
-- --

The X Toolkit: More Bricks for Building User-Interfaces

]or]

Widgets For Hire

Ralph R. Swick

Digital Equipment Corporation

Project Athena

Massachusetts Institute of Technology

Cambridge, MA 02139

swick@ATHENA.MIT.EDU

Mark S. Ackerman

Project Athena

Massachusetts Institute of Technology

Cambridge, MA 02139

ackerman@ATHENA.MIT.EDU

ABSTRACT

Primitives for application-level user interface construction facilities currently

under development at M.I.T. Project Athena are described. The design philosophy of the

X Toolkit and associated widgets and some of the practical implications are discussed.

Introduction

The X Window System†1, 2 was developed

at the Massachusetts Institute of Technology to

satisfy the needs of a broad spectrum of users for

a high-performance, high functionality, network-

based window system that can be implemented on

a wide variety of high-resolution raster graphics

display devices. The widespread interest and

unprecedented vendor support for the X Window

System has assuaged one of the principal con-

cerns of application developers: the cost of sup-

porting multiple hardware platforms with dif-

ferent base technologies, including window sys-

tems.

† The X Window System and X Windows are trade-

marks of the Massachusetts Institute of Technology. Use

of the latter is strongly discouraged. The developers

prefer simply "X" when a shorter form is required.

The X Window System has been carefully

designed to address two (sometimes conflicting)

desires of application developers: to use

hardware-level techniques for maximum perfor-

mance and to maintain portability with a common

programming interface across multiple vendor

platforms. X has succeeded in gaining broad ven-

dor support largely because its specification is

intentionally restricted to the set of primitives

needed to manipulate multiple independent win-

dow contexts on raster graphics displays without

declaring (or restricting) the choice of particular

user-interface semantics. It is explicitly intended

that developers be able to choose a visual inter-

face appropriate to their needs, their corporate

philosophy, their research requirements, religious

preferences, or whatever.

This restriction to low-level control and

input primitives in the definition of the X com-

munications protocol and in the corresponding

Apple Ex. 1023, p. 1

 Apple v. Fintiv

IPR2020-00019
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 2 -

application interface layer, Xlib3 , is either a

strength or a weakness in the X Standard, depend-

ing on the reviewer’s point of view. Vendors

whose installed base of products contains well-

defined visual interface and human-computer

interface researchers find this flexibility in the

standard to be of major importance. However,

many application developers consider user

interaction and other higher-level graphics

libraries to be a base system technology that

should be provided by the hardware vendors and,

of course, be standard across vendors.

To address the desires of such developers

for common higher-level development tools, there

are several projects under way at various loca-

tions covering different application needs and

problem domains. One such project is the X

Toolkit project, a collaborative effort of

MIT/Project Athena, DEC/Western Software

Laboratory, Hewlett-Packard Company/Corvallis

Workstation Operation and others. The X Toolkit

project is producing an applications interface

layer above the Xlib layer specifically tailored to

visual user interface construction.

Toolkit Overview

The X Toolkit (hereafter called simply

"Xtk") recognizes that no single comprehensive

set of user interface tools is likely to be accept-

able for standardization in the near future. In

order to maximize the utility and acceptability of

the user interface library, Xtk has been divided

into two separable pieces. These two layers will

be described below.

The fundamental entity in Xtk for user

interface construction is the widget.†

The core of Xtk, the "Intrinsics" (a term

appropriated from a previous H-P user interface

library for X), is a set of utility routines intended

for use in developing widgets. The Intrinsics are

a set of user interface primitives that are them-

selves free of visual and interaction style. The

†We chose this term since all other common terms were

overloaded with inappropriate connotations. We offer

the observation to the skeptical, however, that the princi-

pal realization of a widget is its associated X window and

the common initial letter is not un-useful.

Intrinsics do not constrain the widget writer to

make the widget look or operate in any particular

way. These primitives may be used together or

separately to produce higher layers which do

incorporate specific policy and style. Such higher

layers will further reduce applications develop-

ment cost.

Most applications will call only a few of

the Intrinsic routines directly. These routines

offer a uniform programming interface to the

basic procedures (methods) of all widgets, regard-

less of the widget type.

The Xtk Intrinsics have been presented in

an earlier paper4 and, although the detailed design

has evolved,5 the philosophy and architecture of

the X Toolkit remain the same. The principal

additions are a class hierarchy for widget types;

the separation of widget identifiers from the

corresponding X window identifiers; and the abil-

ity, using the class hierarchy, for new widgets to

inherit methods from an existing widget. These

changes simplify significantly the task of widget

development and make widgets more modular.

Widgets define input semantics and visual

appearance. Some widgets are pliable; their input

semantics (mouse buttons, pointer motion, key-

board input) are bound at run-time, while other

widgets may have fixed (hard-coded) semantics.

Likewise, visual appearance (highlighting, reposi-

tioning or other animation) may be fixed or may

be adjusted at run-time.

The Intrinsics provide a uniform way for

widget developers to handle the common chores

of widget construction: initialization, input event

dispatching (including enabling and disabling

user input dispatch to sub-hierarchies of widgets),

run-time configurability, uniform handling of

common events (such as exposure and re-size),

cleanup, and others. The Intrinsics also include

the uniform application programming interfaces

for creating, controlling, and destroying widgets.

The Intrinsics currently consist of over 90 public

procedures, of which half are intended solely for

widget construction.

The goal of the Intrinsics is to make possi-

ble the quick development of widgets. Sets of

widgets should adhere to a consistent application

interface, user interaction policy, and visual

Apple Ex. 1023, p. 2

 Apple v. Fintiv

IPR2020-00019
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 3 -

appearance. It is viewed as desirable (or, by

some, a necessary evil) that the construction of

multiple such sets ("widget families") covering

different philosophies be possible with the Xtk

Intrinsics.

The second piece of the Xtk is a set of

basic widgets. Most application developers

require a minimum set of widgets as a component

of any product-quality user interface library. The

X Toolkit project also recognizes the need for

concrete examples in a real widget family. To

serve both these needs, the first author is leading

the effort at Project Athena to produce a basic

widget set that will be included with the version 1

release of the X Toolkit. To distinguish this set

from others which we know of, or expect to be

developed, we shall here call these the "Athena

Widgets".

In addition to the goal of being a basic wid-

get set, the Athena Widgets have another goal

arising from code which had been written prior to

X Version 11. Many of the components of Xtk

had been prototyped in a toolkit for X Version 10

that was released by DEC Ultrix Engineering in

the spring of 1987. The Athena Widgets borrow

heavily from those prototypes in order to ease

some of the porting burden for certain applica-

tions built on these prototypes.

The widgets described here are being

developed in conjunction with a set of visual

courseware projects at Project Athena. These

projects vary considerably in their user dialogs

and yet require a standard visual appearance.

This has led to an emphasis in the Athena Wid-

gets on handling text, graphics, and video in a

variety of ways, and has extended the widget

hierarchy to fulfill these needs.

The Athena Widgets are intended to fulfill

80% of application requirements. We have tried

to select the critical widgets that will allow the

easy solution of individual requirements. (See the

section on Creating New Widgets for more on

this.)

Intrinsics

One of the principles espoused in the

design of the Xtk is the construction of widgets

from primitives. We will describe two indepen-

dent facilities available in the Intrinsics for such

construction: subclassing and composition. From

an application point of view, every widget is a

single object. The actual semantics and appear-

ance of the widget may, however, be very com-

plex. For example, a "control panel" widget is

likely to consist of simpler widgets with a

"geometry manager" controlling the spatial rela-

tionship between the component widgets and pos-

sibly a "focus manager" controlling the dispatch-

ing of user input to those components. Depend-

ing upon the needs of the application, such a com-

pound (or "composite") widget may be imple-

mented independently and added to the widget

library as a new widget class, may be constructed

by the application at run-time with in-line calls to

the Xtk Intrinsics, or may be constructed by the

composite widget itself from a resource record

retrieved through the Intrinsic resource manage-

ment facilities.

Composition of widgets is most appropriate

when there are distinct visual regions to a widget,

each having separate input/display semantics, and

especially when the same semantics may appear

in a region of another widget class. In this case,

the semantics common to both regions may be

extracted into a more primitive widget class.

This is the principle of modularity of wid-

gets: the application will still view a composite

widget (a control panel, for example) as a single

widget. The internals of this composite widget

are built when the widget is instantiated. The

composite widget may determine and instantiate

all of its components, as for a custom application

panel. The components may also be instantiated

and assigned by the client of the composite wid-

get. Some of the Athena Widgets exhibit this

recursive construction behavior; e.g. Dialog,

while others are ‘boxes’, or frames into which the

client inserts independently instantiated widgets,

e.g. Form and VPaned.

The second construction facility, subclass-

ing, allows a widget class to semi-automatically

inherit some or all of the characteristics of an

existing widget class, and to share portions of the

Apple Ex. 1023, p. 3

 Apple v. Fintiv

IPR2020-00019
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 4 -

code that implement the parent (super-) class

methods. The new widget may call upon the

superclass methods to manipulate any part of the

widget state defined by the superclass and needs

only to implement the code to manage the state

that is unique to the new class.

The subclassing facility is most appropriate

for new widgets which need only to add addi-

tional semantics to an existing widget, or to con-

strain in some manner the full generality of an

existing widget. Examples of both subclassing

and composition in the Athena Widgets are

described below.

Several widget classes have been defined

solely for the purpose of being subclassed. The

Composite class provides methods to maintain a

list of child widgets, to manage the insertion and

removal of children, to manage requests from the

children for new geometries, and to manage the

assignment of input events to specific children

(input focus). The Constraint class has all the

methods of Composite and in addition provides

methods to automatically create and initialize an

arbitrary data record attached to each child. The

contents of this data record are defined by each

subclass of Constraint and are intended to contain

layout information used by the subclass geometry

manager. Neither Composite nor Constraint are

intended to be instantiated; only their subclasses

are. Nothing in the implementation, however,

will prevent an application from instantiating any

class, should it prove useful.

All widgets are expected to be self-

contained with respect to exposure, resize and

input event handling. That is, the clients of the

widget (i.e. the application program or a compos-

ite widget of which this widget is a component)

are guaranteed that all exposure and input events

sent by the X server for the window defining the

widget will be processed completely by the wid-

get. A client that creates an instance of the

ScrolledAsciiText widget, for example, is not

involved in any of the details of text re-painting,

scrolling, selection, cut and paste, and so on. The

client is also free to assign any shape to the wid-

get and assume that the widget will adjust to the

imposed size.

The principal mechanism the Athena Wid-

gets use to communicate back to the client is the

callback procedure. While a client has the option

to query the widget state, it is usually more con-

venient for a command button, for example, to

directly call a client-supplied procedure when

‘pressed’ by the user. Some widgets accept more

than one callback procedure for alternate interac-

tions that they implement.

Runtime Configurability

One of the major design principles fol-

lowed by the Athena Widgets is to make as much

of the user interface as possible customizable by

the end-user of the application. Fierce debates

(i.e. wars) break out every time someone pro-

poses a single set of key or button bindings for all

users, or that a fixed choice of colors or text fonts

will be appropriate for all individuals. Even such

characteristics as whether scrollbars go on the left

or right (or top/bottom) of a window may be

appropriate for individual customization.

The Xtk implements run-time configurabil-

ity through the Xlib Resource Manager. The

Resource Manager is a general-purpose reposi-

tory for storage and retrieval of arbitrary data

within a single process address space. During ini-

tialization, the Xtk pre-loads the resource data-

base from the X server and from one or more

files. When a new instance of a widget is created

by the application, the widget resource list is

examined and the widget instance is initialized

with data from the resource database. Each wid-

get declares an instance name and a class name

for purposes of matching against resource names

in the database. The Resource Manager defines

rules for partial name matches so that a single

resource entry may initialize many widget

instances.

The implementor of a new widget has the

choice of which widget characteristics to declare

as resources and which to hard-wire into the wid-

get. In general, any instance data for which the

widget is willing to allow modification requests

from the client should be declared in the resource

list.

Widget characteristics such as text font and

color are obvious resource choices. The Athena

Widgets also declare the keyboard and mouse

button bindings as resources. In this way, the

Apple Ex. 1023, p. 4

 Apple v. Fintiv

IPR2020-00019
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

-- --

- 5 -

user of any application linked against the widgets

has the option to accept our default bindings or

enter his/her own bindings. The Resource

Manager naming mechanism allows the user to

attach the new bindings to all instances of a wid-

get class (e.g. Scrollbar) in any application, or to

a specific widget in a specific application only, or

any combination in-between. A client may, if it

so chooses, override any entry in the resource

database either by storing its own entry (pre-

ferred), or by passing an explicit value when

instantiating the widget (discouraged).

The keyboard and button bindings are con-

figurable in yet a second way. Each widget that

accepts user input declares a list of action rou-

tines that may be invoked by input events. The

Athena Widgets use the Translation Management

facilities in the Intrinsics to bind keys and buttons

to widget action routines. These bindings can

specify parameters to the action routines to

further configure their behavior. The Scrollbar

widget, for example, declares three action rou-

tines, one of which is parameterized so that the

range of values it returns may be established by

the bindings.

Using these action routines and the default

scrollbar bindings, the ScrolledAsciiText widget,

for example, allows the user to scroll a block of

text forward or backward by a variable amount

and to drag the thumb (elevator) to a new posi-

tion, displaying any portion of the text. A user

may supply an alternate set of Scrollbar bindings

that will cause the scrollbar to report full-length

forward or backward scrolls, independent of the

pointer position, possibly disabling the variable

scrolling as desired.

Two of the Athena widget classes exist for

the purpose of handling interprocess interactions

with other X client processes. The Shell widget

defines no user action routines, but maintains all

the appropriate window properties established by

convention for X window managers, including

icon representation. Many of these parameters

are controlled by command line options and

parsed by the Xtk initialization routine. Most

applications use a Shell widget as their outermost

(top level) widget.

Additional semantics appropriate for tem-

porary, or "pop-up", panels are added to a

subclass of Shell, the Popup widget. From the

client’s point-of-view, both Shell and Popup are

simple widgets; they manage exactly one child

widget and have a trivial geometry manager.

UIMS developers may find it desirable to extend

Shell at some time in the future, even allowing

site tailoring for specific choices of window

manager. One such addition might be a Shell

that, when made smaller by the window manager

(as instructed by the user, of course); added

scrollbars (or other interaction semantics); and

provided a movable viewport on the application

window which, from the application’s point-of-

view, retains its original size.

Current Widgets

The Athena Widgets are divided into two

major classes. The first are simple widgets: vari-

ous sorts of buttons, labels, edit buffers and the

ubiquitous scrollbar. These form the elemental

building blocks of a user interface. The second

are composite widgets: scrolled text, dialog

boxes, and various methods of putting together

simple widgets in more complex arrangements.

All simple widgets have initialization, reali-

zation, display, and interaction methods. These

methods may be fairly simple, as with the button

widgets, or quite complex, as with the text wid-

get.

All widgets use the Core widget as the root

of their class hierarchy. The Core widget (whose

class name, as a special case, is just Widget) has

the minimal set of instance fields common to all

widgets: width, height, border width, and so on.

While it is not usually intended that an applica-

tion ever create an instance of (Core) Widget, it is

supported: an application that wants a simple

window within a widget panel may instantiate

Widget and use the resulting window.

The Label widget is just that; a widget that

displays either a text string or (in the near future)

a pixmap without any interaction semantics and

therefore without any callback procedures. It can

only center, right justify, or left justify its text in

the client’s choice of fonts within its assigned

size. (The default size is a bounding box for the

text or graphics.) A Label may be insensitive, or

grayed-out, and the border, as for all widgets,

Apple Ex. 1023, p. 5

 Apple v. Fintiv

IPR2020-00019
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

