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In these two books, we shall study three areas of statistical theory, which
; ; we have labeled detection theory, estimation theory, and modulation
7 Discussion 623 theory. The goal is to develop these theories in a common mathematical
framework and to demonstrate how they can be used to solve a wealth of
7.1 Summary 623 practical problems in many diverse physical situations.
7.2 Preview of Part II 625 In this chapter we present three outlines of the material. The first is a
7.3 Unexplored Issues 627 topical outline in which we develop a qualitative understanding of the three
References 629 areas by examining some typical problems of interest. The second is a
logical outline in which we explore the various methods of attacking the
problems. The third is a chronological outline in which we explain the
Appendix: A Typical Course Outline 635 structure of the books.
Glossary 671
Author Index 683 1.1 TOPICAL OUTLINE
Subject Index 687

An easy way to explain what is meant by detection theory is to examine
several physical situations that lead to detection theory problems.

A simple digital communication system is shown in Fig. 1.1. The source
puts out a binary digit every T' seconds. Our object is to transmit this
sequence of digits to some other location. The channel available for trans-
‘mitting the sequence depends on the particular situation. Typically, it
could be a telephone line, a radio link, or an acoustical channel. For

. Digital . e Signal chandl r(t)
r ——m >
b sequence i sequence s
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Fig. 1.1 Digital communication system.




2 1.1 Topical Outline

purposes of illustration, we shall consider a radio link. In order to transmit
the information, we must put it into a form suitable for propagating over
the channel. A straightforward method would be to build a device that
generates a sine wave,

§;(t) = sin w;t, ()

for T seconds if the source generated a “one” in the preceding interval,
and a sine wave of a different frequency,

So(t) = sin ewqt, (2)

for T seconds if the source generated a “zero” in the preceding interval.
The frequencies are chosen so that the signals so(¢) and 51(¢) will propagate
over the particular radio link of concern. The output of the device is fed
into an antenna and transmitted over the channel. Typical source and
transmitted signal sequences are shown in Fig. 1.2. In the simplest kind of
channel the signal sequence arrives at the receiving antenna attenuated but
essentially undistorted. To process the received signal we pass it through
the antenna and some stages of rf-amplification, in the course of which a
thermal noise n(r) is added to the message sequence. Thus in any 7-second
interval we have available a waveform r(r) in which

r(t) = si(t) + n(1), 0<t<T, 3)
if 5,(¢) was transmitted, and
r(t) = so(2) + (1), 0<t=<T, 4

if so(¢) was transmitted, We are now faced with the problem of deciding
which of the two possible signals was transmitted. We label the device that
does this a decision device. It is simply a processor that observes r(z) and
guesses whether s,(¢) or so(¢) was sent according to some set of rules. This
is equivalent to guessing what the source output was in the preceding
interval. We refer to designing and evaluating the processor as a detection

sin wit  sinwgt  sin wot  sin wyt
- = < o

e | RAAAA WY

R i — et e e
T i T 3 T A r T

Source output Transmitted sequence

Fig. 1.2 Typical sequences.

Detection Theory 3
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sin (wit + 61’)

Fig. 1.3 Sequence with phase shifts.

theory problem. In this particular case the only possible source of error in
making a decision is the additive noise. If it were not present, the input
would be completely known and we could make decisions without errors.
We denote this type of problem as the known signal in noise problem. It
corresponds to the lowest level (i.e., simplest) of the detection problems of
interest.

An example of the next level of detection problem is shown in Fig. 1.3.
The oscillators used to generate s,(f) and s5,(¢) in the preceding example
have a phase drift. Therefore in a particular 7T-second interval the received
signal corresponding to a “one” is

r(t) = sin (it + 0,) +n(t), 0<i<T, ©)

and the received signal corresponding to a *“zero” is

r(t) = sin (wot + 0p) + n(2), 0<tr<T, (6)

where 6, and 6, are unknown constant phase angles. Thus even in the
absence of noise the input waveform is not completely known. In a practical
system the receiver may include auxiliary equipment to measure the oscilla-
tor phase. If the phase varies slowly enough, we shall see that essentially
perfect measurement is possible. If this is true, the problem is the same as
above. However, if the measurement is not perfect, we must incorporate
the signal uncertainty in our model.

A corresponding problem arises in the radar and sonar areas. A con-
ventional radar transmits a pulse at some frequency w, with a rectangular
envelope:

5(t) = sin w,f, 0<t<T )]

If a target is present, the pulse is reflected. Even the simplest target will
introduce an attenuation and phase shift in the transmitted signal. Thus
the signal available for processing in the interval of interest is

Ht) = V,sin[w,(t — D) + 6]+ n(t), r<t<r+T,

IPR2020-00038
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4 1.1 Topical Outline

if a target is present and
r(t) = n(?),

if a target is absent. We see that in the absence of noise the signal still
contains three unknown quantities: Vi, the amplitude, 6,, the phase, and
7, the round-trip travel time to the target.

These two examples represent the second level of detection problems.
We classify them as signal with unknown parameters in noise problems.

Detection problems of a third level appear in several areas. In a passive
sonar detection system the receiver listens for noise generated by enemy
vessels. The engines, propellers, and other elements in the vessel generate
acoustical signals that travel through the ocean to the hydrophones in the
detection system. This composite signal can best be characterized as a
sample function from a random process. In addition, the hydrophone
generates self-noise and picks up sea noise. Thus a suitable model for the
detection problem might be

0 <t< oo, )

r(t) = sa(t) + n(2) (10)
if the target is present and

r(t) = n(t) (11)

if it is not. In the absence of noise the signal is a sample function from a
random process (indicated by the subscript ).

In the communications field a large number of systems employ channels
in which randomness is inherent. Typical systems are tropospheric scatter
links, orbiting dipole links, and chaff systems. A common technique is to
transmit one of two signals separated in frequency. (We denote these
frequencies as w, and w,.) The resulting received signal is

(1) = sa,(1) + n(r) (12)
if 5;(¢) was transmitted and
r(t) = sq,(2) + n(r) (13)

if 5o(7) was transmitted. Here Sq, (1) is a sample function from a random
process centered at w,, and sp,(f) is a sample function from a random
process centered at w,. These examples are characterized by the lack of any
deterministic signal component. Any decision procedure that we design
will have to be based on the difference in the statistical properties of the
two random processes from which Sa,(t) and sq (¢) are obtained. This is
the third level of detection problem and is referred to as a random signal
in noise problem.

Estimation Theory 3

In our examination of representative examples we have seen that det.ec-
tion theory problems are characterized by the fact that we must .deci('ie
which of several alternatives is true. There were on!y two alterr}atlves in
the examples cited; therefore we refer to thCIT'l as binary detection pr_ob-
lems. Later we will encounter problems in which thf:re are M altemati‘ves
available (the M-ary detection problem). Our hierarchy of detection
problems is presented graphically in Fig_. 1.4. o i

There is a parallel set of problems in tht? estimation theory area.
simple example is given in Fig. 1.5, in }vhlch the source puts cn.lt1 an
analog message a(?) (Fig. 1.5a). To transmit the message we first samp e it
every T seconds. Then, every T seconds we transmit a signal that contains

Detection theory

Level 1. Known signals in 1. Synchronous digital communication
noise 2. Pattern recognition problems

1. Conventional pulsed radar or sonar,
target detection

2. Target classification (orientation of
target unknown )

3. Digital communication systems without
phase reference

4. Digital communication over slowly-
fading channels

Level 2. Signals with unknown
parameters in noise

i i igi icati tter
| 3. Random signals in 1. Digital cgmmumcahon OVEer sca
S noise ¢ link, orbiting dipole channel, or
chaff link

2. Passive sonar
. Seismic detection system

. Radio astronomy (detection of noise
sources )

£

Fig. 1.4 Detection theory hierarchy.
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6 1.1 Topical Outline
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Fig. 1.5 (a) Sampling an analog source; (5) pulse-amplitude modulation; Ise-
frequency modulation; (d) waveform reconstruction. D

a parameter which is uniquely related to the last sample value. In Fig. 1.5b
j[he signal is a sinusoid whose amplitude depends on the last sample. Thus,
if the sample at time nT is 4,, the signal in the interval [T, (n + )T is

s(t, A)) = Apsinet, nT<t<(@m+ )T (14)

A system of this type is called a pulse amplitude modulation (PAM)
system. In Fig. 1.5¢ the signal is a sinusoid whose frequency in the interval

Estimation Theory 7

differs from the reference frequency w, by an amount proportional to the

preceding sample value,
s(t, Ay) = sin (wet + Ayt), nT<t<(@m+ DT (15)

A system of this type is called a pulse frequency modulation (PFM) system.

Once again there is additive noise. The received waveform, given that 4,
was the sample value, is
r(t) = s(t, 4,) + n(t), nf<t<@m+ DT (16)

During each interval the receiver tries to estimate 4,. We denote these
estimates as A,. Over a period of time we obtain a sequence of estimates,
as shown in Fig. 1.5d, which is passed into a device whose output is an
estimate of the original message a(7). If a(z) is a band-limited signal, the
device is just an ideal low-pass filter. For other cases it is more involved.

If, however, the parameters in this example were known and the noise
were absent, the received signal would be completely known. We refer
to problems in this category as known signal in noise problems. If we

assume that the mapping from 4, to s(f, 4,) in the transmitter has an

inverse, we see that if the noise were not present we could determine 4,
unambiguously. (Clearly, if we were allowed to design the transmitter, we
should always choose a mapping with an inverse.) The known signal in
noise problem is the first level of the estimation problem hierarchy.

Returning to the area of radar, we consider a somewhat different
problem. We assume that we know a target is present but do not know
its range or velocity. Then the received signal is

r(t) = V,sin [(we + w)(t — 7) + 8]+ n(), +<t<74+T,
= n(1),

&

<t<mnt+T<t<o,
(17)

‘where w, denotes a Doppler shift caused by the target’s motion. We want
to estimate r and w,. Now, even if the noise were absent and = and w,
were known, the signal would still contain the unknown parameters V,
and 0, This is a typical second-level estimation problem. As in detection
theory, we refer to problems in this category as signal with unknown
parameters in noise problems.

At the third level the signal component is a random process whose
statistical characteristics contain parameters we want to estimate. The
received signal is of the form

r(t) = sq(t, A) + n(z), (18)
where s5(2, A) is a sample function from a random process. In a simple

case it might be a stationary process with the narrow-band spectrum i
in Fig. 1.6. The shape of the spectrum is known but the centﬁ}'l I{ﬁe%uen

X
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Modulation Theory 9

is not. The receiver must observe r(¢) and, usix}g the _statistical properties
Snecin o Al of sa(t, A) and n(r), estimate the value of A. This particular example could
arise in either radio astronomy or passive sonar. T!:e general class. of
problem in which the signal containing the parameters is a sample function

| £ from a random process is referred to as the ran.dom sigm:d in fzoise problem.
I 4 | The hierarchy of estimation theory problems is shown in lflg. 1.7 '

| / We note that there appears to be considerable paraliellsm‘ in the detection
: >l and estimation theory problems. We shall frequently exploit these parallels

\

to reduce the work, but there is a basic difference tl_1at shoulg be em,:
phasized. In binary detection the receiver is either “I'.lgh 4 or “wrong.
In the estimation of a continuous parameter the receiver wﬂ} se!dom be
exactly right, but it can try to be close most of the time. This difference
will be reflected in the manner in which we judge system perfo.rmance.
The third area of interest is frequently referred to as modulation theory.
We shall see shortly that this term is too narrow for the actual problems.
Once again a simple example is useful. In Fig. 1.8 we show an analog
message source whose output might typically be music or speech. To

Center frequency

Fig. 1.6 Spectrum of random signal.

Estimation Theory

convey the message over the channel, we transform it' by using a moc!ula—-
tion scheme to get it into a form suitable for propagat_lon. The transgu_tte.d
signal is a continuous waveform that depends on a(?) in some deterministic
manner. In Fig. 1.8 it is an amplitude modulated waveform:

s[t, a(t)] = [1 + ma(t)] sin (w.1). (19

(This is conventional double-sideband AM with modulation index m.) In
Fig. 1.8¢ the transmitted signal is a frequency modulated (FM) waveform:

Level 1. Known signals in noise 1. PAM, PFM, and PPM communication systems
with phase synchronization

2. Inaccuracies in inertial systems
(e.g., drift angle measurement)

f . ; : t
Level 2. Signals with unknown 1. Range, velocity, or angle measurement in z
parameters in noise radar/sonar problems s[t, a(t)] = sin |t + _wa(“) du|. (20)
2. Discrete time, continuous amplitude communication : 7 ived sienal is
system (with unknown amplitude or phase in When noise is added the receive g
channel) K1) = s[t, a?)] + n(?). @n

Now the receiver must observe r(f) and put out a continuous estimate of

the message a(?), as shown in Fig. 1.8. This particular example is a first-
Jevel modulation problem, for if n(r) were absent and a(t) were knowq the
.ui:@eivcd signal would be completely known. Once again we describe it as
‘& known signal in noise problem. '

Another type of physical situation in which we want to estimate a
eontinuous function is shown in Fig. 1.9. The channel is a time-invariant
ear system whose impulse response /() is unknown. To estimate th‘e
pulse response we transmit a known signal x(¢). The received signal is

Level 3. Random signals in noise 1. Power spectrum parameter estimation

2. Range or Doppler spread target parameters
in radar/sonar problem

3. Velocity measurement in radio astronomy
4. Target parameter estimation: passive sonar

5. Ground mapping radars

(t) = j h(r) x(t — 7) dr + (). IPR2020-00038
G MM EX1016, Page 10

Fig. 1.7 Estimation theory hierarchy.




Anal (t
52:"25 ﬂ’) Modulator -_sf:,,_a(i
(a)
(b)
(c)
a(e)
fa N g~
r(t) VT W/
Demodulator
(d)

Fig. 1.8 A modulation theory example: issi
| ple: (a) analog transmiss ; i
modulated signal; (c) frequency modulated signa](:g(d) demod;‘]]:tg:’{.ﬂem, Il

n(t)

x(t) r(t)
=31 .« Ri7) Receijver

Linear time-invariant
channel

Fig. 1.9 Channel measurement.
10

Modulation Theory 11

The receiver observes r(¢) and tries to estimate 4(r). This particular example
could best be described as a continuous estimation problem. Many other
problems of interest in which we shall try to estimate a continuous wave-
form will be encountered. For convenience, we shall use the term modula-
tion theory for this category, even though the term continuous waveform
estimation might be more descriptive.

The other levels of the modulation theory problem follow by direct
analogy. In the amplitude modulation system shown in Fig. 1.8 the
receiver frequently does not know the phase angle of the carrier. In this

case a suitable model is

r) =1+

ma(t)) sin (wot + 6) + n(2),

(23)

Modulation Theory (Continuous waveform estimation)

1. Known signals in noise

1.

o U e W N

Conventional communication systems
such as AM (DSB-AM, SSB), FM,and
PM with phase synchronization

. Optimum filter theory

. Optimum feedback systems

. Channel measurement

. Orbital estimation for satellites

. Signal estimation in seismic and

sonar classification systems

. Synchronization in digital systems

2. Signals with unknown
parameters in noise

. Conventional communication systems

without phase synchronization

. Estimation of channel characteristics when

phase of input signal is unknown

3 Random signals in noise

. Analog communication over

randomly varying channels

. Estimation of statistics of

time-varying processes

. Estimation of plant characteristics

Fig. 1.10 Modulation theory hierarchy.
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12 1.2 Possible Approaches

where 6 is an unknown parameter. This is an example of a signal with
unknown parameter problem in the modulation theory area.

A simple example of a third-level problem (random signal in noise) is one
in which we transmit a frequency-modulated signal over a radio link whose
gain and phase characteristics are time-varying. We shall find that if we
transmit the signal in (20) over this channel the received waveform will be

) = V(1) sin [mc: ” J" a(u) du + e(z)] + n(0), 24)

where V(t) and 6(¢) are sample functions from random processes. Thus,
even if a(u) were known and the noise n(¢) were absent, the received signal
would still be a random process. An over-all outline of the problems of
interest to us appears in Fig. 1.10. Additional examples included in the
table to indicate the breadth of the problems that fit into the outline are
discussed in more detail in the text.

Now that we have outlined the areas of interest it is appropriate to
determine how to go about solving them.

1.2 POSSIBLE APPROACHES

From the examples we have discussed it is obvious that an inherent
feature of all the problems is randomness of source, channel, or noise
(often all three). Thus our approach must be statistical in nature. Even
assuming that we are using a statistical model, there are many different
ways to approach the problem. We can divide the possible approaches into
two categories, which we denote as “structured” and “nonstructured.”
Some simple examples will illustrate what we mean by a structured
approach.

Example 1. The input to a linear time-invariant system is r():
r(t) = s(t) + w(t)
=0, (25).

The impulse response of the system is (7). The signal s(¢) is a known function with
energy E,,

Q=4 =,
elsewhere.

E, = L s2(1) dt, (26),

and w(r) is a sample function from a zero-mean random process with a covariance
function:

Kot u) = % 5t — ). @7

We are concerned with the output of the system at time 7. The output due to the
signal is a deterministic quantity:

5,(T) = J: (7) (T — 7)dr. (28)

Structured Approach 13

The output due to the noise is a random variable:

nm) = [ o) T = dr. @9
o
We can define the output signal-to-noise ratio at time 7T as
.‘E A _s,i(T)_, (30)
N~ E[nA(T)]
here E(-) denotes expectation. )
X Substituting (28) and (29) into (30), we obtain
T 2
h T — d‘r]
) [f () (T = 7) o

Zlt

E [ j j h(r) h(u) n(T — ) n(T — u) dr du]

By bringing the expectation inside the integral, using (27), and performing the
integration with respect to u, we have

U: W) S(T = 7) dTr

§. ==
Nof2 L h2(r) dr

N

(32)

The problem of interest is to choose h(7) to maximize the signal-?omoiﬁe ratio.
The solution follows easily, but it is not important for our present discussion. (See

Problem 3.3.1.)
This example illustrates the three essential features of the structured
a‘ppfoach to a statistical optimization problem:

Structure. The processor was required to be a linear time-invariant
filter. We wanted to choose the best system in this class. Systems that were
not in this class (e.g., nonlinear or time-varying) were not allowed.

Criterion. In this case we wanted to maximize a quantity that we called
the signal-to-noise ratio.
I .
Information. To write the expression for S/N we had to know the signal
shape and the covariance function of the noise process.

" If we knew more about the process (e.g., its first-order probability
s ty), we could not use it, and if we knew less, we could I:lOt solve.the
Iem. Clearly, if we changed the criterion, the information required
ight be different. For example, to maximize x

s,X(T)
* = El T

ovariance function of the noise process would not be adequate.

 if we changed the structure, the information reﬁﬁdE?(#%f

(33)

020-00038
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14 1.2 Possible Approaches

change. Thus the three ideas of structure, criterion, and information are
closely related. It is important to emphasize that the structured approach
does not imply a linear system, as illustrated by Example 2.

Example 2. The input to the nonlinear no-memory device shown in Fig. 1.11 is r(r),
where

r(t) = s(t) + n(t), (34)
At any time ¢, s(¢) is the value of a random variable s with known probability

density p,(S). Similarly, n(r) is the value of a statistically independent random
variable n with known density p,(N). The output of the device is y(¢), where

Wt) = a0 + ailr(®)] + aalr(0)P (35)
is a quadratic no-memory function of r(t). [The adjective no-memory emphasizes that
the value of y(t,) depends only on r(#;).] We want to choose the coefficients ao, a;, and

az so that y(t) is the minimum mean-square error estimate of s(r). The mean-square
error is

-0 < < 00,

£(t) & E([y(r) — s()*1}
' = E({ao + ar[r(t)] + az[r?(1)] — s()}?)

and ay, @, and a; are chosen to minimize £(¢). The solution to this particular problem
is given in Chapter 3.

(36)

The technique for solving structured problems is conceptually straight-
forward. We allow the structure to vary within the allowed class and choose
the particular system that maximizes (or minimizes) the criterion of
interest.

An obvious advantage to the structured approach is that it usually
requires only a partial characterization of the processes. This is important
because, in practice, we must measure or calculate the process properties
needed.

An obvious disadvantage is that it is often impossible to tell if the struc-
ture chosen is correct. In Example 1 a simple nonlinear system might

ag
r(t) @ + ¥(t)
a
Squarer
ag

Nonlinear no-memory device

Fig. 1.11 A structured nonlinear device.

Nonstructured Approach 15

be far superior to the best linear system. Similarly, in Examp_le 2 some
other nonlinear system might be far superior to the quadratic sys’fe{n.
Once a class of structure is chosen we are committed. A number of trivial
examples demonstrate the effect of choosing the wrong structure. We shall
encounter an important practical example when we study frequency
modulation in Chapter II-2.

At first glance it appears that one way to get around the problem of
choosing the proper strucutre is to let the structure be an arbltr.ary non-
linear time-varying system. In other words, the‘class of s_trl_mture 1s'chosen
to be so large that every possible system will be included in 1.t. T]?le difficulty
is that there is no convenient tool, such. as the con_vollutmn 1ntt?gral, to
express the output of a nonlinear system‘ in terms of 1.ts input. This means
that there is no convenient way to investigate all possible systems by using
a structured approach.

The alternative to the structured approach is a nonstructured approach.
Here we refuse to make any a priori guesses about what structure the
processor should have. We establish a criter.ion., solve the problem, and
implement whatever processing procedure is indicated. '

A simple example of the nonstructured approach can be obtamed‘by
modifying Example 2. Instead of assigning characteristics to the device,
we denote the estimate by y(#). Letting

&) & E{[)(0) — s},

we solve for the y(t) that is obtained from #(t) in any manner to minimize £.
The obvious advantage is that if we can solve the problem we know that
crur answer, is with respect to the chosen criterion, the best processor of all
possible processors. The obvious disadvantage is that we must co?npletely
‘characterize all the signals, channels, and noises that enter into the
problem. Fortunately, it turns out that there are a large num.ber_ of
sroblems of practical importance in which this complete characterization
s ssible. Throughout both books we shall emphasize the nonstructured
oach. .
Qur discussion up to this point has developed the topical and logical
f these books. We now discuss the actual organization,

G7

ORGANIZATION

 material covered in this book and Volume II can be divided into
arts. The first can be labeled Background and consists of Chapters 2

on and Estimation Theory. Here we deal with problems in

. In Chapter 2 we develop in detail a topic that we call Cla@%lﬁé 020-00038
MM EX1016, Page 13



16 1.3 Organization

the observations are sets of random variables instead of random wave-
forms. The theory needed to solve problems of this type has been studied
by statisticians for many years. We therefore use the adjective classical
to describe it. The purpose of the chapter is twofold: first, to derive all
the basic statistical results we need in the remainder of the chapters;
second, to provide a general background in detection and estimation theory
that can be extended into various areas that we do not discuss in detail.
To accomplish the second purpose we keep the discussion as general as
possible. We consider in detail the binary and M-ary hypothesis testing
problem, the problem of estimating random and nonrandom variables, and
the composite hypothesis testing problem. Two more specialized topics,
the general Gaussian problem and performance bounds on binary tests,

are developed as background for specific problems we shall encounter later.

The next step is to bridge the gap between the classical case and the
waveform problems discussed in Section 1.1. Chapter 3 develops the
necessary techniques. The key to the transition is a suitable method for
characterizing random processes. When the observation interval is finite,
the most useful characterization is by a series expansion of the random
process which is a generalization of the conventional Fourier series. When
the observation interval is infinite, a transform characterization, which is a
generalization of the usual Fourier transform, is needed. In the process of
developing these characterizations, we encounter integral equations and we
digress briefly to develop methods of solution. Just as in Chapter 2, our
discussion is general and provides background for other areas of
application.

With these two chapters in the first part as background, we are prepared
to work our way through the hierarchy of problems outlined in Figs. 1.4,
1.7, and 1.10. The second part of the book (Chapter 4) can be labeled
Elementary Detection and Estimation Theory. Here we develop the first
two levels described in Section 1.1. (This material corresponds to the
upper two levels in Figs. 1.4 and 1.7.) We begin by looking at the simple
binary digital communication system described in Fig. 1.1 and then
proceed to more complicated problems in the communications, radar, and
sonar area involving M-ary communication, random phase channels,
random amplitude and phase channels, and colored noise interference. By
exploiting the parallel nature of the estimation problem, results are
obtained easily for the estimation problem outlined in Fig. 1.5 and other
more complex systems. The extension of the results to include the multiplé
channel (e.g., frequency diversity systems or arrays) and multiple parameter
(e.g., range and Doppler) problems completes our discussion. The results
in this chapter are fundamental to the understanding of modern com=
munication and radar/sonar systems.

Volume II Outline 17

The third part, which can be labeled Modulation Theory or Continuous
Estimation Theory, consists of Chapters 5 and 6 and Chapter 2 of Volume
1I. In Chapter 5 we formulate a quantitative model for the first two levels
of the continuous waveform estimation problem and derive a set of
integral equations whose solution is the optimum estimate of the message.
We also derive equations that give bounds on the performance of the
estimators. In order to study solution techniques, we divide the estimation
problem into two categories, linear and nonlinear.

In Chapter 6 we study linear estimation problems in detail. In the first
section of the chapter we discuss the relationships between various criteria,
process characteristics, and the structure of the processor. In the next
section we discuss the special case in which the processes are stationary and
the infinite past is available. This case, the Wiener problem, leads to
straightforward solution techniques. The original work of Wiener is ex-
tended to obtain some important closed-form error expressions. In the
next section we discuss the case in which the processes can be characterized
by using state-variable techniques. This case, the Kalman-Bucy problem,
enables us to deal with nonstationary, finite-interval problems and adds
considerable insight to the results of the preceding section.

The material in Chapters 1 through 6 has two characteristics:

1. In almost all cases we can obtain explicit, exact solutions to the
problems that we formulate.

2. Most of the topics discussed are of such fundamental interest that
everyone concerned with the statistical design of communication, radar, or
sonar systems should be familiar with them.

As soon as we try to solve the nonlinear estimation problem, we see a
sharp departure. To obtain useful results we must resort to approximate
solution techniques. To decide what approximations are valid, however,
‘we must consider specific nonlinear modulation systems. Thus the precise
quantitative results are only applicable to the specific system. In view of
‘this departure, we pause briefly in our logical development and summarize
results in Chapter 7.
et a brief introduction we return to the nonlinear modulation problem
apter 2 of Volume II and consider angle modulation systems in great
, After an approximation to the optimum processor is developed, its
flormance and possible design modification are analyzed both theoreti-
and experimentally. More advanced techniques from Markov process
ory and information theory are used to obtain significant results.
he fourth part we revisit the problems of detection, estimation, and
tion theory at the third level of the hierarchy described in Section

King at the bottom boxes in Figs. 1.4, 1.7, and 1.10, we see that
the Random Signals in Noise problem. Chapter II-3

studies itAR2020-00038
MM EX1016, Page 14



18 1.3 Organization

detail. We find that the linear processors developed in Chapter I-6 play g
fundamental role in the random signal problem. This result, coupled with:
the corresponding result in Chapter 1I-2, emphasizes the fundamental im-
portance of the results in Chapter I-6. They also illustrate the inherent
unity of the various problems. Specific topics such as power-spectrum
parameter estimation and analog transmission over time-varying channels
are also developed.

The fifth part is labeled Applications and includes Chapters II-4 and II-5,
Throughout the two books we emphasize applications of the theory to
models of practical problems. In most of them the relation of the actual
physical situation can be explained in a page or two. The fifth part deals
with physical situations in which developing the model from the physical
situation is a central issue. Chapter 11-4 studies the radar/sonar problem in
depth. It builds up a set of target and channel models, starting with slowly.
fluctuating point targets and culminating in deep targets that fluctuate at
arbitrary rates. This set of models enables us to study the signal desig
problem for radar and sonar, the resolution problem in mapping radars,
the effect of reverberation on sonar-system performance, estimation of
parameters of spread targets, communication over spread channels, and
other important problems.

In Chapter II-5 we study various multidimensional problems such a
multiplex communication systems and multivariable processing problems
encountered in continuous receiving apertures and optical systems. The
primary emphasis in the chapter is on optimum array processing in sonar
(or seismic) systems. Both active and passive sonar systems are discussed;
specific processor configurations are developed and their performance is
analyzed.

Finally, in Chapter 1I-6 we summarize some of the more importan
results, mention some related topics that have been omitted, and sugges
areas of future research.

2

Classical Detection
and Estimation Theory

21 INTRODUCTION

In this chapter we develop in detail the basicideas of classical detection and
gtimation theory. The first step is to define the various terms.

The basic components of a simple decision-theory problem are shown in
Fig. 2.1. The first is a source that generates an output. In the simplest case
this output is one of two choices. We refer to them as hypotheses and label
them H, and H, in the two-choice case. More generally, the output might
be one of M hypotheses, which we label Hy, H,, ..., Hy_,. Some typical
source mechanisms are the following:

I. A digital communication system transmits information by sending
ones and zeros. When “one” is sent, we call it H,, and when “zero™ is
sent, we call it Hy.

2. In a radar system we look at a particular range and azimuth and try

H
Probabilistic Observation
Source transition space
=~ mechanism
Hy
Decision
rule
Decision
Fig. 2.1 Components of a decision theory problem. IPR2020-00038

MM EX1016, Page 15



20 2.1 Introduction

to decide whether a target is present; H, corresponds to the presence of a
target and H, corresponds to no target.

3. In a medical diagnosis problem we examine an electrocardiogram.
Here H, could correspond to the patient having had a heart attack and H,
to the absence of one.

4. In a speaker classification problem we know the speaker is German,
British, or American and either male or female. There are six possible

hypotheses.

In the cases of interest to us we do not know which hypothesis is true.
The second component of the problem is a probabilistic transition
mechanism; the third is an observation space. The transition mechanism

n
4J\\t/

Source r
—=——o0 =1
Hy
LN ” SN /
Transition Observation
mecharmism space
(a)
1
Pu(N) -
I* 1
= 0 +1 N
prim,(RIHy) 3
1* !
5 F1 &2 =
2
PrIHD(R|H{J)
1 1
T.s T4
-2 -1 0 beeilt
(b)

Fig. 2.2 A simple decision problem: (a) model; () probability densities.

Detection Theory Model 21

can be viewed as a device that knows which hypothesis is true. Based on
this knowledge, it generates a point in the observation space according to
some probability law.

A simple example to illustrate these ideas is given in Fig. 2.2. When H, is
true, the source generates + 1. When H, is true, the source generates — 1.
An independent discrete random variable n whose probability density is
shown in Fig. 2.2b is added to the source output. The sum of the source
output and 7 is the observed variable r.

Under the two hypotheses, we have

Hyi:ir=1+n
! 1
Hyir=—1+n (1)

The probability densities of r on the two hypotheses are shown in Fig.
2.2b. The observation space is one-dimensional, for any output can be

plotted on a line.

" A related example is shown in Fig. 2.3a in which the source generates
two numbers in sequence. A random variable n, is added to the first
‘number and an independent random variable 5, is added to the second.

Thus

H1:r1 =1+ Hy
ro =1+ ng,
2
Hg:?'1 = -1 + n
rg = -1 + ng.

‘The joint probability density of r, and r; when H, is true is shown in
9 3h. The observation space is two-dimensional and any observation
be represented as a point in a plane.
this chapter we confine our discussion to problems in which the
ation space is finite-dimensional. In other words, the observations
st of a set of N numbers and can be represented as a point in an
mensional space. This is the class of problem that statisticians have
for many years. For this reason we refer to it as the classical
n problem.

\e fourth component of the detection problem is a decision rule. After
ng the outcome in the observation space we shall guess which
esis was true, and to accomplish this we develop a decision rule that
each point to one of the hypotheses. Suitable choices for decision
yill depend on several factors which we discuss in detail later. Our
will demonstrate how these four components fit together to form the

ion (or hypothesis-testing) problem.

H

describe it in detail later.

ical estimation problem is closely related to the defpg8900.00038
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22 2.1 Introduction Decision Criteria 23

test will work. In Section 2.7 we develop bounds and approximate expres-

ni, ng
sions for the performance that will be necessary for some of the later

O—

chapters. " |
i)- 1.1 i Finally, in Section 2.8 we summarize our results and indicate some of
S y :
| TN Pl the topics that we have omitted.
H, 5
s ‘ T 22 SIMPLE BINARY HYPOTHESIS TESTS
ng

HI TH I 1 As a starting point we consider the decision problem in which each of

two source outputs corresponds to a hypothesis. Each hypothesis maps
into a point in the observation space. We assume that the observation
space corresponds to a set of N observations: 7y, 73, I3, - - -, I'y- Thus each
set can be thought of as a point in an N-dimensional space and can be

denoted by a vector r:

(a)

(51

ea | 3)

'n

The probabilistic transition mechanism generates points in accord with
two known conditional probability densities py, u,(R|H;) and
(R|H,). The object is to use this information to develop a suitable
on rule. To do this we must look at various criteria for making

ons.

Priny

Fig. 2.3 A two-dimensional problem: (¢) model; (b) probability density.

1 Decision Criteria
Organization. This chapter is organized in the following manner. In

Section 2.2 we study the binary hypothesis testing problem. Then in

Section 2.3 we extend the results to the case of M hypotheses. In Section ! .

2.4 classical estimation theory is developed. ice. (An alternative procedure would be to allow decision rul'es with
The problems that we encounter in Sections 2.2 and 2.3 are characterized  outputs (a) Ho true, (b) H, true, (c) don’t know.) Thus each time the

by the property that each source output corresponds to a different hypoth- Xperiment is conducted one of four things can happen:

esis. In Section 2.5 we shall examine the composite hypothesis testing H, true; choose H,.

problem. Here a number of source outputs are lumped together to form a ) true: choose H,.

single hypothesis. 3
All of the developmcn_ts through Section 2.5 deal with arbitrary prob- 4. H, true; choose H,.

ability transition mechanisms. In Section 2.6 we consider in detail a special

class of problems that will be useful in the sequel. We refer to it as the

general Gaussian class. ,
In many cases of practical importance we can develop the *“optimum™

decision rule according to certain criteria but cannot evaluate how well the

the binary hypothesis problem we know that either H, or H; is true.
Il confine our discussion to decision rules that are required to make

and third alternatives correspond to correct choices. The second

alternatives correspond to errors. The purpose of a decision
o attach some relative importance to the four possible courses
t might be expected that the method of processing the

2R2020-00038
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data (r) would depend on the decision criterion we select. In this section We can now write the expression for the risk in terms of the transition

we show that for the two criteria of most interest, the Bayes and the probabilit.ies and the decision regions:
Neyman-Pearson, the operations on r are identical.
R = CooPo L Pri,(R|Ho) dR
0

Bayes Criterion. A Bayes test is based on two assumptions. The first is
that the source outputs are governed by probability assignments, which are
denoted by P; and P,, respectively, and called the a priori probabilities.
These probabilities represent the observer’s information about the source
before the experiment is conducted. The second assumption is that a cost is
assigned to each possible course of action. We denote the cost for the four
courses of action as Cyp, Ciyg, Cy1, Coy, respectively. The first subscript
indicates the hypothesis chosen and the second, the hypothesis that was
true. Each time the experiment is conducted a certain cost will be incurred,
We should like to design our decision rule so that on the average the cost
will be as small as possible. To do this we first write an expression for the
expected value of the cost. We see that there are two probabilities that we
must average over; the a priori probability and the probability that a
particular course of action will be taken. Denoting the expected value of
the cost as the risk R, we have:

R = CooP, Pr (say Hy|H, is true)
+ CyoP, Pr (say H,|H, is true)
+ Cy.,P, Pr(say H,|H, is true)
+ Co1 Py Pr (say Hy|H, is true). (4)_5;

+ CuoPo J' persty(R|Ho) dR
Zy
+ Ci Py L prin,(R|Hy) dR

+ Co Py fz Prim,(R|Hy) dR.
a

integrals.

is higher than the cost of a correct decision. In other words,

Cio > Coo,
i Ci; » Cx

servation space Z to Z, or Z;.

Because we ha've assumed tha% t_h:? decision rule must say either H_1 or T Ty T T G2
H,, we can view it as a rule for dividing the total observation space Z into
two parts, Z; and Z,, as shown in Fig. 2.4. Whenever an observation falls iting (5), we have
in Z, we say H,, and whenever an observation falls in Z, we say H;. _ _
R = PyCoo J. Prio(R|Ho) dR + PoCio J.z & P"”u(RlH") dR
Zg &
Say Hp
i85, C,, _[ pein, (R|Hy) dR + P,Cys L  pan,(RIH) dR.
Zy Sy
Z: observation space g-that
Pr s, (RIH) N
[ e RIHD) dR = [ pris, ®IH) R = 1,
Source &
Pr| &, (R|Hp) K= chlg + Plcn
- R|H
Say 1, + [ 1PiCo = Copan I N

Fig. 2.4 Decision regions. = [P O(CID = Cun)P:—lHO(R]H 0)]} dR.

MM EX1

©)

For an N-dimensional observation space the integrals in (5) are N-fold

~ We shall assume throughout our work that the cost of a wrong decision

(6)

Jow, to find the Bayes test we must choose the decision regions Z, and
such a manner that the risk will be minimized. Because we require
‘decision be made, this means that we must assign each point R in

(M

®

®

o

0-00038
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26 2.2 Simple Binary Hypothesis Tests

The first two terms represent the fixed cost. The integral represents the
cost controlled by those points R that we assign to Z,. The assumption in
(6) implies that the two terms inside the brackets are positive. Therefore
all values of R where the second term is larger than the first should be
included in Z, because they contribute a negative amount to the integral.
Similarly, all values of R where the first term is larger than the second
should be excluded from Z, (assigned to Z;) because they would contribute
a positive amount to the integral. Values of R where the two terms are
equal have no effect on the cost and may be assigned arbitrarily. We shall
assume that these points are assigned to H, and ignore them in our sub-

sequent discussion. Thus the decision regions are defined by the statement:
If

Py(Coy — Cll)prlHI(R|H1) = Po(Cyo — COO)prJHQ(R|HO)’ (11)

assign R to Z; and consequently say that H, is true. Otherwise assign R
to Z, and say H, is true.
Alternately, we may write

Prizr, (R| H1) 1 Po(Cio — Coo) (12)
prIHu(RIHO) H{o Py(Coy — Ciy)

The quantity on the left is called the likelihood ratio and denoted by A(R)

Pr\my (R|H1) !
AR 25 OHT (13)

Because it is the ratio of two functions of a random variable, it is a
random variable. We see that regardless of the dimensionality of R, AR)
is a one-dimensional variable.

The quantity on the right of (12) is the threshold of the test and i
denoted by #:

n Ay PB(CID = COO).
~ Py(Cor — Cuy)

Thus Bayes criterion leads us to a likelihood ratio test (LRT)
Hy
AR) z 7.
Hg

We see that all the data processing is involved in computing A(R) and
is not affected by a priori probabilities or cost assignments. This invariance
of the data processing is of considerable practical importance. Frequently
the costs and a priori probabilities are merely educated guesses. The result
in (15) enables us to build the entire processor and leave 5 as a variable
threshold to accommodate changes in our estimates of a priori probabilities
and costs.

Likelihood Ratio Tests 27

Because the natural logarithm is a monotonic function, and both sides
of (15) are positive, an equivalent test is

Hjy
InARR) 2 In7. (16)
0

Two forms of a processor to implement a likelihood ratio test are

shown in Fig. 2.5. . _ .
Before proceeding to other criteria, we consider three simple examples.

Example 1. We assume that under /; the source output is a constant voltage g@
Under H, the source output is zero. Before observation the voltage is f:orruptcdl y
-ahsadditive noise. We sample the output waveform each s?cond an_d obta{n N sac.:zp es.
Bach noise sample is a zero-mean Gaussian random variable n with variance o”. The
noise samples at various instants are independent random variables anc}l are mccliepel::-
dent of the source output. Looking at Fig. 2.6, we see that the observations under the

two hypotheses are

Hyrn=m+mn it= 120000 a7

Hy:r = g i=12,...,N,
1 ( X"‘) . as)

= — £X ——
Pni{X) Vo a p e
the noise samples are Gaussian. _ )
j:rdb'abih’ty density of r; under each hypothesis follows easily:
Pryay (R HY) = po(Re — m) = T aexp (— 5o7 (19)
: ~BY, (20)
Pritig(Ri|Ho) = pu(R) = s exp | — 3.3

Threshold

L}- Data A(R) _ device Decision
processor P —
(a)
Threshold .
;p- Data InA(R) | device | Decision
processor A (B) —
Zlnn
(b)

Fig. 2.5 Likelihood ratio processors.

IPR2020-00038
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Source

!

Likelihood Ratio Tests 29

In this example the only way the data appear in the likelihood ratio test
is in a sum. This is an example of a sufficient statistic, which we t':lenote by
I(R) (or simply / when the argument is obvious). It is just a function of jrhe
received data which has the property that A(R) can be written as a function

n(t) N samples of I In other words, when making a decision, knowing the value of the
2 ,,\,'f d Y sufficient statistic is just as good as knowing R. In Example 1, /is a linear
m v Ay r‘ 2 l r‘ function of the R;. A casein which thisis not true is illustrated in Example 2.

B +

[Example 2. Several different physical situations lead to the mathematical model of

() 0 Sampler
Hu;

interest in this example. The observations consist of a set of N va..luc‘s: FiyFay Fag-ens PNe
Under both hypotheses, the r, are independent, identically distributed, zero-mean
Gaussian random variables. Under H, each r, has a variance o, Undgr f{o e?.ch r
‘has a variance o,®. Because the variables are independent, the joint density is simply

Processor

’ Fig. 2.6 Model for Example 1.

Because the n; are statistically independent, the joint probability density of the ry
(or, equivalently, of the vector r) is simply the product of the individual probability

densities. Thus

Nooq (R — m)?
_pr[Hl(R]Hl) — E Vo UEXP ( 2a? )’

and
s n" e _R&)
PrinoR|Ho) 1= Vo nexp ( 2a’)

Substituting into (13), we have

TI—=—exp (—-&f)
i-1Viro 20*
After canceling common terms and taking the logarithm, we have

Nm?

mAR) =" S R
n = e— — —
ﬁzl =

Thus the likelihood ratio test is

or, equivalently,

We see that the processor simply adds the observations and compares them with &

the product of the individual densities. Therefore
T L @n
and b 4 o
PR = (1750 (=3, e

.J.sllbﬁtitUiiﬂg (27) and (28) into (13) and taking the logarithm, we have
iy 11 . 1 N 4 a0 f;,_ 29)
5(;0_2 Té)iZ_‘lR‘ +N‘nﬂ'1rﬁahn' ¢
In this case the sufficient statistic is the sum of the squares of the observations
N
IR) = > R? (30)
i=1
1 equivalent test for 0,2 > op” is
H1 2g,20,% ( 00) X
2 Gooa(lnn—NnZ') &7 @31)
iy =y lo= N o) e ¥

o,® the inequality is reversed because we are multiplying by a negative

Ho 20 20 2 o,
z ot —"—]n)é < 012 < 6. (32)
®) 2 2 (N2 — ) 875 @ < o)
two examples have emphasized Gaussian variables. In the next
we consider a different type of distribution.

Poisson distribution of events is encountered frequently as a njwde] qf
nd other diverse phenomena (e.g., [1] or [2]). Each time the exl:!enment is
certain number of events occur. Our observation is just this numb_er
; from 0 to oo and obeys a Poisson distribution on both hypotheses; that s,

P’r(nevents)=(m%e—ml, Hom O B ey 05K, (33)
J .

parameter that speciﬁEes thi average number of events: |PR3% 20-00038
r=ine MM EX1016, Page 20
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It is this parameter m; that is different in the two hypotheses. Rewriting (33) to Py = J‘ PrlHo(RlHO) dR,
emphasize this point, we have for the two Poisson distributions Z
H;:Pr (n events) = mﬂ—‘; e ™, n=20,12..., (35) Pp = J;1 Pr|H1(RIH1) dR, (41)
Hy:Pr (n events) = :—{ e™, n=0,1,2,.... (36) Py = J Pria, R|Hy)dR =1 — Pp.
Zo
Then the likelihood ratio test is We sce that these quantities are conditional probabilities. The subscripts
mi\" H1 are mnemonic and chosen from the radar problem in which hypothesis H;
A = (22 exp [—(m — mo) 2 7 @7 3 £ $ Evastipic B, soremondstn
Mo Ho corresponds to the presence of a target and hypothesis 1, corresponds

its absence. Py is the probability of a false alarm (i.e., we say the target is

k] i l 2 - aqr . -
or, equivalently present when it is not); Pp, is the probability of detection (i.e., we say the

Hl]nq+m1-mo’

" H%, In m; — In mq e target is present when it is); Py is the probability of a miss (vfre say the
(38) target is absent when it is present). Although we are interested in a much
Phytm—m o s, Jarger class of problems than this notation implies, we shall use it for

q boored .
g Inmy — Inmg conyenience.

r any choice of decision regions the risk expression in (8) can be
tten in the notation of (41):
R = PyCyo + PiCiy + Pi(Coy — C11)Py
— Py(C10 — Coo)(1 — Pp). (42)

This example illustrates how the likelihood ratio test which we originally
wrote in terms of probability densities can be simply adapted to accom-
modate observations that are discrete random variables. We now return
to our general discussion of Bayes tests.

There are several special kinds of Bayes test which are frequently used
and which should be mentioned explicitly.

If we assume that Cy, and C,, are zero and Cy; = C; = 1, the expres-
sion for the risk in (8) reduces to

Pu=l—P1, (43)

= Coo(l — Pr) + CioPr
o= -P1[(C11 = Can) 2 g (Col =2 CII)PM = (Clo ] COO)PF]- (44)

if all the costs and a priori probabilities are known, we can find a
st. In Fig. 2.7a we plot the Bayes risk, R5(P;), as a function of P;.
that as P, changes the decision regions for the Bayes test change
sfore Pr and P, change.
onsider the situation in which a certain Py (say P, = PY) is
nd the corresponding Bayes test designed. We now fix the
and assume that P, is allowed to change. We denote the risk for
threshold test as R (P¥, P;). Because the threshold is fixed, Pr
fixed, and (44) is just a straight line. Because it is a Bayes test
, it touches the Ry(P,) curve at that point. Looking at (14),
e threshold changes continuously with P,. Therefore, when-
threshold in the Bayes test will be different. Because the
lizes the risk,

Re(PY, Py) = Ry(Py). IRR2020-00038
MM EX1016, Page 21

% =Py [ punRIH) R + Py [ ponRIE) AR, (39)

We see that (39) is just the total probability of making an error. There-
fore for this cost assignment the Bayes test is minimizing the total
probability of error. The test is

Hy y.
mmmim%=m&-ma—m. (40)

When the two hypotheses are equally likely, the threshold is zero. This
assumption is normally true in digital communication systems. These
processors are commonly referred to as minimum probability of error
receivers.

A second special case of interest arises when the a priori probabilities
are unknown. To investigate this case we look at (8) again. We obser
that once the decision regions Z, and Z, are chosen, the values of
ntegrals are determined. We denote these values in the following manner:
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[0, 1], and we choose R to be the horizontal line. This implies that the
coefficient of P; in (44) must be zero:

(Cu - Cuu) % (Ccn - Cll)PM - (CllJ == COO)PF = 0. (46)

R R

A Bayes test designed to minimize the maximum possible risk is called a

Coo
I I minimax test. Equation 46 is referred to as the minimax equation and is
'; la F useful whenever the maximum of R(P,) is interior to the interval.
I | I A special cost assignment that is frequently logical is
| I it Rs _ —
0 P11“ { Py 0 le P . Cm.: -" Cl,l =0 47
(a) (b) (This guarantees the maximum is interior.)
Denoting,
R R Cor = Cu;s
48
| | e = Ca 48
the risk is,
| I Ry = CePp + Pi(CyPy — CrPr)
Re_4Cy el = PoCyPy + P1CyPy (49)
F
I| J| and the minimax equation is
Ry | Rg | : - 0
| Coo Ci1 CyPy = CypPr. (50)
G0 I P I P Before continuing our discussion of likelihood ratio tests we shall discuss
g L . 0 1 ! ond criterion and prove that it also leads to a likelihood ratio test.
(c) (d)

wn—Pearson Tests. In many physical situations it is difficult to
) realistic costs or a priori probabilities. A simple procedure to by-
this difficulty is to work with the conditional probabilities P and Pp.
ral, we should like to make Py as small as possible and P, as large
. For most problems of practical importance these are con-
objectives. An obvious criterion is to constrain one of the prob-
d maximize (or minimize) the other. A specific statement of this
the following:

F:R‘ig. %; Ri‘s)k curves: (a) fixed risk versus typical Bayes risk; (5) maximum value of
1At = U

If A is a continuous random variable with a probability distribution
function that is strictly monotonic, then changing n always changes the
risk. Rp(P,) is strictly concave downward and the inequality in (45) is
strict. This case, which is one of particular interest to us, is illustrated in
Fig. 2.7a. We see that R (P¥, P,) is tangent to Rg(P;) at P, = P¥. These

curves demonstrate the effect of incorrect knowledge of the a priori earson Criterion. Constrain Py = o’ < « and design a test to

(or minimize P,;) under this constraint.

probabilities.
An interesting problem is encountered if we assume that the a pri ; : ; i liers. W
probabilities are chosen to make our performance as bad as possible. In ; cﬁl;r:}l;amed easily by using Lagrange multipliers. We con-
R f Unct

other words, P; is chosen to maximize our risk K;(P¥, P;). Three possible
examples are given in Figs. 2.7b, ¢, and d. In Fig. 2.7b the maximum of
R(P,) occurs at P; = 0. To minimize the maximum risk we use a Bayes
test designed assuming P; = 0. In Fig. 2.7c the maximum of R z(P;) occurs
at P, = 1. To minimize the maximum risk we use a Bayes test designed
assuming P; = 1. In Fig. 2.7d the maximum occurs inside the interva

Bi=P,, + A[Pa— ¢, (51)

J; Priz,(R|Hy) dR + A [I Pri,(R|Hp) dR — a’], (52)
(] Z

IPR2020-00038
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«, then minimizing F minimizes P.
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oF statistic. We considered the observations ry, s, . - ., 'y s @ point r in an

N-dimensional space, and one way to describe this point is to use these

el =k f [Pris, RIHL) = ApuisrgR|Ho)] R 3) coordinates. When we choose a sufficient statistic, we are simply describing

N the point in a coordinate system that is more useful for the decisjon

problem. We denote the first coordinate in this system by /, the sufficient

statistic, and the remaining N — 1 coordinates which will not affect our
decision by the (N — 1)-dimensional vector y. Thus

1,¥ H1(L= Y Hl)
A(R) = A(L, Y) = il,!']]Hg(L! YtlHn) (5?)

Now the expression on the right can be written as
P:|H1(L|H1)Pyil.H1(YlL, H,)
L, =
ML) PIIHO(LIHO)PYIi.Hg(YlLaHO)
If 1 is a sufficient statistic, then A(R) must reduce to A(L). This implies

that the second terms in the numerator and denominator must be equal.
In other words,

Now observe that for any positive value of A an LRT will minimize F.
(A negative value of A gives an LRT with the inequalities reversed.)

This follows directly, because to minimize F we assign a point R to Z,
only when the term in the bracket is negative. This is equivalent to the test

pl‘|H1(RIH1) ¢ .
L L assign point to Z, or say H,. 54
Prmu(RIHo) LR ! v o 4

The quantity on the left is just the likelihood ratio. Thus F is minimized
by the likelihood ratio test

(58)
A(R) % A, (55)

To satisfy the constraint we choose A so that Pr = «'. If we denote the
density of A when H,, is true as p,u,(A|Ho), then we require

Py, (Y|L, Ho) = pyiu, (Y|L, Hy) (59)

because the density of y cannot depend on which hypothesis is true. We
~gee that choosing a sufficient statistic simply amounts to picking a co-
ordinate system in which one coordinate contains all the information
sary to making a decision. The other coordinates contain no informa-
tion and can be disregarded for the purpose of making a decision.

In Example 1 the new coordinate system could be obtained by a simple
rotation. For example, when N = 2,

PF = J.A pﬂ-lffa(AlHﬁ) dA = ¢, (56)

Solving (56) for A gives the threshold. The value of A given by (56) will be
non-negative because p,, (A| Ho) is zero for negative values of A. Observe
that decreasing A is equivalent to increasing Z,, the region where we say
H,. Thus P, increases as A decreases. Therefore we decrease A until we
obtain the largest possible o' < «. In most cases of interest to us Py is a
continuous function of A and we have Pr = «. We shall assume this con-
tinuity in all subsequent discussions. Under this assumption the Neyman
Pearson criterion leads to a likelihood ratio test. On p. 41 we shall see the
effect of the continuity assumption not being valid.

1
L =—=(R: + R,

1
- - . A Y = —= (R1 - Rg)-
Summary. In this section we have developed two ideas of fundamental 2

importance in hypothesis testing. The first result is the demonstration that
for a Bayes or a Neyman-Pearson criterion the optimum test consists of
processing the observation R to find the likelihood ratio A(R) and then

xample 2 the new coordinate system corresponded to changing to
ordinates. For N = 2

comparing A(R) to a threshold in order to make a decision. Thus, regard= L =R+ RS,
less of the dimensionality of the observation space, the decision space i 1 R

; : Y =tan™' = (61)
one-dimensional. R,

The second idea is that of a sufficient statistic /(R). The idea of a sufficient
statistic originated when we constructed the likelihood ratio and saw th
it depended explicitly only on /(R). If we actually construct A(R) and th
recognize /(R), the notion of a sufficient statistic is perhaps of secon
value. A more important case is when we can recognize /(R) directly. £
easy way to do this is to examine the geometric interpretation of a sufficien

at the vector y can be chosen in order to make the demonstra-
condition in (59) as simple as possible. The only requirement is
r (/, y) must describe any point in the observation space. We
‘observe that the condition

P IPR2p20-00038
¥ Hl — FY¥|Hp H
Py, (Y|Hy) = Py (Y|Ho) MM EX1016, Page 23
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does not imply (59) unless / and y are independent under H; and H,.
Frequently we will choose y to obtain this independence and then use (62)
to verify that / is a sufficient statistic.

2.2.2 Performance: Receiver Operating Characteristic

To complete our discussion of the simple binary problem we must
evaluate the performance of the likelihood ratio test. For a Neyman—
Pearson test the values of Pr and P, completely specify the test perform-
ance. Looking at (42) we see that the Bayes risk R follows easily if Py and
Pp, are known. Thus we can concentrate our efforts on calculating P, and
P De

We begin by considering Example 1 in Section 2.2.1,

Example 1. From (25) we see that an equivalent test is

¢

1 & o a W/Fm
l's ——73 R =1 1
‘\/thgz Il"f:o ‘\/Nm g = 20 (63)

3
+Nm
\ da —
PiHy (L|Ho)
@ VNm _ Iny d
Threshold.wm Inn t =g t3
(a)
y 9
- 2
)
shl ././//////%//,.l

(b)

Fig. 2.8 Error probabilities: (a) Pr calculation; (b) Py calculation.
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ipli N ize the next calculation. Under Ho,
ve multiplied (25) by ¢/ VN m to normalize : . , r
Fi(: :t?tajned by adding N independent zero-mean Gaussian variables with variance

ividi i 1).
d then dividing by VN o. Therefore /is N(0,1).
1 {ajt;der H,lisN (‘\/ N m/a, 1). The probability densities on'the: two hypc{theses are
sketched in i:ig. 2.8a. The threshold is also shown. Now, Py is simply the integral of
i #o(L|Ho) to the right of the threshold.
Thus
Py = “ —1: exp (—ﬁ) dx, (64)
anmia+aiz V2w 2
here d & VN m/o is the distance between the means of the two densities. The
Etegrai in (64) is tabulated in many references (e.g., [3] or [4]).
We generally denote

erfy (X) & I ¥ Loexp (—"—Q) dx, (65)
* - 27 2
where erf, is an abbreviation for the error functiont and
& [ ~X) dx
erfcy (X) 2 L o exp 3
is its complement. In this notation
In
Pp = erfC.. ("_d?? + %)' (67)

ly, Pp is the integral of Py (L|Hy) to the right of the threshold, as shown in
8b:

Po= J:m —l-exp [_(x _zd)n] dx

mmia+aiz V2w

e fese iy @
= —exp | —=) dy & erfcy
annia—a2 vV 2w P 2 d 2

Fig. 2.9a we have plotted Pp versus P, for various values of d with » as the varying
ete: . Forn = 0,lnn = —oo, and the processor always guesses Hy. Thus Pp = 1
1. As 7 increases, Pr and Pp decrease. When n = oo, the processor always
Hgand Pr = P, = 0. : . '

e uld expect from Fig. 2.8, the performance increases 1:nonoton1cally with d.
95 we have replotted the results to give Pp versus d with Pras a parzuf!etcr
For a particular & we can obtain any point on the curve by choosing 7
y(0 < < ). . ")

ilt in Fig. 2.9a is referred to as the receiver operating characteristic (ROC).
describes the performance of the test as a function of the parameter of

¢ that will be important when we look at communication systems is

lich we want to minimize the total probability of error

Pr (E) ) POPF + P]_PM. (69“)

_obvious way.

at is usually tabulated is erf (X) = V2 [5 exp (=¥%) dy, wﬂgﬁléozo_ooo:ss
MM EX1016, Page 24
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1.0

08

T 0.6

04

02

(a)

Fig. 2.9 (a) Receiver operating characteristic: Gaussian variables with unequal means,

The threshold for this criterion was given in (40). For the special case in which
P, = P, the threshold 5 equals one and

Pr(e) = {(Pr + Pu).
Using (67) and (68) in (69), we have

Pr(e) = J.:mvlz—_wexp (_%’) dx = erfcy (+g)

Tt is obvious from (70) that we could also obtain the Pr (¢) from the ROC. However
if this is the only threshold setting of interest, it is generally easier to calculate th
Pr (€) directly.

Before calculating the performance of the other two examples, it
worthwhile to point out two simple bounds on erfc, (X). They will enab

Performance: Receiver Operating Characteristic 39
us to discuss its approximate behavior analytically. For X > 0
Ll : -53) X) < —sex (ﬂﬁ) 71)
VZﬂX(l_F)exP( 2 < oty (5) V2 X ? 2 (

This can be derived by integrating by parts. (See Problem 2.2.15 or Feller
[30].) A second bound is .

erfc, (X) < Lexp (—-‘g—), x >0, (72)

(b)
Fig. 2.9 (b) detection probability versus d.

IPR2020-00038
MM EX1016, Page 25
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which can also be derived easily (see Problem 2.2.16). The four curves are Example 2. Tu this case the test s

plotted in Fig. 2.10. We note that erfe, (X) decreases exponentially. . ® =3 R: 2ol (m w—Nin 22) =y (>0 (13
The receiver operating characteristics for the other two examples are s Hoo T G o

also of interest.

The performance calculation for arbitrary N is somewhat tedious, so we defer it
until Section 2.6. A particularly simple case appearing frequently in practice is
N = 2. Under Hg the r; are independent zero-mean Gaussian variables with variances

equal to ao”t

1.0
Py = Pr(l = y|Ho) = Pr(n® + ra® = y|Ho). T4

To evaluate the expression on the right, we change to polar coordinates:

0.5 s b
ry = zcos f, z=Vre +r?

. ra (75)

0.3 =] rg = zsin @, g =tan~t—

51

Then
Pr (2% = y|Ho) = r’ daJ'" z-L exp (——zi) dz. (76)
0 o V7 2‘*'"7"::2 ap :
% Integrating with respect to 6, we have

0.1 1 -x72 o : 5
erfes (X) Py = L; z Lo (—2—0-0,) az. a7
‘:?Ve observe that /, the sufficient statistic, equals z%. Changing variables, we have

- o (" L p (=) = exp ()

- f 2002 P (*2%’) aL = exp (523 8

that the probability density of the sufficient statistic is exponential.)

1
001 V2K

Pp = (Pp)e®ler®, (80)

erms of logarithms
2
InPp = = In Pr. (81)
oy

ed, the performance improves monotonically as the ratio o,2/a,? increases.
study this case and its generalizations in more detail in Section 2.6.

wo Poisson distributions are the third example.
“From (38), the likelihood ratio test is

H =1
palngtm—m _ G > o). (82)

| e E
es on only integer values, it is more convenient to rewrite (82) as

0.001 { : L
= 2 0,1,2 IP:R2020-00038
. . n HEO Y1y YI= U 1y &5000 -
Fig. 2.10 Plot of erfc, (X) and related functions. MM EX101 6, Page 26
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where y; takes on only integer values. Using (35),

-1 T
R f__ff:ﬁ . o =0,1,2,..., (84)
and from (36) i
yi—-1 n
Prml—emy 28 =012 ®s)
n=0 *
The resulting ROC is plotted in Fig. 2.11a for some representative values of mq

and m;.

We see that it consists of a series of points and that Pr goes from 1 to 1—e ™
when the threshold is changed from 0 to 1. Now suppose we wanted Pr to have an
intermediate value, say 1 — de~™o. To achieve this performance we proceed in the
following manner. Denoting the LRT with y; = 0 as LRT No. 0 and the LRT with
yr = 1 as LRT No. 1, we have the following table:

LRT Yr PF P.D
0 0 1 1
1 1 1—e ™ 1—e™
2 1 0
10 T ] o T T % T 2o e = /a"i
n 4 /
» 5 ol // A
g \ /
- /7 !
08 ? i "-":/
2 /
n / 3
o /
¢ v 4
06— A =
| ° /
3 /
Py L // il
/ —
04— 2 F4
3 /
4 j
[~ /
/
0‘20_5 // omg=2 m =4 |
P2 omp=4,m =10
B P d
/
/
! | L | ! | 1 | !
0 0.2 0.4 0.6 0.8
Pp—

Fig. 2.11 (a) Receiver operating characteristic, Poisson problem.
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omp=2 my=4

4 omo=4, my=10

0.2 0.4 0.6 0.8 1.0
.11 (b) Receiver operating characteristic with randomized decision rule.

desired value of Py we use LRT No. 0 with probability % and LRT No. 1
bility 4. The test is
Ifn =0, say H, with probability 4,
say H, with probability 4,
nz=1 say H,.
. in which we mix two likelihood ratio tests in some probabilistic

led a randomized decision rule. The resulting Pp is simply a weighted
n of detection probabilities for the two tests.

Pp = 0.5(1) + 0.5(1 —e"™) = (1 — 05 e" "), (86)

OC for randomized tests consists of straight lines which connect
ig. 2.11a, as shown in Fig. 2.11b. The reason that we encounter a
t the observed random variables are discrete. Therefore A(R)
om variable and, using an ordinary likelihood ratio test, only [RR2020-00038

MM EX1016, Page 27
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Looking at the expression for Pp in (56) and denoting the threshold by =,
we have

Pr(n) = _[: .PAIHO(XlHO) ax. (87)

If Px(n) is a continuous function of 7, we can achieve a desired value from
0 to 1 by a suitable choice of n and a randomized test will never be needed.
This is the only case of interest to us in the sequel (see Prob. 2.2.12).
With these examples as a background, we now derive a few general
properties of receiver operating characteristics. We confine our discussion
to continuous likelihood ratio tests.
Two properties of all ROC’s follow immediately from this example.

Property 1. All continuous likelihood ratio tests have ROC’s that are con-
cave downward. If they were not, a randomized test would be better. This
wouldfcontradict our proof that a LRT is optimum (see Prob. 2.2.12).

Property 2. All continuous likelihood ratio tests have ROC’s that are above
the P, = Py line. Thisis justa special case of Property 1 because the points
(Pr=0,Pp=0)and (P =1,Pp = 1) are contained on all ROC’s.

Property 3. The slope of a curve in a ROC at a particular point is equal to
the value of the threshold » required to achieve the Pp, and Py of that point.
Proof.

Py = J‘ pAlHl(AlHl) dA,
n

Py = J‘ Py, (A Ho) dA.

n
Differentiating both expressions with respect to 7 and writing the results
as a quotient, we have

dPp/dn _ —pAIﬁl(anl) _ ﬂ’g'
dPy[dn *PA|H0("J|H0) dPy

We now show that

PAml("JlHﬂ =
PALHO("}1H0) )
- (R|H,)
A = PriH,y 1 .
Qr) & (RIA®) = 7} = [R B T 2 |
Then

Poln) & Pr{AR) = 1[0} = [ peiw (RIF) dR

= A(R)Pn|HD(R1HO) dRs

am
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where the last equality follows from the definition of the likelihood ratio.
Using the definition of Q(x), we can rewrite the last integral

Po) = [ A®puisRIH dR = [ Xpara (K| X 63
1. n
Differentiating (93) with respect to 7, we obtain

dP‘?ﬂ( D - —1PA 1, (n| Ho)- ¢4

Equating the expression for dPp(n)/dn in the numerator of (89) to the
right side of (94) gives the desired result.

We see that this result is consistent with Example 1. In Fig. 2.9a, the
curyes for nonzero d have zero slope at Pr = Pp = 1 (7 =0) and infinite
slope at Pr = P, =0 (n = ).

Property 4. Whenever the maximum value of the Bayes risk is interior to
the interval (0, 1) on the P, axis, the minimax operating point is the

intersection of the line

(Cy1 — Coo) + (Cor — C11)(1 — Pp) — (Cro — Coo)Pr =0 93)
and the appropriate curve of the ROC (sce 46). In Fig. 2.12 we show the
special case defined by (50),

CePr = CuPy = Cnr(l = i D)s (96)
1.0 T T T
d.._.,‘Z..O
30
08l % 4
Q-
G
Cu
=15
T 06 o
Fp
04t
c
L& =10
0.2
c
g =05
| | | | plit il
0 0.2 04 0.6 0.8 1.0
P —>

Fig. 2.12 Determination of minimax operating point. IPR2020-00038
MM EX1016, Page 28
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superimposed on the ROC of Example 1. We see that it starts at the point
Py = 0, P, = 1, and intersects the P = 1 line at

©7)

This completes our discussion of the binary hypothesis testing problem.
Several key ideas should be re-emphasized:

1. Using either a Bayes criterion or a Neyman—Pearson criterion, we
find that the optimum test is a likelihood ratio test. Thus, regardless of the
dimensionality of the observation space, the test consists of comparing a
scalar variable A(R) with a threshold. (We assume Pg(n) is continuous.)

2. In many cases construction of the LRT can be simplified if we can
identify a sufficient statistic. Geometrically, this statistic is just that
coordinate in a suitable coordinate system which describes the observation
space that contains al/ the information necessary to make a decision.

3. A complete description of the LRT performance was obtained
by plotting the conditional probabilities P, and Py as the threshold » was
varied. The resulting ROC could be used to calculate the Bayes risk for
any set of costs. In many cases only one value of the threshold is of interest
and a complete ROC is not necessary.

A number of interesting binary tests are developed in the problems.

2.3 M HYPOTHESES

The next case of interest is one in which we must choose one of M
hypotheses. In the simple binary hypothesis test there were two source
outputs, each of which corresponded to a single hypothesis. In the simple
M-ary test there are M source outputs, each of which corresponds to one
of M hypotheses. As before, we assume that we are forced to make a
decision. Thus there are M? alternatives that may occur each time the
experiment is conducted. The Bayes criterion assigns a cost to each of these
alternatives, assumes a set of a priori probabilities Py, Py, . .., Py, and
minimizes the risk. The generalization of the Neyman—Pearson criterion to
M hypotheses is also possible. Because it is not widely used in practice, we
shall discuss only the Bayes criterion in the text.

Bayes Criterion. To find a Bayes test we denote the cost of each course
of action as C,;. The first subscript signifies that the ith hypothesis
chosen. The second subscript signifies that the jth hypothesis is true. ¥
denote the region of the observation space in which we choose H; as 4
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and the a priori probabilities are P;. The model is shown in Fig. 2.13. The
expression for the risk is
M-1M-1

&= 3 > PGy f Dot RIH) dR.
i=0 J=0 Zy

To find the optimum Bayes test we simply vary the Z, to minimize R.
This is a straightforward extension of the technique used in the binary case.
For simplicity of notation, we shall only consider the case in which M = 3

in the text. _ o
Noting that Z, = Z — Z; — Z,, because the regions are disjoint, we

obtain

R = PyCoo f
z_-

(98)

PringRIHQ) dR + PoCao | peins(RHo) dR

Zy =2y

Priay (R|Hy) dR

—Zp—Zg

+ PyCoo J.z Pr|H0(R|HD) dR + P,Cy, J;
+ P1Co J. Pra,(R|Hy) dR + P, Gy J; Priu, R|Hy) dR
Zy 2

+ P3Cag J‘ Prng(Rle) dR + choz-'- Prim,(R|Hp) dR
Zo

Z—Zg -5y

8p.C1o L pers,(R|Hy) dR. 99)

his reduces to
= PyCoo + P1C1y + P2Cao

- [Po(Coz — Cag)Pr a1, (R|Hz) + P1(Cor — C11)prin, (R Hy)]dR

CE

.;_. J‘x [PD(CIO — COO)pPIHo(R1HO) - Pg(clg = CzZ)Prlb'g(Rle)] dR

+ _|‘ [Po(Cao — Conprise(RIHG) + Po(Car — Crn)pryss (RIHy)]dR.
L (100)

¢, the first three terms represent the fixed cost and the integrals
¢ variable cost that depends on our choice of Z,, Z;, and Z,.
assign each R to the region in which the value of the integrand
. Labeling these integrands Io(R), I;(R), and I3(R), we have
o rule:

if I(R) < I,(R) and I,(R), choose H,,
if L(R) < I(R) and I;(R), choose H,,
if I,(R) < I,(R) and I,(R), choose Hj.

{BR2020-00038
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48 2.3 M Hypotheses
1 Az (R)

Say Hy

z;
1Ho )\ observation
Source El;-— } space
Hymr ' Say Ha
Say Hy-1
Fig. 2.13 M hypothesis problem )
; s A
® o Fig. 2.14 Decision space.
We can write these terms in terms of likelihood ratios by defining ~ Substituting into (103)-(105), we have
: Hior Ha
PriH (Rlﬂl) P1A1(R) % Pu:
A ...A_ LS SRE HporH
1(R) Pr|Ho(R1H0) Hg orHj (107)
P.A(R) 2 Po,
A Prim,(R|H2) 2A(R) HGoEHy |
AQ(R) -—3 m' Hgor Ho
J PAR) 2 P, AL (R).
Using (102) in (100) and (101), we have HER
HjyorHg
P(Co1 — C11) Ay(R) . 25 Po(Cy6 — Coo) + P 2(Ciz — Coz) Ay(R)  (103) Az@®)A
gorHz
Hp
HgorHi
Py(Cos — Co) As(R) 2 P o(Ca0 — Coo) + P1(Ca1 — Co1) Ay(R), (104)
HgorHjy Py 0 f“P 9 H].
Hzor Ho 4 Hyp
Py(Cyg — Cap) Ao(R) % z 5 Po(Cao — Cio) + Pi(Car — Ci) A(R). (103
o > M(R)
We see that the decision rules correspond to three lines in the AL A Py ';ff 1
a

plane. It is easy to verify that these lines intersect at a common point
therefore uniquely define three decision regions, as shown in Fig. 2.I
The decision space is two-dimensional for the three-hypothesis problen
It is easy to verify that M hypotheses always lead to a decision spac
which has, at most, (M — 1) dimensions.

Several special cases will be useful in our later work. The first is definé

by the assumptions

Copo=Cu1 = Cy =0,

C” = ]., i 95 j.
These equations indicate that any error is of equal importance. Lookis
at (98), we see that this corresponds to minimizing the total probability
error.

)
Fig. 2.15 Decision spaces. IPR2020-00038
MM EX1016, Page 30
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The decision regions in the (A, Ag) plane are shown in Fig. 2.15a. In this
particular case, the transition to the (In Ay, In A,) plane is straight-
forward (Fig. 2.15b). The equations are

HyorHg P
mA®R 2 In3>
HporHz Pl

HjorHg
AR 2 L

t
Hpor Hy Pg

(108)

HporHa Pl
InA,R) 2 In Ay(R) + In 5+
g or 2

The expressions in (107) and (108) are adequate, but they obscure an
important interpretation of the processor. The desired interpretation is
obtained by a little manipulation.

Substituting (102) into (103-105) and multiplying both sides by
Priu,(R|Ho), we have :

Hy orHg
P;PnHl(RIHx)HDO%HQ PoPr:Hg(R|Ho),

HgorHi
PzPr:Hg(RlHa)Hoo%Hl PoPrmg(RlHn),

or

Hgor Hg
Popya,(R|H) = ;%;Ho P, pyu,(R|Hy).

Looking at (109), we see that an equivalent test is to compute the 2
posteriori probabilities Pr [Hy|R], Pr [H;|R], and Pr [Hz|R] and choost
the largest. (Simply divide both sides of each equation by p.(R) and
examine the resulting test.) For this reason the processor for the minimun
probability of error criterion is frequently referred to as a maxz'mwﬁ
posteriori probability computer. The generalization to M hypotheses s
straightforward.

The next two topics deal with degenerate tests. Both results will be usefl
in later applications. A case of interest is a degenerate one in which We

illustrates the
5 Y

hypothesis Ho
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A A ()
Po
Py Hj or Hy
Hy
EE — A1 (R)
Bo
Py

Fig. 2.16 Decision spaces.

ecision regions are shown in Fig. 2.16. Because we have eliminated
all of the cost effect of a decision between H; and Hy, we have reduced it
{0 a binary problem.

‘We next consider the dummy hypothesis technique. A simple example
idea. The actual problem has two hypotheses, H; and Hs,
lly we can simplify the calculations by introducing a dummy
which occurs with zero probability. We let

P0=0, P1+P2=1,
(114)

Cio = Coz, Cy = Cox-

tuting these values into (103-105), we find that (103) and (104)
that we always choose H, or H, and the test reduces to

PiCra — o) Aa® 3 PG = C)A®. (119

combine H; and H,. Then
Cig = Coy = 0,
and, for simplicity, we can let

Cor = Cio = Coo = Coz
and
Coo = Ci1 = Cyy = 0.

Then (103) and (104) both reduce to
HiorHg
PiA(R) + PaA5(R) E Py
L]

and (105) becomes an identity.

“at (12) and recalling the definition of A;(R) and A,(R), we see
ult is exactly what we would expect. [Just divide both sides of
(R|Hy).] On the surface this technique seems absurd, but it
1 out to be useful when the ratio

pl‘|H2(R|H2)
Pr|H1(RiH1)

‘work with and the ratios A(R) and A4(R) can be made

per choice of Py, (R Ho).

n we have developed the basic results needed for the M-

blem. We have not considered any specific exalR2020-00038
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because the details involved in constructing the likelihood ratios are the
same as those in the binary case. Typical examples are given in the
problems. Several important points should be emphasized.

1. The minimum dimension of the decision space is no more than
M — 1. The boundaries of the decision regions are hyperplanes in the
(Ay, .. .5 Apy—q) plane.

2. The optimum test is straightforward to find. We shall find however,
when we consider specific examples that the error probabilities are
frequently difficult to compute.

3. A particular test of importance is the minimum total probability of
error test. Here we compute the a posteriori probability of each hypothesis
Pr (H;|R) and choose the largest.

These points will be appreciated more fully as we proceed through
various applications.

These two sections complete our discussion of simple hypothesis tests.
A case of importance that we have not yet discussed is the one in whi
several source outputs are combined to give a single hypothesis. To study
this detection problem, we shall need some ideas from estimation theo y,
Therefore we defer the composite hypothesis testing problem until Section
2.5 and study the estimation problem next.

2.4 ESTIMATION THEORY

In the last two sections we have considered a problem in which one of
several hypotheses occurred. As the result of a particular hypothesis, &
vector random variable r was observed. Based on our observation, W
shall try to choose the true hypothesis.

In this section we discuss the problem of parameter estimation. Before
formulating the general problem, let us consider a simple example.
Example 1. We want to measure a voltage a at a single time instant. From physicd
considerations, we know that the voltage is between — V and + V volts. The meas

ment is corrupted by noise which may be modeled as an independent additive zefd
mean Gaussian random variable #. The observed variable is r. Thus

r=a+t+n
The probability density governing the observation process is pyja(R|A4). In thi
—_ 2
exp (— (——'—R ;4) )

20,

Pria(RIA) = pu(R — A) = 2i

T Ty

The problem is to observe r and estimate a.

This example illustrates the basic features of the estimation pro

Model 53

A model of the general estimation problem is shown in Fig. 2.17. The
model has the following four components:

Parameter Space. The output of the source is a parameter (or variable).
We view this output as a point in a parameter space. For the single-
parameter €ase, which we shall study first, this will correspond to segments
of the line —o0 < 4 < ©. In the example considered above the segment is

(=¥ V)

Probabilistic Mapping from Parameter Space to Observation Space. This
is the probability law that governs the effect of @ on the observation.

Obsercation Space. In the classical problem this is a finite-dimensional
space. We denote a point in it by the vector R.

‘stimation Rule. After observing R, we shall want to estimate the value
‘We denote this estimate as 4(R). This mapping of the observation
into an estimate is called the estimation rule. The purpose of this
n is to investigate various estimation rules and their implementations.

The second and third components are familiar from the detection prob-
" The new features are the parameter space and the estimation rule.
. we try to describe the parameter space, we find that two cases arise.
first, the parameter is a random variable whose behavior is governed
srobability density. In the second, the parameter is an unknown
 but not a random variable. These two cases are analogous to the

Estimation
rule

Observation
space

IPR2020-00038

Fig. 2.17 Estimation model.
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source models we encountered in the hypothesis-testing problem. To corre-- C(Ae)
spond with each of these models of the parameter space, we shall develop
suitable estimation rules. We start with the random parameter case.

2.4.1 Random Parameters: Bayes Estimation Ae

In the Bayes detection problem we saw that the two quantities we had
to specify were the set of costs C;; and the a priori probabilities P;. The
cost matrix assigned a cost to each possible course of action. Because there
were M hypotheses and M possible decisions, there were M 2 costs. In
the estimation problem a and 4(R) are continuous variables. Thus we must
assign a cost to all pairs [a, dR)] over the range of interest. This is a
function of two variables which we denote as C(a, @). In many cases of:
interest it is realistic to assume that the cost depends only on the error of
the estimate. We define this error as

a(R) 2 4R) — a. (118);

The cost function C(a.) is a function of a single variable. Some typical
cost functions are shown in Fig. 2.18. In Fig. 2.18a the cost function
simply the square of the error:

C(ac) = aez-
This cost is commonly referred to as the squared error cost function.

see that it accentuates the effects of large errors. In Fig. 2.18b the
function is the absolute value of the error:

Cla,) = |a£|'

Ae
(a)

ClAL) C(A¢)

|Ae|

— | [&=—A

Ae —> A

(b) (c)

Typical cost functions: (@) mean-square error; (b) absolute error; (c) uniform

In Fig. 2.18¢ we assign zero cost to all errors less than +A/2. In other
words, an error less than A/2 in magnitude is as good as no error. I
a. > AJ2, we assign a uniform value:

ons.
ding to the a priori probabilities in the detection problem, we
riori probability density pa(4) in the random parameter estima-

=0 = A em. In all of our discussions we assume that pu(A) is known. If
C(a.) . la| = 3’ i i
t known, a procedure analogous to the minimax test may be
A
=k lad > z ‘have specified the cost function and the a priori probability, we

expression for the risk:

E(Cla, 4R)]} = j A j CIA — 4(R)]pas(4, R dR. (122)

In a given problem we choose a cost function to accomplish t
objectives. First, we should like the cost function to measure user s
faction adequately. Frequently it is difficult to assign an analytic mea:
to what basically may be a subjective quality.

Our goal is to find an estimate that minimizes the expected value of
cost. Thus our second objective in choosing a cost function is to assi
that results in a tractable problem. In practice, cost functions are us
some compromise between these two objectives. Fortunately, in o

1 is over the random variable ¢ and the observed variables
t are functions of one variable only (122) becomes

f=[" aa[" cla— a®p4RR- (8R2020-00038
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Differentiating with

we have
g ps(R)
I

The Bayes estimate is the estimate that minimizes the risk. It is straight-
forward to find the Bayes estimates for the cost functions in Fig. 2.18.
For the cost function in Fig. 2.18a, the risk corresponds to mean-square |
error. We denote the risk for the mean-square error criterion as R,
Substituting (122) into (123), we have

Foie = _[ j o f dR[A — GR)FPa,x(4, R). (124)

The joint density can be rewritten as
Pa,e(4, R) = pe(R)paix(4[R). (125)

Using (125) in (124), we have
Roe = [ aRp® [ Al ~ A®FpAR). (129

Now the inner integral and p.(R) are non-negative. Therefore we can
minimize R, by minimizing the inner integral. We denote this estimate
ds(R). To find it we differentiate the inner integral with respect to d(R)
and set the result equal to zero: '

% J‘ : dA[A — GR)2pa (AR
= =2 Apo(AIR)dA + 24®) [~ palAIR)dA. (121)

Setting the result equal to zero and observing that the second integral
equals 1, we have

- I

_.s_mall A the best

this is frequ

continuous fir
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respect to d(R) and setting the result equal to zero,
dApueAR) = [ dd pu(4IR). (131)
dnns

This is just the definition of the median of the a posteriori density.
" The third criterion is the uniform cost function in Fig. 2.18¢. The risk

expression follows easily:

arp, (R 1 - f“‘“‘“’”"z perAR a4 (132

Aunt(R)— A2

To minimize this equation we maximize the inner integral. Of particular
interest to us is the case in which A is an arbitrarily small but nonzero
ber. A typical a posteriori density is shown in Fig. 2.19. We see that

choice for d(R) is the value of 4 at which the a

riori density has its maximum. We denote the estimate for this
ecial case as dmap(R), the maximum a posteriori estimate. In the sequel
| Use dap(R) Without further reference to the uniform cost function.

find dmap We must have the location of the maximum of pg<(4[R).
wuse the logarithm is a monotone function, we can find the location of
aximum of In pe(4|R) equally well. As we saw in the detection

ently more convenient.

maximum is interior to the allowable range of 4 and In p, (4|R)

st derivative then a necessary, but not sufficient,

n for a maximum can be obtained by differentiating In pg (4| R)

dms(R) = J-m dA Ap,(A|R). (128) pect to A and setting the result equal to zero:
This is a unique minimum, for the second derivative equals two. The tern an_g%;(jll_f{) =0. (133)
on the right side of (128) is familiar as the mean of the a posteriori density s i
(or the conditional mean).
Looking at (126), we see that if d(R) is the conditional mean the i
integral is just the a posteriori variance (or the conditional varianc A po|x (AIR)

Therefore the minimum value of R, is just the average of the conditions "

variance over all observations R.
To find the Bayes estimate for the absolute value criterion in Fig. 2.18
we write

Rans = J.: dR p,(R) J.: dA[|A — 4R)|]pa(A4|R). (129

|
|
|
|
I
|
|
1

| gl

To minimize the inner integral we write

I(R) = J‘ “ﬂ: dA[G(R) — A] pai(AR) + J‘:m AL — GR)] parAIR)

—
A

Fig. 2.19 An a posteriori density. IPR2020-00038
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58 2.4 Estimation Theory

We refer to (133) as the MAP equation. In each case we must check to see
if the solution is the absolute maximum.

We may rewrite the expression for p,«(4|R) to separate the role of the
observed vector R and the a priori knowledge:

pen(A|R) = LeeBIAPLA),

2R (3%

Taking logarithms,

In po1e(A[R) = In prja(R|4) + In pa(4) — In pe(R). (135)
For MAP estimation we are interested only in finding the value of 4

where the left-hand side is maximum. Because the last term on the right-
hand side is not a function of 4, we can consider just the function

I(A) 2 In pya(R|A) + In pa(A). (136)

The first term gives the probabilistic dependence of R on 4 and the
second-describes a priori knowledge.
The MAP equation can be written as

al(A) _¢ln Pria(R|A4) & 1n pu(A) -0
04 |s=amy d0A 84 |a-am) ’

Our discussion in the remainder of the book emphasizes minimum mean-
square error and maximum a posteriori estimates. :
To study the implications of these two estimation procedures we
consider several examples.

+
A=d(R)

Example 2. Let

n=a + my, i= 1,2,..., N. (13

We assume that a is Gaussian, N (0, o), and that the » are each independent
Gaussian variables N(0, o). Then

Pria(R|A) = H ‘/z_lﬂ — exp (_(Rl — A) )

20,2

L ap(-22)

‘\/‘i? o, 25’02
To find dms(R) we need to know par(4|R). One approach is to find px(R)

substitute it into (134), but this procedure is algebraically tedious. It is easi

observe that p, r(4|R) is a probability density with respect to a for any R. Thus pr(K
just contributes to the constant needed to make

J'_: Parn(A|R) dA = 1.

palA) =

(In other words, px(R) is simply a normalization constant.) Thus

N 1 ] N
e [(ﬂ Ve Vo aa] ! 1[21(3' —, g]
Paqr A Pr(R) exp 2 2 Uﬂn

Op
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Rearranging the exponent, completing the square, and absorbing terms depending
only on R into the constant, we have

1 ag? 1 X 2 {43
panAIR) = k) exp { ~7,[4 e (w2 R pooae
where
1 NyT? o la,?
o2 & (;—2 + F) = ok + o3 (143)

is the a posteriori variance. . ) o
~ We see that Pair(A|R) is just a Gaussian density. The estimate dms(R) is just the
conditional mean
R R—~——9i——(liR) (144)
ds(R) = aa? + 2N \N & 4 i
Because the a posteriori variance is not a function of R, the mean-square risk
s the a posteriori variance (see (126)).
o observations are useful:
The R, enter into the a posteriori density only through their sum. Thus
T
N
IR)= > R (145)
i=1
wfiicient statistic. This idea of a sufficient statistic is identical to that in the
on problem. _ . - .
; estimation rule uses the information available in an intuitively logical
If 0.2 « o®[N, thea priori knowledge is much better than the observed daila
estimate is very close to the a priori mean. (In this case, the a priori mean is
. the other hand, if 0,2 >» @:*[N, the a priori knowledge is of little value and
¢ uses primarily the received data. In the limit dm, is just the arithmetic

N
lim  dms(R) = '1)\? S R (146)
.fﬂ_s—_.u Al
Nog?

timate for this case follows easily. Looking at (142), we see that because

y is Gaussian the maximum value of pg=(4|R) occurs at the conditional

Amas(R) = dns(R). (147)

ditional median of a Gaussian density occurs at the conditional

dnbﬂ(R) = ‘im!(R)- (148)

‘that for this particular example all three cost functions in
0 the same estimate. This invariance to the choice of a cost
\ y a useful feature because of the subjective judgments
involved in choosing C(a.). Some conditions under
ce holds are developed in the next two properties.t

iven

R2020-00038
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due to Sherman [20]. Our derivation is similar to that
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60 2.4 Estimation Theory
Proof. As before we can minimize the conditional risk [see (126)].

Define

Property 1. We assume that the cost function C(a,) is a symmetric, convex-
upward function and that the a posteriori density pa.(4[R) is symmetric
about its conditional mean; that is,

C(a) = C(—a.) (symmetry), (149)
Cbx; + (1 — b)xg) < bC(xy) + (1 — b) C(x3) (convexity) (150)

Ru@R) & E[C@ — a)|R] = E[C(a — DIR], (153)

where the second equality follows from (149). We now write four equivalent
:;gj;pressions for Rp(@R):

for any b inside the range (0, 1) and for all x; and x,. Equation 150 simply RyGR) = Jﬂn C(d — Gms — Z)p-1Z |R) dZ (154)
says that all chords lie above or on the cost function. -= .
This condition is shown in Fig. 2.20a. If the inequality is strict whenever [Use (151) in (153)]
x; # Xxg, We say the cost function is strictly convex (upward). Defining o o (155)
= C(G — dms + Z)P2ir(Z
z 8 g — Gns = a— E[aR] (151) J-—aa =4 p=1x(ZIR)

the symmetry of the a posteriori density implies [(152) implies this equality]

PerZ[R) = pun(—Z[R). (152) = |7 Cllws — 6= Z)plZIR 2 (156)
The estimate 4 that minimizes any cost function in this class is identi al T o . ;
1
t0 dpms (Which is the conditional mean). [(149) implies this equality]
[l — 4+ DpanZIR 2 (157)
C de = & »
e [(152) implies this equality].
 now use the convexity condition (150) with the terms in (155) and
ﬂ'B(‘ilR) 5 %E({C[Z + (lms — al + ClZ - (Gms — an)]}iR)
e > E{CIHZ + (s — @) + HZ — (s — a@)]|R}
(a) = E[C(Z)R]. (158)
ity will be achieved in (158) if dms = 4. This completes the proof.
strictly convex, we will have the additional result that the
4 Clae) estimate @ is unique and equals dps.
ide cost functions like the uniform cost functions which are not
d a second property.
e assume that the cost function is a symmetric, nondecreasing
| that the a posteriori density Pai(A|R) is a symmetric (about
| mean), unimodal function that satisfies the condition
o Ae
lim Cpan(x|R) = 0.
®)

Fig. 2.20 Symmetric convex cost functions: () convex; () strictly convex. this property is similar to the above proof I\[/?I?A .

at minimizes any cost function in this class is identir:i% &)2 020-00038
X1016, Page 36
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62 2.4 Estimation Theory

The significance of these two properties should not be underemphasized. |
Throughout the book we consider only minimum mean-square and maxi-
mum a posteriori probability estimators. Properties 1 and 2 ensure that
whenever the a posteriori densities satisfy the assumptions given above the
estimates that we obtain will be optimum for a large class of cost functions.
Clearly, if the a posteriori density is Gaussian, it will satisfy the above

i i _ (As already pointed out, the constant is
i der for the density to integrate to 1. ( ' )
Ln,ﬂc;;portant for MAP estimation but is needed if we find the MS estimate by
integrating over the conditional density.)
The mean-square estimate is the conditional mean:
(1 + A)N{-l @ N
Gus(N) =—Fn AN+iexp [—A(1l + V] dA

o

. 1
assumptions. W % (N+1)= (A_%)(N e ) (167)
We now consider two examples of a different type. )
) ) ) ) ) To find dmep WE take the logarithm of (165)
Example 3. The variable a appears in the signal in a nonlinear manner. We denote In pain(A|N) = Nln A — A + N + In k(N). (168)

this dependence by s(4). Each observation r, consists of 5(A4) plus a Gaussian random

variable n;, N(0, a,). The n; are statistically independent of each other and a. Thus = pect to 4, setting the result equal to zero, and solving, we

differentiating with res

ro = s(A4) + m. (159);
Therefore ' (169)

N
dmw(N )= m'
¢ that dmap 18 NOL equal to dms-
er examples are developed in the problems. The principal results

is section are the following:

N
R, — s(A)P
;[ s(A)] +A—Z

1
Par(AIR) = kR) exp | =50 ==

This expression cannot be further simplified without specifying s(A) explicitly.
The MAP equation is obtained by substituting (160) into (137)

as(A)

|. The minimum mean-square error estimate (MMSE) is always
2 N i
dmnp(R) = :_:Eg ‘zl [Ri — S(A)] A

ean of the a posteriori density (the conditional mean).

The maximum a posteriori estimate (MAP) is the value of 4
h the a posteriori density has its maximum. _

. For a large class of cost functions the optimum estimate is the

nal mean whenever the a posteriori density is a unimodal
which is symmetric about the conditional mean.

A=map(R)
To solve this explicitly we must specify s(4). We shall find that an analytic solution
is generally not possible when s(4) is a nonlinear function of 4.
Another type of problem that frequently arises is the estimation of
parameter in a probability density.

Example 4. The number of events in an experiment obey a Poisson law with mear

value a. Thus Its are the basis of most of our estimation work. As we study

nplicated problems, the only difficulty we shall encounter is the
on of the conditional mean or maximum. In many cases o f
'LMAP.and MMSE estimates will turn out to be equal.

urn to the second class of estimation problems described in the

Pr(r:events]a=A)-——§exp{—A), = 0l

We want to observe the number of events and estimate the parameter a of the Poisso
law. We shall assume that a is a random variable with an exponential density

_ [Aexp (—AA4), A =0,
pel4) = 0, elsewhere.

The a posteriori density of a is {onrandom) Parameter Estimationf

ses it is unrealistic to treat the unknown parameter as a
The problem formulation on pp. 52-53 is still appro-
ver, the parameter is assumed to be nonrandom, and
_an estimation procedure that is good in some sense.

Pr(n=N|a= A)pA)
Pr(n=N) i

Substituting (162) and (163) into (164), we have
DPainlA|N) = k(N)[4¥ exp (— A0 + )], A=0,

pﬂ]ﬂ(AiNJ —

where lassical estimation theory can be attributed to Fisher [35, 6, 7, 8.

the basic ideas are now available (e.g., Cramér [91), WilkyBR2020-00038
L MM EX1016, Page 37
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A logical first approach is to try to modify the Bayes procedure in the
last section to eliminate the average over p,(4). As an example, consider a
mean-square error criterion,

R & [ 0@ — AP pruR|4) R, (170)

A Pam)|A (E(R)IA)

i \—> A(R)

where the expectation is only over R, for it is the only random variable in =

the model. Minimizing R(4), we obtain

Gms(R) = 4. (171)

The answer is correct, but not of any value, for A is the unknown
quantity that we are trying to find. Thus we see that this direct approach
is not fruitful. A more useful method in the nonrandom parameter case
is to examine other possible measures of quality of estimation procedures.
and then to see whether we can find estimates that are good in terms of

Fig. 2.21 Probability density for an estimate.

| - Maximum Likelihood Estimation. There are several ways to motivate
th ¢ estimation procedure that we shall use. Consider the simple estimation
problem outlined in Example 1. Recall that

r=A+n, (174)
these measures.
The first measure of quality to be considered is the expectation of the Prio(Rl4) = (V2 0,) 7" exp [—3(R — 4)]. (175)

estimate ‘We choose as our estimate the value of A4 that most likely caused a given

of R to occur. In this simple additive case we see that this is the same
hoosing the most probable value of the noise (N = 0) and subtracting
'R, We denote the value obtained by using this procedure as a
um likelihood estimate.

Ef(R)) & [ d(R) poo(R|A) dR.

The possible values of the expectation can be grouped into three classes

1. If E[4(R)] = A, for all values of A, we say that the estimate is un-

biased. This statement means that the average value of the estimates equals. dm(R) = R. (176)
the quanmiy we are trying to estuna.te. _ ¢ general case we denote the function py.(R|4), viewed as a

2. IfE [4(R)] = 4 + B, where B is not a function of 4, we say that e on of 4, as the likelihood function. Frequently we work with the
estimate has a known bias. We can always obtain an unbiased estimate by Bearithm, In pr[u(R] A), and denote it as the log likelihood function. The

subtracting B from d(R).

3. If E[4(R)] = A + B(A), we say that the estimate has an unknown bias
Because the bias depends on the unknown parameter, we cannot simply
subtract it out.

Tikelihood estimate d.(R) is that value of 4 at which the likeli-
netion is a maximum. 1f the maximum is interior to the range of A,
(R|4) has a continuous first derivative, then a necessary con-
(R) is obtained by differentiating In Prio(R|4) with respect to
tting the result equal to zero:

d lnprla(R]A)

cA A=dm(R)

is called the likelihood equation. Comparing (137) and (1 77,
the ML estimate corresponds mathematically to the limiting
AP estimate in which the a priori knowledge approaches zero.
1o see how effective the ML procedure is we can compute the
he variance. Frequently this is difficult to do. Rather than
he problem directly, we shall first derive a lower bound on the
¥ n %

unbiased estimate. Then we shall see how the variance ﬁBeRZ 020-00038

s with this lower bound.
MM EX1016, Page 38

Clearly, even an unbiased estimate may give a bad result on a particular
trial. A simple example is shown in Fig. 2.21. The probability densit
the estimate is centered around A, but the variance of this density is larg
enough that big errors are probable.

A second measure of quality is the variance of estimation error:

Var [4(R) — 4] = E{[dR) — AJ*} — BA). (17

This provides a measure of the spread of the error. In general, W
try to find unbiased estimates with small variances. There is no strai
forward minimization procedure that will lead us to the minimum va
unbiased estimate. Therefore we are forced to try an estimation procedd
to see how well it works.

= 0. (77
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Cramér-Rao Inequality: Nonrandom Parameters. We now want to con- Substituting (183) into (182), we have

sider the variance of any estimate d(R) of the real variable 4. We shall

© gln pr (R4
prove the following statement. J. —L@upna(RlA)[d(R) — A]dR = 1. (184)

- oA

Theorem. (a) If 4(R) is any unbiased estimate of A, then Rewriting, we have

ria R o e — R TR T
var () — 41 = (£{ [ BT (178) [ [ Vo) | [ VeI [(R) = AI[dR = 1, (185)
or, equivalently, and, using the Schwarz inequality, we have

(b

{ [0 [ peria ar}

A7 1w — A7 PRI ar} > 1, (186)

Var [4R) — 4] = {-E[@%@M]} (179)

where the following conditions are assumed to be satisfied:

©

re we recall from the derivation of the Schwarz inequality that equality
3p.1a(R|A) p. (R A) Jolds if and only if
o M0 o o1n pria®|4) _
exist and are absolutely integrable. 04 = [dE®— Al 5, (187)
The inequalities were first stated by Fisher [6] and proved by Dugué [31].
They were also derived by Cramér [9] and Rao [12] and are usually
referred to as the Cramér-Rao bound. Any estimate that satisfies the
bound with an equality is called an efficient estimate.
The proof is a simple application of the Schwarz inequality. Because

4(R) is unbiased,

R and A. We see that the two terms of the left side of (186) are the
ctations in statement (@) of (178). Thus,

E(a® ~ AT} > {E p[2n eI g i (138)

o prove statement (b) we observe

Bla® ~ A2 [ proRIAER — 41dR =0. (150 [ paa®idar =1 (189)

Differentiating both sides with respect to 4, we have ating with respect to A, we have

- apr|ggllA)dR _ J’“’ ﬂllp___a;(m*i)pm(gm) dR = 0. (190)

ing again with respect to 4 and applying (183), we obtain

?‘% ijp”“(RlA)[é(R) — A]dR
= 7 57 (pau®IHIA® — AB R =0, (5]

where condition (c) allows us to bring the differentiation inside the integr \ :

Then Priao(R|A4) dR
o ]-nPria(RiA))z
. ’ 0InpruRIDV ) R4y aR =0 (191
—f Pria(R[4) dR + j il o) "g(fl“’) [4R) — A]dR = 0. (182 & J. —o ( oA 2ro(RI4) .
The first integral is just + 1. Now observe that g[n PeR|4)] _ _p[¢ln Pria(R[A)]* 192
94> - oA ’ (152)

IPR2020-00038
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ope(R|4) _ 21n pgi(RlA) Pria(R|4).

04 with (188) gives condition (b).
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Because the expression in (197) has the form required by (187), we know that
dmi(R) is an efficient estimate. To evaluate the variance we differentiate (197):

& In priaR|4) _ _ N

Several important observations should be made about this result.

1. Tt shows that any unbiased estimate must have a variance greater

than a certain number. A2 py (200)

2. If (187) is satisfied, the estimate dm(R) will satisfy the bound with an | P )
equality. We show this by combining (187) and (177). The left equality is Using (179) and the efficiency result, we have
the maximum likelihood equation. The right equality is (187): Var [du(®) — A] = %f @o1)

a1n pro(R|4) !
0= ____———a' 5 | gt (4R) — A) k(4) Pt (193) Skipping Example 3 for the moment, we go to Example 4.
In order for the right-hand side to equal zero either B sinyic ¢. Differentiating the logarithm of (162), we have
olnP = N|A4 &
4(R) = dm(R) (194) —-—I—(;;T—u=awlnfi — A—1InNY)
or N 1
k() = 0. (195) =g - 1=Z0-A. (202)
; : I ‘The ML estimate is
Because we want a solution that depends on the data, we eliminate (195) i Gmi(N) = N. (203)

and require (194) to hold. .
Thus, if an efficient estimate exists, it is dm(R) and can be obtained as a 5
unique solution to the likelihood equation.

clearly unbiased and efficient. To obtain the variance we differentiate (202):

#InPr(n=Nl4d) N
= (204)

3. If an efficient estimate does not exist [i.e., & ln pyjo(R|A4)/6A cannot a4* A2
be put into the form of (187)], we do not know how good dm(R) is. N
Further, we do not know how close the variance of any estimate will Var [6m(N) — Al = g5 = 7 = A. (205)

approach the bound.
4. In order to use the bound, we must verify that the estimate of conce n
is unbiased. Similar bounds can be derived simply for biased estimates
(Problem 2.4.17).
We can illustrate the application of ML estimation and the Cramér—Rao
inequality by considering Examples 2, 3, and 4. The observation model
identical. We now assume, however, that the parameters to be estimated
are nonrandom variables.

In both Examples 2 and 4 we see that the ML estimates could have been
from the MAP estimates [let o, — oo in (144) and recall that
= (map(R) and let A — 0 in (169)].

‘now return to Example 3.

3. From the first term in the exponent in (160), we have

alnprR|4) _ 1 X as(A
Qnpee®IA) _ L S (r, - an g (206)
Example 2. From (138) we have

the right-hand side cannot be written in the form i
e e 1, rm required by (187), and

unbiased efficient estimate does not exist.

Taking the logarithm of (139) and differentiating, we have Ridicquation is

as(A) 1 1 X
21n pria(R|4A) _ N (1 < [———][— R — A] =0
— o4 T ot (ﬁ 21 S A)' 24 allLN Z: S A= G (R) b 207)
Thus { x of 5(A) includes (1/N) 3/, Ry, a solution exists:
am®) = 5 2 Re 1 X
= slam(R)] = 5 2, Re. (208)
To find the bias we take the expectation of both sides, =t
| 5 1 i tisfied, then
Eldm®)] =% > ER)=524= A,
P N au®) = 57(3 5 R) IRR2020-00038

so that dm(R) is unbiased. bl MM EX1016, Page 40
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-1(.) exists. If it does not, then even in the

mine 4 unambiguously. 1f we were designing
find A unambiguously in
N) I, R,, the maximum

that (209) tacitly assumes that s
e unable to deter
n s(-) that allows us to

(a) does not include (1/

[Observe
absence of noise we shallb
a system, we would always choose &
the absence of noise.] If the range of s
is at an end point of the range.

We see that the maximum likeliho cor
(This is not true for MS or MAP estimation.) If it i
on the variance by differentiating (206):

od estimate commutes over nonlinear operations.
s unbiased, we evaluate the bound

22 1n prio(R| A 1 E 2s(4) _)_V_ [BS(A)]""_ 2
___%rjg‘_i) =5 S R— s~ galed (210)
ing that
el Elry — s(A)] = E(m) = 0, (211)
we obtain the following bound for any unbiased estimate,
(212)

_w
Var [¢(R) — 4] = Nios(A)[2AT
We see that the bound is exactly the same as that in Example 2 cxc_:cpt for a factor
[8s(4)/eA]%. The intuitive reason for this factor and also some feelmg for tl:lc con-
ditions under which the bound will be useful may be obtained by inspecting the
al function shown in Fig. 2.22. Define

Nonrandom Parameter Estimation 71

nd
i Var (y.) oy’

Var (a0 = A aAF ~ NiestA)eAT”

We observe that if y. is large there will no longer be a simple linear relation between
This tells us when we can expect the Cramér-Rao bound to give an accurate
he case in which the parameter enters the problem in a nonlinear manner.
whenever the estimation error is small, relative to A 8%s(A)/842, we
o be close to the variance bound given by the

(216)

yeand de.
answer in
gpecifically,
should expect the actual variance t

Cramér-Rao inequality.

The properties of the ML estimate which are valid when the error is
red to as asymptotic. One procedure for developing
dy the behavior of the estimate as the number of
independent observations N approaches infinity. Under reasonably general
conditions the following may be proved (e.g., Cramér [9], pp. 500-504).
1. The solution of the likelihood equation (177) converges in probability
the correct value of A as N—>co. Any estimate with this property is
lled consistent. Thus the ML estimate is consistent.

2. The ML estimate is asymptotically efficient; that is,

Var [dx(R) — 4]

small are generally refer
them formally is to stu

typic
Y = s(A). (213) - * [l /-
Then ro= Y4 (214) N (_ E [ n};:;az(RI )D

The variance in estimating Y is just o,%/N. However, if y, the error in

is small enough so that the slope is constant, then

A=d(R)

4y=s(A)
s(A)
~ 1 S
y=-§§-Ri »—--———-b-—rv——
np——<——A o(A) = 5(An) +(A = A0) S| + -+
A=
| i
(L
A
-
A, A
_'>l L(_‘Ae

Actual value of A

Fig. 2.22 Behavior of error variance in the presence of small errors.

estimating Y,

(215)

3 The ML estimate is asymptotically Gaussian, N(4, Oq,)-

hese properties all deal with the behavior of ML estimates for large N.

rovide some motivation for using the ML estimate even when an
nt estimate does not exist.
this point a logical question is: “Do better estimation procedures
the maximum likelihood procedure exist?” Certainly if an efficient
te does not exist, there may be unbiased estimates with lower
. The difficulty is that there is no general rule for finding them.
ular situation we can try to improve on the ML estimate. In
Il cases, however, the resulting estimation rule is more complex,
ofore we emphasize the maximum likelihood technique in all of
k with real variables.
nd logical question is: ““ Do better lower bounds than the Cramér—
uality exist?” One straightforward but computationally tedious
¢ is the Bhattacharyya bound. The Cramér-Rao bound uses
A)/é42. Whenever an efficient estimate does not exist, a larger
h involves the higher partial derivatives can be obtained.
rivations are given in [13] and [14] and in Problems 2.4.23-24.
of interest to us the computation is too involved to ma_l1

020-00038

wuch practical value. A second bound is the BarmnElsg%?M 6 P p»
, Fage
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(e.g. [15)). Its two major advantages aré that it does not require the Now integrate with respect to A4:
probability density to be differentiable and it gives the greatest lower
bound. Its disadvantages are that it requires a maximization over
function to obtain the bound and the procedure for finding this maximum
tforward. Some simple examples are given in the

is usually not straigh
problems (2.4.18-19). In most of our discussions, we emphasize the

Cramér-Rao bound.
We now digress briefly to develop a si
error when the parameter is random.

the Minimum Mean-Square Evrror in Est
prove the following theorem.

+ @ - o LI ru,R,
Pl BA)| = -1+ I_wj_mﬁ;é%i)[é(R)—A] dAdR. (222)

o

The assumption in Condition 3 makes th i
e : e left-hand
remaining steps are identical. The result is side zero. The

E{[4®R) — a?} = {E[(?”“—P%R—""—))g]}_l (223)
" or, equivalently,
E{l4®) — al?} = {—E[a—————g 021 ®IA) _ p[E 0L 2N (220

milar bound on the mean-square

Lower Bound on imating a Random

Parameter. In this section we
oA

Theorem. Let a be a random variable and r, the observation vector. The equality if and only if
mean-square error of any estimate 4(R) satisfies the inequality

E{[4®R) — al’} = (E {[ﬂ%@r})_l

{-s[Pn A

Observe that the probability density is a joint density and that the expecta-
tion is over both a and T. The following conditions are assumed to exist:

d1n pr,o(R, 4) "
Y = k[a(R) — 4], (225)
all R and all A_. (In the nonrandom variable case we used the Schwarz
ieq :ahty on an mtcgri_ll over _R so that the constant k(4) could be a
netion o_f A. Now thf_c integration is over both R and A4 so that k cannot
unction of A.) Differentiating again gives an equivalent condition

&1 pr.o(R, 4)
dA? =

@17)

—k. (226)

ve that (226) may be written in terms of the a posteriori density

1. %ﬁg is absolutely integrable with respect to R and A.
&% In par(A|R) _

2
2. Q—MZE;_Q is absolutely integrable with respect to R and 4.
04 A2 —k. (227)
3, The conditional expectation of the error, given A, is g (227) twice and putting the result in the exponent, we ha
: ve
Pai(A|R) = exp (—kA? + C1d + C) (228)

B(A) = j_ [4(R) — A] pria(R|4) dR. i
nd A; but (228) is simply a statement that the a posteriori

ty-_d_e{lsity of @ must be Gaussian for all R in order for an effici

e;u?t. (Note that C, and C, are functions of R) et
; as in (1?3)—(195), we see that if (226) is satisﬁed the MAP
be eﬂ?ment. Because the minimum MSE estimate cannot have
or, Kus tells us that ém‘(R) = dmap(R) Whenever an efficient
! ;;uysc:mm?:tt;:‘ of tlechmc%ue, when an efficient estimate does
S| ec-(mditié}na] ionally easier to sol.ve the MAP equation than
i bw . mean. When an efficient estimate does not exist,
know how closely the mean-square error, using either d,s(R)

We assume that
lim B(A) pa(4) = 0;

A0

lim B(A) pa(4) = 0.

A==

The proof is a simple modification of the one on p-. 66. Multiply bot
sides of (218) by pa(4) and then differentiate with respect to 4:

Ay, cay B = = [ pea® AR

- w

variables may be derived.

‘approaches the lower bound. Asymptotic results similar
IPR2020-00038
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2.43 Multiple Parameter Estimation

In many problems O

parameter. A familiar example is the

estimate the range and veloci

can be extended to this case in a straightforward

shown in Fig. 2.23. If there

them by a parameter vector a in a K-dimensiona
same as before. We shall consider both the case in

of the model are the

which a is a random parameter vector

nonrandom) parameter Vec

result is the vector analog to a 1€

f interest we shall want to estimate more than one

radar problem in which we shall
ty of a target. Most of theideasand techniques
manner. The model is

are K parameters, di, da, - - -> ag, wWe describe
1 space. The other elements

and that in which a is a real (or
tor. Three issues are of interest. In each the
sult in the scalar case.

1. Estimation procedures.

2. Measures of error.
3. Bounds on performan

Fig. 2.23

Parameter space
K-dimensional

ce.

Mapping
Pr|n(“‘A)

Estimation 4
rule gy

B Observation space
a(R) N-dimensional

(K—dimensionai
estimate)

Multiple parameter estimation model.

Multiple Parameter Estimation 75

Estimation Procedure. For random variables we could consider th
-_genlel'al case of Bayes estimation in which we minimize the risk f rome
| arbitrary scalar cost function C(a, &), but for our purposes it is af:lr aate
to consider only cost functions that depend on the e W e

B rror. We define the

4,(R) — a;
dZ(R) — U2
a(®) = | %| _ 4R) — a. _—
1 4x(R) — ay

For a mean-square error criterion, the cost function is simply
K
C@®) & D aR) = a’
C(aR) ‘Zl 2(R) = 2 (R) a(R). 230,

This is just the sum of the squares of the errors. The risk is

[

R = C(a, -
f;[ (a(R)) pra(R, A) dR dA @31)

S = [ p® R " [ 3 @R — 47| puAI aA. @32

< WM., ; 2
mrt},i we can minimize the inner integral for each R. Because the
n the sum are positive, we minimize them separately. This gives

b ®) = [ Apui(AIR) dA (233)

ﬁms(R) = J._w Apalr(A]R) dA. (234)
sy to show that mean- : .
ations. Thus, if ean-square estimation commutes over linear
b = Da, (235)

is .
s a L x K matrix, and we want to minimize

EIbR) b (®) = E| 3, b,/ (236)
 will be, -

bus(R) = DA(R)
m 2.4.20 for the proof of (237)].

(237)
IPR2020-00038
MM EX1016, Page 43



Multiple Parameter Estimation 77
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st find the value of A that MAXIMIZES If each component of the bias vector is zero for every A, we say that th
] a e

For MAP estimation we mu
Pair(AR) If the maximum is interior and @ In pa(AIR)/EA4; exists at the estimate is unbiased.
necessary condition is obtained from the MAP equations. b In the single parameter case a rough measure of the d of th
b : ; ; spread of t
was given by the variance of the estimate. In the special case ine ‘:;1;2]1;

maximum then 2
By analogy with (137) we take the logarithm of Pa(AIR), differentiate
31, Dewing by and set the result equal ;__;;{(R) was Gaussian this provided a complete description:

with respect to each parameter 4,
to zero. This gives & set of K simultaneous equations:

o1n pas(AIR) R e (238)

94, A=fdmap(®)

1 5
P AE = — sy AE
o) = e e"p( 2%2)' (244)

For a vector variable the i
' : quantity analogous to i i
o i g the variance is the

We can write (238) in @ more compact manner by defining a partial
derivative matrix operator El(a, — 3)(a" — &) &
e (a — )’ — &) = Ao (245)
3 1;1 i, & E(a) = B(A). (246)
K3 ‘The best way to determine how the i
. ; covariance matrix i
v, A 24, ure of sl?read is to consider the special case in whicl'.h lzll;gvjzdesa .
);J '(:J‘aussmr{. For algebraic simplicity we let E(a,) = 0. The e}oi;et;
, bility density for a set of K jointly Gaussian variables is
Ew PalAd = (27|52 A %)t exp (—3ATA A (247)

151 in Davenport and Root [1]).

xamplles
probability density for K = 2 is shown in Fig. 2.24a. In Figs

This operator can be applied only to | x m matrices; for e

9G, ©Gs 06, he.
— 31 oA ¢ we have shown th L “
94, 04, 04, geC e equal-probability contours of t 4
VAG=]| ° es.From (247) we observe that the equal-height cc)v‘"rc0 g
oG oG by the relation, ntours are
1 m
0Ax 0Ax | AJA A, = C%, (248)
 the equation for an ellipse when K = 2. The ellipses move out

n Problems 2.4.27-288 i :
ically with increasing C. They also have the interesting property

V, are developed 1
:Probabi%ity of being inside the ellipse is only a function of C?

Several useful properties of
In our case (238) becomes a single vector equation,

Valln pa r(AlR)]1A= AmapR) 0.
d the value of A that maximi

Similarly, for ML estimates We must fin
Pria(RIA). If the maximum is interior and @ 1n pria(RIA)|04: exists at ATA, A, = C?
maximum then a necessary condition is obtained from the likelil ’ (249)
equations: P=1—exp (__C_Q)_
Vlln Pria(RIA)]|a=imm = 0. (24: 2 (250)
In both cases we must verify that we have the absolute maximunm. area inside the ellipse defined by (249) is
£ = [yracs (251)

variables the first measure of interes .
I_tlal area between ellipses corresponding to C and C + dc

d# = |A]%2nC dC. o E@(?%

Measures of Error. For nonrandom
is the bias. Now the bias is a vector,

B(A) £ Ela(R)] = EB®)] ~ A.

2020-00038
16, Page 44
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For this reason the ellipses described by (248) are referred to as con-

1 pacAe) centration ellipses because they provide a measure of the concentration of
the density.

A similar result holds for arbitrary K. Now, (248) describes an ellipsoid.

Here the differential volumet in K-dimensional space is
dv = |A|* __™® _ kcr-1dc 255
| b= A" R T : @53)

o Ae “The value of the probability density on the ellipsoid is
2
et exp (-5 (256)
1—P=_—i——fmxx—le-x=mdx (257)
& @QFPr(K/2 + 1) Je i
le

is the desired result. We refer to these ellipsoids as concentration
oids.
When the probability density of the error is 7ot Gaussian, the concen-
ellipsoid no longer specifies a unique probability. This is directly
gous to the one-dimensional case in which the variance of a non-
an zero-mean random variable does not determine the probability
ty. We can still interpret the concentration ellipsoid as a rough
¢ of the spread of the errors. When the concentration ellipsoids of
¢n density lie wholly outside the concentration ellipsoids of a second
¢ say that the second density is more concentrated than the first.
‘motivation, we derive some properties and bounds pertaining to
entration ellipsoids.

—> A1

€

(-
7 e §
/ &

on Estimation Errors: Nonrandom Variables. In this section we
o bounds. The first relates to the variance of an individual error;
d relates to the concentration ellipsoid.

(c)

n density; [6] equal-height
uncorrelated variables.

(b)

Fig. 2.24 Gaussian densities: [a]
contours, correlated variables; [¢] equa

two-dimensional Gaussia
I-height contours,

y 1. Consider any unbiased estimate of A;. Then
o2 & Var [4(R) — 4] = J*, (258)

ty in this differential area IS is the jith element in the K x K square matrix J ~*. The elements

The height of the probability densi
C2
erlnd®y exe ()
ability of a point lying outside the

& In pa(R|A) @ In p,a(R|A)
Jy 2 E[ oA, 54, ]

Ilipse bY
y (259)

We can compute the prob
; : : e !
multiplying (252) by (253)wand mtagra;l:g from C to o . i _E[O_glg—ﬁ:i%@]
— P = Xex (——) dX = exp ('_—i_)
e L p : ":":'i:'—"_!‘ p. 120, or Sommerfeld [32]. IPR2020-00038
MM EX1016, Page 45

which is the desired result.
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[The ones and zeroes in the matrix follow from (264).] Because it is a
covariance matrix, it is nonnegative definite, which implies that the deter-
‘minant of the entire matrix is greater than or equal to zero. (This con-
; dition is only necessary, not sufficient, for the matrix to be nonnegative

definite.)
Evaluating the determinant using a cofactor expansion, we have {i

e, ?|J| — cofactor J;; = 0. (267)

o 3 & EQV [N pria(RIAHV a0 pra(RI A (260)

= "‘E[VA({VA[ID Prla(R‘A)]}T)]-
The J matrix is commonly called Fisher’s information matrix. The equality
in (258) holds if and only if

88 — 4= 3 k) LR 61)

If we assume that J is nonsingular, then

25 cofactor J;,
S
chich is the desired result. The modifications for the case when J is
singular follow easily for any specific problem.

o = J, (268)

for all values of 4; and R. _
In other words, the estimation error can be expressed as the weighted

sum of the partial derivatives of In pya(R|A) with respect to the various

parameters.

Proof. Because d;(R) is unbiased,

j " [4(R) — A]pra(R|A) dR =0 (262)

In order for the determinant to equal zero, the term A4;(R) — A; must
expressible as a linear combination of the other terms. This is the
{ition described by (261). The second line of (259) follows from the
ne in a manner exactly analogous to the proof in (189)-(192). The

or ; : ; :
of for i # 1 is an obvious modification.

Jm d(R) Prla(RlA) dR = 4;. (263).
—© 2. Consider any unbiased estimate of A. The concentration ellipse

Differentiating both sides with respect to A;, we have ATA A, = C? (269)

5Pr1a(R|A) dR either outside or on the bound ellipse defined by

AJJA, =05 (270)
We shall go through the details for K = 2. By analogy with the
g proof, we construct the covariance matrix of the vector.

[ awP5r=
= J. 4R) ———— gln p.-|a(R|A)p 1a(R|A) dR = §y;.

We shall prove the result for i = 1. We define a K + 1 vector

- AR — A T
¢In prlu(RlA) ’ K
94, x = | 21npna(R|A) | @71)
X = . 6A1
2 1n pera(R|A) 9 In pra(R|A)
L__—_——an | A,
The covariance matrix is O1c po1. 02, E 1 0
&t A 0 0 0 poi, 0y, 0y° E 0 1 A T
o | Vo s of Exx™] = | coooemmeeenee 1N - [‘ @72)
E[xx"] = 0 . - | 1 0 Ju Jig I:J
0 | .:J J IPR2020-0003¢
0 Jrn Jxk R T MM EX1016, Page 4¢
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y defines a partition of the 4 x 4 matrix into four

The second equalit
7 x 2 matrices. Becauseitisa covariance matrix, it is nonnegative definite.
d matrix, we have

Using a formula for the determinant of a partitione
|AJ — =0 (273)

or, assuming that A is nonsingular and applying the product rule for

determinants,
|A |3~ A =0 (274)

This implies
¥ - A =0 (275)
Now consider the two ellipses. The intercept on the A, axis is
Alsz\ = C? \—ﬁ%\ (276)
Ag =0 T2

for the actual concentration ellipse and

1
AlEZ\A . = CzTu 277

for the bound ellipse.
We want to show that the actual 1

bound intercept. This requires
Jll\Ae\ > 0'22.
This inequality follows because the determinant of the 3 x 3 matrix in
the upper left corner of (272) 1s greater than Of equal to z€r0- (Otherwise
the entire matrix is not nonnegative definite, €.8. {16} or [181) Similarly,
the actual intercept on the A, axis is greater than or equal to the bound
intercept. Therefore the actual ellipse 18 either always outside (or on) the
pound ellipse or the two ellipses intersect.
If they intersect, we s€€ from (269) and (270) t
solution, A, 10 the equation
ATA A= AJIA, (279

ntercept is greater than or equal to the

(278)

hat there must be a

or
AJ - DTYACE ATDA, = 0. (280)

In scalar notation

A1€2D11 + 2A1£A25D12 + A262D22 =0 (281)

or, equivalently,

2¢ €

+ Bellman (16}, p- 83.

A\? A
(’k> Dy + 2(21;5\)1)12 + Do = 0. (282)

Muitiple Parameter Estimation 83

SOl lng fCI ‘11 /‘12 H C Culd Cttaln Ieal ICCtS CIll) 1f the dlSCInnlnant
€
€
cre gISEltEI tllan Or Equa’1 tc Zero. IhlS quLIIIBS

J— A

Ell:tetllrllizqiuihty is e; con}:radiction of (275). One possibility is J—A=0
s true only when the elli inci i timates
o et pses coincide. In this case all the estimates
For arbitrary K we can
show that J — A 71 i i
o At . .~ ! is nonnegative definite.
e implications with respect to the concentration ellipsoid m
NS psoids are the same
Frequently we want to estimate functions of the K basic parameters

dl = gdl(A)a

@ = 8 (A). (284)
or dy = 8ay(A)-

d = ga(A)

l) (8] 1 S M 1s not re Cd (0] n
ne

4~ gi&) & do (285)

If i
we assume that the estimates are unbiased and denote the error

covariance matrix as A, then b i i
, y using methods ident!
we can prove the following properties. foal t0 those ahore

Property 3. The matrix
A, — {VA[g (AT H{V.al[2a (A)]) (286)

is nonnegative definite.

This impli i j
implies the following property (just multiply the second matrix

out and recall that all diagonal elem
1 1 el v i
o). g ents of nonnegative definite matrix

Property 4.

S ___agdl(A) Jii ga(A)

K
Var (d,) =
l zt: 7 04, 0A;

(287)

For the speci i
pecial case in which the desi i
‘ ¢ esired functio i
-{287) can be written in a simpler form ns are lincar, the result
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84 2.4 Estimation Theory

Property 5. Assume that 089)

gd(A) L GeA,

where Gqis an M % K matrix. If the estimates are unbiased, then

A — GaJ 'Gd"

is nonnegative definite.

Property 6. Efficiency commutes with linear transformatior}s Put dci%es. nott
iy linear transformations. In other words, if A is efficient,

ith non : .
commu (A) is a linear transformation.

then ga(A) will be efficient if and only if ga
. ol
Bounds on Estimation Errors: Random Parameters.dJu'st z(xis t;n ;h;r:i‘;i te:
dom parameters 13 erived by
arameter case, the bound for ran .
?orward modification of the derivation for nonrandom parameters. The

information matrix now consists of two parts:

Jp 83, + Jp (289)
n (260) and represents

mation matrix defined 1 nts
represents the a priori

trix Jp 1s the infor .
The matrix Jp the data. The matrx Jp

information obtained from
information. The elements are

21n pa(A) @ In pu(A)
P o4, A, %0

E & In pa(A)].
- [ oA, 0A4;

i

The correlation matrix of the errors is
| R. & E(aam). (291)
n-square errors and the off-

ts represent the mea : off-
" ; hree properties follow easily:

diagonal eleme
T o orrelations. T

diagonal elements are the cross ¢
(292)

inverse of the total informa-
onding mean-square errors.

No. 1. .
Property . "
1n other words, the diagonal elements in the

tion matrix are lower pounds on the corresp

Property No. 2. The matrix 5o R

L . in the
is nonnegative definite. This has the same physical interpretation as !

nonrandom parameter problem.
Property No. 3. IfJ; = Re s all of the estimate

and sufficient condition for this to be true is that. Da
for all R. This will be true iff J is constant. [Modify

s are efficient. A necessary

261), (228))-

{A|R) be Gaussian

Summary of Estimation Theory 85

A special case of interest occurs when the a priori density is a Kth-order
Gaussian density. Then

Jp = A7 (293)

where A, is the covariance matrix of the random parameters.
An even simpler case arises when the variables are independent Gaussian

variables. Then

1
oy = 52 % (294)
at

Under these conditions only the diagonal terms of J; are affected by the
a priori information.

Results similar to Properties 3 to 6 for nonrandom parameters can be
derived for the random parameter case.

2.4.4 Summary of Estimation Theory

In this section we developed the estimation theory results that we shall
need for the problems of interest. We began our discussion with Bayes
estimation of random parameters. The basic quantities needed in the
model were the a priori density p.(4), the probabilistic mapping to the
observation space p,.(R|A4), and a cost function C(4.). These quantities
enabled us to find the risk. The estimate which minimized the risk was
called a Bayes estimate and the resulting risk, the Bayes risk. Two types
of Bayes estimate, the MMSE estimate (which was the mean of the a
posteriori density) and the MAP estimate (the mode of the a posteriori
density), were emphasized. In Properties 1 and 2 (pp. 60-61) we saw that
the conditional mean was the Bayes estimate for a large class of cost
functions when certain conditions on the cost function and a posteriori
density were satisfied.

Turning to nonrandom parameter estimation, we introduced the idea
of bias and variance as two separate error measures. The Cramér-Rao
inequality provided a bound on the variance of any unbiased estimate.
‘Whenever an efficient estimate existed, the maximum likelihood estimation
procedure gave this estimate. This property of the ML estimate, coupled
with its asymptotic properties, is the basis for our emphasis on ML
estimates.

The extension to multiple parameter estimation involved no new con-

_cepts. Most of the properties were just multidimensional extensions of the

corresponding scalar result.

. I.t is important to emphasize the close relationship between detection and
;mmation theory. Both theories are based on a likelihood function or
ikelihood ratio, which, in turn, is derived from the probabilistic transition
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mechanism. As W proceed to more difficult problems, W€ shall find that
a large part of the work is the manipulation of this transition mechanism.
In many cases the mechanism will not depend on whether the problem is
one of detection of estimation. Thus the difficult part of the problem will
be applicable to either problem. This close relationship will become even
more obvious as Wwe proceed. We now return to the detection theory
problem and consider a more general model.

25 COMPOSITE HYPOTHESES

In Sections 2.2 and 2.3 we confined our discussion to the decision
problem in which the hypotheses were simple. We now extend our discus-
sion to the case in which the hypotheses are composite. The term composite
is most easily explained by 2 simple example.

Example 1. Under hypothesis 0 the observed variable r is Gaussian with zero mean

and variance o°. Under hypothesis 1 the observed variable r is Gaussian with mean m
and variance o°. The value of m can be anywhere in the interval [Mo, Mil. Thus

Hy:p (RlH) = ——=—€Xp (—--—-)7
o-FrlHo Q ‘\/'/ 7 5
(295)

(R —~ M)z),

1
Hy:pou (RUHY) = 5= exp (— 553 M, < M < M.
V2ro 4

We refer to Hy as a composite hypothesis because the parameter value M, which
characterizes the hypothesis, ranges over a set of values. A model of this decision
problem is shown in Fig. 2.25a. The output of the source is a parameter value M,
which we view as a point in a parameter space x. We then define the hypotheses as
subspaces of x. In this case Ho corresponds to the point M = 0 and H: corresponds
to the interval [Mo, M,.] We assume that the probability density governing the
mapping from the parameter Space to the observation space, p,|,,.(RlM), is known

for all values of M in x.
The final component is a decision rule that divides the observation space into two

parts which correspond to the two possible decisions. It is important to observe that
we are interested solely in making a decision and that the actual value of M is not of
interest to us. For this reason the parameter M is frequently referred to as an
«ynwanted” parameter.

The extension of these ideas to the general composite hypothesis—testing
problem 1s straightforward. The model is shown in Fig. 2.25b. The output
of the source is a set of parameters. We view it as @ point in 2 parameter
space x and denote it by the vector 9. The hypotheses arc subspaces of x-
(In Fig. 2.25b we have indicated nonoverlapping spaces for convenience.)
The probability density governing the mapping from the parameter space
to the observation space is denoted by peis(R10) and is assumed tO be
known for all values of 6 in x. Once again, the final component is @

decision rule.

Model 87

R

Parameter space x

Observation space

(a)

Parameter space x
Decision
rule

Decision

(b)

Fig. 2.25 a. Composi i
. posite hypothesis testin rob i
b. Composite hypothesis testing problem.g problem for single-parameter cxamele.

To com :
Just as in Isllleeti) ;?: mf;)trmularlon, we must characterize the parameter 8
er estimation case the )
rando . ) parameter & may be a -
probag;u(t)r ;aanm variable. If 8 is a random variable wit}}’1 a knl?n
y density, the procedure is straightforward. Denoting the prob

ability density of 8 on the
; two h
the likelihood ratio is 0 hypotheses as pej, (8] Ho) and poyx, (81H1),

AR) & Prn R f Prie(R|8)porx, (81 Hy) dB

Pr HO(RIHO) -
| L Prio(R|8)po 1, (8] Ho) 46

(296)

The rea is simplicity i
son for this simplicity is that the known probability density on 6

‘enables us t
s to reduce the problem to a simple hypothesis-testing problem by

egrating o i
, g over 6. We can illustrate this procedure for the model in
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88 2.5 Composite Hypotheses

Example 1 (continued.) We assume that the probability density governing m on H,is

(_M2) —w <M< X, 297)

s
Yom?

1

m M H,) = —F/—

Py (MIH) = T75="7 exp
Then (296) becomes

© —_ 2 2
j ——,.1:—-exp (._(_}3_’2]!1—)—\) _1_ exp (—M—z) dM
~w NV 2ma 20 V2T Om 20m H1

AR) = //——/ T z . (298)
) "

e
—— €X —_=3
Vona P 20°

Integrating and taking the logarithm of both sides, we obtain

H1 2( 2 2 2
Rz;{Zo(oot mn)bnnl+%1n(14_%%)} (299)
o m

This result is equivalent to Example 2 on p- 79 because the density used in 297)

makes the two problems identical.

As we expected, the test uses only the magnitude of R because the mean

m has a symmetric probability density.

For the general case given in (296) the actual calculation may be more

involved, but the desired procedure is well defined.
When 0 is a random variable with an unknown density, the best test

procedure is not clearly specified. One possible approach is 2 minimax

he unknown density. An alternate approach s to try several

test over t
densities based on any partial knowledge of 8 that is available. In many

cases the test structure will be insensitive to the detailed behavior of the
probability density.
The second case of interest is the case in which 0 is a nonrandom

he problem of estimating nonrandom variables,

variable. Here, just as int
we shall try a procedure and investigate the results. A first observation is

that, because 6 has no probability density over which to average, a Bayes
test is not meaningful. Thus we can devote our time to Neyman-Pearson

tests.
We begin our
ment bound on the test performance. We illustr

in Example 1.

discussion by examining what we call a perfect measure:
ate this idea for the problem

Example 2. 1n this case 8 = M.

From (295)
_ 2
Hl'.p,“,.(R\M) = —7—1_—_——exp (——(R y) ) (Mo =M= M),
V2mro 20
and (300)
1 R?
Ho:prn(RIM) = ﬁ—UCXP (—fgé>

where M is an unknown nonrandom parameter.

Nonrandom Parameters 89

Tt is clear that what
' : ever test we design c
i clear that an never be better than a h, i
e b optizl-,\;er; ﬁlrls(t ;’peasures M perfectly (or, alternately, it is toﬁ) (;\Elhetlcal hon
e RO of this tl': ihood ratio test. Thus we can bounél the ROC )fand -
ctitious perfect mea i o could use
e s o F . surement test. For this exam
the ROCs In ]15 ti.::; by let‘tmg. d? = M?[o%. Because we are ir;:t]:r‘evsetecg u’ld the
o Cal,hd ormat in Flg'. 2.9b is more useful. This is shown in Fi o
e ey 6 a power function. 1t is simply a plot of Pp fi i
(more gener }1,: ) t;or various values of Pr. Because Ho, = H, ; c;\rflan \(I)alues iy
in Fig. 2.26 represent a bound ell any tost ¢ Ptk
The cur nd on how well any t "
e :::p}:r);:; close the actual test performance comes toytheisstbc()o:lJ l?i do- We mow
cqualed he bou ;én?:rcz lxlv;;ould achieve would be obtained if an actrtllai test’s
S e for  siven ; X- V:’Je 1\:;11 such tests uniformly most powerful (5111\;\1’;5
I o Fa test has a Pp greater t ,
or all M € x. The conditions fora UMP testDto exist ca:?)r; s(;z:r?gmll:l' tOZany
in Fig. 2.27.

099
0.98[—

09

0.7

0.5

03—

Power (Pp) —>

0.1

~4 __12 5 ! |
+2
Mo —> +4

Fig. 2. i
g. 2.26 Power function for perfect measurement test.
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99 2.5 Composite Hypotheses | |
It is clear that in general the bound can be reached for any particular 6

simply by designing an ordinary LRT for that particular 8. Now a UMP
test must be as good as any other test for every 0. This gives us a necessary
and sufficient condition for its existence.

0.99
098 Property. A UMP test exists if and only if the likelihood ratio test for every
0 € y can be completely defined (including threshold) without knowledge
of 0.
09 The “if” part of the property is obvious. The “only if” follows directly

from our discussion in the preceding paragraph. If there exists some 6 € y
for which we cannot find the LRT without knowing 8, we should have to
use some other test, because we do not know 0. This test will necessarily

1 be inferior for that particular 6 to a LRT test designed for that particular 8
Q\? and therefore is not uniformly most powerful.
g
3 Returning to our example and using the results in Fig. 2.8, we know that the
likelihood ratio test is
Hy
> o
RH<0 v, (301)
and
=fm L ex (—-—R—z—)dR if M > 0
i vt \2_71' g P 202 ’ ! > o (302)

(The superscript + emphasizes the test assumes M > 0. The value of y* may be
negative.) This is shown in Fig. 2.28a.
Similarly, for the case in which M < 0 the likelihood ratio test is

Ho
R F R (303)
2 +4 where
YT 2
- = e (-E)
Mjo —> F IV eXP | ~33 dR, M < 0. (304)

. : ikelihood ratio tests.

. functions for various likelil L. . .
Fig. 2.27 Power This is shown in Fig. 2.28b. We see that the threshold is just the negative of the
Fhr;shold for M > 0. This reversal is done to get the largest portion of p,;y,(R{H1)
inside the H, region (and therefore maximize Pp).

Thus, with respect to Example 1, we draw the following conclusions:

We next consider other possible
dinary likelihood ratio test designed under

ation is that the power of this test equals
n which we constructed the

ct the perfect measurement bound.

nces. Test A isan or
— 1. The first observ

ich follows from the manner 1 "
Vzhcl)? M the power of test A may or may not equal the boun:

elihood ratio test designed under the assun".lpt\m;l t:lej\t/[Ai —j,

tio test designed under the agsumptlon tha o ons

1s the bound at their design pc.)mt.s. (The power o

hasize this and are not qual?tltatllvelg ;o;r;;t)aThey o
es are shown in Fig. £.27. .

: Correct):ciiri:lions for a UMP test are now obv10\11§; ;

lihood ratio test (including the thresho

We first constru
tests and their performa
the assumption that M
the bound at M = 1,
bound. For other value
Similarly, test B is a lik
and test Cis a likelihood ra
In each case their power equa
in Fig. 2.27 are drawn to en:.]t) s
esign point. The quantita iv
tex?jodequgal fhe bound at other points. The{
We must be able to design a c‘omplete like
for every M€ x without knowing M.

L. If M can take on only nonnegative values (i.e., M, = 0), a UMP test exists
[use (301)].
‘ (33:;)]1f M can take on only nonpositive values (i.e., M; < 0), a UMP test exists [use
- 3. If M can take on both negative and positive values (i.e., M, < 0 and M, > 0),
ihen a UMP test does not exist. In Fig. 2.29 we show the power function for a likeli-
bood ratio test designed under the assumption that M was positive. For negative
ralues of M, Pp is less than Pr because the threshold is on the wrong side.

Whenever a UMP test exists, we use it, and the test works as well as if

) ve knew 6. A more difficult problem is ted wh UMP d
| case follows easily. ’ o b and the Lot v el as
The analogous result for the genera

IPR2020-00038
MM EX1016, Page 51
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prig, (RIHY)
(for a typical
positive M)

prl s, (RIHO)

Prim (R\Hl)

(b)

Fig. 2.28 Effect of sign of M: [a] threshold for positive M; [b] threshold for negative M.

not exist. The next step is to discuss other possible tests for the cases in
which a UMP test does not exist. We confine our discussion to one
possible test procedure. Others are contained in various statistics texts
(e.g., Lehmann [17]) but seem to be less appropriate for the physical
problems of interest in the sequel.

The perfect measurement bound suggests that a logical procedure is to
estimate 6 assuming H, is true, then estimate 8 assuming H, is true, and
use these estimates in a likelihood ratio test as if they were correct. If the
maximum likelihood estimates discussed on p. 65 are used, the result is

called 2 generalized likelihood ratio test. Specifically,

max prlel(R\el) Hi

Z Y,

b— /01
AyR) meax p,leo(R\eo) Ho (305)

where 0, ranges OVer all @ in H; and 8, ranges over all 8 in Ho. In other
words, we make 2 ML estimate of 6,, assuming that H, is true. We then

evaluate prlel(R\Ol) for 68, = §, and use this value in the numerator. A

similar procedure gives the denominator.
A simple example of a generalized LRT is obtain

modified version of Example 1.

ed by using 2 slightly

Generalized Likelihood Ratio Test 93

T T I i

0.99|—
098

0.9+

05—

0.3

Power (Pp) —>

107%+

[
!
5 |
Mjoc —>

Fig. 2.29 Performance of LRT assuming positive M.

. Th asic p ba 1es a th s i P i 9 - .
Exa"’lp e 2. The b ¥o bilit re € same as 1n Exam le 1. Once again, M

Instead of one, w i
, we have N independent ob i
g S .
B The oroom it o e are ervations, which we denote by the vector

N
Prim(RIMH) =T 1 21_ exp (_(Ri - M)z),

i=1V2mo 202
(306
Primatg(RIM,Hy) = ] | —a— €xp (_R_iz : )
i=1V2mo 24%

In this examp} is a € F 98
pic H i i
‘ 11 composite hypothe51s and Ho, a simple hypoth sis. From (1 )

1 N
M= 2
S PR (307)
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94 2.5 Composite H. ypotheses
to 02, On H,1 . )
» its mean is zero and on H, its mean is MV N. The densities are sketched

e

Then . NS .
1 R —( 1 R in Fi
E o Oexp {_[ L= /232 Y1 R . in Fig. 2.30.
AsR) = yo 1 57 (308) Pr = f_yl Loexp(-Z)az+ [° z2
1 exp (—~R2[20° e V3. (“—) + - (__
i1 V2ma P ' ) \/277 7 20 Y1 \/271 o xp 202 dz
Canceling common ferms and taking the logarithm, we have ‘ = 2 erfc, (y;l)
1 N 2 Hy and (312)
AR) = 55 ( R) Z Iny. 309 | - -
n AR = 3y \ 2, R) & (0% Pty = [ oL [ EZ MY o
The left side of (309) is always greater than or equal to zero. Thus, vy can always be . 2m o 20*
chosen greater than or equal to one. Therefore, an equivalent test is + 1 ex [__(Z - M\/‘ﬁ)z
(1 ¥ 2 H1 n Vire p T]dz
LS RY 2 (310) . B
Nt o Ho = erfe, [Zg'*‘a—wﬁl} + erfcy [ﬁ_;_m]
o ’ (313)

where y; = 0. Equivalently,

1
Ho

1 N
nh 2

z] &

2y (311) —_—— ;
% /

st follows easily. The variable z has a variance equal
0.99

0.98

The power function of this te

P11, (21 Ho)

09

o
~

Power (B, ) —>
o
o

(a)

=
w

Perfect measurement

Generalized LRT

l | | | |

2
'WM/0|——>

b

rrors in generalized likelihood ratio test: {a] Pr calculation; [b] P» .
ig. 2.31 .
Power function: generalized likelihood ratio tests.

Fig. 2.30 Ei
calculation.
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The resulting power function is plotted in Fig. 2.31. The perfect measure-
ment bound is shown for comparison purposes. As we would expect from
our discussion of ML estimates, the difference approaches zero as
VN M|o — .

Just as there are cases in which the ML estimates give poor results, there
are others in which the generalized likelihood ratio test may give bad
results. In these cases we must look for other test procedures. Fortunately,
in most of the physical problems of interest to us either a UMP test will
exist or a generalized likelihood ratio test will give satisfactory results. -

2.6 THE GENERAL GAUSSIAN PROBLEM

All of our discussion up to this point has dealt with arbitrary probability
densities. In the binary detection case Pr u,(R|Hy) and pra,(R|Ho) Were
not constrained to have any particular form. Similarly, in the estimation
problem p,,a(R\A) was not constrained. In the classical case, constraints
are not particularly necessary. When we begin our discussion of the wave-
form problem, we shall find that most of our discussions concentrate on
problems in which the conditional density of r is Gaussian. We discuss
this class of problem in detail in this section. The material in this section
and the problems associated with it lay the groundwork for many of the
results in the sequel. We begin by defining a Gaussian random vector and

the general Gaussian problem.

Definition. A set of random variables ry, T2, .- > T¥ are defined as jointly
Gaussian if all their linear combinations are Gaussian random variables.

Definition. A vector I is a Gaussian random vector when its components
i, Vg -» Ty BT jointly Gaussian random variables.

In other words, if

N
2= gnt G (314)
i=1

is a Gaussian random variable for all finite GT,thenrisa Gaussian vector.
1f we define

and
Cov (r) = E[(r — m)(@” — m")} A A, (316)

then (314) implies that the characteristic function of r is

M (jv) & E[e¥"]= exp (+jv7m — $VTAY) (317)

E(r) =m (315)

Likelihood Ratio Test 97

and . . .
nd assuming A is nonsingular the probability density of r is
2e(R) = [2m)"2[A[%] " exp [-4(RT — mD)A-(R — m)]. (318)
The proof is straightforward (e.g., Problem 2.6.20)

Definition. . .
problerl:xmifA hY;;:)thesx§ testing problem is called a general Gaussi
Peis(RIH) is a Gaussian density on all hypotheseussin
s. An

atio 8 a gener al

We di i . .
oroble rr1lsciv;llss dt:tz il;lgary }}llypothesm testing version of the general Gaussian
in the text. The M-h ;
robl : ypothesis and the estimati
ge?ecfir;r? are develqped in the problems. The basic model for tf:lftl?'atlon
problem is straightforward. We assume that the oszr lr?ry
vation

space is N-dimensional. Points i
. . nts in the space i
sional vector (or column matrix) r: pace are denoted by the N-dimen-

(319)

18
Under t i
he first hypothesis H; we assume that r is a Gaussian rand
om

vector, which is completel i
T, y specified by its m i
matrix. We denote these quantities as ’ ean veetar and eovariance

E(r.|H,) my,
E(ra| H))

Elr|H,] = N R N

2 m;. (320)

. E(erHl) My
The covariance matrix is
K, & E[(r — m)(a” — m;")|H,]
1K11 1K12 1K13 lKlN
1K21 1K22

(321)

W lKNl lKNN
e define the inverse of K, as Q,

A K-l
Q. 2 Kj (322)
QK, =K, Q, =1, (323)

IPR2020-00038
MM EX1016, Page 54




98 2.6 The General Gaussian Problem

where 1 is the identity matrix (ones on the diagonal and zeroes elsewhere).

Using (320), (321), (322), and (318), we may write the probability density

of r on Hy,

Pr|H1(R‘H1) = [(2W)lelK1\%]_l exp [’;Z(RT - m;")Q:(R — m,)). (324)
Going through a similar set of definitions for H,, we obtain the prob-

ability density

Prisr,(R|Ho) = [(2m)¥ 2| K| %]~ exp [—3RT — mo)QoR — mo)l. (325)

Using the definition in (13), the likelihood ratio test follows easily:

A P, RIHY) _ [Kol ™ exp [—1(R? — m")Q:R — my)] %

®RIHy K" exp [-3RT -~ m,7)Qo(R — mo)] zf("

AR
% o 326)

Taking logarithms, we obtain

LR moh) Qu(R — mo) — 4R — my?) QuR —m)
2 ng + 30 Ky — 410 [Ko] & 7%

Ho

(327)

We see that the test consists of finding the difference between two quadratic
forms. The result in (327) is basic to many of our later discussions. For
this reason we treat various cases of the general Gaussian problem in

some detail. We begin with the simplest.

2.6.1 Equal Covariance Matrices

The first special case of interest is the one in which the covariance

matrices on the two hypotheses are equal,
K, = Ko 2 K, (328)

but the means are different.

Denote the inverse as Q:
Q=K" (329

Substituting into (327), multiplying the matrices, canceling common

terms, and using the symmetry of Q, we have

Hi
(mlT — m,")QR HZ Inn + l.Z(mlTle — my"Qmyo) L vy
0

We can simplify this expression by defining a vector corresponding to the

difference in the mean value vectors on the two hypotheses:

Am 2 m, — mg.

(330)

(331)

Equal Covariance Matrices 99

Then (327) becomes

IR) 2 Am? i,
(R) mQR;0 Vi (332)

or, equivalently,
IR) & RT(! >1 !

Ob;f;;i ;ugt;t)l/i s:a’;hter;ifstf;sr; ;ilear (t_jx‘aulssian random variable, for it was
Thereforei, as we discussed in Ex;?;lploe Jlogglgp(.}?gisggnvzindom My
characterize the performance of the test by the q;anti(t:andgor?pletely
;xamp;lle,‘we defined d as the distance between the mean}; on. thn 'E[hat
ypothesis when the variance was normalized to equal dontieal
s qual one. An identical

g2 o LEALHY) — E(|Ho)P

- Var (/| Hy) (334)
Substituting (320) into the definition of /, we have
E(|H,) = T
ond ( | ) Am"Qm, (335)
E(/|Hy) = Am"Qm,,. (336)

Using (332), (333), and (336) we have
Var [/|Ho] = E{[Am"QR — mo)][(R" — m,")Q Am]}.  (337)
Using (321) to evaluate the expectation and then (323), we have
Var [l|H,] = Am™Q Am. (338)
Substituting (335), (336), and (338) into (334), we obtain

d* = Am’Q Am |, (339)

Thus the
performance for the equal covariance Gaussian case is com-

Case 1,
1. Independent Components with Equal Variance. Each r; has the same

vari N . .- .
riance o? and is statistically independent. Thus

.2

and K=ol (340)
Q= 11

o (341)
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100 2.6 The General Gaussian Problem

Substituting (341) into (339), we obtain

d* = Ang—zl Am = 55 Am” Am = ;15 |Am|? (342)

or
(343)

to the distance between the two mean-value
hown in Fig. 2.32.

We see that d corresponds
d deviation of Ri. Thisis s

vectors divided by the standar

In (332) we see that
1

==

Am’R. (344)

Thus the sufficient statistic is just the dot (or scalar) product of the observed

vector R and the mean difference yector Am.

Case 2. Independent Components with Unequal Variances. Here the r; are

statistically independent but have unequal variances. Thus

012 0
K = o’ (345)
0 . UN2
and
1
P 0
1
Q= g . (346)
1
K o

Substituting into (339) and performing the multiplication, we have

N 2

o=y (347
i=1 i

bute to d? with weighting

long that coordinate. We
rdinate system.

ence components contri
tional to the yariance a
t as distance in a new coo

Now the various differ
that is inversely propor
can also interpret the resul

Equal Covariance Matrices 101

Let

Am’ = [0
N (348)

and

.1
R, = —
i o, Ri' (349)

This tra i
ire oll 6 1ilzjlfcirma‘uon changes the scale on each axis so that the variances
1 o one. We see that d corresponds exactly to the difference

vector in this “scaled” coordinate system
The sufficient statistic is ‘
N Am;- R,
O _2 M

IR) = >

- 2 "o (350)
n the scaled coordinate system it is the dot product of the two vectors
{R) = Am'™R’. (351)

Case 3' Ihls 18 ths genelal case. A SatleaCtOI) answer IOI / and a a ead?

(R) = Am"QR (352)

and

d? = Am"Q Am. (353)

Fig. 2.32 Mean-value vectors.
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Valuable insight into the important features of the problem can be Th
ained by looking at it in a different manner. e expectation of the ra ‘o
g y g becomes ndom part is just K [see (321)]. Therefore (359)

The key to the simplicity in Cases 1 and 2 is the diagonal covariance
t R in a new coordinate ASy; = &K, (360)

matrix. This suggests that we try to represen o
system in which the components are statistically independent random This will be satisfied if and only if
variables. In Fig. 2.33a we show the observation in the original coordinate ‘ A, = Kb R
. : . ‘ jPy = orj =
system. In Fig. 2.33h we sh(?w a2 new set of coordinate axes, which we To check the “if” ' 1 rj=12,...,N. (361)
denote by the orthogonal unit vectors b1, doy .- o> Pt part of this result, substitute (361) into (360):
XSy = I\ b, = '
b, = 8 (354) ) ) £y Ay = A0y, 3
] d where th; right equality follows from (354). The “only if” (362)
We denote the observation in the new coordinate system by r'. We want to using a simple proof by contradiction. Now (‘361 ony lf. part follows
choose the orientation of the new system so that the components r; and ry subscript suppressed: ’ ) can be written with the j
J
are uncorrelated (and therefore statistically independent, for they are
Gaussian) for all i # J. In other words, Ad = K. (363)
We see that the question of findi
Y — m)) = ) nding t .

E[(ri — mi)(r; mp] = Ady, (355) to the question of whether we cangﬁ h:l: e C.oordmate system reduces
where . (354). nd N solutions to (363) that satisfy
o mi & E(r) (356) It is instructive to write (363) out in detail. Each & i

components: - Bac is a vector wi
Var [F] & A 357) ponents with N
¢
Now the components of ' can be expressed simply in terms of the dot '
product of the original vector r and the various unit vectors & $2
= qg .
=Ty = T (358) ? (364)
Using (358) in (355), we obtain Substituting (3 by
stituting (364) into (363
[ — m)(s" — mDb;] = A (359) iy (+ ;{V;" have
11%1 122+..'+K1N¢N:/\¢1

Kz.l‘?sl + K22¢2 R o K2N¢N — )\(#2
' (365)

KNI(}Sl + KN2¢2 4o 4 KNN¢’N - /\¢N

We see t
cqntio h::t n(sgtS) cprlreslljonds to a set of N homogeneous simultaneous
. rivial solution will exist i i
9 . L s ist if and onl i
the coefficient matrix is zero. In other words, if anij, lcf;l};eitfi erminant

1 ' .
K — A1 Ky v Kig
Koo Ku— A K b
! 22 T ' Kz ]
(@) m“A”=""m"L_"m4mi; .
. K, v K Vot =0. (366)
Fig. 2.33 Coordinate systems: [a] original coordinate system; [b] new coordinate R !
o ot ssems @0 o e
E Kyy — A
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104 2.6 The General Gaussian Problem
A. The N roots, denoted by

is an Nth-order polynomial in
ovariance matrix K. It can

e called the eigenvalues of the ¢
rties are true (€.8- [16] or [18h:

We see that this
Ay Agy v v oo Ay, ar
be shown that the following prope
1. Because K is symmetric, the eigenvalues are real.
2. Because K is 2 covariance matrix, the eigenvalues are nonnegative.
(Otherwise we would have random variables with negative variances.)

For each A, we can find a solution &; to (363). Because there is an
arbitrary constant associated with each solution to (363), we may choose

the ¢, to have unit length
(367)

¢tT¢’¢ = 1.

These solutions aré called the normalized eigenvectors
properties may also be shown for symmetric matrices.

of K. Two other

3. If the roots A, are distinct, the corresponding eigenvectors are
orthogonal.
4. If a particular root

vectors are linearly indepen

We have now described a coordinate system in
are statistically independent. The mean difference v

as

M, the M associated eigen-

A; is of multiplicity
hosen to be orthonormal.

dent. They can be C
which the observations
ector can be expressed

Amll = ¢1T Am
o T

Amy = by Am

or in vector notation

$,"
bs’
Am' = | ----| Am A W Am. (369)
"
The resulting sufficient statistic in the new coordinate system is
o L Amp R
IR) = 2. 5 (370)

i=1

and d? 1s
(371)

Equal Covariance Matrices 105

The derivation leading to (371) h
e dertt ‘ as b_een somewhat involved
resu Coortéxil[c]l:::znzztil 1m.porta.nce, for it demonstrates that ther,ebal;tv;hz
exists 8 coordinas Sz/e em in which the random variables are uncorrelateyd
and that e ® ystem is rc?lated to the old system by a linear transfi
rate the technique we consider a simple example e

Example. For simplicity we let N = 2 and my = 0. Let
0o=0. Le

K = [1 P]

and p 1 (372)
m; = [m“]

To find the eigenvalues we solve M2 (373)

1—x

or p 1-2 =0 (374)

Solving, (I — 4% — p* = 0. 375)
il - } ! . (376)

To find &, we substitute A, into (365)

[1 P] [¢] _ [0 + Pgu
p 1 h ]
Solving, we obtain bz (L + Pl @77
Normalizing gives 11 = bz (378)
+VL,§_
b =
) 37
= o
Similarly, L Va2l
_+_\}_5‘
=] |
L (350
| V2

The old and
new axes are shown in Fig. 2.34. The transformation is

. S
| (381)
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Equal Mean Vectors 107

6 The General Gaussian Problem We see that this corresponds to choosing the mean-value vector to be equal to the
eigenvector with the smallest eigenvalue. This result can be easily extended to N
dimensions.

The result in this example is characteristic of a wide class of optimization
problems in which the solution corresponds to an eigenvector (or the
waveform analog to it).

In this section, we have demonstrated that when the covariance matrices
on the two hypotheses are equal the sufficient statistic /(R) is a Gaussian
random variable obtained by a linear transformation of R. The perform-
ance for any threshold setting is determined by using the value of 42 given
by (339) on the ROC in Fig. 2.9. Because the performance improves
monotonically with increasing 42, we can use any freedom in the param-
eters to maximize d? without considering the ROC explicitly.

106 2.

2.6.2 Equal Mean Vectors

In the second special case of interest the mean-value vectors on the two
hypotheses are equal. In other words,

Fig. 2.34 Rotation of axes.

. m; = m, & m. (387)
-+ . . .
R, = R’Ti’ Substituting (387) into (327), we have
Oy 8 ) YR~ m(Q — QIR —m) 2 Iny + dln = (388)
S
s + Mz Because the mean-value vectors contain no information that will tell
my =T us which hypothesis is true, the likelihood test subtracts them from the
s — Mz received vector. Therefore, without loss of generality, we may assume
m’12=”11‘\7" that m = 0.
(382) in (370) We denote the difference of the inverse matrices as AQ:
btained by using ’
The sufficient statistic is © (R, — Ro)mu — mMiz) (383) AQ 2 Q, — Q.. (389)
| (Ry + Rl 2 —z . . ,
IR) =755 2 1= The likelihood ratio test may be written as
, 7 2 4
and d* is (my + mi2)® (_mll/—ﬂl—zl _(ﬂlllg- + % (389 Hy
42 = ——%zTJr/P)" 20 -0 (1 +p) sortant We IR) & RTAQR = 2y* 4 4. (390)
. . formation is im Ho
. -cation in which the trans (rained,
To illustrate @ typlC'c}l ili)(i:l;":(;glem The 1ength of the mean vector is constr 85) Note that /(R) i . T
consider a simple optimiza . @3 ote that ( ) is the dot product of two Gaussian vectors, R and AQR.
m,|? = sur transformation sa Thus, /(R) is not a Gaussian random variable.
2 . . . . . .
want to choose miy and /e {o maximize d. Because " We now consider the behavior of this test for some interesting special
rot\Z:on, it preserves lengths fmy |2 =1 ¢ e

Case 1. Diagonal Covariance Matrix on H;: Equal Variances. Here the
R; on H, are statistically independent variables with equal variances:

K, = o,7L (391)

obtain the solution by inspection:

84), we
Looking at (384), — oand mhs = L.

If p > 0, choose mi
— 1and miz = 0.

fp<0 choose nis Z
(385) give the same d*.

Ifp=0, all vectors satisfying
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108 2.6 The General Gaussian Problem
We shall see later that (391) corresponds to the physical situation in
which there is «noise” only on Ho. The following notation is convenient:
r{ = ng, HO‘ (392)
On H, the ry contain the same variable as on Ho, plus additional signal
components that may be correlated:
rp= 8+ M H,,
i i i 1 (393)
Kl = Ks + 0n21,
where the matrix K, represents the covariance matrix of the signal com-
ponents. Then

1
Qo= =1 (394)
and
1 1 -1
Q- 1+ L) (395)

1t is convenient to write (395) as
1
Q. = - U-H (396)
which implies
H= (o1 + K) K = K (o1 + K)t=Q— Q. = AQ. (397)

The H matrix has an important interpretation which we shall develop
later. We take the first expression 1n (397) as its definition. Substituting
(397) into (389) and the result into (390), we have

Hy
!

IR) = ;}-2 RTHR 7. (398)

Several subcases are important.

Case 1A. Uncorrelated, 1dentically Distributed Signal Components. In this
bles with identical

case the signal components § are independent varia

variances:
(399)

K, = oL

Then
H = (o1 + oA 1oL (400)

or

L S— | (401)

where 0,2 & ¢2 + 0,2
w2

Equal Mean V.
and n Vectors 109

1 2
IR) = — ——— RR= L _ o

N
20,2 + o, e R Z R?. (402)

Th i
e constant can be incorporated in the threshold to give
I(R) & N§ R2Z
£ 2 R 27" (403)

We now calculate th

. e performance of th

is the sum of of the test. On both h

hypotheses is itlhfhseq\lzl:rrizsn ((:)f ]\; (t}laussmn variables. The dii}%lejroet:ce: eiillgre):
e of the G i ; .

shall assume that N is an even in tegeraussmn variables. For simplicity, we

To find py g, (LI H,
‘ IH ) we ob L
R?is 0 0 serve that the characteristic function of each

Ma2 5, (jr) & f"" orz
[ = PR o~ RZI20,7
L Vgt AR
n

= (1 — 2jve,?)~ k. 404)

Because Of the inde])ell(lence of the variable
f . .
. 1 bl S, M”Ho (jl) can be Written as

My, (jv) = (1 — 2jve,®) N2,

| | 405
Taking the inverse transform, we obtain p, 5 (L|Ho) -
Ho o):
Puisg(LIHo) = L¥E-tentient
2¥1zg W (E) o
"oA\2
=0,

L <0, (406)

Wthh 1S 1am1ha] as the Chl-Squale deIlSlty 1u“0tlon Wlth deglees Of
X (
)
fICCdO]II. It 18 tabulated n Se\/elal leiele“ces (e.g-, |19! or 3 N.I Oor - 2
lt 1S easy to C]lec that 1t 1s the sim le €X ()Ile“tlal on . 41. S”“lla[ly,

Ni2—1,-
[Vi2-1p-Li20,?

2N/20_1NF (ﬂ) >
2

= O,
L <0, (407)

P (L|Hy) =

L >0,

The expressions for P, and Py are
3

Po= |
D J‘Y" [2N/201NF(N/2)]—ILN,"Z—le_Lmqlz dL (408)

Pr = f “ [oNizg -
=] 27 T(N2) 1IN2-1g-Li20, g (409)
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110 2.6 The General Gaussian Problem

Construction of the ROC requires an evaluation of the two integrals. and product No.2/o,? Equal Mean Vectors 111
We see that for N = 2 we have the same problem as Example 2 on p. 41 | shall see tlcl t % /a,? there should be an optimum N. In Ch
and (408) and (409) reduce to S mication :: this problem corresponds to Optimum.dive _apt.cf 4 we
P, = €xp __7’_.>, 2350 and ystems and the optimum energy per pulse in rsity in com-
D 2a0,° 410 16‘4 ¢ we have sketched P,, as a function of N f radar. In Figs.
Py = i o im liacf:'SpCthely, and various No,%/o,? products. We d(')r Pr = 10"% and
P =P\ T2 plications of these results in Chapter 4. ' iscuss the physical
and Case 1B. 1 .
P = (PD)(1+032/0,.2)_ (411) the signal ::;I;e:::ztssslg:al Components: Unequal Variances. In this case
For the general case there are several methods of proceeding. First, let v are independent variables with variances o,,:
M= N2 —landy" = »"[20,2. Then write o5, 2 '
¥y M
Po=1- f e dx. 412) K, = o? 0
0 .
The integral, called the incomplete Gamma function, has been tabulated 0 . (418)
by Pearson [21]: 0,2
wWM+1 M N
To(u, M) & f X e d, (413)
0 .
and
P=1—1( 14 ,M). 414
i WM+ 1 4
These tables are most useful for Pr = 10-¢ and M < 50.
In a second approach we integrate by parts M times. The result is
M "k
Py = e () 2 G @19)
k=0 :
For small Py, y" is large and we can approximate the series by the last T
few terms, P,
e [ M MM-—1
PF - AI! 1 + _y//l + (ym)z + ] (416)

Furthermore, we can approximate the bracket as (I — Myt This
gives
I Me_y”'

Py~ ~b (417)

(I — M

A similar expression for P, follows in which y" is replaced by e
y"[20,%. The approximate expression in M7 is useful for manual calcula-
tion. In actual practice, we use (415) and calculate the ROC numerically.

In Fig. 2.35a we have plotted the receiver operating characteristic for some 01
representative values of N and o2lo, B
Two particularly interesting curves are those for N = 8, o2fa,? =1 and 0 1 1 ! [ |

0.5 0.6 0.7 0.8 0.9 1.0

B —>

N = 2, 02f0,2 = 4. In both cases the product No2o,® = 8. We see that
when the desired Py is greater than 0.3, Pp is higher if the available * signal

SRR j Fig. 2.3 .
strength™ 18 divided into more components. This suggests that for each Pr S a. Receiver operating ch -~
aracteristic: Gaussian variables with identical
ca

me i
ans and unequal variances on the two hypotheses
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ussian Proble The characteristic function of /(R) follows easily, but the calculation of

Pr and Pj is difficult. In Section 2.7 we derive approximations to the

112 2.6 The General Ga

Then _ 2 0 performance that lead to simpler expressions.
(7'31
072‘:\—’0::2 Case 1C. Arbitrary Signal Components. This is, of course, the general case.
0,2 We revisit it merely to point out that it can always be reduced to Case 1B
s P y

. (419)

m by an orthogonal transformation (see discussion on pp. 102-106).

Osy 1.0
l_ 0 o2 ooy’ 08
06
and
1 N 0'542 R2 H>1 ’)// (420) 04
Z 9.
R) = 73 2 57 v ot o

0.2

0.1

0.02

0.01

0.006

0.003

0.002 ! | O Y | | l
2 4 6 8 1012 16 20 30 40 64

N —>

64

0.01 A 5 8 1012 16 20

2 N —

Fig. 2.35 ¢. Py as a function of N [P = 10-14],

=10"2)

Fig. 2.35 b. Pyasa function of N [Pr
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114 2.6 The General Gaussian Problem

Case 2 Symmetric Hypotheses, Uncorrelated Noise. Case | wa; ;nzzlir:-
metric .because of the noise-only hypothesis. Here we have the following

hypotheses: .
® Hyirp= 8+ H i=1,..,N
n; i=N+1,...,2N, 21)
[ = N
Hyry = n i=1...
’ Si+ni l=N+1,,2N,
where the n; are independent variables with variance 0,2 and the s; have a
covariance matrix K,. Then
i+ K0 0
K, = U oo (422)
1 0 el
and o 0
K, = 07—1 —————————— X ) (423)
0 1
0 oA+ K
where we have partitioned the 2N x 2N matrices into N x N submatrices.
Then .l
__1__] | 0 (U,ﬁl—%—KQ”1 ' 0
AQ e B oo (424
IR IRECE B2 S 0 il
Using (397), we have '
H, 0
L (425)
AQ = =3 !
» 0 -H
where, as previously defined in (397), H is
H 2 (6,1 + K,) 'K, (426)

If we partition R into two N x 1 matrices,

R,
R = X ” X @27)
R,

then

Hi

! : 429)
I(R) = ‘;’2 RlTHRl - RQTHRz ]?O'y . (

The special cases analogous to 1A and 1B follow easily.

Equal Mean Vectors 115

Case 2A. Uncorrelated, Identically Distributed Signal Components. Let

K, = o; (429)
then
N 2N Hj
IR) = > R®— > REz oy (430)
i=1 i=N+1 Ho

If the hypotheses are equally likely and the criterion is minimum Pr(e),
the threshold » in the LRT is unity (see 69). From (388) and (390) we see
that this will result in y* = 0. This case occurs frequently and leads to a
simple error calculation. The test then becomes

N Hy 2N
LR) L D> REZ D R?LIR). 431
i=1 Ho j='N+1

The probability of error given that H; is true is the probability that

I(R) is greater than /;(R). Because the test is symmetric with respect to
the two hypotheses,

Pr(e) = 4 Pr(e|Hy) + $ Pr(e|H,) = Pr (e| Hy). (432a)
Thus

Pr (e) = L dLlpll |H1(L1|H1) L DPi, |H1(L0|H1) dL,. (432b)
Substituting (406) and (407) in (432b), recalling that N is even, and evalu-
ating the inner integral, we have

@ 1
Pr(e) = fo 2¥25  T(N/2)

Lye-t e~ L1202

Ni2-1 2\k
x fetmer > Bl ar. @32
k=0 *

Defining
o,z
o = ';1—2—_}_—;71_2’ (433)
and integrating, (432¢) reduces to
Ni2—-1 _]Y +] — 1
Prie) =" > |2 (1 — o). (434)
i=o :
J

This result is due to Pierce [22]. It is a closed-form expression but it is
tedious to use. We delay plotting (434) until Section 2.7, in which we derive
an approximate expression for comparison.

Case 2B. Uncorrelated Signal Components: Unequal Variances. Now,

s, 2 0

K, = . - (435)
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116 2.7 Performance Bounds and Approximations

It follows easily that

2N

® = |2, %ZR“'2~ﬁi—N§'@m
T g,? i=10n2+°’s¢2 ! 2 402 y g7

1=N+19n H,

As in Case 1B, the performance is difficult to evaluate. The approxi-
mations developed in Section 2.7 are also useful for this case.

2.6.3 Summary
We have discussed in detail the general Gaussian problem and have
found that the sufficient statistic was the difference between two quadratic

forms:
IR) = IRT - m)Qo(R — my) — IRT — m,")Q:(R — my). (437

A particularly simple special case was the one in which the covariance

matrices on the two hypotheses were equal. Then

IR) = + Am"QR, (438)
and the performance was completely characterized by the quantity d*:
d? = Am"Q Am. (439)

When the covariance matrices are unequal, the implementation of the
likelihood ratio test 1s still straightforward but the performance calcula-
tions are difficult (remember that 42 is no longer applicable because /(R) is
not Gaussian). In the simplest case of diagonal covariance matrices with
equal elements, exact error expressions were developed. In the general
case, exact expressions are possible but are too unwieldy to be useful.
This inability to obtain tractable performance expressions is the motivation
for discussion of performance bounds and approximations in the next
section.

Before leaving the general Gaussian problem, we should point out that
similar results can be obtained for the M-hypothesis case and for the
estimation problem. Some of these results are developed in the problems.

2.7 PERFORMANCE BOUNDS AND APPROXIMATIONS

Up to this point we have dealt primarily with pro
could derive the structure of the optimum receiver an
simple expressions for t
probability.

In many cases O
performance calculation is impossible. For these case

blems in which we
d obtain relatively
he receiver operating characteristic or the error

f interest the optimum test can be derived but an exact |
s we must resort t@
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bounds. on the error probabilities or approximate expressions for th
p.robabll}tles. In this section we derive some simple bounds and approxirﬁSe
tions which are useful in many problems of practical importance. The bas?;
results, due to Chernoff [28], were extended initially by Shannon [23]
They have been further extended by Fano [24], Shannon, Gallager anci
Berlekamp [25], and Gallager [26] and applied to a proble;n of intere,:st to
us by Jacobs [27]. Our approach is based on the last two reference
Because the latter part of the development is heuristic in nature, the int .
e§ted reader should consult the references given for more care}ul deri:r—
?e(;n; FrOtI.Tll él;le standpoint of use in later sections, we shall not use tl:
u -
resu| isn u(r; hlaptela-xatfr [1-3 (the results are also needed for some of the prob-
T t'le problem of interest is the general binary hypothesis test outlined i
Segtmp 2.2. From our results in that section we know that it will redu: iﬂ
a likelihood ratio test. We begin our discussion at this point =
The likelihood ratio test is '

R) 2 In AR) =1In [——————
prIHO(RIHO)
The varlable'I(R) is a random variable whose probability densit
depends on which hypothesis is true. In Fig. 2.36 we show a typi };
P1|H1(L\H1) and p,,HO(LlHO). e
If the two densities are known, then Py and Py, are given by

pl‘lHl(RlHl) H>1
] =7 (440)

Py = J'm pllHl(LIHl) dL, (441)

Y

m:La%mme (442)

. Th; diﬁicult){ i§ that it is often hard to find p, 5, (L|H,), and even if it
an be found it is cumbersome. Typical of this complexity is Case 1A

A

|
!
|
|
: pl|H1(L|H1)
|
i
|

Fig. 2.36 Typical densities.
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118 2.7 Performance Bounds and Approximations

on p. 108, in which there are N Gaussian variables with equal variances
making up the signal. To analyze a given system, the errors may be
evaluated numerically. On the other hand, if we set out to synthesize a
system, it is inefficient (if not impossible) to try successive systems and
evaluate each numerically. Therefore we should like to find some simpler
approximate expressions for the error probabilities.

In this section we derive some simple expressions that we shall use in the
sequel. We first focus our attention on €ases in which AR) is a sum of
independent random variables. This suggests that its characteristic function
may be useful, for it will be the product of the individual characteristic
functions of the Ri. Similarly, the moment-generating function will be the
product of individual moment-generating functions. Therefore an approxi-
mate expression based on one of these functions should be relatively easy
to evaluate. The first part of our discussion develops bounds on the error
probabilities in terms of the moment-generating function of I(R).

1n the second part we consider the case in which I(R) is the sum of a
large number of independent random variables. By the use of the central
limit theorem we improve on the results obtained in the first part of the
discussion.

We begin by deriving a simple upper bound on Py in terms of the
moment-generating function. The moment-generating function of /(R) on
hypothesis Ho 1s

brim,(8) 2 E(e"'|Ho) = Jt: pui (LI Ho) L, (443)

where s is a real variable. (The range of s corresponds to those values for
which the integral exists.) We shall see shortly that it is more useful to

write
buyp(8) & €xp ()] (444)
so that
u(s) = In r ety o (LI Ho) dL. (445)

We may also express u(s) in terms of pyiu, RIH1) and py HO(R\HO). Because
/is just a function of r, we can write (443) as

bumts) = | @ pan,(RiHe) IR (@46)

Then

u(s) = In r S ®p o (R|Ho) dR. (447)

Derivation 119
Using (440),

_ © Peim (REHDS
p(s) = In f_ . (m) Priu,(R|Hy) dR, (448)
or

w(s) = 1nf ) [2r1, RIHDP[Pr1 1, (R| Ho)]' ~° dR. (449)

’rll‘(})l‘i] f;:rllctlop ,ut(s) plays a central role in the succeeding discussion. It is
venient to rewrite the error expressions i ,
: VI s in terms of a new rand
variable whose mean is in the vicini o this
. vicinity of the threshold. Th i
step is that we shall use the central limi i the second pat o ous
al limit theorem in th
derivation. Tt is most effecti Bt of
' . ive near the mean of the rand i
interest. Consider the simple ili i e 7 T
probability density shown in Fig. 2.3
. p) . 2.37a.
g:a;(c ft‘he new family of densities shown in Figs. 2.37b-d we multiﬁly pAX )Ik;(})'
e°¥ for various values of s (and normalize i i s
to obtain a unit W
for s > 0 the mean is shifted i e aa
to the right. For the mome
' . . nt we leav
paramete'r. We. see that increasing s “tilts” the density more e
Denoting this new variable as x,, we have .

sX
pxs(X) é we PIIHO(X|HO) — esxpllHo(XlHO) (450
f_w ESLPHHO(L|H0) dL e :

Wh(;:)iizvzr‘;h?rtltwe f[ieéil}e x;: in terms of its density function, for that is

erested in. Equation 450 is a general defini i

. . . nition.

density shown in Fig. 2.37, the limits would be (— 4, A) tion. For the
We now find the mean and variance of x;: "

© Xes*p X|H
E(xs)=f_mpr3(X)dX= f‘“’ o] O)dX. 451)

[ emmitaL

Comparing (451) and (445), we see that

d,
Ex) = B0 2 ), (452)
imilarly, we find
Var (x,) = fi(s). (453)

thrve that (453) implies that u(s) is convex.]
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120 2.7 Performance Bounds and Approximations

We now rewrite Py in terms of this tilted variable x;:

© (7 uw-sxy (X)dX
Pp = J; PtlHo(L\Ho) dL = J; e Px )
= ¢M® on e~ %p,(X) dX.
Y

We can now find a simple upper bound on Pj. For values of s = 0,

e~ X < e, forX=zvy.
X)
1 P 0 =pa(X)
31 when =0
— | X
—A Yy A
(@) Threshold
Pxo(X)
coe’ 80>0
AX
—A | Yy A
(b)
81>S()>0
. ¢
—-A
s3> 851> 50> 0
)X
-A

Fig. 2.37 Tilted probability densities.

(454)

(455)

Thus

Clearly the integral is less than one. Thus

PF < eu(s)—SV’ s > 0.

zero, we obtain
fus) = y.
Because ji(s) is nonnegative, a solution will exist if
#0) < y < A(c0).
Because
#(0) = E(”Ho),

Py < exp [u(s) — spls)], s = 0,

threshold.

V4
Py =f Puian, (X HY) dX,

Pun, (X|H)) = e*py iy (X|H,).
Substituting (463) into the right side of (450), we have
puw, (X |Hy) = 2@+ =% (X).
Substituting into (462),
Py = e*® fy et-9%p (X)dX.

Fors < 1
elm0X < -9 for X < y.

Thus
Py

IA

eu(s)+(1—s)7 fy pxs(X) dx

< es0razor oo,

PF < eu(s)—syf sz(X) dX, s> 0.
b4

which we want to express in terms of the tilted variable x,.
Using an argument identical to that in (88) through (94), we see that

Derivation 121

(456)

(457)

To get the best bound we minimize the right-hand side of (457) with
respect to s. Differentiating the exponent and setting the result equal to

(458)

(459)

(460)

the left inequality implies that the threshold must be to the right of the
mean of / on H,. Assuming that (459) is valid, we have the desired result:

(461)

where s satisfies (458). (We have assumed u(s) exists for the desired s.)
Equation 461 is commonly referred to as the Chernoff bound [28].
Observe that s is chosen so that the mean of the tilted variable x, is at the

The next step is find a bound on Py, the probability of a miss:

(462)

(463)

(464)

(465)

(466)

(467)
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122 2.7 Performance Bounds and Approximations

Once again the bound is minimized for

y = i) (468)
if a solution exists for s < 1. Observing that
p(1) = EUHy), (469)

fl
we see that this requires the threshold to be to the left of the mean O

on H;.
Combining (461) and (467), we have

Py < exp [u(s) — si(s)]

(470)

Py < €Xp [i(s) + (- $)i(s)]

" y = is)

is the threshold that lies between the means of / on the two };1y;igtlilsesr::§:[

Confining s to [0, 1] is not too restrictive because if the thres }? et

between the means the error probability \&fill be .large; on 0;1:1) )Izswe e

(greater than one half if the median. coincides with the mc—‘:S O.nd we are

modeling some physical system this would usually corresp

acceptable performance and necessitate a system ch‘ang;:. nical inter
As pointed out in [25], the exp.oneFr.lts 2}1?8/(: \E;lv :1;1;1; Vs agtalil et the

1 1 i ig. 2.38.

pfﬁftaUOﬂ- SC;YI?l(i?)ﬂ: ()S,) ?hsi?ct)amngégt in%ersects vertical 1ipes ats = 0and

polml a}l';lve Valu}; of the intercept at s = 01s the equnent in the Pr t:iound.

f1‘};3 V'alue of the intercept at s = 1 is the exponent in the P,; bound.

l

\ .
| u(sy) 4+ (L—s1) (s1)
(exponent in Py bound)

|

|

|

s (1) \‘
u(s1) = 514 (81

(exponent in Pr bound) \‘

|

|

|

Fig. 2.38 Exponents in bounds.

Derivation 123

For the special case in which the hypotheses are equally likely and the

error costs are equal we know that y = 0. Therefore to minimize the bound
we choose that value of s where p(s) = 0.

The probability of error Pr (e) is

Pr(¢) = 4Py + 3Py 471)
Substituting (456) and (467) into (471) and denoting the value s for
which p(s) = O as s,, we have

@ 0
Pr(e) < esow f Pe(X) dX + beim f p(X)dX,  (472)
0 -
or

Pr (9) < fesw. | (473)

Up to this point we have considered arbitrary binary hypothesis tests.
The bounds in (470) and (473) are always valid if u(s) exists. In many cases
of interest /(R) consists of a sum of a large number of independent random
variables, and we can obtain a simple approximate expression for Py and
P, that provides a much closer estimate of their actual value than the
above bounds. The exponent in this expression is the same, but the multi-
plicative factor will often be appreciably smaller than unity.

We start the derivation with the expression for P, given in (454).
Motivated by our result in the bound derivation (458), we choose s so that

s) = y.
Then (454) becomes

Py = o4 f =%, (X) dX. (474)

4i(8)

This can be written as

e+s[12(s)-X]pxs(X) dX. (475)

L(s)

e
Pp = eu(S)—sd(s)f

The term outside is just the bound in (461). We now use a central limit

theorem argument to evaluate the integral. First define a standardized
variable:

A Xs — E(xs) — Xs — f"(S)
f V) T Vo) e

_ Substituting (476) into (475), we have

Py = eu(s)—sﬁ(s)f e—s\/Ts)Ypy(y) dy. 477)
0
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Applications 125
In many cases the probability density governing r is such that y ap- - Vi)Y

proaches a Gaussian random variable as N (the number of components of
r) approaches infinity.t A simple case in which this is true is the case in
which the r; are independent, identically distributed random variables with
finite means and variances. In such cases, y approaches a zero-mean
Gaussian random variable with unit variance and the integral in (477) can
be evaluated by substituting the limiting density.

Increasing s\/ii(s)

'f emsViOY gy = 0 erfey Vils).  478)
0 V2w

Then

Pp {exp [;L(s) — spds) + i;ii(s)]} erfc, [s\/ ;-Xs—)] 479)

py(Y)

The approximation arises because y is only approximately Gaussian for

finite N. For values of s\/}-i—(s‘) - 3 we can approximate erfc,(-) by the
upper bound in (71). Using this approximation,

P s> 0.

exp [u(s) — s} (480)

P v 2ms%ii(s)

1t is easy to verify that the approximate expression in (480) can also be
obtained by letting

1 Fig. 2.39 Behavior of functions.

pu(Y) = pO) = T (481)

Looking at Fig. 2.39, we see that this is valid when the exponential
function decreases to a small value while ¥ « l.
In exactly the same manner We obtain

For the case in which Pr (¢) is the criteri
equally likely we have (© e criterion and the hypotheses are

Pr(€) = 4Pr + 1Py

Py {exp [ + @ = 95 + -1 p(s)]}erfc* (1 — HVESL

_ S . ——
(482) % €Xp I::“L(Sm) + —2— /-"(Sm)] erfc, [sm\/li(sm)]

For (1 — s)Vi(s) > 3, this reduces to (1 = sn)? ..
M + $exp [I-"(Sm) + —j:-g—) 'L,L(Sm):l erfc, [(1 — sm)\/m], (484)

1
~
M 21 — S)RS)

| I

P (483)

exp [u(e) + (1 = 9} §= L.

’ \;;lrllfre f)m is defined in the statement preceding (472) [i.e., f(s,) = 0 = v]
’ ) _ i m) - .
' n both s, Vji(s,) > 3 and (1 — s,)Vji(s,) > 3, this reduces to

Observe that the exponents in (480) and (483) are identical to those :
obtained by using the Chernoff bound. The central limit theorem argument Pr(e) ~ — exD uls
has provided a multiplicative factor that will be significant in many of the [2Qmii(sm) sm(l — )] P #lsm): (485)

applications of interest to US. ' .
PP We now consider several examples to illustrate the application of these

. . . . ideas. Th 3 i
+ An excellent discussion 18 contained in Feller 33}, pp- 517-520. . The first is one in which th
W e exact performance is known. W
' . We go
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126 2.7 Performance Bounds and Approximations

. . . ions
through the bounds and approximations to illustrate the manipulati

involved.

i i introduced
Example 1.1n this example we consider the simple Gaussian problem first in

on p. 27:

ol e [_M] (486)
Pr\Hl(R\Hl) = i'l:Il \/57—‘7 o P 202
" - ! ex (—-B'—z) (487)
peino(RIHS) = [ 1752, 917277
ing (449)
Then, using B w N 1 [ (R — m)?s + RA(1 — S)] JR. (4880)
. ——— eXp —/2
#(S)=1nj_ J‘—w¢=1V27rc 20
Because all the integrals are identical,
“ ! [ Wu] dR. (488b)
w(s) = Nlin J: v exp o

Integrating we have

2 s(s — Dd? (489)
u(s) = Ns(s = D) ;—’;-2 a BT

i in Fig. 2.40:
ned in the statement after (64). The curve 18 shown in Fig. 2.4

(25 — Dd?, (490)
)

where d2 was defi

W) =

Using the bounds in (470), we have

—52d?
oo (225)

(1 . S)Zdz
< exp [“ 2

0<s<l (491)

Pu

-0‘150 01 02 03 04 05 06 07 038 09 10

§ —>

Fig. 2.40 p(s) for Gaussian variables with unequal means.

Applications 127

Because /(R) is the sum of Gaussian random variables, the expressions in (479)
and (482) are exact. Evaluating ji(s), we obtain

() = d2. (492)
Substituting into (479) and (482), we have
Pr = erfcy [sVii(s)] = erfcy (sd) (493)
and
Py = erfcy [(1 — 5)Vii(s)] = erfc, [(1 — s)d]. (494)

These expressions are identical to (64) and (68) (let s = (in p)/d? + ).

An even simpler case is one in which the total probability of error is the criterion.
Then we choose an s, such as i(s,) = 0. From Fig. 2.40, we see that s, = }. Using
(484) and (485) we have

d 2 \% d?
Pr (¢) = erfc, (i) ~ (;{3) exp (—§)» (495)
where the approximation is very good for d > 6.

This example is a special case of the binary symmetric hypothesis
problem in which u(s) is symmetric about s = 1. When this is true and the
criterion is minimum Pr (¢), then u(3) is the important quantity.

() = In f i R (po, RIHD R (496)

The negative of this quantity is frequently referred to as the Bhatta-
charyya distance (e.g., [29]). It is important to note that it is the significant
quantity only when s, = 4.

In our next example we look at a more interesting case.

Example 2. This example is Case 1A of the general Gaussian problem described on
p. 108:
N 1 R‘Z
prin(RIH) = [ T exp (~355)"

i=1 V270, 20,

497)

N

1 R?
Pring(R|Ho) = [ [ —==——cexp (—20—05>~

i=1 V2w ag

Substituting (497) into (499) gives,

us) = Nln f 1 e [—S—Ri - £L_—is—2]dR (498)

w (v 27 %08 %) 20,2 2a4*

or

_ -]! (002)3(012)1—~S
Hs) = = In [5002 ¥a- 5)012] (499)
A case that will be of interest in the sequel is

012 = UTL2 + U527

(500)

o2 = a,2.
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Substituting (500) into (499) gives 10 Applications 129
s {o -l - )l e 00l —
N (1 -9snil + e mit+a -9 e (501) 09— //
This function is shown in Fig. 2.41. // ]
i 08— Ve
N a;’ 082/0"2 : /
NI o5 ; i
) =3 [ n (1 + 0"2) Ty a- s)a‘f/aﬁ] (502) | Approximate 7 B
and N o3 . 07 . //
it = — _____S——n—’—— . =
i) =73 [1 T - s)(af/onz)] (503) T 4 yd -
o . 06— 7/
By substituting (501), (502), and (503) into (479) and (482) we can plot P Equal threshold /
an approximate receiver operating characteristic. This can be compared D lines // 7]
with the exact ROC in Fig. 2.354 to estimate the accuracy of the approxi- 05— e
mation. In Fig. 742 we show the comparison for N =4 and 8, and // L‘a_:=1 —
. . oy’
o2|o,2 = 1. The lines connect the equal threshold points. We see that the 04 /
approximation is good. For larger N the exact and approximate ROC are Exact // —
identical for all practical purposes. 03l yd
/
/ B
02— /
/
/ —
ol 7
/
/ l .
0 01 0?2 o|.3 0‘4 015 0!6 | | |
’ ' - 0.7 0.
P 8 09 10

s

Fig. 2. . .
ig. 2.42 Approximate receiver operating characteristics

u(s)
I—Vﬁ Example 3. In this ex
3.1 s example we consider first i i i
hypothesis situation described in Case 2A (Ptt;el ;nilr?]»l\fj;'dhvj\gmon of the symmetric
. ic =2,
pl‘lHl(RlHl) = 1 R12 + Ry2 R32 2
and (27)%0,%a exp {— 20,2 - = 2:_ 2R4 ) (504)
0
pl‘lHO(R[Ho) — 1 R12 + R 2 R 2 2
where @m)*a, 00" P\ T 20, - - 32:_213‘1 )’ (305)
1
0.2 = 02 + a,2
Then 0'02 = anz' (506)
ws) = sIn 0,2 + (1 — ) In (0,2 + 0,2) — In (0.2 + 0,25)
-07 02 04 06 10 +(1 = 9Ino? + sln(e? + 02 — In[0,2 + 021 — 9]
— 0'32
—ln(1+;—2) _1n[<1 +§_"s_2) {4 A= 992
n 0‘,,2 anz . (507)

8§ —>

Fig. 2.41 p(s) for Gaussian variables with unequal variances.

]' hﬁ iuﬂct on ,LL(S) 1S plOtted i i
A b n rig. 2.43a. The minimum isats = i This is the p oint
terest at Wthh minimum Pr (E) is the criterion . 1 .
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u(s)

10

04 05 06 07 08 09

=457 51 0z 03
§—>

¥ 1g. 2. 43a }L(S) for the binary SY "““e“ 1C h) pOtheSls pr Oble“l-

a bound on the errot 15,

(1 + os / )
Pr(9) <3 T oo 2e P

Thus from (473),

i i in Fig. 2.43b.
d in (508) 1s plotted in |
oo of Example 3 is the problem in W

le 34. An interesting extension

hich

Examp.

2

(153 0

K

Il
8

2
ON/2
2
ONI2

(508)

(509)

Applications 131

! [
0.5

0.1

T 0.01

Pr(e)

1073

| | :

-4 [
10 0.1 1 10 102 103 -

052
on?

Fig. 2.43b Bound on the probability of error (Pr(e)).

The r’s are independent variables and their variances are pairwise equal. This is a
special version of Case 2B on p. 115. We shall find later that it corresponds to a

physical problem of appreciable interest.
Because of the independence, u(s) is just the sum of the u(s) for each pair, but each

pair corresponds to the problem in Example 3. Therefore

w(s) = :V_fl In (1 ) Nf In {( )(1 + (1 - 5) = s )} (510)
Then
Ni2 o
#(s) = Z [ + sog” 2 + (15‘_ 5)0512] (511)
and . 4
asl
is) = {(U’n + sa, [ Y= S)Osi"’]z}' 512)

For a minimum probability of error criterion it is obvious from (511) that s, = 3.
Using (485), we have

Pr(e):[ 2(7—:—%—272] exp[Nfln( 2)—2me(1+2 2)] (513)
or
G,
N Ni2 Us, -~ NIz (1 + _s:‘l‘) .
Pr()_[ Z % + }a,,? ] ¢=1(1 +ZOTS;22)2 Gl
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i i iances are equal
For the special case In which the van:n:.e(I : 15)
Gy~ = Ys
and (514) reduces 10 5 0+ T ) -
/——————"—_’
Pr (9 = | 5] @2le 0 + o2

i is case it reduces to

tely, we can use the approximation given by (484). For t‘hls ca‘I o
Alternately, 2 2 N2 N 052/(7”2 2 erfc* [(d) (1 +30 2720 2)]
1+ o [an exp {- (‘—-—_’—"2/20 3 A /S -

Pr (e) = a+ o 220,27 g \1 + o%[20s S

oximate Pr (€} using (517) and exact Pr (€)

P o ation is excellent.

which was given by (434). We see that the approxim

The principal results of this section were

i approximate error ex|
given in (470) and (473) and the app e s exprosion

(479), (480), (482), (483), (484), and (485
to find performance result

In Fig. 2.44 we h
the bounds on P: a.nd P.M
pressions given in
s will enable us
ysical interest.

s for a number of cases of ph

—— Exact
o0 — — Approx

Pr(e)

2.8 Summary 133

Results for some other cases are given in Yudkin [34] and Goblick [35]
and the problems. In Chapter I1-3 we shall study the detection of Gaussian
signals in Gaussian noise. Suitable extensions of the above bounds and
approximations will be used to evaluate the performance of the optimum
processors.

2.8 SUMMARY

In this chapter we have derived the essential detection and estimation
theory results that provide the basis for our work in the remainder of the
book.

We began our discussion by considering the simple binary hypothesis
testing problem. Using either a Bayes or a Neyman-Pearson criterion, we
were led to a likelihood ratio test, whose performance was described by a
receiver operating characteristic. Similarly, the M-hypothesis problem led
to the construction of a set of likelihood ratios. This criterion-invariant
reduction of the observation to a single number in the binary case or to
M — 1 numbers in the M hypothesis case is the key to our ability to solve
the detection problem when the observation is a waveform.

The development of the necessary estimation theory results followed a
parallel path. Here, the fundamental quantity was a likelihood function.
As we pointed out in Section 2.4, its construction is closely related to the
construction of the likelihood ratio, a similarity that will enable us to
solve many parallel problems by inspection. The composite hypothesis
testing problem showed further how the two problems were related.

Our discussion through Section 2.5 was deliberately kept at a general
level and for that reason forms a broad background of results applicable
to many areas in addition to those emphasized in the remainder of the
book. In Section 2.6 we directed our attention to the general Gaussian
problem, a restriction that enabled us to obtain more specific results than
were available in the general case. The waveform analog to this general
Gaussian problem plays the central role in most of the succeeding work.

The results in the general Gaussian problem illustrated that although we
can always find the optimum processor the exact performance may be
difficult to calculate. This difficulty motivated our discussion of error
bounds and approximations in Section 2.7. These approximations will lead
us to useful results in several problem areas of practical importance.

100

’ LA
an?

_ 29 PROBLEMS

st The problems are divided into sections corresponding to the major

i ic hypot
for the binary symmetric ' | ' . |
ns Sections in the chapter. For example, section P2.2 pertains to text material

oximate error expressiol
Fig. 2.44 Exact and appr e
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in Section 2.2. In sections in whi
divided into topical groups.

As pointed out in t
available on request.

P2.2 Binary Hypothesis Tests

SIMPLE BIN

Problem 2.2.1. Consid

ch it is appropriate the probl

he Preface, solution

er the following binary hypothesis t

ems are

s to individual problems are

ARY TESTS
esting problem:

Hy:r=S + n,
Ho:r = n,
where s and n are independent random variables.
{(S) = ae™ S S$=>0,
? 0 S <0,
,.N)=be"’” N=0,
Pl 0 N < 0.
1. Prove that the likelihood ratio test reduces to
Hi
Rz v
Ho

9. Find v for the optim

probabilities.
3. Now assume t

um Bayes test as a function of t

hat we need 2 Neyman-Pearson tes

he costs and a priori

t. Find yas a function of Pr,

where Py & Pr(say H.|H, is true).

Problem 2.2.2. The two hypotheses are

Hl pr(R) =

1 —_—
5 exp (—IRD

1 1,
i = o (5 %)
HOPr(R) Y 2‘" 2

1. Find the likelihood ratio A(R).
7. The test is

Compute the decision regions f

Problem 2.2.3. The ra.ndo
nonlinear transformations.

Find the LRT.

Problem 2. :
nonlinear transformations.

Find the LRT.

or various values of 7.

m variable x is N,

2.4. The random variable x is N(m,

Hi
AR) }:?0 7.

o). It is passed through one of two

Hyy = X%
Hoy = x°.

o). It is passed through one of two

Hi:y = €5
Hoy = x5

Binary Hypothesis Tests 135

Problem 2.2.5. Consider the following hypothesis-testing problem. There are K
independent observations.
Hi:ri is Gaussian, N(0, ay),
Hy:ry is Gaussian, N(0, oo), [ =

It

where oo < o1.

1. Compute the likelihood ratio.
2. Assume that the threshold is »:
H

iy

AR) = 7.

5/\\/

Show that a sufficient statistic is /(R) = >¥.; R,2. Compute the threshold vy for the test

Hy
IR) z y
Ho
in terms of 7, g, 1.
3. Define
Py = Pr (choose H,| H, is true),
Py = Pr (choose Ho| H, is true).

Find an expression for Pr and Py,.
4. Plot the ROC for K = 1, 0,% = 2, 0% = 1.
5. What is the threshold for the minimax criterion when C,; = Crand Cyo = Cy; = 07

I

Problem 2.2.6. The observation r is defined in the following manner:

r=bmy + n:Hy,
F=an ‘Hy,

where b and n are independent zero-mean Gaussian variables with variances ¢, and
a,2, respectively

1. Find the LRT and draw a block diagram of the optimum processor.

2. Draw the ROC.
3. Assume that the two hypotheses are equally likely. Use the criterion of minimum

probability of error. What is the Pr(e)?

Prqblem 2.2.7. One of two possible sources supplies the inputs to the simple communi-
cation channel as shown in the figure.
BO'I}} sources put out either 1 or 0. The numbers on the line are the channel
transition probabilities; that is,
Pr(a out | 1 in) = 0.7.
The source characteristics are

Source 1: Pr(1) = 0.5, Pr(0) = 0.5;
Source 2: Pr(1) = 0.6, Pr(0) = 0.4.

! 0.7
a
Source |20 03
0 0.4
06 b
Channel
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136 2.9 Problems

oblem in familiar notation, define
when source 1 is present;

hen source 2 is present.
» subject o

To put the pr
m-—say source 2
ce 2 W
f a test that maximizes P

(a) false alar

(b detection—say sour
the constraint that

1. Compute the ROC o
PF = a.

2. Describe the test procedure in detail for @ = 0.25.
Problem 2.2.8. The probability densities on the two hypotheses are

i
= T - ‘Hy, i =0, 1.
leH;(X\Ht) = e o < X < ©:H; i

where a0 = 0 and g, = 1.

1. Find the LRT.
5. Plot the ROC.
2.2.9. Consider a simple coin to

H,: heads are up;
H,: tails are up, Pr [Hol & Po < P,.

e coin are made. Show that the number of ob
for making a decision between the two hypotheses.
n counting process N(t)is observed

ssing problem:

Problem
Pr (H)] L Py,

N independent t0SseS of th served heads,

Ny, isa sufficient statistic
Problem2.2.10. A sample function of a simple Poisso
over the interval T:
hypothesis H::
hypothesis Hy:

Pr(Hy) =1
:Pr (Ho) = 'k.
«gsufficient statistic”’ to

the mean rate is k1
the mean rate is ko

1. Prove that the number of events in the interval T is a

choose hypothesis H, or Hi.
2. Assuming equal costs for the possible errors, derive the appropriate likelihood
ratio test and the threshold.

3. Find an expression for the probability of error.

Problem 2.2.11. Let
y = z Xis
i=0

ables with a Gaussian density

ndependent random vari
dom variable with a Poisson

where the x; ar¢ statistically i
bles in the sum is a ran

N, o). The number of varia

distribution: N
Pr(n=k)=-lz—!e‘A, k=0,1,....

o hypotheses,

Hy:n<1,

Ho:n> 1.

We want to decide between the tw

ion for the LRT.

ndomized tests. OU
permit randomize

h point R in Z we say Hu
he text is equivalen

Write an express
+ basic model of the decision pro

d decision rules. We can incorpora
with probability H(R) and sa
t 1o setting $(R) =

Problem 2.2.12. Ra
text (p. 24) did not
assuming that at eac
probability 1 — #(R). The model in t
Rin Z; and HR) = 0 for all R in Zo.

1. We consider the Bayes criterion fi

2. Prove that a LRT minimizes the

rst. Write the risk fo
risk and a randomized test isn

blem in the
te them by
y Ho with
1 for all

 where

r the above decision model.
ever necessary-

Binary Hypothesis Tests 137

3. Prove that the risk i
e risk is constant ;
an ROC. Because strai i nt over the interior of i
: traight- ol any st i
alternate proof ight-line segments are generated b y straight-line segment on
4 C P.dOO of the result in Part 2 y randomized tests, this is an
. Consider the Neyman- R ’
consists of either Y Pearson criterion. Prove that the optimum t 1
R . est a.
El)) an ordinary LRT with Pr = « or ways
ii) a probabilistic mixt
ure of two ordi ikeli
follows: Te . Hi ) nary likelihood ratio t
[e=, a*]is tsi:els.n:\glm > 7y gives Pr = a”. Test 2: A(R) "o ests constructed as
SR) = 7. (Find $0R) 1 interval sorteing = SR) i3 0 01 L orcnt tor thoss B whors
7. (Find #(R) for this set.) or 1 except for those R where

MATHEMATICAL PROPERTIES

pIObablllty dellslty on jil and 110. Prove (tlle) fO]lOWlﬂ ( )
g

L. E(Aanl) = F(AMt
2. E(AIHO) -1 ( 1|Ho),
3. E(A|H)) — E(A|Ho) = Var (A|H,).

Problem 2.2.14. Consider the randOl[l variable A.In (94) we ShOWed that
pAIH](‘k IHI) - AP/\[HQ(‘k “10)-

1. Verif)‘ this relatio y i culation of and
) n b direct cal i D
I . ’ ( ) ( ) 1 AlHq (') Pa ]HO(') fOr the denSitieS
2. On page 37 we saw that the pe]' [0} I
i . fi rmance of the test in Example 1 was ¢ y
omp etel

. d® = In[l + Var (A|Hy)l
. .
r;) em 2.2.15. The function erfc, (X) is defined in (66):
. Integrate by parts to establish the bound .
1 2

exp (_ X2
7) < erfcy (X) < ——— exp X
Vi X 7): X > 0.

1 (] 1
Vaz X\ 72)

2. Generali
ralize part 1 to obtain the asymptotic series

erfoy (X) = 1 x2 [ n
= e 211 4 _ 1-3..-2m—1

\ ml3--2m—1)
X m;( D Yo ), Rn]-

The remainder i

. er is less th .

H an the m

int. Show that the remainder is agnitude of the n + 1 term and is the same si
ign.

R, = [(—1)" 1—3——7(%::;2]6

(9=J'cc ~t 2y TP
o € (1+}) dr < 1.

3. Assum
e that X = 3. C ,
erfcy(3) is approximated b ?lliclllate a simple bound on the percent
rcentage error for n = 2y e first » terms in the asymptoti nage error when
= 2, 3, 4 and compare the results Repelact ;6“35,. Evaluate this
‘ or X = 5.
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138
Problem 2.2.16.
1. Prove
1 X®
erfce (X) < -iexp - ) X >0.
Hint. Show
yz X) < Pr(x? + ¥ 2z 2X%),

[erfcs (XHP = Prix = X,
where x and y are independent zero-mean Gaussian variables with unit variance.
2. For what values of X is this bound better than (71)?

DEecISION REGIONS
dimensional
hree dimensions.

HIGHER DIMENSIONAL

always be reduced to a oné-
are easier to interpret in two of t
s section.

ary test can decision region.
sults Some
{lustrated in thi

A simple bin

In many cases the re

typical examples are i

Problem 2.2.17. . X2 P
1 2

{exp (~ R 2002\) + exp

Hiipx, ,x2|H1(X1, X \Hy) = d70,00
xe X,

1
i, Kl = g o0 (207~ 208

(_LIZ - Lﬂ
2042 20,2
—o < X1,X2 < P

-0 < Xl,Xz < .

HO'-le x21Ho

1. Find the LRT.
9. Write an exact expr
by modifying the region of integra

oblem 2.2.18. The joint probability density of the

and Pr. Upper and lower bound Po and Pr

ession for Pp
expression.

tion in the exact
random variables Xt (i=

Pr
1,2,..,M)yon H, and Ho is
S (X = M\ £ exp (55
prara (K = éfkmexpi“”‘ﬂ’ L e 2
where
M
Z pk = 19
k=1
M 1 X{Z
pontitn < Tl en oz 7770

1. Find the LRT.
e X1, Xo-plane for the

2. Draw the decision T
special case in which M =
3. Find an upper and lowe

integration.

egions for yarious values of 7 in th
2andp1 = P2 = ¥

+ bound to Pr y modifying the regions of

and Pp ©

y of rion the two hypotheses is

Problem 2.2.1 9, The probability densit
_ (Ri“mk)2] i=1,2,...,N,
Pr,lHk(Ri\Hk) = \"/5—7-_’_ okeXp {""‘"2’;‘?—_— ’ k=01

The observations are independent.
ollowing quantities:

¢ in terms of the f

1. Find the LRT. Express the tes
N
I = z R,
1=1
N
L, = > R

t=1

M-Hypothesis Tests 139

. a -P. lllc
S g10nSs ILI)IE for S
2. Draw |]le (lCCl 1001 1€g10 m t]le la]le the case in w. h

2m0 = m; > 0,

20, = og.
Problem 2.2.20 (continuation). 0
1. Consider the special case
my = 0,
oy = 0y.

D .. .
raw the decision regions and compute the ROC

2. Consider the special case

My = My = 0,
2
= 2
91 Os + 0'"2’
Oy = Op.

Draw the decision regions

Problem 2.2.21. A .

.2.21. A shell is fired

coordinates x; at one of two tar .
s Y1, 215 . gets: under H. ; .

actual landing pOilnt flro:-lntd;r Ho it has coordinates xo, y z‘ t.?ﬁ point of aim has

in each coordinate. The var'e glmnt of aimis a Zel'O-mea,n Coi,au(;:e,ia e distance of the

i . iables are i n variable, N

i . in ) ,

mpact and guess which hypothesis is trl?ee pendent. We wish to observe the PO(i(I)‘l,t f;);

1. Formulate this
. as a hypothesi i
ratio. What is the si X sis-testing problem a
ratio. What s simplest sufficient statistic? Is th nd bompute the likelihood
2. N ~Va1ue of d? do we use? s the ROC in Fig. 2.94 applicable ?
. Now include the effe g '
k = 1,2). e the effect of time. Under A, ~
). The distribution of the actual explosicicntg; df:sued explosion time is 7
e is

_(;ﬂ_)

202

—0 < 7T < W,
k=12

_ 1
P1|Hk(7) = = exp (

T O

Find the LRT and compute the ROC

P2.3 M-Hypothesis Tests
Problem 2.3.1.

N M- Ypo
1 Ve[lfy that the h thesis f;yes test alWayS leads toa deCISIOIl space whose
2. ASSUIIIC that the C()()Idlnates of the deClSIOIl space are

prin R| Hy)
pr[”o(RlHO)’

Qelify tha isi ype.
t the deClSlOn boundaries are h P l'planes
.

AdR) 2
k=1,2,.,_’M__1.

Problem 2.3.2
‘ .3.2. The fo .
efficient decisi rmulation of the M-h .
ecision space but loses some of th}‘;pso;rl'rlle;lstproblem in the text leads to an
etry.

1. Startin i Vi V. (o es (o3
‘ ]1 ; . 14 1 ( 8) prove that an ¢ i y
: qul alent fOl'm of the Bayes t

Compute
B AM_l
& 1=Zo CyPr(HJR), i=0,1,...,M~1

d choose the smallest.
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140 2.9 Problems

2. Consider the special cost assignment

Cu=0, i=0,1,.2,...,]\/;—1,M_1.
CU C, I#J’l,]=051$ IO ]

ivalent test is the following:

Show that an equ -
Compute Pr (LR, =0, 1,2 ’
and choose the largest.

Problem 2.3.3. The ObSeI Ved Iandoln Val’.lable 15 GauSSlan on each Of ﬁve hypotheses.
h

(R—m,c)2 —oo<R<ooS,
e LT
prlHk(R\ k. \/27TU
where = —2m,
mg = —m,
ms = 0,
my = m,
ms = 2m.

P ()'
lhe hy])()theses arec equally llkely a.nd the criterion 18 minimuin T \€

i -axis.
1. Draw the decision reglons on the R
2‘ Compute the error probability.

ian density on the three
The observed random variable r has a Gaussian
Problem 2.3.4. The

hypotheses,
PrlHk(RlHk) =

=1,273

20)%

(R——m,c)2 —o < R< ®
——— €XP [— ]’
V2 oy

here e arameter alues on the three Y theses are
whe th P v h hr h po y

Hy:my, =0, 01 = %o
Hl'mlz = m, 02 = % (m > 0),
H2:m3 =0, 0a = 9% (05 > Ta)- "
. , is mini Pr (¢).
iterion is minimuin
hypotheses are equally likely and the criterio
The three hy
1. Find the optimum Bayes test.

g the SpeCIal case,
2. DraW the dCClSlOn regions on the R-axis fOI

2‘7112,

gy = M.

Il

as®

3. Compute the Pr (<) for this special case.

Problem 2.3.5. l]le pr Obablllty dellSIty Of ron the three hypotheses 18

©
2 R,? —o < Ry, Rz < %
1oy =) | =123
)—1exP 2 2 02x2 =L 49
(R RZlHk) = (2m0o1x02k AvE
Pry rg|H\ED
2
where o2 = 022 = on% s
2 = g2 + ou% gg2° = On" .
g12” = 32 0232 — a’z o
613% = 0n*»

Estimation 141
The cost matrix is

01 1
10 «f,
1 « O

where 0 < « < 1 and Pr (H,) = Pr (Hs) £ p. Define I, = R,% and I, = Ry?

1. Find the optimum test and indicate the decision regions in the /5, l,-plane.

2. Write an expression for the error probabilities. (Do not evaluate the integrals.)
3. Verify that for a = 0 this problem reduces to 2.2.17.

Problem 2.3.6. On H, the observation is a value of a Poisson random variable

Pl'("=n)=-ljzl'e'km, m=12 ... M,

where kn = mk. The hypotheses are equally likely and the criterion is minimum Pr (e).
1. Find the optimum test.

2. Find a simple expression for the boundaries of the decision regions and indicate
how you would compute the Pr (e).

Problem 2.3.7. Assume that the received vector on each of the three hypotheses is

Ho:r =mg + n,
Hy:r =m; + n,

Hzir = m; + n,
where
" my '
rd |rl, m A | mgyl, nd |n,
fa Mg R

The m; are known vectors, and the components of n are statistically independent,
zero-mean Gaussian random variables with variance o2,

1. Using the results in the text, express the Bayes test in terms of two sufficient

statistics.
3
h=72ar,
i=1
3
12 = Z dm.
=1

Find explicit expressions for ¢ and d.. Is the solution unique?
2. Sketch the decision regions in the 4, l>-plane for the particular cost assignment,

Coo = C1y = G2 = 0,
C12 = C21 = Col Clo = ‘&COZ = '%Czo > 0.

[}

P2.4 Estimation

Baves EsTiMATION
Problem 2.4.1. 1et

r=ab+n,
where a, b, and 5 are

independent zero-mean Gaussian variables with variances
ﬂuz, 002, and o,2,

1. What is g, 9

map -

2. Is this equivalent to simultaneously finding dmap, Hmap?

map ¢

IPR2020-00038
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142 2.9 Problems

3. Now consider the case in which

K
r=a+ 2 b+n
i=1

o-mean Gaussian variables with variances 0y,

where the b; are independent zer

(a) What is Amap !
(b) 1Is this equival
(c) Explain intuitively

ﬁnding Amaps Bl,map?

ent to simultaneously
to part 2 and part 3b are different.

why the answers

observed random variable is x. We want to estimate the parameter

as a function of Ais,

x=0x>0,
X < 0.

Problem 2.4.2. The
A, The probability density of x
Pan( X1 = 2™,

- M

The a priori density of A depends on two parameters: R Ly
Me
_li__e—xz.)\n.—1, A= 0,

s I & T(ns)

)

A <0

Dainale

1. Find EQ) and Var (X) before any observations are made.
9. Assume that one observation is made. Find p ax(A1 XD ‘What interesting property
does this density possess? Find A, and E[C\ms— YRR

3. Now assume that n independent observations are made.

servations by the vector X. Verify that

Denote these 7 ob-

(1 Y
pax(AX) A LT eTMAYT, A= 0,

s

A <0,

where
I = I+ I*,
n=n-+ ne

and
n

Find Ao and El(ims — M)
4. Does fmap = Ams?
preceding problem was

reason that the
the same functional form.

roducing Densities. The
ri densities had

priori and 2 posterio
hanged.) In general,

Prla(R\A)pa(A)

a1ir(AIR) = A N

eproducing density or a conjugate prior d

to the transition density pria(RIA] if the a posteriori density is of the
po(A). Because the choice of the 2 priori density is frequently somewhat
convenient to choose a reproducing density in many cases. The next

illustrate other reproducing densities of interest.

Comment. Rep
simple was that the a
(Only the parameters €

and we say that po(A)isar

ensity [with respect
same form a8
arbitrary, itis
two problems

Estimation 143

Problem 2.4.3. Let
where n is N(0, ¢,). Then rmawm

PrioR|A) = \/_1 exp [—(R—_A_)z]

T On 20,2

1. erify that j i y Yy showin a
a conjugate pl'lOI‘i density for a is N(m ) b h g
\Y% 05 T i that
Palr(AIR) = N(l711, 01)) ‘ |

where
my = moko® + R
and I + ko9
02 = 0
1 + ko

2. Extend this r
esult to N inde
pendent observati
ons by verifyin
g that

Pair(4|R) = N(my, ay),

where

my = moko® + NI
N+ ko

oy? = _L

and N + koz’

1 X
A Z
rs N Z R:.

{

Observe that th ;
e a priori para
observati . meter k, can be i
rvations (fractional observations 0arc a]?gvl,nif)rpreted as an equivalent number of
ed). o

]
fu

P, i
roblem 2.4.4. COHSlder the ObSerVatiOn process
D IE(R,A = —/;exp I ——= (R —-—m 2’3
) (27’)3'/2' 2 ( )

where m 18 k]lo wn and 4 is the parameter of interest (lt is the recipr ocal of the StaIldaId

deviation). W
- We assume that N i
1. Verify that N independent observations are available

(C is a norm . =
alizi : . ki, ko >

ng factor) is a conjugate prior density by sh i >

Pair(A|R) = pu(A|k;, k) y showing that

PaAlky, ko) = (4512 %) exp (— 4 Ak k2)
1127, 4= 0’

where
, 1
2 = k_/l (kik, + Nw),
ki = ki + N,
—_— 1 X

N W=5 121 (R — m)2.

ote that k,, & i -

, ko are sim
ply the parameters in the a priori density which
which are chosen

based on
! ou -
2. Find d,,r: priori knowledge.
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144 2.9 Problems

m 2.4.5. We make K observations: R, -+ +» Ry, where

r=a-+ m
ussian density N (0, 0,). The

Proble
are independent

The random yariable a has a Ga
Gaussian variables N(0, an)-

1. Find the MMSE estimate dms-

2 Find the MAP estimate dmap-

3. Compute the mean-square error.
4. Consider an alternate procedure using the same ri.
a after each observation using a MMSE criterion.

1), daRy, Ry) ... dj Ry,

ax>.

(a) Estimate
Rp). ..

f estimates di(R
rresponding variances as a1%, 022, .

BTy

This gives 8 sequence O
Ax(Riy v« o Ry). Denote the co

(b) Express 4,as a function of dj-1, G7-1s and R;.
(c) Show that . . )
_ L J
as? s + an?

Problem 2.4.6. [36]. In this problem we outline the proof of Property 2 on p. 61. The
ptions are the following:

assum
(a) The cost function is a symmetric, nondecreasing function. Thus
cx) = C(-X )
C(Xy) = C(Xy) for X = X, =0, (P.1)
which implies
(P.2)

gch;Q >0 for X2 0.
about its conditional mean

probability density is symmetric
(P.3)

(b) Thea posteriori
and is nonincreasing. i

© }(11130 C(X)p~r(XIR) = 0.
Verify the following steps:

We use the same notation as in Property 1 on p. 61.

1. The conditional risk using the estimate dis

= r C(Z)WpalZ + 4 — Gms|R) dZ. (P.4)

R(dR)

e in conditional risks is

J.: CZNpZ + 4~ G| RIPa(Z — 4 F dms!R)
—2p.r(ZIR)] dZ. (P.5)

pect to Z from 0 to

9. The differenc
AR = R(@R) — RAdms|R) =

3. For 4 > dms the integral of the terms in the bracket with res

Zyis
— Y|R)]dY 2 g(Zo)

E'_&ms
L (pan(Zo + YIR) = pairZo

4, Integrate (P.5) by parts to obtain
AR = C2)gZ)| — j d—c(—z—)g(Z) dzZ, d > Qms-
0 V] dZ

he assumptions imply that the first term is zero and the secon

5. Show that t

is nonnegative.
6. Repeat Steps

3 to 5 with appropriate modifications for d < Qms-

P.6)

®.7
d term

Estimation 145

7. Observe that
these steps
. prove that 4, inimi
assumptions. he ms Minimizes the i
Under what conditions will the Bayes CStima]?:}:s rlsl.< under the above
¢ unique?

N
ONRANDOM PARAMETER ESTIMATION

Problem 2.4.7. W
.4.7. We make n statistically i
Problem 2 / y independent ob ions:
nd variance o®. Define the sample variance Z:fvatlons- o T W
_ l n n 2
Is i V—’—1121(R!_Z§—‘).
s it an unbiased estimator of the actual varianc!;;’

Problem 2.4.8. We
i .4.0. want to estimate a i i :
tions. a in a binomial distributi i
on by using n obse
rva-
Pr (r events|a) = (" .
= a(l — ay-r
B (1 ay-r, r=20,1,2,...,n
1. Find the ML esti
! timate of ; -
2. Is it efficient ? a and compute its variance.

Problem 2.4.9.

1. Does an i :
: efficient estim;

. K ate o L.
density exist? f the standard deviation o of a zero-mean G .
2. Does an i . aussian

. efficient es .
exist ? timate of the variance o2 of a zero-mean Gaussi
aussian density

ot ( . .
)
Problem 2.4.10 continuation The results of Problem 2.49 Suggest the gene[al
fl( ) T ; .
|a(RlA) S sa
A). The observed qualltlty is Rand 14 1S k[lOWll Assume that A i nonranmn

1. What are th iti
2. What is the ?oc;c/):rdll:;insdfor an efficient estimate /() to exist ?
of £:(4)? nd on the variance of the error of any u.nbiased ti
3. Assume tha i estimate
t an efficient estim
: ate o i
of some other function f5(4) exist? f f1(4) exists. When can an efficient estimate

Problem 24.11, The rob 1 .
D ablllty denslty of r given A; and A4 15
> 2

_%QA_I)f]

s

Prev.ea(Rlds, As) = (2rits) s exp [
that i i
18, A; is the mean and A, is the variance

1. Find the joi
Jjoint ML estimates
g, Are thoy e ) of 4; and A, by using » independent observati
4. ?.re they coupled? -
. Find the error covariance matrix

: ‘70b‘em 2.4 12 We w nt to WO na (+] (92
Y P € wa i 2
transmit t parameters, A] and A4 I si 1
. mp att mp

to achiev
€ a secure co s
mmuni
Over separ. cation system
ate channel we construct two si
s. o0 signals to be tr i
ansmitted
§1 = X1141 + x1242,
S2 = Xo1A1 + Xo2Aa,

where Xigy [, ] = |
b ifs 1, ] I, 2 \'
, are known. The received variables are

re=5 + om,
rg = $3 + no.
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146 2.9 Problems
iy distributed, zero-mean Gaussian

dependent, identica
nd Ag are nonrandom.

ises are in
meters Ay @

The additive no

random variables, N(0, a,). The para
, and da unbiased?

and dq.

1. Are the ML estimates d
9. Compute the variance of the ML estimates d1
3. Are the ML estimates efficient ? In other words, do they satis!

bound with equality ?

Problem 2.4.13. Let .
y = 2 Xy
i=1

where the x, ar¢ independent, zero-mean Gaussian random variables with varia
2. We observe J- In parts 1 through 4 treat N as a continuous variable.

1. Find the maximum likelihood estimate of N.

2. Is fim unbiased?

3. What is the vari

4. 1s fim efficient?

5., Discuss qualitatively how you woul

is discrete.
e observe & value of the discr

Problem 2.4.14. W
i
Pr(x=i\A)='%e"‘, i=0,1,2,..-

fy the Cramér-Rao

nce

[:5

ance of Am?
account that N

d modify part 1 t0 take into

ete random variable x.

biased estimate, a(x)?

re A is nonrandom.
ce of any un
cient.

wer bound on the varian
dependent observations, find an 4(x) that is effi
bution

whe
1. What is the lo
7. Assuming 7 in
Problem 2.4.15. Consider the Cauchy distri
prral XA = (nfl + (X — AP

me that we make 7 independent observations in order to estimate A.
ao inequality to show that the variance of any unbiased
nce greater than 2/n.

Assu
1. Use the Cramér-R

estimate of A has a varia
2. Is the sample mean 2 consistent estimate ?
3. We can show that the sample median is asymp

(See pP. 367-369 of Cramér [91) What is the asymp
median as an estimator ?

Problem 2.4.1 6. Assume that

totically normal,
totic efficiency ©

1 (Rlz - 2PR1R2 + Rzz)
= PR ey —_— .
prl.rle(Rla RZ\P) 21_‘_(1 . PZ)]//Z CXP{ 2(1 _ Pz)

We want to estimate the correlation coefficient p by using 7 i
tions of (Ru, R2).

1. Find the equati
5. Find a lower pound on t

MATHEMATICAL PROPERTIES
(R) of the nonrandom para

on for the ML estimate p.
f any unbiased estimate of p.

he variance O

onsider the biased estimate a

Problem 2.4.17. C
E@R)) = 4 + B(A)-

N(A, /Y an).
f the sample

ndependent observa-

meter A

Estimation 147

Show that
E[(dR) —~ A)?] = a a+ dB(A)/dA)?
g {[21n Pria(R{4)]?
{[FreAT}

mean-square error,
Problem 2.4.18. Let
pria(R]A4) be the probability density of r, given 4. Le
S . Let h be an

arbitrary random vari
ariable that is i
all possible values s independent of r d
of A. efined so th
Assume that p,, (H) and py,(H) are twoa;rgit:- h ranges over
ary probability

densiti i
sities for k. Assuming that d(R) is unbiased, we hav
s (<
It. 1 . f[ ( ) ( )]Pl‘la( l )
ultiplying by ph((H) and integrating over H, we hav
M y s ave
f ph(( )J.[ ( ) ( )]pl'la( [ )

1. Show that
Var [4(R) — A] = [Ei(h) — Ea(D)]?
f (Pr|a(R|A + B){ 1w, () ~ prg(H) dH s
Jon

for any p»,(H) and pri(Rl4)
Pro(H). O
we may write s (H). Observe that because this is true for all p,, (H) and py,(
3% nd p,, (H)
Var [4(R) — ; T
(R) — A} = sup (right-hand side of above equation)

. PryPry
omment. Observe that thi
. this b

Comment ound does not requi
Darama 2[; 51]9has shown that this is the greatest lsxszrlrlioan}:i regularity conditions

" : . und. .

(continuation). We now derive two special
cases.

1. First, 1 -
” Secondetléztth(ﬁ )H; 8(181( )1.{What is the resulting bound?
’ 1 = — Hy), where Hy # 0 )

4 . Show that

Var t®) — a1 = (it {575 [ 722, Gy am = 1] )

The infimum bei
being over all Hy, # 0 such that pr(R]4) = 0 impli
a = m
3. Show that the bound gi T e .
given in part 2 is alwa,
ys as good as the Cramé
ér-Rao

inequality when the latter applies
Problem 2.4.20. Let
a = Lb,

whele L Isan Prove that
ons: 1A,
g matrix aria !
nsin, 1 trix and a alld b are vector random v. bles.
I ,Uble"‘! 2.4.21. An alter Yy e the Cramér-Rao ine lty 18 de\/eloped m
nate way to deriv qual

: thls plOl)le]ll. Fi truct
rSt, constr the vector z

z4
91 priaRIA) [
oA

1. Veri
erify that for unbiased estimates E(z) = 0
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148 2.9 Problems

2. Assuming that E(z) = 0, the covariance matrix is
A, = E(zz").
Using the fact that Az is nonnegative definite, derive the Cramér-Rao inequality.
If the equality holds, what does this imply about |Az]?
Problem 2.4.22. Repeat Problem 2.4.21 for the case in which a is a random variable.

Define
4R) — a
27 |einpraR, A)
04

and proceed as before.
Problem 2.4.23. Bhattacharyya Bound.
we can improve on the Cramér-Rao ine
ceptually simple but algebraically tedious

Whenever an efficient estimate does not exist,
quality. In this problem we develop a con-
bound for unbiased estimates of nonrandom

variables.
1. Define an (N + 1)-dimensional vector,
B dR) — A “
1 &pr1a(R]4)

pria(R|4) 24

1 &prRlA)
= R4 847

L 1 pra(R{A)
pri(R(A) 24"

Verify that

AL E@ =\ 0 .
¥

What are the elements in
definite. When is /A, not positive definite ?
2. Verify that the results in part 1 imply
02 > ]'11'

This is the Bhattacharyya bound. Under what conditions does the equality hold?

3. Verify that for N =1 the Bhattac
inequality.
4. Does the Bhattacharyya
Comment. In part 2 the condition for equality is
; _ 3 1 &pria(R|A)
aR) = A= 3 T TRA T oA

i=1
on could be termed Nth-order efficiency but does not seem to o

bound always improve as N increases?

This conditi
many problems of interest.

32 1s A, nonnegative definite ? Assume that J is positive

haryya bound reduces to Cramér-Rao

cur in

Estimation 149

5. Frequently it is easier to work with
&' In prio(R|A4)
a4 )

R Ji; in terms Of expeCtatlons of COHIblIlathIlS of these
17
elelte the EICHICI“S he S quantltles

Problem 2.4.24 (continuation). L i
. Let N = 2 in the precedin
1. Verify that § proviem.

052 > Tl_ T—L
Ju1 Ji(J11J2e — -7122)

Thze s(e:contherm represents the improvement in the bound
. Con i i i .
Lo ;;n:titelge c:jlsfei in Whlcl.l'l' consists of M independent observations wi
Jlontical densitk an . nite cogdmonal means and variances. Denote the el N
J due to observations as Ji,(M). Show that Ji;(M) = MJ, (1 v o
tons for Jy2(M) and J,2(M). Show that (). Derive similar
1 Jia?
e 12%(1) 1
= = + = —=
Probl MJn(l)  2M3A, 41D e (Mz)
roblem 2.4.25. [11] Generalize the i
1 : result in Problem 2.4.23 i i
Prodle : .4.23 to the ¢
imating a function of A4, say f(A4). Assume that the estimate is srﬁ;izse‘zhg}elﬁwe
. ne

i 4R) — f(4) ]

kL pnR[A
pl‘la(R,A) OA

2=, L PRl
Pri(R[4) 047 )

ky 1 P pria(RA)
L " prio(R{A) AN

Let

. N
y = [a(R) —f(A)] _ Z k, 1 .3‘Pr|a(RIA)
— =1 pria(R[A) o4}
. d an expression for £, = E[y2]. Minimize i
§~ gesili]fg ttléese values of .k‘, find a bound on V::[E{Rihio;l&g)]the i appropriately.
. y that the result in Problem 2.4.23 is obtained by Iettihg f4) =A4in Q)

Problem 2.4.26.

. n ze ere ODic Q - €
resul in Pr b m 2. S
1 Ge crali th 1 4,23 t establ ]lal}()llll(lﬂ li]le mean-squars

e . L
TTOT In estimating a random variable.

2. Verify that the matrix of concern is

IPR2020-00038
MM EX1016, Page 80 |




150 2.9 Problems

What are the elements inJr?

3. Find Az for the special case in which a is N(0, aa)-

MuLTiPLE PARAMETERS

(239) we defined the partial derivative matrix Vx.

2

ax;
i

axs

Problem 2.4.27. In

Vx &
0
O0Xn

Verify the following properties.
1. The matrix A is n X 1 and the matrix B is
Vx(ATB) = (VxAT)B + (VxBDA.
f x, show that

n % 1. Show that

2 If the nx 1 matrix B is not a function 0
Vx(B™x) = B.
3. JetCbeann x m constant matrix,
Vx(xTC) = C.
4, Vx(xT) =1L
Problem 2.4.28. A problem that o
form.

ccurs frequently is the differentiation of a quadratic

Q = AT(x) AAX), '
ments are a function of x and A is asymmetric

i ix whose ele '
where G 8 a1l that this implies that we can write

nonnegative definite m x m matrix. Rec
A= A‘//ZA‘/Z'
e V20 = 2ATxAT®) AAK)

2. For the special case

A(x) = Bx,
prove V<0 = 2B"ABx.
3. For the special case 0 = A%

VxQ = 2Ax.

prove
Problem 2.4.29. Go through the details of the pro

Problem 2.4.30. As discussed in (284), we frequently estimate,
d 2 ga(A).

stimates are unbiased. Derive (286).

of on p. 83 for arbitrary K.

Assume the e

Problem 2.4.31. The ¢ ;
Assume that it is symmetric and convex,

ost function is a scalar-valued function o

f the vector a¢, C (ae)-

Composite Hypotheses 151

1. C@a,) = C(—a.),
2. Cbx: + (1 — b)xg) < bC(x1) + (1 — b) C(x2), O<b<l.

Assume that the a posteriori density is symmetric about its conditional mean. Prove
that the conditional mean of a minimizes the Bayes risk.

Problem 2.4.32. Assume that we want to estimate K nonrandom parameters 4;, Ao, . . .,
Ag,denoted by A. The probability density pra(R|A) is known. Consider the biased
estimates 4(R) in which

B(ay) A f[dl(R) - Ai]Pr|a(R|A) dR.

1. Derive a bound on the mean-square error in estimating A,.
2. The error correlation matrix is

R. £ E[(&R) — A)A"(R) ~ A")]

Find a matrix Jp such that, J; — R.~! is nonnegative definite.

MISCELLANEOUS

Problem 2.4.33. Another method of estimating nonrandom parameters is called the
method of moments (Pearson [37]). If there are k parameters to estimate, the first &
sample moments are equated to the actual moments (which are functions of the
parameters of interest). Solving these £ equations gives the desired estimates. To

illustrate this procedure consider the following example. Let
1

PxiX[A) = ™
=0,

where A is a positive parameter. We have n independent observations of x.

X)\—le«x’ X > 0’

X <0,

1. Find a lower bound on the variance of any unbiased estimate.
2. Denote the method of moments estimate as Ap,. Show

Xmm = 1 Z /Yh
A A n i=1
and compute E(A,,) and Var (Ann).

Comment. In [9] the efficiency of X,,.m is computed. It is less than 1 and tends to
Z€ro as n — o,

Problem 2.4.34. Assume that we have n independent observations from a Gaussian
density N(m, o). Verify that the method of moments estimates of m and ¢ are identical
to the maximum-likelihood estimates.

P2.5 Composite Hypotheses
Problem 2.5.1. Consider the following composite hypothesis testing problem,

1 R?
Hy:p(R) = —— __),
0:p(R) o o0 exp ( P

where o, is known,

R2
exp ( - —2012),

Where o, > o,. Assume that we require Pr = 102

1
H :pr(R) = —
' 2

™ Oy
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152 2.9 Problems

1. Construct an upper bound on the power f unction by assuming a perfect measure-
ment scheme coupled with a likelihood ratio test.

2. Does a uniformly most powerful test exist ?

3. If the answer to part 2 is negative, construct the power function of a generalized
likelihood ratio test.

Problem 2.5.2. Consider the following composite hypothesis testing problem. Two
statistically independent observations are received. Denote the observations as R, and
R.. Their probability densities on the two hypotheses are

Hoipn(R) = L exp (_ R‘z), =1,2
m V27 oo 200® T
where ao is known, 2
1 R
lep”(R!) = \/2_ eXp (—20,‘12)’ i=12,
T O3

where o; > 0p. Assume that we require a Pr = o.

1. Construct an upper bound on the power function by assuming a perfect measure-
ment scheme coupled with a likelihood ratio test.

2. Does a uniformly most powerful test exist?

3. If the answer to part 2 is negative, construct the power function of a generalized
likelihood ratio test.

Problem 2.5.3. The observation consists of a set of values of the random variables,

F1, Fay oo FM:

rno=8+ m i=12..., M, H,,
r = n, i=1,2,...,M, Ho.
The s, and n; are independent, identically distributed random variables with
densities N(0, o;) and N(0, o,), respectively, where on is known and o is unknown.

il

1. Does a UMP test exist?
5. If the answer to part 1 is negative, find a generalized LRT.

Problem 2.5.4. The observation consists of a set of values of the random variables
F1, F2s o o M which we denote by the vector r. Under H, the r; are statistically
independent, with densities

— 1 R62
pr.(Rl) - \/21TA¢0 exP ( 2A1°)

in which the A, are known. Under H, the r;are statistically independent, with densities

_ 1 R
PR = oo ( )
in which At > A¢ for all i. Repeat Problem 2.5.3.

Problem 2.5.5. Consider the following hypothesis testing problem. Two statistically
independent observations are received. Denote the observations R; and Ra. The
probability densities on the two hypotheses are

1 RE | =
Ho:pr,(R!) = '\/5— €xXp '—2—0—2 ’ i=12,
T a
1 R—-mP
HlZPn(Ri) = \/E:T €xXp [—L‘—Zaz—m)—] =1 2
a

where m can be any nonzero number. Assume that we require Pr = a.

Composite Hypotheses 153

1. Constructanu

pper bound on the power f i

[ unction i

ment scheme coupled with a likelihood ratio test Py assuming a perfect measure-

2. Does a uniformly most powerful test exist ?

3. 0f the answer to i Ve, cons he O W
. . part 2is ne ati raliz
tikeli i test. 34 t1 N truct t p cr fUnCtiOn of a gene: all ed

Prob i
roblem 2.5.6. Consider the following hypothesis-testing problem
m n

Hy:
Hy:

o

B\ ¥ =) T

Under H,an i
1anonrandom variable § (— o« < # < ) is transmitted. It is multiplied by

the random variable m. A noi i
( . A noise n is added to th i
transmitted, and the output is just #. Thus ¢ resultto give . Under Ho nothing is

Hyir = mb + n,
Hy:r = n.

The random variables m and » are independent

P(N) = %exp (—ﬁ),

LA 20,°
(M) =3 8(M — 1) + 1 8(M + 1).

1. Does a uniforml
y most powerful test exist? If i
. : ? If it does i i
an expression for its power function ? If it does not, indi ey T et and give
2. Do one of the following: , eate why.

a) If a UMF test exists for this examp]e, derive a necessary and sufficient
COIldlthIl on pm(M) fOI a UMP test to exist. (Ihe rest of the model is
UIlChaﬂged.)

(b) If a UMP test dOCS not exist, d
St, derive a gene ized li elihood atio test and an
pd ral k I

Pro m 2.5.7 re etvels.) eh
Tl babil ave N deDendent ()bSerVatl()llS of the variable

Pein(XIH) = ——¢ {—(Aﬂ — my)? .
Zmo T pre } —o < Xi<w, 'ShEo
L = 2ty
my = 0.

The vari 2 i
variance o? is unknown. Define

(@) Consider the test -
112 E (112

"ellf& that the ! F of ﬂllS test d()CS not depe]ld on o2, (Hint e formu mn
) ( . Us la
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154 2.9 Problems

(b) Find ¢ as a function of Pr.

(c) Is this a UMP test?
(d) Consider the particular case in which N =2 and m = m. Find Pp as a

function of Pr and m/o. Compare your result with Figure 2 .94 and see how much
the lack of knowledge about the variance ¢? has decreased the system per-

formance.
Comment. Receivers of this type are called CFAR (constant false alarm rate)

receivers in the radar/sonar literature.
Problem 2.5.8 (continuation). An alternate approach to the preceding problem would

be a generalized LRT.
1. Find the generalized LRT and write an expression for its performance for the

case in which N = 2 and m; = m.
2. How would you decide which test to use ?

Problem 2.5.9. Under H,, x is a Poisson variable with a known intensity ko.

Pr(x=n)=lin°Te“"0, n=0,1,2,....

Under Hi, x is a Poisson variable with an unknown intensity k,, where ki > ko.

1. Does a UMP test exist?

2. If a UMP test does not exist, assume that M independent observations of x are
available and construct a generalized LRT.

Problem 2.5.10. How are the results to Problem 2.5.2 changed if we know that oo < oc
and ¢, > o, where a. is known. Neither oo OF 01, however, is known. If a UMP test
does not exist, what test procedure (other than a generalized LRT) would be logical?

P2.6 General Gaussian Problem
DETECTION

Problem 2.6.1. The M-hypothesis, general Gaussian problem is

prim(RIHY) = [(m)V'2[Ki| 2]~ * exp [-3RT — m7) QR — m)}, i=1,2.... M
1. Use the results of Problem 2.3.2 to find the Bayes test for this problem.
2. For the particular case in which the cost of a correct decision is zero and the
cost of any wrong decision is equal show that the test reduces to the following:
Compute
KR) =InP — %in K| — $(RT — m7) QR — my)
and choose the largest.
Problem 2.6.2 (continuation). Consider the special case in which all K, = 0,21 and
the hypotheses are equally likely. Use the costs in Part 2 of Problem 2.6.1.
1. What determines the dimension of the decision space? Draw some typical

decision spaces to illustrate the various alternatives.
2. Interpret the processor as a minimum-distance decision rule.

Problem 2.6.3. Consider the special case in whichm, =0,i=12,..., M, and the
hypotheses are equally likely. Use the costs in Part 2 of Problem 2.6.1.
1. Show that the test reduces to the following:

Compute
1¢(R) = RTQQR + In IK{I

and choose the smallest.

” Under H, o8

General Gaussian Problem 155

2. Write an expression for the Pr (¢) in terms of py 5 (L|H,), where

L
14 l
1y
Problem 2.6.4. Let
g8 2 x"Bx,

where x is @ Gaussian vector N(0, I) and B is a symmetric matrix

1. Verify that the characteristic function of ggp is

. N
Mg(jv) & E(eB) = [ [ (1 — 2jodp) %
1=1 ?

where Ap; are the eigenvalues of B.
i. vaga: is Ppqe{Q) when the eigenvalues are equal?
. '1 d at is the.forn} c_)f p.8(0) when N is even and the eigenval ir-wi
qual but otherwise distinct; that is, senvaliies are pairwise
Asio1 = Agy, i=12,... E’
’2
Ao # Ay, all i .
Problem 2.6.5.

1. Modify the result of the i
v preceding problem to inc i i i
Gazus;?lrll vv.:ctor N(0, Ay), where Ay is positive definite fude the case fn which x s 2
. at is M, A (jv)? Does the result have any interesting features ?

P, oble 2 C nS. r the M- y yp()t]le s-testir A\’
r mA .6.6. onsider t ary h i i
’ ' Sl g problem. Each ObSCI' ation iS a

Ho:r =mo +n,
Hy:r=m; +n,
Hyir =m; +n,
Hsy:r =m; +n,
m; = +4,0, B,
m; =0, +4, B,
m; = —A4,0, B,

m, =0, —4, B.

The component ]
N( S)()f the noise vector are lndependent idelltlca“y dlst] lbuted Gaussian
‘a“ablesa 0: 0). We have K lﬂdepelldellt ObSCI vations. Assume a minimum II'(G)

criterion and equally-lik
o, y-likely hypotheses. Sketch the decision region and compute the

‘ Ioblem 2-6.; onsi wi de <] Cr ny he:
. C nsider the fOllO mg detection prOblCm. Under lth h pOt sis th
(5]

ob. ion i i i
_observation Is a two-dimensional vector r.

Under Hy:

i

ra [n
Y

ré [’1 =
ra

L (] =
[+ L]

y+n
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156 2.9 Problems
gth of the signal vector is constrained to

The signal vectors X and y are known. The len

equal +/E under both hypotheses; that is,
x12 + X22 = E,
J’12 + yz"’ = E.

The noises are correlated Gaussian variables.
ex (~N12 - 2PN1N2 + sz)'
P 221 — 7))

1
Pryng(N1s Nz) = m
1 this statistic /(R). We

t statistic for a likelihood ratio test. Cal
he quantity
- (E(|Hy) — EUIH)Y

1. Find a sufficien
have already shown that t

d2
Var (I|Ho)
characterizes the performance of the test in a monotone fashion.
o maximize d?. Does the answer depend on p?
2 Calculate do? for p = — 1,0,

2. Choose x and y t
3. Call the d? obtained by using the best x and ¥, do

and draw a rough sketch of do® as p varies from —1 through 0 to 1.
4. Explain why the performance curve in part 3 is intuitively correct.

ESTIMATION

Problem 2.6.8. The observation is an N-dimensional vector

r=a-+n,
and a and n are statistically in
developed in Problems 2.4.27 and

where a is N(0, Ka), 0 is N(0, Kn), dependent.
1. Find Amap. Hint. Use the properties of Va
2.4.28.

. Verify that dmap is efficient.
3. Compute the error correlation matrix

Ae é E[(ﬁms - a)(ﬁms - a)T]~

this type of observation vector is obtained by sampling a

Comment. Frequently
random process r(t) as shown below,

T(t)'\

™n

r 2 T3

by the vector T. U

We denote the N samples
An error of interest is the sum of

which are denoted by a.

estimating the a.
a, = d, — 4a,

then

&L E[‘g1 (4 — a)Z] = E(:}:l aglz) = E(aman) = Tr (L)

Problem 2.6.9 (continuation). Consider the special case

K, = o.°L

sing r, wWe estimate the samples of alt)
the squares of errors in

General Gaussian Problem 157

1. Verify that
fms = (@7 + Ko) KGR

2. Now recall tllC detection pr Oblelll deSCIibed in CaSC 1 on p. 107. Ver if’ that
y

1
I(R) = ;—2' RTﬁmg.
Draw a block diagr :
o Covargiazrgec,),f ::I::epr:cessct)r.hObserve that this is identical to the ““ unequal
: Xcept t
et o the moa ;m pt the mean m has been replaced by the mean-
N > £
3. What is the mean-square estimation error £;?

Problem 2.6.10. Consider an alternate approach to Problem 2.6.8
r=a-+n,

where a is N(0,K,) and n i
ere : ;! is N(0, 0,°I). Pass r th i
which is defined in (369). The eigenvectors are thosercc):flgli1 the matrix operation W,

r2wr=x-+n'
1. Verify that WWT = L.

2. V\"hatkare the statistics of x and n’?
3. Find X. Verify that .

A
x= s Ri,

A
where A; are the eigenvalues of Ka e
4. Express 4 in term i '
s of a linear i
oo Cxpress A In transformation of &. Draw a block diagram of the
5. Prove

LIS E[a.Ta.] = 0,2 ¥ A
" 121 A

; + 0,2

Problem 2.6.11 (Nonlmear Estimation). In tl € gene ussian nonlinear € ation
.
) gen ral Ga r estim
r = S(A) -+ nn,

Whe]e s(A) is a non inear fi i
unction Of A. The noise n is Gaussian N(O, l(n) an

1. Verify that
Prisca(R|S(A)) = [(2m)¥2|Kn]]"* exp [~ 3(RT — 57(A))Qn (R — S(A))]

2. Assume thata i .
3 Using the apraolsea:tQaussmn vectqr N(0,Kay). Find an expression for In R

and 2.4.28 f perties of the derivative matrix Va deri ) pr.a(R, A).

.4.28, find the MAP equation. a derived in Problems 2.4.27

'Imblem 2.6.12 timum s r r sume that we have a sequence of
0. (Opl Di 7
scalar ob: . iscrete Linear Filter). As
servations r,, Yo, ¥a, ..., I'x where ry ——)a + n; and
) i i

E(a) = E(n) = 0,

E(er™) = Ay, (N x N
E(ra) = Ay, (N x 1)-)’

W«c want to esti ate ax b disc ete linear ter Ihl[s
mq Y
K using a realizable scret fil

K
dx = Z hR, = hTR.
=
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Define the mean-square point estimation error as
& & E{ldg(R) — agl*}.

1. Use Vp to find the discrete linear filter that minimizes £p.
2. Find & for the optimum filter.
3. Consider the special case in which a an

and fp.
4. How is dx(R) for part 3 related to Amap in Problem 2.6.8.

d n are statistically independent. Find h

Note. No assumption about Gaussianness has been used.

SEQUENTIAL ESTIMATION

Problem 2.6.13. Frequently the observations are obtained in a time-sequence,

Py, P2y F35 oo oo PN We want to estimate the k-dimensional parameter a in a sequential

manner.
The ith observation is

ro=Ca + w, i=1,2,..., N,

where C is a known 1 x k matrix. The noises w; are independent, identically distri-

buted Gaussian variables N(@©, a,). The a priori knowledge is that a is Gaussian,

N(mo, Na)-

1. Find pa)r, (Al R

2. Find the minimum mean-square es
A, . Put your answer in the form

(A]R;) = cexp [—HA — a)TAA — Ayl

timate &, and the error correlation matrix

Pairy
where
A7l = Mgt + CT0,°C
and
B, = mo + — A, CT(Ry — Cmo)

3. Draw a block diagram of the optimum processor.
4. Now proceed to the second observation Ra. What is the a priori density for this

observation? Write the equations for pajry.ra(Alr, 2, A7}, and 4 in the same

format as above.
5. Draw a block diagram of the sequential estimator and indicate ex:

must be stored at the end of each estimate.

actly what

Problem 2.6.14. Problem 2.6.13 can be generalized by allowing each observation to be

an m-dimensional vector. The ith observation is
r, = Ca + W,
where Cisa known m x k matrix. The noise vectors w; are independent, identically

distributed Gaussian vectors, N (0, Aw), where Aw is positive-definite.
Repeat Problem 2.6.13 for this model. Verify that

4 = 4,1+ AqCTAw_l(Rz — Ci;-1)

and
AP =ML+ CT™Aw*C.

Draw a block diagram of the optimum processor.

General Gaussian Problem 159

Problem 2.6.15. Discrete K i
.6.15. alman Filter. No i i i
s changes ascording 1o the ot w consider the case in which the parameter
ax., = Pa, + Iuy, k=123
where a; is N(m,, P,), ® is Fisan
. , s an n x n matrix (known), I is an i
. . : n
u, is N(0, Q), and wu, is independent of u, for j # k. The observ:tﬁ)?;;f)l:e(kn'own)’
ss is
l'k=Ca;¢+Wk, k=1273
3 y EA AR ]

whereCiS an m X n matri is 0, A a I(l”lew are
TiX, W, is NV i
. > Wi ( s w) K mdependent of each other
PART I. fir t t'mat usi a - a
We st est1 € a;, using mean-square error Criterion

1. Write pa1|l'1(AllR1)-
2. Use' the Va, operator to obtain &,.
3. Verify that 4, is efficient.

4, Use V4 {[V
a;{{Va,(In pa,ir;(A1|R.))]7} to find the error covariance matrix P,

where
Check. P2 E[(d - )@ —a)), i=1,2...
4; = my + P,C"Aw YR — Cm,]
P:7' =Py~ + CTAw~1C.
Part II. Now we estimate a,.
1. Verify that

Pazlrl_rz(Alel, R;) =

and

przlaz(R2|A2)p82|f1(A2|R1)
, ‘ Pr2|r1(R2|R1) )
. Verify that pa,r,(A2|R;) is N(P4,, M), where

M; 2 ®P;®7 + I'QIT.

3. Find &, and P..
Check.
ﬁz = ¢ﬁ1 + PzCTAw_l(Rz - C‘bﬁl)
P,-! = -1 - '
4. Write ’ Mah F G TC
and verify that B must equal M B
. B = M,CT(CM,CT + Ay) 1CM..
5. Verify that the answer to part 3 can be written as
as; = ¢ﬁl + M2CT(CM2CT + Aw)al(Rz - C¢ﬁ1)

Compare the tw i
o forms with respect to
' e . . .
of the taateix 1o b forms il p ase of computation. What is the dimension

ParT IIT

1. Exteﬂd th ms
C- reSultS of P.artS I anq II to ﬁrld an CXpreSSiOl’l fOl' ﬁk and Pk in ter
01 ﬂk-‘l and IVI;.'. The resultmg equathns are called the Kalman ﬁlter equations for

discrete systems [38].

2.D i
raw a block diagram of the optimum processor.

PART IV. Verif
. y that the K
® =] and Q=0 alman filter reduces to the result in Problem 2.6.13 when
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160 2.9 Problems

SPECIAL APPLICATIONS

eas of pattern recognition, learning systems,
o the general Gaussian
. Austin) in this section.
contained in the

A large number of problems in the ar
and system equalization are mathematically equivalent t
problem. We consider three simple problems (due to M. E
Other examples more complex in detail but not in concept are

various references.
Problem 2.6.16. Pattern Recognition. A pattern recognition system is to be implemented
mples taken from a set of M patterns. Each pattern

for the classification of noisy sa
may be represented by a set of parameters in which the mth pattern is characterized

by the vector Sm. In general, the S vectors are unknown. The samples to be classified

are of the form
X =68, T+
ssian random yariables with mean

where the s, are assumed to be independent Gau
with covariance fAn

5, and covariance A,and nis assumed to be zero-mean Gaussian
independent from sample to samptle, and independent of sn.

fy the patterns the recognition system
We provide it with a ““learning” sample:

1. In order to classi s needs to know the

pattern characteristics.

xm=sm+n,

where the system knows that the mth pattern is present.

Show that if J learning samples, x, x¥2, .. L X9, of the form x = sm + n?
are available for eachm=1,... M, the pattern recognition system need store only

the quantities

for use in classifying additional noisy samples; that is, show that the I, m = 1,.. M

form a set of sufficient statistics extracted from the MJ learning samples.

2. What is the MAP estimate of s.? What is the covariance of this estimate as a

function of J, the number of learning samples?
3. For the special case of two patterns M =2) characterized by unknown scalars
which have a priori densities N(51, o) and NGz, 9) respectively, find the
terns and observe that this approaches the
ally with increasing

s; and Sz,
optimum decision rule for equiprobable pat
decision rule of the ‘“‘known patterns” classifier asymptotic

number of learning samples J.
Problem 2.6.17. Intersymbol Interference. Data samples ar

known dispersive channel with an impulse response
Gaussian noise. The received waveform

K
rt) = 2 &bt — kT) + n(®)
k=-K
may be passed through a filter matche

of numbers
ay = jr(r) h(t — JT) dt

forj=0, £1, +2,..., =K which forms a set of sufficient stati

e to be transmitted over a
h(t) in the presence of white

d to the channel impulse response 10 give a set and

_ and therefore

stics in the MAE

General Gaussian Problem 161

S imation ()f the fk ( h]S .S ploved in (f]lapie cnote
est ! (T 1 r 4 We d te t
lati l 1 .) n he Sampled Channel

b; = fh(t) h(t — jT) dt

and the noise at the matched filter output as

ny = f () h(t — JT) dr.

p i f fk, g f relati
The roble t]le]l ]c(ll]CCS to an estimation o the 1ven a set of 1 ons

K
a; = Z §kb/—k+n1 forj’k‘:O,il, +2 +K

k=-K
Usin i i
g obvious notation, we may write these equations as
a = BE + n.

1. Sh that if n(t) has double-sided S])eCt]a] heigh —&- Vi
ow ! S I i
: g N 12 t No, hat the noise vector n
2. If the fk are zZero-me u. i T o] V. w covariance matrix A
- an Gaussian rand i i 1
! : m arlab]es ith i i 3
ShAOW that the MAP estimate of E_. 1S Of the fOrm E = Ga and therefore that EO =g'a
}llld. g and note that the estimate Of f can i assin he Suﬂi(:]ent.
1S%IC! : . . o be obtained by p i g i
StatiS S INto a tapped de]ay line with tap gains Cqual to the elements of g This cas-
cading of a matched filter followed by a Sampler and a transver Sal ﬁltellis a well-

known equalizati
ion method emplo .
S S yed to red .
communication via dispersive media uce intersymbol interference in digital

Problem 2.6.18. Determine the AP est roblem 2.6.17
.0.10. t MAP i [} i assuming
. ! stimate of f in P 5 i
further that the fk are mdependent and that the fk are known (sa;' thIOU. gh ’ l
a ‘“‘teacher”

or lnfalllble eStimatiOn 0 ow t Wi
! ‘ prOCeSS) for k
l o l < 0. Sh hen that the elghtlng Of the

£o = ;;zo ga; — > fié
and find g5 and f Thi . i<0
/. This receiver may be i .
filter output th y be interpreted as passi
r . ng the
from a second trc;lrllil a transversal filter with tap gains g, andg subti:[cr:ipr:ed ;natched-
been made. Of cour:cr:sa}]nﬁl'ter rvhose input is the sequence of ¢, which es%irtn:t Oulzput
— - > implementation h . es have
using its : such a receive
g its earlier estimates as correct in the above estimatiornzzul(t be self-taught by
uation.

Problem No. 2.6.19. Let

z = G™r

and assume that z is N(m,, ¢,) for all finite G.

1. Wh 7T E Ire. rre ern n
at 1s Mz(_] ) Xpress you sult in S Of n;a d [P
2. I{ewllte the result in (1) in terms of G, m, and r [See (316)—(31 ) f()r deﬁnlt ]
1 A 7 10ons|.

3. Observe that
M.(ju) & Ele™?] = E[eGTr]
M(jv) & E[eVr)

M.(ju) = M(jv) if Gu=yv.

3¢ these observations to verify (317).
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162 2.9 Problems

Problem No. 2.6.20 (continuation).
in (31
Assume that the Ar defined in ( ‘ .
® sion for pr(R) in (318) is correct. [Hint. Use the diagona
defined in (368).1
(b) How must (318) b
about the components of r?

6) is positive definite. Verify that the e).(pres-
lizing transformation w

¢ modified if Aris singular 7 What does this singularity imply

P2.7 Performance Bounds and Approximations
2.7.1. Consider the binary test with N independ

= =01,
sy = N 20 kz —1.2...N

ent observations, ri, where
Problem

Find u(s). . —
Problem 2.7.2 (continuation). Consider the special case of Problem 2.7.1 in W

Moy = 0,

0o = 0.2,
and 0,2 = o + 04’

1. Find p(s), (s), anq uls).

2. Assuming equally llkel}.' hyp

3. With the assumption in par
that is valid for large N.

Problem 2.7.3. A special case of the bi

per bound on the minimum Pr(e).

otheses, find an up n for the Pr(e)

t 2, find an approximate expressio

nary Gaussian problem with N observations is
1 —RTKk-lR)’ k=01
P RIHD) = Gk = exp ( >

1. Find p(s).
2. Express it in terms of th

e eigenvalues of the appropriate matrices.

Problem 2.7.4 (continuation). Consider the special case in which

Ko = Unzl
and K, = K, + Ko.
Find p(s), #(s), i(s)-

Problem 2.7.5 (alternate continuat
and K, are partitioned into the 4

ion of 2.7.3). Consider the special case in which K;
N x N matrices given by (422) and (423).

. . . . . . .. m
12. i;iri(es{hat the hypotheses are equally likely and that the criterion is minimu

Pr(¢). Find a bound on the Pr(e). ‘
(36.) Find an approximate expression for the Pr(e).
Problem 2.7.6. The general binary Gaussian problem for N obse
(RT — m, K. 'R — mk):\, k=01
2

rvations is

1 —_
prnR148) = e |
Find p(s).

is
Problem 2.7.7. Consider Example 3A on p. 130. A bound on the Pr(e) i
1 + a:2/0.?) ]N/B

(
(0 =415 ey

2 — . Find the value of N that minimizes the bound.

1. Constraln Nov [ ion in (516) for this value of N.

2. Evaluate the approximate express

Performance Bounds and Approximations 163

Problem 2.7.8. We derived the Chernoff bound in (461) by using tilted densities. This
approach prepared us for the central limit theorem argument in the second part of our
discussion. If we are interested only in (461), a much simpler derivation is possible.

1. Consider a function of the random variable x which we denote as f(x). Assume
fx) =0, all x,
fx) = f(X5) > 0, all x > X,.

Prove
E[f(»)]
Prx = Xo] < .
2. Now let f(Xo)
fy=e= 520,
and

Xo = ¥v.
Use the result in (1) to derive (457). What restrictions on y are needed to obtain (461)?

Problem 2.7.9. The reason for using tilted densities and Chernoff bounds is that a
straightforward application of the central limit theorem gives misleading results when

the region of interest is on the tail of the density. A trivial example taken from [4-18]
illustrates this point,

Consider a set of statistically independent random variables x; which assumes
values 0 and 1 with equal probability. We are interested in the probability

I N
Pr [yN =% >xz 1] L Pr [Ay]).
i=1
(a) Define a standardized variable

g O T PN

OyN

USE a central limit theorem argument to estimate Pr [4y]. Denote this estimate
as Pr [Ax].

(b) Calculate Pr [4y] exactly.
(¢) Verify that the fractional error is,

Pr [4y]
Pr [Ax]

oc 019N

Observe that the fractional error grows exponentially with N.

(d) Estimate Pr [4y] using the Chernoff bound of Problem 2.7.8. Denote this esti-
Pr. [4x]

mate as Pr. [4y]. Pre 1Ax]
1. [4x]. Compute B TA]
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