
The Case for a Single-Chip Multiprocessor

Kunle Olukotun, BasemA. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang

Computer Systems Laboratory
Stanford University

Stanford, CA 94305-4070
http://www-hydra.stanford.edu

Abstract

Advances in IC processing allow for more microprocessor design
options. The increasing gate density and cost of wires in advanced
integrated circuit technologies require that we look for new ways to
use their capabilities effectively. This paper shows that in advanced
technologies it is possible to implement a single-chip multiproces
sor in the same area as a wide issue superscalar processor. We find
that for applications with little parallelism the performance of the
two microarchitectures is comparable. For applications with large
amounts of parallelism at both the fine and coarse grained levels,
the multiprocessor microarchitecture outperforms the superscalar
architecture by a significant margin. Single-chip multiprocessor
architectures have the advantage in that they offer localized imple
mentation of a high-clock rate processor for inherently sequential
applications and low latency interprocessor communication for par
allel applications.

1 Introduction

Advances in integrated circuit technology have fueled microproces
sor performance growth for the last fifteen years. Each increase in
integration density allows for higher clock rates and offers new
opportunities for microarchitectural innovation. Both of these are
required to maintain microprocessor performance growth. Microar
chitectural innovations employed by recent microprocessors
include multiple instruction issue, dynamic scheduling, speculative
execution and non-blocking caches. In the future, the trend seems to
be towards CPUs with wider instruction issue and support for larger
amounts of speculative execution. In this paper, we argue against
this trend. We show that, due to fundamental circuit limitations and
limited amounts of instruction level parallelism, the superscalar
execution model will provide diminishing returns in performance
for increasing issue width. Faced with this situation, building a
complex wide issue superscalar CPU is not the most efficient use of
silicon resources. We present the case that a better use of silicon
area is a multiprocessor microarchitecture constructed from simpler
processors.

Permission to make digita.ll1lard copy 01 part .or all 01 this \'york lor personal
Of classroom use is granted without lee proVided that COPI~S are n~t made
or distributed lor profit or commercial advantage, tt:Je ~p~nght notice, the
title 01 the publication and its date appear, and notice !S given that .
copying is by permission 01 ACM, Inc. To cop¥ other:wlse, to. republJs~, !O
post on servers, or to redistribute to lists, requires poor spectfic permission
and/or a lee.

ASPLOS VII 10196 MA, USA
C 1996 ACM 0-89791-767-7/96/0010...$3.50

2

To understand the performance trade-offs between wide-issue pro
cessors and multiprocessors in a more quantitative way, we com
pare the performance of a six-issue dynamically scheduled
superscalar processor with a 4 x two-issue multiprocessor. Our
comparison has a number of unique features. First, we accurately
account for and justify the latencies, especially the cache hit time,
associated with the two microarchitectures. Second, we develop
floor-plans and carefully allocate resources to the two microarchi
tectures so that they require an equal amount of die area. Third, we
evaluate these architectures with a variety of integer, floating point
and multiprogramming applications running in a realistic operating
system environment.

The results show that on applications that cannot be parallelized,
the superscalar microarchitecture performs 30% better than one
processor of the multiprocessor architecture. On applications with
fine grained thread-level parallelism the multiprocessor microarchi
tecture can exploit this parallelism so that the superscalar microar
chitecture is at most 10% better. On applications with large grained
thread-level parallelism and multiprogramming workloads the mul
tiprocessor microarchitecture performs 50-100% better than the
wide superscalar microarchitecture.

The remainder of this paper is organized as follows. In Section 2,
we discuss the performance limits of superscalar design from a
technology and implementation perspective. In Section 3, we make
the case for a single chip multiprocessor from an applications per
spective. In Section 4, we develop floor plans for a six-issue super
scalar microarchitecture and a 4 x two-issue multiprocessor and
examine their area requirements. We describe the simulation meth
odology used to compare these two microarchitectures in Section 5,
and in Section 6 we present the results of our performance compar
ison. Finally, we conclude in Section 7.

2 The Limits of the Superscalar Approach

A recent trend in the microprocessor industry has been the design
of CPUs with multiple instruction issue and the ability to execute
instructions out of program order. This ability, called dynamic
scheduling, first appeared in the CDC 6600 [21]. Dynamic schedul
ing uses hardware to track register dependencies between instruc
tions; an instruction is executed, possibly out of program order, as
soon as all of its dependencies are satisfied. In the CDC 6600 the
register dependency checking was done with a hardware structure
called the scoreboard. The IBM 360/91 used register renaming to
improve the efficiency of dynamic scheduling using hardware struc-

AMD EX1022 
U.S. Patent No. 6,895,519

0001f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Figure 1. A dynamic superscalar CPU 

tures called reservation stations [3]. It is possible to design a 
dynamically scheduled superscalar microprocessor using reserva- 
tion stations; Johnson gives a thorough description of this approach 
[13]. However, the most recent implementations of dynamic super- 
scalar processors have used a structure similar to the one shown in 
Figure 1. Here register renaming between architectural and physical 
registers is done explicitly, and instruction scheduling and register 
dependency tracking between instructions are performed in an 
instruction issue queue. Examples of microprocessors designed in 
this manner are the MIPS Technologies R10000 [24] and the HP 
PA-8000 [14]. In these processors the instruction queue is actually 
implemented as multiple instruction queues for different classes of 
instructions (e.g. integer, floating point, load/store). The three major 
phases of instruction execution in a dynamic superscalar machine 
are also shown in Figure 1. They are fetch, issue and execute. In the 
rest of this section we describe these phases and the limitations that 
will arise in the design of a very wide instruction issue CPU. 

The goal of the fetch phase is to present the rest of the CPU with a 
large and accurate window of decoded instructions. Three factors 
constrain instruction fetch: mispredicted branches, instruction mis- 
alignment, and cache misses. The ability to predict branches cor- 
rectly is crucial to establishing a large, accurate window of 
instructions. Fortunately, by using a moderate amount of memory 
(64Kbit), branch predictors such as the selective branch predictor 
proposed by McFarling are able to reduce misprediction rates to 
under 5% for most programs [15]. However, good branch predic- 
tion is not enough. As Conte pointed out, it is also necessary to 
align a packet of instructions for the decoder [7]. When the issue 
width is wider than four instructions there is a high probability that 
it will be necessary to fetch across a branch for a single packet of 
instructions since, in integer programs, one in every five instruc- 
tions is a branch [12]. This will require fetching from two cache 
lines at once and merging the cache lines together to form a single 
packet of instructions. Conte describes a number of methods for 

achieving this. A technique that divides the instruction cache into 
banks and fetches from multiple banks at once is not too expensive 
to implement and provides performance that is within 3% of a per- 
fect scheme on an 8-wide issue machine. Even with good branch 
prediction and alignment a significant cache miss rate will limit the 
ability of the fetcher to maintain an adequate window of instruc- 
tions. There are still some applications such as large logic simula- 
tions, transactions processing and the OS kernel that have 
significant instruction cache miss rates even with fairly large 64 KB 
two way set-associative caches [19]. Fortunately, it is possible to 
hide some of the instruction cache miss latency in a dynamically 
scheduled processor by executing instructions that are already in 
the instruction window. Rosenblum et. al. have shown that over 
60% of the instruction cache miss latency can be hidden on a data- 
base benchmark with a 64KB two way set associative instruction 
cache [ 19]. Given good branch prediction and instruction alignment 
it is likely that the fetch phase of a wide-issue dynamic superscaiar 
processor will not limit performance. 

In the issue phase, a packet of renamed instructions is inserted into 
the instruction issue queue. An instruction is issued for execution 
once all of its operands are ready. There are two ways to implement 
renaming. One could use an explicit table for mapping architectural 
registers to physical registers, this scheme is used in the R10000 
[24], or one could use a combination reorder buffer/instruction 
queue as in the PA-8000 [14]. The advantage of the mapping table 
is that no comparisons are required for register renaming. The dis- 
advantage of the mapping table is that the number of access ports 

required by the mapping table structure is O x W, where O is the 

number of operands per instruction and W is the issue width of the 

machine. An eight-wide issue machine with three operands per 
instruction requires a 24 port mapping table. Implementing renam- 
ing with a reorder buffer has its own set of drawbacks. It requires 

n x Q x O x W 1-bit comparators to determine which physical reg- 

isters should supply operands for a new packet of instructions, 

where n is the number of bits required to encode a register identi- 

fier and Q is the size of the instruction issue queue. Clearly, the 

number of comparators grows with the size of the instruction queue 
and issue width. Once an instruction is in the instruction queue, all 
instructions that issue must update their dependencies. This 

requires another set of n x Q x O x w comparators. For example, a 
machine with eight wide issue, three operand instructions, a 64- 
entry instruction queue, and 6-bit comparisons requires 9,216 1-bit 
comparators. The net effect of all the comparison logic and encod- 
ing associated with the instruction issue queue is that it takes a large 
amount of area to implement. On the PA-8000, which is a four- 
issue machine with 56 instruction issue queue entries, the instruc- 
tion issue queue takes up 20% of the die area. In addition, as issue 
widths increase, larger windows of instructions are required to find 
independent instructions that can issue in parallel and maintain the 
full issue bandwidth. The result is a quadratic increase in the size of 
the instruction issue queue. Moving to the circuit level, the instruc- 
tion issue queue uses a broadcast mechanism to communicate the 
tags of the instructions that are issued, which requires wires that 
span the length of the structure. In future advanced integrated cir- 
cuit technologies these wires will have increasingly long delays rel- 
ative to the gates that drive them [9]. Given this situation, 
ultimately, the instruction issue queue will limit the cycle time of 
the processor. For these reasons we believe that the instruction issue 

0002f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


queue will fundamentally limit the performance of wide issue 
superscalar machines. 

In the execution phase, operand values are fetched from the register 
file or bypassed from earlier instructions to execute on the func- 
tional units. The wide superscalar execution model will encounter 
performance limits in the register file, in the bypass logic and in the 
functional units. Wider instruction issue requires a larger window of 
instructions, which implies more register renaming. Not only must 
the register file be larger to accommodate more renamed registers, 
but the number of ports required to satisfy the full instruction issue 
bandwidth also grows with issue width. Again, this causes a qua- 
dratic increase in the complexity of the register file with increases 
in issue width. Farkas et. al. have investigated the effect of register 
file complexity on performance [10]. They find that an eight-issue 
machine only performs 20% better than a four-issue machine when 
the effect of cycle-time is included in the performance estimates. 
The complexity of the bypass logic also grows quadratically with 
number of execution units; however, a more limiting factor is the 
delay of the wires that interconnect the execution units. As far as 
the execution units themselves are concerned, the arithmetic func- 
tional units can be duplicated to support the issue width, but more 
ports must be added to the primary data cache to provide the neces- 
sary load/store bandwidth. The cheapest way to add ports to the 
data cache is by building a banked cache [20], but the added multi- 
plexing and control required to implement a banked cache increases 
the access time of the cache. We investigate this issue in more detail 
in Section 4.2. 

3 The Case for a Single-Chip Multiprocessor 

The motivation for building a single chip multiprocessor comes 
from two sources; there is a technology push and an application 
pull. We have already argued that technology issues, especially the 
delay of the complex issue queue and multi-port register files, will 
limit the performance returns from a wide superscalar execution 
model. This motivates the need for a decentralized microarchitec- 
ture to maintain the performance growth of microprocessors. From 
the applications perspective, the microarchitecture that works best 
depends on the amount and characteristics of the parallelism in the 
applications. 

Wall has performed one of the most comprehensive studies of 
application parallelism [22]. The results of his study indicate that 
applications fall in two classes. The first class consists of applica- 
tions with low to moderate amounts of parallelism; under ten 
instructions per cycle with aggressive branch prediction and large, 
but not infinite window sizes. Most of these applications are integer 
applications. The second class consists of applications with large 
amounts of parallelism, greater than forty instructions per cycle 
with aggressive branch prediction and large window sizes. The 
majority of these applications are floating point applications and 
most of the parallelism is in the form of loop-level parallelism. 

The application pull towards a single-chip multiprocessor arises 
because these two classes of applications require different execu- 
tion models. Applications in the first class work best on processors 
that are moderately superscalar (2 issue) with very high clock rates 
because there is little parallelism to exploit. To make this more con- 
crete we note that a 200 MHz MIPS R5000, which is a single issue 
machine when running integer programs, achieves a SPEC9.5 inte- 

ger rating which is 70% of the rating of a 200 MHz MIPS R10000, 
which is a four-issue machine [6], Both machines have the same 
size data and instruction caches, but the R5000 has a blocking data 
cache, while the R10000 has a non-blocking data cache. Applica- 
tions in the second class have large amounts of parallelism and see 
performance benefits from a variety of methods designed to exploit 
parallelism such as sUperscalar, VLIW or vector processing. How- 
ever, the recent advances in parallel compilers make a multiproces- 
sor an efficient and flexible way to exploit the parallelism in these 
programs [1]. Single-chip multiprocessors, designed so that the 
individual processors are simple and achieve very high clock rates, 
will work well on integer programs in the first class. The addition of 
low latency communication between processors on the same chip 
also allows the multiprocessor to exploit the parallelism of the float- 
ing point programs in the second class. In Section 6 we evaluate 
the performance of a single-chip multiprocessor for these two 
application classes. 

There are a number of ways to use a multiprocessor. Today, the 
most common use is to execute multiple processes in parallel to 
increase throughput in a multiprogramming environment under the 
control of a multiprocessor aware operating system. We note that 
there are a number of commercially available operating systems 
that have this capability (e.g. Silicon Graphics IRIX, Sun Solaris, 
Microsoft Windows NT). Furthermore, the increasingly widespread 
use of visualization and multimedia applications tends to increase 
the number of active processes or independent threads on a desktop 
machine or server at a particular point in time. 

Another way to use a multiprocessor is to execute multiple threads 
in parallel that come from a single application. Two examples are 
transaction processing and hand parallelized floating point scien- 
tific applications [23]. In this case the threads communicate using 
shared memory, and these applications are designed to run on paral- 
lel machines with communication latencies in the hundreds of CPU 
clock cycles; therefore, the threads do not communicate in a very 
fine grained manner. Another example of manually parallelized 
applications are fine-grained thread-level integer applications. 
Using the results from Wall's study, these applications exhibit mod- 
erate amounts of parallelism when the instruction window size is 
very large and the branch prediction is perfect because the parallel- 
ism that exists is widely distributed. Due to the large window size 
and the perfect branch prediction it will be very difficult for this 
parallelism could be extracted with a superscalar execution model. 
However, it is possible for a programmer that understands the 
nature of the parallelism in the application to parallelize the appli- 
cation into multiple threads. The parallelism exposed in this manner 
is fine-grained and cannot be exploited by a conventional multipro- 
cessor architecture. The only way to exploit this type of parallelism 
is with a single-chip multiprocessor architecture. 

A third way to use a multiprocessor is to accelerate the execution of 
sequential applications without manual intervention; this requires 
automatic parallelization technology. Recently, this automatic par- 
allelization technology was shown to be effective on scientific 
applications [2], but it is not yet ready for general purpose integer 
applications. Like the manually parallelized integer applications, 
these applications could derive significant performance benefits 
from the low-latency interprocessor communication provided by a 
single-chip multiprocessor. 

4 
0003f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


6-way SS 4x2-way MP 

# of CPUs 1 4 

Degree superscalar 6 4 x 2 

# of architectural registers 32int / 32fp 4 x 32int / 32fp 

# of physical registers 160int / 160fp 4 x 40int / 40fp 

# of integer functional units 3 4 x 1 

# of floating pt. functional units 3 4 x 1 

# of load/store ports 8 (one per bank) 4 x 1 

BTB size 2048 entries 4 x 512 entries 

Return stack size 32 entries 4 x g entries 

Instruction issue queue size 128 entries 4 x 8 entries 

I cache 32 KB, 2-way S.A. 4 x 8 KB, 2-way S. A. 

D cache 32 KB, 2-way S.A. 4 x 8 KB, 2-way S. A. 

LI hit time 2 cycles (4 ns) 1 cycle (2 ns) 

LI cache interleaving 8 banks N/A 

Unified L2 cache 256 KB, 2-way S.A. 256 KB, 2-way S. A. 

L2 hit time / LI penalty 4 cycles (8 ns) 5 cycles (10 ns) 

Memory latency / L2 penalty 50 cycles (100 ns) 50 cycles (100 ns) 

Table 1. Key characteristics of the two microarchitectures 

4 Two Microarchitectures 

To compare the wide superscalar and multiprocessor design 
approaches, we have developed the microarchitectures for two 
machines that will represent the state of  the art in processor design 
a few years from now. The superscalar microarchitecture (SS) is a 
logical extension of the current R10000 superscalar design, wid- 
ened from the current four-way issue to a six-way issue implemen- 
tation. The multiprocessor microarchitecture (MP), is a four-way 
single-chip multiprocessor composed of four identical 2-way super- 
scalar processors. In order to fit four identical processors on a die of 
the same size, each individual processor is comparable to the Alpha 
21064, which became available in 1992 [8]. 

These two extremely different microarchitectures have nearly iden- 
tical die sizes when built in identical process technologies. The pro- 
cessor size we select is based upon the kinds of  processor chips that 
advances in silicon processing technology will allow in the next few 
years. When manufactured in a 0.25 I.tm process, which should be 
possible by the end of  1997, each of the chips will have an area of 

430 mm 2 - -  about 30% larger than leading-edge microprocessors 
being shipped today. This represents typical die size growth over 
the course of a few years among the largest, fastest microprocessors 
[11]. 

We have argued that the simpler two-issue CPU used in the multi- 
processor microarchitecture will have a higher clock rate than the 
six issue CPU; however, for the purposes of this comparison we 
have assumed that the two processors have the same clock rate. To 
achieve the same clock rate the wide superscalar architecture would 
require deeper pipelining due to the large amount of instruction 
issue logic in the critical path. For simplicity, we ignore latency 
variations between the architectures due to the degree of pipelining. 
We assume the clock frequency of both machines is 500 MHz. At 
500 MHz the main memory latencies experienced by the processor 
are large. We have modeled the main memory as a 50-cycle, 100 ns 

delay for both architectures, typical values in a workstation today 
with 60 ns DRAMs and 40 ns of delays due to buffering in the 
DRAM controller chips [25]. 

Table 1 shows the key characteristics of  the two architectures. We 
explain and justify these characteristics in the following sections. 
The integer and floating point functional unit result and repeat 
latencies are the same as the R10000 [24] 

4.1 6 - W a y  S u p e r s e a l a r  A r c h i t e c t u r e  

The 6-way superscalar architecture is a logical extension of the cur- 
rent R10000 design. As the floorplan in Figure 2 and the area break- 
down in Table 2 indicate, the logic necessary for out-of-order 
instruction issue and scheduling dominates the area of the chip, due 
to the quadratic area impact of supporting 6-way instruction issue. 
First, we increased the number of  ports in the instruction buffers by 
50% to support 6-way issue instead of 4-way, increasing the area of 
each buffer by about 30-40%. Second, we increased the number of 
instruction buffers from 48 to 128 entries so that the processor 
examines a larger window of instructions for ILP to keep the execu- 
tion units busy. This large instruction window also compensates for 
the fact that the simulations do not execute code that is optimized 
for a 6-way superscalar machine. The larger instruction window 
size and wider issue width causes a quadratic area increase of the 
instruction sequencing logic to 3-4 times its original size. Alto- 
gether, the logic necessary to handle out-of-order instruction issue 

occupies about 120 mm 2 - -  about 30% of the die. In comparison, 

the actual execution units only occupy about 70 mm 2 - - j u s t  18% 
of the die is required to build triple R10000 execution units in a 
0.25 gtm process. 

Due to the increased rate at which instructions are issued, we also 
enhanced the fetch logic by increasing the size of the branch target 
buffer to 2048 entries and the call-retum stack to 32 entries. This 
increases the branch prediction accuracy of the processor and pre- 

0004f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


21 mm 

'10 

12. 

t-- 

¢J 
O 

21 mm 

External Instruction 
Interface 

Fetch 

Inst. Decode & 
Rename 

Instruction 
Cache 
(32 KB) 

TLB 

Data 
Cache 
(32 KB) 

Reorder Buffer 
Instruction Queues, 

and Out-of-Order Logic 

Floating Point 
Unit 

"2 

O )  
O 

A 
r O  
v 
<,(3 
t O  

03 ¢-. 

¢D 
¢M 
. . J  

¢ -  

E 
O 

Figure 2. Floorplan for the six-issue dynamic superscalar 
microprocessor. 

vents the instruction fetch mechanism from becoming a bottleneck 
since the 6-way execution engine requires a much higher instruc- 
tion fetch bandwidth than the 2-way processors used in the MP 
architecture. 

The on-chip memory hierarchy is similar to the Alpha 21164 - -  a 
small, fast level one (L1) cache backed up by a large on-chip level 
two (L2) cache. The wide issue width requires the L1 cache to sup- 
port wide instruction fetches from the instruction cache and multi- 
ple loads from the data cache during each cycle. The two-way set 
associative 32 KB L1 data cache is banked eight ways into eight 
small, single-ported, independent 4 KB cache banks each of which 
handling one access every 2 ns processor cycle. However, the addi- 
tional overhead of the bank control logic and crossbar required to 
arbitrate between the multiple requests sharing the 8 data cache 
banks adds another cycle to the latency of the L1 cache, and 
increases the area by 25%. Therefore, our modeled L1 cache has a 
hit time of 2 cycles. Backing up the 32 KB L1 caches is a large, uni- 
fied, 256 KB L2 cache that takes 4 cycles to access. These latencies 
are simple extensions of the times obtained for the L1 caches of 
current Alpha microprocessors [4], using a 0.25 I.tm process tech- 
nology 

4 x 2-way Superscalar Multiprocessor 
Architecture 

4.2 

The MP architecture is made up of four 2-way superscalar proces- 
sors interconnected by a crossbar that allows the processors to share 
the L2 cache. On the die, the four processors are arranged in a grid 
with the L2 cache at one end, as shown in Figure 3. Internally, each 
of the processors has a register renaming buffer that is much more 
limited than the one in the 6-way architecture, since each CPU only 
has an 8-entry instruction buffer. We also quartered the size of the 
branch prediction mechanisms in the fetch units, to 512 BTB 
entries and 8 call-return stack entries. After the area adjustments 
caused by these factors are accounted for, each of the four proces- 

21 mm 

I-Cache #1 1SKI 

Processor 
#1 

D-Cache #1 (8K I 
D-Cache ~3 (8K) 

O 

Processor 
#3 

I-cache #3 ~SK) 

21 mm 

I-Cache #2 IBKI 

Processor 
#2 

D-Cache #2 {8K/ 
D-Cache #418K) 

Processor 
#4 

[e~ffI'~ ='ffl:~ llt:114 

Extemal 
Interface 

t 3  
v 
¢D to 
Cq 

co (D 
0~ 

¢D 
t -  

O 

¢U ¢3. ¢O . m  
¢_ e -  

E = 
E 0 
0 (b 

Figure 3. Floorplan for the four-way single-chip 
multiprocessor. 

sors is less than one-fourth the size of the 6-way SS processor, as 
shown in Table 3. The number of execution units actually increases 
in the MP because the 6-way processor had three units of each type, 
while the 4-way MP must have four - -  one for each CPU. On the 
other hand, the issue logic becomes dramatically smaller, due to the 
decrease in instruction buffer ports and the smaller number of 
entries in each instruction buffer. The scaling factors of these two 
units balance each other out, leaving the entire processor very close 
to one-fourth of the size of the 6-way processor. 

The on-chip cache hierarchy of the multiprocessor is significantly 
different from the cache hierarchy of the 6-way superscalar proces- 
sor. Each of the 4 processors has its own single-banked and single- 
ported 8 KB instruction and data caches that can both be accessed 
in a single 2 ns cycle. Since each cache can only be accessed by a 
single processor with a single load/store unit, no additional over- 
head is incurred to handle arbitration among independent memory- 
access units. However, since the four processors now share a single 
L2 cache, that cache requires an extra cycle of latency during every 
access to allow time for interprocessor arbitration and crossbar 
delay. We model this additional L2 delay by penalizing the MP an 
additional cycle on every L2 cache access, resulting in a 5 cycle L2 
hit time. 

5 Simulation Methodology 

Accurately evaluating the performance of the two microarchitec- 
tures requires a way of simulating the environment in which we 
would expect these architectures to be used in real systems. In this 
section we describe the simulation environment and the applica- 
tions used in this study. 

5.1 Simulation Environment  

We execute the applications in the SimOS simulation environment 
[18]. SimOS models the CPUs, memory hierarchy and I/O devices 

0005f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


