Table 5
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9. Optional parameters for adding text

- side=n

. outer=F Text not

~ line=n

Parameter  Description
text and mtext: Text in a figure
adj=0.5 Text adjistment.
O=left justified, 0.5=centered, 1=right justified
cex=1 Charactér expansion relative to standard size
cex=2 dyaws characters twice as big
col=1 Color tofplot in. 0 is the background color
crt=0 Character rotation in degrees, counterclockwise
srt=0 String ratation in degrees, counterclockwise
- font=1 Font for plotting characters, device dependent

mtext only: Text in th|
Side to a

If outersy
For an ej
Places th
Negative

e margin of the figure

dd text to. 1=bottom, 2=left, 3=top, 4=right
on the outer margin of the whole figure.

=T, text can be placed on top of a layout figure.
cample, see Figure 7.15 (page 213)

le text on line n toward the margin of the figure.
numbers lie inside the figure

Note: Text is typically

rotating text.

he coordinates (1, 2),

> text(l, 2, "e

able 5.9.

itput accept them as

doing this, we can

devices like text term

A standard example

ometimes, the text ove
such a case, add an e
arameters of text an|

5 Setting Op

e have already seen t
r setting options like ¢
é-ny more parameters

Check the different d

added by using the functions text or mtext. Some
inals cannot provide all of the functionality, like

for adding the text “extreme value” to a graph at
such that the text begins on the right side of the

rtreme value", adj=0)

-rlaps or touches the point on the graph just slightly.
wtra space to the beginning of the text. The optional
d mtext offer more possibilities. They are listed in

tions

hat almost all graphics functions accept parameters
olors, character size, or string adjustment. There are
and almost all of the functions generating graphics
arguments. They can also be set generally, such that
m default for all succeeding graphics commmands.
use the par function.

ptions that can be set by par. Enter the command

World Progran




126 5. Graphics

> par()

to see all options and how they are currently set. The help pages provide 3
a very detailed explanation.

We supply a brief overview of the most common]parameters and their
possibilities in Figure 5.4 and Table 5.10. If changed using the par function,
these settings become global from then on. Nevertheless, if & new session
is started they are set back to the original system défaults.

T
margin 3
¥

margin 2 margin 4

v
margin 1

1

Figure

Figure 5.4. The S-PLus definition of figure and plot regions.

Table 5.10. Layout parameters

Parameter Description

fin=c(m,n) Figure size in inch?s. m width, n height
pin=c(m,n) Picture in inches, as in fin
mar=c(5,4,4,2)+0.1 All margins in linep
mai=c(1.41,1.13,1.13,0.58) All margins in incles
oma=c(0,0,0,0) Outer margin lineg
omi=c(0,0,0,0) Outer margin in iqches
plt=c(0.11,0.94,0.18,0.86) Plot region coordirjrates as fraction of
figure region ;
usr x-Axis and y-axis min. and max.
Useful for querying a graph’s boundar
nfrow=c(m,n) Multiple figure layout, rowwise plottin
to generate a (m, %) matrix of pictures
mfcol=c(m,n) Multiple figures, cglumnwise plotting

Note: In the left column, the letters m and n are to be replaced by intege r
numbers. Settings given are the system default values. To query setting
use (for example) par ("usr").




The parameters
unction, as in the

> par(mar=c(

> pa.r("mar")

- or

> par () $mar

f you run S-PLUS
be changed by usin

You can adgd
unused variable. T

> options()

hows all settings
my.personal.sett

> options (my

> options("m
T

5.6 Figure I

~ The graphical par:
- meaningful values

~ how to achieve sat
. If you use a mulf
_layout as you pref
figures, etc.). We 1
.~ set to generate the

Creating a 1

~ some situations, y

_ size to be larger.
A graph’s exact

plan on creating a
the layout satisfies

equal to 1 line on 2

A setting can be retrieved by entering

at the prompt. Youyr own functions can then use this parameter setting by
asking for its setting as follows:

- values. This sectidn deals with the most common cases to demonstrate

5.6. Figure Layouts 127

referenced in Table 5.10 can be set by using the par
following example where the outer margin is set to be
11 sides, for all successive graphs.

1, 1, 1, 1))

inder Windows, most of these settings can alternatively
¢ the menu bars on top of the S-PLuUs window.

| your own parameters to the system settings using an
e command

not related to the graphics subsystem. A new variable
ing can be set to TRUE by entering

.personal .setting=T)

v.personal.setting")

,ayouts

ymeters we looked at in this chapter are all preset with
Nevertheless, you might want to change the default

sfying results quickly.

iple-figure layout, the system may not always choose the
or (the size of the characters, the white space between
low show, for the standard layouts, how parameters are
graphics wanted.

nultiple figure graph can sometimes be cumbersome. In
su need to adjust the margins to be smaller or the font

layout is still to some extent device dependent, so if you
PostScript graph, don’t do the graph on the screen until
you. Adjust everything on the final output device.
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If you don’t use
e figure and thu
tting is often

> par(mar=c

ch that there is
'a.ph, and a singl

Once the gr

reen is cleared)
re by using

> frame()

ntering frame ()

q
W3

> par (nfrow

> split.scr

> generate a 2 X
ariant, splitting
reas. On the othe

> screen(2)

‘will activate the s
The matrix of
efault) or vertica
It is possible tg
yout. If a new g
similar to 0 - 100
d top right cor:
atrix, where the
to 3/4 on the y-al
and from 3/4 to 1

> split.scr
+ 2, 4, byr
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abels for the axes, you can shrink the blank space around
5 obtain more space for the graph. For example, a good

2, 2, 1, 1))

5 space of two lines on the lower and the left side of the
> line on top and on the right of the graph.

aph page is filled with figures, a new page is opened (the
on creating another figure. One can jump to the next

twice leaves a field blank. Restore the default settings
ingle figure per page:

Fc(1,1))

Screens Graphs

reating a set of figures in the same graph is to use the
ction. In its simplest use, it works like the par (mfrow)
buld enter

cen(c(2, 2))

2 matrix of figures. In comparison to the par(mfrow)
the screen provides the ability to hop around between
r hand, it does not automatically plot the next graph in
but waits for explicit specification of another plot area.

scond screen in the display.

screens can be filled either horizontally (which is the
lly by setting byrow=F in the call to split.screen.
have a matrix of differently sized graphs or even any
raph is started, its initial coordinates range from 0 to 1,
7). Each screen in the graph is defined by its lower left
1er. The following command defines a layout of a 2 x 1
first row stretches from 0 to 1 on the x-axis and from 0
xis. The second row stretches from 0 to 1 on the x-axis
on the y-axis.

cen(figs=matrix(c(0, 1, 0, 3/4, 0, 1, 3/4, 1),
ow=T))
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Note that the matrix argument to figs must have £
defines the corners of one of the screens. The scre
using close.screen.

> close.screen(all=T)

5.6.4 Figures of Specified Size

An alternative to what we have looked at so far is
successively with figures and define the size of ead
right before the figure is created). We need to ope
which is done by entering the command

# oper
After having opened a new graphics page, the coo

> frame()

set to (0,0) for the lower left corner and (1,1) for the top right corner. Let

us now plot the Geyser data set that comes with S

We want to set up a figure such that a scatterp
as the main plot with the addition of a histogram
the scatterplot and a boxplot of the y data to the ri
layout we have in mind looks like the one in Figure

The plot itself should have the lower left corner
the top right corner coordinates (0.7, 0.7). Therefa
the data plot has the lower left corner (0.0, 0.7), ang
is (0.7, 1.0). For the vertical boxplot on the right si
corner (0.7,0) and the upper right corner (1.0, 0.7)

(0, 1) 0.7, 1

Histogram

(0, 0.7) (0.7, 0

our columns. Each row
en layout is closed by

to fill an empty graph =
h figure as we go (Le.
h a new graphics page,

next graph

dinates of the plot are

-PLus.
ot of the data appears
of the x data on top o
oht-hand side of it. Th
5.5.

coordinates (0, 0) and
re, the figure on top o
| the upper right corn
le, we get the lower left

(1, 1)

7) (1,0.7)

Graph of (x,y) Boxpl

(0, 0)

(0.7, 0)

(1, 0)

Figure 5.5. A customized graph la

By experimenting with the different sizes and ¢

that it is better to have the figures overlapping a little bit.

yout.

he borders, we discove:




frame ()
par(fig=c(0, 0.7, 0, 0.7))

plot(geyserfwaiting, geyser$duration, pch="*",
xlab="Waitipg Time", ylab="Duration of Eruption")
title("\n0ld Faithful Geyser Data Set")!
par(fig=c(0, 0.7, 0.65, 1))

hist (geyser$waiting)

par(fig=c(0.65, 1, 0, 0.7))

boxplot (geyser$duration)

VvV VV V V 4+ V VYV

Finally, we obtain

o

[ee]

2 l F .-

o | EE el
40 60 80 100

geyser$waiting

ful Geyser Data Set

Figure 5.6.

5.6. Figure Layouts
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Old Faitf

Waiting Time

Figure 5.6, A customized display of the Geyser data set.

this way, the title gets closer to the graph.

1The control character \n is a “linefeed” character, advancing to the next line. In

World Program 'Y
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5.7 Exercises

FExercise 5.1

In a single figure, plot the functions sin, cos, and sin -+ cos with different
colors and line styles. Use 1000 points in the interval [—10,10] and label
the figure with a title, subtitle, and axis labels.

Ezxercise 5.2

Construct two vectors, z and y, such that the S-PLUs command
> plot(x, y, type="1")
creates the following figures:
a) a rectangle or square
b) a circle

¢) a spiral

Hint: Do not think of y as being a function of z (in a mathematical sense),

but think of how the trace of the figure can be created.
Hint for drawing circles: you might use the property that for any z, a

point (sin(z), cos(x)) lies on the unit circle with origin (0,0) and radius 1.

Exercise 5.8

We consider the so-called Lissajous figures. They are defined as

_ (sin(az)\ _ (=
#g) = (Sin(b:c)) N (zz)’
or, in different notation,

z1(x) = sin(az)
zg(z) = sin(bx)
a, b positive integers,  between 0 and 2 .
Plot z; against z, using lines to connect the points, and choose different
pairs of values for a and b. Plot several figures on a single sheet.
On what do the forms of the curves depend? Compare, for example, the
figures for (a,b) = (3,4), (3,6), and (6,8).




Solution to Erxercise

at we need to crea

e arguments to the
he boundaries of the 1
sting picture within
z) + cos(z) curve t
end the y limits by

is easier - plot the

5.1

curve sin(z) -+ cos(z) first.

Trigonometric Functions

5.8. Solutions

te this graph is a sequence of z values, for which
calculate the values sin(z) and cos(z). If several functions are to be
lotted within one pictyre, the ordering of plotting the figures is important.
plot function, usually the first curve, determine
igure. The following curves are then added to the
the existing limits. If you want to see more of the
an that which fits within the boundaries of sin(z),
1sing the option ylim of the plot function or - and

133

Fi

o

£

> x <- seq(-10,
> plot(x, sin(x]
> lines(x, cos(3
> lines(x, sin(3
> title("Trigon
+ "sin(x), cos(3

sin(x), cos(ﬁ.vgrl}lﬁeginfx)+cos(x)

ure 5.7. Trigonometric functions.

10, length=1000)
+cos(x), xlab="x values",
<), lty=2, col=2)

©), 1lty=3, col=3)

ometric Functions",

), and sin(x)+cos(x)")

ylab="y values")

- World Progra
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se 5.2

The idea of this exercise is to learn how to think in terms of geometric
es and not in terms of mathematical functions, where y is a function
z,
(a) A rectangle is g simple figure consisting of four lines. In order to
draw a rectangle, we heed to create two vectors x and y containing the
coordinates of the corners. These vectors must have Jfive elements, as the
e has to return to the first point to complete the figure.

A rectangle

Figure

5.8. Geometric figures (a): A rectangle

>x <-c{1, -1,/-1, 1, D

>y <—c(1, 1, F1, -1, 1)

> plot(x, y, type="l1", axes=F, xlab="", ylab="")
> title("A rectangle")

te that the first point defines the upper right corner of the rectangle,
second defines the upper left corner, and so on.
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(b) It is possible to come up with several solutions for drawing a circle
We use the fact that a point with the coordinates (sin(z), cos(z)) lies (
all z) on the unit circle with radius 1 (because sih?(x) + cos?(x)=1). Th
we simply create a sequence from 0 to 27 and plot sin(x) against cos(x
Another approach is to use z2 4+ 3 =1 as a description for a circle. Then
we have the solutions y = v1— 22 and y = —/1 — z2. Try to use the
formulas to draw the circle.

Finally, if you plot the vector z against y, you will discover that t
resulting graph is not a circle but an ellipsoid. To obtain a circle, we ne
to tell S-PLUS that this plot’s boundaries should be square instead of rec
angular. For this purpose, we set the size of the
(picture in inches), in order to have a square picture shape. If we woul
have used this option in part (a), we would have obtained a square instes
of a rectangle.

A circle

Figure 5.9. Geometric figures (b); a circle.

z <- seq(0, Z*pi, length=1000)
x <- sin(z)

y <~ cos(z)

par(pin=c(5, 5))

plot(x, y, type="1", axes=F, xlab=/"", ylab="")
title("A circle")
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(¢) The spiral is simply made by revolving several times around the circle
and changing the radius|over time. The windings depend very much on the
division. By changing the start, the end, or the division factor, you get very
different pictires.
- We select a sequence of values from 67 to 327. With a sequence of length
T, we obtain a circle by moving once around its aréa. Therefore, with a
equence length of 267, the spiral must have 13 windings.

> z <- seq(B*pi, 32%pi, length=1000)
> x <= 8in(z)/ (0| 1*z)
>y <= cos(z)/ (0] 1%z)

> plot(x, y, type="1", main="A spiral with 13 windings",
+ axes=F, xlab="!, ylab="")

A spiral with 13 windings

Figure 5.10. Geometric figures (c): a spiral.
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Solution to Ezercise 5.3

We first create the layout of the graphics window

you haven’t already). Then, we create a sequence
this sequence in x.

It is not necessary to define values a and b and sto
in variables before plotting them, because we do no longer need these data
after plotting them. Instead, we supply these exp

plot function.

par (mfrow=c(2, 2), mar=c(2,2,1,1))
x <- 8eq(0, 2*pi, length=1000)
plot(sin(3*x), sin(6%x), type="1")
plot(sin(3*x), sin(8*x), type="1")
plot(sin(3%x), sin(11%x), type="1")
plot(sin(7+*x), sin(8*x), type="1")

Vv vV V V VYV

(open a window first if
rom () to 2% 7 and store

f;

re sin(a*x) and sin(bx*

ressions directly to the

o o
© 0
Te = °
© 2 o2
= [=i
= &
o o
"40 05 00 05 1.0 "40 05 00 05 10
sin(3 * x) sin(3 * x)
o o
0 10
:.: o =< (=]
- O =)
=) % o
T £
7] °. w o‘
o o
"40 05 00 05 10 "40 D5 00 O 1.0
sin(3 * x) sin(7 * x)

Figure 5.11. Lissajous figures for different ¥

ralues of a and b.




n the preceding chapters, we have laid the foundation for understanding
he concepts and ideas of the S-PrLus system. We explored basic ideas and
ow to use S-PLUS for performing calculations, and we have seen how data
an be generated, stored, and accessed. Fu_rthérmore, we also looked at how
ata can be displayed |graphically. All this will be useful as we explore real
ata sets in this chapter. We will explore data sets that come with S-PLus,
pecifically the Barley and Geyser data sets.

‘Rather than presenting a list of available statistical functions, we will go
ough a typical data|analysis as a way of introducing the more useful and
mmon commands and the kind of output we’ll encounter. We chose to
e S-PLUS data sets so you can follow along with the analysis we present
d complete the exercises at the end of this chapter. We divide the data
alysis into two categories: “descriptive” and “graphical” exploration.

1 Descriptive Data Exploration

e will now explore the different variables contained in the Barley data
- We will first analyze the variables in one dimension, or, in other words,
will take a univariate approach. The analysis of the dependence between

the variables and the exploration of higher dimensional structure follows
er.
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The Barley Data Set

The Barley data are measurements of yield in bushels per acre at different
sites. The analysis comprises 6 sites planting 10 different varieties of bar-
ley in 2 successive years, 1931 and 1932. The data set therefore contains
120 measurements of barley yield. Our main goal will be to investigate dif-
ferences in barley yields given by the different variable constellations, like
the 1931 harvest of the fifth variety on site 4, and the 1932 harvest of the
seventh variety at the same site.
Just enter

> barley

to see the data.

Exploratory data analysis (EDA) is an approach to investigating data
that stresses the need to know more about the structure and information
inherent in the data. The methods used with this approach are referred
to as descriptive, as opposed to confirmatory. Descriptive simply means
that simple summaries are used to describe the data: their shapes, sizes,
relationships, and the like. Examples of descriptive statistics are means,
medians, standard deviations, ranges, and so on.

Given the basic information about the Barley data, the following analysis
is intended to gain more information and structural knowledge about the
numbers we have.

A typical place to begin is, of course, looking at the data. If the data s
is small, we can easily look at it by simply printing it out. We check t
data size by entering

> dim(barley)
120 4

The data set barley has 120 rows and 4 columns. We randomly pick som
rows of the data matrix.

> barley[c(2, 17, 64, 70, 82, 98, 118), 1

yield variety year site

2 48.86667 Manchuria 1931 Waseca
17 29.66667 Svansota 1931 Grand Rapids
64 32.96667 Manchuria 1932 Crookston
70 26.16667 Glabron 1932 Crookston
82 32.06666 Velvet 1932 Crookston
98 44.70000 No. 462 1932 Waseca
118 35.90000 Wisconsin No. 38 1932 Crookston

This already shows us what the data look like. The yield is the number
of bushels per acre, as we know from the data description (have anot
look at the manual or the online help pages to learn more about it). It is
decimal, and not always an integer. The number|of bushels harvested wa
probably divided by the area of the corresponding plot of barley. The secon




barley. The year is e

1 fact, the summary

etting the maximum

his gives us direct ac

that the distribution

> stem(yield)
N 120
Quartiles

4

: B79
: 00114
: 5556¢
: 0000C¢
: B555€
: 00011
: BBTTT
: 00

Db W wWwN N R e

iable, variety, contains a string describing the name of the variety of

arvesting. Finally, th
which the data origin:
We can determine t
summary function, wh

> summary(barle

yield variety year site
Min.:14 )43 Svansota:12 1932:60 Grand Rapids:20
1st Qu.:26.87 No. 462:12 1931:60 Duluth :20
Median:32.87 Manchuria:12 Univ Farm 120
Mean:34 /42 No. 475:12 Morris :20
3rd Qu.:41.40 Velvet:12 Crookston 220
Max.:65 /77 Peatland:12 Waseca :20

Glabron:12

No. 457:12

Wisc No.38:12

Trebi:12

1es for factor variablg
lightly compressed o
summary (barley, mal

- Now, we investigaf
ariables contained in

> attach(barlej

How about having &

M

Decimal poi
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ither 1931 or 1932, denoting the year of planting and
e site variable contains the name of the site from
ite.

he structure in a more simplified format by using the

ch summarizes each variable on its owmn.

2y7)

function shows per default up to seven different val-
s, such that entering the command as above gives a
utput. To get exactly what you see above, we used
ksum=10). The argument maxsum is the parameter
number of rows displayed in the summary function.

e the data further. To have easier access to the

barley, we attach the data set.
7)

cess to the variables yield, variety, year, and site.
v look at our main variable yield? Let us determine
looks like by using the stem and leaf display.

fedian = 32.86667
26.85, 41.46666

nt is 1 place to the right of the colon

22223333
666666T77T777889999999
01112222223333344444
67777888899

2223334444

7779999
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5 : 5889
6 : 4
6 : 6

The data are ordered and categorized by a base times
stem and leaf display tells us that the data are put into ¢
--, 60, because “the decimal point is 1 place to the right
left-hand side displays the category (or interval), and th
the colon has one digit per observation, displayed by the
the category digit. We can immediately see that the sm:
15, 17, and 19 (rounded, of course), and by far the la
and 66 bushels per acre. Most of the yields are in the
low thirties, and the distribution looks rather symmetz
tail toward the larger values (in other words, it is right

The stem and leaf plot can be viewed as a sort of g

{rom which we can see that the data approximately exhibit the bell shape

typical of a Normal or Gaussian distribution with no

outliers. As with the histogram, the display sometimes strongly depends

on the categorization layout chosen. For glimpsing th

detecting extreme values in the set, the above display is sufficient. However,
approximately bell
lay it with different

if we want to determine whether the distribution is
shaped like a Normal distribution, we would need to disp
categorizations or use more sophisticated techniques.

If we want to apply the stem display to the other var
would get an error message.

> stem(variety)
Problem in Summary.factor(x, na.rm
A factor is not a numeric object
Use traceback() to see the call stack

What we realize here is that S-PLUS behaves somewhat intelligently. Tt

“knows” that variety is a factor variable with values li
“Manchuria” and that a stem and leaf display for su
not make much sense. Therefore, S-PLUS simply refusd
display and tells us that our attempt is not meaningful

If we want to investigate the skewness of the yield variable further, we
ntiles at 10, 20, 30,

could use the quantile function and calculate the qua
vy 90%.

> quantile(yield, seq(0.1, 0.9, by=0.1))

10% 20% 30% 40% 50%
22.49667 26.08 28.09 29.94667 32.86667

60% 70% 80% 90%
35.13333 38.97333 43.32 47.45666

This shows us that the 10% quantile (22.5) is about 10 w

median (32.9), whereas the 90% quantile is 47.5, being about 15 bushels per

-skewed).

iables of barley, we

na.rm):

ch a variable does
s to do the desired

a power of 10. Th
ategories 10, 20, 30
of the colon.” Th
b right-hand side o
first digit following
allest values are 14
rgest values are 64
high twenties and
ic, having a longer

ideways histogram

extreme values or

e distribution and

ke “Svansota” and

for factors.

nits away from the




i
|
|
acre away from the median. For a symmetric distribution, the two quantiles

would be about the same distance away from the median. A measure of the

data spread is the interquartile distance, the difference between the 25%
and the 75% quantile.
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o}

> gquantile(yi

257,
26.875 4

eld, c(0.25, 0.75))
759
1.4

This tells us that approximately 50% of the data lie within the interval
of 26.9 to 41.4 bushels per acre. For perfectly symmetric data, the median

would be about 34, e
is a little off, such th
might require furthe

qually far away from both quartiles. The median 32.87

at judging about the symmetry of the yield variable
r investigation.

Another measure
S-PLUS has a built-
for the standard dev

of spread is the variance, or the standard deviation.

In function for both, var for the variance and stdev

iation.!

> stdev(yield
10.33471

‘We can also use what
can calculate some i
Let us check if the
Selecting only the va

we have learned about selecting subsets from data. We
nteresting statistics by conditioning on certain values.
barley harvest was very different in 1931 and 1932.
lues of yield that were obtained in 1931, we obtain

> summary (yield[year==1931])

Min. 1st Qu. Median Mean 3rd Qu. Max.
19.70 29,09 34.20 37.08 43.85 65.77
and for 1932, we obtain

> summary (yie
Min. 1st
14.43 25

ld[year==1932])
t Qu. Median Mean 3rd Qu.
48 30.98 31.76 37.80

Max.
58.17

As we can see, all th
to have been much w

We could determir
were the same in bot
the 90% quantile. Wi

e numbers are larger for 1931. The 1932 harvest seems
orse than the 1931 yield, measured in bushels per acre.
e the “most fruitful” sites for both years to see if they
h. A good idea is to select the top 10%, the sites above
e get the 90% quantile for both years as

> quantile(yi
90%
49.90334

cld [year==1931], 0.9)

I The function stdev

has been introduced with S-PLus for Windows 2000 and S-PLus
or UNIX 5.
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> quantile(yield[year==1932], 0.9)

90%
44 .28

and retrieve all rows of the Barley data set where fthe yield in 1931 lies

above the 90% quantile.

> barley[yield>49.90334 & year==1931, ]

yield variety year gite
8 55.20000 Glabron 1931 Waseca
20 50.23333 Velvet 1931 Waseca
26 63.83330 Trebi 1931 Waseca
32 58.10000 No. 457 1931 Waseca

38 65.76670 No.
56 58.80000 Wisconsin No. 38 1931 Waseca

> barley[yield>44.28 & year==1932, ]
yield variety year |site

86 49.23330

87 46.63333 Trebi 1932 Mprris
98 44.70000 No. 462 1932 W;elseca
99 47.00000 No. 462 1932 Morris

116 58.16667 Wisconsin No. 38 1932 Waseca
117 47.16667 Wisconsin No. 38 1932 Morris

Remember what we have learned about selecting data from matrices? In
the example above, we query if yield is larger than 44.28 and year is equal
to 1932, giving us a vector of TRUE/FALSE elements. These are used as row i
indices for the matrix barley, and the column index is omitted to get all &
columns. All the rows of barley are returned wherelit is TRUE that yield

is larger than 44.28 and year is equal

"The output above reveals that Waseca seemed to have had an incredible

harvest in 1931 compared to the other

for Waseca either, but Morris also had a good vear. It turns out that both
sites had their big yield in 1932 for the same varieties, Trebi, No. 462, and

Wisconsin No. 38.
Another table confirms this finding.
per site and year.

> tapply(yield, list(site, year), mean)

1932

Grand Rapids 20.81000
Duluth 25.70000
University Farm 29.50667
Morris 41.51333
Crookston 31.18000
Waseca 41.87000

462 1931 Waseca

Trebi 1932 Waseca

to 1932.

sites. The year 1932 wasn’t that bad &

We generate a table of average yield

1931
29.06334
30.29333
35.82667
29.28667
43.66000
54.34667




the subsets. The result
on average is by far the

low on average.

> by(barley, ye
year:1932

of other variables (here

exactly the Morris harv

- We would already ha

The by function is a
data as we have just d

The function tapply splits the data (here yield) according to the values
site and year) and applies a specified function to

is returned in form of a table.

The above table confirms that the 1931 Waseca harvest of 54.4 bushels
highest, and the Waseca 1932 harvest equals almost
est, although the Morris harvest in 1931 was pretty

by function.

AT, Summary)

yield variety year

© Min.:14.43 Svahsota,No. 462:12 1932:860

1st Qu.:25.48 Manchuria: 6 1931: 0
Median:30.98 No. 475: 6
: Mean:31.76 Velvet,Peatland:12
3rd Qu.:37.80 Glabron: 6
Max.:58.17 No. 457: 6
Wisc No. 38,Trebi:12

7.1. Descriptive Data Exploration

ve some interesting questions to ask, if the person
collecting the data was available. However, we will focus on the analysis
tools S-PLUS offers and continue our investigation.
useful tool for doing analyses by categorizing the
one. It applies functions to data by first splitting
the data into subcategaries. We can calculate the summaries for the Barley
data by year, using the

175

site

Grand Rapids:10
Duluth:10

Univ Farm:10
Morris:10
Crookston:10
Waseca: 10

able above, Svansota

yield ! variety year

Min.:19.70 Svansota,No. 462:12 1932: 0

1st Qu.:29.09 Manchuria: 6 1931:60
Median:34.20 No. 475: 6
Mean:37.08 Velvet,Peatland:12
3rd Qu.:43.85 Glabron: 6
 Max.:65.77 No. 457: 6
Wisc No. 38,Trebi:12

This provides a summary of the whole data set, but in the form of two
ummary tables, one for 1931 and one for 1932. Note that S-PLus displays
nly seven lines per default. Therefore, the 10 different varieties of barley
how up in 4 categories of 1 variety and 3 categories of 2 varieties. In the
and No. 462 were aggregated into one category. If
e want S-PLUS to display more than just 7 lines (because we have 10
¢ varieties), we can add the maxsum=10 setting as an additional parameter to
- the by function. Similar to the call to summary above, where we entered

> summary (barley, maxsum=10)

site

Grand Rapids:10
Duluth:10

Univ Farm:10
Morris: 10
Crookston:10
Waseca:10
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we can now enter

> by(barley, year, summary, maxsum=10)

to obtain the same formatting. In the same way, you could calculate th
summary statistics or other figures for each site or pach variety separately:.
There is no need for explicit subsetting and cycling through the sites o
varieties. ;

You have seen that a combination of only a handful of functions offer.
many ways of looking at a data set. Table 7.1 summarizes the S-PLU:
functions and some of their parameters we have just seen. In addition, i
contains a few more functions that can be helpful in other applications.

Table 7.1. Descriptive statistics fun¢tions

S-PLus Function Description

quantile Quantiles of data

mean (Optionally trimmed) mean of data

median Median of data

stem Stem and leaf display

var Variance of data or, if two variables are supplied,

covariance matrix

by Applies a function to data sint by indices

summary Summary statistics of an object

apply, lapply, Calculations on rows or columns of matrices and
sapply, arrays (apply), on components of lists (Lapply,
tapply sapply), and data subsets (tapply)

aggregate Aggregate data by performing a function (like

mean) on subsets

If you want to use the by function to calculate the mean value of
the yield for each year, you would encounter s little difficulty.

> by(yield, year, mean)
Problem in as.double: Cannot coerce mode list to
double: list(value = c(26.9, 33.46667, 34.36666,
Use traceback() to see the call stack

The problem arises because the mean function does not work on lists. In
detail, by passes the barley elements - which are in ternally stored as lists -
to mean, which, in turn, does not know what to do|with them. Entering

> mean(list(123))

does not work either. A quick solution is to convert the list structure to a
vector before calculating the mean, using unlist. We write a little function

x)) }

> newmean <- function(x) { mean(unlist(




and use our function ne

> by(yield, yean
INDICES:1932
[1] 31.76333
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wmean instead.

, Tewmean)

INDICES: 1931
[1] 37.07778

We continue to analy

<

ze the relationships between variables by examining

them together or by conditioning one variable on the value of another. We

saw how the barley yiel

d differs when we condition on the year 1931 only,

or on 1932. We will now explore the relationship in more detail.

Note that we focus o1
If you are interested in
ods work, it will not be
n the manual and appl

- Table 7.2 shows func

Table

1 data exploration by using exploratory techniques.
deterministic techniques arid know how these meth-
difficult to find the appropriate S-PLUS functions
y them to a specific data set. :
tions used in the following analyses.

7.2. Tabulation and split functions

De

scription

Tal
cot
Ta
the
Cr
Sp
per

bulation of two-dimensional continuous data by
mting the number of occurrences in intervals
bulation of discrete data of any dimension. Counts
number of data equal to the cell values

cation of a contingency table from factor data

lit up a data set and get a list with one component
group value

- To see how a variab
he table and the his
ombinations of year g

> table(year, s
Gran
Rapids
1
1

1932
1931

We see that every site
hree-dimensional table
ombination of year, s
0 different varieties. W

le is distributed in two dimensions, S-PLUS offers
t2d function. We can determine how often different
nd site occur by entering

ite)
1 Univ
5 Duluth Farm

10 10

10 10

had 10 plantings in each year. If we look at the
> of year, site, and variety, we can see that every
site, and variety occurs exactly once, as we have
Ve shorten the output because of its excessive length.

Crookston Waseca
10 10
10 10

Morris
10
10

)
0
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> table(year, site, variety)

interval limits.

> hist2d(yield, yield)

[1] 10 20 30 40 50 60 70

, ;3vansota
Grand Univ
Rapids Duluth Farm
1932 1 1 1
1931 1 1 1

».No. 462
Grand Univ
Rapids Duluth Farm
1932 1 1 1
1931 1 1 1

Morris
1
1

Morris
1
1

S-PLus shows the third dimension by “walking through the dimensions.”
It keeps the first value of the third dimension’s variahle fixed (in this case,
the Svansota variety) and shows a two-dimensional tal
Svansota as its variety. The next table is shown for
variety, here No. 462, and so on, until all third-dimension values are taken.

To tabulate a variable like yield, which is a metric variable, we would
not want to use table, because every observation would get a category of
its own, as all the values are different. We could round the values and use
table, or we can categorize them with the hist2d function. The hist2d
function takes the data and categorizes them into inter vals, just as the hist
function does, but without graphical display. Because of the lack of two
metric variables in the barley data, we tabulate yie
output consists of five elements; the midpoints of the x and y categories,
the table containing the counts of the data, and two vectors giving the

$x:
[1] 15 25 35 45 55 65
$y:
[1] 15 25 35 45 55 65
$z:
10 to 20 to 30 to 40 to 50

20 30 40 50
10 to 20 6 0 0 0
20 to 30 0 42 0
30 to 40 0 0 39 0
40 to 50 0 0 0 26
50 to 60 0 0 0 0
60 to 70 0 0 0 0
$xbreaks:

Crookston Waseca
1. 1
1 1

Orookston Waseca
1 1
1 1

le for all data having
the second value for

1d against itself. The

to 60 to
60 70
0 0
0 0
0 0
0 0
5 0
0 2




$ybreaks:
[1] 10 20

n a list.

umber of digits to

1.

hich contains only

10 20 3
1

e what happens i

only a single harvest
but the species Wis
few low yields.

Using the by fun
calculate a summar)

refers to the num
ounding to the nea

> yield.round

e can check the r

> table(yield

18 51

Now, we can tabulas

14 - without rou

> table(varie

‘We can see that mos
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30 40 50 60 70

ecause of the leading $ sign, we can see that the returned data is stored

If we have a mixture of continuous and categorical variables and want
o tabulate them, we
variable. Let us rous
nction has, besides

can build classes on our own by rounding the metric
hd the yield to the nearest factor of 10. The round
the data, a second argument digits, telling us the
the right of the decimal point. If digits is negative,
ber of digits to round off to the left of the comma.
rest factor of ten means that we need to set digits to

<- round(yield, -1)

esult by tabulating our new variable, yield.round,
the values 10, 20, 30, 40, 50, 60, and 70.

round)
40 b0 60 TO
31 13 5 1

e variety against yield.round. You might want to
you tabulate variety against the original variable
ding the values - using the table function.

1

ty, yield.round)

10 20 30 40 50 60 70

Syvansota 0 3 4 4 1 0 0
No. 462 0 3 4 2 2 0 1
Manchuria 0 2 8 1 1 0 0
No. 475 0 4 4 3 1 0 o0
Velvet 0 2 5 4 1 0 0
Peatland 0 -0 8 3 1 0 0
Glabron 1 0 5 5 0 1 0
No. 457 0 2 5 3 1 1 0
Wisconsin/No. 38 0 1 4 3 2 2 0
Trebi 0o 1 4 3 3 1 0

t of the yields are around 30 bushels per acre. There is
in the category 70, stemming from the species No. 462,
consin No. 38 and Trebi have mostly high and only a

ction, we can investigate this a little further. Let us
r for each variety by using the function summary.
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> by(yield, variety, summary)
INDICES:Svansota
X
Min. :16.63
1st Qu.:24.83
Median :28.55
Mean :30.38
3rd Qu.:35.97

INDICES:No. 462
54

Min. :19.90

1st Qu.:25.41

Median :30.45

Mean :35.38

3rd Qu.:45.28

INDICES:Wisconsin No. 38
%
Min. :20.67
1st Qu.:31.07
Median :36.95
Mean :39.39
3rd Qu.:47.84
Max, :58.80
INDICES: Trebi
%
Min. 12063
1st Qu.:30.39
Median :39.20
Mean :39.40
3rd Qu.:46.71
Max. :63.83

It seems that Trebi and Wisconsin are the ma
figures are high in comparison to the other varie

site on its own, we could select only a single vaz

> barley.Svansota <- barley[variety=

re fruitful varieties, as
eties.

If we wanted to split our data set into parts, for example to analyze each

iety by entering

="Svansota", ]
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to select only the Sva.nisota data, or we could split up the data by using the
split function. |

> barley.split .jby.va.riety <- split(barley, variety)

The first component off the list barley.split.by.variety looks like this
NOW: ‘

> barley.split.by.variety$Svansota
yielfd variety year site

13 35.13333 Svansota 1931 Univ Farm
14 47.33333 Svansota 1931 Waseca

156 25.76667 Svansota 1931 Morris

16 40.46667 Svansota 1931 Crookston

17 29.66667 Svansota 1931 Grand Rapids
18 25.70000 Svansota 1931 Duluth

73 27.43334 Svansota 1932 Univ Farm
74 38.50000 Svansota 1932 Waseca

75 35.03333 Svansota 1932 Morris

76 20.63333 Svansota 1932 Crookston
77 16.63333 Svansota 1932 Grand Rapids
78 22.23333 Svansota 1932 Duluth

We have all the Barley data of the Svansota variety in a separate struc-
‘ture. The variable barley.split.by.variety contains a list in which the
element names are the different varieties. If you enter

> names (ba.rley,j split.by.variety)

- you will see the name;s of the list components. We see that for Svansota,
for example, 1931 was a much better year than 1932, and that Waseca,
rookston, and University Farm had their biggest harvest in 1931, whereas
the biggest harvests in 1932 were in Waseca, Morris, and University Farm.

7.2  Graphical ;Explora,tion

We have gained a basic impression and some insights into the Barley data
t structure by studying some summary figures. The next step will lead
into graphical analyses. Table 7.3 lists many of the graphical functions
available in S-PLUS. In addition, we will be using the Trellis functions as
ummarized in Table 6.1 (page 143).

~ Let us start by getting a graphical impression of the distribution of the
barley yield. We could either use the standard plotting function hist or
he Trellis function histogram.

“We decide to use the histogram function.

> hist ogram(mfrield, data=barley)
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Table 7.3. Graphical data exploration' functions

S-PLUs Function

Description

boxplot
density

dotchart
hist
identify

pie
plot
qgnorm

ggplot

scatter.smooth

Boxplot display

Density estimate for the distribution of the data.
Use plot (density(x)) to see it graphically

Dot chart
Histogram display

Identification of the data point next to the point
clicked on in the graphics window

Pie chart

Standard plot, depending on the data
Quantile—quantile plot for the Normal distribution
Quantile-quantile plot to check how well two data set

overlay

Plot of the data plus a smoothed regression line

. g—

See also Table 6.1 (page 143) for Trellis graphics functions.
Note: Most of the graphics functions have a long list of optional parameter
It is, of course, possible to use a function only in its elementary form (like
pie(x)), but if you want to add colors, modify the labels, or explode one of
the pies in the pie chart, you need to know what you can do. The boxplct
function, for example, currently has 27 optional ﬂarameters. Have a 1
at the documentation to learn more about all the ﬁ)ossibilities offered.

Figure 7.1 shows that all yield data lie between 10 and 70 bushels pel
acre, and that there is more data in the lower tha,1;1 in the upper region.

Let us graphically explore how the yield depends on the site, the year o
harvest, or the variety of barley planted. A Trellis displays of histograms
where the barley yield is conditioned on the site i
is created with the following command:

> histogram(~yield | site, data=bar1eyib

Figure 7.2 shows that Waseca has obtained the hiéhest yields, and Gran& :
Rapids the lowest. In fact, all yields above 60 were obtained in Waseca,

the yield data and draw the histograms one by oné.

> par (mfrow=c(2,3))
> attach(barley)

> hist(yield[site=="Morris"], main="Mo¥ris")

> hist(yield[site=="Crookston"], main=" Crookston")

s shown in Figure 7.2. T
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Percent of Total

20 30 40 50 60
E yield

Figure 7.1. Histogram of the variable yield in the Barley data set.

Alternatively, we could use the split function that splits a variable
according to values of another variable.

> yield.split <- split(barley$yield, barley$site)
> par(mfrow=c(2,3))
> lapply({yield.split, hist)

With both solutions, we did not make sure that we get the same histogram
bins. The bins need to be calculated beforehand and supplied as a param-
ter to each call of t}jze hist function. We better stop here and be happy
hat we can use the histogram function that comes as part of the Trellis
brary. |

Continuing our investigation, we condition the yield on year and site. We
reate histograms for each combination of site and year. As there are 6
ites in the data sets, each having two yields for 1931 and 1932, we obtain
3 x 2 = 12 histograms. They show 10 values for the 10 different varieties
- planted.
We use the Trellis function histogram again to condition the yield data
- according to the values of year and site. Figure 7.3 shows the histogram
- display by year and site. The figure was obtained by entering

> histogram(~yield | year+site)
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Percent of Total

yield

Figure 7.2. Histogram of the barley yield by site.

In this way, we are able to review our data set in a co
tograms can be compared columnwise, observing the vi
sites in 1931 and 1932, respectively. If they are viewed
the different yields for the 2 vears for a given site.

Let us now graphically compare the sites’ yields f
in 1931 and 1932. We choose the boxplot display to
specific year in the same plot.

By reading the online documentation or the manual
want to display more than one data set in the same D
function expects a list of variables to plot. What we ne
list containing one vector of yields for each of the sites.
the S-PLUS function split splits a vector according
which we are going to use now. We split the yield b
done before, and supply the outcome to the boxplot
want to produce two plots, one for 1931 and one for 1
data for the year first, then split the extracted data.

> 15.1931 <- year==1931 # True or False for 1931/1932

> boxplot(split(yield[ is.1931], site[ is
* main="Year 1931", ylim=range(yield))
> boxplot(split(yield[!is.1931], site[!is.

ncise form. The his
elds for the different
Towwise, we can see

br the two harvests
show all sites for a :

5, we find that if we
icture, the boxplot
ced to do is create a
Ve have learned that
to another variable,
Y site, as we have
function. Since we
932, we extract the

1931]),

19311),




-23385483

Percent of Total

coB8588

adding ylim=rang
- elements: the lowe
box position tells

a comparison betw

Tukey (1977) or o
data analysis.

Figy

+ main="Year

The result obtai
by using the variab
is equal to 1931, an
we select the data for which is.1931 is true; in the second
select the data for which it is not true.

We have made s
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BRise

a

e

yield

we 7.3. The barley yield by site and year.

1832", ylim=range(yield))

ned is shown in Figure 7.4. Note the extraction of data
le is.1931. The result is true for all data for which year
d false otherwise (for all 1932 observations). In the first

ure that both graphs are shown on the same scale by
e (yield) to the call.

If you are not familiar with boxplot displays, a box consists of a few basic

r quartile, the upper quartile, and the median (the dash
erefore, 50% of the data lie within the box limits. The
us a lot about the data spread within a site and gives
reen the sites. The whiskers show the interval of values
d values far outside are represented by horizontal dashes.
ut this standard display tool, you might want to study

ther books covering descriptive statistics or exploratory
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Year 1931

20 30 40 50 60

Il

et

m

—

R

Duluth Ur];\g?;rs]ity Morris

Year 1932

Crookston

Waseca

20 30 40 50 60

[l

]

== ‘
lgrar: Duluth Ur];versity Morris  Crookston Waseca
apids arm

Figure 7.4. Boxplot display of the barley yield for all sites, split by year of harvest.

If you try out the boxplot example, you will realize that there is a
slight disturbance with the boxplot labels. The site n Ames are sometimes

too long, like “Grand Rapids” or “University Farm,’

and they overlap.

What we can do in this case is to split the label into two lines by taking

the result of split, a list, storing it into a variable,

and renaming some

labels. For example, we can make “Grand Rapids” a two-liner by inserting
the new line control character \n in the middle. The command would look

like this.

> yield.split.1931 <- split(yield[is.1931], site[is.1931])
> names(yield.split.1931)

> names(yield.split.1931)[1] <- "Grand\nRapids"

> boxplot(yield.split.1931)

The labels in Figure 7.4 were created in this fashion. 'We will learn more
about control characters later. They are summarized in Table 9.2 on page

286.

You might have noted already that we could have done the same graph :
using the Trellis function bwplot. The name “bwplot” is short for “box and

whisker plot.”

> bwplot(site~yield | year, data=barley)

# to find YGrand Rapids” _

<
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Waseca el - s e

Morris

University Farm - |

Grand Rapids

yield

Figure 7.5. Boxplot display of the barley yield by site and year.

The graph generated is shown in Figure 7.5. Many of the details in the
preceding displays can be found again in this display. We see immediately
that the Waseca site has very high yields, especially in 1931, but the yields
cover a much broader range than at Duluth, for example. Grand Rapids is
always pretty low, and Morris is somewhat strange, as its yield in 1931 is
very low, and in 1932, it is very high, in contrast to the other sites. For the
other sites, the ordering is very stable for both years if ordered by yield
S1zZe.

Displaying the boxplots in a different arrangement gives us some more
information. Figure 7.6 clearly reveals that the Morris site is the only one
that had a lower yield in 1931 than in 1932. For all other sites, the upper
box is clearly mqre toward the right than the lower box, indicating a higher
yield in 1931.

The graph was generated by swapping the two conditional variables, year
and site, such that all sites in a specific year show up in a common graph
(compare Figures 7.5 and 7.6 and the commands used to generate them).

> bwplot(year~yield | site, data=barley)

Using these Trellis displays, Cleveland (1993) and Becker, Cleveland, and
Shyu (1996) con¢lude that the years 1931 and 1932 must have been swapped
for Morris. Of course, this can no longer be proven, but there is some clear
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yield

Figure 7.6. The Barley data in boxplot displays, catego

evidence for it. Although this data set has undergone maz
statistical literature, this obscureness had not been deteg
how graphical methods can help provide more insight int

~ To illustrate further techniques, we examine the Geyser
This data set was previously introduced in Section 3.6,

The Geyser Data Set

The Geyser data consist of continuous measurements of th
and the waiting time between two eruptions of the Old B

rized by site.

ny analyses in the "
ted, which shows'
0 a data set.

data set in detail.

ie eruption length
raithful Geyser in

Yellowstone National Park in 1985 in minutes. Some duration measure-

ments, taken at night, were originally recorded as S (sho
and L (long). These values have been coded as 2, 3, and 4
tively. The original publication by Azzalini and Bowmar
more details.

Having a look at the geyser data (have a look!) sho
stored in a list with two components: waiting and durat

attached, such that we can use waiting instead of typing
all the time.

> attach(geyser)

rt), M (medium),
minutes, respec-
1 (1990) provides

ws that they are
ion. Lists can be
geyser$waiting
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We might want to begin by examining the basic data characteristics.

> summary (waiting)
Min. 1st Qu. Median Mean 3rd Qu. Max.
43.00 59.00 76.00 72.31 83.00 108.00

> summary (duration)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8333 2.0000 4.0000 3.4610 4.3830 5.4500

This gives us a basic impression. The duration of an eruption lies between
ess than a minute and almost 6 minutes, and the waiting time for the next
ruption lies between a little more than 40 minutes and more than 100
minutes. On average, if you just missed the last eruption, then you would
ave to wait for more than an hour to see an eruption of approximately 4

Next we are interested in a graphical data display. We display the two
variables in a simple scatterplot.

> plot(waiting| duration,
xlab="Waiting Time for the Eruption",
ylab="Eruption Length")

title("0ld Faithful Geyser Data\n
Waiting Time|and Eruption Length")?

+ vV o+ o+

igure 7.7 shows what the data look like. We can see some surprising details
from the graph. We already know that parts of the data were set to 2, 3,
nd 4 minutes, such that quite a few points lie on these lines parallel to
he x-axis. Second, it|seems that the data also lie on lines parallel to the
-axis. Examining the data confirms that waiting time was measured in
nteger minutes.
- Next, we see three|clusters of point clouds. Interestingly enough, they
are more or less clearly separable. We can use an interactive facility to
etermine the cluster’s boundaries. Plot the data and use the mouse to
ck on some points in the graph. Calling the function locator, S-PLUS
will return the coordinates of the points you click on with the left mouse
utton. Stop recording the clicks by clicking on the right mouse button.

> plot(waiting, duration)
> locator()

' we cut the x-axis at x=67 and the y-axis at y=3.1, the plot is divided into
our areas, three of which contain a cluster of data points, and the fourth,
he one in the lower left position, contains no data at all. This might require
uestioning the Park Ranger who collected the data.

To show it to the ranger, we plot the graph again and add the dividing
lines to it. Furthermore, we choose a different plotting character for each

2The title command should be on a single line with no space around the \n, which
impossible here due tojspace constraints.
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The following commands produced Figure 7.8. We

and, finally, the points.

> plot(x, y, type="n", ylab="Eruption Le
xlab="Waiting Time for the Eruption")
title("01ld Faithful Geyser Data\nWaiti
Time and Eruption Length")3
abline(h=3.1)

abline (v=67)

v + v +

>

logical expressions subsetld, . . ., subset3. These vect
FALSE elements determine whether or not a point be

#The title command should be on a single line, with no sj
is impossible here due to space constraints.

Figure 7.7. The Old Faithful Geyser d

of the four subsets, and label the extreme value in t
(the only one with a waiting time of more than 100 minutes).

no points, which contains everything except for the pd
and other layout parameters). We then add the horizo

The data are divided into three subcategories, which

110

ata.

he lower right corner

first plot a graph with
ints (the axes, labels,
ntal and vertical lines

ngth",

ng

we determine by the °
ors of logical TRUE and
longs to the subset.

ace around the \n, which
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E ithful Dat
Wa}iticn)ﬁd g aunglgyuspetsonﬁ_%ngth

o0

4
8

Eruption Length
3

— 1 A exireme value /

50 60 70 80 90 100 110
Waiting Time for the Eruption

Figure 7.8. The Old Faithful Geyser data in subsets.

> subsetl <- (yaiting >= 67) & (duration < 3.1)
> subset2 <- (waiting >= 67) & (duration >= 3.1)
> subset3 <- (waiting < 67) & (duration >= 3.1)

The next step is to plot the groups separately by using the points function,
ut displaying different characters (instead of points) and using different
olors to demarcate the groups.

> points(waiting[subset1],duration[subset1],pch="A",col=1)
> points(waiting[subset2],duration[subset2],pch="B",col=2)
> points(waiting[subset3],duration[subset3],pch="C",col=3)

inally, we add an arfow pointing to the extreme point with a waiting time
f about 110 minutes! Note that we do not determine the end point of the
rrow, but go to its waiting time (which we know is the maximum value)
and the corresponding duration (by selecting the index of the maximum
aiting time). We want a V-shaped arrow; therefore, open=T is set. Finally,
e place the text “extreme value” on the bottom line of the plot, ending
here the arrow starts (adj=1 means the text is right-justified). The text
e want to add has two extra spaces at the end, such that there is a little

‘gap between the text|and the arrow’s end point.
|
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> arrows (105, 1, max(waiting),

+ duration[waiting==max(waiting)], open=T
> text (105, 1, "extreme value

" adj=1)

We will now continue with graphical functions that ¢

variables: multivariate graph types. We start with an overview of what is

available in Table 7.4.

Table 7.4. Multivariate graphical data explorati

S~

an deal with multiple

on functions

S-PLus
Function

Description

barplot
biplot

boxplot
contour

coplot
dotchart
faces
hexbin
image
matplot
pairs
persp

stars

Barplot (bars with subbars stacked)

Plot principal components and factor ang
data and variables in a two-dimensional
Boxplot(s) of one or more variables in a s

Contour lines of a two-dimensional distribution to access the

common distribution function

Plot matrix of two variables conditioned
third variable

Dotchart (values on parallel lines stacked
optional variable grouping

Chernoff faces illustrating by means of fa
dimensional data set (up to 15 variables)
Hexagonal binning, a display technique f
hexagonally shaped bins

Image plots, color scales for (geographica
values on a two-dimensional grid
Plotting columns of matrices against oth
using different symbols for each combina
Two-dimensional x-y scatterplots in a m
for each combination of variables
Perspective three-dimensional surface plo
density estimates

Star plots of multivariate data in which ¢
displayed as a star. Each point is further
middle the larger the value is

lysis results, show
oordinate system
ingle graph

on the values of a

) for a vector with

ce elements a high-

or spatial data using

1) heights or density

er matrix columns by
rion
itrix of scatterplots

ts on a grid for

2ach observation is
away from the

See also Table 6.1 (page 143) for Trellis graphics fun

We have already seen that the function hist2d|i

continuous data like the Geyser data into a table fr
our Geyser data set, we get back a list with five comy
mid-values of the chosen intervals and the end poin

tabulated data.

ctions:

ame. If we do it with
onents, telling us the
ts, together with th
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> hist2d(waiting, duration)
$x:
[1]

45 B5 65 75 85 95 105

0.5 1.6 2.5 3.5 4.5 5.5

Otocl11to22to33tcd4to55*to6
40 to 50 0 0 ¢] 0 16 0
50 to 6D 0 0 0 1 56 3
60 to 70 0 0 1 2 28 1
70 to 8D 0 13 19 9 40 0
80 to 90 1 31 25 9 24 0
90 to 100 0 11 3 2 3 0
100 to 110 0 1 0 0 0 0

$xbreaks:

(11 40 B0 60 70 80 90 100 110

$ybreaks:
(11 012

The table is put int

3456

o the component z, and we see that the visibility of
effects depends heayily on the intervals chosen. The effect of the three
point clouds is not that clearly visible, although you might guess at them

by studying the values. Experimenting with different choices of interval
bounds might give more insights.

You can use the hist2d function introduced before to set up data to be

used as input to other functions. The persp function produces a 3D-type
plot that accepts input from hist2d.

> persp(hist2d(waiting, duration))

Figure 7.9 shows & perspective plot of the surface of the empirical distri-
bution. The x-axis and y-axis are set up by taking the variables xbreaks
and ybreaks of the hist2d output, and the matrix of values in the z com-
ponent determines surface height. Try to reveal the three peaks more clearly
by choosing another set of intervals for hist2d to display the perspective
surface plot.

You can use the same data from hist2d to get an image display of the
surface. The image display and the corresponding S-PLUS function image
are often used to display geographic data, using latitude and longitude
- as axes, and the geographical height of the area is color coded. This is
_ the principle of eve 'y contour map. We use the color display to look at

- the tabulated Geyser data “from the top,” getting the heights in different
- colors.

193
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50 60

Z

0 10 20 80 40

Figure 7.9. A perspective plot of the Old Faithfu

> image(hist2d(waiting, duratiom,
+ xbreaks=seq(40, 110, by=5), ybreaks=se
> title("An image plot of the geyser dat

For a nicer display, we chose different classes than
used above. The result is shown in Figure 7.10, and
the coloring in this picture is a disadvantage, we c
“mountains” as well as the “desert area” in the low
options available are different color schemes, like a
ranging from cold (blue) to hot (red).

It becomes obvious that we need to experiment w
examine Figure 7.11. We show two pictures of the
underlying categorizations into tables are different.
the left-hand side we see the three groups in the date
on the right-hand side leads us to conclude that we ha
tops.

This figure shows contour lines or, in other words,
set. The contour function also accepts input from h

> par(mfrow=c(1,2))
> contour (hist2d(waiting, duration),

+ xlab="waiting time", ylab="eruption ti
> title("Contour plot (1)")

ne")

1 Geyser data.

q(G: 6, by=0-5))
a")

the default settings
although the loss of
an still see the three
rer left corner. Other
“heat color scheme”

rith parameters if we
same data, but the
From the picture on
\, whereas the picture
ve only two mountain

height lines of a data
ist2d.
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An image plot of the geyser data

4I0 60 80 1 CIJO
Figure 7.10. |An image plot of the Old Faithful Geyser data.

> contour (hist2d(waiting, duration,

+ xbreaks=seq{40, 110, by=5), ybreaks=seq(0, 6, by=1.5)),
+ xlab="waiting time", ylab="eruption time")

> title("Conteur plot (2)")

This excursion into /data analysis using graphics for exploring structure
reveals that the term “exploratory data analysis” describes a search for
effects discovered by| using many different displays and summaries of the
same data set. A single number or display can never describe the whole
complexity of a datalset.

If you want to explore the Barley or Geyser data sets with interactive
techniques and rotafing point clouds, try out the functions listed in Ta-
ble 7.5. Use the mouise to define a brush and move it over point clouds

to mark (“highlight’}) them. If you get stuck, consult the manuals. Just
do it.

Table 7I5. Multivariate dynamic graphics functions
S-PLus Function  Description

brush [nteractive marking of subsets on 2D scatterplots
spin Rotating data, marking and highlighting of subsets
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Contour plot (1) Contour plot (2)

eruption time
3

eruption time
3

50 60 70 80 90 100 40 50 60 70 80 90 100 110
waiting time - aiting time

=

Figure 7.11. A contour plot of the Old Faithful {Geyser data.

7.3 Distributions and Related Functions

This section examines a variety of distributions covered by built-in S-PLUS
functions. As we will see later; adding further distributions to the existing
set is also very straightforward. We divide the distributions themselves into;
continuous and discrete distributions.
Statistical distributions occur in many practical dafa analysis situations.’
Most models to describe data behavior are based on distributional assump-
tions and derive the estimates for unknown model |parameters from the
underlying (assumed) distributions.
The most important functions related to a distribution are as follows.

— The density function, which specifies a random variate distribution
(with fixed parameters).-

— The probability function, which is the integral over the distribution

function or, in the discrete case, the sum up fo the specified-point.
In other words, the probability function at x gjves the probability of
the random variable X being less than or equal to x.




— The quantile funj

— The random nu
distributed acco
large set of ranc
bers (visualized,
like the density

S-PLus has a syste
The functions related
for the first letter. TJ
Table 7.6 explains the

Table 7.6. Catego:
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ction, which is the inverse of the probability function.

mber generating function, which generates numbers
rding to the specified distribution function. For a
lom numbers, the distribution of the random num-
for example, by a histogram), looks approximately
“unction.

matic naming of functions related to distributions.
to the same distribution have the same name except
he first letter indicates what type of function it is.
system.

-ization of distribution-related functions in S-PLUS

Type! Character Fu

inction Type

D
P

Q
Ri

stribution function

obability function or cumulated density function
hantile function (inverse probability function)
sndom number generation

1 The significant lette
function is either d, p

the distributions avai
7.8. To determine the
from Table 7.6 with t

r for identifying the functionality of the distribution
q, or . See also Table 7.7.

To identify a specific function, we need to know the abbreviations for

able to us, which are listed in Table 7.7 and Table
function’s name, combine the characteristic letter
he abbreviation in Table 7.7 or 7.8. For example, to

generate random numbers from the Normal distribution, the function to
use is rnorm (“r” + “porm”).

Table 7.7. Distribution-related functions in $-PLus(1): Discrete distributions

istribution S-Prus Name! Parameters?
binom size prob
_ geom prob
ypergeometric hyper m, n, k
Neg. binomial nbinom size prob
oisson pois lambda
ilcoxon (rank sum) wilcox m n

:-_i The characteristic le
ame of the S-PLUS f
se the sample func
istribution.

tter, one of d, p, g, r, plus the listed name, gives the
unction.
tion to generate random numbers from a discrete
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Table 7.8. Distribution-related functions in S-PLus(2): Continuous distributions

Distribution S-Prus Name! Parameters?

Beta beta shapel shape2
Cauchy cauchy location=0 shape=1
Chi-square chisq df
Exponential exp rate=1
F £ dfl df2
Gamma gamma shape
Logistic logis location=0 scale=1
Lognormal lnorm meanlog=0 sdlog=1
Normal norm mean=0 sd=1
Normal, mvnorm mean=rep(0,d
multivariate®
Stable stab index
Student t t df
Uniform unif min=0
Weibull weibull shape

b

Lo e o S (o B S B U B |

o LA

I The characteristic letter, one of d, p, q, 1, plus the listed name, gives the
name of the S-PLUs function.
2 If parameters are preset with a default value, like in mean=0, they do
not need to be specified unless another parameter value than the default is
desired.
3 There is no quantile function for the multivariate Normal distribution.

W B od oo

There are four functions related to the Normal distribytion
dnorm for calculating the value of the distribution function
prorm for calculating the value of the probability function

gnorm for calculating the inverse probability function

rnorm for generating random numbers from the Normal distribution

These four functions all have the same parameters, as|they refer to the :
same distribution, namely mean and sd, the mean and the standard devia-
tion, respectively. Both arguments are optional. They arg preset to define
the standard Normal distribution with mean 0 and standard deviation 1. :

Qs

et

The standard deviation, not the variance, is the argument used
for dispersion by the functions for the Normal distributipn. The standard °
deviation is simply the square root of the variance. q

All these functions take numbers and vectors as input jarguments. For a
vector, the corresponding value for each element is computed. For example,

> dnorm(-3:3, 0, 1:7)




alculates dnorm(-3,
You can check out
nctions. Calculate
(p(x)), which shoul

or the quantile funct

As you might

never really rang
each number depends
ses the variable .Ra

roduce the same se
est a self-written rot

Graphing Distribu

You will often want
eans looking at the

Recall that a cont

e cannot graph the

aries by calculating
he standard Norma

> bounds.t

ensities. Therefore,

> points.x <-

Now the values of th

> points.t

etween continuous g

values of the density i
interval usually rangg

1ave to restrict ourse]
0% of the density su
To calculate these §

alculate the bounda;
> x <- ¢(0.05,
> bounds.norma
> bounds.cauch

Next, we create a se

he three distributior

> bounds <- ra
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0, 1), dnorm(-2, 0, 2), ..., dnorm(3, 0, 7).
to see the numerical accuracy of the distributional

‘he difference between some values x and p(q(x)) or
1 be 0 in theory (p stands for the probability and g

ion of the distribution).

know, the random numbers generated by a computer
lom. They consist of a sequence of numbers, where
somehow on the previous number generated. S-PLUS
ndom.seed to store the state of the random number

generator. You can yise set.seed(n), where n is an integer number, to

quence of random numbers several times, maybe to
itine. <

tions

to see what a distribution looks like, which usually
density function. Here, we need to make a distinction
nd discrete distributions.

nuous density has a continuous support; that is, all
unction in a given interval are greater than zero. This
s from minus infinity to plus infinity. For this reason,
“whole” distribution from minus to plus infinity, but
ves to a part of it. A good idea is to plot, for example,
ipport.

)0% limits, we cut 5% off each side and get the bound-
he 5% and 95% quantiles. As an example, we plot
(0, 1), t(5), and standard Cauchy distribution and
ries as described.

0.95)
1 <- gnorm(x)
<- qt(x, 5)

y <- gcauchy(x)

quence of points at which we want to calculate the
we calculate the common range of the boundaries of
s,

nge (bounds.normal, bounds.t, bounds.cauchy)
seq(bounds[1], bounds[2], length=1000)

¢ density functions are easily obtained.

> points.normagl <- dnorm(points.x)

<- dt(points.x, 5)

> points.cauchy <- dcauchy(points.x)

World Programmi



200 7. Exploring Data

Plotting the functions is straightforward now. Be sfire to calculate th
maximum value of the y-axis data first, in order to Have all values inside
the plotting range. A trick is to plot the “most outwhrd” curve first, the
curve having the largest and smallest values, so that] the other ones will
fit into the given range. We calculate the boundaries|first, plot an empty
frame, and then add the three lines.

yrange <- range(points.normal, points.t| points.cauchy)
plot(0, 0, type="n", xlim=bounds,
ylim=yrange, xlab="", ylab="Density Value")
lines(points.x, points.normal, col=1, lty=1)
lines(points.x, points.t, col=2, 1ty=2)
lines(points.x, points.cauchy, col=3, 1lty=3)

Vv OV V + VvV Vv

Finally, we add a legend using the function key and 4 title.

> key(min(bounds), max(yrange), corner=c(0,1)},
+ lines=list(lty=1:3, col=1:3),
+ text=list(paste(c("Normal(0,1)", "t(5)"[, "Cauchy"),
+ "Distribution"), adj=0, cex=0.8))
> title("A graphical comparisen of distriputions")
A graphical comparison of distrihputions
4
=} —_— Norrnjcgléqnpistﬁbuﬁan
D ribution _
--~-- Cauchy Distribution
o
o
=
=
z 3]
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Figure 7.12. A graphical comparison of three distributions.
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