "rtspu" / "asfm"

Example:

http

2.1.40 s-content-path

This field MUST be set to "-".

The syntax of the s-content-path field is defined as follows:

s-content-path = "-"

Example:

-

2.1.41 s-cpu-util

When a client creates a logging message, it MUST specify the s-cpu-util field as "-".

If a proxy is forwarding the logging message on behalf of a client (which may be another proxy), the
proxy MUST replace the value of the s-cpu-util field that was specified by the client with the proxy's
current CPU load, in percentage, at the time of forwarding the logging message. If the proxy uses

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf
%5bMS-RTSP%5d.pdf
%5bMS-MSB%5d.pdf

24 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

symmetric multi-processing, the CPU load value MUST be calculated as the average for all
processors.

When a numerical value is specified, the value MUST be an integer in the range from 0 through 100.

The syntax of the s-cpu-util field is defined as follows:

s-cpu-util = "-" | 1*2DIGIT | "100"

Example:

40

2.1.42 s-dns

This field SHOULD specify the DNS name of the proxy if a proxy is forwarding the logging message
on behalf of a client (which may be another proxy). The proxy MUST replace the value of the s-dns

field that was specified by the client with its own DNS name or with "-" if the DNS name cannot be
determined.

When a client creates a logging message, it SHOULD specify the s-dns field as "-" but MAY specify
the DNS name of the server that the clientstreamed the content from.

The syntax of the s-dns field is defined as follows:

s-dns= "-"

 | reg-name ; as defined in [RFC3986].

Example:

wmt.adventure-works.com

2.1.43 s-ip

For Legacy and Streaming Logs, this field MUST specify the IP address of the server that the client
streamed the content from.

For Rendering Logs, the field MUST specify the IP address of the proxy if a proxy is forwarding the
logging message on behalf of a client. The proxy MUST replace the value of the s-ip field that was

specified by the client (which may be another proxy) with the IP address used by the proxy when
forwarding the Rendering Log to the server (which may be another proxy).

When a client creates a rendering log, it SHOULD specify the s-ip field as "-" but can specify the IP
address of the server that the clientstreamed the content from.

The syntax of the s-ip field is defined as follows:

s-ip = "-" | ip_addr

Example:

NETFLIX, INC. EXHIBIT 1002

25 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

155.12.1.234

2.1.44 s-pkts-sent

This field MUST be set to "-".

The syntax of the s-pkts-sent field is defined as follows:

s-pkts-sent= "-"

Example:

-

2.1.45 s-proxied

This field MUST be set to "1" in a logging message that is being forwarded by a proxy. The client
that creates the logging message MUST set the field to "0" and the proxy MUST change the value to
"1" when it forwards the logging message.

The syntax of the s-proxied field is defined as follows:

s-proxied= "0" / "1"

Example:

1

2.1.46 s-session-id

This field MUST be set to "-".

The syntax of the s-session-id field is defined as follows:

s-session-id= "-"

Example:

-

2.1.47 s-totalclients

When a client creates a logging message, it MUST specify the s-totalclients field as "-".

If a proxy is forwarding the logging message on behalf of a client (which may be another proxy),
then the proxy MUST replace the value of the s-totalclients field that was specified by the client
with the total number of clients connected to the proxy server (for all target servers combined).

NETFLIX, INC. EXHIBIT 1002

26 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

When a numerical value is specified, the value MUST be an integer in the range from 0 through
4,294,967,295.

The syntax of the s-totalclients field is defined as follows:

s-totalclients = "-" | 1*10DIGIT

Example:

201

2.1.48 sc-bytes

This field MUST be set to "-".

The syntax of the sc-bytes field is defined as follows:

sc-bytes= "-"

Example:

-

2.1.49 time

This field MUST specify the current time on the client when the log message is created. The time

MUST be specified in UTC.

The syntax of the time field is defined as follows:

time= time-hour ":" time-min ":" time-sec

Example:

15:30:30

2.1.50 transport

This field MUST specify the transport protocol used to receive the ASF data packets.

The syntax of the transport field is defined as follows:

transport= "UDP" | "TCP"

Example:

UDP

NETFLIX, INC. EXHIBIT 1002

27 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.1.51 videocodec

This field SHOULD specify a list of video codecs that are used to decode the video streams accessed

by the client. Each codec MUST be listed only once, regardless of the number of streams decoded by

that codec.

The value for videocodec MUST NOT exceed 256 characters in total length. If the codec name is
not available, then the field MUST be set to "-".

The syntax of the videocodec field is defined as follows:

codec-name= 1*255VCHAR

videocodec= "-" | (codec-name *(";" codec-name))

Example:

Microsoft_MPEG-4_Video_Codec_V2

2.1.52 x-duration

For Legacy and Rendering Log messages, this field MUST specify how much of the content has been
rendered (played) to the end user, specified in seconds. Time spent buffering data MUST NOT be
included in this value.

Playback at non-normal play speed does not affect the amount of content rendered, when expressed
in time units. For example, if the client was rewinding the content, the x-duration value can be
computed as the absolute value of the difference between the starting presentation time and ending
presentation time.

For Streaming Log messages, the x-duration field MUST specify the time it took to receive the
content, in seconds.

Fractional time amounts MUST be rounded to the nearest larger integer value.

The value MUST be an integer in the range from 0 through 4,294,967,295.

The syntax of the x-duration field is defined as follows:

x-duration= 1*10DIGIT

Example:

31

2.2 Logging Message: W3C Syntax

A World Wide Web Consortium (W3C) format logging message consists of the values of various
fields, each value separated from the next by a single space character. Logging messages that

adhere to this syntax are said to use the W3C format because the syntax is conformant with the
syntax for logging entries in the Extended Log File Format (for more information, see [W3C-
EXLOG]), which is defined by W3C.

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90561
http://go.microsoft.com/fwlink/?LinkId=90561

28 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

Section 2.2.1 specifies the W3C format syntax used in most logging messages. Section 2.2.2
specifies the W3C format syntax used in certain Rendering log messages, and section 2.2.3
specifies the W3C format syntax used in Connect-time log messages.

The sections mentioned above define the ordering of the fields in the W3C format syntax but not

how the values of the fields are assigned. The rules governing the values of the individual fields
depend on the logging message in which the W3C format syntax is used. For example, the s-ip field
is used as defined in section 2.1.43 for some logging messages, while other logging messages
provide an alternate definition of the s-ip field.

All W3C format syntax MUST use the UTF-8 character set as specified in [RFC3629]. In any fields
that specify a URL, such as cs-url, the URL MUST be encoded using percent-encoding, as specified in
[RFC3986] section 2.1.

A single dash character (which is represented by U+002D and by "-" in ABNF syntax) MUST be used
to indicate that the value is empty — that is, it is either not available or not applicable.

All spaces embedded within a field value MUST be replaced by an underscore character (which is
represented by U+005F and by "_" in ABNF syntax). For example, "MPEG Layer-3" would be

transformed into "MPEG_Layer-3" in a W3C-format logging message.

Note Transformations defined in this section are not necessarily reversible. Methods for parsing,

analyzing, or extracting information from logging messages are implementation-specific and are
outside the scope of this specification.

2.2.1 Basic Logging Syntax

Most logging messages contain logging information in W3C format, adhering to the syntax specified
below. The logging information consists of either 44 or 47 fields.

log_data44 = c-ip SP date SP time SP c-dns SP cs-uri-stem SP c-starttime SP

 x-duration SP c-rate SP c-status SP c-playerid SP

 c-playerversion SP c-playerlanguage SP cs-User-Agent SP

 cs-Referer SP c-hostexe SP c-hostexever SP c-os SP c-osversion SP

 c-cpu SP filelength SP filesize SP avgbandwidth SP protocol SP

 transport SP audiocodec SP videocodec SP c-channelURL SP sc-bytes SP

 c-bytes SP s-pkts-sent SP c-pkts-received SP c-pkts-lost-client SP

 c-pkts-lost-net SP c-pkts-lost-cont-net SP c-resendreqs SP

 c-pkts-recovered-ECC SP c-pkts-recovered-resent SP c-buffercount SP

 c-totalbuffertime SP c-quality SP s-ip SP s-dns SP

 s-totalclients SP s-cpu-util

 [SP cs-url SP cs-media-name SP cs-media-role]

2.2.2 Extended Logging Syntax

Certain types of "rendering" log messages (section 2.7) contain logging information in the W3C

format defined below. This logging information consists of 52 fields:

log_data52 = c-ip SP date SP time SP c-dns SP cs-uri-stem SP c-starttime SP

 x-duration SP c-rate SP c-status SP c-playerid SP

 c-playerversion SP c-playerlanguage SP cs-User-Agent SP

 cs-Referer SP c-hostexe SP c-hostexever SP c-os SP c-osversion SP

 c-cpu SP filelength SP filesize SP avgbandwidth SP protocol SP

 transport SP audiocodec SP videocodec SP c-channelURL SP sc-bytes SP

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90453

29 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

 c-bytes SP s-pkts-sent SP c-pkts-received SP c-pkts-lost-client SP

 c-pkts-lost-net SP c-pkts-lost-cont-net SP c-resendreqs SP

 c-pkts-recovered-ECC SP c-pkts-recovered-resent SP c-buffercount SP

 c-totalbuffertime SP c-quality SP s-ip SP s-dns SP

 s-totalclients SP s-cpu-util SP cs-user-name SP s-session-id SP

 s-content-path SP cs-url SP cs-media-name SP c-max-bandwidth SP

 cs-media-role SP s-proxied

2.2.3 Connect-Time Logging Syntax

Connect-time log messages (section 2.8) contain logging information in the W3C format defined
below. This logging information consists of eight fields.

log_data8 = c-dns SP c-ip SP c-os SP c-osversion SPdate SP time SP

 c-cpu SP transport

2.3 Logging Messages Sent to Web Servers

Most of the logging messages defined in this specification can be sent to a HTTP Web server. The
URL for the HTTP Web server for which logging messages are submitted can be specified in an
Active Stream Redirector (ASX) file (for more information, see [MSDN-WMMETA]). Some of the
compatible streaming protocols (listed in section 1.4) can also specify the HTTP Web server URL
through mechanisms that are specific to the streaming protocol. The syntax for the logging URL is
defined as follows:

log-URL = Request-URI

The resource that is identified by log-URL MUST be capable of accepting and responding to the HTTP
GET and POST request methods described in this section; however, the methods for doing so are
implementation-specific.

Prior to sending a logging message to a Web server, a client SHOULD send an HTTP GET request to
the specified Web server URL to validate the URL. The logging validation request MUST adhere to

the following ABNF syntax:

web-server-validate = "GET" SP log-URL SP HTTP-Version CRLF

*(VCHAR /CLRF)

The web server's response MUST adhere to the following ABNF syntax:

web-server-validate-response = HTTP-Version "200 OK" CRLF

*(VCHAR / CRLF) "<body><h1>"

("NetShow ISAPI Log Dll" /

("WMS ISAPI Log Dll/"

1*4DIGIT "." 1*4DIGIT "." 1*4DIGIT "." 1*4DIGIT))

*(VCHAR / CRLF) "</h1>" *(VCHAR / CRLF) </body>" *(VCHAR / CRLF)

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=92758

30 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

The client SHOULD send the logging message to the Web server if the server's response adheres to
the syntax for web-server-validate-response, above. If the client sent a request to validate the URL,
and the server's response does not adhere to the syntax for web-server-validate-response, then this
might mean that the URL is invalid. In this case, the client SHOULD NOT send the logging message.

When sending the logging message, the client MUST include the logging message in the body of a
HTTP POST request.

All logging message requests that are sent to a Web server MUST adhere to the following ABNF
syntax:

web-server-request = "POST" SP log-URL SP HTTP-Version CRLF

 *(VCHAR / CRLF)

 web-server-log

The logging message sent in the web-server-request message body MUST adhere to the following
ABNF syntax:

web-server-log = "MX_STATS_LogLine:" SP TAB

 log_data44; defined in section 2.2.1

All HTTP GET and POST requests sent by the client or Web server must be syntactically correct as
per [RFC1945] or [RFC2616]. Any header or content element not explicitly represented in one of the
preceding ABNF syntax examples MUST be ignored by the recipient.

For an example of logging URL validation and the subsequent transmission of a logging message to
a Web server, see section 3.6 .

2.4 Logging Message: XML Schema

Logging messages can be represented in XML. This section defines the schema used by all logging
messages for which an XML representation has been defined with the exception of the Connect-Time
Log. The XML scheme for the Connect-Time Log is defined in section 2.8 .

The XML-format log embeds W3C-format logging information inside the "Summary" XML tag.
Individual logging fields are also represented using their own XML tags.

If the entity that generates the XML-format logging message (that is, the client) has access to a
Content Description, then each name/value pair in the Content Description SHOULD be encoded as

shown by the "contentdescription" syntax element in the ABNF syntax as shown in the code example
below.

The Content Description is a data structure that is provided by Windows Media Services. If no
Content Description is available to the client, then the "contentdescription" syntax element MUST
NOT be included in the XML-format logging message.

If the entity that generates the XML-format logging message (that is, the client) submits additional
or custom logging information, then it SHOULD be encoded as shown by the "client-logging-data"

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90300
http://go.microsoft.com/fwlink/?LinkId=90372

31 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

syntax element in the ABNF syntax below. For an example illustrating submission of custom logging
information, see section 3.2 .

If no additional logging information is available, the "client-logging-data" syntax element MUST NOT
be included in the XML-format logging message.

The XML-format logging syntax is defined using ABNF as shown in the code example below.
Although not explicitly shown by the syntax, linear white space, including CR LF sequences, is
allowed on each side of XML tags.

xml-tag = 1*ALPHA

cd-name = xml-tag

cd-value = xml-tag

cd-name-value-pair = "<" cd-name ">"

cd-value

 "</" cd-name ">"

contentdescription = "<ContentDescription>"

 *cd-name-value-pair

 "</ContentDescription>"

client-logging-data = "<" xml-tag ">"

 *cdl-name-value-pair

 "</" xml-tag ">"

xml-log = "<XML>"

 "<Summary>" summary-log "</Summary>"

 "<c-ip>" "0.0.0.0" "</c-ip>"

 "<date>" date "</date>"

 "<time>" time "</time>"

 "<c-dns>" c-dns "</c-dns>"

 "<cs-uri-stem>" cs-uri-stem "</cs-uri-stem>"

 "<c-starttime>" c-starttime "</c-starttime>"

 "<x-duration> x-duration "</x-duration>"

 "<c-rate>" c-rate "</c-rate>"

 "<c-status>" c-status "</c-status>"

 "<c-playerid>" c-playerid "<c-playerid>"

 "<c-playerversion>" c-playerversion "</c-playerversion>"

 "<c-playerlanguage>" c-playerlanguage "</c-playerlanguage>"

 "<cs-User-Agent>" cs-User-Agent "</cs-User-Agent>"

 "<cs-Referer>" cs-Referer "<cs-Referer>"

 "<c-hostexe>" c-hostexe "</c-hostexe>"

 "<c-hostexever>" c-hostexever "</c-hostexever>"

 "<c-os>" c-os "</c-os>"

 "<c-osversion>" c-osversion "</c-osversion>"

 "<c-cpu>" c-cpu "</c-cpu>"

 "<filelength>" filelength "</filelength>"

 "<filesize>" filesize "</filesize>"

 "<avgbandwidth>" avgbandwidth "</avgbandwidth>"

 "<protocol>" protocol "</protocol>"

 "<transport>" transport "</transport>"

 "<audiocodec>" audiocodec "</audiocodec>"

 "<videocodec>" videocodec "</videocodec>"

 "<c-channelURL>" c-channelURL "</c-channelURL>"

 "<sc-bytes>" sc-bytes "</sc-bytes>"

 "<c-bytes>" c-bytes "</c-bytes>"

 "<s-pkts-sent>" s-pkts-sent "</s-pkts-sent>"

 "<c-pkts-received>" c-pkts-received "</c-pkts-received>"

NETFLIX, INC. EXHIBIT 1002

32 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

 "<c-pkts-lost-client>" c-pkts-lost-client "</c-pkts-lost-client>"

 "<c-pkts-lost-net>" c-pkts-lost-net "</c-pkts-lost-net>"

 "<c-pkts-lost-cont-net>" c-pkts-lost-cont-net "</c-pkts-lost-cont-net>"

 "<c-resendreqs>" c-resendsreqs "</c-resendreqs>"

 "<c-pkts-recovered-ECC>" c-pkts-recovered-ECC "</c-pkts-recovered-ECC>"

 "<c-pkts-recovered-resent>" c-pkts-recovered-resent "</c-pkts-recovered-resent>"

 "<c-buffercount>" c-buffercount "</c-buffercount>"

 "<c-totalbuffertime>" c-totalbuffertime "</c-totalbuffertime>"

 "<c-quality>" c-quality "</c-quality>"

 "<s-ip>" "-" "</s-ip>"

 "<s-dns>" "-" "</s-dns>"

 "<s-totalclients>" "-" "</s-totalclients>"

 "<s-cpu-util>" "-" "</s-cpu-util>"

 "<cs-url>" cs-url "</cs-url>"

 [contentdescription]

 *client-logging-data

"</XML>"

The syntax only defines the ordering of the fields and the XML tag assigned to each field; it does not

define how the values of the fields are assigned. The rules governing the values of the individual
fields depend on the logging message in which the XML-format syntax is used.

The XML-format logging syntax MUST use the UTF-8 character set, as specified in [RFC3629]. In any
fields that specify a URL, such as cs-url, the URL MUST be encoded using percent-encoding, as

specified in [RFC3986] section 2.1.

A single dash character (which is represented by U+002D and by "-" in ABNF syntax) MUST be used
to indicate that the value is empty — that is, it is either not available or not applicable.

All spaces embedded within a field value MUST be replaced by an underscore character (which is
represented by U+005F and by "_" in ABNF syntax). For example, "MPEG Layer-3" would be
transformed into "MPEG_Layer-3" in a W3C-format logging message.

2.5 Legacy Log

The Legacy Log is also called a combination log because it contains both rendering and streaming

information. The Legacy Log can be either in W3C format or XML format. A Legacy Log can be sent
either to Windows Media Services or to a Web server.

2.5.1 Common Definitions

The following ABNF syntax rules applies to all variants of the legacy log:<4>

s-cpu-util = "-"

c-ip = "0.0.0.0"

s-dns = "-"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ audiocodec

▪ avgbandwidth

▪ c-buffercount

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90453

33 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

▪ c-channelURL

▪ c-cpu

▪ c-dns

▪ c-hostexe

▪ c-hostexever

▪ c-os

▪ c-osversion

▪ c-pkts-lost-client

▪ c-pkts-lost-cont-net

▪ c-pkts-lost-net

▪ c-pkts-recovered-ECC

▪ c-pkts-recovered-resent

▪ c-playerid

▪ c-playerlanguage

▪ c-playerversion

▪ c-quality

▪ c-rate

▪ c-resendreqs

▪ c-starttime

▪ c-status

▪ c-totalbuffertime

▪ cs-Referer

▪ cs-media-name

▪ cs-uri-stem

▪ cs-url

▪ cs-User-Agent

▪ date

▪ filelength

▪ filesize

▪ protocol

NETFLIX, INC. EXHIBIT 1002

34 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

▪ cs-media-role

▪ s-pkts-sent

▪ s-totalclients

▪ sc-bytes

▪ time

▪ transport

▪ videocodec

▪ x-duration

The Legacy Log SHOULD include the optional fields cs-url, cs-media-name, and cs-media-
role.<5>

2.5.2 Legacy Log in W3C Format

The ABNF syntax for a Legacy Log in W3C format that is sent to Windows Media Services is defined
as follows:

legacy-log-W3C = log_data44 ; defined in section 2.2.1

s-ip = "-"

2.5.3 Legacy Log in XML Format

The ABNF syntax for a Legacy Log in XML format that is sent to Windows Media Services is defined
as follows:<6>

legacy-log-XML = xml-log ; defined in section 2.4

summary-log = log_data44 ; defined in section 2.2.1

s-ip = "-"

2.5.4 Legacy Log Sent to a Web Server

The ABNF syntax for a Legacy Log that is submitted to a Web server is defined as follows:

legacy-web-server-log = web-server-log ; defined in section 2.3

The value of the s-ip field MUST be assigned as defined in section 2.1.43 .

2.6 Streaming Log

The Streaming Log specifies how the client received streaming data but not how the client rendered
the data. A Streaming Log can be sent either to Windows Media Services or to a Web server.

NETFLIX, INC. EXHIBIT 1002

35 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.6.1 Common Definitions

The following ABNF syntax rules applies to all variants of the Streaming Log:

audiocodec = "-"

c-ip = "0.0.0.0"

s-cpu-util = "-"

s-dns = "-"

videocodec = "-"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ avgbandwidth

▪ c-buffercount

▪ c-channelURL

▪ c-cpu

▪ c-dns

▪ c-hostexe

▪ c-hostexever

▪ c-os

▪ c-osversion

▪ c-pkts-lost-client

▪ c-pkts-lost-cont-net

▪ c-pkts-lost-net

▪ c-pkts-recovered-ECC

▪ c-pkts-recovered-resent

▪ c-playerid

▪ c-playerlanguage

▪ c-playerversion

▪ c-quality

▪ c-rate

▪ c-resendreqs

▪ c-starttime

▪ c-status

▪ c-totalbuffertime

NETFLIX, INC. EXHIBIT 1002

36 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

▪ cs-Referer

▪ cs-media-name

▪ cs-uri-stem

▪ cs-url

▪ cs-User-Agent

▪ date

▪ filelength

▪ filesize

▪ protocol

▪ cs-media-role

▪ s-pkts-sent

▪ s-totalclients

▪ sc-bytes

▪ time

▪ transport

▪ x-duration

The Streaming Log MUST include the optional fields cs-url, cs-media-name, and cs-media-role.

2.6.2 Streaming Log Sent to Windows Media Services

The Streaming Log sent to Windows Media Services is in XML format and MUST adhere to the

following ABNF syntax:<7>

streaming-log = xml-log ; defined in section 2.4

summary-log = log_data44 ; defined in section 2.2.1

s-ip = "-"

2.6.3 Streaming Log Sent to a Web Server

The ABNF syntax for a Streaming Log that is submitted to a Web server is defined as follows:

streaming-web-server-log = web-server-log; defined in section 2.3

The value of the s-ip field MUST be assigned as specified in section 2.1.43 .

NETFLIX, INC. EXHIBIT 1002

37 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.7 Rendering Log

The Rendering Log describes playback of content by a client and is submitted to the upstream origin

server (or a configured proxy) when the client ends playback. A Rendering Log can be sent either to

Windows Media Services or to a Web server.

2.7.1 Common Definitions

The following ABNF syntax rules apply to all variants of the Rendering Log:

avgbandwidth = "-"

c-buffercount = "-"

c-pkts-lost-client = "-"

c-pkts-lost-cont-net = "-"

c-pkts-lost-net = "-"

c-pkts-received = "-"

c-pkts-recovered-ECC = "-"

c-pkts-recovered-resent = "-"

c-quality = "100"

c-resendreqs = "-"

c-totalbuffertime = "-"

protocol = "Cache"

transport = "-"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ audiocodec

▪ c-channelURL

▪ c-cpu

▪ c-hostexe

▪ c-hostexever

▪ c-ip

▪ c-os

▪ c-osversion

▪ c-playerid

▪ c-playerlanguage

▪ c-playerversion

▪ c-rate

▪ c-starttime

▪ c-status

▪ cs-Referer

NETFLIX, INC. EXHIBIT 1002

38 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

▪ cs-media-name

▪ cs-uri-stem

▪ cs-url

▪ cs-User-Agent

▪ date

▪ filelength

▪ filesize

▪ s-cpu-util

▪ s-dns

▪ cs-media-role

▪ s-pkts-sent

▪ s-totalclients

▪ sc-bytes

▪ time

▪ videocodec

▪ x-duration

The Rendering Log MUST include the optional fields cs-url, cs-media-name, and cs-media-role.

2.7.2 Rendering Log Sent to Windows Media Services

The Rendering Log sent to Windows Media Services is in XML format and MUST adhere to the

following ABNF syntax:

rendering-log = xml-log ; defined in section 2.4

summary-log = log_data52 ; defined in section 2.2.2

The values of the following fields MUST be assigned as defined in section 2.1 : c-max-bandwidth,
cs-user-name, s-content-path, s-ip, s-proxied, and s-session-id.

2.7.3 Rendering Log Sent to a Web Server

The ABNF syntax for a Rendering Log that is submitted to a Web server is defined as follows:

rendering-web-server-log = web-server-log; defined in section 2.3

The value of the c-ip field MUST be assigned as defined in section 2.1.8 . The value of the s-ip
field MUST be assigned as defined in section 2.1.43 .

NETFLIX, INC. EXHIBIT 1002

39 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

2.8 Connect-Time Log

The purpose of the Connect-Time Log is to specify some minimal amount of logging information

about the client. It can be useful in cases where a client starts to stream some content but is

disconnected from the network before it has the opportunity to create a Streaming Log.

If a client sends a Connect-Time Log to the server at the start of the streaming session, the
Connect-Time Log ensures that the server has received at least this minimal logging information in
the case where the client subsequently is disconnected from the network.

Connect-Time Logs are not defined for Web servers. Connect-Time Logs are only defined in XML
format, and the ABNF syntax is as follows:

connect-time-log = "<XML>"

 "<Summary>"

 log_data8 ; defined in section 2.2.3

 "</Summary>"

 "<c-dns>" c-dns "</c-dns>"

 "<c-ip>" c-ip "</c-ip>"

 "<c-os>" c-os "</c-os>"

 "<c-osversion>" c-osversion "</c-osversion>"

 "<date>" date "</date>"

 "<time>" time "</time>"

 "<c-cpu>" c-cpu "</c-cpu>"

 "<transport>" transport "</transport>"

"</XML>"

c-ip = "0.0.0.0"

The values of the following fields MUST be assigned as defined in section 2.1 :

▪ c-dns

▪ c-os

▪ c-osversion

▪ date

▪ time

▪ c-cpu

▪ transport

NETFLIX, INC. EXHIBIT 1002

%5bMS-WMSP%5d.pdf

40 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

3 Structure Examples

3.1 Legacy Logging Message

 The following is an example of a legacy logging message in W3C format:

0.0.0.0 2003-09-27 00:27:24 - http://10.194.20.175/mcast1200K 0 42 1

200 {3300AD50-2C39-46c0-AE0A-B4C904C7848E} 9.0.0.2980 en-US

WMFSDK/9.0.0.2980_WMPlayer/9.0.0.3008 - wmplayer.exe 9.0.0.2980

Windows_XP 5.1.0.2600 Pentium 1801 268885194 1255347 http TCP

Windows_Media_Audio_9 Windows_Media_Video_9 - - 6321233 - 4496 0 0 0 0

0 0 1 0 100 - - - -

The following is an example of a legacy logging message in XML format:

<XML>

<Summary>0.0.0.0 2003-09-27 00:27:24 - http://10.194.20.175/mcast1200K 0 42 1 200

{3300AD50-2C39-46c0-AE0A-B4C904C7848E} 9.0.0.2980

en-US WMFSDK/9.0.0.2980_WMPlayer/9.0.0.3008 - wmplayer.exe 9.0.0.2980

Windows_XP 5.1.0.2600 Pentium 1801 268885194 1255347

http TCP Windows_Media_Audio_9 Windows_Media_Video_9

- - 6321233 - 4496 0 0 0 0 0 0 1 0 100 - - - -

http://10.194.20.175/mcast1200K?WMBitrate=6000000 30MinTV_1200k_1s_1s_0Q.wmv -

</Summary>

<c-ip>0.0.0.0</c-ip>

<date>2003-09-27</date>

<time>00:27:24</time>

<c-dns>-</c-dns>

<cs-uri-stem>http://10.194.20.175/mcast1200K</cs-uri-stem>

<c-starttime>0</c-starttime>

<x-duration>42</x-duration>

<c-rate>1</c-rate>

<c-status>200</c-status>

<c-playerid>{3300AD50-2C39-46c0-AE0A-B4C904C7848E}</c-playerid>

<c-playerversion>9.0.0.2980</c-playerversion>

<c-playerlanguage>en-US</c-playerlanguage>

<cs-User-Agent>WMFSDK/9.0.0.2980_WMPlayer/9.0.0.3008</cs-User-Agent>

<cs-Referer>-</cs-Referer>

<c-hostexe>wmplayer.exe</c-hostexe>

<c-hostexever>9.0.0.2980</c-hostexever>

<c-os>Windows_XP</c-os>

<c-osversion>5.1.0.2600</c-osversion>

<c-cpu>Pentium</c-cpu>

<filelength>1801</filelength>

<filesize>268885194</filesize>

<avgbandwidth>1255347</avgbandwidth>

<protocol>http</protocol>

<transport>TCP</transport>

<audiocodec>Windows_Media_Audio_9</audiocodec>

<videocodec>Windows_Media_Video_9</videocodec>

<c-channelURL>-</c-channelURL>

<sc-bytes>-</sc-bytes>

<c-bytes>6321233</c-bytes>

<s-pkts-sent>-</s-pkts-sent>

<c-pkts-received>4496</c-pkts-received>

NETFLIX, INC. EXHIBIT 1002

41 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

<c-pkts-lost-client>0</c-pkts-lost-client>

<c-pkts-lost-net>0</c-pkts-lost-net>

<c-pkts-lost-cont-net>0</c-pkts-lost-cont-net>

<c-resendreqs>0</c-resendreqs>

<c-pkts-recovered-ECC>0</c-pkts-recovered-ECC>

<c-pkts-recovered-resent>0</c-pkts-recovered-resent>

<c-buffercount>1</c-buffercount>

<c-totalbuffertime>0</c-totalbuffertime>

<c-quality>100</c-quality>

<s-ip>-</s-ip>

<s-dns>-</s-dns>

<s-totalclients>-</s-totalclients>

<s-cpu-util>-</s-cpu-util>

<cs-url>http://10.194.20.175/mcast1200K?WMBitrate=6000000</cs-url>

<ContentDescription>

<WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_URL>30MinTV_1200k_1s_1s_0Q.wmv</WMS_CONTENT_DESCR

IPTION_PLAYLIST_ENTRY_URL>

<WMS_CONTENT_DESCRIPTION_COPIED_METADATA_FROM_PLAYLIST_FILE>1</WMS_CONTENT_DESCRIPTION_CO

PIED_METADATA_FROM_PLAYLIST_FILE>

<WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_DURATION>1800501</WMS_CONTENT_DESCRIPTION_PLAYLIS

T_ENTRY_DURATION>

<WMS_CONTENT_DESCRIPTION_PLAYLIST_ENTRY_START_OFFSET>1450</WMS_CONTENT_DESCRIPTION_PLAYLI

ST_ENTRY_START_OFFSET>

<WMS_CONTENT_DESCRIPTION_SERVER_BRANDING_INFO>WMServer/9.0</WMS_CONTENT_DESCRIPTION_SERVE

R_BRANDING_INFO>

</ContentDescription>

</XML>

The following is an example of how a legacy log may appear as sent to a Web server:

MX_STATS_LogLine: 0.0.0.0 2000-06-14 01:18:58 -

mmsu://foo.microsoft.com/testfile.wma 30 1 1 200 {35301A88-93D3-4F3A-

A284-30F7A611CD23} 7.0.0.1938 en-US - - wmplayer.exe 7.0.0.1938

Windows_2000 5.0.0.2195 Pentium 225 4551684 1528 mms UDP - - - - 29868

- 4 0 0 0 0 0 0 0 0 100 172.29.237.102 - - -

3.2 Defining Custom Namespaces in an XML Log

An Active Stream Redirector (.asx) file (for more information, see [MSDN-WMMETA]) can be used to
append log data to the XML log structure. Vendors may define any number of custom namespaces

and name-value pairs in the "client-logging-data" structure, as specified in section 2.4 , following
the Content Description structure.

The following example illustrates how to add the cs-media-role field (section 2.1.30) by using an
.asx file:

<ASX version="3.0">

 <ENTRY>

 <TITLE> My Title </TITLE>

 <Author> My Author </Author>

 <PARAM name="log:cs-media-role" value="Advertisement" />

 <REF href="http://www.foo.MyDomain.com/live" />

 </ENTRY>

</ASX>

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=92758

42 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

The additional and/or custom logging information is specified through the use of the PARAM
element. To use the PARAM element in this way, the NAME attribute is set to "log:" followed by a log
field name and a corresponding VALUE attribute. The log field specified in the NAME attribute is set
to the value of the VALUE attribute. If the log does not already contain a field with the specified
name, it will be added.

An XML namespace has to be defined for each custom log field specified in an .asx file. This

namespace is appended to the NAME attribute and is separated from the field name by a second
colon (":"). Because everything after the second colon is treated as a namespace, the field name
should not contain a colon.

The following example illustrates the specification of custom log fields using an .asx file:

<ASX version="3.0">

 <ENTRY>

 <TITLE> My Title </TITLE>

 <Author> My Author </Author>

 <PARAM name="log:vendor-field1:VendorNameSpace" value="Value1" />

 <PARAM name="log:vendor-field2:VendorNameSpace" value="Value2" />

 <REF href="http://www.foo.MyDomain.com/live" />

 </ENTRY>

</ASX>

When an XML log is sent to a server for this .asx file, the new namespace is inserted after the
Content Description section, as shown in the following example (many log fields extraneous to this
example have been omitted for brevity and clarity):

<XML>

 <Summary>0.0.0.0 2003-09-27 00:27:24 ... </Summary>

 <c-ip>0.0.0.0</c-ip>

 <date>2003-09-27</date>

 <time>00:27:24</time>

 ...

 <ContentDescription>

 ...

 </ContentDescription>

 <VendorNameSpace>

 <vendor-field1>Value1</vendor-field1>

 <vendor-field2>Value2</vendor-field2>

 </VendorNameSpace>

</XML>

3.3 Example Streaming Log Messages

The following is an example of a Streaming Log in XML format:

NETFLIX, INC. EXHIBIT 1002

43 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

<XML>

<Summary>0.0.0.0 2006-05-01 21:34:01 -

http://foo.microsoft.com/content.wmv 4 0 1 200 {3300AD50-2C39-46c0-

AE0A-3E0B6EFB86DC} 10.0.0.3802 en-US

Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)_(WMFSDK/10.0.0.3802)

_WMPlayer/10.0.0.4019 http://bar.microsoft.com iexplore.exe

6.0.2900.2180 Windows_XP 5.1.0.2600 Pentium 130 638066 - http TCP - - -

-0 - 0 0 0 0 0 0 0 0 0 100 - - - -

http://foo.microsoft.com/content.wmv - -</Summary>

<c-ip>0.0.0.0</c-ip>

<date>2006-05-01</date>

<time>21:34:01</time>

<c-dns>-</c-dns>

<cs-uri-stem>http://foo.microsoft.com/content.wmv</cs-uri-stem>

<c-starttime>4</c-starttime>

<x-duration>0</x-duration>

<c-rate>1</c-rate>

<c-status>200</c-status>

<c-playerid>{3300AD50-2C39-46c0-AE0A-3E0B6EFB86DC}</c-playerid>

<c-playerversion>10.0.0.3802</c-playerversion>

<c-playerlanguage>en-US</c-playerlanguage>

<cs-User-

Agent>Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)_(WMFSDK/10.0.0.3802)_WMPlayer/10

.0.0.4019</cs-User-Agent>

<cs-Referer>http://bar.microsoft.com</cs-Referer>

<c-hostexe>iexplore.exe</c-hostexe>

<c-hostexever>6.0.2900.2180</c-hostexever>

<c-os>Windows_XP</c-os>

<c-osversion>5.1.0.2600</c-osversion>

<c-cpu>Pentium</c-cpu>

<filelength>130</filelength>

<filesize>638066</filesize>

<avgbandwidth>-</avgbandwidth>

<protocol>http</protocol>

<transport>TCP</transport>

<audiocodec>-</audiocodec>

<videocodec>-</videocodec>

<c-channelURL>-</c-channelURL>

<sc-bytes>-</sc-bytes>

<c-bytes>0</c-bytes>

<s-pkts-sent>-</s-pkts-sent>

<c-pkts-received>0</c-pkts-received>

<c-pkts-lost-client>0</c-pkts-lost-client>

<c-pkts-lost-net>0</c-pkts-lost-net>

<c-pkts-lost-cont-net>0</c-pkts-lost-cont-net>

<c-resendreqs>0</c-resendreqs>

<c-pkts-recovered-ECC>0</c-pkts-recovered-ECC>

<c-pkts-recovered-resent>0</c-pkts-recovered-resent>

<c-buffercount>0</c-buffercount>

<c-totalbuffertime>0</c-totalbuffertime>

<c-quality>100</c-quality>

<s-ip>-</s-ip>

<s-dns>-</s-dns>

<s-totalclients>-</s-totalclients>

<s-cpu-util>-</s-cpu-util>

<cs-url>http://foo.microsoft.com/content.wmv</cs-url>

<cs-media-name>-</cs-media-name>

<cs-media-role>-</cs-media-role>

NETFLIX, INC. EXHIBIT 1002

44 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

</XML>

The following is an example of how a Streaming Log may appear as sent to a Web server:

MX_STATS_LogLine: 0.0.0.0 2000-06-14 01:18:58 -

mmsu://foo.microsoft.com/testfile.wma 30 1 1 200 {35301A88-93D3-4F3A-

A284-30F7A611CD23} 7.0.0.1938 en-US - - wmplayer.exe 7.0.0.1938

Windows_2000 5.0.0.2195 Pentium 225 4551684 1528 mms UDP - - - - 29868

- 4 0 0 0 0 0 0 0 0 100 172.29.237.102 - - -

mmsu://foo.microsoft.com/testfile.wma - -

3.4 Example Rendering Log Messages

The following is an example of a Rendering Log in XML format:

<XML>

<Summary>0.0.0.0 2006-05-01 21:34:01 -

http://foo.microsoft.com/content.wmv 4 0 1 200 {3300AD50-2C39-46c0-

AE0A-3E0B6EFB86DC} 10.0.0.3802 en-US

Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)_(WMFSDK/10.0.0.3802)

_WMPlayer/10.0.0.4019 http://bar.microsoft.com iexplore.exe

6.0.2900.2180 Windows_XP 5.1.0.2600 Pentium 130 638066 - Cache -

Windows_Media_Audio_9 Windows_Media_Video_9 - - 0 - - - - - - - - - -

100 - - - - - - - http://foo.microsoft.com/content.wmv - - - 0

</Summary>

<c-ip>0.0.0.0</c-ip>

<date>2006-05-01</date>

<time>21:34:01</time>

<c-dns>-</c-dns>

<cs-uri-stem>http://foo.microsoft.com/content.wmv</cs-uri-stem>

<c-starttime>4</c-starttime>

<x-duration>0</x-duration>

<c-rate>1</c-rate>

<c-status>200</c-status>

<c-playerid>{3300AD50-2C39-46c0-AE0A-3E0B6EFB86DC}</c-playerid>

<c-playerversion>10.0.0.3802</c-playerversion>

<c-playerlanguage>en-US</c-playerlanguage>

<cs-User-Agent>Mozilla/4.0_(compatible;_MSIE_6.0;_Windows_NT_5.1)

_(WMFSDK/10.0.0.3802)_WMPlayer/10.0.0.4019</cs-User-Agent>

<cs-Referer>http://bar.microsoft.com</cs-Referer>

<c-hostexe>iexplore.exe</c-hostexe>

<c-hostexever>6.0.2900.2180</c-hostexever>

<c-os>Windows_XP</c-os>

<c-osversion>5.1.0.2600</c-osversion>

<c-cpu>Pentium</c-cpu>

<filelength>130</filelength>

<filesize>638066</filesize>

<avgbandwidth>-</avgbandwidth>

<protocol>Cache</protocol>

<transport>-</transport>

<audiocodec>Windows_Media_Audio_9</audiocodec>

<videocodec>Windows_Media_Video_9</videocodec>

NETFLIX, INC. EXHIBIT 1002

45 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

<c-channelURL>-</c-channelURL>

<sc-bytes>-</sc-bytes>

<c-bytes>0</c-bytes>

<s-pkts-sent>-</s-pkts-sent>

<c-pkts-received>-</c-pkts-received>

<c-pkts-lost-client>-</c-pkts-lost-client>

<c-pkts-lost-net>-</c-pkts-lost-net>

<c-pkts-lost-cont-net>-</c-pkts-lost-cont-net>

<c-resendreqs>-</c-resendreqs>

<c-pkts-recovered-ECC>-</c-pkts-recovered-ECC>

<c-pkts-recovered-resent>-</c-pkts-recovered-resent>

<c-buffercount>-</c-buffercount>

<c-totalbuffertime>-</c-totalbuffertime>

<c-quality>100</c-quality>

<s-ip>-</s-ip>

<s-dns>-</s-dns>

<s-totalclients>-</s-totalclients>

<s-cpu-util>-</s-cpu-util>

<cs-url>http://foo.microsoft.com/content.wmv</cs-url>

<cs-media-name>-</cs-media-name>

<cs-media-role>-</cs-media-role>

</XML>

The following is an example of how a Rendering Log may appear as sent to a Web server:

MX_STATS_LogLine: 0.0.0.0 2000-06-14 01:18:58 -

mms://foo.microsoft.com/test.wma 30 1 1 200 {35301A88-93D3-4F3A-A284-

30F7A611CD23} 7.0.0.1938 en-US - - wmplayer.exe 7.0.0.1938 Windows_2000

5.0.0.2195 Pentium 225 4551684 1528 Cache - - - - - 29868 - - - - - - -

- - - 100 - - - - mms://foo.microsoft.com/test.wma - -

3.5 Example Connect-Time Log Message

The following is an example of a Connect-Time Log message in XML format:

<XML>

<Summary>- 0.0.0.0 Windows 6.0.0.6000 2006-08-30 13:18:44 Pentium

TCP</Summary>

<c-dns>-</c-dns>

<c-ip>0.0.0.0</c-ip>

<c-os>Windows</c-os>

<c-osversion>6.0.0.6000</c-osversion>

<date>2006-08-30</date>

<time>13:18:44</time>

<c-cpu>Pentium</c-cpu>

<transport>TCP</transport>

</XML>

NETFLIX, INC. EXHIBIT 1002

46 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

3.6 Example Log Sent to a Web Server

 The following is an example of a client validating a logging URL and subsequently transmitting a

logging message to the Web server:

GET /scripts/wmsiislog.dll HTTP/1.1

User-Agent: NSPlayer

Host: WebServer:8080

Connection: Keep-Alive

Cache-Control: no-cache

HTTP/1.1 200 OK

Connection: close

Date: Wed, 27 Jun 2007 02:54:23 GMT

Server: Microsoft-IIS/6.0

Content-Type: text/html

<head><title>WMS ISAPI Log Dll/9.00.00.3372</title></head>

<body><h1>WMS ISAPI Log Dll/9.00.00.3372</h1></body>

POST /scripts/wmsiislog.dll HTTP/1.1

Content-Type: text/plain;charset=UTF-8

User-Agent: NSPlayer

Host: WebServer:8080

Content-Length: 424

Connection: Keep-Alive

Cache-Control: no-cache

MX_STATS_LogLine: .0.0.0.0 2007-06-27 02:52:39 - asfm://239.192.50.29:30864 0 39 1 200

{3300AD50-2C39-46c0-AE0A-0572F2EA5330} 10.0.0.4054 en-US

WMFSDK/10.0.0.4054_WMPlayer/10.0.0.4036 - wmplayer.exe 10.0.0.3802 Windows_XP 5.1.0.2600

Pentium 229 10413011 411536 asfm UDP Windows_Media_Audio_9.2 -

http://WebServer:8080/multicast.nsc - 2170350 - 182 0 0 0 0 0 0 1 3 100 239.192.50.29 - -

- http://WebServer:8080/multicast.nsc - -

HTTP/1.1 200 OK

Server: Microsoft-IIS/6.0

Date: Wed, 27 Jun 2007 02:54:23 GMT

Connection: close

3.7 Parsing Windows Media Log Files

Microsoft Log Parser 2.2 is a tool that queries text-based data and other system data sources,
including Windows Media log files. For more information, see [MSFT-LOGPARSER].

NETFLIX, INC. EXHIBIT 1002

http://go.microsoft.com/fwlink/?LinkId=90195

47 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

4 Security Considerations

A server that receives a logging message SHOULD validate the syntax of the fields. For example, the
server should check that logging fields that are supposed to contain numerical data really do so, and
that no invalid characters, such as control characters, are present. Invalid fields or characters could
cause any tools that process the logging information to malfunction.

NETFLIX, INC. EXHIBIT 1002

48 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

5 Appendix A: Windows Behavior

The information in this specification is applicable to the following versions of Windows:

▪ Windows NT

▪ Windows 2000

▪ Windows XP

▪ Windows Server 2003

▪ Windows Vista

▪ Windows Server 2008

Exceptions, if any, are noted below. Unless otherwise specified, any statement of optional behavior
in this specification prescribed using the terms SHOULD or SHOULD NOT implies Windows behavior
in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term

MAY implies that Windows does not follow the prescription.

<1> Section 2.1.5: Windows Media Player 6.4 specifies the DNS name in the c-dns field.

<2> Section 2.1.10: On Windows Vista, c-os is set to "Windows".

<3> Section 2.1.25.2: Windows Media Player 6.4, Windows Media Format 7.0 SDK, Windows Media

Format 7.1 SDK, and Windows Media Player for Windows XP never specify status code 210.

<4> Section 2.5.1: Windows Media Player 6.4 specifies its own IP address in the c-ip field.
Windows Media Format 7.0 SDK, Windows Media Format 7.1 SDK, and Windows Media Player for
Windows XP specify their own IP address in the c-ip field depending on the current setting of a
configuration value in the user interface.

<5> Section 2.5.1: Windows Media Player 6.4, Windows Media Format 7.0 SDK, Windows Media

Format 7.1 SDK, and Windows Media Player for Windows XP never include the three optional fields.

<6> Section 2.5.3: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, and
Windows Vista do not include the "contentdescription" and "client-logging-data" syntax elements in
the XML-format logging message when using RTSP [MS-RTSP].

<7> Section 2.6.2: Windows Media Format 9 Series SDK, Windows Media Format 9.5 SDK, and
Windows Vista do not include the "contentdescription" and "client-logging-data" syntax elements in
the XML-format logging message when using RTSP [MS-RTSP].

NETFLIX, INC. EXHIBIT 1002

%5bMS-RTSP%5d.pdf
%5bMS-RTSP%5d.pdf

49 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

6 Index

A

Applicability
audiocodec
avgbandwidth

B

Basic logging syntax

C

c-buffercount
c-bytes
c-channelURL

c-cpu
c-dns
c-hostexe
c-hostexever
c-ip (section 2.1.8, section 2.1.9)
Connect-time log
Connect-time logging syntax
c-os
c-osversion
c-pkts-lost-client
c-pkts-lost-cont-net
c-pkts-lost-net
c-pkts-received
c-pkts-recovered-ECC
c-pkts-recovered-resent
c-playerid
c-playerlanguage
c-playerversion
c-quality
c-rate
c-resendreqs
cs-media-name
cs-media-role
cs-Referer
c-starttime
c-status
cs-uri-stem
cs-url
cs-User-Agent
cs-user-name
c-totalbuffertime

D

date

E

Examples
legacy logging message example
overview
parsing Windows Media log files example

Extended logging syntax

F

Fields - vendor-extensible
filelength
filesize

G

Glossary

I

Informative references
Introduction

L

Legacy log
common definitions
overview
sent to Web server
W3C format
XML format

Legacy logging message example
Localization
Log data fields
Logging message - W3C syntax
Logging message - WXML schema
Logging message sent to Web servers

N

Normative references

P

Parsing Windows Media log files example
protocol

R

References
informative
normative
overview

Relationship to other protocols
Rendering log

common definitions
overview
sent to Web server
sent to Windows Media Services

S

sc-bytes
s-content-path
s-cpu-util

NETFLIX, INC. EXHIBIT 1002

50 / 50

[MS-WMLOG] – v20080723
Windows Media Log Data Structure

Copyright © 2008 Microsoft Corporation.

Release: Wednesday, July 23, 2008

s-dns
Security
s-ip
s-pkts-sent
s-proxied
s-session-id
Status Code 200 (No Error)
Status Code 210 (Client Successfully Reconnected)
s-totalclients
Streaming log

common definitions
overview
sent to Web server
sent to Windows Media Services

Structures
connect-time log
legacy log
log data fields
logging message - W3C syntax
logging message - XML schema
logging message sent to Web servers
overview
rendering log

streaming log

T

time
transport

V

Vendor-extensible fields
Versioning
videocodec

W

Windows behavior

X

x-duration

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-7

NETFLIX, INC. EXHIBIT 1002

United States Patent

US0070892.59B1

(12) (10) Patent No.: US 7,089,259 B1
KOuZnetsov et al. (45) Date of Patent: Aug. 8, 2006

(54) SYSTEM AND METHOD FOR PROVIDING A 5,978,912 A * 11/1999 Rakavy et al. 713/2
FRAMEWORK FOR NETWORKAPPLIANCE 6,123,737 A * 9/2000 Sadowsky 717, 173

6.256,668 B1* 7/2001 Slivka et al. 709.220 MANAGEMENT IN A DISTRIBUTED
COMPUTING ENVIRONMENT 6,345,294 B1* 2/2002 O'Toole et al. 709,222

6,658,585 B1 12/2003 Levi 714.f4
ck

(75) Inventors: Victor Kouznetsov, Aloha, OR (US); 86. R ck $39. Toole et al. 709,222 - - - enner et al. 713, 182

Michael Chin-Hwan Pak, Portland, 2002/0184619 A1* 12/2002 Meyerson 717, 173
OR (US); Daniel J. Melchione, 2003/0028624 A1 2/2003 Hasan et al. 709.220
Beaverton, OR (US); Ian Shaughnessy, 2006/0031454 A1* 2/2006 Ewing et al. 709,223
Portland, OR (US)

OTHER PUBLICATIONS

(73) Assignee: McAfee, Inc., Santa Clara, CA (US) “Understanding UPnP (TM): A Whitepaper” Jun. 2000,
- r - 0 UPnP (TM) Forum, 39 pages, available online at <http://

(*) Notice: Sibility itself. www.upnp.org/resources/whitepapers.aspx.
p S.C. 154(b) by 362 d “Plug-In Guide Jan. 1998, Netscape Communications

M YW- (b) by ayS. (TM), TOC has 4 pages, Chapter 1 has 14 pages, Reference
has 19 pages, available online at <http://developer.netscape.

(21) Appl. No.: 10/056,702 com/docs/manuals/communicator/plugin/index.htm>.

(22) Filed: Jan. 25, 2002 * cited by examiner
(Under 37 CFR 1.47)

Primary Examiner Thuy N. Pardo
Related U.S. Application Data (74) Attorney, Agent, or Firm—Zilka-Kotab, PC;

Christopher J. H
(60) Provisional application No. 60/309,835, filed on Aug. Stopner amaty

e gynal application No. 60/309,858, filed (57) ABSTRACT

(51) Int. Cl. A system and method for providing a framework for net
G06F 7/30 (2006.01) work appliance management in a distributed computing

enV1rOnment 1S d1SCIOSed. Status rebOrt period1Ca (52) U.S. Cl. 707/102; 707/101: 707/103 X; i is disclosed. A port periodically
707/1041: 709/220 709/222: 709/223 received from each of a plurality of network appliances is

(58) Field of Classification se arch s 709f22O recorded. Each status report contains health and status
700,222.223.7773,707/101.102.103 X. information and application-specific data for each network

s 1-1-- s 707/041.71474.713/182 appliance. Configuration settings for each network appliance
See application file for complete search history progressively assembled concurrent to providing installable

components are maintained. A catalog listing currently
(56) References Cited installable components for each network appliance based on

U.S. PATENT DOCUMENTS
the configuration settings is dynamically provided.

catalog server
- Y -

Send UD \ 167

- Y -

Receive catalog from catalog server -r-168

Close secure session Y 159

5.974.454. A * 10/1999 Apfel et al. TO9,221 47 Claims, 14 Drawing Sheets

160 Metwork
Appliance

ser

- Y -

Wake upperiodically /Y18

Execute init plug-ins YS&

y

Establish secure session with NOC /Y 163

Send status report to NOC WY 184

Close secure session r 85

Establish secure session with /Y 66

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1 Sheet 1 of 14 Aug. 8, 2006 U.S. Patent

quæuoduuOO

* 1 aun61-)

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1 Sheet 2 of 14 Aug. 8, 2006 U.S. Patent

! 19 2|| (=)

98

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 4 of 14 US 7,089,259 B1

Figure 4.

11 a Appliance

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet S of 14 US 7,089,259 B1

Figure 5.

8O Package (81)

82 Digital Signature

instal.exe

Files to be
installed

83

84

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 6 of 14 US 7,089,259 B1

Figure 6.

101 Initialize and start NOC

Initialize and start m

Catalog Server

Initialize and start
Component server (S)

Initialize and Start each
network appliance

102

103

O4

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 7 of 14 US 7,089,259 B1

Figure 7.

NOC

111 While TRUE, Do

Establish Secure Session
112 with appliance

113 Receive status report
from appliance

114 Close Secure Session

115 End While

End

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 8 of 14 US 7,089,259 B1

Figure 8.

Catalog Server

121 While TRUE, Do

Establish Secure Session
122 with appliance

123 Receive UID

125

No

6S Y

Archive appliance connection 126
time

127 Send Catalog to appliance

128 Close Secure Session

129 End While

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 9 of 14 US 7,089,259 B1

Figure 9.

Component
Server

141 While TRUE DO

Establish Secure session 142 with appliance

143 Receive request with UID
145

N

Yes

146 Send requested component

Flag database that
component sent to appliance

149 End While

147

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 10 of 14 US 7,089,259 B1

Figure 10A.

160 NetWork
Appliance
Daemon

Wake up periodically 161

Execute init plug-ins 162

Establish Secure Session With NOC 163

Send status report to NOC 164

Close Secure session 165

Establish Secure Session with
Catalog Server 166

Send UD 167

Receive Catalog from catalog server 168

Close Secure Session 169

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 11 of 14 US 7,089,259 B1

(A) GB) Figure 10B.

Examine Catalog 170

Component(s)
Required? 171

Yes

For each Package, do

| Download package

| Download to
End do

Execute post plug-ins 178

NETFLIX, INC. EXHIBIT 1002

U.S. Patent

Figure 11.

Aug. 8, 2006

18O

181

182

183

184

185

186

Sheet 12 of 14 US 7,089,259 B1

DOWnload
Package

Establish non-secure Session
with component server

Send URL, including UID and
package name and version,

to component server

Receive requested package

Close non-Secure Session

Verify that package signed
with authorized key

Install package

Return

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 13 of 14 US 7,089,259 B1

Figure 12.

DOWnload
File

Establish Secure Session with
component server

Send URL, including UD and
file name and version
component server

Receive requested file

Close Secure Session

191

192

193

194

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 14 of 14 US 7,089,259 B1

Figure 13.

Daemon
PrOCeSS

Wake up periodically

For each appliance,
DO

Check if status report
received since last cycle

Yes

Next appliance

Close Secure session

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
1.

SYSTEMAND METHOD FOR PROVIDING A
FRAMEWORK FOR NETWORKAPPLIANCE

MANAGEMENT IN A DISTRIBUTED
COMPUTING ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a conversion of U.S. provisional
patent applications, Ser. No. 60/309,835, filed Aug. 3, 2001,
pending; and Ser. No. 60/309,858, filed Aug. 3, 2001,
pending; the priority dates of which are claimed and the
disclosures of which are incorporated by reference.

FIELD OF THE INVENTION

The present invention relates in general to secure network
appliance management and, in particular, to a system and
method for providing a framework for network appliance
management in a distributed computing environment.

BACKGROUND OF THE INVENTION

Enterprise computing environments generally include
both localized intranetworks of interconnected computer
systems and resources internal to an organization and geo
graphically distributed internetworks, including the Internet.
Intranetworks make legacy databases and information
resources available for controlled access and data exchange.
Internetworks enable internal users to access remote data
repositories and computational resources and allow outside
users to access select internal resources for completing
limited transactions or data transfer.

Increasingly, network appliances, or simply "appliances.”
are being deployed within intranetworks to compliment and
extend the types of services offered. As a class, network
appliances have closed architectures and often lack a stan
dard user interface. These devices provide specialized ser
vices, such as electronic mail (email) anti-virus scanning,
content filtering, file, Web and print service, and packet
routing functions.

Ideally, network appliances should be minimal mainte
nance devices, which are purchased, plugged into a network,
and put into use with no further modification or change.
Analogous to a cellular telephone, a network appliance
should ideally provide the service promised without requir
ing active management by individual users or administra
tOrS.

Nevertheless, regular maintenance of networks appliance
is necessary to ensure continued optimal performance. Oper
ating system and application programs must be installed
upon appliance installation and following any type of crash
or abnormal service termination. As well, each appliance
must be configured, preferably automatically, to comply
with applicable security and administration policies. More
over, as bug fixes and enhancements become available,
installed programs must be updated with patches, which
must first be obtained from the appropriate sources and then
installed on each individual device.
One common problem in maintaining network appliances

is the increased workload imposed on individual servers to
Support appliance maintenance. The health and status of
each appliance must be regularly monitored by a server to
ensure proper performance and function. Accordingly, indi
vidual server loads increase with the addition of each new
appliance. The tracking and management of configurations
of individual appliances can become resource intensive,

10

15

25

30

35

40

45

50

55

60

65

2
particularly in a large scale network environment containing
numerous network appliances.

In the prior art, “push” solutions have been used to
manage individual network appliances, whereby changes in
configurations and programs are sent to individual appli
ances from a centralized server as necessary. The server
stores each appliance configuration and lists names and
versions of programs installed. Periodically, the server polls
the pool of appliances to ascertain status and health and
pushes new updates out to individual appliances as neces
sary. However, push solutions are resource intensive and can
exact a high performance load on each server. Moreover,
servers can fail to detect misconfigurations of appliances
erroneously tracked with incorrect configurations.

Therefore, there is a need for an approach to providing
autonomous network appliance configuration and manage
ment without requiring an active centralized server. Prefer
ably, such an approach would utilize “pull downloads of
needed updates and would further lodge configuration and
management responsibilities on individual appliances.

There is a further need for an approach to maintaining the
health and status of individual appliances through periodic
client-centric reporting. Preferably, such an approach would
use a secure “heartbeat' automatically generated by indi
vidual appliances to report configuration and status infor
mation. As well, each responsible server would preferably
generate an alert whenever a heartbeat report was not timely
received.

There is a further need for an approach to providing
distributed staging of program updates for network appli
ances. Preferably, such an approach would provide central
ized component download management with the capability
to instruct requesting appliances to redirect and download
Software updates from proxy component servers.

SUMMARY OF THE INVENTION

The present invention provides a system and method for
autonomously managing the configuration of network appli
ances deployed in a distributed network environment. Each
network appliance executes an installed set of packages and
files. Periodically, the appliance awakens to send a report to
a network operations center to describe the current health
and status of the appliance and provide application-specific
data. The network appliance then obtains a catalog of
up-to-date packages and files dynamically generated by a
catalog server for that appliance. As necessary, the appliance
requests and installs any updated packages and files from a
component server. Each package includes self-installing
instructions and is authenticated and decrypted prior to
installation. Each file is received over a secure connection
and is installed per instructions stored in a file information
Subdirectory at the networks operations center.
An embodiment of the present invention provides a

system and a method for providing a framework for network
appliance management in a distributed computing environ
ment. A status report periodically received from each of a
plurality of network appliances is recorded. Each status
report contains health and status information and applica
tion-specific data for each network appliance. Configuration
settings for each network appliance progressively assembled
concurrent to providing installable components are main
tained. A catalog listing currently installable components for
each network appliance based on the configuration settings
is dynamically provided.
A further embodiment provides a system and method for

autonomously managing a network appliance deployed

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
3

within a distributed computing environment. An internal
catalog of components installed on one such network appli
ance is maintained, identified by component and version. A
status report containing health and status information and
application-specific data is periodically provided for the one
Such network appliance. A catalog of currently installable
components dynamically generated for the one Such network
appliance is obtained. Non-current components are deter
mined by comparing the components and versions listed in
the obtained catalog against the internal catalog.

Still other embodiments of the present invention will
become readily apparent to those skilled in the art from the
following detailed description, wherein is described embodi
ments of the invention by way of illustrating the best mode
contemplated for carrying out the invention. As will be
realized, the invention is capable of other and different
embodiments and its several details are capable of modifi
cations in various obvious respects, all without departing
from the spirit and the scope of the present invention.
Accordingly, the drawings and detailed description are to be
regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a system for providing
a framework for network appliance configuration manage
ment.

FIG. 2 is a block diagram showing the software modules
of the individual servers comprising the system of FIG. 1.

FIG. 3 is a block diagram showing the software modules
of an exemplary network appliance of FIG. 1.

FIG. 4 is a process flow diagram showing remote network
appliance management, as performed by the system of FIG.
1.

FIG. 5 is a data structure diagram showing a package
maintained by the component server of FIG. 2.

FIG. 6 is a flow diagram showing a method for providing
a framework for network appliance management, in accor
dance with the present invention.

FIG. 7 is a flow diagram showing the process performed
by the network operations center of FIG. 2.

FIG. 8 is a flow diagram showing the process performed
by the catalog server of FIG. 2.

FIG. 9 is a flow diagram showing the process performed
by the component server of FIG. 2.

FIGS. 10A and 10B are flow diagrams showing the
process performed by the network appliance of FIG. 3.

FIG. 11 is a flow diagram showing the routine for down
loading a package for use in the process of FIGS. 10A and
1OB.

FIG. 12 is a flow diagram showing the routine for
downloading a file for use in the method of FIGS. 10A and
1OB.

FIG. 13 is a flow diagram showing the daemon process
performed by the network operations center of FIG. 2.

DETAILED DESCRIPTION

FIG. 1 is a network diagram 10 showing a system for
providing a framework for network appliance management
in a distributed computing environment, in accordance with
the present invention. The distributed computing environ
ment is preferably TCP/IP compliant. A plurality of indi
vidual network appliances (or simply "appliances') 11a–C
are interconnected via an intranetwork 13. Each of the
appliances 11a-c is autonomously managed and provides
specified functionality, such as electronic mail (email) anti

10

15

25

30

35

40

45

50

55

60

65

4
virus Scanning, content filtering, packet routing, or file, Web,
or print service. Other forms of appliance services are
feasible, as would be recognized by one skilled in the art.

In addition to providing the specified functionality, the
various appliances 11a–c are autonomously self-configured
and self-managed, as further described below with reference
to FIG. 3. Each appliance 11a–c periodically generates
reports on status and health and provides application-spe
cific data, known as “SecureBeats, to a centralized network
operations center (NOC) 12. Each appliance 11a–c then
obtains a catalog from a catalog server 15 operating on the
network operations center 12. As necessary, packages and
files are obtained from a component server 16, or alterna
tively, local component server 18. Packages and files are
updated whenever the downloaded catalog indicates that a
currently installed package or file is out of date.

Each appliance 11a–C is interconnected via an intranet
work 13 which is, in turn, interconnected to an internetwork
20, including the Internet, via a firewall 21 and border router
22. The local component server 18 is also interconnected via
the intranetwork 13 and shares the same network domain
with the appliances 11a–c. The network operations center 12
and component server 16 are external to the intranetwork 13
and are only accessible as remote hosts via the internetwork
20. Accordingly, the reporting and catalog functions are
transacted with each appliance 11a–C in a secure session,
preferably using the Secure Hypertext Transport Protocol
(HTTPS). Furthermore, as further described below with
reference to FIG. 2, the file download function must also be
transacted in a secure session. Other network configurations,
topologies and arrangements of clients and servers are
possible, as would be recognized by one skilled in the art.

Each appliance 11a–C maintains an internal catalog listing
the packages and files currently installed. Immediately upon
being interconnected to the intranetwork 13, each appliance
11a-c is remotely configured using a Web browser-based
configuration, which installs the various packages and files
providing the specific functionality of the appliance. Such as
described in commonly-assigned related U.S. patent appli
cation Ser. No. 10/057,709, filed Jan. 25, 2002, pending, the
disclosure of which is incorporated by reference.
On a regular periodic basis, each appliance 11a–c awak

ens and contacts the network operations center (NOC) 12 to
upload the status report. Alternatively, the network opera
tions center 12 can broadcast a “ping query message to all
appliances 11a-c to wake up each appliance 11a–c and
trigger a status report upload. Next, each appliance 11a–C
contacts the catalog server 15 to retrieve a copy of a catalog
of the most-up-to-date packages and files currently avail
able. The catalog server 15 executes as part of the network
operations center 12 and maintains a catalog database 14.
The catalog server 15 dynamically generates a catalog for
each requesting appliance 11a-c based on the type and
configuration of appliance.
Upon receiving the catalog from the catalog server 15, the

appliance 11a–C determines whether updates to the configu
ration or installed applications are necessary. Updates are
effected by downloaded components which include pack
ages and files. If an update is required, the appliance 11a–c
requests and “pulls' the identified packages and files from
the component server 16 or, alternatively, the local compo
nent server 18, for download. The component server 16 and
local component server 18 maintain databases, component
database 17 and local component database 19, respectively,
in which the most-up-to-date packages and files are stored.
The appliance 11a–c downloads the required packages and
files for Subsequent installation.

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
5

In a further embodiment, the functionality of the network
operations center 12 and component server 16 can be
combined into a single server (not shown) or implemented
on separate systems for each of the network operations
center 12, catalog server 15, and component server 16. The
use of separate servers for publishing the catalog and
providing component downloads of packages and files
allows finer-grained distributed processing of network appli
ance configuration and management.

Individual packages and files are optionally staged for
download by a local component server 18 interconnected via
the intranetwork 13. The close proximity of the local server
18 to the appliances 11a–c allows for faster and more
convenience component downloads and avoids bandwidth
congestion at the border router 22.
The individual computer systems, including servers and

clients, are general purpose, programmed digital computing
devices consisting of a central processing unit (CPU), ran
dom access memory (RAM), non-volatile secondary Stor
age, such as a hard drive or CD ROM drive, network
interfaces, and peripheral devices, including user interfacing
means, such as a keyboard and display. Program code,
including software programs and data, are loaded into the
RAM for execution and processing by the CPU and results
are generated for display, output, transmittal, or storage.

FIG. 2 is a block diagram showing the software modules
30 of the individual servers comprising the system 10 of
FIG. 1. The servers include the network operations center
12, catalog server 15 and component server 16, plus local
component server 18.
The network operations center 12 includes two modules:

status monitor 31 and status daemon 32. The catalog server
15 executes as part of the network operations center 12. The
status monitor 31 receives the periodic status reports from
the individual network appliances 11a–c (shown in FIG. 1),
as further described below with reference to FIG. 7. Each
status report is recorded and registered in an appliance status
table 33, which notes the appliance user identifier (UID) and
time of each report.

The status daemon 32 executes as an independent process
that periodically awakens and examines the appliance status
table 33 to determine whether any of the appliances 11a–c
have failed to report, as further described below with ref
erence to FIG. 13. As necessary, an alert is generated to
inform an administrator of a potentially faulty appliance.
The catalog server 15 includes four modules: validation

34, catalog engine 35, database 36, and crypto 37. The
validation module 34 validates catalog requests received
from individual appliances 11a–c. In the described embodi
ment, each appliance 11a-C sends a user identifier (UID) as
part of each catalog request, which is used to validate the
identity of the requesting appliance.
The catalog engine 35 dynamically generates catalogs 38

listing the most-up-to-date packages and files for download
on an individual appliance basis. In the described embodi
ment, the catalogs 38 are generated in the Extensible
Markup Language (XML), although any other form of
catalog description could also be used. The catalog engine
35 refers to the appliance status table 33 to determine the
current configuration of each appliance.
The database module 36 interfaces to the main database

14 to access the catalogs 38 maintained therein. In the
described embodiment, the main database 14 is a structured
query language (SQL) based database. The catalog infor
mation is stored as structured records indexed by user
identifiers.

10

15

25

30

35

40

45

50

55

60

65

6
The crypto module 37 provides asymmetric (public key)

and symmetric encryption. Both forms of cryptography are
needed to transact a secure session with each appliance
11a–c. As well, the network operations center 12 uses the
crypto module 37 to digitally sign and encrypt packages that
are staged in the component database 17 and local compo
nent database 19 (both shown in FIG. 1).
The component server 16 includes four modules: valida

tion 39, component download 40, database 41 and 42. The
validation module 40 validates component requests received
from individual appliances 11a–c. In the described embodi
ment, each appliance 11a-C sends a user identifier (UID) as
part of each component request, which is used to validate the
identity of the requesting appliance.
The component download module 40 downloads

requested packages 43 and files 44 to validated network
appliances 11a–c. The component download module 40
records the names and versions of applications installed on
each network appliance 11a–C by maintaining a set of
configuration settings (not shown) for each network appli
ance 11a–c progressively assembled concurrent to the down
loading of each requested package 43 and file 44. Accord
ingly, the persistent configured State and applications Suite
installed on a network appliance 11a–c could be completely
restored by the component server 16, should the set of
installed applications on any given network appliance 11a–c
become corrupt or rendered otherwise unusable through a
catastrophic crash or service termination.
As further described below with reference to FIG. 4, each

package 43 contains an encrypted self-contained set of
installable software digitally signed by the network opera
tions center 12. Packages can be downloaded in now-secure
sessions. Files 45 are not signed or encrypted and must be
downloaded in secure sessions. The installation location on
a given appliance 11a–C is determined by the instructions
encoded in a file-information subdirectory on the network
operations center 12.
The database module 41 interfaces to the component

database 17 to access the packages 43 and files 44 main
tained therein. In the described embodiment, the component
database 17 is a structured query language (SQL) based
database.
The crypto module 42 provides asymmetric (public key)

and symmetric encryption. Both forms of cryptography are
needed to transact a secure session with each appliance
11a–c.
The functionality of the local component server 18 and

local component database 19 is substantially identical to that
of the component server 16 and component database 17. The
only distinction between the two component servers is the
location of each within the system 10 of FIG. 1. The local
component server 18 effectively functions as a proxy com
ponent server by staging components for convenient down
load by locally proximate network appliances.

In addition, the functionality of the network operations
center 12, catalog 15 and component server 16 could be
combined into a single integrated server or provided as
separate systems deployed in various locations and combi
nations throughout the intranetwork 13 and internetwork 20,
as would be recognized by one skilled in the art.

FIG. 3 is a block diagram showing software modules 50
of an exemplary network appliance 11a of FIG. 1. Applica
tion-specific logic has been omitted for clarity. As pertains
to autonomous configuration and management, each net
work appliance 11a includes four modules: catalog checker
51, crypto 52, installer 53, and status daemon 54. The
catalog checker 51 requests and examines a catalog returned

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
7

from the catalog server 15 (shown in FIG. 1) to determine
whether software updates are required. Each downloaded
catalog, catalog.new, is checked against an internal catalog
55, catalog.cur. The internal catalog 55 lists the installed
applications 56 currently used by the appliance 11a.
Required packages 57 and files 58 are downloaded or
“pulled from the component server 16. The installed appli
cations 56 include both the functional programs imple
mented on each network appliance 11a–c to perform the
application-specific logic for a given function, as well as
operating system and Support Software, including the Soft
ware modules 50. Accordingly, the autonomous configura
tion and self-management of each network appliance 11a–C
can enable a vendor to provide a complete service model
whereby updates and device recovery is handled automati
cally and without end-user intervention.
The crypto module 52 provides asymmetric (public key)

and symmetric encryption. Both forms of cryptography are
needed to transact a secure session with the network opera
tions center 12 and component server 16. Public key encryp
tion is also used to authenticate and decrypt downloaded
packages 57.
The installer 53 installs downloaded packages 57 and files

58. Each individual package 57 includes as complete setup
program, as further described below with reference to FIG.
5. Each file 58 must be installed in a location identified in a
corresponding file information Subdirectory, fileinfo, on the
network operations center 12.

Finally, the status daemon 54 periodically awakens and
sends a report of the health and status of the network
appliance 11a to the network operations center 12. The
status report identifies the reporting appliance 11a and
provides machine-specific data, including the load on the
processor, available disk space application-specific informa
tion, such as the number of emails passing through the
device. The status report is referred to as a “SecureBeat.”

Each software module of the individual servers and
exemplary appliance 11a is a computer program, procedure
or module written as source code in a conventional pro
gramming language. Such as the C++ programming lan
guage, and is presented for execution by the CPU as object
or byte code, as is known in the art. The various implemen
tations of the Source code and object and byte codes can be
held on a computer-readable storage medium or embodied
on a transmission medium in a carrier wave. The individual
servers and exemplary appliance 11a operate in accordance
with a sequence of process steps, as further described
beginning below with reference to FIG. 6.

FIG. 4 is a process flow diagram showing remote network
appliance management, as performed by the system of FIG.
1. Each network appliance 11a-c is autonomously managed.
Management requires two mandatory phases, status report
ing (step 61-63) and catalog examination (step 64–67), and
two optional phases, package downloading (steps 68-71)
and file downloading (steps 72–75).

During the status reporting phase, the appliance 11a
requests a secure session, preferably using HTTPS (step 61).
Upon the creation of a secure session (step 62), the appliance
11a sends a status report to the network operations center 12
(step 63). The status report is then logged by the network
operations center 12.

During the catalog examination phase, the appliance 11a
requests a secure session, preferably using HTTPS (step 64).
Upon the creation of a secure session (step 65), the appliance
11a posts a user identifier (UID) (step 66). The catalog
server 15 validates the identity of the requesting appliance
11a and, if valid, archives that the particular appliance 11a

10

15

25

30

35

40

45

50

55

60

65

8
has connected at the current time in the appliance status table
33 (shown in FIG. 2). The catalog server 15 then downloads
the catalog to the requesting appliance 11a (step 67).
The package downloading and file downloading phases

are performed when the appliance 11 a determines that an
installed application 56 (shown in FIG. 3) is out of date.
During the package downloading phase, the appliance 11a
requests a non-secure session (step 68). Upon the creation of
a non-secure session (step 69), the appliance 11a requests
the necessary packages (step 70). The component server 16
validates the identity of the requesting appliance 11a by
examining the package request. Each package request
includes a user identifier (UID) and uniform resource locator
(URL) indicating the location of the required package. The
package is then downloaded to the requesting appliance 11a
(step 71) for installation.

After receiving each package, the requesting appliance
11a clarifies that the package has been signed with the
appropriate private key for the network operations center 12
using public key authentication. The package downloading
phase (steps 70–71) is repeated until all required packages
have been downloaded.

During the file downloading phase, the appliance 11a
requests a secure session, preferably using HTTPS (step 72).
Upon establishing a secure session (step 73), the appliance
11a requests the necessary files (step 74). The component
server 16 validates the identity of the requesting appliance
11a by examining the file request. Each file request includes
a user identifier (UID) and uniform resource located (URL)
indicating the location of the required file. The file is then
downloaded to the requesting appliance 11a (step 75) for
installation.

After receiving each file, the requesting appliance 11a
installs the downloaded file based on installation instruc
tions found in the file information subdirectory on the
network operations center 12. The file downloading phase
(steps 74–75) is repeated until all required files have been
downloaded.

In the described embodiment, the package downloading
(steps 68–71) and file downloading (steps 72–75) phases
must occur in sequential order. Individual packages can
contain placeholder files that must be overwritten by appli
ance-specific files following package installation. To allow
Such appliance-specific dependencies, the packages must
generally be installed first.

FIG. 5 is a data structure diagram 80 showing a package
81 maintained by the component server 16 of FIG. 1. Each
package 81 includes a digital signature 82 that authenticates
the package as having originated with the network opera
tions center 12. Only those packages 81 containing a prop
erly-authenticated digital signature are installed by the indi
vidual network appliances 11a–c (shown in FIG. 1). Each
package 81 also includes an executable program 83.
install.exe, which is executed by the appliance 11a–C to
effect the installation of the package 81. Finally, each
package contains the individual files to be installed 84 by the
executable program 83.

Unlike packages, each file does not contain specific
instructions for installation. Instead, the installing appliance
11a-c looks up the appropriate instructions in a specific file
information subdirectory, called fileinfo, located on the
network operations center 12. In the described embodiment,
the subdirectory is located under SUSER/SecureBeat/Up
load/Application-Name, where SUSER is a root directory
and Application-Name refers to an installed application 56
(shown in FIG. 3).

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1

For example, to update a virus screening application, the
subdirectory would be “SUSER/SecureBeat/Upload/V-
Screen” and the configuration file would be vscreen.upload
comp. The contents of a sample configuration file are as
follows:

UPLOAD DIR=VSCREEN SERVER=BWSH

The tag UPLOAD indicates the file is located in the subdi
rectory called “VSCREEN” and is to be retrieved from the
Server BWSH.

FIG. 6 is a flow diagram 100 showing a method for
providing a framework for network appliance management,
in accordance with the present invention. The individual
components, including network operations center 12, cata
log server 15, component server 16 and individual network
appliances 11 a-c, execute independently. Each of the com
ponents must be initialized and started (blocks 101-104)
prior to appliance management. Upon respective initializa
tion and starting, each component proceeds independently,
as further described below with reference to FIGS. 7–10.

FIG. 7 is a flow diagram 110 showing the process per
formed by the network operations center 12 of FIG. 2. The
network operations center 12 executes an iterative process
ing loop (blocks 111-115). During each iteration (block
111), a secure session is established with a requesting
appliance (block 112). Upon establishing a secure session, a
status report is received from each appliance (block 113),
after which the secure session is closed (block 114). During
the secure session, the appliance reports the health and status
of the machine. Processing continues (block 115) until the
process is terminated or halted.

FIG. 8 is a flow diagram 120 showing the process
performed by the catalog server 15 of FIG. 2. The catalog
server 15 executes an iterative processing loop (blocks
121-129). During each iteration (block 121), a secure ses
sion is established with a requesting appliance (block 122).
Upon establishing a secure session, the catalog server 15
receives the user identification (UID) of the requesting
appliance (block 123). If the user identification is not valid
(block 124), an error condition is generated (block 125) and
the administrator is notified. Otherwise, the connection time
of the requesting appliance is archived (block 126) in the
appliance status table 34 (shown in FIG. 2). A catalog is
dynamically generated and sent to the requesting client
(block 127). In the described embodiment, the catalog is
generated as an XML document, although any other type of
catalog description format could be used. The secure session
is then closed (block 128). Processing continues (block 129)
until the process is terminated.

FIG. 9 is a flow diagram 140 showing the process
performed by the component server 16 of FIG. 2. The
component server 16 executes an iterative processing loop
(blocks 141–149). During each iteration (block 141), the
component server 16 first establishes a secure session with
the requesting appliance (block 142). The requesting appli
ance sends a request for an individual component to down
load which includes a user identifier (UID) and a URL
indicating the location of the component to be downloaded.
The request is received (block 143) and validated. If the user
identification is not valid (block 144), an error condition is
generated (block 145) and the administrator is notified.
Otherwise, the requested component is downloaded to the
requesting appliance (block 146) and the database is flagged
to indicate that the downloaded component was sent to the
requesting appliance (block 147). The component server 16
then closes the present session (block 148). Note a secure
session is required for downloading files while a non-secure

10

15

25

30

35

40

45

50

55

60

65

10
session is used when downloading packages. Processing
continues (block 149) until the process is terminated or
halted.

FIGS. 10A and 10B are flow diagrams 160 showing the
process performed by the network appliance 11a of FIG. 3.
Each network appliance 11a–c (shown in FIG. 1) periodi
cally awakens, sends a status report, receives a catalog, and
downloads any required packages and files. In addition, each
network appliance 11a–c executes any initial plug-ins and
post-plug-ins prior to and following the reporting and updat
ing phase (shown in FIG. 4).

Thus, each network appliance 11a–c periodically awakens
(block 161). In the described embodiment, each appliance
11a-c awakens once every 15 minutes, nine seconds. Any
installed initial plug-ins are executed (block 162). By way of
example, initial plug-ins include executables which monitor
daemon processes, which must always be running. An
initialization plug-in called “VScreen.init' executes as a
watchdog process to determine if the daemon process is still
running. The daemon process is restarted as necessary. As
well, individual status reports are generated by the initial
plug-ins, which must be executed prior to the reporting
phase.

After executing any initial plug-ins, a secure session is
established with the network operations center 12 (block
163) and the status report is sent (block 164). The secure
session is then closed (block 165). A secure session is then
established with the catalog server 16 (block 166) and the
user identifier (UID) is sent (block 167). Upon validation by
the catalog server 15, a dynamically-generated catalog is
received from the catalog server 15 (block 168). The secure
session is then closed (block 169).
Upon receiving the catalog from the catalog server 15, the

catalog is examined (block 170). Each catalog includes a list
of component names and versions, a tag indicating the server
at which to locate and obtain the component, and the type of
component, that is, package or file. If components are
required (block 172), packages are first iteratively down
loaded (blocks 172-174) followed by files (blocks
175—177). For each package (block 172), the package is
downloaded (block 173), as further described below with
reference to FIG. 11. Similarly, for each file (block 175), the
file is downloaded (block 176), as further described below
with reference to FIG. 12.
Upon completion of the downloading of each required

package and file, any post plug-ins are executed (block 178).
Finally, the network appliance returns to a sleep mode (block
179). Processing continues until the process is terminated or
halted.

FIG. 11 is a flow diagram 180 showing the routine for
downloading a package for use in the process of FIGS. 10A
and 10B. The purpose of this routine is to connect to the
component server 16 and retrieve any required packages for
installation by an appliance 11a.

Thus, a non-secure session is first established with the
component server 16 (block 181). A Uniform Resource
Locator (URL), including the user identifier (UID), package
name and version, are sent to the component server 16
(block 182). Upon being credentialed by the component
server, the requested package is received (block 183) and the
non-secure session is closed (block 184).

Each individual package 57 is authenticated and
encrypted by the network operations center 12 prior to being
staged in the component database 17 of the component
server 16. Accordingly, the downloading appliance 11 a first
verifies that the package was digitally signed with the
private key for the network operations center 12 (block 185),

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
11

after which the package is installed (block 186), following
the instructions stored therein. The routine then returns.

FIG. 12 is a flow diagram 190 showing the routine for
downloading a file 190 for use in the process of FIGS. 10A
and 10B. The purpose of this routine is to connect to the
component server 16 and retrieve any required files for
installation by an appliance 11a. Each network appliance
11a-c connects to and downloads required files for instal
lation per the instructions included in a file information
subdirectory on the network operations center 12.

Thus, the network appliance 11a establishes a secure
session with the component server 16 (block 191) and sends
a uniform resource locator (URL), including user identifier
(UID), file name and version, to the component server 16
(block 192). Upon being credentialed by the component
server 16, the requested file is received (block 193), and the
secure session is closed (block 194). The file is installed
based on the information stored in the file information
subdirectory (block 195). The routine then returns.

FIG. 13 is a flow diagram 200 showing the daemon
process performed by the network operations center 12 of
FIG. 2. The daemon process periodically awakens (block
201) and iteratively checks the status of each configured
network appliance 11a–C (shown in FIG. 1) managed by the
network operations center 12. During each iteration (block
202), the network operations center 12 determines whether
a status report has been received from each of the appliances
11a–c since the last reporting cycle (block 203) by exam
ining the appliance status table 34 (shown in FIG. 2). If a
report has not been received (block 204), an error is gener
ated (step 205) and the administrator is notified. Processing
continues with each successive appliance (block 206), after
which the daemon process returns to sleep (block 207).

While the invention has been particularly shown and
described as referenced to the embodiments thereof, those
skilled in the art will understand that the foregoing and other
changes in form and detail may be made therein without
departing from the spirit and scope of the invention.
What is claimed is:
1. A system for providing a framework for network

appliance management in a distributed computing environ
ment, comprising:

an appliance status table recording a status report peri
odically received from a status daemon autonomously
operating on each of a plurality of network appliances,
each status report containing health and status infor
mation and application-specific data pertaining to
autonomous configuration and management of each
network appliance; and

a catalog server maintaining configuration settings for
each network appliance progressively assembled con
current to providing installable components and
dynamically providing a catalog listing currently
installable components for being installed on each
network appliance based on the configuration settings
independently received from the network appliance;

wherein each network appliance, prior to sending the
status report, executes at least one initial plug-in; and,
after installing the installable components, executes at
least one post-plug-in;

wherein the at least one initial plug-in monitors the status
daemon to determine if the status daemon is running,
and restart the status daemon if it is determined that the
status daemon is not running;

wherein the catalog further includes installable compo
nent names, installable component versions, a tag indi
cating a component server at which to locate and obtain

5

10

15

25

30

35

40

45

50

55

60

65

12
each installable component, and a type indicator indi
cating whether each installable component is a package
or a file;

wherein a network operations center establishes a secure
session with each network appliance utilizing Secure
Hypertext Transfer Protocol (HTTPS):

wherein the appliance status table further records a user
identifier associated with one of the network appliances
from which the status report is received and a time the
status report is received.

2. A system according to claim 1,
wherein the network operations center installs an initial

set of installable components on each network appli
ance during a bootstrap configuration.

3. A system according to claim 1, wherein the currently
installable components comprise at least one self-installable
package, and the component server Supplies the at least one
package for installation responsive to a request from one
Such network appliance.

4. A system according to claim 3, further comprising:
a crypto module digitally signing the at least one package

for the network operations center prior to being Sup
plied for installation.

5. A system according to claim 3, further comprising:
a crypto module encrypting the at least one package prior

to being Supplied for installation.
6. A system according to claim 1, wherein the installable

components comprise at least one file, and the component
server Supplies the at least one file responsive to a request
from one Such network appliance.

7. A system according to claim 6, wherein the component
server establishes the secure session prior to the at least one
file being supplied for installation.

8. A system according to claim 6, further comprising:
a file information Subdirectory specifying installation

instructions for the at least one file in a pre-determined
entry prior to the at least one file being supplied for
installation.

9. A system according to claim 1, further comprising:
a proxy component server staging the currently installable

components for retrieval in a separate components
database.

10. A system according to claim 1, wherein the distributed
computing environment is TCP/IP-compliant.

11. A system according to claim 1, wherein the status
report contains machine-specific data including a load on a
processor and available disk space associated with each
network appliance, and the application-specific data
includes a number of e-mails passing through each of a
plurality of network devices.

12. A system according to claim 1, wherein the installable
components for being installed on each network appliance
are installed on each network appliance according to a
location identified in a corresponding file information Sub
directory of the network operations center.

13. A method for providing a framework for network
appliance management in a distributed computing environ
ment, comprising:

recording a status report periodically received from a
status daemon autonomously operating on each of a
plurality of network appliances, each status report
containing health and status information and applica
tion-specific data pertaining to autonomous configura
tion and management of each network appliance;

maintaining configuration settings for each network appli
ance progressively assembled concurrent to providing
installable components; and

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
13

dynamically providing a catalog listing currently install
able components for being installed on each network
appliance based on the configuration settings indepen
dently received from the network appliance:

wherein each network appliance, prior to sending the
status report, executes at least one initial plug-in; and,
after installing the installable components, executes at
least one post-plug-in;

wherein the at least one initial plug-in monitors the status
daemon to determine if the status daemon is running,
and restart the status daemon if it is determined that the
status daemon is not running;

wherein the catalog further includes installable compo
nent names, installable component versions, a tag indi
cating a component server at which to locate and obtain
each installable component, and a type indicator indi
cating whether each installable component is a package
or a file;

wherein a secure session is established with each network
appliance utilizing Secure Hypertext Transfer Protocol
(HTTPS):

wherein a user identifier associated with one of the
network appliances from which the status report is
received and a time the status report is received are
recorded.

14. A method according to claim 13, further comprising:
installing an initial set of installable components on each

network appliance during a bootstrap configuration.
15. A method according to claim 13, wherein the currently

installable components comprise at least one self-installable
package, further comprising:

supplying the at least one package for installation respon
sive to a request from one such network appliance.

16. A method according to claim 15, further comprising:
digitally signing the at least one package prior to being

Supplied for installation.
17. A method according to claim 15, further comprising:
encrypting the at least one package prior to being Supplied

for installation.
18. A method according to claim 13, wherein the install

able components comprise at least one file, further compris
1ng:

Supplying the at least one file responsive to a request from
one such network appliance.

19. A method according to claim 18, further comprising
establishing the secure session prior to the at least one file

being Supplied for installation.
20. A method according to claim 18, further comprising:
specifying installation instructions for the at least one file

in a pre-determined entry prior to the at least one file
being Supplied for installation.

21. A method according to claim 13, further comprising:
staging the currently installable components for retrieval

in a separate components database.
22. A method according to claim 13, wherein the distrib

uted computing environment is TCP/IP-compliant.
23. A computer-readable storage medium holding code

for performing the method according to claims 13, 14, 15,
16, 17, 18, 19, 20, 21, or 22.

24. A system for autonomously managing a network
appliance deployed within a distributed computing environ
ment, comprising:

an internal catalog of components installed on one such
network appliance identified by component and Ver
sion; and

a status daemon operating autonomously on the one such
network appliance and periodically providing a status

10

15

25

30

35

40

45

50

55

60

65

14
report containing health and status information and
application-specific data pertaining to autonomous con
figuration and management of the one such network
appliance; and

a catalog checker obtaining a catalog of currently install
able components dynamically generated for the one
Such network appliance based on the status report
independently received from the one such network
appliance and determining non-current components by
comparing the components and versions listed in the
obtained catalog against the internal catalog:

wherein each network appliance, prior to sending the
status report, executes at least one initial plug-in; and,
after installing the installable components, executes at
least one post-plug-in;

wherein the at least one initial plug-in monitors the status
daemon to determine if the status daemon is running,
and restart the status daemon if it is determined that the
status daemon is not running;

wherein the catalog further includes a tag indicating a
component server at which to locate and obtain each
installable component, and a type indicator indicating
whether each installable component is a package or a
file;

wherein a network operations center negotiates a secure
session with the one such network appliance utilizing
Secure Hypertext Transfer Protocol (HTTPS):

wherein an appliance status table records a user identifier
associated with the one such network appliance from
which the status report is received and a time the status
report is received.

25. A system according to claim 24, wherein the compo
nents comprise at least one self-installable package, further
comprising:

an installer obtaining the at least one self-installable
package and installing the at least one self-installable
package per instructions encoded therein.

26. A system according to claim 25, wherein the compo
nents further comprise at least one file dependent on the at
least one self-installable package, further comprising:

an installer obtaining the at least one file Subsequent to
installing the at least one self-installable package and
installing the at least one self-installable package per
instructions stored in a pre-determined entry.

27. A system according to claim 25, wherein the compo
nent server negotiates a non-secure session prior to obtain
ing the at least one self-installable package.

28. A system according to claim 25, further comprising:
a crypto module at least one of authenticating and

decrypting the at least one self-installable package prior
to installing the at least one self-installable package.

29. A system according to claim 25, wherein the instruc
tions comprise an executable installation program plus one
or more files to be installed.

30. A system according to claim 25, wherein the compo
nents further comprise at least one file, further comprising:

an installer obtaining the at least one file and installing the
at least one self-installable package per instructions
stored in a predetermined entry.

31. A system according to claim 30, wherein the compo
nent server negotiates the secure session prior to obtaining
the at least one self-installable package.

32. A system according to claim 30, wherein the pre
determined entry comprise a file information subdirectory
identifying installation instructions.

NETFLIX, INC. EXHIBIT 1002

US 7,089,259 B1
15

33. A system according to claim 25, wherein at least one
Such network appliance performs one of electronic mail
anti-virus scanning, content filtering, packet routing, and
file, Web and print servicing.

34. A system according to claim 25, wherein the distrib
uted computing environment is TCP/IP-compliant.

35. A method for autonomously managing a network
appliance deployed within a distributed computing environ
ment, comprising:

maintaining an internal catalog of components installed
on one such network appliance identified by component
and version;

periodically providing a status report containing health
and status information and application-specific data
pertaining to autonomous configuration and manage
ment of the one Such network appliance and received
from a status daemon autonomously operating on for
the one Such network appliance,

obtaining a catalog of currently installable components
dynamically generated for the one such network appli
ance based on the status report independently received
from the one Such network appliance; and

determining non-current components by comparing the
components and versions listed in the obtained catalog
against the internal catalog;

wherein each network appliance, prior to sending the
status report, executes at least one initial plug-in; and,
after installing the installable components, executes at
least one post-plug-in;

wherein the at least one initial plug-in monitors the status
daemon to determine if the status daemon is running,
and restart the status daemon if it is determined that the
status daemon is not running;

wherein the catalog further includes a tag indicating a
component server at which to locate and obtain each
installable component, and a type indicator indicating
whether each installable component is a package or a
file;

wherein a secure session is negotiated with the one such
network appliance utilizing Secure Hypertext Transfer
Protocol (HTTPS):

wherein a user identifier associated with the one such
network appliance from which the status report is
received and a time the status report is received are
recorded.

36. A method according to claim 35, further comprising:
broadcasting a query message to each Such network

appliance to trigger a status report.

10

15

25

30

35

40

45

16
37. A method according to claim 35, wherein the com

ponents comprise at least one self-installable package, fur
ther comprising:

obtaining the at least one self-installable package; and
installing the at least one self-installable package per

instructions encoded therein.
38. A method according to claim 37, wherein the com

ponents further comprise at least one file dependent on the
at least one self-installable package, further comprising:

obtaining the at least one file Subsequent to installing the
at least one self-installable package; and

installing the at least one self-installable package per
instructions stored in a pre-determined entry.

39. A method according to claim 37, further comprising:
negotiating a non-secure session prior to obtaining the at

least one self-installable package.
40. A method according to claim 37, further comprising:
at least one of authenticating and decrypting the at least

one self-installable package prior to installing the at
least one self-installable package.

41. A method according to claim 37, wherein the instruc
tions comprise an executable installation program plus one
or more files to be installed.

42. A method according to claim 35, wherein the com
ponents further comprise at least one file, further compris
ing:

obtaining the at least one file; and
installing the at least one self-installable package per

instructions stored in a pre-determined entry.
43. A method according to claim 42, further comprising:
negotiating the secure session prior to obtaining the at

least one self-installable package.
44. A method according to claim 42, wherein the pre

determined entry comprise a file information subdirectory
identifying installation instructions.

45. A method according to claim 35, wherein at least one
Such network appliance performs one of electronic mail
anti-virus Scanning, content filtering, packet routing, and
file, Web and print servicing.

46. A method according to claim 35, wherein the distrib
uted computing environment is TCP/IP-compliant.

47. A computer-readable storage medium holding code
for performing the method according to claims 35, 36, 37.
38, 39, 40, 41, 42, 43, 44, 45, or 46.

NETFLIX, INC. EXHIBIT 1002

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 7,089,259 B1 Page 1 of 1
APPLICATION NO. : 10/056702
DATED : August 8, 2006
INVENTOR(S) : Kouznetsov et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

col. 15, line 18 replace appliance, with -appliance;--
col. 16, line 14 replace comprising with --comprising:--.

Signed and Sealed this

Ninth Day of February, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-8

NETFLIX, INC. EXHIBIT 1002

US 20070192652A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0192652 A1

Kao et al. (43) Pub. Date: Aug. 16, 2007

(54) RESTRICTING DEVICES UTILIZING A Publication Classification
DEVICE-TO-SERVER HEARTBEAT

(51) Int. Cl.
(75) Inventors: Sandy Kao, Austin, TX (US); Rodrigo G06F II/00 (2006.01)

J. Pastrana, Delray Beach, FL (US) (52) U.S. Cl. .. 714.f4

Correspondence Address: (57) ABSTRACT
PATENTS ON DEMAND, PA.
4581 WESTON ROAD
SUTE 345
WESTON, FL 33331 (US)

A method of automatically locking a client can include a step
of a client automatically establishing a heartbeat interval. A
determination can be automatically made regarding whether

(73) Assignee: INTERNATIONAL BUSINESS a proper server response is received within the heartbeat
MACHINES CORPORATION, interval. When no proper response is received, the client can
Armonk, NY be automatically placed in a locked State. All client functions

accessible by a user other than those functions relating to
(21) Appl. No.: 11/354,477 unlocking the client can be disabled while the client is in the

locked state. A remotely located server can unlock the client
(22) Filed: Feb. 14, 2006 by conveying an unlock message to the client.

Client
111

u-d Unlock OC Unlock st-c.
N
YA

ommand 118
Request 117

Heartbeat Wireless Range 140 4.
A.

R t 114 A. eques f ? Heartbeat
? Response 116

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Aug. 16, 2007 Sheet 1 of 3 US 2007/0192652 A1

100

Client
111

u-d y nl k Unloc
Unlock N to.

N

YA
ommand 118

Request 117

Heartbeat 4. Wireless Range 140
Request 114 /

? Heartbeat
A. Response 116

O

User 120

F.G. 1

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Aug. 16, 2007 Sheet 2 of 3 US 2007/0192652 A1

200

Activate a client When heartbeat timer exceeds an optional
205 retransmission time, convey a heartbeat request to a

heartbeat server
250

Instantiate a heartbeat application (B)
210 Decrease retransmission time

255

Heartbeat application establishes a heartbeat YES
interval is heartbeat interval exceeded?

25 260

NO

Initialize heartbeat timer Receive heartbeat response from server ?
220 265

Walidate response ?
Receive heartbeat response from server ?

YES
225

NO (A)
Retransmit heartbeat request

Validate response ? 275
230

(B)

NO

Place client in a locked state
280

When heartbeat timer exceeds an optional expected
response time, convey a heartbeat request to a

heartbeat server
Receive a valid unlock command from heartbeat

Set Wet

Receive heartbeat response from server ? NO
240 Place client in an unlocked state

245

235

285

290

Validate response? (A)

(A) FG. 2

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Aug. 16, 2007 Sheet 3 of 3 US 2007/0192652 A1

Customer initiates service request 300
305

Select human agent to respond to the service
request

310

Human agent analyzes customer's computer
35

Human agent uses a computer device to perform/
cause the computer device to perform at least a

portion of the steps of method 200
320

Optionally configure computing device to perform
steps of method 200 responsive to user initiated

actions
325

Human agent completes service activities for
service request

330

FG. 3

NETFLIX, INC. EXHIBIT 1002

US 2007/0192652 A1

RESTRICTING DEVICES UTILIZING A
DEVICE-TO-SERVER HEARTBEAT

BACKGROUND

0001) 1. Field of the Invention
0002 The present invention relates to the field of com
puter security, and, more particularly, to restricting comput
ing devices utilizing a device-to-server heartbeat.
0003 2. Description of the Related Art
0004 Businesses are increasingly relying upon comput
ing devices to perform business tasks. For example, in
addition to desktop computers, businesses often provide
mobile telephones, personal data assistants (PDAs), bar code
scanners, tablet computing devices, notebooks, kiosks, and
other devices for use by customers and employees. Indi
vidual ones of these devices are often shared between
employees and/or customers. These devices are often por
table devices that are optimally placed in locations of high
availability.

0005 The cost and availability of the devices result in a
high risk of theft. Theft of the devices usually has one of
three different goals: (1) to personally use a stolen device,
(2) to resell the stolen device, and (3) to extract sensitive
information from the stolen device. Conventional techniques
to prevent device theft have significant shortcomings.
0006 For example, it is common to physically constrain
a device to a location using a chain/lock combination. This
Solution can greatly restrict the placement and mobility of a
device, which decreases its usefulness in a business setting.
Also, physical security precautions can require active mea
Sures be taken by employee users, which are often ignored
or forgotten.
0007. Other security solutions attempt to restrict, locate,
or disable a device after a theft has been detected. For
example, software can be loaded and hidden on the device
that causes the device to broadcast a beacon or to take a
restrictive action responsive to a command received via the
Internet. These post theft solutions are flawed since each
requires the stolen device to be able to receive commands
via a network. Conventional software-based theft deterrents
are also able to be removed from a device by a device user.
For these reasons, conventional anti-theft Solutions are inad
equate to prevent device thefts. That is, even when conven
tional anti-theft Solutions are implemented, the goals of most
device thieves can still be achieved.

SUMMARY OF THE INVENTION

0008. The present invention executes a daemon or appli
cation upon a computing device that generates a heartbeat
for the device. The heartbeat is associated with a timer and
a timed operation interval, referred to as a heartbeat interval.
The device can be used in a stand-alone as well as in a
networked fashion for the heartbeat interval. Before the end
of the interval, the device requires a heartbeat response from
a remotely located server. Otherwise, the device is automati
cally locked.
0009. In different embodiments, the device can actively
request a heartbeat response by sending an initial heartbeat
request message to the server, or the device can passively
receive non-prompted heartbeat responses from the server.

Aug. 16, 2007

Either way, the received heartbeat response can permit the
device to operate for an additional interval. Shifting the
device from a locked State back to an unlocked State can
require the receipt of an unlock command from a remotely
located server. Accordingly, the device is unable to be
utilized for any significant duration unless it is able to
periodically receive heartbeat responses from one or more
remotely located servers.

0010. The present invention can be implemented in
accordance with numerous aspects consistent with material
presented herein. For example, one aspect of the present
invention can include a method for automatically locking a
client. The method can include a step of a client automati
cally establishing a heartbeat interval. A determination can
be automatically made regarding whether a proper server
response is received within the heartbeat interval. When no
proper response is received, the client can be automatically
placed in a locked State. All client functions accessible by a
user other than those functions relating to unlocking the
client can be disabled while the client is in the locked state.
A remotely located server can unlock the client by convey
ing an unlock message to the client.

0011) Another aspect of the present invention can include
a method of restricting access to a computing device. The
method can automatically generate a heartbeat event within
a client. A determination can be made as to whether a server
response is received by the client for the heartbeat event. The
lock state of the client can be automatically altered based
upon the determining step. In the method, a server response
to the heartbeat event can be required to prevent the client
from automatically entering a locked State.

0012 Still another aspect of the present invention can
include a storage space upon a machine-readable medium
local to a client. The machine-readable medium can include
code instructions for causing a machine to identify a heart
beat interval. A heartbeat timer can be started within the
client. When a heartbeat response is received from a
remotely located server, the heartbeat timer can be reset.
When the heartbeat timer exceeds the heartbeat interval, the
client can be automatically adjusted from an unlocked State
to a locked state. All client functions accessible by a user
other than those functions relating to unlocking the client
can be disabled while the client is in the locked state.

0013. It should be noted that various aspects of the
invention can be implemented as a program for controlling
computing equipment to implement the functions described
herein, or a program for enabling computing equipment to
perform processes corresponding to the steps disclosed
herein. This program may be provided by storing the pro
gram in a magnetic disk, an optical disk, a semiconductor
memory, or any other recording medium. The program can
also be provided as a digitally encoded signal conveyed via
a carrier wave. The described program can be a single
program or can be implemented as multiple Subprograms,
each of which interact within a single computing device or
interact in a distributed fashion across a network space.

0014. It should also be noted that the methods detailed
herein can also be methods performed at least in part by a
service agent and/or a machine manipulated by a service
agent in response to a service request.

NETFLIX, INC. EXHIBIT 1002

US 2007/0192652 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0.015 There are shown in the drawings, embodiments
which are presently preferred, it being understood, however,
that the invention is not limited to the precise arrangements
and instrumentalities shown.

0016 FIG. 1 is a schematic diagram of a system for
restricting devices using a heartbeat in accordance with an
embodiment of the inventive arrangements disclosed herein.
0017 FIG. 2 is a flow chart of a method for restricting
devices using a heartbeat in accordance with an embodiment
of the inventive arrangements disclosed herein.
0018 FIG. 3 is a flow chart of a method in which a
service agent can configure a system to implement a heart
beat that restricts client devices in accordance with an
embodiment of the inventive arrangements disclosed herein.

DETAILED DESCRIPTION OF THE
INVENTION

0.019 FIG. 1 is a schematic diagram of a system 100 for
restricting devices using a heartbeat in accordance with an
embodiment of the inventive arrangements disclosed herein.
System 100 can include a client 110 and a client 111, each
of which requires a periodic heartbeat response 116 from
server 130 to prevent the client 110-111 from automatically
entering a locked state. When in a locked state, the client
110-111 is unable to be utilized as intended by user 120 for
any purpose other than attempting to unlock the client
110-111.

0020. In one embodiment, data contained within client
110-111 can be secured when the client 110-111 enters a
locked State. For example, data can be automatically deleted
or shredded when the client 110-111 is locked. In another
example, all data within the client 110-111 can be automati
cally encrypted when the client 110-111 enters a locked
state. The data can be automatically decrypted, when the
client 110-111 is placed in an unlocked state.
0021. If data within client 110-111 is particularly sensi
tive, software can be installed that establishes an encrypted
drive, where by default data within the drive is encrypted.
When active or unlocked, a decryption key, Stored in non
persistent memory such as RAM, can be used to dynami
cally decrypt data contained within the encrypted drive.
Accordingly, accessing unencrypted data requires an affir
mative step, which can only be performed when the client
110-111 is unlocked.

0022. The client 110-111 can be any computing device
upon which a heartbeat application 112 can be installed. The
client 110-111 can include, but is not limited to, a computer,
a personal data assistant (PDA), a mobile telephone, a laptop
computer, a bar-code scanner, a media player, a wearable
computing device, and other Such computing devices. The
client 110-111 can be configured so that user 120 is unable
to remove the heartbeat application 112 from the client
110-111. The user 120 is also unable to prevent the heartbeat
application 112 from entering a locked State in the absence
of periodically received heartbeat responses 115 from server
130.

0023 The heartbeat application 112 can establish a heart
beat interval and can include a heartbeat timer. Whenever
the heartbeat timer exceeds the heartbeat interval, the client

Aug. 16, 2007

110-111 can enter the locked state. The heartbeat response
116 can be used to reset the heartbeat timer. In one embodi
ment, the client 110-111 can actively solicit the server 130
for a heartbeat response 116 by conveying one or more
heartbeat requests 114. In another embodiment, server 130
can broadcast or automatically convey heartbeat responses
116 to client 110-111 without an explicit heartbeat request
114 being made.
0024. The heartbeat application 112 can be implemented
within hardware, firmware, and/or software of the client
110-111. The heartbeat application 112 can be a daemon or
background application executing on client 110 to which
user 120 is not granted write, modify, or delete privileges.
Heartbeat application 112 can also be a firmware or hard
ware based security process that can disable a critical
portion of the client 110-111 when locked. For example, the
heartbeat application 112 can disable all input/output ports
other than a communication port to the server, when locked.
0025. In one embodiment, the heartbeat application 112
can include a custom restriction profile. The profile can
include one or more parameters that are able to be custom
ized by an authorized individual. For example, a system
administrator can change a heartbeat interval using the
custom restriction profile. In another example, user 120 can
modify the custom restriction profile to change the fre
quency with which heartbeat requests 114 are generated.
0026. The heartbeat response 116 can include any type of
message capable of resetting the heartbeat timer. It is com
mon for the heartbeat response 116 to be implemented as a
secure key or an encrypted pass code that is difficult for
unauthorized users 120 to duplicate or ascertain. For
example, the heartbeat response 116 can be implemented as
a digital certificate. The heartbeat response 116 can also be
implemented as one part of a public-private key combina
tion, where a complimentary part is known by client 110
111. Conventional Security practices and technologies can be
utilized in conjunction with the heartbeat concept disclosed
herein to ensure the heartbeat application 112 and automatic
locking functions of the client 110-111 are not easily cir
cumvented.

0027 Server 130 can be any computing device capable of
transmitting a heartbeat response 116 to the client 110-111.
For example, server 130 can be a computer that receives
heartbeat requests 114 from the client 110-111. Each heart
beat request 114 can include authorizing information, Such
as user 120 identification and password. The server 130 can
determine whether user 120 is authorized to utilize client
110-111. If the use of client 110-111 by user 120 is autho
rized, the server 130 can convey a heartbeat response 116 to
the client 110-111. For security reasons, system 100 can be
configured so that heartbeat responses 116 expire, meaning
that new and different heartbeat responses 116 are necessary
after a designated time.

0028. Once a client 110-111 has been locked, server 130
can generate an unlock command 118, which alters the lock
state of the client 110-111. The unlock command 118 can be
either generated responsive to an unlock request 117 or can
be automatically generated by the server 130. While the
unlock command 118 can be different from the heartbeat
response 116, embodiments are contemplated where a single
message from server 130 can function as both heartbeat
response 116 and unlock command 118.

NETFLIX, INC. EXHIBIT 1002

US 2007/0192652 A1

0029 Server 130 can be communicatively linked to client
110-111 in any fashion that permits the exchange of digitally
encoded information between the server 130 and the client
110-111. For example, the client 110-111 can be linked to
server 130 through a network, which can be line-based or
wireless. Information can be exchanged using any known
communication protocol. Such as Transmission Control Pro
tocol/Internet Protocol (TCP/IP) based protocols, Universal
Serial Bus (USB) protocols, BLUETOOTH protocols, Uni
versal Plug and Play (UPnP) protocols, and the like.
0030. In a common embodiment, server 130 and client
110-111 will communicate via a wireless communication
system that has a limited range, denoted by wireless range
140. Range 140 can be centered upon one or more wireless
transceivers. For example, when server 130 is wirelessly
linked to client 110-111 through an 802.11 based protocol,
the server can function as a wireless access point. In another
example, multiple wireless transceivers can be established
and combined to form any desired wireless range 140.
0031 When outside the wireless range 140, client 110
111 can be unable to automatically communicate with server
130 and will therefore be unable to receive a heartbeat
response 116 from the server 130. Consequently, the client
110-111 will enter a locked state. When a locked client
110-111 reenters the wireless range 140, the client 110-111
can receive the unlock command 118 from server 130. Thus,
geographic boundaries in which clients 110-111 can be used
are able to be established based upon a wireless communi
cation range 140.
0032. In one embodiment, system 100 can be imple
mented using a server 130 with robust authorization and
transmission capabilities or using a server 130 with
extremely limited computing resources. For example, server
130 can be implemented as a broadcasting beacon that
intermittently broadcasts a key. The key can function as both
heartbeat response 116 and unlock command 118. When
clients 110-111 are outside the broadcast range of the
beacon, no heartbeat response 116 is being received, which
can cause the clients 110-111 to be placed in a locked state.
0033 FIG. 2 is a flow chart of a method 200 for restrict
ing devices using a heartbeat in accordance with an embodi
ment of the inventive arrangements disclosed herein. In one
embodiment, the method 200 can be performed in the
context of system 100.
0034 Method 200 can begin in step 205, where a client

is activated. Activation of a client can occur when the client
is powered on. In step 210, a heartbeat application can be
executed upon the client. In one arrangement, the instantia
tion of the heartbeat application can occur in a non-preempt
able fashion, such as occurring as a Power On Self Test
(POST) step of the client. In step 215, the heartbeat appli
cation can establish a heartbeat interval. In step 220, a
heartbeat timer can be initialized.

0035) In step 225, a check can be performed to see if the
client has received a heartbeat response from a server. If so,
the method can proceed to step 230 where the response can
be validated. If the response is validated, the method can
loop to step 220, where the heartbeat timer can be reset. If
no heartbeat response is received or if a received heartbeat
response is not valid, the method can proceed to step 235.
0036). In step 235, an optional expected response time can
be implemented. The expected response time can be a time

Aug. 16, 2007

limit less than the heartbeat interval that causes a heartbeat
request to be issued from the client to a server. The server
can be configured to respond to heartbeat requests with
heartbeat responses when the heartbeat requests are issued
by a valid user and when the client is communicatively
linked to (or within a communication range of) the server.
0037. In step 240, another check can be performed for the
heartbeat response. When a response is received, the
response can be validated, as shown in step 245. A valid
response causes the method to loop to step 220, where the
heartbeat timer is reset. Otherwise, the method proceeds to
step 250.
0038. In step 250, an optional retransmission time can be
implemented. The retransmission time can result in another
heartbeat request being conveyed to the server. The retrans
mission time can be continuously decreased for each retrans
mission iteration, as shown by step 255. Thus, clients can
more frequently issue heartbeat requests as the heartbeat
timer approaches the heartbeat interval.
0039. In step 260, if the heartbeat interval is exceeded,
the method can branch to step 280, where the client is placed
in a locked state. If the heartbeat interval is not exceeded, the
method can progress from step 260 to step 265. In step 265,
a check for a heartbeat response can be performed. A
received response can be validated in step 270. If a valid
heartbeat response is received, the method can loop from
step 270 to step 220, where the heartbeat timer is reset. If no
valid heartbeat response is received, the method can
progress to step 275, where the heartbeat request can be
retransmitted. The method can loop from step 275 to step
255.

0040. Once the client has been placed in a locked state
(step 280), the client can remain in that locked state until a
valid unlock command is received (step 285). In step 290,
the unlock command can place a client in an unlocked State.
Upon entering the unlocked State, a new heartbeat timer can
be initialized for the client. Hence, the method can loop from
step 290 to step 220.

0041 FIG. 3 is a flow chart of a method 300 in which a
service agent can configure a system to implement a heart
beat that restricts client devices in accordance with an
embodiment of the inventive arrangements disclosed herein.
Method 300 can be preformed in the context of system 100.

0.042 Method 300 can begin in step 305, when a cus
tomer initiates a service request. The service request can be
a request for a service agent to configure a new system, Such
as system 100, for the client. The service request can also be
a request to troubleshoot a problem with a client access
system. For example, the service request can be a request to
unlock a currently locked client, which is not responding to
an unlock command issued by a heartbeat server.
0043. In step 310, a human agent can be selected to
respond to the service request. In step 315, the human agent
can analyze a customer's current system and can develop a
Solution. The solution can include the acquisition and
deployment of additional hardware, such as deployment of
one or more heartbeat servers and/or wireless access points
for wireless communication with a heartbeat server.

0044) In step 320, the human agent can use one or more
computing devices to perform or to cause the computer

NETFLIX, INC. EXHIBIT 1002

US 2007/0192652 A1

device to perform the steps of method 200. For example, the
agent can utilize agent specific Software/hardware that func
tions as a skeleton or master key to unlock a locked device
(steps 285, 290).
0045. In optional step 325, the human agent can config
ure the customer's computer in a manner that the customer
or clients of the customer can perform one or more steps of
method 200 in the future. For example, the service agent can
load and configure a heartbeat server and can deploy heart
beat applications upon customer owned client machines so
that the clients and server automatically perform steps
210-290. In step 330, the human agent can complete the
service activities.

0046. It should be noted that while the human agent may
physically travel to a location local to adjust the customer's
computer or application server, physical travel may be
unnecessary. For example, the human agent can use a remote
agent to remotely manipulate the customer's heartbeat
server or a customer owned client.

0047 The present invention may be realized in hardware,
software, or a combination of hardware and software. The
present invention may be realized in a centralized fashion in
one computer system or in a distributed fashion where
different elements are spread across several interconnected
computer systems. Any kind of computer system or other
apparatus adapted for carrying out the methods described
herein is Suited. A typical combination of hardware and
software may be a general purpose computer system with a
computer program that, when being loaded and executed,
controls the computer system such that it carries out the
methods described herein.

0.048. The present invention also may be embedded in a
computer program product, which comprises all the features
enabling the implementation of the methods described
herein, and which when loaded in a computer system is able
to carry out these methods. Computer program in the present
context means any expression, in any language, code or
notation, of a set of instructions intended to cause a system
having an information processing capability to perform a
particular function either directly or after either or both of
the following: a) conversion to another language, code or
notation; b) reproduction in a different material form.
0049. This invention may be embodied in other forms
without departing from the spirit or essential attributes
thereof. Accordingly, reference should be made to the fol
lowing claims, rather than to the foregoing specification, as
indicating the scope of the invention.

What is claimed is:
1. A method of automatically locking a client comprising:
a client automatically establishing a heartbeat interval;
automatically determining whether a proper server

response is received within the heartbeat interval; and
when no proper response is received, automatically plac

ing the client in a locked state, wherein all client
functions accessible by a user other than those func
tions relating to unlocking the client are disabled while
the client is in the locked State, and wherein unlocking
the client requires a remotely located server to provide
an unlock message to the client.

Aug. 16, 2007

2. The method of claim 1, wherein the placing step further
comprises:

automatically securing data contained within the client So
that the secured data is not accessible while the client
is in a locked State.

3. The method of claim 1, wherein the client and the
remotely located server both include a wireless communi
cation ability, wherein messages including the server
response and the unlock message are wirelessly exchanged
between the client and the remotely located server.

4. The method of claim 1, wherein a communication range
is established within which the client is able to become
communicatively linked to a server configured to provide
heartbeat responses to at least one client to prevent the at
least one client from entering a locked State, wherein the
client is unable to receive the proper server response when
located outside the communication range.

5. The method of claim 4, wherein the communication
range is based upon a range of a wireless communication
network to which the server is communicatively linked.

6. The method of claim 1, wherein said steps of claim 1
are performed by at least one machine in accordance with at
least one computer program having a plurality of code
sections that are executable by the at least one machine.

7. The method of claim 1, wherein the steps of claim 1 are
performed by at least one of a service agent and a computing
device manipulated by the service agent, the steps being
performed in response to a service request.

8. A method of restricting access to a computing device
comprising:

automatically generating a heartbeat event within a client;
determining whether a server response is received by the

client for the heartbeat event; and
automatically altering a lock state of the client based upon

the determining step, wherein a server response to the
heartbeat event is required to prevent the client from
automatically adjusting from an unlocked state to a
locked State.

9. The method of claim 8, further comprising:
establishing a custom restriction profile upon the client,

wherein the determining step is based upon the restric
tion profile.

10. The method of claim 9, further comprising:
authenticating a user for the client; and
ascertaining that the user possesses privileges to modify

the custom restriction profile, wherein the client
includes an interface through which the authenticated
user is able to configure the custom restriction profile.

11. The method of claim 8, wherein the altering step alters
the lock state of the client to a locked state, and wherein the
client is configured to remain in the locked State until a
communication pathway is established between the client
and the server and until the server provides an unlock
response to the client via the communication pathway.

12. The method of claim 11, wherein the client iteratively
polls the server to receive the unlock response.

13. The method of claim 11, wherein all client functions
accessible by a user other than those functions relating to
unlocking the client are disabled while the client is in the
locked State.

NETFLIX, INC. EXHIBIT 1002

US 2007/0192652 A1

14. The method of claim 8, further comprising:
responsive to the heartbeat event, the client automatically

attempting to wirelessly transmit a heartbeat message
to which the server response is expected, wherein the
server response prevents the client from automatically
adjusting from the unlocked state to the locked state.

15. The method of claim 14, further comprising:
identifying an expected response time and a retransmis

sion time, wherein the retransmission time is less than
the expected response time:

when the client fails to receive the server response to the
heartbeat message within the expected response time.
the client retransmitting the heartbeat message; and

when the client fails to receive the server response to the
retransmitted heartbeat message within the retransmis
sion time, the client executing at least one of the
altering step and a step of again retransmitting the
heartbeat message.

16. The method of claim 8, wherein said steps of claim 8
are performed by at least one machine in accordance with at
least one computer program having a plurality of code
sections that are executable by the at least one machine.

17. The method of claim 8, wherein the steps of claim 8
are performed by at least one of a service agent and a
computing device manipulated by the service agent, the
steps being performed in response to a service request.

Aug. 16, 2007

18. A storage space upon a machine-readable medium
local to a client, the machine-readable medium comprising
a plurality of code instructions for causing a machine to
perform the steps of:

identifying a heartbeat interval;
starting a heartbeat timer within the client;
when a heartbeat response is received from a remotely

located server, resetting the heartbeat timer; and
when the heartbeat timer exceeds the heartbeat interval.

automatically adjusting the client from an unlocked
state to a locked state, wherein all client functions
accessible by a user other than those functions relating
to unlocking the client are disabled while the client is
in the locked state.

19. The storage space of claim 18, wherein the client is
configured so that a user of the client is unable to disable the
heartbeat timer and is unable to prevent the client from
entering the locked state in absence of a heartbeat response
being received from the remotely located server.

20. The storage space of claim 18, wherein the identify
ing, starting, and adjusting steps are performed as a back
ground process executing upon the client, wherein users of
the device are not authorized to remove the background
process and are not authorized to disable the background
process.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-9

NETFLIX, INC. EXHIBIT 1002

(19) United States
US 20070294.380A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0294380 A1
Natarajan et al. (43) Pub. Date: Dec. 20, 2007

(54) SYSTEM AND METHOD FOR PERIODIC
SERVER-TO-CLIENT DATA DELVERY

(75) Inventors: Giri Natarajan, La Palma, CA
(US); Silvy Wilson, Rancho Santa
Margar, CA (US); William Su,
Riverside, CA (US)

Correspondence Address:
TUCKER ELLIS & WEST LLP
1150 HUNTINGTON BUILDING, 925 EUCLID
AVENUE
CLEVELAND, OH 44115-1414

(73) Assignees: Kabushiki Kaisha Toshiba;
Toshiba Tec Kabushiki Kaisha

11/452,778 (21) Appl. No.:

(22) Filed: Jun. 14, 2006

402

Receive Heartbeat From
Clients

404 All Heartbeats Received

410

Oldentified Clien

Another Client?

Publication Classification

(51) Int. Cl.
G06F 5/73 (2006.01)

(52) U.S. Cl. ... 709/223
(57) ABSTRACT

A server-to-client data delivery system and method is pro
vided. The system includes a server capable of providing a
variety of services to one or more client devices. Each client
device periodically transmits a heartbeat signal to the server
over an associated network including client device identifi
cation data. When the server fails to receive a heartbeat from
an associated client device, an alert signal is generated
indicating the non-responsiveness of the associated client
device. For each responsive client device, the server per
forms an identification of the device and determines whether
new or updated Software, or Supplemental data, is available
for the client. The server then generates response data
including the next heartbeat interval and the software or
Supplemental data. The response data is then transmitted to
the responsive and identified client, whereupon the server
proceeds to perform the same process for each responsive
and identified client.

--

406

Identify Non-Responding
Clients

Generate Alarm Corresponding
to Non-Responsive Clients

408

420

Send Next Heartbeat Interval
Data to Client

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 20, 2007 Sheet 1 of 5 US 2007/0294380 A1

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 20, 2007 Sheet 2 of 5 US 2007/0294380 A1

Optional
I/O

Interface

RAM
(Figure 4)

C D
Storage I/F

Network
Subsystem

NC

218

Figure 2

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 20, 2007 Sheet 3 of 5 US 2007/0294380 A1

300

322 Keyboard

Peripheral
Interface

Pointing
Device

324

328

Display
Monitor

326

332

Figure 3

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Dec. 20, 2007 Sheet 4 of 5 US 2007/0294380 A1

-le
402

Receive Heartbeat From
Clients

Or dentified Clied

Another Client?

406

ldentify Non-Responding
Clients

Generate Alarm Corresponding
to Non-Responsive Clients

404

410 408

420

Send Next Heartbeat Interval
Data to Client

Figure 4

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

809

Dec. 20, 2007 Sheet 5 of 5

709

Patent Application Publication

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

SYSTEMAND METHOD FOR PERIODC
SERVER-TO-CLIENT DATA DELIVERY

BACKGROUND OF THE INVENTION

0001. The subject application is directed to a system and
method for server-to-client data delivery. More particularly,
the Subject application is directed to a system wherein a
client device periodically transmits information or heartbeat
data to a server to inform the server that the client is
presently accessing the server. In response to such heartbeat
data transmission, the server will periodically transmit soft
ware, updates, data, or other Supplemental information to
Such client.
0002. In a typical web-based data communication
between a client and a server, a server has no information as
to presence or availability of a client until such time as the
client initiates a request for services to that server. There are
frequent requirements to update software, data, drivers,
operating systems, and the like on networked workstations.
While any workstation requires periodic updates, this is also
a requirement in workstations that are used in connection
with document processing operations.
0003. In prior, network-based update procedures, it is
incumbent on a workstation to inquire as to whether any
new, modified or updated Software, data, drivers, operating
systems, and the like are available on a server. If a server has
Such information, it cannot determine a presence of a
workstation or a need for transmission until it receives
information from the workstation first. As such, there is a
need for a system and method wherein a client periodically
informs the server of its presence on the network.
0004. The subject system seizes upon receipt of a peri
odic heartbeat pulse to selectively allow for communicating
of Such new or updated data or executable code to a
workstation in need of the same.

SUMMARY OF THE INVENTION

0005. In accordance with the subject application, there is
provided a system and method for server-to-client data
delivery.
0006 Further, in accordance with the subject application,
there is provided a system wherein a client device periodi
cally transmits information or heartbeat data to a server to
inform the server that the client is presently accessing the
server, wherein in response to such heartbeat data transmis
Sion, the server will periodically transmit Software, updates,
data, or other Supplemental information to Such client.
0007 Still further, in accordance with the subject appli
cation, there is provided a system and method seizes upon
receipt of a periodic heartbeat pulse to selectively allow for
communicating of Such new or updated data or executable
code to a workstation in need of the same.
0008 Still further, in accordance with the subject appli
cation, there is provided a server-to-client data delivery
system. The system comprises input means adapted for
periodically receiving heartbeat data from each of a plurality
of associated workstations via a network. The heartbeat data
includes identification data representative of an identity of
each of the associated workstations. The system also com
prises testing means adapted for testing received request
data to identify delivery data targeted for at least one of the
associated workstation as well as alarm means adapted for
generating an alarm signal corresponding to each worksta

Dec. 20, 2007

tion from which no heartbeat data has been received for a
preselected time period. The system also includes means
adapted for selectively generating response data responsive
to received heartbeat data inclusive of identified delivery
data targeted for the at least one associated workstation and
means adapted for communicating response data to the at
least one associated workstation in accordance with identi
fication data associated therewith.
0009 Still further, in accordance with the subject appli
cation, there is provided a server-to-client data delivery
method. The method includes the steps of periodically
receiving heartbeat data from each of a plurality of associ
ated workstations via a network, wherein the heartbeat data
including identification data representative of an identity of
each of the associated workstations. The method also com
prises the steps of testing received request data to identify
delivery data targeted for at least one of the associated
workstation and generating an alarm signal corresponding to
each workstation from which no heartbeat data has been
received for a preselected time period. If delivery data is
detected, then the method selectively generates response
data responsive to received heartbeat data inclusive of
identified delivery data targeted for the at least one associ
ated workstation and communicates response data to the at
least one associated workstation in accordance with identi
fication data associated therewith.
0010. In a preferred embodiment, the associated work
station is comprised of a document processing kiosk and the
delivery data includes executable code adapted for operation
thereof. Preferably, the executable code performs an update
of Software located on document processing kiosk.
0011. In a preferred embodiment, the system and method
further include the ability to communicate a plurality of
response data sets to the at least one associated workstation
corresponding to a consecutive plurality of received heart
beat data corresponding thereto, such that the at least one
workstation receives delivery data in a plurality of segments
conjoined at the associated workstation.
0012 Still other advantages, aspects and features of the
Subject application will become readily apparent to those
skilled in the art from the following description wherein
there is shown and described a preferred embodiment of the
Subject application, simply by way of illustration of one of
the best modes best suited for to carry out the subject
application. As it will be realized, the Subject application is
capable of other different embodiments and its several
details are capable of modifications in various obvious
aspects all without departing from the scope of the Subject
application. Accordingly, the drawing and descriptions will
be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 The subject application is described with reference
to certain figures, including:
0014 FIG. 1 which is an overall system diagram for
server-to-client data delivery system according to the Subject
application;
0015 FIG. 2 is a block diagram illustrating server hard
ware for use in the system for server-to-client data delivery
according to the Subject application;
0016 FIG. 3 is a block diagram illustrating workstation
hardware for use in the system for server-to-client data
delivery according to the Subject application;

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

0017 FIG. 4 is a flowchart illustrating the method for a
server-to-client data delivery from a server point of view
according to the Subject application; and
0018 FIG. 5 is a flowchart illustrating the method for a
server-to-client data delivery from a client point of view
according to the Subject application.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0019. The subject application is directed to a system and
method for server-to-client data delivery. In particular, the
Subject application is directed to a system and method
wherein a client device periodically transmits information or
heartbeat data to a server to inform the server that the client
is presently accessing the server, wherein in response to Such
heartbeat data transmission, the server will periodically
transmit software, updates, data, or other Supplemental
information to such client. More particularly, the subject
application is directed to a system and method that seizes
upon receipt of a periodic heartbeat pulse to selectively
allow for the communication of new or updated executable
code to a workstation in need of the same.
0020 Referring now to FIG. 1, there is shown a block
diagram of a system 100 in accordance with the subject
application. As shown in FIG. 1, the system 100 includes a
server 102 in data communication with a distributed com
munications environment 104 via a suitable communica
tions link 106. It will be appreciated by those skilled in the
art that the server is representative of any computer hard
ware employed in a server-type role in a client-server
relationship. In the preferred embodiment, the server 102 is
Suitably adapted to provide, or host, a variety of applications
and services, which are used by one or more client devices.
Preferably, the server 102 is capable of providing a variety
of web-based services, including, for example and without
limitation, remote access, remote storage, document pro
cessing operations, print job generation, electronic mail,
document management services, and the like. The function
ing of the server 102 will be better understood in conjunction
with the block diagram illustrated in FIG. 2 and discussed in
greater detail below.
0021. In the preferred embodiment, the distributed com
munications environment 104 is a computer network, Suit
ably adapted to enable the exchange of data between two or
more electronic devices. In accordance with one aspect of
the subject application, the network 104 is a distributed
network, including, for example and without limitation, the
Internet, wide area network, or the like. It will be appreci
ated by those skilled in the art that suitable networks include,
for example and without limitation, a proprietary commu
nications network, a local area network, a personal area
network, an intranet, and the like.
0022 Communications between the distributed network
104 and the server 102 are advantageously accomplished
using the communications link 106. As will be appreciated
by those skilled in the art, the communications link 106 is
any data communication medium, known in the art, capable
of enabling the exchange of data between two electronic
devices. The communications link 106 is any suitable chan
nel of data communications known in the art including, but
not limited to wireless communications, for example and
without limitation, Bluetooth, WiMax, 802.11a, 802.11b,
802.11g, 802.11(X), a proprietary communications network,
infrared, optical, the public switched telephone network, or

Dec. 20, 2007

any Suitable wireless data transmission system, or wired
communications known in the art.

0023 The system 100 also includes a first client device
and a second client device, illustrated in FIG. 1 as the first
computer workstation 108 and the second computer work
station 110. It will be appreciated by those skilled in the art
that the client devices, e.g., first workstation 108 and second
workstation 110 are shown in FIG. 1 as computer worksta
tions for example purposes. As the skilled artisan will
understand, the workstations 108 and 110 shown in FIG. 1
are representative of any computing device known in the art,
including, for example and without limitation, workstation,
a document processing kiosk, a personal computer, a per
Sonal data assistant, a web-enabled cellular telephone, a
smart phone, or other web-enabled electronic device suit
ably capable of generating and/or transmitting electronic
document data to a multifunctional peripheral device. It will
be understood by those skilled in the art that the client
device, or workstation 108 or 110 is suitably capable of
implementation as a controller associated with a document
processing device (not shown). The skilled artisan will
appreciate that Such an embodiment is in accordance with
the methodologies and systems described and claimed
herein. The functioning of the first computer workstation
108 and the second computer workstation 110 will better be
understood in conjunction with the block diagram illustrated
in FIG. 3, discussed in greater detail below.
0024. In the preferred embodiment, the workstations 108
and 110 are in data communication with the network 104 via
Suitable communications links 112 and 114, respectively. As
will be understood by those skilled in the art, the commu
nications links 112 and 114 are any suitable communications
channels known in the art including, for example and
without limitation, WiMax, 802.11a, 802.11b, 802.11g, 802.
11(x), Bluetooth, the public switched telephone network, a
proprietary communications network, infrared, optical, or
any other Suitable wired or wireless data transmission com
munications known in the art. In the preferred embodiment
of the subject application, the workstations 108 and 110 are
advantageously equipped to facilitate the generation of
service requests to be performed by the server 102.
0025 Turning now to FIG. 2, illustrated is a representa
tive architecture of a suitable server 200, shown in FIG. 1 as
the server 102, on which operations of the subject system
100 are completed. Included is a processor 202, suitably
comprised of a central processor unit. However, it will be
appreciated that processor 202 may advantageously be com
posed of multiple processors working in concert with one
another as will be appreciated by one of ordinary skill in the
art. Also included is a non-volatile or read only memory 204
which is advantageously used for static or fixed data or
instructions, such as BIOS functions, system functions,
system configuration, and other routines or data used for
operation of the server 200.
0026. Also included in the server 200 is random access
memory 206, Suitably formed of dynamic random access
memory, static random access memory, or any other Suit
able, addressable memory system. Random access memory
provides a storage area for data instructions associated with
applications and data handling accomplished by processor
202.

0027. A storage interface 208 suitably provides a mecha
nism for Volatile, bulk or long term storage of data associ
ated with the server 200. The storage interface 208 suitably

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

uses bulk storage, such as any suitable addressable or serial
storage. Such as a disk, optical, tape drive and the like as
shown as 216, as well as any suitable storage medium as will
be appreciated by one of ordinary skill in the art.
0028. A network interface subsystem 210 suitably routes
input and output from an associated network allowing the
server 200 to communicate to other devices. Network inter
face subsystem 210 suitably interfaces with one or more
connections with external devices to the server 200. By way
of example, illustrated is at least one network interface card
214 for data communication with fixed or wired networks,
Such as Ethernet, token ring, and the like, and a wireless
interface 218, suitably adapted for wireless communication
via means such as WiFi, WiMax, wireless modem, cellular
network, or any Suitable wireless communication system. It
is to be appreciated however, that the network interface
Subsystem Suitably utilizes any physical or non-physical
data transfer layer or protocol layer as will be appreciated by
one of ordinary skill in the art. In the illustration, the
network interface 214 is interconnected for data interchange
via a physical network 220, suitably comprised of a local
area network, wide area network, or a combination thereof.
0029 Data communication between the processor 202,
read only memory 204, random access memory 206, storage
interface 208 and network subsystem 210 is suitably accom
plished via a bus data transfer mechanism, such as illustrated
by bus 212.
0030 Suitable executable instructions on the server 200
facilitate communication with a plurality of external
devices, such as workstations, document processing devices,
other servers, or the like. While, in operation, a typical
server operates autonomously, it is to be appreciated that
direct control by a local user is sometimes desirable, and is
Suitably accomplished via an optional input/output interface
222 as will be appreciated by one of ordinary skill in the art.
0031 Referring now to FIG. 3, illustrated is a hardware
diagram of a suitable workstation 300 for use in connection
with the subject system 100. The skilled artisan will appre
ciate that the workstation 300 depicted in FIG. 3 is repre
sentative of both the first workstation 108 and the second
workstation 110, shown in FIG. 1. A suitable workstation
includes a processor unit 302 which is advantageously
placed in data communication with read only memory 304.
Suitably non-volatile read only memory, Volatile read only
memory or a combination thereof, random access memory
306, display interface 308, storage interface 310, and net
work interface 312. In a preferred embodiment, interface to
the foregoing modules is suitably accomplished via a bus
314.

0032 Read only memory 304 suitably includes firmware,
such as static data or fixed instructions, such as BIOS,
system functions, configuration data, and other routines used
for operation of the workstation 300 via CPU 302.
0033 Random access memory 306 provides a storage
area for data and instructions associated with applications
and data handling accomplished by processor 302.
0034 Display interface 308 receives data or instructions
from other components on bus 314, which data is specific to
generating a display to facilitate a user interface. Display
interface 308 suitably provides output to a display terminal
326, suitably a video display device such as a monitor, LCD,
plasma, or any other Suitable visual output device as will be
appreciated by one of ordinary skill in the art.

Dec. 20, 2007

0035 Storage interface 310 suitably provides a mecha
nism for non-volatile, bulk or long term storage of data or
instructions in the workstation 300. Storage interface 310
Suitably uses a storage mechanism, such as storage 318,
suitably comprised of a disk, tape, CD, DVD, or other
relatively higher capacity addressable or serial storage
medium.

0036 Network interface 312 suitably communicates to at
least one other network interface, shown as network inter
face 320, such as a network interface card, and wireless
network interface 330, such as a WiFi wireless network card.
It will be appreciated that by one of ordinary skill in the art
that a suitable network interface is comprised of both
physical and protocol layers and is suitably any wired
system, such as Ethernet, token ring, or any other wide area
or local area network communication system, or wireless
system, such as WiFi, WiMax, or any other suitable wireless
network system, as will be appreciated by on of ordinary
skill in the art. In the illustration, the network interface 320
is interconnected for data interchange via a physical network
332, suitably comprised of a local area network, wide area
network, or a combination thereof.
0037. An input/output interface 316 in data communica
tion with bus 314 is suitably connected with an input device
322, such as a keyboard or the like. Input/output interface
316 also suitably provides data output to a peripheral
interface 324, such as a USB, universal serial bus output,
SCSI, Firewire (IEEE 1394) output, or any other interface as
may be appropriate for a selected application. Finally, input/
output interface 316 is suitably in data communication with
a pointing device interface 328 for connection with devices,
Such as a mouse, light pen, touch screen, or the like. The
skilled artisan will appreciate that the use of the workstation
300 herein is for example purposes only. It will be apparent
to those skilled in the art that the subject application is
capable of incorporating the components described above
and the methodologies described below on any myriad of
computing devices, including, for example and without
limitation, a controller associated with a document process
ing device, a laptop computer, a personal computer, a
personal data assistant, a web-enabled cellular telephone, a
proprietary portable electronic communication device, or the
like.

0038. In operation, the workstations 108 and 110 rou
tinely, and upon the expiration of a predetermined time
period, transmit a heartbeat signal to the server 102 indi
cating that the workstations 108 and 110 are accessing
services provided by the server 102. Preferably, the heart
beat signal sent by the workstations 108 and 110 include data
representative of the identity of the sending device, i.e.,
workstation 108 or workstation 110. When a predetermined
period of time has expired, as set by a response from the
server 102 to the receipt of the preceding heartbeat signal,
the workstation 108 sends a heartbeat signal to the server
102 via the communications network 104. Similarly, the
workstation 110 sends a heartbeat signal to the server 102
upon the expiration of a predetermined period of time, as set
in the response to the preceding heartbeat signal.
0039. The server 102 routinely receives heartbeat signals
from multiple workstations associated with the services
provided by the server 102. Preferably, the signals received
from each workstation 108 or 110 serve to identify the
device from among all devices sending Such signals to the
server 102. In the event that the server 102 does not receive

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

a heartbeat signal from one of the devices, e.g., workstation
110, the server 102 issues an alert signal indicating the
non-responsiveness of the device 110 to an administrator,
service log, technical Support, or the like.
0040. For each heartbeat signal received from a worksta

tion, the server 102 identifies the originating device, e.g.,
responsive workstation 108. Based upon this identification,
the server 102 determines whether executable code, a soft
ware update, upgrade, or other Supplemental data, i.e.,
delivery data, is available for the workstation 108. When no
such software is available, the server 102 generates and
transmits data representing the next heartbeat transmission
interval to the workstation 108. The server 102 then deter
mines if additional clients remain for determination of the
availability of updates. When an update is available, the
server 102 generates response data including the new or
updated software, as well as the next interval for heartbeat
transmission, to the workstation 108. When the software is
exceptionally large, it is segmented by the server 102 and
transmitted in Successive responses to heartbeat signals until
all such segments have been received by the workstation
108. Following receipt of the entire software update, the
workstation 108 installs the new or upgraded software. The
workstation 108 then transmits a heartbeat signal upon the
expiration of the predetermined period of time, as set by the
last response from the server 102. In one particular embodi
ment, the software is transmitted as executable code, the
execution of which installs the updates, new software,
upgrades, supplemental data, or the like.
0041. The functioning of the system 100 and the com
ponents described above in accordance with FIG. 1, FIG. 2,
and FIG. 3 will better be understood in conjunction with the
method illustrated in FIG. 4 and FIG. 5. Referring now to
FIG. 4, there is shown a server-side view of the server-to
client data delivery method according to the Subject appli
cation. As shown in FIG. 4, the flowchart 400 illustrates the
server-side of operations of the method in accordance with
the subject application. Beginning at step 402, the server 102
receives a heartbeat signal from each of a plurality of
workstations associated with the services provided by the
server 102. As previously discussed, the services provided
by the server 102 include, but are not limited to, web-based
services, including, for example and without limitation,
remote access, security verification services, quota manage
ment, remote storage, document processing operations, print
job generation, electronic mail, document management Ser
vices, and the like. In accordance with the preferred embodi
ment of the subject application, each workstation 108 and
110 are instructed to periodically send a heartbeat signal to
the server 102 indicating that the device is accessing the
server 102. The period of transmission is predetermined
during initial connection of the device to the server 102, set
by a response to the heartbeat signal from the server 102, or
any other manner known in the art.
0042. The server 102 then determines, at step 404,
whether heartbeat signals have been received from all work
stations 108 and 110 associated with the server 102. When
the server 102 determines that one or more workstations are
non-responsive, i.e., failed to transmit a heartbeat signal
within the preselected period of time, the server 102 iden
tifies the non-responsive clients at step 406. Following
identification, the server 102 generates an alert signal cor
responding to each non-responsive device. Flow then pro
ceeds to step 410, whereupon the responsive clients are

Dec. 20, 2007

identified based upon the received heartbeat signals. It will
be appreciated by those skilled in the art that a positive
determination that all clients have responded at step 404
prompts flow to proceed to the identification of each client
at step 410.
0043. After the server 102 has identified each responsive
client, operations continue to step 412, whereupon a deter
mination is made whether an update is available for a
workstation. Those skilled in the art will appreciate that the
update, new software, or Supplemental data determination is
made for each responsive and identified workstation. When
no such update or new software is available for the identified
workstation, flow proceeds to step 420, whereupon the next
heartbeat transmission time is set and sent to the worksta
tion. A determination is then made at step 418 whether
another workstation remains for upgrade determination.
When no additional workstations remain, operations termi
nate as the server 102 awaits the receipt of the next batch of
heartbeat signals from the associated workstations to begin
the process again at step 402. When additional workstations
remain, flow returns to step 412, whereupon the next respon
sive and identified workstation is analyzed to determine
whether an update or upgrade is available for the worksta
tion.

0044) When it is determined, at step 412, that new
software is available for the responsive and identified work
station, flow proceeds to step 414, whereupon response data
is generated by the server 102 inclusive of the next heartbeat
time period, and the update, upgraded software, or execut
able code for a first workstation. The response data is then
transmitted to the first workstation at step 416. It will
become apparent to those skilled in the art that in the event
that the Software is too large for a single "piggy-back
transmission, i.e., attachment to the heartbeat interval setting
transmission, the server 102 is capable of segmenting the
Software into Smaller components, which are then transmit
ted individually or as groups, at Subsequent heartbeat inter
vals to the corresponding workstation, thereby allowing the
client to receive the entire update and install following
receipt of the last segment. Returning to step 416, following
transmission of the response data to the workstation, flow
proceeds to step 418, whereupon a determination is made
whether another workstation remains for analysis during the
current heartbeat time interval. When no additional work
stations remain, the operation terminates until the receipt of
the next batch of heartbeat signals at step 402. When one or
more additional workstations remain, operation returns to
the determination step 412 for the next responsive and
identified workstation.

0045 Turning now to FIG. 5, there is shown a flowchart
500 illustrating the client side operation in accordance with
the subject application. As shown in FIG. 5, the flowchart
300 illustrates the method of generating a heartbeat signal by
a workstation and receiving software updates, upgrades, or
Supplemental data in accordance with the Subject applica
tion. For purposes of explanation only, reference with
respect to FIG. 5 will be explained using the workstation
108. The skilled artisan will appreciate that the method
depicted in FIG. 5 is applicable to each device associated
with the services provided by the server 102. Beginning at
step 502, the workstation 108 generates and transmits a
heartbeat signal to the server 102, indicating the identity of
the workstation 108, and that the workstation 108 is access
ing the server 102 provided services. At step 504, the

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

workstation 104 receives response data. In accordance with
the preferred embodiment of the subject application, the
response data includes a preselected time period, the expi
ration of which prompts the generation and transmission of
a next heartbeat signal from the workstation 108 to the
server 102. In addition, the response data is advantageously
capable of including new, updated, or upgraded software,
Supplemental data, executable code, or other delivery data.
0046. The workstation 108 then determines, at step 506,
whether the response data includes new software or Supple
mental data. When no such software or data is indicated,
flow proceeds to step 508, whereupon the workstation 108
waits the preselected period of time, as set by the response
data or preset by an administrator, before returning to step
502 and transmitting the next heartbeat signal. When soft
ware updates or Supplemental data is included in the
response data, as determined in step 506, flow proceeds to
step 510, whereupon a determination is made whether
additional data segments are required for installation of the
new software or the Supplemental data, or execution of the
executable code. When additional segments are required,
flow proceeds to step 508, whereupon the workstation 108
waits the preselected period of time before transmitting the
next heartbeat signal at step 502. When all segments have
been received, or when no additional segments are indicated,
flow proceeds to step 512, whereupon the new software is
installed on the workstation 108. The workstation 108 then
progresses to step 508, whereupon the device 108 waits the
preselected period of time before transmitting the next
heartbeat signal. The skilled artisan will appreciate that the
method described in FIG. 3 is repeated for each responsive
workstation associated with the server 102.

0047. The subject application extends to computer pro
grams in the form of Source code, object code, code inter
mediate sources and object code (such as in a partially
compiled form), or in any other form suitable for use in the
implementation of the Subject application. Computer pro
grams are suitably standalone applications, software com
ponents, Scripts or plug-ins to other applications. Computer
programs embedding the Subject application are advanta
geously embodied on a carrier, being any entity or device
capable of carrying the computer program: for example, a
storage medium such as ROM or RAM, optical recording
media Such as CD-ROM or magnetic recording media Such
as floppy discs. The carrier is any transmissible carrier Such
as an electrical or optical signal conveyed by electrical or
optical cable, or by radio or other means. Computer pro
grams are Suitably downloaded across the Internet from a
server. Computer programs are also capable of being embed
ded in an integrated circuit. Any and all Such embodiments
containing code that will cause a computer to perform
Substantially the Subject application principles as described,
will fall within the scope of the subject application.
0048. The foregoing description of a preferred embodi
ment of the Subject application has been presented for
purposes of illustration and description. It is not intended to
be exhaustive or to limit the subject application to the
precise form disclosed. Obvious modifications or variations
are possible in light of the above teachings. The embodiment
was chosen and described to provide the best illustration of
the principles of the Subject application and its practical
application to thereby enable one of ordinary skill in the art
to use the Subject application in various embodiments and
with various modifications as are Suited to the particular use

Dec. 20, 2007

contemplated. All Such modifications and variations are
within the scope of the subject application as determined by
the appended claims when interpreted in accordance with
the breadth to which they are fairly, legally and equitably
entitled.

What is claimed:
1. A server-to-client data delivery system comprising:
input means adapted for periodically receiving heartbeat

data from each of a plurality of associated workstations
via a network, the heartbeat data including identifica
tion data representative of an identity of each of the
associated workstations;

testing means adapted for testing received identification
data to identify delivery data targeted for at least one of
the associated workstation;

alarm means adapted for generating an alarm signal
corresponding to each workstation from which no
heartbeat data has been received for a preselected time
period;

means adapted for selectively generating response data
responsive to received heartbeat data inclusive of iden
tified delivery data targeted for the at least one associ
ated workstation; and

means adapted for communicating response data to the at
least one associated workstation in accordance with
identification data associated therewith.

2. The server-to-client data delivery system of claim 1
wherein the associated workstation is comprised of a docu
ment processing kiosk.

3. The server-to-client data delivery system of claim 2
further comprising means adapted for communicating a
plurality of response data sets to the at least one associated
workstation corresponding to a consecutive plurality of
received heartbeat data corresponding thereto. Such that the
at least one workstation receives delivery data in a plurality
of segments conjoined at the associated workstation.

4. The server-to-client data delivery system of claim 1
wherein the delivery data includes executable code adapted
for operation thereof.

5. The server-to-client data delivery system of claim 4
wherein the executable code performs an update of software
located on document processing kiosk.

6. A server-to-client data delivery method comprising the
steps of

periodically receiving heartbeat data from each of a
plurality of associated workstations via a network, the
heartbeat data including identification data representa
tive of an identity of each of the associated worksta
tions;

testing received identification data to identify delivery
data targeted for at least one of the associated work
station;

generating an alarm signal corresponding to each work
station from which no heartbeat data has been received
for a preselected time period;

selectively generating response data responsive to
received heartbeat data inclusive of identified delivery
data targeted for the at least one associated workstation;
and

communicating response data to the at least one associ
ated workstation in accordance with identification data
associated therewith.

NETFLIX, INC. EXHIBIT 1002

US 2007/0294380 A1

7. The server-to-client data delivery method of claim 6
wherein the associated workstation is comprised of a docu
ment processing kiosk.

8. The server-to-client data delivery method of claim 7
further comprising the step of communicating a plurality of
response data sets to the at least one associated workstation
corresponding to a consecutive plurality of received heart
beat data corresponding thereto, such that the at least one
workstation receives delivery data in a plurality of segments
conjoined at the associated workstation.

9. The server-to-client data delivery method of claim 6
wherein the delivery data includes executable code adapted
for operation thereof.

10. The server-to-client data delivery method of claim 9
wherein the executable code performs an update of software
located on document processing kiosk.

11. A computer-implemented method for server-to-client
data delivery comprising the steps of

periodically receiving heartbeat data from each of a
plurality of associated workstations via a network, the
heartbeat data including identification data representa
tive of an identity of each of the associated worksta
tions;

testing received identification data to identify delivery
data targeted for at least one of the associated work
station;

generating an alarm signal corresponding to each work
station from which no heartbeat data has been received
for a preselected time period;

Dec. 20, 2007

selectively generating response data responsive to
received heartbeat data inclusive of identified delivery
data targeted for the at least one associated workstation;
and

communicating response data to the at least one associ
ated workstation in accordance with identification data
associated therewith.

12. The computer-implemented method for server-to
client data delivery of claim 11 wherein the associated
workstation is comprised of a document processing kiosk.

13. The computer-implemented method for server-to
client data delivery of claim 12 further comprising the step
of communicating a plurality of response data sets to the at
least one associated workstation corresponding to a con
secutive plurality of received heartbeat data corresponding
thereto, such that the at least one workstation receives
delivery data in a plurality of segments conjoined at the
associated workstation.

14. The computer-implemented method for server-to
client data delivery of claim 11 wherein the delivery data
includes executable code adapted for operation thereof.

15. The computer-implemented method for server-to
client data delivery of claim 14 wherein the executable code
performs an update of Software located on document pro
cessing kiosk.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-10

NETFLIX, INC. EXHIBIT 1002

(19) United States
US 2002O165849A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0165849 A1
Singh et al. (43) Pub. Date: Nov. 7, 2002

(54) AUTOMATIC ADVERTISER NOTIFICATION
FOR A SYSTEM FOR PROVIDING PLACE
AND PRICE PROTECTION IN A SEARCH
RESULT LIST GENERATED BY A
COMPUTER NETWORK SEARCH ENGINE

(76) Inventors: Narinder Pal Singh, Half Moon Bay,
CA (US); Scott W. Snell, Hollywood,
CA (US); Douglas T. Huffman,
Altadena, CA (US); Darren J. Davis,
Rowland Heights, CA (US); Thomas A.
Soulanille, Pasadena, CA (US);
Dominic Dough-Ming Cheung, South
Pasadena, CA (US)

Correspondence Address:
BRINKS HOFER GILSON & LONE
P.O. BOX 10395
CHICAGO, IL 60610 (US)

(21) Appl. No.: 09/963,855

(22) Filed: Sep. 26, 2001

14
Advertiser

N Web Pages
30

Advertiser
Web
Server

A.

Account Management
14 Sewer

Storage
32

Processing
System 34

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/911,674,
filed on Jul. 24, 2001, which is a continuation of
application No. 09/322,677, filed on May 28, 1999,
now Pat. No. 6,269,361.

Publication Classification

(51) Int. Cl." G06F 17/60; G06F 7/00
(52) U.S. Cl. ... 707/1; 707/10

(57) ABSTRACT

A notification method in a computer database System
includes receiving a notification instruction from an owner
asSociated with a Search listing Stored in the computer
database System, monitoring conditions Specified by the
notification instruction for the Search listing, and Sending a
notification to the owner upon detection of a changed
condition of the Search listing.

10
Clien 12

browser 16 12

Search
Engine
Web
Server

NETFLIX, INC. EXHIBIT 1002

US 2002/0165849 A1 Patent Application Publication

3
f
C
c

s

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 2 of 24 US 2002/0165849 A1

Get Context-Specific Help

to
Secure
Odin

Screen
Request

User Name & Password
13 O 1-4. O

Customer 12O View Advertiser
Service Policies

User Specifies
- Service Type
- Comment

Advertiser Display
Main Page Advertiser
- Add Money to ACCOUnt Policies
- View Reports
- ACCount Management
- ACCount Administration
- Customer Service

Add Money to - Advertiser Policies View
Account Report

- Request - User selects
armount, 14 O 18O report parameters,
payment type, view options
instrument info - Print Dowaload

- Display current
balance

ACCourt Account Manage? inent
Administration - Add Bidded Search Term
- Wiew Account Administrative f5O - Get Suggestions on Bidded Search

information term
- Change Account Administrative - Delete Bidded Search em.

formation - Change Bids
- Set Notification Options - Change Rank Position
- View Transaction. History - Modify Listing Component
- Update User Access Profile - Change Matching Options

17O of Bidded Search term
- Project Expenses
- Attocate Money between Sub ACCOUnts
- View Sub ACCount information
- View Current top Bids/Search term

List

Ja/ 2

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 3 of 24 US 2002/0165849 A1

BACK END SySTEMS NTERN

(star) 272

ADVRTS ER NAV CAS
TO OGN PAGE.

274.

A DVR SER PROVES USER
NAME AND PASSWORD A
APPROPRIATE PROMPIS

27 (2.

USER NAME AND
PASSWORD VALIDATED.

278

ACCESS RRV LEGES
SET POR ADVERSER.

OGN EVEN RECORD
RECORDEO N DATA3ASE

FOR AUD RAL REFERENCE.

28O

ADVERSER PROVIDED WITH
ACCESS TO DERAU PAGE

OP - ACCOUN
1N-1 MANAGEMEN SERVER

ass

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 4 of 24 US 2002/0165849 A1

BACX END Sy STEMS N R N 2 cl

AOM. N. USER NAVGATES
TO LOCAN PAGE.

ADMIN, USR PROVIDES
ADMIN, USPR NAME AND

PASSWORD A
APPROPRIATE PROMPTS.

275

ADM N USER NAME AND 270
PASSWORD WADAED.

2.76.

ACCESS PR WILECES ST TO ETHER
ADMIN./READONLY PROM ACCOUNT
FECORD FOR HE ADMIN USER.

2 a y

OGN VEN RECORD RECORDED IN
DATABASE FOR AUD RAL REFERENCE.

218

OSPLAY ADVERSER DAA 6A Se
SEARC NTRACE TO SELEC
AN ADVER SERS A CCOUNT

O MONITOR

of 23. 4.
ADMN. USER PROW DED WITH
ACCESS TO THE ACCOUNT
OF THE SELEC(ED US r.

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002. Sheet 5 of 24 US 2002/0165849 A1

USER NAME 3O2

PASSWORD 3O4.
- 3 OO

CONTACT INFORMATION 3 O

8. LLN G. NFORMATION 32O

AUD RAL L S 325

A DVERT S NG- S3O
NPORMAT ON

3-4 2.

Y
3-4-O SUB ACCOUNT

NAME/NUMBER
SEARCH LSTNG 344
SEARCH L SING- SEARCH - St NG

3-4-1- SEARCH TERM

DESCRPION

3 D A MOUN

L

356

36, O

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 6 of 24 US 2002/0165849 A1
1N-1

GO2 uf2. 6

(O-4 ''A DD MONEY'
SELECTED

GOQ DISPLAY CURRENT BLING
NPO - BALANCE

(, O8
REQUEST

TO UPDATE BILLNG
NRO AND
BALANCE

p
(, iO

YES

VALIDATE BLING INFORMATION

UPDATE BLNG INFO

6 12 CREOF CARD PAYMENT

ADD MONEY
C 11 O BALANCE

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 7 of 24 US 2002/0165849 A1

CA (Dinner & a movie Find it on at Y24, 3

icom
Type what you're looking for and dick find It!

Try Go To Renote Add Go to to Favorites

1. We Buy And Sell Zip Drives -/-72 O

Buy Seti or Trade used computers, memory, peripherals, hardware and software. We offer
the best brand names, competitive prices, large inventory, and reliability. We can ship anywhere.
httpillwww.micro-tradingpost.co.il (Cost to advertiser: $0.08)

2. Madfind.com - Click Here 725 Oa

71 Ob 5 Online guide to apple computer retailers. Find Macs, power madntosh G3s, powerbooks,
inac software and nudh anore!
hittiwnacinfindicon (Cost to advertiser: $0.07)-75 Ob
Custom Computer Systems, Inc (CCS) 71 Oc

CCS, a wholesale distributor of computer systems, parts & accessories. Online shopping and same day shipping 800,379.i.227
http:/www.wccsicom (Cost to advertiser: $0.06)-/75 Oc

4. Best Price on Zip Drives 76,O - 4. Best Price on Zip Drives 71O
ATMAN - USA.COM Computer on-line shopping. Huge selection, competitive price, reliable
Service. Major credit cards are wekome.
http://www.fmanusa.com (Cost to advertiser: $0.02) -/-75 Od

/ 5. Computer Beat...One - Step Web Directory 74, Oe ------------------ 71 Oe
A One-Stop Web Directory featuring top computer, PC Mac websites on the Internet.
Spotlights Computer News, help Desks, HTML Internet and Computer Shopping
httphyry w.scarch-beat.com (Cost to advertisensoo)-

75 Oc 76. Of - 6. Macnet Online Computer Store
7iof Coonputer retailer of hardware software peripherals consumerable and accessories for

PCMadntosh users. See Powermac, Imac DVD, digital camera, monitors, printers,
SCanners, networking, PDA notebook, and more.
http:liyaww.applemagnet.com (Cost to advertiser: $0.01) 11 75Of

... hard drives for sale, western digital, maxtor, seagate, Samsung, ibin, omega zip drives. Ide,

Offering computer systems, metnoy, qpu Sales, motherboards, computer upgrades at
volume and dealer pridng. A distributor, reseller, broker for alf pc needs from corporations
to individual personal computer users. PSA Inc. - Computer sales and upgrades.

7104

8. Tape Drives, Zip Drives, floppy Drives rt, tape Drives, Apurves, Floppy Drives 7 iOh
Wholesale distributor in Cleveland Ohio of computer hardware, computer systems, computer
Components, peripherals, Cases, keyboards, mice, taprbackup and floppy drives. Free technical support
http:/f bi

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 8 of 24 US 2002/0165849 A1

PROWE ACCOUNY
SELEC F O N INPUT PIED

(DEFAULlr is OLDEST ACCOUNT)

ACCOUNT SELECTED

DSPLAY SEARCH TERMS
OF LIN LS NGS FOR THE

SS LECTED ACCOUNT

DISPLAY USER-ENERED
BD CHANGES

REQUEST
O UPDATE

p

CAL CULATE CURRENT BIDS,
RANK, BD TO BECOME 1

DFSPLAY CHANGES

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 9 of 24 US 2002/0165849 A1

GOO

CAMPAIGN is 1 V
GO2 €O-4.

SEARCH CURREN CURRENT 8D TO
TERM BD RANK BECOMES 1 NEW BiD

CAR O.O1

AUO O. O.

AUTOMOBLE O.13

UPDATE BOS

G12

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 10 of 24 US 2002/016.5849 A1

START 1OOO

SELECT CONDITION TYPE 1002

SPECIFY PARAMETERS FOR 1004
SELECTED CONDITIONS

SPECIFY NOTIFICATION TIMES 1006

SPECIFY NOTIFICATION MODES 1008

SELECT ACTION TYPES TO BE
INCLUDED WITH ANY NOTIFICATIONS 1010

END 1012

F.G. 10

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication

FIG 11

-b

Nov. 7, 2002 Sheet 11 of 24

ASSIGN NEW-TRUE-CONDITION =
EMPTY LIST

WAIT FOR AN EVENT THAT MAY
MAKE A CONDITION TRUE

m

US 2002/0165849 A1

1102

1104

CHECK-ALL-CONDITIONS 1106

ASSIGNX - NEXTELEMENT IN
NEW-TRUE-CONDITIONS

DOES X HAVE
AUTO-CORRECTION?

1108

1110

1112

AUTO-CORRECT CONDITION X

DOES X HAVE
AN IMMEDIATE
NOTIFICATION?

r 1114

1116

RECORD CONDITION(X)
1118

NOTIFY IMMEDIATELY(X)
1120

re

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 12 of 24 US 2002/0165849 A1

START
PROCEDURE

CHECK POSITION CONDITIONS

CHECK COST CONDITIONS

CHECK ACCOUNT-BALANCE CONDITIONS N- 1206

CHECK IMPRESSIONS CONDITIONS

CHECK CLCKS CONDITIONS

CHECKCTR CONDITIONS 1212

CHECK CPCTOO HIGH CONDITIONS

CHECK AVERAGE CPCTOO HIGH
CONDITIONS

CHECK RANK CPC CONDITIONS

END
PROCEDURE

-N1 1200

N- 1202

Nu- 1204

FIG. 12
-N- 1208

1210

-- 1214

-N- 1216

1218

1220

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 13 of 24 US 2002/0165849 A1

PROCEDURE

ASSIGNL = LISTINGS WITH MONITORED POSITION | 1302
WHOSE POSITION HAS CHANGED

FIG. 13 1304

ASSIGNX = NEXTELEMENT NL ,"

END
PROCEDURE

IS POSITION-CONDITION(X) = TRUE AND
LAST-POSITION-CONDITION(X) = FALSE?

4. 1312
ASSIGNLAST-POSITION-CONDITION(X) = TRUE

1314

ADJOIN POSITION-CONDITION(X) TO
NEW-TRUE-CONDITIONS

1316 u-1
u-1S POSITION-CONDITION(x) = FALSE AND

LAST-POSITION-CONDITION(X) = TRUE?

ASSIGNLAST-POSITION-CONDITION(X) = FALSE H

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 14 of 24 US 2002/0165849 A1

START
PROCEDURE

ASSIGN L = LISTINGS WITH MONITORED COST 1402
WITH NEW CPC CHARGES

1400

1404

FIG. 14 ASSIGNX = NEXTELEMENT IN L

END
PROCEDURE

1408

N
IS COST-CONDITION(X) = TRUE AND
LAST-COST-CONDITION(X) = FALSE?

1410

ASSIGNLAST-COST-CONDITION(X) = TRUE

ADJOIN COST-CONDITION(X) TO
NEW-TRUE-CONDITIONS

IS COST-CONDITION(X) = FALSE AND
LAST-COST-CONDITION(X) = TRUE?

4. 1414
ASSIGNLAST-COST-CONDITION(X) = FALSE

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 15 of 24 US 2002/0165849 A1

1500 START
PROCEDURE

ASSIGN L = ADVERTISERS WITH MONITORED 1502

AccoUNTBALANCE WITH NEW CHARGES

ASSIGNX = NEXTELEMENT IN L FIG. 15

S XEMPTY? END
PROCEDURE

NO ISACCOUNT-BALANCE-CONDITION(X) = TRUE
AND LAST-ACCOUNT-BALANCE-CONDITION(X)e

FALSE2

ves 4. 1512
ASSIGNLAST-ACCOUNT-BALANCE-CONDITION(X) = TRUE

711 1514
ADJOINACCOUNT-BALANCE-CONDITION(X) TO

NEW-TRUE-CONDITIONS

y
1516

IS ACCOUNT-BALANCE-CONDITION(X) = FALSE
ND LAST-ACCOUNT-BALANCE-CONDITION(X)e

TRUE?

ASSIGNLAST-ACCOUNT-BALANCE-CONDITION(X) = FALSEH

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 16 of 24 US 2002/0165849 A1

START
PROCEDURE

Y

ASSIGNL = LISTINGS WITHMONITORED IMPRESSIONS - 1602
WITH NEW IMPRESSIONS

1604

ASSGN XE NEXTELEMENT IN

1600

F.G. 16

END
PROCEDURE

IS IMPRESSIONS-CONDITION(X) = TRUE AND
LAST-IMPRESSIONS-CONDITION(X) = FALSE?

ASSIGN LAST-IMPRESSIONS-CONDITION(X) = TRUE

1614

ADJOINIMPRESSIONS-CONDITION(X) TO
NEW-TRUE-CONDITIONS

1616

IS IMPRESSIONS-CONDITION(X) = FALSE AND
LAST-IMPRESSIONS-CONDITION(X) = TRUE?

ASSIGNLAST-IMPRESSIONS-CONDITION(X) = FALSE

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 17 of 24 US 2002/0165849 A1

START 1700
PROCEDURE

ASSIGN L = LISTINGS WITH MONITORED CLICKS 1710
WITH NEW CLICKS

1712

ASSGN X = NEXTELEMENT IN L. 11
FIG. 17

1714

END
PROCEDURE

IS CLICKS-CONDITION(X) = TRUE AND
LAST-CLICKS-CONDITION(X) = FALSE?

4 1720
ASSIGN LAST-CLICKS-CONDITION(X) = TRUE

--1 1722
ADJOIN CLICKS-CONDITION(X) TO

NEW-TRUE-CONDITIONS

IS CLICKS-CONDITION(X) = FALSE AND
LAST-CLICKS-CONDITION(X) = TRUE?

N
YES –4 1726

ASSIGNLAST-CLICKS-CONDITION(X) = FALSE

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 18 of 24 US 2002/0165849 A1

START
PROCEDURE

1800

ASSIGN L = LISTINGS WITH MONITORED CTR 1802
WITH NEW CLICKS

1804

FIG. 18 ASSIGNX = NEXTELEMENT INL —

1806

END
PROCEDURE

IS CTR-CONDITION(X) = TRUE AND
LAST-CTR-CONDITION(X) = FALSE?

1812

ASSIGNLAST-CTR-CONDITION(X) = TRUE

-1 1814
ADJOIN CTR-CONDITION(X) TO

NEW-TRUE-CONDITIONS

ISCTR-CONDITION(X) = FALSE AND
LAST-CTR-CONDITION(X) = TRUE?

ASSIGN LAST-CTR-CONDITION(X) = FALSE H

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 19 of 24 US 2002/0165849 A1

START 1900
PROCEDURE 7

y

ASSIGNL = LISTINGS WITH MONITORED CPCTOO HIGH 1902
WHERE THE LISTING BELOW HAS A NEW CPC

y 1904

FIG. 19 ASSIGNX NEXTELEMENT INL 1"

END
PROCEDURE

NO
1910

ASSIGN C = CONDITION OF X

NO LISTENG
BELOW X?

ASSIGN LOWER-CPC
MIN-CPC - CPC-THRESHOLD(X)

ASSIGN LOWER-CPCE - 1916
CPC(LISTING BELOW X)

IS CPC(X) > LOWER-CPC + CPC-THRESHOLD(C)
ND LAST-CPC-TOO-HIGH-CONDITION(C) = FALSE2

NO

1920

ASSIGN LAST-CPC-TOO-HIGH-CONDITION(C) = TRUE 1.
- 1922

ADJOINCPC-TOO-HIGH-CONDITION(C) TO i
NEW-TRUE-CONDITIONS

1924

IS CPC(X) <= LOWER-CPC + CPC-THRESHOLD(C)
ND LAST-CPC-TOO-HIGH-CONDITION(C) = TRUE?

1926 -1.
ASSIGN LAST-CPC-TOO-HIGH-CONDITION(C) = FALSE

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 20 of 24 US 2002/0165849 A1

START 2OOO
PROCEDURE

ASSIGNE ALL CONDITIONS WITH MONITORED 2002
AVERAGE CPCTOOHIGH WITH NEW CLICKS

2004

ASSGN X = NEXT CONDITION NL 3 - FIG. 20

2006

SX EMPTY? END
PROCEDURE

S-2010
- IS N

No-AVERAGE-CPC-TOO-HIGH-CONDITION(X) = TRUE AND
is LAST-AVERAGE-CPC-TOO-HIGH-CONDITION(x) =

FALSE re
-1

YS Z 2012
ASSIGN LAST-AVERAGE-CPC-TOO-HIGH

CONDITION(X) = TRUE

21 2014
| ADJOINAVERAGE-CPC-TOO-HIGH-CONDITION(X)

TO NEW-TRUE-CONDITIONS -

2016

- AVERAGEO9 GENEN = FALSEAN - LAST-AVERAGE-CPC-TOO-HIGH-CONDITION(X)

YES 2018

ASSIGN LAST-AVERAGE-CPC-TOO-HIGH-CONDITION(X)
E FALSE

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 21 of 24 US 2002/0165849 A1

START
PROCEDURE

ASSIGN L = TERMS WITH MONITORED RANK CPC WHERE - 2102
THE CPC OF AMONITORED RANKHAS CHANGED

ASSIGN XE NEXTELEMENT IN L,

/ END
\ PROCEDURE

2108 2100

- - 2104

S X EMPTY?

ASSIGN M = ALL RANKS OFX THAT ARE - 2110
MONITORED AND HAVE NEW CPCS

- - - 212
ASSIGNY = NEXTELEMENT IN M

2114

YES
SY EMPTY?

FIG. 21 ASSIGN N = ALL RANK CPC
CONDITIONS FOR TERMX AND RANKY

2118
ASSGN Z = NEXTELEMENT INN

2120

N YES

SZ wo
1

ISRANK-CPC-CONDITION(Z) = TRUE AND
LAST-RANK-CPC-CONDITION(Z) = FALSE?

YES
2124

ASSIGNLAST-RANK-CPC-CONDITION(Z) = TRUE

2126
ADJOINRANK-CPC-CONDITION(Z) TO

NEW-TRUE-CONDITIONS

ISRANK-CPC-CONDITION(Z) = FALSE AND NO
LAST-RANK-CPC-CONDITION(Z) = TRUE?
sy u1

N

YES 2130

ASSIGN LAST-CPC-TOO-HIGH-CONDITION(C) = False 1

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 22 of 24 US 2002/0165849 A1

START
PROCEDURE

ASSIGN L = ALL NOTIFICATION MODES
FOR CONDITION

2200

22O2

FIG. 22

ASSIGNX = NEXTELEMENT IN L.

END
PROCEDURE

ASSIGNA = ALL ACTION TYPES FOR
MODEX TO CORRECT CONDITION

SEND-NOTIFICATION(CONDITION.X.A)

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication Nov. 7, 2002 Sheet 23 of 24 US 2002/0165849 A1

START 2300
PROCEDURE

WAT FOR A NOTIFICATION TIME FOR ANY ADVERTISER- 23O2

ASSGN L = ALL ADVERTISERS WITH CURRENT 2304
NOTIFICATION TIME

2308 y 2306
ASSGNX as NEXTELEMENT IN

ASSIGN M = ALL AUTO NOTFECATIONS
|NO > FoxFor cuRRENTTME-120

WITH RECORDED CONDITIONS

ASSGNY - NEXTELEMENT N M

ASSIGN C = ALL RECORDED
INSTANCES OF CONDITIONY

FIG. 23 y
ASSIGNT = MOST RECENT

CONDITION IN C

y

ASSGN Ne ALL NOTIFICATION
MODES FOR CONDITIONY 2324

y 2-1 2322
ASSIGN Z = NEXTELEMENT INN

- 2326
ASSIGNA = ALL ACTION TYPES FOR NO
MODE Z TO CORRECT CONDITIONT

V
SEND-NOTIFICATION(CZA)

- 2328

NETFLIX, INC. EXHIBIT 1002

Patent Application Publication

FIG. 24

YES

START
PROCEDURE

Nov. 7, 2002 Sheet 24 of 24 US 2002/0165849 A1

2400

WAIT FOR AN INCOMING ACTION
- 2402

2404 - 1

24.08

NO

EXTRACT ACTION PARAMETERS

ASSIGN C = CONDITION OF ACTION - 2406

NOTIFY ADVERTISER(C) THAT
CONDITION C S NO LONGER TRUE

- 2410
->

EXECUTE CORRECTIVE ACTION - 2412

DID ACTION
SUCCEED?

2414

O NOTIFY ADVERTISER(C) OF FAILURE
2416 -1
-O-

NOTIFY ADVERTISER(C) OF SUCCESS
- 2418

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

AUTOMATIC ADVERTISER NOTIFICATION FOR
A SYSTEM FOR PROVIDING PLACE AND PRICE

PROTECTION IN A SEARCH RESULT LIST
GENERATED BY A COMPUTER NETWORK

SEARCH ENGINE

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation in part of appli
cation Ser. No. 09/911,674, filed Jul 24, 2001 in the names
of Darren J. Davis, et al., which application is incorporated
herein in its entirety and which is a continuation of appli
cation Ser. No. 09/322,677, filed May 28, 1999, in the names
of Darren J. Davis, et al., now U.S. Pat. No. 6,269,361,
which application is also incorporated herein in its entirety.

REFERENCE TO COMPUTER PROGRAM
LISTINGS SUBMITTED ON COMPACT DISK

0002. A compact disc appendix is included containing
computer program code listings pursuant to 37 C.F.R.
1.52(e) and is hereby incorporated by reference in its
entirety. The total number of compact discS is 1 including
24,443 files and 105,738,488 bytes. The files included on the
compact disc are listed in a file entitled “dir s” on the
compact disc. Because of the large number of files contained
on the compact disc, the required listing of file names, dates
of creation and sizes in bytes is included in the file dir S on
the compact disk and incorporated by reference herein.

BACKGROUND OF THE INVENTION

0003. The transfer of information over computer net
WorkS has become an increasingly important means by
which institutions, corporations, and individuals do busi
neSS. Computer networks have grown over the years from
independent and isolated entities established to Serve the
needs of a single group into vast internets which intercon
nect disparate physical networks and allow them to function
as a coordinated System. Currently, the largest computer
network in existence is the Internet. The Internet is a
Worldwide interconnection of computer networks that com
municate using a common protocol. Millions of computers,
from low end personal computers to high end Super com
puters, are connected to the Internet.
0004. The Internet has emerged as a large community of
electronically connected users located around the World who
readily and regularly exchange Significant amounts of infor
mation. The Internet continues to Serve its original purposes
of providing for access to and exchange of information
among government agencies, laboratories, and universities
for research and education. In addition, the Internet has
evolved to serve a variety of interests and forums that extend
beyond its original goals. In particular, the Internet is rapidly
transforming into a global electronic marketplace of goods
and Services as well as of ideas and information.

0005. This transformation of the Internet into a global
marketplace was driven in large part by the introduction of
an information system known as the World Wide Web (“the
web”). The web is a unique distributed database designed to
give wide access to a large universe of documents. The
database records of the web are in the form of documents
known as "pages'. These pages reside on Web Servers and
are accessible via the Internet. The web is therefore a vast

Nov. 7, 2002

database of information dispersed acroSS countleSS indi
vidual computer Systems that is constantly changing and has
no recognizable organization or morphology. Computers
connected to the Internet may access the web pages via a
program known as a browser, which has a powerful, Simple
to-learn graphical user interface. One powerful technique
Supported by the web browser is known as hyperlinking,
which permits web page authors to create links to other web
pages which users can then retrieve by using simple point
and-click commands on the web browser.

0006 The pages may be constructed in any one of a
variety of formatting conventions, Such as Hyper Text
Markup Language (HTML), and may include multimedia
information content Such as graphics, audio, and moving
pictures. Any perSon with a computer and a connection to
the Internet may access any publicly accessible page posted
on the web. Thus, a presence on the World Wide Web has the
capability to introduce a Worldwide base of consumers to
businesses, individuals, and institutions Seeking to advertise
their products and Services to potential customers. Further
more, the ever increasing Sophistication in the design of web
pages, made possible by the exponential increase in data
transmission rates and computer processing Speeds, makes
the web an increasingly attractive medium for advertising
and other busineSS purposes, as well as for the free flow of
information.

0007. The availability of powerful new tools that facili
tate the development and distribution of Internet content has
led to a proliferation of information, products, and Services
offered on the Internet and dramatic growth in the number of
consumers using the Internet. International Data Corpora
tion, commonly referred to as IDC, estimates that the
number of Internet users will grow from approximately 97
million worldwide in 1998 to approximately 320 million
worldwide by the end of 2002. In addition, commerce
conducted over the Internet has grown and is expected to
grow dramatically. IDC estimates that the percentage of
Internet users buying goods and Services on the Internet will
increase from approximately 28% at the end of 1998 to
approximately 40% in 2002, and that over the same period
of time, the total value of goods and Services purchased over
the Internet will increase from approximately S32.4 billion
to approximately $425.7 billion.
0008. The Internet has emerged as an attractive new
medium for advertisers of information, products and Ser
vices to reach consumers. However, the World Wide Web is
composed of a Seemingly limitleSS number of web pages
dispersed acroSS millions of different computer Systems all
over the World in no discernible organization. Mechanisms,
Such as directories and Search engines, have been developed
to index and search the information available on the web and
thereby help Internet users locate information of interest.
These Search Services enable consumers to Search the Inter
net for a listing of web sites based on a Specific topic,
product, or Service of interest.
0009 Search services are, after e-mail, the most fre
quently used tool on the Internet. As a result, Web Sites
providing Search Services have offered advertisers signifi
cant reach into the Internet audience and have given adver
tisers the opportunity to target consumer interests based on
keyword or topical Search requests.
0010. In a web-based search on an Internet search engine,
a user enters a Search term comprising one or more key

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

words, which the Search engine then uses to generate, in real
time, a listing of web pages that the user may access via a
hyperlink. The Search engines and Web Site directories of the
prior art, however, rely upon processes for assigning results
to keywords that often generate irrelevant Search results. The
automated Search technology that drives many Search
engines in the prior art rely in large part on complex,
mathematics-based database Search algorithms that Select
and rank web pages based on multiple criteria Such as
keyword density and keyword location. The Search results
generated by Such mechanisms often rely on blind math
ematical formulas and may be random and even irrelevant.
In addition, Search engines that use automated Search tech
nology to catalog Search results generally rely on invisible
web site descriptions, or “meta tags', that are authored by
web site promoters. Web site owners may freely tag their
Sites as they choose. Consequently, Some web site promoters
or promoters insert popular Search terms into their web site
meta tags which are not relevant because by doing So they
may attract additional consumer attention at little to no
marginal cost. Finally, many web sites have similar meta
tags, and the Search engines of the prior art are Simply not
equipped to prioritize results in accordance with consumers
preferences.

0.011 Search engines and web site directories may also
rely on the manual efforts of limited editorial staffs to review
web page information. Since comprehensive manual review
and indexing of an unpredictable, randomly updated data
base Such as the web is an impossible task, Search engine
results are often incomplete or out-of-date. Moreover, as the
Volume and diversity of Internet content has grown, on many
popular Web Search Sites, consumerS must frequently click
through multiple branches of a hierarchical directory to
locate web sites responsive to their Search request, a proceSS
that is slow and unwieldy from the consumer's Standpoint.
Thus, the prior art Search engines are ineffective for web
page ownerS Seeking to target their web exposure and
distribute information to the attention of interested users on
a current and comprehensive basis.
0012 Furthermore, current paradigms for generating web
Site traffic, Such as banner advertising, follow traditional
advertising paradigms and fail to utilize the unique attributes
of the Internet. In the banner advertising model, web site
promoters Seeking to promote and increase their web expo
Sure often purchase Space on the pages of popular commer
cial web sites. The web site promoters usually fill this space
with a colorful graphic, known as a banner, advertising their
own web site. The banner may act a hyperlink a visitor may
click on to access the Site. Like traditional advertising,
banner advertising on the Internet is typically priced on an
impression basis with advertisers paying for exposures to
potential consumers. Banners may be displayed at every
page access, or, on Search engines, may be targeted to Search
terms.

0013 Nonetheless, impression-based advertising ineffi
ciently exploits the Internet's direct marketing potential, as
the click-through rate, the rate of consumer Visits a banner
generates to the destination site, may be quite low. Web site
promoters are therefore paying for exposure to many con
Sumers who are not interested in the product or Service being
promoted, as most Visitors to a web site Seek Specific
information and may not be interested in the information
announced in the banner. Likewise, the banner often fails to

Nov. 7, 2002

reach interested individuals, Since the banner is not gener
ally Searchable by Search engines and the interested perSons
may not know where on the web to view the banner.
0014 Thus, the traditional paradigms of advertising and
Search engine algorithms fail to effectively deliver relevant
information via the World Wide Web to interested parties in
a cost-effective manner. Internet advertising can offer a level
of targetability, interactivity, and measurability not generally
available in other media. With the proper tools, Internet
advertisers have the ability to target their messages to
Specific groups of consumers and receive prompt feedback
as to the effectiveness of their advertising campaigns.

0015 Ideally, web site promoters should be able to con
trol their placement in Search result listings So that their
listings are prominent in Searches that are relevant to the
content of their web site. The Search engine functionality of
the Internet needs to be focused in a new direction to
facilitate an on-line marketplace which offers consumers
quick, easy and relevant Search results while providing
Internet advertisers and promoters with a cost-effective way
to target consumers. A consumer utilizing a Search engine
that facilitates this on-line marketplace will find companies
or businesses that offer the products, Services, or information
that the consumer is Seeking. In this on-line marketplace,
companies Selling products, Services, or information bid in
an open auction environment for positions on a Search result
list generated by an Internet Search engine. Since advertisers
must pay for each click-through referral generated through
the Search result lists generated by the Search engine, adver
tisers have an incentive to Select and bid on those Search
keywords that are most relevant to their web site offerings.
The higher an advertiser's position on a Search result list, the
higher likelihood of a “referral'; that is, the higher the
likelihood that a consumer will be referred to the advertis
er's web site through the search result list. The openness of
this advertising marketplace is further facilitated by publicly
displaying, to consumerS and other advertisers, the price bid
by an advertiser on a particular Search result listing.

0016 U.S. Pat. No. 6,269,361 describes a system and
method for enabling promoters to influence a position on a
Search result listing generated by an Internet Search engine
for a specified Set of Search terms. The System and method
enable advertisers to specify key Search terms to the Search
engine So as to target their Search result list placement to the
Search queries most relevant to their business. Further, the
System and method enable promoters to examine their
current Search term and placement couplings online and to
make Substantially instantaneous changes to their Selected
Search terms, placements, and web site titles and descrip
tions.

0017. In this system, advertisers, or web site promoters,
establish bid amounts for Search listings with a pay for
performance web site or marketplace operator which are
chargeable to the advertiser by the marketplace web site
operator. In response to a received query from a Searcher,
Search listings are located, arranged according to bid and
displayed to the Searcher. If a Searcher Selects or clickS
through an advertiser's Search listing, the bid amount is
charged to the advertiser by the pay for performance web
Site operator. Advertisers can control the position of their
Search listing in the Search result list by adjusting the bid
amount associated with the Search listing.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0018. The method described in the U.S. Pat. No. 6,269,
361 can be burdensome to manage for an advertiser. In
particular, advertisers want to maintain favorable positions
in the Search results (So as to obtain a high volume of
qualified traffic) at a favorable price. The system described
in U.S. Pat. No. 6,269,361 provides no ready means to do
that. Advertisers can resort to frequent inspection of their
ranking on Search terms that are important to them, for
example by performing a Search on www.goto.com. When
they observe a change as a consequence of competing
advertisers’ bidding activities, they can log in to the pay for
performance website and change their bids manually in
response. In the case where they have been outbid for a
position they want to retain, they can increase their bid to
retake the position, if the required cost per click (“CPC"),
which is equal to the amount of their bid, is one they are
Willing to pay. In the case where the bid of the listing ranked
below theirS has decreased, Some advertisers may wish to
lower their bid to reduce the amount they pay while still
maintaining their position in the results Set.

0019. There are many other tasks that advertisers typi
cally perform in addition to managing the position of their
listings, including keeping track of the accumulated costs of
listings, the number of clicks of listings, the click through
rate (CTR) of listings, and checking their account balance.
In addition, advertisers have to constantly keep track of the
changing marketplace, e.g., to check if the bid of a listing is
too high, or if a more desirable rank is now affordable.
0020 Managing the budget is a vital business concern for
advertisers, and there is a need to keep track of the break
down of expenses for different terms. For example, around
Father's Day, the number of searches for the term “tie' may
increase, resulting in going over budget. Alternatively, the
costs may decrease following Father's Day, and the addi
tional funds could be allocated to other terms.

0021 Advertisers must also keep track of the number of
clicks that a listing is getting, e.g., to calculate the conver
Sion rate. If a listing is getting many clicks but few Sales,
then it could be the case that the listing's description is not
Sufficiently specific. Alternatively, if a listing is getting too
few clicks, it could be the case that other advertisers have
entered the marketplace, which has resulted in the listing
being at a worse rank than before.
0022. It is also important for advertisers to keep track of
the click through rate (CTR) of listings. For example, a new
title or description for a listing may result in a lower CTR if
it is less clear than what was there before. Keeping track of
the CTR ensures that corrective action can be taken
promptly.

0023 Advertisers must also keep track of their account
balance at the pay for performance marketplace. The balance
should never reach Zero, in order to ensure continued Service
without interruption. In addition, it is important to keep track
of the account balance to ensure that the budget is spent
according to plan. For example, if the balance is going down
too slowly in the first week, the advertiser can take correc
tive action to increase the CPC of listings to get back on
track.

0024. There are other marketplace conditions that adver
tisers must keep track of. These include checking if the bid
of a listing is too high for its current rank. For example, an

Nov. 7, 2002

advertiser A may set the CPC of a listing to S0.50 for the
listing to be at rank 2-advertiser A is at rank 3 with a CPC
of S0.49. A few hours later, A changes the CPC of his listing
to S0.45, while still remaining at rank 3. Advertiser A can
now reduce the CPC of his listing from S0.50 to S0.46, while
Still maintaining the listing at rank 2.

0025 Advertisers must also keep track of the changing
costs in the marketplace for different ranks. A rank that was
unaffordable earlier may now become affordable, or vice
Versa. For example, advertiser A is at rank 5 and wishes to
be at rank 3 in order to get higher traffic. The current CPC
for rank 3 is S1.00, and the CPC for rank 4 is S0.75. A can
afford at most SO.80 for this listing. That is, the advertiser's
return on investment (ROI) analysis indicates that anything
higher will result in a loss. If the advertiser at rank 3 drops
out, A can jump to rank 3 with a CPC of S0.76, which is
within his budget of SO.80.

0026. The previous examples illustrate the various
actions that advertisers must perform manually to manage
their listings. Some advertisers do these tasks Several times
a day. Some advertisers have a plurality of employees
dedicated to the management of their participation in a pay
for placement marketplace, monitoring the positions of their
listings and adjusting their bids, managing their budget, etc.
The manual process of polling of the Status of listings,
checking the competitors in the marketplace, and checking
the account Status is time consuming and wasteful. Only
Some of these concerns need addressing at a given time.
Therefore, a need exists for a method and apparatus for
advertisers to manage their listings more effectively.

0027 U.S. application Ser. No. 09/922,028, entitled
“System And Method For Providing Place And Price Pro
tection In A Search Result List Generated By A Computer
Network Search Engine,” filed Aug. 3, 2001, discloses a
system which may be referred to as Price and Place Protec
tion. This application is commonly assigned with the present
application and is incorporated herein by reference. In the
disclosed System, an advertiser's bid does not establish a
fixed CPC. Instead, his bid sets the maximum CPC the
advertiser will incur. Further, the disclosed embodiments
allow the advertiser to specify a desired rank in the Search
results displayed to the Searcher. The rank of a Search listing
is the ordinal positioning of the Search listing among a group
of Search listings matching the Searcher's Search term.
Higher or better listed Search listings are displayed higher on
a page and earlier on a number of pages of Search listings.
The system of the present embodiments determines the
actual rankings and actual CPCs. The listings matching a
search may then be ranked in descending order of CPC, with
priority among listings of equal CPC by chronological
Seniority.

0028. If these inefficiencies are not addressed by a mar
ketplace promoter, then an economic incentive remains for
advertisers to produce automated Services of their own to
interact with the account management Systems of the mar
ketplace operator to obtain the economic advantage avail
able relative to the limited automated services provided by
the marketplace operator. As a further consequence, Such a
Situation provides economic incentive for third parties to
produce automated Services for advertisers, for a fee, or a cut
of the alleged Savings produced. This is already happening.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

BRIEF SUMMARY

0029. By way of introduction only, the present embodi
ments may be referred to collectively as Auto Notification.
Auto Notification is an improvement on existing pay for
performance marketplace Systems. In the basic marketplace
System, an advertiser logs on to the advertiser interface and
manages his advertising campaign by examining the mar
ketplace information and the information related to his
listings. For example, an advertiser can identify a Set of
terms, their description, and other information, which
includes the CPC for each term, which is the amount that the
advertiser will pay if a user clicks on the listing. An
advertiser can also check the number of clicks at different
ranks for a Search term, examine the other competitive
listings for a term, check his account balance, add funds to
his account, etc. Subsequently, when a Search term matches
a Search query received from a Searcher, economic value
may be given by the advertiser to the marketplace operator.
0030 The embodiments described herein use the concept
of a bid which corresponds to economic value which the
advertiser will give when network locations associated with
the advertiser is referred to a Searcher in response to a query
from the Searcher. The economic value may be a money
amount charged or chargeable to the advertiser, either
directly or indirectly. The economic value may be an amount
debited from an account of the advertiser. The amount may
be a money amount or another value, Such as credit points.
The economic value may be given by the advertiser to the
operator of a database Search System or to a third party.
0031. The economic value is given when one or more
network locations, Such as advertiser web sites, are referred
to a Searcher. The referral may be by presenting the network
locations on a Screen used for data entry and receipt by the
Searcher, alone or with other Search results. This is referred
to as an impression. Alternatively, and in an embodiment
generally described herein, the referral may occur when the
Searcher clicks on or clicks through to access the network
locations of the advertiser, as will be described in greater
detail below. Or the referral may be by some other action
taken by the Searcher after accessing the network locations
of the advertiser.

0.032 The embodiments herein automate many of the
Steps performed by an advertiser. Currently an advertiser
must periodically examine the State of his listings, the State
of the marketplace, and his account information, in order to
See if any of the conditions that he cares about are true. This
manual examination of the marketplace, listings, and his
account is time consuming and wasteful, as most of the time
no special action is required.
0033. The disclosed embodiments of Auto Notification
enable an advertiser to specify the conditions the advertiser
cares about. The System provides an automated agent that
acts on behalf of the advertiser, constantly checking if any
of the conditions are true. The agent is a Software proceSS or
application operating in conjunction with data maintained by
the marketplace System. If all is well and no conditions are
true, then the agent takes no action. Otherwise, the agent
makes a note of the condition that is true, and can Send a
message to alert the advertiser. The message can include
means for the advertiser to correct the undesirable condi
tions, as will be described below. Messages can be sent
whenever a condition is true, or they can be aggregated and
Sent periodically, at the control of the advertiser.

Nov. 7, 2002

0034. With Auto Notification, an advertiser need no
longer manually Search for conditions that are true. Instead,
the System automatically notifies the advertiser of the true
conditions and possible corrective actions, at the times
specified by the advertiser.
0035 An advertiser can request auto notification for zero
or more conditions. Some conditions are related to the
listings of the advertiser, and each listing can have Zero or
more conditions associated with it. In accordance with the
present embodiments, each auto notification function has
four components:

0036 1. notification condition: information about
the State requiring attention

0037 2. notification time(s): when the notifications
should be sent

0038. 3. notification mode(s): how the advertiser
should be notified, and

0039 4. notification action type(s): the types of
corrective actions to include in any notification.

0040. Notification Condition
0041. In accordance with the present embodiments, there
are nine types of conditions that an advertiser can Select
from:

0042 1. position: related to the position of a listing
0043. 2. cost: related to the accumulated costs for
Some listings

0044) 3. account-balance: related to the funds
remaining in advertiser's account (e.g., to pay for
listings that are clicked on)

0045. 4. impressions: the number of impressions
received by Some listings

0046 5. clicks: the number of clicks received by
Some listings

0047 6. CTR: the click through rate of some listings
0.048 7. CPC-too-high: if the cost per click (CPC) of
a listing can be reduced without impacting its rank

0049) 8. Average CPC too high: the average CPC,
the total cost divided by the total clicks, is higher
than Some threshold.

0050) 9. rank-CPC: related to the CPC for a given
rank and term

0051 Each condition has its own set of parameters,
which are specified by an advertiser. Some of the parameters
may have default values, which are at the discretion of the
marketplace operator. The parameters for the different con
ditions are described below.

0052 A position condition monitors the position of a
listing. Each position condition has the following param
eterS.

0053 1. listing: the listing whose position is being
monitored. This could be a listing of the advertiser,
or the listing of Some other advertiser.

0054 2. absolute/relative: an indication of whether
the absolute position of the listing is being moni

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

tored, or if the position relative to Some other listing
is being monitored. If the position is relative to
another listing, then the other listing is also specified.

0055 3. within/without: the condition is true if the
listing is within or outside the Specified range.

0056 4. Specific/range: a specific rank or range of
rankS. For example, "rank 3’ is a Specific rank, and
“ranks 3 to 5’ (inclusive) is a range of ranks, as are
“ranks greater than or equal to 4' and “rankS leSS
than 3”.

0057 The following are all examples of position condi
tions:

0058 1. “My listing L is not at rank 3’ listing: L,
absolute/relative: absolute, within/without: without,
Specific/range: rank 3.

0059 2. “Another listing L is at rank 1" listing: L,
absolute/relative: absolute, within/without: within,
Specific/range: rank 1.

0060. 3. “My listing La is at ranks 4 through 8
inclusive' listing: La, absolute/relative: absolute,
within/without: within, Specific/range: ranks 4
through 8.

0061 4. “My listing L is more than 2 ranks lower
than another listing Ls” listing: L, absolute/relative:
relative to Ls, within/without: without, specific/
range: ranks 1 through 2.

0062 5. “My listing L is 3 ranks higher than
another listing L, listing: Le, absolute/relative: rela
tive to L7, within/without: within, specific/range:
rank -3 (negative ranks are above the reference rank
and positive ranks are below).

0.063 A marketplace operator may provide a variety of
user interfaces for entering parameters. For position con
Straints, a marketplace may provide a simple interface for
tracking multiple listings, e.g., to track the change in posi
tion of all listings.
0064. A cost condition monitors the total CPC expendi
tures for one or more listings of the advertiser in a given time
interval. At the Start of every time interval the accumulated
costs are Zero. The Starting point of each time interval is at
the discretion of the marketplace operator. For example, all
hourly intervals could start at the start of every half hour.
Each cost condition has the following parameters:

0065 1. listings: one or more listings whose CPC
expenditure is being monitored.

0066 2. limit: the expenditure limit for the accumu
lated CPCs for all the listings, e.g., S300.00.

0067 3. interval: the time period for the limit, e.g.,
one week.

0068 The following are all examples of cost conditions:
0069. 1. “The CPC charges for listing L, exceed
S300.00 in any hour” listings: L, limit: S300.00,
interval: 1 hour

0070 2. “The CPC charges for L and La exceed
S195.00 in any month” listings: L and L, limit:
S195.00, interval: 1 month

Nov. 7, 2002

0071. The account-balance condition monitors the
amount of funds remaining in the account of an advertiser.
Some advertisers may be required to pre-pay a deposit,
which is used to draw down the CPC charges incurred by the
advertiser. An advertiser may periodically replenish his
account balance to ensure continual Service. Each account
balance condition has the following parameters:

0072) 1... threshold: the condition is true when the
account balance falls below the threshold amount.

0073. The following are all examples of account-balance
conditions:

0074) 1. “My account balance is less than S100.00"
threshold: S100.00

0075 2. “My account balance is less than $350,00”
threshold: S350.00

0076. The impressions condition monitors the aggregate
number of impressions for a Set of listings of an advertiser
in a given interval. At the Start of every time interval the
accumulated impressions are Zero. The Starting point of each
time interval is at the discretion of the marketplace operator.
In one embodiment, an impression is defined as follows.
Whenever a user types in a Search term, a set of matching
Search results are presented. The presentation of a listing to
a user is counted as an impression. If a listing is on a
following page, and the user does not Search beyond the
current page, then this does not count as an impression.
Other definitions may be used as well. If the rank of a listing
changes, then the number of impressions for the listing can
be reset to zero. This is at the discretion of the advertiser.

0077. Each impressions condition has the following
parameters:

0078 1. listings: one or more listings whose aggre 9. 9. 99.
gate number of impressions is being monitored.

0079 2. within/without: whether the condition is
true if the number of impressions is within or outside
the range.

0080) 3. range: the range of the impressions being
monitored, e.g., 100 to 200.

0081. 4. interval: the time period for the limit, e.g.,
1 day.

0082 The following are all examples of impressions
conditions:

0083 1. “Listings L has more than 1000 impres
Sions in one hour'

0084 listings: L, within/without: without, range:
0 to 1000, interval: 1 hour

0085 2. “Listings L., L, and L together have less
than 100 impressions in a day'

0.086 listings: L., L, and L, within/without:
within, range: 0 to 99, interval: 1 day

0087. The clicks condition monitors the aggregate num
ber of user clicks for a set of listings of an advertiser in a
given interval. At the Start of every time interval the accu
mulated clicks are Zero. The Starting point of each time
interval is at the discretion of the marketplace operator.
Whenever a user types in a Search term, a set of matching

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

Search results are presented. If a user Selects a matching
listing by pointing to a hyperlink or typing in a uniform
resource locator, this is referred to as clicking on the listing.
Other definitions of clicking may be used as well. If a
Searcher clicks on a matching listing, then this is counted as
a click for the listing. If the rank of a listing changes, then
the number of clicks for the listing can be reset to zero. This
is at the discretion of the advertiser.

0088. Each clicks condition has the following param
eterS.

0089. 1. listings: one or more listings whose number
of clickS is being monitored.

0090) 1... within/without: whether the condition is
true if the number of clicks is within or outside the
range.

0091 2. range: the range of the clicks being moni
tored, e.g., 1,000 to 4,000.

0092) 3. interval: the time period for the limit, e.g.,
1 quarter.

0093. The following are all examples of clicks condi
tions:

0094) 1. “Listings L has fewer than 100 clicks in
one day”
0095 listings: L, within/without: within, range:
0 to 99, interval: 1 day

0.096 2. "Listings L and L together have more than
1,500 clicks in a week'

0097 listings: L, and L, within/without: with
out, range: 0 to 1,500, interval: 1 week

0098. The CTR condition monitors the aggregate click
through rate for a set of listings of an advertiser over an
interval. The aggregate CTR over an interval is the aggre
gate number of clicks for the interval divided by the aggre
gate number of impressions for the Same interval. When
Starting to monitor the aggregate CTR, there may be insuf
ficient impressions for valid data. The marketplace operator
may Select a minimum number of impressions that are
required before considering the CTR conditions to be valid.
0099 Alternatively, an advertiser may specify probabil
ity and a margin of error, and from the marketplace operator
can calculate the minimum number of clickS required before
considering the CTR condition to be valid. For example, the
advertiser may specify a 95% probability and a margin of
error of 3%. From Statistics we know that if the CTR is a
Standard Normal Distribution, there is a 95% probability
that a value is between +/- 1.96 standard deviations of its
mean. So if we take n measurements and get an observed
CTR of p', then

X (1 - p’ 196x, P (P - 3%.
it.

0100. This depends on the observed CTR of p' and can
always be achieved by the marketplace operator by waiting
for a sufficiently large “n.” Any introductory Statistics text
can describe this in detail, for example, "Larsen, Richard J.

Nov. 7, 2002

and Marx, Morris L. An Introduction to Mathematical
Statistics and Its Applications, "3rd edition (Jan. 15, 2000)
Prentice Hall College Div; ISBN: 0139223037.
0101 If the rank of a listing changes, then the number of
impressions and clicks for the listing can be reset to Zero.
This is at the discretion of the advertiser.

0102) Each CTR condition has the following parameters:
0.103 2. listings: one or more listings whose aggre
gate CTR is being monitored.

0104 3. within/without: whether the condition is
true if the aggregate CTR is within or outside the
range.

0105. 4. range: the range of aggregate CTR being
monitored, e.g., 1/100 to 1/200.

0106 5. interval: The time period for the interval.
Data older than the time interval is not considered,
e.g., an interval of 1 day would ignore all impres
Sions and clicks older than a day when computing the
CTR.

0107 The following are all examples of CTR conditions:
0108) 1. “The CTR of listings L is less than 1%,
over the last hour'

0109 listings: L, within/without: within, range:
0 to 1/100, interval: 1 hour.

0110 2. “Listings L., and La have an aggregate CTR
outside of 1% to 5% over their entire history”
0111 listings: L, and L, within/without: with
out, range: 1/100 to 5/100,

0112
0113. 3. “Listing Li has a CTR greater than 10%
over the last week'

0114 listing: L, within/without: without, range:
0 to 1/10, interval 1 week.

0115) A CPC-too-high condition monitors the CPC of
one or more listings. The condition is true if the CPC of any
monitored listing can be reduced without reducing its rank.
For example, if listing Li has a CPC of S1.23 and is at rank
4, and the listing at rank 5 has a CPC of S1.10, then the CPC
of L can be reduced to S1.11, while still ensuring that L.
retains rank 4. An advertiser can also specify the size of the
gap between the CPC of one its listings and the CPC of the
listing below. Each CPC-too-high condition has the follow
ing parameters:

interval: all time.

0116 1. listings: the listings being monitored.
0117 2. threshold: the minimum difference between
the CPC of a listing and the CPC of the next worse
listing.

0118. The following are all examples of CPC-too-high
conditions:

0119) 1. “Listing Li has a CPC higher than S0.05
compared to the listing below'
0120 listings: L, threshold: S0.05

0121 2. “Listings L and L. have their CPC higher
than S0.01 compared to the listing below”
0.122 listings: L and L, threshold: S0.01.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0123. An average CPC-too-high condition monitors the
average CPC of one or more listings. The average CPC is the
total cost of the listings divided by the total clicks for the
listings. The condition is true if the average CPC of all
monitored listing is higher than a threshold prescribed by the
advertiser. For example, an advertiser can define a condition
which is true when the average CPC of all the advertiser's
listings is greater than S1.45. When starting to monitor the
average CPC, there may be insufficient impressions and
clicks for valid data. The marketplace operator may Select a
minimum number of impressions and/or clicks that are
required before considering the average CPC conditions to
be valid. Each average CPC-too-high condition has the
following parameters:

0.124. 1. listings: the listings being monitored.

0.125 2. threshold: the minimum difference between
the CPC of a listing and the CPC of the next worse
listing.

0.126 3. interval: the timer period for the limit, e.g.,
one week.

0127. The following are all examples of average CPC
too-high conditions:

0128 1. “Listings L and L. have an average CPC
higher than S0.35 over one day'
0.129 listings: L and L, threshold: S0.35, inter
val: 1 day.

0.130 2. “All my listings have an average CPC
higher than S0.98 over one week’
0131)
week.

0132 A rank-CPC condition monitors the minimum CPC
required to attain a given rank for a Search term. The
condition is true if a given rank can be achieved with the
price threshold Specified.
0133) For example, if listing L is at rank 4 with a CPC
of S1.23 and listing Ls is at rank 5 with a CPC of S1.15, then
a new listing can be at rank 5 with a CPC of S1.16. It may
be impossible for a new listing to be at a given rank at any
price. This can happen, for example, if the CPC of L is the
same as the CPC of L. This is because listings are ordered
by their CPC, and listings with the same CPC are ordered by
their time-stamp (the listing with the earlier time Stamp has
the better rank). Any new listing will have a time stamp
greater than all other listings, and So it cannot have a time
Stamp in between that of L and Ls.
0134 Each rank-CPC condition has the following param
eterS.

listings: all, threshold: S0.98, interval: 1

0.135 1. term: the term being monitored.
0.136 2. rank: the desired rank
0.137 3. threshold: the maximum price to be at the
rank for term.

0.138. The following are all examples of rank-CPC con
ditions:

0139) 1. “rank 3 for the term “LCD Projector can be
achieved for less than or equal to S3.50”

Nov. 7, 2002

0140
S3.50

0141 2. “rank 10 for the term 'Garage can be
achieved for less than or equal to S0.10”
0142 term: Garage, rank: 10, threshold: S0.10

0143) Notification Time(s)
0144. The previous section described the various notifi
cation conditions and the parameters for them. Each Auto
Notification specification also includes the notification
time(s) for the condition, which is the time(s) at which an
advertiser wishes to be notified when the condition is true.
Note that the time at which an advertiser is notified is
independent of the time at which a condition is true.

term: LCD Projector, rank: 3, threshold:

0145 There are two choices when an advertiser can be
notified:

0146) 1... immediately: as soon as a condition
becomes true, the advertiser is notified.

0147 2. interval: all notifications are aggregated
over the specified time interval. The interval includes
a period and a time, e.g., hourly at half past the hour,
daily at 4:20 p.m., weekly every Friday at 3:45 p.m.,
etc.

0148 If no conditions were true during the inter
val, then the advertiser or marketplace operator
can Select if no notification should be sent, or if a
“no condition true' notification should be sent.
Otherwise, all conditions that became true during
the interval are recorded, and at the end of the
interval the advertiser is notified of these.

014.9 For example, an advertiser may specify
that all notifications for a position condition be
Sent daily. If the position of a monitored listing
goes outside the limits specified multiple times
during a day, then these are all recorded as they
occur, and the advertiser is not sent an imme
diate notification. At the end of the day these are
all gathered and Sent to the advertiser.

0150. Notification Mode
0151. The previous section defined the notification time,
which is the time at which an advertiser is notified of any
conditions that may be true. Any Such notification is trans
mitted in one or more possible communication modes. Each
Auto Notification specification also includes the notification
mode for the condition, which is the communication mode
used to notify an advertiser.
0152 There are five possible modes of communication:

0153 1. e-mail: the notice is sent to a set of e-mail
addresses prescribed by the advertiser. Each e-mail
message can include details of the conditions that
are/were true, and links to corrective action that an
advertiser can take, e.g., a Single click that authen
ticates the advertisers and automatically makes the
corrections.

0154 2. instant messaging: the notice is sent to a set
of instant-message accounts prescribed by the adver
tiser. Similar to e-mail, each instant message can
include the details of the conditions that are/were
true, and links to corrective action that the advertiser
can take.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

O155 3. fax: the notice is faxed to a number pre
scribed by the advertiser. The fax can include details
of the conditions that are/were true, and provide
pointers to where the advertiser can go to correct any
undesirable conditions, e.g., pointers to the online
marketplace System where the advertiser can authen
ticate himself and then correct any undesirable con
ditions online.

0156 4. page: the notice is paged to a number
prescribed by the advertiser. A page is a text or other
message Sent by radio communication to a portable
wireleSS receiver. The page may be sent through a
paging System to a dedicated paging receiver or
transceiver, or the page may be sent using a short
message Service (SMS) operated in conjunction with
Some cellular radiotelephone Systems. The page can
provide a brief indication of the conditions that
are/were true, and a pointer to the where the adver
tiser can go to correct any undesirable conditions,
e.g., a phone number the advertiser can call.

O157 5. phone: the notice is sent to a number
prescribed by the advertiser. An automated Voice
Synthesis System can be used to alert the advertiser to
the conditions that are/were true. The phone means
can offer corrective actions in a menu with touch
tone inputs, e.g., "press 1 to increase your bid to one
dollar and thirty two cents to regain position 1, press
2 to . . . ' The System may recognize Voice inputs
directly. The message can also include pointers to
where the advertiser can go to correct any undesir
able conditions, e.g., pointers to the online market
place System.

0158. Notification Action Type

0159 For each Auto Notification function, an advertiser
Specifies the condition, notification time, and notification
mode. Auto Notification functions also include the notifica
tion action type, which is the method that the advertiser can
use to correct any undesirable conditions. The actions to
correct the condition can be included with the notification,
or the notification function can include other instructions to
make the corrections. There are six action types:

0.160) 1... active links: these are links that are embed
ded in the notification, which allow the advertiser to
correct the undesirable condition in one click. Pref
erably, the advertiser is first authenticated before any
action is taken. The links can be embedded URLs in
an e-mail message, that in one click correct an
undesirable condition. For example, a link may be
titled “Click here to increase the CPC of the follow
ing listing to S1.43 to restore it to rank 3.” The URL
of the link points to market operator's System, and
includes information about the advertiser and the

condition(s) to be corrected. If the advertiser clicks
on the link, his identity is verified, and the System
performs all the corrective actions automatically
without requiring the advertiser to interact with the
online marketplace System directly.

Nov. 7, 2002

0.161 It is applicable to include active links in
e-mail notifications and instant messaging notifi
cations.

0162 2. inactive links: these are pointers to online
locations where an advertiser can go to correct any
undesirable conditions. For example, this can be a
phone message with a pointer to the URL for the
online marketplace System where the advertiser can
log in. Once logged in, the advertiser may be pre
Sented with a page with active links to correct any
undesirable conditions.

0163. It is applicable to include inactive links in
all notification modes.

0.164 3. e-mail: this is an e-mail template that an
advertiser can fill out, indicating what corrective
actions (if any) are to be taken, and then e-mail to the
address prescribed by the marketplace operator. The
template may be included in a notification (e.g., an
e-mail notification), or it could be made available
through other means, e.g., a web site.
0.165. It is applicable to include e-mail links in all
notification modes.

0166 4. phone: this is a pointer to a phone number
that the advertiser can call to take corrective action.
This may be a fully automated System, e.g., with a
touch-tone phone and Voice recognition, a System
with a human operator, or Some combination of
these.

0167. It is applicable to include phone links in all
notification modes.

0168 5. auto-correct: the advertiser is asking the
System to automatically take corrective action on his
behalf if this condition becomes true. The advertiser
also specifies the Specifics of the corrective action.
This option is only applicable to conditions that can
be corrected. For example, an auto-correct action
type may instruct the system to add S500 to the
advertiser's account balance, if it gets below the
threshold, by automatically charging his credit card.

0169. 6. relax: the advertiser is asking the system to
ignore the current condition, and wants to relax the
condition So that this occurrence will not trigger the
condition. The marketplace and/or the advertiser can
choose how to relax the condition. For example, an
advertiser may not care that his listing has fallen to
rank 3 from rank 2, but he does want to be notified
if it falls further.

0170 Every notification function can include one or more
applicable action types in it. Some action types may not be
applicable with Some notification modes, e.g., it may not be
convenient to include a URL pointer in a phone message. An
advertiser may also specify which action types he prefers in
a notification.

0171 The advantage of the Auto Notification system is to
implement the following instructions on behalf of partici
pating advertisers:

0172 1. Allow me to specify my notification con
dition(s), notification time(s), notification modes,
and notification action types.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0173 2. Continually monitor all my conditions to
See if any of them are true.

0.174 3. If any of my conditions become true, make
a note of the details of this.

0.175 4. Send me notifications at the notification
time(s) I have specified, if any of my conditions
are/were true.

0176 5. In each notification include all applicable
action types to correct any conditions (that can be
corrected). Restrict the action types to those that I
have Specified I prefer. If I have not given any
preferences the marketplace operator may chose to
include Some or all of the action types with each
notification.

0177. The foregoing discussion of the preferred embodi
ments has been provided only by way of introduction.
Nothing in this Section should be taken as a limitation on the
following claims, which define the Scope of the invention.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

0.178 FIG. 1 is a block diagram illustrating the relation
ship between a large network and one embodiment of the
System and method for generating a pay-for-performance
Search result of the present invention;
0179 FIG. 2 is a chart of menus, display screens, and
input Screens used in one embodiment of the present inven
tion;
0180 FIG. 3 is a flow chart illustrating the advertiser
user login proceSS performed in one embodiment of the
present invention;
0181 FIG. 4 is a flow chart illustrating the administrative
user login proceSS performed in one embodiment of the
present invention;
0182 FIG. 5 is a diagram of data for an account record
for use with one embodiment of the present invention;
0183 FIG. 6 is a flow chart illustrating a method of
adding money to an account record used in one embodiment
of the present invention;
0184 FIG. 7 illustrates an example of a search result list
generated by one embodiment of the present invention;
0185 FIG. 8 is a flow chart illustrating a change bids
proceSS used in one embodiment of the present invention;
0186 FIG. 9 illustrates an example of a screen display
used in the change bids process of FIG. 8; and
0187 FIGS. 10-24 are flow diagrams illustrating opera
tion of a System in accordance with the present embodi
mentS.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EMBODIMENTS

0188 Methods and systems for generating a pay-for
performance Search result determined by a site promoter,
Such as an advertiser, over a client/server based computer
network System are disclosed. The following description is
presented to enable any perSon Skilled in the art to make and
use the invention. For purposes of explanation, Specific

Nov. 7, 2002

nomenclature is Set forth to provide a thorough understand
ing of the present invention. Descriptions of Specific appli
cations are provided only as examples. Various modifica
tions to the preferred embodiments will be readily apparent
to those skilled in the art, and the general principles defined
herein may be applied to other embodiments and applica
tions without departing from the Spirit and Scope of the
invention. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the
widest Scope consistent with the principles and features
disclosed herein.

0189 Referring now to the drawings, FIG. 1 is an
example of a distributed System 10 configured as client/
Server architecture used in a preferred embodiment of the
present invention. A “client' is a member of a class or group
that uses the Services of another class or group to which it
is not related. In the context of a computer network, Such as
the Internet, a client is a process (i.e. roughly a program or
task) that requests a Service which is provided by another
process, known as a Server program. The client process uses
the requested Service without having to know any working
details about the other Server program or the Server itself. In
networked Systems, a client process usually runs on a
computer that accesses shared network resources provided
by another computer running a corresponding Server pro
cess. However, it should also be noted that it is possible for
the client process and the Server process to run on the same
computer.

0190. A “server' is typically a remote computer system
that is accessible over a communications medium Such as
the Internet. The client proceSS may be active in a Second
computer System, and communicate with the Server process
over a communications medium that allows multiple clients
to take advantage of the information-gathering capabilities
of the Server. Thus, the Server essentially acts as an infor
mation provider for a computer network.

0191). The block diagram of FIG. 1 therefore shows a
distributed System 10 comprising a plurality of client com
puters 12, a plurality of advertiser Web Servers 14, an
account management Server 22, and a Search engine web
server 24, all of which are connected to a network 20. The
network 20 will be hereinafter generally referred to as the
Internet. Although the System and method of the present
invention is specifically useful for the Internet, it should be
understood that the client computers 12, advertiser web
Servers 14, account management Server 22, and Search
engine web server 24 may be connected together through
one of a number of different types of networks. Such
networks may include local area networks (LANs), other
wide area networks (WANs), and regional networks
accessed over telephone lines, Such as commercial informa
tion Services. The client and Server processes may even
comprise different programs executing simultaneously on a
Single computer.

0.192 The client computers 12 can be conventional per
Sonal computers (PCs), workstations, or computer Systems
of any other size. Each client 12 typically includes one or
more processors, memories, input/output devices, and a
network interface, Such as a conventional modem. The
advertiser web servers 14, account management Server 22,
and the Search engine web server 24 can be similarly
configured. However, advertiser web servers 14, account

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

management Server 22, and Search engine web server 24
may each include many computers connected by a Separate
private network. In fact, the network 20 may include hun
dreds of thousands of individual networks of computers.

0193 The client computers 12 can execute web browser
programs 16, such as the NAVIGATOR, EXPLORER, or
MOSAIC browser programs, to locate the web pages or
records 30 stored on advertiser server 14. The browser
programs 16 allow the users to enter addresses of Specific
web pages 30 to be retrieved. These addresses are referred
to as Uniform Resource Locators, or URLS. In addition,
once a page has been retrieved, the browser programs 16 can
provide access to other pages or records when the user
"clicks' on hyperlinks to other web pages. Such hyperlinks
are located within the web pages 30 and provide an auto
mated way for the user to enter the URL of another page and
to retrieve that page. The pages can be data records including
as content plain textual information, or more complex digi
tally encoded multimedia content, Such as Software pro
grams, graphics, audio Signals, Videos, and So forth.

0194 In a preferred embodiment of the present invention,
shown in FIG. 1, client computers 12 communicate through
the network 20 with various network information providers,
including account management Server 22, Search engine
Server 24, and advertiser Servers 14 using the functionality
provided by a HyperText Transfer Protocol (HTTP),
although other communications protocols, Such as FTP,
SNMP, TELNET, and a number of other protocols known in
the art, may be used. Preferably, Search engine Server 24,
account management Server 22, and advertiser Servers 14 are
located on the World Wide Web.

0.195 AS discussed above, at least two types of server are
contemplated in a preferred embodiment of the present
invention. The first Server contemplated is an account man
agement Server 22 comprising a computer Storage medium
32 and a processing system 34. A database 38 is stored on
the Storage medium 32 of the account management Server
22. The database 38 contains advertiser account information.
It will be appreciated from the description below that the
System and method of the present invention may be imple
mented in Software that is Stored as executable instructions
on a computer Storage medium, Such as memories or mass
Storage devices, on the account management Server 22.
Conventional browser programs 16, running on client com
puters 12, may be used to access advertiser account infor
mation Stored on account management Server 22. Preferably,
access to the account management Server 22 is accomplished
through a firewall, not shown, which protects the account
management and Search result placement programs and the
account information from external tampering. Additional
Security may be provided via enhancements to the Standard
communications protocols such as Secure HTTP or the
Secure Sockets Layer.
0196. The second server type contemplated is a search
engine web server 24. A Search engine program permits
network users, upon navigating to the Search engine web
server URL or sites on other web servers capable of Sub
mitting queries to the Search engine Web Server 24 through
their browser program 16, to type keyword queries to
identify pages of interest among the millions of pages
available on the World Wide Web. In a preferred embodi
ment of the present invention, the Search engine web server

Nov. 7, 2002

24 generates a Search result list that includes, at least in part,
relevant entries obtained from and formatted by the results
of the bidding proceSS conducted by the account manage
ment Server 22. The Search engine web server 24 generates
a list of hypertext links to documents that contain informa
tion relevant to Search terms entered by the user at the client
computer 12. The Search engine Web Server transmits this
list, in the form of a web page, to the network user, where
it is displayed on the browser 16 running on the client
computer 12. A presently preferred embodiment of the
Search engine web server may be found by navigating to the
web page at URL http://www.goto.com/. In addition, the
Search result list web page, an example of which is presented
in FIG. 7, will be discussed below in further detail.
0197) Search engine web server 24 is connected to the
Internet 20. In a preferred embodiment of the present
invention, Search engine web server 24 includes a Search
database 40 comprised of Search listing records used to
generate Search results in response to user queries. In
addition, Search engine web server 24 may also be connected
to the account management Server 22. Account management
Server 22 may also be connected to the Internet. The Search
engine web server 24 and the account management Server 22
of the present invention address the different information
needs of the users located at client computers 12.
0198 For example, one class of users located at client
computerS 12 may be network information providerS Such as
advertising web site promoters or owners having advertiser
web pages 30 located on advertiser web servers 14. These
advertising web site promoters, or advertisers, may wish to
access account information residing in Storage 32 on account
management Server 22. An advertising web site promoter
may, through the account residing on the account manage
ment Server 22, participate in a competitive bidding process
with other advertisers. An advertiser may bid on any number
of search terms relevant to the content of the advertiser's
web site. In one embodiment of the present invention, the
relevance of a bidded search term to an advertisers web site
is determined through a manual editorial process prior to
insertion of the Search listing containing the Search term and
advertiser web site URL into the database 40. In an alternate
embodiment of the present invention, the relevance of a
bidded Search term in a Search listing to the corresponding
web site may be evaluated using a computer program
executing at processor 34 of account management Server 22,
where the computer program will evaluate the Search term
and corresponding web site according to a set of predefined
editorial rules.

0199 The higher bids receive more advantageous place
ment on the Search result list page generated by the Search
engine 24 when a Search using the Search term bid on by the
advertiser is executed. In a preferred embodiment of the
present invention, the amount bid by an advertiser comprises
a money amount that is deducted from the account of the
advertiser for each time the advertisers web site is accessed
via a hyperlink on the Search result list page. A Searcher
"clicks' on the hyperlink with a computer input device to
initiate a retrieval request to retrieve the information asso
ciated with the advertiser's hyperlink. Preferably, each
access or “click” on a search result list hyperlink will be
redirected to the Search engine web server 24 to associate the
"click” with the account identifier for an advertiser. This
redirect action, which is not apparent to the Searcher, will

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

access account identification information coded into the
Search result page before accessing the advertiser's URL
using the Search result list hyperlink clicked on by the
Searcher. The account identification information is recorded
in the advertiser's account along with information from the
retrieval request as a retrieval request event. Since the
information obtained through this mechanism conclusively
matches an account identifier with a URL in a manner not
possible using conventional Server System logs known in the
art, accurate account debit records will be maintained. Most
preferably, the advertiser's Web Site description and hyper
link on the Search result list page is accompanied by an
indication that the advertiser's listing is a paid listing. Most
preferably, each paid listing displays a “cost to advertiser,”
which is an amount corresponding to a "price-per-click”
paid by the advertiser for each referral to the advertiser's site
through the Search result list.
0200. A second class of users at client computers 12 may
comprise Searchers Seeking Specific information on the web.
The Searchers may access, through their browserS 16, a
Search engine web page 36 residing on Web Server 24. The
Search engine web page 36 includes a query box in which a
Searcher may type a Search term comprising one or more
keywords. Alternatively, the Searcher may query the Search
engine web server 24 through a query box hyperlinked to the
Search engine web server 24 and located on a web page
stored at a remote web server. When the searcher has
finished entering the Search term, the Searcher may transmit
the query to the Search engine Web Server 24 by clicking on
a provided hyperlink. The search engine web server 24 will
then generate a Search result list page and transmit this page
to the Searcher at the client computer 12.
0201 The searcher may click on the hypertext links
asSociated with each listing on the Search results page to
access the corresponding web pages. The hypertext links
may access web pages anywhere on the Internet, and include
paid listings to advertiser web pages 18 located on advertiser
web servers 14. In a preferred embodiment of the present
invention, the Search result list also includes non-paid list
ings that are not placed as a result of advertiser bids and are
generated by a conventional WorldWide Web search engine,
such as the INKTOMI, LYCOS, or YAHOO! search engines.
The non-paid hypertext linkS may also include linkS manu
ally indexed into the database 40 by an editorial team. Most
preferably, the non-paid listings follow the paid advertiser
listings on the Search results page.
0202 FIG. 2 is a diagram showing menus, display
Screens, and input Screens presented to an advertiser acceSS
ing the account management Server 22 through a conven
tional browser program 16. The advertiser, upon entering the
URL of the account management server 22 into the browser
program 16 of FIG. 1, invokes a login application, discussed
below as shown at Screen 110 of FIG. 2, running on the
processing system 34 of the server 22. Once the advertiser
is logged-in, the processing System 34 provides a menu 120
that has a number of options and further Services for
advertisers. These items, which will be discussed in more
detail below, cause routines to be invoked to either imple
ment the advertiser's request or request further information
prior to implementing the advertiser's request. In one
embodiment of the present invention, the advertiser may
access Several options through menu 120, including request
ing customer service 130, viewing advertiser policies 140,

Nov. 7, 2002

performing account administration taskS 150, adding money
to the advertiser's account 160, managing the account's
advertising presence on the Search engine 170, and viewing
activity reports 180. Context-specific help 190 may also
generally be available at menu 120 and all of the above
mentioned options.

0203 The login procedure of the preferred embodiment
of the present invention is shown in FIGS. 3 and 4 for two
types of user. FIG. 3 shows the login procedures 270 for an
advertiser. FIG. 4 shows the login procedures 290 for an
administrator managing and maintaining the System and
method of the present invention. AS discussed above, the
advertiser or administrator at a client computer 12 must first
use a browser program at steps 271 or 291 to access the
account management Server. After the advertiser navigates
to the URL of the login page to Start the login process at Step
272 or 292, the processing system 34 of the account man
agement Server 22 invokes a login application at StepS 274
or 294. According to this application, the processor provides
an input screen 110 (FIG. 2) that requests the advertiser's or
administrator's user name and password. These items of
information are provided at steps 276 or 296 to a security
application known in the art for the purpose of authentica
tion, based on the account information Stored in a database
Stored in Storage 32 of account management Server 22.

0204 According to FIG. 3, after the user has been
authenticated as an advertiser, the advertiser is provided
with the menu screen 120 of FIG. 2 and limited read/write
access privileges only to the corresponding advertiser
account, as shown in step 278. The advertiser login event
278 may also be recorded in step 280 in an audit trail data
Structure as part of the advertiser's account record in the
database. The audit trail is preferably implemented as a
Series of entries in database 38, where each entry corre
sponds to an event wherein the advertiser's account record
is accessed. Preferably, the audit trail information for an
account record may be viewed by the account owner and
other appropriate administrators.

0205 However, if the user is authenticated as an admin
istrator in step 295 of FIG. 4, the administrator is provided
with Specified administrative access privileges to all adver
tiser accounts as shown in Step 296. The administrator login
event 296 is recorded in step 297 in the audit trail data
Structure portion of the administrator's account record. This
audit trail is preferably implemented as a Series of entries in
database 38, where each entry corresponds to an event
wherein the administrator's account record is accessed.
Most preferably, the administrator's audit trail information
may be viewed by the account owner and other appropriate
administrators.

0206 Furthermore, instead of the general advertiser main
menu shown to the authenticated advertiser users in Step
282, the authenticated administrator is provided in step 298
with access to Search the database 38 of advertiser accounts.
Preferably, a database search interface is provided to the
administrator that enables the administrator to Select an
advertiser account to monitor. For example, the interface
may include query boxes in which the administrator may
enter an account number or username or contact name
corresponding to an account the administrator wishes to
access. When the administrator Selects an advertiser account

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

to monitor in step 299, the administrator is then brought to
the main advertiser page 120 of FIG. 2, which is also seen
by the advertisers.
0207 Access to the account information 32 located on
the account management Server 22 is restricted to users
having an account record on the System, as only those users
are provided with a valid login name and password. Pass
word and login name information is Stored along with the
user's other account information in the database 38 of the
account management Server 22, as shown in FIG. 1.
Account information, including a login user name and
password, is entered in the database 38 of FIG. 1 via a
Separate online registration process that is outside the Scope
of the present invention.
0208 FIG. 5 is a diagram showing the types of infor
mation contained in each advertiser account record 300 in
the database. First, an advertiser account record 300 contains
a username 302 and a password 304, used for online
authentication as described above. The account record also
contains contact information 310 (e.g., contact name, com
pany name, Street address, phone, e-mail address).
0209 Contact information 310 is preferably utilized to
direct communications to the advertiser when the advertiser
has requested notification of key advertiser events under the
notification option, discussed below. The account record 300
also contains billing information 320 (e.g., current balance,
credit card information). The billing information 320 con
tains data accessed when the advertiser Selects the option to
add money to the advertiser's account. In addition, certain
billing information, Such as the current balance, may trigger
events requiring notification under the notification option.
The audit trail section 325 of an account record 300 contains
a list of all events wherein the account record 300 is
accessed. Each time an account record 300 is accessed or
modified, by an administrator or advertiser a short entry
describing the account acceSS and/or modification event will
be appended to the audit trail section 330 of the adminis
trator or advertiser account that initiated the event. The audit
trail information may then be used to help generate a history
of transactions made by the account owner under the
acCOunt.

0210. The advertising information section 330 contains
information needed to conduct the online bidding process of
the present invention, wherein a position is determined for
a web site description and hyperlink within a Search result
list generated by a Search engine. The advertising data 330
for each user account 300 may be organized as Zero or more
subaccounts 340. Each subaccount 340 comprises at least
one Search listing 344. Each Search listing corresponds to a
bid on a Search term. An advertiser may utilize Subaccounts
to organize multiple bids on multiple Search terms, or to
organize bids for multiple web sites. Subaccounts are also
particularly useful for advertisers Seeking to track the per
formance of targeted market Segments. The Subaccount
Superstructure is introduced for the benefit of the advertisers
Seeking to organize their advertising efforts, and does not
affect the method of operation of the present invention.
Alternatively, the advertising information Section need not
include the added organizational layer of Subaccounts, but
may simply comprise one or more Search listings.
0211 The search listing 344 corresponds to a search
term/bid pairing and contains key information to conduct the

Nov. 7, 2002

online competitive bidding proceSS. Preferably, each Search
listing comprises the following information: Search term
352, web site description 354, URL 356, bid amount 358,
and a title 360. The search term 352 comprises one or more
keywords which may be common words in English (or any
other language). Each keyword in turn comprises a character
String. The Search term is the object of the competitive
online bidding process. The advertiser Selects a Search term
to bid on that is relevant to the content of the advertiser's
web site. Ideally, the advertiser may Select a Search term that
is targeted to terms likely to be entered by Searchers Seeking
the information on the advertiser's web site, although less
common Search terms may also be Selected to ensure com
prehensive coverage of relevant Search terms for bidding.
0212. The web site description 354 is a short textual
description (preferably less than 190 characters) of the
content of the advertisers web site and may be displayed as
part of the advertiser's entry in a search result list. The
search listing 344 may also contain a title 360 of the web site
that may be displayed as the hyperlinked heading to the
advertiser's entry in a search result list. The URL 356
contains the Uniform Resource Locator address of the
advertiser's web site. When the user clicks on the hyperlink
provided in the advertiser's search result list entry, the URL
is provided to the browser program. The browser program,
in turn, accesses the advertiser's Web Site through the
redirection mechanism discussed above. The URL may also
be displayed as part of the advertiser's entry in a Search
result list.

0213 The bid amount 358 preferably is a money amount
bid by an advertiser for a listing. This money amount is
deducted from the advertiser's prepaid account or is
recorded for advertiser accounts that are invoiced for each
time a Search is executed by a user on the corresponding
Search term and the Search result list hyperlink is used to
refer the searcher to the advertisers web site. Finally, a rank
value is a value generated dynamically, preferably by the
processing System 34 of the account management Server 22
shown in FIG. 1, each time an advertiser places a bid or a
Search enters a Search query. The rank value of an advertis
er's Search listing determines the placement location of the
advertiser's entry in the Search result list generated when a
Search is executed on the corresponding Search term. Pref
erably, rank value is an ordinal value determined in a direct
relationship to the bid amount 358; the higher the bid
amount, the higher the rank value, and the more advanta
geous the placement location on the Search result list. Most
preferably, the rank value of 1 is assigned to the highest bid
amount with Successively higher ordinal values (e.g., 2, 3, 4,
. . .) associated with Successively lower ranks and assigned
to Successively lower bid amounts.
0214. Once logged in, an advertiser can perform a num
ber of straightforward tasks set forth in menu 120 of FIG.
2, including viewing a list of rules and policies for adver
tisers, and requesting customer Service assistance. These
items cause routines to be invoked to implement the request.
For example, when “Customer Service' is selected, an input
screen 130 is displayed to allow the advertiser to select the
type of customer Service requested. In addition, forms may
be provided on screen 130 so that an advertiser may type a
customer comment into a web-based input form.
0215. When “View Advertiser Policies” is selected, a
routine will be invoked by processing system 34 of the

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

account management server 22FIG. 1. As shown in FIG. 2,
the routine will display an informational web page 140. The
web page 140 sets forth the advertiser policies currently in
effect (e.g., “All search listing descriptions must clearly
relate to the search term').
0216) Menu 120 of FIG. 2 also includes an “Account
Administration' selection 150 which allows an advertiser,
among other things, to view and change the advertiser's
contact information and billing information, or update the
advertiser's access profile, if any. Web-based forms well
known in the art and Similar to those discussed above are
provided for updating account information.

0217. The “Account Administration” menu also includes
a Selection enabling an advertiser to View the transaction
history of the advertiser's account. Under the “View Trans
action History' Selection, the advertiser may invoke routines
to view a listing of past account transactions (e.g., adding
money to account, adding or deleting bidded Search terms,
or changing a bid amount). Additional routines may be
implemented to permit advertisers to display a history of
transactions of a specified type, or that occur within a
Specified time. The transaction information may be obtained
from the audit trail list 325 of FIG. 5, described above.
Clickable buttons that may be implemented in software,
web-based forms, and/or menus may be provided as known
in the art to enable advertisers to Specify Such limitations.

0218. In addition, the “Account Administration” menu
150 of FIG. 2 includes a selection enabling an advertiser to
Set notification options. Under this selection, the advertiser
may select options that will cause the System to notify the
advertiser when certain key events have occurred. For
example, the advertiser may elect to Set an option to have the
System Send conventional electronic mail messages to the
advertiser when the advertiser's account balance has fallen
below a specified level. In this manner, the advertiser may
receive a “warning to replenish the account before the
account is Suspended (meaning the advertiser's listings will
no longer appear in Search result lists). Another key event for
which the advertiser may wish notification is a change in
position of an advertiser's listing in the Search result list
generated for a particular Search term. For example, an
advertiser may wish to have the System Send a conventional
electronic mail message to the advertiser if the advertiser has
been outbid by another advertiser for a particular Search
term (meaning that the advertiser's listing will appear in a
position farther down on the Search result list page than
previously). When one of the system-specified key events
occurs, a database Search is triggered for each affected
Search listing. The System will then execute the appropriate
notification routine in accordance with the notification
options Specified in the advertiser's account.

0219 Referring back to FIG. 2, a selection also appears
in menu 120 that permits an advertiser to add money to the
advertiser's account, So that the advertiser will have funds in
their account to pay for referrals to the advertiser's site
through the Search results page. Preferably, only advertisers
with funds in their advertiser's accounts may have their paid
listings included in any Search result lists generated. Most
preferably, advertisers meeting Selected business criteria
may elect, in place of maintaining a positive account balance
at all times, incur account charges regardless of account
balance and pay an invoiced amount at regular intervals

Nov. 7, 2002

which reflects the charges incurred by actual referrals to the
advertiser's Site generated by the Search engine. The proceSS
that is executed when the “Add Money to Account' selec
tion is invoked is shown in further detail in FIG. 6, begin
ning at step 602. When the “Add Money to Account”
selection is clicked in step 604, a function is invoked which
receives data identifying the advertiser and retrieves the
advertiser's account from the database. The executing pro
ceSS then Stores the advertiser's default billing information
and displays the default billing information for the advertiser
in step 606. The displayed billing information includes a
default amount of money to be added, a default payment
type, and default instrument information.
0220. In the preferred embodiment of the present inven
tion, an advertiser may add funds online and Substantially in
real time through the use of a credit card, although the use
of other payment types are certainly well within the Scope of
the present invention. For example, in an alternate embodi
ment of the present invention, advertisers may add funds to
their account by transferring the desired amount from the
advertiser's bank account through an electronic funds veri
fication mechanism known in the art Such as debit cards, in
a manner similar to that set forth in U.S. Pat. No. 5,724,424
to Gifford. In another alternate embodiment of the present
invention, advertisers can add funds to their account using
conventional paper-based checks. In that case, the additional
funds may be updated in the account record database
through manual entry. The instrument information includes
further details regarding the type of payment. For example,
for a credit card, the instrument information may include
data on the name of the credit card (e.g., MasterCard, Visa,
or American Express), the credit card number, the expiration
date of the credit card, and billing information for the credit
card (e.g., billing name and address). In a preferred embodi
ment of the present invention, only a partial credit card
number is displayed to the advertiser for Security purposes.
0221) The default values displayed to the advertiser are
obtained from a persistent State, e.g., Stored in the account
database. In an embodiment of the present invention, the
Stored billing information values may comprise the values
Set by the advertiser the last (e.g. most recent) time the
process of adding money was invoked and completed for the
advertiser's account. The default billing information is dis
played to the advertiser in a web-based form. The advertiser
may click on the appropriate text entry boxes on the web
based form and make changes to the default billing infor
mation. After the advertiser completes the changes, the
advertiser may click on a hyperlinked “Submit” button
provided on the form to request that the System update the
billing information and current balance in step 608. Once the
advertiser has requested an update, a function is invoked by
the system which validates the billing information provided
by the advertiser and displays it back to the advertiser for
confirmation, as shown in step 610. The confirmation billing
information is displayed in read-only form and may not be
changed by the advertiser.
0222. The validation step functions as follows. If pay
ment is to be debited from an advertiser's external account,
payment may be authenticated, authorized and completed
using the system set forth in U.S. Pat. No. 5,724,424 to
Gifford. However, if the payment type is by credit card, a
validating algorithm is invoked by the System, which Vali
dates the credit card number using a method Such as that Set

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

forth in U.S. Pat. No. 5,836,241 to Stein et al. The validating
algorithm also validates the expiration date via a Straight
forward comparison with the current System date and time.
In addition, the function Stores the new values in a tempo
rary instance prior to confirmation by the advertiser.

0223) Once the advertiser ascertains that the displayed
data is correct, the advertiser may click on a "Confirm'
button provided on the page to indicate that the account
should be updated in step 612. In step 612, a function is
invoked by the System which adds money to the appropriate
account balance, updates the advertiser's billing informa
tion, and appends the billing information to the advertiser's
payment history. The advertiser's updated billing informa
tion is stored to the persistent State (e.g., the account record
database) from the temporary instance.

0224. Within the function invoked at step 612, a credit
card payment function may be invoked by the System at Step
614. In an alternate embodiment of the present invention,
other payment functions Such as debit card payments may be
invoked by defining multiple payment types depending on
the updated value of the payment type.

0225. If the payment type is credit card, the user's
account is credited immediately at Step 616, the user's credit
card having already been validated in Step 610. A Screen
showing the Status of the add money transaction is dis
played, showing a transaction number and a new current
balance, reflecting the amount added by the just completed
credit card transaction.

0226. In an alternate embodiment of the present inven
tion, after the money has been added to the account, the
amount of money added to the account may be allocated
between Subaccounts the end of the add money process at
step 616. If the advertiser has no subaccounts, all of the
money in the account is a general allocation. However, if the
advertiser has more than one Subaccount, the System will
display a confirmation and default message prompting the
advertiser to “Allocate Money Between Subaccounts”.

0227. The menu selection “Allocate Money Between
Subaccounts” may be invoked when money is added to the
advertiser account after step 616 of FIG. 6, or it may be
invoked within the “Account Management’ menu 170
shown in FIG. 2. The “Account Management’ menu 170 is
accessible from the Advertiser Main Page 120, as shown in
FIG. 2. This “ Allocate Money Between Subaccounts' menu
Selection permits an advertiser to allocate current and any
pending balances of the advertiser's account among the
advertiser's subaccounts. The system will then update the
Subaccount balances. The current balance allocations will be
made in real time, while the pending balance allocations will
be stored in the persistent state. A routine will be invoked to
update the Subaccount balances to reflect the pending bal
ance allocations when the payment for the pending balance
is processed. Automatic notification may be sent to the
advertiser at that time, if requested. This intuitive online
account management and allocation permits advertisers to
manage their online advertising budget quickly and effi
ciently. Advertisers may replenish their accounts with funds
and allocate their budgets, all in one easy web-based Session.
The computer-based implementation eliminates time con
Suming, high cost manual entry of the advertiser's account
transactions.

Nov. 7, 2002

0228. The “Allocate Money Between Subaccounts' rou
tine begins when an advertiser indicates the intent to allocate
money by invoking the appropriate menu Selection at the
execution points indicated above. When the advertiser indi
cates the intent to allocate, a function is invoked by the
System to determine whether there are funds pending in the
current balance (i.e., unactivated account credits) that have
not yet been allocated to the advertiser's Subaccounts, and
displays the balance Selection options. In a preferred
embodiment of the present invention, an account instance is
created and a pending current balance account field is Set
from the persistent State.
0229. If there are no unallocated pending funds, the
System may display the current available balances for the
account as a whole as well as for each Subaccount. The
advertiser then distributes the current available balance
between Subaccounts and Submits a request to update the
balances. A function is invoked which calculates and dis
plays the current running total for Subaccount balances. The
current running total is Stored in a temporary variable which
is Set to the Sum of current balances for all Subaccounts for
the specified advertiser. The function also validates the new
available Subaccount balances to make Sure that the total
does not exceed the authorized amount. If the new adver
tiser-Set available Subaccount balances does not exceed the
authorized amount, a function is invoked which will update
all of the Subaccount balances in the persistent State and
display the update in read-only format.
0230. If there are pending funds in the current account
balance, the pending funds must be allocated separately
from the available current balance. The pending funds will
then be added into the available current balance when the
funds are received. The function must therefore prompt the
advertiser to choose between allocating pending funds or
allocating available funds. The allocating pending funds
Selection works in much the same manner as the allocating
available funds selection outlined above. After the advertiser
chooses to allocate pending funds, a routine is invoked to
display current pending balances for the account and the
Subaccounts. The advertiser distributes the pending Subac
count balances between campaigns and Submits a request to
update the balances. A function is invoked which calculates
and displays the current running totals for the pending
Subaccount balances. This function also validates the new
pending Subaccount allocations to make Sure that the allo
cations do not exceed any authorized amount. The current
running total of pending allocations is Set to the Sum of
current pending balances for all Subaccounts for the adver
tiser. If the new user-Set pending Subaccount balances or the
total of Such balances do not exceed any authorized amount,
the function will update all of the pending Subaccount
allocations in the persistent State, e.g. the advertiser's
account in the database, and display the update in read-only
format.

0231 AS indicated above and shown in FIG. 2, a routine
displaying the account management menu 170 may be
invoked from the advertiser main menu 120. Aside from the
“Allocate Money Between Subaccounts' selection
described above, the remaining Selections all use to Some
extent the Search listings present in the advertiser's account
on the database, and may also affect the advertiser's entry in
the Search result list. Thus, a further description of the Search
result list generated by the Search engine is needed at this
point.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0232. When a remote searcher accesses the search query
page on the Search engine Web Server 24 and executes a
Search request according to the procedure described previ
ously, the Search engine web server 24 preferably generates
and displays a Search result list where the “canonicalized'
entry in Search term field of each Search listing in the Search
result list exactly matches the canonicalized Search term
query entered by the remote Searcher. The canonicalization
of Search terms used in queries and Search listings removes
common irregularities of Search terms entered by Searches
and web site promoters, Such as capital letters and plural
izations, in order to generate relevant results. However,
alternate Schemes for determining a match between the
Search term field of the Search listing and the Search term
query entered by the remote Searcher are well within the
Scope of the present invention. For example, String matching
algorithms known in the art may be employed to generate
matches where the keywords of the Search listing Search
term and the Search term query have the same root but are
not exactly the same (e.g., computing VS. computer). Alter
natively a thesaurus database of Synonyms may be Stored at
Search engine Web Server 24, So that matches may be
generated for a Search term having Synonyms. Localization
methodologies may also be employed to refine certain
Searches. For example, a Search for “bakery' or "grocery
store” may be limited to those advertisers within a selected
city, Zip code, or telephone area code. This information may
be obtained through a cross-reference of the advertiser
account database Stored at Storage 32 on account manage
ment Server 22. Finally, internationalization methodologies
may be employed to refine Searches for users outside the
United States. For example, country or language-specific
Search results may be generated, by a croSS-reference of the
advertiser account database, for example.
0233. An example of a search result list display used in
an embodiment of the present invention is shown in FIG. 7,
which is a display of the first Several entries resulting from
a search for the term "zip drives”. As shown in FIG. 7, a
Single entry, Such as entry 710a in a Search result list consists
of a description 720 of the web site, preferably comprising
a title and a short textual description, and a hyperlink 730
which, when clicked by a Searcher, directs the Searcher's
browser to the URL where the described web site is located.
The URL 740 may also be displayed in the search result list
entry 710a, as shown in FIG. 7. The “click through” of a
Search result item occurs when the remote Searcher viewing
the search result item display 710 of FIG. 7 Selects, or
“clicks” on the hyperlink 730 of the search result item
display 710. In order for a “click through” to be completed,
the Searcher's click should be recorded at the account
management Server and redirected to the advertiser's URL
via the redirect mechanism discussed above.

0234 Search result list entries 710a-710h may also show
the rank value of the advertiser's Search listing. The rank
value is an ordinal value, preferably a number, generated and
assigned to the Search listing by the processing System 34 of
FIG. 1. Preferably, the rank value is assigned through a
process, implemented in Software, that establishes an asso
ciation between the bid amount, the rank, and the Search
term of a Search listing. The process gatherS all Search
listings that match a particular Search term, Sorts the Search
listings in order from highest to lowest bid amount, and
assigns a rank value to each Search listing in order. The
highest bid amount receives the highest rank value, the next

Nov. 7, 2002

highest bid amount receives the next highest rank value,
proceeding to the lowest bid amount, which receives the
lowest rank value. Most preferably, the highest rank value is
1 with Successively increasing ordinal values (e.g., 2,
3, 4, ...) assigned in order of Successively decreasing rank.
The correlation between rank value and bid amount is
illustrated in FIG. 7, where each of the paid search list
entries 710a through 710f display the advertiser's bid
amount 750a through 750f for that entry. Preferably, if two
Search listings having the same Search term also have the
Same bid amount, the bid that was received earlier in time
will be assigned the higher rank value. Unpaid listings 710g
and 710h do not display a bid amount and are displayed
following the lowest-ranked paid listing. Preferably, unpaid
listings are displayed if there are an insufficient number of
listings to fill the 40 slots in a Search results page. Unpaid
listings are generated by a Search engine utilizing objective
distributed database and text Searching algorithms known in
the art. An example of Such a Search engine may be operated
by Inktomi Corporation. The original Search query entered
by the remote Searcher is used to generate unpaid listings
through the conventional Search engine.
0235. As shown in the campaign management menu 170
of FIG. 2, several choices are presented to the advertiser to
manage Search listings. First, in the “Change Bids’ Selec
tion, the advertiser may change the bid of Search listings
currently in the account. The proceSS invoked by the System
for the change bids function is shown in FIG.8. After the
advertiser indicates the intent to change bids by Selecting the
“Change Bids’ menu option, the System searches the user's
account in the database and displays the Search listings for
the entire account or a default Subaccount in the advertiser's
account, as shown in Step 810. Search listings may be
grouped into Subaccounts defined by the advertiser and may
comprise one or more Search listings. Only one Subaccount
may be displayed at a time. The display should also pref
erably permit the advertiser to change the Subaccount
selected, as shown in step 815. The screen display will then
show the Search listings for the Selected Subaccount, as
indicated in step 820.
0236 An example of screen display shown to the adver
tiser in step 810 is shown in FIG. 9 and will be discussed
below. To change bids, the advertiser user may specify new
bids for search terms for which the advertiser already has an
existing bid by entering a new bid amount into the new bid
input field for the search term. The advertiser-entered bid
changes are displayed to the advertiser at step 820 of FIG.
8 as discussed above. To update the bids for the display page,
the advertiser requests, at step 830 of FIG. 8, to update the
result of changes. The advertiser may transmit Such a request
to the account management Server by a variety of means,
including clicking on a button graphic.
0237 As shown in step 840 of FIG. 8, upon receiving the
request to update the advertiser's bids, the System calculates
the new current bid amounts for every Search listing dis
played, the rank values, and the bid amount needed to
become the highest ranked Search listing matching the
search term field. Preferably, the system then presents a
display of changes at step 850. After the user confirms the
changes, the System updates the persistent State by writing
the changes to the account in the database.
0238. The search listing data is displayed in tabular
format, with each Search listing corresponding to one row of

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

the table 900. The search term 902 is displayed in the
leftmost column, followed by the current bid amount 904,
and the current rank 906 of the search listing. The current
rank is followed by a column entitled “Bid to become
#1'907, defined as the bid amount needed to become the
highest ranked Search listing for the displayed Search term.
The rightmost column of each row comprises a new bid
input field 908 which is set initially to the current bid
amount.

0239). As shown in FIG. 9, the search listings may be
displayed as “Subaccounts. Each Subaccount comprises one
Search listing group, with multiple Subaccounts residing
within one advertiser account. Each Subaccount may be
displayed on a separate display page having a separate page.
The advertiser should preferably be able to change the
Subaccount being displayed by manipulating a pull-down
menu 910 on the display shown in FIG. 9. In addition,
Search listing groups that cannot be displayed completely in
one page may be separated into pages which may be
individually viewed by manipulating pull-down menu 920.
Again, the advertiser should preferably be able to change the
page displayed by clicking directly on a pull-down menu
920 located on the display page of FIG. 9. The advertiser
may specify a new bid for a displayed Search listing by
entering a new bid amount into the new bid input field 908
for the search listing. To update the result of the advertiser
entered changes, the advertiser clicks on button graphic 912
to transmit an update request to the account management
server, which updates the bids as described above.

0240 Many of the other selections listed in the “Account
Management’ menu 170 of FIG. 2 function as variants of
the “Change Bid' function described above. For example, if
the advertiser selects the “Change Rank Position” option,
the advertiser may be presented with a display Similar to the
display of FIG. 9 used in the “Change Bid' function.
However, in the “Change Rank Position” option, the “New
Bid” field would be replaced by a “New Rank” field, in
which the advertiser enters the new desired rank position for
a Search term. After the advertiser requests that the ranks be
updated, the System then calculates a new bid price by any
of a variety of algorithms easily available to one skilled in
the art. For example, the System may invoke a routine to
locate the Search listing in the Search database having the
desired rank/search term combination, retrieve the associ
ated bid amount of Said combination, and then calculate a
bid amount that is N cents higher; where N=1, for example.
After the System calculates the new bid price and presents a
read-only confirmation display to the advertiser, the System
updates the bid prices and rank values upon receiving
approval from the advertiser.

0241 The “Modify Listing Component' selection on
Account Management menu 170 of FIG. 2 may also gen
erate a display similar to the format of FIG. 9. When the
advertiser selects the “Modify Listing Component” option,
the advertiser may input changes to the URL, title, or
description of a Search listing via web-based forms Set up for
each Search listing. Similar to the process discussed above,
the forms for the URL, title, and description fields may
initially contain the old URL, title and description as default
values. After the advertiser enters the desired changes, the
advertiser may transmit a request to the System to update the
changes. The System then displays a read-only confirmation

Nov. 7, 2002

Screen, and then writes the changes to the persistent State
(e.g., the user account database) after the advertiser approves
the changes.
0242 A process similar to those discussed above may be
implemented for changing any other peripheral options
related to a Search listing; for example, changing the match
ing options related to a bidded Search term. Any recalcula
tions of bids or ranks required by the changes may also be
determined in a manner Similar to the processes discussed
above.

0243 In the “Delete Bidded Search Term” option, the
System retrieves all of the Search listings in the account of
the advertiser and displays the Search listings in an organi
zation and a format similar to the display of FIG. 9. Each
Search listing entry may include, instead of the new bid field,
a check box for the advertiser to click on. The advertiser
would then click to place a check (X) mark next to each
Search term to be deleted, although any other means known
in the art for Selecting one or more items from a list on a web
page may be used. After the advertiser Selects all the Search
listings to be deleted and requests that the System update the
changes, the System preferably presents a read-only confir
mation of the requested changes, and updates the advertis
er's account only after the advertiser approves the changes.
The “deleted' search listings are removed from the search
database 36 and will not appear in Subsequent Searches.
However, the Search listing will remain as part of the
advertiser's account record for billing and account activity
monitoring purposes.
0244. In the “Add Bidded Search Term” option, the
System provides the advertiser with a display having a
number of entry fields corresponding to the elements of a
Search listing. The advertiser then enters into each field
information corresponding to the respective Search listing
element, including the Search term, the web site URL, the
Web Site title, the Web Site description, and the bid amount,
as well as any other relevant information. After the adver
tiser has completed entering the data and has indicated thus
to the System, the System returns a read-only confirmation
Screen to the advertiser. The System then creates a new
Search listing instance and writes it into the account database
and the Search database upon receiving approval from the
advertiser.

0245 Preferably, the “Account Management” menu 170
of FIG. 2 provides a selection for the advertiser to “Get
Suggestions. On Bidded Search Term”. In this case, the
advertiser enters a bidded Search term into a form-driven
query box displayed to the advertiser. The System reads the
Search term entered by the advertiser and generates a list of
additional related Search terms to assist the advertiser in
locating Search terms relevant to the content of the adver
tiser's web site. Preferably, the additional search terms are
generated using methods Such as a String matching algo
rithm applied to a database of bidded Search terms and/or a
thesaurus database implemented in Software. The advertiser
may Select Search terms to bid on from the list generated by
the System. In that case, the System displays to the adver
tisers the entry fields described above for the “Add Bidded
Search Term' Selection, with a form for entering a Search
listing for each Search term Selected. Preferably, the Selected
Search term is inserted as a default value into the form for
each Search listing. Default values for the other Search listing
components may also be inserted into the forms if desired.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0246 The “Account Management” menu 170 of FIG. 2
also preferably provides advertisers with a “Project
Expenses' Selection. In this Selection, the advertiser Speci
fies a Search listing or Subaccount for which the advertiser
would like to predict a “daily run rate” and “days remaining
to expiration.” The System calculates the projections based
on a cost projection algorithm, and displays the predictions
to the advertiser on a read-only Screen. The predictions may
be calculated using a number of different algorithms known
in the art. However, Since the cost of a Search listing is
calculated by multiplying the bid amount by the total
number of clicks received by the search listing at that bid
amount during a specified time period, every cost projection
algorithm must generally determine an estimated number of
clicks per month (or other specified time period) for a search
listing. The clicks on a Search listing may be tracked via
implementation of a Software counting mechanism as is well
known in the art. Clicks for all Search listings may be tracked
over time, this data may be used to generate estimated
numbers of clicks per month overall, and for individual
Search terms. For a particular Search term, an estimated
number of Searches per day is determined and is multiplied
by the cost of a click. This product is then multiplied by a
ratio of the average number of clicks over the average
number of impressions for the rank of the Search listing in
question to obtain a daily run rate. The current balance may
be divided by the daily run rate to obtain a projected number
of days to exhaustion or “expiration' of account funds.
0247 One embodiment of the present invention bases the
cost projection algorithm on a simple predictor model that
assumes that every Search term performs in a similar fash
ion. This model assumes that the rank of the advertiser's
Search listing will remain constant and not fluctuate through
out the month. This algorithm has the advantages of being
Simple to implement and fast to calculate. The predictor
model is based on the fact that the click through rate, e.g. the
total number of clicks, or referrals, for a particular Searcher
listing, is considered to be a function of the rank of the
Search listing. The model therefore assumes that the usage
curve of each Search term, that is, the curve that result when
the number of clicks on a Search listing is plotted against the
rank of the Search listing, is similar to the usage curve for all
Search terms. Thus, known values extrapolated over time for
the Sum of all clicks for all Search terms, the Sum of all clickS
at a given rank for all Search terms, and the Sum of all clicks
for the Selected Search term may be employed in a simple
proportion to determine the total of all clicks for the given
rank for the selected search term. The estimated daily total
of all clicks for the Selected Search term at the Selected rank
is then multiplied by the advertiser's current bid amount for
the Search term at that rank to determine a daily expense
projection. In addition, if particular Search terms or classes
of search terms are known to differ markedly from the
general pattern, correction values Specific to the Search term,
advertiser, or other parameter may be introduced to fine-tune
the projected cost estimate.
0248 Finally, the “Account Management” menu 170 of
FIG. 2 provides several selections to view information
related to the advertiser's campaigns. The “View Subac
count Information' Selection displays read-only information
related to the selected Subaccount. The “View Search Term
List” selection displays the list of the advertiser's selected
Search terms along with the corresponding URLS, bid price,
and rank, with the Search terms preferably grouped by

Nov. 7, 2002

Subaccount. The advertiser may also view current top bids
for a set of Search terms Selected from a list of Search terms
from a read-only display generated by the System upon
receiving the requested Search terms from the advertiser.
0249 For an advertiser who requires a more comprehen
sive report of search listing activity, the “View Report”
option may be selected from the Advertiser Main Page 120
of FIG. 2. In an embodiment of the present invention, the
“View Report” options generate reports comprehensive for
up to one year preceding the current date. For example, daily
reports are available for the each of the immediately pre
ceding 7 days, weekly reports for the preceding four weeks,
monthly reports for the preceding twelve months, and quar
terly reports for the last four quarters. Additional reports
may also be made available depending on advertiser interest.
Other predefined report types may include activity tracked
during the following time periods: Since Inception of the
Account, Year To Date, Yearly, Quarter To Date, Month To
Date, and Week to Date. Report Categories may include a
Detail Report, viewable by Advertiser Account, by Search
Listing, and by URL, and a Summary Report, viewable by
Advertiser Account and by Subaccount. The reports may
include identification data Such as advertiser account and
Subaccount name, the dates covered by the report and the
type of report. In addition, the reports may include key
Search listing account data Such as current balance, pending
current balance, average daily account debit, and run rate.
Furthermore, the reports may also include key data, Such as:
Search terms, URLS, bids, current ranks, and number of
clicks, number of Searches done for the Search term, number
of impressions (times that the Search listing appeared in a
Search result list), and click through rate (defined as Number
of ClickS/Number of Impressions). Preferably, the report is
available in at least HTML view options for viewing via a
browser program, printing, or downloading. Note, however,
that other view options may be made available, Such as
Adobe Acrobat, PostScript, ASCII text, spreadsheet inter
change formats (e.g., CSV, tab-delimited), and other well
known formats.

0250). When the advertiser has selected the “View
Report” option, the System invokes a function which dis
plays a list of available report types, dates, categories, and
View options. The System preferably creates a report
instance with the following fields, all of which are initially
Set to null: report type, report date, report category, and view
option. Once the advertiser has defined the parameters
described above, the System invokes a function to generate
the requested report, based on the advertiser-Set parameters,
and to display the report, based on the view option param
eter.

0251 Finally, a preferred embodiment of the present
invention implements an option for context specific help that
the advertiser may request at any time the advertiser is
logged in. The help option may be implemented as a Small
icon or button located on the System generated display page.
The advertiser may click on the icon or button graphic on the
display page to request help, upon which the System gen
erates and displays a help page keyed to the function of the
particular display the user is viewing. The help may be
implemented as Separate display pages, a Searchable index,
dialog boxes, or by any other methods well known in the art.
0252 FIGS. 10-24 are flow diagrams illustrating proce
dures which may be used to implement an automatic noti

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

fication functionality to the system described above. In
accordance with the automatic notification functionality, an
advertiser who has one or more associated Search listings
Stored in a Search listings database may specify one or more
conditions related to the one or more Search listings. When
a condition becomes true or the automatic notification
functionality is otherwise actuated, a notification is sent to
the advertiser. The advertiser may respond in any appropri
ate manner or not respond at all. The automatic notification
is an independent feature under the advertiser's control
which operates automatically on behalf of the advertiser to
advise the advertiser of Status information about Search
listings of the advertiser.
0253) One embodiment is implemented as a notification
method in a computer database System. The method includes
receiving a notification instruction from an owner associated
with a Search listing Stored in the computer database System.
The owner in one embodiment is an advertiser who is
asSociated with a marketplace operator who owns, operates
and maintains the computer database System. One particular
embodiment of the method is practiced in conjunction with
a database system accessible via the World Wide Web. In
this exemplary embodiment, the Search listing is one Stored
in the database Search System and accessible by a Search
engine in response to a Search query Submitted by a third
party Searcher. Information about the Search listing is pre
Sented to the Searcher along with other Search results.
FactorS Such as the cost charged to the owner and the display
rank of the Search listing may be controlled by information
contained in the notification instruction.

0254 The notification instruction may be received at the
computer database System in any Suitable fashion. In one
particular embodiment, the notification instruction is
received when the owner or advertiser accesses a World
Wide Web page of the marketplace operator and specifies
one or more conditions and associated data States about
which the owner should be automatically notified.
0255 The notification method further includes monitor
ing conditions Specified by the notification instruction for
the Search listing. Exemplary conditions include those Speci
fied herein and their equivalents. In particular, exemplary
conditions include conditions related to a variable State of
the Search listing Such as its associated cost and display rank.
Other exemplary conditions include economic conditions
Such as an account balance of the owner or advertiser with
the marketplace operator.

0256 The notification method further includes sending a
notification to the owner upon detection of a changed
condition of the Search listing. The notification may be
communicated in any convenient way or combination of
ways. The notification may include built-in information for
responding to the notification, So that the condition can be
corrected.

0257 Another embodiment is implemented as a database
Search System. The database Search System includes a data
base of Search listings associated with advertisers. Each
advertiser may initiate and maintain one or more Search
listings. The Search listings may be search to produce Search
results. The database Search System further includes a pro
cessing System which sends a notification to an advertiser
when a change condition of a Search listing of the advertiser
has occurred. The change condition may be specified by the

Nov. 7, 2002

advertiser or may be a default or other operator-specified
condition. In one embodiment, the change condition is
identified by the advertiser and threshold values or limits are
specified by the advertiser. The state of the condition is
preferably automatically tracked or monitored until a change
in the condition is detected. Subsequently, a notification is
Sent to the advertiser to alert of the change or Some other
action is taken by the System.

0258 Another embodiment is implemented as a database
Search System which includes a database of Search listings.
Each Search listing is associated with an advertiser. The
database Search System further includes a Search engine. Still
further, the database Search System includes means respon
Sive to condition Specifying information from one or more
advertisers for providing an indication to an advertiser when
a Specified condition of one or more Search listings is
Satisfied.

0259. The condition specifying information may be
received from the one or more advertisers, may be a default
or may be otherwise Selected or Specified or designated by
an advertiser or others. The Specified condition is tracked in
a manner which may be appropriately chosen or Specified
depending on the condition and its nature. The indication
may be of any Sort or nature needed to communicate to the
advertiser or Some device or instrument associated with the
advertiser that the specified condition is satisfied. The indi
cation may be as Simple as turning on or off Some indicator
or taking Some action or failing to take Some action. The
presence or absence of the indicator or action may serve to
communicate the condition to an advertiser. The indication
may be more involved, Such as a visual or audible commu
nication conveyed to the advertiser with a built-in or auto
matic response.

0260 Another embodiment is implemented as a database
Search System. The database Search System includes in this
embodiment a database of Search listings. Each Search
listing is associated with a respective advertiser and each
Search listing includes a Search term and a variable cost per
click (CPC) or a variable display rank. The database search
System in this embodiment further includes a Search engine
configured to identify Search listings matching a Search
query received from a Searcher. The matching Search listings
are preferably ordered in a Search result list according to the
display rank and the bid amount of the matching Search
listings. An agent is responsive to a condition definition from
an advertiser to provide condition update information to the
advertiser. The condition definition specifies a condition to
be monitored. The condition update information, if present,
Specifies the circumstances under which the condition will
be updated.

0261) Another embodiment is implemented as a method
for operating a database Search System. In this embodiment,
the method includes Storing a plurality of Search listings in
a database. Each Search listing is associated with an adver
tiser who gives economic value when a Search listing is
referred to a searcher. The method further includes deter
mining a display position for associated Search listings. In
one example, the associated Search listing are associated by
common data, Such as a Search term or proximity to a Search
term. The display position may be determined in any appro
priate way, from ways which are completely deterministic to
ways which are completely random. The position determin

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

ing way may be based on advertiser input or Some other
information. In one embodiment, each Search listing is
assigned a cost per click (CPC) and the display position is
determined based on CPC, with the highest CPC listing for
a Search term being listed highest when that Search term or
a variant thereof is received. The method further includes
receiving from an advertiser an indication of Search listings
for which the advertiser desires a notification of a display
position change. The indication and the notification may be
Sent according to any Suitable communication method any
available, convenient communication channel.

0262 The procedures illustrated in FIGS. 10-24 may be
performed in Software or hardware or any combination of
these. In one embodiment, the procedures are initiated as
Software procedures running on the processing System 34 of
the account management server 22 (FIG. 1). In other
embodiments, the procedures may run on a Separate
machine with network access to the Search listings database.
The procedures together form an Auto Notification function.

0263. The procedures illustrated in FIGS. 10-24 imple
ment a notification method in a computer database System.
The method includes acts Such as receiving a notification
instruction from an owner associated with a Search listing
Stored in the computer database System, monitoring condi
tions Specified in the notification instruction for the Search
listing, and Sending a notification to the owner upon detec
tion of a changed condition of the Search listing.

0264. In one embodiment, the computer database system
is a pay for performance Search System as described herein
and includes a database of Search listings and a Search
engine. The Search listings are each associated with an
advertiser or owner of the Search listing. The Search listings
each include data Such as a Search term, a bid amount or
maximum cost per clickthrough Specified by the advertiser,
a cost per clickthrough (CPC) and a rank or display rank.
The CPC and the rank may be varied automatically depend
ing on values specified by the advertiser and by other
advertisers associated with Search listings that include the
Same Search term. For example, the System may automati
cally reduce the CPC of a listing to a minimum while still
maintaining a specified rank. The Search engine matches
Search terms or other portions of the Search listings with a
Search query received from a Searcher. The matching Search
listings are organized according to CPC and display rank and
returned to the Searcher. If a Search listing is referred to the
Searcher, an economic value of an amount equal to the CPC
is payable by the advertiser or owner, who may keep an
account for this purpose. A referral of a Search listing in this
case might be an impression, Such as including information
about the Search listing in the display results, a click through
by the Searcher, or Some post-click through action by the
Searcher. This embodiment is exemplary only. The notifica
tion method may be applied to other types of database Search
Systems as well for advising owners or others associated
with listings in a database of a changed condition of a Search
listing.

0265. One example of a changed condition which may be
notified to the owner include a change of position of a Search
listing among the Search results produced for a particular
Search term. Another example of a changed condition is
when the CPC for a search listing reaches some value or
range Specified by the advertiser or owner. Another example

Nov. 7, 2002

of a changed condition is when the owner's account balance
falls below an owner-specified amount. Another example of
a changed condition is when aggregate impressions for one
or more of the advertiser's Search listings exceed a Specified
number, or when aggregate clickthroughs exceed a Specified
number, or when the clickthrough rate over Some Specified
time period exceeds a Specified number. Another example of
a changed condition occurs when the CPC of any Search
listing can be reduced without impacting its rank among
other Search listings for the same Search term. Another
example of a changed condition occurs when a Search listing
can be at an advertiser Specified display rank for less than an
advertiser Specified CPC. Another example of a changed
condition is when an advertisers average CPC acroSS Some
collection of listings exceeds a predetermined threshold.
0266. In one embodiment, the advertiser can select tim
ing of the notifications Sent by the System. Further, in one
embodiment, the advertiser can Specify the nature of the
notification Sent by the System, Such as an electronic mail
message, a facsimile, a page or a short or instant message.
Still further, in one embodiment, the notification may
include active links, inactive linkS or email responses Speci
fying an action to be taken by the System to correct or
resolve the notified condition.

0267 FIG. 10 is a flow diagram illustrating one embodi
ment of a method for creating a new Auto Notification
function. In accordance with the present embodiment, each
advertiser can create a new Auto Notification function by
Specifying: 1) the condition type and the parameters for the
condition type, 2) the notification time, 3) the notification
mode, and 4) the notification action type.
0268 Auto Notification functions are preferably imple
mented as one or more Software agents implemented on a
computer System Such as the account management web
server 22 of FIG. 1. When an Auto Notification function is
created, the Software routine is created by Supervisory
Software operating on the System using information pro
vided by an advertiser associated with the Auto Notification
function and possibly Standard or default information. In
alternative embodiments, the Auto Notification function
may be implemented incorporating dedicated hardware or
Software components or Some combination of these. The
System keeps track of all Auto Notification functions, and if
any of the conditions tracked by the function becomes true,
the system under control of the Auto Notification function
records the details. The advertiser is notified immediately if
the notification time is immediate. Otherwise all conditions
are recorded and are later Sent to the advertiser at the
Specified notification time. The notification is sent in the
mode or modes Specified by the advertiser, and each noti
fication may include one or more action types to correct any
of the undesirable conditions. Further, an advertiser may
instruct the System to automatically correct any undesirable
conditions.

0269. The system also monitors all incoming corrective
actions for previously Sent notifications. If a corrective
action is received, the System acts upon it to correct the
condition of the notification, e.g., increasing the CPC of an
advertiser's listing in order to restore it to the desirable rank.
0270. The procedure illustrated in FIG. 10 accepts a new
Auto Notification function from an advertiser. The proce
dure begins at block 1000. At block 1002, the condition type

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

for the Auto Notification function is selected. The condition
type is specified by the advertiser and is specified for one or
more Search listings. The Search listings are maintained in a
Search listing database, as described above in conjunction
with FIG. 1. The condition type specifies one or more
features of the Search listing to be monitored by a Software
agent. At block 1004, the parameters for the conditions
selected in block 1002 are specified. At block 1006, notifi
cation times are specified for the Software agent. The noti
fications times are associated with the conditions defined in
blocks 1002, 1004. In the present embodiment, there are two
choices when an advertiser can be notified. First, the adver
tiser can be notified immediately, or as Soon as the Specified
condition becomes true. Second, the notifications can be
aggregated over the Specified time interval and, at the end of
the interval, the advertiser is notified of all conditions that
have become true during the interval. If no conditions have
become true during the interval, then in one embodiment, no
notification is sent. In other embodiments, a notification
Specifying no Status change is sent.

0271 At block 1008, notification modes for the selected
conditions are Specified. The modes may be specified by an
advertiser or in any other Suitable manner. In the present
embodiment, there are Several possible modes of commu
nication of a notification to an advertiser. First, a notice may
be sent to one or more electronic mail addresses Specified by
the advertiser. Second, a notice may be sent by an instant
message account System, again as Specified by the adver
tiser. Third, the notification may be sent by facsimile, faxed
to a number prescribed, the advertiser. Fourth, the notice
may be sent as a WireleSS page, as part of a paging System
or in conjunction with a radiotelephone or other two-way
communication System. Finally, the notification may be sent
by telephone, either using an automated System to Send and
receive information from the advertiser or by means of an
operator interacting with the advertiser.

0272. At block 1010, the action types to be included with
any notifications are specified by the advertiser. Possible
action types include providing an active link embedded in
the notification which, when clicked, allows the advertiser to
correct the undesirable condition in a single click. In a
Second action type, the notification may be sent with inactive
links, which are pointers to all locations where an advertiser
can go to correct any undesirable conditions. A third action
type is an electronic mail template which can be filled out by
an advertiser who specifies what corrective actions are to be
taken and returns the electronic mail to a specified address.
Lastly, in the present embodiment, an action type may
include provision of a telephone number which the adver
tiser can call to take corrective action. The process of
initiating a new Auto Notification function ends at block
1012.

0273) The method of FIG. 10 may be embodied in
accordance with the pseudocode below.

0274) Procedure New-Auto-Notification()
0275

0276)

0277

0278)

Select condition type;

Specify parameters for Selected condition;

Specify notification times,

Specify notification modes,

20
Nov. 7, 2002

0279 Select action types to be included with any
notifications,

0280 End Procedure;
0281 AS described earlier, in the illustrated embodiment,
there are nine types of conditions that an advertiser can
Select from:

0282) 1. position: related to the position of a listing

0283 2. cost: related to the accumulated costs for
Some listings

0284 3. account-balance: related to the funds
remaining in the advertiser's account.

0285 4. impressions: the number of impressions of
Some listings

0286 5. clicks: the number of clicks of some listings
0287 6. CTR: the click through rate of some listings
0288 7. CPC-too-high: if the CPC of a listing can be
reduced without impacting its rank

0289 8. Average CPC too high: the average CPC,
the total cost divided by the total clicks, is higher
than Some threshold.

0290) 9. rank-CPC: related to the CPC for a given
rank and term

0291. Other conditions may be specified as well.
0292 Each condition has a set of parameters for it. After
an advertiser Selects a condition type, he must specify the
parameters for it. The parameters for each of the eight
condition types were defined earlier. It is possible for the
operator of the marketplace or pay for performance System
to provide default values for Some of the parameters,
depending on the context in which the advertiser is inter
acting with the System.
0293. The advertiser must also select the notification
time(s). This can be “immediate” or “interval.” Immediate
notifications are Sent to the advertiser as Soon as the System
detects that they are true. Interval notifications, on the other
hand, are only Sent periodically. The advertiser must Specify
the interval, e.g., daily. Every time a condition is detected to
be true by the System, a log of the details is recorded. At the
boundary of every interval the System gathers up all
instances of the conditions that are or were true, and includes
the details of these in the body of the notification. For
example, for a daily interval, once a day the System will Send
a report of all the conditions that were true in the past 24
hours. The marketplace operator can define the boundaries
of the interval (e.g., midnight for daily intervals).
0294 The advertiser must also select one or more noti
fication modes. Notifications can be sent to the advertiser in
all the Selected notification modes. In one embodiment, there
are five notification modes:

0295) 1... email: the advertiser must specify one or
more e-mail address, which can have a default value.

0296 2. instant messaging: the advertiser must
Specify the instant-message address, which can have
a default value.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0297 3. fax: the advertiser must specify the fax
number, which can have a default value.

0298 4. page: the advertiser must specify the page
number, which can have a default value.

0299 5. phone: the advertiser must specify the
phone number, which can have a default value.

0300 Other notification modes may be specified as well.
0301 Finally, the advertiser may choose to select one or
more notification action types for each notification mode
Selected earlier. Each notification mode has one or more
action types that are applicable for use with it. The market
place operator may automatically provide defaults for the
applicable action types for each notification mode. In the
illustrated embodiment, there are four notification action
types:

0302) 1... active links: these can be included in e-mail
notifications and instant messaging notifications.

0303 2. inactive links: these can be included in all
notification modes.

0304 3. e-mail: these can be included in all notifi
cation modes.

0305. 4. phone: these can be included in all notifi
cation modes.

0306 Other notification action types may be specified as
well.

0307 Thus, FIG. 10 shows one method for initializing a
new Auto Notification function. The advertiser can also
cancel an existing Auto Notification function at any time.
0308 FIG. 11 is a full diagram illustrating operation of
a Software agent to provide an Auto Notification function,
monitoring conditions Specified by an advertiser in accor
dance with the process of FIG. 10. The method of FIG. 11
begins at block 1100.
0309 At block 1102, a variable new-true-condition is
initialized to be an empty list. At block 1104, the software
agent waits for an event that may make a condition true.
Such events include a change in ranking due to bid changes
Submitted by advertisers and clickthroughs by Searchers
which may change a monitored clickthrough condition or
the clickthrough rate, etc. At block 1106, a process called
check-all-conditions is initialized. This process will be
described further below in conjunction with FIG. 12.
0310. At block 1108, a variable X is set equal to the next
element in the list new-true-conditions. At block 1110, a test
is performed to determine if the variable X is empty or stores
no data. If X is empty, there are no more elements of the list
new-true-conditions to be processed and control returns to
block 1102. If X is not empty, control proceeds to block
1112.

0311. At block 1112, it is determined if X has an auto
correction defined for it by the advertiser. If so, control
proceeds to block 1114, where the automatic corrective
action specified by the advertiser is performed by the
System. The corrective action can be any action Specified by
the advertiser. If, at block 1112, the condition associated
with the variable X does not have an auto-correction, control
proceeds to block 1116.

21
Nov. 7, 2002

0312. At block 1116, it is determined if X has an imme
diate notification. If so, control proceeds to block 1120, a
procedure notify-immediately is initiated to Send a notifica
tion of the condition to the advertiser. One embodiment of
this procedure will be described further below in connection
with FIG. 21. If, at block 1116, the condition associated with
variable X does not have an immediate notification, at block
1118, the condition associated with variable X is recorded
and control returns to block 1108.

0313. In the procedure monitor-conditions illustrated in
FIG. 11, the system continually monitors its state to see if
any conditions have become true. Only the transition from
a condition being false to a condition being true is relevant.
For example, a condition event is recorded when an adver
tisers account balance falls below the set threshold. If the

balance further decreases, this is not recorded as a Separate
instance of the condition being true.

0314. The method of FIG. 11 may be embodied in
accordance with the pseudocode below.

Procedure monitor-conditions ()
Loop
Assign new-true-conditions = empty list;
Wait for an event that may make a condition true;
Check-all-conditions:
Loop X over new-true-conditions

If x has an immediate notification time
Notify-immediately (x):

Else
Record condition X;

End If:
End Loop;
End Loop;
End Procedure:

0315 Checking if any conditions have become true
involves checking the eight different condition types: FIG.
12 illustrates one embodiment of the procedure check-all
conditions, implemented at block 1106 of FIG. 11. Check
ing if any conditions have become true involves checking 8
different condition types. This is illustrated in FIG. 12. The
method begins at block 1200.

0316. At block 1202, all position conditions are checked.
At block 1204 all cost conditions are checked. At block 1206
all account balance conditions are checked. At block 1208
all impressions conditions are checked. At block 1210, all
clicks conditions are checked. At block 1212 all click

through rate (CTR) conditions are checked. At block 1214
all CPC-too-high conditions are checked. At block 1216, all
average CPC-too-high conditions are checked. At block
1218, all rank CPC conditions are checked. The method ends
at block 1220. In alternative embodiments, only one or more
Subsets of these conditions may be checked at any given
time. Alternatively, if not all condition types are Supported
in an embodiment, Some checks may be omitted. Particular
embodiments of the methods for checking the conditions
specified in FIG. 12 are illustrated in greater detail in FIG.
13-21.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0317. The method of FIG. 12 may be embodied in
accordance with the pseudocode below.
0318) Procedure Check-all-conditions()

03.19 Check-position-conditions;
0320 Check-cost-conditions;
0321 Check-account-balance-conditions;
0322 Check-impressions-conditions;
0323 Check-clicks-conditions;
0324 Check-CTR-conditions;
0325 Check-CPC-too-high-conditions;
0326 Check-average-CPC-too-high-conditions;

0327
0328)

0329 FIG. 13 is a flow diagram illustrating a procedure
to check if any “position” conditions have become true. The
method begins at block 1300.
0330. At block 1302, variable L is set equal to search
listings with monitor positions whose position has changed.
The identity of these Search listings may be determined in
any suitable manner. At block 1304, the variable X is
incremented to be the next element in the list L. At block
1306, a test is performed to determine if variable X is empty.
If so, the end of the list contained in variable L has been
reached and the procedure ends at block 1308. If not, at
block 1310, it is determined if the position condition asso
ciated with the listing in variable X is currently true and if
the last position condition associated with this variable is
false. This is determined by comparing the current position
condition associated with the Search listing indicated by the
variable X with a stored last position condition for this
variable. If the test of block 1310 produces a true or yes
response, at block 1312, the variable last position condition
for the Search listing X is reset equal to a true value and, in
block 1314, the position condition for the variable X is
adjoined to the list of new-true-conditions. Control then
returns to block 1304 to select the next element in the list L.

0331) If, at block 1310, the test produced a negative or
false response, at block 1316 another test is performed to
determine if the position condition for variable X is false and
the last position condition for variable X is true. If not,
control returns to block 1304. If so, at block 1318, the last
position condition for the Search listing associated with the
variable X is Set equal to a false value. Control then returns
to block 1304.

0332) The method of FIG. 13 may be embodied in
accordance with the pseudocode below.

Check-rank-CPC-conditions;
End Procedure;

Procedure Check-position-conditions ()

Assign L = listings with monitored position whose position has
changed;
Loop X over all elements in L

If position-condition(x) = true and
last-position-condition(x) = false

Assign last-position-condition(x) = true;
Adjoin position-condition(x) to new-true-conditions;

Else If position-condition(x) = false and
last-position-condition(x) = true

22
Nov. 7, 2002

-continued

Procedure Check-position-conditions ()

Assign last-position-condition(x) = false;
End If:

End Loop;
End Procedure:

0333 Whenever a position condition is first created, its
“last-position-condition' is automatically initialized to be
false, and its position is treated as if it has changed-this
permits the condition to be tested immediately.
0334 FIG. 14 illustrates one method for checking cost
conditions. The procedure begins at block 1400. At block
1402, a variable L is initialized with all search listings with
monitored cost and new cost for (CPC) charges. At block
1404, a variable X is assigned equal to the next element in
the list L. At block 1406, it is determined if the variable X
is empty. If so, the procedure ends at block 1407.
0335) Otherwise, at block 1408, it is determined if the
cost-condition for the Search listing associated with the
variable X is true and the last-cost-condition for the search
listing associated with the variable X was false. If So, at
block 1410, the last-cost-condition for the search listing is
set equal to true. At block 1412, the cost-condition for the
Search listing associated with the variable X is adjoined to a
list of new-true-conditions. Control returns to block 1404.

0336. If, at block 1408, the cost-condition for the search
listing had not changed from a previous false to a current
true, it is determined if the cost-condition for the Search
listing associated with the variable X is false and the last
cost-condition for the Search listing was true. If So, the State
of the last-cost-condition for the Search listing associated
with the variable X is set equal to false at block 1416.
Control then returns to block 1404.

0337 The method of FIG. 14 may be embodied in
accordance with the pseudocode below.

Procedure check-cost-conditions ()

Assign L = listings with monitored cost with new CPC charges;
Loop X over all elements in L

If cost-condition(x) = true and
last-cost-condition(x) = false

Assign last-cost-condition(x) = true;
Adjoin cost-condition(x) to new-true-conditions;

Else If cost-condition(x) = false and
last-cost-condition(x) = true
Assign last-cost-condition(x) = false;

End If:
End Loop;
End Procedure:

0338 Whenever a cost condition is first created, its
“last-cost-condition' is automatically initialized to be false,
and its CPC is treated as if it has changed-this permits the
condition to be tested immediately. Note that checking a cost
condition requires checking the accumulated costs for all
listings in the condition Since the last interval. We ignore all
costs at time points earlier than the most recent advertiser
defined interval for this condition. For example, if the
interval is “daily”, then all costs for the previous day are
ignored (the marketplace operator can define the boundary
for the intervals).

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

0339 FIG. 15 illustrates one embodiment of a method
for checking account balance conditions. The method begins
at block 1500. At block 1502, a variable L is assigned to
contain a list of advertisers with monitored account balances
with new charges. At block 1504, a variable X is increment
to contain the next element in the list L. At block 1506, it is
determined if variable X is empty. If So, the procedure ends
at block 1508.

0340 Otherwise, at block 1510, it is determined if the
account-balance-condition for the Search listing associated
with the variable X is true and if the last-account-balance
condition for the Search listing was false. If So, at block
1512, the variable last-account-balance-condition for the
search listing is set equal to true. At block 1514, the
account-balance-condition for the Search listing is adjoined
to a list of new-true-conditions. Control then returns to block
1504.

0341) If the result of the test at block 1510 was negative,
at block 1516, a test is performed to determine if the
account-balance-condition for the Search listing associated
with the variable X is now false and the last-account
balance-condition for the Search listing was true. If So, at
block 1518, a variable last-account-balance-condition for
the Search listing associated with the variable X is Set equal
to false. Control returns to block 1504 to select the next
element in the list L.

0342. The method of FIG. 15 may be embodied in
accordance with the pseudocode below.

Procedure check-account-balance-conditions ()

Assign L = advertisers with monitored account balance w new charges;
Loop X over all elements in L

If account-balance-condition(x) = true and
last-account-balance-condition(x) = false
Assign last-account-balance-condition(x) = true;
Adjoin account-balance-condition(x) to new-true-conditions;

Else If account-balance-condition(x) = false and
last-account-balance-condition(x) = true
Assign last-account-balance-condition(x) = false;

End If:
End Loop;
End Procedure:

0343. In the illustrated embodiment, whenever an
account balance condition is first created, its "last-account
balance-condition' is automatically initialized to be false,
and it is treated as if it has new charges-this permits the
condition to be tested immediately.

0344 FIG. 16 illustrates a method for checking impres
sions conditions. The method begins at block 1600. At block
1602, the list variable L is initialized with all listings with
monitored impressions having new impressions. At block
1604, the variable X is incremented to point to the next
element in the list L. At block 1606, it is determined if the
Search listing pointed to by the variable X is empty. If So, the
procedure terminates at block 1608. Otherwise, at block
1610, it is determined if the impressions-condition for the
Search listing designated by variable X is true and if the
last-impression-condition for the Search listing associated
with the variable X was false. If so, at block 1612, the
variable-last-impressions-condition for the Search listing is

Nov. 7, 2002

set equal to true. At block 1614, the value of the variable
impressions-condition for the Search listing is adjoined to
the list new-true-conditions. Control returns to block 1604 to
Select a next element in the list L.

0345) If, at block 1610, the test return a negative result,
at block 1616 it is determined if the variable impressions
condition for the Search listing associated with the variable
X has a false value and if the variable-last-impressions
condition for the Search listing has a true value. If So, then
at block 1618, the variable-last-impressions-condition for
the Search listing is assigned a value of false and control
returns to block 1604.

0346) The method of FIG. 16 may be embodied in
accordance with the pseudocode below.

Procedure check-impressions-conditions ()

Assign L = listings with monitored impressions with new impressions;
Loop X over all elements in L

If impressions-condition(x) = true and
last-impressions-condition(x) = false

Assign last-impressions-condition(x) = true;
Adjoin impressions-condition(x) to new-true-conditions;

Else If impressions-condition(x) = false and
last-impressions-condition(x) = true
Assign last-impressions-condition(x) = false;

End If:
End Loop:
End Procedure;

0347 Whenever an impressions condition is first created,
its value of last-impressions-condition is automatically ini
tialized to be false, and it is treated as if it has a new
impression. This permits the condition to be tested imme
diately. Note that checking an impressions condition
requires checking the accumulated impressions of all the
listings in the condition. We ignore all impressions that are
earlier than the most recent advertiser-defined interval for
this condition. For example, if the interval is “daily’, then all
impressions for the previous day are ignored (the market
place operator can define the boundary for the intervals).

0348 FIG. 17 illustrates one embodiment of a method
for checking clicks conditions. The method begins at block
1700. At block 1710, a list variable L is filled with listings
with monitored clicks having new clicks. At block 1712, a
variable X is initialized or incremented to contain the next
element in the list variable L. At block 1714, it is determined
if the variable X is empty. If so, at block 1716, the procedure
ends. If not, at block 1718, it is determined if the clicks
condition for the Search listing associated with the variable
X has a value true and the variable last-clickS-condition for
the Search listing associated with the variable X had a value
false. If so, at block 1720, the variable last-clicks-condition
for the Search listing is Set equal to a value true. At block
1722, the contents of the variable clicks-condition for the
Search listing are adjoined to the list of new-true-conditions.
Control returns to block 1712.

0349. If the test at block 1718 had a negative result, at
block 1724, it is determined if the clicks-condition for the
Search listing has a variable false and if the variable last
clickS-condition for the Search listing had a variable true. If

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

So, at block 1726 the variable last-clicks-condition for the
Search listing is Set equal to a value false. Control then
returns to block 1712.

0350. The method of FIG. 17 may be embodied in
accordance with the pseudocode below.

Procedure check-clicks-conditions ()

Assign L = listings with monitored clicks with new clicks;
Loop X over all elements in L

If clicks-condition(x) = true and
last-clicks-condition(x) = false

Assign last-clicks-condition(x) = true;
Adjoin clicks-condition(x) to new-true-conditions;

Else If clicks-condition(x) = false and
last-clicks-condition(x) = true
Assign last-clicks-condition(x) = false;

End If:
End Loop;
End Procedure:

0351 Whenever a clicks condition is first created, its
value of last-clickS-condition is automatically initialized to
be false. It is treated as if it has a new click. This permits the
condition to be tested immediately. Note that checking a
clicks condition requires checking the accumulated clicks of
all the listings in the condition. We ignore all clicks that are
earlier than the most recent advertiser-defined interval for
this condition. For example, if the interval is “daily’, then all
clicks for the previous day are ignored.

0352 FIG. 18 is a flow diagram illustrating a method for
checking clickthrough rate (CTR) conditions. Clickthrough
rate is the number of clickthroughs for a Search listing in a
Specified time period divided by the Specified time period,
Such as clicks per hour or clicks per day. The method begins
at block 1800.

0353 At block 1802, a list variable L is initialized with
all Search listings having monitored clickthrough rate and
with new clicks. At block 1804, a variable X is initialized to
point to the next element in the list variable L. At block
1806, it is determined if the variable X is empty. If so, at
block 1808 the method ends. If not, at block 1810, it is
determined if the variable CTR-condition for the search
listing designated by the variable X is true and if the
last-CTR-condition for the search listing had a value false.
If so, at block 1812, the variable last-CTR-condition for the
Search listing is Set equal to a value true. At block 1814, the
contents of the variable CTR-condition for the search listing
is adjoined to the list of new-true-conditions and control
returns to block 1804.

0354) If, at block 1810, the test produced a negative
result, at block 1816 it is determined if the variable CTR
condition for the Search listing associated with the variable
X has a value false and if the variable last-CTR-condition for
the search listing had a value true. If so, at block 1818, the
variable last-CTR-condition for the Search listing is assigned
a value false and control then returns to block 1804.

24
Nov. 7, 2002

0355 The method of FIG. 18 may be embodied in
accordance with the pseudocode below.

Procedure check-CTR-conditions ()

Assign L = listings with monitored CTR with new clicks;
Loop X over all elements in L

If CTR-condition(x) = true and
last-CTR-condition(x) = false

Assign last-CTR-condition(x) = true;
Adjoin CTR-condition(x) to new-true-conditions;

Else If CTR-condition(x) = false and
last-CTR-condition(x) = true
Assign last-CTR-condition(x) = false;

End If:
End Loop;
End Procedure:

0356) Whenever a CTR condition is first created, its
value of last-CTR-condition is automatically initialized to be
false. It is treated as if it has a new click. This permits the
condition to be tested immediately. Note that checking a
CTR condition requires checking the accumulated impres
sions and clicks for all the listings in the condition. We
ignore all impressions and clicks that are earlier than the
most recent advertiser-defined interval for this condition.
For example, if the interval is “daily”, then all impressions
and clicks for the previous day are ignored. The marketplace
operator may require a minimum number of impressions
before considering the CTR to be valid.
0357 FIG. 19 is a flow diagram illustrating a method for
checking CPC-too-high conditions. These are conditions
where the cost per click is higher than necessary. The
procedure begins at block 1900.

0358. At block 1902, a list variable L is initialized with
all search listings having monitored CPC-too-high where the
listing below has a new CPC. The listing below has a new
CPC if the CPC of the listing below is changed, or if a new
listing is inserted below, or if the previous listing below is
removed. At block 1904, a variable X is set to point to the
next element in the list variable L. At block 1906, it is
determined if the variable X is empty, indicating the end of
the list L has been reached. If X is empty, at block 1908 the
procedure ends. Otherwise, at block 1910, a variable C is set
equal to the condition of X. At block 1912, it is determined
if there is no listing below X. If not, at block 1916, the
variable lower-CPC is set equal to the cost per click for the
Search listing immediately below the Search listing indicated
by the variable X. If there is no a search listing below the
listing indicated by the variable X, at block 1914, the
variable lower-CPC is set equal to the difference between the
minimum cost per click for the system and a CPC threshold
for the search listing. At block 1918, it is determined if the
cost per click for the Search listing is greater than the value
of lower-CPC plus CPC threshold for the variable C and if
the value of the variable last-CPC-too-high-condition for the
variable C is false. If so, at block 1920, the variable
last-CPC-too-high-condition is set equal to true. At block
1922, the contents of the variable CPC-too-high-condition
are adjoined to the list of new-true-condition and control
returns to block 1904.

0359 Ifat block 1918 the test produced a negative result,
at block 1924, it is determined if the CPC for the search

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

listing is less than or equal to the lower-CPC plus the
CPC-threshold and if the value of the variable last-CPC
too-high-condition is equal to true. If so, at block 1926, the
variable last-CPC-too-high-condition is Set equal to a value
of false. Control then returns to block 1904.The method of
FIG. 19 may be embodied in accordance with the
pseudocode below.

Procedure check-CPC-too-high-conditions()

Assign L = listings with CPC-too-high monitor where the listing below
has a new CPC;

Loop X over all elements in L
Assign c = condition of X:
If no listing below x

Assign lower-CPC = Min-CPC - CPC-threshold(c);
Else

Assign lower-CPC = CPC(listing below x);
End If:
If CPC(x) > lower-CPC + CPC-threshold(c) and

Last-CPC-too-high-condition(c) = false
Assign last-CPC-too-high-condition(c) = true;
Adjoin CPC-too-high-condition (c) to new-true-conditions;

Else if CPC(x) lower-CPC + CPC-threshold (c) and
Last-CPC-too-high-condition(c) = true
Assign last-CPC-too-high-condition(c) = false;

End If:
End Loop;
End Procedure:

0360. Whenever a CPC-too-high condition is first cre
ated, its value of last-CPC-too-high-condition is automati
cally initialized to be false and it is treated as if the listing
directly below it has a new CPC. This permits the condition
to be tested immediately. Min-CPC is the minimum CPC for
all listings, which is determined by the marketplace operator
and in one example is S0.01. Every CPC-too-high condition
has an advertiser defined threshold. This threshold is the
difference between the CPC of the listing and the CPC of the
listing below must be greater than this threshold for the
condition to be true. If there is no listing below, we check if
the CPC of the listing is higher than the minimum CPC, and
alternatively we could check if the CPC is the threshold
above the minimum CPC.

0361 FIG. 20 is a flow diagram illustrating a method for
checking average CPC too high conditions. The average
CPC for a set of listings is the aggregate cost for the Set of
listings Over an interval divided by the aggregate clicks for
the Set of listings for the same interval. The method begins
at block 2000.

0362. At block 2002, a list variable L is initialized with
the list of conditions having monitored average CPC too
high and with new clicks. Each Such condition has an
asSociated Set of listings whose average CPC is being
monitored. At block 2004, a variable X is initialized to point
to the next element in the list variable L. At block 2006, it
is determined if the variable X is empty. If so, at block 2008
the method ends. If not, at block 2010, it is determined if the
variable average-CPC-too-high-condition for the condition
designated by the variable X is true and if the last-average
CPC-too-high-condition for the condition had a value false.
If so, at block 2012, the variable last-average-CPC-too-high
condition for the condition is Set equal to a value true. At
block 2014, the contents of the variable average-CPC-too

Nov. 7, 2002

high-condition for the Search listing is adjoined to the list of
new-true-conditions and control returns to block 2004.

0363) If, at block 2010, the test produced a negative
result, at block 2016 it is determined if the variable average
CPC-too-high-condition for the condition associated with
the variable X has a value false and if the variable last
average-CPC-too-high-condition for the Search listing had a
value true. If so, at block 2018, the variable last-average
CPC-too-high-condition for the condition is assigned a
value false and control then returns to block 2004.

0364) The method of FIG. 20 may be embodied in
accordance with the pseudocode below.

Procedure check-average-CPC-too-high-conditions()

Assign L = all conditions with monitored CPC too high with new
clicks;

Loop X over all elements in L
If average-CPC-too-high-condition(x) = true and

last-average-CPC-too-high-condition(x) = false
Assign last-average-CPC-too-high-condition(x) = true;
Adjoin average-CPC-too-high-condition(x) to new-true

conditions;
Else If average-CPC-too-high-condition(x) = false and

last-average-CPC-too-high-condition(x) = true
Assign last-average-CPC-too-high-condition(x) = false;

End If:
End Loop;
End Procedure:

0365. Whenever an average CPC too high condition is
first created, its value of last-average-CPC-too-high-condi
tion is automatically initialized to be false. It is treated as if
it has a new click. This permits the condition to be tested
immediately. Note that checking an average CPC too high
condition requires checking the accumulated clicks and
costs for all the listings in the condition. We ignore all clickS
and costs that are earlier than the most recent advertiser
defined interval for this condition. For example, if the
interval is “daily’, then all clicks and costs for the previous
day are ignored. The marketplace operator may require a
minimum number of clickS before considering the average
CPC to be valid.

0366 FIG. 21 is a flow diagram illustrating a method for
checking rank CPC conditions. The method begin at block
2100. At block 2102, a variable L is assigned equal to all
search terms with monitored rank CPC where the cost per
click of a monitored rank has changed. At block 2104, a
variable X is set to point to the next element in the list L. At
block 2106, it is determined if the variable X is empty. If so,
this indicates that the end of the list has been reached and the
method ends at block 2108.

0367. Otherwise, at block 2110, a variable M is set equal
to all ranks of search terms indicated by the variable X that
are monitored and have new CPCs. At block 2112 a variable
Y is initialized to point to the next element in the list M. At
block 2114, it is determined if variable Y is empty. If so,
control returns to block 2104 to select the next element in list
L. Otherwise, at block 2116, a variable N is set equal to all
rank CPC conditions for the search term indicated by the
variable X and the rank indicated by the variable Y. At block
2118, variable Z is set equal to the next element in the list
N. At block 2120, it is determined if the variable Z is empty.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

If so, control returns to block 2104. Otherwise, at block 2122
it is determined if the value of the variable rank-CPC
condition for the condition indicated by the variable Z has a
value true and if the variable last-rank-CPC-condition for
the condition indicated by variable Z had a value false. If so,
at block 2124, the variable last-rank-CPC-condition for the
condition is Set equal to true. At block 2126, the contents of
the variable rank-CPC-condition for the condition are
adjoined to the list of new-true-conditions. Control then
returns to block 2104.

0368 If at block 2122 a negative result was produced, at
block 2128 a test determines whether the variable rank
CPC-condition for the condition is false and the variable
last-rank-CPC-condition for the condition is true. If so, at
block 2130, the variable last-CPC-too-high-condition is set
equal to a value false. Control then returns to block 2104.

0369. The method of FIG. 21 may be embodied in
accordance with the pseudocode below.

Procedure check-rank-CPC-conditions()

Assign L = terms with a rank-CPC monitor where the CPC of a monitored
rank has changed;

Loop X over all elements in L
Loopy over all ranks of x that are monitored and have new CPCs
Loop Z over all rank-CPC conditions for term x and rank y

If rank-CPC-condition(z) = true and
Last-rank-CPC-condition(z) = false

Assign last-rank-CPC-condition(z) = true;
Adjoin rank-CPC-condition (Z) to

new-true-conditions;
Else if rank-CPC-condition(z) = false and

Last-rank-CPC-condition(z) = true
Assign last-rank-CPC-condition(z) = false;
End If:

End Loop;
End Loop;

End Loop;
End Procedure:

0370. Whenever a rank-CPC condition is first created, its
value of last-rank-CPC-condition is automatically initialized
to be false and it is treated as if the CPC for the monitored
rank has changed. This permits the condition to be tested
immediately. Every rank-CPC condition has an advertiser
defined threshold. The condition is true if the CPC for the
rank is less than or equal to the threshold.
0371 The procedure “notify-immediately' sends a mes
Sage to the advertiser with the details of the current condition
that has become true. The procedure first selects all the
notification modes Selected by the advertiser. It next Selects
the action types. The advertiser can Select which action
type(s) he prefers. Some action types may not be available
with all notification modes, e.g., the marketplace operator
may only provide “active-links' in e-mails and instant
messages. Also, Some conditions may not have any auto
matic corrective actions (e.g., CTR). The procedure sends a
notice to the advertiser in each communication mode, where
each message in a particular communication mode possibly
includes a set of corrective actions:

0372 FIG. 22 is a flow diagram illustrating one embodi
ment of the procedure notify-immediately. The procedure
starts at block 2200. At block 2202, the variable L is

26
Nov. 7, 2002

assigned equal to a list of all notification modes for the
condition passed to the procedure which has become true. At
block 2204, the variable X is initialized to be the next
element in the list L. At block 2206, a test is performed to
determine if the variable X is empty. If so, at block 2208, the
procedure ends, as all elements of the list L have been
processed.

0373) If the variable X is not empty, at block 2210, the
variable A is Set equal to all action types for mode X
necessary to correct the condition. At block 2212, a proce
dure Send-notification is called, passing as parameters the
condition which is true, the variable X and the variable Y.
After processing of this procedure, control returns to block
2204 to select the next element in list L.

0374. The method of FIG. 22 may be embodied in
accordance with the pseudocode below.

Procedure Notify-immediately (condition)
Loop X over all notification modes for condition

Assign y = all action types for mode X to correct condition;
Send-notification (condition,x,y);

End Loop;
End Procedure:

0375. The following is a list of the conditions that can
have corrective actions included in a notification message.
An advertiser can either accept the Suggested corrective
action in the message, or he can ignore it. The corrective
actions are Steps that can be taken automatically on behalf of
the advertiser to ensure that the condition is no longer true.
Note that a corrective action is not applicable if the condition
is no longer true:

0376 1. position: it may be possible to correct a
position condition by changing the CPC of a listing.
For example, if the condition "Listing L is not at
rank 3’ is true, then it may be possible to return L
to rank 3 by increasing the CPC if L is at rank worse
than 3, or by decreasing the CPC if L is at a rank
better than 3.

0377. A possible corrective action is “ Adjust my
CPC to return listing L to rank 3”.

0378 2. account balance: it may be possible to
correct an account balance condition by adding more
funds to the account. The advertiser may Select the
additional amount to add.

0379 A possible corrective action is “Add p
S200.00 to my account balance from my credit
card”.

0380) 3. CPC too high: it may be possible to correct
a CPC too high condition by reducing the CPC to the
minimum required to maintain the current rank.
0381 A possible corrective action is “Reduce the
CPC of listing Li to the minimum required for its
current rank'.

0382. The procedure notify-interval sends a message to
the advertiser with the details of all the condition that have
become true in the last interval (the duration of the interval
is specified by the advertiser). All the conditions that became

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

true in the interval are gathered together in one message. The
procedure Selects all the notification modes Selected by the
advertiser. It next Selects the action types. The advertiser can
Select which action type(s) he prefers. Some action types
may not be available with all notification modes, e.g., the
marketplace operator may only provide “active-links' in
e-mails and instant-messages. Also, Some conditions may
not have any automatic corrective actions (e.g., CTR).
0383) If there is more than one instance of a condition,
then it is only possible to have a corrective action for the
most recent instance. It is possible that a condition that was
recorded earlier is no longer true, in which case it will not
have any corrective action associated with it. The procedure
Sends a notice to the advertiser in each communication
mode, where each message in a particular communication
mode possibly includes a Set of corrective actions:
0384 FIG. 23 is a flow diagram illustrating a procedure
notify-interval. The procedure begins at block 2300. At
block 2302, the procedure pauses to wait for a notification
time for any advertiser. AS noted above, information about
changed conditions can be communicated by the System to
an advertiser according to any Schedule Specified by the
advertiser. The operation at block 2302 is performed accord
ing to the advertiser Specified Schedule.
0385 At block 2304, the list variable L is assigned equal
to all advertisers with a current notification time. That is, all
advertisers who have Specified a notification Schedule which
matches the current time. At block 2306, the looping vari
able X is assigned equal to the next element in the list
variable L. At block 2308, X is tested to determine if the
variable X is empty. If so, control returns to block 2302 to
await a next notification time. If the variable X is not empty,
control proceeds to block 2310.
0386. At block 2310, the variable M is assigned equal to
all auto notification conditions for the advertiser Specified by
the variable X for the current time which have recorded
conditions. At block 2312, a looping variable Y is Set equal
to the next element in the list M. At block 2314, it is
determined if the variable Y is empty. If so, control returns
to block 2306 to select the next variable X in the list L. If
variable Y is not empty, control proceeds to block 2316.
0387. At block 2316, the variable C is assigned equal to
all recorded instances of the condition whose value is Stored
in variable Y. At block 2318, the variable T is assigned equal
to the most recent condition in variable C.

0388 That is, the conditions and their associated time
Stamps are Sorted or otherwise examined to determine a
most recently occurring condition. This condition is loaded
into the variable T. At block 2320, the variable M is set equal
to all notification modes for the condition whose value is
stored in variable Y.

0389. At block 2322, the variable Z is incremented to
point to the next element in the list N. At block 2324, it is
determined if the looping variable Z is empty. If So, control
returns to block 2306. Otherwise, at block 2326, the variable
A is Set equal to all action types for the mode Stored in the
variable Z, which may be specified by an advertiser to
correct the condition specified by the variable T. At block
2328, a procedure Send-notification is called, passing as
parameters the variables C, Z, and A. Following execution
of this procedure, control returns to block 2306 to select the
next advertiser Selected.

27
Nov. 7, 2002

0390 The method of FIG. 23 may be embodied in
accordance with the pseudocode below.

Procedure Notify-interval()
Loop
Wait for a notification time for any advertiser;
Loop X over all advertisers with current notification time

Loopy over all auto-notification for X for current
time with recorded conditions

Assign c = all recorded instances of condition y;
Assign t = most recent condition in c;
Loop Z over all notification modes for y

Assign a = all action types for mode Z to
correct condition t:

Send-notification (c, Z, a);
End Loop:

End Loop:
End Loop;
End Loop;
End Procedure:

0391 The procedure handle-actions handles incoming
actions. A message Sent to an advertiser can include an
action to correct an undesirable condition. The advertiser
can choose to ignore the Suggested action, or the advertiser
can accept the Suggested corrective action, in which case the
System must act upon it.
0392 The procedure handle-actions also handles a spe
cial advertiser action “tell-me-now.” An advertiser can cre
ate an auto-notification with a notification time that is an
interval. However, at any time the advertiser can send a
tell-me-now action, which instructs the System to Send all
notifications immediately. All notifications for the interval
are still sent at the end of the interval, even if the advertiser
Sends a tell-me-now action. For example, an advertiser may
have set up a notification interval “weekly, on Fridays at
3:45 p.m.” On Wednesday, the advertiser can send a “tell
me-now” action, which results in the advertiser receiving all
the notifications recorded to date. The weekly notifications
on Friday at 3:45 p.m. is still sent.
0393. The procedure handle-actions also handles the
actions “mute' and “un-mute'. The mute action allows the
advertiser to Stop all notifications-conditions are still
recorded, but they are not sent (neither immediately nor at
the specified intervals). Instead, the notifications are
recorded for future transmission. The un-mute action re
enables the notification of conditions. All past-due notifica
tions are immediately sent (e.g., for immediate notifications
and notifications for past intervals). Other notifications will
be sent at the end of the interval.

0394. A separate handler is required for each notification
action type (active links, inactive links, e-mail, and phone in
the illustrated embodiment). Each of the action types has a
procedure of the form below:
0395 FIG. 24 is a flow diagram illustrating one embodi
ment of the procedure handle-actions. The procedure begins
at block 2400. At block 2402, the procedure pauses, awaiting
an incoming action. The action corresponds to a correction
or other variation specified by an advertiser to correct an
undesirable condition and the Search listings maintained by
the advertiser. After an action has been received, at block
2404 the action parameters are extracted from the received
action. For example, the action may be transmitted as one or

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

more TCP/IP packets, containing instructions and data for
correcting the undesirable condition. These instructions and
data are extracted from the packets received from the
advertiser.

0396 At block 2406, the variable C is assigned equal to
the value corresponding to the condition to be corrected by
the received action. At block 2408, it is determined if the
condition associated with the values stored in the variable C
is still true. If not, at block 2410 a notification is sent to the
advertiser associated with the condition that the condition is
no longer true. If the condition is still true, at block 2412, a
corrective action is executed. The corrective action may be
any Step or group of Steps necessary to change or correct or
otherwise modify the condition specified by the advertiser.
After execution of the corrective action, at block 2414, it is
determined if the action Succeeded. That is, it is determined
if the desired correction was obtained. If not, the advertiser
is notified of the failure to correct the Specified action at
block 2416. If the action did Succeed, at block 2418 the
advertiser is notified of the Success. Control then returns to
block 2402 to await a next incoming action.
0397) The method of FIG. 24 may be embodied in
accordance with the pseudocode below.

Procedure Handle-actions()
Loop
Wait for an incoming action;
Extract action parameters;
Assign c = Condition of action;
If c is still true

Execute corrective action;
If successful

Notify advertiser(c) of success;
Else

Notify advertiser(c) of failure;
End If:

Else
Notify advertiser (c) that c is no longer true;

End If:
End Loop:
End Procedure:

0398. From the foregoing, it can be seen that the present
embodiments provide a method and apparatus for advertis
erS associated with a pay for performance database to
manage their listings more effectively. Procedures are pro
Vided to Specify automatic Software agents which monitor
the Search listings of an advertiser and provide notifications
of the occurrence of Specified conditions. Notifications of
the conditions may be provided to the advertiser in any of a
number of convenient channels, Such as email or page or
facsimile. The notifications may include action types built
right in to the notifications So that the advertiser can respond
rapidly and conveniently. This increases advertiser conve
nience, allows more rapid response to changing conditions,
and frees up perSonnel who have heretofore been assigned to
monitoring the Status of Search listings for the advertiser.
The features may be provided at minimal expense to the pay
for performance System operator and the advertisers.
0399. While a particular embodiment of the present
invention has been shown and described, modifications may
be made. It is therefore intended in the appended claims to
cover Such changes and modifications which follow in the
true Spirit and Scope of the invention.

28
Nov. 7, 2002

1. A notification method in a computer database System
comprising:

receiving a notification instruction from an owner asso
ciated with a Search listing Stored in the computer
database System;

monitoring conditions Specified by the notification
instruction for the Search listing, and

Sending a notification to the owner upon detection of a
changed condition of the Search listing.

2. The notification method of claim 1 wherein receiving
the notification instruction comprises:

receiving identification information for one or more
Search listings for which the associated owner desires a
notification.

3. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
a change in position among Search results for the Search
listing when the Search listing is referred with other
Search listings forming the Search results to a Searcher
in response to a Search query from the Searcher.

4. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
a value of cost per clickthrough for the Search listing,
the cost per clickthrough being an economic value
payable by the owner when the Search listing is referred
to a Searcher in response to a Search query from the
Searcher.

5. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
an account balance for an account associated with the
advertiser.

6. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
aggregate impressions for identified Search listings.

7. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
aggregate clickthroughs for identified Search listings.

8. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
aggregate clickthrough rate for identified Search list
ings.

9. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information for notification about
Search listings having a cost per clickthrough which is
reducible without affecting an advertiser Specified dis
play rank among Search results when the Search listing
is referred among Search results to a Searcher in
response to a Search query from the Searcher.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

10. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information including a specified
cost per clickthrough and a specified display rank for
notification when the identified Search listings can be at
the Specified display rank among Search results pre
Sented to a Searcher in response to a Search query from
the Search for less than the Specified cost per click
through.

11. The notification method of claim 2 wherein receiving
the identification information comprises:

receiving identification information about an average cost
per clickthrough for two or more Search listings.

12. The notification method of claim 1 wherein receiving
the notification instruction comprises:

receiving information defining notification times for Send
ing the notification.

13. The notification method of claim 12 wherein receiving
information defining notification times comprises one of:

receiving identification of Search listings for Sending an
immediate notification, and

receiving identification of Search listings for Sending an
interval notification.

14. The notification method of claim 1 wherein receiving
the notification instruction comprises:

receiving an indication of a notification mode.
15. The notification method of claim 14 wherein the

notification mode is selected from the group including:
electronic mail, instant messaging, facsimile, paging and
telephone voice call.

16. The notification method of claim 1 wherein receiving
the notification instruction comprises:

receiving an indication of one or more action types to
include with the notification.

17. The notification method of claim 16 wherein the one
or more action types are Selected from the group including:
active links in a message, inactive links in a message,
electronic mail, phone, auto-correct and relax.

18. The notification method of claim 1 wherein sending
the notification comprises:

Sending at least one of an electronic mail notification, an
active link notification embedded in a message and an
inactive link notification embedded in a message.

19. The notification method of claim 18 wherein sending
the notification comprises Sending the notification in accor
dance with the notification instruction.

20. The notification method of claim 1 wherein sending
the notification comprises:

Sending at least one of a telephone notification, an instant
messaging notification, a facsimile notification and a
page.

21. The notification method of claim 1 further comprising:
receiving an advertiser action instruction in response to

the notification; and
automatically adjusting at least one of a cost per click and

display rank for the Search listing according to the
advertiser action instruction, the display rank for the
listing defining position of the Search listing among
Search results when the Search listing is referred to a

29
Nov. 7, 2002

Searcher in response to a Search query from the
Searcher, the cost per click being an economic value
payable by the owner when the Search listing is referred
to a Searcher in response to a Search query from the
Searcher.

22. The notification method of claim 1 further comprising:
receiving an advertiser action instruction in response to

the notification; and
automatically replenishing a balance of an account asso

ciated with the owner.
23. The notification method of claim 1 further comprising:
receiving an advertiser action instruction in response to

the notification; and
automatically relaxing one or more constraints created by

the conditions Specified in the notification instruction.
24. The notification method of claim 1 further comprising:
automatically depositing funds in an account associated

with the advertiser in response to an account balance
too low condition.

25. The notification method of claim 1 further comprising:
automatically adjusting at least one of a cost per click and

display rank for the Search listing, the display rank for
the listing defining position of the Search listing among
Search results when the Search listing is referred to a
Searcher in response to a Search query from the
Searcher, the bid amount being an economic value
payable by the owner when the Search listing is referred
to a Searcher in response to a Search query from the
Searcher.

26. A database Search System comprising a database of
Search listings associated with advertisers and a processing
System which Sends a notification to an advertiser when a
change condition of a Search listing of the advertiser has
occurred.

27. A database Search System comprising:
a database of Search listings, each Search listing being

asSociated with an advertiser;

a Search engine; and
means responsive to condition Specifying information

from one or more advertisers for providing an indica
tion to an advertiser when a specified condition of one
or more Search listings is Satisfied.

28. A database Search System comprising:
a database of Search listings, each Search listing being

asSociated with a respective advertiser, each Search
listing including a Search term and at least one of a
variable cost per click (CPC) and a variable display
rank;

a Search engine configured to identify Search listings
matching a Search query received from a Searcher, the
matching Search listings being ordered in a Search
result list according to the at least one of the display
rank and the bid amount of the matching Search list
ings, and

an agent responsive to a condition definition from an
advertiser to provide condition update information to
the advertiser.

NETFLIX, INC. EXHIBIT 1002

US 2002/016.5849 A1

29. The database search system of claim 28 wherein the
agent is configured to receive as the condition definition an
indication of Search listings and indication of CPC range,
and wherein the agent is configured to provide as the
condition update information a notification that CPC for the
indicated search listings has reached the indicated CPC
range.

30. The database search system of claim 28 wherein the
agent is configured to receive as the condition definition an
indication of Search listings and indication of desired rank,
and wherein the agent is configured to provide as the
condition update information a notification that display rank
for the indicated Search listings has reached the indicated
desired rank.

31. The database search system of claim 28 further
comprising an advertiser account management device and
wherein the agent is configured to receive as the condition
definition an indication of a minimum account balance.

32. The database search system of claim 28 further
comprising an advertiser account management device con
figured to count impressions for Specified Search listings and
wherein the agent is configured to receive as the condition
definition an indication of impression-counted Search list
ings and an associated impression limit.

33. The database search system of claim 28 further
comprising an advertiser account management device con
figured to count clicks for Specified Search listings and
wherein the agent is configured to receive as the condition
definition an indication of click-counted Search listings and
an associated click limit.

34. The database search system of claim 28 further
comprising an advertiser account management device con
figured to measure a clickthrough rate for Specified Search
listings and wherein the agent is configured to receive as the
condition definition an indication of clickthrough rate Search
listings and an associated clickthrough rate limit.

35. The database search system of claim 34 wherein the
asSociated clickthrough rate comprises an aggregate click
through rate for a combination of the clickthrough rate
Search listings.

30
Nov. 7, 2002

36. The database search system of claim 28 further
comprising an advertiser account management device con
figured to measure an average cost per clickthrough for
Specified Search listings and wherein the agent is configured
to receive as the condition definition an indication of aver
age cost per clickthrough Search listings and an associated
average cost per clickthrough limit.

37. The database search system of claim 28 wherein the
agent is configured to receive as the condition definition an
indication of the minimum CPC required to attain a given
display rank for a Search term.

38. A method for operating a database Search System, the
method comprising:

Storing a plurality of Search listings in a database, each
Search listing being associated with an advertiser who
gives economic value when a Search listing is referred
to a Searcher,

determining a display position for associated Search list
ings, and

receiving from an advertiser an indication of Search
listings for which the advertiser desires a notification of
a display position change.

39. The method of claim 38 further comprising:

receiving from two or more advertisers positioning infor
mation for Search listings associated with the two or
more advertisers, and

in response to the positioning information, determining
the display position.

40. The method of claim 39 wherein receiving the posi
tioning information comprises:

receiving at least one of one of a cost per click and a
desired rank for the associated Search listings.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-11

NETFLIX, INC. EXHIBIT 1002

United States Patent (19)
Blumenau

USOO6108637A

11 Patent Number: 6,108,637
(45) Date of Patent: Aug. 22, 2000

54 CONTENT DISPLAY MONITOR

75 Inventor: Trevor Blumenau, Milpitas, Calif.

73 Assignees: Nielsen Media Research, Inc., New
York, N.Y.; Engage Technologies, Inc.,
Andover, Mass.

21 Appl. No.: 08/707,279
22 Filed: Sep. 3, 1996
(51) Int. Cl." .. G06F 11/30
52 U.S. Cl. 705/7; 705/30; 707/10;

707/526
58 Field of Search 705/1, 7, 8, 9,

705/30; 706/11; 707/10, 200, 202,512,
204,526; 395/200.54, 200.53, 200.59, 712,

182.04, 675, 200.79, 200.47

56) References Cited

U.S. PATENT DOCUMENTS

4,283,709 8/1981 Lucero et al..
5,414.809 5/1995 Hogan et al. 345/349
5,623,652 4/1997 Vora et al. 707/10
5,634,100 5/1997 Capps.
5,673,382 9/1997 Cannon et al. 395/182.04
5,799.292 8/1998 Hekmatpour 707/513

FOREIGN PATENT DOCUMENTS

22501 12 5/1992 United Kingdom.
OTHER PUBLICATIONS

Brown, “Using Netscape 2-Special Edition”, QUE, 2nd
edition (attached pages), 1995.
T. Kamba, “Personalized Online Newspaper', NEC Tech
nical Journal, Jul. 1996, NEC, Japan, vol. 49, No. 7,
Abstract.
Bart Zeigler, “NetCount Seeks to Tally Users of Web Ads,”
Wall Street Journal, Oct. 11, 1996.

Primary
Content 602
Provider

Site
303 Request

Secondary Applicati pplication
302 - Display SE - 601 Tinager"-501

Site Site Site

Thomas E. Weber, “New Software Helps Advertisers Get
Through Tangled Web Pages” Wall Street Journal, Oct. 23,
1996.

“I/PRO is First to Develop a Solution for Measuring Java
Applets,” news release from I/PRO World Wide Web site.

Primary Examiner James P. Trammell
Assistant Examiner-Cuong H. Nguyen
Attorney, Agent, or Firm-David R. Graham
57 ABSTRACT

The invention can enable monitoring of the display of
content by a computer System. Moreover, the invention can
enable monitoring of the displayed content to produce
monitoring information from which conclusions may be
deduced regarding the observation of the displayed content
by an observer. The invention can also enable monitoring of
the display at a content display Site of content that is
provided by a content provider Site over a network to the
content display site. Additionally, the invention can enable
the expeditious provision of updated and/or tailored content
over a network from a content provider Site to a content
display Site So that the content provider's current and
appropriately tailored content is always displayed at the
content display site. Aspects of the invention related to
transfer of content over a network are generally applicable
to any type of network. However, it is contemplated that the
invention can be particularly useful with a computer
network, including private computer networks (e.g.,
America Online") and public computer networks (e.g., the
Internet). In particular, the invention can be advantageously
used with computer networks or portions of computer net
Works over which Video and/or audio content are transferred
from one network site to another network site for
observation, such as the World Wide Web portion of the
Internet.

65 Claims, 7 Drawing Sheets

Primary
Content
Provider

Site Primary and Secondary Content,
Monitoring instructions

Secondary
Content
Provider

Site

Application
Manager

Site
302 5O1

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 1 of 7 6,108,637

Content
Provider
Site

O1

Content
Display
Site

102

F.G. 1A

Content
Provider 101
Site 1 O4

Content

Content
Display
Site

1 O2

FIG. 1B

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 2 of 7 6,108,637

Primary Content Secondary Content
Provider Site Storage Site

Request for
Primary Content

204

Content
Display
Site

2O2

FIG. 2A

Primary Content Secondary Content 204
Provider Site Storage Site

Primary Content,
Reference to Secondary Content

Content
Display
Site

2O2

FIG. 2B

Secondary Content
Storage Site

Request for
Secondary Content

204 Primary Content
PrOWider Site

FIG. 2C

Secondary Content
Storage Site

Secondary Content

2O4 Primary Content
Provider Site

2O3
Content
Display
Site

2O2

FIG. 2D

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 3 of 7 6,108,637

Content
Provider

Site

Content
Display
Site

3O2

FIG. 3A

Content
Provider

Site

Content, Monitoring Instructions

FIG. 3B

Content
Provider

Site

Monitoring information

Content
Display
Site

3O2

FIG. 3C

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 4 of 7 6,108,637

400

404

400

404

400

404

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 5 of 7 6,108,637

403 404

402 s
40d 40f

400

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 6 of 7 6,108,637

Content Application
Provider Site Manager Site

Request

Content
Display
Site

F.G. 5A

Application
Manager Site

302

501 Content
Provider Site

Content
Display
Site

FIG. 5B

Application
Manager Site

Content,
Monitoring instructions

302

Content
Provider Site

FIG. 5C

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 22, 2000 Sheet 7 of 7 6,108,637

Primary
Content
Provider

Site
602

F.G. 6A
303

Secondary y
Content

Secondary Applicati pplication
3O2 SG 6O1 Manager 5O1

Site Site

Primary
SS 6O2 r FIG. 6B gye

303 Secondary
Content

Secondary
Content
Provider

Site

Application
Manager

Site

Content
Display
Site

302 5O1

Primary
Content
Provider

Site F.G. 6C

Secondary Content Application Content 3O2 Display Provider Manager 5O1
Site Site Site

Primary
Content

F.G. 6D Provide - 602
Primary and Secondary Content, Site

3O3 Monitoring Instructions

Secondary
Content
Provider

Site

Content
Display
Site

Application
Manager

Site

NETFLIX, INC. EXHIBIT 1002

6,108,637
1

CONTENT DISPLAY MONITOR

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to monitoring the display of content

by a computer System and observation of that content. The
invention also relates to monitoring the display and obser
Vation at a content display site of content that is provided by
a content provider Site over a network to the content display
site. The invention further relates to the provision of updated
and/or tailored content from a content provider Site to a
content display Site So that the content provider's current
content is always displayed at the content display Site.

2. Related Art
A large amount of human activity consists of the dissemi

nation of information by information providers (content
providers) to information consumers (observers). Recently,
computer networks have become a very popular mechanism
for accomplishing information dissemination. The use of
computer networks for information dissemination has neces
sitated or enabled new techniques to accomplish particular
functions related to the dissemination of information.

For example, information providers of all types have an
interest in knowing the extent and nature of observation of
the information that they disseminate. Information providers
that disseminate information over computer networks also
have this interest. However, the use of networked computers
for information dissemination can make it difficult to ascer
tain who is observing the disseminated information and how,
Since information can be accessed rapidly from a remote
location by any of a large number of possible observers
whose identity is often not predictable beforehand, and Since
control over the display of the information once dissemi
nated may not be possible, practical or desirable.
Among information providers, advertisers have particular

interest in knowing how and to what extent their advertise
ments are displayed and/or observed, Since Such knowledge
can be a key element in evaluating the effectiveness of their
advertising and can also be the basis for payment for
advertising. Mechanisms for obtaining Such information
have been developed for advertisements disseminated in
conventional media, e.g., audiovisual media Such as televi
Sion and radio, and print media Such as magazines and
newspapers. For example, the well-known Nielsen televi
Sion ratings enable advertisers to gauge the number of
people that likely watched advertisements during a particu
lar television program. AS advertising over a computer
network becomes more common, the importance of devel
oping mechanisms for enabling advertisers to monitor the
display and observation of their advertisements dissemi
nated over a computer network increases.

Previous efforts to monitor the display of advertising (or
other content) disseminated over a computer network have
been inadequate for a variety of reasons, including the
limited Scope of the monitoring information obtained, the
ambiguous nature of the monitoring information, the incom
pleteness of the monitoring information, and the Suscepti
bility of the monitoring information to manipulation.
Review of some of the techniques that have previously been
used to acquire monitoring information regarding the dis
play of content (e.g., advertising) disseminated over a par
ticular computer network-the World Wide Web portion of
the Internet computer network-will illustrate the deficien
cies of existing techniques for monitoring the display of
content disseminated over a computer network.

FIGS. 1A and 1B are simplified diagrams of a network
illustrating operation of a previous System for monitoring

15

25

35

40

45

50

55

60

65

2
requests for content over the World Wide Web. In FIGS. 1A
and 1B, a content provider site 101 (which can be embodied
by, for example, a server computer) can communicate with
a content display site 102 (which can be embodied by, for
example, a client computer) over the network communica
tion line 103. The server computer at the content provider
site 101 can store content colloquially referred to as a “Web
page.” The client computer at the content display Site 102
executes a Software program, called a browser, that enables
Selection and display of a variety of Web pages Stored at
different content provider sites. When an observer at the
content display site 102 wishes to view a particular Web
page, the observer causes the client computer at the content
display Site 102 to Send a request to the appropriate Server
computer, e.g., the Server computer at the content provider
site 101, as shown in FIG. 1A. The server computers at
content provider sites all include a Software program (in the
current implementation of the World Wide Web, this is an
http daemon) that watches for Such incoming communica
tions. Upon receipt of the request, the Server computer at the
content provider site 101 transfers a file representing the
Web page (which, in the current implementation of the
World Wide Web, is an html file) to the client computer at
the content display site 102, as shown in FIG. 1B. This file
can itself reference other files (that may be stored on the
server computer at the content provider site 101 and/or on
other server computers) that are also transferred to the
content display site 102. The browser can use the transferred
files to generate a display of the Web page on the client
computer at the content display Site 102. The http daemon,
in addition to initiating the transfer of the appropriate file or
files to the content display Site 102, also makes a record of
requests for files from the Server computer on which the
daemon resides. The record of Such requests is Stored on the
server computer at the content provider site 101 in a file 104
that is often referred to as a “log file.”
The exact structure and content of log files can vary

Somewhat from Server computer to Server computer.
However, generally, log files include a list of transactions
that each represent a single file request. Each transaction
includes multiple fields, each of which are used to Store a
predefined type of information about the file request. One of
the fields can be used to store an identification of the file
requested. Additional fields can be used to store the IP
(Internet Protocol) address of the client computer that
requested the particular file, the type of browser that
requested the file, a time stamp for the request (i.e., the date
and time that the request was received by the Server
computer), the amount of time required to transfer the
requested file to the client computer, and the Size of the file
transferred. Other information about file requests can also be
Stored in a log file.

Previous methods for monitoring the display of content
distributed over the World Wide Web have used the infor
mation Stored in the log file. For example, one previous
method has consisted of simply determining the number of
transactions in the log file and counting each as a "hit' on a
Web page, i.e., a request for a Web page. The number of hits
is deemed to approximate the number of times that the Web
page has been viewed and, therefore, the degree of exposure
of the content of the Web page to information consumers.

There are a number of problems with this approach
however. For example, as indicated above, a request for a
Web page may cause, in addition to the request for an initial
html file, requests for other files that are necessary to
generate the Web page. If these other files reside on the same
Server computer as the initial html file, additional transac

NETFLIX, INC. EXHIBIT 1002

6,108,637
3

tions are recorded in the log file. Thus, a request for a single
Web page can cause multiple transactions to be recorded in
the log file. AS can be appreciated, then, the number of times
that a Web page is transferred to a content display Site can
be far less than the number of transactions recorded in the
log file. Moreover, without further analysis, there is no way
to accurately predict the relationship between the number of
transactions in the log file and the number of times that a
Web page has been transferred to the content display Site.
Such inaccuracy can be very important to, for example,
advertisers-whose cost of advertising is often proportional
to the measured exposure of the advertising-Since the
measured exposure of their advertising (and, thus, its cost)
may be based upon the number of hits on a Web page
containing their advertisement.
A method to overcome this problem has been used. By

analyzing the contents of the log file to determine which file
was requested in each transaction, it may be possible to
differentiate transactions in which the initial html file needed
to generate a Web page is requested from transactions in
which the requested file is one which is itself requested by
another file, thus enabling “redundant' transactions to be
identified and eliminated from the hit count. While Such an
approach can increase the accuracy of counting Web page
hits, it still suffers from several problems.

For example, log file analysis may result in Some under
counting of Web page hits, apart from any overcounting.
This is because, once transferred to a client computer at a
content display Site, the files necessary to generate a Web
page can be stored (“cached”) on that client computer, thus
enabling an observer at the content display site to view the
Web page again without causing the client computer to make
another request to the content provider Server computer from
which the Web page was initially retrieved. Consequently,
the observer can view the Web page without causing trans
actions to be added to the log file, resulting in undercounting
of the number of Web page hits.

Additionally, log files are Subject to manipulation, either
directly or indirectly. For example, an unscrupulous content
provider could directly manipulate the log file by retrieving
and editing the log file to add phony transactions, thus
artificially increasing the number of Web page hits and
making the Web page appear to be more popular than it
really is. This problem can be ameliorated by causing the log
files to be transferred periodically at predetermined times
(e.g., each night at 12:00 midnight) from the Server com
puter at the content provider Site to a neutral network site;
however, the log file can Still be manipulated during the time
between transferS.
A log file might be manipulated indirectly, for example,

by programming one or more computers to continually
request a Web page, thereby generating a large number of
hits on that Web page. While the log file would contain
transactions corresponding to actual file requests associated
with the Web page, these requests would be artificial
requests that would almost certainly not result in a display
of the Web page, and certainly not in the observation of the
Web page. Moreover, checking the contents of the log file
for an unusually high number of requests from a particular
IP address (i.e., client computer) may not enable Such
manipulation to be detected, Since a large number of
requests may legitimately come from a client computer that
Serves many users (for example, the proprietary network
America Online TM has a handful of computers that are used
by many users of that network to make connection to the
Internet and World Wide Web).

It may be possible to identify the real origin of requests
for content using “cookies.” A cookie enables assignment of

15

25

35

40

45

50

55

60

65

4
a unique identifier to each computer from which requests
really emanate by transferring the identifier to that computer
with content transferred to that computer. Future requests for
content carry this identifier with them. The identifier can be
used, in particular, to aid in identification of indirect log file
manipulation, as described above, and, more generally, to
enable more robust log file analysis.

Notwithstanding Such enhancement, cookies do not over
come a fundamental problem with the use and analysis of
log files to ascertain information regarding the display of
content provided over the World Wide Web. That is, as
highlighted by the Overcounting problem associated with the
above-described artifice and the undercounting problem
asSociated with caching of content at the content display Site,
log files only Store information about file requests. A log file
does not even indicate whether the requested file was
actually transferred to the requesting client computer
(though, typically, Such file transfer would occur). Nor does
a log file include any information about how the file was
used once transferred to the requesting client computer. In
particular, log files do not provide any information regarding
whether the content represented by the requested file is
actually displayed by the client computer at the content
display Site, much less information from which conclusions
can be deduced regarding whether-and if So, how-the
content was observed by an observer. These limitations
asSociated with the content of a log file cannot be overcome
by a monitoring approach based on log file analysis.
Moreover, log file analysis is calculation intensive, requiring
hours in Some instances to extract the desired information
from the log file.

Another method of monitoring the display of content
disseminated over the World Wide Web uses an approach
Similar to that of the Nielsen ratings System used in moni
toring television viewing. In this method, monitoring Soft
ware is added to the browser implemented on the client
computers of a selected number of defined observers (e.g.,
families) to enable acquisition of data regarding advertising
exposure on those computers. This information is then used
to project patterns over the general population.

However, this approach also has Several disadvantages.
First, only a limited amount of data is collected, i.e., data is
only obtained regarding a Small number of information
consumers. AS with any polling method, there is no guar
antee that the data acquired can be extrapolated to the
general population, even if the observerS Selected for moni
toring are chosen carefully and according to accepted Sam
pling practices. Second, as the size of the World Wide Web
(or other computer network for which this method is used)
grows, i.e., as the number of content provider Sites increases,
the number of monitored observers necessary to ensure
accurate representation of the usage of all content provider
Sites must increase, Since otherwise there may be few or no
observer interactions with Some content provider Sites upon
which to base projections. It may not be possible to find an
adequate number of appropriate observers to participate in
the monitoring process, particularly given concerns with the
attendant intrusion into the privacy of the Selected observers.
Third, installation of the monitoring Software on a client
computer to be compatible with a browser presents a number
of problems. Such installation requires active participation
by observers, Since observers typically do not reap benefit
from operation of the monitoring Software, they may be
reluctant to expend the effort to effect installation. The
monitoring Software must continually be revised to be
compatible with new browsers and new versions of old
browsers. To enable monitoring of a large number of client

NETFLIX, INC. EXHIBIT 1002

6,108,637
S

computers, the Software must be tested for compatibility
with a wide variety of computing environments. And, as
currently implemented, Such monitoring Software is also
dependent upon the computing platform used, making it
necessary to revise the monitoring Software for use with new
computing platforms or risk skewing the demographics of
the Sample users.

In addition to desiring information regarding the display
and observation of the content that they provide, content
providerS also often desire to provide content to a content
display site that is particularly tailored for observation (e.g.,
according to various demographic characteristics of an
expected observer) at that content display site. For example,
text content should be expressed in a language that the
observer can understand. If appropriate for the content, it is
desirable to tailor the content according to, for example, the
age, SeX or occupation of the observer.
Such tailoring of content has previously been enabled by

modifying the http daemon on a computer at the content
provider Site to cause a particular version of a Set of content
to be transferred to a requesting content display Site based
upon the IP address of that content display site. While such
tailoring of content is useful, it is desirable to be able to
tailor the presentation of content in additional ways not
enabled by this approach.

Content providers also often desire to provide their con
tent with the content of other content providers. For
example, it is a common practice for content providers
(referred to here as “primary content providers”) on the
World Wide Web to include advertisements from other
entities (referred to here as "secondary content providers')
as part of the content provider's Web page. In Such
Situations, it is desirable for the Secondary content provider
to be able to easily update and/or appropriately tailor (e.g.,
according to characteristics of the requester) the content that
they Supply to the primary content provider. This could be
accomplished by causing the primary content provider Site
to contact the Secondary content provider Site-each time
that the primary content provider receives a request for
content that includes the Secondary content-to retrieve the
Secondary content (thus ensuring that updated, appropriately
tailored secondary content is used) or check whether
updated or tailored secondary content is available (if so, the
content is retrieved). (This method could also be modified so
that content retrieval or a check for updated and/or tailored
content is only performed according to a predetermined
schedule.) However, both the primary content provider and
the Secondary content provider may not want their Systems
burdened with the extra computational capacity required to
handle the multitude of requests that would be needed to
effect this operation. Alternatively, the primary content
provider could collect and Store the updated and tailored
content from the Secondary content providers at the primary
content provider site. However, the burden associated with
collecting and managing the content from Secondary content
providers may be more than the primary content provider
wants to shoulder.

One way that this functionality can be achieved without
creating an undesirable burden on the primary or Secondary
content providing Systems is by providing a Secondary
content Storage Site that can continually Store the most recent
content provided by a Secondary content provider, as well as
different Sets of content tailored for particular situations
(e.g., display by particular observers or at particular times).
FIGS. 2A through 2D are simplified diagrams of a network
illustrating the operation of Such a System. In FIG. 2A, a
content display site 202 makes a request over the network

5

15

25

35

40

45

50

55

60

65

6
communication line 203 to the primary content provider site
201 for content that includes the secondary content. In FIG.
2B, the primary content provider site 201 transfers the file or
files stored at the primary content provider site 201 that are
necessary to generate a display of the primary content. These
files include appropriate reference to a file or files Stored at
a Secondary content Storage Site 204 that includes the most
updated and/or appropriately tailored Secondary content for
display with the primary content. As shown in FIG. 2C, this
reference causes the content display Site 202 to request the
Secondary content from the Secondary content Storage Site
204. In FIG. 2D, the secondary content is transferred from
the Secondary content Storage Site 204 to the content display
site 202 for display at the content display site 202.

However, while this system can relieve the primary
content provider of the burden of managing the acquisition,
Storage and provision of Secondary content (a burden that
can become rather onerous when many Secondary content
providers are providing content to the primary content
provider), the System has a characteristic that can make it
undesirable for many content providers. The Secondary
content Storage Site not only manages the Secondary content,
it also provides the Secondary content when requests for
primary content are made to the primary content provider.
Moreover, the Secondary content is frequently content, Such
as graphics files used to generate visual images (which
frequently dominate advertisements), that has a high band
width requirement for transmission over the network. By
taking control of the transmission of Secondary content to
the content display Site, the Secondary content Storage Site is
also frequently taking control of the most bandwidth Sensi
tive parts of the content provided by the primary content
providers. The operator of the secondary content storage site
may not provide a System that addresses the bandwidth
requirements to the Satisfaction of the primary content
provider, So that the presentation of the combined primary
and Secondary content occurs more slowly than desired by
the primary content provider. Thus, this approach causes the
primary content provider to lose control of a critical aspect
of their operation.

SUMMARY OF THE INVENTION

The invention can enable monitoring of the display of
content by a computer System. Moreover, the invention can
enable monitoring of the content display to produce moni
toring information from which conclusions may be deduced
regarding the observation of the content display by an
observer. The invention can also enable monitoring of the
display at a content display site of content that is provided
by a content provider Site over a network to the content
display Site. Additionally, the invention can enable the
expeditious provision of updated and/or tailored content
over a network from a content provider Site to a content
display Site So that the content provider's current and
appropriately tailored content is always displayed at the
content display site.

Aspects of the invention related to transfer of content over
a network are generally applicable to any type of network.
However, it is contemplated that the invention can be
particularly useful with a computer network, including pri
vate computer networks (e.g., America Online"M) and public
computer networks (e.g., the Internet). In particular, the
invention can be advantageously used with computer net
WorkS or portions of computer networks over which Video
and/or audio content are transferred from one network site to
another network site for observation, Such as the World Wide
Web portion of the Internet. Additionally, the invention is

NETFLIX, INC. EXHIBIT 1002

6,108,637
7

particularly useful in monitoring the display of content
obtained over Such a network using an interactive browser to
acquire and View the content in real time.

In one aspect of the invention, the display of content by
a computer System can be monitored by monitoring the
position of the content display on a display Screen of the
computer System and evaluating the position of the content
display on the display Screen to produce monitoring infor
mation regarding display of the content. Monitoring of
content display according to this aspect of the invention can
be further enabled by monitoring the position of one or more
other images on the display Screen and comparing the
position of the content display to the position of the other
images to produce the monitoring information. In particular,
this aspect of the invention can enable a determination as to
whether (and for how long) the content display is hidden by
one of the other images, and, further, whether the content
display is fully hidden or partially hidden (and for how long
the content display is fully and partially hidden,
respectively). This information can be useful to, for
example, indicate the amount of time that the content display
was visible to an observer for observation, or to aid the
content provider in determining in which regions of a
display Screen his content is most likely to be unobstructed.
This aspect of the invention can also enable determination of
the number of times that an on-screen pointer (e.g., a mouse
arrow or a cursor) entered an area defined by the content
display. This information may be useful in determining how
attentive the observer was to the content, Since an observer
frequently watches the position of the on-screen pointer
when Viewing the display Screen.

In another aspect of the invention, the display of content
by a computer System can be monitored by monitoring the
change in time of a characteristic of the content display and
evaluating the change in time of the characteristic of the
content display to produce monitoring information regard
ing display of the content. Monitoring of content display
according to this aspect of the invention can be further
enabled by monitoring the change in time of a characteristic
of the computer System and comparing the change in time of
the characteristic of the content display to the change in time
of the characteristic of the computer System to produce the
monitoring information. This aspect of the invention can
also enable, as discussed above, determination as to whether
(and for how long) the content display is fully or partially
hidden by another displayed image, as well as the number of
times that an on-Screen pointer entered an area defined by
the content display.

In Still another aspect of the invention, in a computer
System in which the content is displayed in response to an
instruction that is provided from a Source external to the
computer System and the System for monitoring (e.g., an
instruction provided by a user of the computer System), the
beginning and end of a display of the content can be
ascertained So that monitoring of the display of content by
the computer System can begin at the beginning of the
content display and end at the end of the content display. The
monitoring can occur in accordance with other aspects of the
invention described herein. The monitoring can also deter
mine the duration of the display of the content. Since the
occurrence of monitoring according to this aspect of the
invention is coincident with the display of the content to be
monitored, the monitoring expends processing capability of
the computer System only when necessary, while Simulta
neously assuring that monitoring occurs at all times that the
content is displayed.

In yet another aspect of the invention, where content is
provided by a content provider Site over a network to a

15

25

35

40

45

50

55

60

65

8
content display Site for display at the content display Site, a
mechanism for monitoring the display of the content can be
transferred from the content provider Site to the content
display site in response to (e.g., together with) the transfer
of content from the content provider Site. The monitoring
can occur in accordance with other aspects of the invention
described herein. Monitoring information obtained regard
ing the display of the content at the content display Site can
be transferred to a remote site that is part of the network. The
remote site can, but need not necessarily be, the content
provider site from which the content was transferred to the
content display Site. Where the remote site is Such content
provider Site, the monitoring information can then, in turn,
be transferred from the content provider Site to a Second
remote site. Further, where the remote site is Such content
provider Site, the monitoring information can be transferred
from the content display Site to the content provider Site via
a communication means that is different from the commu
nication means used to transfer the content from the content
provider Site to the content display Site, a feature that can be
useful, for example, when the network is the World Wide
Web. This aspect of the invention provides a heretofore
unavailable monitoring capability for obtaining information
about how content is displayed on a network Such as the
World Wide Web. In particular, it has not previously been
possible to monitor content transferred from a content
provider site on the World Wide Web once the content has
been transferred to a content display Site.

In a still further aspect of the invention, in a network
which operates according to a protocol that enables new
content to be transferred to a content display Site in response
to Selection of a portion of the content currently being
displayed at the content display site, a mechanism for
monitoring the display of content can be transferred from a
content provider Site to a content display Site So that the
mechanism for monitoring operates at the content provider
Site. The monitoring can occur in accordance with other
aspects of the invention described herein. Monitoring infor
mation obtained regarding the display of the content at the
content display Site can be transferred to a remote site that
is part of the network. This aspect of the invention is
particularly advantageous when at least Some of the content
being monitored comprises a graphical display. AS discussed
above with respect to the immediately preceding aspect of
the invention, this aspect of the invention provides a here
tofore unavailable monitoring capability for obtaining infor
mation about how content is displayed when retrieved over
a network in an interactive browsing environment, Such as
occurs on the World Wide Web.

In yet a further aspect of the invention, the display of
content that is provided by a content provider Site over a
network to the content display site is monitored to produce
monitoring information, then the monitoring information is
transferred to a remote site of the network that is different
from the content provider Site. According to this aspect, the
monitoring information can first be transferred to the content
providing Site before eventual transfer to the remote site, So
long as the monitoring information cannot be Stored at the
content provider Site, or accessed or manipulated at the
content provider Site before transfer to the remote site.
Access to the monitoring information at the remote site can
be allowed to enable interaction with, but not modification
of, the monitoring information. This aspect of the invention
provides a System configuration that can overcome the
problem of possible tampering with the Substance of the
monitoring information by the content provider. Further, this
aspect of the invention can be implemented So that the

NETFLIX, INC. EXHIBIT 1002

6,108,637
9

content and the monitoring instructions are Stored at the
remote Site and transferred to the content display site when
requested by an observer at the content display Site, thus
relieving the content provider of Storing and managing the
content and monitoring instructions at the content provider
Site and thereby simplifying use of the invention for the
content provider.

In another aspect of the invention, current and/or tailored
content can be provided to a content display Site from a
content provider Site. The content can include both primary
content (from the content provider Site) and Secondary
content (provided by third parties). The primary and Sec
ondary content can be provided from a Secondary content
provider Site to an application manager Site. When the
application manager site receives new content (in particular,
updated and/or tailored content) from any content provider
Site, that content is transferred to content provider Sites that
use that content. Updated and/or tailored content is therefore
available for transfer to a content display Site immediately
upon receipt of a request for the content from the content
display Site. This aspect of the invention relieves the primary
content provider of the need to manage the Storage of
content, while reserving control over the provision of that
content to the primary content provider, thereby enabling the
content provider to ensure that the bandwidth requirement of
the content provided from the content provider Site are met.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are simplified diagrams of a network
illustrating operation of a previous System for monitoring
requests for content over the World Wide Web.

FIGS. 2A, 2B, 2C and 2D are simplified diagrams of a
network illustrating operation of a previous System for
enabling retrieval of updated and/or tailored Secondary
content for use in primary content provided over the net
work.

FIGS. 3A, 3B and 3C are simplified diagrams of a
network illustrating operation of one embodiment of the
invention.

FIGS. 4A, 4B and 4C are simplified views of a display
Screen including a content display and other images, illus
trating an unobstructed, fully hidden, and partially hidden
content display, respectively.

FIG. 4D is a simplified view of a display screen including
a content display and other images, illustrating a content
display that is only partially hidden, but that would be
determined to be fully hidden according to a method of the
invention.

FIG. 4E is a simplified view of the display screen shown
in FIG. 4-D, illustrating how another method of the invention
can correctly determine the content display to be partially
hidden.

FIG. 4F is a simplified view of a display screen including
a content display and other images, illustrating a display that
is partially hidden, but that may be determined to be
unobstructed according to a method of the invention.

FIGS. 5A, 5B and SC are simplified diagrams of a
network illustrating operation of another embodiment of the
invention.

FIGS. 6A, 6B, 6C and 6D are simplified diagrams of a
network illustrating operation of Still another embodiment of
the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The invention includes Several aspects related to the
display of content to an observer. For example, the invention

15

25

35

40

45

50

55

60

65

10
can enable monitoring of the display of content by a com
puter System. In particular, the invention can enable moni
toring of the displayed content in a manner that provides
monitoring information from which aspects of the observ
er's observation of the content can be gleaned. The invention
can also enable monitoring of the display and-using the
aforementioned capability-the observation at a content
display site of content that is provided by a content provider
Site over a network to the content display Site. Additionally,
the invention can enable the expeditious provision of
updated and/or tailored content over a network from a
content provider Site to a content display Site So that the
content provider's current and appropriately tailored content
is always displayed at the content display Site.

Herein, "content” refers generally to any Sensory images
(or data used to produce those Sensory images) displayed by
a device with which the invention is used. "Observation'
refers to the perception of content by an observer. Typically,
the content will be visual or aural imageS produced by the
device; observation of Such content thus consists of viewing
or listening, as appropriate, to the produced images.

Certain aspects of the invention relate to the monitoring of
content obtained from, or provision of content over, a
network. “Content provider site” refers to a device that is
part of the network and that can provide content to another
device that is part of the network. “Content display site'
refers to a device that is part of the network and that can
receive and display content from another device that is part
of the network. It is contemplated that the invention can be
particularly useful with a computer network that operates in
this way. “Computer network” includes any collection of
interconnected computer Systems. “Computer System”
refers to a device or collection of devices which depend
upon a computational device (e.g., a general or Special
purpose processor) for at least Some aspects of their opera
tion. In particular, as used herein, a "computer System' can
include any type of display device, including a conventional
computer display monitor, a television, or one or more audio
Speakers.

FIGS. 3A, 3B and 3C are simplified diagrams of a
network illustrating operation of one aspect of the invention.
A content display site 302 (which can be embodied by a
conventional client computer) is linked via a network com
munication line (or lines) 303 to a content provider site 301
(which can be embodied by a conventional server
computer). (Typically, the network links multiple content
display sites with multiple content provider Sites, a Single
content display Site 302 and a Single content provider Site
301 are shown in FIGS. 3A, 3B and 3C for simplicity.
Additionally, it is to be understood that each Site on the
network can function as both a content display Site and a
content provider site.) As shown in FIG. 3A, the client
computer at the content display Site 302 requests content
from the server computer at the content provider site 301
over the network communication line 303. As shown in FIG.
3B, the server computer at the content provider site 301
provides content to the client computer at the content display
site 302 over the network communication line 303. Accord
ing to this aspect of the invention, in response to the request
for content from the content provider site 301, a set of
monitoring instructions (which can be embodied, for
example, in a computer program) are also transferred to the
content display site 302. The transfer of the monitoring
instructions can occur before, with or after the transfer of the
content. AS explained in more detail below, the monitoring
instructions cause the client computer at the content display
site 302 to monitor the display of the content to produce

NETFLIX, INC. EXHIBIT 1002

6,108,637
11

monitoring information regarding the manner in which the
content is displayed. As shown in FIG. 3C, the monitoring
information is transferred from the content display site 302
to the content provider site 301 over the network commu
nication line 303. (The monitoring information could, alter
natively or additionally, be transferred to another Site that is
part of the network.) Review of the monitoring information
produced by the monitoring instructions can enable conclu
Sions regarding the observer's observation of the content to
be deduced, as explained in more detail below. (It should be
noted that, more generally, monitoring instructions accord
ing to the invention can be used to monitor the display of
content on a computer System whether or not the computer
System is part of a network and receives content and
monitoring instructions over the network.)

The invention can be used with both public computer
networks (e.g., the Internet) and private computer networks
(e.g., commercial online Services Such as America Online",
Prodigy'TM and CompuServe"M, as well as intranets). In
particular, the invention can be advantageously used with
computer networks or portions of computer networks over
which Video and/or audio content are transferred from one
network site to another network site for display. Further, the
invention can advantageously be used with a network in
which the network Sites can be accessed in real time with a
browser. (“Browser” can refer to a computer program which
can interpret hypertext files and display the content corre
sponding to those files, as well as enable transfer from one
hypertext file to another via a hyperlink within the hypertext
file being transferred from.) The World WideWeb portion of
the Internet is a well-known current example of Such a
network with which the invention can be used. Below, Some
aspects of the invention are described, for purposes of
illustration, as implemented in a manner that is compatible
with the World Wide Web, i.e., in accordance with the
hypertext markup language (html) and the hypertext transfer
protocol (http). However, none of the aspects of the inven
tion are limited to Such implementation.
When the invention is used with a computer network or to

monitor display of content by a computer System, aspects of
the invention can be implemented as one or more computer
programs that can be executed by a computer to achieve the
functionality of that aspect. Generally, Such computer pro
grams can be implemented using any appropriate computer
programming language. However, when an aspect of the
invention is used with a computer network that includes
computers of many different types (such as the Internet), the
computer programming language is preferably one that can
be executed by any type of computer (i.e., the computer
programming language is platform independent). The Java
programming language, developed by Sun MicroSystems,
Inc. of Mountain View, Calif., is one Such computer pro
gramming language. Below, Some aspects of the invention
are described, for purposes of illustration, as implemented in
the Java programming language. Again, however, none of
the aspects of the invention are limited to Such implemen
tation.

In one embodiment of the invention, the monitoring
instructions are transferred to the content display site 302
together with the content. In a particular embodiment, the
monitoring instructions are part of a computer program that
also includes instructions for displaying the content.
Illustratively, Such a computer program can be an applet
written in the Java programming language. AS will be
appreciated by those skilled in the use of html, Example 1
below illustrates a set of instructions in accordance with the
html Syntax that can be used to cause execution of an applet
that both displays content and monitors the display.

5

15

25

35

40

45

50

55

60

65

12
EXAMPLE 1.

<applet code="AdInsert.class' width=230 height=33>
<param name="image' value="images/southwest.gif">
<param name="href value="http://www.swa.com/">
</applete

The instructions shown in Example 1 are executed by a
conventional browser implemented on a computer at a
content display Site when an observer at the content display
Site makes a request for (e.g., Selects a hyperlink) the content
represented by the file “southwest.gif.” The request is
received by an http daemon at the appropriate content
provider site. The instructions identify the location
(“image') at the content provider Site of an applet (a small
application program) called "AdInsert” that includes further
instructions which, when executed, perform a monitoring
method according to the invention, as well as cause the
content to be displayed. (The Steps that can be implemented
in Such a monitoring method are discussed further below.)
Upon receipt of the request by the http daemon at the content
provider Site, the AdInsert applet is transferred to the
requesting content display Site and begins executing. The
instructions in Example 1 also establish the Size of the area
(width and height) in which the content is displayed on a
computer display Screen, as well as indicate a network Site
(“href) to which connection can be made by Selecting a
hyperlink within the content. Thus, illustratively, in accor
dance with the invention, content from a content provider
Site that can be accessed by a browser (Such as a network Site
that is part of the World Wide Web) can be transferred to and
displayed at a content display Site by transferring an applet
to the content display Site that can be executed by the
browser to both display the content and cause aspects of the
display of the content to be monitored. (Note that the content
being monitored can comprise all of the content being
displayed, or only a part of the content being displayed, e.g.,
an advertisement present in a Web page.)

In contrast, previously, only content has been transferred
to content display Sites, using an html Syntax as shown in
Example 2 below for the content that is displayed by the
html syntax shown in Example 1 above.

EXAMPLE 2

<fac

Thus, previously, it has not been possible to monitor content
transferred from a content provider site on the World Wide
Web once the content has been transferred to the content
display Site. AS can be appreciated, then, this aspect of the
invention provides a powerful tool, not previously available,
for obtaining information about how content is displayed on
a computer network Such as the World Wide Web.

Implementation of a monitoring method as described
immediately above means that the operation of the moni
toring method is coincident with the display of the content
to be monitored. Since the monitoring method does not
operate when the content is not being displayed, the moni
toring method expends processing capability of the com
puter System at the content display site only when necessary.
At the same time, operation of the monitoring method at all
times when the content is displayed is assured.

NETFLIX, INC. EXHIBIT 1002

6,108,637
13

Further, Since the monitoring method can be implemented
as part of a broader method according to the invention that
also causes the content to be displayed, the problems pre
viously noted with monitoring the display of content that is
cached at the content display Site are overcome. This is
because, unlike the previous use of log files-which require
that a request be made to a content provider Site in order that
any information be recorded–a monitoring method accord
ing to the invention can record monitoring information any
time that the content is displayed, without regard to the
manner in which the display is requested. In particular, the
invention can enable the number of times that a particular Set
of content is displayed to be precisely counted. This is a
huge improvement over previous methods as described
above, which not only do not count the number of times that
the content is displayed (they count requests), but may not
even count the number of requests accurately.

The instructions that implement a monitoring method
according to the invention can be used to obtain a large
variety of monitoring information. For example, the contents
of conventional log files (discussed above) can be ascer
tained by a monitoring method of the invention. An impor
tant aspect of the invention, however, is that monitoring
information beyond that available in a conventional log file
can also be obtained by a monitoring method according to
the invention. Instructions for obtaining Several types of
Such monitoring information are described below. However,
it is to be understood that the descriptions below are merely
illustrative of the types of monitoring information that can
be obtained; the obtaining of other types of monitoring
information is also contemplated by the invention.

For example, a monitoring method according to the
invention can detect each time that the content is displayed.
In fact, in one embodiment of a monitoring method accord
ing to the invention, the monitoring method does no more
than this. Amonitoring method that detects the display of the
content can be implemented by an applet as described above.
The “monitoring instructions” of Such an applet may be no
more than an instruction that causes an indication that the
applet has executed to be Stored or transferred to an appro
priate network site (discussed further below). A monitoring
method that can ascertain whether the content was displayed
or not can be a very useful monitoring method that provides
important basic information not previously available in an
interactive browsing environment for acquiring and viewing
content. In particular, undercounting (due to, for example,
caching of content at the content display site) and over
counting (due to, for example, Submission of artificial
requests for content that do not result in the display of
content) of the number of times that the content is displayed
are avoided.
A monitoring method according to the invention can also

determine the duration of the content display. For example,
the duration of the content display can be determined as the
amount of time that the computer program for displaying the
content executed, as indicated by time Stamps
ascertainable, for example, using a method that exists as part
of the Java language-associated with a predefined begin
ning and end of execution of the program.

In one embodiment of the invention, a monitoring method
monitors the position of the content on a display Screen
while the content is being displayed. The position is evalu
ated to produce monitoring information regarding the dis
play of the content. Such evaluation can be accomplished,
for example, by further obtaining information regarding the
position of one or more other images on the display Screen,
and comparing the position of the content to the position of
the one or more other images.

15

25

35

40

45

50

55

60

65

14
For example, in accordance with the above embodiment,

the monitoring method can determine whether the content is
not visible on the display Screen, either because the content
is occluded by the one or more other images, or because the
content has been “scrolled' off of the display screen
(hereafter, these two situations will be referred to together by
saying that the content is “hidden'). Further, the monitoring
method can determine whether the content is partially
hidden, i.e., either partially occluded by the one or more
other images, or partially Scrolled off of the display Screen.
Moreover, the duration of time of each period during which
the content is fully or partially hidden can be determined as
Such periods occur. The duration of time of unobstructed
displays of the content can be determined as times when the
view of the content is not either fully or partially hidden.
Each of the durations can be reported directly and/or the
total duration that the content is fully hidden, partially
hidden, fully or partially hidden and/or unobstructed,
respectively, can be reported.

Information regarding whether or not the displayed con
tent is hidden can be useful for a variety of reasons. For
example, Such information indicates the amount of time that
the displayed content was visible to the observer for obser
vation. Additionally, this information can be used by the
content provider to determine in which regions of a display
Screen his content is most likely to be unobstructed.
Whether the displayed content is hidden can be deter

mined in any manner that is possible using the tools (e.g.,
Supported programming language, operating System
characteristics) associated with the computer network with
which the invention is being used. One way of determining
whether the displayed content is hidden using the above
described applet is to periodically declare that the content
display (or a portion thereof) is invalid, i.e., the operating
System is asked to redraw the content display, if necessary.
If the operating System then makes a request to the applet to
redraw the content display, then the content display is not
hidden. However, if the operating System does not make a
request to the applet to redraw the content display, then the
content display is hidden.
The most complete information regarding whether the

content display is hidden can be obtained by invalidating
each discrete element of the content display (e.g., pixel) and
determining whether the discrete element is hidden, in the
manner described above. However, Such an approach is
computationally expensive and is generally not necessary to
obtain useful and Sufficiently accurate information regarding
whether the content display is hidden. Preferably, then, only
a portion of the content display, Strategically Selected, is
evaluated in this manner.

For example, in one embodiment of the invention, each of
the corners of the content display are invalidated and moni
tored for redrawing as described above. If all of the corners
are redrawn, then the content display is determined to be
unobstructed. If none of the corners are redrawn, then the
content display is determined to be fully hidden. If at least
one, but not all, of the corners are redrawn, then the display
is determined to be partially hidden.

FIGS. 4A, 4B and 4C are simplified views of a display
screen 400 including a content display 401 and other images
402, 403 and 404, illustrating an unobstructed, fully hidden,
and partially hidden content display, respectively. In FIG.
4A, none of the corners 401a, 401b, 401c or 401d are
covered by one of the other images 402, 403 and 404. Thus,
after the corners 401a, 401b, 401c and 401d are invalidated,
each is redrawn, and the content display 401 is (correctly, in
this case) determined to be unobstructed. In FIG. 4B, each

NETFLIX, INC. EXHIBIT 1002

6,108,637
15

of the corners 401a, 401b, 401c and 401d is covered by the
image 402. Thus, none of the corners 401a, 401b, 401c and
401d are redrawn after being invalidated, and the content
display 401 is (again, correctly) determined to be fully
hidden. In FIG. 4C, the corners 401c and 401d are covered
by the image 402, but the corners 401a and 401b are not.
Thus, only the corners 401a and 401b are redrawn after
invalidation of the corners 401a, 401b, 401c and 401d, and
the content display 401 is (once again, correctly) determined
to be partially hidden.

The above approach may not be accurate in all cases. FIG.
4D is a simplified view of the display screen 400 including
the content display 400 and other images 402, 403 and 404,
illustrating a partially hidden content display 401 that would
be determined to be fully hidden according to the method of
the invention detailed above. In FIG. 4D, the image 402
covers the corners 401c and 401c, the image 403 covers the
corner 401a, and the image 404 covers the corner 401b.
Thus, since none of the four corners 401a, 401b, 401c and
401d is redrawn after being invalidated, the content display
401 is determined to be fully hidden; however, as can be
seen in FIG. 4D, this is not the case.

This problem can be alleviated by evaluating other dis
crete elements of the content display in addition to the
corners. For example, discrete elements at the center of the
upper and lower edges, and/or the right and left edges of the
content display could be evaluated in addition to the corner
pixels. FIG.4E is a simplified view of the display screen 400
as shown in FIG. 4D, illustrating how another method of the
invention can correctly determine the content display 401 to
be partially hidden. In FIG. 4E, the upper edge center 401e
and the lower edge center 401 fof the content display 401 are
also evaluated. The lower edge center 401 fiscovered by the
image 402, while the upper edge center 401e is not. Thus,
after invalidation of the corners 401a, 401b, 401c and 401d,
and the centers 401e and 401 f, the upper edge center 401e
is redrawn, and the content display 401 is (correctly) deter
mined to be partially hidden.

FIG. 4F is a simplified view of the display screen 400,
including the content display 401 and other images 402,403
and 404, illustrating a partially hidden content display 401
that may be determined to be unobstructed according to a
method of the invention. In FIG. 4F, none of the corners
401a, 401b, 401c and 401d, or the centers 401e and 401fare
covered by the images 402, 403 and 404. Thus, after
invalidation of the corners 401a, 401b, 401c and 401d, and
the centers 401e and 401f, each is redrawn, and the content
display 401 is determined to be unobstructed. However, as
can be seen in FIG. 4F, this is not the case, Since the image
403 is positioned in the middle of the content display 401.
As illustrated in FIGS. 4D through 4F, while the evalu

ation of additional discrete elements of a content display
does not eliminate the possibility of an inaccurate determi
nation regarding whether the content display is hidden, it
does reduce the likelihood of Such occurrence. Generally,
any number and configuration of discrete elements of a
content display can be evaluated to reduce the possibility of
an incorrect determination regarding whether the content
display is hidden, So long as the associated computational
cost does not become unacceptably high. Further, the above
described method for determining whether a content display
is hidden is only one way in which Such determination can
be made.
AS part of determining whether the content display is

hidden, a time Stamp is recorded each time there is a change
in the “hidden state' of the content display. From these time
Stamps, the duration of each period of time that the content

15

25

35

40

45

50

55

60

65

16
display is unobstructed, partially hidden and fully hidden
can be determined. From the duration of each period, total
durations of time that the content display is unobstructed,
partially hidden and fully hidden can also be determined.

It may also be possible, by appropriately configuring the
discrete elements of the content display that are evaluated,
to determine (though, typically, approximately), when the
content display is partially hidden, the amount of the content
display that is visible. It can be possible, too, when the
content display is partially hidden, to give a qualitative
description of the portion of the content display that is
hidden (or visible), e.g., upper right corner, lower left corner.
When the monitoring method operates on a computer

System having an event-driven operating environment, the
monitoring method can monitor events as transmitted by the
operating System to ascertain information regarding the
content display. When the monitoring method is imple
mented as an applet that also displays the content, Such
monitoring can occur naturally, Since only events concern
ing the content display are transmitted to the monitoring
method. For example, the applet can use a pre-existing Java
method (e.g., the method named Handle Event in a current
version of Java) to monitor events as transmitted by the
operating System. Such event monitoring can be used to, for
example, determine the number of times that an on-Screen
pointer (e.g., a mouse arrow or a cursor) entered an area
defined by the content display. (The defined area can be
related to the content display in any manner and can be, for
example, the area in which the content is displayed, or an
area Somewhat Smaller or larger than the area of the content
display.) The operating System of the computer System
displaying the content display typically monitors the posi
tion of the on-screen pointer and can identify in which
region on the display Screen the pointer is located. Thus, an
applet configured to display content, as described above, can
discern whether the pointer is located within the content
display by monitoring an event that indicates that the pointer
has entered the area defined by the content display. The
monitoring method of the invention can use this information
provided by the operating System to count the number of
times that the on-screen pointer enters the area defined by
the content display. The monitoring method can also deter
mine when the on-screen pointer leaves the defined area
after each entry, by monitoring another event that indicates
that the pointer has exited the area defined by the content
display. The time Stamps associated with the entry into and
exit from the defined area can be used to calculate the
duration of time that the pointer was in the defined area for
each entry into the defined area, as well as the total duration
of time that the pointer was within the defined area. The
monitoring method can also determine when the on-Screen
pointer is moving within the defined area, again by moni
toring an event that indicates Such pointer movement. The
above-described information regarding the on-screen
pointer position and movement relative to the content dis
play may be useful in determining how attentive the
observer was to the content, Since an observer frequently
watches the position of the on-Screen pointer when viewing
the display Screen.

In another embodiment of the invention, the monitoring
method monitors the change in time of a characteristic of the
content display. The change in time of this characteristic is
evaluated to produce monitoring information. The evalua
tion can be accomplished, for example, by further monitor
ing the change in time of a characteristic of the computer
System used to display the content, and comparing the
change in time of the characteristic of the content display to

NETFLIX, INC. EXHIBIT 1002

6,108,637
17

the change in time of the characteristic of the computer
System. Either of the two examples given immediately
above (hiding of the content display and entry of a pointer
into a defined area) are also examples of a monitoring
method in accordance with this embodiment of the inven
tion.
A monitoring method according to the invention can

obtain a variety of other information, as well. For example,
the monitoring method can obtain a time Stamp (date and
time of day) that indicates when the display of the content
began. When the monitoring method is implemented by an
applet written in Java, the time Stamp can be obtained using
a method that exists as part of the Java language.

Identifying information regarding the computer on which
the content is displayed can also be obtained. The Internet
Protocol (IP) address from which the request for the content
was made, as well as an identification of the machine to
which the content was transferred can be obtained. (There
may not be a one-to-one correspondence between these two
if, for example, the latter is a client computer of a System for
which the former is a server computer.) Again, both the IP
address and machine name can be obtained using a pre
existing Java method.
A monitoring method according to the invention can also

determine if the user of the computer at the content display
Site Selected (e.g., clicked with a mouse or pressed an
appropriate keyboard key) a hyperlink within the area of the
content display to end display of the current content display.
Similar to the monitoring of the pointer location described
above, an applet that implements a monitoring method of the
invention can include a standard Java method (e.g.,
HandleEvent) that accepts events transmitted by the oper
ating System. One of the events is the Selection of a
hyperlink. When Such an event is reported, the monitoring
method can So note.
AS previously indicated, the above-described examples of

monitoring information are merely illustrative of the types
of monitoring information that can be obtained by a moni
toring method according to the invention. Generally, a
monitoring method according to the invention can make use
of any method available in the computing environment, e.g.,
an operating System method, or a method that is part of a
Software framework, or that can be written in a computer
programming language that can be used in the computing
environment. For example, when the monitoring method is
implemented by an applet written in Java, any existing Java
method can be used to obtain information relevant to the
display of the content to be monitored, either by using the
method to change the state of the computer (e.g., the State of
the display) on which the content is being displayed and
monitoring the response of the computer (e.g., the method
for monitoring whether content display is hidden, discussed
above) or by retrieving information about the state of the
computer (e.g., the method for monitoring entry of the
pointer into the content display, discussed above). In
particular, the monitoring of events as discussed above can
be useful in discerning information about the content dis
play.
A monitoring method according to the invention can also

be used to ascertain information about an audio display. For
example, if the content being monitored includes audio
content that can only be displayed by Selecting an appro
priate user interface mechanism (e.g., a graphical
pushbutton), a monitoring method according to the inven
tion can determine whether that “event' is transmitted to the
window represented by the content, indicating that the audio
display was at least begun. Using a method as described

15

25

35

40

45

50

55

60

65

18
above for determining the duration of a content display,
together with knowledge of the when the audio display was
begun (using a time stamp as described above), the duration
of the audio display can also be determined. It may also be
possible to determine the Volume at which the audio content
is displayed, by appropriately monitoring the methods used
to operate the audio display devices. These examples are
merely illustrative. AS can be appreciated, using any other
method available in the computing environment, other infor
mation regarding an audio display can be determined.
A monitoring method according to the invention can also

be used to explicitly (i.e., by presenting questions to observ
ers that they can answer) acquire demographic information
regarding the observers of the content being monitored. This
could be implemented, for example, by including the
instructions for asking Such questions, the content of the
questions and the instructions for Storing the obtained demo
graphic information in a computer program used to imple
ment the monitoring method. Or, Such instructions and
question content could be Stored in a separate file that is
called and executed by the computer program that imple
ments the monitoring method. Or, instructions for presenting
the questions and Storing the answers could be included as
part of the computer program for implementing the moni
toring method, and the content of the questions could be
contained in a separate file that is accessed by the computer
program. These latter two possibilities can be particularly
advantageous, Since they allow multiple Sets of demographic
questions to be presented to observers by the monitoring
method, thus enabling the demographic questions to be
tailored to the content being displayed or to the character
istics of the observer likely to view the content.
AS described above, in accordance with the invention,

monitoring information regarding the display of content can
be obtained, then later reviewed and analyzed to enable
conclusions to be drawn about how the content was dis
played and, possibly, to enable deductions to be made about
how the content was observed. In addition, monitoring
information can be used to affect the display of a set of
content. One way in which this can occur is for a set of
content, or the manner in which the Set of content is
displayed, to be modified based upon review and analysis of
monitoring information obtained from previous displays of
the set of content (e.g., monitoring information regarding
whether or not the content was hidden, or the frequency of
display of the content at different times during the day or
week, that may be used to determine the best location on a
display Screen or the best times, respectively, to display the
content).

Another way in which monitoring information can be
used to affect the display of a Set of content is to use certain
monitoring information obtained just before or during the
display to cause the Set of content to be displayed in a
particular manner. For example, as discussed above, the IP
address from which a request for a set of content emanated
can be ascertained when the request is first received. It may
be possible to associate characteristics of an observer or
observers with an IP address from which a request for
content has been received (because, for example, demo
graphic information has previously been obtained as
described above when a set of content was previously
transferred to that IP address). Based upon the known
characteristics associated with the IP address, an appropriate
one of multiple versions of the requested Set of content can
be transferred for display, e.g., if it is known that the IP
address corresponds to a content display site that is used by
observers that Speak a particular language, then text dis

NETFLIX, INC. EXHIBIT 1002

6,108,637
19

played aurally or visually can be displayed in that language.
AS another example, the duration of time that a set of content
has been displayed can be determined, as discussed above,
and the portion of the Set of content that is being displayed
changed as a function of that duration, e.g., the display of a
Set of content can begin with a particular video display and
change to another video display after passage of a Specified
duration of time. AS Still another example, the portion of a
Set of content that is displayed can be varied based upon
performance characteristics of the network over which the
content is transferred. For example, the amount of time
required to transfer data from the content provider Site to the
content display site can be monitored (by, for example,
obtaining information from the log file regarding the size of
transferred files and the amount of time required to transfer
those files, as discussed above). The display of the content
can then be controlled So that a moving Video is displayed
if the data transfer rate is above a predetermined magnitude
and a still video is displayed if the data transfer rate is below
the predetermined magnitude, the predetermined magnitude
being chosen So that data rates below that magnitude are
insufficiently fast to produce moving video of acceptable
quality. The above examples are merely illustrative; other
ways of using monitoring information to affect the display of
a set of content are contemplated by the invention.
AS described above, a monitoring method according to

the invention can obtain monitoring information regarding
the display of content. Of particular interest is the basic
question of whether the content was displayed at all. AS
described above, a monitoring method according to the
invention can make this determination. Some observers,
however, have developed techniques for Suppressing the
display of particular content (e.g., advertisements). A moni
toring method according to the invention can also increase
the likelihood that particular content is displayed by condi
tioning certain other operation of the computer System that
displays the content on the display of that particular content.
For example, the content to be monitored can be presented
as part of other content. Such presentation is common on, for
example, the World WideWeb, where, for example, adver
tising content is frequently included as part of other content.
A monitoring method according to the invention can con
dition the display of the other content on the display of the
to-be-monitored content, e.g., the full content of a Web page
cannot be viewed unless an advertisement included on the
Web page is viewed. Moreover, the presentation of the other
content can be conditioned on the display of the to-be
monitored content for a Specified period of time. This can be
particularly valuable when the to-be-monitored content does
not appear automatically as part of the other content, but,
rather, is only displayed in response to Selection of an
appropriate user interface mechanism (e.g., a graphical
pushbutton) that is part of the other content.

In accordance with the above-described forced presenta
tion of Specified content, the detection of content Suppres
Sion can be accomplished in any Suitable manner. For
example, it may be possible to detect the Suppression
technique being used. Or, the display of the content can be
ordered so that the content that must be displayed (“required
content”) is displayed first; if the monitoring method detects
that the content display Site is displaying the other content
without first having displayed the required content, then
Suppression of the required content has been detected. Upon
detection of Suppression of the required content, display of
the other content is prevented and, if desired, a message
indicating that fact can be displayed.
AS indicated above, after monitoring information is

obtained by a monitoring method according to the invention,

15

25

35

40

45

50

55

60

65

20
the monitoring information is transferred from the content
display site 302 to a remote site. The remote site can be the
content provider site 301 or another site that is part of the
network. When a monitoring method according to the inven
tion is implemented by a Java applet, the remote site is the
content provider Site 301, Since, currently, Such applets can
only communicate information to the network Site from
which they were transferred. However, in the future, such
constraint may not exist; in that event, the remote Site need
not necessarily be the content provider site 301 even when
a Java applet is used to implement a monitoring method
according to the invention.

Generally, the monitoring information can be transferred
to the remote site at any time. It may be desirable, for
example, to cause the monitoring information to be trans
ferred to the remote site immediately after the monitoring
information is obtained, So that the monitoring information
is accessible as quickly as possible. It may, alternatively, be
desirable to Store the monitoring information at the content
display Site, then transfer the monitoring information at a
time when communication over the network communication
line 303 is fastest and/or least expensive, e.g., at night.
The monitoring information can be communicated to a

communication port that is different than the port from
which the content and the monitoring instructions were
transmitted to the content display site 302. In that event, a
Special daemon that monitorS Such communication port for
receipt of monitoring information is installed on the Server
computer at the content provider Site. The daemon can be
implemented as a conventional Server daemon for monitor
ing data received by a Server computer on a designated
communication port. Communication of the monitoring
information to a specially designated port can be useful to
enable the monitoring data to Sent in any desired format in
accordance with any desired protocol. For example, the
monitoring data can be encrypted, as described below.
When the invention is implemented with the World Wide

Web, it is also possible to transmit the monitoring data over
the network using the communication channel monitored by
the http daemon, i.e., by transmitting a request to the http
daemon. Such transmission may be desirable for Several
reasons. For example, transmission of monitoring data to the
http daemon eliminates the need to create, and Supply to
operators of the remote site to which the monitoring data is
to be transferred (e.g., a Web page operator or, as described
below, an application manager site operator), Special Soft
ware for receiving the monitoring data. Additionally, trans
mission of monitoring data by transmitting a request to the
http daemon may be the only way to transfer the monitoring
data to the remote site. This can be true, for example, when
one or more client computers are served by a “proxy Server'
which mediates communication between the client comput
erS and other sites on the network. The proxy server may not
allow communication over a channel Specially designated
for transmitting monitoring data, but allow communication
to the http daemon.

Transmission of monitoring data by making a request to
the http daemon can be accomplished in a variety of ways.
For example, an http request can be Submitted for a file
having a “name' that denotes the monitoring data in Some
way. Notwithstanding the Spurious nature of the file request,
the request is recorded in the http log file, from which the
“name” can be retrieved to enable extraction of the moni
toring data. Or, a request for execution of a CGI Script can
be transmitted, with the parameter of the CGI Script request
that specifies input to the Script being Specified to denote the
monitoring data in Some way. A computer program resident

NETFLIX, INC. EXHIBIT 1002

6,108,637
21

on the computer System at the remote site can then imple
ment a method that extracts the value of the input from the
CGI Script, and the monitoring data can be extracted from
the value of the input. Other methods of using CGI scripts
or http requests to transmit monitoring data to an http
daemon are possible.

For Security, it may be desirable to encrypt the monitoring
data before it is transferred from the content display site 302
to a remote site. Any Suitable encryption method can be
used. For example, a public key encryption method, Such as
the well known RSA algorithm, can be used to encrypt the
monitoring data. In general, the monitoring data (or other
data transferred over a network in accordance with the
invention) can be encrypted before any transmission of the
data over a network (other examples of Such data transmis
Sion are described below as part of the Systems illustrated in
FIGS.5A, 5B and 5C, and FIGS. 6A, 6B, 6C and 6D).

Once communicated to the remote Site, the monitoring
information can be Stored in any appropriate database, as
known to those skilled in the art of constructing and man
aging databases. The monitoring information can be pre
Sented for observation through a Suitable user interface, Such
as a graphical user interface (GUI), in any desired format,
e.g., graphs, bar charts, pie charts. The monitoring informa
tion Stored in the database can also be Subjected to further
analysis if desired. For example, the total time that a content
display is available to be viewed can be broken down into
percentages of time that the content display was
unobstructed, partially hidden and fully hidden. Or, the
percentage of observers of a set of content that Select a
particular hyperlink while observing the content can be
identified.

The monitoring information may be of interest not only to
the content provider that provides the content for display, but
to third parties as well. For example, if the content provided
by the content provider includes an advertisement, the
advertiser may be interested in the monitoring information
regarding display of the content. The third party and the
content provider may have conflicting interests in the Sub
stance of the monitoring information. For example, if the
third party is paying the content provider to include the third
party's content with the content provider's content, and the
payment is based upon the amount of exposure of the third
party's content to observers, the content provider has an
interest in the monitoring information showing a large
amount of exposure of the content, while the third party has
an interest in the monitoring information showing a Small
amount of exposure. (Both parties, of course, can be simul
taneously motivated by other interests, as well: for example,
the third party may simply want the monitoring information
to reflect accurately the amount of exposure of the content,
So that they can use that information in assessing the effects
of providing their content through the content provider.) If
the monitoring information is transferred from the content
display Site to the content provider Site, and unrestricted
access to the monitoring information allowed at the content
provider Site, there may be no foolproof way to prevent the
content provider from tampering with the Substance of the
monitoring information. This problem is particularly acute
when a monitoring method according to the invention is
embodied in a manner (e.g., by a Java applet), as discussed
above, that necessitates that the monitoring information be
transferred back to the content provider Site.

FIGS. 5A, 5B and 5C are simplified diagrams of a
network illustrating operation of another embodiment of the
invention. This embodiment of the invention provides a
System configuration that can overcome the problem of

15

25

35

40

45

50

55

60

65

22
possible tampering with the Substance of the monitoring
information by the content provider. AS in the System
illustrated in FIGS. 3A, 3B and 3C, a content display site
302 is linked over a network to a content provider site 301.
The network also includes an application manager site 501.
The content display site 302 and content provider site 301
can communicate with each other via the network commu
nication line 303, as described above, to enable transfer of
content and monitoring instructions from the content pro
vider site 301 to the content display site 302. Alternatively,
the content and monitoring instructions can be transferred to
the content display site 302 from the application manager
site 501 in response to a request received from the content
provider site 301 upon receipt of the request from the
content display site 302. This latter implementation is illus
trated in FIGS. 5A, 5B and 5C. In such an implementation,
the content provider site 301 needn’t have either a computer
program for implementing the monitoring method or a
program for receiving monitoring data installed at the con
tent provider site 301, thus simplifying use of the invention
for the content provider. Rather, the content provider need
only have an open account (as discussed below) at the
application manager Site 501.

In this embodiment of the invention, the monitoring
information obtained at the content display site 302 is
transferred to the application manager Site 501, either
directly from the content display site 302 or indirectly via
the content provider site 301. If the latter, then the moni
toring information can be received by the content provider
site 301 and transferred to the application manager site 501
in a way that prevents access to the monitoring information
at the content provider site 301. For example, the monitoring
information could be encrypted at the content display Site
302 before transfer to the content provider site 301, the
decryption method being available only at the application
manager site 501. Or, the monitoring information could be
immediately transferred to the application manager Site 501
after being received at the content provider site 301. Once
received at the application manager Site 501, access to the
monitoring information can be administered by the (neutral)
application manager So that the monitoring information can
not be modified by any of the parties having an interest in the
information, thus ensuring the integrity of the monitoring
information.

In a typical implementation, multiple Sets of content will
be provided from multiple content provider Sites, and each
Set of content will be displayed by multiple content display
Sites. A set of monitoring information will be recorded for
each display of each of the multiple Sets of content and
transferred to the application manager Site for Storage in a
database that is implemented on a computer at the applica
tion manager Site. Each Set of monitoring information must
be identified as corresponding to the Set of content for which
the monitoring information was obtained, So that monitoring
information can be appropriately Stored in a database to
enable later retrieval of the monitoring information for that
Set of content. When a monitoring method according to the
invention is implemented for use with the World WideWeb,
this can be accomplished by appropriate specification of a
parameter included in a computer program written in html
used to implement a monitoring method, as discussed above.
Example 3 below illustrates how Example 1 discussed above
can be modified to make Such specification (the “Account
parameter).

NETFLIX, INC. EXHIBIT 1002

6,108,637
23

EXAMPLE 3

<applet code=/AppMgr.com/AdInsert.class' width=230 height=33>
<param name="image' value="images/southwest.gif">
<param name="href value="http://www.swa.com/">
<param name="Account” value="9004560093">
</applete

The database residing on the computer at the application
manager site can also be used, for example, to Store account
information about the content provider site from which the
content display is provided.

In the embodiment of the invention illustrated in FIGS.
5A, 5B and 5C, a user interface (e.g., GUI) can be provided
on the content provider site computer to enable the owner (or
representative) of the content provider site to access moni
toring information Stored at the application manager Site
regarding content displayS provided by the content provider
Site. Such an interface can also be configured to enable the
content provider to create a new account on the application
manager computer, authorize payments for use of the moni
toring System of the invention, and request particular analy
sis or presentation of obtained monitoring information.
Other functions can also be provided in Such an interface, as
desirable.

It is also possible that there be multiple application
manager Sites. Typically, monitoring information for each
content display will be designated for Storage on a particular
one of the application manager Sites. Such designation can
be included as a parameter Specification in a computer
program used to implement the monitoring information as
discussed above.
AS discussed above, the content provided by a content

provider can be tailored according to any specified criteria.
Further, the content provider may periodically update the
content. Additionally, third parties may want to provide their
content with that of a content provider. These third parties
may also have multiple Sets of Specially tailored content that
are updated periodically. The management of Such multiple
Sets of content by a content provider at the content provider
Site can become undesirably complex and may overtaX the
available bandwidth for transmission of data to and from the
content provider Site.

FIGS. 6A, 6B, 6C and 6D are simplified diagrams of a
network illustrating operation of Still another embodiment of
the invention. This embodiment of the invention provides a
System configuration that can enable updated and/or tailored
Secondary content provided by a Secondary content provider
to be transferred to a primary content display Site for use
with primary content Supplied by a primary content provider
without the problems identified above with existing such
Systems, as discussed in more detail below. This embodi
ment of the invention also can enable all of the functionality
described above for the system illustrated in FIGS. 5A, 5B
and 5C. In the embodiment of the invention shown in FIGS.
6A, 6B, 6C and 6D, a content display site 302, a primary
content provider Site 602 and an application manager Site
501 are linked to each other over a network and can
communicate with each other as described above. The
network also includes a Secondary content provider Site 601.
As shown in FIG. 6A, in this embodiment of the invention,
Secondary content can be provided from the Secondary
content provider site 601 to the application manager site 501
and stored thereat. As shown in FIG. 6B, whenever second
ary content is provided to the application manager site 501,
the application manager causes the content to both be Stored

15

25

35

40

45

50

55

60

65

24
at the application manager Site 501 and transferred to all
content provider Sites, e.g., content provider Site 602, that
provide that Secondary content with their primary content.
When a request for the primary content that includes Such
Secondary content is received by the primary content pro
vider site 602 from the content display site 302 (FIG. 6C),
the primary content provider site 602 is able to immediately
(i.e., without necessity to retrieve the content from another
network site or request that the content be provided to the
content display site from another network Site) provide both
the primary and Secondary content to the content display Site
302, as shown in FIG. 6D.
AS can be appreciated, the management of both primary

and Secondary content can become quite burdensome when
many Sets, and/or many versions of Sets, of Secondary
content and/or primary content are being provided from the
primary content provider Site. Management of continual
updates to these Sets of content data exacerbates this burden.
By storing Secondary content (and, if desired, primary
content) at the application manager site 501, the System of
FIGS. 6A, 6B, 6C and 6D relieves the primary content
provider of the burden of managing Such content. However,
because the application manager causes the content to be
stored at the content provider site 602, the content can be
provided to the content display site 302 from the content
provider Site 602, rather than the application manager Site
501, thus leaving control of bandwidth management with the
primary content provider So that the primary content pro
vider can ensure that a System that adequately addresses the
bandwidth requirements of the content provided from the
primary content provider site 602 is in place. This is an
important consideration for the primary content provider
Since requesters of content from the primary content pro
vider will hold the primary content provider responsible for
the performance characteristics (e.g., speed) associated with
the provision of that content. The system of FIGS. 6A, 6B,
6C and 6D, then, relieves the primary content provider of the
need to manage the Storage of content, while reserving
control over the provision of that content to the content
provider.

In this embodiment of the invention a user interface (e.g.,
GUI) can be provided at both the primary content provider
site 602 and the application manager site 501. The primary
content provider user interface can provide the same func
tionality as described above with respect to FIGS. 5A, 5B
and 5C. Additionally, the primary content provider user
interface can enable the content provider to Select available
Secondary content for possible inclusion with that content
provider's primary content. Such Selection can also include
Specification of terms upon which the primary content
provider wishes to include the Secondary content. Selection
of Secondary content does not automatically cause the
Secondary content to be included with the primary content
provider's content, but, rather, causes a request for Such
inclusion to be made (e.g., via the Secondary content pro
vider user interface, described below) to the Secondary
content provider. Upon acceptance by the Secondary content
provider, the Secondary content can be included with the
primary content. The Secondary content provider user inter
face can enable the Secondary content provider to Select a
primary content provider site with which to include the
Secondary content provider's content. Again, Such Selection
can be made together with Specification of the terms of Such
inclusion; the Selection causes a request for inclusion to be
made (e.g., via the primary content provider user interface)
to the primary content provider. The Secondary content user
interface can also provide functionality similar to that

NETFLIX, INC. EXHIBIT 1002

6,108,637
25

described above with respect to FIGS. 5A, 5B and 5C. As
will be readily appreciated by those skilled in the art, other
functions can also be provided in the primary content
provider and Secondary content provider user interfaces, as
desirable. The embodiment of the invention shown in FIGS.
6A, 6B, 6C and 6D facilitates interaction between the
primary content provider Site 602 and the Secondary content
provider site 601 to enable a secondary content provider to
easily and flexibly provide content to a primary content
provider in a manner that enables both the primary and
Secondary content providers to exercise control over the
provision of content.
AS described above, monitoring instructions and content

can be embodied by an applet that executes at the content
display site. In the system of FIGS. 5A, 5B and 5C or the
system of FIGS. 6A, 6B, 6C and 6D, the use of such an
applet can advantageously dovetail with an implementation
of those Systems in which the applet is transferred to the
content display Site from the application manager Site. This
is because an applet must return the monitoring information
to the network site from which the applet was transferred:
thus, the monitoring information is transferred directly to the
neutral application manager Site. Too, when the monitoring
instructions and content are transferred from the application
manager Site to the content display Site, the use of monitor
ing information to tailor the content provided to the content
display Site, as discussed above, can also be easily imple
mented.

Various embodiments of the invention have been
described. The descriptions are intended to be illustrative,
not limitative. Thus, it will be apparent to one skilled in the
art that certain modifications may be made to the invention
as described above without departing from the Scope of the
claims Set out below. For example, though the invention has
been described above as it particularly applies to monitoring
the display of content disseminated over the World Wide
Web, the invention can generally be used to monitor the
display of content disseminated over any computer network.
Additionally, though an implementation of the invention has
been described in which aspects of the Java programming
language are used, it is to be understood that invention is not
limited to Such implementation; other programming lan
guages could be used having other features and character
istics (e.g., the language need not be an object-oriented
language as is Java).

I claim:
1. A System for monitoring display of content by a

computer System, comprising:
means for monitoring the position of a content display on

a display Screen of the computer System; and
means for evaluating the position of the content display
on the display Screen to produce monitoring informa
tion regarding display of the content.

2. A System as in claim 1, further comprising means for
monitoring the position of one or more other images on the
display Screen, and wherein the means for evaluating further
comprises means for comparing the position of the content
display to the position of the one or more other images to
produce the monitoring information.

3. A System as in claim 2, wherein the means for com
paring further comprises means for determining whether the
content display is hidden by the one or more other images.

4. A System as in claim 3, wherein the means for com
paring further comprises:
means for determining the duration of each time that the

content display is hidden by the one or more images,
and

5

15

25

35

40

45

50

55

60

65

26
means for determining the duration of each time that the

content display is not hidden by the one or more
images.

5. A System as in claim 3, wherein the means for com
paring further comprises:
means for determining the total duration of time that the

content display is hidden by the one or more images,
and

means for determining the total duration of time that the
content display is not hidden by the one or more
images.

6. A System as in claim 3, wherein the means for deter
mining further comprises means for determining whether the
content display is fully hidden or partially hidden by the one
or more other images.

7. A System as in claim 6, wherein the means for com
paring further comprises:
means for determining the duration of each time that the

content display is fully hidden by the one or more
images;

means for determining the duration of each time that the
content display is partially hidden by the one or more
images; and

means for determining the duration of each time that the
content display is not hidden by the one or more
images.

8. A System as in claim 6, wherein the means for com
paring further comprises:
means for determining the total duration of time that the

content display is fully hidden by the one or more
images;

means for determining the total duration of time that the
content display is partially hidden by the one or more
images; and

means for determining the total duration of time that the
content display is not hidden by the one or more
images.

9. A System as in claim 2, wherein:
one of the other images is a pointer; and
the means for comparing further comprises means for

determining the number of times that the pointer
entered an area defined by the content display.

10. A system as in claim 1, wherein at least some of the
content being monitored comprises a graphical display.

11. A System for monitoring display of content by a
computer System, comprising:
means for monitoring the change in time of a character

istic of a content display; and
means for evaluating the change in time of the charac

teristic of the content display to produce monitoring
information regarding display of the content.

12. A System as in claim 11, further comprising means for
monitoring the change in time of a characteristic of the
computer System, and wherein the means for evaluating
further comprises means for comparing the change in time
of the characteristic of the content display to the change in
time of the characteristic of the computer System to produce
the monitoring information.

13. A System for monitoring display of content by a
computer System, wherein the content is displayed in
response to an instruction that is provided from a Source
external to the computer System and the System for
monitoring, comprising:
means for ascertaining the beginning of a display of the

content,

NETFLIX, INC. EXHIBIT 1002

6,108,637
27

means for ascertaining the end of a display of the content;
and

means for monitoring display of the content, wherein:
the means for monitoring begins operating when the

beginning of a display of the content is ascertained;
and

the means for monitoring Stops operating when the end
of a display of the content is ascertained.

14. A System as in claim 13, wherein the instruction is
provided by a user of the computer System.

15. A system as in claim 13, wherein the means for
monitoring the display of the content further comprises:
means for monitoring the position of the content display
on a display Screen of the computer System; and

means for evaluating the position of the content display
on the display Screen to produce monitoring informa
tion regarding display of the content.

16. A system as in claim 13, wherein the means for
monitoring the display of the content further comprises:
means for monitoring the change in time of a character

istic of the content display; and
means for evaluating the change in time of the charac

teristic of the content display to produce monitoring
information regarding display of the content.

17. A system as in claim 13, wherein the means for
monitoring further comprises means for determining the
duration of the display of the content.

18. A System for monitoring display at a content display
Site of content that is provided by a content provider Site
over a network to the content display Site, comprising:
means for monitoring display of the content to produce

monitoring information regarding display of the con
tent; and

means for transferring the means for monitoring from the
content provider Site to the content display Site in
response to the transfer of content from a content
provider Site.

19. A system as in claim 18, wherein the means for
monitoring is transferred to the content provider Site
together with the content.

20. A System as in claim 18, further comprising means for
transferring the monitoring information to a remote site that
is part of the network.

21. A system as in claim 20, wherein the remote site is the
content provider Site from which the content was transferred
to the content display Site.

22. A System as in claim 21, further comprising means for
transferring the monitoring information from the content
provider Site to a Second remote site.

23. A System as in claim 22, wherein the Second remote
Site is adapted to receive and Store monitoring information
from a plurality of content provider Sites.

24. A System as in claim 21, wherein monitoring infor
mation is transferred from the content display Site to the
content provider Site via a communication means that is
different from the communication means used to transfer the
content from the content provider Site to the content display
Site.

25. A system as in claim 18, wherein new content can be
transferred to the content display Site in response to Selection
of a portion of the content currently being displayed at the
content display site.

26. A System as in claim 18, wherein the monitoring
information includes information from which conclusions
may be deduced regarding the observation of the content by
an observer.

15

25

35

40

45

50

55

60

65

28
27. A system as in claim 18, wherein the means for

monitoring further comprises:
means for monitoring the position of the content display

on a display Screen at the content provider Site, and
means for evaluating the position of the content display

on the display Screen to produce monitoring informa
tion.

28. A system as in claim 18, wherein the means for
monitoring further comprises:
means for monitoring the change in time of a character

istic of the content display; and
means for evaluating the change in time of the charac

teristic of the content display to produce monitoring
information.

29. A system as in claim 18, wherein:
the content is displayed in response to an instruction that

is provided from a Source external to the network and
the System for monitoring, and

the means for monitoring further comprises:
means for ascertaining the beginning of a display of the

content; and
means for ascertaining the end of a display of the

content, wherein:
the means for monitoring begins operating when the

beginning of a display of the content is ascer
tained; and

the means for monitoring Stops operating when the
end of a display of the content is ascertained.

30. A System for monitoring display at a content display
Site of content that is provided by a content provider Site
over a network to the content display site, wherein the
network operates according to a protocol that enables new
content to be transferred to a content display Site in response
to Selection of a portion of content currently being displayed
at the content display Site, the System comprising:
means for monitoring the display of content to produce

monitoring information regarding display of the con
tent; and

means for transferring the means for monitoring from the
content provider Site to the content display Site So that
the means for monitoring operates at the content dis
play Site.

31. A system as in claim 30, wherein at least some of the
content being monitored comprises a graphical display.

32. A system as in claim 30, wherein the means for
monitoring further comprises:
means for monitoring the position of the content display

on a display Screen at the content provider Site, and
means for evaluating the position of the content display

on the display Screen to produce the monitoring infor
mation.

33. A system as in claim 30, wherein the means for
monitoring further comprises:
means for monitoring the change in time of a character

istic of the content display; and
means for evaluating the change in time of the charac

teristic of the content display to produce monitoring
information regarding display of the content.

34. A system as in claim 30, wherein:
the content is displayed in response to an instruction that

is provided from a Source external to the network and
the System for monitoring, and

the means for monitoring further comprises:
means for ascertaining the beginning of a display of the

content; and

NETFLIX, INC. EXHIBIT 1002

6,108,637
29

means for ascertaining the end of a display of the
content, wherein:
the means for monitoring begins operating when the

beginning of a display of the content is ascer
tained; and

the means for monitoring Stops operating when the
end of a display of the content is ascertained.

35. A system as in claim 30, further comprising means for
transferring the monitoring information to a remote site that
is part of the network.

36. A System for monitoring display at a content display
Site of content that is provided by a content provider Site
over a network to the content display Site, comprising:
means for monitoring display of the content to produce

monitoring information regarding display of the con
tent; and

means for transferring the monitoring information from
the content display Site to a remote site of the network
that is different from the content provider site.

37. A system as in claim 36, wherein the means for
transferring the monitoring information further comprises:
means for transferring the monitoring information from

the content display Site to the content provider Site, and
means for transferring the monitoring information from

the content provider Site to the remote site, wherein the
monitoring information cannot be Stored at the content
provider Site, or accessed or manipulated before trans
fer to the remote site.

38. A System as in claim 36, further comprising means for
Storing monitoring information at the remote site.

39. A system as in claim 38, wherein the means for storing
monitoring information at the remote site is adapted to
enable Storage of monitoring information regarding the
display of a plurality of Sets of content.

40. A system as in claim 38, wherein:
the network includes a plurality of content provider Sites,

and
the means for Storing monitoring information at the

remote Site is adapted to enable Storage of monitoring
information regarding the display of content provided
from the plurality of content provider Sites.

41. A System as in claim 38, further comprising means for
accessing the monitoring information Stored at the remote
Site from a Site on the network other than the remote site,
Such that a user at the other Site can interact with the
monitoring information, but cannot modify the monitoring
information.

42. A System for providing updated and/or tailored con
tent from a first content provider Site to a content display
Site, comprising:
means for transferring content from the first content

provider Site to a Second content provider Site,
means for recognizing the presence of updated and/or

tailored content Stored at the first content provider Site,
wherein the means for transferring content transfers the
updated and/or tailored content from the first content
provider Site to the Second content provider Site in
response to recognition of the presence of updated
and/or tailored content at the first content provider Site,
and

means for transferring content from the Second content
provider Site to the content display site when Such
content is requested by the content display Site.

43. A System as in claim 42, further comprising an
application manager System and wherein the means for
transferring content from the first content provider Site to the
Second content provider Site further comprises:

1O

15

25

35

40

45

50

55

60

65

30
means for transferring content from the first content

provider Site to the application manager System; and
means for transferring content from the application man

ager System to the Second content provider Site.
44. A System as in claim 42, wherein the means for

transferring content transferS the updated content from the
first content provider Site to the Second content provider Site
automatically upon recognition of the updated and/or tai
lored content at the first content provider Site.

45. A system as in claim 42, wherein:
there are a plurality of Second content provider Sites, and
the means for transferring content transferS the updated

and/or tailored content from the first content provider
Site to each of the plurality of Second content provider
Sites in response to recognition of the updated and/or
tailored content at the first content provider Site.

46. A System as in claim 42, wherein there are a plurality
of content provider Sites to which content can be transferred
from the first content provider Site, and further comprising
means for enabling a user at the first content provider Site to
Select one or more of the plurality of content provider Sites
to be Second content provider Sites.

47. A System as in claim 42, wherein there are a plurality
of content provider Sites from which content can be trans
ferred to the Second content provider Site, and further
comprising means for enabling a user at the Second content
provider Site to Select one or more of the plurality of content
provider Sites to be first content provider Sites, wherein only
a content provider Site So Selected can transfer content to the
Second content provider Site.

48. A computer readable medium encoded with one or
more computer programs for enabling monitoring of the
display of content by a computer System, comprising:

instructions for monitoring the position of a content
display on a display Screen of the computer System; and

instructions for evaluating the position of the content
display on the display Screen to produce monitoring
information regarding display of the content.

49. A computer readable medium as in claim 48, further
comprising instructions for monitoring the position of one or
more other images on the display Screen, and wherein the
instructions for evaluating further comprise instructions for
comparing the position of the content display to the position
of the one or more other images to produce the monitoring
information.

50. A computer readable medium as in claim 49, wherein
the instructions for comparing further comprise instructions
for determining whether the content display is hidden by the
one or more other images.

51. A computer readable medium as in claim 50, wherein
the instructions for comparing further comprise:

instructions for determining the duration of each time that
the content display is hidden by the one or more
images; and

instructions for determining the duration of each time that
the content display is not hidden by the one or more
images.

52. A computer readable medium as in claim 50, wherein
the instructions for comparing further comprise:

instructions for determining the total duration of time that
the content display is hidden by the one or more
images; and

instructions for determining the total duration of time that
the content display is not hidden by the one or more
images.

53. A computer readable medium as in claim 50, wherein
the instructions for determining further comprise instruc

NETFLIX, INC. EXHIBIT 1002

6,108,637
31

tions for determining whether the content display is fully
hidden or partially hidden by the one or more other images.

54. A computer readable medium as in claim 53, wherein
the instructions for comparing further comprise:

instructions for determining the duration of each time that
the content display is fully hidden by the one or more
images;

instructions for determining the duration of each time that
the content display is partially hidden by the one or
more images, and

instructions for determining the duration of each time that
the content display is not hidden by the one or more
images.

55. A computer readable medium as in claim 53, wherein
the instructions for comparing further comprise:

instructions for determining the total duration of time that
the content display is fully hidden by the one or more
images;

instructions for determining the total duration of time that
the content display is partially hidden by the one or
more images, and

instructions for determining the total duration of time that
the content display is not hidden by the one or more
images.

56. A computer readable medium as in claim 49, wherein:
one of the other images is a pointer; and
the instructions for comparing further comprise instruc

tions for determining the number of times that the
pointer entered an area defined by the content display.

57. A computer readable medium encoded with one or
more computer programs for enabling monitoring of the
display of content by a computer System, comprising;

instructions for monitoring the change in time of a char
acteristic of a content display; and

instructions for evaluating the change in time of the
characteristic of the content display to produce moni
toring information regarding display of the content.

58. A computer readable medium as in claim 57, further
comprising instructions for monitoring the change in time of
a characteristic of the computer System, and wherein the
instructions for evaluating further comprise instructions for
comparing the change in time of the characteristic of the
content display to the change in time of the characteristic of
the computer System to produce the monitoring information.

59. A computer readable medium encoded with one or
more computer programs for enabling monitoring of display
of content by a computer System, for use with a computer
System in which content is displayed in response to a content
display instruction that is provided from a Source external to
the computer System and not part of the monitoring com
puter program or programs, comprising:

instructions for ascertaining the beginning of a display of
content,

15

25

35

40

45

50

32
instructions for ascertaining the end of a display of the

content; and
instructions for monitoring display of the content,

wherein:
the instructions for monitoring begin executing when

the beginning of a display of the content is ascer
tained; and

the instructions for monitoring Stop executing when the
end of a display of the content is ascertained.

60. A computer readable medium as in claim 59, wherein
the content display instruction is provided by a user of the
computer System.

61. A computer readable medium as in claim 59, wherein
the instructions for monitoring the display of the content
further comprise:

instructions for monitoring the position of the content
display on a display Screen of the computer System; and

instructions for evaluating the position of the content
display on the display Screen to produce monitoring
information regarding display of the content.

62. A computer readable medium as in claim 59, wherein
the instructions for monitoring the display of the content
further comprise:

instructions for monitoring the change in time of a char
acteristic of the content display; and

instructions for evaluating the change in time of the
characteristic of the content display to produce moni
toring information regarding display of the content.

63. A computer readable medium as in claim 59, wherein
the instructions for monitoring further comprise instructions
for determining the duration of the display of the content.

64. A computer readable medium encoded with one or
more computer programs for enabling monitoring of display
of content by a computer System, comprising:

instructions for causing content to be displayed by the
computer System; and

instructions for monitoring display of content by the
computer System to produce monitoring information
regarding the display of the content, wherein the moni
toring instructions are integrated with the display
instructions Such that execution of the display instruc
tions causes execution of the monitoring instructions.

65. A computer readable medium encoded with one or
more computer programs for enabling monitoring of display
of content at a content display Site, comprising:

instructions, adapted for use at the content display Site, for
monitoring display of content at the content display Site
to produce monitoring information regarding display of
the content, and

instructions for receiving monitoring information from
the content display Site.

k k k k k

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-12

NETFLIX, INC. EXHIBIT 1002

(12) United States Patent
Graham

US007089304B2

US 7,089,304 B2
Aug. 8, 2006

(10) Patent No.:
(45) Date of Patent:

(54) METERED INTERNET USAGE

(75) Inventor: John C. Graham, Palo Alto, CA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 739 days.

(21) Appl. No.: 09/943,766

(22) Filed: Aug. 30, 2001

(65) Prior Publication Data

US 2003/00464O9 A1 Mar. 6, 2003

(51) Int. Cl.
G06F 5/73 (2006.01)
G06F 5/16 (2006.01)

(52) U.S. Cl. 709/224; 709/203; 709/223;
709/229

(58) Field of Classification Search 709/229,
709/225, 224

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5.987,424. A 11/1999 Nakamura TO5/14
6,018,619 A * 1/2000 Allard et al. TO9,224
6,055,575 A * 4/2000 Paulsen et al. 709,229
6,092,191 A * 7/2000 Shimbo et al. T13,153
6,119,227 A 9, 2000 Mao 713,171
6,170,075 B1* 1/2001 Schuster et al. 714,776
6,275,471 B1* 8/2001 Bushmitch et al. 370,248
6,289.451 B1 9/2001 Dice T13,168
6,615.258 B1* 9/2003 Barry et al. 709,223
6,651,099 B1 * 1 1/2003 Dietz et al. TO9,224
6,778,509 B1* 8/2004 Ravishankar et al. 370,322

OTHER PUBLICATIONS

Nakamura, M.; Sato, M.; Hamada, T.: A Pricing and
Accounting Software Architecture for QOS Guaranteed Ser

512

58

524

528

53

536

544

548

564

STORE TO NON.YOLITILESTORAGE

SEO STORED NETERNG PACKETS

vices on a Multidomain Network, Electronics and Commu
nications in Japan, Part 1 (Communications), Vol. 84, No.
3, pp. 38-47.
Rizzo, M.; Briscoe, B.; Tassel, J.; Damianakis, K. A
Dynamic Pricing Framework to Support a Scalable. Usage
Based Charging Model for Packet-Switched Networks,
Active Networks, First International Working Conference,
IWAN '99 Proceedings, pp. 48-59.
Anand, S.S.; Kasturi, K., Sriram, G.; Accounting Architec
ture for Cellular Networks, 1996 IEEE International Con
ference on Personal Wireless Communications Proceedings
and Exhibition—Future Access(Cat. No. 96TH8165), pp.
184-189.

(Continued)
Primary Examiner Zarni Maung
Assistant Examiner Kamal Divecha
(74) Attorney, Agent, or Firm Workman Nydegger

(57) ABSTRACT

Methods, systems and computer program products for track
ing a clients usage of one or more services provided by one
or more servers. A client generates and sends one or more
metering packets to a census service. Each metering packet
includes a time element indicating the clients usage of the
one or more services. The time element may include a
charged time portion and a free time portion. An authenti
cation element may be included with each metering packet
so that the census service can determine whether or not a
given metering packet is genuine. A login service commu
nicates to the client whether or not usage should be tracked
and indicates a time interval to expire between Subsequent
metering packets. A session identifier in each metering
packet allows multiple sessions to be tracked simulta
neously. Upon receiving metering packets, the census Ser
Vice discards redundant metering packets and updates a
usage database accordingly.

40 Claims, 6 Drawing Sheets

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
Page 2

OTHER PUBLICATIONS Estrin, D., Zhang, L., Design Considerations for Usage
Accounting and Feedback in Internetworks, Integrated Net
work Management, II. Proceedings of the IFIPTC6/WG6.6

Kumar, B. Effect of Packet Losses on End-User Cost in Second International Symposium, pp. 719-733.
Internetworks With Usage Based Charging, Computer Com
munication Review, vol. 23, No. 2, pp. 9-15. * cited by examiner

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2 Sheet 1 of 6 Aug. 8, 2006 U.S. Patent

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2 Sheet 2 of 6 Aug. 8, 2006 U.S. Patent

??

S/SN30

n-/

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2

[$3]\{ }}} NOIWOIINGHIMW IBX0wd

Sheet 3 of 6 Aug. 8, 2006 U.S. Patent

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 4 of 6 US 7,089,304 B2

'N RECEIVE LOGIN REQUEST

722-N RETRIEVE INDICATORERO I CONFIGURATION DATABASE ENABLE
USAGE
720 724-N RETRIEVE INDICATOR FROM

DATABASE OF CIENTS

It cotti
SEND HEADERS TO CLIENT TRACKING

PARAMETERS

: 742 DENTIFY
RECEIVE SESSION DENTIFIERI SESON

"Y RECEIVE SESSION KEY"; -

"NRECEIVE METERING PACKETs "...

FG 4A

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet S of 6 US 7,089,304 B2

use is is re. is a

''NHASHMETERING PACKETs
AUTHENTICATE

770
774 COMPARE PACKET m

AUTHENTCATION ELEMENTS

SEARCH CACHE DSCARD
REDUNDANT

780

'NCEDUNDANDYE
NO 788

i 786 - ADD METERING IGNORE METERING
PACKET TO CACHE PACKET

Nupo's uses Databass "A GE
are

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Aug. 8, 2006 Sheet 6 of 6 US 7,089,304 B2

52

56

524

528

532 GENERATE METERING PACKETS

'N HASH METERING PACKETs

544 STORE AUTHENTICATION ELEMENT

548 SEND METERING PACKETS
(REDUNDANT)

'N STORE TO NON-vOLITILESTORAGE

NSEND STORED METERING PACKETs

FIG 5

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
1.

METERED INTERNET USAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

NAA

BACKGROUND OF THE INVENTION

1. The Field of the Invention
The present invention relates to the usage of computer

services. More specifically, the present invention relates to
methods, systems and computer program products for track
ing a clients usage of one or more services provided by one
O. O. SWS.

2. Background and Related Art
With the exception of certain educational institutions and

governmental entities, most access to the Internet is indirect.
That is, rather than being directly connected to the Internet,
most access the Internet through some intermediary, known
as an Internet Service Provider or ISP. An ISP may provide
various levels of service depending on the particular needs
of its customers. For example, individual customers may
access the Internet through a dialup telephone line, a broad
band cable, or perhaps a broadband wireless connection.
Many individual customers typically share an ISP's connec
tion resources, at least to Some extent. In contrast, business
users often prefer a dedicated ISP connection with a fairly
constant bandwidth.
An ISP may provide various “points of presence” for

connecting to the Internet. Depending on the ISP, these
points of presence may include local telephone numbers, toll
or toll free telephone access numbers, cable systems, micro
wave stations, etc. Cable systems and microwave systems
are local by nature, but it is generally a significant advantage
for an ISP to offer local telephone access to keep costs as low
as possible, both for the ISP and its customers.

Although the number of computers with Internet access
has grown tremendously, competition among ISPs can be
quite fierce. As a result, ISPs often employ various service
plans with aggressive pricing strategies to attract consumers,
including businesses and individuals alike. Most service
plans fall into one of two broad categories: (i) unlimited
access for a fixed fee, and (ii) a certain number of hours for
a fixed fee, with additional hours being billed as used. In
either case, an ISP server is traditionally responsible for
tracking a clients usage, if necessary.

However, traditional tracking suffers from at least two
significant problems. First, tracking each client connected to
an ISP may impose a considerable processing burden on a
server. This burden may be especially pronounced where an
ISP has offered only unlimited access for a fixed fee, but
would like to begin providing a reduced service level that
requires usage tracking. In Such a case, tracking may require
upgrading to more powerful servers in order to avoid an
overall performance reduction. Given the rather competitive
nature of the ISP market, much of the benefit gained in
offering a variety of service levels may be substantially
offset by the corresponding increased costs and/or dimin
ished capacity.
The second problem is at least somewhat related to the

first. In some circumstances, it may be desirable to distin
guish between various types of access. More particularly, an
ISP may wish to charge for access to one type of service,
whereas access to another type of service may be without
charge. Tracking this level of detail at the ISP as compared
to simply tracking raw connection time, imposes yet further

10

15

25

30

35

40

45

50

55

60

65

2
performance loads on the ISPs computing resources. Here
again, the tradeoffs, in terms of benefits versus associated
costs, may be undesirable or even prohibitive.

In contrast to an ISP's computer resources, a clients
computing resources may be comparatively underutilized.
Furthermore, the overhead associated with having an indi
vidual client track its own usage of services is likely to
represent a much less significant performance problem for
the client. Whereas server-based tracking concerns the usage
of each and every connected client, client-based tracking
concerns the usage of an individual client, or perhaps a
cluster of clients. As such, client-based tracking allows a
substantial portion of the processing load to be borne by the
client. While some type of centralized server tracking com
ponent may be useful in receiving and correlating usage
information from individual clients, the server computer
resources for implementing client-based tracking are likely
to be significantly less than would be required in a compa
rable, Substantially server-based, tracking implementation.
Therefore, methods, systems and computer program prod
ucts for tracking a clients usage of server services are
desired.

BRIEF SUMMARY OF THE INVENTION

The present invention uses one or more client-generated
metering packets to track a client's usage of one or more
services provided by one or more servers. Metering packets
may be generated by a client and sent to and received by a
server over regular periodic intervals. Each metering packet
includes a time element that indicates the clients usage of
the provided services. The time element may include a
charged time portion for access to services that incurs an
access charge and a free time portion for access to services
that does not incur an access charge. Metering packets also
may include other elements, such as a packet type element,
a sequence number element, a session identifier element, a
packet authentication element, etc. Among other things, a
packet type element may be used to indicate whether a
packet is for an active session currently in progress or for a
session that is ending.
When a communication protocol that does not guarantee

delivery is used, sending redundant metering packets
increases the likelihood that the information contained
within any particular metering packet is received, even if
one or more packets are lost. However, if packet delivery is
Successful, sending more than one metering packet with the
same information may be redundant. A sequence number
element may help identify any redundant metering packets
that are received. Then, redundant metering packets may be
discarded rather than processed to conserve computing
resources. For example, a usage database may be updated to
reflect the tracking information contained within a metering
packet. Prior to updating the usage database, a cache of
previously received metering packets may be searched, and
if a metering packet with the same sequence number is found
in the cache, a newly received metering packet can be
identified as redundant and ignored. Otherwise, the usage
database is updated with the tracking information in the
newly received metering packet and the newly received
metering packet is added to the cache. The sequence number
element also may help determine if some metering packets
have not been received.
Where multiple sessions are tracked, a session identifier

element may be used to link a particular metering packet
with a particular session. An authentication element may be
used to assure that any given metering packet is genuine. For

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
3

example, a session key may be associated with a specific
session. Some of the tracking information within a metering
packet and the session key may be hashed to generate an
authentication element that is included within the metering
packet. When the metering packet is received, the same
tracking information and session key are hashed at the
receiving end. Comparing the authentication element gen
erated at the receiving end with the authentication element
included within the metering packet determines whether or
not the metering packet is genuine.
Upon receiving a login request from a client, a login

service may check configuration data to determine if the
client should track usage. The configuration data may
include an indicator from a configuration database that
indicates whether or not usage should be tracked for all
clients who login and an indicator from a database of clients
that indicates whether or not usage should be tracked for a
particular client. Configuration data may be extended to
indicate whether or not usage should be tracked for a
particular session. If the configuration data dictates that
usage should be tracked, the login service communicates to
the client that the client should track its usage of the one or
more services provided by one or more servers. For
example, the login service may send one or more headers to
the client to indicate that the client should track usage and
communicate various usage tracking parameters.

While tracking usage, a client may terminate access to the
services provided by the servers in any of a variety of ways,
including hanging up, timing out, powering off, changing
users, and logging off. In many circumstances, the client is
able to send session-ending metering packets to indicate that
a particular session is terminated. For example, when timing
out, changing users or logging off, the client usually con
tinues to operate and can send the appropriate session
ending packets without incident. However, in other circum
stances, such as hanging up or powering off, the client may
discontinue operation and be unable to send one or more
session-end packets. Furthermore, metering packets may be
sent over an unreliable transport protocol that does not
guarantee delivery. Regardless of the motivation, the client
may store metering information in non-volatile memory and
then send the stored metering information in a Subsequent
session. This helps assure that usage tracking remains accu
rate even when there is some uncertainty as to whether or not
a particular metering packet is received.

Additional features and advantages of the invention will
be set forth in the description which follows, and in part will
be obvious from the description, or may be learned by the
practice of the invention. The features and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed out in the
appended claims. These and other features of the present
invention will become more fully apparent from the follow
ing description and appended claims, or may be learned by
the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered as limiting its scope, the invention

10

15

25

30

35

40

45

50

55

60

65

4
will be described and explained with additional specificity
and detail through the use of the accompanying drawings in
which:

FIG. 1 illustrates an exemplary system that provides a
Suitable operating environment for the present invention;

FIG. 2 illustrates an exemplary system according to the
present invention;

FIG.3 is a block diagram showing the data structure of an
exemplary metering packet according to the present inven
tion;

FIGS. 4A and 4B are flow diagrams, from the perspective
of a server, describing various acts and steps for methods
according to the present invention; and

FIG. 5 is a flow diagram, from the perspective of a client,
describing various acts of methods according to the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention extends to methods, systems, and
computer program products for tracking a client's usage of
one or more services provided by one or more servers. By
employing one or more client-generated metering packets to
track the clients usage of the one or more services, the
present invention avoids the otherwise Substantial process
ing burden imposed by Substantially server-based
approaches. The client-generated metering packets also pro
vide increased flexibility and enhanced accuracy, in terms of
what usage incurs an access charge, how various types of
session terminations are handled, and in determining when
a session actually ends. The embodiments of the present
invention may comprise a special-purpose or general-pur
pose computer including various computer hardware, as
discussed in greater detail below.

Embodiments within the scope of the present invention
also include computer-readable media for carrying or having
computer-executable instructions or data structures stored
thereon. Computer-executable instructions comprise, for
example, instructions and data which cause a general-pur
pose computer, special-purpose computer, or special-pur
pose processing device to perform a certain function or
group of functions. Such computer-readable media can be
any available media that can be accessed by a general
purpose or special-purpose computer. By way of example,
and not limitation, Such computer-readable media may com
prise RAM, ROM, EEPROM, CD-ROM or other optical
disc storage, magnetic disk storage or other magnetic Stor
age devices, or any other medium which can be used to carry
or store desired program code means in the form of com
puter-executable instructions or data structures and which
can be accessed by a general-purpose or special-purpose
computer. When information is transferred or provided over
a network or another communications connection (either
hardwired, wireless, or a combination of hardwired or
wireless) to a computer, the computer properly views the
connection as a computer-readable medium. Thus, any Such
connection is properly termed a computer-readable medium.
Combinations of the above should also be included within
the scope of computer-readable media.

FIG. 1 and the following discussion are intended to
provide a brief, general description of a Suitable computing
environment in which the invention may be implemented.
Although not required, the invention will be described in the
general context of computer-executable instructions, such as
program modules, being executed by computers in network
environments. Generally, program modules include rou

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
5

tines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Computer-executable instructions, associated
data structures, and program modules represent examples of
the program code means for executing steps of the methods
disclosed herein. The particular sequence of such executable
instructions or associated data structures represents
examples of corresponding acts for implementing the func
tions described in Such steps.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including
personal computers, hand-held devices, multi-processor sys
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com
puters, and the like. The invention also may be practiced in
distributed computing environments where tasks are per
formed by local and remote processing devices that are
linked (either by hardwired links, wireless links, or by a
combination of hardwired or wireless links) through a
communications network. In a distributed computing envi
ronment, program modules may be located in both local and
remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple
menting the invention may include client 110, proxy 130,
and servers 140. Each of client 110, proxy 130, and servers
140 may be implemented as a general- or special-purpose
computing device. Such a computing device may include a
processing unit, system memory, and a system bus that
couples various system components to the processing unit.
A processing unit in combination with program code means
is one example of a processor means. System memory may
include read only memory (ROM), random access memory
(RAM), non-volatile RAM, and/or any other type of
memory.
The computing devices also may include a magnetic hard

disk drive, a disk drive for reading from or writing to a
removable media, Such as magnetic disks, optical discs, or
other magnetic/optical media. The drives are connected to
the system bus by one or more drive interfaces. Drives
and/or interfaces for other types of computer readable media
for storing data also may be present, including magnetic
cassettes, flash memory cards, digital versatile disks, Ber
noulli cartridges, RAMs, ROMs, and the like. The drives,
their associated computer-readable media, and certain types
of memory may provide non-volatile storage of computer
executable instructions, data structures, program modules
and other data for the computing devices. Program code
means comprising one or more program modules may be
stored at each of the computer devices, including an oper
ating system, one or more application programs, one or more
services, other program modules, and program data.

Client 110, proxy 130, and servers 140 operate in a
networked environment using network connections 120a
and 120b to communicate with each other. The network
connections 120a and 120b depicted in FIG.1 may comprise
a local area network and/or a wide area network (WAN).
Such networking environments are commonplace in office
wide or enterprise-wide computer networks, intranets and
the Internet. In a LAN networking environment, network
connections 120a and 120 may include a network interface
or adapter, a modem, a wireless link, or other means for
establishing communications over a network, Such as the
Internet. Network connections 120a and 120b are examples
of communication means. It will be appreciated that the
network connections shown are exemplary and other means
for communicating over a network may be used.

5

10

15

25

30

35

40

45

50

55

60

65

6
In general, client 110 accesses one or more of the services

142a-142n provided by server 142, services 144a–144n
provided by server 144, and services 146a–146n provided
by server 146 through network connections 120a and 120b
and proxy 130. It should be noted that the terms client,
proxy, and server are not mutually exclusive and should be
interpreted broadly. A client consumes resources, a server
provides resources, and a proxy operates on behalf of either
a client or a server. In many circumstances the designations
of client, proxy, and server apply for a particular time and
then change. For example, a client at one time may be a
proxy or a server at another, and so on. It should also be
noted that each of the servers 140 may be a cluster of
servers, and that each individual server may provide one or
more services or a particular service may be implemented
across one or more servers. The present invention does not
require any particular configuration.

Turning next to FIG. 2, tracking client’s 210 usage of one
or more services provided by proxy service 230 will be
described in greater detail. Communication between client
210 and proxy service 230, within proxy service 230 over
network connections 236, and between proxy service 230
and either web 240 or census service 232d, follows a
request/response protocol. The HyperText Transfer Protocol
(“HTTP) is one type of well-known request/response pro
tocol. Communication between client 210 and census ser
Vice 232d may use some other communication protocol,
such as User Datagram Protocol (“UDP). However, the
present invention is in no way limited to the use of any
particular communication protocol or any particular network
topology.

Proxy service 230 includes a login service 232a. In one
embodiment, login service 232a is a Unix daemon. Logging
in to proxy service 230 is accomplished in two stages.
During the first stage, a secure session is established
between client 210 and proxy service 230 so that sensitive
information may be exchanged. After the first login stage,
the login service 232a checks a configuration database (not
shown) to determine if usage tracking is enabled for clients
attempting to login. The login service 232a also checks a
client database 234a to determine if usage tracking is
enabled for a particular client, such as client 210. For certain
types of access, usage tracking may not be enabled.

If usage tracking is enabled, the login service 232a creates
a unique session identifier for the new session with client
210. Those of skill in the art will recognize that the present
invention may be particularly useful in environments where
sessions are relatively short. For example, mobile devices,
Such as personal digital assistants and cellular telephones,
which tend to have short sessions (due to airtime expenses
and/or other factors), may be more likely to benefit from the
present invention, than other devices, such as personal
computers where sessions may be several hours or days.
Nevertheless, the present invention is not necessarily limited
to any particular session duration or environment.
A session key is negotiated between the login service and

the client to enable secure communication between client
and login service. As described in greater detail below, the
login service sends a hash of the session key to a census
service for use in authenticating metering packets. Hashing
the session key provides an extra measure of security
because the session key is not communicated to other
systems—only the client and the login service know the
key's value. As used in this application, the term "session
key' should be interpreted broadly to encompass any value
Suitable for authentication. In one embodiment, the session
key is hashed using a Message Digest 5 (“MD5”) hash. The

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
7

login service 232a also sends one or more headers to the
client. The one or more headers include usage tracking
parameters, such as an indication that the client should track
usage, the unique session identifier, a metering interval
indicating how frequently the client should send metering
packets, etc. The configuration database may be used to
configure the metering interval. In one embodiment, the
metering interval is expressed as a number of seconds.

There are two types of metering packets: a session-in
progress metering packet and a session-ending metering
packet. The session-in-progress indicates that a session
continues to be active, whereas a session-ending packet
indicates that a session has terminated. It should be noted
that the present invention is not necessarily limited to any
particular type of metering packets. When the time interval
expires or when a session ends, client 210 sends one or more
metering packets over network connection 220a. Redundant
metering packets may be sent to increase the probability that
they are received if an unreliable communication protocol is
used. In one embodiment, three metering packets are sent
using UDP. Each metering packet includes a sequence
number so that redundant metering packets may be dis
carded.

Login service 232a sends the unique session identifier and
the MD5 hash of the session key to census service 232d over
network connections 236. Census service 232d receives the
metering packets from client 210 over network connection
220c and uses the session identifier to track the clients
usage of the services provided by proxy service 230, such as
email service 232b, web service 232c, and other services
232n. As metering packets are received, the census service
checks a cache of received metering packets so that redun
dant packets are not reflected in usage database 234d. Usage
database 234d is one example of usage means for tracking
at least one clients usage of one or more services. The size
of the cache is configurable. In one embodiment, the census
service is implemented as a Unix daemon.
The census service 232d is relatively simple. It does not

maintain any state information for any client connections.
Furthermore, policy decisions regarding valid sessions and
billing are made in post-processing the usage database 234d.
However, if a session-in-progress metering packet is
received for an unknown session, an error is generated.
Redundant metering packets are discarded to avoid unnec
essary updates to usage database 234d. The census service
232d employs a master-children architecture. A master pro
cess accepts all requests from the login service and pro
cesses them upon receipt. The master process also accepts
the metering packets from client 210 and dispatches them to
the children for processing. The number of children is
configurable and therefore enhances scalability.

Note that proxy service 230 also provides access to the
web 240 (e.g., the World Wide Web) over network connec
tion 220b. This access may be through web service 232c or
may be directly between client 210 and web 240. For
example, in one embodiment, secure connections between
client 210 and web 240 bypass proxy service 230. Note that
in these circumstances, it would not be practical for server
based usage tracking to monitor client’s 210 secure access to
web 240.

Hanging up, timing out, powering off, changing users, and
logging off trigger client 210 to send one or more end-of
session metering packets. Because the session terminates,
client 210 also stores the end-of-session metering packet in
non-volatile storage 212. When power is restored, client 210
reconnects, or another user logs in, client 210 restores the
prior session data (including the end-of-session metering

10

15

25

30

35

40

45

50

55

60

65

8
packet) from non-volatile storage 212 and sends the prior
session data to the login service 232a. Upon receiving the
prior session data, login service 232a sends the session
identifier for the new session and the prior session data to
reinforce the end-of-session metering packets that were sent
previously, but were not guaranteed to arrive. As noted
earlier, in one embodiment metering packets are sent using
UDP and even if sent, may not be delivered.

Census service 232d also may authenticate metering
packets to determine whether or not each packet is genuine.
Authentication may be accomplished by hashing at least a
portion of each packet and the session key, and sending the
hash value with the packet. For example, the client first
hashes the session key so that the client and the census
service 232d each have the same hash of the session key.
(Recall that census service 232d received a hash of session
key along with the session identifier from login service
232a.) The client then hashes the metering information in a
metering packet and the hash of the session key to produce
the hash value that can be used by the census service 232d
to authenticate the metering packet. Upon receipt, the census
service 232d performs a similar hash and compares the
results with the hash value sent with the packet. If the two
hash values do not match, the packet is not genuine. In one
embodiment, the well-known MD5 algorithm, with a basic
key known only to the client 210 and login service 232a, is
used to generate the hash value. However, the present
invention is not limited to any particular hashing algorithm
or authentication scheme.

It should be noted that a hacker looking at metering
packets would not be able to deduce much. First, even if all
metering information is transmitted as cleartext, the hacker
will not be able to associate a particular session identifier
with a specific client. Furthermore, without the session key,
the hacker will not be able to generate a correct hash value
for altered or created metering packets. As a result, the
metering packets and census service are not Susceptible to a
man-in-the-middle-attack.

FIG.3 is a block diagram showing the data structure of an
exemplary metering packet 300 according to the present
invention. The metering packet is 58 bytes long and includes
a packet type element 310, a sequence number element 320,
a time element that includes a charged time portion 330 and
a free time portion 340, a session identifier element 350, and
a packet authentication element 360. Note that the packet
type element 310 and sequence number element 320 are two
bytes each, the change time portion 330 and free time
portion 340 are four bytes each, the session identifier ele
ment 350 is 30 bytes, and the packet authentication element
360 is 16 bytes. Of course, the present invention is not
necessarily limited to any particular metering packet size,
content, or layout.

It should be noted that the charge time portion 330 and the
free time portion 340 offer significant flexibility in billing
client 210. It may be desirable for proxy service 230 to
provide Some access to one or more services without charge.
Tracking this level of detail in a substantially server-based
implementation may impose a significant processing burden
on a server and thereby erode much of the benefit provided
by offering free time. Those of skill in the art will recognize
that a free time portion may not be needed if only the amount
of time to charge is of interest. For example, in some
embodiments it may be desirable to track how much free
time one or more client use, whereas in another embodi
ment, only the amount of time to charge is relevant.

It also should be noted here, that the client tracks its own
usage. In particular, the client determines what access falls

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
9

within charge time portion 330 and what access falls within
free time portion 340. In one embodiment, any access
initiated automatically by the client, without user interven
tion, is accounted for in free time portion 340. For example,
the client may initiate an automated download to receive a
software update or other information. Nevertheless, the
present invention is not necessarily limited to the use of any
particular criteria in determining which access should be
accounted for in the charge time portion 330 and which
access should be accounted for in the free time portion 340.
The present invention also may be described in terms of

methods comprising functional steps and/or non-functional
acts. The following is a description of acts and steps that
may be performed in practicing the present invention. Usu
ally, functional steps describe the invention in terms of
results that are accomplished, whereas non-functional acts
describe more specific actions for achieving a particular
result. Although the functional steps and non-functional acts
may be described or claimed in a particular order, the present
invention is not necessarily limited to any particular order
ing or combination of the acts and/or steps.

FIGS. 4A and 4B are flow diagrams, from the perspective
of a server, describing various acts and steps for methods
according to the present invention. The present invention
may include an act of receiving (702) a login request from
a client. A step for enabling (720) usage tracking may
include an act of retrieving (722) an indicator from a
configuration database indicating that usage should be
tracked for all clients attempting to login and an act of
retrieving (724) an indicator from a database of clients
indicating that usage should be tracked for a particular
client. An act of sending (732) one or more headers to a
client may achieve the result of communicating (730) one or
more usage tracking parameters to the client, including at
least one of (i) an indication that the client should track
usage, (ii) a unique session identifier, and (iii) a metering
interval indicating how frequently the client should send
metering packets.
An act of receiving a session identifier (742) may achieve

the result of identifying (740) one or more sessions through
which a client accesses one or more services provided by
one or more servers. A step for authenticating (750 and 770)
may include acts of receiving (752) a session key associated
with one or more sessions; an act of hashing (772) at least
a portion of each metering packet and the corresponding
session key to generate an authentication element; and, an
act of comparing (774) the generated authentication element
with a packet authentication element included with each
metering packet to determine whether or not each packet is
genuine.
As noted above, in one embodiment a census service

receives the session identifier and a hash of the session key
from a login service at about the same time that one or more
headers are sent to a client. Although not shown, the present
invention also may include an act of receiving metering
packets that correspond to a previously terminated session.
As described with respect to FIG. 5, a client may store
metering information from one session in non-volatile
memory and send the stored metering information in a
Subsequent session. In one embodiment, the client sends the
stored metering information to the login service and the
login service forwards the stored metering information to the
census service. Among other things, this allows the census
service to accept the metering information without indepen
dently authenticating it. As a result, it is not necessary for the
census service to maintain session identifiers and session
keys indefinitely.
A step for monitoring (760) one or more metering packets

may be accomplished by an act of receiving (762) one or

5

10

15

25

30

35

40

45

50

55

60

65

10
more metering packets from a client, wherein each of the
one or more metering packets includes a time element
indicating the clients usage of the one or more services. A
step for discarding (780) one or more redundant metering
packets may include an act of prior to updating a usage
database, searching (782) a cache of at least one received
metering packet; an act of, if a copy of a particular metering
packet is found in the cache, identifying (“yes” branch of
784) the particular metering packet as redundant and not
updating the usage database based on the particular metering
packet or in other words ignoring (788) the particular
metering packet; and, an act of, if a copy of the particular
metering packet is not found in the cache (“no branch of
784), adding (786) the particular metering packet to the
cache. A step for tracking (790) a client’s usage of one or
more services may be achieved by an act of updating (798)
a usage database based on one or more metering packets.

FIG. 5 is a flow diagram, from the perspective of a client,
describing various acts of methods according to the present
invention. The present invention may include an act of
sending (512) a login request to a login service; an act of
receiving (516) one or more headers from the login service
including at least one of (i) an indication that a client should
track usage of one or more services provided by one or more
servers, (ii) a unique session identifier, and (iii) a metering
interval indicating how frequently the client should send
metering packets; an act of receiving (524) a session key
associated with the one or more sessions (whether received
in a header or in Some other way); an act of accessing (528),
through the one or more sessions created in response to the
login request, at least one of the one or more services
provided by the one or more servers; and, generating (532)
one or more metering packets, wherein each of the one or
more metering packets includes a time element indicating
the clients usage of the one or more services.
The present invention also may include an act of hashing

(536) at least a portion of each metering packet to generate
an authentication element; an act of storing (544) each
authentication element in the corresponding metering
packet; an act of sending (548) the one or more metering
packets (possibly redundant) to a census service; an act of
storing (556) metering information in non-volatile memory;
and, an act of sending (564) the stored metering information
to the census service in a Subsequent session.
The present invention may be embodied in other specific

forms without departing from its spirit or essential charac
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.
What is claimed is:
1. In a computer network that comprises one or more

servers providing one or more services to at least one client,
and wherein the at least one client accesses the one or more
services through the one or more servers during a plurality
of sessions created in response to a login request from the at
least one client, with at least some of the plurality of sessions
occurring simultaneously, and wherein access to the one or
more services during a particular session includes at least
one of a charged time portion and a free time portion, a
method of tracking the at least one client usage of the one or
more services during each session the method comprising
acts of

receiving at one of the one or more servers one or more
metering packets from the at least one client, each of
the one or more metering packets being generated at the
at least one client and each metering packet being used

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
11

at the at least one client to store data for tracking usage
of one or more services during each session, and each
metering packet comprising a data structure for storing
the following data:
a session identifier element that links a particular

metering packet with a particular session;
a time element indicating the at least one client usage

of the one or more services, the time element com
prising a charged time portion and a free time
portion, wherein the charged time portion corre
sponds to access to one or more services that incurs
an access charge, and wherein the free time portion
corresponding to access to one or more services that
does not incur an access charge; and

a sequence number element; and the one or more
servers updating a usage database based on the
received one or more metering packets by

using the sequence number element to determine
whether each received metering packet is redundant
of any prior metering packet already stored in the
usage database, and if so, discarding it, and if not,
then

storing each received metering packet that is not redun
dant in the usage database in order to store the data
contained in each received metering packet that is
not redundant, and from which it can be determined
from the time element whether the at least client
usage of the one or more services during the par
ticular session for that received metering packet is a
charged time portion or a free time portion.

2. A method as recited in claim 1, wherein a plurality of
metering packets are received over regular, periodic inter
vals.

3. A method as recited in claim 1, wherein each of the one
or more metering packets is one of a session-ending meter
ing packet and a session-in-progress metering packet.

4. A method as recited in claim 1, further comprising acts
of:

receiving a session key associated with the one or more
sessions;

hashing at least a portion of each metering packet and the
corresponding session key to generate an authentica
tion element; and

comparing the generated authentication element with a
packet authentication element included with each
metering packet to determine whether or not each
packet is genuine.

5. A method as recited in claim 4, wherein a login service
receives the login request from and negotiates a given
session key with the at least one client, and wherein a census
service receives the one or more metering packets, the
method further comprising an act of the login service
sending a hash of the given session key and a session
identifier to the census service, such that the received session
key is the hash of the given session key.

6. A method as recited in claim 5, further comprising:
retrieving an indicator from a configuration database

indicating that usage should be tracked for all clients
attempting to login.

7. A method as recited in claim 1, wherein a plurality of
metering packets are received and wherein one or more of
the plurality of received metering packets are redundant, the
method further comprising acts of

prior to updating the usage database, searching a cache of
at least one received metering packet;

if a copy of a particular metering packet is found in the
cache, identifying the particular metering packet as

5

10

15

25

30

35

40

45

50

55

60

65

12
redundant and not updating the usage database based
on the particular metering packet; and

if a copy of the particular metering packet is not found in
the cache, adding the particular metering packet to the
cache and updating the usage database based on the
particular metering packet.

8. A method as recited in claim 7, wherein each metering
packet comprises a session identifier element and a sequence
number element, and wherein finding the particular metering
packet in the cache is based on comparing the session
identifier element and the sequence number element that are
included with each metering packet.

9. A method as recited in claim 1, wherein each metering
packet further comprises (i) a packet type element, (ii) a
sequence number element, (iii) a session identifier element,
and (iv) a packet authentication element.

10. A method as recited in claim 1, further comprising an
act of sending one or more headers to the at least one client,
wherein the one or more headers include at least one of (i)
an indication that the at least one client should track usage
of the one or more services provided by the one or more
servers, (ii) a unique session identifier, and (iii) a metering
interval indicating how frequently the at least one client
should send metering packets.

11. In a computer network that comprises one or more
servers providing one or more services to at least one client,
and wherein the at least one client accesses the one or more
services through the one or more servers during a plurality
of sessions created in response to a login request from the at
least one client, with at least some of the plurality of sessions
occurring simultaneously, and wherein access to the one or
more services during a particular session includes at least
one of a charged time portion and a free time portion, a
method of tracking the at least one client usage of the one or
more services during each session, the method comprising
acts of

in response to a login request received at one server of the
one or more servers from the at least one client, a step
for communicating from said one server to the at least
one client usage tracking parameters;

thereafter a step for one or more metering packets being
generated at the at least one client,

each metering packet being used at the at least one client
to store data for tracking usage of one or more services
during each session, and each metering packet com
prising a data structure for storing the following data:
a session identifier element that links a particular

metering packet with a particular session; and
a time element indicating the at least one client usage

of the one or more services, the time element com
prising a charged time portion and a free time
portion, wherein the charged time portion corre
sponds to access to one or more services that incurs
an access charge, and wherein the free time portion
corresponding to access to one or more services that
does not incur an access charge;

said one server performing a step for identifying one or
more sessions through which the at least one client has
accessed the one or more services;

the one server performing a step for monitoring metering
packets that are received from the at least one client;
and

the one server performing a step for tracking the at least
one client usage of the one or more services during each
session based on the received one or more metering
packets in order to store data from which it can be
determined whether the at least one client usage of the

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
13

one or more services during each session is a charged
time portion or a free time portion.

12. A method as recited in claim 11, wherein a plurality of
metering packets includes both a session-ending metering
packet and a session-in-progress metering packet.

13. A method as recited in claim 11, further comprising a
step for authenticating the one or more metering packets.

14. A method as recited in claim 11, further comprising a
step for enabling usage tracking in at least one of a con
figuration database and a database of clients.

15. A method as recited in claim 11, wherein a plurality of
received metering packets are redundant, the method further
comprising a step for discarding the one or more of the
plurality of received metering packets that are redundant.

16. A method as recited in claim 11, wherein each
metering packet further comprises (i) a packet type element,
(ii) a sequence number element, (iii) a session identifier
element, and (iv) a packet authentication element.

17. A method as recited in claim 11, further comprising a
step for communicating one or more usage tracking param
eters to the at least one client, wherein the one or more usage
tracking parameters include at least one of (i) an indication
that the at least one client should track usage of the one or
more services provided by the one or more servers, (ii) a
unique session identifier, and (iii) a metering interval indi
cating how frequently the at least one client should send
metering packets.

18. A computer program product for implementing, in a
computer network that comprises one or more servers pro
viding one or more services to at least one client, and
wherein the at least one client accesses the one or more
services through the one or more servers during a plurality
of sessions created in response to a login request from the at
least one client, with at least some of the plurality of sessions
occurring simultaneously, and wherein access to the one or
more services during a particular session includes at least
one of a charged time portion and a free time portion, a
method of tracking the at least one client usage of the one or
more services during each session, the computer program
product comprising a computer readable medium for carry
ing machine-executable instructions that implement the
method, and the method comprising:

in response to a login request received at one server of the
one or more servers from the at least one client, a step
for communicating from said one server to the at least
one client usage tracking parameters;

thereafter a step for one or more metering packets being
generated at the at least one client,

each metering packet being used at the at least one client
to store data for tracking usage of one or more services
during each session, and each metering packet com
prising a data structure for storing the following data:
a session identifier element that links a particular

metering packet with a particular session; and
a time element indicating the at least one client usage

of the one or more services, the time element com
prising a charged time portion and a free time
portion, wherein the charged time portion corre
sponds to access to one or more services that incurs
an access charge, and wherein the free time portion
corresponding to access to one or more services that
does not incur an access charge;

said one server performing a step for identifying one or
more sessions through which the at least one client has
accessed the one or more services;

5

10

15

25

30

35

40

45

50

55

60

65

14
the one server performing a step for monitoring metering

packets that are received from the at least one client;
and

the one server performing a step for tracking the at least
one client usage of the one or more services during each
session based on the received one or more metering
packets in order to store data from which it can be
determined whether the at least one client usage of the
one or more services during each session is a charged
time portion or a free time portion.

19. A computer program product as recited in claim 18,
wherein a plurality of metering packets are received that
include both a session-ending metering packet and a session
in-progress metering packet.

20. A computer program product as recited in claim 18,
wherein the method further comprises a step for authenti
cating the received metering packets.

21. A computer program product as recited in claim 18,
wherein a plurality of metering packets are received that are
redundant, the method further comprising a step for discard
ing the received metering packets that are redundant.

22. A computer program product as recited in claim 18,
wherein each metering packet further comprises (i) a packet
type element, (ii) a sequence number element, (iii) a session
identifier element, and (iv) a packet authentication element,
and wherein the time element comprises a charged time
portion corresponding to some access to the one or more
services that incurs an access charge, and a free time portion
corresponding to other access to the one or more services
that does not incur an access charge.

23. A computer program product as recited in claim 18,
wherein the method further comprises a step for communi
cating one or more usage tracking parameters to the at least
one client, wherein the one or more usage tracking param
eters include at least one of (i) an indication that the at least
one client should track usage of the one or more services
provided by the one or more servers, (ii) a unique session
identifier, and (iii) a metering interval indicating how fre
quently the at least one client should send metering packets.

24. In a computer network that comprises at least one
server, the at least one server providing one or more services
to at least one client that accesses the one or more services
through the one or more servers during a plurality of
sessions created in response to a login request from the at
least one client, with at least some of the plurality of sessions
occurring simultaneously, and wherein access to the one or
more services during a particular session includes at least
one of a charged time portion and a free time portion, a
method of tracking the at least one client usage of the one or
more services during each session, the method comprising
acts of

a client sending a login request to a login service;
accessing, through one or more sessions created in

response to the login request, at least one of the one or
more services provided by one or more servers and
tracking parameters corresponding to client usage of
the one or more services;

generating a plurality of metering packets corresponding
to a single session that each includes a time element
indicating the at least one client usage of the one or
more services, each metering packet being used at the
client to store data for tracking usage of the one or more
services during each session, and each metering packet
comprising a data structure for storing the following
data:
a session identifier element that links a particular

metering packet with a particular session; and

NETFLIX, INC. EXHIBIT 1002

US 7,089,304 B2
15

a time element indicating the at least one client usage
of the one or more services, the time element com
prising a charged time portion and a free time
portion, wherein the charged time portion corre
sponds to access to one or more services that incurs
an access charge, and wherein the free time portion
corresponding to access to one or more services that
does not incur an access charge; and

sending at least one of the plurality of metering packets to
a census service, wherein the census service updates a
usage database based on the metering packets so that
the usage database reflects the at least one client usage
of the one or more services provided by the at least one
SeVe.

25. A method as recited in claim 24, wherein a plurality
of metering packets are generated and sent over regular,
periodic intervals, and wherein the metering packets
includes both a session-ending metering packet and a ses
Sion-in-progress metering packet.

26. A method as recited in claim 24, further comprising
acts of

receiving a session key associated with the one or more
sessions;

hashing at least a portion of each metering packet and the
corresponding session key to generate an authentica
tion element; and

storing each authentication element in the corresponding
metering packet.

27. A method as recited in claim 24, further comprising an
act of sending redundant metering packets to the census
service using a communication protocol that does not guar
antee delivery.

28. A method as recited in claim 24, wherein the time
element comprises a charged time portion corresponding to
Some access to the one or more services that incurs an access
charge, and a free time portion corresponding to other access
to the one or more services that does not incur an access
charge.

29. A method as recited in claim 28, wherein each
metering packet further comprises (i) a packet type element,
(ii) a sequence number element, (iii) a session identifier
element, and (iv) a packet authentication element.

30. A method as recited in claim 24, further comprising an
act of receiving one or more headers from the login service,
wherein the one or more headers include at least one of (i)
an indication that the at least one client should track usage
of the one or more services provided by the one or more
servers, (ii) a unique session identifier, and (iii) a metering
interval indicating how frequently the at least one client
should send metering packets.

10

15

25

30

35

40

45

16
31. A method as recited in claim 24, further comprising an

act of storing metering information in non-volatile memory.
32. A method as recited in claim 31, further comprising an

act of sending the stored metering information to the census
service in a Subsequent session.

33. A computer program product comprising:
a computer readable medium for carrying machine-ex

ecutable instructions that implement the method of
claim 24.

34. A computer program product as recited in claim 33,
wherein a plurality of metering packets are generated and
sent over regular, periodic intervals, and wherein metering
packets include both a session-ending metering packet and
a session-in-progress metering packet.

35. A computer program product as recited in claim 33,
wherein the method further comprises acts of:

receiving a session key associated with the one or more
sessions;

hashing at least a portion of each metering packet and the
corresponding session key to generate an authentica
tion element; and

storing each authentication element in the corresponding
metering packet.

36. A computer program product as recited in claim 33,
wherein the method further comprises an act of sending
redundant metering packets to the census service using a
communication protocol that does not guarantee delivery.

37. A computer program product as recited in claim 33,
wherein each metering packet further comprises (i) a packet
type element, (ii) a sequence number element, (iii) a session
identifier element, and (iv) a packet authentication element.

38. A computer program product as recited in claim 33,
wherein the method further comprises an act of receiving
one or more headers from the login service, wherein the one
or more headers include at least one of (i) an indication that
the at least one client should track usage of the one or more
services provided by the one or more servers, (ii) a unique
session identifier, and (iii) a metering interval indicating
how frequently the at least one client should send metering
packets.

39. A computer program product as recited in claim 33,
the method further comprising an act of storing metering
information in non-volatile memory.

40. A computer program product as recited in claim 39,
wherein the method further comprises an act of sending the
stored metering information to the census service in a
Subsequent session.

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-13

NETFLIX, INC. EXHIBIT 1002

(12) United States Patent
USOO6877OO7B1

(10) Patent No.: US 6,877,007 B1
Hentzel et al. (45) Date of Patent: Apr. 5, 2005

(54) METHOD AND APPARATUS FOR 2003/0037138 A1 2/2003 Brown et al. 709/225
TRACKING A USERS INTERACTION WITH
A RESOURCE SUPPLIED BY A SERVER OTHER PUBLICATIONS

COMPUTER IBM TDB, Algorithim to Inhibit Record/Play in a Non-Dis
tplay Field, Apr. 1990, vol. 32, No. 11, PP. 462-465.*

(76) Inventors: Anna M. Hentzel, 2218 McKinley Ct., play p
Ames, IA (US) 50010; Timothy I. * cited by examiner
Hentzel, 440 Utah St., San Francisco,
CA (US) 94110; Robert R. Hentzel, Primary Examiner Jack M Choules
440 Utah St., San Francisco, CA (US) (74) Attorney, Agent, or Firm-Christensen O'Connor
94110; Brian F. Allen, 19 Rausch, Apt. Johnson Kindness PLLC
C., San Francisco, CA (US) 941.03 (57) ABSTRACT

(*) Notice: Subject to any disclaimer, the term of this A method and System is provided for tracking a user's
patent is extended or adjusted under 35 interaction with a resource or resources Supplied by a Server
U.S.C. 154(b) by 302 days. computer. When a user requests a Web page from a server

for viewing using a Web browser, the user is redirected to a
(21) Appl. No.: 09/978,845 tracking Server. The tracking Server Sends the requested Web

1-1. page, with an embedded Script to the user's computer along
(22) Filed: Oct. 16, 2001 with an application program that can record the user's
(51) Int. Cl." .. G06F 17/30 interaction with the Web page. As the user interacts with the
(52) U.S. Cl. 707/10; 709/224 Web page, input made by the user, Such as mouse
(58) Field of Search 707?o 709/224 movements, button clicks, typing, etc. is streamed back to

- s the tracking Server by the application program. The recorded

(56) References Cited Session may be later retrieved from the tracking Server for
playback. Based on the user's input, the tracked resource

U.S. PATENT DOCUMENTS may be modified, Such as making it more user friendly or
5,675,510 A * 10/1997 Coffey et al. to more easily navigable.
5,796,952 A * 8/1998 Davis et al. 709/224
6,108,637 A 8/2000 Blumenau 705/7 5 Claims, 13 Drawing Sheets

28 32 48
36

REQUEST RESOURCE(i)
2 Eg" EiEEEtana

REDIRECTREQUEST3) SEEEEEas
RANSFORGINATIONAA) VIEWERAPPLICATIONa)
REQUESTMOST RECENTCOPY OF RESOURCE (3) 62

s REQUESISTRACKED RESOURCE (3)
SCRIPT

TRESOURCE EEE
sessi:E 6

FitE PEAEED Back(s)
APPECATION e. RECES

STREAMING
38 ad

STORESIN
ERS
DATABASE12

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1 Sheet 1 of 13 Apr. 5, 2005

GISYTYIVCI ${O}{(10S'?!?!

U.S. Patent

()

LE „No., […]

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1 Sheet 2 of 13 Apr. 5, 2005 U.S. Patent

ZZ

ZZ

WHOAMI?IN WHYW TW00T

XIHOM JOEN WTHW}{(IIA (NVA)

ZZ

NETFLIX, INC. EXHIBIT 1002

%C3%Ay

US 6,877,007 B1 U.S. Patent

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1 Sheet 4 of 13 Apr. 5, 2005 U.S. Patent

AMO}{{W

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1 Sheet 5 of 13 Apr. 5, 2005 U.S. Patent

86 96 26 06

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 7 of 13 US 6,877,007 B1

36 40

BUSINESSCOMPUTER

ACCESSSESSION FROMPLAYBACK
REQUEST PROCESSINGAPPLICATION (I)

SENDEMBEDDED PLAYBACK
VIEWERAPPLICATION (2)

PLAYBACK WIEWERAPPLICATION
REQUESTS TRACKED RESOURCE (3)

STREAMSSESSION
INFORMATION (4)

TRACKINGSERVER

160

CONSUMER 166
SESSION (INPUT)
PLAYED BACK (5)

A2, 2

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 8 of 13 US 6,877,007 B1

- BEGIN
CONSUMERCOMPUTER

ROUTINE

REQUESTRESOURCEFROM
WEBSERVER

RECEIVERESOURCE AND
TRACKINGAPPLICATION

EXECUTE TRACKING
APPLICATION (FIGI1)

204

206

BEGIN
WEBSERVER
ROUTINE

RECEIVEREQUEST FOR
RESOURCEFROM

CONSUMER COMPUTER
304

306 IS THIS
RESOURCETO
BETRACKED

9

REDIRECT REQUEST
TO TRACKING SERVER

DISPLAY
NONTRACKED
RESOURCE

308

3I)

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 9 of 13 US 6,877,007 B1

BEGIN
REDIRECTPROCESSING

APPLICATION
ROUTINE

RECEIVE
REDIRECTED REQUEST 404
AND ORIGINATION
DATA FROMSERVER

RECEIVERESOURCE 408
FROMWEBSERVER

406 REQUESTRESOURCE FROM
FROMWEBSERVER

40 INSERTSCRIPT
INRESOURCE

SEND RESOURCE AND 412
TRACKINGAPPLICATION
T0 CONSUMER COMPUTER

414 RECEIVE DATASTREAM FROM
CONSUMER COMPUTER

RECORD DATASTREAM 416
IN RECORDS DATABASE

418
MORE
DATA

?
NO

420 A2. MZ
CEND)

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 10 0f 13 US 6,877,007 B1

Ot)

TRACKINGAPPLICATION

504

RECOR) INPUT
AND STREAM TO
TRACKINGSERVER

508

DID USER
LEAWEPAGE

p

510

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 11 of 13 US 6,877,007 B1

- BEGIN
BUSINESSCOMPUTER

ROUTINE

REQUEST PLAYBACK
OFARECORDED
SESSION FROM

TRACKING SERVER

RECEIVE PLAYBACK
VIEWER

APPLICATION FROM
TRACKINGSERVER

EXECUTE
PLAYBACKWIEWER
APPLICATION

(FIG14)

610
WIEW

ANOTHER
SESSION

p

612

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 12 of 13 US 6,877,007 B1

700 R
BEGIN

PLAYBACKREQUEST
PROCESSINGAPPLICATION

RECEIVEREQUEST FOR
PLAYBACK OFA RECORDED
SESSION FROMBUSINESS

COMPUTER

704

SEND PLAYBACKVIEWER
APPLICATION TO

BUSINESSCOMPUTER

706

RECEIVEREQUEST FOR
SESSION DATA FOR THE 708
SPECIFIEDSESSION FROM
BUSINESSCOMPUTER

710 OBTAINSPECIFIED
SESSION DATA

SENDSPECIFIEDSESSION
DATA T0 BUSINESS

COMPUTER

712

714.

MORE
SESSION DATA
RECEIVED

2

NO
7I6

A2. Af

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Apr. 5, 2005 Sheet 13 of 13 US 6,877,007 B1

800 R START
PLAYBACKVIEWER
APPLICATION

REQUEST COPY OF 804
RESOURCEFROM
TRACKINGSERVER

806 RECEIVECOPY OF
RESOURCEFROM
TRACKINGSERVER

OPEN BROWSER 808
WINDOWAND DISPLAY

RESOURCE

810 REQUESTSESSION
DATA FROMTRACKING

SERVER

RECEIVESESSION 82
DATAFROM TRACKING

SERVER

814 RECREATE
INTERACTIVESESSION

816

GEND)

A2. A

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
1

METHOD AND APPARATUS FOR
TRACKING A USERS INTERACTION WITH
A RESOURCE SUPPLIED BY A SERVER

COMPUTER

FIELD OF THE INVENTION

In general, the present invention relates to computer
Software, and, in particular, to a method for tracking a user's
interaction with a Server computer.

BACKGROUND OF THE INVENTION

It is a truth universally acknowledged that, in order to
Succeed, a business must Study the habits, desires, and
behavior of its customers. For companies conducting busi
ness over the Internet and the World Wide Web (“Web” or
“WWW), this necessarily extends to examining and mea
Suring their customers interaction with their Web sites.

Commercial Software currently exists to perform this
analysis at the page navigation level. Such Software allows
companies to track and analyze Such information as total
traffic to a particular Web page, advertising revenue, and
referral visits. However, current Software tracking tools do
not provide user interface (“UI) designers and marketing
perSonnel the ability to Study the users interaction within a
Single Web page. Specifically, current Software does not
permit the analysis of how a Single user interacts with a
particular Web page. For example, a company may wish to
know how a user interacts with the location of Specific
content of the Web page So that it can optimize its place
ment. Presently, for companies to receive this kind of
feedback from a potential user, companies must conduct
experiments with test Subjects in controlled environments.
Typically, a human observer is utilized to physically observe
and record a users interaction with a Web page. Experi
mental testing Such as this is expensive and may lead to leSS
than accurate results, which are unacceptable in today's
business environment.

Therefore, in light of these deficiencies, there is a need for
a method and apparatus for tracking a user interaction with
a single resource, Such as a Web page, or multiple resources,
Such as Web sites. There is a further need for a method and
System for tracking a user's interaction with a single or
multiple resources that can provide an extremely accurate
and inexpensive analysis of Said interaction.

SUMMARY OF THE INVENTION

A method and apparatus for tracking a user's interaction
with a resource Supplied by a Server computer is provided to
overcome the deficiencies in the prior art. The present
invention comprises a Web-based tool that allows every
aspect of a user's interaction with a targeted Web page (or
Web site with multiple Web pages) to be transparently
recorded and played back. The transparency is important
because it removes any analogues of the "Hawthorne
Effect,” that may be introduced during artificial usability
Studies overseen by humans. By developing a tool that can
record and play back a user's interaction with specific Web
pages, the busineSS or resource designer of the Web pages
can view and analyze the users interaction for ways to
improve the Web pages, Such as making it more user
friendly, more easily navigable, and more effective adver
tising.

In accordance with an aspect of the present invention, a
method is provided for tracking a user's interaction with a

15

25

35

40

45

50

55

60

65

2
resource is provided. A Server computer obtains a request for
a resource. The Server computer transmits the resource and
a program module for capturing data describing the user's
interaction with the resource to a client computer. A Stream
of data describing the users interaction with the resource,
Such as mouse movement, mouse clicks, etc., is transmitted
from the program module to the Server computer and Saved.

In accordance with another aspect of the present
invention, a method is provided for tracking a user's inter
action with a resource. In response to a request for a tracked
resource Stored at a Server computer, the tracked resource
and a program module for capturing data describing the
user's interaction with the resource is received. The user's
interaction with the resource is captured by the program
module and is transmitted as a data Stream.

In accordance with yet another aspect of the present
invention, a method is provided for replaying a user's
interactive Session with a tracked resource. In particular, an
application program is provided that may request data
describing an interactive Session from a Server computer.
Data representative of the Specific recorded Session is
received by the application program along with a copy of the
tracked resource. The application program utilizes the data
describing the interactive Session and the copy of the tracked
resource to recreate and display the interactive Session.
A computer-readable medium and a computer-controlled

apparatus are also provided for tracking a user's interaction
with a server computer.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan
tages of this invention will become more readily appreciated
as the Same become better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein:

FIG. 1 is a block diagram showing an illustrative oper
ating environment for implementing aspects of the present
invention;

FIG. 2 is a block diagram showing a representative
portion of the Internet;

FIG. 3 is a block diagram depicting an illustrative archi
tecture for a consumer computer utilized to view and interact
with a resource Supplied by a Server computer in accordance
with an actual embodiment of the present invention;

FIG. 4 is a block diagram depicting an illustrative archi
tecture for a Server computer utilized to provide a resource
to a consumer computer in accordance with aspects of the
present invention;

FIG. 5 is a block diagram depicting an illustrative archi
tecture for a tracking Server utilized to record a user's
interaction via a consumer computer with a resource from a
Server computer in accordance with an actual embodiment
of the present invention;

FIG. 6 is a parallel functionality diagram depicting the
interaction between a consumer computer, a Web Server, and
a tracking Server in accordance with an actual embodiment
of the present invention;

FIG. 7 is a parallel functionality diagram depicting the
interaction between the busineSS computer and the tracking
Server when replaying a recorded Session in accordance with
an actual embodiment of the present invention;

FIG. 8 is a flow diagram illustrating a routine imple
mented by the consumer computer for generating data
describing an interactive Session with a tracked resource in
accordance with aspects of the present invention;

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
3

FIG. 9 is a flow diagram illustrating a routine imple
mented by a Server computer for initiating the tracking of an
interactive Session in accordance with an actual embodiment
of the present invention;

FIG. 10 is a flow diagram illustrating a routine imple
mented by a redirect processing application of a tracking
Server for processing the redirected consumer request in
accordance with aspects of the present invention;

FIG. 11 depicts the execution of a tracking application
routine performed by a consumer computer;

FIG. 12 is a flow diagram illustrating a routine imple
mented by a business computer for viewing a previously
recorded interactive Session generated by a tracking appli
cation in accordance with an actual embodiment of the
present invention;

FIG. 13 is a flow diagram illustrating a routine imple
mented by a playback request processing application for
processing a request to play back a previously recorded
interactive Session with respect to an actual embodiment of
the present invention; and

FIG. 14 depicts the execution of a playback viewer
application routine performed by a busineSS computer,
according to an actual embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In accordance with the present invention, an illustrative
embodiment of a System for tracking a user's interaction
with a resource, Such as a Web page, is generally shown in
FIG.1. In operation, a computer user requests a resource 58,
Such as a Web page or other displayable data file, from a
server computer, Such as a Web server 32, for viewing using
a Web browser executing on the consumer computer 28. The
Web server 32 determines whether to redirect the user to a
different server computer 40 (hereinafter referred to as
“tracking server') that can record the user's interaction with
the specific Web page of the Web server 32. The interaction
by the user that may be recorded may include, but is not
limited to, mouse movements, keyboard Strokes, menu
scrolling, etc. If the Web server 32 redirects the user to the
tracking server 40, the tracking server 40 receives the
redirected user request and transmitted origination data from
the Web server 32.

Next, the tracking Server requests and receives the most
recent version of the Web page from the Web server 32 and
merges the page retrieved from the Web server 32 with a
client-side executable component that can initiate the execu
tion of a program module for transmitting data describing
the users interaction with the Web page to the tracking
server 40. In turn, the tracking server 40 sends the modified
or merged resource, in this case the Web page, with the
embedded Script to the consumer computer 28 along with
the program module (hereinafter referred to as “tracking
application') that can record the user's interaction with the
resource 58. As the user interacts with the resource, i.e. Web
page, all of the inputs Such as mouse movements, button
clicks, typing, etc. generated by the user through various
input devices are recorded by the tracking application and
Streamed back to the tracking Server 40. At a later date, a
business running the Web server 32 can access the recorded
Session from the tracking Server 40 for analysis. Based on
the recorded input, the busineSS or resource designer can
View and analyze the users input to identify ways to
improve the resource, Such as making it more user friendly
or more easily navigable.

Referring now to FIG. 2, an illustrative operating envi
ronment for an embodiment of the present invention will be

15

25

35

40

45

50

55

60

65

4
described. Aspects of the present invention are implemented
as an executable Software component located on a Server
computer, Such as the tracking Server 40, accessible via the
Internet. AS is well known to those skilled in the art, the term
“Internet” refers to the collection of networks and routers
that use the Transmission Control Protocol/Internet Protocol
(“TCP/IP”) to communicate with one another. A represen
tative section of the Internet 20 is shown in FIG. 1, in which
a plurality of local area networks (“LANs”) 24 and a wide
area network (“WAN”) 26 are interconnected by routers 22.
The routerS 22 are special purpose computers used to
interface one LAN or WAN to another. Communication
links within the LANs may be twisted wire pair, or coaxial
cable, while communication links between networks may
utilize 56 Kbps analog telephone lines, 1 Mbps digital T-1
lines, 45 Mbps T-3 lines or other communications links
known to those skilled in the art. Furthermore, a consumer
computer 28 and other related electronic devices can be
remotely connected to either the LANs 24 or the WAN 26
via a modem and temporary telephone or wireleSS link. It
will be appreciated that the Internet 20 comprises a vast
number of Such interconnected networks, computers, and
routers and that only a Small, representative Section of the
Internet 20 is shown in FIG. 2.
The Internet has recently seen explosive growth by virtue

of its ability to link computers located throughout the world.
As the Internet has grown, so has the WWW. As is appre
ciated by those skilled in the art, the WWW is a vast
collection of interconnected or “hypertext documents writ
ten in HyperText Markup Language (“HTML'), or other
markup languages, that are electronically stored at “WWW
sites” or “Web sites” throughout the Internet. Other inter
active hypertext environments may include proprietary envi
ronments Such as those provided by America Online or other
online service providers, as well as the “wireless web”
provided by various wireleSS networking providers. One
skilled in the relevant art will appreciate that the present
invention can be implemented in any Such interactive hyper
text environments.
A WWW site is a server/computer connected to the

Internet that has mass Storage facilities for Storing hypertext
documents and other types of resources and that runs
administrative Software for handling requests for those
Stored hypertext documents. A hypertext document normally
includes a number of hyperlinks, i.e., highlighted portions of
text which link the document to another hypertext document
possibly stored at a WWW site elsewhere on the Internet.
Each hyperlink is associated with a Uniform Resource
Locator (“URL') that provides the exact location of the
linked document on a Server connected to the Internet and
describes the document. Thus, whenever a hypertext docu
ment is retrieved from any WWW server, the document is
considered to be retrieved from the WWW. AS is known to
those skilled in the art, a WWW server may also include
facilities for Storing and transmitting application programs,
Such as application programs written in the JAVAE) pro
gramming language from Sun MicroSystems, for execution
on a remote computer. Likewise, a WWW server may also
include facilities for executing Scripts and other application
programs on the WWW server itself.
A consumer or other remote user may retrieve hypertext

documents from the WWW via a WWW browser applica
tion program. AWWW browser, such as Netscape's NAVI
GATOR(R) or Microsoft's Internet Explorer, is a software
application program for providing a graphical user interface
to the WWW. Upon request from the user via the WWW
browser, the WWW browser accesses and retrieves the

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
S

desired hypertext document from the appropriate WWW
Server using the URL for the document and a protocol
known as HyperText Transfer Protocol (“HTTP"). HTTP is
a higher-level protocol than TCP/IP and is designed specifi
cally for the requirements of the WWW. It is used on top of
TCP/IP to transfer hypertext documents between servers and
clients. The WWW browser may also retrieve application
programs from the WWW server, such as JAVA applets, for
execution on the consumer computer 28.

Referring back to FIG. 1, an actual embodiment of the
present invention will now be described. A user or consumer
computer 90 connects to the Internet 20 through a modem or
other type of connection. Once connected to the Internet 20,
a user of the consumer computer 28 may utilize a WWW
browser to view and interact with Web pages on WWW sites
such as a WWW site provided by the Web server 32. As is
known to those skilled in the art, the consumer computer 28
may comprise a general purpose personal computer capable
of executing a WWW browser. The consumer computer 28
may also comprise another type of computing device Such as
a palm-top computer, a cellphone, personal digital assistant,
and the like. Consumer computer 28 is described in greater
detail below with respect to FIG. 3.

Turning now to FIG. 3, an illustrative architecture for the
consumer computer 28 utilized to view and interact with a
resource 58 Supplied by the Web server 32 will be described.
Those of ordinary skill in the art will appreciate that the
consumer computer 28 includes many more components
then those shown in FIG. 3. However, it is not necessary that
all of these generally conventional components be shown in
order to disclose an illustrative embodiment for practicing
the present invention.
As shown in FIG. 3, the consumer computer 28 includes

a network interface 44 for connecting directly to a LAN or
a WAN, or for connecting remotely to a LAN or WAN.
Those of ordinary skill in the art will appreciate that the
network interface 44 includes the necessary circuitry for
Such a connection, and is also constructed for use with the
TCP/IP protocol, the particular network configuration of the
LAN or WAN it is connecting to, and a particular type of
coupling medium. The consumer computer 28 may also be
equipped with a modem 48 for connecting to the Internet
through a point to point protocol (“PPP) connection or a
SLIP connection as known to those skilled in the art.

The consumer computer 28 also includes a processing
unit 46, a display 50, and a memory 52. The memory 52
generally comprises a random access memory (“RAM'), a
read-only memory (“ROM’) and a permanent mass storage
device, Such as a disk drive. The memory 52 Stores an
operating System 56 for controlling the operation of the
consumer computer 28. In one actual embodiment of the
invention, the operating System 56 provides a graphical
operating environment, Such as MicroSoft Corporation's
WINDOWSCR) graphical operating system in which acti
Vated application programs are represented as one or more
graphical application windows with a display visible to the
USC.

The memory 52 also includes a WWW browser 54, such
as Netscape's NAVIGATOR(R) or Microsoft's Internet
Explorer browser, for accessing the WWW. It will be
appreciated that these components may be Stored on a
computer-readable medium and loaded into the memory 52
of the consumer computer 28 using a drive mechanism
asSociated with the computer-readable medium, Such as a
floppy, CD-ROM or DVD-ROM drive. The memory 52 may
also include a tracking application 90, resources 58, and a

15

25

35

40

45

50

55

60

65

6
script 92 received from the tracking server 40 via the
Internet 20. As will be described in greater detail below, the
user's interaction with the resources (through the use of the
WWW browser 54) may be recorded by the tracking appli
cation 90.

The memory 52, network interface 44, display 50, and
modem 48 are all connected to the processing unit 46 via one
or more buses. Consumer computer 28 may also include
Several input devices 42 Such as pointing devices,
keyboards, or light pens which are connected to the pro
cessing unit 46 via one or more buses. AS would be generally
understood, other peripherals may also be connected to the
processing unit in a similar manner.
AS mentioned briefly above, a Server computer generally

designated as Web server 32 is also connected to the Internet
20. The Web server 32 comprises a general purpose server
computer and is described in more detail below with refer
ence to FIG. 4. The Web server 32 stores resources, such as
Web pages, and receives requests for resources from the
consumer computer 28. For instance, a user operating the
consumer computer 28 may wish to receive information
regarding flight information from a travel Web Site running
on the Web server 32. In response to these requests, the Web
server 32 determines whether to redirect the request from the
consumer computer 28 to the tracking server 40. If the Web
server 32 determines that the user's request should be
redirected, the Web server 32 redirects the request to the
tracking server 40 so that the user's interaction with the
requested resource may be recorded. According to an
embodiment of the present invention, only a portion of those
users requesting resources from the Web Server 32 are
redirected to the tracking server 40.

Referring now to FIG.4, an illustrative architecture for an
Web server 32 utilized to provide resources 58 to the
consumer computer 28 will be described. As used herein the
term “resource” comprises any type of data file or data files
that a user may view or otherwise interact with utilizing a
Web browser, such as HTML. Those of ordinary skill in the
art will appreciate that the Web server 32 includes many
more components than those shown in FIG. 4. However, it
is not necessary that all of these generally conventional
components be shown in order to disclose an illustrative
embodiment for practicing the present invention. Moreover,
although the computer system described in FIG. 4 is
described as a Server, it will be appreciated that the function
of the document Server may be implemented by computer
Systems not generally classified as Server-type computer
systems. Further, although only one Web server 32 is
depicted in FIG. 1, it will be appreciated that other Web
servers 32 may be located elsewhere on the Internet 20 and
be utilized to serve resources 58 to a consumer computer 28.
As shown in FIG. 4, the Web server 32 includes a network

interface 60 for connecting directly to a LAN or a WAN, or
for connecting remotely to a LAN or WAN. Those of
ordinary skill in the art will appreciate that the network
interface 60 includes the necessary circuitry for Such a
connection, and is also constructed for use with the TCP/IP
protocol, the particular network configuration of the LAN or
WAN it is connecting to, and a particular type of coupling
medium.

The Web server 32 also includes a processing unit 62, a
display 66, and a mass memory 68. The mass memory 68
generally comprises a RAM, a ROM and a permanent mass
Storage device, Such as a hard disk drive, tape drive, optical
drive, floppy disk drive, or combination thereof. The
memory 68 Stores an operating System 74 for controlling the

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
7

operation of the Web server 32. It will be appreciated that the
operating System component 74 may comprise a general
purpose Server operating System as is known to those of
ordinary skill in the art, such as UNIX, LINUXTM, or
MicroSoft WINDOWS NTR).

The memory 68 may include one or more resources 58
which are to be provided in response to requests from
WWW browsers. The Web server application 100 receives
and responds to Such requests. AS will be described below,
each resource 58 to be tracked contains a redirect program
code 70 generated by the playback request processing appli
cation of the tracking Server that will redirect a portion of the
requests from the consumer computer to the tracking Server.
Along with redirecting the request, the redirect program
code 70 transmits origination data to the tracking Server, as
will be described in more detail below. Furthermore, the
resource 58 may be retrieved from a database 72 (FIG. 1).
It will be appreciated that these components may be Stored
on a computer-readable medium and loaded into memory 68
of the Web server 32 using a drive mechanism associated
with the computer-readable medium, Such as a floppy,
CD-ROM or DVD-ROM drive. The memory 68, network
interface 60, display 66, and modem 64 are all connected to
the processing unit 62 via one or more buses. AS would be
generally understood, other peripherals may also be con
nected to the processing unit in a similar manner.
A business computer 36 is also connected to the Internet

20 and may be utilized to control the operation of the Web
Server 32. The business computer 36 may also comprise a
general purpose computer capable of executing a WWW
browser program. The busineSS computer 36 is maintained
and operated by a business 38 wanting to conduct busineSS
over the Internet 20. The business computer 36 is utilized to
create, customize, maintain, and operate an e-commerce
WWW site (“Web site”) on the Web server 40. For example,
the business 38 may want to establish a travel business on
the Internet and may use busineSS computer 36 to create the
Web site located on the Web server 40. The business
computer 36 may include components similar to the con
Sumer computer 28 described in greater detail above with
respect to FIG. 3.
A tracking server 40 is also connected to the Internet 20,

and may be utilized by the business 38 to record and
playback a user's interactive session with the resource(s) 58.
AS used herein, the term "session” or “interactive session”
may comprise all inputs made by a user via input devices
Such as a mouse, keyboard or the like, when Viewing and
interacting with a Web Site, which can be a single tracked
resource or multiple tracked resources 58. These inputs can
also be referred to as data or events. While the tracking
server 40 is described and illustrated herein as being a
remote server, separate from the Web server 32, one skilled
in the relevant art will appreciate that the Web server 32 may
execute the functions of both the Web server 32 and the
tracking server 40 described herein.

Referring now to FIG. 5, an illustrative architecture for
the tracking server 40 will be described. Those of ordinary
skill in the art will appreciate that the tracking server 40
includes many more components then those shown in FIG.
5. However, it is not necessary that all of these generally
conventional components be shown in order to disclose an
illustrative embodiment for practicing the present invention.
As shown in FIG. 5, the tracking server 40 is connected

to the Internet 20 via a network interface 76. Those of
ordinary skill in the art will appreciate that the network
interface 76 includes the necessary circuitry for connecting

15

25

35

40

45

50

55

60

65

8
the tracking server 40 to the Internet 20, and is constructed
for use with the TCP/IP protocol, the particular network
configuration of the LAN or WAN it is connecting to, and a
particular type of coupling medium.
The tracking server 40 also includes a processing unit 78,

a display 82, and a mass memory 84, all connected via a
communication bus, or other communication device. The
mass memory 84 generally comprises a RAM, ROM, and a
permanent mass Storage device, Such as a hard disk drive,
tape drive, optical drive, floppy disk drive, or combination
thereof. The mass memory 84 stores an operating system 94
for controlling the operation of the tracking server 40. It will
be appreciated that this component may comprise a general
purpose Server operating System as is known to those of
ordinary skill in the art, such as UNIX, LINUXTM, or
MicroSoft WINDOWS NTR).

The mass memory 84 also stores a redirect processing
application 94 and the tracking application program 90. The
tracking application 90 comprises computer executable
instructions which, when executed by the consumer com
puter 28, causes the consumer computer 28 to Stream data
back to the tracking server 40 that describes the user's
interactive Session. The tracking application will be
described in greater detail below with respect to FIG. 11.
Mass memory 84 also stores a script 92 which is sent

along with the tracking application 90 via the Internet 20 to
the consumer computer 28. The script 92 contains code that
causes the consumer computer 28 to execute the tracking
application 90. The tracking application 90 and script 92 are
sent with a copy of the requested resource 58 retrieved from
the Web server 32 by redirect processing application 94. As
mentioned above and described in detail below, the tracking
application 90 and script 92 operate to cause of stream of
data describing the user's interactive Session to be sent to the
tracking server 40.
The mass memory 84 also stores a playback viewer

application 96 and a playback request processing application
98 for allowing business 38 to replay the recorded session.
The operation of the playback viewer application 96 and the
playback request processing application 98 will be described
in greater detail with respect to FIGS. 13 and 14. It will be
appreciated that all of the above-described components may
be Stored on a computer-readable medium and loaded into
the memory 84 of the tracking server 40 using a drive
mechanism associated with the computer-readable medium,
such as a floppy, CD-ROM or DVD-ROM drive.
The tracking Server 40 is also operatively connected to a

recording database 80 (FIG. 1) for storing data describing
the interactive Sessions between a user and a tracked
resource. For instance, the tracking Server 40 may store the
following data in the recording database 80 for each inter
active Session: user location, basic information about the
consumer computer, Such as platform, resolution, color
depth, browser version, and clipboard data, inputs Such as
keystrokes, mousemoves, mouseclicks, and Scrolling that
affects the browser window provided by the operator of the
consumer computer using computer input devices Such as a
keyboard, mouse or light pen, and the State of various
controls on the resource (Web page), e.g. the fact that a
checkbox is Selected or not.

Interactive Sessions may be grouped by location, i.e.
URL, and may be Sorted by discrete data, Such as click
Stream (Sort by Session), Visitor, date, or length of Session.
One skilled in the relevant art will appreciate that the
Sessions may be Sorted by other data or criteria as well. The
business 38 may also assign an additional classification (or

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1

“type’) to the Session (e.g. "new user”) for future analysis.
Those skilled in the art should appreciate that the recording
database 80 may be stored locally on tracking server 40, or
remotely at other computers in a networked computing
environment like the Internet 20.

The recording of interactive Sessions between a user and
the resource 58 from the Web server 32 will now be
described in detail with respect to FIGS. 6 and 7. The
following description describes the recording of interactive
Sessions with a signal resource for illustrative purposes only,
and therefore should not be construed as limiting. One
skilled in the art will appreciate that the interactive Session
with multiple resources may also be recorded. Referring to
FIG. 6, a user requests a tracked resource 58 or Web page
from the Web server 32 utilizing a Web browser at block
120. The business 38, prior to a user requesting the resource
58, determines the resources 58 or Web pages of the Web site
that should be tracked. When a resource 58 to be tracked is
requested at block 120, the Web server 32 determines
whether or not to track the resource at block 122. If the
requested resource is to be tracked, the Web server 32
redirects the request to the tracking Server at block 124.
Along with redirecting the request, the Web server 32
transmits origination data, Such as a HTTP header, to the
tracking server 40 at block 125. In an actual embodiment of
the present invention, the Web server 32 may randomly
redirect a percentage of the users requesting the resource to
the tracking Server 40. Additionally, once the user is being
tracked, the user can be automatically tracked as they move
from page to page throughout the Web Site.

The redirect processing application 94 running on the
tracking server 40 receives the redirected user request and
the origination data from the Web server 32. Next, at block
126, the processing application 94 requests a copy of the
most recent version of the resource 58 requested by the user,
from the Web server 32. The redirect processing application
94 utilizes the origination data So that the tracking Server
receives the exact resource which can accurately mimic the
original request. After the Web server 32 sends the requested
resource at block 128, the processing application 94, at
block 130, merges the resource retrieved from the Web
server 32 with the script 92 and changes the base tag and
modifies any Script and framesets contained within the
resource to reference the Web server 32. At block 132, the
processing application 94 sends the proxied resource,
merged with the Script 92, along with the tracking applica
tion 90 to the consumer computer 28. The tracking server
permanently Stores a copy of the requested resource.
When the tracked resource is loaded by the Web browser

executing on the consumer computer 28, the Script 92 and
the tracking application 90 are executed at block 134. The
Script 92 retrieves information about the consumer computer
28 Such as browser type, Screen resolution, and the like, and
sends this information to the tracking application 90. The
tracking application 90 then opens a connection to the
redirect processing application 94 on the tracking Server 40
and sends the information about the consumer computer at
block 136. The redirect processing application 94 formats
this Session information and inserts it into the recording
database 80 via a Java Database Connectivity (“JDBC”)
application program interface (API). This database entry
asSociates the busineSS 38, the location of the resource, the
Session data, and the Visitor with the data Stream that is about
to be sent by the tracking application 90.

At block 138, the tracking application 90 streams data
describing the users input with the resource, Such as typing
and Scrolling, to the tracking application 90, So that it can be

15

25

35

40

45

50

55

60

65

10
forwarded to and stored at the associated database 80 at
block 140. At block 140, the tracking application 90 batches
the events, compresses the data, and Securely Streams them
back to the redirect processing application 94 on the tracking
server 40 via the connection. The database 80 maintains a
persistent Storage of the Sessions, their related events, and
any relevant user information Such as location.

Referring now to FIG. 7, a functionality diagram will be
described illustrating how a recorded Session may be viewed
by the business 38 operating Web server 32. When the
business 38 decides to analyze a user's interaction with one
of the tracked resources 58, a representative of the business
38 will access the recorded session from the playback
request processing application 98 on tracking Server 40 at
block 160. At block 162, the tracking server 40 sends the
playback viewer application 96 to the business computer 36
to be executed. Each of the Sessions recorded by the tracking
Server 40 is available via the playback request processing
application 98. Sessions are grouped by location and may be
Sorted by data Such as Visitor, date, length of Session and the
like. At this point the business 38 may assign an additional
classification (or “type’) to the Session (e.g. “new user”) for
future analysis.
The playback of a Session is controlled by the playback

viewer application 96. At block 164, the playback viewer
application 96 requests the tracked resource 58 from the
tracking server. The playback viewer application 96
launches another browser window or re-uses a currently
open browser window at the business computer 36 to display
the tracked resource exactly as it was shown to the user,
including browser Size and Screen placement. After the
browser window is obtained, the playback viewer 96 appli
cation requests the Session data from the playback request
processing application 98 on tracking server 40. At block
166, the playback request processing application 98 sends
the session data to the business computer 36 to be viewed by
the business 38. The session is then replayed in real time at
block 168. The playback viewer application 96 uses the
application program interface (API), such as Windows API
or the like, to recreate the events as accurately as possible So
that the browser will be unable to differentiate between a
replayed mouseclick and an actual user click.

Referring now to FIG. 8, routine 200 will be described
showing the operation of the consumer computer 28 when
generating an interactive Session. The routine 200 begins at
block 204, where the user operating the consumer computer
28 requests the resource 58 from the Web server 32 using a
Web browser. For example, the user may wish to receive
flight information from a travel Web site operating on Web
server 32. The user enters the specific URL for the Web site
within the browser. This causes the browser to request the
resource, i.e. Web page, associated with the identified URL.

After the user requests the resource from Web server 32
at block 204, the routine 200 proceeds to block 206, where
the consumer computer 28 obtains or receives a copy or
proxy of the requested resource 58 from the tracking Server
40. Received along with the copy of the resource 58 is the
tracking application 90 and script 92. As described above,
the tracking application 90 can be an executable program or
applet, as known in the art. It will be appreciated that the
consumer computer may receive a message (visible or
invisible) that indicates that the user request was redirected
to the tracking server 40. In a preferred embodiment of the
present invention, the user is not aware that her request has
been redirected and has received an executable program that
will record her interaction with the requested resource.

Next, at block 208, the tracking application 90 and script
92 are executed on the consumer computer 28. As will be

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
11

discussed in more detail below with respect to FIG. 11, the
tracking application 90 receives data representing the user's
input from input devices Such as the keyboard or mouse
asSociated with the interactive Session between the user and
the copy of the resource received from tracking Server 40,
and Streams the associated data back to the tracking Server
40 for storage. If the user leaves the tracked resource, the
routine ends at block 210.

Referring now to FIG. 9, an illustrative routine 300 will
be described that illustrates the operation of the Web server
32. The routine 300 begins at block 304, where the Web
server 32 receives a request for a resource 58 from the
consumer computer 28. For example, the travel Web site
located on Web server 32 could receive a request from the
consumer computer 28 for a resource containing flight
information. After the request for the resource 58 is
received, the logic proceeds to a decision block 306, where
a determination is made as to whether the resource 58 is to
be tracked.

In an actual embodiment of the present invention, the
business 38 operating the Web server 32 decides which
resource, i.e. Web page, is going to be tracked from the Web
Site. To this end, the business places an executable
component, redirect program code 70, into the Source code
of every resource that is to be tracked. The playback request
processing application 98, which will be described in more
detail below, includes an “Add Tracker” feature that requires
the business to input the URL, application Server type, and
specify the fraction of traffic that should be recorded. The
tracking Server 40 Stores this information in an entry in a
location table of the database 80. The redirect program code
70 is generated by a program module of the playback request
processing application 98, Such as an account manager
program module, located on the tracking Server 40 based on
the business input of the “Add Tracker” feature. Those of
ordinary skill in the art will appreciate that the playback
request processing application 98 may include many more
program modules that when executed, perform functions
Such as generating tracking Statistics.

The Small code block for each location, in this case, Web
Server 32 depends on the type of the Server (e.g. Active
Server Pages (“ASP”), Java Server Pages (“JSP”), standard
HTML, etc.) and the fraction of traffic that is to be recorded.
If, at block 306, it is determined that the requested resource
is to be tracked, the routine 300 proceeds to block 310 where
the Web server 32 redirects the request from the consumer
computer 28, along with the transmission of origination data
to the tracking Server 40. In one embodiment, the origination
data are HTTP headers that are stored in a hash map so that
HTTP headers can be passed back to accurately mimic the
original request. The routine then ends at block 312.

Returning to block 306, if the requested resource is not to
be tracked, the routine proceeds to block 308, where the
non-tracked resource is displayed. The routine ends at block
312.

Referring now to FIG. 10, a routine 400 illustrating the
operation of the redirect processing application 94 will be
described. The routine 400 begins at block 404, where the
tracking Server 40 receives the redirected request for the
resource 58 and the origination data from the Web server 32.
In one embodiment, as described above, the origination data
in the form of HTTP headers is store in the hash map of the
tracker server 40. From block 404, the routine 400 continues
to block 406, where the tracking server 40 transmits a
request to the Web server 32 for a copy or proxy of the
resource 58 to be tracked. In an actual embodiment, the

15

25

35

40

45

50

55

60

65

12
redirect processing application 94 executing routine 400
opens an HTTP connection with the Web server 32 and
utilizes the origination data to retrieve the most recent
version of the resource, i.e. web page, requested by the user.
For example, the redirect processing application 94 sends a
request to retrieve the latest version of the travel web page
that the user wishes to obtain flight information from.
From block 406, the routine 400 continues to block 408,

where the redirect processing application 94 receives the
resource, i.e. web page, from the Web Server 32 and per
manently stores it at the tracking server 40. The routine 400
then proceeds to block 410 where the redirect processing
application 94 inserts the script 92 into the resource
retrieved from the Web server 32 and changes the base tags
and modifies any script and framesets to reference the Web
server 32. After the script 92 has been inserted into the
resource at block 410, the routine 400 continues to block
412, where the tracking server 40 sends the modified
resource and the Script 92 along with the tracking applica
tion 90 to the consumer computer 28.
From block 412, the routine 400 continues to block 414,

where the redirect processing application 94 receives the
data Stream corresponding to the interactive Session between
the user and the resource. For example, as the user navigates
(i.e. mouse movements and Scrolling) through the travel
Web page, each input event or interaction is Streamed back
to the tracking server 40 by the tracking application 90. The
routine 400 proceeds to block 416 where the data stream is
recorded and stored in the recording database 80. In an
actual embodiment of the present invention, the redirect
processing application 94 formats the interactive Session
information and inserts it into the records database 86 via
JDBC. This insertion links the business 38, resource, and
user with the transmitted Stream of data. From this point on,
every interactive input or event generated by the user, Such
as typing, mouse movements and Scrolling, is Sent to the
tracking application 90 (as well as the browser) so that it can
be forwarded to the database 90 at the tracking server 40.
The tracking application 90 batches the events, compresses
the data, and Securely Streams them back to the processing
application 94 on the tracking server 40 via a HTTP con
nection.

After the redirect processing application 94 receives the
data Stream from the consumer computer 28, the logic
proceeds to a decision block 418 and determines if more data
is being received. AS described above, if the user decides to
leave the tracked page, the tracking application ceases to
Stream back data associated with the inputs of the user after
the user has left the tracked resource. If so, the routine 400
returns to block 416 to continue to record the data stream in
the records database 86. Otherwise, the Routine 400 ends at
block 420.

As described briefly above with respect to FIG. 8, FIG. 11
depicts the execution of the tracking application in greater
detail. Turning now to FIG. 11, such a routine 500 will now
be described. The routine 500 begins at block 504 where a
determination is made as to whether an input signal (e.g.
mouse movement, keyboard stroke) has been received. If so,
the routine 500 proceeds to block 506 where the tracking
application records the input and Streams the input to the
tracking server 40. If no input is detected at block 504, the
routine 500 returns to block 504 to continue to wait for an
input to be received.
At block 506, the tracking application 90 records the input

generated by the user while interacting with the resource.
The tracking application 90 opens a connection between the

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
13

consumer computer 28 and the tracking Server 40 and
Streams the input data back to the tracking Server 40 to be
stored. At decision block 508, a determination is made as to
whether the user has left the tracked resource. For example,
the user could have “clicked” on a hyperlinked document
within the resource, or typed in a new URL in the browser
window. In either case, the user would leave the tracked
resource and receive the resource that corresponds with the
Specific URL that was enter from either typing or "clicking”
the mouse. In one embodiment of the present invention as
described above, the redirect program code is operable to
remain tracking the user throughout the Web site, regardless
of whether the next requested resource has the redirect
program code. The redirect program code would terminate
tracking a resource after the user had left the Web site.

It will be appreciated that the user could request another
resource that is to be tracked, either by Web server 32 or
another business on the Internet 20 wanting their resource to
be tracked. If this is the case, a new Session is to be recorded
and the routine 500 returns to block 202 to begin a new
tracked Session. If the routine determines that the user has
left the tracked resource, the tracking application 90 returns
at block 510 to the routine 200 shown in FIG.8. Otherwise,
the routine returns to block 506 to continuously record and
Stream the input data from consumer computer 28 until the
user leaves the resource in a way, for example, as described
above. The tracking application 90 returns to block 510 if the
user has left the tracked resource, where the logic of routine
200 proceeds to block 210 to end the routine.

Referring now to FIG. 12, an illustrative routine 600 will
be described for viewing a pre-recorded interactive Session
generated by the tracking application 90. The routine 600
begins at block 604, where the business 38 operating the
business computer 36 requests playback of a recorded
Session from the tracking Server 40. For example, the
busineSS may wish to view a Session generated between a
user and a Web page of the travel Web site, or between a user
an a web site located on the Web server 32.

After the business 38 requests a session playback from the
tracking server 40 at block 604, the routine 600 proceeds to
block 606 where the business computer 36 obtains or
receives the playback viewer application 96, Such as an
ActiveX control program, from the tracking server 40. The
routine 600 then continues to block 608, where the playback
Viewer application 96 is executed on the busineSS computer
36. As will be discussed in more detail below, the playback
viewer application 96 receives the stream data from the
tracking Server 40 and recreates the interactive Session for
review. Operation of the playback viewer application 96 is
described in greater detail below with respect of FIG. 14.
The routine 600 proceeds from block 608 to decision block
610 where a determination is made as to whether the
business 38 wants to view another session from a resource.
If so, the routine returns to block 604. Otherwise, the routine
ends at block 612.

Turning now FIG. 14, an illustrative routine 800 will be
described showing the operation of the playback viewer
application. The routine 800 begins at block 804, where the
playback viewer application 96 requests a copy of the
resource 58 from the tracking server 40. At block 806, the
playback viewer application 94 receives a copy of the
resource from the tracking server 40. At block 808, the
playback viewer application 96 opens a browser window on
the business computer 36. One skilled in the relevant art will
appreciate that the browser window may be new, or may be
a previously used browser window. The browser window
has the same dimensions as the browser originally utilized

15

25

35

40

45

50

55

60

65

14
by the user to display the resource. At block 810, the
playback Viewer application 96 requests the Session data
from the tracking Server 40 corresponding to the Specific
session to be viewed. At block 812, the playback viewer
application 96 receives the Session data Streamed from the
tracking Server 40. In an actual embodiment of the present
invention, the tracking Server 40 includes a playback request
processing application 98 that receives the request for Ses
Sion data, retrieves the Session data from the associated
database, and sends the Session data to the playback viewer
application 96.

After receiving the Session data at block 812, the playback
Viewer application 96 recreates the interactive Session by
displaying the resource in the browser window and display
ing the Session data So as to recreate the user's original
interactive Session with the resource. In an actual
embodiment, the playback viewer application uses the appli
cation program interface (API) to recreate the Session as
accurately as possible So that the Session Substantially
resembles the actual interactive Session between the user and
the tracked resource. For example, a copy of the travel Web
page is opened into a browser window. The data represent
ing the interactive Session is played over the travel Web page
to display the exact user interaction with the Web page. In
this manner, the user's original mouse movements, mouse
clicks, Screen Scrolls, etc. will be replayed on the business
computer in exactly the same manner as they were originally
made by the user on the consumer computer. After playback
of the session, the routine 800 ends at block 816. It is to be
understood that the playback viewer application 96 can have
features Such as pause, rewind, fast forward, So that the
business 38 can properly analyze how the user interacted
with the resource 58. This analysis may then be used by the
business to improve the resource in ways Such as better
design layout.

Referring now to FIG. 13, an illustrative routine 700 will
be described showing the operation of the playback request
processing application 98. The routine 700 begins at block
704, where the playback request processing application 98
receives a request for a playback of the recorded Session. In
an actual embodiment, the recorded Sessions are identified
by the processing application 98 using parameterS Such as
user, date, and length of Session. Each parameter corre
sponds to the session data stored in database 86. After the
request for a playback of a session is received at block 704,
the routine 700 proceeds to block 706 where the processing
application 98 sends a playback viewer application 96 to the
business computer 36. For example, a request can be made
by "clicking on the displayed parameter associated with the
Session the busineSS wishes to review.

After the playback viewer application 96 is executed at
the business computer 36 as described above with reference
to FIG. 14, the playback request processing application 98
receives, at block 708, a request for Session data associated
with the Session Specified by the business computer at block
704. Next, at block 710, the playback request processing
application 98 obtains the Specified Session data and Sends
the Specified Session data to busineSS computer 36 at block
712. It will be appreciated that the playback request pro
cessing application 98 can obtain the Session data from the
records database 80 or may obtain the data from the tracking
server memory. The routine 700 then proceeds to the deci
Sion block 714 where a determination is made as to whether
more Session data is being obtained from, in this case, the
records database. If so, the routine 700 returns to block 712
to continue Sending the data to the business computer 36.
Otherwise, the routine 700 ends at block 716.

NETFLIX, INC. EXHIBIT 1002

US 6,877,007 B1
15

The previously described implementation of the present
invention provides advantages over Software currently avail
able in the art. The present invention provides a Web-based
tool that allows every aspect of a user's interaction with a
targeted Web Site to be transparently recorded. By transpar
ently recording the interaction, any analogues of the "Haw
thorne Effect” that may be introduced during artificial
usability Studies overseen by humans are removed. By
utilizing a tool that can record a users interaction with a
Specific Web page or Web pages, a busineSS or resource
designer of the Web pages can view and analyze the user's
input for ways to improve the Web pages, Such as making it
more user friendly or more easily navigable.
While the illustrative embodiment described above

described a System and method for recording the interactive
Session between a user and a resource, Such as a Web page,
it will be readily evident to one skilled in the art that the
System and method may record the interactive Session
between a user and multiple resources, Such as a Web site.
For example, in one embodiment, the redirect program code
is operable to remain tracking the user throughout the Web
Site, regardless of whether the next requested resource has
the redirect program code. In this instance, the Session data
recorded will represent one constant Stream of data corre
sponding to the users interaction with the Web site (multiple
resources).

While an illustrative embodiment of the invention has
been illustrated and described, it will be appreciated that

5

15

25

16
various changes can be made therein without departing from
the Spirit and Scope of the invention.
What is claimed is:
1. A method for replaying a user's interactive Session with

a tracked resource, comprising:
requesting data describing Said interactive Session;
receiving Said data and a copy of Said tracked resource;
displaying Said tracked resource; and
displaying Said data describing Said interactive Session in

a manner So as to recreate exactly Said user's interac
tive Session.

2. The method of claim 1, further comprising:
receiving a program module for requesting Said data

representative of Said interactive Session and Said copy
of Said tracked resource.

3. The method of claim 2, wherein Said program displayS
Said tracked resource and Said data describing Said interac
tive Session.

4. A computer controlled apparatus capable of performing
the method of any one of claims 1-3.

5. A computer readable medium comprising computer
readable instructions which, when executed by a computer,
cause the computer to perform the method of any one of
claims 1-3.

NETFLIX, INC. EXHIBIT 1002

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,877,007 B1 Page 1 of 1
DATED : April 5, 2005
INVENTOR(S) : A.M. Hentzel et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item 56, References Cited, OTHER PUBLICATIONS, “IBM TDB,” reference,
“Non-Dis
tplay” should read -- Non-Dis
play --.

Signed and Sealed this

Twenty-second Day of November, 2005

WDJ
JON W. DUDAS

Director of the United States Patent and Trademark Office

NETFLIX, INC. EXHIBIT 1002

APPENDIX B-14

NETFLIX, INC. EXHIBIT 1002

United States Patent

USOO7310609B2

(12) (10) Patent No.: US 7,310,609 B2
i e : e Middleton, III et al 45) Date of Patent Dec. 18, 2007

(54) TRACKING USER MICRO-INTERACTIONS 5,491,820 A * 2/1996 Belove et al. 707/3
WITH WEB PAGE ADVERTISING 5,517,620 A * 5/1996 Hashimoto et al. 709/242

5,557,790 A * 9/1996 Bingham et al. 707/101
(75) Inventors: Thomas M. Middleton, III, Hingham, 5,644,713 A * 7/1997 Makishima TO9,242

MA (US); Gregory T. White, Bedford, (Continued)
MA (US)

FOREIGN PATENT DOCUMENTS

(73) Assignee: Unicast Communications DE WO9826346 * 6/1998
Corporation, New York, NY (US)

OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Traffic Cops For Web Servers, (Software vendors are offering tools
patent is extended or adjusted under 35 to help network managers handle system resources being used by
U.S.C. 154(b) by 784 days. external & Internet traffic), Information Week, n 597, p. 44, Sep. 16.

1996.*
21) Appl. No.: 10/100,631 (21) Appl. No 9 (Continued)

(22) Filed: Mar. 14, 2002 Primary Examiner Hani M. Kazimi
O O (74) Attorney, Agent, or Firm—Michaelson & Associates;

(65) Prior Publication Data Peter L. Michaelson

US 20O2/O 111865 A1 Aug. 15, 2002
(57) ABSTRACT

Related U.S. Application Data In connection with display of advertising within Web pages
(63) Continuation of application No. 09/146,012, filed on an applet is downloaded to the user's Web browser to track

Sep. 2, 1998, now Pat. No. 6,393,407. the users interactions with the Web page. Tracked user
(60) Provisional application No. 60/058,655, filed on Sep. interactions include mouse cursor position, time displayed

11, 1997. on page, time of mouse cursor hovering over the advertise
s ment, and so on. At an appropriate time, such as when the

(51) Int. Cl. display of the Web page is terminated, the applet forwards
G06O 40/00 (2006.01) logged interaction information from the client to a remote

(52) U.S. Cl. 70s/14. 705/27.709,224 server, the remote server being typically controlled by an advertiser, rating service or the like. As a result, the adver
(58) Field of Classification Search 705/14, tiser may track consumer response to advertising impres

705/10, 26, 27, 40; 709/224, 226 S lication file f let h hist sions on a Web page without requiring the user to download
ee appl1cauon Ille Ior complete searcn n1story. other pages. This allows advertisers to track user response to

(56) References Cited specific elements of the Web page as well as to better infer
U.S. PATENT DOCUMENTS

5,058,185 A * 10, 1991 Morris et al. 382,305
5.434,863 A * 7/1995 Onishi et al. 370/402

Star
APPLE

REGIONS

8

stop.YES

ESABLSHLIST
F8CTS

EASEDTIME
BJECTSPLAYED

MUSEHOWER

N

102

4.

. MOUSE CLICK

--MOUSE LOCATION-- OUSE LOCAIN

Microdacro
TIME

AGE
rusted

RANSM

| MAR

O Gre-ski> -

information about the user's interests in an effort to qualify
the user prior to presenting Subsequent advertising.

34 Claims, 3 Drawing Sheets

108

18

110

12

14

6

20

LOG
weNT

NETFLIX, INC. EXHIBIT 1002

US 7,310,609 B2
Page 2

U.S. PATENT DOCUMENTS 5.999,914 A * 12/1999 Blinn et al. 705/26
6,054,984. A * 4/2000 Alexander 71.5/771

5,649,185 A * 7/1997 Antognini et al. 707/9

5,694,545 A * 12/1997 Roskowski et al. ... 709,231
5,742,610 A * 4/1998 Natarajan 370/472 Internet: Ichat, Now Acuity, Launches Web Call Center, Network
5,748,613 A * 5/1998 Kilk et al. 370,231 briefing, PN/A, Trade, 1360-1369, Jun. 1, 1998.*
5,796,952 A * 8/1998 Davis et al. 709,224
5,848,397 A * 12/1998 Marsh et al. TO5/14 * cited by examiner

NETFLIX, INC. EXHIBIT 1002

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Dec. 18, 2007 Sheet 2 of 3 US 7,310,609 B2

100 START

START
APPLET

ESTABLISH LIST
OF OBJECTS/
REGIONS

LOG
ACTIVITIES

ELAPSED TIME
OBJECT DISPLAYED

MOUSEHOVER so
MOUSE CLICK

MOUSE LOCATION

101

102

MICRO/MACRO

TIME e
PAGE

REQUESTED

TRANSMIT

FIG. 2

NETFLIX, INC. EXHIBIT 1002

U.S. Patent Dec. 18, 2007 Sheet 3 of 3 US 7,310,609 B2

Let's find the Perfect Shoe for you
1) O 1) CO

NB 1) ()) ()

FIG. 3

NETFLIX, INC. EXHIBIT 1002

US 7,310,609 B2
1.

TRACKING USER MICRO-INTERACTIONS
WITH WEB PAGE ADVERTISING

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 09/146,012, filed Sep. 2, 1998 which claims the benefit
of U.S. Provisional Application No. 60/058,655, filed on
Sep. 11, 1997.
The entire teachings of the above applications are incor

porated herein by reference.

BACKGROUND OF THE INVENTION

Distributed computing environments are becoming a very
popular mechanism for publishing information of various
types. In Such an environment, a network of several different
types of computers is used in order to share access to
information. Certain computers, known as servers, contain
databases and other repositories of information. Other com
puters in the network, known as clients, act as interfaces for
the human users to retrieve and display information.
One particularly well known example of a distributed

computing environment is the World Wide Web. In this
environment, the Web server computers presently in use
typically store data files, or so-called Web pages, in a format
known as Hypertext Markup Language (HTML). Web pages
are transferred between Web servers and clients using a
communication protocol known as Hypertext Transfer Pro
tocol (HTTP). HTML permits the Web servers, or sites, to
handle container or document files which reference other
files of varying formats. Using HTML, a given Web page
may include content information in various formats. An
HTML format file may also refer to other files, by including
reference information, known as a Uniform Reference Loca
tor (URL), which specifies the location of remote Web
servers at which the other files may be located.

Certain Web servers, such as those maintained by on-line
service providers such as AMERICAONLINE(R(AOL(R) or
Microsoft Network (MSNR), are an increasingly popular
way for people to obtain information of interest on the World
Wide Web. (AMERICA ONLINE(Rand AOL(R) are regis
tered trademarks of America Online, Inc. of Dulles, Virginia.
MSNR) is a registered trademark of Microsoft Corporation
of Redmond, Washington). Indeed, certain Web sites host
search engines such as AltaVista R, Yahoo.(R), and
InfoSeekTM and thus are exclusively devoted to guiding users
through the Web. (AltaVistaTM is a trademark of AltaVista,
Overture Services, Inc. of Pasadena, California; Yahoo TM is
a trademark of Yahoo! Inc. of Sunnyvale, California; and
InfoSeekTM is a trademark of InfoSeek Corporation of
Sunnyvale, California). These sites are so popular that their
operators provide their services free of charge to users of the
Web, and Support themselves typically by selling advertising
space on their Web pages. Thus, an advertiser, for example,
a running shoe manufacturer, may contract with a search
service Such as Yahoo, or an on-line service. Such as AOLR),
to periodically present its ads on their Web pages in much
the same manner that commercials are traditionally pur
chased from television broadcasters.

Certain tools are presently in use by the providers of such
services and advertisers, typically in order to calculate
advertising rates. For example, the Web servers at such sites
may count the number of times that the Web page containing
the advertisement is displayed.

Alternatively, an advertiser may count the number of
visits that its own Web page receives as a result of linking

10

15

25

30

35

40

45

50

55

60

65

2
from the original Web page advertisement, i.e., the number
of times that users request the URL of the advertiser's Web
site via the original Web page on which the advertisement
was displayed. In the usual model of user interaction with a
Web page, this occurs whenever the user clicks (i.e., selects
by a mouse input device) on a hypertext item. In many
instances, objects Such as graphical images or "GIFs may
be clicked on to activate the hypertext links.

Advertisers, however, would like not only to count a
number of “impressions.” or how many times their adver
tisement is seen, but also to find a way to track how effective
their ads are in attracting consumers interest in their prod
uctS.

Advertisers would also like to find a way to more pre
cisely gauge a users interest in a product, as well as to entice
those users who are casually browsing through the World
WideWeb, without actually requiring users to download the
advertiser's Web page. In this manner, interest in a particular
product or promotion could be gauged directly from data
Surrounding the initial presentation of the advertisement.

SUMMARY OF THE INVENTION

Briefly, the present invention is a technique for tracking
user interactions with the elements that comprise a Web page
advertisement. As a result, an advertiser may understand
(make inferences as to) what motivates users to pay initial
attention to and/or otherwise interact with Web page adver
tising.
The invention, in particular, tracks any sort of user

“micro-interaction' with the advertisement. The user inter
actions which are tracked, for example, may include mouse
movement, mouse clicks, and other mouse activity Such as
it relates to elements in the ad. These elements may include
various display items such as graphics, pictures, or words, or
may include user prompting items such as menus, buttons,
or slides. Elements also may include defined regions of the
advertisement.
The activities monitored may include how long an object

is displayed, which objects are selected by a user, which
items are considered by a user according to the amount of
time the cursor hovers over the items, measuring the time of
presentation of an element in various ways, and/or activating
hyperlinks.
The tracked interactions are preferably logged to a local

memory by a downloadable Web browser applet embedded
in the Web page. Such as a program written in an interpretive
language such as JavaTM. (JavaTM is a trademark of Sun
Microsystems Corporation of Sunnyvale, Calif.)
The logged interactions as stored in the local memory file

are then sent to a remote server at appropriate times. For
example, in the preferred embodiment, the logged interac
tion information may be included in a “dummy’ HTTP GET
message sent by the client to the server at the time the applet
is taken down, Such as when the user requests that a next
page be displayed.
The logged interaction information may be flushed in

other ways, such as by sending a POST message to the
server either periodically or upon occurrence of certain
eVentS.

The invention therefore permits the tracking of user
interactions with a Web page advertisement before subse
quent actions, such as loading the advertiser's home Web
page, occur. For example, the applet may intercept multiple
interactions such as mouse clicks on objects to further
qualify a user before loading a specific one of the advertis
er's own home Web pages.

NETFLIX, INC. EXHIBIT 1002

US 7,310,609 B2
3

As a result, the advertiser may obtain information about
what interests the user without the user having to leave the
originally displayed Web page or performing other tasks
which are perceived as being cumbersome and/or distracting
from what the user was originally doing.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec
essarily to Scale, emphasis instead being placed upon illus
trating the principles of the invention.

FIG. 1 is a block diagram of a distributed computing
system illustrating a manner of tracking user interaction with
a Web page according to the invention.

FIG. 2 is a flow chart of the operations performed by an
applet program according to the invention.

FIG. 3 is a typical Web page display illustrating how the
invention may prequalify a user.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a block diagram of a distributed computing
system 10. The distributed computing system 10 includes a
number of computers 12, 20 interconnected by a commu
nication media 14. The communication media 14, and in
general the distributed computing system 10, may make use
of any number of computer networking techniques such as
local area networks (LANs), routers, dial-up connections,
and/or other data communication techniques to form what
has become known as an “intranet' or “internet.” In the
preferred embodiment, the present invention is employed in
what has become known as “the Internet,” which is an
international computer network linking many millions of
computers.

Typically the computers 12, 20 are personal computers,
mini-computers, or the like. Certain of the computers in the
distributed computing system 10 act as servers 12a, 12b, and
are used primarily to store and Supply information. One type
of server 12a which is in widespread use on the Internet is
known as a Web server that provides access to information
stored in a form known as a Web page 16.

Other computers in the distributed computing system 10
known as clients 20a, . . . , 20n are typically controlled by
one user. The typical client computer 20a includes, as for
any computer, a processor 22, a memory 24, and a display
26. The client computers 20 allow a user to view Web pages
16 by “downloading replica Web page files 40 to the client
computer 20a from the server computer 12a over commu
nication media 14. The Web page files 40 enable replication
of the Web page 16 on the client computer 20a. The
downloading function is specifically performed by a browser
program 28, which preferably includes browser program
software such as Netscape NavigatorTM or Microsoft Inter
net ExplorerTM. (Netscape NavigatorTM is a trademark of
Netscape Communications Corporation of Mountain View,
Calif., and Internet ExploreTM is a trademark of Microsoft
Corporation of Redmond, Wash.) These browser programs
include and/or permit the use of embedded interpretive
languages 30, Such as JavaM, that may execute programs
that are included in the Web page file 16.

10

15

25

30

35

40

45

50

55

60

65

4
The browser program 28 thus enables the user to create a

view of the Web page 16, such as in a window 34 on the
display 26. It should be understood that other windows 35
and other programs 36 may relate to other programs 31 that
the user is presently running on the processor 22. In order to
display the Web page 16, the browser program 28 typically
downloads the Web page files to its local memory 24, storing
it as a local replica 40. The Web page replica 40 includes
various portions such as a Hypertext Markup Language
(HTML) as well as other instructions for the Browser
program 28 to format the Web page information in the
window 34.
The Web page replica 40 also includes JavaTM code 44

that includes instructions to be run while the user computer
20a is displaying the Web page.
The display of the Web page replica 40 in the window 34

may include various regions such as a user input area 37
where the user enters addresses of Web pages that he or she
desires to view, and menus 38 for other actions associated
with operating the browser program 28 itself.
Of interest to the description of the present invention is a

Web page replica 40 that contains at least one advertisement
area 39. The advertisement 39 on the Web page replica 40
is typically created by the provider of a service or product
manufacturer. The advertisement 39 is typically used as an
enticement for the user to download other Web pages
specifically associated with the originator or author of the
advertisement 39.

In accordance with the invention, the JavaTM code 44
includes an applet program and data for tracking and logging
the activities of the user in memory 24 while the user is
viewing the Web page replica 40. The applet program 44
therefore permits the authors of the advertisement 39 to
better understand how the users interact with the Web page
advertisement in order to provide more effective advertising.
More specifically, the Web page replica 40 includes the

JavaTM code applet 44 that describes the particular attributes
of the advertisement 39. Once the Web page replica 40
begins to display, the applet 44 also begins to execute in
order to track and/or log user activities as they relate to
various parts or objects of the advertisement 39.

For example, the applet 44 may include information that
describes regions 46 of the advertisement 39, a list of visual
elements 48 associated with the advertisement 39, and/or
user activity definitions 50 that may take place within the
context of the advertisement 39. The regions 46 may define
areas within the advertisement 39, such as areas devoted to
text or graphics. The elements 48 within the advertisement
39 may include various graphical images. The elements 48
may also include user prompts such as buttons, menus, slide
bars, radio buttons, and the like.
The list of activity definitions 50 may include various

types of user input. The most important user input is
typically mouse position, as reflected by the position of a
cursor 33, but these may also include other user inputs such
as mouse clicks or keyboard inputs.

FIG. 2 is a flow chart of the operations performed by the
applet 44 in the process of tracking user interactions with the
advertisement 39. An initial state 100 is entered when the
applet is first started. This typically occurs when the user
requests the display of the Web page 16 and the replica 40
has been downloaded or has at least begun being down
loaded from the server 12a.

In the next state 101, the applet program 44 begins
execution on the client computer 20a. This is typically in the
context of an interpretative language such as the JavaTM
language executed within the browser 28. However, it

NETFLIX, INC. EXHIBIT 1002

US 7,310,609 B2
5

should be understood that the applet may be implemented in
other ways, as long as the applet 44 has access to the
appropriate user inputs and local memory 24 for the logging
of user activities with respect to the advertisement 39.

In the next state 102, the applet 44 establishes a local list
of elements and regions on the Web page replica 40 asso
ciated with the advertisement 39 that are of concern.
A next state 104 is then entered in which user activities

with respect to objects within the advertisement 39 may
begin to be tracked by logging information in local memory
locations 24 at the client 20. From this state 104, any number
of states 106 through 114 and/or state 118 may be next
entered for any given element 48.

For example, in state 106, the elapsed time that the
element 48 has been displayed on the page is tracked.

In state 108, the fact that the mouse hovered near an
element 48, i.e., the fact that the user moved the mouse
within a region 46 of the page associated with the element
48 but did not actually click on the element, is tracked.

In state 110, the fact that the user clicked on an element
48 is tracked. It should be noted that this may include the
tracking of one or more mouse clicks on one or more
elements 48 by making multiple entries in the log 60. Thus,
unlike the standard operation of an HTML hyperlink, a
single mouse click may not necessarily automatically lead to
the loading of the next Web page 16.

In state 112, the applet 44 tracks cursor 33 location at the
moment of a mouse click with respect to the element 48.

In another state 114, the applet 44 may adjust the time
frame associated with the particular action being logged. For
example, when the user initially views a Web page 40,
certain activities such as cursor 33 location maybe tracked in
short-time intervals such as microseconds. However, other
items such as the elapsed time an element 48 is displayed on
the page may be tracked in longer time intervals such as
seconds. Certain items such as cursor hover time may
initially be tracked in a microsecond time frame, and then,
depending upon the amount of time the element has been
displayed, will Switch to tracking a longer time interval,
Such as seconds.

In state 116, the fact of the user requesting a different Web
page is tracked.

It should be understood that, in states 106 through 114,
data associated with the various user activities is logged in
a portion of the memory 24 associated with maintaining an
activity log 60.

Eventually, a state 118 is reached in which the user
indicates that he or she wishes to leave the present page 40.
This event is typically associated with loading another page
in state 116 or may also include the closing of the browser
program window 34.

At certain times, state 120 is entered in which the activity
log 60 is sent from the local memory 24 by the applet 44
back to a server 12b. The server 12b is typically associated
with the advertiser, or an advertisement rating service. This
server 12b may or may not be the same server 12a from
which the Web page 46 was originally downloaded. The
applet 44 may then terminate.

In the preferred implementation of state 120, the activity
log 13 is sent to the server 12b via a “dummy” HTTP GET
message sent via a “back channel' to the server 12b at the
time that the user leaves the present page 40. In particular,
this back channel is a second network connection, different
from the network connection used to fetch the Web page and
download the applet in step 100. The dummy message is
encoded as an HTTP GET with interaction log data shared
in the GET message in Such a way as to appear to be part of

10

15

25

30

35

40

45

50

55

60

65

6
an extended address, for example. Thus, the browser pro
gram 28 does not need to perform any special functions or
otherwise be modified.

However, the interaction log data may also be sent at other
times. For example, while the advertisement is being dis
played, the applet may periodically open a back channel
connection and send a POST message to the server 12b.
Alternatively, certain events may trigger sending the logged
interaction data, Such as when the user clicks on a particular
part of the advertisement.
What is important is that the logged interaction data is

eventually flushed to the server 12b, so that the author of the
advertisement 39 may occasionally check on the collection
62 of activity logs stored at the server 12b and analyze the
data in order to determine the effectiveness of the adver
tisement 39.

FIG. 3 is a view of a Web page such as that produced by
a search engine such as Yahoo(R). The advertisement 39 is
typically displayed in a defined region on the Web page 40.
In this example, the effectiveness of the advertisement 39
associated with the advertiser who is in the running shoe
business is being tracked. In the example, the applet 44
tracks how long a user allows the mouse cursor 50 to hover
near one of the eight possible displayed selections for
running shoes. The applet 44 also tracks the position of the
mouse to determine which one or more of the running shoes
is selected by user-activated mouse clicks. This information
is then sent to the logging server 12b and is used prior to
loading the manufacturer's Web page. Thus, the relative
interest in a particular type of shoe may be gauged before the
advertiser's Web page is loaded or, indeed, a lack of interest,
in particular lead or "teaser' items, may be determined prior
to the user requesting that the manufacturer's Web page be
loaded.

It is now understood how the invention provides various
advantages over the prior art. In particular, the invention
includes an applet 44 that is downloaded together with a
Web page 40 (Web page files) capable of logging the user's
interactions with elements 48 on the page. The applet in
particular logs user interactions with the page 40 that
indicates user interest to an advertiser. By identifying
regions on the page and then tracking user activity and
relating it to the particular elements or regions on the page,
the advertiser may therefore more effectively evaluate the
effectiveness of particular objects in the advertising.
By collecting the interaction data locally and then sending

them to a server which logs data locally via a back channel,
the operation of the client computer or data stored thereon
need not be permanently modified.
By tracking multiple interactions before loading the

advertiser's own Web page, the advertiser may prequalify a
user and hence customize or tailor information to be dis
played. In turn, the advertiser may more effectively present
the information once the advertiser's Web page is requested
by the user.
The user may also be enticed to interact with a Web page

advertisement, thereby disclosing information about the
users interests, without their actually requesting the loading
of Web pages associated with the advertiser.

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims.

NETFLIX, INC. EXHIBIT 1002

US 7,310,609 B2
7

What is claimed is:
1. In a distributed computing system for displaying infor

mation, a method comprising the steps of:
displaying to a user a representation of an advertisement

in electronic form;
tracking user interaction with the advertisement;
logging the user interactions while the advertisement is

being displayed to the user, and
sending user interaction log data to a remote server,

whereby log data is analyzed to determine effectiveness of
the advertisement; and
whereby advertisement information to be loaded is custom
ized to the user based upon interest of the user determined
from the user interaction log data;
wherein the step of sending interaction log data additionally
comprises the steps of:

opening a connection to the remote server; and
sending a message to the remote server over the connec

tion, the message containing the user interaction log
data;

wherein the message is an HTTP GET message; and
wherein the user interaction log data is encoded as to appear
as part of an extended address field in the HTTP GET
message.

2. A method as in claim 1 wherein the interaction log data
is sent to the remote server when the display of the adver
tisement is terminated by the user.

3. A method as in claim 1 wherein the interaction log data
is sent to the remote server upon the occurrence of a user
interaction with the advertisement.

4. A method as in claim 1 wherein the interaction log data
is sent to the remote server periodically.

5. A method as in claim 4 wherein the periodicity of the
sending is variable.

6. A method as in claim 4 wherein the periodicity of the
sending is logarithmic.

7. A method as in claim 1 wherein the interaction log data
includes mouse position and time of mouse hovering over
advertisement.

8. A method as in claim 1 additionally comprising the step
of:

downloading the advertisement from a second server
different from the remote server.

9. The method as claimed in claim 1 wherein the step of
tracking user interaction with the advertisement is per
formed periodically.

10. A method as in claim 9 wherein the periodicity of the
tracking is variable.

11. A method as in claim 9 wherein the periodicity of the
tracking is logarithmic.

12. The method as claimed in claim 1 wherein the remote
server is a user interaction log aggregation device.

13. The method as claim in claim 1 whereby the logged
user interaction data is stored at a local client computer and
sent to a server other than the remote server which logs data
locally via a back channel, and the data stored on the client
computer is not permanently modified.

14. In a distributed computing system for displaying
information, a method comprising the steps of

displaying to a user a representation of a page in elec
tronic form, the page containing at least one advertise
ment composed of two or more regions, each region
containing a visual element of the advertisement;

tracking user micro-interactions with each of the elements
in the advertisement through the steps of:
maintaining a list of elements displayed in the adver

tisement;

10

15

25

30

35

40

45

50

55

60

65

8
determining when a screen pointer hover occurs within

a particular element of the advertisement, and the
screen pointer hover occurring without requiring a
user interaction on the element; and

creating a micro-interaction data record in response
thereto;

logging the micro-interaction data records while the
advertisement is being displayed to the user, and

sending the micro-interaction data records to a remote
server;

whereby the micro-interaction data records are ana
lyzed to determine effectiveness of the advertise
ment; and
whereby advertisement information to be loaded is

customized to the user based upon interest of the
user determined from the user micro-interaction
data records ;

wherein the step of sending micro-interaction data
records additionally comprises the steps of

opening a connection to the remote server, and
sending a message to the remote server over the con

nection, the message containing the micro-interac
tion data records;

wherein the message is an HTTP GET message; and
wherein the micro-interaction data records are encoded

as to appear as part of an extended address field in
the HTTP GET message.

15. A method as in claim 14 wherein the micro-interaction
data records are sent to the remote server when the display
of the advertisement is terminated by the user.

16. A method as in claim 14 wherein the micro-interaction
data records are sent to the remote server upon the occur
rence of a user interaction with the advertisement.

17. A method as in claim 14 wherein the micro-interaction
data records are sent to the remote server periodically.

18. A method as in claim 14 wherein the micro-interaction
data records include information with respect to Screen
pointer position within the element.

19. A method as in claim 18 wherein the micro-interaction
data records include information indicating a time sequence
of Screen pointer positions within the element.

20. A method as in claim 14 additionally comprising the
step of:

downloading the advertisement from a second server
different from the remote server.

21. In a distributed system for displaying information
content, a method comprising the steps of

displaying to a user a representation of the information
content in electronic form;

tracking user interaction with the information content;
logging the user interactions while the information con

tent is being displayed to the user, and
sending user interaction log data to a remote user inter

action log aggregation device;
whereby log data is analyzed to determine effectiveness of

the advertisement; and
whereby information content to be loaded is customized

to the user based upon interest of the user determined
from the user interaction log data;

wherein the step of sending interaction log data addition
ally comprises the steps of:
opening a connection to the remote server, and
sending a message to the remote server over the con

nection, the message containing the user interaction
log data;

wherein the message is an HTTP GET message; and

NETFLIX, INC. EXHIBIT 1002

US 7,310,609 B2

wherein the user interaction log data is encoded as to
appear as part of an extended address field in the
HTTP GET message.

22. In a distributed computing system for displaying
information, a method comprising the steps of

displaying to a user a representation of an advertisement
in electronic form, the advertisement comprising one or
more promotions available from an advertiser,

tracking user interaction with the advertisement including
interaction with the one or more promotions available
from the advertiser;

logging the user interactions while the advertisement is
being displayed to the user, and

sending user interaction log data to a remote server,
whereby the user interest in the one or more promotions

available from the advertiser is gauged prior to the
advertiser's Web page being loaded; and

whereby the advertisers information to be loaded is
customized to the user based upon the user's gauged
interest determined from the user interaction log data;

wherein the step of sending user interaction log data
additionally comprises the steps of:
opening a connection to the remote server, and
sending a message to the remote server over the con

nection, the message containing the user interaction
log data;

wherein the message is a HTTP GET message; and
wherein the user interaction log data is encoded as to

appear as part of an extended address field in the
HTTP GET message.

23. A method as in claim 22 wherein prior to the step of
sending user interaction log data to a remote server the user
interacts with the advertisement without requesting the
loading of Web pages associated with the advertiser.

24. A method as in claim 22 wherein the user interaction
log data sent to the server comprises information about the
users interest, and wherein the information about the user's
interest is obtained without the user requesting the loading
of an advertisement associated with the advertiser.

25. A method as in claim 22 whereby the log data allows
the advertiser to understand how one or more users interact
with the advertisement in order for the advertiser to further
provide effective advertising.

26. A method as in claim 22 whereby the log data is
analyzed to determine effectiveness of the advertisement.

27. The method as claimed in claim 22 wherein the
advertisement comprises regions, visual elements associated
with the advertisement, and user activity definitions.

28. The method as claimed in claim 27 wherein the user
activity definitions are defined within the advertisements
COInteXt.

29. The method as claimed in claim 27 wherein the
regions define areas within the advertisement including
areas within the advertisement devoted to text and areas
within the advertisement related to graphics.

30. The method as claimed in claim 27 wherein the visual
elements within the advertisement comprise one or more
graphical images, and one or more user prompts.

31. The method as claimed in claim 27 wherein the list of
activity definitions comprises one or more types of user
inputs.

32. The method as claimed in claim 31 wherein the one or
more types of user inputs comprise mouse position reflected
by cursor position.

10

15

25

30

35

40

45

50

55

60

10
33. A computer program for use in a distributed comput

ing system on a computer readable medium, said computer
program comprising:

program step to display to a user a representation of an
advertisement in electronic form;

program step to track user interaction with the advertise
ment;

program step to log the user interactions while the adver
tisement is being displayed to the user, and

program step to send user interaction log data to a remote
server;

said computer program further comprising:
a program step for Subsequently analyzing log data to

determine effectiveness of the advertisement;
a program step for customizing advertisement informa

tion to be loaded based upon interest of the user
determined from the user interaction log data;

wherein the program step to send interaction log data
additionally comprises:
a program step for opening a connection to the remote

server; and
a program step for sending a message to the remote

server over the connection, the message containing
the user interaction log data;
wherein the message is a HTTP GET message; and

a program step for encoding the user interaction log
data to appear as part of an extended address field in
the HTTP GET message.

34. A computer program for use in a distributed comput
ing system on a computer readable medium, said computer
program comprising:

program step to display to a user a representation of an
advertisement in electronic form, the advertisement
comprising one or more promotions available from an
advertiser;

program step to track user interaction with the advertise
ment including interaction with the one or more pro
motions available from the advertiser;

program step to log the user interactions while the adver
tisement is being displayed to the user, and

program step to send user interaction log data to a remote
server;

said computer program further comprising:
a program step whereby the user interest in the one or

more promotions available from the advertiser is
gauged prior to the advertiser's Web page being loaded;
and

a program step whereby the advertiser's information to be
loaded is customized to the user based upon interest of
the user determined from the user interaction log data;

wherein the program step to send user interaction log data
additionally comprises:
a program step for opening a connection to the remote

server; and
a program step for sending a message to the remote

server over the connection, the message containing
the user interaction log data;
wherein the message is a HTTP GET message; and

a program step for encoding the user interaction log
data to appear as part of an extended address field in
the HTTP GET message.

NETFLIX, INC. EXHIBIT 1002

