
1 DISH 1013

SECOND EDITION

2

DATA COMPRESSION

Techniques and Applications

Hardware and Software Considerations

Second Edition

GILBERT HELD

4-Degree Consul/(fig,
Macon, Georgia, USA

and

THOMAS R. MARSHALL
(software author)

FENWIC‘K LIBRARY
JGEORGE MA -
FAIRFAX, Wasom umvsnsm

John Wiley & Sons
Chichester - New York - Brisbane - Toronto - Singapore

3

Copyright © 1983, 1987 by John Wiley & Sons Ltd.

All rights reserved.

No part of this book may be reproduced by any means, or

transmitted, or translated into a machine language without the

written permission of the publisher.

Library of Congress Cataloging-in-Publication Data:

Held, Gilbert, 1943—

Data compression.

Bibliography: p.
Includes index.

1. Data compression (Computer science) 1. Marshall,

Thomas (Thomas R.) II. Title.
QA76.9.D33H44 1987 005.74’6 86-18942
ISBN 0 471 91280 8

British Library Cataloguing in Publication Data:

Held, Gilbert

Data compression: techniques and applications hardware
and software considerations. —

2nd ed.

1. Data compression (Computer science)
I. Title II. Marshall, Thomas
005.74’6 QA76.9.D33

ISBN 0 471 91280 8

Typeset by Photo-Graphics, Honiton, Devon
Printed in Great Britain

4

CHAPTER ONE

Rationale and Utilization

In the chronology of computer development, large—scale information transfer

by remote computing and the development of massive information storage

and retrieval systems have witnessed a tremendous growth. Concurrent with

this growth, several problem areas have developed which can result in major,

but unnecessary, economic expenditures.

One problem is the so-called ‘run-away database”. Here the size of the

database used by an organization for its information storage and retrieval

programs becomes larger and larger, requiring additional disc drives for

online systems and reels of magnetic tapes for those systems that can be

processed in a batch environment.

Accompanying the growth in the size of databases has been a large increase

in the number of users and duration of usage by personnel at remote

locations. These factors result in tremendous amounts of data being trans-

ferred between computers and remote terminals. To provide transmission

facilities for the required data transfers, communications lines and auxiliary

devices, such as modems and multiplexers, have been continuously upgraded

by many organizations to permit higher data—transfer capability.

Although the obvious solutions to these problems of data storage and

information transfer are to install additional storage devices and expand

existing communications facilities, to do so requires an additional increase

in an organization’s equipment and operating costs. One method that can

be employed to alleviate a portion of data, storage and information transfer

problems is through the representation of data by more efficient codes. If

one examines an organization’s database or monitors a transmission line,
there is an excellent chance that the individual characters that both make

up the database and the transmission sequence could be encoded more
effectively. Two techniques that can result in a more effective encoded data

representation are logical and physical data compression.

1.1 LOGICAL COMPRESSION

When a database is designed, one of the first steps of the analyst is to obtain

as much data reduction as possible. This data reduction results from the

1

5

2

elimination of redundant fields of information while representing the data

elements in the remaining fields with as few logical indicators as is feasible.

Although logical c0mpression is data dependent and the method employed

can vary based upon the analyst’s foresight, the following two examples

will illustrate the ease of implementation and benefits of this compression

technique.

One simple example of logical data compression is the occupational field

on a personnel database. Suppose 30 alphanumeric positions are allocated

to this field. If the field is fixed, occupations such as the 10-character

occupational description ‘DISHWASHER’ have 20 blanks inserted into the
remainder of the field. Then, 30 million characters of storage would be

required for the occupational field of 1 million workers. Suppose at most

there were 32 768 distinct occupations. Instead of indicating the occupational

title, one could encode the equivalent 5-digit data code, eliminating 25

character positions per field. The size of the field could be reduced further

by allocating the binary value of 1 or more characters to the occupational

code. As an example, an 8-bit character could represent 28 — 1 or 255

distinct values or occupational codes. Linking two 8-bit characters through

appropriate software would provide 216—1 or 65 535 distinct codes. This
would reduce the field size from 30 to 2 characters, saving 28 million

characters of storage. If our counting begins at zero instead of a conventional

starting place of 1, an 8-bit character could represent 256 codes while a 16—

bit character could be employed to represent 65 536 distinct values.

A second example of logical compression is a date field. This type of

field frequently occurs in databases. Normally, the numeric equivalents

of the subfields representing day, month and year are used in place of

longhand notation. Thus, 01 04 81 would represent 1 April 1981. While

this logical compression results in 6 numeric characters of storage,

additional data reduction can result from storing the date as a binary value.

Since the day will never exceed 31, 5 bits would suffice to represent the date

field. Similarly, 4 bits could be used to represent the month value while 7

bits could represent 127 years, permitting a relative year ranging from 1900
to 2027.

Logical compression using numerical and binary representation is illus—

trated in Figure 1.1 for the preceding date field example. It is interesting to

note that employing binary representation reduces the date field to 16 binary

digits or two 8-bit concatenated characters of storage. As discussed, many

logical compression methods can be considered by an analyst during the

database design process. Each method may result in a distinct degree of data

storage reduction. Correspondingly, when logically compressed databases or

portions of such databases are transmitted between locations, transmission
time is reduced since fewer data characters are transmitted.

While logical compression can be an effective tool in minimizing the size

of a database, it only reduces transmission time when logically compressed

data is transmitted. Thus, the transmission of inquiry and response data

6

Longhand DAY MONTH YEAR

Example 1 APRIL 1981

Logical compression using numerical representation

Example 01 04 81

Logical compression using binary representation

Example 00001 0100 1010001

Figure 1.1 Logical compression methods. Logical com-

pression can result from alphanumeric, numeric or

binary representation of data in a shorthand notation

which are typically encoded as separate and distinct entities in the appropriate

bit representation of the code for each character is not normally affected.

Similarly, the occurrence of repeating patterns and groups of characters

which are normally contained in reports transmitted from computer systems

to terminal devices would not be affected. For such situations, a reduction

in data transmission time depends upon the physical compression of the data
as it is encountered.

1.2 PHYSICAL COMPRESSION

Physical compression can be viewed as the process of reducing the quantity

of data prior to it entering a transmission medium and the expansion of such

data into its original format upon receipt at a distant location. Although

both physical and logical compression can result in reduced transmission time,

distinct application differences exist between the two techniques. Logical

compression is normally used to represent databases more efficiently and

does not consider the frequency of occurrence of characters or groups of

characters. Physical compression takes advantage of the fact that when data

is encoded as separate and distinct entities, the probabilities of occurrence

of characters and groups of characters differ. Since frequently occurring

characters are encoded into as many bits as those characters that only rarely

occur, data reduction becomes possible by encoding frequently occurring

characters into short bit codes while representing infrequently occurring

characters by longer bit codes. Like logical compression, many physical

compression techniques exist. Some techniques replace repeating strings of

characters by a special compression indicator character and a quantity count

character. Other techniques replace frequently occurring characters with a

short binary code while infrequently encountered characters are replaced by

longer binary codes. In Chapter 2, 10 distinct physical compression methods
are covered in detail. For the remainder of this book we will focus our

attention upon physical data compression.

7

1.3 COMPRESSION BENEFITS
:-

When data compression is used to reduce storage requirements, overall
program execution time may be reduced. This is because the reduction in
storage will result in a reduction of disc-access attempts, while the encoding
and decoding required by the compression technique employed will result
in additional program instructions being executed. Since the execution time
of a group of program instructions is normally significantly less than the time
required to access and transfer data to a peripheral device, overall program
execution time may be reduced.

With respect to the transmission of data, compression provides the network
planner with several benefits in addition to the potential cost savings associ—
ated with sending less data over the switched telephone network where the
cost of the call is usually based upon its duration. First, compression can

reduce the probability of transmission errors occurring since fewer characters
are transmitted when data is compressed while the probability of an error

occurring remains constant. Second, since compression increases efficiency,
it may reduce or even eliminate extra workshifts. Finally, by converting text
that is represented by a conventional code such as standard ASCII into a
different code, compression algorithms may provide a level of security against
illicit monitoring.

For data communications, the transfer of compressed data over a medium

results in an increase in the effective rate of information transfer, even

though the actual data transfer rate expressed in bits per second remains the
same. Data compression can be implemented on most existing hardware by
software or through the use of a special hardware device that incorporates

one or more compression techniques.

In Figure 1.2, a basic data-compression block diagram is illustrated. Shown
as a black box, compression and decompression may occur within the user’s

processor to include personal computers, intelligent terminals or in a device
foreign to the processor, such as a specialized communications component.
Foremost among these components are data concentrators and statistical

multiplexers.
To examine in some detail a portion of the benefits that may result from

the employment of one or more compression techniques requires a review
of some fundamental compression terminology.

1.4 TERMINOLOGY

As illustrated in Figure 1.2, an original data stream is operated upon accord-
ing to a particular algorithm to producea compressed data stream. This
compression of the original data stream is sometimes referred to as an
encoding process with the result that the compressed data stream is also
called an encoded data stream. Reversing the process, the compressed data

stream is decompressed to reproduce the original data stream. Since this

8

Doto

Original compression Compressed
data Data data

decompression

Figure 1.2 Basic data-compression block

diagram. An original data stream operated upon

according to one or more compression algorithms

results in the generation of a compressed data
stream

decompression process results in the decoding of the compressed data stream,
the result is sometimes referred to as the decoded data stream. We will use

the term original data stream and decoded data stream synonymously, as

well as the terms compressed data stream and encoded data stream.

The degree of data reduction obtained as a result of the compression

process is known as the compression ratio. This ratio measures the quantity

of compressed data in comparison to the quantity of original data, such that

(Ruth and Krentzler, 1972):

Length of original data string
Com ression ratio =——.

p Length of compressed data string

From the above equation, it is obvious that the higher the compression
ratio the more effective the compression technique employed. Another term

used when talking about compression is the figure of merit, where:

Length of compressed data string

Figure Of merlt _ Length of original data string

The figure of merit is the reciprocal of the compression ratio and must

always be less than unity for the compression process to be effective. The

fraction of data reduction is one minus the figure of merit. Thus, a com—

pression technique that results in one character of compressed data for every

three characters in the original data stream would have a compression ratio

of 3, a figure of merit of 0.33 and the fraction of data reduction would be
0.66.

1.5 COMMUNICATIONS APPLICATIONS

To obtain an overview of some of the communications benefits available

through the incorporation of data compression, we can consider a typical

data communications application. As illustrated in the top portion of Figure

1.3, a remote batch terminal is connected to a central computer with trans-

9

N0 compress/an

llHHilHiiHll'
Compress/on rat/'0 2

 96 kbps transmission
rate

Remote batch
terminal9.6 kbps information

transfer rate

9 6 kbps transmission

rate
Computer Remote batch

terminal19.2 kbps information
transfer rate

Compressxbn rat/0 2

4.8 kbps transmission
rate

Computer Remote batch
terminal

9.6 kbps information

transfer rate

Figure 1.3 Data compression affects the information transfer ratio (ITR), through the
use of data compression, the methodology and structure of one’s data communications

facility may be changed

mission occurring at a 9.6 kbps data rate. Let us assume that the data to be

transmitted has not been compressed. If through the programming of one
or more compression algorithms or the installation of a hardware compression
device a compression ratio of 2 is obtained, several alternatives may be
available with respect to one’s data communications methodology. First, our
data transmission time is reduced since the effective information transfer

rate has increased to approximately 19.2 kbps as shown in the middle portion
of Figure 1.3. Ignoring communications software overhead, the data trans-
mission time is halved. Thus, one may now consider using the remote batch
terminal for other remote processing applications or perhaps an expensive
after-hours shift or portion of such a shift can be alleviated. In the lower

portion of Figure 1.3 another user option is illustrated. Here the transmission

rate may be reduced to 4800 bps. With a compression ratio of 2, this is

equivalent to an information transfer rate of 9600 bps. By lowering the data
transmission rate, more expensive 9600 bps modems may be replaced by
4800 bps modems and line conditioning which is normally required when
transmitting data at 9600 bps may be removed, resulting in an additional
cost reduction.

10

No compression

Compression

 Computer

Compression performing modern

Figure 1.4 Data compression on a multidrOp line reduces the flow of data on the

line, permitting additional terminals to be serviced

A second type of communications application that can benefit from the

utilization of data compression is illustrated in Figure 1.4. A typical multidrop

network is illustrated in the top portion of Figure 1.4, connecting terminals

at diverse geographical locations via a common leased line to a computer

site. Typically, the transmission activity of the terminals is the governing

factor that limits the multidrop line to a maximum number of drops. In the

bottom portion of Figure 1.4, it is assumed that compression performing

modems were substituted for the conventional modems used in the original

multidrop configuration. Since data compression on a multidrop line reduces

the flow of data on the line, its utilization will normally enable additional

drops to be added to the line prior to the occurrence of throughput delays

that affect the response time of the terminals attached to each drop. In this

particular example, it is assumed that the use of compression performing

modems permitted an increase in the number of line drops from 4 to 6.

1.6 DATA COMPRESSION AND INFORMATION TRANSFER

When data is transmitted between terminals, a terminal and a computer or

two computers, several delay factors may be encountered which cumulatively
affect the information transfer rate. Data transmitted over a transmission

medium must be converted into an acceptable format for that medium. When

digital data is transmitted over analogue telephone lines, modems must be

10

11

8

employed to convert the digital pulses of the business machine into a modu-
lated signal acceptable for transmission on the analogue telephone circuit.
The time between the first bit entering the modem and the first modulated
signal produced by the device is known as the modem’s internal delay time.
Since two such devices are required for a point—to—point circuit, the total
internaldelay time'encountered during a transmission sequence equals-twice
the modem’s internal delay time. Such times can range from a few to 10 or
more milliseconds (ms). The second delay encountered on a circuit is a
function of the distance between points and is known as the circuit or
propagation delay time. This is the time required for the signal to be
propagated or transferred down the line to the distant end. Propagation
delay time can be approximated by equating 1 millisecond for every 150
circuit miles and adding 12 milliseconds to the total.

Once data is received at the distant end it must be acted upon, resulting
in a processing delay which is a function of the computer or terminal
employed as well as the quantity of transmitted data which must be acted
upon. Processing delay time can range from a few milliseconds where a
simple error check is performed to determine if the transmitted data was
received correctly to many seconds where a search of a database must occur
in response to a transmitted query. Each time the direction of transmission
changes in a typical half duplex protocol, control signals at the associated
modem to computer and modem to terminal interface change. The time
required to switch control signals to change the direction of transmission is
known as line turnaround time and can result in delays up to 250 or more
milliseconds, depending upon the transmission protocol employed. We can
denote the effect of data compression by examining the transmission protocol
commonly known as BISYNC communications and a few of its derivations.

BISNYC communications

One of the most commonly employed transmission protocols is the Binary
Synchronous Communications (BISNYC) communications control structure.
This line control structure was introduced in 1966 by International Business
Machine Corporation and is used for'transmission by many medium-speed
and high-speed devices to include terminal and computer systems. BISNYC
provides a set of rules which govern the synchronous transmission of binary-
coded data. While this protocol can be used with a variety of transmission
codes, it is limited to the half dupiex transmission mode and requires the
acknowledgement of the receipt of every block of transmitted data. In an
evolutionary process, a number of synchronous protocols have been
developed to supplement or Serve as a replacement to BISNYC, the most
prominent being the high level data link control (HDLC) protocol defined
by the International Standard Organization (ISO).

The key difference between BISYNC and HDLC protocols is that BISYNC
is a half duplex, character-oriented transmission control structure while

11

_£___

12

9

HDLC is a bit-oriented, full duplex transmission control structure. We can

investigate the efficiency of these basic transmission control structures and

the effect of data compression upon their information transfer efficiency. To

do so, an examination of some typical error control procedures is first

' required.

I Error control

The most commonly employed error-control procedure is known as auto-

matic request for repeat (ARQ). In this type of control procedure, upon

detection of an error a request is made by the receiving station to the sending

station to retransmit the message. Two types of ARQ procedures have been

developed: ‘stop and wait ARQ’ and ‘go back n ARQ’, which is sometimes
called continuous ARQ.

‘Stop and wait ARQ’ is a simple type of error-control procedure. Here

the transmitting station stops at the end of each block and waits for a reply

from the receiving terminal pertaining to the block’s accuracy (ACK) or

error (NAK) prior to transmitting the next block. This type of error-control

procedure is illustrated in Figure 1.5. Here the time between transmitted
blocks is referred to as dead time which acts to reduce the effective data

rate on the circuit. When the transmission mode is half duplex, the circuit

must be turned around twice for each block transmitted, once to receive the

reply (ACK or NAK) and once again to resume transmitting. These line

turnarounds, as well as such factors as the propagation delay time, station

message processing time and the modem internal delay time, all contribute

to what is shown as the cumulative delay factors.

When the ‘go back n ARQ’ type of error control procedure is employed,

the dead time can be substantially reduced to the point where it may be

I I

: Dead time :__......—.—¢-—|- ——|.-

Transmit Block [+2 Block [+1

.1—
1
I
I

ACK I
1' I

I
I
I
I
r.—
I
I

Curmlmiue

deloy factors

_

ACK
1' + 1

Receive

Figure 1.5 Stop and wait ARQ. In this type of error control procedure, the receiver
transmits an acknowledgement after each block. This can result in a significant

amount of cumulative delay time between data blocks

12

13

10

Block Block Block Block Block
[+3 [+1 [+2 [+1 [

Primary channel —-

AC_K NAK ACK ACK ACK
1 (+1 [+2 [+1 [+3

— Reverse channel

Figure 1.6 Go back N ARQ. In a ‘go hack it ARQ’ error-
control procedure, the transmitter continuously sends
messages until the receiver detects an error. The receiver

then transmits a negative acknowledgement on the reverse
channel and the transmitter retransmits the block received

in error. Some versions of this technique require blocks
sent before the error indication was encountered to be

retransmitted in addition to the block received in error

insignificant. One way to implement this type of error control procedure is
by the utilization of a simultaneous reverse channel for acknowledgement
signalling as illustrated in Figure 1.6. In this type of operating mode, the
receiving station sends back the ACK or NAK reSponse on the reverse
channel for each transmitted block. If the primary channel operates at a
much higher data rate than the reverse channel, many blocks may have been
received prior to the transmitting station receiving the NAK in response to
a block at the receiving station being found in error. The number of blocks
one may go back to request a transmission, n, is a function of the block size

and buffer area available in the business machines and terminals at the

transmitting and receiving stations, the ratio of the data transfer rates of the

primary and reverse channels and the processing time required to compute
the block check character and transmit an acknowledgement. For the latter,
this time is shown as small gaps between the ACK and NAK blocks in Figure
1.6.

Half duplex throughout mode]

When a message block is transmitted in the BISYNC control structure, a
number of control characters are contained in that block in addition to the

message text. If the variable C is assigned to represent the number of control

characters per block and the variable D is used to represent the number of
data characters, then the total block length is C + D. If the data transfer

rate expressed in bps is denoted as TR and the number of bits per character
is denoted as BC, then the transmission time for one character is equal to
BCITR which can be denoted as Tc. Since D + C characters are contained

in a message block, the time required to transmit the block will become

TC*(D + C). Once the block is received, it must be acknowledged. To do

13

14

11

so, the receiving station is required to first compute a block check character

(BCC) and compare it with the transmitted BCC character appended to the
end of the transmitted block. Although the BCC character is computed as

the data is received, a comparison is performed after the entire block is

received and only then can an acknowledgement be transmitted. The time

to check the transmitted and computed BCC characters and form and trans-

mit the acknowledgement is known as the processing and acknowledgement

time (TPA)'

When transmission is half duplex, the line turnaround time (TL) required

to reverse the transmission direction of the line must be added. Normally,

this time includes the request-to-send/clear-to-send (RTS/CTS) modem delay

time as well as each of the modems’ internal delay time. For the acknowl-

edgement to reach its destination, it must propagate down the circuit and

this propagation delay time, denoted as Tp, must also be considered. If the
acknowledgement message contains A characters then, when transmitted on

the primary channel, A*BC/TR seconds are required to send the acknowl-

edgement.

Once the original transmitting station receives the acknowledgement it

must determine if it is required to retransmit the previously sent message

block. This time is similar to the processing and acknowledgement time

previously discussed. To transmit either a new message block or repeat the

previously sent mesasge block, the line must be turned around again and

the message block will require time to propagate down the line to the

receiving station. Thus, the total time to transmit a message block and

receive an acknowledgement, denoted as TB, becomes:

Since efficiency is the data-transfer rate divided by the theoretical data-

transfer rate, the transmission control structure efficiency (ETCS) becomes:

_ BC*D*(1—P)
Eras — T33 TB (1.2)

Here P is the probability that one or more bits in the block are in error,

causing a retransmission to occur.

Although the preceding is a measurement of the transmission control

structure efficiency, it does not consider the data code efficiency which is

the ratio of information bits to total bits per character. When the data code

efficiency is included, we obtain a measurement of the information transfer

efficiency. We can call this ratio the information transfer ratio (ITR) which

Will provide us with a measurement of the protocol’s information transfer

efficiency. This results in:

s: .

ITR = M (1.3)
Be

14

15

 12

where:

ITR = Information transfer ratio

BIC = Information bits per character

BC = Total bits per character

D = Data characters per message block

A = Characters in the acknowledgement message

C = Control characters per message block

TR 2 Data transfer rate (bps)

TC = Transmission time per character (BC/TR)

TPA = Processing and acknowledgment time
TL = Line turnaround time

Tp = Propagation delay time

p = Probability of one or more errors in block.

From the preceding, the information transfer ratio provides us with a

measurement of the efficiency of the transmission control structure without

considering the effect of compression. When compression is considered we
obtain a new term which we will denote as the effective information transfer

ratio (EITR).

When data is compressed, the original data stream will be reduced in

size prior to transmission, the actual reduction being dependent upon the
compression algorithms employed as well as the composition of the data

acted upon. In general, we can assume that the compression ratio considers

the number of characters in the compressed data stream to include special

control characters required to indicate one or more compression algorithms.

This reasonable assumption simplifies the effect of considering data com-

pression when examining a particular protocol. As an example, consider a

160-character data block compressed into 78 data characters plus 2 com—
pression indicator characters. Here the compression ratio would be 160/

(78 + 2) or 2. The effect upon the previously developed equation to compute
the information transfer ratio would be to change D in the numerator to the

non-compressed string length of 160 characters while D in the denominator

would be the actual 78 compressed data characters plus the two additional

special characters required to indicate data compression, resulting in a total

of 80 characters. If the total number of control characters framing the data
block is relatively small, the effective information transfer ratio can be

approximated by multiplying the information transfer ratio by the com—
pression ratio.

Computation examples

We will assume that our data transmission rate is 4800 bps and we will

transmit information using a BISYNC transmission control structure employ-
ing a ‘stop and wait ARQ’ error control procedure. Furthermore, let us
assume the following parameters:

15

16

13

A = 4 characters per acknowledgement

Brc = 8 bits per character

BC = 8 bits per character .

D = 80 data characters per block

C z 10 control characters per block

TR 3 4800 bps

TC = 8/4800 = 0.00166 seconds (5) per character

TPA = 20 milliseconds = 0.02 s

TL = 100 milliseconds = 0.10 s

Tp = 30 milliseconds = 0.03 s
P = 0.01

Then:

ITR = 8 80 (1 0'01) = 0.2861.
4800*[0.00166(80+ 10) +2*(0.02+ 0.03+0.1}+4*8f4800)]

Since the transfer rate of information in bits (TRIB) is equal to the product

of the data transfer rate and the information transfer ratio, we obtain:

TRIB = ITR*TR = 0.2861‘4800 = 1373 bps.

For the preceding example, approximately 28 per cent of the data transfer
rate is effectively used.

Let us now examine the effect of doubling the text size to 160 characters

while the remaining parameters except P continue as before. Since the block
size has doubled, P approximately doubles, resulting in the ITR becoming:

ITR _ 8*160*(1-0.02)
‘ 4800*[0.00166(160+10)+2*(0.02+0.03+0.1)+(4*8/4800)]
= 0.4339.

With an ITR of 0.4339 the TRIB now becomes:

TRIB = ITR*TR = 0.4339*4800 = 2083 bps.

Here, doubling the block size raises the percentage of the data transfer
rate effectively used to 43.39 per cent.

Compression effect

Suppose one or more data-compression algorithms are employed which result
in a compression ratio of 2. What effect would this have upon the effective
information transfer ratio?

The effective information transfer ratio (EITR) can be obtained by mod—

ifying equation (1.1) as follows:

16

17

Brciiflffl—P)

EITR =m 1.4
TR*[TC*(DE+C)+2*(TM+TL+T.)+(A*BCITRJ] ()

where

D1 = original data block size in characters prior to compression

D2 = compressed data block size in characters to include special com-

pression indication characters.

If on the average 160 data characters are transmitted in a compressed
format of 80 characters we obtain:

EITR _ anew (1—0.01)
‘ 48m*[0.00166(80+10)+2*(0.02+0.03+0.1}+(4*8!48{}0)]
= 0.5788.

As previously discussed, the effective information transfer ratio can be

approximated as follows:

EITR = ITR*CR. (1.5)

Substituting, we obtain:

EITR 2 0.2861'2 2 0.5722.

Since the transfer rate of information in bits (TRIB) is the product of the

effective information transfer ratio and the operating data rate, we obtain:

TRIB = 0.5788*4800 = 2778 bps.

In Table 1.1, the reader will find a comparison of the variations in the

ITR, EITR and TRIB when non-compressed and compressed data are
transmitted for two different block sizes.

From Table 1.1, it is apparent that two methods can be employed to

increase one’s transmission efficiency. First, one may alter the protocol or

transmission control sequence by varying the size of the data blocks trans-

mitted. Alternatively, one can compress data prior to transmitting a block

of information. Both methods can result in more information passing over

a transmission line per unit time.

In Table 1.2, the reader will find a tabulation of the execution of a

computer program which calculated the ITR as the block size varied from

40 to 2480 characters in increments of 40. In examining this table one should
note that the maximum ITR of 0.6459 is obtained when the block size is 720

characters. This indicates that as the block size increases with a constant

error rate, a certain point is reached where the time to retransmit a long

block every so often negates the enlargement of the block size. For the

17

18

15

Table 1.1 Compression effect comparison

Block size (characters)

ITR (dimensionless)
EITR (dimensionless)
TRIB (bps)

Non-compressed data

80

0.2861

N/A

1373

Compressed data

160

0.4339

N/A

2083

80 160

N/A N/A

0.5788 0.8678

2778 4165

Table 1.2 Information transfer ratio and block size.

Probability of block error = 0.01

 ITR Block size ITR Block size

0.169 40 0.590 1280

0.286 80 0.534 1320

0. 370 120 0.577 1360

0.433 160 0.570 1400

0.482 200 0.564 1440

0.519 240 0.556 1480

0.549 280 0.549 1520

0.572 320 0.542 1560

0.591 360 0.535 1600

0.606 400

0.617 440 0.527 1640

0.626 480 0.519 1680

0.633 520 0.512 1720

0.638 560 0.504 1760

0.642 600 0.495 1800

0.644 640 0.488 1840

0.645 680 0.480 1880

0.645 720 0.472 1920
0.464 1960

0.645 760 0.455 2000

0.643 800 0.447 2040

0.641 840 0.439 2080

0.639 880 0.430 2120

0.635 920 0.422 2160

0.632 960 0.413 2200

0.628 1000 0.404 2240

0.623 1040 0.396 2280

0.618 1080 0.337 2320

0.613 1120 0.378 2360

0.608 1160 0.370 2400

0.602 1200 0.361 2440

0.596 1240 0.352 2480___—__—

18

19

16

parameters considered, the optimum block size is 720 characters. Only for

the ideal situation, where P = 0 would a continuous increase in block size

produce additional efficiencies.

In Figure 1.7 the ITR is plotted as a function of block size for the error-

free condition and 0.01 probability of error conditions. The 0.01 probability

of error condition per 40 character block was held constant by incrementing
the error rate in proportion to the increase in the block size. Since an error-

free line is not something a transmission engineer can reasonably expect, a

maximum block size will exist beyond which our line efficiency will decrease.

At this point, only data compression will result in additional transmission

efficiencies. In addition, from a physical standpoint, the buffer area of some

devices may prohibit block sizes exceeding a certain number of characters.

Once again, data compression can become an effective mechanism for

increasing transmission efficiency while keeping data buffer requirements
within an acceptable level.

1.0

0.9

O 8

07

O 07

Informationtransferratio 0 01

0.2

0.1

O 400 800 1200 1600 2000 2400

Block size

Figure 1.7 ITR and error rate

19

20

17

Return channel model

Consider a ‘stOp and wait ARQ’ error control procedure where a return
channel is available for the transmission of acknowledgements. The use of

this return channel eliminates the necessity of line turnarounds; however,

transmission is still half duplex since an acknowledgement is only transmitted
after each received message block is processed.

When the message block is sent to the receiving station, both propagation

delay and processing delay are encountered. When the acknowledgement is
returned, one additional propagation delay and processing delay results. In

addition to these delays, one must also consider the time required to transmit

the acknowledgement message. If A denotes the length in characters of the

acknowledgement message and TS is the reverse channel data rate in bps,
then the transmission time for the acknowledgement becomes (A*Bc)/TS.

The total delay time due to the propagation and processing as well as the

acknowledgement transmission time becomes:

A*BC

1'"S '

2*(TPA+ Tp) +

Thus, the information transfer ratio becomes:

BIC*DI(1_P) (1 6)
TR'*TTC*(DE+CJ+2*(TPA+Tp)+A“Ba-1’32] 'I.

ITR =

Let us examine the effect of this modified transmission procedure on the
previous example where data was packed 80 characters per block. Let us
assume that a 75 bps reverse channel is available and our acknowledgement

message is comprised of four 8-bit characters. Then:

8*80*(1—0.01)

mm= 0-1953-ITR =

Note that the ITR actually decreased. This was caused by the slowness of

the reverse channel where it took 0.4266 (4*8/75) seconds to transmit an

acknowledgement. In comparison, the two-line turnarounds that were elim-

inated only required 0.2 s when the acknowledgement was sent at 4800 bps

on the primary channel. This modified procedure is basically effectively when
the line turnaround time exceeds the transmission time of the acknowl—

edgement on the return channel. This situation normally occurs when the

primary data transfer rate is 2400 bps or less. If the data is compressed prior
to transmission and a compression ratio of 2 results in 160 data characters

transmitted as a block of 80 compressed characters, the EITR can be com-

puted as follows:

8*160*(1—0.01)

EITR =mom
2 0.39.

20

21

18

In comparing the effect of compression, note that the transfer rate of

information in bits (TRIB) rises from O.1953*4800 or 937 to 0.39*4800 or

1872 bits per second. Thus, a compression ratio of 2 can be expected to

approximately double throughout.

Full duplex model

A much greater throughout efficiency with the ‘stop and wait ARQ’ error

control procedure can be obtained when a full duplex mode of transmission

is employed. Although this requires a four-wire private circuit, the modems

and line do not have to be reversed. This permits an acknowledgement to

be transmitted at the same data rate as the message block but in the reverse

direction without the line turnaround. Thus, the information transfer ratio
becomes:

Bxc*Di*(1-P)
ITR =——-.

TR*[TC*(Dz+Q+T(TPA+ Tp)]
(1.7)

Again, returning to the original 80-character block example, we obtain:

mama—0.01)

WWW-5293
ITR =

When data compression results in a compression ratio of 2, we obtain:

enema—0.01)

mm=m6
EITR =

With an EITR greater than unity this means that the bits of information

per unit time (in compressed format) exceed the data transmission rate of

the equipment connected to the line. This illustrates the value of data

compression, permitting one to obtain very high effective data-transfer rates

without requiring additional communications facilities.

A second variation of the full duplex model results if a ‘go back n ARQ’

error control procedure is employed. In this situation, only the block received

in error is. retransmitted. Here, the information transfer ratio becomes:

BICa‘DEaTI—P)
ITR = ——-—-—.

Tn*[Tc*(Dz+C)l
(1.8)

Again, substituting values from the original example we obtain:

* arson—0.01) _
ITR _ 4300[0.00165(30+10)] ‘” ”8835'

21

22

19

This is obviously the most efficient technique since the line turnaround

is eliminated and the processing and acknowledgement time (TPA) and

propagation delay time (T1,) in each direction are nullified due to sim-
ultaneous message block transmission and acknowledgement response. If we

consider the effect of a compression ratio of 2, the effective information

transfer ratio can be computed as follows:

* 8*160(1—0.01} _
EITR ‘ 4800[0.00166{8{}+10}] ‘ 1'767'

For this example, the TRIB becomes 1.767*4800 bps or 8482 bps. Here,

compression and protocol structure permit an effective information transfer
of 8482 bits/s on a 4800 bps data path. In effect, the selection of an appro-

priate protocol coupled with effective data compression algorithms can result
in a very effective data transfer. This will result in data transfers normally

associated with wideband facilities occurring over conventional voice data—

transmission facilities.

22

23

CHAPTER TWO

Data-Compression Techniques

The tremendous growth in remote computing during the last decade has

focused the interest of communications personnel upon data compression

techniques. Originally brought to data-processing user attention during the

19605 as a mechanisms for increasing the capacity of mass storage devices,

compression is now being applied to the data communications field. Here,

compression results in the transfer of data in shorter time periods than

if such data was transmitted without the employment of a compression

technique.

In this chapter, 10 distinct methods that can be employed to compress

data are covered. In addition, various combinations of techniques are dis-

cussed with emphasis placed upon their utilization and efficiency. Some of

the techniques covered in this chapter require a careful analysis of current

or projected data traffic to be effective. None of the techniques presented

requires more than a moderate level of difficulty in developing software to

conduct the encoding and decoding algorithms. Most of the techniques in

this chapter should be easy for end-users to implement and their implemen-

tation may result in a high degree of data reduction for a minimal amount
of effort.

By the application of one or more compression techniques, operational

efficiencies may be increased or transmission costs reduced. For the former,

data compression will permit an increase in information transferred over a

data link per unit time interval. Concerning the latter, reducing the amount

of data to be physically transferred may make the employment of a lower

speed data link permissible, resulting in a reduction in cost in comparison

with the expense of a data link operated at a higher data rate.

2.1 NULL SUPPRESSION

Null or blank suppression was one of the earliest data-compression techniques

developed. Today, this simplistic technique is employed in the commonly

used IBM 3780 BISYNC transmission protocol.

20

23

24

21

Technique overview

As the name implies, null suppression is a data-compression technique that
scans a data stream for repeated blanks or nulls. Upon encountering such a

sequence, the blank or null characters are replaced by a special ordered pair
of characters whose format is illustrated in Figure 2.1. First, a compression

indicator character is employed to denote that null suppression has occurred.
The second character is used to indicate the quantity of null characters that

were encountered and replaced by the two-Character sequence (Aronson,
1977; Ruth and Kreutzer, 1972).

A. Compression format

NULL COMPRESSIONINDICATOR
COUNT CHARACTER

B. Doro compression example

Original data stream XYZbWbeRX

Compressed data stream XYZSCSQRX

where: Sc = special compression indicator character

6‘. Data scan process

COUNT= 0

GET CHARACTER

CHARACTER
:BLANK

 COUNT=
COUNT+1

OUTPUT COMPRSSION
CHARACTER
AND COUNT

 OUTPUT
CHARACTER

Figure 2.1 Null suppression

24

25

22

When the two-character sequence is transmitted within a data stream, the
receiving device performs a search for the special character used to indicate
null suppression. Upon detection of that character, the receiver knows that
the next character contains the count of the number of nulls that were

compressed. From this information, the original data stream can be recon-
structed.

In the middle portion of Figure 2.1 is an example of the application of
null suppression upon a data stream. Here, the character Sc indicates a
special compression-indicating character, denoting that null suppression has
transpired.

In the lower portion of Figure 2.1, a flow chart of the null suppression
scanning process is illustrated. If we assume an 8-bit format for data charac-

ters, then the character counter can store values for up to 255 sequentially
encountered nulls prior to overflowing if we start our numbering at 1, or
256 if our numbering commences by assuming a zero counter represents a
value of 1.

Limitations .

Since a 2-character compression sequence always results from the com-
pression of up to 255 sequentially encountered nulls, no savings are possible
unless 3 or more sequential nulls are found. Thus, a sequence of 2 nulls
should not be placed into the null suppression compressed format. This is
because no savings would result while the compression and decompression
process requires a portion of processor time. In addition, if one is employing
several data-compression techniques, we will see that 2 sequentially enco-
untered nulls can be effectively compressed by the Diatomic encoding
process. This compression technique results in a 100 per cent data reduction
for the 2 null sequence situation where the null suppression technique is
ineffective.

While null suppression is viewed as an elementary data-compression tech-
nique, it is very easy to implement and its payoff can be substantial. For a
number of computer installations that switched from the 2280 bisynchronous
transmission control sequence that does not compress data to the 3780
sequence that performs null suppression, throughput gains of between 30
and 50 per cent have been reported.

Technique variations

Two variations of null suppression can be used to compress portions of
documents containing predefined or variable indentations. In one situation,
it might be beneficial to reserve a group of characters from the character set
to represent several predefined numbers of spaces or nulls. Thus, one charac-

ter might then represent the indentation in a letter of 5 spaces, while a

25

26

23

second character could be used to represent 20 spaces required togtab over
to the beginning of a column within a document.

Since predefined indentations represent tab stop positions, a second vari-
ation of null suppression is obtained from the employment of the tab charac-

ter. If tab stops are predefined, one only has to replace a sequence of spaces

or nulls by the tab character to signify that the next character begins in a

particular column on the line, and all columns between the last character
and the location where the next character begins are spaces or null characters.

To illustrate this concept, let us assume that a portion of the document we

wish to transmit is as follows:

Now is the time to examine the relationship of defence expenditures

upon the economy. For the years 1980 to 1984 our analysis shows:
Year Guns Butter

xxxx yyyy 2222

Note that there are four distinct tab stop locations in this document—the

indentation of a paragraph and the three column positions. Thus, a tab stop

followed by the character ‘N’ could be used to position the beginning of the

paragraph into its appropriate location. Since the indentation occurs prior

to the first column position, to position the ‘Y’ in year would require two

tab stops to be issued. Similarly, the ‘G’ in guns would have to be preceded

by three tab stop characters and so on. As the number of unique indentation

and column location positions increases in a document or between different

documents, the number of tab stop characters that may have to be issued

to represent a predefined location could result in the expansion of data

instead of its compression. To prevent such situations from occurring, as

well as to eliminate the requirement of having prior knowledge about inden-

tation and column locations, a variable tab stop procedure can be employed.

In using variable tab stops one simply substitutes a tab stop character and

the column position to tab to in place of the spacing between columns.

Returning to the previous example, if ‘year’ began in column 15 while ‘guns’

and ‘butter’ began in columns 30 and 45 respectively, the line column heading

labels could be replaced by the sequence T515 Year T530 Guns T545 Butter,

where Ts represents the tab stop character.

2.2 BIT MAPPING

This compression technique is effective when the data to be operated upon

consists of a high proportion of specific data types, such as numerics, or a

large proportion of a specific character, such as blanks. As the name implies,

a bit map is employed to indicate the presence or absence of data characters

or the fact that certain data characters haVe been operated upon previously

and must be operated upon again to return the data into its original format.

26

27

24

Encoding process

To examine the bit mapping technique and its applications, we will first see
how it can be employed to implement a version of null suppression. In the
left-hand portion of Figure 2.2, a portion of a data stream consisting of 3
data characters and 5 nulls is illustrated. Here, the 5 nulls represent 62% per
cent of the content of the string and are spread throughout the data stream
in a random sequence. Since null suppression is only effective when 3 or
more sequential blanks are encountered, its use would only reduce the string
from 8 to 7 characters in length.

Through the use of a bit map appended in front of the string, we can
indicate the presence or absence of nulls and thereby reduce the size of the
data string. In the lower portion of Figure 2.2, the employment of a bit map
character is illustrated where all nulls are dropped from the data string and
the bit which corresponds to the null position is set to zero while the bit
position in the map which corresponds to a non-null or data character is set
to one.

In comparing the compressed data string with the original data string, the
8 characters of data to include nulls have been reduced to 4 characters, 3
data characters and the bit map character. This results in a compression ratio
of 2:1 for this particular application.

Hardware considerations

The bit map character illustrated in Figure 2.2 denotes non-null data charac-
ter positions by location, from left to right. By reversing the bit map order,
the data element positions can be indicated from right to left. Figure 2.3
indicates the two different methods of forming the hit map to represent the
compressed data string. Using the bit map data element positioning technique

Data Null Null Data Null Null Null Data

Compressed data string

Bit map Dora Dora Data
character character1 character4 choracterB

Figure 2.2 The bit mapping process. In a typical data stream, there is a high
probability that one or more characters are repeated. Using one character to serve
as a bit map can serve to eliminate the high frequency of occurrence of characters

from a data stream

Original data string

27

28

Representing data left to right

Bit map

Data element positions

Representing data right to left

Bit map 87654321

Data element positions

Figure 2.3 Bit map element positioning. Two
methods can be employed to represent the
compressed data string in the bit map—data

represented left to right and right to left

illustrated in the lower portion of Figure 2.3, the bit map character resulting
from the original data stream as illustrated in Figure 2.2 would become
10001001. The instruction set of the hardware device under consideration

for peforming the bit map suppression technique will govern the method of

bit map element positioning to be employed. This can be easily explained
by first examining a flow chart of the functions that have to be performed
on the original data string in order to construct the bit map and the com-
pressed data string.

The bit map suppression process is illustrated functionally in Figure 2.4.
The software routine to' compress data must first initialize the bit map
position counter (1). the bit map {2) and a character counter (3). After a
character is obtained (4), the character counter is compared with eight (5).
If a match occurs, eight incoming characters have been processed and we
can exit from the routine (10). If no match occurs, the character counter is

incremented (6) and the character under examination is compared with a
null character (7). If the character under examination is not a null, the bit
map position is set equal to a binary one (8). If the character is a null, this
function (8) is bypassed. Next, the bit map position is either incremented or
decremented (9) so that the bit map is prepared to be set to a zero in the

following bit location if the next character examined is a null. Finally, after
eight characters have been processed, the count equals eight (5) and the
routine exit branch is taken (10).

From a hardware standpoint, the method used to perform the functions

indicated in blocks (8) and (9) of Figure 2.4 depends upon the shift and logical
instructions available fer programmer utilization. This interrelationship can
be viewed by denoting the effect on the bit map character as succeeding
data characters are examined. In Figure 2.5, the effect on the bit map and
‘mask’ as a progression of data characters is examined is illustrated. Here,

the mask is simply a binary one that is shifted through the 8-bit map positions
and logically ‘OR’d’ with the bit map when the data character is not a null.

28

29

(1)
 INITIALIZE BIT

MAP POSITION
COUNTER

INITIALIZE
BIT MAP

INITIALIZE
CHARACTER
COUNTER

GET
CHARACTER

I2}

(3)

I4)

(5)

I6) INCREMENT
CHARACTER
COUNTER

CHARACTER
:NULL

SET BIT MAP
POSITION EQUAL
T0 1

(7)

 (8)

I9)

INCRENT OR
DECREMENT BIT
MAP POSITION

Figure 2.4 Bit map suppression function flow chart

In examining the mask, we can note that a logical or arithmetic left shift

operation is required if we wish to position our bit map so that the right-

hand bit indicates the presence or absence of a null character in the first

element of the original data string. Thus, from a hardware viewpoint, the

shift instruction available will be a governing factor with respect to how the

bit map elements are positioned. Although most minicomputers and certainly

all large computers have both left and right shift functions, a few mic-

roprocessors may have limited shifting capability. Such capability should be

examined prior to attempting to implement this technique.

29

30

27

Data Initial Bit map+ mask

character bit map Mask (or bit map if null)

00000000 00000001 00000001

Data

00000001 I 000000] 0 00000001 i
Null

00000001 I 00000100 I 00000101 _|
Data

| 00000101 | 00001000 I 00001 101
Data

00001101 00010000 00001101
Null

| 00001101 ' | 00100000 I | 00001101
Null

00001101 01000000 i 00001101 I
Null

00001101 I 10000000 10001101
Data '

Figure 2.5 The bit map masking process. The mask character is a binary one shifted
through all bit positions and logically OR’d with the bit map when the data character

is not a null

Suppression efficiency

In the previous example, the bit map character contained 8 bits. While the

example showed a 50 per cent reduction in characters from the original data
string to the compressed data string, consider what happens to the com-
pression efficiency when the percentage of nulls in the data string decreases.
Table 2.1 shows the compression ratio based upon the percentage of nulls
contained in the string for an 8-bit map. When there are no null characters,

the resultant data string increases in size by 1 character as a result of the

addition of the bit map character, producing a compression ratio of 0.888.
This means that for the worst case situation where there are no null characters

to be suppressed, an extra 12.5 percentage of data will result from the

employment of this compression technique.

We can develop a mathematical model of suppression efficiency as follows.
If p is the probability that any given character is a null, the expected number
of nulls in a string of length S characters is Sp. Using null compression this
will be encoded as a string of length

30

31

28

Table 2.1 Compression efficiency and null percentage

Null Resultant Compression

percentage string size ratio

0.0 9 0.888

12.5 8 1.000

25 .0 7 1.143

37.5 6 1.334

50.0 5 1.600

62.5 4 2.000

75.0 3 2.667

87.5 2 4.000

100.0 1 8.000

5*(1—p)+[g]

and the compression ratio is then

era—wan):(«l—mar

for large value of S.

Bit map variations

In the previous discussion of the bit map procedure, we have assumed that

either a null or another character appearing in large proportion to the

remainder of the data is to be suppressed. For some applications, there

is no particular character that is encountered more frequently than other

characters; however, in certain cases one may encounter a situation where

a specific type of data, such as numerics, frequently appears. One application

where such a situation could exist is the process control area where numeric

readings of various equipment are transmitted to a central site for processing

and control signals are returned to the devices based upon certain predefined

criteria. Depending upon the transmission code employed, certain economies

may be obtained by the use of the bit map technique. If the data to

be transmitted is in the extended binary-coded decimal interchange code

(EBCDIC), then the first four bit positions of each numeric character are

all ones. Thus, the bit map character could be employed to denote the

number of packed characters in the compressed string, each character con—

taining two digits with the leading four bit positions stripped. This technique

is illustrated in Figure 2.6 and is quite similar to the half-byte packing

technique that is covered later in this chapter.

31

32

29

Original data string Compressed data string

00001010 BIT MAP

8 1

6 4

7 2

3

Figure 2.6 Half-digit suppression. In the half-digit suppression technique, the con—
tents of the bit map specify the number of digits that follow, packed two per character

Technique constraints

One key limitation of the bit rnap technique is that it is applicable to data

having fixed size units, such as characters, bytes or words. When used to

suppress a particular character, such as a null, the compression ratio of this

technique is directly proportional to the percentage of occurrence of that

character in the original data stream. Thus, if one character in a data string

occurs 30 per cent of the time while the second most frequently encountered

character occurs, say, 25 per cent of the time, this technique ignores the high

percentage of occurrence of the second character or any other characters. As

we shall see, a technique known as run-length encoding can be employed to

take advantage of the adjacent redundancy of occurrence of all characters
in a data stream.

2.3 RUN LENGTH

Run-length encoding is a data-compression method that will physically reduce

any type of repeating character sequence, once the sequence of characters

reaches a predefined level of occurrence. For the special situation where the

null character is the repeated character, run-length compression can be

viewed as a superset of null suppression (Rubin, 1976; Ruth and Kreutzer,

1972).

32

33

30

Operation

In a similar way to the method used to effect null suppression, the employ-

ment of run-length encoding requires the use of a special character to denote

that this type of compression has occurred. This compression indicator

character is normally followed by one of the repeating characters which was

in the encountered string of repetitious characters. Finally, a count character

signifies the number of times the repeated character occurred in the

sequence.

When codes such as ASCII or EBCDIC are employed, a good choice for

the special character is one that will not occur in the data string. For each

of these codes there are numerous unassigned characters with unique bit
representations that can be used. For situations where the character set

contains no unused character, such as in the BAUDOT 5-level (bit) code,

this technique may still be used by selecting a character that may not be

used twice in succession, such as a letter shift or figure shift, to indicate that

compression has occurred. The reader should refer to Appendix A (p. 00)
for additional information concerning the selection and utilization of com-

pression-indicating characters from different character codes.

Encoding process

The run—length compression process results in a string of repeated characters

being converted into a compressed data string as shown in Figure 2.7 (Aron—

son, 1977). With three characters required to denote compression, run-length
encoding is only effective when a data string contains a sequence of four or
more repeated data characters.

Data flow_—..

Figure 2.7 Run-length enco-
ding, general compression for-
mat. In run-length encoding, a
Special character, repeated data
character and character count

character are required to indicate
the compression parameters

Sc = Special character indicating
compression follows.

X = Any repeated data character.

C;;_Character count. This
count is the number of

times the compressed

character is to be repeated

33

34

Table 2.2 Applying run-length encoding

Original data string Encoded data string

$******55.72 $Sc1r655.72

——-—-- sc—9

GunsbbbbbbbbbbButter GunsScb1(I)Butter

Three examples of the application of run-length encoding upon repeating

character sequences are presented in Table 2.2. Note that SC represents the

special character used to indicate the occurrence of run-length encoding
while the symbol 125 is used to indicate the presence of a blank character.

With the null suppression format requiring two characters, employing run-

length compression to suppress nulls always results in one additional charac—

ter generated in the compressed data stream. While this is not significant

when long strings of nulls are compressed, numerous short strings of nulls

could result in an excess quantity of compressed data. This suggests that one

should consider the use of a mixture of several algorithms to perform data

compression.

The major steps in the run-length encoding process are shown in Figure

2.8 through the use of a systems flow chart. Initially, a character counter (1)
and character repetition counter (2) are set to zero. After a character in the

original data string is obtained (3), the character counter is incremented (4)

by one. The character count is then compared with one (5). In the first

cycle, this comparison always holds true and the character is then placed in

a buffer (temporary storage) area (6) for later processing if the original data

string is found to contain four or more repetitive data characters. For the

second and subsequent cycles, the character obtained from the original data
string (3) is compared with the character placed in storage (7). If the present

character is equal to the character in storage, compression may be possible

if four or more identical characters are encountered in sequence. Thus,

when the character equals the stored character, the repeat counter (8) is

incremented by one and another character is obtained from the original data

string (3). If the present character under examination does not equal the

character stored (7), the repeat counter is compared with four (9). If less

than four, no compression is worthwhile since three characters must be used

.to encode compressed data. When the repeat counter is equal to or greater

than four (9), the compression format (10) can now be set.

Special considerations

In the basic encoding flow chart illustrated in Figure 2.8, it was assumed

that the repeat counter was capable of having an unlimited range of values.

In reality, the maximum value that the repeat counter can contain is a

function of the character code level employed. For an 8-level (8 bits per

34

35

CHARACTER
COUNT = O

(2)

(3)

(4)
 CHARACTER "COUNT =

Cl-1lARACTER COUNT+

(5) CHARACTER STORECHARACTER

(7) REPEATCOUNT=COUNT+1

(9)

not >=4
SET COMPRESSION
FORMAT

Figure 2.8 Basic run-length encoding process

character) character code, a maximum between 255 and 260 repetitive charac-
ters can be represented by the character counter. The exact value will depend
upon how the character counter is employed. In most situations, the actual
character counter value is used as the number of repetitive characters. In

this mode, the counter’s maximum value is 23— l or 255. Since the com—

pression format illustrated in Figure 2.7 occurs only when 4 or more repetitive
characters are encountered, the presence of a character count character in

itself implies that 4 or more repetitive characters exist. Thus, 'a character
counter of all bits zero can be used to indicate 4 repetitive characters while

'a character counter of all bits set to 1 would then indicate 260 repetitive
characters. Once the method of employing the repeat counter is determined,

35

36

(2)
GET
CHARACTER

(1)
COMPRESSION
FLAG OFF

 CHARACTER

(3) :SPECIAL N0
CHARACTER

(5)
SET COMPRESSION
FLAG ON

(6)
GET REPEATED
DATA CHARACTER

(7)
GET CHARACTER
COUNT

(8 l
SET DECOMPRESSION
FORMAT

Figure 2.9 Run-length decoding process

the flow chart in Figure 2.8 must be modified to add an additional repeat

counter comparison to test for the maximum value permitted to be stored
in the character counter.

Decoding

The functions necessary to decompress data compressed according to the

run-length encoding process are illustrated in Figure 2.9 in flow chart format.

At the beginning of the decompression procedure, a compression flag is

turned off (1) and a character is obtained from the compressed data string

(2). Next, if the compression flag is off (3), the character is compared with

the special run—length compression indicator character (4) to determine if

run-length compression has occurred. If the character is not the special

character, the next character is obtained (2). If the character is the run-

36

37

34

length compression indicator character, the compression flag is turned on
(5) and the next character is obtained (2). On the next pass, since the
compression flag is on (3), the following character obtained (6) is the
repeated data character while the next character (7) contains the character
count. Once these characters are obtained, the decompression format can

be initiated (8).

Utilization

The most popular utilization of run-length encoding is the subset known as
null suppression. This compression technique is primarily encountered in the
IBM 3780 BISYNC protocol. Space compression is a standard feature of

this protocol when the 3780 device is operating in the line mode with non—
transparent data. Here, each group of 2 or more consecutive space charac-
ters, up to 63, is replaced by an IGS character if the transmission code is
EBCDIC or a GS character if the code is ASCII. Either character is followed

by a space count character that defines the number of spaces removed. For
the situation where 64 or more consecutive space characters occur, an

additional IGS or GS character and space-count character are inserted.

On Honeywell systems, a version of run-length compression is used in their
general remote terminal system (GRTS) software on front-end processors
communicating with remote terminals under the remote computer (RC)
protocol. In addition, the same type of compression is used on the Honeywell
stand alone tape-to-t'ape system (SATTS) for the transmission of reels of
magnetic tape between locations. In this version of run-length encoding, a
record is examined for a series of three or more occurrences of the same

data character. When such a situation occurs, the series is compressed and

a string of repeated characters is formed as illustrated in Figure 2.10.

I... ---

S

Figure 2.10 Honeywell version of run-

length encoding. Run-length encoding
as implemented on Honeywell systems
differs slightly from most other com-

puter manufacturers

X = Any repeated data character.
US = The ASCII character (0011111).

CC = A 6—bit binary count. The

BCD character represented by

the binary count must be
translated to ASCII for trans-

mission to the communications

subsystem. This count is the

number of times the corn—

pressed character is to be

repeated (maximum 63)

37

38

35

Efficiency

Run-length encoding efficiency depends upon the number of repeated charac-
ter occurrences in the data to be compressed, the average repeated character
length and the technique employed to perform compression. In Table 2.3,
the reader will find a listing of the results of the execution of a computer

program written to compute the overall compression ratio based upon a
varied number of repeated character occurrences in a string of 1000 data
characters. Here, the number of repeated character occurrences was varied
from 10 to 50 while the average repeated character length was varied from
4 to 10. It was assumed that three characters were used for the compressed

data format. The computed compression ratios listed in Table 2.3 ranged
from a low of 1.0101 to a high of 1.5384. Table 2.3 is a synthetic rep-
resentation due to the wide divergence of actual text. Since this table

covers most common compressible occurrences, it provides a handy tabular

reference for readers to determine the effect of run-length encoding.

Programming examples

To illustrate the programming required to implement run length encoding

and other compression techniques in this book we have developed several

BASIC language coding examples. Each of these small program segments
were written in the BASICA version of the BASIC programming language

which operates on the IBM PC and compatible computers. Although a

different programming language, such as assembler, Pascal or C, would be
more efficient, our utilization of BASICA was based upon its wide accept-

ance as a programming language and the ability to use the language as a

learning tool for a maximum number of readers to follow. For optimum

usage of the programming examples presented in this book, we suggest that
one should either employ a BASIC compiler to speed up the execution of

the examples or rewrite each program segment using a more optimum

programming language.

In its internal operation, the IBM PC uses an 8-bit extended ASCII

character code. This extended character code results in the assignment of

distinct characters to ASCII values 128 through 255. Since every character

from ASCII value 0 through 255 is defined and can occur when transmitting

data from an IBM PC to another computer system, one might normally

employ the ASCII SO (shift out) and SI (shift in) characters in developing

a compression module designed to operate on ASCII data whenever there

is a probability of occurrence for each character in the character set.
The SO character is used to shift out of the current ASCII character set,

resulting in the ability of the user to redefine each character in the character

set. Similarly, the SI character is used to shift back into the defined ASCII
character set.

_ By using the SO and SI characters in ASCII one obtains a set of either
128 or 256 new characters, depending upon whether one is using a system

38

39

36

Table 2.3 Run-length encoding efficiency based upon original data string
of 1000 characters

1_—,_—_———-—

Number of

repeated character Average repeated Compression
occurrences character length ratio

10 4 1.010

10 5 1.020

10 6 1.031

10 7 1.042

10 8 1.053

10 9 1.064

10 10 1.075

20 4 1.020

20 5 1.042

20 6 1.064

20 7 1.087

20 8 1.111

20 9 1.136

20 10 1.163

30 4 1.031

30 5 1.064

30 6 1.099

30 7 1.136

30 8 1.176

30 9 1.220

30 10 1.266

40 4 1.042

40 5 1.087

40 6 1.136

40 7 1.190

40 8 1.250

40 9 1.316

40 10 1.384

50 4 1.053

50 5 1.111

50 6 1.176

50 7 1.250

50 8 1.333

50 9 1.429

50 10 1.538

that uses the 7-bit or an extended 8-bit ASCII code. This new character set

can then be used to represent compression indicating characters.

Figure 2.11 illustrates the utilization of ASCII SO and SI characters to
obtain a new character set where the ASCII value 082 (conventional ASCII

R) is used to denote run-length encoding. In this example, a string of six Xs
was assumed to be followed by a string of seven Ys. Since the ASCII value

39

40

37

data flow
—>

Y Y Y Y Y Y Y X X X X X X Non-compressed

Figure 2.11 Using SO and SI characters. Using SO and SI provides a new set of
characters that can be used to indicate different compression techniques, in this

example, the ASCII value 082 is used to denote run-length encoding

 ASCII value Compressed Character

082 in a newly defined ASCII code will be used to indicate run—length
compression, one must first shift out (SO) to the new code, issue the
compression indicating character (R) and then shift back into (SI) the normal
ASCII code to transmit the character that was compressed (X) and the

quantity of X characters compressed (6). Due tothe requirement to shift
out of the character set to issue the compression indicating character and then
to shift back to the normal ASCII character set, two additional characters are

required to represent a run-length encoded string. In addition to this tech—
nique requiring two extra characters, the use of a shift out code of i4 is used
to turn 0n the double width mode setting of most dot matrix printers while

the shift in code of 15 is used to turn on the compressed character mode

setting of such printers, making the graphic illustration of this technique
tedious at best.

Based upon the preceding information, it was determined that for the
examples presented in this book, the use of a single character in the ASCII
character set would sufficiently serve as a compression flag in addition to

actually saving two characters in representing the compression of data based
upon the use of run-length encoding.

Compression program

Figure 2.12 contains the listing of a BASIC program that illustrates the
coding required to perform run-length compression.

To facilitate referencing BASIC programs used to illustrate the coding

required to compress and decompress data, a simple naming convention has
been used throughout this book. Each program filename ends with either
the letter C or D, with the former used to denote a program that compresses

or encodes data, while the latter references a program that decompresses or

decodes data. Thus, the program labeled RUNLENCBAS in Figure 2.12
illustrates the coding required to compress or encode data using run-length

compression. The extension .BAS to the program name indicates that the
file is a BASIC language program. Similarly, any data files referenced will
have a filename that is a descriptor of the compression technique that will

be applied against the file while its extension will be .DAT. Thus, a reference

40

41

38

10

20

30

4D

50

60

70
BO

90

100

105

110

120

130

140

159

160

1?0
130

190
200

210

220

230

240

250

250

270

280

2&0

300

310
1'")5-4.

330

340

350
355

360

355

3?0

383

390

400

410

420

430

440

450

REM RUNLENC.BAS PROGRAM
DIM O$(132

NIDTH SD:CLS

’IIIX¥*¥¥*¥HAIN ROUTINEKIIiIIiiIiitfittltttiXi
3* THIS ROUTINE READS RECORDS FROM AN ASCII X

’* FILE INTO A STRING CALLED X$ WHICH IS *

’* THEN PASSED TO SUBROUTINES FOR COMPRESSION

’¥$*#l*¥***¥*****¥**¥t1$¥l¥¥l¥¥¥¥¥¥¥¥¥¥til¥il

PRINT "ENTER ASCII FILENAHE. EG, RUNLEN.DAT"
INPUT F$= OPEN F$ FOR INPUT AS #2

OPEN "RUNLENC.DAT" FOR OUTPUT AS #3

PRINT "PATIENCE - INPUT PROCESSING“
IF EOF(2) THEN GOTO 9000

LINE INPUT #2, X5
N= LEN(X$)

GOSUB 180

GOSUB 909

GOTO 120

’titttRUN LENGTH ENCODING SUBROUTINEIIitIIifi

’¥ THIS ROUTINE PROCESSES RECORDS FROM X$ #

”I AND COHPRESSES OUT REPETITIVE CHARACTERSfl

’* USING Oi AS THE OUTPUT BUFFER. l

’tittillitttttlfliKiltltttltlI¥¥*¥*¥¥¥¥¥*¥¥1*

K=1=J=1 ”RESET INDICES

FOR I= 1 TO N ’STEP THRU RECORD

A$= MID$£X$,I,1) ”EXTRACT A CHAR
IF A$= HID$(X$,I+1.1) THEN 330 “SAME AS NEXT?
IF K}3 THEN 360 ’COMPRESS

IF K=3 THEN 420 ”DON’T COMPRESS

O$(J)=A$ ’STUFF IN OUTPUT BUFFER
J=J+1 ’BUMP BUFFER INDEX

NEXT I ’GO BACK FOR MORE

RETURN ’END OF STRING

B$=A$ ’SAVE REPEATED CHAR

H=H+1 ’BUMP COUNT

GOTO 310 ’KEEP LOOKING

’tittltflitittl¥**¥#¥***¥¥¥¥¥¥¥¥¥¥i¥X¥¥X¥¥*¥¥**t$*¥**¥
”INSERT COMPRESSION NOTATION IN OUTPUT BUFFER

’itittttltlt*IIIIItitttfitttI$11111tilllltltttlittltit
O$(J)=CHR$(125) ’SET FLAG FOR RUN-LENGTH

O${J+1)=B$ ”INSERT REPEATED CHAR
O$(J+E)=CHR$(K) “INSERT COUNT
J=J+3=K=1 “RESET INDEX
GOTO 310

O$(J)=B$ ’STUFF 1ST REPEAT CHAR

O$(J+1)=B$ ’STUFF 2ND REPEAT CHAR

J=J+2=K=1 ’RESET INDEX
GOTO 310

Figure 2.12 RUNLENC.BAS program listing

41

42

39

900 “*XIIKTALLY THE COMPRESSION COUNT & WRITE BUFFERiIiII!
910 ’* DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION *
920 ’1 AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD *
930 ’***¥¥***¥¥¥**$1$$¥¥¥¥¥¥¥¥$¥$¥¥¥¥*¥#$¥***#¥**$*X******

931 N1=N1+N ’TALLY INPUT CHAR COUNT
932 T=N—J+1 ’NET DIFFERENCE IN BUFFERS

936 T1=T1+T ”SAVE COUNT FOR SUMMARY

940 FOR I: 1 T0 J—l

950 PRINT #3, 00(1);
900 NEXT 1

905 PRINT #3, ""
970 RETURN

9000 CLOSE: oPEN F$ FUR INPUT A5 #2

9010 PRINT "FILE ";F$;" BEFORE COMPRESSION:"

9020 LINE INPUT #2,X$
9030 IF EDF(2) THEN 9000

9040 PRINT x0

9050 BDTD 9020

9050 PRINT X$:DPEN "RUNLENR.DAT" FDR INPUT As #3

9070 PRINT "FILE ";F$;" AFTER CDMPRESSIDN:"
9030 LINE INPUT #3,0$
9090 IF EOFI3) THEN 9998
9100 PRINT 00

9110 GDTD 9030

9993 PRINT D$=PRINT T15" ToTAL CHARACTERS ELIHINATED FRDM "

9999 PRINT NI;"0R ";INTI(TI/N130100);":":CL05E:END

Figure 2.12 (continued)

to the file RUNLENDAT references a data file that will be compressed by

a run—length compression program.

In the RUNLENCBAS program, the ASCII value of 125 (right brace)

was used as the compression indicating character, which was then followed

by the ASCII character being compressed and its repetitious count in decimal

notation. Thus, any string in excess of three repeating characters would be

subject to compression.

Several statements in the program listing contained in Figure 2.12 warrant
discussion for those readers unfamiliar with the IBM PC BASICA version

of the BASIC programming language. The LINE INPUT statement in line

130 results in an entire line from a sequential file being read and assigned

to the string variable X$. In line 140, the length of the string that represents

one line in the data file is determined. The length of the string is then used

in the FOR-NEXT loop bounded by lines 240 through 310 to process the

string for repeating characters. The MID$ functions in lines 250 and 260

extract the Ith and 1+1 characters from the string and compare these charac—

ters to one another. When they are equal, the repeated character is saved

(line 330) and the count of repeating characters is incremented (line 340).

When the repeating string of characters is broken, line 260 is FALSE and a

comparison of the repeating count occurs (lines 270 and 280). When the

count exceeds three (line 270) data is compressed by the coding contained

42

43

40

in line 360 through 400. If the count equals three there is no advantage to

be gained from run-length compression and the routine bounded by lines

420 through 450 simply adds the input characters to the output buffer. When

the Ith and I+1 characters are not equal, the Ith character in the input

buffer is simply placed in the output buffer (line 290). Lines 900 through

9999 are not actually part of the run-length encoding process and are only

included to facilitate file operations and comparison of the input and output

buffers to obtain a measurement of the efficiency of this technique when

applied to a data file containing a variety of repeating data strings.

Figure 2.13 illustrates a sample execution of the RUNLENCBAS program

using an ASCII file named RUNLENCDAT as input to the program. Note

that RUNLENCBAS was purposely written to first list the contents of the

file prior to its compression which is illustrated in lines 1 to 8 at the top of

Figure 2.13. Next, the program lists the file after its contents were compressed

based upon the application of run-length encoding to the data contained in
the file.

It should be noted that string decimal values ranging below ASCII 32 were

purposely omitted from inclusion in the test file since they would cause

unwanted carriage returns, line feeds and other non-printable characters to

be displayed, which would make an illustration of this compression technique
difficult to comprehend. They would, however, be quite appropriate in

normal string compression and decompression applications.

ENTER ASCII FILENAME. ES, RUNLEN.DAT
? RUNLEN.DAT

PATIENCE — INPUT PROCESSING

FILE RUNLEN.DAT BEFORE COMPRESSION:

1 BESINtttxxxIttxxxtsxsxttttttttxxttxtxat:
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

1*xxttttttttttttt##ttttttxltttttxttxtEND

ILE RUNLEN.DAT AFTER COMPRESSION:
HESIN}:#

}R!

}E"

}P#

}E$

}AZ

}T&

}szMD

251 TOTAL CHARACTERS ELIMINATED FROM :09 OR 34 z

mNDUl-PL-JFJH'fimflfl-thHf-J
C] 3'

Figure 2.13 Sample execution of RUNLENCBAS

43

44

41

Modifications to consider

The ASCII 125 character was used as a compression indicating character

due to its representation as a right brace on most printers. Normally, if one’s
source data does not include characters beyond ASCII 127, then a character

in the extended ASCII character set, such as ASCII 129 or another beyond

ASCII 127, should be used to represent the occurrence of run-length

encoding. For the preceding example, ASCII 129 was purposely excluded

because its display on a monitor as the character ii will be printed on some

printers as the .£ (pound) character, while other printers simply ignore
characters beyond ASCII 127. To correctly print characters beyond ASCII

127 using an IBM PC requires one to have a printer capable of printing the
extended ASCII character set. In addition, a special disk operating system

(DOS) program called GRAFTABL which is available under DOS 3.0 and
higher versions of the operating system must be loaded into the computer
prior to printing data. Due to this, the ASCII 125 character was used for
illustrative purposes as the compression indicating character.

If a character beyond ASCII 127 is used to indicate the occurrence of

compression and that character naturally occurs in one’s data a false indi—
cation of compression will reSult. To prevent a receiving device from mis-

interpreting the character as an indication that run-length compression
occurred, the program can be modified to send two such characters whenever

a compression indicating character occurs naturally in a data stream. Then,
at the receiving device the decompression program would first examine each

character for the occurrence of a compression indicating character, however,

when encountered it would not immediately signify run—length encoding had

occurred. The program would then examine the next character to ascertain
if that character is also a compression indicating character. If it is, this would

serve as an indicator that one compression indicating character occurred

naturally in the data, resulting in the removal of the second compression

indicating character by the receiver.

Decompression

In Figure 2.14, the reader will find the program listing of RUNLEND.BAS,

which is the program developed to decompress data previously compressed

by the RUNLENCBAS program. To as great an extent as possible, program
variables and coding modules have been kept the same between compression

and decompression programs presented in this book to facilitate their util-
ization and explanation.

Similar to the previously examined compression program, this program

processes data on a line by line basis. The LINE INPUT statement in line
130 reads a line of data from the file used for input. Next, in line 140 the

length of the line is determined.

44

45

42

10 REM RUNLEND.EAS PROGRAH

20 DIM O$(132
30 WIDTH SO:CLS

4O ’¥¥**I****#MAIN ROUTINEKX**¥¥#**I1*****¥*¥1¥*

50 “X THIS ROUTINE READS RECORDS FROM AN ASCII *

60 ’* FILE INTO A STRING CALLED X$ WHICH IS *

7O ’* THEN PASSED TO DECOMPRESSION SUBROUTINE X

30 ’****I**$*********i**$***¥*¥$*¥*$¥$*$*¥¥¥111*

90 PRINT "ENTER ASCII FILENAME. EG, RUNLENC.DAT"
190 INPUT F$= OPEN F$ FOR INPUT AS #2

105 OPEN "RUNLEND.DAT" FOR OUTPUT AS #3

110 PRINT "PATIENCE - INPUT PROCESSING"
120 IF EOF(2) THEN GOTO 9000

130 LINE INPUT #2. X$
140 N: LEN(X$)

150 GOSUE ISO
160 GOSUH 900

170 GOTO 120

ISO ’***#*RUN LENGTH DECODING SUBROUTINEiitthil

190 ’3 THIS ROUTINE PROCESSES RECORDS FROM X$ 3

200 ”t AND DECOMPRESSES RUN—ENCODED CHARACTERS *

210 ’1 USING O$ AS THE OUTPUT BUFFER. K

220 ’i*1lttltttit1i**$***¥*****¥***1***it311¥¥¥*

230 H=1=J=1 ”RESET INDICES
240 FOR I= 1 TO N ’STEP THRU RECORD

250 A$= MID$£X$,I.1) “EXTRACT A CHAR
260 IF A$= CHR$(125) THEN 360 ’COMPRESSION FLAG?

ERG O$lJi=A$ ”STUFF IN OUTPUT BUFFER

300 J=J+1 ’BUHP BUFFER INDEX

310 NEXT I ’GO BACK FOR MORE

320 RETURN ’END OF STRING

355 ’i*******#**fifit**#1***itfiX*****$*******¥¥*********¥**

360 ’DECODE COMPRESSION NOTATION TO OUTPUT BUFFER

3&5 ’¥*1**¥X¥*$**I¥¥¥**i3********1********X¥****¥*¥******

3?O H$= MID$(X$,I+2,1) ”GET REPEAT COUNT

EEG A$= MID$(X$,I+1,1) ”GET REPEAT CHAR
390 K: ASCtK$) ”SET UP INDEX

40C: FOR L: J TO J+I<i "SET OUTPUT LOOP

410 O$(L)= A$ ”STUFF REPEAT CHAR
420 NEXT L ’KEEP GOING

430 J: L “BUMP OUTPUT INDEX

440 1: 1+3 ”BUMP INPUT INDEX

450 GOTO 250 ’DONE

Figure 2.14 RUNLENDBAS program listing

The subroutine bounded by lines 180 and 320 is then invoked. In this

subroutine the string representing one line from the input file is examined

on a character by character basis, using the MID$ function in line 250 to

extract one character at a time from the string. In line 260, each extracted

character is compared to the character value of 125 which is the right brace

character to determine if a compression indicating character occurred. If so,

a branch to line 360 occurs where the repeated count and the repeated

45

46

43

900 ”fittttTfiLLY THE DECDMPRESSIDN EDUNT & WRITE BUFFERIIIV
910 ’* DISPLRY BEFORE E fiFTER RESULTS OF DECUHPRESEIUN *
920 ’1 9ND SHE” THE NET RESULTS DBTRINED BY EREH HETHDD I
930 ’it*1¥I$#81*ttlttfitiliflXtttxifititttitit3$¥t¥t3¥$¥¥$ttl
931 N1=N1+N ’TALLY INPUT CHQR COUNT
932 T=N-J+1 ’NET DIFFERENCE IN BUFFERS
936 T1=T1-T ’BQVE CUUNT FDR SUHHfiRv
940 FDR I: 1 TD J—l

950 PRINT #3. fl$(I);

960 NEXT]

955 PRINT #3, ”"
970 RETURN

9000 CLOSE: DPEN F$ FDR INPUT RS #2

9010 PRINT "FILE ";F$;" BEFORE DECUNPRESSIDN:“
9020 LINE INPUT #E,X$

9030 IF EDFiZ) THEN 90b0
9040 PRINT Xfi

9050 GDTD 9020

9060 PRINT X$:DPEN "BYTED.DAT" FUR INPUT AS #3
9070 PRINT “FILE “;F$;" AFTER DEEDMPRESSIDN:"
9030 LINE INPUT #3,U$

9090 IF EDF(3) THEN 9998

9100 PRINT Dfi

9110 EDTD 9080

9998 PRINT U$=PRINT T1;“ TDTfiL CHRRAETERS INSERTED"
9999 CLDSE:END

Figure 2.14 (continued)

character are extracted from the string in lines 370 and 380. Next, an index

is obtained based upon the numerical value of KS, using the ASC function
in line 390. This is followed by the FOR-NEXT loop bounded by lines 400
to 420, which place the repeated character in the output buffer the required
number of times to match the count character. Then the .T and I indexes are

increased and the program branches back to line 250.
If a compression indicating character did not occur in the data, line 290

is executed. This line causes the character extracted from the string to be

placed directly into the output buffer. Next, the J index is incremented by
1 in line 300 and the boundary of the original FOR-NEXT loop checks to
determine if the end of the loop was reached in line 310.

The statements from line 900 to the end of the program were included to

tally the decompression count and display the before and after results of the
program. Thus, this part of the program was included for illustrative purposes
only.

Figure 2.15 contains a sampte execution of the RUNLENDBAS program.
The reader will note that the data file RUNLENCDAT was used as input

to the program. This data fiie was created by the execution of the
RUNLENCBAS program and the top eight numbered lines in Figure 2.15
correspond to the lower eight numbered lines in Figure 2.13. Since the
decompression program returns the compressed data to its original format,

46

47

44

ENTER ASCII FILENAME. EB, RUNLENC.DAT
? RUNLENC.DAT

PATIENCE - INPUT PROCESSING

FILE RUNLEND.BQT BEFDRE-DECDMPREESIDN:
1 BEGIN}¥#

}R5

}EII

}P#

}E$

}AZ

}T&

}¥ZEND

ILE RUNLENC.DAT AFTER DECOHPRESSIDN:

BEEINXXtXtIXltIitltt*ttl**¥¥*1t¥¥**IIXIII

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

HARAAAAAAAAflQAAAAQAAAAAAAAAAAAAAAAAAAA

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

titlttlttlXIIXIIIIIXI{It‘llltltllltlttEND
27b TOTAL CHRRACTERS INSERTED

0k

Figure 2.15 Sample execution of RUNLEND.BAS program

mNU'Lfl-thJH'nmNGUl-hL-JM
the eight numbered lines at the bottom of Figure 2.15 are eiractly the same
as the eight numbered lines at the top of Figure 2.13.

2.4 HALF-BYTE PACKING

This data-compression technique can be viewed as a derivative of the bit

mapping process. It can be successfully used under several data structure

conditions; however, unlike the bit mapping technique, it will never result
in a compression ratio of less than unity.

As originally developed, half—byte paclEi'n’g takes advantage of the structure
of certain characters in a character set. This technique is effective when a

portion of the bit pattern used to represent those characters becomes repeti-
tive. As an example of this type of situation, consider the EBCDIC character

set where the first four bit positions used to represent numerics are all set
to binary ones as illustratedin Table 2. 4.

If a non-compressed data string contains eight level EBCDIC coded

characters, then run-length encoding does not permit compression of a
sequence of digits that does not repeat by character. Since the first four bits,

however, do repeat, compression can be accomplished if one can pack two

47

48

45

Table 2.4 EBCDIC numeric representation.

When an 8-bit byte is used to contain numeric

values coded in the EBCDIC character set, the
first 4 bit positions are always set to all ls

 .. “57-90 0

Bit structure Numeric character ‘fg'jf' LJ G l

1111 0000 0 "" %1?l ‘_1
1111 0001 1 3:TJ r'5"
1111 0010 2 :351

1111 0011 3 'fisfifi
1111 0100 4 \ \DO

1111 0101 5 1 191
1111 0110 6 ‘ ““3
1111 0111 7 ‘ "‘
1111 1000 8

1111 1001 9———————

numerics into one character. In a similar way to run-length encoding, a

special character is required to indicate that half-byte packing has occurred.
Again, like run-length encoding, this character should be selected from one
of the unassigned characters in the character set. ' ' ’ ' '

When data characters do not have a repetitive bit structure, half-byte

packing can still be successfully employed under certain predefined
conditions. One example would be to predefine the occurrence of the dollar

sign, all 10 numerics, the comma, asterisk and decimal point characters in
succession as suitable for compressionby half-byte packing. In Table 2.5,
the bit structure of ASCII data charaCters commonly used for financial

representations is listed. If the occurrence of a string consisting of any
numeric digit as well as a comma, decimal point, dollar sign and asterisk is

predefined as suitable for half-byte packing, then the occurrence of such
strings as ‘$123,456.78’,‘123,456’ or ‘$****123,456.78’ can be compressed.

Encoding format and technique efficiency

To compress data into half bytes, several encoding formats can be considered.
Each format provides a certain level of efficiency based upon the sequence
of characters encountered in the original data string. One typical format is

illustrated in Figure 2.16.‘ Using this format, up to 15 sequential numeric or
predefined data characters in a string occurring sequentially can be

compressed. The limit of 15 characters results from the use of a 4—bit, half-
byte counter to denote the number of characters compressed. If, instead of

a half—byte counter, a full byte is used to indicate the half-byte packing

count, up to 28 (or 255) numerics can be packed or 256 if the counter starts

at zero to indicate I packed character. Since an extra half byte is required
to increase the counter capacity, only when the average number of characters

48

49

46

Table 2.5 ASCII financial character re-

presentation. In this data representation, the par-

ity bit was ignored. If a parity bit exists, it can

be stripped along with the first three bits shown

prior to the packing of the last four bits into half

bytes

Bit structure Character

011 0000

011 0001

011 0010

011 0011

011 0100

011 0101

011 0110

011 0111

011 1000

011 1001

\OOOQGU‘I-h-UJNHO
010 0100

010 1100

010 1110

010 1010

-W
-X-.

in sequence is expected to exceed 15 should the full-byte counter be

employed. Alternatively, one can use both a half-byte and a full-byte com-

pression format and switch between the two depending upon the number of

characters susceptible to half-byte packing that are encountered.

To examine the efficiency of half—byte packing, let us first explore the

binary pattern of a sample data stream and the resulting compressed data

stream. In Figure 2.17, the numeric sequence in the top part of the illustratiOn

consists of seven 8-bit characters or 56 bits. Through the use of the half—byte

packing technique employing a half—byte (4-bit) counter, the resultant num-

ber of bits in the compressed data string is reduced to 40. In this example,

the original data stream has been reduced by 28 per cent ((56 — 40)/56) for

7 sequential numerics. It should be noted that 40 bits would also be required

to represent 6 sequentially encountered characters susceptible to half-byte

packing if transmission is on a character by character basis. Thus, any even

number of sequentially encountered characters suitable for packing with a

half—byte counter requires the transmission of 4 additional null bits when

data is transferred on a character-by-character basis.

In Table 2.6, the original numeric data stream and its compressed format

are compared when a 4-bit counter is used. Here, the number of continuous

numerics was varied from 1 to 15. Since the number of bits in the original

49

50

47

Ha/f— byte caunrer

Figure 2.16 Half byte encoding format

S = Special character indicating half-byte encoding.
an = Half-byte counter. Four bits are used to denote

the number of numerics that have been packed.
Number E 15.

FBC = Full-byte counter. Number § 255.
N1 to N255: Up to 255 numerics packed 2 per 8-bit character

data stream is less than or equal to the number of bits in the compressed
data stream, until the number of continuous numerics exceeds 4, half-byte

packing should not occur until 5 or more sequential numerics 0r predefined
characters are encountered in a data stream.

any/hm data sir/fig

/9\/c’\/\/\/9\/2\/2\
Binary 11111001 11110000 11110000 11110001 11111001 11110010 11110010

AXEU
xxxxxxxx 0111 1001 0000 0000 0001 1001 0010 0010
LVHJ

Speciol Count Seven packed numerics
character
indicates
numeric

compressnon

Numeric

Figure 2.17 Half-byte encoding example. For 8-level character transmission, a mul-
‘tl'ple of 8 bits of compressed data is transferred. Thus, a half-byte counter with an

even number of packed characters will require 4 trailing null bits

50

51

48

Table 2.6 Half-byte compression efficiency using a four-bit counter

Number of

sequential
compressible Non-compressed Compressed Bit reduction

characters bits bits per cent

1 8 16 N/A

2 16 24 N/A

3 24 24 N/A

4 32 32 0.00

5 40 32 20.00

6 48 40 16.66

7 56 40 28.00

8 64 48 25.00

9 72 48 33.33

10 80 56 30.00

11 88 56 36.36

12 96 64 33.33

33 104 64 38.46

14 112 72 35.71

15 120 72 40.00

The preceding can be represented mathematically as follows. For a

sequence of S compressible characters, S 2 4, the number of bits in the

uncompressed string is SS. The number of bits in the compressed string is

S=I= _

12+4 [2]

giving a compression ratio of

1 * * S ‘1(8S {m4 [2“) '

Encoding process

A half-byte packing procedure for compressing numeric characters is illus—

trated in flow-chart format in Figure 2.18. After the numeric character

counter is initialized to zero (1), a character is obtained from the original

data string. If the character is numeric (3), the counter is incremented by

one (4) and the next character in the original data string is examined (2). If

the character comparison (3) shows that the character is not numeric, the

counter is compared with four (5). If the counter is less than or equal to

four, as previously discussed there is nothing to be gained by compression

51

52

49

(H

COUNTER=¢

GET
CHARACTER

(2)

(3)
COUNTER=
COUNTER+1

(5)

ND

COUNTER
4

> 4

SETCOMPRESSON
FORMAT

Figure 2.18 Half-byte packing process for numerics

(6)

and the counter is reinitialized to zero (1). If the counter is greater than

four (5), this means that our string of sequential numerics has ended with a
sufficient number of such characters that half-byte compression is effective.

At this point in time, we can set the compression format (6). Although the
counter in Figure 2.18 does not have a limit, if a half-byte counter is

employed, the maximum number of characters that can be packed is 15.
Thus, another counter comparison would be required between symbols (5)

and (6).

If we desire to compress sequentially encountered strings of predefined
characters to include the dollar sign, comma, period, etc., we would test for

those characters in place of testing for numerics.

Buffer considerations

When a full character or multiple characters are used as a counter, buffer

memory limitations must be considered in determining the maximum number

of sequential characters that can be compressed, 2 to a byte. In Figure 2.19,
half-byte packing buffer considerations are illustrated. As the original data

52

53

50

A Double buffer/fig

Buffer for original data string

Buffer for compressed data string

N N N2 N, Comer 5cin m—1

8 Single buffer/fig

Counter

Figure 2.19 Half-byte encoding buffer considerations. Although single buffering
requires additional processing, it eliminates the necessity of maintaining a separate

buffer for compressed data. 8,, = Special character indicating half-byte encoding

stream is examined, sequential characters suitable for packing 2 per byte are

placed into a buffer as illustrated in the top portion of that figure. When
the counter exceeds 4 and the next character it not suitable for packing, the

data1n the first buffer can be operated upon. One half of each character18

then transferred to its proper location in the compressed data string buffer

as illustrated in the lower portion of Figure 2.19. Since the special character

used to indicate half-byte compression and a count character can be preplaced

in the contiguous compressed data string buffer, this technique of double

buffering is suitable if one wishes to employ a direct memory access (DMA)
feature of the computer or microprocessor used for compression. Through
the use of the DMA, data transfers can be effected independently of program

control and data blocks are transferable on a word basis (bit parallel) to and

from portions of main memory and peripheral devices. Thus, once the buffer

in the lower portion of Figure 2.19 is completed, it can be set up for

transmission through the use of a DMA transfer while the computer clears

the original data string buffer and continues processing the incoming data

stream. For an example of buffer size, consider the use of an 8-bit counter.

In this situation, the buffer for the original data stream would have to be

set up to hold up to 256 characters while the buffer for the compressed data
stream would have to hold up to 130 characters, 256 compressed characters

53

54

51

packed 2 per byte, a character count and the special character used to
indicate half-byte packing.

Although double buffering is illustrated in the top part of Figure 2.19 for

half-byte packing, single buffering can also be used. This is shown in the

lower part Of that illustration. In this situation, sequential characters suitable

for packing are first placed into a buffer and once a non-compressible
character is encountered in the original data stream and the counter exceeds

4, the data elements in the buffer are manipulated as shown. In contrast to
double buffering, this technique requires much more processing; however,

it eliminates the necessity of having a separate buffer for compressed data.

To determine total buffer requirements, the interrelationship of all data

buffers must be examined as illustrated in Figure 2.20. In this example, the

data to be operated upon is first read into a data—stream buffer where

several different types of processing may be performed, depending upon the

processing power and memory area availability of the computer being
utilized. This data-stream buffer can be as small as 1 character or as large

as a data block used for transmission._ The buffer can be examined for

compressible characters in several ways. First, a search can be made for any

character suitable for half-byte packing; if none are encountered, the data-

stream buffer can be directly transferred to the output data-stream buffer.

Another method is to examine the data-stream buffer character by character.

Non-compressible characters can then be sent to the output data-stream

buffer while compressible characters are transferred to the original data

buffer. If less than 5 compressible characters are in the original data buffer

Data stream
buffer

Original data
buffer

Compressed data
buffer

Output data
stream buffer

Figure 2.20 Data buffer relationships. To determine total buffer requirements, the
interrelationship of all data buffers must be examined

Input Data source

 Compressible

character

Output Data result

Non-compressible
character

54

55

52

when a non-compressible character15 encountered1n the data--stream buffer
the contents of the original data buffer are transferred to the output data-

stream buffer. If there are 5 or more characters in the original data buffer

when a non-compressible character is encountered in the data—stream buffer,
the compression operation causes the contents of the original data buffer to

be transferred in compressed format to the compressed data buffer. Finally,
the contents of the compressed data buffer are transferred to an appropriate
location in the output data-stream buffer.

Decoding

Decoding data compressed asccording to the half-byte packing technique is

a relatively simple procedure. The decoding routine searches for the special
character that is used to indicate that half-byte packing has occurred. Once

that character is encountered, the next character or the following half byte
will contain the count of the number of packed characters that follows. The

special compression indicator character itself can be used to inform the

decoding software whether a full- or a half—byte counter is employed.

Through the use of the buffering techniques previously discussed, the packed
characters can be unpacked and the original data stream reconstructed.

Encoding application

Since strings of non-repeating numerics are not compressible by run—length

encoding, the use of half-byte packing can be very advantageous when data

files contain many numerical sequences If predefined characters to include

the dollar sign, comma, decimal point and asterisk are added to the numerics,

half--byte packing becomes a very appropriate technique for compressing
financial data.

Programming examples

Two different examples of half-byte encoding of data will be presented in

this section. The first set of programming examples utilizes only the digits 0

to 9 for the encoding of data, following the classical approach of half-byte

packing of numeric data. The second set of programming examples extends

the number of characters that can be packed two per byte by including such

characters as the comma, decimal point, asterisk and dollar sign as previously
discussed in this section.

Encoding

The BASIC program BYTEC.BAS is listed in Figure 2.21. This program

contains the coding required to perform simple half-byte encoding of strings

containing 5 or more digits in sequence. The ASCII 126 character was

55

56

10

20

30

40

E. (I)

$0

70

80

?G

100

105

110

120

130

140

150

1ND

170
180

190

200

210

215

220

230

240

250

250

270

230

235

290

300

310

320

330

340

345
350

3&0

370

380
390

400
410

420

439

435

440

450

450

470

480

REM BYTEC.BAS PROGRAM
DIM O$(132)

WIDTH BG:CLS

’*¥**Ii1¥¥*MAIN ROUTINEIIliittttttttiittiIltl

’1 THIS ROUTINE READS RECORDS FROM AN ASCII *

’1 FILE INTO A STRING CALLED X$ WHICH IS X

’* THEN PASSED TO SUBROUTINES FOR COMPRESSION

’1it$33**¥****t¥¥*¥**¥illilflii¥¥¥¥itlttllttti

PRINT "ENTER ASCII FILENAME. EG, BYTE.DAT"
INPUT F$= OPEN F$ FOR INPUT AS #2

OPEN "BYTEC.BAT" FOR OUTPUT AS #3

PRINT "PATIENCE * INPUT PROCESSING"
IF EOFiE) THEN SOTO 9000

LINE INPUT #2, Xi
N= LENiXfi)

GOSUB 130

GOSUE 900

SOTO 120

’ittttHALFvflYTE ENCODING SUBROUTINEltItt¥¥**

”t THIS ROUTINE PROCESSES RECORDS FROM X$ *

’1 AND ENCODES NUMERIC STRINGS OF DATA INTOl

’* HALF—BYTE OR 4 BIT REPRESENTATION USING *

’t DOUBLE BUFFERINE NITH as AS DUTPUT BUFF.1

=mt:t:*txxrxxxx*xtxatttxx*txxttxtxxxxxxxxxta

H=1=J=1 ”RESET INDICES

FDR 1:] TD N STEP 2 =STEP THRU RECDRD

IF (MID$(X$,I,1){"O") DR (MID$(X$,I,1)}"?“) THEN 290

IF (MID$(X$,I+1,1){“O") DR (MID$(X$,I+1,1)}"9“) THEN 290
K=K+2 ”BOTH NUMERIC—BUMP CDUNT
NEXT 1 =GD BACK FDR NDRE

RETURN ’END OF STRING

IF K } 4 THEN GDSUG 350 ’ENDUGH TD ENCDDE

IF K } 1 THEN GDSUD 440 ’DON’T ENCODE

O$(J) = MID$£X$,I,1) =CUTPUT IST CHAR.

GSIJ+1T = MID$(X$,I+1,1) ’DUTPUT 2ND CHAR.
J=J+2=K=1 ”BUMP DUTPUT—RESET CDUNT
GGTD 230 ’AND GD FDR MORE

’txxxx SUBROUTINE TO PERFDRN HALF—BYTE ENCGDING :txtx

DitJ)=CHR$(126) ’FLAE FDR HALF—BYTE ENCDDE

O$CJ+1}=CHR$(K—1) ’INSERT LENGTH OF STRING

J=J+2 ’BUHP DUTPUT INDEX

FUR L=I—R+1 TD H STEP 2 ’ENCODE 2 BYTES INTO 1

x= VALiHID$(X$,L+1,1)):Y=VAL(MIDtX,L,1))
D$(J)=CHR$(X+(Y*10)} =STUFF BYTE IN DUTPUT

J=J+1 =BUMP DUTPUT INDEX

NEXT L ’GG EACH FDR MDRE

K=1=RETURN ’RESET COUNT AND RETURN

’¥t¥*# SUERDUTINE FDR STRING NOT NGRTH ENCODING *tttt

FOR L=I—R+1 TU H =PICRUP SHURT STRING

fl$(J)=MID$(X$,L,1) =STUFF IN DUTPUT BUFFER
J=J+1 ’BUMP DUTPUT INDEX

NEXT L ’60 BACK FDR HDRE

K=1=RETURN ’RESET CGUNT AND RETURN

Figure 2.21 BYTEC.BAS program listing

56

57

54

9CD ’****¥TALLY THE COMPRESSION COUNT & WRITE BUFFERI¥¥¥$¥
910 ’* DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION I

920 ’¥ AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD 1

930 ’X*****#***l¥*ttttlfi##1##**¥*¥*¥¥**¥*¥l#¥¥¥¥¥¥t1*¥1*tt

931 N1=N1+N ’TALLY INPUT CHAR COUNT

932 T=N—J+1 “NET DIFFERENCE IN BUFFERS

936 T1=T1+T ”SAVE COUNT FOR SUMMARY
940 FOR I=1 TO J-l

950 PRINT #3, O$(I):
950 NEXT I

955 PRINT #3, ""
97G RETURN

1000 PRINT

1U2U RETURN

9000 CLOSE: OPEN F$ FOR INPUT AS #2

9010 PRINT "FILE ";F$;" BEFORE COMPRESSION:“

9020 LINE INPUT #E,X$
9030 IF EOF(2) THEN 9060

9040 PRINT Xi

9fl50 GOTO 9020

9050 PRINT X$=OPEN “BYTEC.DAT“ FOR INPUT AS #3

9U?D PRINT ”FILE “;F$;" AFTER COMPRESSION:"

9080 LINE INPUT #3,0$
9090 IF EOF(3) THEN 9993

9100 PRINT O$

9110 SOTO 9080

9998 PRINT O$=PRINT Tlg" TOTAL CHARACTERS ELIMINATED FROM ":

9999 PRINT N1;"OR ";INT((T1/N1)#100);"Z":CLOSE:END

Figure 2.21 (conthiued)

used in this programming example to indicate the occurrence of half-byte

encoding.

Referencing the listing contained in Figure 2.21, the array 0$ is the output

buffer into which each line input from an ASCII file is placed after it is first

analysed and compressed according to the half-byte encoding scheme, if so

compressible. Each line from the file is read in line 130 and its length

determined in line 140. Next, a branch to the subroutine starting at line 180

occurs. This subroutine steps through the record obtained from the file in

increments of 2 character positions in line 240. The record is examined in

increments of 2 character positions since the statements in lines 250 and 260

compare character I and character 1+1 to the range between and including

the digits 0 and 9. If either the Ith or Ith+1 character is in that range a
branch to line 290 occurs.

To extend half—byte encoding to the characters 36, . and * one could include

them in the comparisons occurring in lines 250 and 260. This would be both

tedious and slow, due to the time required to execute a group of MID

functions joined together by many OR operators. A more elegant and

speedier solution could be obtained by the creation of a one-dimensional

array containing the characters to be encoded by half-byte compression. As

an example, the following BASIC statements would initialize the array

57

58

55

HBYTE, so each of its 14 elements would contain one of the characters that

would be suitable for half—byte compression.

DIM HBYTE (14)
FOR 1:1 To 14

READ HBYTE (I)
NEXT I

DATA $*0123

DATA “4”,“5”,“6”,“7”,“8”,“9”

An interesting and practical assignment for the reader prior to examining
the second version of this program presented in this section would be the

modification of the half-byte encoding subroutine to include the compression
of strings containing the characters EB, . and * as well as the 10 numerics.

Returning to the listing illustrated in Figure 2.21, if the Ith or Ith+1

character is not a digit the counter is incremented by two in line 270 and

the subroutine continues processing the line of input obtained from the file.

When the Ith or Ith + 1 character in the string is a numeric, a branch to

line 290 in the program will occur. At this location, a comparison occurs to '

determine if there are enough numeric characters in sequence to encode.

When K is greater than four a branch to line 350 occurs. At this program
location, the subroutine actually performs the half-byte encoding of the data.

In line 350 the ASCII character represented by the value 126 is placed into
the Jth element of the array 0$. This character is used as the compression
indicating character and will be displayed as a tilde (~). In line 360, the

length of the string is placed into the next element of the 03; array and the

output index is then incremented by 2 in line 370. Lines 380 to 420 perform
the actual encoding of two bytes of non-compressed data into their half-byte
representation and join two half bytes into a single byte.

Prior to examining the technique employed in line 400, let us first examine

a conventional method to pack two numeric bytes into one byte in BASIC.

In line 390, the VAL function is used to obtain the numeric part of the L
and L+1 characters contained in the X$ string. Thus, X represents one

numeric character while Y represents the second numeric character. Suppose
X was 6 and Y was 9. Their byte composition would appear as follows:

I000 011- X

YI000 100

Packing two numeric into one byte can be accomplished by multiplying
one character by 16 to shift it four bit positions to the left and either add it

or AND it with the second character. Assuming Y is multiplied by 16, 9 X 16
is 144 and its bit composition becomes:

1001 0001] Y = 144

6

9

58

59

56

Then, adding X and Y results in a value of 150, whose byte composition is:

1001 011! X + Y packed = 150

A second method to accomplish the stuffing of the two numerics into one

byte was used in line 400 of the program listing contained in Figure 2.21. In

this method, the numeric value of Y was first multiplied by 10 and then

added to the numeric value of X. Then, the character representing the

numeric value of the addition of X to Y multiplied by 10 is placed into the

0$ array as a single byte. Returning to the previous example where X was

6 and Y was 9, multiplying 9 by 10 and adding 6 results in the packing of

the character that has an ASCII code of 96 into the appropriate element in

the 0$ array. Thus, if this half-byte encoding routine encounters the numerical

sequence of 6 followed by a 9 and there is a sufficient run of numerics to

pack those two characters together they would be displayed as an apostrophe

(’), since that character is represented by an ASCII 96. In this technique the

ASCII codes from 00 to 99 can be employed to directly represent the 100

possible combinations of two digits.

To determine the original data one can divide the received ASCII code

by 10 to obtain one numeric and use the remainder of the division process

for the second numeric. Unfortunately, this technique is not applicable if

the additional characters previously discussed are included in the string of

characters defined as susceptible to half-byte encoding.

Againr returning to the program listing contained in Figure 2.21, note that
whenever the count of characters suitable for half-byte encoding is less than
5 or a non-numeric character is encountered a branch to the subroutine

located at line 440 occurs. This subroutine simply takes the character from

its appropriate position in the X3; string and places it in its appropriate

position in the output buffer.

The last subroutine in this program was included to print a comparison of

each line read from the file used for input and the half-byte encoded version

of the line. In addition, the subroutine creates a file containing compressed

data that will be used as an input file to test the decompression routine that

will be discussed next. Starting at line 900, this subroutine also counts the

characters’ input and output and computes and prints the percentage of

characters eliminated as a result of half-byte encoding.

Figure 2.22 illustrates the execution of the BYTEC.BAS half-byte enco-

ding program, showing the original lines of data contained in the input file

followed by its resulting compressed data. The reader should note that for

clarity of illustration the input data was structured to insure that certain

numeric pairs of characters were excluded. This was done to eliminate, as

an example, two encoded half-bytes representing an ASCII 31 character or

below, since such characters are non-printable and would not be appropriate

for illustrative purposes.

59

60

dl

57

ENTER ASCII FILENAHE. E5, BYTE.DAT
? BYTE.DfiT

PATIENEE — INPUT PROCESSING

FILE BYTE.DnT BEFoRE EDMPRESSIUN:
v+4345573997654333455739875543334557898753

’-Q8357257894533529657398577526457497356B?23

’$4344454647484?505152535455565758596013

ILE BYTE.DAT AFTER EDMPRESSIDN:
’+”&+-CYHQ+EHEYWA+!—CY69

’—”(b#H9Y—&}‘9’UM43911823

r$~$+,—.101234557aa:;13
54 ToTAL CHARACTERS ELIMINATED FRDM 132 on 40 z

I'.--|l‘JH-11".»leH
C K

Figure 2.22 Sample execution of BYTEC.BAS program

Decompression

The program BYTED.BAS listed in Figure 2.23 was written to decode or

decompress data previously compressed by the BYTEC.BAS program.

Since the BYTEC.BAS program used the ASCII 126 character as a half-

byte compression indicator, the BYTED.BAS program was written to search
for the occurrence of this character. After a line of data is obtained from a

file in line 130 of the program, the length of the line is determined in line

140. Then the subroutine at line 180 is invoked to scan the line character by

character, looking for the occurrence of an ASCII 126. The FOR-NEXT

loop bounded byfilines 240 through 320 accomplishes this, extracting a
character from the string through the use of the MID$ function in line 250

and then comparing the extracted character to ASCII 126 in line 260.

If the extracted character does not equal ASCII 126, the character is

simply placed into the output buffer in line 290, the index is incremented by
1 in line 300 and the processing of the data in the 100p continues. If the

character is equal to ASCII 126, a branch to line 360 occurs and the decoding

of the compressed data commences. First the repeat count which is the next

character in the string is obtained in line 370. This character is then converted

into a numeric value in line 390 since it will control the loop index for

decompressing the following characters in the string that were previously

encoded two per byte. This decoding is controlled by the FOR-NEXT loop

bounded by lines 400 through 460. First the numeric value of the byte

following the repeat count is obtained the first time line 410 is executed. In

line 420, the value obtained in the preceding line is multipled by .1, which,

in effect, functions as a right shift. By taking the integer of the multiplication

of the byte’s numeric value by .1 we obtain a numeric between 0 and 9. This

numeric represents the value of Y when X and Y were previously encoded

in the BYTEC.BAS program by multiplying Y by 10 and adding the value

of X to the result. Since we are working with characters based upon their

ASCII values, 48 is added to the value of Y in line 430 to obtain the

60

61

58

10
20
3C:

40

50

69

?fi

80

RD

100

105

110

120

130

140

150

160

IFS

1 812)

190

EDD

210

220

230

240

250

260

290

300

310

320

355

360

365
370

380

390

400

410

420

430

440

450

455
460

479

480

4RD

appropriate ASCII value of the digit. This value is then an ASCII character

between 0 and 9 that represents the 105 position of the previously encoded

. In line 440, the value of Y multiplied by 10 is subtracted from thedata

REM BYTED.BAS PROGRAM
DIM O$(132)

WIDTH BG:CLS

”*tttttttttHAIN ROUTINE¥¥***¥***¥¥¥¥*¥*¥****¥

”* THIS ROUTINE READS RECORDS FROM AN ASCII #

”1 FILE INTO A STRING CALLED X$ WHICH IS *

”* THEN PASSED TO DECOMPRESSION SUBROUTINE *

”*****I*#¥*¥***1**1*I****¥***¥**¥¥¥******Xtt#

PRINT "ENTER ASCII FILENAME. EG, BYTEC.DAT"
INPUT F$= OPEN F$ FOR INPUT AS #2

OPEN "BYTED.DAT" FOR OUTPUT AS #3

PRINT “PATIENCE — INPUT PROCESSING"

IF EOF(2) THEN GOTO 9000

LINE INPUT #2, Xi
N= LENiXE)

GOSUB 180

GOSUB 900

GOTO 120

”##1##HALF BYTE DECODING SUBROUTINEtiittitt

”X THIS ROUTINE PROCESSES RECORDS FROM X$ I

”1 AND DECOMPRESSES BYTE—ENCODED CHARACTERS¥

”I USING O$ AS THE OUTPUT BUFFER. X

”*¥*****ttitti*11$¥¥¥I¥¥II¥I¥XI$IIIII¥¥¥*¥I*

K=1=J=1 ”RESET INDICES
FOR I= 1 TO N ”STEP THRU RECORD

A$= MID$(X$,I,1} ”EXTRACT A CHAR
IF A$= CHR$(126) THEN 360 ”COMPRESSION FLAG?

OfitJ)=A$ ”STUFF IN OUTPUT BUFFER
J=J+1 ”BUMP BUFFER INDEX

NEXT I '“ ”GO BACK FOR MORE

RETURN ”END OF STRING

”t¥¥****#*#111**¥#¥¥¥X***¥¥¥*¥¥¥#¥¥*¥X¥¥¥¥****¥***¥¥*

”DECODE COMPRESSION NOTATION TO OUTPUT BUFFER

”**********$I**¥*#*******I****titttttttii¥¥$¥¥¥¥l¥t¥1

K$= MID$(X$,I+1,1) ”GET REPEAT COUNT
M= 1+2 ”SETUP INPUT INDEX

K= ASCIK$) ”SET UP LOOP INDEX

FOR L= J TO J+K-1 STEP 2 ”SET OUTPUT LOOP

X= ASC(MID$(X$.M,1)) ”GET ONE BYTE
V= INTIXI .1} ”SHIFT RIGHT

O$tL)= CHR$£Y+4B) ”DECODE TENS POS
Z= INT(X-(Y* 10)) ”SUBTRACT TENS POS

O$(L+1)= CHR$(Z+4S) ”DECODE UNITS POS

M= M+1 ”BUMP INPUT INDEX

NEXT L ”KEEP GOING

J= L+1 ”RESET OUTPUT INDEX

I= M ”RESET INPUT INDEX
GOTO 250 ”DONE

Figure 2.23 BYTEDBAS program listing

61

62

59

ENTER ASEI I FILENI‘l‘sME. EB, EWTEE. DHT
‘?' EYTEC. DAT

PATIENCE — INPUT PRDCESSINE

FILE BYTEC.BAT BEFoRE DECOMPRESSIDN:
1 ’+~s+—CYHA+!—CYHA+s—Cveo

2 ’—~tb#H9v—sa=9=un4ae1raao

3 =s~$+,—./o1234se739:;1a
FILE HYTEC.DAT AFTER DECDMPRESSIDN:

1 ’+434Eé7BQB7&5433345678997654333456789543

a ’—9835725789453862955739857752é457497356503

3 ’$4344454é474849505152535455565758594953
54 ToTAL CHARACTERS INSERTED

on

Figure 2.24 Sample execution of BYTED.BAS program

value of X to obtain the numeric value representing the unit’s position in
the packed data. Similar to line 430, line 450 adds 48 to the value of Z to

obtain the appropriate ASCII character code that represents the decoded
digit.

Figure 2.24 illustrates the execution of the BYTEDBAS program, using
the file BYTECDAT as input to the program. Since the half-byte com-
pression program, BYTEC.BAS, previously created this file it should be of

no surprise that lines 1 to 3 at the top of Figure 2.24 are equal to lines 1
through 3 of Figure 2.22, while lines 1 to 3 at the bottom of Figure 2.24 are
equal to lines 1 to 3 at the top of Figure 2.22.

Extended half-byte encoding

A second example of half-byte encoding results from the inclusion of
additional characters beyond the 10 numerics into half bytes when such
characters occur sequentially. In Figure 2.25, the reader will find the program
listing of the PACKCBAS program that was developed to compress a string
containing numerics andtor the dollar sign ($), comma (J, decimal point (.)
and asterisk (*).

Compression program

Similar to the previously described BYTEC.BAS program, a line of input is
obtained from a file in line 130, the length of the line is determined in line
140 and a branch to the half-byte encoding subroutine occurs in line 150 of
the program.

The subroutine bounded by lines 180 and 550 processes the line of input
and encodes sequences of numerics and the special characters previously
mentioned into half bytes. The FOR-NEXT loop bounded by lines 240 and
280 searches through the character positions in the string X$ that represents
a line of input data. In line 242, the CU) array flag is reset while lines 243

62

63

10
2C:
30

40
50
450

it:
80

90

iOO
105
110

1 20
130

140
150

160
170

185)
190

200
210
'21 5

22C)
230
240
242

243
244

246
243
250

252
254

256

253
260

2&2
263

264
266
269

270
280

285
290

300
310
320

330
340
350
352
354
360

REM PACKC.BAS PRDSRAN

DIN O$(132},Ei1323
NIDTH 80:CL5

=xtttxxxaxtNAIN RDUTINEttxtxtxxttuttxtxtxxxt:
=x THIS RDUTINE READS RECORDS FROM AN ASCII x
’1 FILE INTD A STRING CALLED xs NHICH IS 0
=0 THEN PASSED TD SUDRDUTINES FDR DDMPRESSIDN

’*tI*¥*t*littxttttttittttttttttttttlttttltilt

PRINT "ENTER ASCII PILENAME. ES, PACK.DAT"
INPUT F$= OPEN F$ FDR INPUT AS #2

DPEN "PADRD.DAT" FDR DUTPUT AS #3

PRINT "PATIENDE — INPUT PRDDESSINS"
IF EOFiE) THEN GDTD 9000

LINE INPUT #2, X:
N: LEN(X$)
GOSUB 180
EDSUE 900

SDTD 120

’tltttHALF—BYTE ENCDDINS SUDRDUTINExxxxxxutt
=0 THIS RDUTINE PROCESSES REDDRDS FRDM x: a

’1 AND ENCDDES MIXED STRINGS 0F DATA INTD:
=1 HALF—BYTE DR 4 HIT REPRESENTATIDN USING x
’1 DOUBLE BUFFERING WITH O$ AS OUTPUT BUFF.X
3**¥*#¥#*¥**tilttt*¥t**t¥t¥tttlttltitlttlttt

K=1:J=1 ’RESET INDICES
FOR I=1 TO‘N STEP 2 ”STEP THRU RECORD
C(I)=0:C(I+1)=O ’RESET ENCODE FLAGS
A$= MID§(X$,I,1) ”GET lST BYTE

B$= MID$(XI,I+1,1) ’GET 2ND BYTE

IF A$= “$" THEN C(I)= 1 ’SET lST ENCODE FLAG
IF A$= "," THEN C(I)= 2
IF A$= " " THEN C(I)= 3
IF A$= “I" THEN C(I)= 4

IF A${ "0" OR Ai} "R“ THEN 253 “SKIP OTHERS
C(I)= 5

IF B$= "i" THEN C(I+1)= 1 ’SET 2ND ENCODE FLAG
IF B$= ",” THEN C(I+1)= 2
IF B$= "." THEN C(I+1)= 3

IF B$= "3“ THEN C(I+1)= 4

IF B$i "0" OR B5} "9" THEN 268 ’SKIP OTHERS
C¢I+1)= 5

IF C(l)= 0 OR C(I+1)= 0 THEN 290 ’NOT CANDIDATE
K=K+2 ’BOTH NUMERIC—BUMP COUNT
NEXT I ”GO BACK FOR MORE
RETURN ’END OF STRING

IF K } 4 THEN GOSUB 350 ”ENOUGH TO ENCODE
IF K b 1 THEN GOSUB 500 ='I)ON’T ENCODE

O$(J) = HID$CX$,I,1) ’OUTPUT IST CHAR.
O$(J+1) = MID$(X$,I+1,1) ’OUTPUT 2ND CHAR.

J=J+2:’=1 =BUMP OUTPUT-RESET COUNT
GOTO 280 ’AND GO FOR MORE
O$(J)=CHR$(129) ’FLAG FOR BYTE PACKING
MASK1= &HFO ’11110000

HASK2= &HF ”00001111

O$(J+1}=CHR$(K—1) ’INSERT LENGTH OF STRING

Figure 2.25 PACKC.BAS program ustmg

63

64

U]\l‘-l-J‘~l‘~l OmU‘MHD
H

03 4:-

0104010-1MM01M
H III Ch

J=J+2 ”BUMP OUTPUT INDEX
FOR L=I—K+1 TO K STEP 2 ”SETUP ENCODE LOOP

ON C(L) SOTO 376,375,380,382,384 ”USE FLAG TO ENCODE
X=&HAO:GOTO 388 ”10100000

X=&HBO:GOTO 388 ”10110000
X=&HCO:GOTO 338 ”11000000
X=¢HDO:GOTO 383 ”11010000

X=VAL(MID$(X$,L,1)) ”GET NUM VALUE OF BYTE 1
X=X¥16 ”SHIFT 4 BITS LEFT
X=X AND MASEI ”MASK LOWER HALF—BYTE

ON C(L+1) GOTO 394,396,39B,400,410 ”USE ENCODE FLAG
Y=&HA:GOTO 420 ”00001010

Y=«HB:GOTO 420 ”00001011
Y=&HC:GOTO 420 ”00001100

Y=&HD:GOTO 420 ”00001101

Y=VAL£MID$(X$,L+1,1)) ”GET NUM VALUE OF BYTE 2

Y=Y AND MASK? ”MASH UPPER HALF—BYTE
Z= X OR Y ”OR THE TWO TOGETHER

O$(J)= CHR$(Z) ”OUTPUT BYTE TO BUFFER
J=J+1 ”BUMP OUTPUT INDEX
NEXT L ”GO BACK FOR MORE

K=1=RETURN ”RESET COUNT AND RETURN

”¥¥¥*¥ SUBROUTINE FOR STRING NOT WORTH ENCODING *Itll
FOR L=1—H+1 TO K ”PICKUP SHORT STRING

O$(J)=MID$(X$,L,1) ”STUFF IN OUTPUT BUFFER

J=J+1 f7 ”BUMP OUTPUT INDEX
NEXT L ”GO BACK FOR MORE

K=1=RETURN ”RESET COUNT AND RETURN
”liitXTALLY THE COMPRESSION COUNT & WRITE BUFFERllttit
”¥ DISPLAY BEFORE & AFTER RESULTS OF COMPRESSION X

”* AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD 1
”i#tXXXXXXKXXItl¥¥IIl1*l*¥**¥¥¥****#*¥¥¥*$t*t*¥¥*¥*¥*#
N1=N1+N ”TALLY INPUT CHAR COUNT
T=N-J+1 ”NET DIFFERENCE IN BUFFERS
T1=T1+T ”SAVE COUNT FOR SUMMARY
FOR I=1 TO J-l ”OUTPUT FILE LOOP

PRINT #3, O$(I); ”BUFFER CHAR STRING
NEXT I

PRINT #3, "" ”NOW WRITE TO FILE
RETURN ”DONE

0 CLOSE: OPEN F$ FOR INPUT AS #2

0 PRINT "FILE “;F$;" BEFORE COMPRESSION:"
0 LINE INPUT #2,X$
0 IF EOF(2) THEN GOTO 9060
0 PRINT Xi
0 GOTO 9020

0 PRINT Xi: OPEN "PACKC.DAT" FOR INPUT AS #3

0 PRINT "FILE “;F$;" AFTER COMPRESSION:"

0 LINE INPUT #3,0$
0 IF EOF(3) THEN 9998

9100 PRINT O$
0 GOTO 9080

B PRINT O$=PRINT T1;" TOTAL CHARACTERS ELIMINATED FROM ";
9 PRINT N1;"OR ”gINT((T1IN1)¥100);"Z":CLOSE:END

Figure 2.25 (continued)

64

65

62

and 244 extract two bytes from the string. The C(I) array flag is then set to

a value between 1 and 4 if the first byte of the string (A$) is one of the

special characters. If A$ is a digit between 0 and 9 the CU) array flag is
then set to 5 in line 256. Otherwise, the C(I) array flag remains set to zero

and a branch to line 258 occurs where the second byte represented by B$ is

processed. Next, lines 258 to 266 process the second byte, assigning the

C(I+1) flag a value between 1 and 5 depending upon whether one of four

special characters or a numeric is encountered. If either C(I) or C(I+1)
equal zero and four or more bytes containing numerics or special characters
have been encountered in sequence there is enough to encode and a branch

to the subroutine starting at line 350 occurs. If either C(I) or C(I+1) equals

zero and between one and three bytes were encountered a branch to the

subroutine beginning at line 500 occurs. This subroutine simply takes the

encountered characters from the input string and places them into their

appropriate positions in the output buffer.

When two bytes are extracted from the input string and no previous bytes

were numeric or special characters C(1) and C(I+1) are zero and line 268
causes a branch to line 290 to occur. Since K is zero, lines 310 to 330 are

then executed, resulting in the two bytes just extracted from the input string

being placed into their appropriate position in the output buffer.
Lines 350 to 480 contain the coding for generating the compression indi-

cating character which is ASCII 129 and then packing the characters eligible
for half-bYte compression into half bytes. Lines 352 and 354 enable two mask

flags that will enable upper or lower half-bytes to be generated by ANDing
the numerical value of a byte by the mask flag. Line 360 inserts the length

of the string into the output buffer while line 372 examines the C flag and

encodes the byte (lines 376 to 382) based upon the type of special character

in the byte. If the byte is numeric, line 384 is executed. Here, the numeric

value of the byte is extracted. In line 386, it is multiplied by 16 which is

equivalent to a shift 4-bit positions to the left while line 388 ANDs the value
of the newly formed character flag or shifted byte by the first mask. Similarly,

lines 390 to 420 perform the same operation on the second byte by first

examining the second C flag. Finally, line 440 adds the two half bytes into

one byte by the use of the OR operator and the newly formed character

that now represents two characters is placed into the output buffer. Like the

other programs previously discussed, lines 900 to 9999 keep track of the

compression count and generate a file named PACKCDAT which represents
the compressed data contained in the file PACK.DAT. Later the extended

half-byte decompression program called PACKDBAS will use the
PACKCDAT file as input to perform extended half—byte decompression.

Figure 2.26 illustrates the execution of the PACKC.BAS program using a
three line data file whose contents are listed at the top of the figure. Since

the packing of some half bytes resulted in the generation of a full byte whose
ASCII code was below 31 and therefore unprintable, the first two lines of

compressed data may appear odd due to the effect these characters have on

the printer used by the author.

65

66

ENTER fiSCII FILENAME. ES, PACE.DAT
? PACK.DfiT

PATIENCE - INPUT PROCESSING

FILE PRCK.DAT BEFORE COMPRESSION:

1 ’+$43,456,789.BTII654333456789876543334567898733

2 ’-$9335$72.57$89.4S$386,2?6,573.35775264574973567839

3 ’$43444546474B49505152535455565758598733
FILE PQCE.DAT AFTER COMPRESSION:

1 ’+,H;EkHIEC3Eg ECSEQ 33

2 ’-Or2r+£ fiZBk)kW{HRdWISV33

3 ’$$CDEFBHIPGRSTUVWXY33

61 TOTAL CHARACTERS ELIMINRTED FRDH 146 DR 41 1
Uk

Figure 2.26 Sample execution of the PACKC.BAS program

Decompression program

Figure 2.27 contains the program listing of the PACKD.BAS program that
was developed to decompress data compressed by the PACKC.BAS pro-

gram.

Similar in construction to the PACKC.BAS program, PACKD.BAS

obtains a line of data from a file in line 130, determines the length of the

line in line 140 and then branches to the subroutine starting at line 180 to

perform the required decoding. The FOR-NEXT loop bounded by lines 240
and 320 extracts one character at a time from the input string, searching for

ASCII 129 which is the compression indicating character used to denote the

occurrence of extended half-byte compression.

When the compression flag is encountered in line 260, a branch to line

330 occurs which is the beginning of the routine that decompresses the

compressed data. After initializing the masks in lines 330 and 335 the length

of the string is obtained in line 340 while the FOR—NEXT loop bounded by

lines 350 and 498 break up each byte into the original two characters that

were previously compressed. First line 370 takes a byte and ANDs it with
the first mask and divides by 16 which is equivalent to a right shift of 4 bit

positions. In line 375, the character is tested to determine if it’s numeric. If
so, a branch to line 430 occurs where 48 is added to the character to obtain

its appropriate ASCII value. If the character is not numeric, lines 380 to 410

test to determine what special character the character represents by exam-

ining its code value and then based upon its code value the character is reset

to its original value. Next, lines 440 to 490 perform the same operation on

the second half byte in the received character.

Program execution

Figure 2.28 illustrates the execution of the PACKD.BAS program using

PACKCLDAT as the input data file to decompress. The reader will note

66

67

10
20

30

40

50

60

70

BO

90

100

105

110

120

130

140

150

160

170

130

190

200

210

220
230

240

250

2b0

290

300

310

320

322

324

326

330

335

340

345

350

362

370

375

380

390

400

410

415

430

440

445

450

460

470

430

485

490

495

498

4??

REM PACKD.BAS PROGRAM
DIM 05(132)

WIDTH BO:CLS

’tlllttttttMAIN ROUTINEIIlltltllllltlltlltltl

’t THIS ROUTINE READS RECORDS FROM AN ASCII I
’1 FILE INTO A STRING CALLED X$ WHICH IS

’* THEN PASSED TO DECOMPRESSION SUBROUTINE

I

t

’IXXIIIXIXIIIXXIIlllttlllllltltllttltltltlltt

PRINT "ENTER ASCII FILENAME. EG, PACKC.DAT"
INPUT F$= OPEN F$ FOR INPUT AS #2

OPEN "PACKD.BAT" FOR OUTPUT AS #3

PRINT "PATIENCE — INPUT PROCESSING“

IF EOFiZ) THEN GOTO 9000

LINE INPUT #2, X$
N= LEN(X$)

GOSUB ISO

GOSUB 900

GOTO 120

’IIIIIHALF BYTE DECODING SUBROUTINEttttllti

’1 THIS ROUTINE PROCESSES RECORDS FROM X$ *

’1 AND DECOMPRESSES BYTE—ENCODED CHARACTERS!

’* USING O$ AS THE OUTPUT BUFFER. t

’RESET INDEX

’STEP THRU RECORD

’EXTRACT A CHAR

’COMPRESSION FLAG?

’STUFF IN OUTPUT BUFFER

’BUMP BUFFER INDEX

’GO BACK FOR MORE

’xttxttxttttIIIXIttttxtttttttxtttttxtt1ttttt
J=1

FOR I= 1 TO N

A$= MID$(X$,I,1)

IF Ag; CHR$(129) THEN 33o
O$(J)=A$

J=J+1

NEXT I

RETURN ’END OF STRING

’l113111311titlttlttlIItItitlllltItittttittlttltttttl

’DECODE COMPRESSION NOTATION TO OUTPUT BUFFER I

’litttlttttlittttilltl*1tillilttllllitlttttittllltttt

MASK1= &HFO

MASK2= &HF

K: ASCIMID$(X$,I+1,1))
M= 1+(K/2)

FDR L=I+2 TO M

Z= ASC(MID$(X$,L,1))
X= (2 AND MASK1)/16

IF X< 10 THEN 430

IF = 10 THEN OSiJ)= "5"

IF = 11 THEN O$(J)= ",“
IF = 12 THEN O$(J)= ".“

IF = 13 THEN O$(J)= "I"

GOTO 440

O$(J)= CHR$(X+4B)

Y: 2 AND MASKZ

IF Y< 10 THEN 490

IF = 10 THEN O$(J+1)= "i"

IF = 11 THEN O$(J+1)= ","
IF = 12 THEN O$(J+1)= "."
IF = 13 THEN O$(J+1)= “I"

GOTO 495

O$(J+1)= CHR$(Y+4B)

J= J+2

NEXT L:I= M

GOTO 310

’11110000

’00001111
’GET STRING LENGTH

’SET END OF STRING

’SETUP LOOP TD DECODE

’GET BYTE

’MASK LOWER HALF-BYTE

’ITS NUMERIC

’SPECIAL
’SPECIAL

’SPECIAL

’SPECIAL

’SKIP IF SPECIAL

’OUTPUT IST NUMERIC

’MASK UPPER HALF-BYTE

’ITS NUMERIC

’SPECIAL

’SPECIAL

’SPECIAL

’SPECIAL

’SKIP IF SPECIAL

’OUTPUT 2ND NUMERIC

’BUMP OUTPUT BY TWO

’CONTINUE, BUMP INPUT INDEX
’GO BACK FOR MORE

Figure 2.27 PACKD.BAS program listing

67

68

65

900 ’*¥*¥*TALLY THE DECOHPRESSION COUNT & WRITE EUFFERI¥¥¥
910 ’1 DISPLAY BEFORE & AFTER RESULTS OF DECOHPRESSION *

920 ”I AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD *
30 ’$**¥¥t#**#¥*#***X¥**$113XXXKIIXIIXIXXIIIIIIItltitittt

931 N1=N1+N ’TALLY INPUT CHAR COUNT

932 T=N—J+1 ’NET DIFFERENCE IN BUFFERS

935 T1=T1-T “SAVE COUNT FOR SUMMARY
940 FOR I: 1 TO J—1

950 PRINT #3, O$(I);
960 NEXT I

965 PRINT #3. ""
970 RETURN

9000 CLOSE: OPEN F5 FOR INPUT AS #2

9010 PRINT "FILE ";F$;" BEFORE DECOMPRESSION:"

9020 LINE INPUT #2,X$
9030 IF EOF(2) THEN 9060
9040 PRINT X$

9050 GOTO 9020

9060 PRINT X$=OPEN "PACKD.DAT" FOR INPUT AS #3

9070 PRINT "FILE ";F$;" AFTER DECOMPRESSION:“

9030 LINE INPUT #3,0$
9090 IF EOF(3) THEN 9998
9100 PRINT Oi

9110 SOTO 9080

9998 PRINT O$=PRINT Tlg" TOTAL CHARACTERS INSERTED"
9999 CLOSE:END

Figure 2.27 (continued)

ENTER ASCII_FILENAHE. EB, PACKC.DAT
? PACKC.DAT

PATIENCE — INPUT PROCESSING

FILE PACKC.DAT BEFORE DECOMPRESSION:

1 ’+,fi;EkxleC3Eg eC3Eg 99

2 ’—0rIr+2 —ZSk)kN<wRdHIsV39

3 ’$$CDEFGHIPGRSTUUWXY33

FILE PACKC.DAT AFTER DECOMPRESSION:

1 ’+$43,456,789.87*I6543334567898765433345678993
2 ’-$9335$72.57$B9.45$33b,296,573.857TSES45749735533
3 ’$43444546474B495051525354555657535933

55 TOTAL CHARACTERS INSERTED
Ok

Figure 2.28 Sample execution of the PACKD.BAS program

that the first three lines in Figure 2.27 are identical to the last three lines of

Figure 2.26 while the last three lines of Figure 2.28 that represents the

decompressed data are identical to the top three lines of Figure 2.26. Again,

this is no surprise since the decompression program simply reconstructs the

compressed data into its original form. The reader should also note that the

61 characters denoted as eliminated by half—byte compression in Figure 2.26

68

69

 66

do not take into account the additional compression characters required to
indicate each occurrence of half—byte encoding. If this was done, then a tOtal
of 55 characters would have been eliminated which matches the 55 character
insertion count in Figure 2.28.

2.5 DIATOMIC ENCODING

As the name implies, diatomic encoding is a data-compression process where-

by a pair of characters is replaced by a Special character. The bit structure

of the special character represents the encoded pair of characters and, thus,
permits a 50 per cent data reduction or a 2:1 compression ratio.

Since the number of special characters that can be employed to represent

different types of compression is limited, the theoretical potential of obtaining
50 per cent data reduction by substituting 1 character for every pair of

characters cannot be obtained. To maximize one’s potential compression

requires a prior understanding of one’s data composition. Once one knows

the expected frequency of occurrence of pairs of characters, then the most

commonly encountered pairs can be selected as candidates for diatomic

encoding. The actual number of pairs selected will depend upon the number

of special characters available to represent those pairs of frequently occurring
characters.

Operation

A block diagram representation of the diatomic encoding process will be

found in the top portion of Figure 2.29. In the lower portion of that

illustration is a flowchart denoting the major processes required to encode

data diatomically. Note that the flowchart assumes that a continuous input

data stream occurs. In actuality, the input and output buffers would be of

finite length. Since the output buffer will always be less than or equal to the

character size of the input buffer, one may be able to assign a pointer which

will be incremented through the input buffer. Upon reaching the end of that

buffer, the contents of the output buffer will be transmitted while the input

buffer will be refilled with additional non-compressed data.

Pair frequency of occurrence

The major problem in the implementation of diatomic encoding is in deter-

mining what pairs should be represented by special characters. To perform

diatomic encoding and obtain a meaningful compression ratio requires the

the assignment of special characters to represent the most frequently occur-

ring pairs of characters one will encounter in the original data steam. This

means one must have some prior knowledge concerning the type of data to

be operated upon so that one can base the assignment of special characters

in a meaningful manner (Snyderman and Hunt, 1970).

69

70

A. aenmemomprocess

Character Character 3

5 Diana/nib encorfihg flow chart

OBTAIN PAIR OF
CHARACTERS

IN
PAIR TABLE

PLACE FIRST
CHARACTER 3N
OUTPUT BUFFER

PLACESUBSTITUTION

CHARACTER IN
OUTPUT BUFFER

SHIFT SECOND
CHARACTER INTO
FIRST POSITION

GET NEXT
CHARACTER

Figure 2.29 The diatomic encoding process

To assist readers in selecting the appropriate character pairs to replace

with special characters, several tables of pair combinations are presented in

this section. In Table 2.7, the reader will find a table containing the first 25

most frequently encountered pairs of characters in a 12 198 character English

language text (Aronson, 1977). This table, prepared by Jewell, denotes the

rank, pair combination, number of occurrences of the pair and the occur—

rences per thousand data characters (Jewell, 1976).

Since many users of data transmission will transfer program files in addition

to textual data, an analysis of the paired character composition of BASIC,

COBOL and FORTRAN programs is presented. The analysis of these

programs was obtained by the execution of the DATANALYSIS program

written by 4—Degree Consulting located in Macon, Georgia. This program

performs a compression susceptibility analysis upon data files and the paired

character analysis listed in Tables 2.8 to 2.11 is but one of several compression

70

71

68

Table 2.7 Jewell character combination pairing

Occurrences

Rank Combination Occurrences per thousand

1 E_ 328 26.89

2 _T 292 23.94

3 TH 249 20.41

4 _A 244 20.00

5 S_ 217 17.79

6 RE 200 16.40

7 IN 197 16. 15

8 HE 183 15.00

9 ER 171 14.02

10 _I 156 12.79

11 _O 153 12.54

12 N_ 152 12.46

13 ES 148 12. 13

14 _B 141 11.56

I 15 ON 140 11.48
16 T_ 137 11.23

17 TI 137 11.23

18 AN 133 10.90

19 D_ 133 10.90

20 AT 119 9.76

21 TE 114 9.35

22 _C 113 9.26

23 _S 1 13 9.26

24 OR 1 12 9.18

25 L 109 8.94

Note:—represents a space character

algorithms analysed by that software package. The listing of the software

statements in the DATANALYSIS program will be found in Appendix B

(p. 162)-Its use will facilitate the selection of one or more compression

algorithms based upon an analysis of the susceptibility of one’s anticipated

or actual data traffic to several compression algorithms.

Table 2.8 shows the paired character compression analysis results based

upon an examination of a 9322 character BASIC program. In general, most

BASIC language programs contain a high proportion of input messages and

prompts as well as output headings. This structure makes the paired character

consistency form a modified English text paired character consistency. Nor-

mally, the degree of deviation from normal English textual data pairs results

from the ratio of computation statements to input/output statements in the

program. In Table 2.8, note that ’_P’ ‘NT’ and ‘R1’ are the most commonly
encountered pairs. All three pairs come from PRINT statements in the

program with the pair ‘___P’ resulting from a programmer using a space to

precede each PRINT statement. Similarly, the BASIC language statement

71

72

q-

69

Table 2.8 Paired character compression analysis, basic data file of 9322 characters

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

__P 13 NT 13 R1 13 fiT 12 _ 11 LI 8

O_ 7 HE 7 __B 6 _S 6 T_ 5 N_ 5

A 5 F 5 _E 4 AB 4 BU 4 EX 4

1L 4 IN 4 IO 4 N1 4 _N 4 _U 4

TO 4 TS 4 _F 3 L 3 S_ 3 ND 3

E_ 3 _R 3 OF 3 UR 3 OU 3 _C 3

SE 3 ET 3 _O 3 _D 2 NP 2 NS 2

EL 2 AC 2 ON 2 IR 2 OT 2 IT 2

LI 2 R0 2 LL 2 AT 2 NO 2 UT 2

IM 1 AL 1 AN 1 _K 1 B O 1 IU 1

LA 1 LD 1 BR 1 L 1 L0 1 LU 1

MB 1 CK 1 NE 1 CO 1 CT 1 NO 1

DO 1 ED 1 _X 1 NU 1 EN 1 0L 1

E0 1 ER 1 OS 1 ES 1 Y_ 1 PP 1
PS 1 PT 1 iY 1 GH 1 _G 1 SO 1

SS 1 ST 1 TA 1 TE 1 TH 1 TI 1_
HI 1 HT 1 TU 1 UG 1 U1 1 UL 1

UN 1 IA 1 VA 1 XX 1 YE 1 Y1 1

ZE 1 * * 0 * * 0 * * 0 * * 0 =k * 0

Total combinations found: 288

Note:—represents a space character

of the form ‘IF X:Y THEN’ can be denoted by the frequently encountered

pairs ‘_I’, ‘F_’ and ‘HE’.

In Table 2.9, the results of a similar analysis of a 20 465 character FOR-

TRAN program is presented while Table 2.10 denotesthe pairs encountered

when a 54417 character COBOL program was analysed. In the FORTRAN

program analysis, common pairs result from such frequently used statements

as ‘FORMAT’, ‘WRITE’ and ‘READ’. Similarly, common pairs encountered

in the COBOL program are normally a result of the ‘PICTURE 15’ state-

ment. Finally, Table 2.11 shows the results of an analysis of the merger of

the individual BASIC, FORTRAN and COBOL programs into one entity.

Here, the 230 paired characters represent 16 266 total combinations. Since

the file contained a total of 84 204 data characters, diatomic compression of

the 230 most frequently encountered pairs would result in a 19.3 per cent

(16 266/84 204) data reduction. Note that the 12 most frequently encountered

pairs represent a potential data reduction of 4388 characters or approximately

25 per cent of the theoretical reduction obtainable by diatomically encoding

the 230 most frequently encountered pairs. From this, it is apparent that

diatomic encoding can be effectively used in conjunction with other com-

pression techniques by selecting only a portion of the most frequently

expected pairs of characters for representation by special compression indi-
cator characters.

72

73

70

Table 2.9 Paired character compression analysis, FORTRAN data file of 20 465
characters

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

_I 167 __F 116 TE 106 UT 105 OR 99 0U 99

RI 96 _W 87 MA 86 _C 86 IN 86 TP 81

IR 69 HA 66 _S 61 O_ 60 ER 60 C_ 57

IT 51 HE 48 EN 46 RA 44 _D 42 E_ 42

AL 40 RE 39 SI 38 IX 38 ON 37 _T 36

HS 35 HD 34 TO 34 SU 33 _R 32 T_ 31

IM 30 ;B 30 TA 30 HB 30 HF 30 HN 30

HC 30 H0 29 HR 29 HG 29 HU 29 HV 29

TI 29 HH 29 HL 29 AR 29 H] 28 HT 28

_N 28 HM 28 HW 28 HX 28 HY 28 HZ 28

IA 28 CT 28 HI 28 IP 28 HP 28 HQ 28

H] 28 L_ 27 IO 26 _G 26 E0 25 NY 25

*0 25 UB 25 IY 25 LE 24 _E 24 _P 23

AN 23 _ 23 N_ 23 ND 22 CO 22 SE 22

#A 22 Yfi 21 AT 21 L 20 S_ 20 IS 20

R0 20 IC 20 NC 20 PR 20 ED 19 TR 18

G? 18 UR 18 ES 18 OT 17 ET 16 NG 16

NA 16 LY 16 TH 15 AC 15 PE 14 D_ 14

PU 14 UM 14 NU 14 CH 14 BL 13 IV 13

L1 13 _J 13 F1 12 PF 12 G0 12 _K 12

OW 12 ST 12 _M 11 IL 11 SS 11 LA 11

AI 11 EP 11 NS 11 DA 11 EA 10 EC 10

TS 10 TY 10 F0 10 UE 10 F! 10 UN 10

Total combinations fOund: 4370

Note: _represents a space character

Communications hardware implementation

The use of a diatomic data-compression technique was implemented by

Infotron Systems in combination with several other compression algorithms

on their TL780 statistical multiplexer.

In a conventional time division multiplexer, data from each input channel

is assigned to a slot on the high-speed multiplexed output line, regardless of
whether or not the bandwidth is used. Since each input line is assigned a

corresponding time slot, implementing compression on the high speed link

will not increase any individual line efficiency. If compression is implemented

on the low-speed line side, normally referenced as the channel side or level,

the efficiency of only each low-speed compressed link will be increased, since

each link is reserved a fixed slot on the high-speed side. This is illustrated

in the upper portion of Figure 2.30.

In a statistical multiplexer, the bandwidth for a particular channel on the

high-speed link is used only when the channel is transmitting data or control

signals. Therefore, compression of one or more low—speed links permits the

73

74

71

Table 2.10 Paired character compression analysis, COBOL program containing 54 417

characters

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

__P 542 _F 391 IC 342 AL 316 IN 309 RE 297

E__ 286 LV 251 _X 243 _W 239 LE 235 L 235

_T 231 IL 229 UE 229 TE 221 PG 212 _O 211

NT 204 M_ 190 AR 186 R0 186 O_ 182 UT 178

CN 164 _C 164 CT 156 LN 153 R1 152 _M 151

CH 149 _L 148 OV 144 CI 141 F0 139 TY 137

_B 136 OR 129 _S 129 _I 122 LA 118 TO 110

BR 109 G_ 108 NG 106 RM 102 EF 101 CE 97

AD 91 _ 91 VA 90 PA 88 ES 87 AC 84

NC 84 T_ 82 F_ 79 AN 79 TA 67 DV 66

FI 63 S_ 61 WR 60 TI 59 ST 57 _E 55

Y_ 54 PU 52 _R 50 BU 49 QU 48 OM 46

ON 44 OT 43 AT 43 OF 42 CO 40 RK 40

LS 36 CD 35 D_ 35 NE 35 AS 34 0U 33

_Z 33 _G 33 ME 32 IV 30 RP 30 EN 30

ND 29 _U 28 BE 27 OP 27 L_ 25 H_ 24

EL 24 TP 23 SE 23 CA 22 _H 22 _D 22

TH 22 DD 21 TR 20 ET 20 VE 20 VI 20

EC 20 YI 20 _N 19 GS 19 IT 19 C_ 19

GE 18 WA 18 UA 18 SH 18 _K 17 IM 17

RA 17 RS 17 MO 16 DE 16 G1 15 EX 15

ED 15 MP 15 CC 15 W0 15 E0 15 UN 15
LI 14 IO 14 LQ 14 UR 14 D1 13 FL 13

Total combinations found: 12 509

Note: firepresents a space character

statistical multiplexer to utilize less of the bandwidth of the high-speed line
for the low—speed link being compressed. The compression of the low-speed
link at the channel side will then result in a lower, high—speed line rate or

permit more low—speed channels to be added since compression reduces

the total number of data characters transmitted over the high-speed line.
Conversely, if compression is performed at the high-speed line level, the
number of characters transmitted on that link will be reduced. This will

permit a lower composite high-speed operating data rate or permit additional
low-speed channels to be added. While some vendors have elected to com-

press the high-speed link, Infotron uses a diatomic encoding process com-

bined with additional data-compression techniques on their low-speed chan-

nel adapters to perform compression at the channel level. This technique
permits the user to select which channels, if any, should be compressed.

In the Infotron technique, statistical multiplexer compression occurs
through the use of multiple-space codes, repeated character codes, common

character pair codes (diatomic encoding) and packed decimal codes (half-

74

75

72

Table 2.11 Paired character compression analysis, combined 84 204 character file

Pair/count Pair/count Pair/count Pair/count Pair/count Pair/count

_P 578 _F 510 IN 399 IC 362 AL 357 RE 336

E_ 331 TE 328 _W 326 __I 297 UT 285 _T 279

RI 261 LE 259 L 258 _V 255 _C 253 _X 252

O_ 249 NY 242 IL 240 UE 239 _O 239 OR 231

AR 215 PG 212 R0 208 _S 196 M— 194 CT 185

_B 172 ER 170 CN 164 CH 163 _M 162 _L 159

LN 153 F0 149 TO 148 TY 147 _A 145 UV 144

CI 141 DU 135 G... 126 125 N6 124 T_ 118

CE 107 ES 106 RM 105 TP 104 NC 104 AN 103

EF 102 AC 101 PA 98 TA 98 MA 94 F_ 94

AD 91 VA 91 TI 89 _R 85 S_ 84 _E 83

ON 83 EN 77 HA 77 C_ 76 Y_ 76 F1 75

IT 72 IR 71 ST 70 DV 66 PU 66 AT 66

_D 66 CO 63 OT 62 HE 62 RA 61 _G 60

WR 60 QU 56 ND 54 OF 54 BU 54 OM 53

L_ 52 N 51 D_ 49 SE 48 IM 48 IO 44

IV 43 SI 41 NE 41 E0 41 RK 40 N_ 40
ET 39 IX 38 TH 38 TR 38 ME 38 HD 37

AS 37 LS 36 HR 36 UB 35 HS 35 CD 35

_U 35 ED 35 __Z 34 SU . 33 H0 33 HP 32

HY 32 UR 32 IA 31 IS 31 HI 31 OP 31

HF 30 HB 30 HN 30 PR 30 HC 30 RP 30

__K 30 EC 30 LI 29 HV 29 HH 29 BE 29

Total combinations found: 16 266

Note: _ represents a space character

byte encoding). In addition, since data must be queued at the channel level

to compress it, it becomes necessary to transmit control signals through the

data path of the high-speed link to preserve the time relationship between

data and control signals. The addition of these signals reduces the overall

compression efficiency. Since each channel adapter on the multiplexer

requires a buffer area and a microprocessor to effect compression, com-

pression of a large number of low-speed channels becomes more expensive

from a hardware standpoint than compressing data at the high-speed line

level where only one buffer area and a single microprocessor are required.

The Infotron channel adapter that performs compression only operates on

asynchronous ASCII coded data. To obtain a sufficient number of special

compression indication codes, the parity bit in the normal 8-bit ASCII code

is stripped for transmission. This results in 128 character codes that can be

used to represent and indicate compressed information. The stripping of

parity by the microprocessor within the multiplexer has no effect on errors

since the multiplexer employs an HDLC-like frame transmission on the high-

speed link level to include generating a cyclic redundancy check of trans-
mitted frames.

75

76

L0w- speed
links

on

High — speed link

Low - speed
links

B_

Slotislicdl
multiplexer

High - speed link

Figure 2.30 Multiplexing and compression. If compression occurs on one or more
low-speed links, the effective information transfer ratio of those individual links will
increase when a conventional TDM is employed. When statistical multiplexers are

employed, data may be compressed at the individual channel level or overall at the
high-speed line level

In the Infotron system, codes are assigned to represent groups of 2 to 7

consecutive spaces for various multiple-space compression code schemes.
These codes are most effective when transmitted data has been formatted

in columns separated by groups of spaces or for textural information that

contains paragraph indentations and margin justification through the use of

spaces.

To represent repeated characters, 16 codes were assigned to represent

groups of 3 to 18 consecutive identical characters. This code is followed by

the character to be repeated, in a similar way to run—length encoding, and

results in a 2-byte code. To represent common character pairs, 48 codes

have been assigned. The characters pairs used by Infotron are listed in Table

2.12. With the exception of the decimal point space and carriage return line

Table 2.12 Common character pair codes

compressed by Infotron: both upper and

lower case

S___ _T IN TE AN

T_ _A ED ER TI

E_ fiN AT RE ON

R— _0 ES TH CRLF

D_ _1 SE HE

Note: _ represents a space character. CRLF
denotes carriage return followed by line feed

76

77

74

feed pairs, all other pairs include both upper and lower case characters.

Lastly, 16 codes are assigned to specify when 4 to 19 characters are in

packed decimal (half-byte) format. Here, characters are represented by 4-
bit codes packed 2 per 8*bit byte. In addition to numerics, the dollar sign,
period, comma, per cent and diagonal sign and space are stripped of the
leading 4 bits if they occur in the string and are included in the packed
format.

Although the effectiveness of the compression technique employed obvi—

ously depends upon the data to which the technique is applied, using multiple
techniques increases the possibility of being able to use one technique
effectively upon a portion of the data stream. During channel adapter
compression tests, a compressiOn ratio of up to 1.8 was noted by Infotron,
indicating that only 55 per cent of the input data stream was actually
transmitted.

Programming examples

The BASIC program PAIRC.BAS listed in Figure 2.31 was developed to
perform diatomic compression based upon the Jewell character combination

10 REM PAIRC.BAS PROGRAM
20 DIM 05(132)

ED WIDTH 80:CLS

40 ’ttittiifittMAIN ROUTINEIIIfiIl¥$¥¥¥¥¥¥¥$*ltttt

50 ’* THIS ROUTINE READS RECORDS FROM AN ASCII ¥

60 ’1 FILE INTO A STRING CALLED X$ WHICH IS *

7G ’* THEN PASSED TO SUEROUTINES FOR COMPRESSION

SO ’Itit#**¥¥*¥*¥**¥X*****¥**t******¥*******¥*X*

90 PRINT “ENTER ASCII FILENAME. ES, PAIR.DAT"
100 INPUT F$= OPEN F$ FOR INPUT AS #2

105 OPEN "PAIRC.DAT" FOR OUTPUT AS #3

110 PRINT ”PATIENCE — INPUT PROCESSING"

115 SOSUE 40C) "PAUSE TO SET UP TABLE
120 IF EOFiZ) THEN SOTO R000

136 LINE INPUT #2, X$
140 N= LENTX$J
150 SOSUB ISO

153 SOSUE 900
IPU SOTO 120

180 ’fitikiDIATOMIC COMPRESSION SUEROUTINE¥¥¥¥¥¥¥
190 3* THIS ROUTINE PROCESSES RECORDS FROM X$ I

200 ’* AND COMPRESSES OUT COMMON PAIRS *

210 ’* USING O$ AS THE OUTPUT BUFFER. I

220 ’#*¥¥**¥****¥****X*tiI**t*¥***¥**¥¥*$t¥*1¥¥*

23$ I=1 ”RESET INDICES

240 FOR J: 1 TO N-l ”STEP THRU RECORD

250 A$= MID$£X$,J,2 ”EXTRACT A PAIR

Figure 2.31 PAIRC.BAS program listing

77

78

75

FOR K = 1 TO 25 ’SETUP PAIR TABLE LOOP

IF A$=P$(H} THEN GOSUB 350 ’IS INPUT PAIR IN TABLE?

NEXT K ”NO - TRY NEXT

IF H = 1 SHEN 310 ’IF MATCH FLAG SET?

O$(I) = MID$(A$,1,1) ’NO-STUFF lST CHAR IN BUFFER
I=I+1 ’BUMP INPUT STRING INDEX

N=0 ’RESET HATCH FLAG
NEXT J ’GO BACK FOR MORE

RETURN ”DONE

M=1 ’SET PAIR MATCH FLAG

’titlttittfiitfitfi****¥tiittltifl$1181*ltitlitilitlttlliitit
=INSERT CUNPRESSIUN NUTATIUN IN UUTPUT BUFFER

v = K + 224 ’INDEX UUT TU SUBSTITUTE CHAR

D$(I)=CHR$(V) ’INSERT PAIR SUBSTITUTIUN

J=J+1 ’FDREE INPUT SHIFT 2 DVER PAIR

- R = 25 =FURCE END UF PAIR SEARCH

RETURN ’60 BACK FUR MURE

DIR P$£25) ’JENELL CHAR. COMBINATION PAIRS

DATA ”E "," T",TH," A”,"S ",RE,IN,HE,ER," 1"," U"."N ",ES,

DATA " B",UN,"T ",TI,AN,"D ",AT,TE," C"," S",UR,"R "
FUR I = 1 TU 25 =SETUP PAIR TABLE

READ 25 ”GET CUMMUN PAIR

P$(I) = Zfi: NEXT I ”AND STUFF INTU PAIR TABLE
RETURN =DUNE — TABLE CUMPLETE

’tttttTALLY THE CUNPRESSIUN CUUNT & NRITE BUFFEthtttx
=1 DISPLAY BEFURE & AFTER RESULTS UF CUMPRESSIUN 1

=1 AND SHUN THE NET RESULTS UBTAINED BY EACH NETHUD t

’tittitttxxxxxxxtxxtxxx$1:xxtxtxxxxxtx:ttx*xtxttttxx#x

N1=N1+N ’TALLY INPUT CHAR CUUNT

T=N—I+1 =NET DIFFERENCE IN BUFFERS

T1=T1+T ’SAVE CUUNT FUR SUMMARY
FOR I=1 TO J—1

. PRINT #3, O$(I);
NEXT I

PRINT #3, ""
RETURN

PRINT

PRINT "$1RUN—LENGTH ENCODING SAVED ":T:" CHARACTERS"
RETURN

CLOSE: OPEN F$ FOR INPUT AS #2

PRINT "FILE ";F$;" BEFORE COMPRESSION:“

LINE INPUT #2,X$
IF EOF(2) THEN ROSO

PRINT X$
GOTO 9020

PRINT X$=OPEN "PAIRC.DAT" FOR INPUT AS #3

PRINT “FILE ";F$;" AFTER COMPRESSION:“

LINE INPUT #3,0$
IF EOF(3) THEN 9RRS

PRINT Oi

GOTO 9080

PRINT O$:PRINT T1;" TOTAL CHARACTERS ELIHINATED FROM ";

PRINT N1;"OR “;INT(CT1!N1)*1DO);"2":CLOSE:END

Figure 2.31 (continued)

78

79

76

pairing previously listed in Table 2.7. Although this example of diatomic
compression was programmed to use the Jewel] character combination
pairing, it is easily modified to compress data based upon the use of other
character pairs that may more appropriately reflect the reader’s data.

Similar to other compression routines previously presented in this chapter,
the diatomic compression program was developed using subroutines linked

together to provide distinct code modules that can be easily analysed by the

reader. After the data file is opened in line 100, the subroutine commencing
at line 400 is invoked. This subroutine initializes the P$ array elements to

the Jewell character combination pairing, resulting in 25 character pairs
assigned to the array P$. The reader can change the data pairs contained in

lines 410 and 420 of the subroutine, however, if the number of data pairs is
changed from 25, the appropriate indices in the program must be changed
to reflect the actual number of pairs. In addition, the dimension size of the

P$ array must be changed to reflect the new number of pairs to be used in

the diatomic compression routine. Thus, lines 400 and 425 would require
modification in the subroutine previously discussed when a new set of charac-
ter pairs are entered in lines 410 and 420 whose sum differs from 25.

After a line of data is read in line 130, its length is determined in line 140.

The subroutine invoked in line 150 processes the line of data read from the

file commencing in line 230. After the indices are reset in line 230, the FOR-

NEXT loop bounded by lines 240 to 330 steps through the record, extracting
pairs of data in line 250. The inner FOR-NEXT loop bounded by lines 260
and 280 compares the pair extracted from the record in line 250 to the pairs
contained in the pair table previously set up by the subroutine in line 400.
The reader should note that the outer limit of 25 in line 260 should also be

changed if the number of pairs used in the program changes from that value.

If a pair of characters extracted from the record matches a pair in the pair
table, the subroutine in line 350 is invoked. Line 350 uses the variable M to

denote that a match occurred. In line 365, the variable V is set to the sum

of the variable K plus 224. Here the value of K is the position in the pair
table where the pair extracted from the record matched a predetermined

pair. The reason 224 was added to this value was for clarity of display of
the results of this compression routine. That is, italics are printed from

ASCII 225 upward on many printers including one printer used by the
author. Thus, the pair ‘E space’ is represented by an italic ‘a’ when printed,
and so on.

The pair substitution character is inserted into the appropriate element of
the 013 array as indicated in line 370. Note that J is incremented by 1 in line
380 to force a shift over the current position in the input record. Next, line

390 sets K to 25 to terminate the pair comparison in the FOR—NEXT loop
bounded by lines 260 and 280, from which the compression routine was
called and to which it returns upon execution of line 395.

Since the variable M was set to 1 to indicate a pair match occurred, the
termination of the FOR K loop causes the execution of line 290 to result in

79

80

77

ENTER ASCII FILENAME. ES, PAIR.DAT
? PAIR.DAT

PATIENCE ” INPUT PROCESSING
FILE PAIR.DAT BEFORE COMPRESSION:
1 TO BE OR NOT TO BE THAT IS THE QUESTION

2 THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN
FILE PAIR.DAT AFTER COMPRESSION:

ironfl- NOiTOflflnJflrnflOUfiEE

2r§ RATflmSPAT FALLUMATLYflmnflPLAT

30 TOTAL CHARACTERS ELIMINATED FROM 91 OR 32 1
Ok

ENTER ASCII FILENAME. ES, PAIR.DAT
? PAIR.DAT

PATIENCE — INPUT PROCESSING

FILE PAIR.DAT BEFORE COMPRESSION:

1 TO BE OR NOT TO BE THAT IS THE QUESTION

2 THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN

1 FILE PAIR.DAT AFTER COMPRESSION:
IPOHE- NOiTOHflnJflrflBQUEEE

l 2P§ RATflmSPAT FALLUMATLYflmflflPLAT
I 29 TOTAL CHARACTERS ELIMINATED FROM 36 OR 33 1

Ok

Figure 2.32 Sample execution of PAIRC.BAS program as displayed on a monitor

a branch to line 310. Here the index used for the 035 array is increased by

I one and the match flag is reset to zero prior to the loop terminating.

i' Figure 2.32 illustrates how the execution of the diatomic compression

routine will appear on one’s monitor while Figure 2.33 illustrates the screen

image after it has been ‘dumped’ to a printer that outputs ASCII values

from 225 upward as italics. Thus, some readers may prefer to use the

execution illustrated in Figure 2.33 to compare the compression characters

in italics with respect to the original data and the Jewell character com-

bination pairs used in the program. Since an italic lower case ‘3’ represents

the first combination pair while an italic ‘b’ represents the second pair and

ENTER ASCII FILENAME. EB, PAIR.DAT
? PAIR.DAT

PATIENCE — INPUT PROCESSING

FILE PAIR.DAT BEFORE COMPRESSION:

1 TO BE OR NOT TO BE THAT IS THE QUESTION

2 THE RAIN IN SPAIN FALLS MAINLY IN THE PLAIN

FILE PAIR.DAT AFTER COMPRESSION:

IbOoay NOqTOoaquecaOUnrp

Ebb RAngSPAg FALLEMAgLlecaPLAg
30 TOTAL CHARACTERS ELIMINATED FROM 91 OR 32 Z

Figure 2.33 Sample execution of PAIRC.BAS program when printed using a printer

l that displays characters greater than ASCII 224 as italics

80

81

78

so on, it should be easier to use the second example of the PAIRC.BAS
program execution for readers who wish to follow the logical flow of the
program in detail.

Decompression

The program listing of PAIRD.BAS is listed in Figure 2.34. As indicated by
the naming conventions used in this book, this program performs decom_
pression upon previously compressed pairs of characters.

From an examination of the program coding listed in Figure 2.34, the
reader will note that the construction of the code modules for decompression
closely resemble the previously examined compression program. Although
our programming goal was to do this to facilitate a comparison between
programs, due to the relationship between compression and decompression
such modular coding relationships will normally be the rule and not the
exception.

After opening files for input and output, the subroutine beginning at line
500 is invoked by line 115 of the program. This subroutine simply builds the
P$ table that will contain the Jewell character combination pairs that the
program will search for. In line 130, the familiar LINE INPUT statement is

used to obtain a record from the input file. Next, line 140 is employed to
determine the length of the record while line 150 invokes the subroutine
beginning at line 180 which performs the actual decompression of data.

The FOR-NEXT loop bounded by lines 240 and 310| searches through the
record previously extracted from the input file on a character by character

10 HEN PAIRD.EAS PROGRAM
20 DIM 05(132)
30 WIDTH BO:ELS

4D ’lttttiflltlflAIN RDUTINEIIIII‘tittiltilitttIt!

50 ’1 THIS RDUTINE READS HECDRDS FROM AN ASCII X

60 ’1 FILE INTD A STRING CALLED X$ WHICH IS *

70 ’1 THEN PASSED TD DECDMPRESSIUN SUERDUTINE *

SD ’iXIIXXIIII**1¥*¥¥¥¥¥¥1tittiKttIItititttltitl

90 PRINT "ENTER ASCII FILENAME. ES, PAIRC.DAT"
100 INPUT Fi: DPEN F$ FDR INPUT AS #2

105 DPEN "PAIRD.DAT“ FDR DUTPUT AS #3

110 PRINT "PATIENCE — INPUT PROCESSING"
115 EUSUB 560

20 IF EDFiE) THEN BUTU 9000

130 LINE INPUT #2. X$
140 N= LEN(X$)

150 SDSUE 180

160 GDSUB 990

1?0 EUTD 120

Figure 2.34 PAIRDBAs program listing

81

82

79

180 ”¥¥¥¥*DIATOMIC DECODING SUBROUTINEIIIIfliit

190 ”1 THIS ROUTINE PROCESSES RECORDS FROM X$ K

200 ”I AND DECOMPRESSES PAIR—ENCODED CHARACTERS¥

210 ”* USING O$ AS THE OUTPUT BUFFER. X

220 ”I¥¥Ktfilt*iiitttiflt*#¥**¥Kittlttflttittflitltl

230 K=1=J=1=V=0 ”RESET INDICES
240 FOR 1= 1 TO N ”STEP THRU RECORD

250 A$= MID$(X$,I,1) ”EXTRACT A CHAR
260 IF A$} CHR$(224) THEN 360 ”COMPRESSED PAIR?

290 O$(J)=A$ ”STUFF IN OUTPUT BUFFER

300 J=J+1 ”BUMP BUFFER INDEX

310 NEXT I ”GO BACK FOR MORE

320 RETURN ”END OF STRING

355 ”¥**##*#**¥¥***I*¥*¥*1*i$****tkit******fl¥t¥#****$¥$11

360 ”DECODE COMPRESSION NOTATION TO OUTPUT BUFFER

365 ”*********$**¥#************$**$*¥*$$¥¥¥¥¥¥¥¥$¥¥¥l¥$¥¥
373 N: ASC<A$) ’EET DRDINAL EDUIV.

BBD R: R—224 ’SUETRACT FDR INDEX
390 D$(J)= P$(R) =BTUFF PAIR IN BUFFER

400 J= J+1 =BUNF DUTPUT INDEX

405 v: v+1 “SUM VARIABLE COUNT

410 BBTD 31D =DDNE

500 DIN Pstzfi) ’JEWELL CHAR. EDNBINATIDN PAIRS

510 DATA "E "," T",TH," A","B ",RE,IN,HE,ER," 1“," D","N ",E3,
520 DATA " B",DN,"T ",TI,AN,"D ",AT,TE," c"," s",DR,"R "
BBB FDR I = 1 TD 25 ”SET UP PAIR TABLE

540 READ 2; ’BET CDNNDN PAIR

550 P$(I) = zm: NEXT I ’AND STUFF INTU PAIR TABLE

560 RETURN ’DDNE — TABLE CDNPLETE

900 ”¥¥$¥*TALLY THE DECOMPRESSION COUNT & WRITE BUFFER¥***
910 ’* DISPLAY BEFORE & AFTER RESULTS OF DECOMPRESSION 1

920 ”X AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD 3

930 ’1*¥¥¥¥*¥¥¥*I¥¥¥*******¥t*titfiitillitiitltltilttiilitfl

931 N1=N1+N ”TALLY INPUT CHAR COUNT

932 T=N-J+1+V ”NET DIFFERENCE IN BUFFERS

935 T1=T1—T ”SAVE COUNT FOR SUMMARY
940 FOR I: 1 TO J—l

950 PRINT #3, O$(I);
950 NEXT I

9&5 PRINT #3, ""
970 RETURN

9000 CLOSE: OPEN F$ FOR INPUT AS #2

9010 PRINT "FILE ";F$;" BEFORE DECOMPRESSION:"
9020 LINE INPUT #2.X$
9030 IF EOF(E) THEN 9060
9040 PRINT Xi

9050 SOTO 9020

9060 PRINT X$=OPEN "PAIRD.DAT" FOR INPUT AS #3

9070 PRINT "FILE ";F$:" AFTER DECOMPRESSION:"
9080 LINE INPUT #3,0$
9090 IF EOFtE) THEN 9998

9100 PRINT Oi
9110 SOTO 9080 “

9999 PRINT O$=PRINT ABSTTI);" TOTAL CHARACTERS INSERTED"
9999 CLOSE:END

Figure 2.34 (continued)

82

83

80

ENTER ASCII FILENAME. EB. PHIRC.DHT
? PAIRC.DAT

PQTIENEE - INPUT PROCESSING

FILE PAIRD.BAT EEFDRE DECOMPRESSIDN:

IPDHfi- NUiTflflBWJflrwflEUfiiE

EF§ RfiTflmSPAT FHLLUHRTLYflmnflPLQT
FILE PAIRC.DfiT fiFTER DECDMPRESSIDN:

1 TD BE DR NUT TD BE THfiT IS THE QUESTION

2 THE RfiIN IN SPAIN FALLS MAINLY IN THE PLAIN

29 TDTQL EHQRAETERS INSERTED

Uk

Figure 2.35 Sample execution of PAIRD.BAS program

basis. This is accomplished by the use of the MID$ function in line 250. If

the character extracted from the record exceeds a value of 224, it is assumed

that diatomic or paired compression has occurred. This assumption is based

upon the selection of each character beyond ASCII 224 to represent a pair

of characters in this coding example. If the character extracted from the

record equals or is less than ASCII 224, that character does not represent a

previously compressed pair of characters. Thus, line 290 simply places the

extracted character into its appropriate position in the output buffer.

When an ASCII character greater than 224 is encountered, the branch to

line 360 in the program results in the actual decompression of a previously

compressed pair of characters. In line 370, the numerical value of the

character that actually represents a pair of characters is obtained. Next,l‘ine
380 subtracts 224 from the numerical value of the character to obtain the

appropriate index in the paired table (P$(25)). Line 390 places the pair of

characters that was previously represented by one character into the output

buffer while lines 400 and 405 increment the index position in the output

buffer and the variable V which is only employed to compute the difference

in size between the input and output buffers and is not required for decom-

pression.

Figure 2.35 illustrates the execution of the PAIRD.BAS program as it

would appear on our monitor using the data file PAIRCDAT as input.

PAIRCDAT was created by the PAIRC.BAS program. Thus, it is of no

surprise that the two compressed lines of data at the top of Figure 2.35

match lines I and 2 in the lower part of Figure 2.32, while lines 1 and 2 at

the bottom of Figure 2.35 match those lines at the top of Figure 2.32.

2.6 PATTERN SUBSTITUTION

This compression technique is basically a sophisticated form of diatomic

encoding. Here, a special character code is substituted for a predefined

character pattern. The employment of the pattern substitution compression

technique can be highly advantageous when one is transmitting program

listings and other types of data files containing known repeating patterns.

83

84

81

The advantage offered by pattern substitution is best understood by exam-

ining a higher—level language such as FORTRAN. In any FORTRAN

program, a very high probability exists that one or more types of statements
will be encountered containing common key words such as ‘READ‘, ‘WRI-

TE’ and ‘FORMAT’, among others. Instead of transmitting the characters

of these key words on a character by character basis each time they appear,

one of the unassigned characters from the employed character set can be

substituted. When pattern substitution is applied to language text, common

key words or phrases can similarly be replaced. For English text transmission,

such commonly encountered words as ‘and’, ‘the’, ‘that’ and ‘this’ would be

among the first candidates for substitution.

The pattern table

To employ pattern substitution, a pattern table is required. This table con-

tains a set of list arguments and a set of function values. Each function value

is a special compression indicator character which represents the compressed

value of a particular argument (Aronson, 1977). Figure 2.36 shows an

example of the use of a pattern table. Although each list argument was of

similar length, this table can be expanded to include many additional entries

of various character length. Strings of 4, 5, 6 and more blanks, for example,

could be assigned values represented by different special characters as well

as patterns of alphanumeric data.

J Encoding process

To obtain the compressed data stream, the source data must be broken down
into distinct search arguments, initially equal to the smallest sized argument

in the pattern table. The search argument is matched with those list argu-

NOW IS THE TIME FOR ALL GOOD MEN

Pattern table

List arguments Function values

THE Scl

FOR 6
ALL 2

Compressed dam stream

NOW IS scl TIME 5.2 5.3 GOOD MEN

Figure 2.36 Pattern table utilization. Upon a portion of the original data stream

| matching the list argument, the appropriate function value is substituted. In the
above example, special compression indicator characters Scl to 8.23 are substituted

for the words ‘the’, ‘for’ and ‘all’ as they are encountered

L 84

85

82

ments of equal character width. If a match is obtained, the function value

associated with the list argument then replaces that portion of the original

data stream and results in data compression. If no match is obtained, the

width of the search argument is increased to the width of the next larger list

argument or series of list arguments and the process is repeated. If after

increasing the width of the search argument to the largest width of the list

argument no match results, the first character of the original data string is

passed to the compressed data string and the process is repeated, starting

with the second character from the original data stream.

A second method of performing pattern substitution results from the use

of blanks as delimiters. The binary or octal value of the characters between

blanks can be generated and compared with the binary or octal values in

the list argument portion of the pattern table. This process simplifies the

searching of a long argument list and minimizes the processing time required

to encode patterns.

Patterns in programming languages

Due to the utilization of keywords or reserved words in most programming

languages, pattern substitution is often a very effective compression tech-

nique for storing or transmitting program files. Since the number of keywords

or reserved words in a programming language can be as high as several

hundred, a 2-byte sequence can be employed to represent each keyword

pattern substitution. Here, the first byte or character would be used to

indicate pattern substitution has occurred, while the following character

would denote the actual pattern that was substituted for the keyword or

reserved word. To illustrate this concept in additional detail, let us assume

that the version of BASIC we are working with is limited to eight keywords.

Table 2.13 lists these keywords and their equivalent function values contained

in the pattern table that could be constructed.

For clarity of explanation the dollar Sign (35) was employed as the com—

pression indicating character in Table 2.13, although obviously any character

Table 2.13 BASIC language pattern table

Keywords Function values

END $1

GOTO $2

IF $3

INPUT $4

LET $5

PRINT $6

REM $7

THEN $8

85

86

___.

83

BASIC program Compressed program
100 REM COMMISSION CALCULATION 100$7COMMISSION CALCULATION

110 PRINT “ENTER SALE PRICE" 110$6“ENTER SALE PRICE"

120 INPUT W 120$4W

130 PRINT “ENTER NUMBER SOLD" 130$6“ENTER NUMBER SOLD"

140 INPUT N 140$4N

ISO LET C=W*N*.0875 150$5C=W*Nt.0875

160 PRINT “COMMISSION=";C 160$6“COMMISSION=";C
170 PRINT “ANOTHER CALCULATION—Y/N" 170$6“ANOTHER CALCULATION—YfN"

180 INPUT A$ 180$4A$$

190 IF A$ 0 “Y“ THEN 210 190$3A$$<>“Y“$8210

200 GOTO 110 200$2110

210 END 210$]

Figure 2.37 Compressing a BASIC program

in the character set could be used. Preferably, one should select a character

which is seldom or, better yet, never used. Since there is always the possibility

that the character could occur in a BASIC program, one can replace each

occurrence of the pattern compression indicating character by duplicating

that character when it is encountered. Then, the decompression routine

would disgard the second occurrence of a pattern compression indicating

character followed by itself. The compression of a short BASIC program is

illustrated in Figure 2.37 based upon the employment of pattern substitution,

which in actuality is the replacement of BASIC keywords. Note that the

pattern table contained in Table 2.13 was used for the compression process.

Since most BASIC languages require keywords to be delimited by spaces,

we have assumed that the keywords entered in Table 2.13 contained leading

and trailing blanks, enabling the functional value substituted for the keyword

to be a more effective substitution. Using this method of substitution, 25

spaces as well as 26 other characters are eliminated from the program while

2 characters are added. The additional characters are due to the replacement

of the natural occurrence of the $ character in the program by the special

sequence $$ in lines 180 and 190.

Although the overall data reduction, which in this example was approxi-

mately 20 per cent, may not appear significant, it should be noted that the

actual effort involved to compress data using pattern substitution may not

be significantly demanding. To increase the data reduction resulting from

compression usually requires the application of several compression tech-

niques to one’s data. In this particular example, one might first preprocess

programming files through the utilization of pattern substitution compression.

Then one could statistically encode the resulting compressed data. Since the

statistical encoding process results in the replacement of frequently occurring

characters by short bit sequences, statistically encoding data where keywords

86

87

84

were previously replaced by short patterns is more effective than the stat-
istical encoding of the original data. As an example, a 5-bit sequence might

be required to represent the keyword PRINT, however, a short bit sequence
would be required to represent the character sequence $6 that was substituted
for the keyword. The reader is referred to Section 2.9 for additional
information concerning statistical encoding.

2.7 RELATIVE ENCODING

Relative encoding is a compression technique that is not normally applicable
to the transmission of conventional data files. This type of compression is

effectively employed when there are sequences of runs in the original data
stream that vary only slightly from each other or the run sequences can be

broken into patterns relative to each other. An example of the former is
telemetry data while the bit patterns of digital facsimile machines represent
a version of the latter.

Telemetry compression

In telemetry data generation, a sensing device is used to record measurements
at predefined intervals. These measurements are then transmitted to a central
location for additional proceSSing. One example of telemetry signals is the
numerous space probes which transmit temperature readings, colour spec-
trum analysis and other data, either upon command from earth stations or

at predefined time intervals. Normally, telemetry signals contain a sequence
of numeric fields consisting of subsequences or runs of numerics that vary

only slightly from each other as illustrated in the top portion of Figure 2.38.
Prior to actual data transmission, compression occurs to reduce the total

amount of data necessary to represent the recorded measurements. Each
measurement other than the first is coded with the relative difference

between it and the preceding measurement, as long as the absolute value of
the increment is less than some predetermined value. This is shown in the

lower portion of Figure 2.38. If the increment should exceed this value, a
special character is inserted to denote that the particular value at that location
is not available or the special character could be followed by the measurement
that is out of the boundary range for the relative encoding process. Thisl

Original telemetry measurements

46 46 46.1 46.1 46.1 46 46 46 46.1 46.1 46.1 46.2

Relative encoding

46 0 .1 0 0 —.l 0 O .1 0 0 .1

Figure 2.38 Relative encoding process. Telemetry signals often consist of a sequence
of numerics that vary only slightly from each other during a certain time interval

87

88

85

limits wide fluctuations and is one disadvantage associated with the utilization
of this technique. Another disadvantage is that if data values consistently
vary both within and outside the relative encoding boundary range and a
combination of a special character and actual value is transmitted, this will
cause an expansion instead of a compression of the data stream.

Additional techniques may be employed to obtain a higher degree of
compression depending upon the original telemetry measurements and the
resultant data due to the relative encoding process. In the top portion of
Figure 2.38, the original telemetry measurements illustrated consist of 38
characters to include numerics and decimal points. As a result of the relative

encoding process, the number of numerics and decimal point characters has
been reduced to 13. By the incorporation of a second compression technique,
the number of characters used to represent the relative encoding process

may be further reduced. One method that could be used is the half-byte
packing process where each numeric digit is stripped of its first 4 bits and
packed 2 per character. If we use a 4-bit representation for the decimal point
and minus sign, half—byte packing will result in the transmission of nine 8-
bit bytes of data. Thus, while the relative encoding process resulted in a
2.24 (38H?) compression ratio, recompressing the relative encoding results
employing the half-byte packing technique approximately doubles the com-
pression ratio to 4.223 (381‘9).

While the half-byte packing process was illustrated as the combining or
second compression technique, other techniques may be employed with
results dependent upon the variability of the original telemetry measure
ments. If the original telemetry measurements indicated a stable 46 for the
time interval sampled, the relative encoding process would result in a long
string of zeros after the value indicator of 46. For this situation, run-length
encoding would be more effective as the second compression technique.

Digital facsimile

Several relative encoding techniques can be employed to compress digital
facsimile data. Prior to discussing these techniques, a review of the elements
of facsimile technology is warranted.

Facsimile systems use the basic concept of scanning—normally on a line-
by-line basis—to create a stream of information concerning the lightness or
darkness of the small area being scanned at any given point in time. The

resulting stream of information is then transmitted and used to drive an
image-reproducing device at a facsimile receiver where the original infor-
mation is reproduced. In general, the operation of a facsimile device is quite
similar to the technology employed in television, where 525 lines on the US
domestic television system are used to reproduce images. For facsimile
systems, the clarity depends upon the fineness of the scan. Normally, approxi-
mately 100 scan lines per inch are required to successfully reproduce a page
of typewritten material. Thus, a normal 8% X 11 sheet of paper, scanned

88

89

86

longitudinally, would require approximately 850 scan lines. Each scan line
in turn consists of approximately 1730 picture elements (pixels, or pels),

resulting in approximately 1 million bits for an 8% X 11 sheet of paper. To
transmit this data at 4800 bps without compression, 209 s or approximately

3.5 min are required.

For facsimile systems, the degree of compression theoretically obtainable
is normally very large for the typical facsimile message. As an example,
consider a typewritten memorandum coutaining 500 characters. In con-
ventional data transmission, each character can be represented and trans—

mitted by 8 bits. Thus, the entire message could be transmitted, ignoring
control characters, by 500 X 8 or 4000 bits of information. If transmitted at

4800 bps, the total transmission time would be less than 1 s. In comparison,
the same message sent by conventional facsimile requires the transmission
of almost 1 million bits and takes about 3% min without data compression, a

difference of approximately 270 to 1 between conventional facsimile code
and character transmission.

Facsimile techniques

One of the earliest facsimile compression techniques was run-length

encoding. Here, the transmission of the digital line scan is replaced by the
transmission of a quantity count of each of the successive runs of black or
white scanned pels.

Since the vast majority of documents to be scanned contains a much higher

quantity of white pels than black ones, transmitting the difference between
scans may significantly reduce the quantity of data to be transmitted. In this
method of compression, one complete scan is held in a membry area of the
device and compared with the subsequent scan. Transmitting only changes

relative to the preceding scan results in the relative‘compression process.
Once the differences between the first and second scans are transmitted, the

first scan is removed from memory and replaced by the second scan. Next,

a third scan is compared with the second scan now located in memory. A

flow chart showing the required steps for this type of relative encoding

process is illustrated in Figure 2.39.
In Figure 2.40, a portion of the relative changes resulting from the com-

parison of two scan lines is shown. Several methods can be used to denote
the relative changes between the Nth and (N + 1)th scan lines. One method

is to denote the position of the change by what is normally called a positional
identification. Here, the position of each relative change is denoted with

respect to the first pel of the line. If there are many consecutive changes,
the transmission of each individual position could require more data bits

than the transmission of the original line prior to comparison with the

preceding line. To take advantage of successive relative changes between
scanned lines, the position indicator can be followed by a quantity count
which contains the number of successive relative changes. This is illustrated

89

90

SCAN LINE
PLACE IN MERORY

TRANSMIT LINE

@
NO

SCAN LINE N+1

COMPARE RELATIVE
DIFFERENCE WITH LINE N

TRANSMIT DIFFERENCE

REPLACE LINE N IN
MEMORY BY LINE N+1

Figure 2.39 Facsimile relative encoding process

in Figure 2.41 where thel‘tvable at the top of the figure tabulates the initial
position of the relative change between line scans and the number of suc-

ceeding relative changes, while thejtransmission sequence is indicated at

| the lower portion of that figure. Under the Consultative Committee for

I International Telephone and Telegraph (CCITT) digital facsimile standards,
I there are 1728 picture elements or points to be read by the scanner along

I the width of a document 215 mm wide. Due to the large number of positions,

' the tran5missi0n of positional information can rapidly increase in duration,
especially when a number of relative changes occur at the far end of the

I scan line. One method used to alleviate this ‘end of the line’ increase is by
the use of displacement notation. As with positional notation, the relative

changes between scan lines are first computed. Then, instead of transmitting

all of the initial positions of the relative changes and the number of successive

N—th scan line ‘

I . . . 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 .

(N + 1) rh scan line

. . . 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 .

Relative change

Figure 2.40 Relative change. To denote the relative changes between scan lines

several methods can be employed to include identification by position and
displacement

90

91

Initial position of Number of successive

 relative change relative changes

40 6

80 20

175 4

350 31

480 8

930 14

1250 16

1310 5

1340 4

Transmitted data

mum-mu

Figure 2.41 Transmitting positional informaticm. Using the positional relative
process, the initial position of each relative change is followed by the number of

successive relative changes

changes as illustrated in Figure 2.41, only the first initial position is trans-

mitted. Thereafter, the displacement between relative changes is transmitted.

This displacement method can include the transmission of successive relative

change information and is illustrated in Figure 2.42. This figure is based

upon the data provided in the tabular portion of Figure 2.41. In comparing

the illustrated positional and displacement methods, the positional method

requires 41 numeric characters while the displacement method can be

accomplished by the use of 35 such characters. If numerics are packed 2 per

byte, then the displacement technique will result in 140 bits being required

to represent the 1728 points in the example while the positional method

would require 164 bits.

Displacements

llama

Initial

position

Figure 2.42 Transmitting displacement information. Another relative encoding tech—
nique results in the transmission of displacement information

91

92

89
2.8 FORMS MODE OPERATION

Forms mode operation is a method of compression that can be employed
when data is to be communicated to and from a CRT display in a predefined
series of formats. When operated in the forms mode, the display can be
used for a fill in the blank type of operation. In this mode of operation,
two basic types of data are displayed—protected information and variable

information. Fixed or protected information corresponds to the preprinted
information of a data field in a standard printed form such as name, address,

social security number and similar types of information. Such information

when the operation is in the forms mode is not cleared when the screen is

erased, is not transmitted to the central processor and is not alterable by
accidental keyboard entries. Each fixed field is one-half of a field pair, the
other half being the corresponding variable field. Thus, in the forms mode

the fixed field can be viewed as the question while the information entered
into the corresponding variable field can be considered as the answer.

An example of forms rnode data entry is illustrated in Figure 2.43. Here,

the blank spaces indicate the additional positions available for data entry
into the variable fields.

In using the forms mode of operation, the operator denotes the form he

or she wishes to complete and that form is transmitted from the computer
to the terminal display or is locally generated from terminal memory or from

Screen

(a...) pawn!!!

NAME (FIRST) EEIIEEEII

AGENCY com»: EEEIEIIEI
Farms made rransml'ss/bn

HELD ¥ GILBERT ¥ 66671

H

T is horizontal tab character

Figure 2.43 Forms mode data entry

92

93

90

a peripheral device attached to the terminal. Fixed fields are preceded by
an ‘FS’ (start fixed field) character while variable fields are preceded by a

‘GS’ (begin variable field) character and a parameter character. The par-
ameter character is used to define the allowable operations within the vari—

able field such as numeric only, alphabetic only, alphanumeric, inhibit trans-

mission and so on. The exact sequence of the GS and FS characters as well

as the bit configuration of the parameter character to define allowable

operations depends upon the terminals program. When in forms mode,
certain keyboard operations are usually changed from those of the normal

mode of operation. As an example, the TAB key on most displays permits

the operator to move the cursor (positioning data entry marker) to the first
character position of the next sequential variable field, permitting rapid
skipping-over of variable fields for which no data is to be entered (Peterson,
Bitner and Howard, 1978).

Transmission

The transmission of data in the forms mode is normally performed on a

screen basis. When the operator depresses the TRANSMIT key, only the

data previously entered into the variable fields is transmitted, with all trailing
blanks eliminated.

Here, transmission can occur online to the computer or it can be to one

of the peripheral units of the terminal. In the case of the latter, a large
number of terminal screens may be batched onto a peripheral device such

as a cassette or floppy disc for transmission to the computer at one time.

Using this combination of forms mode encoding and off-line storage for

transmission by batching screens of information, computer system resources

in the form of computer ports and line requirements can be reduced or used

more effectively. By reducing the amount of transmission time required to
send batched screen information, a reduction in the number of computer

ports required to support remote terminals may be possible. Concerning
more effective line utilization, consider the situation where 10 terminals

operate in a poll and select environment connected via a common modem
sharing unit and modem to a central computer as illustrated in Figure 2.44.

In the configuration illustrated, all terminals except the terminal transmitting

or receiving data are locked out for the duration of the transmission.

Normally, blocks of data up to the screen size, 1920 (80 X 24) characters or

less, are transmitted. At 4800 bps, the transmission of a 1920 8-bit character

block to completely fill a screen would require 3.2 s. If 10 terminals were
connected to the modem sharing unit with a round robin polling sequence

and each operator transmitted or received a full screen of data, it would

take 32 seconds, ignoring transmission overhead, until the first terminal

operator could again transmit or receive information. Thus, reducing the
number of characters transmitted and received through the employment of

forms mode encoding can be used to decrease the response time of existing

93

94

91

Polled
terminal

Polled
terminal

Figure 2.44 Forms mode encoding increases line service. Forms mode encoding

reduces the poll and select time required per terminal, permitting more terminals to

be connected on a shared line or an increase in throughput to existing terminals

sharing the line

Modem

shoring
unit

 Computer

r, terminals or to permit additional terminals to be clustered without increasing

overall response times.

Returning to the example in Figure 2.43, the ‘HT’ (horizontal tab) charac-

‘ ter is normally used as a variable field separator, resulting in the transmitted
' message indicated in the lower portion of that illustration. If a maximum of

8 characters can be entered into each of the 3 variable fields shown in Figure

2.43, a maximum of 26 characters (24 data and 2 horizontal tab characters)

will be transmitted to the comptuer for each form completed. This method

of forms mode data entry should be contrasted with conventional time-

sharing as shown in Figure 2.45. Here, the message ‘ENTER NAME

(LAST), NAME (FIRST), AGENCY CODE’ serves as a variable field

indicator, denoting to the terminal operator the data to be entered. The

carriage return (C/R) character acts as a line termination character; however,

i if data was entered incorrectly, such as alphabetic characters in an all-
numeric field, data must first be sent to the computer for processing to

determine that such an error has occurred. In such cases, the computer

would transmit an error message to the terminal Operator who would then

hopefully retype the entire line correctly and retransmit the data. In contrast,

using an intelligent terminal and forms mode operation the data entry

operation can be preprocessed and such errors corrected prior to trans—
1' mission.

In comparison with the Operator depressing the transmit key on the display

and having the forms mode method of operation transmit and clear the

r variable fields so new data can be entered, conventional time-sharing requires

' the program to prompt the operator to determine if more data is to be

entered. The ‘MORE?’ and ‘YES’ (C/R)’ sequence in Figure 2.45 add

additional characters beyond the repeated message used as a variable field

indicator. In comparing the sample forms mode data entry with the con-

ventional time-sharing data entry example, 18 characters are required for

the former while 65 characters, excluding line feed and carriage return

[characters, are required for the latter.

94

95

92

ENTER NAME (LAST), NAME (FIRST), AGENCY CODE

HELD, GILBERT, 6671

MORE?

ENTER NAME (LAST), NAME (FIRST), AGENCY CODE

Figure 2.45 Conventional time-sharing data entry. In conventional timesharing, the
prompt messages requesting data as well as the user responses are transmitted

2.9 STATISTICAL ENCODING

One common element of the eight previously discussed data compression

techniques is that they all operate upon characters codes of a fixed bit size.
In comparison with those compression methods statistical encoding takes
advantage of the probabilities of occurrence of single characters and groups of
characters, so that short codes can be used to represent frequently occurring

characters or groups of characters while longer codes are used to represent
less frequently encountered characters and groups of characters. The stat-
istical encoding process can be used to obtain aTminimization of the average
code length of the encoded data, in a manner similar to that in which Morse
selected the dot and dash representations of characters so that a single dot

was used to represent the letter E, which is the most frequently encountered
character in the English language, while longer strings of dots and dashes
were used to represent characters that appear less frequently. Included in
the class of statistical compression methods is the Huffman coding technique.
Prior to discussing statistical encoding techniques in detail, a review of some
basic information theory concepts is warranted. These concepts will provide
an understanding of how redundancy can be statistically reduced.

Information theory

For a system capable of transmitting at n discrete levels at A second intervals,
the number of different signal combinations in T seconds is n”. Since

information is proportional to the length of time of transmission, we can
take the logarithm of nm, to obtain the information transmitted in T seconds

being proportional to (TM) log :1.

The proportionality factor will depend upon the base of the logarithm used,
the most common choice being the base 2. This results in the information unit

H becoming

T

H = X logzn.

95

96

93

The unit of information defined in the preceding manner is known” as the

bit or binary digit. For the transmission of data over a 20 second period

using 2 discrete levels (0 and 1) at 1 second intervals, the information content
becomes:

20

H = T logz 2 = 20 bits.

The capacity of a given system is defined as the maximum amount of

information per second that a system can transmit and can be expressed in

bits per second. Thus, the capacity of the preceding example becomes:

H 1 1 .

_ T _ X10g2 n # Ilogzz —1b1t/s.C

The relative frequency of occurrence of any one combination or event is

defined as the probability of occurrence, denoted symbolically as P, where

f

_ number of times an event occurs
P —'—"—.".-‘."T' " h.

total number of pDSSIbth'BS

If n possible events are specified to be the 11 possible signal levels, then

P = 1/12 for events that are equally likely to occur. The information contained

by the appearance of any one event in one time interval (H1) becomes:

H1 = logzn = —log2 P bits/interval

where P represents 1/n. During t periods of time, consisting of periods A 5
long, we should have t times as much information, or

H = tH1= — t logzP bits in tperiods.

Since the number of periods, 1‘, equals the total time, T, divided by the
number of intervals, A, the information available in T seconds becomes:

T T

H = 710g; = X log n bits in Ts.

With the preceding serving as a foundation, we can consider the case

where different events or signal levels do not have equal probabilities of

occurrence. Let us assume just two levels are to be transmitted, 0 or 1, the

96

97

94

first with probability P and the second with probability Q, where P + Q =
1. Then:

_ number of times 0 occurs

total number of possibilities

Q _ nuniber of times 1 occurs
total number of possibilities

The information content of a long message consisting of many Os and ls

is thus dependent upon P"‘log2 P + Q*log2Q which is the information in bits
per occurrence of a 0 or 1 times the relative frequency of occurrence of the
bit value. We can let the frequency of occurrence of each possible signal

level or signal be denoted by P,-, where P1 + P2 + + Pn = 1. Then each
interval carries — logzPi bits of information. In tperiods of time, iwill appear

on the average t*P,- times. By summing the information in bits contributed
on the average by each symbol appearing t*P,- times over the t intervals, we
obtain:

H = —t* 2 P,- logz P,- bits in tperist.
i=1

For the interval T, we then obtain:

T n

H: 7* 2 Plogz P,- bits in Ts.i=1

For a message with n possible symbols or levels with probability of occurrence
P,- to P", the average information per single symbol interval of)t is:

Havg = — 2 Pilogz Pibits/symbol interval.i=1

The above equation represents the mathematical definition of entropy, a
term used in information theory to denote the average number of bits

required to represent each symbol of a source alphabet.
Based upon the preceding, it becomes possible to compute the redundancy

contained in information. Since the unit of information is logzn for a system

capable of transmitting at n discrete levels, its redundancy becomes

R = log — Havg

Then, when there is zero redundancy:

Havg = iOan

97

98

Table 2.14 Coin toss representing four-symbol alphabet

Coin toss Alphabet Outcome Representative
outcome symbol probability code

"IT X1 0.25 00

TH X2 0.25 01

HT X3 0.25 10

HH X4 0.25 11

Entropy examples

We can experiment with the well-known coin tossing model in order to

expand upon the concept of entropy. The two sides of a coin, heads (H)

and tails (T), correspond to members X1 and X2 from an alphabet X
containing two symbols. If we toss two coins and encode the results so that

T = 0 and H = 1, the coin toss result probabilities correspond to a four-

symbol alphabet as tabulated in Table 2.14. The entropy or average number

of bits required to represent each possible outcome or symbol from our four-

symbol alphabet becomes:

4

Havg = — Z P. 10g2 P,- = —4 x 0.2510g20.25 = 2.
i=1

For the coin toss experiment results listed in Table 2.14, two binary symbols

were required to encode each alphabetic symbol. If for some reason the coin

toss was fixed such that only tails (T) occurs, the only symbol required in

our alphabet would be X]. Under this condition, we would never have to

do any coin tossing to determine the outcome since the result is always

known in advance. The entropy of this one-symbol alphabet can be computed
as follows:

4 I

Havg = —Z Pilogz P,- = — 2 logz 1 = 0.
i=1 i=1

In this case, since the outcome is known in advance the symbol provides no

information; hence, its entropy is zero.

We can again fix the coin toss experiment; however, this time we will fix

it so the probability of tails (T) occurring is increased to 0.75, leaving a 0.25

probability of heads occurring. Under these circumstances, the tabular results

of the coin toss outcomes representing a four-symbol alphabet would be as

98

99

Table 2.15 Fixed coin—toss representing four-symbol alphabet. Prob-

ability of head = 0.25; probability of tail = 0.75

Coin toss Alphabet Outcome Representative
outcome symbol probability code

TT X1 0.5626 00

TH X2 0.1875 01

HT X3 0.1875 10

HH X4 0.0625 11

listed in Table 2.15. Although the representative code, number of coin toss

outcomes and alphabet symbols have remained the same, the outcome

probabilities have changed. Thus, the probability of two tails is now 0.75
times 0.75 or 0.5625 and so on. The entropy of this four-symbol alphabet is
110W.

\

4

Hm: — 2 P,- 16g2 P,- = 0.562516g2 0.5625 + 0.187516g2 0.1875i=1

+ 0.187510g2 0.1875+0.062516g2 0.0625 = 1.62 bits per symbol.

Based upon the preceding, let us compute the redundancy in the fixed
coin-toss experiment. Since a two-symbol event results in four discrete levels

R = 16an = Havg = log24 — 1.68 = 2 — 1.68: 0.38

In comparison with the first coin-toss experiment, the average number of
bits required to represent a symbol from the four-symbol alphabet has been
reduced by 0.38. This indicates that using another type of coding scheme to

represent the four-symbol alphabet could result in an approximate 20 per
cent reduction from the two bits per symbol previously used to represent

the four-symbol alphabet. To obtain this reduction, we must assign short

codes to the most frequently occurring symbols of the alphabet and longer

codes to the less frequently encountered symbols. This method will result in
a long string of data symbols having, on the average, fewer bits per symbol
and is the foundation for what is known as Huffman coding. (Dishon, 1977;

Moilanen, 1978).

Huffman coding

Huffman coding is a statistical data-compression technique whose employ-
ment will reduce the average code length used to represent the symbols of
an alphabet. The alphabet can be the English language alphabet or a type

of data-coded alphabet such as the ASCII or EBCDIC character sets.

99

100

97

The Huffman code is an optimum code since it results in the shortest

average code length of all statistical encoding techniques. In addition, Huff-

man codes have a prefix property which means that no short code group is

duplicated as the beginning of a longer group. This means that if one

character is represented by the bit combination 100, then 10001 cannot be

the code for another letter since in scanning the bit stream from left to right

the decoding algorithm would interpret the 5 bits as the 100 bit configuration

character followed by a 01 bit configuration character.

The Huffman code can be developed through the utilization of a tree

structure as illustrated in Figure 2.46. Here, the symbols are first listed in

descending order of frequency of occurrence. The groups with the smallest

frequencies (X3 and X4) are combined into a node with a joint probability

of occurrence of 025. Next, that node is merged with the next lowest

probability of occurrence symbol or pair of symbols. In this illustration, the

pair X3X4 is merged with X2 to produce a node whose joint probability is

0.4375. Finally, the node representing the probabilities of occurrence of

X2,X3 and X4 is merged with X1, resulting in a node whose probability of

occurrence is unity. This master node represeents the probability of occur-

rence of all four characters in the character set. By assigning binary Os and

Is to every segment emanating from each node, one can derive the Huffman

code for each character. The code is obtained by tracing from the 1.0

probability node to each character symbol, noting the ls and Us encountered.

The average number of bits per symbol can be calculated by multiplying

the Huffman code lengths by their probability of occurrence. Thus, the code
uses:

1*0.5625 + 2*0.1875 + 3*0.1875 + 3*0.0625

Character Probability Code

x. .5625

X2 .1875 10

x3 .1875 110
x4 .0625 111

Figure 2.46 Huffman code development employing a tree structure. Huffman codes

can be developed by employing a tree structure. The Huffman code resulting from

this construction method is derived by tracing from the 1.0 probability node to each

source character (symbol), noting ls and Os encountered

100

101

98

or 1.63 bits per symbol. Note that the Huffman code result of 1.63 bits per
symbol closely approaches the entropy of 1.62 bits per symbol (Dishon,
1977; Moilanen, 1978).

A key property of the Huffman code is that it can be instantaneously

decoded as the coded bits in the compressed data stream are encountered.

An example of the instantaneous decoding property is illustrated in Figure

2.47. Here, the compressed data stream can be decoded immediately by
reading left to right without waiting for the end of the block of data to occur.

The substitution of a number of bits representing a particular data character

or group of characters is a fairly simple process when the number of sub-

stitutions is limited. As the number of substitutions increases, the complexity
of the substitution process increases. In Figures 2.48 and 2.49, the devel-

opment of a Huffman code for the English alphabet is illustrated. The tree

structure used to develop the code shown in figure 2.48 is produced as
follows:

A. The character set is arranged in a column on the left in order of

decreasing frequency of occurrence with the frequency placed in a
column next to each character.

B. Commencing at the bottom of the table, lines are drawn horizontally
from each character frequency. The lines with the two lowest fre-

quencies of occurrence are merged and their associated frequencies are

added to obtain a composite frequency. This composite frequency is
entered on a single new line and reflects the combined frequency of
the previously paired characters.

C. The process of combining the two lowest frequency lines into a single
line containing combined frequencies is continued until all the lines

have been merged.

After the tree has been developed, the Huffman code for each character can

be assigned by placing a 0 bit to one side of each nodal point and a 1 bit to

Encoded message 0 10 O I 111 10 110 0| | I

| I | I

| I | I

| | | I

| I | |

| | | I

| I | |

| I | I

| I I I

| I | I

I | | l

| I | |Decoded message X. X2 X1 X4 X2

|

|

|

|

|

|

|

|

|

|

|

I X3 X1

I

I

I

I
l
I

|

|

l

|

|

I

Figure 2.47 Instantaneous decoding property. One of the key properties of the

Huffman technique is the fact that encoded data can be instantly decoded

101

102

C .03

U .03

M .03

.02-n

.02

.02<‘U

.015

.015

.015

.010

.005

.005

.005

.0025

.0025

NoxxL<Oéw

0.06

0.05

0.040

0.030

0.025

0.010

0.005
0.010

0.11

0.070

0.02

0.045

0.115

0.420

Figure 2.48 Developing a tree structure for the alphabet

the other path emanating from that point toWards the left—hand symbol. The
assignment of 0 and 1 bits is arbitrary. The appropriate bit sequence assigned
to each data character is then determined by tracing the route from the

master nodal point where the probability of all character frequencies of
occurrence is unity back to the starting node for the appropriate character,

noting the bits assigned to the path. The assignment of bits to the paths and

102

103

100

000

0010

0011

0100

0101

0110

0111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

111100

111101

111110

.09

.08D-i

N.OT

R1065

I 055

H 06

5.06

D 04

L.035

C 03

U.03

.02

.024V

.015

015

.Ofi

£H0

.005

.005

.005

xxL<ogm
1111110 0 0025

1 1111 11 Z .0025

the resulting Huffman coded values for the English alphabet are illustrated

in Figure 2.49.

The number of bits required to encode a letter using the Huffman tech-

—‘O-"O-"OO
0

J3
0

0.30

.17 1

J
5 0

.23

13 1

.12 0

.195

075 1

.00 0

.11

.05 1

.040 0
.070

.030 1

.025

.010 o

o .02
.010

.005 1
1

045

.305

Figure 2.49 Assigning the Huffman code

nique can be determined from the following formula:

b = f(_1082P)

103

58

.H5

420

104

P= probability of occurrence of the letter

f(x) = the closest integer greater than or equal to x.

Since the probability of E is 0.13 and — logz 0.13 is 2.94, then the integer

greater than or equal to 2.94 is 3. Thus, 3 bits are required to encode the
letter E (Peterson, Bitner and Howard, 1978).

Information requirements

To develop a Huffman code whose average code length will approach its
entropy requires the frequency distribution of the characters or symbols to
be encoded to be known in advance. Since the frequency distribution of a

data stream is proportional to the end use of the stream, this factor can

result in a preselected frequency distribution used to develop a Huffman

code resulting in a code far from optimum during certain data transmission

sequences. As an example, the frequency distribution of English text, such
as that resulting from a data file used for computerized typesetting, may be

quite different from the data file containing the results of a FORTRAN

program compilation. In the first instance, the distribution of characters
should follow the distribution of normal English, with E the most frequently

occurring character while Z is one of the least frequently characters. For

the FORTRAN compilation, special characters such as parenthesis, + for
addition, — for subtraction, * for multiplication and/for division have a high

degree of occurrence not normally encountered in English text.
To c0mpensate for frequency distribution differences, several encoding

schemes can be considered. First, the analysis of mixed data files can be

conducted employing the computer program listed in Appendix B (p. 00).
This will enable one to ascertain the appropriate relationship between the

frequency of occurrence of characters of different types of data.
A second method to consider is an adaptive Huffman encoding technique.

Such a technique might first require a frequency analysis of a large block of
data which would then be encoded based upon that distribution. Prior to

the transmission of the encoded data, a table of the symbols and Huffman

codes developed for each symbol must be transmitted to enable the encoded
data to be successfully decoded. With a little imagination, one can visualize

that frequently changing data streams would result in numerous tables as
well as encoded data being transmitted. These tables can be considered as

overhead, resulting in the compression frequency decreasing as the number of

data-stream frequency distributions change per unit time. Another problem
encountered with some adaptive Huffman coding techniques is determining
the size of the data stream to sample and the sample intervals. The larger

the sample, the greater the processing requirement becomes. If the data is
to be transmitted, a buffer area is required to place the sample into while

104

105

102

the frequency analysis is conducted. Concerning the sample interval, if three

FORTRAN jobs are followed by an English text job, all of equal size, T,

sampling at T,T + 2 and T + 4 would result in the English text job being

excluded from the sample. Since a remote batch terminal operator submits

jobs and pulls system output, he or she knows ahead of time the type of job

that will be transmitted to or received from the computer. For this type of

operating situation, predefined frequency distributions can be selected by

the operator and conveyed to the opposite end of the transmission link by

the transmission of a special code.

To eliminate the previously described problems resulting from the gen-

eration of frequency tables, one can construct a truly adaptive or self—

adapting Huffman encoding technique. This technique builds frequency
tables at both ends of a transmission link as data transmission occurs and

adaptively adjusts those tables during transmission. The reader is referred

to Section 2.10 which discusses this technique in detail.

A third method of compensating for frequency distribution differences is

by the use of a plain text code, which is used to indicate that the character

following it should be reproduced exactly as received. This permits characters

that rarely occur in the source data to be excluded from the encoding process

and results in the development of one type of modified Huffman code. Here,

one could group all characters of low frequency of occurrence into one

probability of occurrence and assign a Huffman code to represent that

summed probability. This would be the plain text code and would indicate

that the next 8 bits represent an actual non-encoded data character. Without

the use of a plain text code, large strings of, say, 20 or more bits might

result in the representation of low frequency of occurrence characters. If the

plain text code were 4 bits in length, then a maximum of 12 bits would be

required to represent any low frequency of occurrence character. The pre-

emption of a 4-bit code to signify that the next 8 bits are the plain text

representation of an 8-bit character means that some relatively high frequency
of occurrence character which would have had a 4-bit code as its Huffman

representation will be represented by some longer code. Thus, although

there will be no very long codes present, the mean number of bits per

character will increase when a plain text code is employed.

Modified Huffman codes

The representation of characters and symbols by an appropriate Huffman

code is excellent in theory if one desires to have the average number of bits

per symbol approach entropy. In practice, however, a number of difficulties

can arise when Huffman coding is applied to certain applications, most

particularly in the area of facsimile transmission.

When applying Huffman coding to facsimile transmission, each facsimile

line can be viewed as consisting of a series of black or white ‘runs’, each

run consisting of a series of similar picture elements. If the type of the first

105

106

103

run is known, then the type of all successive runs will be known, as black
and white runs must alternate. The probability of occurrence of each run of

a given length of pels can be calculated and short code words can be used
to represent runs that have a high frequency of occurrence while longer code
words can be used to represent runs that have a low probability of occurrence.

In a way similar to the changing of data processing jobs, statistics for the

run-length probabilities associated with line scans change on a line-to-line
and document-to-document basis. Thus, an optimum or near optimum code

for a particular line or document may be far from optimum for a different
line or document. A second major problem is the fact that the creation of

the Huffman code on a real—time basis requires a large degree of processing

power, normally in excess of the capabilities of facsimile machines where
the cost of the scanner, transmitter/receiver, central logic and power supply

results in a machine rental under a few hundred dollars per month to remain
competitive. To reduce some real-time processing requirements, a table look—

up approach can be employed. Since CCITT standards require 1728 pels per
line, the use of a table look-up technique would require storage for 1728

variable length locations for each facsimile machine, each location containing

a binary code word corresponding to a particular run length. The implemen-

tation problems associated with applying the full Huffman coding technique

to facsimile applications resulted in the development of one modified Huff-

man coding scheme more suitable to the hardware cost constraints of the

competitive facsimile marketplace.

In the development of a modified Huffman coding scheme for facsimile

applications, a change was made which, while only rarely permitting the
average symbol length to approach entropy, does permit significant cem—

pression while minimizing hardware and processing requirements. Here, the
probability of occurrences of different run lengths of picture elements (pels)
was calculated for all lengths of white and black runs based upon statistics

obtained from the analysis of a group of 11 documents recommended by the

CCITT as being typical. To reduce table look-up storage requirements, the
Huffman code set was truncated by the creation of a base 64 representation

of each run length and the utilization of two code tables to reduce the overall

table size in comparison with the table size that would be required if only

one table were used (McCullough, 1977).

Based upon the run-length probabilities of 11 typical documents, code

tables were developed for run lengths ranging from 1 to 63 pels. Since the

probability of occurrence of white runs differs from the frequency of occur-
rence of black runs, a table must be developed for both runs. This dual table

set is listed in Table 2.16 for run lengths ranging from 0 to 63 pels. The code

in this table set represent the least significant digit (LSD) of the code word
and are often referred to as the termination code. In order to permit the

encoding of runs in excess of 63 pels, a second set of code tables must be

employed to handle runs ranging in size from 64 pels to the maximum line
scan length of 1728 pels. These codes are listed in Table 2.17. These represent

106

107

104

Table 2.16 Least significant digit codes for the modified Huffman process

Base 64

White run representa- Black run

length Code word tion length Code word

0 00110101 0 0 0000110111

1 000111 1 1 010

2 0111 2 2 11

3 1000 3 3 10

4 1011 4 4 011

5 1100 5 5 0011

6 1110 6 6 0010

7 1111 7 7 00011

8 10011 8 8 000101

9 10100 9 9 000100

\ 10 00111 a 10 0000100

11 01000 b 11 0000101

12 001000 c 12 0000111

13 000011 (1 13 00000100

14 110100 e 14 00000111

15 110101 f 15 000011000

16 101010 g 16 0000010111
17 101011 h 17 0000011000

18 0100111 i 18 0000001000

19 0001100 j 19 00001100111
20 0001000 k 20 00001101000

21 0010111 1 21 00001101100

22 0000011 m 22 00000110111

23 0000100 n 23 00000101000

24 0101000 0 24 00000010111

25 0101011 p 25 00000011000

26 0010011 q 26 000011001010
27 0100100 I 27 000011001011

28 0011000 5 28 000011001100

29 00000010 t 29 000011001101

30 00000011 u 30 000001101000

31 00011010 v 31 000001101001

32 00011011 w 32 000001101010

33 00010010 x 33 000001101011

34 00010011 y 34 000011010010
35 00010100 z 35 000011010011

36 00010101 A 36 000011010100

37 00010110 B 37 000011010101

38 00010111 C 38 000011010110

39 00101000 D 39 000011010111

40 00101001 E 40 000001101100

41 00101010 F 41 000001101101

42 00101011 G 42 000011011010

43 00101100 H 43 000011011011

44 00101101 I 44 000001010100

45 00000100 J 45 000001010101

46 00000101 K 46 000001010110

107

108

105

Table 2. 16 (continued)_—————.———-——

Base 64

White run representa- Black run

length Code word tion length Code word

47 00001010 L 47 000001010111

48 00001011 M 48 000001100100

49 01010010 N 49 000001100101

50 01010011 0 50 000001010010

51 01010100 P 51 000001010011

52 01010101 Q 52 000000100100

53 00100100 R 53 000000110111

54 00100101 S 54 000000111000

55 01011000 T 55 000000100111

56\ 01011001 U 56 000000101000
57 01011010 V 57 000001011000

58 01011011 W 58 000001011001

59 01001010 X 59 000000101011

60 01001011 Y 60 000000101100

61 00110010 Z 61 000001011010

62 00110011 * 62 000001100110

63 00110100 # 63 000001100111

the most significant digit of the code word and are known as the master
code.

When a run of 63 pels or less is encountered, the appropriate type of LSD
code set is accessed to obtain a single base 64. code word. To encode a run

of 64 pels or more, two base 64 code words must be used. First, the most
significant digit code word is obtained from the MSD code table such that
N*64, 1 S N s 27, does not exceed the run length. Next, the difference

between the run length and N*64 is obtained and the least significant digit

is accessed from the appropriate LSD code table. Figure 2.50 shows an

example of the table look-up operations for a sample sequence of black and
white runs of various pel sizes. In the upper portion of this illustration, the

relationship between a series of original video data and its representation in
the modified Huffman code is tabulated.

To employ the modified Huffman coding scheme successfully, some rules

must be developed and followed to alleviate a number of deficiencies inherent

from employing a statistical encoding technique. In such techniques, code
words do not contain any inherent positional information which is necessary

for synchronization. This can be compensated for by making it a rule that
the first run of each line must be a white run, even if it results in a run

length of zero. Thereafter, runs must alternate between black runs and white

108

109

106

Table 2.17 Most significant digit codes for the modified Huffman process

Base 64

White run representati Black run

length Code word on length Code word

64 11011 1 64 0000001111

128 10010 2 128 000011001000

192 010111 3 192 000011001001

256 0110111 4 256 000001011011

320 00110110 5 320 000000110011

384 00110111 6 384 000000110011

448 01100100 7 448 000000110101

512 01100101 8 512 0000001101100

576 01101000 9 576 0000001101101

640 01100111 a 640 0000001001010
704 011001100 b 704 0000001001011

768 011001101 c 768 0000001001100

832 011010010 d 832 0000001001101

836 011010011 e 836 0000001110010

960 011010100 f 960 0000001110011

1024 011010101 g 1024 0000001110100
1088 011010110 h 1088 0000001110101

1152 011010111 i 1152 0000001110110

1216 011011000 j 1216 0000001110111
1280 011011001 k 1280 0000001010010

1344 011011010 1 1344 0000001010011

1408 011011011 m 1408 0000001010100

1472 010011000 11 1472 0000001010101

1536 010011001 0 1536 0000001011010

1600 010011010 p 1600 0000001011011

1664 011000 q 1664 0000001100100
1728 010011011 r 1728 0000001100101

EOL 0000000000 EOL 00000000001

runs. To denote the beginning and'end of each scan line, a unique line

delineation code, sometimes called an end-of—line code (EOL), can be

employed. Once each line is encoded, fill bits of Os may be employed as pad

bits prior to transmitting the EOL for timing purposes. The end result of

the incorporation of these rules permits a line format to be defined as shown

in Figure 2.51. Through the incorporation of the modified Huffman coding

technique, the transmission time of a typical business document has been

reduced to under 60 s at-a transmission rate of 4800 bps.

The significance of the reduction becomes apparent when one considers

that the resolution of 1780 pels per line and 96 horizontal lines per inch results
in a total of 1 410 048 pels for an 8% X 11‘document. Without compression, a

109

110

107

———u—-—————

Modified Huffman code

Modified Huffman code base 2 representation

Original video data base 64 representation MSD LSD

5 block pets 5 (black) NA 0011
17 white pels h (white) NA 101011
32 black pels w (black) NA 000001101010

32 white pets w (white) NA 00011011

728 biack pels b4: (block) 0000001001011 00000010111

1728 white pels rda (white) 010011011 00110101
64 black pels 145 (block) 0000001111 0000110111
55 white pels T (white) NA 01011000

1028 white pets 92 (white) 011010101 0111

5 black 1? white
1—- 11—-

e- 011 101011 11111 OOOOOOOOOOOOOOOOO....To digital ,— i:,;_

modem ‘V’ "V" V \—-v-—-’ . .
Original
video data

“~ Look-up tables Look-up tables from
for black runs for white runs scanner

Figure 2.59 Encoding using the modified Huffman code. By a sequence of tabular
references for black and white runs the modified Huffman code is constructed

|-—1?-l-5-|-55+1651-|
Original video data 00‘"001 1 1 moo-om 1 1 11

Symbolic representation EGLhiwhite'l'Sibla-cki T (white) :9” (niacin Fill E01. Mainline
/ ////” \l ‘\

Encoded line 000000000011010110011010110000000001011011000001010011000000000001
Bit representation

Total bits prior to compression 1728

Total bits after compression 52
(not including full data)

Comoressmn ratio for this line 33 :1

Figure 2.51 Rules define line format. To denote the beginning and end of each scan
line an end-of—line code (EOL) is employed.

transmission time of approximately 5 minutes would be required for the data
without considering the transmission of the end-of-line codes.

Shannon—Fano coding

Similar to Huffman coding, Shannon—Fano coding results in a variable length

code that is instantly decodable. Prior to developing the code for each
character in your character set, you must determine the probability of

110

111

108

occurrence of each character. Then, arrange your character set in descending

order based upon the probability of occurrence of each character.

Once your character set is arranged in descending order of its probability
of occurrence, the set must be divided into two equal or almost equal subsets

based upon the probability of occurrence of the characters in each subset.

The first digit in one subset is assigned a binary zero value while a binary

one is assigned as the first digit in the second subset. This process of forming

subsets is repeated until the character set is completely subdivided. Then, a
suffix bit is added to each character in a two-character subset as required to

distinguish one character’s binary composition from the other character in
the subset.

To obtain an understanding of the Shannon—Fano coding procedure, let

us assume our character set contains seven characters whose probabilities of
occurrence are indicated in Table 2.18.

By arranging the characters in the character set in descending order based

upon their probability of occurrence, we can begin to form our subsets. In
our subset construction process, we will group the characters into each subset

so that the probability of occurrence of the characters in each subset is equal

or as nearly equal as possible. Then we will assign binary ones to one subset

and binary zeros to the other subset and continue to repeat the process until

all possible subsets are constructed. Figure 2.52 illustrates this process.

Note that after the initial coding process is completed, the subsets rep—

resented by the character pairs X6,X3 and X4,X5 are not unique. Thus, a

binary 1 and 0 must be added to the pairs in each subset. Doing so results

in the completion of the variable length coding process in which each

character is represented by a unique bit combination that is instantaneously

decodable. The completed code for each character in our character set is

illustrated in Figure 2.53.

Efficiency comparison

To compare the efficiency of the Shannon—Fano coding process to the

previously covered Huffman coding technique, let us develop the Huffman

Table 2.18 Character set probability of occurrence

Character Probability of occurrence

X1 0. 10

X2 0 .05

X3 0.20

X4 0.15

X5 0.15

X6 0.25

X7 0.10

111

112

f

l

1..

109

Character Probability Code

X6 0.25 1

X3 0.20 1

X4 015 0 1

x5 0.15 0 1

x1 0.10 0 o 1

X, 0.10 O 0 0

X; 0.05 0 0 0

Figure 2.52 Initial Shannon—Fano coding process

Character Probability Code

X6 0.25 I |

X; 0.20 I 0

x4 0.15 0 1 [

X5 0.15 0 I 0

X1 0.10 0 0 1

x7 0.10 0 0 F 1
X2 0.05 0 0 0 0

Figure 2.53 Completed Shannon—Fano coding process

code for the character set whose probability of occurrence was previously

listed in Table 2.18. Figure 2.54 (top) illustrates the construction of the
Huffman code for the 7—character character set listed in Table 2.18. The

lower portion of that illustration shows the assignment of binary Is and Us
to each path member and the resulting Huffman code for each character
when the binary digits in each path are recorded beginning at the unity or

apex point in the coding tree.

Table 2.19 compares the codes generated by the Shannon—Fano coding

procedure to the Huffman coding procedure for the 7-character character
set used for each coding example. The average code length generated by

each coding procedure can be computed by using the formula;

7

A = 2 MP,-
i=1

For the Shannon—Fano code, the average code length is:

A=2><0.25+2x0.20+3><0.15+3x0.15+3><0.10+4><0.10

+4 ><0.05=2.7 bits

For the Huffman code, the average code length is:

A = 2 X 0.25 + 3 X 0.75 = 2.75 bits

112

113

110

Character Probability

0.25

x, 0.25 I

X3 0.20

X, 0.15

X5 0.15

X1 0.10

X—, 0.10

X; 0.05

Character Code

x6 00 0.25

X3

X4

x5

X1

X7

X2

Figure 2.54 Huffman code construction

Table 2.19 Coding comparison —I

Character Probability Shannon—Fano code Huffman code

X5 0.25 11 00

X3 0.20 10 010

X4 0.15 011 011

X5 0.15 010 100

X1 0.10 001 101

X, 0.10 0001 110

X2 0.05 0000 111

Although the Shannon—Fano code is more efficient since its average code

length is less than that of the Huffman code, the reader should note that it

is not necessarily always more efficient. The previous illustrations were based

upon one group of assigned probabilities of occurence to a 7-character
character set. To illustrate how efficiencies between the two codes can

change, let us assume that the probabilities of occurrence of the characters

in the character set are now represented by the data listed in Table 2.20.

113

114

111

Table 2.20 Revised character set

 Character Probability of occurrence

X1 0.0625

X2 0.0625

X3 0.1250
X4 0.1250

X5 0.0625

X6 0.5000

X7 0.0625

The top portion of Figure 2.55 illustrates the Shannon—Fem coding process
while the lower portion of that illustration shows the Huffman coding process.
Note that based upon the revisions in the probability of occurrence of the
characters in the character set, the average code length for each coding
technique is the same. That is, the aVerage code length for the Shannon—Faun
coding process is:

i = 1 x 0.5 + 3 X 0.125 + 3 x 0.125 + 4 x (4 x 0.0625) = 2.25 bits

which is exactly the same code length obtained from the Huffman coding

process.

A. Shannon—Fano coding

x... 0.50 l 1

x3 0.125 0 1 1

x4 0.125 0 L 0

x5 0.0625 0 0 1 1

x1 0.0625 0 0 1 0

x, 0.0625 0 0 T1
x2 0.0625 0 0 0 0

B. Huffman coding

1 x., 0.500

0.11 X; 0.125

010 x4 0.125

0011 X5 0.0625

0010 X. 0.0625

0001 X7 0.0625

0000 X2 0 .0625

Figure 2.55 Recoding the new character set

114

115

112

Now let us assume that the probability of occurrence of each character in

the character set is again altered. Suppose the new probabilities of occurrence
are as indicated in Table 2.21.

The top portion of Figure 2.56 illustrates the Shannon—Fano coding process
for the revised character set while the lower portin shows the Huffman

coding process.

Now let us compute the average code length for each coding process. For

the Shannon—Fano code, its average code length is:

A=2X0.4+2X0.1+3X0.1+3X0.1+3X0.1+4XO.1+4><

0.1 =2.7 bits

Table 2.21 New character set probabilities

Character Probability of occurrence

X1 0.10

X2 0.10

X3 0.10

X4 0.10

X5 0.40

X6 0.10

X7 0.10

X5 0.40 1 1

X1 0.10 1 0

X; 0.10 0 1 1

X; 0.10 0 1 0

X4 0.10 O 0 1

X5 0.10 0 0 0 1

X-, 0.10 0 0 0 0

B. Huffman coding

00 X, 0.40

010 X1 0.10

01 X2 0 10

100 X3 0.10

101 X4 0.10

110 X5 0.10

111 X1 0.10

Figure 2.56 Recoding the revised character set

115

116

113

For the Huffman code, its average code length is:

h=2><0.4+3><0.6=2.6bits

Thus: in this instance the Huffman code results in a more efficient bit
representation of the character set than the Shannon—Fano coding method.

In general, as the probabilities of each character in the character set
approaCl'l probabilities that are negative powers of 2 both codes will have
their average code length approach entropy. That is, if all the probabilities
of the characters in the character set were negative powers of 2 the average
code length would equal entropy and the efficiency of each code would be
100 per cent. If the probabilities of occurrence of the elements in a set have
a large variance, the Shannon-Fano code will be more efficient while the
Huffman code becomes more efficient as the variance in probabilities
decreases between elements in the set.

2.10 ADAPTIVE COMPRESSION

Theexamples_0_f_-9_qmpre_s_siontechniques previously. covered._in .this_chapte_r
were_based__.up0n..the_.assumption. of. prior knowledge. .,of.._the_ __d_at_a to PL-
compressed..Usingthis prior knowledge. permits 117510 predefine compression
indicating..characters,_.and the character sequences which canthen be sub—
stitutedfor. stringsof data containing.predefined.- redundancy. Iri._,'add_ition,
we can construct a fixed compression table..that- will enable the statistical
encoding of data to occur based upon the expected frequency of occurrence
of the data. Run length and diatomic encoding. are examples of character
sequence and character substitution where some prior knowledge or expec-
tation. of the composition of the data resulted in the definition of a single
character or short sequence of characters to replace longer sequences of
characters. Huffman and modified Huffman encoding are-examples of data

compression techniques that would employ a fixed compression table whose
construction is based upon prior knowledge, or assumedknowledge of the
data.

The fixed compression table

Figure 2.57 illustrates the general format of a fixed compression table. In
actuality, this table can be two separate tables, with a relationship established
between the elements in each table or the table can consist of paired entries.

Each character in the original data stream is compared to the entries in the
‘data to compress’ part of the compression table. When the character to be
encoded matches an entry in the ‘data to compress” portion of the table, the
code that represents the character is extracted from the compression table.
Thus, the process required to replace each character with its statistical code
is reduced to a table look-up operation.

116

117

114

data to compress
Figure 2.57 Fixed compression table format

Data to compress Resulting code

Figure 2.58 Resulting fixed compress table

To illustrate the utilization of a fixed compression table, let us assume

that as a result of an analysis of a 4-character character set (X1,X2,X3 and

X4) we determined that the probability of occurrence of each character was

0.5625, 0.1875, 0.1875 and 0.0625 respectively. The Huffman code previously

developed in Figure 2.46 for this character set results in the assignment of

0, 10, 110 and 111 to characters X1 to X4. Thus, based upon prior knowledge

of the data we can develop the Huffman code for the character set which

then enables us to construct the fixed compression table for this character

set. This table is illustrated in Figure 2.58.

The probability of occurrence of the characters in the character set must

be determined prior to constructing a fixed compression table.

The use of a fixed compression table requires each character in the original

data string to be compared to the ‘data to compress’ entries in the table.

When a match occurs, the coded entry then replaces the character in the

original data string. Thus, the sequence of characters

X2X4X1X2X2

would be replaced by the Huffman code for each character, which would

result in the binary sequence:

1011101010

Efficiency

What happens to the efficiency of the predefined Huffman code when the

probability of occurrence of the characters in the character set differs from

117

118

115

the prior or expected knowledge of their frequency of occurrence? Since

short codes are employed to represent frequently occurring characters while

longer codes represent characters that occur less frequently, the predefined

Huffman codes variance from entropy increases as the data varies from its

prior or expected frequency of occurrence. One technique that can be used

to maintain the efficiency of the resulting code obtained by compressing data

statistically is the use of an adaptive or dynamic compression scheme, which
is the main topic of this section.

Adaptive compression

When adaptive compression is performed, the data to be compressed is
analysed in order to generate appropriate changes into a variable com-
pression table.

Similar to the use of a fixed compression table, each character in the

original data stream is first compared to the entries in the ‘data to compress’

portion of the compression table. When a match occurs, the corresponding

entry in the ‘resulting code’ portion of the table is extracted and represents
the statistically encoded character.

employment of a count field in the compression table. This field is con-

tinuously updated and serves as a mechanism for the resequencing of the
entries in the table. The updating of the field occurs after a character in the

original data stream is matched with an entry in the ‘data to compress’

portion of the compression table and the ‘resulting code’ is ex_tr_ac_ted from
the table. Then, a comparison of the entries in the count field occurs. Based

upon the results of the comparison, the character and its count value may

be repositioned in the compression table. This technique ensures that when-

ever the composition of the data changes, the: compression‘table changes in
tandem, resulting in a variable compression table that provides the most
efficient statistical compression possible. Figure 2.59 illustrates how a variable

compression table can be resequenced based upon the composition of the
data being transmitted.

Figure 2.59, part A, illustrates the initial composition of the variable

compression table. Although this table was initially establishedi‘b‘aSed upon
the frequency of occurrence of the characters in the character set, since the

table is self-adjusting, we do not have to concern ourselves with the size of

the sample used to initialize the entries into the table.

In Figure 2.59, part B, we assumed that the character X2 was encountered.

Since the binary code 10 is assigned to K; (Figure 2.59, part A), that bit
string is transmitted, the count for X2 is incremented by one and the variable

compression table is resequenced. Similarly, at the receiver the bit sequence
10 is received, which is decompressed into the character X2. The receiver

then increments the count for X2 in its compression table and its table is

also resequenced.

118

119

116

A. lnitial table Data transmitted

10
C. X, encountered 111

D. X; encountered 0

Data to compress Count Resulting code

Figure 2.59 The variable compression table

In Figure 2.59, part C, we have assumed that the character X4Is the next
character encountered1n the data to be compressed. Based upon the table

then1n use (Figure 2.59, part B), this character18 encoded as the binary string
111. Next, the count of the frequency of occurrence of X4 is incremented and

the variable compression table is resequenced.

Figure 2.59, part D, assumes that the next character encountered in the
original data string is X2. Since the table illustrated in Figure 2.59, part C,

119

120

117

was then in use, X2 is encoded as the single bit 0. Then the count for X2 is

incremented by one; however, since X2 was at the top of the compression

table, the table is not resequenced.

As illustrated in Figure 2.59, adaptive compression dynamically changes

the order of the entries in the compression table in tandem with the changes

in the frequency of occurrence of the characters in the character set. Thus,

this method of implementing a statistical compression technique should

always be more efficient than the utilization of fixed compression.

Coded example

Figure 2.60 contains the ADAPTC.BAS program llstmg This BASICJan:
guageprogram was developed to illustrate many of the programmmg con-

cepts involved in.adaptivecompresslonIFor.simplicity- of illustration only

fourmharacters—ErTjI-and.O—areconsideredto bein the character'set

_suitableforadapnve.compressmn All other characters encounteredin _the
datastringsthe.program__w_11_1 operate upon will be passed‘as-is to the output

buffer.

Inhne 11.5,..the programmhranches to the subroutinecommencing-at line
400 which initializes the charactertable P_$(I) .to the characters E, T, I and

0, Similar to- theother coding examples presentedin this chapter, line 130
obtains a.lineof upto 132__characters from a datafile while line 140 obtains
the length of the line.

The subroutine commencingat line 180.processes the records read from

the data—file. To illustrate theoperation of adafiiVe— cempression, when the
characters E T I.and-._0 are. cn£9unt¢,r©£1 .th€?Y,.Wi,11_ be replaced by the
characters #, $, % and &. For simplicity, theresulting Huffmantablewill

be displayed on— a—~line-by—line-«basi-s instead of— on an individual character

basis while the code changes in the adaptive compression table will similarly

occur on a line by line basis.

In'line 230, the subroutine commencing at line 2120 is invoked. This

subroutine prints the current values of the compression table. Next, lines

240 to 280 examine the extracted record from the data file on a line-by-line

basis, comparing each character in the record to any of the characters in our

compressible four-character character set (E, T, I, 0). If a match occurs,
the subroutine commencing at line 350 is invoked. Otherwise, the program

simply places the character extracted from the input record into the output
buffer.

The subroutine commencing at line 350 sets the character match flag to
one and then adds 34 to the value of K in line 365. This action sets the

ASCII value of V to either the #, $, % or & character which is used in this

example to illustrate the substitution of a Huffman code for an appropriate

character in the four-character character set we are using. Next, line 370

inserts the substituted character into the output buffer and the count is then
incremented in line 380.

120

121

118

10 REM ADAPTC.BAS PROGRAM

20 DIM O$(132)
30 WIDTH SO:CLS
40 ”littlltlttMAIN ROUTINEttItIXIlittt¥¥t¥¥t¥l¥¥

50 ”1 THIS ROUTINE READS RECORDS FROM AN ASCII *
60 ”1 FILE INTO A STRING CALLED XS WHICH IS t

70 ”1 THEN PASSED TO SUBROUTINES FOR COMPRESSION

BO ”XI¥¥¥IKI¥¥¥¥¥¥Itltlilllltlltltllittttl¥llttl

S0 PRINT "ENTER ASCII FILENAME. EG. ADAPT.DAT"
100 INPUT Fi: OPEN F5 FOR INPUT AS #2

105 OPEN “ADAPTC.DAT" FOR OUTPUT AS #3
110 PRINT “PATIENCE - INPUT PROCESSING"

112 PRINT "SUBSTITUTION BASED ON ENTRY IN TABLE: 1=# 2=$ 3:1 4=&“
115 GOSUB 400 ”PAUSE TO SET UP TABLE
120 IF EOF(2) THEN SOTO 9000

130 LINE INPUT #2, X$
140 N= LENtXi)

150 GOSUB 130
150 GOSUB 900

170 SOTO 120

180 ”IIIIIADAPTIVE COMPRESSION SUBROUTINEXItlitl

190 ”* THIS ROUTINE PROCESSES RECORDS FROM X$ *
200 ”1 AND COMPRESSES WITH HUFFMAN CODES *

210 ”* USING O$ AS THE OUTPUT BUFFER. I

220 ”lttlltlltllillttttI111131211¥1¥11111111¥¥¥I

230 GOSUB 2120 ”PRINT HUFFMAN TABLE USED
235 I=1 ”RESET INDICES
240 FOR J: 1 TO N ”STEP THRU RECORD

250 A$= MID$£X$,J,1) ”EXTRACT A CHARACTER
260 FOR K = 1 TO 4 ”SETUP HUFFMAN LOOP
270 IF A$=P$(K) THEN GOSUB 350 ”IS INPUT CHAR IN TABLE?

280 NEXT K ”NO - TRY NEXT
290 IF M = 1 THEN 310 ”IS MATCH FLAG SET?

300 Oitl) = MID$(A$,1,1) ”NO-STUFF CHAR IN BUFFER
310 I=I+1 ”BUMP INPUT STRING INDEX

320 M=0 ”RESET MATCH FLAG
330 NEXT J ”GO BACK FOR MORE
340 RETURN ”DONE

350 M=1 - ”SET CHAR MATCH FLAG
355 ”titt$litt*1##1##!It##tl¥1¥¥¥l¥**¥¥X¥**1!*¥*¥1¥1¥**$¥¥1**
360 ”INSERT COMPRESSION NOTATION IN OUTPUT BUFFER

365 v = R + 34 ”INDEX OUT TD SUBSTITUTE CHAR
370 D$(I)=CHR$(V) =INSERT SUBSTITUTIDN
380 PiK = PtK) + 1 ”BUMP CDUNT DF DCCURANCE
390 R = 4 ’FURCE END DF SEARCH
395 RETURN ”GO BACK FOR MORE
400 DIM P$(4) ’CDHMDN HUFFMAN CANDIDATES

410 DATA E,T,I.n
420 FDR I = 1 TD 4 ’SETUP CHARACTER TABLE
430 READ z$ =SET CHARACTER

440 Rscl) = Zfi: NEXT I ’AND STUFF INTD TABLE

450 RETURN ”DONE - TABLE COMPLETE

Figure 2.60 ADAPTC.BAS program listing

121

122

119

900 ”titltTALLY THE COMPRESSION COUNT & WRITE BUFFERIlltll
910 ’* DISPLAV BEFORE & AFTER RESULTS OF COMPRESSION X
920 ’1 AND SHOW THE NET RESULTS OBTAINED BY EACH METHOD 1

930 ’tII¥XXXKX1*I#311*#11113*1Itttttttlttitttttttlllttt$11
931 N1=N1+N ’TALLY INPUT CHAR COUNT

932 T=N—I+1 ”NET DIFFERENCE IN BUFFERS
936 T1=T1+T ’SAVE COUNT FOR SUMMARY
940 FUR I=1 T0 JPI

950 PRINT #5. 00(1);
950 NEXT 1

955 PRINT #3, "u
955 GDSUB 2000 ’RESEDUENCE HUFFMAN TABLE
970 RETURN

2000 =xtxthESEQUENCE 0 PRINT TABLE FDR ADAPTIVE CDNPREssroNtttxx

2010 FDR J=1 T0 5 ’SETUP 15T LCCP
2020 FDR R=J+1 TD 4 ’SETUP 2ND LDCP

2030 IF P(J) 2: FIR) THEN 2100 =15 CURRENT ENTRY GREATER?
2040 TENP= PtJ) ’NU—SAVE IN TENP

2050 TEHP$= P$(J) =AND SAVE CHAR

2050 P(J)= P(K) ’PICKUP GREATER CDUNT
2020 P$(J)= P$(K) ’AND A550C CHAR
2050 PIN): TEMP ’SWAP LESSER CDUNT

2090 P$(K)= TEMP$ =AND AESDC CHAR

2100 NEXT K ”FINISH 2ND LDDP
2110 NEXT J ’FINISH 15T LDDP

2115 RETURN ”DUNE—TABLE RESEDUENCED
2120 L= L + I ’REMEMBER LINE N0.

2150 PRINT "HUFFMAN TABLE USED FDR LINE";L;": ";

2140 FDR I=1 TD 4 ’SETUP PRINT TABLE LUDP

2150 PRINT P$(I);:PRINT P(I); ’PRINT CHAR AND CDUNT
2160 NEXT 1
2175 PRINT

2180 RETURN ”DONE—TABLE PRINTED
9000 CLOSE: OPEN F$ FOR INPUT AS #2

9010 PRINT “FILE ":F$;" BEFORE SUBSTITUTION:"
9020 LINE INPUT #2,X$
9030 IF EOF(2) THEN 9060
9040 PRINT X$
9050 SOTO 9020

9000 PRINT X$=OPEN “ADAPTC.DAT" FOR INPUT AS #3

9070 PRINT "FILE “;F$:" AFTER SUBSTITUTION:"
9080 LINE INPUT #3.0$
9090 IF EOFTE) THEN 9998
9100 PRINT O$

9110 SOTO 9080
9998 PRINT O0
9999 CLOSE:END

Figure 2.60 (continued)

When the match flag is set, line 290 causes a branch to line 310, where

the input string index is incremented by one, after which the match flag is
reset to zero in line 320. If the match flag was not set, line 300 simply

extracts one character from its appropriate position in the input record and

places it into the output buffer.

122

123

120

Each time prior to a line of input being processed in this program, the
subroutine call contained in line 230 will be invoked. This subroutine simply

prints out the current status of the adaptive ‘Huffman’ compression table to
include the character order and the frequency of occurrence of each charac-

ter. Although this program was constructed to facilitate the visual observation
of the changes in an adaptive compression table on a line—by-line basis, in
developing an actual adaptive compression routine the tables would be
subject to change on an individual character basis.

The actual resequencing of the adaptive compression table occurs in lines

2000 to 2115 of the program. This subroutine module sorts the characters in
the adaptive compression table based upon their frequency of occurrence.

Figure 2.61 illustrates the sample execution of the ADAPTCBAS
program, with the status of the compression table displayed for each line of
data in the file to. be processed. In addition, the program displays the
contents of the file prior to and after the substitution of characters from the
previously defined 4-character character set. As an example of the operation
of the program note that prior to line 1 being processed all entries in the
compression table have a count of zero and the order of the entries is E, T,
I and O.

The first line in the data file contains the string BEGIN, followed by many

asterisks. Since the characters E and I will be replaced by the ‘Huffman’

codes # and "/0, after line 1 is processed the count for E and I should be

one, while the adaptive compression table should be resequenced to account

for the new frequency of occurrence. Examining the Huffman table used for

ENTER ASCII FILENAME. ES, ADAPT.DAT
? ADAPT.DAT

PATIENEE — INPUT PROCESSING

SUBSTITUTIDN BASED ON ENTRY IN TABLE: 1=# 2=$ 3=Z 4=&

HUFFMAN TABLE USED FDR LINE 1 = E D T O I 0 D 0

HUFFMAN TABLE USED FOR LINE 2 : E 1 I 1 T 0 D 0

HUFFMAN TABLE USED FOR LINE 3 : I 5 D 5 T 3 E 2

HUFFMAN TABLE USED FOR LINE 4 = O 9 E 7 T 5 I 5
HUFFMAN TABLE USED FDR LINE 5 : D 19 I 13 T 11 E 11

FILE ADAPT.DAT BEFORE SUBSTITUTIDN:

1 BEGINIIKlitlttltillttlllttlltttttlttlIII

DVATIDN UVATIDN FUR THE MUSICIAN
ENSURE ENCORE FOR THE ACTDR

0000000000 11111111 TTTTTT EEEE(
Kitt*11tiilliittt‘IIIIIIXIIIIIIIXIIIIEND

FILE ADAPT. DAT AFTER SUBSTITUTIDN:
1 B#EZN#XIIKIIIIXXIXIIIXIIIIX#llllttltltll

&VAZ$&N &VAZ$&N F&R ZH# MUSEAN

&NC$R& &NC$R& FiR ZH& ACZ$R

########## &&&&&&&& flZEHZZ $$$$

*¥**¥*¥*¥¥*****1*thtttttltttlttlitttfiND
k

Lil-ANN

DUl-hU-H'J
Figure 2.61 Sample execution of ADAPTC.BAS program

123

124

121
Table 2.22 Adaptive compression table change

Initial table

Character sequence E T I 0
Code substitution # $ % &

After line 1 processed

Character sequence E I T 0
Code substitution # $ % &

line two in Figure 2.61, the reader will note that the count of E and I are

set to 1, while the order of the characters in the table has been rearranged
to take into consideration their new frequency of occurrence.

Examining line two in the ADAPT.DAT data file, the reader will note

that OVATION contains four characters that can be substituted by the
adaptive ‘Huffman’ code. Since the character 0 did not change its place in
the compression table, the ‘Huffman’ code of & is substituted for that

character. Next, the T in OVATION, which would have initially been
replaced by the ‘Huffman’ code of $, is replaced by the ‘Huffrnan’ code of

% since the adaptive table entries changed, which caused the ‘Huffman’

code substitutions to change. Table 2.22 summarizes the changes in the
adaptive compression table prior to and after the first line of data in the

input file is processed. As an exercise, the reader may Wish to follow the

code substitutions for the 4-character character set for the remaining lines
in the ADAPT.DAT file that are processed by the ADAPTC.BAS program.

124

125

DATA COMPRESSION ._

Techniques and Applications, Hardware \
and Software Considerations
Second Edition

Gilbert Held

4—Degree Consulting, Macon, Georgia, USA
and

Thomas R. Marshall

(software author)

Are you spending more time and money on data storage and \\
transmission than you need to? About 95 per cent of all data
transmission consists of blanks, strings of spaces, numeric and

alphabetic repetitions, not only buzzing through the airways but
also embedded in a large number of databases. In this book the
author shows how to increase the efficiency and cut the cost of data

transmission and storage through the application of practical data com—
pression routines.

Written as a no-nonsense, practical guide for implementing data compres-

sion, the techniques given in this book will prove invaluable whether your

organization is large or small, whether you use a mainframe or microcomputer,
and whether you are an end user or an equipment designer.

Also included are IBM PC programs and routines to compress and decom-

press data and to analyse the susceptibility of data to compression The
programs are now available on disk forthose who preferto save keying time
and the introduction of errors. To obtain a copy ofthe disk please see the order
form in the book.

Contents

Chapter One Rationale and Utilization

Logical Compression, Physical Compression, Compression Benefits,
Terminology, Communications Applications, Data Compression and
Information Transfer

Chapter Two Data-Compression Techniques

Null Suppression, Bit Mapping, Run Length, Half-Byte Packing, Diatomic
Encoding, Pattern Substitution, Relative Encoding, Forms Mode Operation,
Statistical Encoding, Adaptive Compression

Chapter Three System Considerations and Data Analysis
System Considerations, Data Analysis

Chapter Four Software-Linkage Considerations

Compression Routine Placement, Timing Considerations
Chapter Five Using Compression-Performing Devices

Asynchronous Data Compressors, Multifunctional Compression Devices
Appendices

Data Codes and Compression-

Indicating Characters, DATANALYSIS ISBN '3 ”71'11359'
Program Descriptions and Listings,

SHRINK Program Descriptions and
Listings

References

Further Reading
Index

JOHN WILEY & SONS

Chichester - New York - Brisbane . Toronto - Singapore

9 «Dd-T1 9120

