
Microsof t

Hardware White Paper

Draft ACPI Driver Interface Design Notes and
Reference

This paper documents the Microsoft-provided interface offered by the ACPI Driver to other kernel-mode
drivers.

Important: This document is an early draft revision, distributed primarily for review comment. Changes may
be made to any part of the document, especially at the detailed level.

Version 0.91
November 11, 1998

Contents

Introduction ..2
Two Ways of Using the ACPI Driver Interface ..2
Constraints on Using the ACPI Driver Interface ..2

Example Using a Hypothetical Hot Key Driver ...3
Example Driver Setup and Event Handling Using a Dedicated GPE Bit ...3
Example Driver Setup and Event Handling Using Event Notification ...4

Using the ACPI Interface IOCTLs ...5
Using the IOCTLs that Run AML Control Methods ..8
Using the IOCTLs that Acquire and Release the Global Lock ...9

Using Direct Function Calls ...11
Using the Device Notification Direct Interfaces and Callback ...12
Using the General Purpose Event Direct Interfaces and Callback ..15

Reference ...17
ACPI Driver Interface Structure Reference ..17
ACPI Driver Function and Callback Reference ..20

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. The furnishing of this document does not give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly
provided in any written license agreement from Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications.
Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and
freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these
specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any
country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in
connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the
exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

Microsoft, Visual Basic, Win32, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

© 1998 Microsoft Corporation. All rights reserved.

AMD EX1005
U.S. Patent No. 6,895,5190001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Draft ACPI Driver Interface Design Notes and Reference — 2

© 1998 Microsoft Corporation. All rights reserved.

Introduction
This paper documents the interface offered by the ACPI Driver to other kernel-mode drivers. Only drivers that
support IRP_MJ_PNP requests and IRP_MJ_POWER requests can use the ACPI driver interface.

In general, this interface enables drivers to use the ACPI framework (control methods, ACPI Name Space,
event handling, and the Global Lock mechanism). In particular, the interface offered by the ACPI Driver
enables drivers to:
• Run control methods found in the device driver’s device object in the ACPI name space.
• Acquire and release the Global Lock; this enables a driver to synchronize with the system firmware.
• Register for notification of proprietary device events.
• Handle events associated with a general-purpose event (GPE) bit.

Two Ways of Using the ACPI Driver Interface
A driver uses the ACPI Driver interface in two different, but not mutually exclusive, ways. Both ways, listed
below, are documented in this paper.
• Initiate an IRP with a major function code of IRP_MJ_DEVICE_CONTROL that contains one of the

IOCTL codes documented in this paper.
• Use direct function calls.

The IOCTLs, constants, and so on that are described in this paper are defined in acpiioct.h, which can be found
in the Windows 98 DDK.

Constraints on Using the ACPI Driver Interface
There are some constraints on what a driver can do with the ACPI Driver interface. These constraints are
shown in the following summary table.

Using the Interface to… Type of Call Constraint

Run a control method. Initiate an
IRP_MJ_DEVICE_CONTROL

The control method must be contained in
the AML Device object that represents the
device controlled by the calling driver.
This constraint is discussed in the text
following this table.

Acquire and release the
global lock.

Initiate an
IRP_MJ_DEVICE_CONTROL

Register for notification of
device events.

Direct function call Driver can register for notification only on
the AML Device object that represents the
device the calling driver controls. Further,
it can handle only device notification
codes of 80h or higher.

Handle events associated
with a GPE bit.

Direct function call Must use a dedicated GPE bit; cannot
share a GPE bit with the operating system
or the ACPI driver. Note that if a
dedicated GPE bit is not available, a
driver can instead register for notification
of device events (as shown in the example
Hot key driver scenarios below).

Notice that a driver can use IOCTLs to run only certain AML control methods in the ACPI name space. The
control method must be under the AML Device object in the name space that corresponds to the device the
driver controls. For example, in the hypothetical name space below, the driver associated with the HKEY

0002
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Draft ACPI Driver Interface Design Notes and Reference — 3

© 1998 Microsoft Corporation. All rights reserved.

device can run the control method _SB.EIO.HKEY.INFO but cannot run the control method
_SB.EIO.PS2M.VAL0.
_SB
 .
 .
 .
 EIO // Extended I/O Bus
 .
 .
 .
 HKEY // Hot key Device Object
 _HID // Unique Device ID that enables the ACPI Driver
 // to enumerate the Hot key device
 INFO // Returns a bitmap that contains the data that
 // identifies which hot key was pressed
 _HKGP // Returns the index of the GPE bit the Hot key
 // device is associated with
 PS2M // PS2 Mouse Device
 _HID // Hardware Device ID
 _STA // Status of the PS2 Mouse device
 _CRS // Current Resource
 VAL0 // Value-added control method
 .
 .
 .

Example Using a Hypothetical Hot Key Driver
This section introduces a hypothetical device driver called MyDriver that uses the ACPI Driver interface.
MyDriver controls a hot key device that can recognize the keystrokes or keystroke combinations (used
particularly on a laptop) that enable the user to use the keyboard to:
• Switch between the local LCD and an external CRT.
• Increase or decrease audio volume.

Notice that this example does not show hot keys used for requesting Power Off or Suspend because, on ACPI
platforms, these requests are handled by standard ACPI mechanisms (which are defined in the ACPI
Specification).

Important: This example assumes the following:
• On both Windows 98 and Windows NT 5.0, all hot keys must be entirely handled through proprietary

drivers and applications.
• For a hot key that switches between the local LCD and an external CTR to work requires exporting a new

function from the miniport driver that is called when such events happen. This feature is not currently
implemented.

The ACPI Driver interface can be used in two different ways to accomplish MyDriver’s goals:
• If a dedicated GPE bit is available, MyDriver can use the GpeConnectVector direct function call to

associate the driver with the GPE bit, then the driver can handle events associated with that bit.
• As an alternative, MyDriver can use the RegisterForDeviceNotifications function call to register a

callback routine with the ACPI driver; this callback routine is invoked when AML code executes an AML
Notify operation on the Hot key device.

Each of these two techniques requires a somewhat different ACPI name space, as is shown below.

Example Driver Setup and Event Handling Using a Dedicated GPE Bit
An example ACPI name space that describes a hot key device that uses a dedicated GPE bit is shown below.
The two phases of this process are described in this section:
• During driver setup, MyDriver is loaded and executes the code that registers it as the handler of events on

the GPE bit to which the hot key device is connected. This phase processes all the initialization code.

0003
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Draft ACPI Driver Interface Design Notes and Reference — 4

© 1998 Microsoft Corporation. All rights reserved.

• Event handling is initiated when the user presses a hot key on the keyboard.

This example is based on the following example ACPI name space:

_SB
 .
 .
 .
 EIO // Extended I/O Bus
 .
 .
 .
 HKEY // Hot key Device Object
 _HID // Unique Device ID that enables the ACPI Driver
 // to enumerate the Hot Key device
 INFO // Returns a bitmap that contains the data that
 // identifies which hot key was pressed
 HKGP // Returns the index of the GPE bit the hot key
 // device is associated with
 .
 .
 .

Driver Setup
The steps in driver setup are:

1. The unique ID in the _HID object causes the ACPI Driver, in its role as an enumerator, to load MyDriver.
(For information about the _HID control method, see section 6.1.3 of the ACPI Specification.)

When MyDriver is started, it initiates an IRP_MJ_DEVICE_CONTROL IRP with the IOCTL code of
IOCTL_ACPI_EVAL_METHOD that runs the HKGP control method. (For more information about the
control method evaluation IOCTLs, see “Using the ACPI Interface IOCTLs.”) Running the HKGP control
method returns the index of the GPE bit to which the Hot Key device is connected.

2. To get pointers to the direct call functions offered by the ACPI driver, MyDriver calls Query_Interface.
This returns a pointer to the GpeConnectVector function. ACPI’s GUID must be used: IRP_MJ_PNP,
IRP_MN_QUERY_INTERFACE

3. MyDriver calls GpeConnectVector, using the bit index returned by evaluating the HKGP method as an
argument. When this call returns, MyDriver’s callback routine is registered with the ACPI Driver to
handle all events on that particular GPE bit.

Event Handling
The steps in the event handling are:

1. The callback routine initiates an IRP_MJ_DEVICE_CONTROL request, with the IOCTL code The

AsyncEval version must be used here.]This runs the INFO control method in the ACPI name space under
the HKEY Device object. The INFO control method returns a bitmap that contains the information that
identifies the hot key that was pressed.

2. The callback routine interprets the bitmap and, based on that information, does one of the following:
• Switches between the local LCD and external CRT.
• Increases or decreases audio volume.

Example Driver Setup and Event Handling Using Event Notification
An example ACPI name space that describes a Hot key device that uses event notification is shown below. The
two phases of this process are described in this section:
• During driver setup, MyDriver is loaded and executes the code that registers the HKEY device for a

device notification.
• Event handling is initiated when the user presses a hot key on the keyboard.

This example is based on the following example ACPI name space:

0004
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 Draft ACPI Driver Interface Design Notes and Reference — 5

© 1998 Microsoft Corporation. All rights reserved.

_GPE
 _L06 // Control method run to handle event on
 // bit 0x06 of the GPE register. This control
 // method contains the following ASL statement:
 // Notify (HKEY, x’80’)
 .
 .
 .

_SB
 .
 .
 .
 EIO // Extended I/O Bus
 .
 .
 .
 HKEY // Hot Key Device Object
 _HID // Unique Device ID that enables the ACPI Driver
 // to enumerate the Hot Key device
 INFO // Returns a bitmap that contains the data that
 // identifies which hot key was pressed

 .
 .
 .

Driver Setup
The steps in driver setup are:

1. The unique ID in the _HID object causes the ACPI Driver, in its role as an enumerator, to load MyDriver.
(For information about the _HID control method, see section 6.1.3 of the ACPI Specification.)

2. To get pointers to the direct call functions offered by the ACPI driver, MyDriver calls Query_Interface.
This returns a pointer to the RegisterForDeviceNotifications function.

3. MyDriver calls RegisterForDeviceNotifications, passing in a pointer to PDO of the HKEY device and a
pointer to the entry-point of the MyDriver’s notification call back routine. When this call returns,
MyDriver’s notification call back routine has been registered with the ACPI Driver to handle device
notifications for the HKEY device.

Event Handling
The steps in event handling are:

1. When an event happens at GPE bit 6, the ACPI Driver runs the _L06 control method, which results in the
HKEY driver’s registered device notification callback being called with a Notify value of X’80’. This
routine can be called at DPC.

2. The AsyncEval version must be used since callback can run at DPC.
3. The callback routine interprets the bitmap and, based on that information, does one of the following:

• Switches between the local LCD and external CRT.
• Increases or decreases audio volume.

Using the ACPI Interface IOCTLs
A kernel-mode driver sends an IOCTL to the ACPI driver by initiating an IRP_MJ_DEVICE_CONTROL
request. The IOCTL codes recognized by the ACPI driver are listed in the following table.

Notice that for the IOCTL_ACPI_EVAL_METHOD and IOCTL_ACPI_ASYNC_EVAL_METHOD IRPs,
which are used to run a control method, that control method must be under the AML Device object in the
ACPI name space that represents the device the calling driver controls. For more information about these two
IOCTLs, see the topic “Using IOCTLs That Run Control Methods.”

0005
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

