Finger, L. W. (1972). Private communication.
Finney, J. J., Kumbasar, I., Konnert, J. A. \& Clark, J. R. (1970). Amer. Min. 55, 716-728.

Foit, F. F. Jr, Phillips, M. W. \& Gibbs, G. V. (1973). Amer. Min. 58, 909-914.
Ghose, S. \& Ulbrich, H. H. (1972). Geol. Soc. Amer. Abs. Prog. 4, 516.
Ghose, S. \& Ulbrich, H. H. (1973). Naturwissenschaften, 60, 349-350.
Ito, T. \& Mori, H. (1953). Acta Cryst. 6, 24-32.
Ito, T. \& Sadanaga, R. (1951). Acta Cryst. 4, 385-390.
Johansson, G. (1959). Acta Cryst. 12, 522-525.

Milton, C., Axelrod, J. M. \& Grimaldi, F. S. (1955). Geol. Soc. Amer. Bull. 66, 1597.
Milton, C. \& Pabst, A. (1974). J. Res. U. S. Geol. Surv. 2, 213-218.
Morgan, V. \& Erd, R. C. (1969). Calif. Div. Mines Geol. Miner. Inf. Serv. 22, 143-153, 165-172.
$P_{\text {ant, }}$ A. K. \& Cruickshank, D. W. J. (1967). Z. Kristallogr. 125, 286-297.
Phillips, M. W., Gibbs, G. V. \& Ribbe, P. H. (1974). Amer. Min. 59, 79-85.
Ulbrich, H. H. \& Ghose, S. (1973). Schweiz. Mineral. Petrogr. Mitt. 53, 199-202.

Acta Cryst. (1976). B32, 832

The Crystal Structure of Bisguanidinium Hydrogen Phosphate Monohydrate

By J. M. Adams* and R. W. H. Small
Chemistry Department, The University, Lancaster, England

(Received 12 July 1975; accepted 16 July 1975)

Abstract

The structure of $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2} \mathrm{HPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ has been determined from counter intensities. The space group is $P \overline{4} 2_{1} c$ with $a=16.843$ (3), $c=7.251$ (1) $\AA, Z=8$. The guanidinium ions are effectively planar with $\mathrm{C}-\mathrm{N}$ ranging from 1.315 to $1.335 \AA$. The phosphate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is short at 2.568 (7) \AA. Thirteen of the fifteen H atoms are involved in hydrogen bonding.

Introduction

This compound is of interest since it is likely to contain multiple hydrogen bonds to O , the ratio of possible hydrogen-bonding H to O atoms being $3: 1$. It was also possible that a precise study might throw some light on the apparently significant lengthening of one of the $\mathrm{C}-\mathrm{N}$ bonds in guanidinium carbonate (Adams \& Small, 1974). The crystal data have been given by Adams \& Pritchard (1975).

Experimental

Crystals were prepared by addition of guanidinium carbonate to orthophosphoric acid until effervescence ceased, followed by slow evaporation, whereupon hard colourless needles of square cross-section were formed. Photographs were used to obtain the space group, and cell dimensions (Table 1) in satisfactory agreement with those of Adams \& Pritchard were obtained by a least-squares procedure based on θ values measured on the diffractometer (Small \& Travers, 1961).

[^0]Table 1. Crystal data
Space group $P \overline{4} 2_{1} c ; a=16 \cdot 843(3), c=7 \cdot 251(1) \AA$
$(\mathrm{Cu} K \alpha, \lambda=1.5418 \AA) \quad 7=8: d_{-}=1.51 . d_{n}=1.52 \mathrm{~g} \mathrm{~cm}{ }^{-3}$

Determination of the structure

Initially the space group was mis-assigned as $P 4_{2} 2_{1} 2$ since the conditions noted were: $h 00, h=2 n ; 00 l, l=2 n$. The intensities of the 1365 unique reflexions occurring at $\theta<82 \cdot 1^{\circ}$ with $\mathrm{Cu} K \alpha$ radiation ($\bar{\lambda}=1.5418 \AA$) were collected on a diffractometer at room temperature. Intensities were corrected for Lorentz and polarization effects. A Wilson plot gave the relatively low overall temperature factor of $1 \cdot 5 \AA^{2}$. E values were obtained for all reflexions.

MULTAN (Germain, Main \& Woolfson, 1970) was used to solve the structure and since the version available at the time of the investigation was not applicable to symmetries higher than orthorhombic, it was necessary to treat the crystal as orthorhombic. The equivalent reflexions in one octant were generated and the 227 reflexions having $E>1.6$ were used on the basis of space group $P 2_{1} 2_{1} 2$. An E map computed with the phases from the set with the highest figure of merit revealed a chemically reasonable set of peaks.

Inspection of the coordinates of the two equivalent sets of atoms revealed that (110) was a glide plane, a fact inconsistent with $P 4_{2} 2_{1} 2$. A shift of origin by $\mathbf{a} / 2+\mathbf{c} / 4$ resulted in symmetry consistent with $P \overline{4} 2_{1} c$ which has conditions, $h 00, h=2 n ; h h l, l=2 n$; i.e. as for $P 4_{2} 2_{1} 2$ but with inclusion of the more general second condition. The intensities of the $h h l$ reflexions were in almost all cases <3 standard deviations of background intensitv. These reflexions were removed and the posi-
tions of the atoms converted to those for $P \overline{4} 2_{1} c$ and averaged. An absorption correction was computed with $A B S C O R$ in the X-RAY 63 system on the Chilton ATLAS.

Refinement was carried out with $F M L S$ of Bracher (1967). The 19 reflexions for which the intensity was less than one e.s.d. of the background were left out of the refinement and calculation of R. Ten reflexions considered to be suffering from extinction were also left out of the refinement. The H atoms of the guanidinium ions were found from a difference synthesis although it did not prove possible to locate the H atom of the HPO_{4}^{2-} group or those of the water molecule. The H atoms were refined isotropically throughout.

In an attempt to correct for extinction in a systematic way the method of Larson (1970) was used. The output from a structure factor calculation was used to obtain

Table 2. Fractional atomic coordinates and their standard deviations

	x	y	z
P	$0 \cdot 87102$ (7)	$0 \cdot 23599$ (7)	$0 \cdot 20606$ (19)
$\mathrm{O}(1)$	0.9352 (2)	$0 \cdot 1726$ (2)	$0 \cdot 1961$ (7)
O(2)	0.9032 (2)	$0 \cdot 3189$ (2)	$0 \cdot 1908$ (7)
$\mathrm{O}(3)$	0.8163 (3)	$0 \cdot 2191$ (3)	0.0282 (5)
$\mathrm{O}(4)$	0.8192 (2)	$0 \cdot 2222$ (3)	0.3747 (5)
$\mathrm{O}(5)$	0.9611 (3)	$0 \cdot 3603$ (3)	$0 \cdot 8504$ (7)
C(1)	0.6073 (3)	$0 \cdot 1479$ (3)	$0 \cdot 2837$ (9)
N(1)	$0 \cdot 5505$ (3)	$0 \cdot 1032$ (3)	$0 \cdot 2150$ (9)
N(2)	0.5926 (3)	0.2228 (3)	$0 \cdot 3334$ (8)
N(3)	$0 \cdot 6808$ (3)	$0 \cdot 1198$ (3)	$0 \cdot 2960$ (9)
C(2)	0.9826 (3)	$0 \cdot 1559$ (3)	0.6967 (9)
N(4)	0.9071 (3)	$0 \cdot 1789$ (3)	0.6974 (8)
N(5)	1.0187 (3)	$0 \cdot 1384$ (4)	$0 \cdot 8524$ (7)
N(6)	1.0209 (3)	$0 \cdot 1477$ (4)	$0 \cdot 5389$ (7)
H(1)	$0 \cdot 562$ (6)	0.057 (7)	$0 \cdot 119$ (14)
H(2)	$0 \cdot 505$ (7)	$0 \cdot 120$ (6)	$0 \cdot 214$ (17)
H(3)	$0 \cdot 555$ (5)	0.234 (5)	$0 \cdot 349$ (12)
H(4)	$0 \cdot 640$ (5)	0.261 (5)	$0 \cdot 330$ (13)
H(5)	0.733 (5)	$0 \cdot 163$ (5)	$0 \cdot 266$ (14)
H(6)	0.780 (4)	$0 \cdot 060$ (4)	$0 \cdot 258$ (10)
H(7)	0.887 (8)	$0 \cdot 204$ (7)	$0 \cdot 541$ (18)
H(8)	$0 \cdot 880$ (4)	$0 \cdot 188$ (4)	0.799 (11)
H(9)	0.985 (6)	$0 \cdot 126$ (6)	$0 \cdot 1003$ (14)
H(10)	1.061 (5)	$0 \cdot 100$ (5)	$0 \cdot 802$ (13)
H(11)	1.093 (6)	$0 \cdot 128$ (6)	0.618 (15)
H(12)	1.011 (6)	$0 \cdot 157$ (5)	$0 \cdot 432$ (12)

an isotropic extinction parameter which was then used to correct the $\left|F_{o}\right|$ values. One cycle of $F M L S$ was performed and the procedure repeated. Unit weights were used, and on the last cycle the parameter shifts were of the order of the appropriate standard deviations. The final R was $0 \cdot 066$. Scattering factors were taken from International Tables for X-ray Crystallography (1962).

Final atomic and thermal parameters are given in Tables 2, 3 and 4.*

Table 4. Isotropic temperature factors for the hydrogen atoms $\left(\AA^{2}\right)$

$\mathrm{H}(1)$	$5.6(2.6)$	$\mathrm{H}(5)$	$3.8(2.3)$	$\mathrm{H}(9)$	$4.6(2.6)$
$\mathrm{H}(2)$	$7.1(3.1)$	$\mathrm{H}(6)$	$1.0(1.5)$	$\mathrm{H}(10)$	$2.4(1.8)$
$\mathrm{H}(3)$	$2.4(1.8)$	$\mathrm{H}(7)$	$7.3(3.7)$	$\mathrm{H}(11)$	$4.7(2.6)$
$\mathrm{H}(4)$	$3.4(2.1)$	$\mathrm{H}(8)$	$1.0(1.4)$	$\mathrm{H}(12)$	$3.1(2.1)$

Description and discussion of the structure

Bond lengths and angles are in Table 5, least-squares planes in Table 6 and details of the hydrogen bonding in Table 7. The guanidinium ions are planar within experimental error; the large standard deviations of the H atoms preclude any detailed discussion of them. The $\mathrm{C}-\mathrm{N}$ lengths are similar to those found in other guanidinium or substituted guanidinium salts [see e.g. Adams \& Small (1974), Cotton, Day, Hazen \& Larsen (1973), Cotton, Day, Hazen, Larsen \& Wong (1974)]. The monohydrogen phosphate ions show one relatively long $\mathrm{P}-\mathrm{O}$ distance for the $\mathrm{P}-\mathrm{O}-\mathrm{H}$ bond and three shorter distances for the remaining $\mathrm{P}-\mathrm{O}$ bonds. This contrasts with the case of bis(methylguanidinium) hydrogen phosphate (Cotton et al., 1974) where there are two long and two short $\mathrm{P}-\mathrm{O}$ bonds, a fact attributed to extensive hydrogen-bonding interactions influencing the electronic distribution of the phosphate.

[^1]Table 3. Temperature factors, with standard deviations for the 'heavy' atoms

$T=\exp \left[-10^{-5}\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+h k b_{12}+h l b_{13}+k l b_{23}\right)\right]$						
	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
\mathbf{P}	$85(4)$	$102(4)$	$514(19)$	$-6(6)$	$56(19)$	$-57(18)$
$\mathrm{O}(1)$	$155(12)$	$221(14)$	$773(67)$	$156(21)$	$50(60)$	$-97(65)$
$\mathrm{O}(2)$	$225(14)$	$152(12)$	$1084(79)$	$-166(22)$	$59(68)$	$-88(63)$
$\mathrm{O}(3)$	$184(14)$	$161(14)$	$578(66)$	$25(25)$	$-95(54)$	$-71(53)$
$\mathrm{O}(4)$	$143(14)$	$218(15)$	$693(67)$	$-20(26)$	$239(54)$	$-61(58)$
$\mathrm{O}(5)$	$180(15)$	$333(19)$	$1654(101)$	$-37(28)$	$31(67)$	$461(78)$
$\mathrm{C}(1)$	$170(17)$	$158(16)$	$915(97)$	$1(27)$	$254(83)$	$59(82)$
$\mathrm{N}(1)$	$148(15)$	$233(18)$	$1898(118)$	$-44(26)$	$146(86)$	$-328(95)$
$\mathrm{N}(2)$	$162(16)$	$219(17)$	$1610(117)$	$95(27)$	$-67(75)$	$-469(81)$
$\mathrm{N}(3)$	$159(15)$	$212(17)$	$1810(115)$	$54(27)$	$99(90)$	$60(96)$
$\mathrm{C}(2)$	$162(18)$	$165(17)$	$868(93)$	$13(27)$	$24(82)$	$-236(85)$
$\mathrm{N}(4)$	$166(15)$	$295(18)$	$970(86)$	$62(28)$	$-95(79)$	$-263(91)$
$\mathrm{N}(5)$	$211(19)$	$358(23)$	$799(88)$	$132(35)$	$-144(67)$	$-169(80)$

The structure [Fig. 1(a)-(c)] consists of a threedimensional hydrogen-bonding network in which 13 of the 15 H atoms are used. The phosphate groups
related by the c glide are joined by hydrogen bonds from the water oxygen, $O(5)$. There are also relatively short hydrogen bonds, $\mathrm{O}(3)-\mathrm{H} \cdots \mathrm{O}(4)$, between them

Fig. 1. (a) Projection onto (110) of the hydrogen-bonded phosphate chain. Hydrogen bonds involving water molecules and HPO_{4}^{2-} ions are shown. (b) Projection on to (110) of the hydrogen bonding to the phosphate chains by the guanidinium ion $\mathrm{C}(2), \mathrm{N}(4), \mathrm{N}(5), \mathrm{N}(6)$. (c) Projection of the structure on to (001) with hydrogen bonds involving the $\mathrm{C}(1), \mathrm{N}(1), \mathrm{N}(2)$,

Fig. 2. Schematic drawing of hydrogen-bonding geometry. (i) $\mathrm{N}(2)-\mathrm{H}(4) \cdots \mathrm{O}(3), \mathrm{N}(3)-\mathrm{H}(5) \cdots \mathrm{O}(4)$. (ii) $\mathrm{N}(4)-\mathrm{H}(8) \cdots$ $\mathrm{O}(3), \mathrm{N}(5)-\mathrm{H}(9) \cdots \mathrm{O}(1)$. (iii) $\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(5), \mathrm{N}(3) \cdots$ $\mathrm{H}(6) \cdots \mathrm{O}(5)$. (iv) $\mathrm{N}(4)-\mathrm{H}(8) \cdots \mathrm{O}(3), \mathrm{N}(4)-\mathrm{H}(7) \cdots \mathrm{O}(4)$.

Table 5. Bond lengths and angles

$\mathrm{P}-\mathrm{O}(1)$	1.521 (5) \AA	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$113.1(3)^{\circ}$
$\mathrm{P}-\mathrm{O}(2)$	1.502 (5)	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$104 \cdot 2$ (3)
$\mathrm{P}-\mathrm{O}(3)$	$1 \cdot 610$ (5)	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$	$109 \cdot 8$ (3)
$\mathrm{P}-\mathrm{O}(4)$	1.520 (5)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	108.2 (3)
$\mathrm{C}(1)-\mathrm{N}(1)$	$1 \cdot 315$ (8)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$	$114 \cdot 1$ (3)
$\mathrm{C}(1)-\mathrm{N}(2)$	$1 \cdot 335$ (8)	$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	$106 \cdot 8$ (3)
$\mathrm{C}(1)-\mathrm{N}(3)$	1.329 (8)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$120 \cdot 5$ (5)
C(2)-N(4)	$1 \cdot 330$ (9)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(3)$	$120 \cdot 0$ (5)
$\mathrm{C}(2)-\mathrm{N}(5)$	1.315 (9)	$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(3)$	119.4 (5)
$\mathrm{C}(2)-\mathrm{N}(6)$	$1 \cdot 320$ (9)	$\mathrm{N}(4)-\mathrm{C}(2)-\mathrm{N}(5)$	$120 \cdot 2$ (6)
$\mathrm{N}(1)-\mathrm{H}(1)$	1.07 (11)	$\mathrm{N}(4)-\mathrm{C}(2)-\mathrm{N}(6)$	$120 \cdot 0$ (6)
$\mathrm{N}(1)-\mathrm{H}(2)$	0.82 (10)	$\mathrm{N}(5)-\mathrm{C}(2)-\mathrm{N}(6)$	119.7 (6)
$\mathrm{N}(2)-\mathrm{H}(3)$	0.66 (11)	$\mathrm{H}(1)-\mathrm{N}(1)-\mathrm{H}(2)$	115 (9)
$\mathrm{N}(2)-\mathrm{H}(4)$	1.02 (8)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	122 (6)
$\mathrm{N}(3)-\mathrm{H}(5)$	$1 \cdot 16$ (9)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(2)$	119 (7)
$\mathrm{N}(3)-\mathrm{H}(6)$	1.05 (8)	$\mathrm{H}(3)-\mathrm{N}(2)-\mathrm{H}(4)$	124 (10)
$\mathrm{N}(4)-\mathrm{H}(7)$	$1 \cdot 26$ (14)	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{H}(3)$	119 (9)
$\mathrm{N}(4)-\mathrm{H}(8)$	$0 \cdot 88$ (9)	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{H}(4)$	116 (4)
$\mathrm{N}(5)-\mathbf{H}(9)$	$1 \cdot 25$ (11)	$\mathrm{H}(5)-\mathrm{N}(3)-\mathrm{H}(6)$	124 (7)
$\mathrm{N}(5)-\mathrm{H}(10)$	$1 \cdot 03$ (14)	$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{H}(5)$	118 (5)
$\mathrm{N}(6)-\mathrm{H}(11)$	1.38 (10)	$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{H}(6)$	109 (5)
$\mathrm{N}(6)-\mathrm{H}(12)$	$0 \cdot 86$ (9)	$\mathrm{H}(7)-\mathrm{N}(4)-\mathrm{H}(8)$	123 (8)
		$\mathrm{C}(2)-\mathrm{N}(4)-\mathrm{H}(7)$	111 (6)
		$\mathrm{C}(2)-\mathrm{N}(4)-\mathrm{H}(8)$	124 (6)
		$\mathrm{H}(9)-\mathrm{N}(5)-\mathrm{H}(10)$	121 (9)
		$\mathrm{C}(2)-\mathrm{N}(5)-\mathrm{H}(9)$	125 (5)
		$\mathrm{C}(2)-\mathrm{N}(5)-\mathrm{H}(10)$	99 (8)
		$\mathrm{H}(11)-\mathrm{N}(6)-\mathrm{H}(12)$	139 (8)
		$\mathrm{C}(2)-\mathrm{N}(6)-\mathrm{H}(11)$	95 (4)
		$\mathrm{C}(2)-\mathrm{N}(6)-\mathrm{H}(12)$	125 (6)

of length similar to those found in orthophosphoric acid (Furberg, 1955). The chain of glide-related phosphate ions is also linked up with other chains by hydrogen bonds involving bridging guanidinium ions. The water oxygen atom, $\mathrm{O}(5)$, accepts two hydrogen bonds, from $\mathrm{N}(1)-\mathrm{H}(1)$ and $\mathrm{N}(3)-\mathrm{H}(6) . \mathrm{O}(3)$ also accepts two hydrogen bonds, but $\mathrm{O}(1), \mathrm{O}(2)$ and $\mathrm{O}(4)$ each accept three hydrogen bonds. $\mathrm{H}(3)$ and $\mathrm{H}(11)$ bonded to $\mathrm{N}(2)$ and $N(6)$ respectively are not involved in hydrogen bonding. The variety of different hydrogen-bonding geometries is schematized in Fig. 2.

Table 6. Deviations of atoms from the least-squares planes (Å)
(a) Plane through $\mathrm{C}(1), \mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3)$

$$
\begin{array}{lcc}
-0.2065 x-0.3214 y+0.9242 z= & -1.0276 \\
\mathrm{C}(1) & 0.016 & \mathrm{~N}(2) \\
\mathrm{N}(1) & -0.005 & \mathrm{~N}(3) \\
-0.005 \\
\end{array}
$$

(b) Plane through $\mathrm{C}(2), \mathrm{N}(4), \mathrm{N}(5), \mathrm{N}(6)$

$0.3025 x+0.9506 y+0.0703 z$	$=7.8441$		
$\mathrm{C}(2)$	0.012	$\mathrm{~N}(5)$	-0.004
$\mathrm{~N}(4)$	-0.004	$\mathrm{~N}(6)$	-0.004

Table 7. Hydrogen-bonding geometry
(a) Distances (\AA)

We thank the Science Research Council for the provision of a maintenance grant for one of us (JMA).

References

Adams, J. M. \& Pritchard, R. G. (1975). J. Appl. Cryst. 8, 382-395.
Adams, J. M. \& Small, R. W. H. (1974). Acta Cryst. B30, 2191-2193.
Bracher, B. H. (1967). UKAEA Research Report AERER5478.
Cotton, F. A., Day, V. W., Hazen, E. E. Jr \& Larsen, S. (1973). J. Amer. Chem. Soc. 95, 4834-4840.

Cotton, F. A., Day, V. W., Hazen, E. E. Jr, Larsen, S. \& Wong, S. T. K. (1974). J. Amer. Chem. Soc. 96, 44714478.

Furberg, S. (1955). Acta Chem. Scand. 9, 1557-1566.
Germain, G., Main, P. \& Woolfson, M. M. (1970). Acta Cryst. B26, 274-285.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Larson, A. C. (1970). Crystallographic Computing, pp. 291-294. Copenhagen: Munksgaard.
Small, R. W. H. \& Travers, S. (1961). J. Sci. Instrum. 38, 205-206.

[^0]: * Present address: Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Wales.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31272 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 1 NZ, England.

