o o Bb-Cla

volume 32 number 6 june 1997

SIGPLAN notices

e 1997

ieived ons
yergity ©
1?.&:12? JHL 1 &Qig%?

rHPHYS

07-08-97
f Colorado at

—

-

A Monthly Publication of the Special Interest Group on Programming Languages

Activities
The SIG Discretionary Fund: Role and Process by Lori Pollock 1
Conference Corner

Calendar 2
Language Tips
Implementation of a Database Factory 14

by Asokan R. Selvaraj and Debasish Ghosh
Forth Report
Forth as a Robotics Language by Paul Frenger 19
Garbage In/Garbage Out
COMFY -- A Comfortable Set of Control Primitives for Machine 23
Language Programming by Henry G. Baker
Curricular Patterns
The ‘Java in the Computing Curriculum Conference’

by Fintan Culwin 28
Technical Correspondence
Considerations in Developing a Formally-Based Visual 34

Programming Language Reference Manual: A Case Study
on the SLAM Il Language
by Debbie K. Carter and Albert D. Baker

Computational Steering Annotated Bibliography 40
by J. S. Vetter

A Functional Approach to Type Constraints of Generic 45
Definitions by Myung Ho Kim

Garment: A Mechanism for Abstraction and Encapsulation 53

of Languages by Zhang Naixiao, Zheng Hongjun,
and Qui Zongyan

5991101

Consummating Virtuality to Support More Polymorphism 61
in C+ + by Wen-Ke Chen, Jia-Su Sun, and Zhi-Min Tang

The F Programming Language 69
by Ralph Frisbie, Richard Hendrickson, and Michael Metcalf

How to Achieve Modularity in Distributed Object Allocation 75

by Franco Zambonelli

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Soingl - - 2 day Circulation - must be |
returned Directly to Oliver C. Lester
Matn-Physics Library.

Table of Contents

Editor: A. Michael Berman, Academic Computing, Rowan University, Glassboro, NJ 08028 USA; berman@rowan.edu

Activities
The SIG Discretionary Fund: Role and Process by Lori Pollock 1
Conference Corner
Calendar 2
Language Tips
Implementation of a Database Factory . 14
by Asokan R. Selvaraj and Debasish Ghosh
Forth Report
Forth as a Robotics Language by Paul Frenger 19

Garbage In/Garbage Out

COMFY — A Comfortable Set of Control Primitives for Machine Language 23
Programming by Henry G. Baker

Curricular Patterns
The “Java in the Computing Curriculum Conference’ by Fintan Culwin 28

Technical Correspondence
Considerations in Developing a Formally-Based Visual Programming Lan- 34
guage Reference Manual: A Case Study on the SLAM II Language
Debbie K. Carter and Albert D. Baker

Computational Steering Annotated Bibliography 40 i
J. S. Vetter ' }i
A Functional Approach to Type Constraints of Generic Definitions 45 '
Myung Ho Kim

Garment: A Mechanism for Abstraction and Encapsulation of Languages 53 ¥
Zhang Naixiao, Zheng Hongjun, and Qiu Zongyan by

Consummating Virtuality to Support More Polymorphism in C++ 61
Wen-Ke Chen, Jia-Su Sun, and Zhi-Min Tang
The F Programming Language 69
' Ralph Frisbie, Richard Hendrickson, and Michael Metcalf
How to Achieve Modularity in Distributed Object Allocation 75
Franco Zambonelli

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ACM SIGPLAN Notices
A monthly publication of ACM
SIGPLAN

Publications Office

ACM, 1515 Broadway,

New York, New York 10036-5701
USA

1-212-869-7440 FAX +1-212-302-
9618

Editor: A. Michael Berman

Contributing Editors:

Ron K. Cytron, Preston Briggs, G.
Bowden Wise, Barbara G. Ryder, Seth
Bergmann, Dan Yellin, Henry G. Baker,
and Philip Wadler

Advertising Information:
Michele Bianchi {212) 869-7440

ACM SIGPLAN Notices is an informal
monthly publication of the Special
Interest Group on Programming
Languages (SIGPLAN} of ACM.

Membership in SIGPLAN is open to
ACM Members or associate members
for $30.00 per year and to ACM
Student Members for $10.00 per year.
Non-ACM members may join for
$60.00 per vyear. Al SIGPLAN
members receive ACM SIGPLAN
Notices, are given discounts at
SIGPLAN-sponsored meetings and may
vote in the Group's biennial elections.
ACM members of SIGPLAN may serve
as officers of the group.

Institutional or Library subscriptions to
ACM SIGPLAN Notices are available for
$57 ‘per year, and the regular back
issues of the Notices may be purchased
for $7 per copy from ACM
Headquarters.

Requests for reprints, copies of reports,
or references should be sent directly to
authars.

change of address: acmcoa@acm.org
Members Services Information:
acmhelp@acm.org or +1-212-626-
0500

ACM SIGPLAN Notices (ISSN 0362-
1340) is published monthly by ACM,
1515 Broadway, NY, NY 10036. The
basic annual subscription price is
$30.00 for ACM Members.
Periodicals postage paid at NY, NY
10001 and at additional mailing
offices.

POSTMASTER: Send change of
address to ACM SIGPLAN NOTICES,
ACM, 1515 Broadway, NY, NY
10036.

DOCKET

_ ARM

Executive Committee™

*Chair

Barbara Ryder

Department of Computer Science
Hill Center, Busch Campus
Rutgers University

Piscataway, NJ 08855
+1-908-445-369%
ryder@cs.rutgers.edu

*Vice-Chair for Conferences
Mary Lou Soffa

University of Pittsburgh
soffa@cs.pitt.edu

*Vice-Chair for Operations

Dan Yellin

IBM TJ Watson Research Center
dmy@watson.ibm.com

*Secretary

Lori L. Pollock
University of Delaware
pollock@.udel.edu

*Treasurer

Ron K. Cytron
Washington University
cytron@cs.wustl.edu

*Past Chair
Brent T. Hailpern
bth@watson.ibm.com

*Members at-Large
Robert Kessler
University of Utah
kessler@cs.utah.edu

John R. Pugh
Carleton University
john_pugh@carleton.ca

Mary Beth Rosson
Virginia Tech
rosson@cs.vt.edu

*Editor ACM
SIGPLAN Notices

A. Michael Berman

Rowan University

201 Mullica Hill Road
Glassboro, NJ 08028-1701
+1-609-256-4743 x3891
Fax +1-609-256-4915
berman@rowan.edu

For Notices correspondence:
sig.not@acm.org

Associate Editor (Forth)

Paul Frenger
+1-713-293-9484

Fax: +1-713-293-8446
70410.1173@compuserve.com

Editor, Fortran Forum
Loren Meissner
+1-510-524-5227
LPMeissner@msn.com

Editor, OOPS Messenger
Staniey B. Zdonik
+1-401-863-7648

Fax: +1-401-863-7657
shz@cs.brown.edu

OOQPSLA Steering Committee
Chair

John R. Pugh

Carleton University
john@objectpeople.on.ca

Director of ACM SIG
Services

Donna Baglio
baglio@acm.org

PPoPP Steering Committee
Jeanne Ferrante

Univ. of CA
ferrante@cs.ucsd.edu

ICFP Steering Committee
Simon Peyton-Jones
Glasgow University
simonpj@dcs.glasgow.ac.uk

PEPM Steering Committee
Charles Censel
University of Renne/IRISA
consel@irisa.fr

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

C++ Toolbox

Editor: G. Bowden Wise, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180; wiseb@cs.rpi.edu

Implementation of a Database Factory

Asokan R. Selvaraj and Debasish Ghosh

Abstract

Object oriented software systems that utilize relational
databases for data-store have to deal with the problem of
interfacing to the relational data. This aspect of the soft-
ware is more relevant to the solution domain rather than
the problem domain i.e., the business requirements of an
application do not dictate that there be a mechanism that
allows the application to store and retrieve relational data.
Hence, de-coupling the application from the database and
its interface is relevant from the perspective of portability
of the application to other kinds of databases. For ex-
ample, it is conceivable the application may be required
to work with relational databases from different vendors.
This article shows an adaptation of the Factory Method
Pattern and the Abstract Factory Pattern [1] as a generic
solution to the problem of de-coupling application code
from the underlying database and its associated interface
mechanisms.

The Problem

In designing object oriented software systems, there is
a need to separate application logic (hereafter referred
to as the application) from functionality that interfaces
the application to the database. From an architectural
standpoint it is necessary to have this de-coupling to min-
imize/eliminate the impact of changes in the database
products or the implementation of the database interface.
A typical application may require a family of util-
ity classes that allow it to interface to the database e.g.,
DbTransaction, DbQuery, DbReport, etc. Once
this set of classes and their responsibilities are estab-
lished, these classes can be specialized differently to work
with different database products. There are two factors to
consider in organizing such classes in hierarchies.

1. Different implementations of these utility classes
may be required for different database products.

DOCKET

_ ARM

2. Parts of the implementation of these classes may be
common to most database products and can be fac-
tored out as base utility classes (default implementa-
tion — see Figure 1). Different versions of the utility
classes may then be inherited from the bases to dif-
ferent levels of specialization.

Given the above organization of hierarchies, the applica-
tion would have to be aware of which database product
(ORACLE, INFORMIX, etc.) it is working with, and for
that product, whether the utility class it requires has been
sub-typed or not. As an example, consider the following
two scenarios (see Figure 1):

1. To support ORACLE, the utlity class
DbTransaction has been sub-typed as
DbOracleTransaction, while the standard
implementation of DbQuery is sufficient.

2. To support INFORMIX, the utility class DobQuery
has been sub-typed as DbInfQuery, while the
standard implementation of DbTransaction is
sufficient.

Listing 1 shows how the application must determine
which sub-type of the utility classes must be instan-
tiated based on which database engine (ORACLE or
INFORMIX) is desired. Note that this is resolved at
compile-time through the use of conditional compilation
switches.

The most noticeable deficiency in the above approach
is the strong physical coupling between the application
code and the database interface. Arising out of this cou-
pling, are problems like a change in one sub-system re-
quiring the other to be recompiled and re-tested. In a typ-
ical application, code utilizing the database classes will

be distributed over many parts of the system and the con-

sequent ripple effect could be considerable.

Find authenticated court documents without watermarks at docketalarm.com.

¥ ..iﬁ%ﬂ«'ﬁ.w-‘-.w&d_ i

T

https://www.docketalarm.com/

D
A

DbTransaction

T

DbOracleTransaction

DbInf Query

Figure 1: Sub-typing the utility classes for Oracle and Informix.

The Factory Approach

The Database Factory design is based on the Factory
Method and the Abstract Factory patterns [1]. In this
approach, described below, the Database Factory subsys-
tem assumes the responsibility of resolving which family
of utility classes to use (i.e., ORACLE or INFORMIX),
identifying the correct sub-types of the required objects,
and creating the objects for its clients.

For simplicity, the application code that uses the
Database Factory sub-system and the database utility
classes is indicated as class Application in Figure 2.
The Application code uses classes DbFactory and
DbFactoryUtils to obtain database utility objects of
the appropriate sub-type. These two classes serve as the
interface to the Database Factory subsystem.

Figure 2 shows the main components in the Database
Factory subsystem. The static method

DbFactory*
DbFactoryUtils: :getFactory()

is the factory method (as in the Factory Method pattern).
Assuming the system is configured to use INFORMIX,
this function will simply create a new DbInfFactory
object and return it to the Application. The
Application is unaware of the exact sub-type of the
DbFactory object that it received (nor does it care)
and manipulates the returned object only through the
DbFactory abstract interface. This mechanism reduces
any coupling between the Application and the kind
of database used, to a link time dependency. Linking
in a different implementation of the getFactory ()
method is all that is required to change the database the
Application works with. This is a significant sav-
ing in comparison to the solution that uses conditional
compilation based on compile-time defined flags (see
Listing 1). Of course, the price we pay for this solu-
tion is the function call overhead at run-time for every

OCKET

LARM

call to the getFactory () method. (Note that an at-
tempt to eliminate this function call overhead by inlin-
ing the getFactory () method will defeat the savings
in recompilation when the system is to be regenerated
to use a different database. This is because, when in-
lined, the code for the getFactory () method would
be physically inserted in the Application wherever
the getFactory () method is invoked, and would now
have to be replaced). :

The DbFactory class (implemented as an abstract in-
terface — see Listing 2), through another level of indirec-
tion, eliminates in the Application code, knowledge
of the various levels to which the database utility classes
have been specialized for different databases. This was
not possible with the earlier approach. Consequently, in
the earlier design, the Application code would have
to be modified, compiled and tested if it is decided to
specialize DbTransactionto DbInfTransaction
in the INFORMIX implementation (or DbQuery to
DbOracleQuery in the ORACLE implementation).

In the Abstract Factory pattern based approach, the
DbFactory class supports pure virtual methods of the
makeObiject nature for every database utility class sup-
ported by the factory mechanism. For example, to sup-
port the code fragment above, the DbFactory will pro-
vide methods (interfaces):

DbQuery* DbFactory:: makeDbQuery ()
and

DbTransaction*
DbFactory: :makeDbTransaction({)

The DbDefaultFactory class inherits these
interfaces from the DbFactory class and pro-
vides the standard implementations of the methods
makeDbQuery () and makeDbTransaction(),
which return the standard versions of the classes
DbQuery and DbTransaction respectively (see
Listing 3).

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

