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Implementation of a Database Factory

Asokan R. Selvaraj and Debasish Ghosh

Abstract

Object oriented software systems that utilize relational
databases for data-store have to deal with the problem of
interfacing to the relational data. This aspect of the soft-
ware is more relevant to the solution domain rather than
the problem domain i.e., the business requirements of an
application do not dictate that there be a mechanism that
allows the application to store and retrieve relational data.
Hence, de-coupling the application from the database and
its interface is relevant from the perspective of portability
of the application to other kinds of databases. For ex-
ample, it is conceivable the application may be required
to work with relational databases from different vendors.
This article shows an adaptation of the Factory Method
Pattern and the Abstract Factory Pattern [1] as a generic
solution to the problem of de-coupling application code
from the underlying database and its associated interface
mechanisms.

The Problem

In designing object oriented software systems, there is
a need to separate application logic (hereafter referred
to as the application) from functionality that interfaces
the application to the database. From an architectural
standpoint it is necessary to have this de-coupling to min-
imize/eliminate the impact of changes in the database
products or the implementation of the database interface.
A typical application may require a family of util-
ity classes that allow it to interface to the database e.g.,
DbTransaction, DbQuery, DbReport, etc. Once
this set of classes and their responsibilities are estab-
lished, these classes can be specialized differently to work
with different database products. There are two factors to
consider in organizing such classes in hierarchies.

1. Different implementations of these utility classes
may be required for different database products.
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2. Parts of the implementation of these classes may be
common to most database products and can be fac-
tored out as base utility classes (default implementa-
tion — see Figure 1). Different versions of the utility
classes may then be inherited from the bases to dif-
ferent levels of specialization.

Given the above organization of hierarchies, the applica-
tion would have to be aware of which database product
(ORACLE, INFORMIX, etc.) it is working with, and for
that product, whether the utility class it requires has been
sub-typed or not. As an example, consider the following
two scenarios (see Figure 1):

1. To support ORACLE, the utlity class
DbTransaction has been sub-typed as
DbOracleTransaction, while the standard
implementation of DbQuery is sufficient.

2. To support INFORMIX, the utility class DobQuery
has been sub-typed as DbInfQuery, while the
standard implementation of DbTransaction is
sufficient.

Listing 1 shows how the application must determine
which sub-type of the utility classes must be instan-
tiated based on which database engine (ORACLE or
INFORMIX) is desired. Note that this is resolved at
compile-time through the use of conditional compilation
switches.

The most noticeable deficiency in the above approach
is the strong physical coupling between the application
code and the database interface. Arising out of this cou-
pling, are problems like a change in one sub-system re-
quiring the other to be recompiled and re-tested. In a typ-
ical application, code utilizing the database classes will

be distributed over many parts of the system and the con-

sequent ripple effect could be considerable.
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Figure 1: Sub-typing the utility classes for Oracle and Informix.

The Factory Approach

The Database Factory design is based on the Factory
Method and the Abstract Factory patterns [1]. In this
approach, described below, the Database Factory subsys-
tem assumes the responsibility of resolving which family
of utility classes to use (i.e., ORACLE or INFORMIX),
identifying the correct sub-types of the required objects,
and creating the objects for its clients.

For simplicity, the application code that uses the
Database Factory sub-system and the database utility
classes is indicated as class Application in Figure 2.
The Application code uses classes DbFactory and
DbFactoryUtils to obtain database utility objects of
the appropriate sub-type. These two classes serve as the
interface to the Database Factory subsystem.

Figure 2 shows the main components in the Database
Factory subsystem. The static method

DbFactory*
DbFactoryUtils: :getFactory()

is the factory method (as in the Factory Method pattern).
Assuming the system is configured to use INFORMIX,
this function will simply create a new DbInfFactory
object and return it to the Application. The
Application is unaware of the exact sub-type of the
DbFactory object that it received (nor does it care)
and manipulates the returned object only through the
DbFactory abstract interface. This mechanism reduces
any coupling between the Application and the kind
of database used, to a link time dependency. Linking
in a different implementation of the getFactory ()
method is all that is required to change the database the
Application works with. This is a significant sav-
ing in comparison to the solution that uses conditional
compilation based on compile-time defined flags (see
Listing 1). Of course, the price we pay for this solu-
tion is the function call overhead at run-time for every
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call to the getFactory () method. (Note that an at-
tempt to eliminate this function call overhead by inlin-
ing the getFactory () method will defeat the savings
in recompilation when the system is to be regenerated
to use a different database. This is because, when in-
lined, the code for the getFactory () method would
be physically inserted in the Application wherever
the getFactory () method is invoked, and would now
have to be replaced). :

The DbFactory class (implemented as an abstract in-
terface — see Listing 2), through another level of indirec-
tion, eliminates in the Application code, knowledge
of the various levels to which the database utility classes
have been specialized for different databases. This was
not possible with the earlier approach. Consequently, in
the earlier design, the Application code would have
to be modified, compiled and tested if it is decided to
specialize DbTransactionto DbInfTransaction
in the INFORMIX implementation (or DbQuery to
DbOracleQuery in the ORACLE implementation).

In the Abstract Factory pattern based approach, the
DbFactory class supports pure virtual methods of the
makeObiject nature for every database utility class sup-
ported by the factory mechanism. For example, to sup-
port the code fragment above, the DbFactory will pro-
vide methods (interfaces):

DbQuery* DbFactory:: makeDbQuery ()
and

DbTransaction*
DbFactory: :makeDbTransaction({)

The DbDefaultFactory class inherits these
interfaces from the DbFactory class and pro-
vides the standard implementations of the methods
makeDbQuery () and makeDbTransaction(),
which return the standard versions of the classes
DbQuery and DbTransaction respectively (see
Listing 3).
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