

FORMULATION DEVELOPMENT MEMORANDUM

To: Conrad Winters, Robert Reed

From: Saurabh Palkar and Ernestina Luna

Date: 31 AUG 2005

Subject: L-000224715 (MK-0431) Preliminary Market Formulation Development Report

Contributors:

Formulation Design	Solids Development	PAC
Saurabh Palkar	Jeff Givand	Ernestina Luna
Jim Ney	Robert Meyer	Rebecca Evans
Yun Liu	Brad Holstine	Leonardo Allain
Laura Artino	Ed Smith	Chris John
Parminder Sidhu	Michelle Kenning	Yanning Chen
Honggang Zhu	Larry Rosen	Elikem Gbeddy
Tom Gandek	-	Betsy Powlus
Patricia Hurter		Melissa Drexel
		Lea Janowicz
MCTA	<u>PBRS</u>	<u>Biopharm. Chem.</u>
Dina Zhang	Lei Wang	Kari Lynn
_	Leigh Shultz	-
	Tim Rhodes	
Compaction Simulator		

Feng Li Steve Galen

Summary:

DOCKE

This report describes the design and development of the preliminary market formulation for L-000224715 (MK-0431). First, the properties of the bulk drug significant for formulation design are discussed. This is followed by a detailed account of the Phase IIB/III formulation design that includes selection of the excipients, development of direct compression and roller compaction processes and stability of these formulations.

CC: Dept. 854, Suhas Shelukar, Leyna Mulholland, ChrisAnne Santangini, Laman Alani, Scott Reynolds, Jim Zega, Dominic Ip, Bob Reed, Dave Storey, Sam Mclintock, David Toledo, Doug Mendenhall

Table of Contents

		Page
1.0	Introduction	4
2.0	Significant bulk drug properties for formulation design	4
	Processing attributes of the monohydrate form	5
	Comparison of anhydrous and monohydrate forms	6
2.3	Excipient compatibility (anhydrous API)	6
3.0	Direct compression (DC) process Development	8
3.1	DC process development based on the anhydrous API	8
	3.1.1 Mini-formulation Development	8
	3.1.2 Small scale experiments	10
	3.1.3 Selection of the excipient grades for the Phase IIB formulation	11
	3.1.4 Optimization of disintegrant/lubricant levels	12
	3.1.5 Clinical Manufacture to support Phase II trials	15
	3.1.6 Sticking issues during compression	16
	3.1.7 Small Scale Sticking Test Development	17
	3.1.8 Remedies to alleviate sticking during compression	19
	3.1.8.1 Use of alternate filler in place of mannitol	19
	3.1.8.2 API Prelubing	20
	3.1.8.3 Evaluation of glidant, anti-adherent and filler ratio	21
	3.1.9 Selection of Monohydrate API for Development	24
3.2	DC process development based on the monohydrate API	27
	3.2.1 Evaluation of a lubricant pair to alleviate sticking	27
	3.2.2 Effect of Precompression during Tableting	28
	3.2.3 Effect of API particle size on hardness and sticking	29
	3.2.4 Re-evaluation of mannitol as filler	31
	3.2.5 API stress experiments/processing window	32
	3.2.5.1 Influence of the API PSD changes on the DC formulations	32
	3.2.5.2 Tool damage during the compression of	35
	DC/A-Tab batches	
	3.2.5.3 Segregation evaluation of the DC formulation	36
	3.2.6 Pre-lubrication with single lubricants	36
	3.2.6.1 Magnesium stearate	36
	3.2.6.2 Sodium stearyl fumarate	38
4.0	Roller Compaction (RC) Process Development	40
4.1	RC development for the anhydrous API	40
	4.1.1 RC feasibility with mini formulations	40
	4.1.2 RC small scale (500g) experiments	44
4.2	Monohydrate API RC development	46

	4.2.1	Use of Dicalcium phosphate powder and dry binders to improve tablet hardness	46
	4.2.2	Processability at 5-kg scale	47
		Re-evaluation of mannitol as filler	48
5.0	Stabili	tv	49
		idation chemistry	49
		s conditions for rapid screening	50
•	5.2 Suess		50
		Formaldehyde stress experiment	50 52
4		ulation composition	52
•		API selection: anhydrous vs. monohydrate	52 52
		Excipient selection	55
		3.2.1 Filler evaluation	55
	5.2	3.2.2 Lubricant selection	62
		8.2.3 Coating selection	64
		Residual formaldehyde	65
4		facturing process – RC vs. DC	65
•		Blue color investigation	68
4		term stability	68
•		Microenvironment pH and API sensitivity	68
		RH sensitivity	69
4	5.6 Disso	lution Performance	71
	5.7 Sumn		75
6.0	Final f	formulation/process selection	75
(press runs for the lead DC and RC formulations	76
		ation of the effect of Cab-O-Sil on formulation performance	78
		formulation composition	82
		diagram for the final process	83
	6.5 Ratio	nale for the final formulation composition and ss selection	84
7.0	Refere	nces	86
App	endix A:	Structure of L-000224715 and Major Degradation Pathways	87

1.0 Introduction:

L-000224715 is a DPP-IV (dipeptidyl-peptidase IV) inhibitor for the treatment of Type 2 diabetes. L-000224715 was approved as a PCC in January 2002 and selected as the lead DPP-IV inhibitor for development by the DPIV EDT. The compound was assigned MK #0431 after the efficacy was demonstrated in Phase Ib and Phase II trials. The Phase III trial for this program was initiated in June 2004.

Program timeline

DOCKE

PCC Approval	Jan. 2002
Phase I FPI	Jul. 2002
Biocomparison study	Nov. 2002
(Capsule vs. tablet)	
Phase IIB FPI	May 2003
PCS initiation	Sep. 2003
Formulation/process selection	Oct. 2003
FSS/biobatch initiation	Apr. 2004
Phase III FPI	Jun. 2004
Earliest WMA filing	Dec. 2005

For the phase I clinical trials of this program HPMC capsules filled with the neat drug were used. After Phase I a tablet formulation was developed. A Direct compression (DC) process was developed for this formulation and roller compaction (RC) was evaluated as a back-up. This report describes the experimental work (formulation/process development and stability analysis) leading to the preliminary market formulation composition and the manufacturing process selected for this compound.

2.0 Significant Bulk Drug Properties for Formulation Design:

The chemical and physical properties of L-000224715 relevant to formulation design are briefly described below. (See references 1 and 2 for complete details of the chemical and physical properties of this compound)

- Structure of the parent compound and major degradation products (See Appendix A. L-000224715 and Major Degradation Products).
- 2) The final drug product formulation is based on the monohydrate form of the API (referred to as L-000224715-010X), the phosphate salt of MK-0431 (referred to as L-000224715-006F) has four known crystalline anhydrous polymorphs (denoted as Form I, Form II, Form III, and Form IV) and various crystalline, non-stoichiometric solvates. Form I has a monotropic relationship to Form II and Form IV, where Form I is the most thermodynamically stable, anhydrous crystalline phase at all temperatures. Form I and Form III have an enantiotropic relationship with a transition temperature of 34°C as determined by solubility of the pure phases at various temperatures in water. Form I is the thermodynamically stable

crystalline phase at temperatures above 34°C, and Form III is the

thermodynamically stable phase at temperatures below 34°C. All anhydrous and solvated crystalline phases can be converted to the crystalline monohydrate upon slurring in water or solvents with a high water activity.

- 3) The equilibrium solubility of the monohydrate form in water was found to be 68.85 mg/g at 24.5°C
- 4) The available stability data indicate that the monohydrate form is stable when stored at 30°C/65% RH for 9 months and 40°C/75% RH conditions for 6 months.

2.1 Processing attributes of the monohydrate form:

- 1. Pressure Effect: There is no form conversion upon compression as characterized by XRPD and SS-NMR
- 2. Processing Effect (Blending): no formulation conversion or particle size breakage when blended in V-shell, Turbula or Bohle blenders
- 3. Solvent Effect:
- a) From water solution: amorphous form
- b) From a suspension:
 - Organic Solvents: Monohydrate -----> Solvate/Anhydrate
 - Water: Monohydrate -----> No Form Change
 - IPA/Water (95/5): Monohydrate -----> No Form Change

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.