
Apple Ex. 1030, p. 1

 Apple v. Fintiv

 IPR2020-00019

Doc code: IDS

Doc description: Information Disclosure Statement (IDS) Filed
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

PTOISBIOBa (03-09)
Approved for use through 0413012009. OMB 0651-0031

US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE

INFORMATION DISCLOSURE

Application Number

Filing Date

First Named Inventor

12376360

2009-02-04

Bruno CHARRAT

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)
Art Unit 2431

Examiner Name Not Yet Assigned
Attorney Docket Number

10000—132US (100405US/WO)

 U.S.PATENTS Remove

Examiner Cite Kind Name of Patentee or Applicant Pages,Columns,Lines where
. . * Patent Number Issue Date . Relevant Passages or RelevantInitial No Code1 of Cited Document

If you wish to add additional US. Patent citation information please click the Add button.

Figures Appear

Add

Examiner
. . ,, Publication NumberInitial

U.S.PATENT APPLICATION PUBLICATIONS

Kind Publication
Code1 Date

Name of Patentee or Applicant
of cited Document

_—

Pages,Columns,Lines where
Relevant Passages or Relevant
Figures Appear

If you wish to add additional U.S. Published Application citation information please click the Add button.-

FOREIGN PATENT DOCUMENTS

Examiner
Initial"

Cite Foreign Document

Kind
Code4

Publication
Date

Country
Code2 i Applicant of CitedDocument

Name of Patentee or Pages,Columns,Lines

where Relevant

Passages or Relevant
Figures Appear

T5

If you wish to add additional Foreign Patent Document citation information please click the Add button

NON-PATENT LITERATURE DOCUMENTS

Examiner Cite
|nitia|s* No

Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item
(book, magazine, journal, serial, symposium, catalog, etc), date, pages(s), volume-issue number(s),
publisher, city and/or country where published.

T5

EFS Web 2.1.12

Apple Ex. 1030, p. 1

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 2

 Apple v. Fintiv

 IPR2020-00019

Application Number 12376360

Filing Date 2009—02—04

INFORMATION DISCLOSURE First Named Inventor Bruno CHARRAT

STATEMENT BY APPLICANT A” Unit 2431
(Not for submission under 37 CFR 1.99)

Examiner Name Not Yet Assigned

Attorney Docket Number 10000-132US (100405US/WO)

1 "Identification cards - Integrated circuit(s) cards with contacts", International Standard ISO/IEC 7816-1, First Edition
(10/15/1998).

2 AFNOR, "Identification cards - Integrated circuit(s) cards with contacts", International Standard ISO/IEC 7816-1, First
Edition (10/15/1998), Amendment 1 (11/15/2003).

3 AFNOR, "Identification cards — Integrated circuit cards", International Standard ISO/IEC 7816—2, First Edition
(03/01/1999), Amendment 1 (06/01/2004).

4 AFNOR, "Identification cards - Integrated circuit cards", International Standard ISO/IEC 7816-2, Second Edition
(10/15/2007).

5 AFNOR, "Identification cards — Integrated circuit cards", International Standard ISO/IEC 7816—3, Third Edition IX(11/01/2006).

6 "Information technology — Identification cards — Integrated circuit(s) cards with contacts", International Standard ISO/
IEC 7816—4, First Edition (09/01/1995), Amendment 1 (12/15/1997).

7 AFNOR, "Identification cards - Integrated circuits cards", International Standard ISO/IEC 7816-4, Second Edition
(01/15/2005).

8 "Identification cards — Integrated circuIt(s) cards with contacts", International Standard ISO/IEC 7816—5, First Edition
(06/15/1994), Amendment 1 (12/15/1996).

9 AFNOR, "Identification cards — Integrated circuit cards", International Standard ISO/IEC 7816—5, Second Edition
(12/01/2004).

10 AFNOR, "Identification cards - Integrated circuit cards", International Standard ISO/IEC 7816-6, Second Edition
(05/15/2004).

11 AFNOR, "Identification cards — Integrated circuit cards", International Standard ISO/IEC 7816—6AC1, (06/15/2006).

EFS Web 2.1.12

Apple Ex. 1030, p. 2

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 3

 Apple v. Fintiv

 IPR2020-00019

Application Number 12376360

Filing Date
INFORMATION DISCLOSURE First Named Inventor

 2009—02—04

Bruno CHARRAT

STATEMENT BY APPLICANT

(Not for submission under 37 CFR 1.99)
Art Unit

Examiner Name
Attorney Docket Number

2431

Not Yet Assigned

10000-132US (100405US/WO)

"Identification cards - Integrated circuit(s) cards with contacts", International Standard ISO/IEC 7816-7, First Edition12
(03/01/1999).

"Identification cards - Integrated circuit(s) cards with contacts", International Standard ISO/IEC, FDIS, 7816-8, Final13
Draft (1998).

AFNOR, "Identification cards — Integrated circuit(s) cards with contacts", International Standard ISO/IEC, FDIS, 7816—9,14
(12/21/1999).

15 AFNOR, "Identification cards - Integrated circuit cards with contacts", International Standard ISO/IEC 7816-15/AC1,
(OT/0112004).

16 AFNOR, "Identification cards — Integrated circuit cards with contacts", International Standard ISO/IEC 7816—15, First IXEdition, (01/15/2004).

17 "Identification cards — Contactless integrated circuit(s) cards — Proximity cards", International Standard ISO/IEC
14443—2, First Edition (07/01/2001).

18 DIN, "Identification cards - Contactless Integrated circuit(s) cards - Proximity cards", International Standard ISO/IEC
WD 14443-2, (01/26/2007).

19 "Identification cards — Contactless integrated circuit(s) cards — Vicinity cards", International Standard ISO/IEC 15693—3,
First Edition (04/01/2001).

If you wish to add additional non-patent literature document citation information please click the Add button

EXAMINER SIGNATU RE

Examiner Signature Date Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through a
citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

English language translation is attached.

1 See Kind Codes of USPTO Patent Documents at www.USPTO.GOV or MPEP 901.04. 2 Enter office that issued the document, by the two-letter code (WIPO
Standard ST.3). 3 For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
4 Kind ofdocument by the appropriate symbols as Indicated on the document under WIPO Standard ST.16 if possible. 5 Applicant is to place a check mark here If

EFS Web 2.1.12

Apple Ex. 1030, p. 3

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 4

 Apple v. Fintiv

 IPR2020-00019

Application Number 12376360

Filing Date 2009—02—04

INFORMATION DISCLOSURE First Named Inventor Bruno CHARRAT

STATEMENT BY APPLICANT Art Unit 2431
(Not for submission under 37 CFR 1.99)

Examiner Name Not Yet Assigned

Attorney Docket Number 10000-132US (100405USIWO)

CERTIFICATION STATEMENT

Please see 37 CFR 1.97 and 1.98 to make the appropriate selection(s):

That each item of information contained in the information disclosure statement was first cited in any communication

|:I from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the
information disclosure statement. See 37 CFR 1.97(e)(1).

OR

That no item of information contained in the information disclosure statement was cited in a communication from a

foreign patent office in a counterpart foreign application, and, to the knowledge of the person signing the certification
after making reasonable inquiry, no item of information contained in the information disclosure statement was known to

El any individual designated in 37 CFR 1.56(c) more than three months prior to the filing of the information disclosure
statement. See 37 CFR 1.97(e)(2).

:| See attached certification statement.

:| Fee set forth in 37 CFR 1.17 (p) has been submitted herewith.

2| None

SIGNATURE

A signature of the applicant or representative is required in accordance with CFR 1.33, 10.18. Please see CFR 1.4(d) for the
form of the signature.

Signature lJohn D. Simmons/ Date (YYYY-MM-DD) 2009-04-06 Name/Print John D. Simmons Registration Number 52225

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the
public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR
1.14. This collection is estimated to take 1 hour to complete, including gathering, preparing and submitting the completed
application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you
require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, US.
Patent and Trademark Office, US. Department of Commerce, PO. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND
FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria,
VA 22313-1450.

EFS Web 2.1.12

Apple Ex. 1030, p. 4

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 5

 Apple v. Fintiv

 IPR2020-00019

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the
attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised
that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited
is voluntary; and (3) the principal purpose for which the information is used by the US. Patent and Trademark Office is to
process and/or examine your submission related to a patent application or patent. If you do not furnish the requested
information, the US. Patent and Trademark Office may not be able to process and/or examine your submission, which may

result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act
(5 U.S.C. 552) and the Privacy Act (5 U.S.C. 552a). Records from this system of records may be disclosed to the
Department of Justice to determine whether the Freedom of Information Act requires disclosure of these record 5.

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a
court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement
negotiations.

3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a
request involving an individual, to whom the record pertains, when the individual has requested assistance from the
Member with respect to the subject matter of the record.

4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for
the information in order to perform a contract. Recipients of information shall be required to comply with the
requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records
may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant
to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of
National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or
his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to
recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and
2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this
purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make
determinations about individuals.

8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the
application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be
disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application
which became abandoned or in which the proceedings were terminated and which application is referenced by either a
published application, an application open to public inspections or an issued patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law
enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

EFS Web 2.1.12

Apple Ex. 1030, p. 5

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 6

 Apple v. Fintiv

 IPR2020-00019

STD-ISO ?&ll:-‘-I-EN6L l‘l‘lS - HBSL‘iUB [REBEL—3 WEE -

INTERNATIONAL ISO/IEC

STANDARD 781 6-4

First edition
1 995-09-01

AMENDMENT 1
1 997-1 2-1 5

Information technology — Identification

cards — Integrated circuit(s) cards with
contacts —

Part 4:

Interindustry commands for interchange

AMENDMENT 1: Impact of secure messaging
on the structures of APDU messages

Technologies de l'infonnation — Cartes d’identification — Caries a circuit(s)
integreYs) 52 contacts —

Partie 4: Commandes intersectoriefles pour les échanges

AMENDEMENT 1: Impact de la messagerie de sécurité sur les structures
des messages APDU

Reference number

ISO/l EC 7816-4: 1 995/Amd.1:199?(E)

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 6

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 7

 Apple v. Fintiv

 IPR2020-00019

STD-ISO 7filE-H-ENGL 1.955 - HEEL-“”33 {WEBELE 5T“! -

ISO/{EC 7816-4:1995[Amd.1:1997(E)

Contents

Page

Foreword ... iii

introduction ... iv

Revision of table 19 ... ‘1

Revision of table 21 ... 'l

5.7 Impact of secure messaging on the structures of APDU messages 2

Annex F (informative) Use of secure messaging ... 3

© ISO/1521937
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher

ISOIIEC Copyright Office - Case postale 55 o CH-lZl 1 Geneva 20 . Switzerland
Printed in Switzerland

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 7

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 8

 Apple v. Fintiv

 IPR2020-00019

STD-ISO 7&lb-ll-EN6L 1.335 - ”551.383 D733hlx=| 735 -

© ISO/l EC ISOIIEC 7816-4:19951Amd.1:1997(E)

Foreword

ISO (the International Organization for Standardization) and EC (the International
Electrotechnical Commission} form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and non-
governmental, in liaison with ISO and lEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISOIlEC JTC 1. Draft International Standards adopted by
the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the
national bodies casting a vote

Amendment 1 to International Standard ISO/IEC 781641995 was prepared by
Joint Technical Committee ISO/IEC JTC 1, information technology. Subcom-
mittee SC 17, Identification cards and related devices.

iii

COPYRIGHT 2000 International Organization for Standardization Information Handling
March 03, 2000 1:21:01

Serv;ces,

Apple Ex. 1030, p. 8

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 9

 Apple v. Fintiv

 IPR2020-00019

STD-ISO ?Ex].b-'-l-EN6L 1';qu - 9551303 D?33!:EB H5? -

ISO/IEC 7816-4:1995IAmd.1:1997(E} © lSO/lEC

Introduction

The integrated circuifls) cards with contacts are identification cards intended for
information exchange negotiated between the outside and the integrated circuit
in the card» As a result of an information exchange, the card delivers information
{computation results, stored data), andfor modifies its content (data storage,
event memorization).

Part 4 of lSO/lEC 7816 is one of a series of standards describing the parameters
{or such cards and the use of such cards for international interchange.

This amendment fixes the impact of secure messaging on the structures of
APDU messages.

iv

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 9

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 10

 Apple v. Fintiv

 IPR2020-00019

STD-ISO Tfilb-H-ENGL 1:135 - 19651303 07333321. 3°13 -

© lSO/iEC ISOIIEC 7816-4?! 995/Amd.1 :1 997(E)

Information technology — Identification cards —

Integrated circuifls) cards with contacts —

Part 4:

Interindustry commands for interchange

AMENDMENT 1: Impact of secure messaging on the

structures of APDU messages

In table 79, replace the last line by the following two lines.

'96“, '97’ —Value of Le in the unsecured command

'98‘ —Status information (erg, SW1 SW2)

In table 21, repiace the value 'BA' by the foifowing two vaiues.

‘AC', ’BC‘

COPYRIGHT 2000 International Organization for Standardization Information Handling SerVices,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 10

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 11

 Apple v. Fintiv

 IPR2020-00019

COPYRIGHT 2000 International Organization for Standardization

STIIMISO 7BLb-i-l-ENGL l‘l‘iS - RSSl‘lUB [1733522 BET -

ISO/IEC 781 6-4:1 995/Amd.1 :1 997(E)

insert the following subclause.

5.7 Impact of secure messaging on the
structures of APDU messages

The structures of APDU messages are specrfied In 5.3.
According to 5.3.1. the command APDU consists of a
mandatory command header of four bytes conditionally
followed by a command body (see figures 3 and 4); the
decoding of the command body lS specified in 5.32 [see
figure 5 and table 5). According to 5.3.3, the response
APDU consists of a conditional response body followed by
a mandatory response trailer of two bytes (see figure 6).
Figure 8 shows the structures of APDU messages.

Command header
CLA lNS P1 P2

{four bytes)

Res- onse bod Response trailer
iData field] SW1 SW2

(L, data bytes} (two bytes)

Figure 8 — Structures of APDU messages

Command body

[Lc field] [Data field] [Le field]
(L bytes, denoted as B, to BL)

Clause 6 specifies APDU commands and responses for
basic interindustry commands. Clause 7 specifies APDU
commands and responses for transmission—oriented
interindustry commands. Clauses 6 and 7 do not describe
the impact of secure messaging (see 5.6) on the
structures of APDU messages. Consequently, the
semantic meanings of length fields and data fields in
clauses 6 and 7 may seem in contradiction with their
syntactic meanings in 5.3. '

This subclause specifies the impact of secure messaging
as specified in 5.6 on the structures of APDU messages
as specified in 5.3, so as to avoid the aforementioned
possible misunderstanding.

For securing an APDU command where CLA has an appro—
priate value according to table 9, namely ‘0X', '8X'. '9X‘
or 'AX', the bit b4 in CLA shall be set to 1, which is
indicated as CLA’ in figure 9 and annex F; if present, the
command body shall be decoded according to 5.3.2 and
encapsulated as follows.

— if there is a data field. the LL. data bytes shall be
carried

neither by a plain value data object ('80‘, '81‘,
‘BZ’, ’83'. see table 18),

I or by a data object for confidentiality (from ‘84' to
'87', see table 22).

———lf there is an L9 field. the value of La shall be
carried by 3 Le data object (either ‘96’ or ‘97‘. see
table 19); the value field codes an unsigned positive
integer on one or two bytes; both the null value and
the empty data object mean the maximum.

© lSO/IEC

Similarly, the response APDU shall be encapsulated asfollows.

— if there is a data field, the L, data bytes shall be
carried

ceither by a plain value data obiect ('80', ‘8‘l'.
‘BZ’, 'BS', see table 19},

0 or by a data obiect for confidentiality (from '84' to
‘87", see table 22).

-— if needed, the response trailer shall be carried by a
status information data object {‘99', see table 19); the
empty data object means SW1 SW2 = '9000'.

Figure 9 shows the structures of secured APDU
messages.

— Every new data field may carry additional SM data
objects, e.g.. a cryptographic checksum {‘SE‘} at the
end. Annex F provides illustrative examples.

—The new Lc field gives the length of the new data
field of the secured command APDU.

— The new Le field shall be empty when no data field
is expected in the secured response APDU;
otherwise, it shall contain only zeroes.

«The new response trailer codes the status of the
receiving entity after processing the secured com-
mand. lt may be encapsulated for protection.

Command bod

[New Lc field}
l [New data field] =

[T Lc Data bytes] lT ‘Ol'or‘OZ‘ Le} l
[New Le field]

Response body Res - nse trailer
{New data field] = New SW1 SW2

{T Lr Data bytes} [T '02' New SW1 SW21 (two bytes)

Figure 9 — Structures of secured APDU messages

Command header

CLA' lNS P1 P2
(four bytes)

NOTES

1 The lengths from 1 to 127 are coded in the same way in BER-TLV
length fields as in APDU length fields. The codings differ for 128 andmore.

2 As stated above, further or other SM data objects may be
present In the new data fields.

3 When securing messages, it is not always apparent whether the
data to be protected have a BER-TLV structure. Then the tags ‘80'. '81',
‘86“ and '87’ are recommended.

Information HandIing Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 11

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 12

 Apple v. Fintiv

 IPR2020-00019

STILISO 7&lb-R-ENGL LEWIS - HBSIHBB 3733533 Mal: -

© ISO/IEO ISOIIEC 781 6-4:1 995lAmd.1 :1 997(E}

Replace the existing annex F (two pages} by the following revision (three pages).

Annex F

(informative)

Use of secure messaging

F.1 Abbreviations

For the purposes of this annex, the following abbrevie
tions apply.
CC cryptographic checksum
CG cryptogram
CH command header (CLA INS P1 P2)
CR control reference
FR file reference

KR key reference
L length

LE value of Le in the unsecured command (one or two
bytes coding an unsigned positive integer; the null
value means the maximum)

PB padding bytes (‘80' followed by O to k-1 times ‘00'
where k is the block length)

Pl padding indicator byte
Pv’ plain value
RD response descriptor
T tag
ll concatenation

F.2 Cryptographic checksum

According to 5.7, the use of cryptographic checksums
(see 5.6.3.1) is shown for the four cases defined in table
4 and figure 4. in the examples, the value of LCC is four.
CLA“ indicates the use of secure messaging, Le, the bit
D4 is equal to ‘l in CLA which is equal to ‘0X', '8X’, ’9X‘ or
'AX' according to table 9.

— Case 1 — No data, no data

The unsecured command-response pair is as follows.
Command header Command body

Response body Response trailer
sww SW2

— Case 1.a — Status not to be protected

The secured command APDU is as follows.

Command header Command body

CLA’ INS P1 P2 New Lcfield (one byte = '06') ll
New data field (six bytes)

New data field = One data object =
ch ll Lcc ll CC

Data covered by CC (133:1 in CLA‘) = One block =
CH ll PB

The secured response APDU is as follows
Response bod Res. nee trailer

New 5m swz

— Case 1.b — Status to be protected

The secured command APDU is as follows.
Command header Command body

New LC field (one byte =‘06’) ll
New data field {six bytes) ll CLA‘ lNS P1 P2
New Le held (one byte : ’00’)

New data field = One data object =
To: ll LCC ll CC

Data covered by CC (b3=1 in CLA’) = One block =
CH ll PB

The secured response APDU is as follows.
Response body Response trailer
New data field New SW1 SW2

New data field = Two data obiects =
Tsw (131:1) ll st ll SW (= New SW1 SW2) ll
ch ll LCC ll CC

Data covered by CC = One block =
Tsw "31:1, ll st ll SW M PB

COPYRIGHT 2000 International Organization for Standardization Information Handling Serv1ces,
March 03, 2000 1:21:01

Apple Ex. 1030, p. 12

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 13

 Apple v. Fintiv

 IPR2020-00019

STD-ISO 7BLE-H-EN6L 1:335 - HBSL‘IUB U?33l:E'-l UTE -

ISOI'IEC 781 6-4:1995lAmd.1 :1 997(E) © lSO/lEC

— Case 2 — No data. data
The secured response APDU is as follows.

Response body Response trailer
Empty New SW1 SW2

The unsecured command—response pair is as follows.
Command header Command body

CLA INS P1 P2 Lefield

Response body Res-onse trailer — Case 3.b — Status to be retested
Data field SW1 SW2 pl

The secured command APDU is as follows.

The secured command APDU is as follows. Command header Command body

Command header body CLA" INS P1 P2 New LC field ll New datafield i:
CLA‘ INS P1 P2 New Lc field ll New data field ll New l.e field (one or two bytes = '00')

New Le field (one or two bytes — ‘OO'l
New data field = Two data objects =

New data field : Two data objects : TW lb1=1) ll va ll PV ll
TLE (b1=1) ll LLE ll LE ll ch ll Lu; ll CC

ch " Lcc " CC Data covered by CC =
Data covered by CC = . One or more blocks if b3=0 in CLA* =

0 One block if [33:0 in CLA* = TPV (blzl) ll LFV ll PV 1! PB
TLE (bl=1l ll LLE ll LE ll PB * Two or more blocks if b3=l in CLA‘ =

0 Two blocks if b3=1 m CLA* = CH ll PB ll
CH ll P8 n TE“, (b1=1) 1| LW 11 PV H FB
TLE (131:1) ll LLE |I LE 11 PB

The secured response APDU is as follows.

The secured response APDU is as follows. Response body Response [raner

. .

New data field = Two data objects =
New data field = Three data obiects = Tsw {ma} ll Law II SW (= New SW1 SW2) ll

Tpv (b1=1) ll va ll PV ll ch ll LCC ll CC

%:V‘EI(E:C_J)CHCLSW ll SW (_ New SW1 SW2] H Date covered by CC = One block =TSW (131:1; 11 st 11 SW ll PB
Data covered by CC = One or more blocks =

TPV (bl=l) ll va ll PV ll [TSW (b1=l) ll st ll SW1 ll PB

-- Case 4 —- Data, data
— Case 3 — Data. no data

The unsecured command-response pair is as follows
Command header Command bod

CLA lNS P1 P2 Lc field ll Data field ll Lefield

The unsecured command-response pair is as follows.
Command header Command body

CLA INS P1 P2 l.c field ll Data field
Res . onse body Response trailer

Response bodv Response “"3"” Data field SW1 SW2Empty SW1 SW2

The secured command APDU is as follows.

Command header Command body

The secure‘j command APDU '5 as fo'lows‘ CLA* INS P1 P2 New Lc field 11 New data field 11
Command header Command body New Le field (one or two bytes = '00“)

—— Case 3.a — Status not to be protected

cw P1 P2
New data field = Three data objects =

New data field = Two data objects = TPV (b1=1) ll LW |l PV II
TW (b1=ll u LW ll Pv ll TLE lb1=1> 11 l.LIE 11 LE 11
Tee ll Lcc ll CC ch ll LCC ll CC

Data COVEVEd by CC = _ 4 Data covered by CC =
. One or more b‘OCkS If b3=0 In CLA* = 0 One or more blocks [f [33:0 in CLA“ :

TPv lb1=1l II LW ll PV n PB TPV (131:1) 1| LW ll PV 11 TLE (131:1) 11 LLE 11 LE ll PB
. Two or more blocks if b3=1 in CLA“ = 0 Two or more blocks if b3=1 in CLA* =

CH ll PB ll CH ll PB ll
Tpvlb1=ll ” Lw H W N PB TPV lb1=1) 1| LW 11 PV u TLE (131:1) ll LE 11 LE 11 PB

4

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 13

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 14

 Apple v. Fintiv

 IPR2020-00019

STD-ISO ?Blb-H-ENGL 1:195 - ”551903 l]?33|=E'S T33 -

© lSO/lEC

The secured response APDU is as follows.
Re onse bod Re a - rise trailer
New data field New SW1 SW2

New data field = Three data objects =
Tpv(b1=1, ll vall PV ll
l‘rsw ib1=1i u stn sw (= New swx swan n
ch n LCC ll cc

Data covered by CC = One or more blocks =
Tpv (b1=1) ll Lev ll PV ll [Tsw lb‘l =1) ll st ll SW! ll PB

F.3 Cryptograms

The use of cryptograms with and without padding (see
5.8.4) is shown in data fields (command APDU as well as
response APDU). Instead of the plain value data objects
in the previous examples. data objects for confidentiality
shall be used as follows.

— Case a — Plain data not coded in BER-TLV

Data field =

Tplce ll LP, CG ii Pl u CG

Data carried by CC: = One or more blocks =
Non BER-TLV coded data
and padding bytes according to Pl

— Case b — Plain data coded in BER-TLV

Data field =

TCG ll LCG u CG

Data carried by CG = String of concealed bytes =
BER—TLV data objects (padding depending on the
algorithm and its mode of operation)

ISO/IEO 7'81 64:1 995]Amd.1 :1 997(E)

F.4 Control references

The use of control references (see 5.65.1) is shown,

Command data field =
TCR ll i.CR ll CR

where CR = TFR ll L5,; ll FR ll Tm ll LKR ll KR

F.5 Response descriptor

The use of response descriptors (see 5.6.5.2) is shown.

Command data field =

Tao ll Lao ll RD
where RD = Tpv ll '00’ ll Tc: ll ’00’

Response data field =
Tpv ll LPV ll PV ll ch ll Lcc I! CC

F.6 ENVELOPE command

The use of the ENVELOPE command (see 7.2) is shown.

Command data field =

TP‘ ca ll LPICS ll Pl ll CG

Data carried by CG =
Command APDU (starting by CH)
and padding bytes according to Pl

Response data field =
Tm 0; ll LPr cc II Pl l3 CG

Data carried by CG =
Response APDU
and padding bytes according to Pl

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 1:21:01

Information Handling SerVices,

Apple Ex. 1030, p. 14

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 15

 Apple v. Fintiv

 IPR2020-00019

STD-ISO T’Ellla-H-ENGL l‘I‘iS - ”551303 [1733585 I=|75 -

ISOIIEC 781 6-4:1 995/Amd.1 :1 997(E) © ISOIIEC

m

ICS 35.240.15

Descriptors: data processing. information interchange. identification cards, iC cards, messages, security techniques, authentication.

Price based on 5 pages
W

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 15

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 16

 Apple v. Fintiv

 IPR2020-00019

- HBSL‘HBB Elk-251382 TUB -

INTERNATIONAL ISO/IEC

STANDARD 7816-4

First edition
19950901

Information technology — Identification

cards — Integrated circuifls) cards with
contacts —

Part 4:

Interindustry commands for interchange

Tee/meiogies de l'information — Canes d’identification — Games a
Circuifls} intégré(s) a conlacts —

Partfe 4: Commandes Ihtersectoriefles pour {es échanges

IEC
. Reference number

ISO/IEC 7816-4:1995(E>

COPYRIGHT 2000 International Organization for Standardization
March 03 , 2000 11:21:01

Information Handling Services,

Apple Ex. 1030, p. 16

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 17

 Apple v. Fintiv

 IPR2020-00019

- HBSL‘IDB BEEBUBB ”Mil -

lSO/IEC 7816-4: 1995 (E)

contents Page

Foreword .. iii

introduction .. iv

1 Scope .. 1

2 Normative references ... 1

3 Definitions .. 2

4 Abbreviations and notation ... 3

5 Basic organizations .. 3
5.1 Data structures ... 3
5.2 Security architecture of the card . 6
5.3 APDU message structure .. 7
5.4 Coding conventions for command headers,

data fields and response trailers 9
5.5 Logical channels 12
5. Secure messaging ,,,,,,,, 12

6 Basic interindustry commands ... 16
6.1 READ BINARY command 16
6.2 WHITE BINARY command 17
6.3 UPDATE BINARY command .. 17
8.4 ERASE BINARY command 18
6.5 READ RECORDlS) command 19
8.6 WRITE RECORD command 20
6.7 APPEND RECORD command 21
6.8 UPDATE RECORD command 22
8.9 GET DATA command 23
6.10 PUT DATA command 24

_6.11 SELECT FILE command . 256.12 VERlFY command 26
6.13 INTERNAL AUTHENTICATE command 27
6.14 EXTERNAL AUTHENTICATE command 27
6.15 GET CHALLENGE command 28
5.16 MANAGE CHANNEL command .. 29

7 Transmission-oriented interindustry commands 29
7.1 GET RESPONSE command ... 30
1.2 ENVELOPE command ... 30

8 Historical bytes ... 31

9 Application-independent card services ... 33

Annexes

A Transportation of APDU messages by T:O ... 35
8 Transportation of APDU messages by T=1 . 39
c Record pointer management ... 41
D Use of the basic encoding rules of ASN.1 .. 42
E Examples of card profiles 43
F Use of secure messaging .. 45

© ISO/IEC 1995

All rights reserved. Unless otherwise specified. no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

lSO/lEC Copyright Office . Case Postale 56 . CH-1211 Geneva 20 0 Switzerland
Printed in Switzerland

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 17

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 18

 Apple v. Fintiv

 IPR2020-00019

© lSOilEC

COPYRIGHT 2000 International Organization for Standardization
March 03 , 2000 11:21:01

- 14351903 DEEEUBH 65E] -

ISOIIEC 7816-4: 1995 1E)

Foreword

lSO (the international Organization for Standardization) and lEC (the
International Electrotechnical Commission) form the specialized system for
worldwide standardization National bodies that are members of lSO or IE:
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. ISO and lEC technical committees collaborate in
fields of mutual interest, Other international organizations, governmental and
non-governmental, in liaison with ISO and lEC, also take part in the work.

ln the field of information technology, lSO and lEC have established a joint
technical committee, lSO/lEC JTC 1. Draft international Standards adopted by
the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of
the national bodies casting a vote.

international Standard ISO/EEC 7816—4 was prepared by Joint Technical
Committee ISO/lEC JTC i. Information technology.

lSO/lEC 7816 consists of the following parts, under the general title informa-
tion technology — Identification cards — integrated circuifls) cards with
contacts

— Part 1 .' Physicai characteristics,
-—— Part 2 : Dimensions and location of the contacts,

— Part 3: Electronic signals and transmission protocols,

— Part 4 : lnterindustry commands for interchange,

— Part 5 _' Numbering system and registration procedure for acpiication
identifiers.

— Part 6: intarindustry data elements.

Annexes A and B form an integral part of this part of lSO/IEC 7816, Annexes C,
D, E and F are for information only.

iii

Information Handling Services,

Apple Ex. 1030, p. 18

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 19

 Apple v. Fintiv

 IPR2020-00019

- 4351303 0525385 71,? -

ISOIIEC ?816-4: 1995 (E) © iSOI’IEC

Introduction

This part of iSO/lEC 7816 is one of a series of standards describing the
parameters for integrated circuifis) cards with contacts and the use of such
cards for international interchange.

These cards are identification cards intended for information exchange negt}
tiated between the outside and the integrated circuit in the card. As a result of
an information exchange, the card delivers information (computation results.
stored data). andfor modifies its content (data storage, event memorization).

iv

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 19

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 20

 Apple v. Fintiv

 IPR2020-00019

- HISELCIUB Ubafiflfib [=53 -

INTERNATIONAL STANDARD © ‘SOJ‘EC

Information technology

— Integrated circuitls) cards with contacts

Part 4:

ISOIIEC ?816-4: 1995 (E)

Identification cards

lnterindustry commands for interchange

1 Scope

This part of ISO/IEC 7816 specifies

— the content of the messages, commands and res—
ponses, transmitted by the interface device to the
card and conversely,

—the structure and content of the historical bytes
sent by the card during the answer to reset,
—the structure of tiles and data, as seen at the
interface when processing interindustry commands
for interchange,
—— access methods to files and data in the card,

—a security architecture defining access rights to
files and data in the card,

— methods for secure messaging,

—access methods to the algorithms processed by
the card. it does not describe these algorithms,

It does not cover the internal implementation within the
card and/or the outside world.

It allows further standardization of additional interindustry
commands and security architectures.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

2 Normative references

The following standards contain provisions which.
through reference in this text, constitute provisions of this
part of iSO/IEC 7816. At the time of pubiication. the
editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this part of
tSO/IEC 7816 are encouraged to investigate the possibility
of applying the most recent editions of the standards
indicated below, Members of ”EC and ISO maintain
registers of currently valid International Standards.

£80 3166: 1993, Codes for the representation of names
of countries.

lSO/IEC 7812-1 : 3993, ldentificatlon cards —— identification
of issuers — Part 7 : Numbering system.

lSO/IEC 781673: 1989. identification cards — Integrated
circuit(s) cards with contacts — Part 3: Electronic signals
and transmission protocols.

Amendmenti :1992 to ISO/IEC 7816-3: 1989. Protocol
type T=7, asynchronous half duplex block transmission
protocol.

Information Handling Services,

Apple Ex. 1030, p. 20

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 21

 Apple v. Fintiv

 IPR2020-00019

- 11651303 05215135? 5:11:7-

ISO/IEC 7816-4: 1995 (El

Amendment 2 : 1994 to lSO/lEC 7816—3: 1989. Revision
of protocol type selection.

lSO/IEC 7816—5: 1994, identification cards —— Integrated
circuitl’sl cards with contacts — Part5 : Numbering sys-
tem and registration procedure for application identifiers.

ISO/IEC 78166:—“. identification cards — Integrated
circuitls) cards with contacts — Pen‘ 6; lnten‘ndustry data
elements.

lSO/lEC 8825: 1990 2?, information technology — Open
Systems Interconnection — Specification of Basic Encod-
ing Rules for Abstract Syntax Notation One (AS/V. 7).

ISOIIEC 9796: 1991, information technology — Security
techniques — Digital signature scheme giving message
recovery.

lSOllEC 9797: 1994, information technology —— Security
techniques — Data integrity mechanism using a crypto—
graphic check function employing a block cipher
algorithm.

ISO/IEC 9979: 1991, Data cryptographic techniques —-
Procedures for the registration of cryptographic algo-
rithms.

lSOflEC 10116:1991, information technology — Modes of
operation for an n—bit block cipher algorithm.

lSO/IEC 10118-1 : 1994, Information technology —
Security techniques — Hash—functions — Part 1; General.

lSO/IEC 10118—2: 1994. Information technology —
Security techniques — Hash-functions — Part 2; Hash-
funoflons using an n—oit block cipher algorithm.

3 Definitions

For the purposes of this part of lSO/lEC 7816, the follow-
ing definitions apply.

3.1 Answer-to-Heset file: Elementary file which
indicates operating characteristics of the card.

3.2 command-response pair: Set of two messages:
a command followed by a response.

3.3 data unit: The smallest set of bits which can be
unambiguously referenced.

3.4 data element: Item of information seen at the
interface for which are defined a name, a description of
logical content, a format and a coding.

3.5 data obiect: Information seen at the interface
which consists of a tag, a length and a value (i.e., a data

1’ To be published.
2* Currently under revision.

2

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© ISO/IEC

element). In this part of lSO/IEC 7816, data objects are
referred to as BER-Tux, COMPACT—Hy and SlMPLE-TLV data
objects.

3.6 dedicated file: File containing file control infor-
mation and, optionally, memory available for allocation It
may be the parent of EFs and/or DFs.

3.7 DF name: String of bytes which uniquely identifies
a dedicated file in the card.

3.8 directory file: Elementary file defined in part 5 of
ISO/lEC 7816.

3.9 elementary file: Set of data units or records
which share the same file identifier. It cannot be the
parent of another file.

3.10 file control parameters: Logical, structural and
security attributes of a file.

3.11 file identifier: A 2-bytes binary value used to
address a file.

3.12 file management data: Any information about a
file except the file control parameters (e.g., expiration
date, application label).

3.13 internal elementary file: Elementary file for
storing data interpreted by the card.

3.14 master file: The mandatory unique dedicated file
representing the root of the file structure.

3.15 message: String of bytes transmitted by the
interface device to the card or vice-verse. excluding
transmission-oriented characters as defined in part 3 of
ISOilEC ?818.

3.16 parent file: The dedicated file immediately pre—
ceding a given file within the hierarchy.

3.1? password: Data which may be required by the
application to be presented to the card by its user.

3.18 path: Concatenation of file identifiers without
delimitation. If the path starts with the identifier of the
master file, it is an absolute path.

3.19 provider: Authority who has or who obtained the
right to create a dedicated file in the card.

3.20 record: String of bytes which can be handled as a
whole by the card and referenced by a record number or
by a record identifier.

3.21 record identifier: Value associated withra record
that can be used to reference that record. Several records
may have the same identifier within an elementary file.

3.22 record number: Sequential number assigned to
each record which uniquely identifies the record within its
elementary file.

3.23 working elementary file: Elementary file for
storing data not interpreted by the card.

Information Handling Services,

Apple Ex. 1030, p. 21

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 22

 Apple v. Fintiv

 IPR2020-00019

© ISO/JEC

4 Abbreviations and notation

For the purposes of this part of ISOIIEC 7816, the follow—
ing abbreviations apply.

APDU Application protocol data unit
ATR Answer to reset

BER Basic encoding rules of ASN.1 (see annex D)
CLA Class byte

DlR Directory
DF Dedicated file

EF Elementary file
FCl File control information

FCP File control parameter

FMD File management data

INS instruction byte
MF Master file

Pl—PZ Parameter bytes

PTS Protocol type selection
RFU Reserved for future use

SM Secure messaging

SWl-SW2 Status bytes

TLV Tag, length, value

TPDU Transmission protocol data unit

For the purposes of this part of ISOXlEC 7816, the follow—
ing notation applies.

‘0‘ to '9‘ and 'A‘ to 'F‘ The sixteen hexadecimal digits

(B1) Value of byte 81

B1 ll 82 Concatenation of bytes B‘ (the most significant
byte) and 82 (the least significant byte)

(81 I! Be) Value of the concatenation of bytes 81 and 82
it Number

5 Basic organizations

5.1 Data structures

This clause contains information on the logical structure
of data as seen at the interface, when processing
interindustry commands ior interchange. The actual
storage location of data and structural information
beyond what is described in this clause are outside the
scope of lSOllEC 7816.

5.1 . 1 File organization

This part of lSO/lEC 7'836 supports the following two cate-
gories of tiles.

— Dedicated file (DF).

— Elementary file (EF).

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- 4851.303 0525056 MEI: -

ISO/IEO 7816-4: 1995 {El

The logical organization of data in a card consists of the
following structural hierarchy of dedicated files.

—The BF at the root is called the master file (MF).
The MP is mandatory.

—— The other DFs are optional.

The following two types of EFs are defined.

— Internal EF — Those EFs are intended for storing
data interpreted by the card, i.e., data analyzed and
used by the card for management and control
purposes.

— Working EF —Those EFs are intended for storing
data not interpreted by the card. i.e., data to be used
by the outside world exclusively.

Figure 1 illustrates an example of the logical file organiza-
tion in a card.

Figure 1 — Logical file organization (example)

5.1.2 File referencing methods

When a file cannot be implicitly selected, it shall be possl<
ble to select it by at least one of the following methods.

— Referencing by file identifier— Any file may be rel-
erenced by a file identifier coded on 2 bytes. if the MF is
referenced by a file identifier, '3FOO' shall be used
(reserved value). The value ‘FFFF' is reserved for future
use. The value ’3FFF' is reserved (see referencing by
path). In order to select unambiguously any file by its
identifier, all EFs and DFs immediately under a given DF
shall have different file identifiers.

7 Referencing by path e Any file may be referenced by
a path (concatenation of file identifiers). The path begins
with the identifier of the MF or of the current DF and ends
with the identifier of the file itself. Between those two
identifiers. the path consists of the identifiers of the
successive parent DFs if any. The order oi the file
identifiers is always in the direction parent to child. if the
identifier of the current DF is not known, the value ‘SFFF‘
(reserved value) can be used at the beginning of the path.
The path allows an unambiguous selection of any file
from the MF or from the current DF.

— Referencing by short EF identifier — Any EF may be
referenced by a short EF identifier coded on 5 bits valued
in the range from 1 to 3G. The value 0 used as a short EF
identifier references the currently selected EF. Short EF
identifiers cannot be used in a path or as a file identifier
(£29., in a SELECT FlLE command).

Information Handling Services,

Apple Ex. 1030, p. 22

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 23

 Apple v. Fintiv

 IPR2020-00019

ISO/[EC 7816-4: 1995 {El

—— Referencing by DF name — Any DF may be refer-
enced by a DF name coded on i to 16 bytes. In order to
select unambiguously by DF name (8.9., when selecting
by means of application identifiers as defined in part 5 of
ISOIlEC 7816). each DF name shall be unique within a
given card.

5.1.3 Elementary file structures

The following structures of EFs are defined.
— Transparent structure — The EF is seen at the
interface as a sequence of data units.
— Record structure ——The EF is seen at the interface
as a sequence of individually identifiable records.

The following attributes are defined for EFs structured in
records.

— Size of the records: either fixed or variable.

— Organization of the records: either as a sequence
{linear structure) or as a ring (cyclic structure).

The card shall support at least one of the following four
methods for structuring EFs.

—Transparent EF.
— Linear EF with records of fixed size.
— Linear file with records of variable size.

— Cyclic EF with records of fixed size.

Figure 2 shows those four EF structures
Linear fixed Linear variable

5%0.0... .00...

EE:
Figure 2 — EF structures

[Transparent Cyclic fixed

NOTE —-The arrow on the figure references the most recently
written record.

5.1.4 Data referencing methods

Data may be referenced as records, as data units or as
data objects. Data is considered to be stored in a single
continuous sequence of records (within an EF of record
structure) or of data units (within an EF of transparent
structure}. Reference to a record or to a data unit outside
an EF is an error.

Data referencing method, record numbering method and
data unit size are EF-dependent features. The card can
provide indications in the ATR, in the ATE file and in any
file control information. When the card provides indica-
tions in several places, the indication valid for a given EF
is the closest one to that EF within the path from the MF
to that EF.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- HBSLQUB [$250qu BEE -

© lSO/‘lEC

5.1 .4. 1 Record referencing

Within each EF of record structure, each record can be
referenced by a record identifier and/or by a record
number. Record identifiers and record numbers are
unsigned 8-bit integers with values in the range from ‘O‘l‘
to ‘FE'. The value ”00‘ is reserved for special purposes.
The value 'FF' is RFU.

Referencing by record identifier shall induce the man—
agement of a record pointer. A reset of the card, a
SELECT FlLE and any command carrying a valid short EF
identifier can affect the record pointer. Referencing by
record number shall not affect the record pointer.

— Referencing by record identifier— Each record iden—
tifier is provided by an application. if a record is a SlMPLE-
TLV data object in the data field of a message {see 5.44},
then the record identifier is the first byte of the data
object. Within an EF of record structure, records may
have the same record identifier, in which case data
contained in the records may be used for discriminating
between them.

Each time a reference is made with a record identifier. an
indication shall specify the logical position of the target
record: the first or last occurrence, the next or previous
occurrence relative to the record pointer.

—-Within each EF of linear structure, the logical posi—
tions shall be sequentially assigned when writing or
appending, i.e., in the order of creation. Therefore the
first created record is in the first logical position.

—Within each EF of cyclic structure, the logical posi-
tions shall be sequentially assigned in the opposite
order, i.e., the most recently created record is in the
first logical position.

The following additional rules are defined for linear struc-
tures and for cyclic structures.

—The first occurrence shall be the record with the
specified identifier and in the first logical position; the
last occurrence shall be the record with the specified
identifier and in the last logical position.

——When there is no current record, the next occur-
rence shall be equivalent to the first occurrence; the
previous occurrence shall be equivalent to the lastoccurrence.

—When there is a current record, the next occur-
rence shall be the closest record with the specified
identifier but in a greater logical position than the cur—
rent record; the previous occurrence shall be the
closest record with the specified identifier but in a
smaller logical position than the current record.

—The value ‘00“ shall refer to the first, last. next or
previous record in the numbering sequence, indepen-
dently from the record identifier.

Information Handling Services,

Apple Ex. 1030, p. 23

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 24

 Apple v. Fintiv

 IPR2020-00019

© ISO/iEC

— Referencing by record number— Within each EF of
record structure, the record numbers are unique and
sequential.

— Within each EF of linear structure. the record num—
bers shall be sequentially assigned when writing or
appending, i.e., in the order of creation. Therefore the
first record (record number one. # 1) is the first
created record.

-—Within each EF of cyclic structure, the record num—
bers shall be sequentially assigned in the opposite
order, i.e., the first record (record number one, # 1) is
the most recently created record.

The following additional rule is defined for linear struc»
tures and for cyclic structures.

—The value '00“ shall refer to the current record, i.e.,
that record fixed by the record pointer.

5.1 .4.2 Data unit referencing

Within each EF of transparent structure, each data unit
can be referenced by an offset (e.g., in READ BiNARY
command, see 6.1). it is an unsigned integer, limited to
either 8 or 15 bits according to an option in the respective
command. Valued to 0 for the first data unit of the EF, the
offset is incremented by 1 for every subsequent data unit.

By default, i.e., if the card gives no indication, the size of
the data unit is one byte.

NOTES

1 An EF- of record structure may support data unit referencing
and, in case it does, data units may contain structural informa»
tion along with data, e.g., record numbers in a linear structure.

2 Within an EF of record structure. data unit referencing may
not provide the intended result because the storage order of
the records in the EF is not known, e.g., storage order in a cyclicstructure.

5. 1 .4.3 Data object referencing

Each data object {as defined in 5.4.4) is headed by a tag
which references it. Tags are specified in this part and
other parts of iSO/lEC 7816.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- ”651:103 DEEBUEIU DEN-l -

ISOIIEC 7816-4: 1995 (El

5.1.5 File control information

The file control information (FCI) is the string of data bytes
available in response to a SELECT FILE command. The file
controi information may be present for any file.

Table ‘1 introduces 3 templates intended for conveying file
control information when coded as BERATLV data objects.

—The FCF’ template is intended for conveying file
control parameters (FCP), i.e., any BER-TLV data
objects defined in table 2.

—The FMD template is intended for conveying file
management data lFMD}. i.e., BEFleTLV data obiects
specified in other clauses of this part or in other parts
of ISO/lEC 7816 (8.9., application label as defined in
part 5 and application expiration date as defined in
part 6).

—The FCl template is intended for conveying file
control parameters and file management data.

Table 1 — Templates relevant to F6!

'62‘ File control parameters {PCP template)
‘64' File management data {FMD template)
‘GF‘ File control information {FCl template)

The 3 templates may be retrieved according to selection
options of the SELECT FILE command (see table 59). If the
FCP or FMD option is set, then the use of the corre
sponding template is mandatory. if the PC! option is set,
then the use of the FCI template is optional.

Part of the file control information may additionally be
present in a working EF under control of an application
and referenced under tag ‘87'. The use of the FCP or FCl
template is mandatory for the coding of file control
information in such an EF.

File control information not coded according to this part
of iSO/lEC 7836 may be introduced as follows.

— '00' or any value higher than 'SF' ——The coding of
the subsequent string of bytes is proprietary.
—Tag = ‘53‘—The value field of the data object
consists of discretionary data not coded in TLV.
—Tag = ‘73'—The value field of the data object
consists of discretionary BERrTLV data objects.

Information Handling Services,

Apple Ex. 1030, p. 24

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 25

 Apple v. Fintiv

 IPR2020-00019

- tissues Season}: TILE] -

ISO/[EC 7816-4: 1995 {El

Table 2 - File control parameters

Number of data bytes Transparen
m the file, excluding t EFs
structural information

Tag

Number of data bytes Any tile
in the file, including
structural information if any

File descriptor byte
(see table 3}

File descriptor byte followed
by data coding byte
(see table 86}

Any file

M.QIll
Any tile

3 or 4 File descriptor byte followed EFs with
by data coding byte and record
maximum record length structure

83'

'84'
2 File identifier Any tile

. Proprietary information Any file
Security attributes
(coding outside the scope
of this part of ISO/IEC 7816)

2 identifier of an EF containing
an extension of the FCl

Table 3 — File descriptor byte

mmwmwm
File accessibility

— Not shareable file
-— Shareable file

Any file

00\l

‘'05
"1

Any file

‘88' to
'9E'

‘QFXY'

File type
— Working EF
-— Internal EF
— Reserved

for
proprietary
types
of EFs

— DF

E F structure

— No information given
—— Transparent
— Linear fixed, no further info
A Linear fixed. SlMPLE-TLV
— Linear variable, no further info
~— Linear variable, SIMPLEJLV
w Cyclic. no further info
— Cyclic, SlMPLE-TLV

means that the file supports at least concurrent
ifferent logical channels.

1

'Shareabie'
access on d

 I l l l

“d-‘HOQOOX ao—ioeoeoX000000000000000000000 dfioodr-‘DOX

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© ISO/lEC

5.2 Security architecture of the card

This clause describes the following features :

—— security status,

— security attributes,

— security mechanisms.

Security attributes are compared with the security status
to execute commands and/or to access files.

5.2.1 Security status

Security status represents the current state possibly
achieved after completion of

—answer to reset (ATR) and possible protocol type
selection (PTS) and/or

—a single command or a sequence of commands,
possibly performing authentication procedures,

The security status may also result from the completion
of a security procedure related to the identification of the
involved entities, if any, e.g..

—by proving the knowledge of a password (9.9,,
using a VERlFY command},

—by proving the knowledge of a key (eg, using 3
GET c H A LLE N G E command followed by an
EXTERNAL AUTHENTICATE command).

—by secure messaging log, message authenti—
cation).

Three security statuses are considered.

— Global security status — it may be modified by the
completion of an MF—related authentication procedure
{e,g_, entity authentication by a password or by a key
attached to the MF}.

— File-specific security status— it may be modified
by the completion of a DF-related authentication pro—
cedure {e.g., entity authentication by a password or
by a key attached to the specific DF) ; it may be main-
tained: recovered or lost by file selection (see 6.102};
this modification may be relevant only for the applica—
tion to which the authentication procedure belongs.

— Command-specific security status — it only exists
during the execution of a command involving authen-
tication using secure messaging (see 5.6); such a
command may leave the other security status
unchanged.

if the concept of logical channels is applied, the file specific
security status may depend on the logical channel (sec
55.1).

Information Handling Services,

Apple Ex. 1030, p. 25

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 26

 Apple v. Fintiv

 IPR2020-00019

- HESLEIDB 0533098 “15'? -

© lSOIlEC

5.2.2 Security attributes

The security attributes, when they exist, define the
allowed actions and the procedures to be performed to
complete such actions.

Security attributes may be associated with each file and
fix the security conditions that shall be satisfied to allow
operations on the file. The security attributes of a file
depend on

—- its category (DF or EF),

—optional parameters in its file control information
and/or in that of its parent filels).

NOTE—Security attributes may also be associated to other
obiects ie.g., keys).

5.2 .3 Security mechanisms

This part of lSOliEC 7816 defines the following security
mechanisms.

— Entity authentication with password — The card
compares data received from the outside world with
secret internal data. This mechanism may be used for
protecting the rights of the user.

— Entity authentication with key — The entity to be
authenticated has to prove the knowledge of the
relevant key in an authentication procedure (8.9.,
using a GET CHALLENGE command followed by an
EXTERNAL AUTHENTICATE command).

— Data authentication — Using internal data, either
secret or public the card checks redundant data
received from the outside world. Alternately, using
secret internal data, the card computes a data
element (cryptographic checksum or digital signature)
and inserts it in the data sent to the outside world.
This mechanism may be used for protecting the rights
of a provider.

— Data encipherment - Using secret internal data,
the card deciphers a cryptogram received in a data
field. Alternately, using internal data, either secret or
public, the card computes a cryptogram and inserts it
in a data field. possibly together with other data. This
mechanism may be used to provide a confidentiality
service, eg. for key management and conditional
access. In addition to the cryptogram mechanism,
data confidentiality can be achieved by data
concealment. In this case, the card computes a string
of concealing bytes and adds it by exclusive-or to data
bytes received from or sent to the outside world. This
mechanism may be used for protecting privacy and
for reducing the possibilities of message filtering.

The result of an authentication may be logged in an inter
nal EF according to the requirements of the application.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISOIIEC 7816-4: 1995 E)

5.3 APDU message structure

A step in an application protocol consists of sending a
command, processing it in the receiving entity and
sending back the response Therefore a specrfic response
corresponds to a specific command, referred to as a
command-response pair.

An application protocol data unit (APDU) contains either a
command message or a response message, sent from
the interface device to the card or conversely.

in a command—response pair, the command message and
the response message may contain data, thus inducing
four cases which are summarized by table 4.

Table 4 — Data within a command-response pair

Command data Expected response data
1

5.3.1 Command APDU

illustrated by figure 3 (see also table 6). the command
APDU defined in this part of lSOflEC 7816 consists of

— a mandatory header of 4 bytes (CLA INS P1 P2).
— a conditional body of variable length.

Header Bod

CLA INS P1 P2 {LC field] [Data field} [Lefieldl

Figure 3 -—- Command APDU structure

The number of bytes present in the data field of the
command APDU is denoted by LC.

The maximum number of bytes expected in the data field
of the response APDU is denoted by Le (length of ex-
pected data). When the Le field contains only zeroes. the
maximum number of available data bytes is requested.

Figure 4 shows the 4 structures of command APDUS
according to the 4 cases defined in table 4.

Case 1

Command header

Case 2

Command header Le field

Case 3

Command header LC field Data field

Case 4

Command header Lc field Data field Lefield

Figure 4 — The 4 structures of command APDUs

Information Handling Services,

Apple Ex. 1030, p. 26

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 27

 Apple v. Fintiv

 IPR2020-00019

- HBSLCJBB 05280‘33 8‘13 -

ISO/IEO 7816-4: 1995 (E!

in case 1, the length Lc is null; therefore the L,3 field and
the data field are empty. The length Le is also null:
therefore the Le field is empty. Consequently. the body is
empty.

in case 2, the length LC is null; therefore the Lc field and
the data field are empty. The length L9 is not null;
therefore the Le field is present. Consequently, the body
consists of the Le field.

in case 3. the length Lc is not null; therefore the LC field is
present and the data field consists of the Lc subsequent
bytes. The length Le is null; therefore the L,3 field is empty.
Consequently, the body consists of the LC field followed
by the data field.

in case 4, the length LC is not null ; therefore the Lc field is
present and the data field consists of the LC subsequent
bytes. The length Le is also not null ; therefore the LE field
is also present. Consequently, the body consists of the LC
field followed by the data field and the Le field.

5.3.2 Decoding conventions for command bodies

ln case 1, the body of the command APDU is empty. Such
a command APDU carries no length field.

in cases 2, 3 and 4, the body of the command APDU
consists of a string of L bytes denoted by B1 to BL as
illustrated by figure 5. Such a body carries 1 or 2 length
fields ; B1 is [part of] the first length field.

Command bod

Figure 5 — Not empty body

in the card capabilities (see 8.3.6). the card states that,
within the command APDU. the Lc field and the Le field

— either shall be short (one byte, default value),

— or may be extended (explicit statement).

Consequently. the cases 2, 3 and 4 are either short {one
byte for each length field) or extended (B1 is valued to '00‘
and the value of each length is coded on 2 other bytes).

Table 5 shows the decoding of the command APDUs
according to the four cases defined in table 4 and figure 4
and according to the possible extension of LC and Le.

Table 5 — Decoding of the command APDUs

as

L=2+lB1l: lBfian; - —(4s
L=3: <B,l=0; - Extended 2 l

L=3+lBgll83}; l81l=0; 132 llBalso —(3El
L=5+(32 I183): (B1l=0; {82 "331:0 (45)

Any other command APDU is invalid.

M
!

w E

8

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© lSO/lEC

Decoding conventions for Le

if the value of Le is coded on 1 (or 2) bytels) where the bits
are not all null, then the value of Le is equal to the value of
the bytelsl which lies in the range from 1 to 255 (or
65 535): the null value of all the bits means the maximum
value of Le: 256 (or 85 536).

The first 4 cases apply to all cards.

Case 1 — L = O; the body is empty.

' No byte is used for LC valued to 0.
0 No data byte is present.
- No byte is used for Le valued to O.

Case2$—L:1.

0 No byte is used for LG valued to O.
. No data byte is present.
- 81, codes Le valued from 1 to 256.

Case 35— L = 1 + (Bi) and {81) #0.

- 81 codes L; (:t 0) valued from 1 to 255.
0 82 to BL are the LC bytes of the data field.
- No byte is used for Le valued to 0.

Case 48— L: 2+ (Biland{81):0.

0 81 codes LC [it 0) valued from 1 to 255.
0 82 to 8L4 are the Lc bytes of the data field.
0 BL codes Le from 1 to 256.

For cards indicating the extension of LC and Le (see 8.3.6,
card capabilities), the next 3 cases also apply.

Case ZE—L =Band (B1l=0.

' No byte is used for LC valued to O.
0 No data byte is present.
0 The L8 field consists of the 3 bytes where
B2 and BS code LE valued from 1 to 65 536.

Case 3E - L = 3 + (:32 ll 83), (B1) = o and (B2 u 33) a o.

0 The LC field consists of the first 3 bytes where
82 and 83 code Lo (at O} valued from 1 to 65 535.
- B4 to BL are the LC bytes of the data field.
- No byte is used for I.e valued to 0.

Case 4E— L = 5 + (82 ll B3). (Bl) = O and (82 ”83) #0.

0 The L.: field consists of the first 3 bytes where
BE and 83 code L0 (as 0) valued from 1 to 65 535.
- B4 to BL_2 are the LC bytes of the data field.
0 The L9 field consists of the last 2 bytes 8L4
and BL which code Le valued from 1 to 65 536.

For each transmission protocol defined in part 3 of
lSOilEC 7816, an annex attached to this part (one per
protocol) specifies the transport of the APDUs of a
command—response pair for each of the previous 7 cases.

Information Handling Services,

Apple Ex. 1030, p. 27

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 28

 Apple v. Fintiv

 IPR2020-00019

- 4551.303 UbEBD‘ll-l 'u’BT -

© ISO/IEC

5.3.3 Response APDU

Illustrated by figure 6 {see also table 7), the response
APDU defined in this part of lSO/IEC 7816 consists of

—— a conditional body of variable fength,
7 a mandatory trailer of 2 bytes (SW1 SW2).

Bod Trailer
lData field] SW1 SW2

Figure 6 — Response APDU structure

The number oi bytes present in the data field of the
response APDU is denoted by L,,

The trailer codes the status of the receiving entity after
processing the command—response pair.

NOTE — If the command is aborted, then the response APDU is
a trailer coding an error condition on 2 status bytes.

5.4 Coding conventions for command headers,
data fields and response trailers

Table 6 shows the contents of the command APDU.

Table 6 — Command APDU contents

-m-_Class Class of instruction
Instruction code

Instruction parameter 1
Instruction parameter 2

instruction
Parameter 1
Parameter 2

Number of bytes present in

the data tieid of the command
variable

1 or 3
Length

Da ta variable
=l_C

variable
3 3

String of bytes sent in the
data field of the command

Length Maxmum number of bytes
expected in the data field of

the response to the command

Table 7 shows the contents of the response APDU.

Table 7 — Response APDU contents

Data variable String of bytes TSCSEVBd inthe data field of the response

Status byte 1 Command process ng status
Status byte 2 Command processing qualifier

The subsequent clauses specify coding conventions for
the class byte, the instruction byte. the parameter bytes.
the data field bytes and the status bytes.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISOIIEC 7816-4: 1995 (El

Unless otherwise specified. in those bytes, RFU bits are
coded zero and RFU bytes are coded '00'.

5.4.1 Class byte

According to table 8 used in conjunction with table 9, the
class byte CLA of a command is used to indicate

—to what extent the command and the response
comply with this part of lSOflEC 7816,
—and when applicable (see table 9), the format of
secure messaging and the logical channel number.

Table 8—Coding and meaning of CLA

Structure and coding of command and response
according to this part of iSOflEC 7816

(for coding of 'X, see table 9)

Structure of command and response
according to this part of lSOIIEC 7816.
Except for 'X‘ {for coding, see table 9),
the coding and meaning of command

and response are proprietary

Unless otherwise specified
by the application context.

structure and coding of command and response
according to this part of ISO/IEC 7816

(for coding of 'X'. see table 9'}

Structure of command and response
according to this part of lSOIlEC 7816

'BO' to ‘CF'

'DO' to 'l'E‘ Proprietary structure and coding
of command and response

Reserved for FTS

Table 9—Coding and meaning of nibble ‘X'
when CLA = '0X', '8X', '9X' or 'AX’

......_
Secure messaging (SM) format

- No SM or SM not according to 5.6
7 No SM or no SM indication
— Proprietary SM format
- Secure messaging according to 5.6
—Cornrnand header not authenticated
—C0rnmand header authenticated
(see 5.8.3.1 for command header usage)

Logical channel number (according to 5.5)
(b2 bl = 00 when logical channels are not used

or when logical channel # 0 is selected}

5.4.2 Instruction byte

The instruction byte INS of a command shall be coded to
allow transmission with any of the protocols defined in
part 3 of iSO/IEC 7816. Table 10 shows the NS codes
that are consequently invalid.

Information Handling Services,

Apple Ex. 1030, p. 28

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 29

 Apple v. Fintiv

 IPR2020-00019

- 9351903 0538035 blah -

ISOIIEC 7816-4: 1995 E)

Table 10 — Invalid INS codes

babrbebsmwbzb—
— Odd values
— 'BX'
— 'BX‘

Table 11 shows the lNS codes defined in this part of
lSO/lEC 7816. When the value of CLA lies within the
range from '00‘ to ‘7F', the other values of NS codes are
to be assigned by lSO/lEC JTC 1 SC17,

Table 11 — INS codes defined in this part
of ISO/[EC 7818

6.4ERASE BINARY
VERIFY
MANAGE CHANNEL
EXTERNAL AUTHENTICATE
GET CHALLENGE
INTERNAL AUTHENTICATE
SELECT FILE
READ BINARY

READ RECORD ls)
GET RESPONSE
ENVELOPE
GET DATA
WRlTE BINARY
WRITE RECORD
UPDATE BINARY

PUT DATA
UPDATE REcoRD
APPEND RECORD

5 .4.3 Parameter bytes

The parameter bytes P1—P2 of a command may have any
value. If a parameter byte provides no further qualifica—
tion, then it shall be set to '00'.

5.4.4 Data field bytes

Each data field shall have one of the following three
structures.

— Each TLV-coded data field shall consist of one or
more er-coded data objects.
— Each non TLvecoded data field shall consist of one
or more data elements, according to the specifica—
tions of the respective command,

— The structure of the proprietary-coded data fields is
not specified in lSO/lEC 7816.

10

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© iSO/lEC

This part of ISO/lEC 7816 supports the following two
types of ‘er—coded data objects in the data fields,

-— BER-TLV data object.

.— SlMPLE-TLV data object.

lSO/lEC 7816 uses neither '00' nor ‘FF' as tag value.

Each BER-TLV data object shall consist of 2 or 3 consecu—
tive fields (see ISO/lEC 8825 and annex D),

— The tag field T consists of one or more consecutive
bytes. lt encodes a class, a type and a number.

— The length field consists of one or more consecu—
tive bytes. lt encodes an integer L.
— if L is not null, then the value field V consists of L
consecutive bytes. if L is null, then the data object is
empty: there is no value field.

Each SIMPLE-Tu; data object shall consist of 2 or 3 con-
secutive fields.

e The tag field T consists of a single byte encoding
only a number from 1 to 254 (6.9., a record identifier).
it codes no class and no construction—type.

—The length field consists of 1 or 3 consecutive
bytes. If the leading byte of the length field is in the
range from ’00' to ‘FE‘, then the length field consists
of a single byte encoding an integer L valued from 0
to 254. if the leading byte is equal to ‘FF‘, then the
length field continues on the two subsequent bytes
which encode an integer L with a value from O to
65 535.

— if L is not null. then the value field V consists of L
consecutive bytes. if L is null. then the data Object is
empty: there is no value field.

The data fields of some commands {e.g., SELECT FlLE), the
value fields of the SlMPLE-TLV data objects and the value
fields of the some primitive BER-TLV data objects are
intended for encoding one or more data elements.

The data fields of some other commands leg, record—ori-
ented commands) and the value fields of the other primi-
tive BER-TLV data objects are intended for encoding One or
more SlMPLE—TLV data objects.

The data fields of some other commands ie.g., object-ori-
ented commands) and the value fields of the constructed
BER—TLV data objects are intended for encoding one or
more BER-TLV data objects.

NOTE — Before, between or after TLV—coded data objects, ‘00‘
or ‘FF‘ bytes without any meaning may occur (6.9., due to
erased or modified TLV-coded data obiects).

Information Handling Services,

Apple Ex. 1030, p. 29

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 30

 Apple v. Fintiv

 IPR2020-00019

- LlBSL‘lDB flbEfiD‘lb 5TB -

© ISO/IEC

5.4.5 Status bytes

The status bytes SW1—SW2 of a response denote the
processing state in the card. Figure 7 shows the structural
scheme of the values defined in this part of |SO/lEC 7816.

SW1 SW2

Process completed
 Process aborted

Normal Warning Execution Checking

pro<lzessing processing error err|or‘sixx ’BZXX' ’63)O<‘ 'GAXX' ‘BSXX' '67XX'
’9000‘ (see note) (see note} to 'GFXX'

Figure 7 — Structural scheme of status bytes

NOTE VWhen SW1 = '63' or ‘65‘. the state of the nonvolatile
memory is changed. When SW1 = 'SX' except ‘63' and '65‘, the
state of the non-volatile memory is unchanged

Due to specifications in part 3 of lSO/lEC 7816, this part
does not define the following values of SW1-SW2:

—— 'SDXX':

—- '67XX‘. ‘GBXX'. 'BDXX', ‘SEXX'. '6FXX’, in each case
if 'XX’ ¢ '00'2

— 'QXXX', if 'XXX' at '000'.

The following values of SW1—SW2 are defined whichever
protocol is used {see examples in annex A).

— if a command is aborted with a response where
SW1 = ‘6C‘, then SW2 indicates the value to be given
to the short Le field (exact length of requested data)
when re-issuing the same command before issuing
any other command.

— if a command (which may be of case 2 or 4. see
table 4 and figure 4) is processed with a response
where SW1 = ‘81'. then SW2 indicates the maximum
value to be given to the short Le field (length of extra
data still available) in 3 GET RESPONSE command issued
before issuing any other command.

NOTE —A functionality similar to that offered by ‘61XX‘ may be
offered at application level by ‘QFXX‘, However, applications may
use ’QFXX' for other purposes.

Table 12 completed by tables 13 to 18 shows the general
meanings of the values of SW1~SVV2 defined in this part
of lSO/lEC 7816. For each command. an appropriate
clause provides more detailed meanings,

Tables 13 to 18 specify values of SW2 when SW1 is
valued to ‘62‘, ‘63“, '65’, ‘68', ’69' and ‘BA‘. The values of
SW2 not defined in tables 13 to 18 are RFU, except the
values from ‘F0' to 'FF‘ which are not defined in this part
of ISOAEC 7816.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISO/IEC 7816-4: 1995 (E)

Table 12 — Coding of SW1-SW2

Normal processings
— No further qualification
— cll’l/Z indicates the number of response bytes

still available (see text below)

Warning processings
—— State of non-volatile memory unchanged

(further qualification in SW2, see table 13)
— State of non-volatile memory changed

(further qualification in SW2, see table 14)

Execution errors

— State of non—volatile memory unchanged
(SW2 = ‘OO'. other values are FlFUl

—— State of non-volatile memory changed
(further qualification in SW2. see table l5)

‘SBXX‘ Reserved for securitywelated issues
{not defined in this part of lSO/IEC 7816)

Checking errors
‘6700‘
‘SSXX‘

—— Wrong length
— Functions in CLA not supported

(further qualification in SW2. see table 16)
— Command not allowed

(further qualification in SW2, see table 17}
—Wrong parameterlsl P1-P2

(further qualification in SW2, see table 18}
—Wrong parametedsl P1-P2
7Wrong length Le: SW2 indicates the exact

length (see text below)
— instruction code not supported or invalid
— Class not supported
— No precise diagnosis

'GSXX'

'SAXX'

‘GBOO‘
'BCXX’

‘BDOO‘
'BEOO‘
'EFOO’

Table 13 — Coding of SW2 when SW1 2 '62'

No information given
Part of returned data may be corrupted
End of file [record reached before reading Le bytes
Selected file invalidated
FCI not formatted according to 5.1.5

Table 14 — Coding of SW2 when SW1 = '63”
swz

No information given
File filled up by the last write
Counter provided by 'X' (valued from O to 15)
(exact meaning depending on the command)

Table 15 — Coding of SW2 when SW1 = '65'

swz

'00' No information given
‘81' Memory failure

11

Information Handling Services,

Apple Ex. 1030, p. 30

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 31

 Apple v. Fintiv

 IPR2020-00019

- LllEl.SIls':l03 05260:]? '43:] -

ISOIIEC 7816-4: 1995 (E)

Table 16 — Coding of SW2 when SW1 = '68'

swz

No information given
Logical channel not supported
Secure messaging not supported

Table 17 — Coding of SW2 when SW1 = '69'

No information given
Command incompatible with file structure
Security status not satisfied
Authentication method blocked
Referenced data invalidated
Conditions of use not satisfied
Command not allowed (no current EF)
Expected SM data objects missing
SM data objects incorrect

Table 18 — Coding of SW2 when SW1 = '6A'

swz

No information given
incorrect parameters in the data field
Function not supported
File not found
Record not found
Not enough memory space in the file
LC inconsistent with TLV structure
incorrect parameters Pl-PZ
LC inconsistent with Pl-PZ
Referenced data not found

5.5 Logical channels

5.5.1 General concept

A logical channel. as seen at the interface, works as a
logical link to a DP.

There shall be independence of activity on one logical
channel from activity on another one. That is, command
interdependencies on one logical channel shall be inde-
pendent of command interdependencies on another
logical channel. However, logical channels may share
application-dependent security status and therefore may
have security—related command interdependencies across
logical channels leg, password verification).

Commands referring to a certain logical channel carry the
respective logical channel number in the CLA byte (see
tables 8 and 9}. Logical channels are numbered from O to
3. If a card supports the logical channel mechanism, then
the maximum number of available logical channels is
indicated in the card capabilities (see 8.3.6).

12

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© lSO/IEC

Command-response pairs work as currently described.
This part of lSO/IEC 7816 supports only command—
response pairs which shall be completed before initiating
a subsequent command-response pair. There shall be no
interleaving of commands and their responses across
logical channels; between the receipt of a command and
the sending of the response to that command only one
logical channel shall be active. When a logical channel is
opened. it remains open until explicitly closed by a
MANAGE CHANNEL command.

NOTES

1 More than one logical channel may be opened to the same
DF. if not excluded (see file accessibility in 5.1.5).

2 More than one logical channel may select the same EF. if
not excluded [see file accessibility in 5.1.5].

3 A SELECT FILE command on any logical channel will open a
current DF and possibly a current EF. Therefore. there is one
current DF and possibly one current EF per logical channel as a
result of the behavior of the SELECT FlLE command and file
accessing commands using a short EF identifier.

5.5.2 Basic logical channel

The basic logical channel is permanently available. When
numbered, its number is 0. When the class byte is coded
according to tables 8 and 9, the bits bl and b2 code the
logical channel number.

5.5.3 Opening a logical channel

A logical channel is opened by successful completion of

—either the SELECT FILE command referencing a DP
by assigning a logical channel number other than 0 in
the class byte ;

—or the open function of the MANAGE CHANNEL com-
mand either assigning a logical channel number other
than 0 in the command APDU or requesting a logical
channel number to be assigned by the card and
returned in the response.

5.5.4 Closing a logical channel

The close function of the MANAGE CHANNEL command may
be used to explicitly close a logical channel using the
logical channel number. After Closing, the logical channel
number will be available for re-use. The basic logical
channel shall not be closed.

5.6 Secure messaging

The goal of secure messaging (SM) is to protect lpart all
the messages to and from a card by ensuring two basic
security functions: data authentication and data
confidentiality.

Information Handling Services,

Apple Ex. 1030, p. 31

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 32

 Apple v. Fintiv

 IPR2020-00019

- 9351:9133 DEF-16836 3?.5 -

© ISOIJEC

Secure messaging is achieved by applying one or more
security mechanisms. Each security mechanism involves
an algorithm, a key, an argument and often, initial data.

- The transmission and reception of data fields may
be interleaved with the execution of security mecha-
nisms. This specification does not preclude the
determination by sequential analysis of which
mechanisms and which security items shall be used
for processing the remaining part of the data field.

0 Two or more security mechanisms may use the
same algorithm with different modes of operation
(see lSO/IEC 10116). The present specifications of the
padding rules do not preclude such a feature.

This clause defines 3 types of SM-related data objects:

— plain value data objects. intended for carrying plain
data.

— security mechanism data objects. intended for car-
rying computational results of security mechanisms,

7 auxiliary security data objects. intended for carry—
ing control references and response descriptors.

5.6.1 SM format concept

In each message involving security mechanisms based on
cryptography, the data field shall comply with the basic
encoding rules of ASN.1 (see ISO/lEC 8825 and annex D),
unless otherwise indicated by the class byte (see 5.4.1).

in the data field, the present SM format may be selected

— implicitly i.e., known before issuing the command.

— explicitly‘ i.e., fixed by the class byte {see table 9).

The SM format defined in this part of lSO/lEC 7818 is
EER-TLV coded.

- The context-specific class oi tags (range from ‘80' to
‘BF‘) is reserved for SM.

0 Data objects of the other classes may be present
(e.g., data objects of the application-specific Class).

0 Some SM—related data objects are recursive: their
plain value field is still BER-TLV coded and there, the
contextaspecific class is still reserved for SM.

in the context-specific class, the bit b1 of the tag fixes
whether the SM—related data object shall lb1=ll or not
([3120) be integrated in the computation of a data object
for authentication lf present, the data objects of the other
classes shall be integrated in such a Computation,

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISOIIEC 7816-4: 1995 (El

5.6.2 Plain value data objects

Encapsulation is mandatory for data not coded in BEB-TLV
and for BER-TLV, including SM—related data objects.
Encapsulation is optional for BER-TLV, not including SM-
related data objects. Table 19 shows plain data objects for
encapsulation.

Table 19— Plain value data objects

The plain value consists of
— BER~TLV, including SM-related data objects
— BER-TLVI but not SM»re|ated data objects
inot BEReTLVacoded data

'BO’, 'Bl'
'82‘, 'BB'
‘80‘, ‘Sl'

‘99' —SM status information leg. SWl—SWZl
5.8.3 Data objects for authentication

5.6.3.1 Cryptographic checksum data object

The computation of cryptographic checksums (see
lSO/lEC 9797) involves an initial check block, a secret key
and a block cipher algorithm that need not be reversible.
The algorithm under control of the related key basically
transforms a current input block of k bytes {typically 8 or
16) into a current output block of the same length.

The computation of a cryptographic checksum is per-
formed in the following consecutive stages.

— Initial stage — The initial stage sets the initial check
block which shall be one of the following blocks:

° the null block, i.e., k bytes valued to “00',
0 the chaining block, i.e., a result from former
computations. namely for a command, the final check
block of the previous command and for a response,
the final check block of the previous response

0 the initial value block provided e.g.. by the outside
world,

0 the auxiliary block resulting from transforming
auxiliary data under the related key. If the auxiliary
data is less than k bytes, then it is headed by bits set
to 0, up to the block length.

— Sequential stage — When table 9 is applicable (CLA :
'0X', '8X‘, ‘9X' or ‘AX‘l, if bits b4 and b3 of the class byte
are set to 1. then the first data block consists of the
header of the command APDU (CLA lNS P1 P2) followed
by one byte valued to '80' and k~5 bytes valued to ‘00'.

The cryptographic checksum shall integrate any SM~
related data object having a tag where b1=1 and any data
object with a tag outside the range from ’80‘ to ’BF'.
Those data objects shall be integrated data block by data
block in the current check block. The splitting into data
blocks shall be performed in the following way.

13

Information Handling Services,

Apple Ex. 1030, p. 32

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 33

 Apple v. Fintiv

 IPR2020-00019

- “851903 Elk-2603‘! ED]; -

ISOIIEC 7816-4: 1995 (E)

—The blocking shall be continuous at the border
between adjacent data objects to be integrated.

— The padding shall apply at the end of each data ob—
ject to be integrated followed either by a data object
not to be integrated or by no further data object.

The padding consists of one mandatory byte valued to
’80' followed, if needed, by O to k—l bytes set to '00', until
the respective data block is filled up to k bytes. Padding
for authentication has no influence on transmission as the
padding bytes shall not be transmitted.

The mode of operation is "cipher block chaining" [see
lSO/lEC 10116). The first input is the exclusive—or of the
initial check block with the first data block. The first output
results from the first input. The current input is the
exclusive—or of the previous output with the current data
block. The current output results from the current input.
The final check block is the last output,

—Final stage — The final stage extracts a cryptographic
checksum (first m bytes, at least 4) from the final check
block.

Table 20 shows the cryptographic checksum data object.

Table 20 —— Cryptographic checksum data object

Cryptographic checksum lat least 4 bytes)

5.6.3.2 Digital signature data obiect

The digital signature computation is typically based upon
asymmetric cryptographic techniques. There are two
types of digital signatures:

— digital signature with appendix,

—-digital signature giving message recovery.

The computation of a digital signature with appendix
implies the use of a hash function (see lSO/‘lEC 10118).
The data input either consists of the value of the digital
signature input data object (see table 21), or is determined
by the mechanism defined in 5.6.3.1.

The computation of a digital signature giving message
recovery (see lSO/lEC 9796) does not imply the use of a
hash function. However, according to the needs of the
application, a hash code may be present as a part of the
recovered message which may itself be Benito/coded.

Table 21 shows digital signature related data objects.

Table 21 —— Digital signature related data objects

'9A', ‘BA' Digital signature input data
'98 Digital signature

14

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© lSO/lEC

5.6.4 Data objects for confidentiality

Data objects for confidentiality are intended for carrying a
cryptogram which plain value consists of one of the
following 3 cases:

— BER-TLV, including SM—related data objects,

—— BER-TLV, not including SM-related data objects,
— not BEH-TLV coded data.

Padding has to be indicated when the plain value consists
of not BER-TLV coded data. When padding is applied but
not indicated, the rules defined in 5.6.3.1 shall apply.

Table 22 shows the data objects for confidentiality.

Table 22 —Data objects for confidentiality

Cryptogram, the plain value consisting of
— BER-TLV, including SM—related data objects
— BEFH'LV. but not SM»related data objects

‘86“, ‘87‘ Padding indicator byte (see table 23} followed by
cryptogram (plain value not coded in BER—TLV}

Every data object for confidentiality may use any
cryptographic algorithm and any mode of operation,
owing to an appropriate algorithm reference (see 5.8.5.1).
in the absence of an algorithm reference and when no
mechanism is implicitly selected for confidentiality a
default mechanism shall apply.

For the computation of a cryptogram which is preceded
by the padding indicator, the default mechanism is a block
cipher in “electronic code book“ mode {see lSO/IEC
10116). The use of a block cipher may involve padding.
Padding for confidentiality has an influence on
transmission, the cryptogram {one or more blocks) is
longer than the plain text.

Table 23 shows the padding indicator byte.

Table 23 — Padding indicator byte

— No further indication
— Padding as defined in 563.1
— No padding
— Proprietary
Other values are RFU

For the computation of a cryptogram not preceded by a
padding indicator byte, the default mechanism is a stream
cipher with an exclusive—or. In this case, the cryptograrn is
the exclusive-or of the string of data bytes to be concealed
with a concealing string of the same length. Concealment
thus requires no padding and the data objects concealed
in the value field are recovered by the same operation.

Information Handling Services,

Apple Ex. 1030, p. 33

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 34

 Apple v. Fintiv

 IPR2020-00019

© ISO/lEC

5.6.5 Auxiliary security data obieets

An algorithm. a key and, possibly. initial data may be
selected for each security mechanism

— implicitly, is. known before issuing the command.

—exp|icitly, by control references nested in a control
reference template.

Each command message may carry a response
descriptor template fixing the data objects required in
response. Inside the response descriptor. the security
mechanisms are not yet applied ; the receiving entity shall
apply them for constructing the response

5.6.5.1 Control references

Table 24 shows the control reference templates

Table 24—Control reference templates

— Template valid for cryptographic checksum
—- Template valid for digital signature
-—Template valid for confidentiality

Tag

‘B4‘. ’85‘
'BG‘, ‘B?’
‘88, ‘BS'

The last possible position of a control reference template
is just before the first data object to which the referred
mechanism applies. For example, the last possible
position of a template for cryptographic checksum is iust
before the first data object integrated in the computation.

Each control reference remains valid until a new control
reference is provided for the same mechanism. For
example, a command may fix control references for the
next command.

Each control reference template is intended for carrying
control reference data objects (see table 25): an algorithm
reference, a file reference, a key reference, an initial data
reference and. only in a control reference template for
confidentiality, a cryptogram contents reference.

The algorithm reference fixes an algorithm and its mode
of operation (see lSO/IEC 9979 and 10116). Structure and
coding of the algorithm reference are not defined in this
part of lSO/lEC 7816.

The file reference denotes the file where the key refer?
shoe is valid. if no file reference is present. then the key
reference is valid in the current DF.

The key reference identifies the key to be used.

The initial data reference, when applied to cryptographic
checksums, fixes the initial check block. If no initial data
reference is present and no initial check block is implicitly
selected, then the null block shall be used, Moreover.
before transmitting the first data object for confidentiality
using a stream cipher, a template for confidentiality shall
provide auxiliary data for initializing the computation of
the string of concealing bytes.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- 9551903 [11323100 853 -

ISOIIEC 7816-4: 1995 (E)

The cryptogram contents reference specifies the content
of the cryptogram (e.g., secret keys, initial password,
control words}, The first byte of the value field is named
the cryptogram descriptor byte and is mandatory. The
range '00' to 'TI'F' is RFU. The range ‘80’ to ‘FF' is
proprietary.

Table 25— Control reference data obiects

m Algorithm referenceFile reference

—file identifier or path
— DF name

Key reference
—for direct use
—for computing a session key
Initial data reference
- initial check block
— L=O. null block
— L=O. chaining block
— L=O. previous initial value block plus one

L=k, initial value block
- Auxiliary data
— L=0, prevzous exchanged challenge plus one

LiQ, no further indication
— L=0, index of a proprietary data element

Leo, value of a proprietary data element

Cryptograrn contents reference

5.6.5.2 Response descriptor

The response descriptor template, if present in the data
field of the command APDU, shall fix the structure of the
corresponding response. Empty data objects shall list all
data needed for producing the response.

The security items (algorithms. keys and initial data) used
for processing the data field of a command message may
be different from those used for producing the data field
of the subsequent response message.

The following rules shall apply.

— The card shall fill each empty primitive data object.

—Each control reference template present in the
response descriptor shall be present in the response
at the same place with the same control references
for algorithm, file and key. if the response descriptor
provides auxiliary data, then the respective data object
shall be empty in the response. If an empty reference
data object for auxiliary data is present in the
response descriptor, then it shall be full in the
response.

—By the relevant security mechanisms. with the
selected security items, the card shall produce all the
requested security mechanism data objects.

15

Information Handling Services,

Apple Ex. 1030, p. 34

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 35

 Apple v. Fintiv

 IPR2020-00019

ISO/IEC 7816-4: 1995 (E)

Table 26 shows the response descriptor template.

Table 26—Response descriptor template

'BA‘, ’BB‘ Response descriptor

5.6.6 SM status conditions

in any command using secure messaging, the following
specific error conditions may occur.

— SW1 : “69' with SW2 =
o '87' : Expected SM data objects missing.
0 "88‘ : SM data objects incorrect.

6 Basic interindustry commands

It shall not be mandatory for all cards complying to this
part of lSO/lEC 7816 to support all the described
commands or all the options of a supported command.

When international interchange is required, a set of card
system services and related commands and options shall
be used as defined in clause 9.

Table 11 provides a summary of the commands defined in
this part of lSO/lEC 7816.

The impact of secure messaging (see 5.6) on the message
structure is not described in this clause.

The list of error and warning conditions given in each
clause 6.x.5 is not exhaustive (see 5.4.5).

6.1 READ BINARY command

6.1.1 Definition and scope

The READ BINARY response message gives [part of] the
content of an EF with transparent structure.

6.1.2 Conditional usage and security

When the command contains a valid short EF identifier. it
sets the file as current EF.

The command is processed on the currently selected EF.
The command can be performed only if the security sta-
tus satisfies the security attributes defined for this EF for
the read function.

16

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- 14651303 orgasm]. 7‘1"? -

© iSO/iEC

The command shall be aborted if it is applied to an EF
without transparent structure.

6.1.3 Command message

Table 27 -— READ BINARY command APDU

CLA As defined in 5.4.]
NS '80‘

Pl—PZ See text below

Empty
Empty
Number of bytes to be read

Lc field
Data field

Le field
if b8=1 in P1, then b? and b6 of P1 are set to D lRFU bits).
[35 to bl of P1 are a short EF identifier and P2 is the offset
of the first byte to be read in data units from the
beginning of the file.

If b8=0 in P1. then P1 ll P2 is the offset of the first byte to
be read in data units from the beginning of the file.

6.1.4 Response message (nominal case)

if the L.3 field contains only zeroes, then within the limit of
256 for short length or 65 536 for extended length, all the
bytes until the end of the file should be read.

Table 28 — READ BINARY response APDU

Data field Data read (Le bytes)
SW1—SW2 Status bytes

6.1.5 Status conditions

The following specdic warning conditions may occur.
— SW1 = '62' with SW2 =
0 ‘81' : Part of returned data may be corrupted.
0 ’82' : End of file reached before reading Le bytes.

The following specific error conditions may occur.
——SW1 : '67‘ with SW2 :

- ‘00' : Wrong length (wrong LB field).
——-SW‘l = '69' with SW2 =
0 ‘81' : Command incompatible with file structure.
0 '82‘ : Security status not satisfied.
0 ‘86' : Command not allowed (no current EF).

— SW1 = '6A' with SW2 =
- '81‘ : Function not supported.
0 '82' : File not found.

SW1 = '68‘ with SW2 =
. 'OO‘ : Wrong parameters (offset outside the EF).
—— SW1 = ‘6C' with SW2 =

0 ‘XX' : Wrong length (wrong Le field ; 'XX‘ indicates the
exact length).

Information Handling Services,

Apple Ex. 1030, p. 35

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 36

 Apple v. Fintiv

 IPR2020-00019

© lSO/lEC

6.2 WRITE BINARY command

6.2.1 Definition and scope

The WRITE BINARY command message initiates the writing
of binary values into an EF.

Depending upon the file attributes, the command shall
perform one of the foilowing operations:

—the logical OR of the bits already present in the
card with the bits given in the command APDU
(logical erased state of the bits of the file is O},

—the logical AND of the bits already present in the
card with the bits given in the command APDU
(logical erased state of the bits of the file is l),

— the one-time write in the card of the bits given in
the command APDU.

When no indication is given in the data coding byte {see
table 86), the logical OR behavior shall apply.

6.2.2 Conditional usage and security

When the command contains a valid short EF identifier, it
sets the file as current EF.

The command is processed on the currently selected EF.
The command can be performed only if the security sta-
tus satisfies the security attributes for the write functions.

Once a WFliTE BINARY has been applied to a data unit of a
one—time write EF, any further write operation referring to
this data unit will be aborted if the content of the data unit
or the logical erased state indicator (if any) attached to this
data unit is different from the logical erased state.

The command shall be aborted if it is applied to an EF
without transparent structure.

6.2.3 Command message

Table 29 — WRITE BINARY command APDU

CLA As defined in 5.4.1
iNS ’DO‘

Pi-Pz See text below
Length of the subsequent data field
String of data units to be written
Empty

LC field
Data field

Le field
if b8=l in P1, then b? and b6 of P1 are set to O {RFU bits),
b5 to b1 of P1 are a short EF identifier and P2 is the offset
of the first byte to be written in data units from the
beginning of the file,

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

-., 4651303 0526182 EBB -

ISO/IEO 7816-4: 1995 (E)

If b8=0 in P1. then Pt II P2 is the offset of the first byte to
be written in data units from the beginning of the file,

6.2.4 Response message (nominal case)

Table 30 — WHITE BINARY response APDU

Data field Empty
SW1-SW2 Status bytes

6.2.5 Status conditions

The following specific warning condition may occur.
— SW1 = '63' with SW2 =
0 'CX': Counter (successful writing, but after using an
internal retry routine, 'X' at ‘0' indicates the number of
retries ; 'X' = '0‘ means that no counter is provided).

The following specific error conditions may occur.
— SW1 : ’65' with SW2 =
- '81‘ : Memory failure (unsuccessful writing).
—— SW1 = “67' with SW2 =

0 'OO' : Wrong length {wrong Lc field).
— SW1 = '89' with SW2 :
- '81' : Command incompatible with file structure.
- '82' : Security status not satisfied.
0 ‘86“: Command not allowed (no current EF).

— SW1 = ’6A' with SW2 =
O '8'l’ : Function not supported.
0 '82' : File not found.

— SW1 = '68' with SW2 =
0 “00‘ : Wrong parameters (offset outside the EF).

6.3 UPDATE BINARY command

6.3.1 Definition and scope

The UPDATE BlNAFi‘r‘ command message initiates the update
of the bits already present in an EF with the bits given in
the command APDU.

6.3.2 Conditional usage and security

When the command contains a valid short EF identifier, it
sets the file as current EF.

The command is processed on the currently selected EF.
The command can be performed only if the security sta—
tus satisfies the security attributes for the update function.

The command shall be aborted if it is applied to an EF
without transparent structure.

17

Information Handling Services,

Apple Ex. 1030, p. 36

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 37

 Apple v. Fintiv

 IPR2020-00019

ISDIIEC 7816-4: 1995 (El

6.3.3 Command message

Table 31 — UPDATE BlNARY command APDU

CLA As defined in 5.4.1
NS 136'

Pi-Pz See text below

Lc field
Data field

Le field

Length of the subsequent data field
String of data units to be updated
Empty

lf b8=1 in P1, then b? and b6 of P1 are set to 0 (RFU bits),
b5 to M of P1 are a short EF identifier and P2 is the offset
of the first byte to be updated in data units from the
beginning of the file.

if b8=0 in P1, then P1 ll P2 is the offset of the first byte to
be updated in data units from the beginning of the file.

6.3.4 Response message (nominal case)

Table 32 — UPDATE BINARY response APDU

Data field Empty
SW1—SW2 Status bytes

8.3.5 Status conditions

The following specific warning condition may occur.
—SW1 = '63' with SW2 =
- ‘CX': Counter (successful updating, but after using an
internal retry routine, 'X‘ at '0' indicates the number of
retries; 'X' = ’0' means that no counter is provided).

The following specific error conditions may occur.
— SW1 = '65' with SW2 =
0 '81' : Memory failure (unsuccessful updating).
— SW1 = ’67' with SW2 =
0 'OO' : Wrong length (wrong LC field).
— SW1 = ’69“ with SW2 =
0 ‘81‘ : Command incompatible with file structure
0 ‘82’ ' Security status not satisfied.
0 '86': Command not allowed (no current EF).

— SW1 = '6A‘ with SW2 :
c ‘81‘ : Function not supported.
0 '82‘ : File not found.

— SW1 = 'BB‘ with SW2 =
0 'DD‘ : Wrong parameters (offset outside the EF).

6.4 ERASE BINARY command

6.4.1 Definition and scope

The ERASE BINARY command message sets [part of] the
content of an EF to its logical erased state, sequentially,
starting from a given offset.

18

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- 9551.903 [liar—£51.03 SEE -

© lSO/IEC

6.4.2 Conditional usage and security

When the command contains a valid short EF identifier, it
sets the file as current EF.

The command is processed on the currently selected EF.
The command can be performed only if the security sta-
tus satisfies the security attributes for the erase function.

The command shall be aborted if it is applied to an EF
without transparent structure.

6.4.3 Command message

Table 33 —— ERASE BINARY command APDU

CLA As defined in 5.4.1
ENS ‘OE'

Pl-P2 See text below
Empty or '02'
See text below

Empty

l.c field
Data field

Le field
lf b8=1 in P1, then b7 and b6 of P1 are set to O (RFU bits),
b5 to bl of P1 are a short EF identifier and P2 is the offset
of the first byte to be erased in data units from the
beginning of the file.

If b8=0 in P1, then P1 ll P2 is the offset of the first byte to
be erased in data units from the beginning of the file.

if the data field is present, it codes the offset of the first
data unit not to be erased. This offset shall be higher than
the one coded in Pl-PZ. When the data field is empty, the
command erases up to the end of the file.

6.4.4 Response message (nominal case)

Table 34 — ERASE BINARY response APDU

Data field Empty
SW1—SW2 Status bytes

6.4.5 Status conditions

The following specific warning condition may occur.
—SW‘l = '63' with SW2 =
O ‘CX': Counter (successful erasing, but after using an
internal retry routine, 'X‘ as '0‘ indicates the number of
retries; 'X‘ = '0' means that no counter is provided).

The following specific error conditions may occur.
—SW1 = “65' with SW2 =
0 ‘81‘ : Memory failure (unsuccessful erasing}.
—SW1 = “67' with SW2 =
0 'OO' : Wrong length (wrong i.C field).

Information Handling Services,

Apple Ex. 1030, p. 37

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 38

 Apple v. Fintiv

 IPR2020-00019

© lSO/IEC

— SW1 = ‘69’ with SW2 =
0 ‘81' : Command incompatible with file structure.
- ’82‘ ; Security status not satisfied.
0 ’86”: Command not aliowed (no current EF}.
— SW1 = ‘6A‘ with SW2 =
. ‘81‘ : Function not supported.
0 ’82‘ : File not found.

SW1 = ‘68‘ with SW2 =
- ’OO‘ : Wrong parameters (offset outside the EF).

6.5 READ RECORDlS) command

6.5.1 Definition and scope

The READ Reconots} response message gives the contents
of the specified recordls) lor the beginning part of one
record} of an EF.

6.5.2 Conditional usage and security

The command can be performed only if the security
status satisfies the security attributes for this EF for the
read function

lf an EF is currently selected at the time of issuing the
command, then this command may be processed without
identification of this file.

When the command contains a valid short EF identifier, it
sets the file as current EF and resets the current record
pointer.

The command shall be aborted if applied to an EF without
record structure.

6.5.3 Command message

Table 35 — READ RECORD(S) command APDU

As defined in 5.4.1
‘82'
Record number or record identifier
of the first record to be read
1‘00‘ indicates the current record)
Reference control, according to table 36
Empty
Empty
Number of bytes to be read

l.c fieid
Data field

Le field

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- HBSL‘lBB BEEBLDH Ll'l'=l -

{SO/[EC 7816-4: 1995 (El

Table 36 — Coding of the reference control P2

be“ here“ b3 b2mm
0 0 D 0 0 —Currently selected EF
x x x x x — Short EF identifier

(not all equal)
RFU

Usage of record number in P1
— Read record P1
— Read all records

from P1 up to the last
— Read all records

from the last up to Pl
RFU

Usage of record identifier in P1
— Read first occurrence
— Read last occurrence
— Read next occurrence
— Read previous occurrence

6.5.4 Response message (nominal case)

If the Le field contains only zeroes. then depending on
b3b2b1 of P2 and within the limit of 256 for short length
or 85 536 for extended length, the command should read
completely

— either the single requested record,

-— or the requested sequence of records.

Tabie 37 — READ RECORDls) response APDU

Data field L, (may be equal to Le) bytes, see table 38
mm

When the records are SIMPLE-11v data objects (see 5.4.4),
table 38 illustrates the format of the data field of the
response message.

Table 38-1 — Data field of the response
when reading for one record

Case a — Partial read of one record

Tn l.n First data bytes of the record
1 byte 1 or 3 bytes

Le bytes m>

This case applies when the Le field does not contain onlyzeroes.

<___._-__....__...,_.

Case b — Complete read of one record

Tn Ln Whole data bytes of the record
1 byte 1 or 3 bytes Ln bytes

This case applies when the Le field contains only zeroes.

19

Information Handling Services,

Apple Ex. 1030, p. 38

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 39

 Apple v. Fintiv

 IPR2020-00019

ISO/IEO 7816-4: 1995 {El

Table 38-2 — Data field of the response
when reading for several records

Case c — Partial read of a record sequence

Le bytes

This case applies when the Le field does not contain onlyzeroes.

First bytes of record # n+m
Tn+m “ Ln+m ii Vn+m

_________________>

Record # n
Tn ll Lnllvn

Case (3 — Read multiple records up to the file and
Record if n Record if n+m
Tn ll Ln l| Vn Tmm ll Ln+m ll me

This case applies when the l.e field contains only zeroes.

The comparison of the length of the data field with its TLV
structure gives the nature of the data: the unique record
(read one record) or the last record (read all records) is
incomplete, complete or padded.

NOTE—if TLV coding is not used. then the read—all—records
function results in receiving severalrecords without standard
delimitation of the records.

6.5.5 Status conditions

The foliowing specific warning conditions may occur.
— SW1 = ‘62‘ with SW2 =
0 '81' : Part of returned data may be corrupted.
- '82' : End of record reached before Le bytes.

The following specific error conditions may occur.
—SW1 = '67' with SW2 =

o '00' -. Wrong length (empty Le field).
—SW‘l = '69' with SW2 =
o “81‘ : Command incompatible with file structure.
0 '82' : Security status not satisfied.
— SW1 = ‘6A‘ with SW2 =
0 '81‘ : Function not supported.
0 '82' : File not found.
- '83': Record not found.

—— SW1 : ‘60 with SW2 =

- 'XX' : Wrong length (wrong Le field; ‘XX' indicates the
exact iength).

6.6 WRITE RECORD command

6.6.1 Definition and scope

The WRlTE RECORD command message initiates one of the
following operations:

— the write once of a record;

—the logical OR of the data bytes of a record already
present in the card with the data bytes of the record
given in the command APDU;

- #6515103 OBI—£51105 335 -

© lSO/iEC

“the logical AND of the data bytes of a record
already present in the card with the data bytes of the
record given in the command APDU.

When no indication is given in the data coding byte (see
table 86), the logical OR operation shall apply.

When using current record addressing, the command
shall set the record pointer on the successfully written
record.

6.6.2 Conditional usage and security

The command can be performed only if the security sta—
tus satisfies the security attributes for this EF for the write
functions.

If an EF is currently selected at the time of issuing the
command, then this command may be processed without
identification of this file.

When the command contains a valid short EF identifier, it
sets the file as current EF and resets the current record
pointer.

The command shall be aborted if applied to an EF without
record structure.

The “previous“ option of the command (P2 = xxxxxOll).
applied to a cyclic file, has the same behavior as
APPEND RECORD.

6.8.3 Command message

Table 39 — wnrre RECORD command APDU

As defined in 5.4.1
‘D2‘

PI Pi: ‘OO‘ designates the current record.
P1: '00' is the number of the specified record.

P2 According to table 40
LC field Length of the subsequent data field

Data field Record to be written

l.e field Empty

Table 40 — Coding of the reference control P2

bebvmsmmb—
0 0 O O 0 —Currently selected EF
x x x x x —Short EF identifier

{not ail equal}
— First record
— Last record
— Next record
— Previous record
— Record number given in P1

Any other value

When the records are SlMPLE-TLV data objects (see 5A4),
table 41 illustrates the format of the data field of the
command message.

Information Handling Services,

Apple Ex. 1030, p. 39

Apple v. Fintiv

|PR2020-00019

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

Apple Ex. 1030, p. 40

 Apple v. Fintiv

 IPR2020-00019

© lSO/lEC

Table 41 — Data field of the command
Complete write of one record

Tn Ln Whole data bytes of the record
1 byte 1 or 3 bytes Ln bytes

6.6.4 Response message (nominal case)

Table 42 — WRITE RECORD response APDU

Data field Empty
SW1~SW2 Status bytes

6 .6. 5 Status conditions

The following specific warning condition may occur.
—SW1 = '63‘ with SW2 =

0 ‘CX': Counter (successful writing, but after using an
internal retry routine, 'X' a: '0‘ indicates the number of
retries; 'X’ = ’0' means that no counter is provided).

The following specific error conditions may occur.
—SW1 = '65' with SW2 =
0 ’81‘ : Memory failure (unsuccessfui writing).
—SW1 = ’67‘ with SW2 =
- ‘00' : Wrong length (empty Lc field).
—SW1 = ‘69“ with SW2 =
- ‘81“ : Command incompatible with file structure.
' '82‘ : Security status not satisfied.
0 “86‘: Command not allowed (no current EF).
— SW“! = ‘6A’ with SW2 =
v ‘81' : Function not supported.
. ’82‘ : File not found.
- ’83‘: Record not found.
- '84' : Not enough memory space in the file.
i '85“ : LC inconSistent with TLV structure.

5.7 APPEND RECORD command

6.7.1 Definition and scope

The APPEND RECORD command message initiates either the
appending of a record at the end of an EF of linear struc‘
ture or the writing of record number 1 in an EF of cyclic
structure (see 5.1.4).

The command shall set the record pointer on the success“
fully appended record.

6.7.2 Conditional usage and security

The command can be performed only if the security sta-
tus satisfies the security attributes for this EF for the
append function,

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- HSSL‘lDB DEBBIE”: B71. -

ISO/[EC 7816—4: 1995 (El

if an EF is currently selected at the time of issuing the
command, then this command may be processed without
identification of this file.

When the command contains a valid short EF identifier. it
sets the file as current EF and resets the current record
pointer.

The command shall! be aborted if applied to an EF without
record structure.

NOTE ~ If this command is applied to an EF of cyclic structure
full of records, then the record with the highest record number
is replaced. This record becomes record number 1.

6.7 .3 Command message

Table 43 — APPEND RECORD command APDU

As defined in 5.4.1
'E2‘

Only P1 = ‘00‘ is valid
According to table 44
Length of the subsequent data field
Record to be appended
Empty

LC field
Data field

Le field

Table 44 — Coding of the reference control P2

webs bibs b2 b1

0 O O O O O O 0 —Currently selected EF
x x x x x O O 0 —ShortEFidentifier

(not all equal)
Any other value

When the records are SlMPLE—TLV data objects (see 5.4.4).
table 45 illustrates the format of the data field of the
command message.

Table 45 —- Data field of the command
Complete append of one record

Ty.E Ln Whole data bytes of the record
1 byte 1 or 3 bytes Ln bytes

6.1.4 Response message lnominal case]

Table 46 — APPEND RECORD response APDU

Data field Empty
SW1»SW2 Status bytes

6.7.5 Status conditions

The following specific warning condition may occur.
—— SW1 = ‘63’ With SW2 =
0 'CX‘: Counter (successful appending, but after using
an internal retry routine, 'X‘ at '0‘ indicates the number
of retries ; 'X' = ’0' means that no counter is provided).

21

Information Handling Services,

Apple Ex. 1030, p. 40

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 41

 Apple v. Fintiv

 IPR2020-00019

ISOliEC 7816-4: 1995 (E)

The following specific error conditions may occur.
— SW1 = '65' with SW2 =
* '81‘ : Memory failure (unsuccesstul appending].

SW1 = ’67' with SW2 =
0 ‘00' : Wrong length (empty Lc field).
—-SW1 : ‘69' with SW2 =
0 '81“ : Command incompatible with file structure.
- '82‘ ; Security status not satisfied.
0 '86' : Command not allowed (no current EF).

—SW1 = ‘6A' with SW2 =
0 '81‘ : Function not supported.
0 ‘82‘ : File not found.
0 “84‘ : Not enough memory space in the file.
0 ”85‘ : LC inconsistent with TLV structure.

6.8 UPDATE RECORD command

6.8.1 Definition and scope

The UPDATE RECORD command message initiates the
updating of a specific record with the bits given in the
command APDU.

When using current record addressing, the command
shall set the record pointer on the successfully updated
record.

6.8.2 Conditional usage and security

The command can be performed only if the security sta-
tus satisfies the security attributes for this EF for the
update function.

If an EF is currently selected at the time of issuing the
command. then this command may be processed without
identification of this file.

When the command contains a valid short EF identifier, it
sets the file as current EF and resets the current record
pointer.

The command shall be aborted if applied to an EF without
record structure.

When the command applies to an EF with linear fixed or
cyclic structure. then it shall be aborted if the record length
is different from the length of the existing record.

When the command applies to an EF with linear variable
structure, then it may be carried out when the record
length is different from the length of the existing record

The “previous" option of the command (P2 = xxxxx011l,
appiied to a cyclic file, has the same behavior asAPPEND RECORD.

22

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

145511303 DEBBIE? 1.03 -

© lSO/IEC

6.8.3 Command message

Table 47 —— UPDATE RECORD command APDU

As defined in 541
‘DC'

Pl Pi = “00' designates the current record
Pl as ‘00‘ is the number of the specified record

P? According to table 48
Length of the subsequent data field
Record to be updated
Empty

LC field
Data field

Le field

Table 48 — Coding of the reference control P2

0 O 0 0 0 —Currently selected EF
x x x x x — Short EF identifier

{not all equal)

 — First record
— Last record
— Next record
— Previous record
— Record number given in P1

Any other value

When the records are SlMPLE—TLV data objects (see 5.4.4).
table 49 illustrates the format of the data field of the
command message.

Table 49 — Data field of the command
Complete update of one record

Tn Ln Whole data bytes of the record
1 byte 1 or 3 bytes Ln bytes

6.8.4 Response message (nominal case)

Table 50 — UPDATE RECORD response APDU

Data field Empty
SW1-SW2 Status bytes

6.8.5 Status conditions

The following specific warning condition may occur.
— SW1 2 '63‘ with SW2 =
- 'CX': Counter (successful updating, but after using an
internal retry routine, 'X' ¢ '0‘ indicates the number of
retries; 'X' = '0‘ means that no counter is provided).

The following specific error conditions may occur.
— SW‘l = '85’ with SW2 =
- ‘81“ : Memory failure (unsuccessfui updating).
—SW1 = '67' with SW2 =
- ‘00’ :Wrong length (empty l.c field).

Information Handling Services,

Apple Ex. 1030, p. 41

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 42

 Apple v. Fintiv

 IPR2020-00019

- HBELQUB 13526106 Ell-1L1 -

© lSO/lEC

—— SW1 = '69' with SW2 =
o '81“ : Command incompatible with file structure.
- “82‘ : Security status not satisfied.
' ‘86' : Command not allowed (no current EF'}.
—SW1 = '6A‘ with SW2 =

’81‘ : Function not supported.
‘82' ; File not found.

: Record not found.
‘84‘ : Not enough memory space in the file.
’85' : Li3 inconsistent with TLV structure.

6.9 GET DATA command

6.9.1 Definition and scope

The GET DATA command is used for the retrieval of one
primitive data object, or the retrieval of one or more data
objects contained in a constructed data object, within the
current context (e.g., application—specific environment or
current DP).

6.9.2 Conditional usage and security

The command can be pedormed only if the security
status satisfies the security conditions defined by the
application within the context for the function.

6.9.3 Command message

Table 51 — GET DATA command APDU

CLA As defined in 5.4.1
lNS 'CA‘

P1«P2 See table 52

Empty
Empty
Number of bytes expected in response

LC field
Data field

Le field
Table 52 — Coding of the parameters Pt-PZ

“0000‘ to '003F' RFU

“0040‘ to 'OOFF' BER—TLV tag (1 byte} in P2
‘0100‘ to 'OlFF'
‘0200‘ to ‘OZFF'

Application data (proprietary coding}
SIMPLE—TLV tag in P2

'0300‘ to ‘3FFF' RFU

'4000' to ‘FFFF' BER -TLV tag [2 bytes) in P1-P2

Get application data

0 When the value of Pl-PZ lies in the range from '0100‘ to
'OlFF‘, the value of P1-P2 shall be an identifier reserved
for card internal tests and for proprietary services
meaningful within a given application context.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISO/IEC 7816—4: 1995 (El

Get data objects

' When the value of P1—P2 lies in the range from '0040' to
'OOFF'. the value of P2 shall be a BER-TLV tag on a single
byte. The value 'OOFF‘ is reserved for obtaining all the
common BER-TLV data objects readable in the context.

0 When the value of P1—P2 lies in the range from ‘0200' to
‘OZFF'. the value of P2 shall be a SlMPLE-TLV tag. The value
'0200' is RFU. The value 'O2FF' is reserved for obtaining
all the common SIMPLE-TLV data objects readable in thecontext.

' When the value of Pi -P2 lies in the range from '4000' to
‘FFFF', the value of P1-P2 shall be a BEH-TLV tag on two
bytes, The values ‘4000‘ and ‘FFFF' are RFU.

When a primitive data object is requested. the data field of
the response message shall contain the value of the
corresponding primitive data object.

When a constructed data object is requested, the data
field of the response message shall contain the value of
the constructed data object, i.e., data objects including
their tag, length and value.

6.9.4 Response message (nominal case)

If the l.e field contains only zeroes, then within the limit of
256 for short length or 65 536 for extended length. all the
required information should be returned.

Table 53 -- GET DATA response APDU

Data field Lr (may be equal to Le) bytes
SW1—SW2 Status bytes

6.9.5 Status conditions

The following specific warning condition may occur.
—— SW1 : “62‘ with SW2 =
0 '81' : Part of returned data may be corrupted.

The following specific error conditions may occur.
— SW1 = '67' with SW2 =
t ‘00' : Wrong length (empty Le field).
— SW1 = '69' with SW2 =
0 '82' : Security status not satisfied.
0 '85‘ : Conditions of use not satisfied.

—SW1 2 'GA‘ with SW2 =
. '81’ : Function not supported.
0 '88“ : Referenced data (data objects) not found.
— SW1 = BC with SW2 =
9 ‘XX‘ : Wrong length (wrong Le field; ‘XX' indicates the
exact length).

23

Information Handling Services,

Apple Ex. 1030, p. 42

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 43

 Apple v. Fintiv

 IPR2020-00019

ISOIIEC 7816-4: 1995 (E)

6.1 0 PUT DATA command

6.10.1 Definition and scope

The PUT DATA command is used for storing one primitive
data object, or one or more data objects contained in a
constructed data object, within the current context (e.g.,
application-specific environment or current OF). The exact
storing functions (writing once and/or updating and/or
appending) are to be induced by the definition or the
nature of the data objects.

NOTE—The command could be used. for example, to update
data objects.

6.10.2 Conditional usage and security

The command can be performed only if the security
status satisfies the security conditions defined by the
application within the context for the lunctionlsl.

6. 1 0.3 Command message

Table 54 — PUT DATA command APDU

CLA As defined in 5.4.1
INS ‘DA‘

P1—P2 See table 55

LC field
Data field

Le "field

Length of the subsequent data field
Parameters and data to be written
Empty

Table 55 — Coding of the parameters P1-P2

'0000' to '003F' RFU

‘0040' to our? sea-m tag (1 byte) in 92
‘0100‘ to ‘OlFF‘
'0200‘ to ‘02FF'

Application data (proprietary coding}
SlMPLE-TLV tag in P2

‘0300' to ‘3FFF' RFU

'4000' to 'FFFF' BER-TLV tag (2 bytes) in P‘l-PZ

Store application data

- When the value of P1 -P2 lies in the range from '0100' to
'01 FF', the value of P1-P2 shall be an identifier reserved
for card internal tests and for proprietary services
meaningful within a given application context.

24

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- “351933 {”326qu 1'50 -

© lSO/lEC

Store data objects

0 When the value of P1432 lies in the range from '0040' to
'OOFF‘, the value of P2 shall be a BER-TLV tag on a single
byte. The value 'OOFF‘ is reserved for indicating that the
data field carries BER-TLV data objects.

0 When the value of Fl—PZ lies in the range from ‘0200' to
'OZFF‘, the value of P2 shall be a SlMPLE-TLV tag. The value
'0200' is RFU, The value ‘OZFF‘ is reserved for indicating
that the data field carries SiMPLE—TLV data objects.

0 When the value of PlePZ lies in the range from '4000' to
‘FFFF', the value of Pl-PZ shall be a BER-m tag on two
bytes. The values “4000‘ and 'FFFF' are RFU.

When a primitive data object is provided, the data field of
the command message shall contain the value of the
corresponding primitive data object.

When a constructed data object is provided, the data field
of the command message shall contain the value of the
constructed data object, i.e., data objects including their
tag, length and value.

6.10.4 Response message (nominal case)

Table 56 — PUT DATA response APDU

Data field Empty
SWLSWZ Status bytes

6.10.5 Status conditions

The following specific warning conditions may occur.
-— SW1 = ‘63' with SW2 =

0 ‘CX‘: Counter (successful storing, but after using an
internal retry routine. ‘X‘ s '0‘ indicates the number of
retries; ‘X‘ = '0' means that no counter is provided).

The following specific error conditions may occur.
— SW1 = '65‘ with SW2 =
- ‘81‘ : Memory failure (unsuccessful storing).
— SW1 = ‘67’ with SW2 =

o 'OO‘ : Wrong length (wrong Lc field).
—SW1 = '69“ with SW2 =
0 '82‘ : Security status not satisfied.
0 ‘85‘ : Conditions of use not satisfied.

SW1 = ‘6A' with SW2 =
‘80': incorrect parameters in the data field.
‘81“ : Function not supported.
'84' : Not enough memory space in the file.
’85' : l.C inconsistent with er structure.

Information Handling Services,

Apple Ex. 1030, p. 43

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 44

 Apple v. Fintiv

 IPR2020-00019

© lSO/lEC

6.11 SELECT FILE command

6.11.1 Definition and scope

Asuccessful SELECT FILE sets a current file within a logical
channel (see 5.5). Subsequent commands may implicitly
refer to the current file through that logical channel.

Selecting 3 BF (which may be the MF) sets it as current
DF. After such a selection, an implicit current EF may be
referred to through that logical channel.

Selecting an EF sets a pair of current files: the EF and its
parent file.

After the answer to reset. the MF is implicitly selected
through the basic logical channel (see 5.5.2), unless
specified differently in the historical bytes (see 8) or in the
initial data string (see 9).

NOTE —A direct selection by DF name can be used for select-
ing applications registered according to part 5 of iSD/IEC i‘B‘lG.

6.11.2 Conditional usage and security

The following conditions shall apply to each open logical
channel.

Unless otherwise specified, the correct execution of the
command modifies the security status (see 5.2.1)
according to the following rules.

— When the current EF is changed. or when there is
no current EF, the security status, if any, specific to a
former current EF is lost.

—When the current DF is a descendant of. or identi-
cal to the former current DF, the security status spe-
cific to the former current DF is maintained.

—-—When the current DF is neither a descendant of,
nor identical to the former current DF, the security
status specific to the former current OP is lost. The
security status common to all common ancestors of
the previous and new current DF is maintained.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- HBSLHDEI Biz-26111.0 ?TE -

ISO/[EC 7816-4: 1995 {E}

6.11.3 Command message

Table 57 — SELECT FILE command APDU

As defined in 5.4.1
iA4.
Selection control, see table 58
Selection options. see table 59
Empty or length of the subsequent data field
If present, according to P‘l—PZ,

— file identifier
-— path from the MF
—— path from the current DF
— DF name

Empty or maxm‘aum length of data expected
in response

Lc field
Data field

Le field

Table 58 — Coding of the selection control P1

mammot—
Selection by file identifier
—— Select MF, DF or EF
(data field = identifier or empty)
— Select child DF

{data field = DF identifier)
-— Select EF under current DF

(data field = EF identifier)
— Select parent DF of the

current DF (empty data field}
Selection by DF name
—- Direct selection by DF name

(date field = DF namel
FiFU
RFU
RFU

Selection by path (see 5.1.2)
— Select from MF
(data field = path without the

identifier of the MF)
— Select from current DF
(data field = path without the
identifier of the current DFl

RFU
RFU

Any other value

25

Information Handling Services,

Apple Ex. 1030, p. 44

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 45

 Apple v. Fintiv

 IPR2020-00019

ISOIIEC 7816-4: 1995 (E?

When P1 = '00’, the card knows either because of a
specific coding of the file identifier or because of the
context of execution of the command if the file to select is
the MF, a DP or an EF.

When P1-P2 = '0000‘, if a file identifier is provided, then it
shall be unique in the following environments:

-— the immediate children of the current DF.

— the parent DF,
— the immediate children of the parent DF.

If Pi—PQ = '0000' and if the data field is empty or equal to
'3FOO‘, then select the MF.

When P1 = '04‘, the data field is 3 OF name. possibly right
truncated. When supported. successive such commands
with the same data field shall select DFs whose names
match with the data field, i.e., start with the command
data field. If the card accepts the SELECT FlLE command
with an empty data field, then all or a subset of the DPS
can be successively selected.

NOTE — See 8.3.6 for the selection methods supported by thecard.

Table 59 —— Coding of the selection options P2

madam...“
— First or only occurrence
— Last occurrence
-— Next occurrence
— Previous occurrence

File control information option
{see 5.1.5)

— Return FCI, optional template
— Return FCP template
—Return FMD template

0
0
0
O

0

Cl
0
0

Any other value

6.11.4 Response message {nominal case)

If the Le field contains only zeroes, than within the limit of
256 for short length or 65 536 for extended length, all the
bytes corresponding to the selection option should be
returned.

Table 60 — SELECT FILE response APDU

Data field information according to P2 (at most Le bytes)
SW1-SW2 Status bytes

6.11.5 Status conditions

The following specific warning conditions may occur.
— SW1 = '62’ with SW2 =
- “83': Selected file invalidated,
. '84' : FCI not formatted according to 5.1.5.

The following specific error conditions may occur.
— SW1 = ‘6A‘ with SW2 =
. '81' : Function not supported.
0 '82' : File not found.
0 ‘86“: Incorrect parameters P17P2.
- '8?" : LC inconsistent with P1-P2.

26

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- Erasmus 05351.11. [33“! -

© lSO/lEC

6.12 VERIFY command

6.12.1 Definition and scope

The VERIFY command initiates the comparison in the card
of the verification data sent from the interface device with
the reference data stored in the card {e.g.. password}.

6.12.2 Conditional usage and security

The security status may be modified as a result of a com-
parison. Unsuccessful comparisons may be recorded in
the card leg, to limit the number of further attempts of
the use of the reference data).

6. 1 2.3 Command message

Table 61 — VERIFY command APDU

As defined in 5.4.1
.20.
'00‘ {other values are RFU)
Qualifier of the reference data, see table 62

LC field
Data field

Le field

Empty or length of the subsequent data field
Empty or verification data
Empty

Table 82 — Coding of the reference control P2

, — —Global reference data
(e.g., card password)

— Specific reference data
le.g., DF specific password}
00 {other values are RFU)

— Reference data number

NOTES

1 P2 = '00‘ is reserved to indicate that no particular qualifier is
used, in those cards where the VERlFY command references the
secret data unambiguously.
2 The reference data number may be for example a password
number or a short EF identifier.

3 When the body is empty. the command may be used either
to retrieve the number ’X‘ of further allowed retries (SW1-
SW2 = ‘SSCX'l or to check whether the verification is not
required {SW1»SW2 = '9000'].

6.12.4 Response message (nominal case)

Table 63 — VERlFY response APDU

Data field Empty
SW‘l-SWZ Status bytes

6.12.5 Status conditions

The following specific warning conditions may occur.
— SW“! = ‘63‘ with SW2 =
I ‘00‘ : No information given (verification failed).

Information Handling Services,

Apple Ex. 1030, p. 45

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 46

 Apple v. Fintiv

 IPR2020-00019

© lSO/IEC

. 'CX' : Counter (verification failed; ‘X‘ indicates the
number of further allowed retries).

The following specific error conditions may occur.
— SW1 = '69‘ with SW2 =
0 '83‘: Authentication method blocked.
G '84' : Referenced data invalidated.

—SWl = ‘6A‘ with SW2 =
0 '86': incorrect parameters P‘l—P2.
0 '88' : Referenced data not found.

6.13 INTERNAL AUTHENTICATE command

6.13.1 Definition and scope

The lNTERNAL AUTHENTICATE command initiates the compu-
tation of the authentication data by the card using the
challenge data sent from the interface device and a
relevant secret (e.g., a key) stored in the card.

When the relevant secret is attached to the MFI the
command may be used to authenticate the card as a
whote.

When the relevant secret is attached to another DF. the
command may be used to authenticate that DF.

6.13.2 Conditional usage and security

The successful execution of the command may be subject
to successful completion of prior commands le.g., VERIFY,
SELECT FlLE) or selections (0.9., the relevant secret).

It a key and an algorithm are currently selected when
issuing the command, then the command may implicitly
use the key and the algorithm.

The number of times the command is issued may be
recorded in the card to limit the number of further
attempts of using the relevant secret or the algorithm.

6, 1 3 .3 Command message

Table 64 — lNTEfiNAL AUTHENTICATE command APDU

As defined :n 5.41
‘88‘

Pl Reference of the algorithm in the card
P2 Reference of the secret. see table 65

Length of the subsequent data fieldLc field
Data field Authentication related data le,g., challenge)

Le field Maximum number of bytes expected in response

P1 = ‘00' indicates that no information is given. The
reference of the algorithm is known either before issuing
the command or is provided in the data field.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- 145.5qu3 DEBBLlE 5?.5 -

ISOIIEC 7816-4: 1995 (El

P2 = ‘00' indicates that no information is given. The
reference of the secret is known either before issuing the
command or is provided in the data field.

Table 65 — Coding of the reference control P2

raw-Wm...“
0 O O 0 O O 0 O —No information is given

 — Global reference data

(8.9.. an MP specific key)
— Specific reference data

leg, a DP specific key)
00 (other values are RFU)

—— Number of the secret

NOTE—The number of the secret may be for example a key
number or a short EF identifier.

6.13.4 Response message (nominal case)

Table 66 — lNTERNAL AUTHENTICATE response APDU
Data field Authentication related data

(5.9.. response to the challenge)
SW1-SW2 Status bytes

NOTE—The response message may include data useful for
further application security functions le.g.. random number).

6.13.5 Status conditions

The following specific error conditions may occur.
— SW1 : '69' With SW2 2
o ‘84‘ : Referenced data invalidated.
- ‘85' : Conditions of use not satisfied.

— SW1 : ‘BA' with SW2 2
- ‘86': Incorrect parameters Pi~P2.
0 ‘88' ; Referenced data not found.

6.14 EXTERNAL AUTHENTICATE command

6.14.1 Definition and scope

The EXTERNAL AUTHENTICATE command conditionally
updates the security status usmg the result (yes or no) of
the computation by the card based on a challenge
previously issued by the card (e.g.. by 3 GET CHALLENGE
command), a key possibly secret stored in the card and
authentication data transmitted by the interface device.

6.14.2 Conditional usage and security

The successful execution of the command requires that
the last challenge obtained from the card is valid.

Unsuccessful comparisons may be recorded in the card
(e.g., to limit the number of further attempts of the use of
the reference data).

27

Information Handling Services,

Apple Ex. 1030, p. 46

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 47

 Apple v. Fintiv

 IPR2020-00019

ISO/IE6 7816-4: 1995 (El

6. 1 4.3 Command message

Table 67 —— EXTERNAL AUTHENTICATE command APDU

As defined in 5.4.1
‘82‘

Reference of the algorithm in the card
Reference of the secret, see table 68

Lc field
Data field

Empty or length of the subsequent data field
Empty or authentication related data
(9.9., response to the challenge)

Le field Empty

P1 = '00‘ indicates that no information is given. The
reference of the algorithm is known either before issuing
the command or is provided in the data field.

P2 = '00‘ indicates that no information is given. The
reference of the secret is known either before issuing the
command or is provided in the data field.

Tabie 68 —- Coding of the reference control P2
.8........._

— No information is given
-— Global reference data

(e.g.. an MP specific key)
— Specific reference data

ie.g., E OF specific key)
00 (other values are RFU)

7 Number of the secret

NOTES

1 The number of the secret may be for example a key
number or a short EF identifier.

2 When the body is empty, the command may be used either
to retrieve the number 'X' of further allowed retries (SW1~
SW2 = ’63CX') or to check whether the verification is not
required (SW1—SW2 : ‘SOOO’I,

6.14.4 Response message (nominal case)

Table 69 — EXTERNAL AUTHENTICATE response APDU

Data field Empty
SW1-SW2 Status bytes

6.14.5 Status conditions

The following specific warning conditions may occur.
—SW1 = ’63’ with SW2 =

e '00' : No information given (authentication failed).
e 'CX'; Counter (authentication failed; 'X‘ indicates the
number of further allowed retries),

28

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- #651903 DbEfilI-B ‘40]. -

© ISO/lEC

The following specific error conditions may occur.
—— SW1 = ‘67’ with SW2 =

- ‘OO' : Wrong length (the Lc field is incorrect).
- SW1 = '69‘ with SW2 =
0 ‘83‘ : Authentication method blocked.
0 ”84' : Referenced data invalidated
0 ‘85' : Conditions of use not satisfied (the command is
not allowed in the context).
~ SW1 = ‘6A‘ with SW2 :
- ‘86‘: lncorrect parameters P1~P2.
0 '88' : Referenced data not found.

6.15 GET CHALLENGE command

6.15.1 Definition and scope

The GET CHALLENGE command requires the issuing of a
challenge (e.g., random number) for use in a security
related procedure (9.9., EXTERNAL AUTHENTICATE command).

6.15.2 Conditional usage and security

The challenge is valid at least for the next command. No
further condition is specified in this part of lSO/lEC 7816.

8. 1 5.3 Command message

Table 70 — GET CHALLENGE command APDU

CLA As defined in 54.1
ms ‘84'

P1»P2 ‘0000‘ (other values are RFU)
Empty
Empty
Maximum length of the expected response

Lc field
Data field

l.s field
6.15.4 Response message (nominal case)

Table 71 — GET CHALLENGE response APDU

Data field Challenge
SW1-SW2 Status bytes

6.15.5 Status conditions

The following specific error conditions may occur.
— SW1 = '6A‘ with SW2 =
o ‘81‘ : Function not supported.
. '86': Incorrect parameters P1-P2.

Information Handling Services,

Apple Ex. 1030, p. 47

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 48

 Apple v. Fintiv

 IPR2020-00019

'- HBSL‘lDB 05881.11” Ellis -

© lSO/IEC

6.16 MANAGE CHANNEL command

6.16.1 Definition and scope

The MANAGE CHANNEL command opens and Closes logicalchannels.

The Open function opens a new logical channel other than
the basic one. Options are provided for the card to assign
a logical channel number, or for the logical channel
number to be supplied to the card.

The close function explicitly closes a logical channel other
than the basic one. After the successful closing, the logical
channel shall be available for re—use.

6.16.2 Conditional usage and security

When the open function is performed from the basic
logical channel, then after a successful open, the MF shall
be implicitly selected as the current DF and the security
status for the new logical channel should be the same as
for the basic logical channel after ATR. The security status
of the new logical channel should be separate from that of
any other logical channel.

When the open function is performed from a logical
channel which is not the basic one, then after a successful
open, the current DF of the logical channel from which the
command was issued shall be selected as the current DF
and the security status for the new logical channel should
be the same as for the logical channel from which the
open function was performed.

After a successful close function. the security status
related to this logical channel is lost.

6.16.3 Command message

Table 72 — MANAGE CHANNEL command APDU

CLA As defined in 54.1
NS '70‘
Pl P1 = ’00’ to open a logical channel

P1 = ‘80‘ to Close a logical channel
(other vaiues are RFU)

P2 ‘00‘, '01‘, '02' or ‘03‘ (other values are RFU)
LC field

Data field

Le field

Empty
Empty
01‘ if P192 = '0000‘
Empty if Pi-PZ at ‘0000’

Bit b8 of P1 is used to indicate the open function or the
close function; if 138 is 0 then MANAGE CHANNEL shall open
a logical channel and if b8 is 1 than MANAGE CHANNEL shall
close a logical channel.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

lSO/IEC 7816-4: 1995 (E)

For the open function (P1 = ‘OO'i, the bits b1 and b2 of P2
are used to code the logical channel number in the same
manner as in the class byte (see 5.4.1); the other bits of
P2 are RFU.

—When bl and b2 of P2 are null, then the card will
assign a logical channel number that will be returned
in bits b1 and oz of the data field.

—When b1 and/or oz of P2 are not null, they code a
logical channel number other than the basic one; then
the card will open the externally assigned logical
channel number.

6.16.4 Response message (nominal case)

Table 73 — MANAGE CHANNEL response APDU
Data field Logical channel number if P1-P2 : “0000‘

Empty if Pl-PZ s ‘0000’
SW1 —SW2 Sta tus bytes

6.16.5 Status conditions

The following specific warning conditions may occur.
— SW1 = '62’ with SW2 =
0 'OO' ‘ No information is given.

7 Transmission-oriented interindustry
commands

it shall not be mandatory for all cards complying to this
part of ISOIIEC 7816 to support all the described
commands or all the options of a supported command.

When international interchange is required, a set of card
system services and related commands and options shall
be used as defined in clause 8.

Table ll provides a summary of the commands defined in
this part of ISO/SEC 7816.

The impact of secure messaging (see 5.6) on the message
structure is not described in this clause.

The list of error and warning conditions given in each
clause 7.X.5 is not exhaustive (see 5.4.5).

29

Information Handling Services,

Apple Ex. 1030, p. 48

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 49

 Apple v. Fintiv

 IPR2020-00019

- #651303 UbEflllS 281+ -

ISOIIEC 7816-4: 1995 (E)

7.1 GET RESPONSE command

7.1.1 Definition and scope

The GET RESPONSE command is used to transmit from the
card to the interface device APDU(s) (or part of APDUS}
which otherwise could not be transmitted by the available
protocols.

7.1.2 Conditional usage and security

No condition.

7.1.3 Command message

Table 74 —- GET RESPONSE command APDU

CLA As defined in 5.4.1
INS ‘CO‘

Pi-PZ '0000' (other Values are RFU)
Empty
Empty
Maximum length of data expected in response

LC field
Data field

Le field
7.1.4 Response message (nominal case)

If the Le field contains only zeroes, than within the limit of
256 for short length or 65 536 for extended length all the
available bytes should be returned.

Table 75 _, GET RESPONSE response APDU

Data field {Part of) APDU according to Le
SW1 —SW2 Status bytes

7 .1 .5 Status conditions

The following specific normal processing may occur.
— SW1 = '61‘ with SW2 =
0 'XX‘ : Normal processing: more data bytes are
available (‘XX' indicates a number of extra data bytes
still available by'a subsequent GET RESPONSE).

The following specific warning condition may occur.
— SW1 = '62' with SW2 =
v '81' : Part of returned data may be corrupted.

The following specific error conditions may occur.
—- SW1 = '67' with SW2 2
| ‘00‘ : Wrong length (incorrect Le field}.
— SW1 = ‘6A' with SW2 =
0 '86': Incorrect parameters P1 —P2.

30

© lSO/lEC

— SW1 = '60 with SW2 =

- 'XX' : Wrong length (wrong Le field : 'XX' indicates the
exact length).

7.2 ENVELOPE command

7.2.1 Definition and scope

The ENVELOPE command is used to transmit APDUls), or
part of APDUS. or any data string, which otherwise could
not be transmitted by the available protocols.

NOTE —The usage of ENVELOPE for SM is shown in annex F.

7.2.2 Conditional usage and security

No condition.

7.2.3 Command message

Table 76 — ENVELOPE command APDU

CLA As defined in 5.4.1
INS ‘C2‘

P1—P2 ‘0000‘ (other values are RFU)
Length of the subsequent data field
(Part of) AFDU
Empty or length of expected date

LC field
Data field

l.e field
When the ENVELOPE command is used under T=0 for
transmitting data strings, an empty data field in an
ENVELOPE command APDU means “end of data string'.

7.2.4 Response message (nominal case)

Table 77 — ENVELOPE response APDU

Data iield Empty or (part of} APDU according to Le
SW1-SW2 Status bytes

NOTE—The status bytes belong to the ENVELOPE command.
Status bytes of a command transmitted in the data field of the
ENVELOPE command may be found in the data field of the
ENVELOPE response.

7 .2.5 Status conditions

The following specific error condition may occur.
— SW1 = ‘67' with SW2 =
v '00' : Wrong length (incorrect LC field}.

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 49

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 50

 Apple v. Fintiv

 IPR2020-00019

- HBSL‘HDB [1526le 1.110 -

© lSO/IEC

8 Historical bytes

8.1 Purpose and general structure

The historical bytes tell the outside world how to use the
card when the transport protocol is ascertained according
to part 3 of lSO/lEC 7816.

The number of historical bytes (at most 15 bytes) is
specified and coded as defined in part 3 of ISOflEC 7818.

The information carried by the historical bytes may also
be found in an ATR file (default EF identifier : '2F01’).

if present. the historical bytes are made up of three fields:
— a mandatory category indicator (1 byte).

— optional COMPACT-m data objects.

— a conditional status indicator (3 bytes).

8.2 Category indicator (mandatory)

The category indicator is the first historical byte. if the
category indicator is equal to '00“, "lO' or '8X‘, then the
format of the historical bytes shall be according to this
part of lSO/lEC 7816.

Table 78 — Coding of the category indicator

'00' Status information shall be present at the end
of the historical bytes (not in TLV’).

‘lO‘ Specified in 8.5

'80' Status information. if present, is contained
in an optional COMPACT-Tl V data object

‘81' to '8F‘ RFU
Other vaiues Proprietary

8.3 Optional COM PACT-TLV data objects

The coding of the COMPACT-TLV data objects is deduced
from the basrc encoding rules of ASN.1 (see lSO/IEC 8825
and annex D) for BER-TLV data objects with tag : 'AX' and
length = ’QY‘. The coding of such data objects is replaced
by 'XY’ followed by ‘Y' bytes of data. in this clause, 'X‘ is
referred to as the tag number and 'Y‘ as the length.

Besides the data objects defined in this clause. the
historical bytes may contain data objects defined in part 5
of ISO/IEO 7816. In this case. the coding of the tags and
length fields defined in part 5 shall be modified as above.

When COMPACT-TLV data objects defined in this clause
appear in the ATR file, they shall be encoded according to
the basic encoding rules of ASN.1 (i.e., tag = '4X'. length =
'0Y‘).

All application-class tags not defined in lSOIlEC 7816 are
reserved for 180.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISO/IEC 7816-4: 1995 {E}

8.3.1 Country/issuer indicator

When present, this data object denotes a country or anissuer.

This data object is introduced by either ‘lY‘ or ‘ZY'.

Table 79 — Coding of the country/issuer indicator

variable Country code and national data
issuer identification number .1.

‘2‘ variable

The tag '1’ is followed by the appropriate length (1 nibble)
and by three digits denoting the country as defined in
lSO 3166. Data which follows (odd number of nibbles) is
chosen by the relevant national standardization body.

The tag '2’ is followed by the appropriate length (1 nibble)
and by the issuer identification number as defined in part
1 of ISO/iEC 7812. if the issuer identification number
contains an odd number of digits, then it shall be right
padded with a nibble valued to 'F'.

8.3.2 Card service data

This data object denotes the methods available in the card
for supporting the services described in clause 9.

This data object is introduced by '31‘.

When this data object is not present, the card supports
only the implicit application selection.

Table 80 — Card-profile for application-independent
card services

wmwwww
— Direct application selection

by full DF name
— Selection by partial DF name

(see 9.3.2)

Data objects available
— in DIR file
—- in ATR file

File l/O services by
— READ BlNARY command
— READ RECORDlS} command

- - - - - x x x DDDlothervaluesare RFU)

NOTE—The contents of the DlR and ATR files may give
information on selection methods.

8.3.3 Initial access data

This optional data obiect allows the retrieval of a string of
data objects defined in lSO/lEC 7816. The string retrieved
by this data object is called the "initial data string'.

This data object is introduced by '41‘, ‘42“ or '45'.

31

Information Handling Services,

Apple Ex. 1030, p. 50

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 51

 Apple v. Fintiv

 IPR2020-00019

7- HBSIHUB 053611? US? -

ISO/IEC 7816-4: 1995 (E)

Any command APDU described in this clause is assumed
to be the first command sent after the answer to reset.
Consequently, the data available at this point may not be
subsequently retrievable.

8.3.3.1 Length = '1'

When only one byte of information is provided, it
indicates the length of the command to perform for
retrieving the initial data string. The command to perform
is a READ BINARY command structured as follows.

Table 81 — Coding of the command
when length = '1'

CLA '00‘ (see 5.4.1)
lNS 'BO‘

P14P2 'OOOO'

Empty
Empty
First and only byte of value field of initial access
data [indicating the number of. bytes to be read)

Lc field
Data field

Le field
8.3.3.2 Length = '2'

When two bytes of information are provided, the first
byte indicates the file structure (transparent or record) and
the short identifier of the EF to be read. The second byte
indicates the length of the READ command to perform for
retrieving the initial data string.

Table 82 — Structure of the first byte
= 0 Record oriented file
= 1 Transparent file

‘ 00 (other values are RFU)
Short EF identifier

.When b8=0, the command to perform is a
READ nEconols) command structured as follows.

Table 83 —- Coding of the command when b8=0
'00‘ {see 5.4.1)
.52.

P! ‘01“
P2 Short EF identifier (from the first byte of initial

access data) followed by b3—b2—bl = 110
Empty
Empty
Second and test byte of value field of initial access
data (indicating the number of bytes to be read)

Lc field
Data field

Le field
sWhen b8=1, the command to perform is a
READ BINARY command structured as follows

Table 84 — Coding of the command when b8=1
‘00‘ {see 5.4.1)
80‘

Pl Value of the first byte of initial access data
P2 ”00‘

Empty
Empty
Second and last byte of value field of initial access
data (indicating the number of bytes to be read}

Lc field
Data field

Le field
32

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© lSO/lEC

8.3.3.3 Length = '5'

The value found in the initial access data object consists of
the APDU of a command to perform. When executed, this
command provides the initial data string in its responsedata field.

8.3.4 Card issuer's data

This data object is optional and of variable length.
Structure and coding are defined by the card issuer.

This data object is introduced by 'SY’.

8 .3 . 5 Pre—issuing data

This data object is optional and of variable length.
Structure and coding are not defined in this part of
lSO/lEC 7818. it may be used for indicating

—- card manufacturer,

— integrated circuit type,

—— integrated circuit manufacturer,

— ROM mask version,

— operating system version.

This data object is introduced by 'ESY'.

8.3.6 Card capabilities

This data object is optional and of variable length. its value
field consists of either the first software function table, or
the first two software function tables. or the three
software function tables.

This data object is introduced by ”71', ‘72‘ or ‘73‘,

Table 85 shows the first software function table.

Table 85 -— First software function table

wwwm—

DF selection
—- by full DF name
— by partial DF name
— by path
— by file identifier
-— implicit

EF management
— Short EF identifier supported
7 Record number supported
—— Record identifier supported

Table 86 shows the second software function table which
is the data coding byte. The data coding byte may also be
present as the second data element in the file control
parameter with tag ‘82' (see table 2 in 5.1.5).

Information Handling Services,

Apple Ex. 1030, p. 51

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 52

 Apple v. Fintiv

 IPR2020-00019

- 9651903 058811.13 T‘l3 -

© lSOflEC

Table 86 — Second software function table
(data coding byte)

wmmsbzb—
Behavior of write functions
— one—time write
7 proprietary
— write OR
A write AND

Data unit size in nibbles

{power of 2‘. e.g,, 001 = 2 mobiesl
(default value = one byte)

Table 8? shows the third software function table.

Table 87 —— Third software function table

0 (1 is RFU]
7 Extended LC and Le fields

0 (1 is RFU]
Logical channel assignment
—— by the card
— by the interface device

No logical channel
O (1 is HFU)

— Maximum number of
logical channels (: 2x+y+ll

8. 4 Status information

The status information consists of 3 bytes: the card life
status {1 byte) and the two status bytes SW1 -SW2.

The value ‘00' of the card life status indicates that no card
life status is provided. The values ‘80' to 'FE' are propri—
etary. All other values are RFU.

The value “9000‘ of SW1 ~SW2 indicates normal process»
ing as defined in 5.4.5.

The value '0000‘ of SW1-SW2 indicates that the status is
not indicated.

If the category indicator is valued to ’80“. then the status
information may be present in a COMPACT-TN data object.
In this case, the tag number is ‘8'. When the length is '1'.
then the value is the card life status. When the length is
'2‘. then the value is SW1—SW2. When the length is ‘3‘.
then the value is the card life status followed by SW1 ,
SW2. Other values of the length are reserved for ISO.

8.5 DIR data reference

If the category indicator is '10“, than the following byle is
the 531R data reference. The coding and meaning of this
bvte are outside the scope of this part of ISOJIEC 7816,

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISOIIEC 7815—4: 1995 (E)

9 Application-independent card services

9.1 Definitions and scope

This clause describes the application-independent card
services, referred to as ”card services" in the following
text. Their purpose is to provide interchange mechanisms
between a card and an interface device knowing nothing
about each other except that they both comply with this
part of lSO/IEC 7816.

Card services are supported by any combination of

— historical bytes.

—contents of one or more reserved EFs.

— sequences of interindustry commands.

The commands use CLA = ‘00“ (see 5.4.1}. Le, no secure
messaging and the basic logical channel.

There is no need for an application to comply with this
clause once it has been identified and selected in the card.
it is possible for an application to use other mechanisms
compatible with this part of ISOIlEC 7816 for achieving
similar functions. Therefore such solutions may not
guarantee interchange.

The following card services are defined.

—Card identification service—This service allows the
interface device to identify the card as well as how to deal
with it.

—Application selection service—This service allows the
interface device to know what application is active in the
card (if any) as well as how to select and start an
application in the card.

— Data object retrieval service —This service allows to
retrieve data obiccts defined either in this part or in other
parts of ISO/lEC 7816. This clause describes standard
mechanisms only for interindustry data objects.

— File selection service —This service allows selection of
un-named DFs, and EFs.

— File ”0 service —This service allows access to data
stored in EFs.

9.2 Card identification service

This function consists of the card providing information to
the outside world on its logical content as well as some
general data objects all applications might be interested in
log, interindustry data obiects). The information, called
"card identification data”, is given by the card in the histor-
ical bytes and possibly in a file implicitly selected imme—
diately after the answer to reset.

Access to this file is indicated in the initial access data
information (see 8.3.3).

33

Information Handling Services,

Apple Ex. 1030, p. 52

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 53

 Apple v. Fintiv

 IPR2020-00019

lSO/IEC 7816-4: 1995 (E)

if the initial access data of the historical bytes does not
denote a READ command, then the response to the
command to perform contains card identification data.

9.3 Application selection service

An application is either implicitly selected in a card or can
be explicitly selected by its name.

9.3.1 implicit application selection

When an application is implicitly selected in a card, the
application identifier as defined in part 5 of ISO/IEC 7816
should be indicated in the card identification data. if not
present in the card identification data, then it shall be
present in the ATFl file.

9.3.2 Direct application selection

A card in a multi-application environment shall be able to
respond positively to a direct application selection per—
formed by a SELECT FiLE command specifying the applica—
tion identifier as DF name.

The application identifier should be provided completely in
the command APDU. in case of an application selection
by partial DF name, the next application matching with the
name proposed may be selected and the full DF name will
be made available in the response message of the
SELECT FILE command as the file control parameter with
tag ‘84‘ (see table 2 in 5.1.5).

The APDU of the command to perform is the following

Table 88 — Coding of the command
for direct application selection

CLA ”00‘ (see 5.4.1)
lNS 'A4'

P1~P2 ‘0400'
Length in bytes the data field
Full or partial DF name
Present, contains only zeroes

i.c field
Data field

Le field
9.4 Data obiect retrieval service

Data objects used for application—independent interna-
tional interchange are defined in this part and other parts
of lSO/lEC 7816.

The retrieval of those data objects relies on one or both of
the following methods:

——presence of a data object in the card identification
data (see 9.2),

—presence of a data object in the DIR file (path =
’GFOOZFOO‘) or in the ATR file (path = '3F002F01'l.

The information necessary to retrieve data objects by an
indirect method are defined in part 6 of ISO/lEC 7816.

34

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- 11651903 [lint—£81.19 I143T -

© lSOfIEC

9.5 File selection service

When the path to an EF is known, the number of
SELECT FILE commands to be issued equals the length of
the path divided by two, minus one (the path always
starts with the current DF).

If the path length is more than four bytes, then until all
available DF identifiers of the path have been used, one or
more SELECT FlLE commands shall be performed with the
following command APDU.

Table 89 — Coding of the command to select a DF
using a file identifier

CLA ‘00‘ (see 5.4.1}
lNS ‘A4‘

P1432 ‘0100‘

Lc field ‘02‘
Data field DF identifier (from bytes 3 and 4 of the path)

Le field Empty
The last and possibly only selection is an EF selection with
the following command APDU.

Table 90 —— Coding of the command to select an EF
CLA ’00' (see 5.4.1}
lNS 'Ad‘

Pl-PZ ‘0200'

l.c field ‘02‘
Data field EF identifier {last two bytes of the path)

Le field Empty
9-6 File IIO service

Once a file used for interindustry interchange has been
selected, the contents relevant to interchange shall be
returned by one of the following command APDUs.

0 if the first software function table is absent, or does
not denote the support of record—oriented commands,
then the following command shall be performed
Table 91 — Coding of the command to read

a transparent file

CLA ‘00‘ (see 5.4.1)
INS ‘BO‘

P1-P2 '0000‘
LC field Empty

Data field Empty
Le field Present. contains only zeroes

- If the first software function table denotes the
support of record-oriented commands, then the
following command shall be performed.

Table 92 — Coding of a command to read
a record-oriented file

CLA ‘00‘ (see 5.4.1 l
NS ‘82'

P1—P2 ‘QOOS'

EmptyLc field
Data field Empty

L.a field Present, contains only zeroes

Information Handling Services,

Apple Ex. 1030, p. 53

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 54

 Apple v. Fintiv

 IPR2020-00019

- ”851.303 05231.30 bl-ll -

© IsoxiEc ISO/[EC 7816-4: 1995 (E)

Annex A

(normative)

Transportation of APDU messages

by T=0

A.1 Case 1 R'TPDU

The command APDU is mapped onto the T=D command
TPDU by assigning the value ‘00' to P3.

CLA ENS P1 P2

CLA lNS Pl P2 P3 : ‘00‘

The response TPDU is mapped onto the response APDU
without any change.

Command APDU

Command TPDU

A2 Case 2 Short

in this case, L6 is vaiued from 1 to 256 and coded on byte
B1 (B1 = “00‘ means maximum, ire, L6 = 256).

The command APDU is mapped onto the T=O command
TPDU without any Change.

The response TPDU is mapped onto the response APDU
according to the acceptance of L6 and according to the
processing of the command.

Case 28.1 — Le accepted

The response TPDU is mapped onto the response APDU
without any change.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

SW1 SW2

SW1 SW2

Le bytes

R-APDU
Le bytes

Case 28.2 —- Le definiteiy not accepted

L3 is not accepted by the card which does not support the
service of providing data if the length is wrong

The response TPDU from the card indicates that the card
aborts the command because of wrong length: (SW1) :
‘67". The response TPDU is mapped onto the response
APDU without any change.

R'TPDU SW1 = ‘67’ SW2

R'APDU SW1 2 '67' SW2

Case 28.3 — Le not accepted, La indicated

L6 is not accepted by the card and the card indicates the
available length La.

The response TPDU from the card indicates that the
command is aborted due to a wrong length and that the
right length is La: (SW1) = '6C' and SW2 codes La.

lt the transmission system does not support the service
of re-issuing the same command, it shall map the
response TPDU onto the response APDU without any
change.

if the transmission system supports the service of re-
issuing the same command. it shall re-issue the same
command TPDU assigning the value L8 to parameter P31

35

Information Handling Services,

Apple Ex. 1030, p. 54

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 55

 Apple v. Fintiv

 IPR2020-00019

ISO/IE6 7816-4: 1995 (E)

C'TPDU CLA lNS Pt P2 P3 = SW2

The response TPDU consists of La bytes followed by two
status bytes.

if L8 is smaller than or equal to Le, then the response
TPDU is mapped onto the response APDU without any
change.

it L8 is greater than Le, then the response TPDU is
mapped onto the response APDU by keeping only the
first Le bytes of the body and the status bytes SW1 —SW2,

w SW2

Le {< La) bytes SW1 S‘WZ

Case 25.4 — SW1-SW2 = '9XYZ', except '9000‘

The response TPDU is mapped onto the response APDU
without any change.

R—TPDU

R—APDU

A.3 Case 3 Short

In this case, Lc is valued from i to 255 and coded on byte
B1 (2 ‘OO'i.

The command APDU is mapped onto the T=O command
TPDU without any change.

The response TPDU is mapped onto the response APDU
without any change.

C—APDU

C-TPD U

AA Case 4 Short

in this case, LC is valued from 1 to 255 and coded on byte
B}, L6 is valued from t to 256 and coded on byte BL (BL =
‘00' means maximum i.e.. L6 = 256).

36

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

- UBSI‘IBB DEBBIE]: 5&3 -

© lSOflEC

The command APDU is mapped onto the T:0 command
TPDU by cutting off the last byte of the body.

Case 45.1 — Command not accepted
The first response TPDU from the card indicates that the
card aborted the command: SW1 = “BX', except ‘61'.

The response TPDU is mapped onto the response APDU
without any change.

SW1 : ‘6X' SW2

SW2

R—TPDU

R-APDU SW1 = '6X‘

Case 48.2 — Command accepted

The first response TPDU from the card indicates that the
card performed the command: SW1—SW2 = '9000'.

The transmission system shall issue 3 GET RESPONSE
command TPDU to the card by assigning the value Le to
parameter P3,

Depending on the second response TPDU from the card,
the transmission system shall react as described in cases
28.1, 28.2, 28.3 and 28.4 above.

C'TPDU CLA lNS : GET RESPONSE Pi P2

Case 45.3—Command accepted with informationadded

The first response TPDU from the card indicates that the
card performed the command and gives information on
the length of data bytes available: SW1 = '61“ and SW2
codes Lx.

The transmission system shall issue a GET RESPONSE
command TPDU to the card by assigning the minimum of
Lx and L6 to parameter P3.

TPDU CLA lNS = GET RESPONSE P1 P2 P3 = min (Le, LX)

The second response TPDU is mapped onto the response
APDU without any change.

SW, SW2

SW1 swz

Case 43.4 — SW1—SW2 = 'SXYZ', except '9000'

The response TPDU is mapped onto the response APDU
without any change

R-TPDU

R-APDU

Information Handling Services,

Apple Ex. 1030, p. 55

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 56

 Apple v. Fintiv

 IPR2020-00019

- 14651303 DEEBLEE Lilli -

© ISO/lEC

As Case 2 Extended

ln this case, l.E is valued from i to 65 536 and coded on 3
bytes: (B1) = 'OO', (8;. ll 83) = any value (82 and 33 valued
to ‘0000’ means maximum, i.e., Le = 65 536i.

E1='00‘ 3283=Le

Case 2E.1—Le s 256, B1 = '00, 82 83 from '0001' to
'0100'.

The command APDU shall be mapped onto the command
TPDU by assigning the value of B3 to parameter P3. The
processing by the transmission system shall be according
to case ZS.

Case 2E.2-— Le > 256, B1 = ‘00, :32 83 : either '0000' or
from '0101' to ‘FFFF'

The command APDU shall be mapped onto the command
TPDU by assigning the value of ’00’ to parameter P3.

P3 = ‘00'

a) it the first response TPDU from the card indicates that
the card aborted the command because of wrong length
(SW1 = 67'). then the response TPDU shall be mapped
onto the response APDU without any change.

OAPDU CLA ENS P1 P2

C'TPDU CLA lNS Pi P2

C'TPDU CLA INS P1 P2

R’APDU SW1=‘67' SW2

b) it the first response TPDU from the card indicates that
the command is aborted due to a wrong length and that
the right length is La (SW1 = ‘60 and SW2 = La), then the
transmission system shall complete the processing as
described in case 28.3.

c) if the first response TPDU is 256 bytes of data followed
by SW1—SVVZ = '9000‘, this means that the card has no
more than 256 bytes of data, and/or does not support the
GET RESPONSE command. The transmission system shall
then map the response TPDU onto the response APDU
without any change.

256 bytes SW1 = ‘90' SW2 = ‘ 00'

256 bytes SW1 = ‘90' SV‘J2 = ’00'

d} lf the first or subsequent response TPDU from the card
is SW1 = '61‘, then SW2 codes L)(which is the extra
amount of bytes available from the card (SW2 valued to
“00‘ indicates 256 extra bytes or more}. the transmission
system shall compute Lm = l.e — (sum of the lengths of the
bodies of the previously received response TPDUlsD to

R-TPDU

RaAPDU

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

ISOIIEC 7816-4: 1995 (El

obtain the amount of remaining bytes to be retrievedfrom the card.

If Lm = 0, then the transmission system shall concatenate
the bodies of all received response TPDUs together with
the trailer of the last received response TPDU into the
response APDU.

li Lm > 0, then the transmission system shall issue 3
GET RESPONSE command TPDU by assigning the minimum
of L)(and Lm to parameter P3. The corresponding re—
sponse TPDU from the card shall be processed

— according to case d), if SW1 = ‘61‘.

— as above when Lm = 0, if SW1 = ‘90“.

As Case 3 Extended

In this case, LC is valued from 1 to 65 535 and coded on 3
bytes: (B1) 2 ‘00“, (E32 ll E33) at ‘00 00'.

Case 35-1 —'0 < Le < 256' 31 = “00'. 32 = ‘00', 83 a: '00-

The command APDU is mapped onto the command
TPDU by assigning the value of B3 to parameter P3

in this case, LC is valued from 1 to 255 and coded on 1
byte.

C-TPDU

The response TPDU is mapped onto the response APDU
without any change.

Case 3E.2 — Lc > 255, B1='OO', 32 s '00', 83 = any value

If the transmission system does not support the ENVELOPE
command, it shall return an error response APDU
meaning that the length is wrong: SW1 : ‘67”.

R—TPDU SW1 : ‘87' SW2

R'APDU SW1 = ‘67' SW2

if the transmission system supports the ENVELOPE
command, it shall split the APDU into segments of length
less than 256, and send those successive segments into
the bodies of consecutive ENVELOPE command TPDUs.

37

Information Handling Services,

Apple Ex. 1030, p. 56

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 57

 Apple v. Fintiv

 IPR2020-00019

- Lidia—1903 0525123 35!] -

ISO/IEC 7816-4: 1995 (E!

if the first response TPDU from the card indicates that the
card does not support the ENVELOPE command (SW1 =
'SD'l, the TPDU shall be mapped onto the response TPDU
without any change.

R'TPDU SW1 = so SW2

R'APDU swr = '60‘ SW2

if the first response TPDU from the card indicates that the
card does support the ENVELOPE command lSWl—SWZ =
‘9000’}, the transmission system shall send further
ENVELOPE commands as needed.

R'TPDU ’ swrswz = '9000'

C'TPDU CLA lNS = ENVELOPE P1 P2 P3 bytes

The response TPDU corresponding to the last ENVELOPE
command is mapped onto the response APDU without
any change.

R'TPDU SW1 SW2

A.7 Case 4 Extended

In this case, Lc is valued from t to 65 535 and coded on 3
bytes: (B1) = '00', (E; ii B3);é 'OOOO', and Le is valued from
i to 65 536 and coded on 2 bytes: lBL_1 ll BL) = any value
(BL_1 and BL valued to '0000' means maximum, i.e., Le =
65 536).

C-AF‘DU

CLA lNS P1 P2 31:130' B283=Lc BL_1BL = 1.9

38

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© lSO/lEC

Case 4E."l — Lc < 256, B1 = '00, 82 = 'OO‘, 83 ¢ ‘00'

The command APDU is mapped onto the command
TPDU by cutting off the last two bytes BL_1 and BL, and
by assigning the value of B3 to parameter P3.

In this case. 1.0 is valued from 1 to 255 bytes and coded on
1 byte.

a) if SW1 = ‘GX' in the first response TPDU from the card,
then the response TPDU is mapped onto the response
APDU without any Change.

R'APDU SW1='6X‘ SW2

b) If SW1 : '90' in the first response TPDU from the card.
then

if Le < 257 (81:1 BL valued from ‘OOO’l' to ”Oi 00'), then
the transmission system shall issue a GET RESPONSE com-
mand TPDU by assigning the value of BL to parameter
P3, The subsequent processing by the transmission sys-
tem shall be according to cases 28.1, 28.2, 28.3 and 28.4
above.

If Le > 25603.31 BL valued to ‘0000' or more than ‘0100'14
then the transmission system shall issue a GET RESPONSE
command TPDU by assigning the value ‘00' to parameter
P3. The subsequent processing by the transmission
system shall be according to case 2E2 above.

0) If SW1 = ‘61' in the first response TPDU from the card,
then the transmission system shall proceed as specified in
case 2E2 d) above.

Case 4E.2 ——- LC > 255, 81:1“), Ba :6 '00', 33 = any value

The transmission system shall go on according to case
3E2 described above, until the command APDU has been
sent completely to the card. it shat! then go on as de-
scribed in case 4&1 a), b) and cl described above.

Information Handling Services,

Apple Ex. 1030, p. 57

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 58

 Apple v. Fintiv

 IPR2020-00019

- ”1551383 {JEEGLE’H 2‘1? -

© ISOIIEC lSO/IEC 7816-4: 1995 {E}

Annex B

(normative)

Transportation of APDU messages

by T:1

3.1 Case 1 or concatenation of information fields
Data

The command APDU is mapped onto the information field
of an I-block without any change

Command APDU CLA iNS P1 P2 field SW1-SW2

Info rmation field
CLA lNS P‘: P2 R‘APDU Data field swr-swz

The information field of the i—block received in response is
mapped onto the response APDU without any change.

3.3 Case 3 (short and extended)
Information field

SW1 SW7- The command APDU is mapped without any Change onto
— either the information field of one l-block,
vor the concatenation of the information fields of

Res onse APDU 1 . r .
p SW2 SW2 successrve l-blocks which shall be Chained.

C‘APDU CLA ms P1 P2 Data field
8.2 Case 2 (short and extended)

The command APDU is mapped onto the information field Elther Information field
of an l—olock without any change. CLA INS P1 P2 Data field

C-APDU or concatenation of information fields
CLA 3N8 P1 P2 Le fieid CLA iNS P1 P2 Data

Information field

—either the information field of the I—block received

In response. ‘ _ . y The information field of the l-block received in response is
—or the concatenation of the information freids of mapped onto the response APDU without any Change,successive l—‘oiocks received in response. These
blocks shall be chained. information field

Either information field

w 9

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 58

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 59

 Apple v. Fintiv

 IPR2020-00019

- “551383 0525125 1.83 -

ISO/IEO 7816-4: 1995 (E) (C?) lSOflEC

3.4 case 4 (short and extended) The response APDU consists of
— either the information field of the l-block received

The command APDU is mapped without any change onto in response,

—either the information field of one l-bIOCk. —or the concatenation of the information fields of
successive l-blocks received in response, These

—or the concatenation of the information fields of blocks shall be chained.successive i—blocks which shall be chained.

C’APD" E““‘*"”“"’"“‘”‘"e"‘
Data field SWi—SWZ

Either information field

CLA INS P‘i P2 Data field

or concatenation of information fields

CLA INS P1 P2 LC fieid Data

R-APDU .

or concatenation of information fields

i.e field Data

fie id SW1-SW2

SW1 -SW2

4O

COPYRIGHT 2000 International Organization for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 59

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 60

 Apple v. Fintiv

 IPR2020-00019

© lSOr’lEC

- #851903 UbEfilE’b BET -

ISOIIEC 7816~4: 1995 (E)

Annex C

(informative)

Record pointer management

0.1 Case 1

Case 1 deals with the first command issued after a select
function (either explicit or implicit). The current record
pointer (CP) is undefined.

Record
in response

Command
READ RECORDS

Next (id=aa) First with id=aa
if not found, then error

Previous (id=bb> Last with id=bb
Undefined

if not found. then error Undefined If no previous, then error
First lid=cc) First with id=cc Record read First (id=cc) First with id=cc

if not found. then error Undefined If not found, then error
Last iid=dd) Last with id=dd Record read Last (id=dd) Last with id=dd

If not found, then error Undefined If not found. then error

Next (id=OOl First Record read Next iid=00i CP+1
if CP = fast. then error

Previous (id=00) Last Record read Previous {id=OO) CP—i
ii CP = first, then error

First lid=00) First Record read First (id=00) First
Last (id=00) Last Record read Last iid=00i Last

Record # 00 Error Undefined Record # 00 CP
Record # ee # ee Undefined Record # ee # ee

If not found. then error Undefined if not found. then error

Pi='00‘, P2=xxx>< x101 Error Undefined Pi='00'. P2=xxxx x101 CP to iast

P1='OC‘, P2=xxxx x110 Error Undefined P1='OO', P2=xxxx x110 Last to CF

jj, P22xxxx x101 # jj to last Undefined # jj, P2:xxxx x101 # ii to last
if #1; not found. then error Undefined

kk, P2=xxxx x110 Last to # kk Undefined it if, P2=Xxxx x110 Last to # kk
h‘ # kk not found, then error Undefined

COPYRIGHT 2000 International Organizatio
March 03, 2000 11:21:01

Position of CP
after command

Record read

Record read

0.2 Case 2

record pointer (CP) is defined.

Record
in response

Command
READ RECORDS

Next (idzaa) Next with id=aa
If no next, then error

Previous (id=bb) Previous with idzbb
Unchanged

U nchanged

Unchanged

Unchanged

Unchanged

Unchanged
First record
Last record

Unchanged
Unchanged
Unchanged

Unchanged

Unchanged

Unchanged
it # ii not found. then error Unchanged

Unchanged
if # kk not found, then errorUnchanged

n for Standardization

Case 2 deals with a subsequent command, The current

Position of CP
after command

Record read

Record read

Record read

Record read

Previous CP+i

Previous CP—1

41

Information Handling Services,

Apple Ex. 1030, p. 60

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 61

 Apple v. Fintiv

 IPR2020-00019

- HESLQDB 0525112? TTl: -

ISO/IEO 7816-4: 1995 (E) (C) ISOflEC

Annex D

(informative)

Use of the basic encoding rules of ASN.1

DJ! BER-TLV data object

Each BER-TLV data object (see lSO/IEC 8825) shall consist
of 2 or 3 consecutive fields.

— The tag field T consists of one or more consecutive
bytes. lt encodes a class, a type and a number.

—The length field consists of one or more consecu—
tive bytes. It encodes an integer L.
— If L is not null, then the value field V consrsts of l.
consecutive bytes. If L is null, then the data object is
empty: there is no value field.

lSOjl EC 7816 uses neither ‘00' nor 'FF' as tag value.

NOTE — Before, between or after BER-TU! data objects. '00‘ or
’FF’ bytes without any meaning may occur le.g.. due to erased
or modified TLV-coded data objects).

D.2 Tag field

The bits b8 and b7 of the leading byte of the tag field shall
encode the tag class, i.e., the class of the data object.

— b8-b7=00 introduces a tag of universal class.

— b8—b7=01 introduces a tag of application class.
— b8—b7=10 introduces a tag of context—specific class.
— b8-b7=il introduces a tag of private class.

The bit ha of the leading byte of the tag field shal! encode
the tag type, i.e.. the type of the data object.

— b6=0 introduces a primitive data object.

— b6:l introduces a constructed data object.

if the bits b5 to bl of the leading byte are not all set to 1,
then they shall encode an integer equal to the tag number
which therefore lies in the range from O to 30. Then the
tag field consists of a single byte.

Otherwise 035 to bl set to 1 in the leading byte), the tag
field shall continue on one or more subsequent bytes.

42

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

— The bit b8 of each subsequent byte shall be set to
1, unless it is the last subsequent byte.

—The bits b? to b1 of the first subsequent byte shall
not be all set to 0.

-—The bits b? to bi of the first subsequent byte, fol-
lowed by the bits b7 to bl of each further subsequent
byte, up to and including the bits D7 to b“! of the last
subsequent byte, shall encode an integer equal to the
tag number (thus strictly positive).

D.3 Length field

In short form, the length field consists of a single byte
where the bit b8 shall be set to O and the bits b7 to bl
shall encode an integer equal to the number of bytes in
the value field. Any length from O to 127 can thus be
encoded by 1 byte.

In long form, the length field consists of a leading byte
where the bit b8 shall be set to i and the bits b7 to b’l shall
not be all equal, thus encoding a positive integer equal to
the number of subsequent bytes in the length field. These
subsequent bytes shall encode an integer equal to the
number of bytes in the value field. Any length within the
APDU limit (up to 65 535) can thus be encoded by 3 bytes.

NOTE~|SOllEC 7816 does not use the indefinite lengths
specified by the basic encoding rules of ASN.1 (see |SO/lEC
8825).

0.4 Value field

In this part of lSOg’lEC 7816, the value field of some
primitive BER-TLV data objects consists of zero, one or
more SlMPLE-TLV data objects.

The value field of any other primitive BER-TLV data object
consists of zero, one or more data elements fixed by the
specifications of the data object.

The value field of each constructed BER-TLV data object
consists of zero, one or more BER-TLV data objects.

Information Handling Services,

Apple Ex. 1030, p. 61

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 62

 Apple v. Fintiv

 IPR2020-00019

© lSO/‘iEC

- 46513133 13525126 933 -

ISO/IEO 7816-4: 1995 (E)

Annex E

(informative)

Examples of card profiles

E. 1 Introduction

This annex defines a number of card profiles to guide
appiication designers in selecting commands to use in
their applications. The profiles may also be used to help
specify the features desired in a card. Card profiles maybe combined.

E.2 Profile M

Cards of this profile have as a minimum the following
features and commands,

-— File structures

0 Transparent structure.

- Linear structure with records of fixed length.

— Commands

. READ BINARY and UPDATE BINARY with

P1, b8 = O,

Lengths up to 256 bytes.

- READ RECORDi’sl and UPDATE RECORD with

P2, b8 to b4 = 0,
P2, b3 2 1,
P2, b3 b2 bi = 000, 001. 010 or 011 and P1 = O.

0 SELECT FlLE with

Pi-PZ = '0000‘.

o VERlFY with

Pi-PZ = ‘0001' or 'OOO2'.

O INTERNAL AUTHENTlCATE With

P'l-P2 = 'DODO'.

E.3 Profile N

This profile is the same as M, plus the additional option
P1 = '04’ in the SELECT FiLE command.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

E.4 Profile 0

Cards of this profile have as a minimum the followingfeatures and commands,

— File structures

0 Transparent structure.

t Linear structure with records of fixed length.

‘ Linear structure with records of variable length.

0 Cyclic structure with records of fixed length.

— Commands

0 READ BlNARY, WRiTE BINARY and UPDATE BINARY with

P1 , h8 = O,

Lengths up to 256 bytes.

- READ RECORDS), WRITE RECORD and UPDATE RECORD
with

P2, b8 to b4 = 0.
P2, b3 :1,

P2. b3 b2 b1 = 000, 001, 010 or 011 and P1 = O,

0 APPEND RECORD with
P1432 = ‘0000'.

- SELECT FILE with

P1 = '00‘, '01', '02‘, '031'304 ‘08‘ or '09‘,
P2 = ‘00’,

0 VERIFY with

Pl—Pz = ’0001‘ or '0002‘,

- INTERNAL AUTHENTICATE with

Pi-PZ = ‘0000‘.

- EXTERNAL AUTHENTICATE with

Pl-PZ = ’0000'.

- err CHALLENGE with

Pl-PZ : ‘0000’.

43

Information Handling Services,

Apple Ex. 1030, p. 62

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 63

 Apple v. Fintiv

 IPR2020-00019

- HBSlQUB DEBBIE”! 87‘} -

lSO/lEC 7816-4: 1995 (El

E.5 Profile P

Cards of this profile have as a minimum the following
features and commands.

— File structures

0 Transparent structure.

—— Historical bytes
0 Card service data (= ’3188‘).
0 initial access data {= ‘4164‘).

— Commands

- READ BINARY and UPDATE BINARY with

P1, [:8 = O,

Lengths up to 64 bytes.

' SELECT FILE with
P1 -P2 = '0400'.

' VERIFY with

P1-P2 = “0001' or '0002'.

- {NTERNAL AUTHENTlCATE with

Pi-PZ = “0000'.

44

ES Profile 0

© ISO/iEC

Cards of this profile have as a minimum the following
features and commands.

— Historical bytes
0 initial access data (= '45'-GET).

0 Card capabilities (= '7180').

— Secure messaging

— Commands

- GET DATA and PUT DATA with

Tag in Pl—P2,

0 SELECT FILE with

P1-P2 = '0401, ‘0402' or '0403'.

o VERIFY with
P1 = '00“

' lNTERNAL AUTHENTICATE

° EXTERNAL AUTHENTICATE

‘ GET CHALLENGE

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

Information Handling Services,

Apple Ex. 1030, p. 63

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 64

 Apple v. Fintiv

 IPR2020-00019

© lSO/iEC

- “351903 13528130 5‘”) -

ISO/IEO 7816-4: 1995 (E)

Annex F

(informative)

Use of secure messaging

F. 1 Abbreviations

For the purpose of this annex, the following abbreviations
apply.

CC Cryptographic checksum
CG Cryptogram
CH Command header (CLA lNS P1 P2)
CR Control reference

FR File reference

KR Key reference

L Length

PB Padding bytes ('80‘ followed by 0 to [(—1
times '00' where k is the block length)

Pl Padding indicator byte
PV Plain value

RD Response descriptor
T Tag
ll Concatenation

For all the examples, CLA indicates the use of secure
messaging by an appropriate value ('0X', ‘8X‘, ‘9X' or ‘AX‘)
where bit b4 of CLA is set to 1 (see 5.4.“! and table Bl.

F.2 Use of cryptographic checksums

The use of cryptographic Checksums (see 5.6.3.1) is
shown for the four cases defined in table 4 and figure 4.

— Case 1 — No data, no data

Command data field = TCC ll LCC ll CC

Data covered by CC (b3:1 in CLA) =
First and only data block = CH ll PB

The command of case 1 is transformed into a command
of case 3.

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

— Case 2 — No data, data

Command data field = TCC ll Lcc ll CC

Data covered by CC (123:1 in CLA) =
First and only data block = CH ll PB

Response data field =
TpV (bl :1} ll LPV ll PV it Too it Leg” CC

Data covered by CC = Data blocks =
TPV (b1=3} ll LPv ll PV ll PB

— Case 3.a — Data, no data

Command data field =

Tpv 031:1) ll va ll PV ii TCC ll Lcc ll CC

Data covered by CC (b3=0 in CLA) = Data blocks =
Tpv (b1=1l ll va ll PV ll PB

—— Case 3.b — Data, no data

Command data field =

pr (bl=0) ll Law II PW ll TPV2 631:1} ll vaz ll PVZ it Too ll
LCC ll CC

Data covered by CC (b3=‘l in CLA) = Data blocks =
CH ll PB ll TPW (b1=1) ll va2 ll PV2 ll PB

—— Case 4 — Data, data

Command data field =

Tpv (b1=3) ll va ll PV ll ch ll Lcc ll CC

Data covered by CC (b3=0 in CLA) = Data blocks =
Tpvibizl) ll LPv ll PV ll PB

Response data field =
Tpv 091:1) ll val! PV ll TCC ll LCC ll cc

Data covered by CC = Data blocks =
TW (bl=1) ll LPV ll Pv ll PB

45

Information Handling Services,

Apple Ex. 1030, p. 64

Apple v. Fintiv

|PR2020—00019

Apple Ex. 1030, p. 65

 Apple v. Fintiv

 IPR2020-00019

- ”1551903 0528113]- LIE'? -

ISO/[EC 7816-4: 1995 (El

E3 Use of cryptograms

The use of oryptograms (see 5.6.4) is shown with and
without padding.

— Case a — Plain data not coded in BER-TLV

Command data fietd = TCG II Lee I! Pi ll CG

Data carried by CG = Data blocks =
Non BER-TLV coded data and padding bytes, if indicated inPi

— Case b — Plain data coded in BER-TLV

Command data fieid = TCG il Les Ii CG

Data carried by CG : String of concealed bytes :
BER-TLV data objects (padding depending on the algorithm
and its mode of operation)

F.4 Use of control references

The use of control references (see 5.6.5.1) is shown.

Command data fieid = Tm il LCR ll CR
Where CR = TF3 H LFR H FR 1’ TKH H LKH I. KR

46

COPYRIGHT 2000 International Organization for Standardization
March 03, 2000 11:21:01

© ISO/IEC

F.5 Use of response descriptor

The use of response descriptor [see 5.6.5.2} is shown.

Command data field = TRD ii LRD ll RD
Where RD = Tpv ll '00' ll TCC il '00'

Response data field =
Tpv ll va ll PV ii Too i! Lcc H CC

F.6 Use of the ENVELOPE command

The use of the ENVELOPE command (see 7.2} is shown.

Command data field = Tcs ll Lce II P! ii CG

Data carried by CG = Command APDU starting by CH
and padding bytes according to Pl

Response data field = Toe ll Loo ll Pl ll CG

Data carried by CG = Response APDU and padding bytes
according to P!

Information Handling Services,

Apple Ex. 1030, p. 65

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 66

 Apple v. Fintiv

 IPR2020-00019

- HBELEIUB magma $3 I7

ISO/IEC 7816-4:1995(E) © ISO}! EC

ICS 35240.40

Descriptors: data processing, information interchange, identification cards‘ IC cards. messages, security techniques authemication,

Pnce based on 46 pages

___________________—__—————-——-----------IIIIIIIIIIIIIIIIII-I-I-llll-ll-lll-Il-l

COPYRIGHT 2000 Interna:ional OrganizaCion for Standardization Information Handling Services,
March 03, 2000 11:21:01

Apple Ex. 1030, p. 66

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 67

 Apple v. Fintiv

 IPR2020-00019

\ ‘\>\\ \:\\\\\\

: :W: ::: :
:\:::::::

lSO/CEI 781 6-4:2005

Janvier 2005

Boutique AFNOR

Pour : INSIDE CONTACTLESS

Client 10126000

Commande N-20070918-232513-TA

19 18/9/2007 14:12

Qifiusé 982“

Apple Ex. 1030, p. 67

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 68

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

INTERNATIONAL ISO/IEC

STANDARD 781 6-4

Second edition
2005-01-15

Identification cards — integrated circuit
cards —

Part 4:

Organization, security and commands for

interchange

Cartes d’identification — Caries a circuit intégré —

Partie 4: Organisation, sécurité et commandes pour les échanges

Reference number

ISO/IEC 7816—4z2005(E)

IEC
© iSO/iEC 2005

Apple Ex. 1030, p. 68

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 69

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. in accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing, ln
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The 180 Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated,

Details of the software pmducts used to create this PDF file can be found in the General Info relative to the file; the PDF—creation
parameters were optimized for printing Every care has been taken to ensure that the file is suitable for use by lSO member bodies. ln
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
lSO's member body in the country of the requester.

ISO copyright office
Case postale 56 . CH—12‘l1 Geneva 20
Tel. + 4122 749 0111
Fax + 4122 749 09 47

E-mail copyright@iso,org
Web wwszoorg

Published in Switzerland

ii © lSOiIEC 2005 — All rights reserved

Apple Ex. 1030, p. 69

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 70

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Contents Page

Foreword .. iv

Introduction .. v

1 Scope .. 1

2 Normative references ... 1

3 Terms and definitions ... 2

4 Symbols and abbreviated terms .. 5

5 Organization for interchange 7
5.1 Command-response pairs 7
5.2 Data objects 1 3
5.3 Structures for applications and data .. 17
5.4 Security architecture .. 22

6 Secure messaging 28
6.1 SM fields and SM data objects 28
6.2 Basic SM data objects 29
6.3 Auxiliary SM data objects ... 31
6.4 SM impact on command-response pairs .. 35

7 Commands for interchange .. 36
7.1 Selection 36

7.2 Data unit handling.. .. 39
7.3 Record handling .. 41
7.4 Data object handling ... 47
7.5 Basic security handling.. .. 50
7.6 Transmission handling ... 57

8 Application-independent card services .. 57
8.1 Card identification ... 58

8.2 Application identification and selection ... 61
8.3 Selection by path 64
8.4 Data retrieval 65
8.5 Data element retrieval 65

8.6 Card-originated byte strings .. 67

Annex A (informative) Examples of object identifiers and tag allocation schemes 69

Annex B (informative) Examples of secure messaging .. 71

Annex C (informative) Examples of AUTHENTICATE functions by GENERAL AUTHENTICATE commands 78

Annex D (informative) Application identifiers using issuer identification numbers 82

Bibliography ... 83

© ISO/IEC 2005 — All rights reserved iii

Apple Ex. 1030, p. 70

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 71

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

Foreword

lSO (the International Organization for Standardization) and lEC (the international Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
lSO or lEC participate in the development of lnternational Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. [80 and lEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non—governmental, in liaison with ISO and lEC, also take part in the work. in the field of information
technology, lSO and lEC have established a joint technical committee, lSOllEC JTC 1.

international Standards are drafted in accordance with the rules given in the lSO/lEC Directives, Part 2.

The main task of the joint technical committee is to prepare international Standards. Draft international
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

lSOllEC 7816-4 was prepared by Joint Technical Committee lSOllEC JTC 1, Information technology,
Subcommittee SC 17, Cards and personal identification.

This second edition cancels and replaces the first edition (lSO/lEC 7816-4:1995), and incorporates material
extracted from ISO/lEC 7816621994, lSO/IEC 7816-621996, ISO/lEC 7816-8:1999 and lSO/lEC 7816-92000.
lt also incorporates the Amendment lSOilEC 7816-4:1995lAmd.1:1997.

in addition, material has been extracted from the first edition and moved to the third edition of lSOilEC 7816-3,

so that the transmission protocols T20 and T21 are now present only in lSOllEC 7816-3, no longer in
lSOllEC 7816-4.

lSOllEC 7816 consists of the following parts, under the general title Identification cards— integrated circuit
cards:

— Part 1: Cards with contacts: Physical characteristics

— Part 2: Cards with contacts: Dimensions and location of the contacts

— Part 3: Cards with contacts: Electrical interface and transmission protocols

7 Part 4: Organization, security and commands for interchange

7 Part 5: Registration of application providers

— Part 6: lnterino'ustry data elements for interchange

— Part 7: lnterindustry commands for Structured Card Query Language (SCQL)

— Part 8: Commands for security operations

— Part 9: Commands for card management

— Part 10: Cards with contacts: Electronic signals and answer to reset for synchronous cards

7 Part 1 1: Personal verification through biometric methods

7 Part 12: Cards with contacts: USB electrical interface and operating procedures

— Part 15: Cryptographic information application

iv © ISO/lEC 2005 — All rights reserved

Apple Ex. 1030, p. 71

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 72

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISO/lEC 7816-4:2005(E)

lntroduction

ISO/lEC 7816 is a series of standards specifying integrated circuit cards and the use of such cards for
interchange. These cards are identification cards intended for information exchange negotiated between the
outside world and the integrated circuit in the card. As a result of an information exchange, the card delivers
information (computation result, stored data), and l or modifies its content (data storage, event memorization).

7 Five parts are specific to cards with galvanic contacts and three of them specify electrical interfaces.

0 ISO/lEC 7816-1 specifies physical characteristics for cards with contacts.

0 ISO/lEC 7816-2 specifies dimensions and location of the contacts.

0 ISO/lEC 7816-3 specifies electrical interface and transmission protocols for asynchronous cards.

. ISO/lEC 7816—10 specifies electrical interface and answer to reset for synchronous cards.

0 ISO/lEC 7816-12 specifies electrical interface and operating procedures for USB cards.

— All the other parts are independent from the physical interface technology. They apply to cards accessed
by contacts and / or by radio frequency.

- ISO/lEC 7816—4 specifies organization, security and commands for interchange.

o ISO/lEC 7816-5 specifies registration of application providers.

. ISO/lEC 7816-6 specifies interindustry data elements for interchange.

o ISO/lEC 7816—7 specifies commands for structured card query language.

0 ISO/lEC 7816-8 specifies commands for security operations.

. ISO/lEC 7816-9 specifies commands for card management.

0 lSO/IEC 7816-11 specifies personal verification through biometric methods.

0 lSO/lEC 7816-15 specifies cryptographic information application.

lSO/lEC10536l13l specifies access by close coupling. lSO/lEC 14443 [151 and ISO/lEC 15693 [17] specify
access by radio frequency. Such cards are also known as contactless cards.

ISO and lEC draw attention to the fact that it is claimed that compliance with this document may involve the
use of the following patents and the foreign counterparts.

JPN 2033906, Portable electronic device

JPN 2557838, Integrated circuit card

JPN 2537199, Integrated circuit card

JPN 2856393, Portable electronic device

JPN 2137026, Portable electronic device

JPN 2831660, Portable electronic device

DE 198 55 596, Portable microprocessor-assisted data carrier that can be used with or without contacts

ISO and lEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured [SO and lEC that they are willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applications throughout the world. In this respect,

© ISO/lEC 2005 — All rights reserved V

Apple Ex. 1030, p. 72

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 73

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

the statements of the holders of these patent rights are registered with lSO and IEC. Information may be
obtained from:

Toshiba Corporation JPN 2033906 (priority date: 1986-02-18; publication date: 1996-03-19),
Intellectual Property Division FRA 8614996, KOR 44664
1—1,Shibaura1—Chome _ _ _ .
Minato-ku, Tokyo JPN 2557838 (priority date: 1986-02-18; publication date: 1996-09-05),
1058001! Japan FRA 8700343, GER 3700504, KOR 42243, USA 4841131

JPN 2537199 (priority date: 1986-06—20: publication date: 1996—07—08),
FRA 8708646, FRA 8717770. USA 4833595, USA 4901276

JPN 2856393 (priority date: 1987-02—17; publication date: 1998—11—27),
FRA 8801887, KOR 43929, USA 4847803

JPN 2137026 (priority date: 1987-02-20; publication date: 1998-06-26),
JPN 3054119, FRA 8802046, KOR 44393, USA 4891506

JPN 2831660 (priority date: 1988-08—26; publication date: 1998-09—25),
FRA 8911249, KOR 106290, USA 4988855

Orga Kartensysteme Gmbh DE 198 55 596 (priority date: 1998-12-02; publication date: 2000-06-29)
Am Hoppenhof 33
[133104 Paderborn Applications pending in Europe, Russia, Japan, China, USA, Brazil, Australia
Germany

Vi © lSOIlEC 2005 — All rights reserved

Apple Ex. 1030, p. 73

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 74

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

INTERNATIONAL STANDARD ISOIIEC 7816-4:2005(E)

Identification cards — Integrated circuit cards —

Part 4:

Organization, security and commands for interchange

1 Scope

This part of lSOilEC 7816 specifies

— contents of command-response pairs exchanged at the interface,

— means of retrieval of data elements and data objects in the card,

— structures and contents of historical bytes to describe operating characteristics of the card,

— structures for applications and data in the card, as seen at the interface when processing commands,

7 access methods to files and data in the card,

7 a security architecture defining access rights to files and data in the card,

— means and mechanisms for identifying and addressing applications in the card,

— methods for secure messaging,

— access methods to the algorithms processed by the card. it does not describe these algorithms.

It does not cover the internal implementation within the card or the outside world.

This part of lSO/lEC 7816 is independent from the physical interface technology. It applies to cards accessed
by one or more of the following methods: contacts, close coupling and radio frequency.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated refer-
ences, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

lSO/lEC 7816-3, identification cards — Integrated circuit cards — Part 3: Cards with contacts: Electrical
interface and transmission protocols

lSO/lEC 7816-6, identification cards — Integrated circuit cards — Part 6: lnterindustry data eiements for
interchange

lSO/lEC 8825-12002, information technology — ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (OER) and Distinguished Encoding Rules (DER)

© ISO/IEC 2005 — All rights reserved 1

Apple Ex. 1030, p. 74

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 75

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
access rule

data element containing an access mode referring to an action and security conditions to fulfil before acting

3.2
Answer-to-Reset file

optional EF indicating operating characteristics of the card

3.3

application
structures, data elements and program modules needed for performing a specific functionality

3.4

application DF
structure hosting an application in a card

3.5

application identifier
data element (up to sixteen bytes) that identifies an application

3.6

application label
data element for use at the man-machine interface

3.7

application provider
entity providing the components that make up an application in the card

3.8

application template
set of application-relevant data objects including one application identifier data object

3.9

asymmetric cryptographic technique
cryptographic technique that uses two related operations: a public operation defined by public numbers or by
a pubiic key and a private operation defined by private numbers or by a private key (the two operations have
the property that, given the public operation, it is computationally infeasible to derive the private operation)

3.10
certificate

digital signature binding a particular person or object and its associated public key (the entity issuing the
certificate also acts as tag allocation authority with respect to the data elements in the certificate)

3.11

command-response pair
set of two messages at the interface: a command APDU followed by a response APDU in the opposite
direction

3.12
data element

item of information seen at the interface for which are specified a name, a description of logical content, a
format and a coding

2 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 75

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 76

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

3.13

data object
information seen at the interface consisting of the concatenation of a mandatory tag field, a mandatory length
field and a conditional value field

3.14
data unit

the smallest set of bits that can be unambiguously referenced within an EF supporting data units

3.15
dedicated file

structure containing file control information and, optionally, memory available for allocation

3.16
DF name

data element (up to sixteen bytes) that uniquely identifies a DP in the card

3.17

digital signature
data appended to, or cryptographic transformation of, a data string that proves the origin and the integrity of
the data string and protects against forgery, e.g., by the recipient of the data string

3.18

directory file
optional EF containing a list of applications supported by the card and optional related data elements

3.19

elementary file
set of data units or records or data objects sharing the same file identifier and the same security attribute(s)

3.20
file

structure for application and / or data in the card, as seen at the interface when processing commands

3.21
file identifier

data element (two bytes) used to address a file

3.22
header list

concatenation of pairs of tag field and length field without delimitation

3.23
identification card

card identifying its holder and issuer, which may carry data required as input for the intended use of the card
and for transactions based thereon
[iSO/lEC 781095]

3.24

internal elementary file
EF for storing data interpreted by the card

3.25

key
sequence of symbols controlling a cryptographic operation (e.g., encipherment, decipherment, a private or a
public operation in a dynamic authentication, signature production, signature verification)

© ISO/IEC 2005 — Ali rights reserved 3

Apple Ex. 1030, p. 76

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 77

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

3.26
master file

unique DF representing the root in a card using a hierarchy of DFs

3.27
offset

number sequentially referencing a data unit in an EF supporting data units, or a byte in a record

3.28

parent file
DF immediately preceding a given file within a hierarchy of DFs

3.29

password
data that may be required by the application to be presented to the card by its user for authentication purpose

3.30

path
concatenation of file identifiers without delimitation

3.31

private key
that key of an entity's asymmetric key pair that should only be used by that entity
[ISO/IEO 9798—1911

3.32

provider
authority who has or who obtained the right to create a DP in the card

3.33

public key
that key of an entity's asymmetric key pair that can be made public
[ISO/IEO 9798-1‘8‘]

3.34
record

string of bytes referenced and handled by the card within an EF supporting records

3.35
record identifier

number used to reference one or more records within an EF supporting records

3.36
record number

sequential number that uniquely identifies each record within an EF supporting records

3.37

registered application provider identifier
data element (five bytes) that uniquely identifies an application provider

3.38

secret key
key used with symmetric cryptographic techniques by a set of specified entities
[lSO/lEC 11770-3‘1411

3.39

secure messaging
set of means for cryptographic protection of [parts of] command—response pairs

4 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 77

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 78

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

3.40

security attribute
condition of use of objects in the card including stored data and data processing functions, expressed as a
data element containing one or more access rules

3.41

security environment
set of components required by an application in the card for secure messaging or for security operations

3.42

symmetric cryptographic technique
cryptographic technique using the same secret key for both the originator's and the recipient's operation
(without the secret key, it is computationally infeasible to compute either operation)

3.43

tag list
concatenation of tag fields without delimitation

3.44

template
set of BER-TLV data objects forming the value field of a constructed BER—TLV data object

3.45

working elementary file
EF for storing data not interpreted by the card

4 Symbols and abbreviated terms

AID application identifier

APDU application protocol data unit

ARR access rule reference

ASN.1 abstract syntax notation one (see ISO/lEC 8825-1)

AT control reference template for authentication

ATR Answer-to—Reset

BER basic encoding rules of ASN.1 (see lSO/lEC 8825-1)

CCT control reference template for cryptographic checksum

CLA class byte

CRT control reference template

CT control reference template for confidentiality

DF dedicated file

DIR directory

DST control reference template for digital signature

EF elementary file

EF.ARR access rule reference file

© ISO/IEC 2005 — All rights reserved 5

Apple Ex. 1030, p. 78

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 79

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIIEC 7816-4:2005(E)

EF.ATR Answer—to—Reset file

EF.D|R directory file

FCl file control information

FCP file control parameter

FMD file management data

HT control reference template for hash—code

INS instruction byte

KAT control reference template for key agreement

LC field length field for coding the number Nc

LCS byte life cycle status byte

Le fieid length field for coding the number Ne

MF master file

Nc number of bytes in the command data field

Ne maximum number of bytes expected in the response data field

N, number of bytes in the response data field

PlX proprietary application identifier extension

P1-P2 parameter bytes (inserted for clarity, the dash is not significant)

RFU reserved for future use

RID registered application provider identifier

SC security condition

SCQL structured card query language

SE security environment

SElD byte security environment identifier byte

SM secure messaging

SW1-SW2 status bytes (inserted for clarity, the dash is not significant)

(SW1-SW2)value of the concatenation of the bytes SW1 and SW2 (the first byte is the most significant byte)

TLV tag, length, value

{T-L-V} data object (inserted for clarity, the dashes and curly brackets are not significant)

'XX' notation using the hexadecimal digits '0' to '9' and ‘A' to ‘F‘, equal to XX to the base 16

6 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 79

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 80

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

5 Organization for interchange

For organizing interchange, this clause specifies the following basic features.

1) Command-response pairs

2) Data objects

3) Structures for applications and data

4) Security architecture

5.1 Command-response pairs

Table 1 shows a command-response pair, namely a command APDU followed by a response APDU in the
opposite direction (see lSO/lEC 7816-3). There shall be no interleaving of command-response pairs across
the interface, i.e., the response APDU shall be received before initiating another command—response pair.

Table 1 — Command-response pair

Field Description Number of bytes
Class byte denoted CLA

Command header Instruction byte denoted lNS

Parameter bytes denoted P1 —P2

Lc field Absent for encoding NC = 0, present for encoding Nc > 0
Command data field Absent if Nc = 0, present as a string of Nc bytes if NC > O

 Le field Absent for encoding N6 = 0, present for encoding Ne > 0 0, 1, 2 or 3

Response data field Absent if N, = 0, present as a string of Nr bytes if Nr > 0 Nr (at most Ne)
Response trailer Status bytes denoted SW1-SW2 2

in any command—response pair comprising both Lc and Le fields (see lSO/lEC 7816-3), short and extended
length fields shall not be combined: either both of them are short, or both of them are extended.

If the card explicitly states its capability of handling “extended Lc and Le fields” (see Table 88, third software
function table) in the historical bytes (see 8.1.1) or in EF.ATR (see 8.2.1.1), then the card handles short and
extended length fields. Otherwise (default value), the card handles only short length fields.

NC denotes the number of bytes in the command data field. The LC field encodes NC.

— If the La field is absent, then NC is zero.

— A short Lc field consists of one byte not set to ‘00'.

c From '01' to ‘FF', the byte encodes NC from one to 255.

7 An extended Lc field consists of three bytes: one byte set to '00' followed by two bytes not set to '0000'.

c From ‘0001' to 'FFFF', the two bytes encode NC from one to 65 535.

Ne denotes the maximum number of bytes expected in the response data field. The L9 field encodes Ne.

7 If the Le field is absent, then N9 is zero.

— A short Le field consists of one byte with any value.

c From '01‘ to 'FF', the byte encodes Ne from one to 255.

o lfthe byte is set to ‘00', then N8 is 256.

— An extended Le field consists of either three bytes (one byte set to '00' followed by two bytes with any
value) if the LC field is absent, or two bytes (with any value) if an extended LC field is present.

0 From ‘0001' to 'FFFF', the two bytes encode Ne from one to 65 535.

. lfthe two bytes are set to ‘0000’, then Ne is 65 536.

N, denotes the number of bytes in the response data field. N,w shall be less than or equal to Ne. Therefore in
any command-response pair, the absence of Le field is the standard way for receiving no response data field.
If the Le field contains only bytes set to ‘00', then N6 is maximum, i.e., within the limit of 256 for a short Le field,
or 65 536 for an extended Le field, all the available bytes should be returned.

© lSO/lEC 2005 — All rights reserved 7

Apple Ex. 1030, p. 80

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 81

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

if the process is aborted, then the card may become unresponsive. However if a response APDU occurs, then
the response data field shall be absent and SW1-SW2 shall indicate an error.

P1-P2 indicates controls and options for processing the command. A parameter byte set to '00' generally
provides no further qualification. There is no other general convention for encoding the parameter bytes.

General conventions are specified hereafter for encoding the class byte denoted CLA (see 5.1.1), the
instruction byte denoted lNS (see 5.1.2) and the status bytes denoted SW1-SW2 (see 5.1.3). In those bytes,
the RFU bits shall be set to 0 unless otherwise specified.

5.1.1 Class byte

CLA indicates the class of the command. Due to specifications in lSO/lEC 7816-3, the value 'FF‘ is invalid. Bit
8 of CLA distinguishes between the interindustry class and the proprietary class.

Bit 8 set to 0 indicates the interindustry class. The values 000x xxxx and 01xx xxxx are specified hereafter.
The values 001x xxxx are reserved for future use by lSO/lEC JTC 1/80 17.

— Table 2 specifies 000x xxxx as the first interindustry values.

0 Bits 8, 7 and 6 are set to 000.

0 Bit 5 controls command chaining (see 51.1.1).

0 Bits 4 and 3 indicate secure messaging (see 6).

- Bits 2 and 1 encode a logical channel number from zero to three (see 5.1.1.2).

Table 2 — First interindustry values of CLA

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Command chaining control (see 5.1.1.1)
— The command is the last or only command of a chain
— The command is not the last command ofa chain

Secure messaging indication0
O — No SM or no indication

O — Proprietary SM format
0 — SM according to 6, command header not processed according to 6.2.3.1
0 — SM according to 6. command header authenticated according to 6.2.3.1
0

 000000000
- - - x x Logical channel number from zero to three (see 5.1.1.2)

— Table 3 specifies O1xx xxxx as further interindustry values.
0 Bits 8 and 7 are set to 01.

0 Bit 6 indicates secure messaging (see 6).

0 Bit 5 controls command chaining (see 5.1.1.1).

- Bits 4 to 1 encode a number from zero to fifteen; this number plus four is the logical channel number
from four to nineteen (see 5.1.1.2).

Table 3 — Further interindustry values of CLA

Meaning

Secure messaging indication
— No SM or no indication

— SM according to 6, command header not processed according to 6.2.3.1

Command chaining control (see 5.1.1.1)
— The command is the last or only command of a chain
— The command is not the last command ofa chain
 .A.44.:.44

— — x x x x Logical channel number from four to nineteen (see 5.1.1.2)

Bit 8 set to 1 indicates the proprietary class, except for the value 'FF' which is invalid. The application-context
defines the other bits.

8 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 81

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 82

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

5.1.1 .1 Command chaining

This clause specifies a mechanism whereby in the interindustry class, consecutive command-response pairs
can be chained. The mechanism may be used when executing a multi-step process, e.g., transmitting a data
string too long for a single command.

if the card supports the mechanism, then it shall indicate it (see Table 88, third software function table) in the
historical bytes (see 8.1.1) or in EF.ATR (see 8.2.1.1).

This document specifies the card behaviour only in the case where, once initiated, a chain is terminated
before initiating a command-response pair not part of the chain. Otherwise the card behaviour is not specified.

For chaining in the interindustry class, bit 5 of CLA shall be used while the other seven bits are constant.

— lf bit 5 is set to 0, then the command is the last or only command of a chain.

7 If bit 5 is set to 1, then the command is not the last command of a chain.

in response to a command that is not the last command of a chain, SW1-SW2 set to '9000' means that the
process has been completed so far; warning indications are prohibited (see 5.1.3); moreover, the following
specific error conditions may occur.

7 If SW1-SW2 is set to '6883', then the last command of the chain is expected.

— lf SW1—SW2 is set to '6884', then command chaining is not supported.

5.1.1 .2 Logical channels

This clause specifies a mechanism whereby in the interindustry class, command-response pairs can refer to
logical channels.

if the card supports the mechanism, then it shall indicate the maximum number of available channels (see
Table 88, third software function table) in the historical bytes (see 8.1.1) or in EF.ATR (see 8.2.1.1).

7 If the indicated number is four or less, then only Table 2 applies.

7 If the indicated number is five or more, then Table 3 also applies.

For referring to logical channels in the interindustry class, the following rules apply.

7 CLA encodes the channel number of the command-response pair.

7 The basic channel shall be permanently available, i.e., it cannot be closed. Its channel number is zero.

— Cards not supporting the mechanism (default value) shall use only the basic channel.

— Any other channel shall be opened by completion of either a SELECT command (see 7.1.1) where CLA
encodes a channel number not yet in use, or a MANAGE CHANNEL command with open function (see 7.1.2).

7 Any other channel can be closed by the completion of a MANAGE CHANNEL command with close function.
After closing, the channel shall be available for re-use.

7 Only one channel shall be active at a time. The use of logical channels does not remove the prohibition of
interleaving command-response pairs across the interface, i.e., the response APDU shall be received
before initiating another command-response pair (see 5.1).

7 If not explicitly excluded by the file descriptor byte (see Table 14), more than one channel may be opened
to the same structure (see 5.3), i.e., to a DF, possibly an application DF, and also possibly to an EF.

Each logical channel has its own security status (see 5.4). The way to share a security status is outside the
scope of this document.

© ISO/IEC 2005 — Ali rights reserved 9

Apple Ex. 1030, p. 82

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 83

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOI'lEC 7816-4:2005(E)

5.1.2 Instruction byte

INS indicates the command to process. Due to specifications in ISO/IEC 7816-3, the values ‘6X‘ and '9X‘ are
invalid.

Table 4 lists all the commands specified in lSO/lEC 7816 at the time of publication.

— Table 4.1, i.e., the left side, lists the command names in the alphabetic order.

7 Table 4.2, i.e., the right side, lists the lNS codes in the numeric order.

Table 4.1 — Commands in the alphabetic order Table 4.2 — Commands in the numeric order

Command name INS See [INS Command name See
ACTIVATE FILE ‘44‘ Part 9 ‘04‘ DEACTIVATE FILE Part 9

APPEND RECORD 'E2' 7.3.7 “00' ERASE RECORD (8) 7.3.8
CHANGE REFERENCE DATA '24‘ 7.5.7 'OE', 'OF' ERASE BINARY 7.2.7

CREATE FILE 'EO‘ Part 9 ‘10’ PERFORM SCOL OPERATION Part 7
DEACTIVATE FILE '04‘ Part 9 ‘12' PERFORM TRANSACTION OPERATION Part 7

DELETE FILE 'E4‘ Part 9 ‘14‘ PERFORM USER OPERATION Part 7

DISABLE VERIFICATION REQUIREMENT ”26' 7.5.9 '20‘, '21‘ VERIFY 7.5.6
ENABLE VERIFICATION REQUIREMENT '28” 7.5.8 ‘22' MANAGE SECURITY ENVIRONMENT 7.5.1 1

ENVELOPE 'CZ‘, 'C3' 7.6.2 ‘24' CHANGE REFERENCE DATA 7.5.7
ERASE BINARY ‘0E', '0F’ 7.2.7 ‘26‘ DISABLE VERIFICATION REQUIREMENT 7.5.9

ERASE RECORD (3) “00' 7.3.8 ‘28‘ ENABLE VERIFICATION REQUIREMENT 7.5.8
EXTERNAL (/ MUTUAL) AUTHENTICATE '82‘ 7.5.4 '2A' PERFORM SECURITY OPERATION Part 8

GENERAL AUTHENTICATE '86', '87' 7.5.5 'ZC' RESET RETRY COUNTER 7.5.10
GENERATE ASYMMETRIC KEY PAIR '46‘ Part 8 ‘44' ACTIVATE FILE Part 9

GET CHALLENGE '84‘ 7.5.3 ‘46” GENERATE ASYMMETRIC KEY PAIR Part 8

GET DATA 'CA', '08“ 7.4.2 ‘70‘ MANAGE CHANNEL 7.1.2
GET RESPONSE ’CO' 7.6.1 ‘82' EXTERNAL (I MUTUAL) AUTHENTICATE 7.5.4

INTERNAL AUTHENTICATE '88' 7.5.2 ‘84‘ GET CHALLENGE 7.5.3

MANAGE CHANNEL '70' 7.1.2 '86', '87' GENERAL AUTHENTICATE 7.5.5
MANAGE SECURITY ENVIRONMENT ”22' 7.5.1 1 ‘88' INTERNAL AUTHENTICATE 7.5.2

PERFORM SCQL OPERATION '10' Part 7 ‘AO‘, 'A1' SEARCH BINARY 7.2.6
PERFORM SECURITY OPERATION '2A‘ Part 8 'A2' SEARCH RECORD 7.3.7

PERFORM TRANSACTION OPERATION ‘12‘ Part 7 'A4' SELECT 7.1.1

PERFORM USER OPERATION '14‘ Part 7 ‘BO', 'B1' READ BINARY 7.2.3
PUT DATA ‘DA‘, 'DB' 7.4.3 ‘82, 'BS' READ RECORD (S) 7.3.3

READ BINARY ‘BO', ‘B1' 7.2.3 ‘CO' GET RESPONSE 7.6.1
READ RECORD (s) '82, 'B3' 7.3.3 '02', 'C3' ENVELOPE 7.6.2

RESET RETRY COUNTER ’20' 7.5.10 'CA', “08‘ GET DATA 7.4.2
SEARCH BINARY 'AO', 'A1' 7.2.6 'DO', 'D1' WRITE BINARY 7.2.6

SEARCH RECORD 'A2‘ 7.3.7 'D2’ WRITE RECORD 7.3.4

SELECT 'A4‘ 7.1.1 'D6‘, ‘D7' UPDATE BINARY 7.2.5
TERMINATE CARD USAGE ‘FE' Part 9 'DA', 'DB' PUT DATA 7.4.3

TERMINATE DF 'E6‘ Part 9 ’DC‘, ‘DD’ UPDATE RECORD 7.3.5
TERMINATE EF 'E8‘ Part 9 'EO' CREATE FILE Part 9

UPDATE BINARY 'D6', ‘07“ 7.2.5 'E2' APPEND RECORD 7.3.6
UPDATE RECORD 'DC', 'DD' 7.3.5 'E4' DELETE FILE Part 9

VERIFY '20‘, '21' 7.5.6 'E6' TERMINATE DF Part 9
WRITE BINARY 'DO‘, ‘D1' 7.2.4 'E8' TERMINATE EF Part 9

WRITE RECORD 'DZ‘ 7.3.4 'FE' TERMINATE CARD USAGE Part 9

i In the interindustry class, any valid INS code not defined in lSO/lEC 7816 is reserved for future use by ISOIIEC JTC 1/SC 17.

lSO/IEC 7816 specifies the use of those commands in the interindustry class.

— This document (see 7) specifies commands for interchange.

— lSO/lEC 7816-7m specifies commands for structured card query language (SCQL).

7 lSOilEC 7816-8m specifies commands for security operations.

— lSO/lEC 7816-9m specifies commands for card management.

10 © ISO/IEC 2005 _ AII rights reserved

Apple Ex. 1030, p. 83

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 84

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

In the interindustry class, bit 1 of INS indicates a data field format as follows.

7 If bit 1 is set to 0 (even lNS code), then no indication is provided.

— lf bit 1 is set to 1 (odd lNS code), then BER-TLV encoding (see 5.2.2) shall apply as follows.

. ln unchained commands with SW1 not set to '61', data fields, if any, shall be encoded in BER—TLV.

0 Command chaining and i or the use of SW1 set to '61' allow the transmission of data strings too long
for a single command. Such a process may split data objects in data fields consecutively sent as a
sequence in one direction, i.e., while sending no data field in the opposite direction. When chaining
commands and / or using SW1 set to ‘61', the concatenation of all the consecutive data fields in the
same direction in the same sequence shall be encoded in BER-TLV.

5.1.3 Status bytes

SW1-SW2 indicates the processing state. Due to specifications in lSO/IEC 7816-3, any value different from
‘6XXX' and ‘QXXX‘ is invalid; any value ‘GOXX‘ is also invalid.

The values '61XX', '62XX', '63XX’, '64XX', ‘65XX', '66XX', '68XX‘, '69XX', '6AXX' and '6CXX' are interindustry.
Due to specifications in lSO/lEC 7816-3, the values '67XX’, 'SBXX’, '6DXX‘, '6EXX', ‘6FXX‘ and ‘9XXX‘ are
proprietary, except the values ‘6700', 'SBOO', 'BDOO', 'BEOO', ‘GFOO' and '9000' that are interindustry.

Figure 1 shows the structural scheme of the values ‘9000‘ and ‘61XX‘ to ‘6FXX' for SW1-SW2.

SW1-SW2

Process completed Process aborted

Normal PFOCGSSMQ Warning processing Execution error Checking error
'9000' and ‘61XX' '62XXx and '63XX' ‘64XX' to 'EBXX' '57XX' to '5pxx-

Figure 1 — Structural scheme of values of SW1-SW2

Table 5 lists all the interindustry values of SW1-SW2 and shows their general meaning. lSO/lEC JTC 1ISC 17
reserves for future use any interindustry value of SW1-SW2 not defined in lSO/lEC 7816.

Table 5 — General meaning of the interindustry values of SW1-SW2

— sw1-sw2 Meaning
Normal ‘9000' No further qualification

processing '61XX' SW2 encodes the number of data bytes still available (see text below)

Warning State of non—volatile memory is unchanged (further qualification in SW2)
processing State of non—volatile memory has changed {further qualification in SW2)

_ '64XX' State of non—volatile memory is unchanged (further qualification in SW2)
Execution '65XX‘ State of non—volatile memory has changed (further qualification in SW2)

error '66XX' Security-reiated issues
“6700' Wrong length; no further indication
'68XX' Functions in CLA not supported (further qualification in SW2)
'69XX' Command not allowed (further qualification in SW2)

Checkin 'GAXX' Wrong parameters P1—P2 (further qualification in SW2)
error 9 ‘SBOO' Wrong parameters P1-P2

'GCXX' Wrong Le field; SW2 encodes the exact number of available data bytes (see text below)
‘6D00‘ instruction code not supported or invalid
'GEOO‘ Class not supported
'6FOO‘ No precise diagnosis

if the process is aborted with a value of SW1 from ‘64' to ‘6F', then the response data field shall be absent.

lf SW1 is set to '63' or ’65', then the state of the non-volatile memory has changed. if SW1 is set to ‘6X' except
for '63' and '65‘, then the state of the non-volatile memory is unchanged.

© ISO/IEC 2005 _ All rights reserved 11

Apple Ex. 1030, p. 84

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 85

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

in response to a command that is not the last command of a chain (see 5.1.1.1), interindustry warning
indications are prohibited (see also lSO/lEC 7816-3), i.e., SW1 shall be set to neither ‘62“ nor '63‘.

Two interindustry values of SW1 are independent from any transmission protocol.

— if SW1 is set to ‘61“, then the process is completed and before issuing any other command, a GET RE-
SPONSE command may be issued with the same CLA and using SW2 (number of data bytes still available)
as short Le field.

— If SW1 is set to “GO, then the process is aborted and before issuing any other command, the same
command may be re-issued using SW2 (exact number of available data bytes) as short Le field.

Table 6 lists all the specific interindustry warning and error conditions used in lSO/lEC 7816 at the time of
publication.

Table 6 — Specific interindustry warning and error conditions

SW1

‘62“ '00' No information given
(warning) '02' to ‘80“ Triggering by the card (see 8.6.1)

'81“ Part of returned data may be corrupted
'82' End of file or record reached before reading Ne bytes
'83' Selected file deactivated

'84' File control information not formatted according to 5.3.3
'85' Selected file in termination state

‘86“ No input data available from a sensor on the card
‘63“ No information given

(warning) File filled up by the last write
Counter from 0 to 15 encoded by 'X‘ (exact meaning depending on the command)

'64“ ‘OO' Execution error

(error) “01' immediate response required by the card
’02' to '80“ Triggering by the card (see 8.6.1)

'65“ “00' No information given
(error) '81' Memory failure

'68“ ‘00' No information given
(error) '81' Logical channel not supported

'82' Secure messaging not supported
‘83“ Last command of the chain expected
'84“ Command chaining not supported

'69' '00' No information given
(error) '81“ Command incompatible with file structure

“82' Security status not satisfied
'83' Authentication method blocked
'84' Reference data not usable
'85' Conditions of use not satisfied

‘86“ Command not allowed (no current EF)
‘87' Expected secure messaging data objects missing
'88' incorrect secure messaging data objects

'6A' ‘00“ No information given
(error) '80' incorrect parameters in the command data field

'81' Function not supported
'82' File or application not found
'83“ Record not found

“84' Not enough memory space in the file
‘85' NG inconsistent with TLV structure
‘86“ incorrect parameters P1-P2
'87' NC inconsistent with parameters P1-P2
‘88“ Referenced data or reference data not found (exact meaning depending on the command)
'89‘ File already exists
'8A' DF name already exists

—Any other value of SW2 is reserved for future use by iSOIIEC JTC “SC 17.

fl © iSOIiEC 2005 — All rights reserved

Apple Ex. 1030, p. 85

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 86

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

5.2 Data objects

lf encoded in TLV, any data field, or concatenation of data fields, is a sequence of data objects. This clause
specifies two categories of data objects: SllVlPLE-TLV data objects and BER-TLV data objects.

5.2.1 SlMPLE-TLV data objects

Each SIMPLE-TLV data object shall consist of two or three consecutive fields: a mandatory tag field, a
mandatory length field and a conditional value field. A record (see 7.3.1) may be a SlMPLE—TLV data object.

7 The tag field consists of a single byte encoding a tag number from 1 to 254. The values '00“ and 'FF' are
invalid for tag fields. If a record is a SlMPLE—TLV data object, then the tag may be used as record identifier.

— The length field consists of one or three consecutive bytes.

o If the first byte is not set to 'FF', then the length field consists of a single byte encoding a number from
zero to 254 and denoted N.

o If the first byte is set to 'FF', then the length field continues on the subsequent two bytes with any
value encoding a number from zero to 65 535 and denoted N.

7 If N is zero, there is no value field, i.e., the data object is empty. Otherwise (N > 0), the value field
consists of N consecutive bytes.

5.2.2 BER-TLV data objects

Each BER-TLV data object consists of two or three consecutive fields (see the basic encoding rules of ASN.1 in
lSO/lEC 8825-1): a mandatory tag field, a mandatory length field and a conditional value field.

7 The tag field consists of one or more consecutive bytes. It indicates a class and an encoding and it
encodes a tag number. The value '00' is invalid for the first byte of tag fields (see lSO/lEC 8825-1).

— The length field consists of one or more consecutive bytes. lt encodes a length, i.e., a number denoted N.

7 If N is zero, there is no value field, i.e., the data object is empty. Otherwise (N > 0), the value field
consists of N consecutive bytes.

5.2.2.1 BER-TLV tag fields

lSO/lEC 7816 supports tag fields of one, two and three bytes; longer tag fields are reserved for future use.

Bits 8 and 7 of the first byte of the tag field indicate a class.

— The value 00 indicates a data object of the universal class.

7 The value 01 indicates a data object of the application class.

7 The value 10 indicates a data object of the context-specific class.

— The value 11 indicates a data object of the private class.

Bit 6 of the first byte of the tag field indicates an encoding.

— The value 0 indicates a primitive encoding of the data object, i.e., the value field is not encoded in BER-TLV.

7 The value 1 indicates a constructed encoding of the data object, i.e., the value field is encoded in BER-TLV.

lf bits 5 to 1 of the first byte of the tag field are not all set to 1, then they encode a tag number from zero to
thirty and the tag field consists of a single byte.

Otherwise (bits 5 to 1 all set to 1), the tag field continues on one or more subsequent bytes.

— Bit 8 of each subsequent byte shall be set to 1, unless it is the last subsequent byte.

7 Bits 7 to 1 of the first subsequent byte shall not be all set to O.

7 Bits 7 to 1 of the first subsequent byte, followed by bits 7 to 1 of each further subsequent byte, up to and
including bits 7 to 1 of the last subsequent byte encode a tag number.

© ISO/IEO 2005 _ Ali rights reserved 1 3

Apple Ex. 1030, p. 86

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 87

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Table 7 shows the first byte of the tag field. The value ‘00‘ is invalid.

Table 7 — First byte of BER-TLV tag fields in lSOIlEC 7816

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Universal class, not defined in ISO/IEO 7816

Application class, identification defined in this document
Context-specific class, defined in lSO/lEC 7816
Private class, not defined in ISOflEC 7816

_ _ 0 - — — - - Primitive encoding
_ _ 1 - - - - - Constructed encoding

— — — Not all set to 1 Tag number from zero to thirty (short tag field, Le, a single byte)

— — — 1 1 1 1 1 Tag number greater than thirty (long tag field, i.e., two or three bytes)

in data fields encoded in BER-TLV, bytes set to '00‘ may be present before, between or after data objects (e.g.,
due to erasure or modification of data objects within an EF supporting data units). Such padding is prohibited
within value fields of constructed data objects, called “templates” in lSO/lEC 7816.

When present in the historical bytes (see 8.1.1) or in EF.ATR (see 8.2.1.1) or in the control information of any
file (see tag '82' in Table 12), the data coding byte (see Table 87) indicates whether the value ‘FF' is

— valid for the first byte of long tag fields of the private class, constructed encoding (explicit statement), or

7 invalid for the first byte of tag fields (default value), i.e., used for the same purpose (padding) and under
the same conditions as the value '00‘.

in tag fields of two or more bytes, the values '00‘ to '1 E‘ and '80' are invalid for the second byte.

— ln two—byte tag fields, the second byte consists of bit 8 set to O and bits 7 to 1 encoding a number greater
than thirty. The second byte is valued from ‘1F' to '7F; the tag number is from 31 to 127.

— In three—byte tag fields, the second byte consists of bit 8 set to 1 and bits 7 to 1 not all set to 0; the third
byte consists of bit 8 set to O and bits 7 to 1 with any value. The second byte is valued from '81' to ‘FF‘
and the third byte from '00' to '7F'; the tag number is from 128 to 16 383.

5.2.2.2 BER-TLV length fields

in short form, the length field consists of a single byte where bit 8 is set to O and bits 7 to 1 encode the number
of bytes in the value field. One byte can thus encode any number from zero to 127.

NOTE Any number from one to 127 is encoded in the same way in BER—TLV length field as in LG and Le fields. The
encoding differs for zero, 128 and more. See for example, the coding of data objects in the GET DATA command in 7.4.2.

ln long form, the length field consists of two or more bytes. Bit 8 of the first byte is set to 1 and bits 7 to 1 are
not all equal, thus encoding the number of subsequent bytes in the length field. Those subsequent bytes
encode the number of bytes in the value field.

lSO/lEC 7816 does not use the “indefinite length” specified by the basic encoding rules of ASN.1.

lSO/IEC 7816 supports length fields of one, two, up to five bytes (see Table 8). ln lSO/lEC 7816, the values
'80‘ and “85' to 'FF' are invalid for the first byte of length fields.

Table 8 — BER-TLV length fields in ISOMEC 7816

1‘ byte N

2 bytes '81‘ ‘00‘ to 'FF' - - -

3 bytes '82‘ '0000' to 'FFFF‘ - -

4 bytes '83' ‘000000' to 'FFFFFF’ - O to 16 777 215

5 bytes ‘84' '00000000‘ to ‘FFFFFFFF' 0 to 4 294 967 295

14 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 87

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 88

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

5.2.3 Data fields, value fields, data objects and data elements

Any command or response data field may be encoded in BER—TLV, e.g., in a command-response pair where
CLA indicates secure messaging (see 6) or where bit 1 of INS is set to 1 (odd lNS code, see 5.1.2).

7 Any BER-TLV data object is denoted {T—L—V} with a tag field followed by a length field encoding a number.
Depending on whether the number is zero or not, the value field is absent (empty data object) or present.

— Any constructed BER-TLV data object is denoted {T—L- {T1-L1-V1} - {Tn-Ln-Vn}} with a tag field followed
by a length field encoding a number. If the number is not zero, then the value field of the constructed data
object, i.e., the template, consists of one or more BER-TLV data objects, each one consisting of a tag field,
a length field encoding a number and if the number is not zero, a value field.

Some data fields, e.g., commands for handling data units (see 7.2), the value fields of SiMPLE-TLV data objects
and the value fields of some primitive BER-TLV data objects consist of data elements according to the
specifications of the command or according to the tag of the data object.

Some data fields, e.g., commands for handling records (see 7.3) and the value fields of some primitive
BER-TLV data objects consist of SlMPLE-TLV data objects.

Some data fields, e.g., commands for handling data objects (see 7.4) and the value fields of constructed
BER—TLV data objects, i.e., the templates, consist of BER-TLV data objects.

5.2.4 Identification of data elements

The identification of data elements relies on the following principles.

1) if the number of bits representing a data element is not a multiple of eight, then the mapping into a
byte or a string of bytes should be specified in the context of the respective data element. Unless
otherwise specified, the appropriate number of bits shall be set to 1 in the last byte starting from bit 1.

2) At the interface between the card and the interface device, a data element is generally presented in
the value field ofa BER-TLV data object.

3) For purposes of retrieval and referencing in interchange, a data element shall be associated with the
tag of a BER-TLV data object and the data element may be encapsulated in this data object.

4) A data element may be referenced directly by its associated BER-TLV tag. it may be associated with
another data element that sets the context to which it belongs.

5) One or more command-to-perform data objects may indirectly reference a data element.

6) When present, data objects of the universal class (first byte from ‘01‘ to '3F') have their general
meaning.

7) All the data objects of the application class (first byte from '40' to ‘7F') are interindustry, unless
otherwise specified. This part and other parts of lSO/IEC 7816 allocate tags of the application class.
Every application class tag not defined in iSO/lEC 7816 is reserved for lSO/iEC JTC 1/SC 17.

8) This document specifies many interindustry data elements. In addition to defining further interindustry
data elements, lSO/lEC 7816-6 maintains an exhaustive list of the interindustry data elements
specified in lSO/lEC 7816 at the time of publication.

9) There may be multiple occurrences of the same interindustry data object within the card.

10) In command and response data fields, all the data objects of the context—specific class (first byte from
‘80’ to 'BF') shall be nested within interindustry templates, except for file control information (see 5.3.3)
and secure messaging (see 6).

11) Illustrated by annex A, the subsequent clauses specify tag allocation schemes for identifying
interindustry data objects in data fields. When needed, those tag allocation schemes use the
interindustry data objects shown in Table 9 for notifying an authority responsible for tag allocation.

© ISO/IEC 2005 — All rights reserved 1 5

Apple Ex. 1030, p. 88

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 89

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

isonEc 7816-4:2005(E)

Table 9 — interindustry data objects for tag allocation authority

m Object identifier (encoding specified in lSO/lEC 8825-1, see examples in annex A)
Country code (encoding specified in lSO 3166-1m) and optional national data

Issuer identification number (encoding and registration specified in lSOIlEC 7812—1m) and optional issuer data

Application identifier (AID, encoding specified in 8.2.1.2)

5.2.4.1 Compatible tag allocation scheme

These tag allocation schemes use interindustry data objects and further data objects.

These further data objects shall be nested within interindustry templates referenced by tags '70' to ’77' (except
for tag ‘73' reserved for nesting proprietary data objects, see 5.2.4.3) where the meaning of the application
class tags is not defined in ISO/IEC 7816 except for tags ‘41‘, '42' and '4F' for identifying tag allocation
authorities as shown in Table 9.

The use of the context-specific class (first byte from ‘80' to 'BF’) within interindustry templates with tags '65‘
(cardholder—related data), ‘66’ (card data), '67' (authentication data) and '6E‘ (application-related data) is
deprecated.

in order to identify a compatible tag allocation scheme and the authority responsible for the scheme, an
interindustry template referenced by tag '78’ may be used. If present, such a template shall contain one of the
interindustry data objects shown in Table 9, for identifying a tag allocation authority.

— If tag ‘78“ is present in the initial data string (see 8.1.2) or in EF.ATR (see 8.2.1.1), then the authority is
valid for the entire card.

— If tag ‘78' is present in DF management data (see 5.3.3), then the authority is valid within that DF.

5.2.4.2 Coexistent tag allocation scheme

These tag allocation schemes may use tags with an interpretation not defined in lSO/IEC 7816. in order to
identify a coexistent tag allocation scheme and the authority responsible for the scheme, an interindustry
template referenced by tag '79‘ shall be used. if present, such a template shall contain one of the interindustry
data objects shown in Table 9, for identifying a tag allocation authority.

7 if an authority is valid for the entire card, then tag '79‘ shall be present in the initial data string (see 8.1.2)
or in EF.ATR (see 8.2.1.1).

— if an authority is valid within a DF, then tag '79' shall be present in the DF management data (see 5.3.3).

in such a scheme, all the interindustry data objects shall be nested within interindustry templates referenced
by tag ’7E'. Moreover, tags ‘79‘ and '7E‘ shall not be given another interpretation, as well as tags '62', “64', ‘BF’
(FCP, FMD and FCl templates, see 5.3.3) and '7D' (SM template, see 6).

5.2.4.3 Independent tag allocation scheme

These tag allocation schemes may use tags with another interpretation than lSOi’lEC 7816, but which does
not comply with 5.2.4.2. Such tag allocation schemes do not allow interchange and do not comply with this
document.

The use of interindustry discretionary data objects with tags '53' for presenting discretionary data elements
and '73' for nesting proprietary data objects in discretionary templates allows the use of proprietary data
elements and data objects while remaining compliant with this document.

16 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 89

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 90

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

5.3 Structures for applications and data

This clause specifies structures for applications and data, as seen at the interface when processing
commands in the interindustry class. The actual storage location of data and structural information beyond
what is described in this clause is outside the scope of lSO/IEC 7816.

Two categories of structures are supported: dedicated file (DF) and elementary file (EF).

7 The DFs host applications and / or group files and l or store data objects. An application DF is 3 BF
hosting an application. A DF may be the parent of other files. These other files are said to be immediately
under the DF.

7 The EFs store data. An EF cannot be the parent of another file. Two categories of EFs are specified.

. An internal EF

Apple Ex. 1030, p. 91

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

Selection by path — A path may reference any file. It is a concatenation of file identifiers. The path begins
with the identifier of a DF (the MF for an absolute path or the current DF for a relative path) and ends with the
identifier of the file itself. Between those two identifiers, the path consists of the identifiers of the successive
parent DFs, if any. The order of the file identifiers is always in the direction parent to child. If the identifier of
the current DF is not known, then the value '3FFF‘ (reserved value) can be used at the beginning of the path.
The values '3F002F00‘ and '3F002FO1‘ are reserved (see 8.2.1.1). The path allows an unambiguous selection
of any file from the MF or from the current DF (see 8.3).

Selection by short EF identifier — A short EF identifier may reference any EF. It consists of five bits not all
equal, i.e., any number from one to thirty. When used as short EF identifier, the number zero, i.e., 00000 in
binary, references the current EF. At MF level, the number thirty, i.e., 11110 in binary, is reserved (see
8.2.1.1). Short EF identifiers cannot be used in a path or as an EF identifier (e.g., in a SELECT command).

lf supported, selection by short EF identifier shall be indicated.

7 lf the first software function table (see Table 86) is present in the historical bytes (see 8.1.1) or in EF.ATR
(see 8.2.1.1), then the indication is valid at card level.

— If a short EF identifier (tag '88', see Table 12) is present in the control parameters (see 5.3.3) of an EF,
then the indication is valid at EF level.

5.3.1.2 File reference data element

Referenced by tag '51', this interindustry data element references a file. It may have any length.

— An empty data object references the MF.

7 If the length is one and if bits 8 to 4 of the data element are not all equal and if bits 3 to 1 are set to 000,
then bits 8 to 4 encode a number from one to thirty that is a short EF identifier.

7 If the length is two, then the data element is a file identifier.

— If the length is more than two, then the data element is a path.

o If the length is even and if the first two bytes are set to '3F00’, then the path is absolute. The data
element is a concatenation of at least two file identifiers starting with the MF identifier.

o If the length is even and if the first two bytes are not set to ‘3FOO‘, then the path is relative. The data
element is a concatenation of at least two file identifiers starting with the identifier of the current DF.

0 If the length is odd, then the path is qualified. The data element is either an absolute path without
'3F00‘, or a relative path without the identifier of the current DF, followed by a byte to use as P1 in one
or more SELECT commands (see 7.1.1 and 8.3).

Table 10 shows the file reference data object.

Table 10 — File reference data object

Length

'51' nThe empty data object references the MF
Short EF identifier (bits 8 to 4 encode a number from one to thirty; bits 3 to 1 are set to 000)
File identifier

Absolute path (the two first bytes are set to '3FOO‘)
Relative path (the first two bytes are not set to '3FOO')

Odd, > 2 Qualified path (the last byte shall be used as P1 in one or more SELECT commands)

5.3.2 Data referencing methods

ln DFs, data may be referenced as data objects (see 5.2). The BF is seen at the interface as a set of data
objects accessible by commands for handling data objects (see 7.4).

In EFs, data may be referenced as data units (see 7.2.1), as records (see 7.3.1) or as data objects (see 5.2).
Data referencing method is an EF-dependent feature. Three structures of EFs are defined.

— Transparent structure — The EF is seen at the interface as a single continuous sequence of data units
accessible by commands for handling data units (see 7.2). Data unit size is an EF—dependent feature.

18 © lSO/lEC 2005 _ All rights reserved

Apple Ex. 1030, p. 91

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 92

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIIEC 7816-4:2005(E)

— Record structure—The EF is seen at the interface as a single continuous sequence of individually
identifiable records accessible by commands for handling records (see 7.3). Record numbering method is
an EF-dependent feature. Two attributes are defined.
. The size of the records is either fixed, or variable.

. The organization of the records is either a sequence (linear structure), or a ring (cyclic structure).

— TLV structure —The EF is seen at the interface as a set of data objects accessible by commands for
handling data objects (see 7.4). The type of data objects in the EF, namely, either SlMPLE-TLV, or BER—TLV,
is an EF-dependent feature.

For referencing data in EFs, the card shall support at least one of the five structures shown in Figure 4.

ml: 2); 3);I 4)© 5il-I
E E I:

Figure 4 — EF structures

1) Transparent structure

2) Linear structure with records of fixed size

3) Linear structure with records of variable size

4) Cyclic structure with records of fixed size (the arrow references the most recently written record)

5) TLV structure

5.3.3 File control information

By definition, the file control information is the byte string available in response to the SELECT command (see
7.1.1); it may be present for any structure, i.e., any DF and any EF.

7 If the first byte is valued from '00' to 'BF’, then the byte string shall be BER-TLV encoded. lSO/IEC JTC 1/
SC 17 reserves for future use all the values in the range '00' to 'BF‘ that are not defined in this document.

— If the first byte is valued from ‘CO' to ‘FF', then the byte string is not encoded according to this document.

Table 11 shows three interindustry templates for nesting file control infom1ation BER—TLV data objects.

7 The FCP template is a set of file control parameters, i.e., logical, structural and security attributes as
listed in Table 12 and defined hereafter. Within the FCP template, the context—specific class (first byte
from ’80' to 'BF') is reserved for file control parameters; tags '85' and 'AS' reference discretionary data.

— The FMD template is a set of file management data, i.e., interindustry data objects such as an application
identifier as defined in 8.2.1.2, an application label as defined in 8.2.1.4 and an application expiration date
as defined in lSO/lEC 7818—6, possibly nested within an application template as defined in 8.2.1.3. Within
the FMD template, tags '53‘ and “73' reference discretionary data.

— The FCI template is a set of file control parameters and file management data.

Table 11 — interindustry templates for file control information

Set of file control parameters (FCP template)
Set of file management data (FMD template)

Set of file control parameters and file management data (FCl temptate)

The three templates may be retrieved according to selection options of the SELECT command (see Table 40).

— If the FCl option is set, then the FCl tag is optional for introducing the template in the response data field.

— if the FCP or FMD option is set, then the corresponding tag is mandatory for introducing the template.

© ISO/IEO 2005 _ Ali rights reserved 1 9

Apple Ex. 1030, p. 92

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 93

 Apple v. Fintiv

 IPR2020-00019

Apple Ex. 1030, p. 94

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

3) Operational state

4) Termination state

The life cycle status byte (LCS byte) shall be interpreted according to Table 13.

— The values ’00' to 'OF' are interindustry.

7 The values ’10‘ to 'FF’ are proprietary.

Table 13 — Life cycle status byte
b8 b7 b6 b5 b4 b3 b2 b1 Meaning

0 O Noinformationgiven
1 Creation state
1 initialisation state

1 Operational state (activated)
0

Operational state (deactivated)
Termination state

Not all zero x x x x Proprietary
— Any other value is reserved for future use by lSO/IEC JTC 1‘80 17.

000000 000000 000000
0
O
0
O
O
0

Referenced by tag ‘8A‘, a file LCS byte may be present in the control parameters of any file (see Table 12).

A card LCS byte may be present in the historical bytes (see 8.1.1.3). Referenced by tag ‘48', a card LCS byte
may be present in EF.ATR (see 8.2.1.1). When it has a MF, the card is in, at least, the creation state.

NOTE Unless otherwise specified, the security attributes are valid for the operational state.

5.3.3.3 File descriptor byte

Referenced by tag '82', a data element may be present in the control parameters of any file (see Table 12).

7 The first byte of the data element is the file descriptor byte (see Table 14).

— If the data element consists of two or more bytes, then the second byte is the data coding byte (see Table
87). If the card provides data coding bytes in several places, then the indication valid for a given file is in
the closest position to that file within the path from the MF to that file.

Table 14 — File descriptor byte
b7 b6 b5 b4 b3 b2 b1 Meaning
x — — — File accessibility
O — — — — Not shareable file

— Shareable file

Not all set to 1
— O O 0
- O O 1

Any other value

EF category
— Working EF
— internal EF

— Proprietary categories of EFs
EF structure

 — Not all set to 1 0 0 — No information given
- Not all set to 1 O 1 — Transparent structure
_ Not all set to 1 0 O — Linear structure, fixed size, no further information
— Not all set to 1 O 1 — Linear structure, fixed size, TL\/ structure
— Not ali set to 1 1 O — Linear structure, variable size, no further information
_ Not all set to 1 1 1 — Linear structure, variable size. TLV structure
- Not all set to 1 1 O — Cyclic structure. fixed size, no further information
_ Not all set to 1 1 1 — Cyclic structure, fixed size, TLV structure
- 1 1 1 O 1 — TLV structure for BER-TLV data objects
- 1 1 1 O 0 — TLv structure for SlMPLE—TLV data objects

—Any other value is reserved for future use by lSO/IEC JTC 1ISC 17.
— "Shareable" means that the file supports at least concurrent access on different logical channels.

© rec/rec 2005 _ All rights reserved 21

Apple Ex. 1030, p. 94

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 95

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

5.4 Security architecture

5.4.1 General

This clause describes security status, security attributes and security mechanisms.

Security status — The security status represents the current state possibly achieved after completion of the
answer to reset and a possible protocol and parameter selection and / or a single command or a sequence of
commands possibly performing authentication procedures. The security status may also result from
completion of a security procedure related to the identification of the involved entities, if any, e.g., by proving
knowledge of a password (e.g., using a VERIFY command) or knowledge of a key (e.g., using a GET CHALLENGE
command followed by an EXTERNAL AUTHENTICATE command, or using a sequence of GENERAL AUTHENTICATE
commands), or by secure messaging (e.g., message authentication). Four security statuses are considered.

— Global security status — in a card using a hierarchy of DFs, it may be modified by completion of an MF-
related authentication procedure (e.g., entity authentication by a password or a key attached to the MF).

7 Application-specific security status — it may be modified by completion of an application-related
authentication procedure (e.g., entity authentication by a password or a key attached to the application); it
may be maintained, recovered or lost by application selection; this modification may be relevant only for
the application to which the authentication procedure belongs. lf logical channels apply, then the
application—specific security status may depend on the logical channel.

— File-specific security status — it may be modified by compietion of a DF-related authentication
procedure (e.g., entity authentication by a password or by a key attached to the specific DF); it may be
maintained, recovered or lost by file selection; this modification may be reievant only for the application to
which the authentication procedure belongs. lf logical channels apply, then the file-specific security status
may depend on the logical channel.

7 Command-specific security status — it only exists while processing a command using secure
messaging and involving authentication; such a command may leave the other security status unchanged.

Security attributes— The security attributes, when they exist, define which actions are allowed, and under
which conditions. The security attributes of a file depend on its category (DF or EF) and on optional parame-
ters in its file control information and f or in that of its parent file(s). Security attributes may also be associated
with commands, data objects and tables & views. in particular, security attributes may

— specify the security status of the card to be in force before accessing data;

— restrict access to data to certain functions (e.g., read only) if the card has a particular status;

— define which security functions shall be performed to obtain a specific security status.

Security mechanisms 7 This clause considers the following security mechanisms.

7 Entity authentication with password — The card compares data received from the outside world with
secret internal data. This mechanism may be used for protecting the rights of the user.

— Entity authentication with key — The entity to authenticate has to prove the knowledge of the relevant
secret or private key in an authentication procedure (e.g., a GET CHALLENGE command followed by an
EXTERNAL AUTHENTICATE command, a sequence of GENERAL AUTHENTICATE commands).

— Data authentication — Using internal data, either a secret key or a public key, the card checks redun-
dant data received from the outside world. Aiternateiy, using secret internal data, either a secret key or a
private key, the card computes a data element (cryptographic checksum or digital signature) and inserts it
in the data sent to the outside world. This mechanism may be used for protecting the rights of a provider.

7 Data encipherrnent — Using secret internal data, either a secret key or a private key, the card deciphers
a cryptogram received in a data field. Alternately, using internal data, either a secret key or a public key,
the card computes a cryptogram and inserts it in a data field, possibly together with other data. This
mechanism may be used to provide a confidentiality service, e.g., key management and conditional
access. In addition to the cryptogram mechanism, data confidentiality can be achieved by data conceal—
ment. in this case, the card computes a string of concealing bytes and adds it by exclusive-or to bytes
received from or sent to the outside world. This mechanism may be used for protecting privacy and for
reducing possibilities of message filtering.

The result of an authentication may be logged in an internal EF according to application requirements.

22 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 95

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 96

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

5.4.2 Cryptographic mechanism identifier template

Referenced by tag 'AC‘, one or more cryptographic mechanism identifier templates may be present in the
control parameters of any DF (see Table 12). Each one explicitly indicates the meaning of a cryptographic
mechanism reference in the DF and its hierarchy. Such a template shall consist of two or more data objects.

— The first data object shall be a cryptographic mechanism reference, tag '80' (see Table 33).

— The second data object shall be an object identifier, tag '06’, as defined in lSO/IEC 8825-1. The identified
object shall be a cryptographic mechanism specified or registered within a standard, e.g., an lSO

standard. Examples of cryptographic mechanisms are encryption algorithms (e.g., lSOIIEC18033[183),
message authentication codes (e.g., lSO/lEC 9797-73), authentication protocols (e.g., lSOIlEC 9798[8]),
digital signatures (e.g., lSO/lEC 9796““ or 14888[16]), registered cryptographic algorithms (e.g., lSO/lEC
99TQM), and so on.

— If present, one or more subsequent data objects shall either identify a mechanism, tag ‘06', used by the
previous mechanism (i.e., a mode of operation, e.g., ISO/IEC 10116[“], or a hash-function, e.g., lSO/lEC
1O118l121), or indicate parameters (tag dependent on the previous mechanism).

EXAMPLES (see explanations in annex A)

{'AC' - 'OB‘ - {'80'-‘01‘-‘01'} - {'06'-'06'-‘288180710201‘}}

The template associates the local reference “01' to the first encryption algorithm in lSO/IEC 18033—218}.

{‘AC' — '11' — {'80'—'O1‘-'02'} - {'06'—‘05'—‘28CC460502'} — {‘06'—'05'—'280F060303'}}

The first object identifier refers to the second authentication mechanism in lSOflEC 9798—58]. The second object identifier
refers to the third dedicated hash-function in lSOzz'lEC 10118-3i12]. Therefore the template associates the local reference
'02' to GQ2 using SHA—‘l.

5.4.3 Security attributes

Referenced by tags ‘86', 'SB', '8C', '8E’, 'AO’, ‘A1', ‘AB‘, security attributes may be present in the control pa-
rameters of any file (see Table 12). Any object in the card (e.g., command, file, data object, table & view) may
be associated with more than one security attribute and f or with a reference contained in a security attribute.

Referenced by tag 'AO', a security attribute template for data objects may be present in the control parameters
of any file. Such a template is the concatenation of a security attribute data object (tags “86', '8B'= ‘80', 'SE',
'AO', 'A1', ‘AB‘) and a tag list data object (tag ’50, see 8.5.1) indicating the relevant data objects in the file.

Referenced by tag '8E', a channel security attribute (at most one) may be present in the control parameters of
any file (see Table 12) and in any appropriate security environment (SE, see 6.3.3). It shall be interpreted
according to Table 15.

— "Not shareable" means that at most one logical channel shall be available. The physical technology of the
channel may be limited.

7 "Secured" means that SM keys (see 6) shall be available (e.g., established by a previous authentication).

— "User authenticated" means that the user shall be authenticated (e.g., a successful password verification).

Table 15 — Channel security attribute

b8 b7 b6 b5 b4 b3 b2 b1 Meaning
0 0 O O O - - 1 Not shareable
0 O O 0 0 — 1 — Secured
0 0 O O O 1 - - User authenticated

iAny other value is reserved for future use by lSO/IEC JTC 1ISC 17.

ln SCQL environment (see lSO/lEC 7816-73 commands for structured card query language), security
attributes can be specified in SCQL operations, e.g., CREATE TABLE and CREATE VIEW commands. lf security
attributes based on this clause are used, then they shall be conveyed in a data object with tags “88’, '8C' or
’AB' in the security attribute parameters of an SCQL operation.

Formats— This clause defines two formats for binding objects and security attributes: a compact format
based on bitmaps and an expanded format that extends the compact format by TLV list management.

© ISO/IEO 2005 _ All rights reserved 23

Apple Ex. 1030, p. 96

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 97

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

5.4.3.1 Compact format

In compact format, an access rule consists of an access mode byte followed by one or more security condition
bytes. Access control to an object is managed by binding access rules to the related object. If several access
rules are present in the value field of a data Object with tag 'BC‘ (see Table 12), they represent an OR condition.

Access mode bytes — Each bit 7 to 1 indicates either the absence of security condition byte when set to O,
or the presence of a security condition byte in the same order (bits 7 to 1) when set to 1. When bit 8 is set to 1,
bits 7 to 4 may be used for additional commands, e.g., application-specific commands.

Tables 16 to 19 define access mode bytes respectively for DFs, EFs, data objects and tables & views.

Table 16 — Access mode byte for DFs
b3 b2 b1 Meaning

Bits 7 to 1 according to this table
Bits 3 to 1 according to this table (bits 7 to 4 proprietary)
DELETE FILE (self)
TERMINATE CARD USAGE (MF), TERMINATE DFACTIVATE FILE
DEACTIVATE FILE

CREATE FILE (DF creation)
CREATE FILE (EF creation)
DELETE FILE (child)

b6 b5 b4

b8 b7

0 — Bits 7 to 1 according to this table
1 - Bits 3 to 1 according to this table (bits 7 to 4 proprietary)
O 1 DELETE FILE
0 - TERMINATE EF
0 - 1 - ACTIVATE FILE
0 — DEACTIVATE FILE

— — — — — 1 — — WRITE BINARY, WRITE RECORD, APPEND RECORD
- - - - - - 1 - UPDATE BINARY, UPDATE RECORD, ERASE BINARY, ERASE RECORD (8)
- - - - - - - 1 READ BINARY, READ RECORD (5), SEARCH BINARY, SEARCH RECORD

Table 18 — Access mode byte for data objects
Meaning

Bits 7 to 1 according to this table
Bits 3 to 1 according to this table (bits 7 to 4 proprietary)
000 (any other value is reserved for future use)
MANAGE SECURITY ENVIRONMENT
PUT DATA
GET DATA

CREATE USER, DELETE USER
GRANT, REVOKE
CREATE TABLE, CREATE VIEW, CREATE DICTIONARY
DROP TABLE, DROP VIEW
INSERT
UPDATE, DELETE
FETCH

Security condition byte — Each security condition byte specifies which security mechanisms are necessary
to conform to the access rule. Table 20 shows the security condition byte.

24 © ISOIIEC 2005 _ All rights reserved

Apple Ex. 1030, p. 97

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 98

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Table 20 — Security condition byte

m b7 b6 b5 b04 b03 b01 No condition
Never

—No reference to a security environment
Security environment identifier (SElD byte, see 6.3.4) from one to fourteen
Reserved for future use
At ieast one condition
Ail conditions

Secure messaging
External authentication

User authentication (e.g., password)

Bits 8 to 5 indicate the required security conditions. if not all equal, bits 4 to 1 identify a security environment
(see 6.3.4, SEID byte from one to fourteen) and the mechanisms defined in the security environment shall be
used according to the indications in bits 7 to 5 for command protection and lor external authentication and / or
user authentication.

7 If bit 8 is set to 1, then ail the conditions set in bits 7 to 5 shall be satisfied.

7 If bit 8 is set to 0, then at least one of the conditions set in bits 7 to 5 shall be satisfied.

— lf bit 7 is set to 1, then the control reference template (see 6.3.1) of the security environment identified in
bits 4 to 1, i.e., a SElD byte from one to fourteen, describes whether secure messaging shall apply to the
command data field and l or to the response data field (see usage qualifier byte, Table 35).

5.4.3.2 Expanded format

in expanded format, an access rule consists of an access mode data object followed by one or more security
condition data objects. Access control to an object is managed by referencing access rules from the related
object. A template with tag 'AB' may be present in the control parameters of any file (see Table 12) for such
access rules.

Access mode data objects — An access mode data object contains either an access mode byte (see Tables
16 to 19), or a list of command descriptions or a proprietary state machine description; subsequent security
condition data objects are relevant for all the indicated commands. Table 21 shows access mode data objects.

Table 21 — Access mode data objects

— Length—“

-r Access mode byte See Tables 16 to 19‘81' to '8F' Command header description List of [part of) command headers (see Table 22)

—fl— Proprietawstatemachinedescnption
if the tag is from ‘81‘ to ‘8F‘, then the access mode data element represents a list of possible combinations of
values of the four bytes CLA, INS, P1 and P2 in the command header. Depending on bits 4 to 1 of the tag, the
list contains only values as described in Table 22. Several groups may appear in order to define a set of
commands, e.g., values of ms P1 P2, lNS P1 P2, for tag ’87'.

Table 22 — Tags '81' to ‘8F' for access mode data objects

mbv b6 b5 b4 b3 b2 in”
1 x The command description includes
1 O O O 1 - - — — (OLA), i.e., the value of CLA
1 O 0 O — 1 - — — (lNS), i.e., the value of INS
1 O O O - - 1 - — (P1), i.e., the value of P1
1 O O O - - - 1 — (P2), i.e., the value of P2

— The value of CLA shall encode zero as channel number with the meaning that the description is independent from logical channels.
— The INS code shall be even with the meaning that the description is independent from data field format indications.

Security condition data objects— According to Table 23, the security condition data objects define the
security actions required for accessing an object protected through the particular access mode data object. If
used as a security condition, a control reference template (see 6.3.1) referenced by tag 'A4' (AT), ‘B4' (CCT),
'BG' (DST) or ‘B8' (CT) shall contain a usage qualifier data object (see Table 35) indicating the security action.

© ISO/IEC 2005 — All rights reserved 25

Apple Ex. 1030, p. 98

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 99

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Table 23 — Security condition data objects

m
“II——
—n——

Several security condition data objects may be attached to the same operation.

— lf security condition data objects are nested in an OR template (tag 'AO'), then at least one security

condition shall be fulfilled before acting.

— If security condition data objects are not nested in an OR template (tag 'AO‘) or if they are nested in an
AND template (tag 'AF'), then every security condition shall be fulfilled before acting.

7 if security condition data objects are nested in a NOT template (tag 'A7'), then the security conditions are
true until they are not fulfilled.

5.4.3.3 Access rule references

Access rules in expanded format may be stored in an EF supporting a linear structure with records of variable
size. Such an EF is named EF.ARR. One or more access rules may be stored in each record referenced by a
record number. Such a record number is named ARR byte. Table 24 illustrates the layout of an EF.ARR.

Table 24 — EF.ARR layout

Record number (ARR byte) Record content (one or more access rules)
Access mode data object, one or more security condition data objects, access mode data object, Access mode data object, one or more security condition data objects,

Referenced by tag 'SB', security attribute data objects referencing expanded format (see Table 25) may be
present in the control parameters of any file (see Table 12).

— If the length is one, then the value field is an ARR byte that references a record in an implicitly known
EF.ARR.

— If the length is three, then the value field is a file identifier followed by an ARR byte; the file identifier
references EF.ARR and the ARR byte is the record number in EF.ARR.

— If the length is even and at least four, then the value field is a file identifier followed by one or more pairs
of bytes. Each pair consists of 3 BED byte followed by an ARR byte; the SElD byte identifies the security
environment where the access rules referenced by the ARR byte apply.

Table 25 — Security attribute data objects referencing expanded format
Length

'88' ARR byte (one byte)
File identifier (two bytes) - ARR byte (one byte)

Even, > 3 File identifier (two bytes) - SEID byte (one byte) - ARR byte (one byte) - [SEID byte - ARR byte] -
The ARR byte of the current SE indicates the access rules valid for the current access to the application DF.

NOTE if no SE is set in a former MANAGE SECURlTY ENVlRONMENT command, then the default SE is the current SE.

5.4.4 Security support data elements

This clause specifies a collection of security support data elements with rules governing the way their values
are handled. The security support data elements extend and refine the control reference data objects. The
card may provide them as generic support to security mechanisms performed by an application. Applications

26 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 99

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 100

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

may reference them for secure messaging and for security operations (see lSO/lEC 7816—8m). This clause
specifies neither some characteristics of the security support data elements, e.g., their lengths, nor the
algorithms that alter their value.

Principles —The card shall maintain and use the value of security support data elements as follows.

— Update is done with new values either computed by the card, or provided by the outside world, in
accordance with the specific rule for a specific type of security support data element.

— Update is performed before any output is produced for the command causing an update. The update is
independent of the completion status of the command. if the value is to be used by the application in an
operation that causes an update, the update is performed before the value is used.

7 Access to application-specific security support data elements is restricted to functions performed by the
specific application.

NOTE The actual security achieved in a command—response pair ultimateiy depends on the algorithms and protocols
specified by the appiication; the card only provides support with these data elements and associated usage rules.

Data elements — The card may support command-response pair security with data elements called progres-
sion values. increased at specific events throughout the life of the card, these values are different each time
the card is activated. Two progression values are specified: a card session counter and a session identifier.

— The card session counter is incremented once during card activation.

— The session identifier is computed from the card session counter and from data provided by the outside
world.

Two types of progression values are specified.

— Internal progression values, if so specified for an application, register the number of times specific events
are performed. The data element shall be incremented after the event; the card may provide a reset
function for these counters which if so specified for an application sets its value to zero. internal
progression values cannot be controlled by the outside world and are suitable for use as secured in-card
approximate representations of real time. Their values can be used in cryptographic computations.

— External progression values, if so specified for an application, shall only be updated by a data value from
the outside world. The new value shall be numerically larger than the current value stored in the card.

References —The card may provide access to the value of security support data elements as follows.

— An EF may be present in the MF, e.g., for a card session counter, or in an application DF, e.g., for
application-specific progression values.

— Auxiliary data objects (tags '88', ‘92‘, “93‘, see Table 33) may be present in a control reference template.
These tags can be used if the SE supports unambiguous use of these data elements.

7 Within the interindustry template referenced by tag '7A’, the context-specific class (first byte from '80' to
'BF') is reserved for security support data objects as listed in Table 26.

Table 26 — Security support data objects

Set of security support data objects with the following tags
'80' Card session counter
'81' Card session identifier

‘82' to 'SE' File selection counter
'93‘ Digital signature counter

'QFZX' Internal progression value (‘X‘ is a specific index, eg, an index referencing a counter of file selections)
‘9F3Y‘ External progression value (‘Y' is a specific index, e.g., an index referencing an external time stamp)

— in this context, ISOIIEC JTC 1/SC 17 reserves any other data object of the context-specific class (first byte from ‘80‘ to ‘BF‘).

© ISO/IEC 2005 — Ali rights reserved 27

Apple Ex. 1030, p. 100

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 101

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

isonec 7816-4:2005(E)

6 Secure messaging

Secure messaging (SM) protects all or part of a command-response pair, or a concatenation of consecutive
data fields (command chaining, see 5.1.1.1; use of SW1 set to ‘61'), by ensuring two basic security functions:
data confidentiality and data authentication. Secure messaging is achieved by applying one or more security
mechanisms. Possibly explicitly identified by a cryptographic mechanism identifier template (see 5.4.2) in the
control parameters of any DF (see 5.3.3), each security mechanism involves a cryptographic algorithm, a
mode of operation, a key, an argument (input data) and often, initial data.

— The transmission and reception of data fields may be interleaved with the processing of security
mechanisms. This specification does not preclude the determination by sequential analysis of which
mechanisms and which security items shall be used for processing the remaining part of the data field.

— Two or more security mechanisms may use the same cryptographic algorithm with different modes of
operation. The hereafter specified padding rules do not preclude such a feature.

6.1 SM fields and SM data objects

By definition, any command or response data field in SM format, as also the SM template (tag '7D'), is an SM
field. Each SM field shall be encoded in BER-TLV (see 5.2.2) where the context-specific class (first byte from
'80' to 'BF‘) is reserved for SM data objects. in command—response pairs, the SM format may be selected
either implicitly, i.e., known before issuing the command, or explicitly, i.e., indicated by CLA (see 5.1.1).

NOTE Command chaining and l or the use of SW1 set to '61' induces sequences of commands where data fields
(and consequently, data objects) may be split in smaller consecutive data fields. in such a case, when using SM format,
the concatenation of all the consecutive data fields in the same direction in the same sequence is an SM field.

Table 27 shows the SM data objects specified in this document, all in the context-specific class. Some SM
data objects (SM tags ‘82‘, ’83’, 'BO‘, 'B1') are recursive, i.e., the plain value field is an SM field.

Table 27 — SM data objects

Tag Value
'80‘. '81' Plain value not encoded in BER-TLV
‘82‘, “83‘ Cryptogram (plain value encoded in BER—TLV and including SM data objects, i.e., an SM field)
'84‘, '85' Cryptogram (plain value encoded in BER-TLV, but not including SM data objects)
“86‘, “87' Padding-content indicator byte followed by cryptogram (plain value not encoded in BER-TLv)

‘89‘ Command header (CLA INS P1 P2, four bytes)
'8E' Cryptographic checksum (at least four bytes)

'90‘, “91' Hash—code
'92‘, '93' Certificate (data not encoded in BER-TLV)
'94‘, '95' Security environment identifier (SEID byte)
'96‘, '97' One or two bytes encoding N6 in the unsecured command—response pair (possibly empty)

'99‘ Processing status (SW1-SW2, two bytes; possibly empty)
‘9A‘, 'QB' input data element for the computation ofa digital signature (the value field is signed)
'90, '9D‘ Public key

'QE' Digital signature
‘AO‘. 'A1' input template for the computation ofa hash-code (the template is hashed)

'A2' input template for the verification of a cryptographic checksum (the template is included)
‘A4‘, 'A5' Control reference template for authentication (AT)
‘A6‘, “A?“ Control reference template for key agreement (KAT)

'A8' input template for the verification of a digital signature (the template is signed)
".AA 'AB' Control reference template for hash-code (HT)
'AC‘, ‘AD' input template for the computation of a digital signature (the concatenated value fields are signed)
'AE‘, 'AF‘ input template for the verification of a certificate (the concatenated value fields are certified)
‘BO‘, “81' Plain value encoded in BER-TLV and including SM data objects, i.e., an SM field
‘BZ‘, 'BS' Plain value encoded in BER—TLV, but not including SM data objects
‘B4‘, 'BS' Control reference template for cryptographic checksum (CCT)
‘BS‘, '37" Control reference template for digital signature (DST)
‘88, 'BQ' Control reference template for confidentiality (CT)
'BA‘, 'BB‘ Response descriptor template
‘BC‘, 'BD' input template for the computation ofa digital signature (the template is signed)

‘BE‘ input template for the verification of a certificate (the template is certified)
i in this context, ISOilEC JTC 118C 17 reserves any other data object of the context—specific class (first byte from ‘80“ to RP).

28 © iSOIiEC 2005 _ All rights reserved

Apple Ex. 1030, p. 101

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 102

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

In each SM field, bit 1 of the last byte of the tag field (tag parity) of each SM data object (context-specific
class) indicates whether the SM data object shall be included (bit 1 set to 1, odd tag number) or not (bit 1 set
to 0, even tag number) in the computation of a data element for authentication (cryptographic checksum, see
6.2.3.1, or digital signature, see 6.2.3.2). If present, the data objects of the other classes (e.g., interindustry
data objects) shall be included in the computation. if such a computation occurs, the data element shall be the
value field of a SM data object for authentication (SM tags '8E', '9E') at the end of the SM field.

There are two categories of SM data objects.

— Each basic SM data object (see 6.2) conveys a plain value, or an input or result of a security mechanism.

— Each auxiliary SM data object (see 6.3) conveys a control reference template, or a security environment
identifier, or a response descriptor template.

NOTE Basic SM data objects are also used to control security operations (see lSO/lEC 7816-8913). Auxiliary SM data
objects are also used to manage security environment (see 7.5.11). The global approach to security by secure messaging
shares several security-related issues with the security operations, i.e., the atomic approach to security. Annex B
illustrates the synergy between the two approaches.

6.2 Basic SM data objects

6.2.1 SM data objects for encapsulating plain values

Encapsulation is mandatory for SM fields and for data not encoded in BER-TLV. It is optional for BER-TLV, not
including SM, data objects. Table 28 shows SM data objects for encapsulating plain values.

Table 28 — SM data objects for encapsulating plain values

Value

’BO', 'B1' Plain value encoded in BER—TLV and including SM data objects (i.e., an SM field)
132', 'BS' Plain value encoded in BER—TLV, but not including SM data objects
'80‘, '81' Plain value not encoded in BER-TLV

‘89' Command header (CLA INS P1 P2, four bytes)
‘96", '97" One or two bytes encoding Na in the unsecured command—response pair (possibly empty)

'99' Processing status (SW1-SW2, two bytes; possibly empty)

6.2.2 SM data objects for confidentiality

Table 29 shows SM data objects for confidentiality.

Table 29 — SM data objects for confidentiality
Tag Value

'82', '83‘ Cryptogram (plain value encoded in BER—TLV and including SM data objects, i.e., an SM field)
‘84', '85‘ Cryptogram (plain value encoded in BER-TLV, but not including SM data objects)
'86', '87' Padding—content indicator byte (see Table 30) followed by cryptogram (plain value not encoded in BER-TLV)

A security mechanism for confidentiality consists of an appropriate cryptographic algorithm in an appropriate
mode of operation. in the absence of explicit indication and when no mechanism is implicitly selected for
confidentiality, a default mechanism shall apply.

— For computing a cryptogram to be preceded by a padding indication, the default mechanism is a block
cipher in “electronic code book” mode, which may involve padding. Padding for confidentiality may have
an infiuence on transmission: the cryptogram (one or more blocks) may be longer than the plain value.

7 For computing a cryptogram not to be preceded by a padding indication, the default mechanism is a
stream cipher. in this case, the cryptogram is the exclusive-or of the string of data bytes to conceal with a
concealing string of the same length. Concealment thus requires no padding and the string of data bytes
is recovered by the same operation.

Padding and lor content shall be indicated when the plain value is not encoded in BER-TLV. lf padding applies
but is not indicated, the rules specified in 6.2.3.1 apply. Table 30 shows the padding-content indicator byte.

© ISO/IEO 2005 _ Ali rights reserved 29

Apple Ex. 1030, p. 102

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 103

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIiEC 7816-4:2005(E)

Table 30 — Padding-content indicator byte

Value Meaning
'00' No further indication

'01' Padding as specified in 6.2.3.1
‘02' No padding
'1X' One to four secret keys for enciphering information, not keys (‘X' is a bitmap with any value from ’0' to 'F’)

'11' indicates the first key (e.g., an “even” control word in a pay TV system)
'12‘ indicates the second key (e.g., an “odd” control word in a pay TV system)
'13' indicates the first key followed by the second key (5.9., a pair of control words in a pay TV system)

'2X' Secret key for enciphering keys, not information ('X' is a reference with any value from '0' to 'F')
(e.g., in a pay TV system. either an operational key for enciphering control words, or a management key
for enciphering operational keys)

'3X' Private key of an asymmetric key pair (‘X' is a reference with any value from '0' to ‘F’)
'4X‘ Password ('X' is a reference with any value from ‘O' to ’F')

'80' to '8E' Proprietary
—Any other value is reserved for future use by lSOIIEC JTC 1/SC 17.

6.2.3 SM data objects for authentication

Table 31 shows SM data objects for authentication.

Table 31 — SM data objects for authentication

Tag Value
'83 Cryptographic checksum (at least four bytes)

‘90', '91' Hash-code
'92‘, '93' Certificate (data not encoded in BER—TLV)
'90, '9D‘ Public key

'QE' Digital signature

input data objects (see also lSO/iEC 7816-8 A)
‘9A', ”98' input data element for the computation of a digital signature (the value field is signed)
‘AO‘, 'A1' input template for the computation of a hash-code (the template is hashed)

'A2' input template for the verification ofa cryptographic checksum (the template is included)
'A8‘ input template for the verification ofa digital signature (the template is signed)

‘AC', 'AD‘ input template for the computation of a digital signature (the concatenated value fields are signed)
'AE’, 'AF' input template for the verification of a certificate (the concatenated value fields are certified)
'BC‘, '50“ input template for the computation of a digital signature (the template is signed)

'BE‘ input template for the verification ofa certificate (the template is certified)

6.2.3.1 Cryptographic checksum data element

The computation of a cryptographic checksum involves an initial check block, a secret key and either a block
cipher algorithm (see lSO/IEC 18033“°]), or a hash-function (see lSO/lEC 1O118M).

The computation method may be part of the system specifications. Alternately, a cryptographic mechanism
identifier template, see 5.4.2, may identify a standard (e.g., lSO/lEC 9797_1m) fixing a computation method.

Unless otherwise specified, the following computation method shall be used. Under the control of the key, the
algorithm basically converts a current input block of k bytes (typically 8, 16 or 20) into a current output block of
the same size. The computation is performed in the following consecutive stages.

initial stage — The initial stage shall set either one of the following blocks as the initial check block:

— the null block, i.e., k bytes set to “00‘,

— the chaining block, i.e., a result from former computations, namely for a command, the final check block
of the previous command and for a response, the final check block of the previous response,

— the initial value block provided e.g., by the outside world,

— the auxiliary block resulting from converting auxiliary data under the control of the key. if the auxiliary data
is less than k bytes, then bits set to 0 head it up to the block size.

30 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 103

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 104

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Sequential stage(s) — The command header (CLA lNS P1 P2) may be encapsulated for protection (SM tag
‘89) However, if bits 8 to 6 of CLA are set to 000 and bits 4 and 3 to 11 (see 5.1.1), then the first data block
consists of the command header (CLA lNS P1 P2) followed by one byte set to ’80' and k—5 bytes set to ‘00'.

The cryptographic checksum shall include any secure messaging data object having an odd tag number and
any data object with the first byte not from '80‘ to 'BF’. Those data objects shall be included data block by data
block in the current check block. The splitting into data blocks shall be performed as follows.

7 The blocking shall be continuous at the border between adjacent data objects to include.

7 The padding shall apply at the end of each data object to include followed either by a data object not to
include, or by no further data object. The padding consists of one mandatory byte set to ‘80’ followed, if
needed, by O to k—1 bytes set to '00‘, until the respective data block is filled up to k bytes. Padding for
authentication has no influence on transmission as the padding bytes shall not be transmitted.

ln this mechanism, the mode of operation is “cipher block chaining" (see lSO/IEC 10116Im). The first input is
the exclusive—or of the initial check block with the first data block. The first output results from the first input.
The current input is the exclusive-0r of the previous output with the current data block. The current output
results from the current input.

Final stage — The final check block is the last output. The final stage extracts a cryptographic checksum (first
m bytes, at least four) from the final check block.

6.2.3.2 Digital signature data element

The digital signature schemes rely on asymmetric cryptographic techniques (see lSO/lEC 9796K“, 1488963).
The computation implies a hash—function (see ISO/IEC 1O118i121). The data input consists of the value field of
a digital signature input data object, or of the concatenation of the value fields of data objects forming a digital
signature input template. it may be determined by the mechanism specified in 6.2.3.1.

6.3 Auxiliary SM data objects

Table 32 shows auxiliary SM data objects.

Table 32 — Auxiliary SM data objects

 ’94”, '95‘ Security environment identifier (SEID byte)

‘A4‘, 'A5' Control reference template valid for authentication (AT)
'A6'. 'A7' Control reference template valid for key agreement (KAT)
'AA‘, 'AB' Control reference template valid for hash—code (HT)
'B4‘, 'B5' Control reference template valid for cryptographic checksum (CCT)
‘BB', 'B7' Control reference template valid for digital signature (DST)
‘BB‘, 'BQ' Control reference template valid for confidentiality (CT)
'BA‘, 'BB‘ Response descriptor template

6.3.1 Control reference templates

Six control reference templates are defined, valid for authentication (AT), key agreement (KAT), hash-code
(HT), cryptographic checksum (CCT), digital signature (DST) and confidentiality (CT) using either symmetric
or asymmetric cryptographic techniques (CT-sym and CT-asym).

Each security mechanism involves a cryptographic algorithm in a mode of operation and uses a key and,
possibly, initial data. Such items are selected either implicitly, i.e., known before issuing the command, or
explicitly, i.e., by control reference data objects nested in control reference templates. Within the control
reference templates, the context—specific class (first byte from '80' to ‘BF') is reserved for control reference
data objects.

In a SM field, the last possible position of a control reference template is just before the first data object to
which the referred mechanism applies. For example, the last possible position of a template valid for
cryptographic checksum (CCT) is just before the first data object to include in the computation.

Each control reference remains valid until a new control reference is provided for the same mechanism. For
example, a command may provide control references for the next command.

© ISO/IEC 2005 _ All rights reserved 31

Apple Ex. 1030, p. 104

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 105

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

isonEc 7816-4:2005(E)

6.3.2 Control reference data objects in control reference templates

Each control reference template (CRT) is a set of control reference data objects: a cryptographic mechanism
reference, a file and key reference, an initial data reference, a usage qualifier and, only in a control reference
template for confidentiality, a cryptogram content reference.

— The cryptographic mechanism reference denotes a cryptographic algorithm in a mode of operation. The
control parameters of any DF (see tag 'AC' in Table 12) may contain cryptographic mechanism identifier
templates (see 5.4.2). Each one indicates the meaning of a cryptographic mechanism reference.

— The file reference (same encoding as in 5.3.1.2) denotes the file where the key reference is valid. lf no file
reference is present, then the key reference is valid in the current DF, possibly an application DF. The key
reference unambiguously identifies the key to use.

The initial data reference, when applied to cryptographic checksums, indicates the initial check block. If
no initial data reference is present and no initial check block implicitly selected, then the null block applies.
Moreover, before transmitting the first data object for confidentiality using a stream cipher, a template for
confidentiality shall provide auxiliary data for initializing the computation of the string of concealing bytes.

Table 33 lists control reference data objects and indicates to which control reference template they are
relevant. All the control reference data objects are in the context-specific class.

Table 33 — Control reference data objects in control reference templates

AT KAT HT CCT DST CT-asym
X X X X X X

Tag Value
‘80' Cryptographic mechanism reference

File and key references

'81' — Fire reference (same encoding as 53 1 2) --—
'82' — DF name (see 531 1) -_
‘83' — Reference of a secret key (for direct use)

— Reference of a public key

CT-sym
x

XX
><><><>< XXXX ><

— Qualifier of reference data

‘84' — Reference for computing a session key
— Reference of a private key

‘A3‘ Key usage template (see text below)
Initial data reference: Initial check block

'85’ — L:0 null block
“86‘—--_
‘87' — L:0. previous initial value block plus one

L=k, initial value block x

lnitial data reference: Auxiliary data elements (see also 5.4.3)

 ><><><><><><

><><

’88' — L=0. previous exchanged challenge plus one x x x

L>O, no further indication

‘89' to — L=0, index ofa proprietary data element x
'8D‘ L>O, value of a proprietary data element x
'90' — L=0, hash-code provided by the card

 XX Xxxx>fill.II><>(.HI x

'91' — L=0, random number provided by the card x x x
L>O, random number x x

’92' — L:0 time stamp provided by the card x x
I—_

“93' — L:0 previous digital signature counter plus one x x
L>O, digital signature counter x x

'94' Challenge or data element for deriving a key x x

‘95‘ Usage qualifier byte (see text below) x x x x x
‘8E‘ Cryptogram content reference (see text below) x

— in this context, ISOIIEC JTC 118C: 1? reserves any other data object of the context-specific class (first byte from ‘80" to ’BF‘).
— A CRT may contain interindustry data objects, e.g., certificate holder authorization (tag ‘5F4C', see 6.3.4) in AT, header list or
extended header list (tags 'SD’ and '4D', see 8.5.1) in HT or DST.

32 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 105

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 106

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISO/IEc 7816-4:2005(E)

In any control reference template, a key usage template (tag ‘A3') may associate a file and key reference with
a key usage counter and / or a key retry counter (see Table 34).

Table 34 — Key usage data objects

Set of key usage data objects with the following tags
‘80' to '84' File and key references as specified in Table 33

'90‘ Key usage counter
'91' Key retry counter

— in this context, ISO/IEC JTC 1180 17 reserves any other data object of the context-specific class (first byte from '80' to 'BF').

ln any control reference template for authentication (AT), for key agreement (KAT), for cryptographic
checksum (CCT), for confidentiality (CT) or for digital signature (DST), a usage qualifier byte (tag '95') may
specify the usage of the template either as a security condition (see 5.4.3.2 and Table 23), or in compliance
with the MANAGE SECURITY ENVIRONMENT command (see 7.5.11). Table 35 shows the usage qualifier byte.

Table 35 — Usage qualifier byte
b6 b5 b4 b3 Meaning

Verification (DST, CCT), Encipherment (CT), External authentication (AT),
Key agreement (KAT)
Computation (DST, CCT), Decipherment (CT), internal authentication (AT),
Key agreement (KAT)
Secure messaging in response data fields (CCT, CT, DST)

— Secure messaging in command data fields (COT, CT, DST)
- User authentication, password based (AT)

User authentication, biometry based (AT)
x x xxxx xxOO (any other value is reserved for future use)

in any control reference template for confidentiality (CT), a cryptogram content reference (tag ‘8E‘) may
specify the content of the cryptogram. The first byte of the value field is mandatory; its name is the cryptogram
descriptor byte. Table 36 shows the cryptogram descriptor byte.

Table 36 — Cryptogram descriptor byte

Value Meaning
‘00' No further indication

'1X‘ One to four secret keys for enciphering information. not keys (‘X‘ is a bitmap with any value from '0' to 'F')
‘1 1‘ indicates the first key (e.g., an “even” control word in a pay TV system)
'12' indicates the second key (e.g., an “odd” control word in a pay TV system)
‘13‘ indicates the first key followed by the second key (e.g., a pair of control words in a pay TV system)

'2X‘ Secret key for enciphering keys, not information (‘X' is a reference with any value from ‘0‘ to ‘F')
(e.g., in a pay TV system, either an operational key for enciphering control words, or a management
key for enciphering operational keys)

'3)(' Private key of an asymmetric key pair (‘X‘ is a reference with any value from '0' to 'F')
'4X' Password ('X' is a reference with any value from ‘0' to 'F‘)

‘80‘ to 'FF' Proprietary

 —Any other value is reserved for future use by ISOT’lEC JTC 1/SC 17.

6.3.3 Security environments

This clause specifies security environments (SE) for referencing cryptographic algorithms, modes of operation,
protocols, procedures, keys and any additional data needed for secure messaging and for security operations
(see lSO/lEC 7816—8”). A SE consists of data elements stored in the card or resulting from some computation,
to be processed by the specified algorithms. A SE may contain a mechanism to initialise non-persistent data
to be used in the environment, e.g., a session key. A SE may provide directions for handling computation
results, e.g., storage in the card. An interindustry SE template (tag 78') describes a SE.

SE identifier— A SE identifier (SElD byte) may reference any security environment, e.g., for secure messag-
ing and for storing and restoring by a MANAGE SECURiTY ENVIRONMENT command (see 7.5.11).

— Unless otherwise specified by the application, the value '00' denotes an empty environment where no
secure messaging and no authentication are defined.

© ISO/IEO 2005 _ All rights reserved 33

Apple Ex. 1030, p. 106

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 107

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

— The value 'FF' denotes that no operation can be performed in this environment.

— Unless otherwise specified by the application, the value '01' is reserved for the default SE, always
available. This clause does not specify the content of the default SE; it may be empty.

— The value 'EF' is reserved for future use.

Components — Control reference templates (CRT) may describe various components of a SE. Any relative
control reference (files, keys or data) specified with a mechanism in the environment definition shall be
resolved with respect to the DF selected before using the mechanism. Absolute control references (e.g.,
absolute path) need not be resolved Within an SE, components may have two aspects: one being valid for
SM in command data fields and the other for SM in response data fields.

At any time during card operation, a current SE shall be active, either by default or as a result of commands
performed by the card. The current SE contains one or more components among the following components.

— Some components belong to the default SE associated with the current DF.

— Some components are transmitted in commands using secure messaging.

7 Some components are transmitted in MANAGE SECURITY ENVlRONMENT commands.

— Some components are invoked by a SEID byte in a MANAGE SECURITY ENVIRONMENT command.

The current SE is valid until there is a warm reset or a deactivation of the contacts (see lSOllEC 7816-3), a
change of context (e.g., by selecting a different application DF) or a MANAGE SECURITY ENVIRONMENT command
setting or replacing the current SE.

ln SM, control reference data objects transmitted in a CRT shall take precedence over any corresponding
control reference data object present in the current SE.

Certificate holder authorization — Authentication procedures may use card-verifiable certificates, i.e., tem-
plates that can be interpreted and verified by the card by a VERIFY CERTIFICATE operation using a public key
(see lSOllEC 7816-8-41). In such a certificate, a certificate holder authorization (e.g., a role identifier) may be
conveyed in an interindustry data element referenced by tag '5F4C‘. If such a data element is used in the
security conditions to fulfil for accessing data or functions, then the data object (tag '5F4C‘) shall be present in
the control reference template for authentication (AT) describing the authentication procedure.

NOTE In the first edition of lSOIlEC 7816—9m, tag 'SF4B’ references a certificate holder authorization (data element of
five or more bytes). in amendment 1 to the first edition of lSOIlEC 7816—6, tag ‘5F4B‘ references an integrated circuit
manufacturer identifier (one-byte data element). Consequently, tag '5F4B' is deprecated in iSO/lEC 7816.

Access control — The card may store security environments used for access control within EFs (see tag '8D‘
in Table 12) containing interindustry SE templates (tag '7B'). Within the interindustry SE template (tag 78‘),
the context-specific class (first byte from '80‘ to 'EF') is reserved for security environment data objects. As
listed in Table 37, for every included SE, the security environment template contains a SElD byte data object
(tag ‘80'), an optional LCS byte data object (tag '8A'), one or more optional cryptographic mechanism identifier
template (tag 'AC') and one or more CRTs (tags 'A4‘, ‘AB', 'AA', “84', 'BG', '38, as SM tags).

Table 37 — Security environment data objects

Set of security environment data objects with the foliowing tags

‘80“ SElD byte, mandatory
'8A' LCS byte (see 5.3.3.2 and Table 13), optional
'AC' Cryptographic mechanism identifier template (see 5.4.2), optional

'A4’, 'A6', ‘AA', 'B4', 86', 'BB' CRTs (see 6.3.1)
i in this context, lSO/IEC JTC 1/SC 1? reserves any other data object of the context—specific class (first byte from '80‘ to ‘EF').

if present in the SE template, the LCS byte data object indicates for which life cycle state the SE is valid. lf the
SE is used for access control, e.g., to a file, then the LCS byte of the file and the LCS byte of the SE have to
match. lf no LCS byte data object is present, then the SE is valid for the activated operational state.

in the SE template, if a CRT carries several data objects with the same tag (e.g., data objects specifying a key
reference), then at least one of the data objects has to be fulfilled (OR condition).

34 © ISO/IEC 2005 _ All rights reserved

Apple Ex. 1030, p. 107

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 108

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

SE retrieval —Any CRT in the current SE may be retrieved by a GET DATA command with P1-P2 set to “0040'
(extended header list, see 8.5.1) and a command data field consisting of a SE template (tag 78') containing
one or more pairs, each one consisting of a CRT tag followed by ’80' (see 8.5.1 for the use of a length set to
'80’ in an extended header list).

6.3.4 Response descriptor template

Each command data field may contain a response descriptor template. if present in the command data field,
the response descriptor template shall indicate the SM data objects required in the response data field. Inside
the response descriptor template, the security mechanisms are not yet applied; the receiving entity shall apply
them for constructing the response data field. The security items (algorithms, modes of operation, keys and
initial data) used for processing the command data field may be different from those used for producing the
response data field. The following rules apply.

— The card shall fili each empty primitive basic SM data object.

7 Each CRT present in the response descriptor template shall be present in the response at the same place
with the same control reference data objects for security mechanisms, files and keys.

0 lf the response descriptor template provides auxiliary data, then the respective data object shall be
empty in the response.

. lf an empty reference data object for auxiliary data is present in the response descriptor template,
then it shall be full in the response.

7 By the relevant security mechanisms, with the selected security items, the card shall produce all the
requested basic SM data objects.

6.4 SM impact on command-response pairs

Figure 5 illustrates a command-response pair.

Command header Command body
CLA lNS P1 P2 [Lo field] [Data field] [Le field]

Response body Response trailer
[Data field] SW1-SW2

Figure 5 — Command-response pair

The following rules apply for securing a command-response pair of the interindustry Class (see 5.1.1), i.e.,
when switching either bit 4 from 0 to 1 in CLA where bits 8, 7 and 6 are set to 000, or bit 6 from O to 1 in CLA
where bits 8 and 7 are set to 01. The notation CLA" means that secure messaging is indicated in CLA.

— The secured command data field is an SM field; it shall be formed as follows.

0 If a command data field is present (NC > 0), then either a plain value data object (SM tags '80‘, ‘81“,
‘B2', 'B3’), or a data object for confidentiality (SM tags ‘84', '85’, '86', ‘87') shall convey the NC bytes.

0 The command header (four bytes) may be encapsulated for protection (SM tag '89').

o If a Le field is present, then a new Le field (containing only bytes set to '00') and a Le data object (SM
tags '96', ‘97') shall be present. Both zero and the empty l.e data object mean the maximum, i.e., 256
or 65 536 depending upon whether the new Le field is short or extended.

— The secured response data field is an SM field; it shall be interpreted as follows.

. If present, a plain value data object (SM tags '80’, ‘81', ‘BZ', ‘83) or a data object for confidentiality
(SM tags ‘84‘, '85', '86', '87‘) conveys the response data bytes.

o If present, a processing status data object (SM tag ‘99‘) conveys SW1-SW2 encapsulated for
protection. The empty processing status data object means SW1—SW2 set to '9000‘.

© ISO/IEC 2005 — Ali rights reserved 35

Apple Ex. 1030, p. 108

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 109

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIIEC 7816-4:2005(E)

Figure 6 shows the corresponding secured command-response pair.

Command header Command body
CLA" lNS P1 P2 [New i.c fieid] - {[Secured data field] = [T—Nc-Data bytes] - U—‘O1‘ or ’02‘-Le]} - [New Le. field]

Response body Response trailer

[Secured data field] = [T—Nr—Data bytes] — [T—‘02'—SW1—SW2] SW1—SW2
Figure 6 — Secured command-response pair

When bit 1 of INS is set to 1 (odd lNS code, see 5.1.2), the unsecured data fields are encoded in BER-TLv and
SM tags '82, 'BS', '84' and '85' shall be used for their encapsulation. Otherwise, as the format of the data
fields to protect is not always apparent, SM tags ‘80’, '81’, '86‘ and ‘87' are recommended.

— The secured data fields are SM fields; they may contain further or other SM data objects, e.g., a
cryptographic checksum (SM tag '8E') or a digital signature (SM tag '9E’) at the end.

7 The new LG field encodes the number of bytes in the secured command data field.

— The new Le field shall be absent when no data field is expected in the secured response data field;
otherwise, it shall contain only bytes set to '00‘.

7 The response trailer indicates the status of the receiving entity after processing the secured command.
The following specific error conditions may occur.

o If SW1-SW2 is set to '6987', then expected secure messaging data objects are missing.

o If SW1-SW2 is set to '6988‘, then secure messaging data objects are incorrect.

Annex B provides illustrative examples of secure messaging.

7 Commands for interchange

This clause specifies commands for interchange, presented hereafter in six groups.

1) Selection

2) Data unit handling

3) Record handling

4) Data object handling

5) Basic security handling

6) Transmission handling

it shall not be mandatory for all cards complying with this document to support all those commands or all the
options of a supported command. When interchange is required, a set of application-independent card
services and related commands and options shall be used as specified in 8.

7.1 Selection

After the answer to reset, the MF or an application DF is implicitly selected through the basic logical channel
(see 5.1.1.2), unless otherwise specified in the historical bytes (see 8.1.1) or in the initial data string (see
8.1.2).

7.1.1 SELECT command

When completed, the command opens the logical channel (see 5.1.1.2) numbered in CLA (see 5.1.1), if not
yet opened, and sets a current structure within that logical channel. Subsequent commands may implicitly
refer to the current structure through that logical channel.

36 © ISO/IEC 2005 _ All rights reserved

Apple Ex. 1030, p. 109

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 110

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

— The selected DF (the MF or an application DF) becomes current in the logical channel. The previously
selected DF, if any, is no longer referred to through that logical channel and becomes the former current
DF. After such a selection, an implicit current EF may be referred to through that logical channel.

— The selection of an EF sets a pair of current files: the EF and its parent DF.

Unless otherwise specified, the following rules apply to each open logical channel within a hierarchy of DFs.

— If the current EF is changed, or when there is no current EF, then the security status, if any, specific to the
former current EF is lost.

7 If the current DF is a descendant of, or identical to the former current DF, then the security status specific
to the former current DF is maintained.

— If the current DF is neither a descendant of, nor identical to the former current DF, then the security status
specific to the former current DF is lost. The security status common to all common ancestors of the
previous and new current DF is maintained.

Table 38 — SELECT command-response pair

As defined in 5.1.1
'A4‘
See Table 39
See Table 40

Absent for encoding NC = 0, present for encoding NC > 0

Absent or file identifier or path or DF name (according to P1)

Absent for encoding N5 = 0, present for encoding Ne > 0

INS
P1

Lc field
Data field

Data field Absent or file control information (according to P2)

SW1-SW2 See Tables 5 and 6 when relevant, 8.9., '6283', '6284', '6A80', '6A81', '6A82', '6A86‘, ‘6A87'
lf P1 is set to ‘00', then the card knows whether the file to select is the MF, a DF or an EF, either because of a

specific encoding of the file identifier, or because of the command processing context.

— lf P2 is set to '00' and the command data field provides a file identifier, then that file identifier shall be
unique in the following three environments: the immediate children of the current DF, the parent DF and
the immediate children of the parent DF.

— If P2 is set to '00' and the command data field absent or set to '3FOO', then the MF shall be selected.

If P1 is set to '04', then the command data field is a DP name, which may be an application identifier (see
8.2.1.2), possibly right truncated. If supported, successive such commands with the same data field shall
select DFs whose names match with the data field, i.e., start with the command data field. If the card accepts
the SELECT command without data field, then all or a subset of the DFs can be successively selected.

If the Le field contains only bytes set to ‘00', then all the bytes corresponding to the selection option should be
returned within the limit of 256 for a short Le field, or 65 536 for an extended Le field. if the Le field is absent,
i.e., for returning no file control information, then the response data field shall also be absent.

Table 39 — P1

b8 b7 b6 b5 b4 b3 b2 b1 Meaning [Command data field
x x Selection by file identifier

Select MF, DF or EF File identifier or absent
Select child DF DF identifier
Select EF under the current DF EF identifier

Select parent DF of the current DF Absent

 Select by DF name e.g., [truncated] application identifier
Selection by path
Select from the MF

1 Select from the current DF

—Any other value is reserved for future use by ISO/IEC JTC 1.180 17,
—When present in the historical bytes (see 8.1.1) or in EF.ATR (see 8.2.1.1), the first software function table (see Table 86) indicates
selection methods supported by the card.

Path without the MF identifier
Path without the current DF identifier

O 0
O 1
1 O
1 1

x x Selection by DF name
0 O
x x
O 0
0

© ISO/IEC 2005 — All rights reserved 37

Apple Ex. 1030, p. 110

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 111

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Table 40—P2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning
File occurrence

— First or only occurrence
— Last occurrence
— Next occurrence
— Previous occurrence

x - - File control information (see 5.3.3 and Table 11)
O — — — Return FCl template, optional use of FCl tag and length
1 - - — Return FCP template, mandatory use of FOP tag and length
0
1

I I

—‘—\OC)>< —\O—\O><
— — — Return FMD template, mandatory use of FMD tag and length
- - — No response data if Le field absent, or proprietary if Le field present

iAny other value is reserved for future use by lSO/lEC JTC 1/SC 17.

0000000000 0000000000 0000000000 0000000000

7.1.2 MANAGE CHANNEL command

When completed, the command opens or closes a logical channel (see 5.1.1.2) other than the basic one, i.e.,
a channel numbered from one to nineteen (the greater numbers are reserved for future use).

The open function opens a new logical channel other than the basic one. Options are provided for the card to
assign a channel number, or for a channel number to be supplied to the card.

— lf bit 8 of P1 is set to O (i.e., P1 set to ’00' because the other seven bits are reserved for future use), then
MANAGE CHANNEL shall open a channel numbered from one to nineteen as follows.

o If P2 is set to ‘00', then the Le field shall be set to ’01“ and the response data field shall consists of a
single byte for encoding a non—zero channel number assigned by the card from ‘01‘ to '13'.

. lf P2 is set from '01' to '13', then it encodes an externally assigned non-zero channel number and the
Le field shall be absent.

7 After an open function performed from the basic logical channel (CLA encoding zero as channel number),
the MF or a default application DF shall be implicitly selected as the current DF on the new channel.

— After an open function performed from a non-basic logical channel (CLA encoding a non-zero channel
number), the current DF on the channel numbered in CLA shall become current on the new channel.

The close function explicitly closes a logical channel other than the basic one. The L6 field shall be absent.
After closing, the logical channel shall be available for re-use.

— lf bit 8 of P1 is set to 1 (Le, P1 set to ‘80' because the other seven bits are reserved for future use), then
MANAGE CHANNEL shall close a channel numbered from 1 to nineteen as follows.

0 If P2 is set to ‘00', then the channel numbered in CLA (a non-zero channel number) shall be closed.
o if P2 is set from ‘01' to '13', then the channel numbered in P2 shall be closed.

Warning The close function may be aborted if CLA indicates neither the basic channel nor the channel numbered in P2.

Table 41 — MANAGE CHANNEL command-response pair
CLA As defined in 5.1.1
INS '70'

P1-P2 '0000' for opening a logical channel to be numbered in the response data field
'0001' to '0013‘ for opening the logical channel numbered in P2
'8000‘ for closing the logical channel numbered in CLA (other than the basic channel)
'8001‘ to '8013’ for closing the logical channel numbered in P2
(any other value of P1-P2 is reserved for future use)

Lc field Absent for encoding NC = 0
Data field Absent

Le field Absent for encoding N6 = 0, present for encoding N3 = 1

Data field Absent (P1—P2 not set to '0000‘), or ‘01' to ‘13“ (P1—P2 set to '0000')

SW1-SW2 See Tables 5 and 6 when relevant, 9.9., ‘6200‘, ‘8881‘, ‘6A81'

38 © ISO/IEC 2005 _ All rights reserved

Apple Ex. 1030, p. 111

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 112

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISO/IEC 7816-4:2005(E)

7.2 Data unit handling

7.2.1 Data units

Within each EF supporting data units, an offset shall reference each data unit. From zero for the first data unit
of the EF, the offset is incremented by one for each subsequent data unit. The offset data element is binary
encoded on the minimum number of bytes. Reference to a data unit not contained in the EF is an error.

The card can provide a data coding byte (see Table 87) in the historical bytes (see 8.1.1), in EF.ATR (see
8.2.1.1) and in the control information of any file (see tag ‘82‘ in Table 12). The data coding byte fixes a data
unit size.

7 If the card provides data coding bytes in several places, than the data coding byte valid for a given EF is
in the closest position to that EF within the path from the MP to that EF.

— In the absence of indication within the path, the data unit size is one byte (default value) for that EF.

7.2.2 General

Any command of this group shall be aborted if applied to an EF not supporting data units. It can be performed
on an EF only if the security status satisfies the security attributes defined for the function, namely, read, write,
update, erase or search.

Each command of this group may use either a short EF identifier or a file identifier. If there is a current EF at
the time of issuing the command, then the process may be completed on that EF by just setting all the
corresponding bits to 0. If the process is completed, then the identified EF becomes current.

INS P1 P2 —All the commands of this group shall use bit 1 of INS and bit 8 of P1 as follows.

— If bit 1 of INS is set to O and bit 8 of P1 to 1, then bits 7 and 6 of P1 are set to 00 (RFU), bits 5 to 1 of P1
encode a short EF identifier and P2 (eight bits) encodes an offset from zero to 255.

— If bit 1 of INS is set to O and bit 8 of P1 to 0, then P1—P2 (fifteen bits) encodes an offset from zero to
32 767.

7 If bit 1 of INS is set to 1, then P1-P2 shall identify an EF. If the first eleven bits of P1-P2 are set to O and if
bits 5 to 1 of P2 are not all equal and if the card and l or the EF supports selection by short EF identifier,
then bits 5 to 1 of P2 encode a short EF identifier (a number from one to thirty). Otherwise, P1-P2 is a file
identifier. P1-P2 set to '0000' identifies the current EF. At least one offset data object with tag '54‘ shall be
present in the command data field. When present in a command or response data field, data shall be
encapsulated in a discretionary data object with tag '53' or '73‘.

In this group of commands, SW1-SW2 set to '63CX‘ indicates a successful change of memory state, but after
an internal retry routine; ‘X' > ‘0' encodes the number of retries; 'X‘ = '0' means that no counter is provided.

7.2.3 READ BINARY command

The response data field gives [part ofi the content of an EF supporting data units.

If the Le field contains only bytes set to ‘00', then all the bytes until the end of the file should be read within the
limit of 256 for a short Le field, or 65 536 for an extended Le field.

Table 42 — READ BINARY command-response pair
CLA As defined in 5.1.1
INS 'B0’ or 'Bt'

P1—P2 See 722

 LG field Absent for encoding Nc = 0, present for encoding Nc > 0

Data field Absent (INS = EU), or offset data object (INS = 'B1')

Le field Present for encoding Ne > O

Data field Data read (INS = 'BO'), or discretionary data object for encapsulating data read (INS = 'Bt')

SW1—SW2 See Tables 5 and 8 when relevant, 9.9., “6281', ’6282‘, '6700‘, '6981‘, '6982‘, '6986‘, '6A81', '6A82', 'GBOO', 'SCXX'

© ISO/IEO 2005 _ All rights reserved 39

Apple Ex. 1030, p. 112

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 113

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

7.2.4 WRITE BINARY command

The command initiates one of the following operations into an EF according to the file attributes:

— the write-once of the bits given in the command data field (the command shall be aborted if the string of
data units is not in the logical erased state);

— the logical—OR of the bits already present in the card with the bits given in the command data field (the
logical erased state of the bits of the file is zero);

— the logical-AND of the bits already present in the card with the bits given in the command data field (the
logical erased state of the bits of the file is one).

By default, i.e., when the data coding byte (see Table 87) is absent in the historical bytes (see 8.1.1), in
EF.ATR (see 8.2.1.1) and in the control parameters (see tag '82‘ in Table 12) of every file within the path from
the MF to a given EF, the logical-OR shall apply for that EF.

Table 43 — WRITE BINARY command-response pair

CLA

As defined in 5.1.1

lNS ‘D0‘ or ‘D1‘
P1—P2 See 7.2.2

LC field I Present for encoding NC > 0
Data field String of data units to be written (INS = ‘D0'), or offset data object and discretionary data object for

 encapsulating the string of data units to be written (INS = ‘D1‘)

 Le field Absent for encoding N9 = 0

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, e.g., '63CX' (see 7.2.2}, ‘6581‘, '6700', ‘6981', ‘6982’, 6800' (offset outside the EF)

7.2.5 UPDATE BINARY command

The command initiates the update of bits already present in an EF with the bits given in the command data
field. When the process is completed, each bit of each specified data unit will have the value specified in the
command data field.

Table 44 — UPDATE BINARY command-response pair
CLA As defined in 5.1.1
INS 'D6' or 'D7'

P1-P2 See 7.2.2

Lc field Present for encoding Nc > 0

Data field String of data units to be updated (INS = 'DG'), or offset data object and discretionary data object for
encapsuiating the string of updating data units (INS = 'D7’)

Le field Absent for encoding N5 = 0

Data field Absent

SW1—SW2 See Tables 5 and 6 when reievant, e.g., ‘GSCX' (see 7.2.2). '6581', ”6700‘. ‘6981‘, ‘6982’, 6800‘ (offset outside the EF)

7.2.6 SEARCH BINARY command

The command initiates a search within an EF supporting data units. The response data field gives the offset of
a data unit: the byte string at the returned offset within the EF shall have the same value as the search string
in the command data field. The response data field is absent either because the Le field is absent, or because
no match is found. if the search string is absent, then the response data field gives the offset of the first data
unit in a logically erased state.

40 © lSO/lEC 2005 _ All rights reserved

Apple Ex. 1030, p. 113

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 114

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

Table 45 — SEARCH BINARY command-response pair
As defined in 5.1.1
‘A0' or 'A1'
See 7.2.2

L3 field Absent for encoding NG = 0, present for encoding NC > O

Data field Absent or search string (lNS = 'AO'), or offset data object and discretionary data object for encapsulating
the search string (lNS = ‘A1')

Le field Absent for encoding N8 = 0, present for encoding Ne > O

Data field Absent or offset of the first data unit matching the command data field (INS = 'AO‘), or offset data object
indicating the first data unit matching the search string (NS = 'A1')

SW1-SW2 See Tables 5 and 6 when relevant, e.g., '6282‘, ’6982'

7.2.7 ERASE BINARY command

The command sets [part of] the content of an EF to its logical erased state, sequentially, starting from a given
offset.

7 If lNS = 'OE', then, if present, the command data field encodes the offset of the first data unit not to be
erased. This offset shall be higher than the one encoded in P1-P2. lf the data field is absent, then the
command erases up to the end of the file.

7 If NS = ’OF', then, if present, the command data field shall consist of zero, one or two offset data objects.
If there is no offset, then the command erases all the data units in the file. If there is one offset, it
indicates the first data unit to be erased; then the command erases up to the end of the file. Two offsets
define a sequence of data units: the second offset indicates the first data unit not to be erased; it shall be
higher than the first offset.

Table 46 — ERASE BINARY command-response pair
CLA As defined in 5.1.1
INS ‘OE' or “CF

P1—P2 See 7.2.2

Lc field Absent for encoding NC = 0, present for encoding NC > 0

Data field Absent or offset of the first data unit not to be erased (lNS = 'OE'), or
Absent or one or two offset data objects (NS = ‘OF')

Le field Absent for encoding NS = O

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, e.g., ‘630X‘ (see 7.2.2), ‘6581', '6700‘, “6981‘, ‘6982‘, ‘SBOO' (offset outside the EF)

7.3 Record handling

7.3.1 Records

Within each EF supporting records, a record number and l or a record identifier shall reference each record.
Reference to a record not contained in the EF is an error.

Referencing by record number— Each record number is unique and sequential.

— Within each EF supporting a linear structure, the record numbers shall be sequentially assigned when
writing or appending, i.e., in the order of creation; the first record (number one) is the first created record.

— Within each EF supporting a cyclic structure, the record numbers shall be sequentially assigned in the
opposite order, i.e., the first record (number one) is the most recently created record.

The following additional rule is defined for linear structures and for cyclic structures.

— Zero shall refer to the current record, i.e., that record referenced by the record pointer.

© ISO/IEO 2005 _ All rights reserved 41

Apple Ex. 1030, p. 114

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 115

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

Referencing by record identifier — Each record identifier is provided by an application. Several records may
have the same record identifier, in which case data contained in the records may be used for discriminating
between them. If a record is a SiMPLE—TLV data object in a data field, then the record identifier is the first byte of
the data object, i.e., the SlMPLE-TLV tag.

Referencing by record identifier shall induce the management of a record pointer. A reset of the card, a
SELECT and any command using a valid short EF identifier for accessing an EF can affect the record pointer.
Referencing by record number shall not affect the record pointer.

Each time a reference is made with a record identifier, the logical position of the target record shall be
indicated: the first or last occurrence, the next or previous occurrence relative to the record pointer.

— Within each EF supporting a linear structure, the logical positions shall be sequentially assigned when
writing or appending, i.e., in the order of creation. The first created record is in the first logical position.

7 Within each EF supporting a cyclic structure, the logical positions shall be sequentially assigned in the
opposite order, i.e., the most recently created record is in the first logical position.

The following additional rules are defined for linear structures and for cyclic structures.

7 The first occurrence shall be the record with the specified identifier and in the first logical position; the last
occurrence shall be the record with the specified identifier and in the last logical position.

— If there is a current record, then the next occurrence shall be the closest record with the specified
identifier but in a greater logical position than the current record; the previous occurrence shall be the
closest record with the specified identifier but in a smaller logical position than the current record.

— If there is no current record, then the next occurrence shall be equivalent to the first occurrence; the
previous occurrence shall be equivalent to the last occurrence.

— Zero shall refer to the first, last, next or previous record in the numbering sequence, independently from
the record identifier.

7.3.2 General

Any command of this group shall be aborted if applied to an EF not supporting records. it can be performed on
an EF only if the security status satisfies the security attributes defined for the function, namely, read, write,
append, update, search or erase.

Two commands of this group (read, update) may use an odd lNS code (data fields encoded in BER-TLV) for
initiating an action on a part of a given record (partial read, partial update). Then an offset shall reference each
byte inside a record: from zero for the first byte of the record, the offset is incremented by one for each
subsequent byte of the record. Reference to a byte not contained in the record is an error. As needed, the
offset data element is binary encoded and referenced by tag '54'. When present in a command or response
data field, data shall be encapsulated in a discretionary data object with tag ’53' or ‘73‘.

Each command of this group may use a short EF identifier. If the process is completed, then the identified EF
becomes current and the record pointer is reset. it there is a current EF at the time of issuing the command,
then the process may be completed without indicating the EF (by just setting the corresponding five bits to 0).

P1 — Each record number or identifier is a number from one to 254, encoded by a value of P1 from '01' to
'FE‘. Zero (encoded ‘00') is reserved for special purposes. 255 (encoded 'FF‘) is reserved for future use.

P2 —Bits 8 to 4 are a short EF identifier according to Table 47. Bits 3 to 1 depend upon the command.

Table 47 — Short EF identifier in P2

be m b6 b5 b4 b3 b2m”
0 O 0 O 0 - Current EF

Not all equal - - - 1 Short EF identifier (a number from one to thirty)
1 1 1 - - - 1 Reserved for future use 1

ln this group of commands, SW1-SW2 set to '63CX‘ indicates a successful change of memory state, but after
an internal retry routine; 'X' > '0' encodes the number of retries; 'X’ = '0' means that no counter is provided.

42 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 115

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 116

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

7.3.3 READ RECORD (3) command

The response data field gives the [partial] contents of the specified record(s) [or the beginning part of one
record] within an EF.

lf lNS = '82‘ and if the records are SiMPLE-TLV data objects (see 5.2.1), then Table 50 illustrates the response
data field. The comparison of Nr with the TLV structure indicates whether the unique record (read one record)
or the last record (read all records) is incomplete, complete or padded.

NOTE If the records are not data objects, then the read—all-records function results in receiving records without
delimitation.

lf INS = 'B3', then the command partially reads the record referenced by P1. The command data field shall
contain an offset data object (tag ‘54) indicating the first byte to be read in the record. The response data field
shall contain a discretionary data object (tag ‘53‘) encapsulating the data read.

Table 48 — READ RECORD (5) command-response pair
As defined in 5.1.1
'82 or 'B3’

Record number or record identifier (‘00' references the current record)
See Table 49

Lc field Absent for encoding NC = 0, present for encoding NC > 0
Data field Absent (NS = '82"), or offset data object (NS = ’BB’)

La field Present for encoding Ne > O

Data field Data read (NS = 'B2'), or discretionary data object for encapsulating the data read (INS = 'B3‘)

SW1—SW2] See Tables 5 and 6 when relevant, e.g., '6281, ’6282“ 6700“ ‘6981‘, '6982', '6A81, '6A82', ‘6A83‘, 'BCXX‘

Table 49 — P2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning
x Short EF identifier according to Tabie 47

Record identifier in P1
— Read first occurrence
— Read last occurrence
— Read next occurrence

— Read previous occurrence
Record number in P1
— Read record P1

— Read all records from P1 up to the last
— Read all records from the last up to P1
Reserved for future use

 ogooxAAOOX AO—‘OXAO—‘OX
if the Le field contains only bytes set to ‘00', then the command should read completely either the single
requested record, or the requested sequence of records, depending on bits 3, 2 and 1 of P2 and within the
limit of 256 for a short Le field, or 65 536 for an extended Le field.

Table 50 — Response data fields with NS = 'BZ'

Case a — Partial read of one record (the La field does not contain only bytes set to 'OO‘)

 Th (one byte) i Ln (one or three bytes) 2 First bytes of Vn
<——— Nr bytes ———>

Case b — Complete read of one record (the Le field contains only bytes set to ’00')

Tn (one byte) Ln (one or three bytes) All the bytes of Vn

Case c — Partial read ofa sequence of records (the Le field does not contain only bytes set to '00“)

— Tn+m — Ln+m - me (First bytes of the record)
< —— Nr bytes ——— >

Case d — Read several records up to the file end (the Le field contains only bytes set to ‘00‘)

Tn - Ln - Vn . .. Tn+m ' Ln+m ‘ Vn‘HTl

© ISO/IEC 2005 — All rights reserved 43

Apple Ex. 1030, p. 116

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 117

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

7.3.4 WRlTE RECORD command

The command initiates one of the following operations within an EF:

— the write-once of a record given in the command data field (the command shall be aborted if the record is
not in the logical erased state);

— the logical-OR of the data bytes of a record already present in the card with the data bytes of the record
given in the command data field;

— the logical-AND of the data bytes of a record already present in the card with the data bytes of the record
given in the command data field.

By default, i.e., when the data coding byte (see Table 87) is absent in the historical bytes (see 8.1.1), in
EF.ATR (see 8.2.1.1) and in the control parameters (see tag '82‘ in Table 12) of every file within the path from
the MP to a given EF, the logical-OR shall apply for that EF.

When using current record addressing, the command shall set the record pointer on the successfully written
record.

if applied to an EF supporting a cyclic structure with records of fixed size, the “previous” option (bits 3, 2 and 1
of P2 set to 011) behaves as APPEND RECORD.

If the records are SlMPLE—TLV data objects (see 5.2.1), then Table 53 illustrates the command data field.

Table 51 — WRITE RECORD command-response pair

CLA As defined in 5.1.1
INS '02

P1 Record number ('00‘ references the current record)
P2 See Table 52

 LG field Present for encoding NC > 0
Data field Record to be written

[Le field Absent for encoding Ne = O

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, e.g., ’GBCX' (see 7.3.2), '6581', ‘6700', '6981’, '6982‘, 6986', '6A81', '6A82', '6A83,
'6A84‘, ‘6A85'

Table 52 — P2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Short EF identifier according to Table 47

 x P1 set to '00'
0 — First record
1 — Last record
0 — Next record
1 — Previous record

Record number in P1

— Any other value is reserved for future use by lSOflEC JTC 1280 17.

é-kOOX I I I I I

AOOOOO'
O O

Table 53 — Command data field (one complete record)
Tn (one byte) Ln (one or three bytes) All the bytes of Vn

7.3.5 UPDATE RECORD command

The command initiates the update of a specific record with the bits given in the command data field. When
using current record addressing, the command shall set the record pointer on the updated record.

7 if applied to an EF supporting a linear or cyclic structure with records of fixed size, then the command
shall be aborted if the record size is different from the size ofthe existing record.

44 © lSO/lEC 2005 _ All rights reserved

Apple Ex. 1030, p. 117

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 118

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISO/IEC 7816-4:2005(E)

— If applied to an EF supporting a linear structure with records of variable size, then the command may be
carried out when the record size is different from the size of the existing record.

— If applied to an EF supporting a cyclic structure with records of fixed size, the “previous” option (bits 3, 2
and 1 of P2 set to 011) behaves as APPEND RECORD.

Table 54 — UPDATE RECORD command-response pair

CLA As defined in 5.1.1
INS 'DC' or ‘DD'

P1 Record number ('00' references the current record)
P2 See Table 52 (INS = 'DC') or 55 (INS = 'DD')

Lc field Present for encoding Nc > 0

Data field Updating data (INS = 'DC‘), or offset data object and discretionary data object for encapsulating the
updating data (INS = 'DD')

Le field Absent for encoding Ne =

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, e.g., '63CX' (see 7.3.2), '6581‘, '6700', '6981', '6982', '6986', '6A81', '6A82', '6A83,
'6A84', '6A85'

If INS 2 ‘DC' and if the records are SIMPLE—TLV data objects (see 5.2.1), then Table 53 illustrates the command
data field.

If INS 2 'DD', then the command partially updates the record referenced by P1. The command data field shall
contain an offset data object (tag '54') for indicating the first byte to be updated in the record and a
discretionary data object (tag '53' or ‘73“) for encapsulating the updating data.

Table 55 — P2 with INS = 'DD'

b8 b7 b6 b5 b4 b3 b2 b1 Meaning

Short EF identifier according to Table 47

 _ _ - - - 1 x x Record number in P1

_ _ _ — — 1 0 O — Replace
_ _ - — - 1 O 1 — Logical AND
_ _ _ _ — 1 1 O — Logical OR
_ _ - — - 1 1 1 — Logical XOR

iAny other value is reserved for future use by ISOllEC JTC 1/SC 17.

7.3.6 APPEND RECORD command

The command initiates either the writing of a new record at the end of an EF supporting a linear structure, or
the writing of record number one in an EF supporting a cyclic structure. When using current record addressing,
the command shall set the record pointer on the successfully appended record.

If the command applies to an EF supporting a linear structure full of records, then the command is aborted
because there is not enough memory space in the file.

If the command applies to an EF supporting a cyclic structure full of records, then the record with the highest
record number is replaced. This record becomes record number one.

If the records are SIMPLE-TLV data objects (see 5.2.1), then Table 53 illustrates the command data field.

© ISO/IEC 2005 — All rights reserved 45

Apple Ex. 1030, p. 118

Apple v. Fintiv

IPR2020-00019

Apple Ex. 1030, p. 119

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

Table 56 — APPEND RECORD command-response pair
CLA As defined in 5.1.1
INS 'E2‘

P1 '00' (any other value is invalid)
P2 See Table 47 with bits 3 to 1 set to 000 (any other value is reserved for future use)

LC field Present for encoding NC > O
 Data field Record to be appended

Le field Absent for encoding N5 = O

SW1-SW2 See Tables 5 and 6 when relevant, eg, ‘63CX' (see 7.3.2), '6581', '6700’, ‘6981', '6982‘, '6986‘, '6A81', '6A82', ‘6A83,
‘6A84‘, '6A85'

7.3.7 SEARCH RECORD command

The command initiates a simple or enhanced or proprietary search on records stored within an EF. The
search can be limited to records with a given identifier or to records with a number greater or smaller than a
given number. it can be performed in increasing or in decreasing order of record numbers. The search starts
either from the first byte of the records (simple search), or from a given offset within the records (enhanced
search), or from the first occurrence of a given byte within the records (enhanced search). The response data
field gives the numbers of the records matching the search criteria within an EF supporting records. The
command shall set the record pointer on the first record matching the search criteria.

ln an EF supporting records of variable size with linear structure, the search shall not take into account the
records shorter than the search string. in an EF supporting records of fixed size with linear or cyclic structure,
if the search string is longer than the records, then the card shall abort the command.

Table 57 — SEARCH RECORD command-response pair

CLA As defined in 5.1.1
INS 'A2'

P1 Record number or record identifier ('00' references the current record)
P2 See Table 58

LG field Present for encoding NC > 0
Data field Search string (bits 3 and 2 of P2 not set to 11, simple search), or

Search indication (2 bytes) followed by search string (bits 3, 2 and 1 of P2 set to 110, enhanced search), or
Proprietary (bits 3, 2 and 1 of P2 set to 111, proprietary search)

Le field Absent for encoding N5 = 0, present for encoding Ne > 0

Data field Absent or record numbers

SW1-SW2 See Tables 5 and 6 when relevant, e_g., '6282', ‘6982‘, ‘BCXX‘

— The response data field is absent either because the Le field is absent or because no match is found.
i The response data field does not give record identifiers because they may not be unique.

Table 58 — P2

b8 b7 b6 b5 b4 b3 b2 b1 Meaning
Short EF identifier according to Table 47
Simple search with record identifier in P1
— Forward from first occurrence
— Backward from last occurrence
— Forward from next occurrence
— Backward from previous occurrence
Simple search with record number in P1
— Forward from P1
— Backward from P1

Enhanced search (see Table 59)
Proprietary search

 .A.4JJAOOOOOI —‘—|OOO—‘AOOX AOAD):AOADX

In an enhanced search (bits 3, 2 and 1 of P2 set to 110), the command data field consists of a search indica-
tion on two bytes followed by a search string. Table 59 specifies the first search indication byte. According to

46 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 119

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 120

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

the first byte of the search indication, the second byte is either an offset or a value, i.e., the search in the
records shall start either from this offset (absolute position) or after the first occurrence of this value.

Table 59 — First byte of the search indication
b3 b2 b1 Meaning

The subsequent byte is an offset (start from that position)
— - The subsequent byte is a value (start after the first occurrence)

Record identifier in P1
— Forward from first occurrence
— Backward from last occurrence
— Forward from next occurrence
— Backward from previous occurrence
Record number in P1
— Forward from P1
— Backward from P1
— Forward from next record
— Backward from previous record

b8 b7 b6 b5 b4
0 O O O O
O O O O 1

. u u . .

AAAAAOOOQOI A-fiOCJXA-ACDDX AO—IOXAO—IOX
 —Any other value is reserved for future use by ISOIIEC JTC 1180 1?.

7.3.8 ERASE RECORD (5) command

The command sets one or more records of an EF to the logical erased state, either the record referenced by
P1, or the sequence of records from P1, sequentially, up to the end of the file. Erased records shall not be
deleted, and may still be accessible by WRlTE RECORD and UPDATE RECORD commands.

Table 60 — ERASE RECORD (5) command-response pair

As defined in 5.1.1

INS 'OC'
P1 Record number
P2 See Table 61

Absent for encoding NC = 0
Absent

Absent for encoding N6 = O

Data field

Le field

Data field

SW1—SW2

Absent

See Tables 5 and 6 when relevant, e.g., '63CX' (see 7.3.2), '6581', ‘6700', '8981', '8982', '6986', ‘6A81', '6A82', '6A83,
'6A84', ‘6A85'

Table 61 — P2

b8 b7 b6 b5 b4

1 x x
1 0 0

O 1

Meaning

Short EF identifier according to Table 47
Record number in P1
— Erase record P1
— Erase all records from P1 up to the last

iAny other value is reserved for future use by ISOI’IEC JTC 1/80 17.

7.4 Data object handling

7.4.1 General

Any command of this group shall be aborted if applied to a structure (DF or EF) not supporting data objects. It
can be performed only if the security status satisfies the security conditions defined by the application within
the context for the function.

lNS P1 P2 —All the commands of this group may use an odd lNS code (see 5.1.2). Bit 1 of lNS shall be used
together with P1-P2 according to Table 62.

© ISO/IEO 2005 — Ali rights reserved 47

Apple Ex. 1030, p. 120

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 121

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOl'lEC 7816-4:2005(E)

Table 62 — P1-P2

Condition

Even lNS code

Value of P1-P2 Meaning
‘0000' Used for dumping a file (see 8.4), or for card-originated byte strings (see 8.6)

'0040' to 'OOFF' BER—TLV tag (one byte) in P2
'0100’ to '01 FF‘ Proprietary
“0200‘ to 'O2FF' SlMPLE-TLV tag in P2
'4000’ to 'FFFF' BER-TLV tag (two bytes) in P1-P2

Odd INS code Any value File identifier or short EF identifier (see text below)
—Any other value is reserved for future use by ISO/IEC JTC 1JSC 17.

— lf bit 1 of INS is set to O and P1 to ‘00', then P2 from ‘40' to ‘FE' shall be a BER-TLV tag on a single byte. If
the BER—TLV tag is valid and indicates a constructed encoding, then the command sets the corresponding
template as current context. The value 'OOFF' is used either for obtaining all the common BER-TLV data
objects readable in the context, or for indicating that the command data field is encoded in BER-TLV.

— lf bit 1 of INS is set to 0 and P1 to ‘01', then P2 from '00‘ to 'FF' shall be an identifier for card internal tests

and for proprietary services meaningful within a given application context.

7 If bit 1 of INS is set to O and P1 to '02‘, then P2 from ”01' to ”PE shall be a SlMPLE-TLV tag. The value
'0200‘ is reserved for future use. The value 'OZFF' is used either for obtaining all the common SlMPLE—TLV
data objects readable in the context or for indicating that the command data field is encoded in SlMPLE-TLV.

— lf bit 1 of NS is set to 0 and if P1-P2 lies from ‘4000' to ‘FFFF', then they shall be a BER-TLV tag on two
bytes. If the BER-TLV tag is valid and indicates a constructed encoding, then the command sets the
corresponding template as current context. The values that are not valid BER-TLV tags on two bytes (see
5.2.2.1) are reserved for future use, e.g., ‘4000' and 'FFFF'.

— lf bit 1 of lNS is set to 1, then P1-P2 shall identify a file. if the first eleven bits of P1-P2 are set to 0 and if
bits 5 to 1 of P2 are not all equal and if the card and l or the file supports selection by short EF identifier,
then bits 5 to 1 of P2 encode a short EF identifier (a number from one to thirty). Otherwise, P1-P2 is a file
identifier. P1-P2 set to '3FFF‘ identifies the current DF. P1-P2 set to ‘0000' identifies the current EF,
unless the command data field provides a file reference data object (tag '51“, see 5.3.1.2) for identifying a
file. If the process is completed, then the identified file becomes current.

Data fields —The commands of this group shall use the data fields as follows.

7 if bit 1 of INS is set to 0, if a data object is requested or provided within the current context (e.g.,
application-specific environment or current DF), then the data field or the concatenation of the data fields
shall contain the value field of the data object, i.e., either the referred data element in the case of a
SIMPLE—TLV data object or a primitive BER—TLV data object, or the referred template in the case of a
constructed BER-TLV data object.

— With both INS codes, if a set of data objects is provided or if the content of an EF is requested, then the
appropriate data field shall contain the data object(s).

7.4.2 GET DATA command

The command retrieves either the content of an EF supporting data objects, or one data object, possibly
constructed, within the current context (e.g., application-specific environment or current DF).

NOTE If the information is too long for a single response data field, then the card shall return the beginning of the
information followed by SW1-SW2 set to '61XX‘. Then a subsequent GET RESPONSE provides 'XX‘ bytes of information. The
process may be repeated until the card sends SW1-SW2 set to '9000'.

if INS = 'CB‘, then the command data field shall contain either a tag list data object, or a header list data object,
or an extended header list data object (tags ‘50, '5D', '4D‘, see 8.5.1).

— In the tag list case, the response data field shall be the concatenation of the data objects referenced in
the tag list, in the same order (one or more data objects may be absent). An empty tag list requires all the
available data objects.

48 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 121

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 122

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISO/IEC 7816-4:2005(E)

— In the header list case, the response data field shall be the concatenation of the truncated data objects
referenced in the header list, in the same order (one or more data objects may be absent).

7 In the extended header list case, the response data field shall be the concatenation of the data objects
derived from the extended header list according to 8.5.1.

When there are several occurrences of a tag, this clause does not define which data object is returned
because that depends on the definition or the nature or the content of the data object.

If the physical interface does not allow the card to answer to reset, e.g., a universal serial bus or an access by
radio frequency, then the GET DATA command may retrieve specific information in the card according to P1—P2.
Either one of the following specific information may be retrieved in the card.

7 With INS = 'CA',

a Tag '5F51' —the Answer—to—Reset is a string of up to 32 bytes according to ISO/IEO 7816—3.

0 Tag ‘5F52' —the historical bytes are a string of up to 15 bytes according to 8.1.1.

— With INS = 'CB' and an empty tag list, i.e., '5000‘, in the command data field,

0 File identifier ‘2F00‘ — the content of EF.DIR is a set of BER-TLV data objects according to 8.2.1.1.

0 File identifier ‘2FO1'7the content of EF.ATR is a set of BER-TLV data objects according to 8.2.1.1.

NOTE 1 (Background Information) According to the physical interface specified in ISO/IEC 7816—3, the card answers to
any cold or warm reset operation through the contacts. The answer to reset is a sequence of asynchronous characters.
The initial character TS indicates conventions for decoding bytes in Characters and offers an alternate measurement of the
elementary time unit. Despite it may be decoded according to the indicated conventions, TS is a synchronization pattern,
not a byte. According to ISOIIEC 7816—3, the Answer—to-Reset is the string of up to 32 bytes conveyed by the answer to
reset, namely a mandatory format byte TO followed by optional interface bytes, optional historical bytes (up to 15 historical
bytes encoded according to 8.1.1) and a conditional check byte TCK. When TCK is present, the exclusive-bring of all the
bytes TO to TCK inclusive is null.

NOTE 2 For ATR information, if the Le field encodes a number less than the exact length, then rather than returning the
beginning of the information followed by SW1—SW2 set to '61XX', the card should preferably abort the command by
returning only SW1-SW2 set to '6CYY' for indicating the exact number of available data bytes. However, 'BCOO' indicates
256 bytes or more. If it is more than 256, then SW1—SW2 set to '61XX' indicates that 'XX’ bytes are still available.

If the Le field contains only bytes set to “00', then all the required information should be returned within the limit
of 256 for a short Le field, or 65 536 for an extended Le field.

Table 63 — GET DATA command-response pair
CLA As defined in 5.1.1
INS 'CA' or 'CB'

P1—P2 See Tabie 62

LC field Absent for encoding Nc = 0, present for encoding NC > 0

Data field Absent (INS = 'CA'), or tag list data object or (extended) header list data object (INS = ‘CB')

Le field Present for encoding Ne > 0

Data field Data bytes according to P1—P2 (INS = 'CA'), or concatenation of BER—TLV data objects (INS = ‘CB‘)

SW1-SW2 See Tables 5 and 6 when relevant, e.g., ’61XX‘, ‘6202‘ to “6280‘, ‘6281‘, '6700‘, ‘6981', ‘6982‘, ‘6985’, '6A81', '6A88'
(data objects not found, i.e., referenced data not found), ‘6CXX‘

7.4.3 PUT DATA command

The command initiates the management of either the content of an EF supporting data objects, or one data
object, possibly constructed, within the current context (e.g., application-specific environment or current DF).
For example, it allows sending a command-to-perform (tag '52') or a cardholder certificate (tag '7F21'),
possibly too long for a single command. If the data object is too long for a single command, then command
chaining shall apply (see 5.1.1.1); the value field of the data object is the concatenation of the command data
fields.

© ISO/IEO 2005 _ All rights reserved 49

Apple Ex. 1030, p. 122

Apple v. Fintiv

IPR2020-00019

Apple Ex. 1030, p. 123

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

The definition or the nature or the content of the data objects shall induce the exact management functions,
e.g., writing once and l or updating and l or appending.

SW1-SW2 set to ‘63C)(' indicates a successful change of memory state, but after an internal retry routine;
'X' > '0' encodes the number of retries; ‘X' = '0' means that no counter is provided.

Table 64 — PUT DATA command-response pair

As defined in 5.1.1
'DA' or 'DB'
See Table 62

Present for encoding NC > 0

INS

LC field
Data field

Le field

 Data bytes according to P1-P2 (INS = 'DA‘), or concatenation of BER-TLV data objects (NS = ’DB’)

Absent for encoding NS =

Data field

SW1 —SW2

Absent

See Tables 5 and 6 when relevant, e.g., '63CX‘, '6581', '6700‘. '6981', '6982', '6985‘, 'SASO', '6A81', '6A84', '6A85'

7.5 Basic security handling

7.5.1 General

The commands of this group reserve P1-P2 for referencing an algorithm and some related reference data
(e.g., a key). If there is a current key and a current algorithm, then the command may implicitly use them.

P1 — Unless otherwise specified, P1 references the algorithm to use: either a cryptographic algorithm, or a
biometric algorithm (see lSO/lEC 7816-11m). P1 set to '00‘ means that no information is given, i.e., either the
reference is known before issuing the command, or the command data field provides it.

P2 — Unless otherwise specified, P2 qualifies reference data according to Table 65. P2 set to '00‘ means that
no information is given, i,e,, either the qualifier is known before issuing the command, or the command data
field provides it. The qualifier may be for example a password number or a key number or a short EF identifier.

Table 65 — P2

 Meaning[El-—
am—

0 _ _ _ _ _ _ _

No information given

Global reference data (e.g.. MF specific password or key)
Specific reference data (e.g., DF specific password or key)

00 (any other value is reserved for future use)

Qualifier, i.e., number of the reference data or number of the secret

NOTE A MANAGE SECURITY ENVIRONMENT command may set an algorithm reference and I or a reference data qualifier.

in this group of commands, SW1—SW2 set to ’6300' or '63CX‘ indicates that the verification failed, 'X‘ > '0'
encodes the number of further allowed retries. SW1-SW2 set to '6A88‘ means “reference data not found”.

7.5.2 lNTERNAL AUTHENTICATE command

The command initiates the computation of authentication data by the card using the challenge data sent by
the interface device and a relevant secret (e.g., a key) stored in the card.

7 If the relevant secret is attached to the MF, then the command may be used to authenticate the card as a
whole.

7 if the relevant secret is attached to another DF, then the command may be used to authenticate that DF.

Any successful authentication may be subject to completion of prior commands (e.g., VERIFY, SELECT) or
selections (e.g., the relevant secret).

50 © lSOIlEC 2005 — All rights reserved

Apple Ex. 1030, p. 123

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 124

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

The card may record the number of times the command is issued, in order to limit the number of further uses
of the relevant secret or the algorithm.

\lOTE The response data field may include data useful for further security functions (e.g., random number).

Table 66 — INTERNAL AUTHENTICATE command-response pair

CLA As defined in 5.1.1
INS '88'

P1-P2 See 7.5.1 and Table 65

LC field Present for encoding Nc > O

Data field

Le field
Authentication—related data (e.g., challenge)

Present for encoding Ne > 0

Data field

SW1 -SW2
 Authentication—related data (e.g., response to a challenge)

See Tables 5 and 6 when relevant. e.g., ‘6300‘ (see 7.5.1), '63CX' (see 7.5.1), ‘6581', '6700', '6982‘, '6983', '6984‘.
'6A81‘, '6A82', '6A86', ‘6A88' (see 7.5.1)

7.5.3 GET CHALLENGE command

The command requires the issuing of a challenge (e.g., a random number for a cryptographic authentication
or a sentence to prompt for a biometric authentication using voiceprints) for use in a security-related
procedure (e.g., EXTERNAL AUTHENTICATE command).

The challenge is valid at least for the next command; this clause specifies no further condition.

Table 67 — GET CHALLENGE command-response pair

CLA As defined in 5.1.1
lNS '84'
P1 See 7.5.1

P2 “00' (any other value is reserved for future use)

Lc field Absent for encoding NC = 0
Data field Absent

Le field Present for encoding N. > O

Data field Challenge

SW1-SW2 See Tables 5 and 6 when relevant. 6.9., '6300' (see 751), ’63CX' (see 7.5.1), '6581', ‘6700‘, ‘6982', '8983', '8984'.
'6A81’, '6A82" '6A86‘, '6A88‘ (see 7.5.1)

7.5.4 EXTERNAL AUTHENTICATE command

The command conditionally updates the security status using the result (yes or no) of the computation by the
card based on a challenge previously issued by the card (e.g., by a GET CHALLENGE command), a key possibly
secret stored in the card and authentication data transmitted by the interface device.

Any successful authentication requires the use of the last challenge obtained from the card. The card may
record unsuccessful authentications {e.g., to limit the number of further uses of the reference data).

The absence of command data field may be used either to retrieve the number 'X' of further allowed retries
(SW1-SW2 set to ‘63CX'), or to check whether the verification is required or not (SW1-SW2 set to '9000‘).

© ISO/IEC 2005 — All rights reserved 51

Apple Ex. 1030, p. 124

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 125

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Table 68 — EXTERNAL AUTHENTICATE command-response pair
CLA As defined in 5.1.1
INS “82‘

P1—P2 See 7.5.1 and Tabie 65

LG field Absent for encoding Nc = 0, present for encoding NC > 0

Data field Absent or authentication-related data (e.g., response to a challenge)

Le field Absent for encoding N5 = O

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, e.g., ‘6300' (see 7.5.1), ‘63CX' (see 7.5.1), ‘6581‘, ”6700‘, '6982', '6983', ‘6984',
'6A81', ’6A82', '6A86'. '6A88' (see 7.5.1)

MUTUAL AUTHENTICATE function — The MUTUAL AUTHENTICATE function uses the same functionalities as

EXTERNAL and INTERNAL AUTHENTICATE commands. It is based upon a previous GET CHALLENGE command and
a key, possibly secret, stored in the card. The card and the interface device share authentication-related data,
including two challenges: one issued by the card, another one issued by the interface device.

NOTE The command may be used for implementing authentication as specified in parts 2 and 3 of lSO/lEC 9798[8].

The operation can be performed only if the security status satisfies the security attributes for this operation.

Table 69 — Command-response pair for MUTUAL AUTHENTICATE function

CLA As defined in 5.1.1
lNS “82‘

P1-P2 See 7.5.1 and Table 65

Lc field Present for encoding NC > 0 Data field Authentication—related data

Le field Present for encoding Ne > O

Data field Authentication-related data

SW1—SW2 See Tables 5 and 6 when relevant, 8.9., '6300' (see 7.5.1), '63CX' (see 7.5.1), '6581‘, '6700', '6982', ‘6983', ’6984‘,
'6A81‘, ‘6A82‘, '6A86’, '6A88' (see 7.5.1)

7.5.5 GENERAL AUTHENTICATE command

The command refines the EXTERNAL, INTERNAL and MUTUAL AUTHENTICATE functions; namely, either an entity in
the outside world authenticates an entity in the card (INTERNAL AUTHENTICATE function), or an entity in the card
authenticates an entity in the outside world (EXTERNAL AUTHENTICATE function), or both (MUTUAL AUTHENTICATE
function). While appropriate for authentication mechanisms involving challenge-response pairs, the EXTERNAL
and INTERNAL AUTHENTICATE commands preclude authentication mechanisms involving witness-challenge-
response triples (see lSO/lEC 9798-581). The exchange of triples requires two or more GENERAL AUTHENTICATE
command-response pairs: such command-response pairs may be chained (see 5.1.1.1).

The function (either INTERNAL, or EXTERNAL, or MUTUAL AUTHENTICATE) can be performed only if the security
status satisfies the security attributes for this operation. Any successful authentication may be subject to
completion of prior commands (e.g., VERIFY, SELECT) or selections (9.9., the relevant secret). The result (yes or
no) of a control performed by the card may conditionally update the security status. The card may record the
number of times the function is issued, in order to limit the number of further uses of the relevant secret or the

algorithm. The card may record unsuccessful authentications (e.g., to limit the number of further uses of the
reference data).

52 © lSOIlEC 2005 — All rights reserved

Apple Ex. 1030, p. 125

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 126

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

Table 70 — GENERAL AUTHENTICATE command-response pair

CLA As defined in 5.1.1
NS ‘86' or “87'

P1 —P2 See 7.5.1 and Table 65

Lc field Present for encoding Nc > 0
Data field Authentication-related data

Le field Absent for encoding Ne = 0, present for encoding Ne > O

Data field Absent (either due to the absence of Le field, e.g., the last command of an EXTERNAL AUTHENTlCATE
function, or if the process is aborted), or authentication—related data

See Tables 5 and 6 when relevant, e.g., ‘6300' (see 7.5.1), ‘63CX‘ (see 7.5.1), ‘6581', '6700‘, '6982‘, '6983', '6984',
'6A81', '6A82', '6A86', '6A88' (see 7.5.1)

SW1 -SW2

When present, each data field shall contain an interindustry template referenced by tag '7C‘. In the dynamic
authentication template, the context-specific class (first byte from '80' to 'BF‘) is reserved for dynamic
authentication data objects as listed in Table 71.

Table 71 — Dynamic authentication data objects

——
Set of dynamic authentication data objects with the following tags

Witness (e.g., one or more positive numbers less than the public modulus in use)
Challenge (e.g., one or more numbers, possibly zero, less than the public exponent in use)
Response (e.g., one or more positive numbers less than the public modulus in use)
Committed challenge (e.g., the hash—code ofa large random number including one or more challenges)
Authentication code (e.g., the hash-code of one or more data fields and a witness data object)
Exponential (e.g., a positive number for establishing a session key by a key agreement technique)

Identification data template

— In this context, lSO/lEC JTC “SC 17 reserves any other data object of the context-specific class (first byte from '80' to 'BF').

The following rules apply within the interindustry template for dynamic authentication.

— If a data object is empty in a template, then it shall be complete in the template in the next data field.

— In the first command data field, the template indicates the dynamic authentication function as follows.
- A witness request, e.g., an empty witness, denotes an lNTERNAL AUTHENTICATE function.
. A challenge request, e.g., an empty challenge, denotes an EXTERNAL AUTHENT!CATE function.
0 The absence of empty data object denotes a MUTUAL AUTHENTICATE function. Then unless the card

aborts the process, the template in the response data field shall contain the same data objects as the
template in the command data field. The MUTUAL AUTHENTICATE function allows two entities to agree
on a session key using a pair of‘exponential’ data elements referenced by tag “85' (see key
agreement techniquesIn lSO/lEC 11770—3‘143).

The dynamic authentication may protect data fields exchanged during a session. Both entities maintain a
current hash—code, updated by including one command or response data field at a time. The data object with
tag ”84' conveys an authentication code resulting from updating the current code by including a witness data
object with tag ‘80‘. The verifier successively reconstructs a witness and an authentication code: if the
reconstructed witness is not zero and if the two codes are identical, then the authentication is successful.

Annex C illustrates GENERAL AUTHENTICATE command-response pairs for implementing INTERNAL, EXTERNAL
and MUTUAL AUTHENTICATE functions, with extensions to data field authentication and key agreement.

7.5.6 VERIFY command

The command initiates the comparison in the card of stored reference data with verification data sent from the
interface device (e.g., password) or from a sensor on the card (e.g., fingerprint). The security status may be
modified as a result of a comparison. The card may record unsuccessful comparisons (e.g., to limit the
number of further uses of the reference data).

© ISO/IEC 2005 — All rights reserved 53

Apple Ex. 1030, p. 126

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 127

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

— lf NS = '20', the command data field is normally present for conveying verification data. The absence of
command data field is used to check whether the verification is required (SW1-SW2 = '63CX' where 'X'
encodes the number of further allowed retries), or not (SW1—SW2 = '9000').

— lf INS = ‘21‘, the command data field shall convey a verification data object (e.g., tag '5F2E‘. see ISO/IEC
7816-11‘41), normally not empty. The presence of an empty verification data object with an extended
header list (tag ‘4D', see 8.5.1) expresses that the verification data come from a sensor on the card.

Table 72 — VERIFY command-response pair

CLA As defined in 5.1.1
INS '20', '21'
P1 '00' (any other value is reserved for future use)
P2 See Table 65

Lc field Absent for encoding NC = 0. present for encoding NC > O

Data field Verification data, or absent (lNS = '20'), or
Verification data object and, conditionally, extended header list (INS = '21')

Le field Absent for encoding N5 = O

Data field

SW1—SW2

Absent

See Tables 5 and 6 when relevant, 9.9., '6286', ‘6300' (see 7.5.1), ’63CX‘ (see 7.5.1), ‘6581', '6700', ‘6982', '6983',
'6984‘, ’6A81', '6A82', '6A86', '6A88' (see ?.5.1)

7.5.7 CHANGE REFERENCE DATA command

The command either replaces reference data stored in the card with new reference data sent from the
interface device, or initiates their comparison with verification data sent from the interface device and then
conditionally replaces them with new reference data sent from the interface device. It can be performed only if
the security status satisfies the security attributes for this command.

Table 73 — CHANGE REFERENCE DATA command-response pair

CLA As defined in 5.1.1
INS “24'

P1 '00' or ‘01“ (any other value is reserved for future use)
P2 See Table 65

Lc field Present for encoding Nc > 0
Data field Verification data followed without delimitation by new reference data (P1 set to '00"), or

New reference data (P1 set to '01")
Le field Absent for encoding N6 = O

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, e.g., '6300' (see 7,5.1), '63CX’ (see 7.5.1), ‘6581', ’6700', ’6982', ‘6983', ‘6984',
'6A81', ‘6A82', '6A86', '6A88' (see 7,5,1)

7.5.8 ENABLE VERlFICATION REQUIREMENT command

The command switches on the requirement to compare reference data with verification data. It can be
performed only if the security status satisfies the security attributes for this command.

Table 74 — ENABLE VERIFICATION REQUIREMENT command-response pair

CLA As defined in 5.1.1

INS '28'

P1 '00’ or '01' (any other value is reserved for future use)
P2 See Table 65

LC field Absent for encoding Nc = 0, present for encoding Nc > 0

Data field Absent (P1 set to '01'), or verification data (P1 set to '00')
Le field Absent for encoding NS = 0

Data field

SW1-SW2 See Tables 5 and 6 when relevant, e.g., ’6300’ (see 7.5.1), '6SCX‘ (see 7.5.1). '8581‘, '6700‘, '6982‘, ’6983', ‘6984',
’6A8‘l', '8A82', '6A86‘, 'SASB' (see 7.5.1)

54 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 127

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 128

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIIEC 7816-4:2005(E)

7.5.9 DISABLE VERIFICATION REQUIREMENT command

The command switches off the requirement to compare reference data with verification data, and possibly
switches on the requirement to compare other reference data with verification data. lt can be performed only if
the security status satisfies the security attributes for this command.

Table 75 — DISABLE VERIFICATION REQUIREMENT command-response pair
As defined in 5.1.1
'26'

‘00“, '01‘ or 100Xxxxx where xxxxx is a reference data number (any other value is reserved for future use)
See Table 65

LC field Absent for encoding NC = 0. present for encoding NC > 0

Data field Absent (P1 set to '01'), or verification data (P1 set to ‘00' or 100x xxxx)
Le field Absent for encoding N5 = O

Data field Absent

SW1—SW2 See Tables 5 and 6 when relevant, e.g., “8300' (see 7.5.1). 'SBCX' (see 7.5.1), '6581', '6700', '6982', '6983', '5984‘,
'6A81‘, '6A82', '6A86‘, '6A88' (see 7.5.1)

7.5.1 0 RESET RETRY COUNTER command

The command either resets the reference data retry counter to its initial value, or changes reference data on
completion of a reset of the reference data retry counter to its initial value. it can be performed only if the
security status satisfies the security attributes for this command.

Table 76 — RESET RETRY COUNTER command-response pair
CLA As defined in 5.1.1
NS ‘20

P1 '00‘, '01'. '02“ or ‘03‘ (any other value is reserved for future use)
P2 See Table 65

LC field Absent for encoding NC = 0, present for encoding NC > 0

Data field Absent (P1 set to '03‘), or
Resetting code followed without delimitation by new reference data (P1 set to ‘OO'), or
Resetting code (P1 set to '01‘), or
New reference data (P1 set to '02‘)

Le field Absent for encoding N5 = 0

Data field

SW1 -SW2

Absent

See Tables 5 and 6 when relevant, 6.9., '6300' (see 7.5.1), '63CX' (see 7.5.1), ‘6581‘, ‘6700', '6982', '6983', ’6984',
’6A81', '6A82', '6A86', '8A88' (see 7.5.1)

7.5.11 MANAGE SECURITY ENVIRONMENT command

The command prepares secure messaging (see 6) and security commands (e. EXTERNAL, INTERNAL and
GENERAL AUTHENTICATE, see also PERFORM SECURITY OPERATION in lSO/IEC 7816-8 4*'). The command supports
the following functions:

7 SET, i.e., setting or replacing one component of the current SE;

— STORE, i.e., saving the current SE under the SElD byte in P2;

— RESTORE, i.e., replacing the current SE by a SE stored in the card and identified by the SElD byte in P2;

7 ERASE, i.e., erasing 3 SE stored in the card and identified by the SElD byte in P2.

© ISO/IEO 2005 _ All rights reserved 55

Apple Ex. 1030, p. 128

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 129

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOI'lEC 7816-4:2005(E)

Table 77 — MANAGE SECURITY ENVIRONMENT command-response pair

CLA As defined in 5.1.1
INS '22’
P1 See Table 78
P2 See Table 79

LC field Absent for encoding Nc = 0, present for encoding Nc > D

Data field Absent (STORE, RESTORE and ERASE), or concatenation of control reference data objects (SET)
Le field Absent for encoding Ne = O

Data field

SW1-SW2

 See Tables 5 and 6 when relevant, e.g., ‘6600', ‘6987', ‘6988, '6A88' (see 7.5.1)

Table 78 — P1

b3 b2 b1 Meaning

- - — Secure messaging in command data field
— — — Secure messaging in response data field
- - - Computation, decipherment, internal authentication and key agreement
— — — Verification, encipherment, external authentication and key agreement

— 0 0 0 1 SET
1 1 1 1 O O 1 O STORE

0 11 1 1 1 O 1 RESTORE

1 1 1 1 0 1 0 0 1 ERASE
— Any other value is reserved for future use by lSOllEC JTC 1ISC 17,

Table 79 — P2

Value Meaning

SEID byte in the cases of STORE, RESTORE and ERASE (set to '00' in the case of GET SE)
 Tag of the control reference template present in the command data field in the cases of SET, or GET CRT

— Control reference template for authentication (AT)
— Control reference template for key agreement (KAT)
— Control reference template for hash-code (HT)
— Control reference template for cryptographic checksum (CCT)
— Control reference template for digital signature (DST)
— Control reference template for confidentiality (CT)

—Any other value is reserved for future use by lSO/lEC JTC 1/80 17’.

KEY DERIVATION function — The usage Of a master key concept may require the derivation of a key in the
card containing the master key. Table 80 shows the usage of the MANAGE SECURITY ENVlRONMENT command
for deriving a key. It is assumed that the master key and the algorithm are implicitly selected in the card
(otherwise, the MANAGE SECURITY ENVIRONMENT command can additionally select a key and an algorithm).

NOTE Depending on the algorithm reference, the data for deriving a key from a master key may be part of the input
data of the subsequent command (e.g., EXTERNAL AUTHENTICATE). In this case the usage of the MANAGE SECURITY
ENVIRONMENT command for deriving the key is not necessary.

Table 80 — Command-response pair for KEY DERIVATION function

AS defined in 5.1.1

INS “22'

P1 'X1' (SET, see Table 78)
P2 CRT tag (e.g., 'A4' if an EXTERNAL AUTHENTICATE follows, or 'B4‘ if a VERIFY CRYPTOGRAPHIC CHECKSUM follows)

Present for encoding NC > 0

Data field

Le field
{‘94’ — L — Data for deriving a key (mandatory)}; SM data objects may be present

Absent for encoding N8 = 0

Data field Absent

SW1-SW2 See Tables 5 and 6 when relevant, eg, '6600', ‘6987‘, ‘6988, ‘6A88' (reference data not found)

56 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 129

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 130

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

7.6 Transmission handling

7.6.1 GET RESPONSE command

The command transmits [part of] response APDUs that otherwise could not be transmitted by the available
transmission protocol. See examples in lSO/lEC 7816-3.

if the Le field contains only bytes set to ‘00', then all the available bytes should be returned within the limit of
256 for a short l.e field, or 65 536 for an extended l.e field.

Table 81 — GET RESPONSE command-response pair
CLA As defined in 5.1.1
NS ‘00'

P1—P2 '0000‘ (any other value is reserved for future use)

Lc field Absent for encoding Nc = 0
Data field Absent

Le field Present for encoding Ne > O

Data field Absent in any error case, or [Part of] a response APDU according to Ne

SW1-SW2 See Tables 5 and 6 when relevant, e.g., ‘61XX‘ ('XX‘ encodes the number of extra bytes still available by a
subsequent GET RESPONSE), '6281‘, '6700'. '6A81’, '6A82’, '6A86', 'GCXX'

7.6.2 ENVELOPE command

The command transmits [part of] either a command APDU or a BER—TLV data object that otherwise could not
be transmitted by the available transmission protocol. See examples in lSO/lEC 7816-3.

\lOTE Annex B shows the usage of the ENVELOPE command for secure messaging.

Table 82 — ENVELOPE command-response pair
As defined in 5.1.1
'C2'. ‘C3'
'0000' (any other value is reserved for future use)

CLA

LC field

Data field

Le field

Present for encoding NC > 0

[Part of] a command APDU (INS = 'C2‘), or [part of] a BER-TLV data object (INS = *03')

Absent for encoding N8 = 0, present for encoding Ne > O

Data field [Part of] a response APDU (NS = '02“), or absent

SW1-SW2 See Tables 5 and 6 when relevant, eg, ‘6700‘

8 Application-independent card services

This clause specifies application-independent card services, referred to as “card services".

1) Card identification

N Application identification and selection

(.0 Selection by path

01-h

)

)

) Data retrieval

) Data element retrieval

)O) Card-originated byte strings

© ISO/IEO 2005 _ All rights reserved 57

Apple Ex. 1030, p. 130

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 131

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

The purpose of card services is to provide interchange mechanisms between a card and an interface device
knowing nothing about each other except that they both comply with this document. Card services result from
any combination of historical bytes (see 8.1.1), the contents of EFDlR and EF.ATR (see 8.2.1.1) and
sequences of commands. Unless otherwise specified, every command APDU uses CLA set to '00', i.e., no
command chaining, no secure messaging and the basic logical channel.

There is no need for an application to comply with this clause once it has been identified and selected in the
card. An application may use other mechanisms compatible with this document for achieving similar functions.
Therefore such solutions may not guarantee interchange.

8.1 Card identification

This service allows the interface device to identify the card and to deal with it. The historical bytes (see 8.1.1)
provide a generic support to card identification. The card provides information to the outside world on its
logical content directly, e.g., through the card service data byte (see 8.1.1.2.3), and / or indirectly, e.g.,
through the initial access data (see 8.1.1.2.4) indicating an access to a file implicitly selected immediately after
the answer to reset and a possible protocol and parameters selection. Consequently, the data available at this
point, i.e., the initial data string (see 8.1.2), may not be subsequently retrievable.

8.1.1 Historical bytes

8.1.1.1 Purpose and general structure

The historical bytes indicate operating characteristics of the card.

— When a card answers to reset, the Answer-to-Reset may contain historical bytes (see lSO/lEC 7816-3).

— When the physical interface does not allow a card to answer to reset, e.g., a universal serial bus or an
access by radio frequency, a GET DATA command (see 7.4.2) may retrieve historical bytes (tag '5F52‘).

The first historical byte is the “category indicator byte”. If the category indicator byte is set to 'OO‘, '10“ or ‘8X',
then Table 83 summarizes the format of the historical bytes. Any other value indicates a proprietary format.

Table 83 — Category indicator byte

Value Meaning

'00‘ A status indicator shall be present as the last three historical bytes (see 8.1.1.3)
'10” See 8.1.1.4

'80' A status indicator may be present in a COMPACT—TU." data object (one, two or three bytes, see 8.1.1.3)
’81‘ to '8F‘ Reserved for future use

i Any other value indicates a proprietary format.

7 If the first historical byte is set to ‘OO‘, then the remaining historical bytes consist of optional consecutive

COMPACT-TLV data objects followed by a mandatory status indicator (the last three bytes, not in TLV).

— If the first historical byte is set to '80', then the remaining historical bytes consist of optional consecutive
COMPACT-TLV data objects; the last data object may carry a status indicator of one, two or three bytes.

Any interindustry BER-TLV data object consisting of a tag field set to ‘4X', a length field set to 'OY‘ and a value
field of Y bytes can be converted into a COMPACT-TLV data object consisting of a byte set to ‘XY‘ called
“compact header” and a value field of Y bytes.

Any interindustry data element defined hereafter may be present in EF.ATR (see 8.2.1.1). If present in
EF.ATR, it shall appear in a BER-TLV data object, i.e., a tag field set to ‘4X‘, a length field set to 'OY‘ and a
value field of Y bytes.

8.1.1.2 Optional data elements

8.1.1.2.1 Country or issuer indicator

Referenced by a compact header set to either '1Y' or '2Y', this interindustry data eiement is a country or issuer
indicator (see also tags ‘41' and '42‘ in Table 9). Table 84 shows the country or issuer indicator.

58 © lSO/lEC 2005 — All rights reserved

Apple Ex. 1030, p. 131

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 132

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

Table 84 — Country or issuer indicator
Compact header

Country code (see lSO 3166—1”) and optional national data Issuer identification number (see ISO/IEO 7812-135 and optional issuer data

— A country indicator consists of a country code (three quartets with values from ‘0’ to ‘9‘, see lSO 3166-1m)
followed by subsequent data (at least one quartet). The relevant national standardization body shall
choose those subsequent data (odd number of quartets).

— An issuer indicator consists of an issuer identification number (see lSO/lEC 7812-1m) possibly followed
by subsequent data. The card issuer shall choose those subsequent bytes if any (for encoding, e.g., a
Primary Account Number).

NOTE ln ISO/’lEC 7812-1:1993, an issuer identification number might consist of an odd number of quartets with a
value from ‘0‘ to '9'. Then it was mapped into a byte string by setting bits 4 to 1 of the last byte to 1111.

8.1.1 .2.2 Application identifier

Referenced by a compact header set to ’FY', this interindustry data element is an application identifier (AID,
see 8.2.1.2, see also tag '4F' in Table 9). If present in the historical bytes or in the initial data string (see 8.1.2),
an AlD denotes an implicitly selected application (see 8.2.2.1).

8.1.1 .2.3 Card service data

Referenced by a compact header set to '31', this interindustry data element indicates methods available in the
card for supporting services described in 9. Table 85 shows the card service data byte.

Table 85 — Card service data byte

Meaning
Application selection
— by full DF name
— by partial DF name
BER-TLV data objects available
— in EF.DlR (see 8.2.1.1)
— in EF.ATR (see 8.2.1.1)
EF.DlR and EF.ATR access services

— by the READ BINARY command (transparent structure)
— by the READ RECORD (s) command (record structure)
— by the GET DATA command (TLV structure)
Reserved for future use
Card with MF
Card without MF

lf present in the historical bytes or in the initial data string (see 8.1.2), the card service data byte indicates
whether EF.DlR and l or EF.ATR (see 8.2.1.1) are present or not and how to access them. The absence of
card service data byte in the historical bytes and in the initial data string indicates that the card supports only
the implicit application selection (default value).

8.1.1 .2.4 initial access data

Referenced by a compact header set to '4Y', this interindustry data element indicates a command APDU
assumed to be the first command after the answer to reset and a possible protocol and parameters selection.
The command APDU is specified in 8.1.2.

8.1.1 .2.5 Card issuer's data

Referenced by a compact header set to ’5Yi, this interindustry data element is not defined in lSO/lEC 7816.
The card issuer defines a length, a structure and a coding.

© lSO/lEC 2005 — Al! rights reserved 59

Apple Ex. 1030, p. 132

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 133

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

8.1 .1.2.6 Pre-issuing data

Referenced by a compact header set to 'GY', this interindustry data element is not defined in lSO/lEC 7816.
The card manufacturer defines a length, a structure and a coding for a card manufacturer, an integrated circuit
name, an integrated circuit manufacturer, a ROM mask version, an operating system version, etc. This
interindustry data element may contain an integrated circuit manufacturer identifier (see lSOflEC 7816-6).

8.1.1.2.7 Card capabilities

Referenced by a compact header set to '71', '72' or '73', this interindustry data element consists of up to three
software function tables: either the first table, or the first two tables, or the three tables.

— The first software function table indicates selection methods supported by the card.

7 The second software function table is the “data coding byte”. The data coding byte may also be present
as the second byte in the file control parameter referenced by tag '82' (see Table 12).

— The third software function table indicates the ability to chain commands, to handle extended Lc and Le
fields and to manage logical channels.

Table 86 — First software function table (selection methods)

be m b6 b5 b4 b3 b2b—
DF selection (see 5.3.1)
— by full DF name
— by partial DF name
— by path
— by file identifier
implicit DF selection
Short EF identifier supported
Record number supported
Record identifier supported

Table 87 — Second software function table (data coding byte)

b8 b7 b6 b5 b4 b3 b2 b1 Meaning
EFs of TLV structure supported

x — — — — — Behaviour of write functions
0 — — — — - — One—time write

1 - - - - - — Proprietary
0
1

— — — — — — Write OR
- - - - - — Write AND

- - - - x x x x Data unit size in quartets (from one to 32 768 quartets, i.e., 16 384 bytes)
(power of 2, e.g., 0001 = 2 quartets = one byte, default value)

- - - - Value ‘FF' for the first byte of BER-TLV tag fields (see 5.2.2.1)
— Invalid (used for padding, default value)

— — — — — Valid (long private tags, constructed encoding)

 . I I

aox
. . . |

Meaning

Command chaining (see 5.1.1.1)

 Logical channel number assignment (see 7.1.2)

— by the card
— by the interface device
No togical channel
Maximum number of logical channels (see 5.1.1 and 5.1.1.2)
— y, z and t not all set to 1 means 4y+22+t+1, i.e., from one to seven
— y = z = t =1 means eight or more
RFU

8.1.1.3 Status indicator

if the category indicator byte is set to '00', then the last three historical bytes shall be a status indicator,
namely a card life cycle status byte denoted LCS followed by two processing status bytes denoted SW1-SW2.

60 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 133

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 134

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

If the category indicator byte is set to ‘80‘, then an interindustry data element referenced by a compact header
set to '81', '82‘ or ‘83' may be present as a status indicator on one, two or three bytes (any other length is
reserved for ISO/[EC JTC 1180 17) at the end of the historical bytes.

7 If the length is one, then the data element is a card life cycle status byte denoted LCS.

— If the length is two, then the data element is two processing status bytes denoted SW1-SW2.

— If the length is three, then the data element is LCS followed by SW1-SW2.

LCS shall be interpreted according to 5.3.3.2 and Table 13; the value ‘00‘ indicates that the status is not
reported. SW1—SW2 shall be interpreted according to 5.1.3 and Tables 5 and 6; the value ‘0000‘ indicates that
the status is not reported.

8.1.1 .4 DIR data reference

lfthe category indicator byte is set to ‘10', then the subsequent byte is the DIR data reference. The coding and
meaning of this byte are outside the scope of this document.

8.1.2 Initial data string recovery

Referenced by a compact header set to '4Y‘ in the historical bytes (see 8.1.12.4) or by tag '44“ in EF.ATR
(see 8.2.1.1), the interindustry data element called “initial access data” indicates a command APDU.

7 If the length is one, then the command APDU is a READ BlNARY command (see 7.2.3) as follows: CLA lNS
P1 P2 set to 'OOBO 0000' and a Le field set to the first and only byte of initial access data.

— If the length is two, then the first byte of initial access data indicates the structure (bit 8) and the short
identifier (bits 5 to 1) of the EF to read, according to Table 89.

o If bit 8 of the first byte is set to 1, then the command APDU is a READ BINARY command (see 7.2.3) as
follows: CLA lNS set to 'OOBO', P1 set to the first byte of initial access data, P2 set to ‘00‘ and a Le field
set to the second byte of initial access data.

0 If bit 8 of the first byte is set to 0, then the command APDU is a READ RECORD (8) command (see
7.3.3) as follows: CLA lNS P1 set to 'OOB201', P2 consisting of bits 8 to 4 set to bits 5 to 1 of the first
byte of initial access data (a short EF identifier) and bits 3 to 1 set to 110, and a La field set to the
second byte of initial access data.

Table 89 — First byte of initial access data when the length is two
Meaning

b8 b7 b6

EF structure
Record structure

Transparent structure
Short EF identifier

xOOx xxxx (any other value is reserved for future use)

— If the length is five or more, then the command APDU consists of the Y bytes of initial access data.

The command APDU shall be submitted to the card. if the process is completed, then the response data field
is a string of interindustry data objects every application might be interested in, called the “initial data string”.

8.2 Application identification and selection

This service allows the interface device to know what application is active in the card, if any, as well as how to
identify and select any application supported by the card.

© ISO/IEO 2005 _ All rights reserved 61

Apple Ex. 1030, p. 134

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 135

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

isonEC 7816-4:2005(E)

8.2.1 Application identification

8.2.1.1 EF.DIR and EF.ATR

Two specific EFs provide a generic support to application identification and selection, namely EF.DIR and
EF.ATR. They contain a set of BER-TLV data objects. In these EFs, erased or modified BER-TLV data objects
may induce padding before, between and after data objects (see 5.2.2.1).

EF.D|R — This EF indicates a list of applications supported by the card. It contains a set of application
templates and l or application identifier data objects, in any order. It determines which commands shall be
performed in order to select the indicated applications.

EF.DIR shall have the MF as parent file: the path '3F002F00‘ references EF.DIR. At MF level, the short EF
identifier 30, i.e., 11110 in binary, references EF.DIR if present.

EF.ATR — This EF indicates operating characteristics of the card. It contains a set of interindustry data
objects which cannot be nested in EFDIR, either because not relevant to application selection, or because
there is no EF.DIR.

EF.ATR shall have the MF as parent file: the path ‘3F002FO1‘ references EF.ATR.

8.2.1.2 Application identifier

Referenced by a compact header set to ‘FY' in the historical bytes (see 8.1.1), or by tag '4F' in the initial data
string (see 8.1.2), in EF.ATR, in EF.DIR and in the management data of any DF (see 5.3.3), this interindustry
data element identifies an application.

An application identifier (AID) consists of up to sixteen bytes. Bits 8 to 5 of the first byte indicate a category
according to Table 90.

Table 90 — Categories of application identifiers

Category—_
'0' to '9' Reserved for backward compatibility with ISO/IEC 7812-1 {31 (see annex D)

‘A' lnternationai I International registration of application providers according to ISOIIEC 7816-594
'8', ‘0' Reserved for future use by lSO/‘IEC JTC 1/SC 17

“—National (ISO 3166-1m) registration of application providers according to lSO/IEC 7816- SM}
Standard Identification of a standard by an object identifier according to ISO/IEC 8825- 1

‘F' Proprietary No registration of application providers

Figure 7 shows an international AID. It consists of a registered application provider identifier (international
RID) on five bytes and optionally, a proprietary application identifier extension (PIX) on up to eleven bytes.

7 The international RID shall uniquely identify an application provider (see ISO/IEC 7816-59”).
. Bits 8 to 5 of the first byte shall be set to 1010, Le, the first quartet shall be set to ‘A'.
. Each one of the subsequent nine quartets shall be set from '0‘ to '9'.

7 The extension has a free encoding. It allows the application provider to identify its different appiications.

Registered appiication provider identifier Proprietary application identifier extension
(International RID, five bytes, first byte set to 'AX') (PIX, up to eleven bytes)

Figure 7 — International AID

Figure 8 shows a national AID. It consists of a registered application provider identifier (national RID) on five
bytes and optionaliy, a proprietary application identifier extension (PIX) on up to eieven bytes.

— The national RID shall uniquely identify an application provider (see ISOIIEC 7816-514).

- Bits 8 to 5 of the first byte shall be set to 1101, Le, the first quartet shall be set to ‘D'.

62 © ISO/IEC 2005 _ All rights reserved

Apple Ex. 1030, p. 135

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 136

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

c The subsequent three quartets (from '0‘ to '9') shall form a country code (see ISO 3166-1m).

. The recommended value of each one of the last six quartets is from '0' to '9'.

— The extension has a free encoding. it allows the application provider to identify its different applications.

Registered application provider identifier Proprietary application identifier extension

(National RID, five bytes, first byte set to ‘DX') (PIX, up to eleven bytes)

Figure 8 — National AlD

Figure 9 shows a standard AID. it consists of up to sixteen bytes. The first byte shall be set to 1110 1000, i.e.,
to 'E8’. The values 'E0‘ to 'E?‘ and 'E9‘ to 'EF' are reserved for future use by ISO/IECJTC 118C 17, An object
identifier (see lSOflEC 8825-1) shall follow for identifying a standard specifying an application (see examples
in annex A, e.g., lSO/IEC 7816—124], personal verification through biometric methods, ISO/lEC 7816-15“?
cryptographic information application). An application identifier extension (specified according to the identified
standard) may follow for identifying different implementations.

Object identifier (see annex A) Application-specific application identifier extension
Figure 9 — Standard AID

Figure 10 shows a proprietary AlD. it consists of up to sixteen bytes. Bits 8 to 5 of the first byte shall be set to
1111, Le, to 'F‘. in the proprietary category, as application providers are not registered, different application
providers may use the same AlD.

Proprietary application identifier (Proprietary AID, up to sixteen bytes, first byte set to 'FX')

Figure 10 — Proprietary AlD

8.2.1 .3 Application template

Referenced by tag ‘61', this interindustry template may be present in EF.ATR (see 8.2.1.1), in EFDlR (see
8.2.1.1) and in the management data of any DF (see 5.3.3).

— Such a template shall contain one and only one application identifier. if several application identifiers are
valid names for the same DF, then each one should be present in a different application template.

7 Such a template may optionally contain other interindustry data objects relating to the application as listed
in Table 91 and defined hereafter.

Table 91 — lnterindustry data objects for application identification and selection
tag
are
'so'
'51-
62'

'sszvs'
'5F50'
«at

8.2.1 .4 Other interindustry data elements

The following interindustry data elements provide a generic support to application identification and selection.

Application label — Referenced by tag ‘50’, this interindustry data element is not defined in lSO/iEC 7816.
The application provider defines it for use at the man-machine interface, e.g., a trademark to display.

File reference — Referenced by tag '51', this interindustry data element is defined in 5.3.1.2.

© ISO/IEO 2005 _ All rights reserved 63

Apple Ex. 1030, p. 136

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 137

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Discretionary data (or template) — Referenced by tag ‘53' (or '73'), this interindustry data element (or
template) consists of relevant data elements (or nests data objects) defined by the application provider.

Uniform resource Iocator — Referenced byitag '5F50', this interindustry data element is a uniform resource
Iocator (URL) as defined in lETF RFC 1738M“ and lETF RFC 2396129}. It points to part of the software required
in the interface device to communicate with the application in the card.

8.2.2 Application selection

The card shall support at least one of the following application selection methods.

1) lmplicit application selection

2) Application selection using an application identifier (AID, see 8.2.1.2) as DF name

3) Application selection using EF.DIR or EF.ATR

8.2.2.1 Implicit application selection

If an application is implicitly selected, then an application identifier should be present in the historical bytes
(see 8.1.1) or in the initial data string (see 8.1.2). Such a presence denotes an implicitly selected application. If
an application is implicitly selected with no application identifier in the historical bytes and in the initial data
string, then an application identifier shall be present in EF.ATR (see 8.2.1.1).

NOTE The implicit application selection is not recommended for mum-application cards.

8.2.2.2 Application selection using MD as DF name

In a multi-application environment, the card shall respond positively to a SELECT command specifying any
application identifier (AlD, see 8.2.1.2) as DF name. The interface device may thus explicitly select an
application without previously checking the presence of the application in the card.

The card shall support a SELECT command with CLA INS P1 P2 set to ‘OOA4 0400‘ for the first selection with a
given and preferably complete application identifier in the command data field (see Table 39). Depending on
whether the application is present or not, the card shall either complete or abort the command. in the case of
a selection with a truncated DF name, the full DF name will be made available in the response data field as
the file control parameter referenced by tag ’84' (see Table 12). If the card supports selection with a truncated
DF name, then the first selection is implementation—dependent, e.g., the first occurrence in a static list or the
last activated application in a previous session. For the next selections, if any, the card shall support a SELECT
command with CLA INS P1 P2 set to '00A4 0402' with the same command data field.

8.2.2.3 Application selection using EF.DlR or EF.ATR

For a multi-application interface device, the use of EF.D|R or EF.ATR may be more efficient than the previous
method.

7 If an application identifier data object is not part of an application template and not accompanied by a file
reference or command-to-perform data object, then the selection shall use AlD as DF name.

— If an application identifier data object is part of an application template together with a file reference data
object (see 5.3.1.2), the value field of which consists of two or more bytes, then the selection by path shall
be performed according to 8.3.

7 If an application identifier data object is part of an application template together with one or more
command-to-perform data objects, then the application selection is done by the indicated command(s). lf
several, they shall be performed in the order presented in the template.

8.3 Selection by path

This service allows selection of EFs and un-named DFs by using a path, Le, a file reference data element
(see 5.3.1.2) consisting of three or more bytes.

64 © ISO/IEO 2005 _ All rights reserved

Apple Ex. 1030, p. 137

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 138

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

— When the length is even, the path is either absolute or relative depending on whether the first two bytes
are set to ‘3F00‘ or not. The last two bytes identify either a DP or an EF.

0 For a path to a DP, the selection should be done by one or more SELECT commands, with CLA INS P1
P2 LC set to ‘00A4 0100 02‘.

. For a path to an EF, if the length is four or more, the selection should be done by one or more SELECT
commands, with CLA lNS P1 P2 Lc set to ’00A4 0100 02’. The last and possibly only selection uses
the last two bytes of the path (an EF identifier) with CLA INS P1 P2 LC set to '00A4 0200 02'.

— When the length is odd, the path is qualified. It consists of either an absolute path without '3F00', or a
relative path without the identifier of the current DF, followed by a byte to use as P1 in one or more
SELECT commands. The value of P1 fixes the selection method.

o If the value of P1 is ”08' or '09”, then the card shall support a SELECT command where the qualified
path specifies P1, LC and the data field and where P2 is set to ‘00‘.

. In the other cases, the card shall support one or more SELECT commands with P1 set to the last byte
of the qualified path and P2 LC set to “0002'. Every file along the path shall be selected sequentially.

8.4 Data retrieval

This service allows the interface device to read data stored in DFS and in EFs.

Once a DF has been selected, the contents relevant to interchange shall be the response data field to a GET
DATA command (see 7.4.2) consisting of CLA lNS set to ’OOCA' followed by P1-P2 set to 'OOFF' for BER-TLV
data objects or to '02FF' for SiMPLE—TLV data objects, followed by a Le field containing only bytes set to '00‘.

Once an EF has been selected, the contents relevant to interchange shall be the response data field to a READ
command according to the file descriptor byte (see Table 14), if present in the control parameters.

7 The READ BINARY command (see 7.2.3) consists of CLA INS P1 P2 set to 'OOBO 0000' followed by a Le
field containing only bytes set to '00“.

— The READ RECORD (5) command (see 7.3.3) consists of CLA lNS P1 P2 set to 'OOB2 0005‘ followed by a
Le field containing only bytes set to '00'.

7 The GET DATA command (see 7.4.2) consists of CLA INS P1 P2 set to ‘OOCAOOOO‘, followed by a Le field
containing only bytes set to “00'.

in the absence of file descriptor byte in the control parameters of an EF, the command APDU is as follows.

— If the first software function table (see Table 86) is present in the historical bytes or in EF.ATR and if it
indicates the support of records, then the command APDU is a READ RECORD (S) as above.

7 Otherwise, i.e., when the table is absent in the historical bytes and in EF.ATR or if the table does not
indicate the support of records, the command APDU is a READ BINARY as above.

8.5 Data element retrieval

This service allows the interface device to retrieve interindustry data elements used for interchange.

7 Before selecting an application, interindustry data objects should be retrieved directly or indirectly from
the historical bytes (see 8.1.1), the initial data string (see 8.1.2), EF.ATR and EF.DlR (see 8.2.1.1), in that
order, when present. These interindustry data objects shall be interpreted according to tag allocation
schemes specified in 5.2.4.

7 Once an application is selected, interindustry data objects should be retrieved directly or indirectly from
the management data (see 5.3.3) of the application DF and from specific EFs within the current DF.

0 lnterindustry data objects may be present in the management data of any file (see 5.3.3).

© ISO/IEC 2005 — Ali rights reserved 65

Apple Ex. 1030, p. 138

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 139

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

o lnterindustry data elements may be retrieved in files referenced in a wrapper (see 8.5.1). Selection of
an un-named DF or an EF known by its path is defined in 8.3. Reading data in a selected EF or DF is
defined in 8.4.

o lnterindustry data objects may be retrieved by GET DATA commands (see 7.4.2).

8.5.1 Indirect references to data elements

Element lists, tag lists, header lists, extended header lists and wrappers are interindustry data elements for
indirectly referencing data elements in byte strings, e.g., contents of EFs supporting data units, data fields
resulting from completing commands APDU (see 8.4), byte strings to sign (see ISO/IEC 7816—8m). Such a
data element instructs the card how to interpret a command data field or to construct a response data field.

Element list— Referenced by tag '5F41', this interindustry data element denotes that the information to
retrieve is not presented as data objects, but under application control. it shall be used only within the wrapper
template. lts structure and the returned information are outside the scope of ISO/lEC 7816.

Tag list— Referenced by tag ‘50, this interindustry data element is a concatenation of tag fields without
delimitation. The byte string consists of the data objects, in the same order as the tag list.

Header list — Referenced by tag '5D‘, this interindustry data element is a concatenation of pairs of tag fields
and length fields without delimitation. The byte string consists of the value fields, in the same order as the
header list.

Extended header iist — Referenced by tag ‘4D', this interindustry data element is a concatenation of pairs of
tag fields and length fields without delimitation. The byte string is built as follows.

7 if a tag indicates a primitive encoding, then the pair of tag field and length field is replaced by data
referenced by the tag. A zero length means that the complete data object / element is included in the byte
string. A non-zero length means the maximum number of data bytes to be retrieved and consequently
may require truncation.

— A tag indicating a constructed encoding followed by a non-zero length, except '80', introduces a
subsequent value field that is an extended header list. A tag indicating a constructed encoding followed
by a zero length is ignored. A tag indicating a constructed encoding followed by '80' means that the
complete constructed data object I complete template is included in the byte string.

— The card shall ignore the elements of the extended header list that do not match the target structure.

The byte string consists of either

7 the value fields of the primitive data objects, possibly truncated according to the indicated lengths (Case
1), or

— the primitive data objects, possibly truncated according to the indicated lengths, and nested in the
respective template, the length of which complies with the BER-TLV rules (Case 2).

— if present, the length '80' shall be replaced by the actual length. The complete constructed data object I
complete template is included in the byte string.

The encoding of the byte string, namely, data objects or data elements, is indicated by an appropriate lNS
code or by an appropriate parameter of the command, e.g., either an appropriate encoding of the data field

(either constructed for those containing data objects or primitive for those containing data elements), or tags
'AC' or '80‘ (see Table 31) used in the PERFORM SECURiTY OPERATION command (see ISO/lEC 7816—841).

EXAMPLES The following extended header list references the subsequent three primitive data objects.

 m Constructed tagT -——m

Lacs)

66 © ISOIIEC 2005 _ All rights reserved

Apple Ex. 1030, p. 139

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 140

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

Case 1: The byte string is a concatenation of data elements.

The first five bytes of value:7

Case 2: The byte string is a concatenation of data objects.

Wrapper — Referenced by tag ‘63', this interindustry template shall consist of two data objects.

7 The first data object is either an element list (tag '5F41'), or a tag list (tag ‘50), or a header list (tag 'SD‘),
or an extended header list (tag ’4D').

— The second data object is a reference to an EF (tag ‘51‘, see 5.3.1.2) and lor one or more commands-to-
perform (tag '52'). If several, the commands APDU shall be processed in the presented order.

A data object referenced e.g., in a tag list, or a data element referenced e.g., in a header list, either shall be
contained in the referenced file, or shall be (part of) the response data field to the last command APDU. Only
one indirect reference shall be given in a wrapper. There may be more than one wrapper.

EXAMPLE The following wrapper template consists of a tag list and one command—to—perform.

{'63‘—L—{'SC‘—L—(T391—TagZ—Tag3)}—{‘52'—L—Command APDU}}

8.6 Card-originated byte strings

This service allows the card to originate byte strings.

For clarity, this clause speaks of a query as [part of] a card—originated byte string and of a reply as [part of] a
response sent by an entity in the outside world; for example, a complete set of queries may form a command
APDU and a complete set of replies a response APDU, thus allowing communication service from card to
interface device and also, from card to card, possibly through a network.

This clause specifies the following three features.

7 How the card shall use SW1-SW2 as a trigger indicating that the card wants to issue a byte string, for
which the card possibly expects a response.

7 How the interface device shall use the GET DATA command (see 7.4.2) for retrieving a query from the card
and the PUT DATA command (see 7.4.3) for transmitting a reply, if any, to the card.

7 How the byte strings shall be formatted.

8.6.1 Triggering by the card

SW1-SW2 set to ‘62XX’ with the value of 'XX' from “02‘ to '80‘ means that the card has a query of 'XX' bytes
that the interface device should retrieve and for which the card possibly expects a response.

SW1—SW2 set to '64XX‘ with the value of ‘XX' from '02‘ to '80' means that the card aborted the command; a
possible completion of the command is conditioned by the recovery of a query of 'XX' bytes, for which the card
possibiy expects a response.

if present in the historical bytes with a value such as above, SW1-SW2 shall be interpreted as above.

If a PUT DATA command (see 7.4.3) for transmitting a reply is aborted with SW1-SW2 set to '64XX‘, then

— with '64XX' from “6402' to '6480', the card wants to send at least one more query of ‘XX' bytes;

7 with '64XX‘ set to ‘6401‘, the card is expecting an immediate response.

© ISO/IEC 2005 — All rights reserved 67

Apple Ex. 1030, p. 140

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 141

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

8.6.2 Queries and replies

For retrieving a query of 'XX‘ bytes available in the card, the interface device shall send a GET DATA command
with P1—P2 set to '0000‘ and a Le field set to ‘XX'.
— SW1-SW2 set to '62XX' with the value of ‘XX‘ from ’02‘ to '80' means that the interface device should

retrieve a further query of 'XX' bytes and concatenate it to the already retrieved query before processing
the card-originated byte string in the outside world.

— SW1-SW2 set to '9000‘ means that the card—originated byte string is complete; it may be processed in the
outside world.

For transmitting a reply to the card, the interface device shall send a PUT DATA command with P1-P2 set to
'0000‘. If the response is too long for a single command, then several PUT DATA commands shall be chained
(see 5.1.1.1). Each PUT DATA command transmits a reply and the concatenation of the replies is the response.

8.6.3 Formats

The value of the first byte of the card—originated byte string indicates a format as follows.

— If the first byte is set to 'FF', then the subsequent bytes shall encode an initial protocol identifier according
to ISO/[EC TR 9577”“; the byte strings shall comply with the indicated protocol.

— Otherwise (i.e., when the first byte is not set to 'FF'), the card-originated byte string and the response
together shall form a command-response pair.

All conditions are relevant to the transmission protocol indicated by the card, except for the proper use of GET
DATA command, PUT DATA command and status bytes SW1-SW2. This clause makes no assumption on the
need for a response and on the entity responsible for the contents of the possible response.

68 © ISO/IEC 2005 _ All rights reserved

Apple Ex. 1030, p. 141

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 142

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Annex A

(informative)

Examples of object identifiers and tag allocation schemes

A.1 Object identifiers

For iSO standards, the first byte is '28‘, i.e., 40 in decimal (see ISO/lEC 8825-1). One or more series of bytes
follow; bit 8 is set to 0 in the last byte of a series and to 1 in the previous bytes, if there is more than one byte.
The concatenation of bits 7 to 1 of the bytes of a series encodes a number. Each number shall be encoded on
the fewest possible bytes, that is, the value ’80’ is invalid for the first byte of a series. The first number is the
number of the standard; the second number, if present, is the part in a multi—part standard.

As a first example, {iso(1) standard(0) ic—cards(7816)} references ISO/lEC 7816.

7 7816 is equal to '1E88’, i.e., 0001 1110 1000 1000, i.e., two blocks of seven bits: 0111101 0001000.

7 After insertion of the appropriate value of bit 8 in each byte, the encoding of the first series is therefore
1011 1101 0000 1000, equal to ‘BD08‘.

The data element '28 BD08‘ may be used in Ale of standard category (see 8.2.1.2).

AlD = 'E8 28 BD08 OB XX XX“ (lSO/lEC 7816—11 specifies the application identifier extension ‘XX XX').

AlD = 'E8 28 BD08 OF XX XX' (lSO/lEC 7816-15 specifies the application identifier extension ‘XX XX').

As a second example, {iso(1) standard(0) e-auth(9798) part(5)} references lSO 9798—5[83. The first series is
obtained as follows.

7 9798 is equal to ’2646‘, i.e., 0010 0110 0100 0110, i.e., two blocks of seven bits: 1001100 1000110.

— After insertion of the appropriate value of bit 8 in each byte, the encoding of the first series is therefore
11001100 01000110, equal to ‘CC46‘.

The data element '28 CC46 05 02‘ references the second mechanism in ISO/IEC 9798-5i8]. i.e., (302. Such an
identifier may be conveyed in a data object (tag '06', universal class, see ISO/lEC 8825-1).

D0 = {‘06 05 28 CC 46 05 02'}

As a third example, {iso(1) standard(0) mess(9992) part(2)} references ISO 9992—2‘18]. The first series is
obtained as follows.

7 9992 is equal to ’2708', i.e., 0010 0111 0000 1000, i.e., two blocks of seven bits: 1001110 0001000.

— After insertion of the appropriate value of bit 8 in each byte, the encoding of the first series is therefore
1100 1110 0000 1000, equal to ‘CE08‘.

The data element is '28 CE08 02' (the second series is '02‘). it may be conveyed in a data object.

D0 = {‘06 04 28 CE 08 02'}

A2 Tag allocation schemes

Example of default tag allocation scheme

[>01 = {'59 02 95 02’}

[>02 = {*5F 24 03 97 03 31‘}

D01 (tag '59', card expiration date) encodes February 1995 as card expiration date (see lSO/lEC 7816-6).

D02 (tag '5F24', application expiration date) encodes March 31St 1997 as application expiration date.

© ISO/IEO 2005 _ Ali rights reserved 69

Apple Ex. 1030, p. 142

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 143

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOllEC 7816-4:2005(E)

Example of compatible tag allocation scheme

D01 = {‘78 06' {‘06 04 28 CE 08 02'}}
D02 = {'5F 24 03 97 03 31'}
D03 2 {'70 04' {‘80 02 xx XX‘}}
D04 = {'67 0A' {'51: 29 03 xx xx XX'} {'81 02 xx XX'}}

D01 (ta ‘78‘, compatible tag allocation authority) indicates a compatible tag allocation scheme defined in ISO

9992-21 1 referenced by its object identifier. lf D01 appears either in the initial data string (see 8.1.2), or in
EF.ATR (see 8.2.1.1), then the tag allocation authority is valid for the entire card. If D01 appears in the
management data ofa DF (see 5.3.3), then the tag allocation authority is valid within that DF.

D02 (tag ‘5F24', application expiration date) encodes March 31St 1997 as application expiration date.

D03 (tag ”70‘, interindustry template according to the included tag allocation authority), contains a data object,
tag '80', defined in lSO 9992-2110]; the meaning of tag '70' is also defined in lSO 9992-2”).

D04 (tag '67', authentication data template) contains the interchange profile data object, tag '5F29‘, and a
data object, tag ”81', defined in lSO 9992-2110]; the meaning of tag '67' is defined in lSOIlEC 7816—6“?

Another example of compatible tag allocation scheme

D02 = {'5F 24 03 97 03 31'}
D03 2 {'70 00‘ {'06 04 28 CE 08 02'} {'80 04 XX xx xx XX'}}
D04 = {'67 06' {'51: 29 03 xx xx XX'}}

D02 (tag '5F24', application expiration date) encodes March 31St 1997 as application expiration date.

D03 (tag ‘70‘, interindustry template defined according to the included object identifier) contains a data object,

tag ‘06‘, which specifies that the subsequent data object, tag '80', is defined in ISO 9992-210}. The meaning of
tag '70' is also defined in ISO 9992-2“.

DOAr (tag '67‘, interindustry authentication data template) contains the interchange profile data object, tag

'5F29’. Note that it cannot contain data objects defined in ISO 9992-2m], because of the choice not to transmit
the interindustry data object with tag ‘78'.

Example of coexistent tag allocation scheme

D01 = {'79 05' {‘06 03 28 xx xx'}}
002 = {'7E 06' {'5F 24 03 97 03 31'}}
D03 2 {'70 06' {'xx xx xx xx xx XX‘}}

D01 (tag ‘79‘, coexistent tag allocation authority) indicates a coexistent tag allocation scheme defined in a
standard referenced by an object identifier starting with '28’, therefore an ISO standard. Mandatory in such a
scheme, D01 shall appear either

— in the initial data string (see 8.1.2) or in EF.ATR (see 8.2.1.1) if the tag allocation authority is valid for the
entire card, or

7 in the management data of a DF (see 5.3.3) if the tag allocation authority is valid within that DF.

D02 (tag '7E‘) is an interindustry template for nesting interindustry data objects. Note that the interindustry

data object “application expiration date”, tag ‘5F24', is present. encoding March 31Si 1997 as application
expiration date.

D03 (tag '70‘, interindustry template to be interpreted according to the tag allocation authority indicated in
template '79’) can only be interpreted according to the standard indicated in the object identifier.

70 © ISO/IEO 2005 — All rights reserved

Apple Ex. 1030, p. 143

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 144

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

Annex B

(informative)

Examples of secure messaging

B.1 Cryptographic checksum

This clause shows the use of secure messaging (see 6) and cryptographic checksums (see 6.2.3.1) for each
of the four cases of command-response pairs defined in ISO/IEC 7816-3.

In the examples, the notation CLA* means the use of secure messaging in the data fields: in CLA (see 5.1.1),
either bits 8, 7 and 6 set to 000 and bit 4 set to 1, or bits 8, 7 and 6 set to 011.

In the examples, the notation CLA“ means that bits 8, 7 and 6 of CLA are set to 000 and bits 4 and 3 to 11,
i.e., that the command header shall be included in the computation of a data element for authentication.

Alternately the header may be encapsulated in a data object with tag '89', i.e., a SM data object to be included
in the computation of a data element for authentication.

In the examples, the notation T* means that bit 1 of the last byte of the tag field is set to 1 (an odd tag number),
i.e., that the SM data object shall be included in the computation of a data element for authentication.

— Case 1 — No command data, no response data

The unsecured command-response pair is as follows.

Command header Command body

CLA lNS P1 P2 Absent [

Response body Response trailer

Absent SW1—SW2 I

— Case 1.a — Status not protected

The secured command APDU is as follows.

Command header Command body

CLA" lNS P1 P2 {New LG field} — {New data field (= T - L — Cryptographic checksum)} I
If the length of the cryptographic checksum is four bytes, then the new LG field is set to ’06’.

New data field 2 One data object = {T - L - Cryptographic checksum}

Data covered by the cryptographic checksum (bit 3 of CLA* set to 1) =
One block = {CLA** INS P1 P2 Padding}

The secured response APDU is as follows.

Response body Response trailer
sm-sm

© ISO/IEC 2005 — All rights reserved 71

Apple Ex. 1030, p. 144

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 145

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIIEC 7816-4:2005(E)

— Case 1.b — Status protected

The secured command APDU is as follows.

Command header Command body

CLA" INS P1 P2 {New Lc field} — {New data field (= T — L — Cryptographic checksum)} — {New Le field (= 'OO‘)}

New data field = One data object = {T - L- Cryptographic checksum}

Data covered by the cryptographic checksum (bit 3 of CLA* set to 1) =
One block = {CLA** lNS P1 P2 Padding}

The secured response APDU is as follows.

Response body Response trailer

New data field (={T* - L - SW1-SW2} - {l’ - L - Cryptographic ohecksum}) SW1-SW2

New data field : Two data objects = {T* - L- SW1-SW2} — {T - L - Cryptographic checksum}

Data covered by the cryptographic checksum = One block = {T* - L- SW1-SW2 - Padding}

— Case 2 — No command data, response data

The unsecured command-response pair is as follows.

Command header Command body

CLA lNS P1 P2 1 LE field

Response body Response trailer

Data field SW1 -SW2

The secured command APDU is as follows.

Command header Command body

I CLA" lNS P1 P2 I New LC field — New data field — {New La field (one or two bytes set to ‘00‘)} '
New data field = Two data objects = {T* - L - Le} - {T - L- Cryptographic checksum}

Data covered by the cryptographic Checksum =

7 One block = {T* - L - Le - Padding} if bit 3 of CLA* set to 0

— Two blocks = {CLA** INS P1 P2 Padding} - {T* - L - Le - Padding} if bit 3 of CLA* set to 1

The secured response APDU is as follows.

Response body Response trailer

New data field SW1 -SW2

(={T* — L- Plain value} - {T* - L - SW1-SW2} - {T - L - Cryptographic checksum})

New data field = Three data objects =
{T* - L— Plain value} - {T* - L - SW1-SW2} — {T - L - Cryptographic checksum}

Data covered by the cryptographic checksum =
One or more blocks : {T* - L — Plain value - T* - L - SW1-SW2 - Padding}

72 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 145

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 146

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEc 7816-4:2005(E)

— Case 3 — Command data, no response data

The unsecured command-response pair is as follows.

Command header Command body

CLA INS P1 P2 LC field - Data field

Response body Response trailer

Absent 1 SW1 —SW2 I

7 Case 3.a — Status not protected

The secured command APDU is as follows.

Command header Command body

CLA" INS P1 P2 New Lc field - New data field

New data field 2 Two data objects = {T* - L- Plain value} - {T - L—Cryptographic checksum}

Data covered by the cryptographic checksum =

7 One or more blocks = {T* - L- Plain value - Padding} if bit 3 of CLA" set to 0

— Two or more blocks = {CLA** lNS P1 P2 Padding} — {T* — L- Plain value - Padding} if bit 3 of CLA"
set to 1

The secured response APDU is as follows.

Response body Response trailer
Absent SW1 -SW2

— Case 3.b — Status protected

The secured command APDU is as follows.

Command header Command body

CLA" INS P1 P2 New LC field — New data field — New Le field (= '00')

New data field = Two data objects = {T* - L- Plain value} - {T - L - Cryptographic checksum}

Data covered by the cryptographic checksum =

7 One or more blocks = {T* — L- Plain value — Padding} if bit 3 of CLA* set to 0

— Two or more blocks = {CLA** lNS P1 P2 Padding} - {T* - L— Plain value - Padding} if bit 3 of CLA*
set to 1

The secured response APDU is as follows.

Response body Response trailer

New data field (= {T* - L - SW1-SW2} - {T - L - Cryptographic checksum}) SW1-SW2

New data field = Two data objects = {T* - L - SW1-SW2} - {T - L - Cryptographic checksum}

Data covered by the cryptographic checksum : One block = {T* — L - SW1-SW2 - Padding}

© ISO/IEO 2005 — All rights reserved 73

Apple Ex. 1030, p. 146

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 147

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIIEC 7816-4:2005(E)

— Case 4 — Command data, response data

The unsecured command-response pair is as follows.

Command header Command body

I CLA INS P1 P2 Lc field — Data field — Le field !

Response body Response trailer

I Data field SW1 —SW2 j
The secured command APDU is as follows.

Command header Command body

I CLA“ INS P1 P2 New Lc field - New data field - New Le field (one or two bytes set to 'OO‘) l
New data field = Three data objects =

{T* - L - Plain value} - {T" - L - Le} — {T - L- Cryptographic checksum}

Data covered by the cryptographic checksum =

7 One or more blocks = {T* - L — Plain value — T* - L — Le - Padding} if bit 3 of CLA* set to 0

— Two or more blocks = {CLA** lNS P1 P2 Padding} - {T* - L — Plain value — T* - L — Le — Padding} if bit
3 of CLA* set to 1

The secured response APDU is as follows.

Response body Response trailer
New data field SW1—SW2

(={T* - L — Plain value} — {T* — L — SW1—SW2} — {T — L— Cryptographic checksum})
New data field 2 Three data objects =

{T* - L - Plain value} - {T* - L - SW1-SW2} - {T - L - Cryptographic checksum}

Data covered by the cryptographic checksum 2 One or more blocks 2
{T* - L - Plain value - T* - L - SW1—SW2 - Padding}

B.2 Cryptograms

The use of cryptograms with and without padding (see 6.2.2) is shown in command and response data fields.
instead of the plain value data objects in the previous examples, data objects for confidentiality shall be used
as follows.

— Case a — Plain value not encoded in BER-TLV

Data field = {T - L- Padding—content indicator byte - Cryptogram}

Plain value conveyed by the cryptogram = One or more blocks =
Plain value not encoded in BER-TLV, possibly padded according to the indicator byte

— Case b — Plain value encoded in BER-TLV

Data field = {T - L- Cryptogram}

Plain value conveyed by the cryptogram = String of concealed bytes =
BER-TLV data objects (padding depending on the algorithm and its mode of operation)

74 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 147

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 148

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

8.3 Control references

The use of control references (see 6.3.1 and 6.3.2) is shown.

Command data field = {T — L- Control reference template},
where control reference template 2 {T - L- File reference} - {T — L - Key reference}

3.4 Response descriptor

The use of response descriptor (see 6.3.3) is shown.

Command data field = {T — L- Response descriptor}
where response descriptor = {T (Plain value) - 'OO‘ - T (Cryptographic checksum) - '00'}

Response data field = {T — L - Plain value} — {T - L— Cryptographic checksum}

B.5 ENVELOPE command

The use of the ENVELOPE command (see 7.6.2) is shown.

Command data field = {T - L- Padding—content indicator byte - Cryptogram}

Plain value conveyed by the cryptogram 2
Command APDU (starting by CLA* lNS P1 P2), padding according to the indicator byte

Response data field = {T — L - Padding—content indicator byte - Cryptogram}

Plain value conveyed by the cryptogram =
Response APDU, padding according to the indicator byte

8.6 Synergy between secure messaging and security operations

For the purposes of this clause, the following symbols and abbreviated terms apply.

CC cryptographic checksum

CG cryptogram

CLA** CLA with SM indication (bits 8, 7 and 6 set to 000 and bits 4 and 3 set to 11)

DS digital signature

MSE manage security environment

PCl padding-content indicator byte

PSO perform security operation

SMC security module card

USC user smart card

The example explains how to use a security module card (SMC) that performs security operations for
producing a secured command APDU to send to a user card (USC) and for processing the corresponding
secured response APDU received thereon from the USC, i.e., for producing and processing data fields in SM
format. The example illustrates the synergy between the two approaches: — the atomic approach by security

operations (see lSO/IEC 7816-8m) and 7 the global approach by secure messaging (see 6).

© ISO/IEO 2005 _ All rights reserved 75

Apple Ex. 1030, p. 148

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 149

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

isonEc 7816-4:2005(E)

The example assumes that the USC and the SMC have completed a mutual authentication procedure, based
9.9., on card verifiable certificates. The authentication procedure includes a key transport or key agreement
mechanism so that after this procedure, two symmetric keys are available in the USC and in the SMC:

— a symmetric session key for computing cryptographic checksums and

— a symmetric session key for computing cryptograms.

The authentication procedure initialises one or more counters in the USC and the SMC. The example does
not show the maintenance and the use of such counters by the USC and the SMC.

All the command-response pairs for the SMC are PSO commands, not using secure messaging, but using SM
data objects (and the SM keys set by MSE commands).

All the command-response pairs for the USC use secure messaging and the command headers are included
in the computation of cryptographic checksums, i.e., CLA is switched to CLA”.

Figure 8.1 shows the general principles for producing a secured command APDU.

Data field Le field

CG(Command data) ”9000'

CLA**—|NS—P1—P2 — Padding —'87‘—L—PCI='O’§'— CG(Command data) —‘97’-“31‘— Le — Padding

Unsecured command APDU

CLA—lNS—P’l—PZ Lc field

CLA switched to CLA“

SMC
Interface

 PSO COMPUTE CC

Secured command APDU (sent to the USC)

CLA“—lNS—P1—P2 New Lc field ‘87‘—L—PC|='O‘l‘—CG(Data)—'97'—'Oi'— Le —'8E'—'04'—CC New Le field

Figure 3.1 — Producing a secured command APDU

Figure 8.2 shows the general principles for processing a secured response APDU.

Secured response APDU (received from the USC)

 ‘87'—L—PCl='01‘—CG(Response data)—'99'—'02‘—'9000'—'8E'—‘O4'—CC '9000' SMCInterface

PSO VERIFY CC

'80'-L-{'87'—L-PCI='O1’-CG(ReSp0nse data)}—'99'-'02'-'9000'-'8E'-‘04'-CC

PSO DECIPHER CG(Response data)

Response data

Figure 3.2 — Processing a secured response APDU

76 © lSOIlEC 2005 — All rights reserved

Apple Ex. 1030, p. 149

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 150

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

The following scenario explains the computation of a digital signature (DS) whereby the usage of the private
signature key requires the successful presentation of a password. The scenario proceeds in three steps.

Step 1 — Password verification

1.1 Command to SMC: MSE SET <CT, {‘83'—‘01‘-‘81'}>
--- The reference of the session key for computing cryptographic checksums is '81' in the example.
SMC response: OK

1.2 Command to SMC: MSE SET <CCT, {'83'—'O1'—'82‘}>
---The reference of the session key for computing cryptograms is ‘82' in the example.
SMC response: OK

1.3 Command to SMC: PSO ENCIPHER <Password>

SMC response: <CG(Password)>

1.4 Command to SMC: PSO COMPUTE CC <CLA**-lNS-P1—P2 - Padding - {’87‘-L—PCl—CG(Password)} - {'97'—
'01'—Le} — Padding>
SMC response: <CC>

--- Now the interface device constructs the secured VERlFY command APDU.

1.5 Command to USC: VERIFY <{‘87‘-L-PCl='O1'-CG(Password)} - {‘97'—'01'-Le} - {'8E'-'04'-CC}>
USC response: <{'99'—'O2'—SW1-SW2} - {'8E‘-'04'—CC}>

1.6 Command to SMC: PSO VERIFY cc <{’80‘—‘04‘-('99'—'02'-SW1-SW2)} - {'8E'-‘O4‘-CC}>
SMC response: OK

Step 2 — Hash code computation

2.1 Command to SMC: Pso COMPUTE CC <CLA**—lNS-P1-P2 - Padding — {'81'—L-({'90'—L—lntermediate Hash} —
{'80'—L-Last block})} - {'97'-‘01'-Le} - Padding>
SMC response: <CC>

2.2 Command to USC: PSO HASH <{'81‘-L1 (=4+L2+L3)—({'90'-L2— intermediate Hash} - {‘80'—L3-Last block})} —
{’8E‘—‘O4'—CC}>
--- The USC stores the hash code as an internal result for computing the digital signature later on.
USC response: <{'99‘-'02'—SW1—SW2} — {'8E'-‘04‘-CC}>

2.3 Command to SMC: Pso VERIFY co <{’80'—‘04‘-({'99'—‘02‘-SW1-SW2})} - {'8E'-‘O4'—CC}>
SMC response: OK

Step 3 — Digital signature computation

3.1 Command to SMC: P80 COMPUTE CC <CLA**—|NS—P1—P2 - Padding - {'97‘-‘O1‘-'OO‘}>
SMC response: <CC>

3.2 Command to USC: Pso COMPUTE Ds <{'97'-'01‘-'00‘} - {'8E'-‘O4‘-CC}>
USC response: <'81'—L-DS — '8E‘-'O4‘—CC>

3.3 Command to SMC: Pso VERIFY cc <{'80'—L1 (=2+L2)—('81'-L2-DS)} - {‘8E'—'04‘—CC}>
SMC response: OK

© ISO/IEO 2005 _ All rights reserved 77

Apple Ex. 1030, p. 150

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 151

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Annex C

(informative)

Examples of AUTHENTICATE functions by GENERAL AUTHENTICATE commands

C.1 Introduction

Two or more GENERAL AUTHENTlCATE command—response pairs implement an AUTHENTICATE function.

7 If chaining is used, then CLA is set to Oxx1 xxxx in the first command of the chain up to the penultimate
one and to OXXO xxxx in the last one: the other six bits shall remain constant within the chain (see 5.1.1.1).

— lNS P1 P2 is set to either ‘86 00 00', or '87 00 00'.

7 The value of the Lc field depends upon the data objects in the command data field. Depending upon
whether a response data field is expected or not, the Le field is either set to '00', or absent.

This annex illustrates data fields of GENERAL AUTHENTICATE commands implementing mechanisms such as
specified in lSOIlEC 9798-5[8], i.e., mechanisms using zero-knowledge techniques.

7 A verifier knows a public problem and a claimant knows a secret solution to the public problem.

— As a result of the zero-knowledge protocol, the verifier is convinced that the claimant knows a solution to
the public problem. Moreover, the solution remains secret.

NOTE isonEc saws—sis] specifies two GQ techniques.

— Being given a public RSA key where the exponent v is prime such as 257 = 28+1, 65537 = 216+1 or 236+213+1, the
GQ1 technique allows verifying an RSA signature without taking knowledge of its value, or alternately, proving knowledge
of an RSA signature without revealing its value. As specified by the RSA signature standard in use (e.g., see ISO/IEC
14888-21161), a format mechanism converts the claimant‘s identification data (a template) into a public number G. The
corresponding private number Q is the RSA signature of the identification data. The claimant and the verifier know the
public RSA key. The GQ1 protocol proves that the claimant knows the RSA signature of his identification data.

7 Being given a public modulus n, product of two prime factors, the GQ2 technique allows verifying the factors without
taking knowledge of them, or alternately. proving knowledge of the factors without revealing them. The mechanism
involves a security parameter k > O and the first m prime numbers, named the m basic numbers, such that kxm is from 8

to 36. Each public number is the square of a basic number: G = gz. The corresponding private number Q is a modular 2“”—
th root of G. If there is at least one basic number g such that the Jacobi symbol of g with respect to n is —1 and if n is
congruent to 1 mod 4, then the 602 protocol proves that n is composite and that the claimant knows the factors.

The protocol typically exchanges three numbers, namely a witness, a challenge and a response.

— The claimant works in two steps: as a first step, the claimant privately selects a fresh random number and
converts it into a witness according to a “witness formula”; as a second step, having received a challenge,
the claimant gets the response to the challenge from the fresh random number and the private number,
according to a “response formula”, and then erases the fresh random number.

7 The verifier reconstructs a witness from the challenge and the response, according to a “verification
formula”.

By definition, a triple consists of three numbers, namely, a witness, a challenge and a response, verifying the
verification formula. Any entity may randomly produce triples in “public mode”, from any challenge and
response. Ajudge or an observer cannot distinguish random triples produced in public mode, i.e., by an entity
not knowing the secret, and random triples produced in “private mode”, i.e., by an entity knowing the secret.

This annex illustrates three AUTHENTICATE functions.

— INTERNAL AUTHENTICATE function — A verifier in the outside world authenticates a claimant in the card.

7 EXTERNAL AUTHENTICATE function — A verifier in the card authenticates a claimant in the outside world.

— MUTUAL AUTHENTICATE function — Both entities authenticate each other.

78 © ISO/IEC 2005 — All rights reserved

Apple Ex. 1030, p. 151

Apple v. Fintiv

lPR2020-00019

Apple Ex. 1030, p. 152

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSO/lEC 7816-4:2005(E)

0.2 INTERNAL AUTHENTICATE function

if the first data field conveys a witness request, namely, either an empty witness (‘80 00'), or an empty
authentication code (‘84 00'), then the function is INTERNAL AUTHENTlCATE.

— Basic protocol (two command—response pairs)
Witness from the card

Command data field l {‘7C‘-’02'-{’80’-'00'}} [

Response data field {‘7C'—L1 (=2+L2)—{‘80'—L2—Witness}}

Challenge from the outside world and response from the card

Command data field {'7C'—L1 (=4+L2)—{'81‘—l_2—Challenge}—{‘82‘—'OO‘}}

Response data field {‘7C‘-L‘l (=2+L2)—{'82‘-L2—Response}}

— Committed challenge (two command-response pairs)
Witness from the card

 Command data field {'7C'—L’l (=4+L2)—{'83‘—L2—Committed Challenge}—{'80‘—'OO‘}}

Response data field [{'TC'-L1 (=2+L2)—{'80'—L2—Witness}} I
NOTE The committed challenge ensures that the challenge and the witness are independently selected.

Challenge from the outside world and response from the card

Command data field {'7C‘-L1 (=4+L2)-{‘81'—L2—Challenge}-{'82'—'OO’}}

Response data field {'7C'—L1 (=2+L2)—{'82'—L2—Response} if the challenge is correct

Absent if the challenge is incorrect
— Extension to data field authentication (two command-response pairs)

The card has hashed previously exchanged data fields: the result is a current hash-code. The card includes its
witness data object for getting an authentication code and transmits it with tag ‘84‘.

Witness from the card

Command data field {'TC'—'O4‘—{‘84'—‘OO‘}} I

Response data field] {'7C’-l_’l (=2+L2)—{'84'—l_2-Authentication code}} I
Challenge from the outside world and response from the card

 Command data field {'7C‘—L’l (=4+L2)-{'8’I'-L2-Chalienge}-{‘82'—‘OO‘}}

Response data field {'7C‘—L1 (=2+L2)—{'82'—L2—Response}} ‘

C.3 EXTERNAL AUTHENTICATE function

if the first data field conveys a challenge request, namely, either an empty challenge ('81 00'), or an empty
committed challenge (‘83 00‘), then the function is EXTERNAL AUTHENTICATE.

— Basic protocol (two command-response pairs)

Witness from the outside world and challenge from the card

Command data field {‘TC'—L1 (=4+L2)—{‘80'—L2—Witness}—{'8’l'—'OO'}} I

Response data field {'7C'-L1 (=2+L2)-{'81'—L2-Challenge}} l

© ISO/IEO 2005 — All rights reserved 79

Apple Ex. 1030, p. 152

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 153

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

IsonEC 7816-4:2005(E)

Response from the outside world and verification by the card

Command data field {'7C'—L1 (=2+L2)—{'82'—L2—Response}}

Response data field Absent

— Committed challenge (three command-response pairs)

Committed challenge from the card

Command data field {'7C'—'02'—{'83'-‘00‘}}

Response data field {'7C'—L1 (=4+L2)—{‘83’-L2—Committed challenge}—{’80‘-‘OO'}}

Witness from the outside world and challenge from the card

Command data field {‘7C‘-L1 (=4+L2)-{'80'—L2-Witness}-{'81’-'OO'}}

Response data field {‘7C'—L1 (=2+L2)—{'81'-L2-Challenge}}

Response from the outside world and verification by the card

Command data field {'7C'—L‘l (=2+L2)—{'82‘-L2-Response}}

Response data field Absent

— Extension to data field authentication (two command-response pairs)

A claimant has hashed previously exchanged data fields: the result is a current hash-code. It includes its
witness data object for getting an authentication code and transmits it with tag '84'.

Witness from the outside world and challenge from the card

Command data field {'YC'-L1 (=4+L2)-{'84'-LZ—Authentication code}-{'81‘-‘OO’}}

Response data field {'YC‘—l_1 (=2+l_2)-{‘8’l'-l_2-Challenge}}

Response from the outside world and verification by the card

Command data field {'7C'—L’l (=2+L2)—{'82‘—L2—Response}}

Response data field
C.4 MUTUAL AUTHENTICATE function

lf the first data field conveys no empty data object, then the function is MUTUAL AUTHENTICATE; the outside
world requests the same data objects in the response data field as in the command data field.

— Basic protocol (three command-response pairs)
Witness

Command data field {'7C‘—L1 (=2+L2)—{'81‘—L2—Witness}} I

Response data field {'7C'-L1 (=2+L2)-{'81‘-L2-Witness}} 1
Challenge

Command data field {'7C'—L1 (=2+L2)—{’8’l‘-L2-Cha|lenge}~} l

Response data field {‘7C'—L‘l (=2+L2)-{‘8‘l‘-L2-Cha|lenge}} i
Response

Command data field {'7C‘—L1 (=2+L2)—{'82‘—L2—Response}} l

Response data field {‘7C‘—L1 (=2+L2)—{'82‘—L2-Response}} if the response is correct
Absent if the response is incorrect

80 © lSOIlEC 2005 _ All rights reserved

Apple Ex. 1030, p. 153

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 154

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour .' INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIlEC 7816-4:2005(E)

— Committed challenge (four command-response pairs)

Committed challenge

Command data field {‘7C‘—L1 (=2+L2)—{‘83‘—L2—Committed challenge}} I

Response data field I {‘TC‘-L1 (=2+L2)-{‘83'—L2—Committed challenge}} I
Witness

Command data field {‘TC'-L1 (=2+L2)-{'80‘-L2-Witness}}

Response data field {'7C'—L’l (=2+L2)—{'80‘—L2—Witness}}

Challenge

Command data field l{'7C'-L‘l (=2+L2)—{'8’l‘-L2—Challenge}} l

 Response data field {'7C'—L’l (=2+L2)—{'8’l'—L2—Challenge}} if the challenge is correct
Absent if the challenge is incorrect

Response

Command data field !{'7C’-L1 (=2+L2)-{'82'—L2—Response}} I

{'7C'—L’l (=2+L2)—{'82‘—L2—Response}} if the response is correct
Absent if the response is incorrect

 Response data field

7 Extension to key agreement (four command—response pairs)

A pair of exponential data elements allows the agreement of a session key (see ISO/IEC 11770-3341).

The first command-response pair exchanges dynamic authentication templates nesting an “exponential” data
element. in the example, as no message has been previously exchanged during the session, the initial hash-
code is a null block. Then the command data field, i.e., the first dynamic authentication template, is included
for getting a current hash-code; then the response data field, i.e., the second dynamic authentication template
is included for updating the current hash-code; the current hash—code should be the same for both entities.
Finally a witness data object (not zero and not transmitted, different for each entity) is included for getting an
authentication code (different for each entity).

The second command-response pair exchanges dynamic authentication templates nesting authentication
codes with tag ‘84'.

Exponential

Command data field {'7C'—L1 {=2+L2)—{'85‘—L2—Exponential}}

Response data field {‘7C'-L‘l (=2+L2)—{'85'—L2—Exponential}}

Witness

Command data field {‘7C‘—L’l (=2+L2)—{'84'—L2—Authentication code}}

Response data field {'7C'-L’l (=2+L2)—{'84'-L2-Authentication code}}

Challenge

Command data field {‘7C'-L1 (=2+L2)-{‘81'-L2-Challenge}}

Response data field {‘7C‘—L1 (=2+L2)—{‘8’l'—L2—Challenge}}

Response

Command data field {'7C'—L1 (=2+L2)-{'82‘-L2-Response}}

Response data field {'7C'—L’l (=2+L2)—{'82'—L2—Response}} if the response is correct ‘

Absent if the response is incorrect

© ISO/IEO 2005 _ All rights reserved 81

Apple Ex. 1030, p. 154

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 155

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Annex D

(informative)

Application identifiers using issuer identification numbers

D.1 Background information

in lSO/IEC 7816-521994, it was possible to use issuer identification numbers in application identifiers. This
annex indicates the format of such Ale.

D.2 Format

in any AlD where bits 8 to 5 of the first byte are set from '0' to '9‘, the first and possibly only field shall be an
issuer identification number according to lSO/lEC 7812-13].

NOTE In ISO/IEO 7812—1:1993, an issuer identification number might consist of an odd number of quartets valued
from '0' to ‘9'. Then it was mapped into a byte string by setting bits 4 to 1 of the last byte to 1111.

if a proprietary application identifier extension is present, then a byte set to 'FF' shall separate the two fields.

Figure D.1 shows an AID using an issuer identification number: it consists of up to sixteen bytes.

issuer identification number according to ISO/[EC 7812-16] ‘FF' Proprietary application identifier extension
(two or more bytes) (PIX)

Figure D.1 — AlD using an issuer identification number

82 © ISO/IEO 2005 _ All rights reserved

Apple Ex. 1030, p. 155

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 156

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS le 18/9/2007 14:12

lSOIlEC 7816-4:2005(E)

Bibliography

[1] lSO 3166-1:1997, Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes

[2] lSOIIEC 7810:2003, identification cards — Physical characteristics

[3] lSOIIEC 7812-12000, Identification cards — identification of issuers — Part 1: Numbering system

[4] ISO/IEC 7816 (all parts), Identification cards — integrated circuit cards

[5] lSOllEC TR 9577:1999, Information technology— Protocol identification in the network layer

[6] lSOIIEC 9796 (all parts), Information technology — Security techniques — Digital signature schemes
giving message recovery

[7] lSO/IEC 9797 (all parts), Information technology — Security techniques — Message Authentication
Codes (MACS)

[8] lSOIIEC 9798 (all parts), Information technology — Security techniques — Entity authentication

[9] lSOIIEC 9979:1999, Information technology — Security techniques — Procedures for the registration
of cn/ptographic algorithms

[10] lSO 9992-21998, Financial transaction cards — Messages between the integrated circuit card and the
card accepting device — Part 2: Functions, messages (commands and responses), data elements and
structures

[11] lSO/IEC 101 16:1997, information technology — Security techniques — Modes of operation for an n-bit
block cipher

[12] lSO/IEC 101 18 (all parts), information technology — Security techniques — Hash-functions

[13] lSOllEC 10536 (all parts), Identification cards — Contact/ess integrated circuit(s) cards — Close-
coupled cards

[14] lSO/IEC 1 1770 (all parts), information technology — Security techniques — Key management

[15] lSO/IEC 14443 (all parts), Identification cards — Contactless integrated circuit(s) cards — Proximity
cards

[16] lSOlIEC 14888 (all parts), Information technology — Security techniques — Digital signatures with
appendix

[17] lSOllEC 15693 (all parts), Identification cards — Contactless integrated circuit(s) cards — Vicinity
cards

[18] lSOilEC 18033 (all parts), Information technology — Security techniques — Encryption algorithms

[19] lETF RFC 1738:1994, Uniform resource locators (URL)

[20] lETF RFC 2396:1998, Uniform resource locators (URL): General syntax

© ISO/IEO 2005 _ All rights reserved 83

Apple Ex. 1030, p. 156

Apple v. Fintiv

|PR2020-00019

Apple Ex. 1030, p. 157

 Apple v. Fintiv

 IPR2020-00019

Boutique AFNOR pour : INSIDE CONTA CTLESS Ze 18/9/2007 14:12

ISOIIEC 7816-4:2005(E)

ICS 35.240.15

Price based on 83 pages

© ISOIIEC 2005 — AH rights reserved

Apple Ex. 1030, p. 157

Apple v. Fintiv

|PR2020-00019

