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Preface

Regression analysis is an important statistical tool that is routinely applied
in most sciences. Out of many possible regression techniques, the least
squares (LS) method has been generally adopted because of tradition and
ease of computation. However, there is presently a widespread awareness
of the dangers posed by the occurrence of outliers, which may be a result
of keypunch errors, misplaced decimal points, recording or transmission
errors, exceptional phenomena such as earthquakes or strikes, or mem-
bers of a different population slipping into the sample. Qutliers occur
very frequently in real data, and they often go unnoticed because now-
days much data is processed by computers, without careful inspection or
screening. Not only the response variable can be outlying, but also the
explanatory part, leading to so-called leverage points. Both types of
outliers may totally spoil an ordinary LS analysis. Often, such influential
points remain hidden to the user, because they do not always show up in
the usual LS residual plots.

To remedy this problem, new statistical techniques have been de-
veloped that are not so easily affected by outliers. These are the rohust
(or resistant) methods, the results of which remain trustworthy even :f a
certain amount of data is contaminated. Some people think that robust
regression techniques hide the outliers, but the opposite is true because
the outliers are far away from the robust fit and hence can be detected by
their large residuals from it, whereas the standardized residuals from
ordinary LS may not expose outliers at all. The main message of this
book is that robust regression is extremely useful in identifying outliers,
and many examples are given where all the outliers are detected in a
single blow by simply running a robust estimator.

An alternative approach to dealing with outliers in regression analysis
is to construct outlier diagnostics. These are quantities computed from

vii
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viii PREFACE

the data with the purpose of pinpointing influential observations, which
can then be studied and corrected or deleted, followed by an LS analysis
on the remaining cases. Diagnostics and robust regression have the same
goal, but they proceed in the opposite order: In a diagnostic setting, one
first wants to identify the outliers and then fit the good data in the
classical way, whereas the robust approach first fits a regression that does
justice to the majority of the data and then discovers the outliers as those
points having large residuals from the robust equation. In some applica-
tions, both approaches yield exactly the same result, and then the dif-
ference is mostly subjective. Indeed, some people feel happy when
switching to a more robust criterion, but they cannot accept the deletion
of “true” observations (although many robust methods will, in effect,
give the outliers zero influence), whereas others feel that it is all right to
delete outliers, but they maintain that robust regression is ‘“‘arbitrary”
(although the combination of deleting outliers and then applying LS is
itself a robust method). We are not sure whether this philosophical
debate serves a useful purpose. Fortunately, some positive interaction
between followers of both schools is emerging, and we hope that the gap
will close. Personally we do not take an “ideological” stand, but we
propose to judge each particular technique on the basis of its reliability by
counting how many outliers it can deal with. For instance, we note that
certain robust methods can withstand leverage points, whereas others
cannot, and that some diagnostics allow us to detect multiple outliers,
whereas others are easily masked.

In this book we consider methods with high breakdown point, which
are able to cope with a large fraction of outliers. The “high breakdown”
objective could be considered a kind of third generation in robustness
theory, coming after minimax variance (Huber 1964) and the influence
function (Hampel 1974). Naturally, the emphasis is on the methods we
have worked on ourselves, although many other estimators are also
discussed. We advocate the least median of squares method (Rousseeuw
1984) because it appeals to the intuition and is easy to use. No back-
ground knowledge or choice of tuning constants are needed: You just
enter the data and interpret the results. It is hoped that robust methods of
this type will be incorporated into major statistical packages, which would
make them ecasily accessible. As long as this is not yet the case, you may
contact the first author (PJR) to obtain an updated version of the
program PROGRESS (Program for RObust reGRESSion) used in this
book. PROGRESS runs on IBM-PC and compatible machines, but the
structured source code is also available to enable you to include it in your
own software (Recently, it was integrated in the ROBETH library in
Lausanne and in the workstation package S-PLUS of Statistical Sciences,
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Inc., P.O. Box 85625, Seattle WA 98145-1625.) The computation time is
substantially higher than that of ordinary LS, but this is compensated by a
much more important gain of the statistician’s time, because he or she
receives the outliers on a “silver platter.” And anyway, the computation
time is no greater than that of other multivariate techniques that are
commonly used, such as cluster analysis or multidimensional scaling.

The primary aim of our work is to make robust regression available for
everyday statistical practice. The book has been written from an applied
perspective, and the technical material is concentrated in a few sections
(marked with ), which may be skipped without loss of understanding. No
speciﬁ‘f prerequisites are assumed. The material has been organized for
use as a textbook and has been tried out as such. Chapter 1 introduces
outliers and robustness in regression. Chapter 2 is confined to simple
regresiion for didactic reasons and to make it possible to include robust-
ness considerations in an introductory statistics course not going beyond
the simple regression model. Chapter 3 deals with robust multiple
regression, Chapter 4 covers the special case of one-dimensional location,
and Chapter 5 discusses the algorithms used. Outlier diagnostics are
described in Chapter 6, and Chapter 7 is about robustness in related fields
such as time series analysis and the estimation of multivariate location
and covariance matrices. Chapters 1-3 and 6 could be easily incorporated
in a modern course on applied regression, together with any other
sections one would like to cover. It is also quite feasible to use parts of
the book in courses on multivariate data analysis or time series. Every
chapter contains exercises, ranging from simple questions to small data
sets with clues to their analysis.

PeTER J. ROUSSEEUW
ANNICK M. Leroy

October 1986

World Programmi : -'

Limited EXHIBIT 1008

Page 10 of 187



Contents

Introduction

i

Outliers in Regression Analysis

2. The Breakdown Point and Robust Estimators
Exercises and Problems

Simple Regression

1.

*1.

O L o B B

Motivation

Computation of the Least Median of Squares Line
Interpretation of the Results

Examples

An Illustration of the Exact Fit Property

Simple Regression Through the Origin

Other Robust Techniques for Simple Regression

Exercises and Problems

Multiple Regression

1.
2

3.
4.
5.
*6.

Introduction

Computation of Least Median of Squares Multiple
Regression

Examples

Properties of the ILMS, the LTS, and S-Estimators
Relation with Projection Pursuit

Other Approaches to Robust Multiple Regression

Exercises and Problems

18

21

21
29
39
46
60
62
65
71

75
5]

84
92
112
143
145
154

xiii

World Programm

 Limited EXHIBIT 1008
Page 11 of 187



xiv CONTENTS
4. The Special Case of One-Dimensional Location 158
1. Location as a Special Case of Regression 158

2. The LMS and the LTS in One Dimension 164

3. Use of the Program PROGRESS 174

*4.  Asymptotic Properties 178

*5. Breakdown Points and Averaged Sensitivity Curves 183
Exercises and Problems 194

5. Algorithms 197
1. Structure of the Algorithm Used in PROGRESS 197

*2. Special Algorithms for Simple Regression 204

*3. Other High-Breakdown Estimators 206

*4. Some Simulation Results 208
Exercises and Problems 214

6. Outlier Diagnostics 216
1. Introduction 216

2. The Hat Matrix and LS Residuals 217

3. Single-Case Diagnostics 227

4. Mulitiple-Case Diagnostics 234

5. Recent Developments 235

6. High-Breakdown Diagnostics 237
Exercises and Problems 245

7. Related Statistical Techniques 248

1. Robust Estimation of Multivariate Location and
Covariance Matrices, Including the Detection of

- Leverage Points 248
i 2. Robust Time Series Analysis 273
3. Other Techniques 284

Exercises and Problems 288

References 292

Table of Data Sets 311

Index



CHAPTER 1

Introduction

1. OUTLIERS IN REGRESSION ANALYSIS

The purpose of regression analysis is to fit equations to observed vari-
ables. The classical linear model assumes a relation of the type

Yi=xub +t---+x,6 +e fori=1,... n, (1.1)

where n is the sample size (number of cases). The variables x,,, . . ., X
are called the explanatory variables or carriers, whereas the variable ¥;is
called the response variable. In classical theory, the error term e; Is
assumed to be normally distributed with mean zero and unknown stan-
t dard deviation o. One then tries to estimate the vector of unknown

parameters
B]
0=|: (12)
BP
from the data;:
Variables
X 7 Xy N
Cases | X4 - X Yil. (13)
xnl S 2 xnp yn

mited EXHIBIT 1008
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2 INTRODUCTION

Applying a regression estimator to such a data set yields

(1.5)

where 7, is called the predicted or estimated value of y,. The residual r; of
the ith case is the difference between what is actually observed and what
is estimated:

=Y~ i (1.6)

The most popular regression estimator dates back to Gauss and
Legendre (see Plackett 1972 and Stigler 1981 for some historical discus-
sions) and corresponds to

Minimize 3, 2 (1.7)
] =]




OUTLIERS IN REGRESSION ANALYSIS 3
(e.g., multivariate location, analysis of variance, and minimum variance
clustering). -

More recently, some people began to realize that real data usually do
not completely satisfy the classical assumptions, often with dramatic
effects on the quality of the statistical analysis (see, e.g., Student 1927,
Pearson 1931, Box 1953, and Tukey 1960).

As an illustration, let us look at the effect of outliers in the simple
regression model

y;i=6x,+6,te, (1.8)

in which the slope 6, and the intercept 6, are to be estimated.
This is indeed a special case of (1.1) with p =2 because one can put
x;:=x; and x,,°=1 for all i=1,...,n. (In general, taking a carrier
identical to 1 is a standard trick used to obtain regression with a constant
term.) In the simple regression model, one can make a plot of the
(x;, y;), which is sometimes called a scatterplot, in order to visualize the
data structure. In the general multiple regression model (1.1) with large
p, this would no longer be possible, so it is better to use simple regression
for illustrative purposes.

Figure 1a is the scatterplot of five points, (x,, y,), ..., (xs, ¥5), which
almost lie on a straight line. Therefore, the LS solution fits the data very
well, as can be seen from the LS line 7 = §,x + 6, in the plot. However,
suppose that someone gets a wrong value of y, because of a copying or
transmission error, thus affecting, for instance, the place of the decimal
point. Then (x,, y,) may be rather far away from the “‘ideal” line. Figure
1b displays such a situation, where the fourth point has moved up and
away from its original position (indicated by the dashed circle). This point
is called an outlier in the y-direction, and it has a rather large influence on
the LS line, which is quite different from the LS line in Figure la. This
phenomenon has received some attention in the literature because one
usually considers -the y; as observations and the x,, ... » X, as fixed
numbers (which is only true when the design has been given in advance)
and because such “vertical” outliers often possess large positive or large
negative residuals. Indeed, in this example the fourth point lies farthest
away from the straight line, so its r; given by (1.6) is suspiciously large.
Even in general multiple regression (1.1) with large p, where one cannot
visualize the data, such outliers can often be discovered from the list of
residuals or from so-called residual plots (to be discussed in Section 4 of
Chapter 2 and Section 1 of Chapter 3).

However, usually also the explanatory variables x,,, ..., x,, are ob-
served quantities subject to random variability. (Indeed, in many applica-
tions, one receives a list of variables from which one then has to choose a
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(d)

Figure 1. () Original data with five points and their least squares regression line. (b) Same
data as in part (4), but with one outlier in the y-direction.

response variable and some explanatory variables.) Therefore, there is no
reason why gross errors would only occur in the response variable y,. In a
certain sense it is even more likely to have an outlier in one of the
explanatory variables x,,, . . . , x,, because usually p is greater than 1, and
hence there are more opportunities for something to go wrong. For the
effect of such an outlier, let us look at an example of simple regression in
Figure 2.




OUTLIERS IN REGRESSION ANALYSIS

Figure 2. (2) Original data with five points and their least squares regression line. (b) Same
data as in part (), but with one outlier in the x-direction (“leverage point™).

Figure 2a contains five points, (x;, y,),..., (x5, y5), with a well-
fitting LS line. If we now make an error in recording x,, we obtain Figure
2b. The resulting point is called an outlier in the x-direction, and its effect
on the least squares estimator is very large because it actually tilts the LS
line. Therefore the point (x,, y,) in Figure 25 is called a leverage point, in
analogy to the notion of leverage in mechanics. This large “pull” on the

World Progt
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6 INTRODUCTION

LS estimator can be explained as follows. Because x, lies far away, the
residual r, from the original line (as shown in Figure 2a) becomes a very
large (negative) value, contributing an enormous amount to £°_, > for
that line. Therefore the original line cannot be selected from a least
squares perspective, and indeed the line of Figure 2b POSSERSES the
smallest ©;_, > because it has tilted to reduce that large r2, even if the
other four terms, 75, ..., r2, have increased somewhat.

In general, we call an observation (x,, y,) a leverage point whenever
x, lies far away from the bulk of the observed x, in the sample. Note that
this does not take y,-into account, so the point (x,, y,) does not
necessarily have to be a regression outlier. When (x,, y,) lies close to the
regression line determined by the majority of the data, then it can be
considered a “good” leverage paint, as in Figure 3. Therefore, to say that
(x., y,) is a leverage point refers only to its potential for strongly
affecting the regression coefficients 51 and @2 (due to its outlying compo-
nent x, ), but it does not necessarily mean that (x,, y,) will actually have
a large influence on é‘} and @2, because it may be perfectly in line with the
trend set by the other data. (In such a situation, a leverage point is even
quite beneficial because it will shrink certain confidence regions.)

In multiple regression, the (x,;, ..., x,,) lie in a space with p dimen-
sions (which is sometimes called the factor space). A leverage point is
then still defined as a point (x,,, . - . , X;,, ¥, ) for which (x,,,...,x,,) is
outlying with respect to the (x;;, . . ., x;,) in the data set. As before, such

y-axis

I O O O T W Y

x-axis

Figure 3. The point (x,, y,) is a leverage point because x, is outlying. However, (x,, y,)is
not a regression outlier because it matches the linear pattern set by the other data points.




OUTLIERS IN REGRESSION ANALYSIS 7

leverage points have a potentially large influence on the LS regression
coefficients, depending on the actual value of Y- However, in this
situation it is much more difficult to identify leverage points, because of
the higher dimensionality. Indeed, it may be very difficult to discover
such a point when there are 10 explanatory variables, which we can.no
longer visualize. A simple illustration of the problem is given in Figure 4,
which plots x,; versus x,, for some data set. In this plot we easily see two
leverage points, which are, however, invisible when the variables Xx;; and
X;; are considered separately. (Indeed, the one-dimensional sample
{X11:%5,...,x,} does not contain outliers, and neither does
{¥12: %5, ..., x,,}.) In general, it is not sufficient to look at each
variable separately or even at all plots of pairs of variables. The identifi-
cation of outlying (x,,... » X;,) is a difficult problem, which will be
treated in Subsection 1d of Chapter 7. However, in this book we are
mostly concerned with regression outliers, that is, cases for which
T Xiy» ¥;) deviates from the linear relation followed by the ma-
jority of the data, taking into account both the explanatory variables and
the response variable simultaneously.

Many people will argue that regression outliers can be discovered by
looking at the least squares residuals. Unfortunately, this is not true when
the outliers are leverage points. For example, consider again Figure 2b.
Case 1, being a leverage point, has tilted the LS line so much that it is
now quite close to that line. Consequently, the residual =y, — ¥V isa

WO TUELLIn fuen

X1

Figure 4. Plot of the explanatory variables (%:15 x,;) of a regression data set. There are two
leverage points (indicated by the dashed circle), which are not outlying in either of the
coordinates.
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8 ' INTRODUCTION

small (negative) number. On the other hand, the residuals r, and r; have
much larger absolute values, although they correspond to “good” points.
If one would apply a rule like “delete the points with largest LS
residuals,” then the “good” points would have to be deleted first! Of
course, in such a bivariate data set there is really no problem at all
because one can actually look at the data, but there are many multi-
variate data sets (like those of Chapter 3) where the outliers remain
invisible even through a careful analysis of the LS residuals.

To conclude, regression outliers (either in x or in y) pose a serious
threat to standard least squares analysis. Basically, there are two ways out
of this problem. The first, and probably most well-known, approach is to
construct so-called regression diagnostics. A survey of these techniques is
provided in Chapter 6. Diagnostics are certain quantities computed from
the data with the purpose of pinpointing influential points, after which
these outliers can be removed or corrected, followed by an LS analysis on
the remaining cases. When there is only a single outlier, some of these
methods work quite well by looking at the effect of deleting one point at
a time. Unfortunately, it is much more difficult to diagnose outliers when
there are several of them, and diagnostics for such multiple outliers are
quite involved and often give rise to extensive computations (e.g., the
number of all possible subsets is gigantic). Section 5 of Chapter 6 reports
on recent developments in this direction, and in Section 6 of Chapter 6 a
new diagnostic is proposed which can even cope with large fractions of
outliers.

The other approach is robust regression, which tries to devise es-
timators that are not so strongly affected by outliers. Many statisticians
who have vaguely heard of robustness believe that its purpose is to simply
ignore the outliers, but this is not true. On the contrary, it is by looking at
the residuals from a robust (or “resistant’’) regression that outliers may
be identified, which usually cannot be done by means of the LS residuals.
Therefore, diagnostics and robust regression really have the same goals,
only in the opposite order: When using diagnostic tools, one first tries to
delete the outliers and then to fit the “good” data by least squares,
whereas a robust analysis first wants to fit a regression to the majority of
the data and then to discover the outliers as those points which possess
large residuals from that robust solution.

The following step is to think about the structure that has been
uncovered. For instance, one may go back to the original data set and use
subject-matter knowledge to study the outliers and explain their origin.
Also, one should investigate if the deviations are not a symptom for
model failure, which could, for instance, be repaired by adding a
quadratic term or performing some transformation.




THE BREAKDOWN POINT AND ROBUST ESTIMATORS 9

There are almost as many robust estimators as there are diagnostics,
and it is necessary to measure their effectiveness in order to differentiate
between them. In Section 2, some robust methods will be compared,
essentially by counting the number of outliers that they can deal with. In
subsequent chapters, the emphasis will be on the application of very
robust methods, which can be used to analyze extremely messy data sets
as well as clean ones.

2. THE BREAKDOWN POINT AND ROBUST ESTIMATORS

In Section 1 we saw that even a single regression outlier can totally offset
the least squares estimator (provided it is far away). On the other hand,
we will see that there exist estimators that can deal with data containing a
certain percentage of outliers. In order to formalize this aspect, the
‘breakdown point was introduced. Its oldest definition (Hodges 1967) was
restricted to one-dimensional estimation of location, whereas Hampel
(1971) gave a much more general formulation. Unfortunately, the latter
definition was asymptotic and rather mathematical in nature, which may
have restricted its dissemination. We prefer to work with a simple
finite-sample version of the breakdown point, introduced by Donoho and
Huber (1983). Take any sample of n data points,

Z= {05 5 5 5.8 P v omalFioo » « s D B Py 2.1

and let T be a regression estimator. This means that applying T to such a
sample Z yields a vector of regression coefficients as in (1.4):

T(Z)=90. (2.2)

Now consider all possible corrupted samples Z' that are obtained by
replacing any m of the original data points by arbitrary values (this allows
for very bad outliers). Let us denote by bias(m; T, Z) the maximum bias
that can be caused by such a contamination:

bias (m; T,Z) = sup | T(2") - T(2)| , (2.3)

where the supremum is over all possible Z'. If bias(m; T, Z) is infinite,
this means that m outliers can have an arbitrarily large effect on T, which
may be expressed by saying that the estimator “breaks down.” Therefore,
the (finite-sample) breakdown point of the estimator 7 at the sample Z is
defined as
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¢*(T, Z) = min { %; bias (m; T, Z) is inﬁnite} . (2.4)

In other words, it is the smallest fraction of contamination that can cause
the estimator T to take on values arbitrarily far from 7(Z). Note that this
definition contains no probability distributions!

For least squares, we have seen that one outlier is sufficient to carry T
over all bounds. Therefore, its breakdown point equals

(T, Z)=1/n (2.5)

which tends to zero for increasing sample size 7, so it can be said that LS
has a breakdown point of 0%. This again reflects the extreme sensitivity
of the LS method to outliers.

A first step toward a more robust regression estimator came from
Edgeworth (1887), improving a proposal of Boscovich. He argued that
outliers have a very large influence on LS because the residuals 7; are
squared in (1.7). Therefore, he proposed the least absolute values regres-

sion estimator, which is determined by

Minimize >l (2.6)
i=1
(This technique is often referred to as L, regression, whereas least
squares is L,.) Before that time, Laplace had already used the same
criterion (2.6) in the context of one-dimensional observations, obtaining
the sample median (and the corresponding error law, which is now called
the double exponential or Laplace distribution). The L, regression es-
timator, like the median, is not completely unique (see, e.g., Harter 1977
and Gentle et al. 1977). But whereas the breakdown point of the
univariate median is as high as 50%, unfortunately the breakdown point
of L, regression is still no better than 0%. To see why, let us look at

Figure 5.
Figure 5 gives a schematic summary of the effect of outliers on L,
regression. Figure 5a shows the effect of an outlier in the y-direction, in

the same situation as Figure 1. Unlike least squares, the L, regression line
is robust with respect to such an outlier, in the sense that it (approximate-
ly) remains where it was when observation 4 was still correct, and still fits
the remaining points nicely. Therefore, L, protects us against outlying y;
and is quite preferable over LS in this respect. In recent years, the L,
approach to statistics appears to have gained some ground (Bloomfield
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Figure 5. (a2) Robustness of L, regression with respect to an outlier in the y-direction. (b)
Sensitivity of L, regression to an outlier in the x-direction (“leverage point™).

and Steiger 1980, 1983; Narula and Wellington 1982; Devroye and Gyorfi
1984). However, L, regression does not protect against outlying x, as we
can see from Figure 5b, where the effect of the leverage point is even
stronger than on the LS line in Figure 2. It turns out that when the
leverage point lies far enough away, the L, line passes right through it
(see exercise 10 below). Therefore, a single erroneous observation can
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12 INTRODUCTION

totally offset the L, estimator, so its finite-sample breakdown point is also
equal to 1/n.

The next step in this direction was the use of M-estimators (Huber
1973, p. 800; for a recent survey see Huber 1981). They are based on the
idea of replacing the squared residuals r7 in (1.7) by another function of
the residuals, yielding '

Minimize > p(r,), 2.7)
1] i=1

where p is a symmetric function [i.e., p(—1) = p(¢) for all ¢] with a unique
minimum at zero. Differentiating this expression with respect to the
regression coefficients 6, yields

gl ¥(r,)x, =0, (2.8)

where ¢ is the derivative of p, and x; is the row vector of explanatory
variables of the ith case:

X=Xy« « 5 %5)

O={0; .o % (29)

Therefore (2.8) is really a system of p equations, the solution of which is
not always easy to find: In practice, one uses iteration schemes based on
reweighted LS (Holland and Welsch 1977) or the so-called H-algorithm
(Huber and Dutter 1974, Dutter 1977, Marazzi 1980). Unlike (1.7) or
(2.6), however, the solution of (2.8) is not equivariant with respect to a
magnification of the y-axis. (We use the word “‘equivariant” for statistics
that transform properly, and we reserve “invariant” for quantities that
remain unchanged.) Therefore, one has to standardize the residuals by
means of some estimate of o, yielding

S §(rif6)%, =0, (2.10)
i=1

where & must be estimated simultaneously. Motivated by minimax
asymptotic variance arguments, Huber proposed to use the function

¥(f) = min (¢, max (¢, —c)) . (2.11)

M-estimators with (2.11) are statistically more efficient (at a model with
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Gaussian errors) than L, regression, while at the same time they are still
robust with respect to outlying y,. However, their breakdown point is
again 1/n because of the effect of outlying x,.

Because of this vulnerability to leverage points, generalized M-
estimators (GM-estimators) were introduced, with the basic purpose of
bounding the influence of outlying x; by means of some weight function
w. Mallows (1975) proposed to replace (2.10) by

_i w(xi)w(ri'l&)xi =0, (2.12)

whereas Schweppe (see Hill 1977) suggested using

n

> wix,)u(r,/(w(x,)))x, = 0. (2.13)

i=1

These estimators were constructed in the hope of bounding the influence
of a single outlying observation, the effect of which can be measured by
means of the so-called influence function (Hampel 1974). Based on such
criteria, optimal choices of ¢ and w were made (Hampel 1978, Krasker
1980, Krasker and Welsch 1982, Ronchetti and Rousseeuw 1985, and
Samarov 1985; for a recent survey see Chapter 6 of Hampel et al. 1986).
Therefore, the corresponding GM-estimators are now generally called
bounded-influence estimators. It turns out, however, that the breakdown
point of all GM-estimators can be no better than a certain value that
decreases as a function of p, where p is again the number of regression
coefficients (Maronna, Bustos, and Yohai 1979). This is very unsatisfac-
tory, because it means that the breakdown point diminishes with increas-
ing dimension, where there are more opportunities for outliers to occur.
Furthermore, it is not clear whether the Maronna—Bustos—Yohai upper
bound can actually be attained, and if it can, it is not clear as to which
GM-estimator can be used to achieve this goal. In Section 7 of Chapter 2,
a small comparative study will be performed in the case of simple
regression (p =2), indicating that not all GM-estimators achieve the
same breakdown point. But, of course, the real problem is with higher
dimensions.

Various other estimators have been proposed, such as the methods of
Wald (1940), Nair and Shrivastava (1942), Bartlett (1949), and Brown
and Mood (1951); the median of pairwise slopes (Theil 1950, Adichie
1967, Sen 1968); the resistant line (Tukey 1970/1971, Velleman and
Hoaglin 1981, Johnstone and Velleman 1985b); R-estimators (Jureckova
1971, Jaeckel 1972); L-estimators (Bickel 1973, Koenker and Bassett
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1978); and the method of Andrews (1974). Unfortunately, in simple
regression, none of these methods achieves a breakdown point of 30%.
Moreover, some of them are not even defined for p >2.

All this raises the question as to whether robust regression with a high
breakdown point is at all possible. The affirmative answer was given by
Siegel (1982), who proposed the repeated median estimator with a 50%
breakdown point. Indeed, 50% is the best that can be expected (for
larger amounts of contamination, it becomes impossible to distinguish
between the “good” and the “bad™ parts of the sample, as will be proven
in Theorem 4 of Chapter 3). Siegel’s estimator is defined as follows: For

any p observations
(xilﬁ y"l)’ e (xipa .pr)

one computes the parameter vector which fits these points exactly. The
jth coordinate of this vector is denoted by 6,(i;, .- - i,). The repeated
median regression estimator is then defined coordinatewise as

6 =med (... (med(med6(i,,. ... ). (2.14)
11 Ip—.'i ‘P

but requires consideration of

This estimator can be computed explicitly,
a lot of time. It has been

all subsets of p observations, which may cost
successfully applied to problems with small p. But unlike other regression
estimators, the repeated median is not equivariant for linear transforma-
tions of the x,, which is due to ifs coordinatewise construction.

Let us now consider the equivariant and high-breakdown regression

methods that form the core of this book. To introduce them, let us return

to (1.7). A more complete name for the LS method would be least sum of

squares, but apparently few people have objected to the deletion of the
word “sum”—as if the only sensible thing to do with n positive numbers
would be to add them. Perhaps as a consequence of its historical name,
several people have tried to make this estimator robust by replacing the
square by something else, not touching the summation sign. Why not,
however, replace the sum by a median, which is very robust? This yields
the least median of squares (LMS) estimator, given by

Minimize med r; (2.15)
] i

(Rousseeuw 1984). This proposal was essentially based on an idea of

Hampel (1975, p. 380). It turns out that this estimator is very robust with

respect to outliers in y as well as outliers in x. It will be shown in Section
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4 of Chapter 3 that its breakdown point is 50%, the highest possible
value. The LMS is clearly equivariant with respect to linear transforma-
tions on the explanatory variables, because (2.15) only makes use of the
residuals. In Section 5 of Chapter 3, we will show that the LMS is related
to projection pursuit ideas, whereas the most useful algorithm for its
computation (Section 1 of Chapter 5) is reminiscent of the bootstrap
(Diaconis and Efron 1983). Unfortunately, the LMS performs poorly
from the point of view of asymptotic efficiency (in Section 4 of Chapter 4,
we will prove it has an abnormally slow convergence rate).

To repair this, Rousseeuw (1983, 1984) introduced the least trimmed
squares (LTS) estimator, given by

(2.16)

h
Minimize 2, (r),,, ,
o i=1
where (r*),,, =<---=(r%),., are the ordered squared residuals (note that
the residuals are first squared and then ordered). Formula (2.16) is very
similar to LS, the only difference being that the largest squared residuals
are not used in the summation, thereby allowing the fit to stay away from
the outliers. In Section 4 of Chapter 4, we will show that the LTS
converges at the usual rate and compute its asymptotic efficiency. Like
the LMS, this estimator is also equivariant for linear transformations on
the x; and is related to projection pursuit. The best robustness properties
are achieved when £ is approximately n/2, in which case the breakdown
point attains 50%. (The exact optimal value of 4 will be discussed in
Section 4 of Chapter 3.)
Both the LMS and the LTS are defined by minimizing a robust
measure of the scatter of the residuals. Generalizing this, Rousseeuw and
Yohai (1984) introduced so-called S-estimators, corresponding to

Minimize S() , (2.17)
17

where S§(8) is a certain type of robust M-estimate of the scale of the
residuals 7,(0), . ..,r,(8). The technical definition of S-estimators will
be given in Section 4 of Chapter 3, where it is shown that their
breakdown point can also attain 50% by a suitable choice of the constants
involved. Moreover, it turns out that S-estimators have essentially the
same asymptotic performance as regression M-estimators (see Section 4
of Chapter 3). However, for reasons of simplicity we will concentrate
primarily on the LMS and the LTS.

~ Figure 6 illustrates the robustness of these new regression estimators
with respect to an outlier in y or in x. Because of their high breakdown
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Figure 6. Robustness of LMS regression with respect to (a) an outlier in the y-direction,
and (b) an outlier in the x-direction. :

point, these estimators can even cope with several outliers at the same
time (up to about n/2 of them, although, of course, this will rarely be
needed in practice). This resistance is also independent of p, the number
of explanatory variables, so LMS and LTS are reliable data analytic tools
that may be used to discover regression outliers in such multivariate
situations. The basic principle of LMS and LTS is to fit the majority of the
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data, after which outliers may be identified as those points that lie far
away from the robust fit, that is, the cases with large positive or large
negative residuals. In Figure 6a, the 4th case possesses a considerable
residual, and that of case 1 in Figure 6b is even more apparent.

However, in general the y, (and hence the residuals) may be in any
unit of measurement, so in order to decide if a residual r; is “large” we
need to compare it to an estimate & of the error scale. Of course, this
scale estimate & has to be robust itself, so it depends only on the “good”
data and does not get blown up by the outlier(s). For LMS regression,
one could use an estimator such as

&= C,\Jmedr?, (2.18)

where 7, is the residual of case i with respect to the LMS fit. The constant
C, is merely a factor used to achieve consistency at Gaussian error
distributions. (In Section 1 of Chapter 5, a more refined version of & will
be discussed, which makes a correction for small samples.) For the LTS,
one could use a rule such as

Gis cz\/% 3, () (2.19)

where C, is another correction factor. In either case, we shall identify
case i as an outlier if and only if |r,/&| is large. (Note that this ratio does
not depend on the original measurement units!)

This brings us to another idea. In order to improve on the crude LMS
~and LTS solutions, and in order to obtain standard quantities like
t-values, confidence intervals, and the like, we can apply a weighted least
squares analysis based on the identification of the outliers. For instance,
we could make use of the following weights:

1 if|rle| =25

== {0 if |r./6]>2.5. (2.20)
* This means simply that case i will be retained in the weighted LS if its
LMS residual is small to moderate, but disregarded if it is an outlier. The
bound 2.5 is, of course, arbitrary, but quite reasonable because in a
Gaussian situation there will be very few residuals larger than 2.56.
Instead of ‘hard” rejection of outliers as in (2.20), one could also apply
“smooth” rejection, for instance by using continuous functions of |r /],
‘thereby allowing for a region of doubt (e.g., points with 2= |r./6|=<3
could be given weights between 1 and 0). Anyway, we then apply
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EXERCISES AND PROBLEMS 19

Find (or construct) an example of a good leverage point and a bad
leverage point. Are these points easy to identify by means of their LS
residuals?

Section 2

Show that least squares and least absolute deviations are M-
estimators.

When all y, are multiplied by a nonzero constant, show that the least
squares (1.7) and least absolute deviations (2.6) estimates, as well as
the LMS (2.15) and LTS (2.16) estimates, are multiplied by the same
factor.

Obtain formula (2.8) by differentiating (2.7) with respect to the
coefficients éj, keeping in mind that 7, is given by (1.6).

In the special case of simple regression, write down Siegel’s repeated
median estimates of slope and intercept, making use of (2.14). What
does this estimator reduce to in a one-dimensional location setting?
The following real data come from a large Belgian insurance com-
pany. Table 1 shows the monthly payments in 1979, made as a result
of the end of period of life-insurance contracts. (Because of company
rules, the payments are given as a percentage of the total amount in
that year.) In December a very large sum was paid, mainly because
of one extremely high supplementary pension.

Table 1. Monthly Payments in 1979

Month Payment
() (»)

522
9.62
4.50
4.94
4.02
4.20
11.24
4.53
3.05
3.76
4.23
42.69

SO0 B W

[ gy
B =

Source: Rousseeuw et al. (1984a)

i
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(a) Make a scatterplot of the data. Is the December value an outlier
in the x-direction or in the y-direction? Are there any other
outliers?

(b) What is the trend of the good points (of the majority of the
data)? Fit a robust line by eye. For this line, compute L7_, #?,
L1 ||, and med, r2.

(c) Compute the LS line (e.g., by means of a standard statistical
program) and plot it in the same figure. Also compute L7, 77,
Zi.1 ||, and med, 7; for this line, and explain why the lines are
so different.

{(d) Compute both the Pearson product-moment correlation coeffici-

ent and the Spearman rank correlation coefficient, and relate
them to (b) and (c).

9. Show that the weighted least squares estimate defined by (2.21) can

1/2

i

be computed by replacing all (x;, y,) by (w}’x,, w
applying ordinary least squares.

y;) and then

10. (E. Ronchetti) Let % be the average of all x, in the data set

{(x1, ¥1)s- -, (x,, ¥,)}. Suppose that x, is an outlier, which is so far
away that all remaining x; lie on the other side of ¥ (as in Figure 5b).
Then show that the L, regression line goes right through the leverage
point (x;, y,). (Hint: assume that the L, line does not go through
(x1, y,) and show that £, |r,| will decrease when the line is tilted
about ¥ to reduce |r,|.)




CHAPTER 2

Simple Regression

1. MOTIVATION

The simple regression model

y;=6x;+6,+e, (i=1,...,n (1.1)

has been used in Chapter-1 for illustrating some problems that occur
when fitting a straight line to a two-dimensional data set. With the aid of
some scatterplots, we showed the effect of outliers in the y-direction and
of outliers in the x-direction on the ordinary least squares (LS) estimates
(see Figures 1 and 2 of Chapter 1). In this chapter we would like to apply
high-breakdown regression techniques that can cope with these problems.
We treat simple regression separately for didactic reasons, because in this
situation it is easy to see the outliers. In Chapter 3, the methods will be
generalized to the multiple regression model.

The phrase “simple regression” is also sometimes used for a linear
model of the type

yi=0x,+e, (i=1,...,n), (1.2)

- which does not have a constant term. This model can be used in
applications where it is natural to assume that the response should
become zero when the explanatory variable takes on the value zero.
‘Graphically, it corresponds to a straight line passing through the origin.
Some examples will be given in Section 6.

The following example illustrates the need for a robust regression
technique. We have resorted to the so-called Pilot-Plant data (Table 1)
from Daniel and Wood (1971). The response variable corresponds to the

21

£
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Table 1. Pilot-Plant Data Set

Observation Extraction Titration
(@) (x,) (r:)
1 123 76
2 109 70
3 62 53
4 104 71
5 57 55
6 37 48
7 44 50
8 100 66
9 16 41
10 28 43
11 138 82
12 105 68
13 159 88
14 75 58
15 88 64
16 164 88
17 169 89
18 167 88
19 149 84
20 167 88

Source: Daniel and Wood (1971).

acid content determined by titration, and the explanatory variable is the
organic acid content determined by extraction and weighing. Yale and
Forsythe (1976) also analyzed this data set.

The scatterplot (Figure 1) suggests a strong statistical relationship
between the response and the explanatory variable. The tentative as-
sumption of a linear model such as (1.1) appears to be reasonable.

The LS fit is

¥ =0.322x + 35.458 (dashed line) .

The least median of squares (LMS) line, defined by formula (2.15) of
Chapter 1, corresponds to

7=0.311x+36.519  (solid line).

In examining the plot, we see no outliers. As could be expected in such
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Titrafion

100 200 300
Extraction

Figure 1. Pilot-Plant data with LS fit (dashed line) and LMS fit (solid line).

a case, only marginal differences exist between the robust estimates and
those based on least squares.

Suppose now that one of the observations has been wrongly recorded.
For example, the x-value of the 6th observation might have been
registered as 370 instead of 37. This error produces an outlier in the
x-direction, which is surrounded by a dashed circle in the scatterplot in
Figure 2.

What will happen with the regression coefficients for this contaminated
-sample? The least squares result ‘

§=0.081x +58.939

corresponds to the dashed line in Figure 2. It has been attracted very
strongly by this single outlier, and therefore fits the other points very
badly. On the other hand, the solid line was obtained by applying least
- median of squares, yielding

¥=0.314x + 36.343 .

This robust method has succeeded in staying away from the outlier, and
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Figure 2. Same data set as in Figure 1, but with one outlier. The dashed line corresponds to
the LS fit. The solid LMS line is surrounded by the narrowest strip containing half of the
points.

yields a good fit to the majority of the data. Moreover, it lies close to the
LS estimate applied to the original uncontaminated data. It would be
wrong to say that the robust technique ignores the outlier. On the
contrary, the LMS fit exposes the presence of such points.

The LMS solution for simple regression with intercept is given by

Minimize med (y; — bx,—8,) . (1.3)

I8

Geometrically, it corresponds to finding the narrowest strip covering half
of the observations. (To be precise, by “half” we mean [n/2] + 1, where
[n/2] denotes the integer part of n/2. Moreover, the thickness of this
strip is measured in the vertical direction.) The LMS line lies exactly at
the middle of this band. (We will prove this fact in Theorem 1 of Chapter
4, Section 2.) Note that this notion is actually much easier to explain to
most people than the classical LS definition. For the contaminated
Pilot-Plant data, this strip is drawn in Figure 2.

The outlier in this example was artificial. However, it is important to
realize that this kind of mistake appears frequently in real data. Outlying
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data points can be present in a sample because of errors in recording
observations, errors in transcription or transmission, or an exceptional
occurrence in the investigated phenomenon. In the two-dimensional case
(such as the example above), it is rather easy to detect atypical points just
by plotting the observations. This visual tracing is no longer possible for
higher dimensions. So in practice, one needs a procedure that is able to
lessen the impact of outliers, thereby exposing them in the residual plots
(examples of this are given in Section 3). In addition, when no outliers
occur, the result of the alternative procedure should hardly differ from
the LS solution. It turns out that LMS regression does meet these
requirements.

Let us now look at some real data examples with outliers. In the
Belgian Statistical Survey (published by the Ministry of Economy), we
found a data set containing the total number (in tens of millions) of
international phone calls made. These data are listed in Table 2 and
plotted in Figure 3.

The plot seems to show an upward trend over the years. However, this
time series contains heavy contamination from 1964 to 1969. Upon
inquiring, it turned out that from 1964 to 1969, another recording system

w
- ® .
@© - ]

© -
<] = - |
o -

O’/ =

"ll!ilj!lll..]lllllillI]llI_'

50 55 60 65 70
Year

Figure 3. Number of international phone calls from Belgium in the years 1950-1973 with
the LS (dashed line) and LMS fit (solid line).
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Table 2. Number of International Calls from Belgium

Year Number of Calls®
(*:) (y:)
50 0.44
51 0.47
52 0.47
53 0.59
54 0.66
55 0.73
56 0.81
57 0.88
58 1.06
59 1.20
60 1.35
61 1.49
62 1.61
63 2.12
64 11.90
65 12.40
66 14.20
67 15.90
68 7 18.20
69 21.20
70 4.30
71 2.40
72 2.70
73 2.90

“In tens of millions.

was used, giving the total number of minutes of these calls. (The years
1963 and 1970 are also partially affected because the transitions did not
happen exactly on New Year’s Day, so the number of calls of some
months were added to the number of minutes registered in the remaining
months!) This caused a large fraction of outliers in the y-direction.

The ordinary LS solution for these data is given by ¥ = 0.504x — 26.01
and corresponds to the dashed line in Figure 3. This dashed line has been
affected very much by the y values associated with the years 1964-1969.
As a consequence, the LS line has a large slope and does not fit the good
or the bad data points. This is what one would obtain by not looking
critically at these data and by applying the LS method in a routine way.
In fact, some of the good observations (such as the 1972 one) yield even
larger LS residuals than some of the bad values! Now let us apply the




nethod. This yields §=0.115x — 5.610 (plotted as a solid line in
3), which avoids the outliers. It corresponds to the pattern one
erging when simply looking at the plotted data points. Clearly,
e fits the majority of the data. (This is not meant to imply that a
t is necessarily the best model, because collecting more data might
more complicated kind of relationship.)

ther example comes from astronomy. The data in Table 3 form the
rung-Russell diagram of the star cluster CYG OB1, which con-
7 stars in the direction of Cygnus. Here x is the logarithm of the
temperature at the surface of the star (7,), and y is the
of its light intensity (L/L,). These numbers were given to us by
(personal communication), who extracted the raw data from
ys (1978) and performed the calibration according to Vansina
Sreve (1982).

Data for the Hertzsprung—Russell Diagram of the Star Cluster CYG OB1

tar  log T, log [L/L,] Index of Star log T, log [L/L,]
(x;) (¥2) (i) (x) (¥)
4.37 5.23 25 4.38 5.02
4.56 5.74 26 4.42 4.66
4.26 4.93 27 4,29 4.66
4.56 5.74 28 4.38 4.90
4.30 5.19 29 4.22 4.39
4.46 5.46 30 3.48 6.05

“3.84 4.65 31 438 4.42
4,57 527 32 4.56 5.10
4.26 5:57 33 4.45 5.22
4.37 5.12 34 3.49 6.29
3.49 5.73 35 4.23 4,34
4.43 5.45 36 4.62 5.62
4.48 5.42 37 4,53 5.10
4.01 4.05 38 4.45 5.22
4.29 4.26 39 4.53 5.18
4.42 4.58 40 4.43 557
4.23 3.94 41 4.38 4,62
4.42 4.18 42 4.45 5.06
4.23 4,18 43 4.50 5.34
3.49 5.89 44 4.45 5.34
4.29 4.38 45 4.55 5.54
4.29 4.22 46 4.45 4.98
4.42 4.42 47 4.42 4.50
4.49 4.85
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28 SIMPLE REGRESSION

The Hertzsprung—Russell diagram itself is shown in Figure 4. It is the
scatterplot of these points, where the log temperature x is plotted from
right to left. In the plot, one sees two groups of points: the majority,
which seems to follow a steep band, and the four stars in the upper right
corner. These parts of the diagram are well known in astronomy: The 43
stars are said to lie on the main sequence, whereas the four remaining
stars are called giants. (The giants are the points with indices 11, 20, 30,
and 34.)

Application of our LMS estimator to these data yields the solid line
¥ =3.898x — 12.298, which fits the main sequence nicely. On the other
hand, the LS solution = —0.409x + 6.78 corresponds to the dashed line
in Figure 4, which has been pulled away by the four giant stars (which it
does not fit well either). These outliers are leverage points, but they are
not errors: It would be more appropriate to say that the data come from
two different populations. These two groups can easily be distinguished
on the basis of the LMS residuals (the large residuals correspond to the
giant stars), whereas the LS residuals are rather homogeneous and do not
allow us to separate the giants from the main-sequence stars.

o
4]

Log light intensity
o
=)

b
o

g
o

50 48 46 44 42 40 38 36 34
Log temperature

Figure 4. Hertzsprung-Russell diagram of the star cluster CYG OB1 with the LS (dashed
line) and LMS fit (solid line).




COMPUTATION OF THE LEAST MEDIAN OF SQUARES LINE

2. COMPUTATION OF THE LEAST MEDIAN OF
SQUARES LINE

The present section describes the use of PROGRESS, a program imple-
menting LMS regression. (Its name comes from Program for RObust
r¢GRESSion.) The algorithm itself is explained in detail in Chapter 5.
Without the aid of a computer, it would never have been possible to
calculate high-breakdown regression estimates. Indeed, one does not
have an explicit formula, such as the one used for LS. It appears there are
deep reasons why high-breakdown regression cannot be computed chea-
ply. [We are led to this assertion by means of partial results from our own
research and because of some arguments provided by Donoho (1984) and
Steele and Steiger (1986).] Fortunately, the present evolution of compu-
ters has made robust regression quite feasible.

PROGRESS is designed to run on an IBM-PC or a compatible
microcomputer. At least 256K RAM must be available. The boundaries
of the arrays in the program allow regression analysis with at most 300
cases and 10 coefficients. PROGRESS starts by asking the data specifica-
tions and the options for treatment and output. This happens in a fully
interactive way, which makes it very easy to use the program. The user
only has to answer the questions appearing on the screen. No knowledge
of informatics or computer techniques is required. Nevertheless, we will
devote this section to the input. [The mainframe version described in
Leroy and Rousseeuw (1984) was written in very portable FORTRAN,
$0 it was not yet interactive.] We will treat the Pilot-Plant example (with
outlier) of the preceding section. The words typed by the user are printed
in italics to distinguish them from the words or lines coming from
PROGRESS.

The first thing to do, of course, is to insert the diskette containing the
program. In order to run PROGRESS, the user only has to type
A:PROGRESS in case the program is on drive A. (Other possibilities
would be drive B or hard disk C.) Then the user has to press the ENTER
key. Having done this, the program generates the following screen:

ok ok ok Kk K ok ok ok ok ok ok %

* PROGRESS =

& FEk kR kkkokok kokkox kg

ENTER THE NUMBER OF CASES PLEASE: 20

The user now has to enter the number of cases he or she wants to
handle in the analysis. Note that there are limits to the size of the data
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30 SIMPLE REGRESSION

sets that can be treated. (This restriction is because of central memory
limitations of the computer.) Therefore, PROGRESS gives a warning
when the number of cases entered by the user is greater than this limit.

When PROGRESS has accepted the number of cases, the following
question appears:

DO YOU WANT A CONSTANT TERM IN THE REGRESSION?
PLEASE ANSWER YES OR NO: YES

When the user answers YES to this question, PROGRESS performs a
regression with a constant term. Otherwise, the program yields a regres-
sion through the origin. The general models for regression with and
without a constant are, respectively,

[

r—1

yi=x,6,+---+x T+ U=1,..x.0 — (2.1)

iLp—1

Y Syl oo b, B ok, g +ig, @=4i- i) (22

In (2.2) the estimate of y, is equal to zero when all x;(j=1,..., p)are
zero. [Note that (2.1) is a special case of (2.2), obtained by putting the
last explanatory variable X, equal to 1 for all cases.]

It may happen that the user has a large data set, consisting of many
more variables than those he or she wishes to insert in a regression
model. PROGRESS allows the user to select some variables out of the
entire set. Furthermore, for each variable in the regression, PROGRESS
asks for a label in order to facilitate the interpretation of the output.
Therefore the user has to answer the following questions:

WHAT IS THE TOTAL NUMBER OF VARIABLES IN YOUR DATA SET?

PLEASE GIVE A NUMBER BETWEEN 1 AND 50: 5

WHICH VARIABLE DO YOU CHOOSE AS RESPONSE VARIABLE?

OUT OF THESE 5 GIVE ITS POSITION: 4

CIVE A LABEL FOR THIS VARIABLE (AT MOST 10 CHARACTERS) : TITRATION

HOW MANY EXPLANATORY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS?

(AT MOST 4): 1

The answer to each question is verified by PROGRESS. This means
that a message is given when an answer is not allowed. For example,
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when the user answers 12 to the question

WHICH VARIABLE DO YOU CHOOSE AS RESPONSE VARIABLE?

OUT OF THESE 5 GIVE ITS POSITION: 12

the following prompt will appear:
NOT ALLOWED! ENTER YOUR CHOICE AGAIN: 4

Also, the program checks whether the number of cases is more than
twice the number of regression coefficients (including the constant term if
there is one). If there are fewer cases, the program stops.

The question

HOW MANY EXPLANATORY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS?

(AT MOST 4):

may be answered with 0. In that situation the response variable is
analyzed in a one-dimensional way, yielding robust estimates of its
location and scale. (More details on this can be found in Chapter 4.)

When the number of explanatory variables is equal to the number of
remaining variables (this means, all but the response variable) in the data
set, the user has to fill up a table containing one line for each explanatory
variable. Each of these variables is identified by means of a label of at
most 10 characters. These characters have to be typed below the arrows.
On the other hand, when the number of explanatory variables is less, the
user also has to give the position of the selected variable in the data set
together with the corresponding label. For our example, this table would
be

EXPLANATORY VARIABLES ¢ POSITION LABEL (AT MOST 10 CHARACTERS)
—————————————————————— i 2 2 R
NUMBER 1 P2 EXTRACTION

An option concerning the amount of output can be chosen in the
following question:

HOW MUCH QUTPUT DO YOU WANT?

0=SMALL OUTPUT : LIMITED TO BASIC RESULTS

1=MEDIUM-SIZED OUTPUT: ALSO INCLUDES A TABLE WITH THE OBSERVED VALUES OF Y,
THE ESTIMATES OF Y, THE RESIDUALS AND THE WEIGHTS

2=LARGE OUTPUT : ALSO INCLUDES THE DATA ITSELF

ENTER YOUR CHOICE: 2
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32 SIMPLE REGRESSION

If the user types 0, the output is limited to the basic results, namely the
LS, the LMS, and the reweighted least squares (RLS) estimates, with
their standard deviations (in order to construct confidence intervals
around the estimated regression coefficients) and t-values. The scale
estimates are also given. In the case of regression with one explanatory
variable, a plot of y versus x is produced. This permits us to detect a
pattern in the data.

Setting the print option at 1 yields more information: a table with the
observed values of y, the estimated values of y, the residuals, and the
residuals divided by the scale estimate (which are called standardized
residuals); and for reweighted least squares, an additional column with
the weight (resulting from LMS) of each observation. Apart from the
output produced with print option 1, print option 2 also lists the data
itself.

A careful analysis of residuals is an important part of applied regres-
sion. Therefore we have added a plot option that permits us to obtain a
plot of the standardized residuals versus the estimated value of y (this is
performed when the plot option is set at 1) or a plot of the standardized
residuals versus the index i of the observation (which is executed when
the plot option is set at 2). If the plot option is set at 3, both types of
plots are given. If the plot option is set at 0, the output contains no
residual plots. The plot option is selected by means of the following
question:

DO YOU WANT TO LOOK AT THE RESIDUALS?

0=NO RESIDUAL PLOTS

1=PLOT OF THE STANDARDIZED RESIDUALS VERSUS THE ESTIMATED VALUE OF Y
2=PLOT OF THE STANDARDIZED RESIDUALS VERSUS THE INDEX OF THE OBSERVATION
3=PERFORMS BOTH TYPES OF RESIDUAL PLOTS

ENTER YOUR CHOICE: 0

When the following question is answered with YES, the program
yields some outlier diagnostics, which will be described in Chapter 6.

DO YOU WANT TO COMPUTE OUTLIER DIAGNOSTICS?
PLEASE ANSWER YES OR NO: NO

When the data set has already been stored in a file, the user only has
to give the name of that file in response to the following question. If such
a file does not already exist, the user still has the option of entering his or
her data by keyboard in an interactive way during a PROGRESS session.
In that case the user has to answer KEY. The entered data set has to
contain as many variables as mentioned in the third question of the




