CHAPTER 3

Multiple Regression

1. INTRODUCTION

In multiple regression, the response variable ;1s related to p explanatory
variables x,,.. ., x;, In the model

yi=xi391+-~-+xip6p+e,. (i=1,...,n). (1.1)

As in simple regression, the least squares (LS) technique for estimat-
ing the unknown parameters 6,, . . ., 6, is quite sensitive to the presence
of outlying points. The identification of such points becomes more
difficult, because it is no longer possible to spot the influential points in a
scatterplot. Therefore, it is important to have a tool for identifying such
points.

In the last few decades, several statisticians have given consideration to
robust regression, whereas others have directed their attention to regres-
sion diagnostics (see Chapter 6). Both approaches are closely related by
two important common aims, namely, identifying outliers and pointing
out inadequacies of the model. However, they proceed in a different way.
Regression diagnostics first attempt to identify points that have to be
deleted from the data set, before applying a regression method. Robust
regression tackles these problems in the inverse order, by designing
estimators that dampen the impact of points that would be highly
influential otherwise. A robust procedure tries to accommodate the
majority of the data. Bad points, lying far away from the pattern formed
by the good ones, will consequently possess large residuals from the
roi?ust fit. So in addition to Insensitivity to outliers, a robust regression
estimator makes the detection of these points an easy job. Of course, the
residuals from LS cannot be used for this purpose, because the outliers
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76 MULTIPLE REGRESSION

may possess very small LS residuals as the LS fit is pulled too much in the
direction of these deviating points.

Let us look at some examples to illustrate the need for a robust
alternative to LS. The first example is the well-known stackloss data set
presented by Brownlee (1965). We have selected this example because it
is a set of real data and it has been examined by a great number of
statisticians (Draper and Smith 1966, Daniel and Wood 1971, Andrews
1974, Andrews and Pregibon 1978, Cook 1979, Dempster and Gasko-
Green 1981, Atkinson 1982, Carroll and Ruppert 1985, Li 1985, and
many others) by means of several methods. The data describe the
operation of a plant for the oxidation of ammonia to nitric acid and
consist of 21 four-dimensional observations (listed in Table 1). The
stackloss (y) has to be explained by the rate of operation (x,;), the
cooling water inlet temperature (x,), and the acid concentration (%5}
Summarizing the findings cited in the literature, it can be said that most

Table 1. Stackloss Data

Index Rate Temperature Acid Concentration Stackloss
(@) (x,) (x3) (x3) (»)
1 80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
T 62 24 93 19
8 62 24 93 20
9 58 23 87 15
10 58 18 80 14
11 58 18 89 14
12 58 1% 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15

Source: Brownlee (1965).
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people concluded that observations 1, 3, 4, and 21 were outliers. Accord-
ing to some people, observation 2 is reported as
Squares regression yields the equation

an outlier too. Least

§=0.716x, +1.295x, — 0.152x, — 39.9 .

The LS index plot is shown in Figure 1. The standardization of the
residuals is performed by the division of the raw residuals (r, = y, — §,) by
the scale estimate corresponding to the fit. A horizontal band encloses the
standardized residuals between —2.5 and 2.5. In Figure 1, no outliers
strike the eye. From the LS index plot, one would conclude that the data
set contains no outliers at all because all the standardized LS residuals fall
nicely within the band. However, let us now look at Figure 2, the index
plot associated with the least median of squares (LMS) fit

¥=0.714x, +0.357x, + 0.000x, — 34.5 .

This plot is based on a robust fit, and d

oes indeed reveal the presence of
harmful points.

From this index plot it becomes immediately clear that
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Figure 1. Stackloss data: Index plot associated with LS.
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Figure 2. Stackloss data: Index plot associated with LMS,

the observations 1, 3, 4, and 21 are the most outlying, and that case 2 is
intermediate because it is on the verge of the area containing the outliers.
This shows how our robust regression technique is able to analyze these
data in a single blow, which should be contrasted to some of the earlier
analyses of the same data set, which were long and laborious.

This example once more illustrates the danger of merely looking at the
LS residuals. We would like to repeat that it is necessary to compare the
standardized residuals of both the LS and the robust method in each
regression analysis. If the results of the two procedures are in substantial
agreement, then the LS can be trusted. If they differ, the robust
technique can be used as a reliable tool for identifying the outliers, which
may then be thoroughly investigated and perhaps corrected (if one has
access to the original measurements) or deleted. Another possibility is to
change the model (e.g., by adding squared or cross-product terms and/or
transforming the response variable). In this way, Atkinson (1985, pp.
129-136) analyzes the stackloss data by setting up models explaining
log(y) by means of x,, x,, x,x,, and x.

The following example comes from the social sciences. The data set
contains information on 20 schools from the Mid-Atlantic and New
England states, drawn from a population studied by Coleman et al.
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(1966). Mosteller and Tukey (1977) analyze this sample consisting of
measurements on six different variables, one of which will be treated as
response. They can be described as follows:

X, = staff salaries per pupil
X, = percent of white-collar fathers
X3 = socioeconomic status composite deviation: means for family size,

family intactness, father’s education, mother’s education, and
home items

X4 =mean teacher’s verbal test score

¥s =mean mother’s educational level
years)

y = verbal mean test score (all sixth graders).

(one unit is equal to two school

The data set itself is exhibited in Table 2.

Table 2, Coleman Data Set, Containing Information on 20 Schools from the
Mid-Atlantic and New England States

Index : X Xy Ty X5 y
1 3.83 28.87 7.20 26.60 6.19 37.01
2 2.89 20.10 -11.71 24.40 5.17 26.51
32 2.86 69.05 12.32 25.70 7.04 36.51
4 2.92 65.40 14.28 25.70 7.10 40.70
5 3.06 29.59 6.31 25.40 6.15 37.10
6 2.07 44.82 6.16 21.60 6.41 33.90
7 2.52 77.37 12.70 24.90 6.86 41.80
8 2.45 24.67 -0.17 ~ 25.01 5.78 33.40
9 3.13 65.01 9.85 26.60 6.51 41.01
10 2.44 9.99 —0.05 28.01 557 37.20
11 2.09 12.20 —12.86 23.51 5.62 23.30
12 2.52 22.55 0.92 23.60 5.34 35.20
13 2:99 14.30 4.77 24.51 5.80 34.90
14 2.67 31.79 —-0.96 25.80 6.19 33.10
15 2.71 11.60 —16.04 25.20 5.62 22.70
16 3.14 68.47 10.62 25.01 6.94 39.70
17 3.54 42.64 2.66 25.01 6.33 31.80
18 2.52 16.70 —10.99 24.80 6.01 31.70
19 2.68 86.27 15.03 25.51 7.51 43.10
20 2.37 76.73 12.77 24.51 6.96 41.01

Source: Mosteller and Tukey (1977).
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The ordinary LS regression for all 20 schools is given as
¥=—-179x, +0.044x, + 0.556x; +1.11x, — 1.81x, + 19.9
Least median of squares regression yields the fit
¥ =10.580x, +0.058x, + 0.637x, + 0 740x, 2800, 251

The left side of Table 3 lists the LS estimates and the associated residuals.
These results reveal that the LS equation slightly underestimates the
response for schools 3 and 11 and overestimates it for school 18. By only
examining the LS results, the conclusion would be that schools 3, 11, and
18 are furthest away from the linear model. But from the right side of
Table 3, it appears that school 11 does not deviate at all from the robust
fit.

The robust regression spots schools 3, 17, and 18 as outliers by
assigning large standardized residuals to them. Afterwards these standar-

Table 3. Coleman Data: Estimated Verbal Mean Test Score and the Associated
Residuals for the LS Fit and the LMS Fit

LS Results LMS Results
Estimated Standardized Estimated Standardized
Index Response Residuals Response Residuals Weights
1 36.661 0.17 38.883 -1.59 i
2 26.860 -0.17 26.527 —0.01 1
3 40.460 —-1.90 41.273 —4.04 0
4 41.174 —-0.23 42.205 128 1
5 36.319 0.38 37117 -0.01 1
6 33.986 —0.04 33.917 —0.01 1
7 41.081 0.35 41.628 0.15 1
8 33.834 -0.21 32.922 0.41 1
9 40,386 0.30 41.519 —0.43 1
10 36.990 0.10 34.847 2.00 I
11 25.508 —1.06 23.169 0.11 1
12 33.454 0.84 33.514 1.43 1
13 35.949 =051 34.917 —-0.01 1
14 33.446 =0.17 32.591 0.43 1
15 24.479 —0.86 22,717 -0.01 1
16 38.403 0.63 40.041 —-0.29 1
17 33.240 —-0.69 35.121 —2.82 0
18 26.698 2.41 24,918 5.76 0
19 41.977 0.54 42.662 0.37 1
20 40.747 0.13 41.027 -0.01 1
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dized residuals are used for computing weights, b

y giving a weight of 0 to
all observations that have an a

bsolute standardized residual larger than
2.5. Doing this for Coleman’s data Set gives rise to the last column in

Table 3. These weights are then employed for a reweighted least squares
(RLS) analysis. This amounts to the same thing as performing LS

regression on the reduced data set containing only the 17 points with a
weight of 1.

Apart from the fitted equation and the associated residuals, outliers

also affect the s-based significance levels. This is important for the
construction of confidence intervals and for hypothesis testing about
regression coefficients (see also Section 3 of Chapter 2). For the Coleman
data set, the significance of the regression coefficients turns out to be
‘quite different in the LS fit and the RLS fit. The r-values in Table 4 test
the null hypothesis H,: 8 =0 against the alternative H,: 6,#0 for the LS
estimates. From this table it is seen that only the variables X3 and x, have
LS regression coefficients that are significantly different from zero for
@ =5%), because their r-values exceed the critical value 2.1448 of the
Student distribution with 14 (=n—p) degrees of freedom, and hence
their p-values are below 0.05.

Let us now analyze these data with the RLS using the weights of Table
3. This gives rise to the coefficients and t-values on the right side of Table
4. It is striking that for the cleaned data set, all the explanatory variables
now have regression coefficients significantly different from zero for
@ = 5% (because the 97.5% quantile of a ¢-distribution with 11 degrees of
freedom equals 2.2010, so all p-values are less than 0.05).

As in Chapter 2, it must be noted that the op
many examples, the “significance” of certain LS regression coefficients is
only caused by an outlier, and then the corresponding RLS coefficients
may no longer be significantly different from zero.

The ordinary LS method is not immune to the masking effect. This
means that after the deletion of one or more influential points, another

posite can also happen. In

Table 4. Coleman Data: t-Values Associated with the LS and the RLS Fit

LS Results RLS Reults
Variable Coefficient -Value  p-Value  Coefficient t-Value  p-Value
2 —~1:793 —1.454 0.1680 —1.203 —2.539 0.0275
%5 0.044 0.819 0.4267 0.082 4.471 0.0009
X, 0.556 5.979 0.0000 0.659 19.422 0.0000
Xy 1.110 2.559 0.0227 1.098 7.289 0.0000
e —1.810 —0.893 0.3868 —3.898 =5.177 0.0003
Constant 19.949 1.464 0.1652 29.750 6.095 0.0001
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observation may emerge as extremely influential, which was not visible at
first. Therefore, the use of a high-breakdown regression method (such as
the LMS) for the determination of the weights is indispensable. As an
illustration, let us consider the ““Salinity data” (Table 5) that were listed
by Ruppert and Carroll (1980). It is a set of measurements of water
salinity (i.e., its salt concentration) and river discharge taken in North
Carolina’s Pamlico Sound. We will fit a linear model where the salinity is
regressed against salinity lagged by two weeks (x, ), the trend, that is, the
number of biweekly periods elapsed since the beginning of the spring

Table 5. Salinity Data

Index Lagged Salinity Trend Discharge Salinity
(i) (x;) (x2) (x5) (»
1 8.2 4 23.005 7.6
2 7.6 5 23.873 T
3 4.6 0 26.417 43
4 4.3 1 24.868 5.9
5 5.9 2 29.895 5.0
6 5.0 3 24.200 6.5
7 6.5 4 23.215 8.3
8 8.3 5 21.862 8.2
9 10.1 0 22.274 13.2
10 13.2 1 23.830 12.6
11 12.6 2 25.144 10.4
12 10.4 3 22.430 10.8
13 10.8 4 21.785 151
14 13.1 5 22.380 12.3
15 13.3 0 23.927 10.4
16 10.4 1 33.443 10.5
17 10.5 2 24.859 T
18 7.7 3 22.686 9.5
19 10.0 0 21.789 12.0
20 12.0 1 22.041 12.6
21 12.1 4 21.033 13.6
22 13.6 5 21.005 14.1
23 15.0 0 25.865 13.5
24 13.5 1 26.290 11.5
25 11.5 o/ 22.932 12.0
26 12.0 3 21.313 13.0
29 13.0 4 20.769 14.1
28 14.1 S 21.393 15.1

Source: Ruppert and Carroll (1980).
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season (x,); and the volume of river discharge into the sound {x: )
Carroll and Ruppert (1985) describe the physical background of the data.
They indicated that cases 5 and 16 correspond to periods of very heavy
discharge. Their analysis showed that the third and sixteenth observations
conspire to hide the discrepant number 5. In fact, observation 5 can be
recognized as influential only after the deletion of cases 3 and 16. This is a
prime example of the masking effect. On the other hand, the LMS is not
affected by this phenomenon and identifies 5 and 16 in a single blow. The
LS fit is given by

¥=0.777x, — 0.026x, — 0.295x, + 9.59
whereas the LMS yields the equation
¥ =0.356x, — 0.073x, — 1.30x, + 36.7 .

A residual plot associated with the LS fit
this figure the standardized residuals are pl
response. In Figure 4 such a residual plot is given for the LMS regression.
From Figure 3, it appears that there is nothing wrong with the fit.

-However, one has to keep in mind that leverage points tend to produce
-small LS residuals simply by virtue of their leverage. On the other hand,

is presented in Figure 3. In
otted against the estimated
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Figure 3. Salinity data: Residual plot associated with the LS fit.
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Figure 4. Salinity data: Residual plot associated with the LMS fit.

Figure 4 gives evidence of the presence of outlying observations, because
some points fall far from the band. In this example, the LS residual plot
cannot be trusted because it differs too much from the one associated
with a robust fit.

As we said before, residual plots can also indicate possible defects in
the model’s functional form in the direction of the fitted values. A
residual plot may, for example, display a variance pattern that is a
monotone function of the response. If the functional part of the model is
not misspecified, then plotting the standardized LMS residuals versus 7,
gives rise to a horizontal band of points that look “structureless.” Also,
anomalies in the pattern might suggest a transformation of the variables
in the model. For example, a curved pattern in a residual plot may lead to
replacing the observed y; by some function of y, (log y, or y, raised to
some power). In example 2 of Section 3 we will illustrate the use of
residual plots to remedy model failures.

2. COMPUTATION OF LEAST MEDIAN OF SQUARES MULTIPLE
REGRESSION

The question “How do we run program PROGRESS?” has for the most
part been answered in Section 2 of Chapter 2, in the context of simple
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regression. The interactive session acco
analysis is completely identical.

The special treatment of data sets with missing values has not yet been
discussed. In that case the interactive input becomes a little bit longer.
We will illustrate this situation for part of the “Air Quality” data that
originated with the New York State Department of Conservation and the
National Weather Service; these data were reported in Chambers et al.
(1983). The whole data set consists of daily readings of air quality values
from May 1, 1973 to September 30, 1973. We will use only the values for
May in our example. The variables are the mean ozone concentration (in
parts per billion) from 1300 to 1500 hours at Roosevelt Island (OZONE
ppb), solar radiation in Longleys in the frequency band 4000-7700 A
from 0800 to 1200 hours at Central Park (SOLAR RADI), average wind
speed (in miles per hour) between 0700 and 1000 hours at La Guardia
Airport (WINDSPEED), and maximum daily temperature (in degrees
Fahrenheit) at La Guardia Airport (TEMPERATUR). The data are
exhibited in Table 6.

The aim of the analysis is to explain the ozone concentration by means
of the other variables. In Table 6, one can observe that the measurements
for OZONE ppb and/or SOLAR RADI are not registered for some
days. PROGRESS provides two methods for handling such an incomplete

data set. One or the other can be chosen by answering 1 or 2 to the
question

mpanying a multiple regression

CHOOSE AN OPTION FOR THE TREATMENT OF MISSING VALUES

O=THERE ARE NO MISSING VALUES IN THE DATA

1=ELIMINATION OF THE CASES FOR WHICH AT LEAST ONE VARIABLE IS MISSING
2=ESTIMATES ARE FILLED IN FOR UNOBSERVED VALUES
ENTER YQOUR CHOICE:

When the option for missing values is not equal to zero, PROGRESS
needs additional information on the missing value codes for each vari-
able. First of all, the question

IS THERE A UNIQUE VALUE WHICH IS TO BE INTERPRETED
AS A MISSING MEASUREMENT FOR ANY VARIABLE?
ANSWER YES OR NO:

must be answered. When the answer is YES, the statement

PLEASE ENTER THIS VALUE:

appears, where the user has to give a value that will be interpreted as the

World Prog;




Table 6. Air Quality Data Set for May 1973
Index SOLAR RADI WINDSPEED TEMPERATUR OZONE ppb

@) (x,) (x,) (x3) (»
1 190 7.4 67 41
2 118 8.0 72 36
3 149 12.6 74 12
4 313 11.5 62 18
5 9999 14.3 56 999
6 9999 14.9 66 28
7 299 8.6 65 23
8 99 13.8 59 19
9 19 20.1 61 8

10 194 8.6 69 999

11 9999 6.9 74 7

12 256 9.7 69 16

13 290 9.2 66 11

14 274 10.9 68 14

15 65 13.2 58 18

16 334 11.5 64 14

17 307 12.0 66 34

18 78 18.4 57 6

19 322 115 68 30

20 44 9.7 62 11

21 8 9.7 59 i

22 320 16.6 73 11

23 25 9.7 61 4

24 92 12.0 61 32

25 66 16.6 57 999

26 266 14.9 58 999

27 9999 8.0 57 999

28 13 12.0 67 23

29 252 14.9 81 45

30 223 5.7 79 115

31 279 7.4 76 37

“The values 9999 of x, (solar radiation) indicate missing measurements. Also the numbers
999 of y (ozone ppb) correspond to missing values.

Source: Chambers et al. (1983).
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missing value code for all the variables in the analysis. Otherwise, the
user has to answer the following question for each variable:

DOES VARIABLE.......... CONTAIN MISSING VALUE(S)?
ANSWER YES OR NO:

(Instead of the dots, the actual label of the variable concerned will be

printed.) If the answer to this question is YES, then the user has to enter
the missing value code for this variabje:

ENTER THE VALUE OF THIS VARIABLE
THE MISSING VALUE CODE:

WHICH HAS TO BE INTERPRETED AS

In both missing value options, the program makes an inventory of the
cases with incomplete data, for each variable for which missing values
were announced. When there are variables for which more than 80% of
the cases have a missing value, the program will terminate (after giving a
message). When analyzing the same data again, the user should no longer
include these partially observed variables because they do not contain
enough information.

Let us now look at the two missing value options provided by
PROGRESS. The first avenue open to the researcher is to eliminate the
cases for which at least one variable is missing. This can be achieved by
setting the missing value option equal to 1. When the print option differs
from 0, a complete table is given, where for each case the user of the
program can see which variables were missing. The regression analysis is
then performed on the remaining cases. (Each case keeps its original
number.)

In fact, this option can also be used for another purpose. It may
happen that one wishes to perform the analysis only on a part of the data
set. For example, in a sample containing attributes of many people, one
may want to fit a linear model to the women only. Then one can use the
missing value option 1 for the variable associated with the sex of each
person. The value corresponding to men then has to be taken as the
“missing” value code, in order to eliminate the observations for men.

An alternative treatment, which corresponds to option 2, consists of
filling in guesses for unobserved values. This can be necessary in circum-
stances where deleting all partially observed cases would result in an
extremely small sample (which might even be empty). Nevertheless, even
for this option, cases for which the response y is lacking will first be
dropped from the data set. Also, cases for which all explanatory variables
are missing will be removed. On this reduced data set, missing data will
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be replaced by the median of the corresponding variable. On the resulting
data set, the previous methods of estimation can be applied. When the
print option is not 0, the output of PROGRESS delivers a complete
inventory of the deleted cases and of the missing values that are replaced
by medians. Also here, the cases retain the numbering of the original
data set.

For the Air Quality data, we encoded the missing values of variable
SOLAR RADI by 9999, and those of OZONE ppb by 999. These codes
are acceptable because these values have not been observed. Let us now
look at a listing of the interactive input for this data set.

HFRAKA KKK R AR KRRk %

X PROGRESS x

FARAKICKKOR R KKK % KR X
ENTER THE NUMBER OF CASES PLEASE : 31

DO YOU VWANT A CONSTANT TER]I( IN THE REGRESSION?
AFSVER YES OR HO : YES

VHAT I8 THE TOTAL NUMBER OF VARIABLES IX YOUR DATA BET?

PLEASE GIVE A NUMBER BETVEEN 1 AND 50 :4

VHICH VARIABLE DO YOU CHOOSE AS RESPONSE VARIABLE?

OUT OF THESE 4 GIVE ITS POSITION : 4
GIVE A LABEL FOR THIS VARIABLE (AT MOST 10 CHARACTERS? : OZONE ppb

HOV MANY EXPLANATORY VARIABLES DO YOU WANT TO USE IN THE ANALYSIS?

(AT MOST 35 : 3

EXPLANATORY VARIABLES :  POSITIOF  LABEL (AT MOST 10 CHARACTERS)
S e 21121

NUMBER 1 ; 1 SOLAR RADI

NUMBER 2 i 2 VINDSPEED

HUMBER 3 ¥ 3 TEMPERATUR

HOW MUCH OUTPUT DO YOU WANT?

0 = SMALL OUTPUT : LIMITED TO BASIC RESULTS

1 = MEDIUM-SIZED OUTPUT: ALSO INCLUDES TABLE WITH THE OBSERVED VALUES OF Y,
THE ESTIMATES OF Y, THE RESIDUALS AND THE WEIGHTS

2 = LARGE OQUTPUT : ALSO INCLUDES THE DATA ITSELF

ENTER YOUR CHOICE : 2

DO YOU WANT TO LOOK AT THE RESIDUALS?

NO RESIDUAL PLOTS

PLOT OF THE STANDARDIZED RESIDUALS VERSUS THE ESTIMATED VALUE OF Y

= PLOT OF THE STANDARDIZED RESIDUALS VERSUS THE INDEX OF THE OBSERVATION
3 = PERFORMS BOTH TYPES OF RESIDUAL PLOTS

ENTER YOUR CHOICE : 3

]

NP o

DO YOU VANT TO COMPUTE OUTLIER DIAGNOSTICS ?
YEES OR NO: NO

GIVE THE NAME OF THE FILE CONTAINING THE DATA (e.g. TYPE A:EXAMPLE,DAT ),
or TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD.
VHAT DO YOU CHOOSE 7 B:AIRMAY.DAT
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WHERE DO YOU WANT YOUR OUTPUT?
TYPE CON IF YOU WANT IT ON THE SCREEN
or TYPE PRN IF YOU WANT IT OF THE PRINTER
or TYPE THE NAME OF A FILE {e.g. B: EXAMPLE.OQUT)
(WARNING : IF THERE ALREADY EXISTS A FILE WITH THE SANE NAME

THE OLD FILE VILL BE OVERVRITTEN. >
VHAT DO YOU CHOOSE 7 B: AIRMAY. RES

PLEASE ENTER A TITLE FOR THE OUTPUT

(AT MOST 60 CHARACTERS):

AIR QUALITY MEASUREMENTS FOR NEV YORK

DO YOU WANT TO READ THE DATA IN FREE FORMAT?

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN NUMBERS.
(VE ADVISE USERS WITHOUT KNOVLEDGE OF FORTRAN FORMATS TO ANSWER YES.)
MAKE YOUR CHOICE (YES/NO): YES

VHICH VERSION OF THE ALGORITHM WOULD YOU LIKE TO USE?

Q = QUICK VERSION
E = BITENSIVE SEARCH
ENTER YOUR CHOICE PLEASE (QOR E) : E

CHOOSE AN OPTION FOR THE TREATMENT OF MISSING VALUES

THERE ARE NO MISSING VALUES IN THE DATA

1 = ELIMINATION OF THE CASES FOR WHICH AT LEAST ONE VARIABLE IS MISSING
= ESTIMATES ARE FILLED IN FOR UNOBSERVED VALUES
ENTER YOUR CHOICE : 1

******#*******************#**************************x***********
* PROGRESS WILL PERFORM A REGRESSION WITH CONSTANT TERM x
*x***************X*X********************************X************

THE NUMBER OF CASES EQUALS

THE NUMBER OF EXPLANATORY VARIABLES EQUALS
OZONE ppb IS THE RESPONSE VARIABLE.

YOUR DATA RESIDE ON FILE B: AIRMAY. DAT
TITLE FOR OUTPUT : AIR QUALITY MEASUREMENTS FOR NEW YORK

THE DATA VILL BE READ IN FREE FORMAT.

LARGE OUTPUT IS WANTED.

BOTH TYPES OF RESIDUAL PLOTS ARE WANTED.

THE EXTENSIVE SEARCH ALGORITHM WILL BE USED.

TREATMENT OF MISSING VALUES IN OPTION 1: THIS MEANS THAT A CASE WITH A
MISSING VALUE FOR AT LEAST ONE VARIABLE WILL BE DELETED.

YOUR OUTPUT VILL BE WRITTEN ON : B:AIRMAY, RES

31
3

ARE ALL THESE OPTIONS OK = YES OR NO : YES

IS THERE A UFIQUE VALUE WHICH IS TO BE INTERFRETED
AS A MISSING MEASUREMENT FOR ANY VARIABLE?

ANSVER YES OR NO : NO
DOES VARIABLE SOLAR RADI
ANSWER YES OR NO : YES
ENTER THE VALUE OF THIS VARIABLE WHI
THE MISSING VALUE CODE : 9%95

DOES VARIABLE WINDSPEED CONTAIN MISSING VALUE(S)?
ANSVER YES OR NO : RO

DOES VARIABLE TEMPERATUR CONTAIN MISSING VALUE(S)?
ANSVER YES OR HO : NO

DOES THE RESPONSE VARIABLE CbHTAIN HISSING VALUE(S)?
ANSVER YES OR NO : YES

ENTER THE VALUE OF THIS VARIABLE WHICH HAS TO BE INTERPRETED AS
THE MISSING VALUE CODE : 005

CONTAIN MISSING VALUE(S)?

CH HAS TO BE INTERPRETED AS
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The treatment of the missing values
output of PROGRESS as follows:

TREATMENT OF MISSING VALUES IN OPTION 1:
MISSING VALUE FOR AT LEAST ONE VARIABLE WILL BE DELETED.

VARIABLE SOLAR RADI HAS a HISSING
VARIABLE OZONE Ppb  HAS A MISSING VALUE

CASE HAS A MISSING VALUE FOR VARIABLES ¢

MULTIPLE REGRESSION

for this data set appears on the

THIS MEANS THAT A CASE WITH A

B: AIRMAY, DAT
VALUE FOR 4 CASES.

FOR 5 CASES.

VARIABLE NUMBER 5 IS THE RESPONSE>

g 1 5
6 1
10 5
31 1
25 5
26 5
27 1 5
THERE ARE 24 CASES STAYING IN THE ANALYSIS.

THE OBSERVATIONS, AFTER TREATMENT OF MISSING VALUES

SOLAR RADI WINDSPEED TEMPERATUR OZONE Ppb

1 190. 0000 7.4000 67. 0000
2 118.0000 8.0000 72,0000
3 149, 0000 12,6000 74.0000
4 313, 0000 11,5000 62.0000
7 299, 0000 8.6000 65. 0000
8 99. 0000 13.8000 59. 0000
5 19. 0000 20.1000 61.0000
12 256. 0000 9.7000 69. 0000
13 290. 0000 9.2000 66.0000
14 274.0000 10.5000 68. 0000
15 65. 0000 13.2000 58.0000
16 334.0000 11.5000 64.0000
17 307.0000 12. 0000 66. 0000
18 78.0000 18.4000 57. 0000
10 322.0000 11.5000 68. 0000
20 44,0000 9.7000 62. 0000
21 8.0000 9.7000 59. 0000
22 320.0000 16. 6000 73.0000
23 25.0000 9.7000 61.0000
24 92. 0000 12,0000 61.0000
28 13. 0000 12.0000 67. 0000
20 252. 0000 14.9000 81. 0000
30 223.0000 5.7000 79,0000
31 279. 0000 7.4000 76. 0000

41. 0000
36.0000
12. 0000
18.0000
23.0000
19. 0000

8.0000
16, 0000
1i.0000
14.0000
18. 0000
14. 0000
34.0000

6.0000
30. 0000
11.0000

1.0000
11.0000

4.0000
32. 0000
23. 0000
45,0000
115. 0000
37.0000

The least squares analysis of the reduced data set is printed in Table 7.
Some of the fitted OZONE ppb values (cases 9 and 18) are negative,
which is physically impossible. The strange behavior of this fit is easy to
understand when comparing it to the robust analysis in Table 8. First of
all, the equations of both fits differ substantially from each other. In the
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Table 7. Air Quality Data: LS Fit with Estimated Response and Standardized
Residuals

i

Variable Coefficient Standard Error -Value
SOLAR RADI —0.01868 0.03628 —0.51502
WINDSPEED =1.99577 1.14092 —1.74926
TEMPERATUR 1.96332 0.66368 2.95823
Constant —79.99270 46.81654 —1.70864
Index Estimated “OZONE ppb” Standardized Residuals
1 33.231 0.43
2 43.195 —0.40
3 37.362 —1.41
4 12.933 0.28
s 24.873 -0.10 i
8 6.452 0.70 g
9 —0.700 0.48 it
12 31.334 -0.85 i
13 25.807 -0.82 i
14 ‘ 26.639 -0.70 '
15 6.321 0.65
16 16.468 —0.14
17 19.901 0.78
18 —6.263 0.68
19 24.545 0.30
20 21552 —0.59
21 16.335 -0.85
22 24.221 -0.73
23 19.944 —0.89
24 14.101 0.99
28 27.357 -0.24
29 44.591 0.02
30 59.567 3.08
31 49.238 —0.68
column comprising the standardized residuals in Table 8, case 30 emerges
as an outlier. This single outlier is the cause of the bad LS fit because it
has tilted the LS hyperplane in its direction. Because of this, the other
points are not well fitted anymore by LS.
Of course, negative predicted values are to be expected whenever a
linear equation is fitted. Indeed, when the regression surface is not
horizontal, there always exist vectors x for which the corresponding
World Progra
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Table 8. Air Quality Data: RLS Fit Based on LMS

Variable Coefficient Standard Error -Value
SOLAR RADI 0.00559 0.02213 0.25255
WINDSPEED —0.74884 0.71492 —1.04745
TEMPERATUR 0.99352 0.42928 2.31438
Constant —37.51613 28.95417 —1.29571
Index Estimated “OZONE ppb” Standardized Residuals
1 24.571 1:52
2 28.686 0.68
3 27.402 -1.42
4 17.220 0.07
7 22.294 ) 0.07
8 11.32% 0.71
9 8.143 —-0.01
12 25.204 —0.85
13 22.788 -1.09
14 23.413 -0.87
15 10.587 0.69
16 19.325 —0.49
17 20.786 1.22
18 5.772 0.02
19 23.232 0.63
20 17.065 —0.56
21 13.883 —1.19
22 24.369 —-1.24
23 15.965 -1.11
24 14.617 1.61
28 20.137 0.26
29 33.210 1.09
30 37.950 7.13
31 34.010 0.28

predicted y is negative. This is still true for robust regression, where one
can easily encounter a negative ¥, in a leverage point x,. However, in the
above example the LS predictions are negative in good observations!

3. EXAMPLES

In the preceding sections we have seen that the high-breakdown fits
provide much to think about. In particular, the standardized residuals
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associated with a robust fit yield powerful diagnostic tools. For example,
they can be displayed in residual plots. These graphics make it easy to
detect outlying values and call attention to model failures. Also, the
residuals can be used to determine a weight for each point. Such weights
make it possible to bound the effect of the outliers by using them for
RLS. The fit resulting from this reweighting describes the trend followed
by the majority of the data. The statistics associated with this fit, like ¢

and F-values, are more trustworthy than those calculated from the
ordinary LS regression.

Example 1: Hawkins—-Bradu—Kass Data

We shall use the data generated by Hawkins, Bradu, and Kass (1984) for
illustrating some of the merits of a robust technique. Such artificial data
offer the advantage that at least the position of the bad points is known
exactly, which avoids some of the controversies that are inherent in the
analysis of real data. In this way, the effectiveness of the technique can be
measured. The data set is listed in Table 9 and consists of 75 observations
in four dimensions (one response and three explanatory variables). The
first 10 observations are bad leverage points, and the next four points are
good leverage points (i.e., their X, are outlying, but the corresponding ¥
fit the model quite well). We will compare the LS with our robust
regression. In Hawkins et al. ( 1984), it is mentioned that M-estimators do
not produce the expected results, because the outliers (the bad leverage
points) are masked and the four good leverage points appear outlying
because they possess large residuals from those fits. This should not
surprise us, because M-estimators break down early in the presence of
leverage points. A certain version of the “elemental sets” diagnostic of
Hawkins et al. locates the outliers, but this technique would not have
coped with a larger fraction of contamination. (More details about outlier
diagnostics and their breakdown points will be provided in Chapter 6.)

Let us now restrict the discussion to LS and LMS. From the index plot
associated with LS (see Figure 5), it appears that observations 11, 12, and
13 are outliers because they fall outside the +2.5 band. Unfortunately,
from the generation one knows that these are good observations. The bad
leverage points have tilted the LS fit totally in their direction. Therefore
the first 10 points have small standardized LS residuals. (The index plots
associated with M-estimators are very similar to that of LS.)

On the other hand, the index plot of the LMS (Figure 6) identifies the
first 10 points as the influential observations. The four good leverage
points fall in the neighborhood of the dashed line through 0. This means
that these points are well accommodated by the LMS fit. Clearly, the

World Progr:




Table 9. Artificial Data Set of Hawkins, Bradu, and Kass (1984)

Index  x, Xy x, y | Index x, x; %y y
1 10.1 19.6 283 07 39 21 00 12  -07
2 9.5 205 289 10.1 40 05 20 12 -05
3 10.7 202 31.0 10.3 41 34 16 29 —01
4 99 215 317 9.5 42 63 1.0 27 -07
5 103 211 311 10.0 43 01 33 09 0.6
6 10.8 204 292 10.0 44 1.8 05 32 -07
7 105 209 29.1 10.8 45 19 01 06 -05
8 9.9 196 288 10.3 46 18 05 30 -04
9 9.7 207 31.0 9.6 47 30 01 08 -0.9
10 93 19.7 303 9.9 48 31 16 3.0 0.1
11 11.0 240 350 -0 49 31 25 19 0.9
12 120 230 370 -04 50 21 28 29 —04
13 12.0 26.0 34.0 0.7 51 23 15 04 0.7
14 11.0 340 340 0.1 52 33 06 12 -05
15 34 29 21 —0.4 53 03 04 33 0.7
16 3. 22 03 0.6 54 1.1 30 03 0.7
17 00 1.6 02 =0.2 55 05 24 09 0.0
18 23 16 2.0 0.0 56 1.8 32 09 0.1
19 08 29 16 0.1 57 1.8 07 07 0.7
20 31 34 22 0.4 58 24 34 15 -0.1
21 26 22 1.9 0.9 59 16 21 30 -03
22 04 32 19 0:3 60 03 15 33 -09
23 20 23 0.8 —0.8 61 04 34 30 -03
24 13 24 05 0.7 62 09 01 03 0.6
25 1.0 00 04 —0.3 63 1.1 27 02 -03
26 09 33 25 —0.8 64 28 30 29 -05
27 33 25 29 -0.7 65 20 07 27 0.6
28 1.8 08 20 0.3 66 62 18 08 -0.9
29 1.2 09 08 0.3 67 1.6 20 12 -0.7
30 1.2 07 34 =013 68 01 00 11 0.6
31 31 14 1.0 0.0 69 20 06 03 0.2
32 05 24 03 -0.4 70 1.0 22 29 0.7
33 1.5 31 15 —0.6 71 22 25 23 0.2
34 04 00 07 AL 72 06 20 15 -—02
35 31 24 3.0 0.3 73 03 17 22 0.4
36 14, 23 2.5 —1.0 74 0.0 22 1.6 =10:9
37 0.1 30 26 —-0.6 75 03 04 26 0.2
38 1.5 12 0.2 0.9
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Figure 5. Hawkins—Bradu-Kass data: Index plot associated with LS regression.
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Figure 6. Hawkins-Bradu—Kass data: Index plot associated with LMS regression,
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conclusions drawn from the LMS index plot agree with the construction
of the data.

The following example illustrates the use of residual plots for model
specification.

Example 2: Cloud Point Data

Table 10 shows a set of measurements concerning the cloud point of a
liquid (Draper and Smith 1966, p. 162). The cloud point is a measure of
the degree of crystallization in a stock and can be measured by the
refractive index. The purpose is to construct a model where the percen-
tage of I-8 in the base stock can be used as a predictor for the cloud
point. Because the data contain only two variables, it is possible to
4, explore the relation between these variables in a scatterplot. The scatter-
i plot associated with Table 10 can be found in Figure 7.
! The curved pattern in Figure 7 indicates that a simple linear model is
‘ not adequate. We will now examine whether the residual plot associated

Table 10. Cloud Point of a Liquid

Index Percentage of I-8 Cloud Point
@) (x) (v
1 0 224
2 1 24.5
3 2 26.0
4 3 26.8
5 4 28.2
6 5 28.9
7 6 30.0
8 7. 304
9 8 314
10 0 21.9
11 2 26.1
12 4 28.5
13 6 30.3
14 8 31.5
15 10 33.1
16 0 22.8
17 3 27.3
18 6 290.8
19 9 31.8

Source: Draper and Smith (1969, p. 162).
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Figure 7. Cloud point data: Scatterplot.

with the linear fit would have suggested this. From the residual plot of the
LS line in Figure 8, it is clear that the straight-line fit is imperfect because
the residuals appear not to be randomly distributed about the zero line.
In order to be sure that this pattern is not caused by the presence of
outliers, we will compare Figure 8 to the residual plot associated with the
RLS line (Figure 9). The departure from linearity is magnified in this
plot. The residuals inside the 2.5 band tend to follow a parabolic curve.
Those associated with cases 1, 10, and 16 fall outside the band, which
indicates that they have large residuals from the RLS line. In spite of the
fact that the slopes of both the LS and RLS lines are significantly
different from zero (see the t-values in Table 11), the linear model is not
appropriate. ‘
Moreover, the value of R’, which is a measure of model adequacy, is
high. For LS, R? equals 0.955. The RLS value of R” is 0.977, showing
that 97.7% of the total variation in the response is accounted for by the
explanatory variable. Of course, R* is only a single number summary. It
is not able to characterize an entire distribution or to indicate all possible
defects in the functional form of the model. A large R? does not ensure
that the data have been well fitted. On the other hand, the residual plots
do embody the functional part of the model. Therefore, inspection of

World Prog
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Figure 8. Cloud point data: Residual plot associated with LS.

—2.5

Residual/scale
I
®
1

S 1 ' 1 1 1 | I I ] 1 1

Estimated response
Figure 9. Cloud point data: Residual plot associated with I.MS-based RLS.
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Table 11. Cloud Point Data: Estimated Slope and Intercept by LS and RLS
Regression, with Their #-Values

LS Results RLS Results
. Standard R Standard
Variable 0 Error t-Value e Error -Value
Percentage of I-8  1.05 0.055 18.9 0.89 0.036 24.7
Constant 23.35 0.297 78.7 24.37 0.212 115.2
R*=0.955 R*=0.977

these plots is an indispensable part of regression analysis, even when R? is
large or in the case of significant z-values. When this graphical display
reveals an unexpected pattern, one has to remedy the defect by adapting
the model. Depending on the anomalies in the pattern of the residuals, it
may happen that an additional explanatory variable is necessary, or that
some variables in the model have to be transformed. The possible
improved models have to be restricted to those that are linear in the
coefficients, or else we leave the domain of linear regression. How-
ever, several nonlinear functions are linearizable by using a suitable
transformation. Daniel and Wood (1971) list various types of useful
transformations.

A curved plot such as Figure 9 is one way to indicate nonlinearity. The

usual approach to account for this apparent curvature is to consider the
usc of a quadratic model such as

y=60x+6x"+06,+e. (3.1)

The LS and RLS estimates for this model
with some summary statistics.

The R* values for both the LS and the RLS have increased a little bit,
whereas the f-values of the regression coefficients have hardly changed.
For both fits, the coefficients are significantly different from zero at
@ =5%. Let us now look at the distribution of the residuals associated
with LS and RLS, in Figures 10 and 11, respectively.

Examining the LS residual plot, it would appear that the additional
squared term has not been completely successful in restoring the distribu-
tion of the residuals. The pattern is not entirely neutral. Before deciding
to change the model again, let us analyze the information provided by the
RLS residual plot. From this plot, some outliers strike the eye. The
observations 1, 10, and 15, which have obtained a zero weight from the
LMS fit, fall outside the horizontal band. (Notwithstanding their zero

are given in Table 12, along
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Table 12. Cloud Point Data: LS and RLS Estimates for the Quadratic Model
along with Summary Values .

LS Results RLS Results
. Standard ~ Standard
Variable [ Error t-Value ] Error t-Value
Percentage of I-8 1.67 0.099 16.9 1.57 0.084 18.8
(Percentage of 1-8)° —0.07 0.010 —6.6 —-0.07 0.009 =7.5
Constant 22.56 0.198 113.7 22.99 0.172 133.7
R*=10.988 R*=0.993

weights, the outliers are still indicated in the plot.) The presence of these
points has affected the LS estimates because LS tries to make all the
residuals small, even those associated with outliers, at the cost of an
increased estimate of §,. On the other hand, the outlying observations
do not act upon the RLS estimates, at which they obtain a large
residual. The residuals inside the band in Figure 11, which corre-
spond to the other observations, display no systematic pattern of varia-
tion. Summarizing the findings from Figures 10 and 11, one can conclude
that the quadratic equation describes a more appropriate fit than the
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Figure 10. Cloud point data: LS residual plot for the quadratic model.
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Figure 11. Cloud point data: RLS residual plot for the quadratic model.

simple line. Moreover, the residual plot of the RLS quadratic fit locates
three observations that were responsible for the deformed pattern in the
residual plot of the LS quadratic fit.

The presence of outliers or the choice of an appropriate model are not
the only problems in regression analysis. A nearly linear dependence
between two or more explanatory variables can also seriously disturb the
estimated regression surface or make the regression coefficients uninter-
pretable. This phenomenon is called multicollinearity. (The terms col-
linearity and ill-conditioning are also employed in the literature.) The
ideal situation would be that there is no relation among the variables in
the factor space. In that case, it is easy to interpret a regression
coefficient as the amount of change in the response when the correspond-
ing explanatory variable grows with one unit, while the other explanatory
variable(s) remain fixed. When collinearity is present in the data, the
contribution of a single explanatory variable to the regression equation is
hard to estimate,

The detection of multicollinearity may be very complicated. When
there are only two explanatory variables, then collinearity leads to a high
absolute value of the Pearson correlation or the alternative (more robust)
Spearman rank correlation coefficient. For higher-dimensional factor
spaces, the two-by-two correlation coefficients are not always sufficient
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for discovering collinearity, because the collinearity may involve several
variables. Therefore, the squared multiple correlation coefficients Rf of
the regression of X; on the remaining x-variables are possible diagnostics
for measuring the degree to which any x; is related to the other explana-
tory variables.
Chatterjee and Price (1977), Belsley et al. (1980), Weisberg (1980),
and Hocking (1983), among others, report some tools for identifying
collinearity. Most of these tools are based on the correlation matrix or its
inverse. For example, the so-called Variance Inflation Factor (VIF) is
based on the estimated variance of the ith regression coefficient (obtained
from LS). There are some debates whether or not the data should be
standardized first, because this may have a large effect on the resulting
collinearity diagnostics (see the article by Belsley 1984 and its discussion).
Another approach to deal with collinearity is ridge regression (Hoerl and
Kennard 1970, 1981), based on the principle of using a little bit of all the
variables rather than all of some variables and none of the remaining ones
(Marquardt and Snee 1975). We will not describe these techniques in
further detail here. Unfortunately, most of them are not immune to the
presence of contamination, as was also noted by Mason and Gunst (1985)
and Ercil (1986). For instance, consider the nonrobustness of the Pearson
correlation coefficient, which may be affected a great deal by outliers.
This means that the correlation coefficient can be close to zero because of
the presence of a single outlier disturbing an otherwise linear relation-
ship, thereby hiding collinearity. On the other hand, the correlation
coefficient can also be carried arbitrarily close to 1 by means of a far
outlier, which appears to create collinearity. Therefore, the identification
of linear dependencies in factor space, combined with the detection of
outliers, is an important problem of regression analysis. Indeed, col-
linearity inflates the variance of the regression coefficients, may be
responsible for a wrong sign of the coefficients, and may affect statistical
inference in general. Therefore, in cases where the presence of collineari-
ty is anticipated, we recommend the use of the classical collinearity
diagnostics on both the original data set and on the reweighted one based
on LMS, in which the outliers have been removed.

Example 3: Heart Catheterization Data

The “Heart Catheterization” data set of Table 13 (from Weisberg 1980,

p- 218 and Chambers et al. 1983, p. 310) demonstrates some of the effects
caused by collinearity.

A catheter is passed into a major vein or artery at the femoral region
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Table 13. Heart Catheterization Data®
Index Height Weight  Catheter Length

(i) (x,) (x,) (»)
1 4238 400 37
2 63.5 93.5 50
3 37.5 35.5 34
4 39.5 30.0 36
5 455 5.0 43
6 38.5 17.0 28
7 43.0 38.5 37
8 225 8.5 20
9 37.0 33.0 34

10 23.5 9.5 30

11 33.0 21.0 38

12 58.0 79.0 47

“Patient’s height is in inches, patient’s weight in pounds, and
catheter length is in centimeters.

Source: Weisberg (1980, p. 218).

and moved into the heart. The catheter can be maneuvered into specific
regions to provide information concerning the heart function. This tech-
nique is sometimes applied to children with congenital heart defects. The
proper length of the introduced catheter has to be guessed by the
physician. For 12 children, the proper catheter length ( y) was determined
by checking with a fluoroscope that the catheter tip had reached the right
position. The aim is to describe the relation between the catheter length
and the patient’s height (x,) and weight (x,). The LS computations, as
well as those for RLS, for the model

y=0x,+6x,+6,+e

are given in Table 14.

For both regressions, the F-value is large enough to conclude that 51
and @2 together contribute to the prediction of the response. Looking at
the t-test for the individual regression coefficients, it follows that the LS
estimate for 6, is not significantly different from zero at a =5%. The
same can be said for 8,. However, the F-statistic says that the two
x-variables viewed en bloc are important. For the RLS fit, 51 is not yet
significantly different from zero, which means that the corresponding
explanatory variable contributes little to the model. Also, the sign of 91
makes no sense in this context. Such phenomena typically occur in
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Table 14. Heart Catheterization Data: LS and RLS Results

LS Results RLS Results
Variable 6 t-Value p-Value 0 -Value p-Value
Height 0.211 0.6099 0.5570 —0.723  —-2.0194 0.0%00
Weight 0.191 1.2074 0.2581 0.514 3.7150 0.0099
Constant 20.38 2.4298 0.0380 48.02 4.7929 0.0030
F=21.267 (p=0.0004) F=32.086 (p=0.0006)

situations where collinearity is present. Indeed, Table 15 shows the high
correlations among the variables, as computed by PROGRESS.

The correlation between height and weight is so high that either
variable almost completely determines the other. Moreover, the low
t-value for the regression coefficients confirms that either of the explana-
tory variables may be left out of the model. For the heart catheterization
data, we will drop the variable weight and look at the simple regression of
catheter length on height. A scatterplot of this two-dimensional data set is
given in Figure 12, along with the LS and RLS fits.

The LS yields the fit y = 0.612x + 11.48 (dashed line in Figure 12). The
RLS fit §=0.614x + 11.11 (which now has a positive ,) lies close to the
LS. Note that cases 5, 6, 8, 10, and 11 lie relatively far from the RLS fit.
Because they are nicely balanced above and below the RLS line, the LS
and RLS fits do not differ visibly for this sample.

The alternative choice would be to use weight instead of height as our
predictor. A plot of measurements of catheter length versus the patient’s
weight is shown in Figure 13. This scatterplot suggests that a linear model

Table 15. Heart Catheterization Data: Cbrrelations Between the Variables

Pearson Correlation Coefficients

Height 1.00

Weight 0.96 1.00

Catheter length 0.89 0.90 1.00

Height Weight Catheter length
Spearman Rank Correlation Coefficients

Height 1.00

Weight 0.92 1.00

Catheter length 0.80 0.86 1.00

Height Weight Catheter length
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Figure 12. Heart catheterization data: Scatterplot of proper catheter length versus height
for 12 children, with LS fit (dashed line) and RLS fit (solid line).

is not appropriate here. It is clear that a transformation is required. On
physical grounds, one might try to use the cube root of the weight instead
of the weight itself in order to obtain linearity.

Even when there is no evidence of multicollinearity, it may happen
that the complete set of explanatory variables is too large for using them
all in the model. In the first place, too many variables make it hard to
understand the described mechanism. This should, however, be combined
with the objective of explaining the variability of the response as much as
possible, which leads to the consideration of more explanatory variables.
But from a statistical point of view, one can sometimes say that the
reduction of the number of variables improves the precision of the fit.
Indeed, explanatory variables for which the associated regression coeffici-
ents are not significantly different from zero may increase the variance of
the estimates. Subject-matter knowledge is sometimes sufficient to decide
which of the possible equations is most appropriate. Otherwise one has to
apply a statistical procedure for finding a suitable subset of the variables.
This problem is called variable selection. It is closely linked to the
problem of model specification, which we discussed above. Indeed, the
problem of variable selection also includes the question, “In which form
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Figure 13. Heart catheterization data: Scatterplot of proper catheter length versus weight
for 12 children.

should the explanatory variable enter the equation: as the original
variable, or as a squared term, or as a logarithmic term, and so on?”". For
simplicity, one usually treats these problems separately in order to avoid
the ideal, but intractable, approach consisting of a simultaneous treat-
ment of both problems. The presence of outliers, either in y or in x,
complicates the situation even more. Therefore, we recommend starting
the analysis with a high-breakdown regression on the full set of variables
in order to determine the weights of the observations. Then, as a first
approximation, one can use a classical technique for variable selection on
the “cleaned” sample. Such variable selection techniques have been
widely investigated in the literature, for instance by Aitkin (1974), Allen
(1974), Diehr and Hoflin (1974), Hill and Hunter (1974), Narula and
Wellington (1977, 1979), Snee (1977), Suich and Derringer (1977, 1980),
Ellerton (1978), McKay (1979), Hintze (1980), Rencher and Pun (1980),
Weisberg (1981), Wilkinson and Dallal (1981), Baskerville and Toogood
(1982), Madsen (1982), and Young (1982). Hocking (1976) reviews the
topic of variable selection. We will briefly describe the most widely used
techniques.

When the set of candidate variables is not too large, one can consider
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all the possible models starting from this set. This is the so-called
all-subsets regression procedure. It leads to

2(number of available explanatory variables)

different models, a number that increases rapidly. Even when attention is
focused on LS estimation (or our RLS, assuming that a very robust
technique has been executed first), this number becomes computationally
infeasible. This has motivated some people to develop more efficient
algorithms, which appeal to numerical methods for calculating the LS
estimates for the successive subsets. Usually, these procedures are based
on either Gauss—Jordan reduction or a sweep operator (Beaton 1964,
Seber 1977). Once the various fitted equations are at one’s disposal, one
needs a criterion for judging which subset of variables yields the “best”
fit. Hocking (1976) describes different measures for this purpose, includ-
ing the mean squared error, the coefficient of determination, and the C,
statistic (see also Daniel and Wood 1971 and Mallows 1973 for a thorough
treatment of C,). The Furnival and Wilson (1974) algorithm, which is
available in the regression program P2R of BMDP, is a branch-and-bound
type of procedure that cuts the computation time by searching only in
certain promising directions.

Although it is felt that the investigation of all subsets produces the
“best” set, it is not the most widely used method because of its computa-
tional cost. The so-called stepwise procedures, which consist of either
adding or deleting one explanatory variable at a time, have been the
favorite methods throughout. One distinguishes forward selection and
backward elimination stepwise procedures, and a combination of both.
Variations of these types have been implemented in several statistical
packages, such as BMDP, SAS, and SPSS.

In forward selection, one starts with a simple regression model in which
the explanatory variable is the variable that correlates best with the
response. Then, at each subsequent step, one adds one variable to the
model. At any step the selected variable x; is the one producing the
largest F-ratio among the candidates. This F-ratio is defined by

SSE, —SSE,.,

i 5’2 %
k+(f)

where SSE, is the residual error sum of squares corresponding to the
model with k terms, and SSE,. ;) is the one corresponding to the model
where x; is added. Variable x; will be included in the equation if F is
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larger than a prespecified value. This prespecified value is often referred
to as the stopping rule. One can choose this value such that the procedure
will run the full course. That way one obtains one subset of each size.
Moreover, one can then use a criterion for selecting the “best” of these
subsets. ;

In the backward elimination methods, one works in the inverse way,
starting from an equation containing all the variables. At each step, one
eliminates the ‘“‘worst” variable. For instance, the variable x; will be a
candidate for elimination from the current model (consisting of k terms) if
it produces the smallest F-ratio, where

Again several stopping rules similar to those for forward selection have
been suggested (see Hocking 1976). Efroymson (1960) combined both
ideas: His method is basically of the forward selection type, but at each
step the elimination of a variable is also possible.

Faced with a problem of variable selection, one has to be aware of the
weak points of the available techniques. For instance, the stepwise
procedures do not necessarily yield the “best” subset of a given size.
Moreover, these techniques induce a ranking on the explanatory variables
which is often misused in practice. The order of deletion or inclusion is
very deceptive, because the first variable deleted in backward elimination
(or similarly the first one added in forward selection) is not necessarily the
worst (or the best) in an absolute sense. It may, for example, happen that
the first variable entered in forward selection becomes unnecessary in the
presence of other variables. Also, forward and backward stepwise tech-
niques may lead to totally different “best” subsets of variables. Berk
(1978) compares the stepwise procedures with all-subsets regression. He
shows that if forward selection agrees with all-subsets regression for every
subset size, then backward elimination will also agree with all-subsets
regression for every subset size, and inversely. All-subsets regression,
however, is not the ideal way to avoid the disadvantages of the stepwise
techniques. Indeed, the evaluation of all the possible subsets also largely
depends on the employed criterion. Moreover, although the all-subsets
procedure produces the “best” set for each subset size, this will not
necessarily be the case in the whole population. It is only the “best” in
the sample. The observation made by Gorman and Toman (1966) is
perhaps suitable to conclude the topic of variable selection: "It is unlikely
that there is a single best subset, but rather several equally good ones.”




EXAMPLES
Example 4: Education Expenditure Data

The problem of heteroscedasticity has already been mentioned in Section
4 of Chapter 2, in the discussion on the diagnostic power of residual plots.
The following data set, described by Chatterjee and Price (1977, p. 108)
provides an interesting example of heteroscedasticity. It deals with educa-
tion expenditure variables for 50 U.S. states. The data are reproduced in
Table 16. The y-variable in Table 16 is the per capita expenditure on
public education in a state, projected for 1975. The aim is to explain y by
means of the explanatory variables Xy (number of residents per thousand
residing in urban areas in 1970), x, (per capita personal income in 1973),
and x,(number of residents per thousand under 18 years of age in 1974).
Often the index i of an observation is time-related. In that case, the
pattern of an index plot may point to nonconstancy of the spread of the
residuals with respect to time. However, the magnitude of the residuals
may also appear to vary systematically with 7, or an explanatory variable,
or with another ordering of the cases besides the time ordering. The
objective for the present data set is to analyze the constancy of the
relationships with regard to a spatial ordering of the cases. The data in _
Table 16 are grouped by geographic region. One can distinguish four
groups: the northeastern states (indices 1-9), the north central states
(indices 10-21), the southern states (indices 22-37), and the western
states (indices 38-50).
The routine application of least squares to these data yields the
cocfficients in Table 17, which also contains the results of reweighted
least squares based on the LMS. Let us now compare the LS index plot
(Figure 14a) with that of RLS (Figure 14b). Their main difference is that
the fiftieth case (Alaska) can immediately by recognized as an outlier in
the RLS plot, whereas it does not stand out clearly in the LS plot. (It
seems that the education expenditure in Alaska is much higher than could
be expected on the basis of its population characteristics Xy, X5, and x,
alone.) On the other hand, both plots appear to indicate that the
dispersion of the residuals changes for the different geographical regions.
This phenomenon is typical for heteroscedasticity. The defect can be
remedied by handling the four clusters separately, but then the number of
cases becomes very limited (in this example). Chatterjee and Price (1977)
analyze these data by using another type of weighted LS regression. They
assign weights to each of the four regions in order to compute a weighted
sum of squared residuals. These weights are estimated in a first stage by
using the mean (in a certain region) of the squared residuals resulting

from ordinary LS. Chatterjee and Price also considered Alaska as an
outlier and decided to omit it.
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Table 16. Education Expenditure Data

Index State Xy

x! 'r] y
1 ME 508 3944 325 235
2 NH 564 4578 323 231
3 VT 322 4011 328 270
4 MA 846 5233 305 261
5 RI } Northeastern 871 4780 303 300
6 CF 774 5889 307 317
7 NY . 856 5663 301 387
8 NJ 889 5759 310 285
9 PA 715 4894 300 300
10 OH) 753 5012 324 221
1 IN 649 4908 329 264
12 IL 830 5753 320 308
13 MI 738 5439 337 379
14 WI 659 4634 328 342
15 MN | Nesth skl 664 4921 330 378

16 IA 572

44 UT } Western 804
47 OR 671
48 CA 909
49 AK 831
50 HI 484

4869

4005

4697
5438

5309
5613

318

378

305

307

333
386

315

316
332
311
546

Source: Chatterjee and Price (1977).
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Figure 14. Education expenditure data: (4) Index plot associated with LS. (b) Index plot
associated with LMS-based RLS.
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Tahle 17. LS and RLS Results on Education Expenditure Data:
Coefficients, Standard Errors, and ¢-Values

LS Results RLS Results

. Standard Standard
Variable (/] Error t-Value ] Error t-Value
Xy —0.004 0.051 -0.08 0.075 0.042 1.76
X5 0.072 0.012 6.24 0.038 0.011 3.49
% 1.552 0.315 4.93 0.756 0.292 2.59
Constant —556.6 123.2 —-4.52 -197.3 117.5. —1.68

*4. PROPERTIES OF THE LMS, THE LTS, AND S-ESTIMATORS

This section contains some theoretical results and may be skipped by
those who are only interested in the application of robust regression and
not its mathematical aspects. The first part is about the LMS estimator,

given by

Minimize med . (4.1)
9 1

The existence of this estimator will be proven, and its breakdown and
exact fit properties are stated. It is also shown that it attains the maximal
breakdown point among all regression equivariant estimators. Then some
results on one-step M-estimators are presented. Finally, least trimmed
squares (LTS) and S-estimators are covered. Most of the material in this
section follows Rousseeuw (1984) and Rousseeuw and Yohai (1984).
The n observations (x;, ¥;) = (Xis« s Xip y,) belong to the linear
space of row vectors of dimension p + 1. The unknown parameter fis a

p-dimensional column vector (6;,. .-, 8,). The (unperturbed) linear
is distributed according to

model states that y,=x,0 +¢; where ¢
N(O, o). Throughout this section it is assumed that all observations with
x, =0 have been deleted, because they give no information on 6. This
condition is automatically satisfied if the model has an intercept because
then the last coordinate of cach x; equals 1. Moreover, it is assumed that
in the (p + 1)-dimensional space of the (x,, y,), there is no vertical
hyperplane through zero containing more than [n/2] observations. (Such
a vertical hyperplane is a p-dimensjonal subspace that contains ©,...,0)
and (0, ...,0,1). We call this subspace a hyperplane because its dimen-
sion is p, which is one less than the dimension of the total space. The
notation [g] stands for the largest integer less than or equal to g.)
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The first theorem

guarantees that the minimization in (4.
leads to a solution.

1) always

Theorem 1. There always exists a solution to (4.1).

Proof. We work

in the (p + 1)-dimensional space E of the observations
(x;, y;). The space of the X; 18 the horizontal hyperplane through the
origin, which is denoted by (y = 0) because the y-coordinates of all points
in this plane are zero. Two cases have to be considered:

CAsE A. This is really a special case,
(p — 1)-dimensional subspace V of
containing at least [n/2]

in which there exists a
(y=0) going through zero and
+1 of the x;,. The observations (x;, ¥;) corre-
sponding to these x, now generate a subspace S of E (in the sense of
linear algebra), which is at most p-dimensional. Because it was assumed
that £ has no vertical hyperplane containing [7/2] +1 observations, it
follows that S does not contain (0, . . ., 0, 1); hence the dimension of S is
at most p — 1. This means that there exists a nonvertical hyperplane H
given by some equation Y =x@ which includes S. For this value of 0,
clearly med, r? =0, which is the minimal value
illustrated by taking the value of
model without intercept term. Fi
subspaces S and V of E.

. This reasoning can be
P equal to 2 and considering a linear
gure 15 illustrates the positions of the

Case B.  Let us now assume that we are in the general situation in
which case A does not hold. The rest of the proof will be devoted to
showing that there exists a ball around the origin in the space of all 0, to
which attention can be restricted for finding a minimum of med, rf(f)).

Because the objective function med, r7(@) is continuous in 6, this is
sufficient for the existence of a minimum. Put

8 = 3 inf {r > 0; there exists a (p — 1)-dimensional subspace V of (y = 0)
such that V" covers at least [7/2] +1 of the x,} ,

where V7 is the set of all x with distance to V not larger than . Case A
corresponds to & =0, but now § > 0. Denote M := max;, |y,|. Now atten-
tion may be restricted to the closed ball around the origin with radius

(V2+1)M/5. Indeed, for any 0 with |[0]|>(VZ+1)M/s, it will be
shown that

med r} () > med y; = med ri(0),
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X1

Figure 15. Ilustration of the position of the subspaces § and V in the space E, as defined in
the proof of Theorem 1 (Case A). There are 10 observations and p = 2.

found outside the ball. A
e 16) is needed to prove this.
e H given by y =x8. By the

so smaller objective functions cannot be
geometrical construction (illustrated in Figur
Such a @ determines a nonvertical hyperplan
dimension theorem of linear algebra,

dim(Hﬂ(y:0))=dim(H)+dim(y=0)=dim(H+(y:0))
=p+p—(p+1)
zp—l

because ||0]| > (V2 +1)M/8 implies that 670 and hence H # (y=0).
Therefore, (HN(y = 0))° contains at most [n/2] of the X;. For each of
the remaining observations (x;, y;), we construct the vertical two-dimen-
sional plane P, through (x;, y;), which is orthogonal to (H N(y =0)).
(This plane does not pass through zero, so to be called vertical, it has to

go through both (x;, y;) and (x,, y; + 1).) We see that
Il = %6 =yl =| %01 = |yl |

where a is the angle in (— /2, w/2) formed by H

with |x,8] > 8|tan ()|,
gle between the line

and the horizontal line in P,. Therefore || is the an

B

|




Figure 16. Illustration of a geometrical construction in the proof of Theorem 1 (Case B).

orthogonal to H and (0, 1), hence

|(“_99 1)(0: 1)1 -
|a| = arccos { =8, DT, ] } = arccos {

and finally [tan (a)|= ||@]|.
Because ||@|| > (V2 + 1)M/s, it follows that

1
Vi+ Hellz}

x.0]>38]|6][> M=y,
SO
,ri(o)l > (6 ”0” kil |y¢'D .
But then
r(8)>((VZ+1)M - |y,|)*
>((V2+1)M - M)?
>2M?

for at least n — [n/2] observations. Hence

med r;(0) > M* = med (y}).
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So the objective function associated with such a @ is larger than the one
for @ = 0. Therefore, we only have to search for a solution @ in the closed
ball B(0, (VZ+1)M/8). Because this set is compact and med, r2(0) is
continuous in @, the infimum is a minimum. O

Remark. This proof is not constructive. To actually find a solution to
(4.1) we use the algorithm described in Chapter 5.

Let us now discuss some equivariance properties of the LMS. For
regression estimators, one can consider three types of equivariance.
Ranked from higher to lower priority, there exists regression, scale, and
affine equivariance.

An estimator T is called regression equivariant if

T({(xi! yi+xiv); i= 1: R D n})= T({(xi’ yi);izly LI n})+V, (42)

where v is any column vector. Regression equivariance is just as crucial as
translation equivariance for a multivariate location estimator, but not as
often formulated. It is implicit in the notion of a regression estimator. For
instance, many proofs of asymptotic properties or descriptions of Monte
Carlo studies begin with the phrase ‘“‘without loss of generality, let’
6 =07, which assumes that the results are valid at any parameter vector
through application of (4.2). On the other hand, note that the coefficient
of determination (R?) is not regression invariant, because it depends on
the inclination of the regression surface (Barrett 1974).
An estimator T is said to be scale equivariant if

T 90 =1, 1)) = TG ¥ )i =1, m}) (43)

for any constant c. It implies that the fit is essentially independent of the
choice of measurement unit for the response variable y.
One says that T is affine equivariant if

TH{xA, y);i=1,...,0))=A"'T({(x,, y,);i=1,...,n}) (4.4)

for any nonsingular square matrix A. In words, affine equivariance means
that a linear transformation of the x, should transform the estimator T
accordingly, because §,=x,T=(x,A)(A"'T). This allows us to use
another coordinate system for the explanatory variables, without affecting
the estimated 7,.

The LMS satisfies all three equivariance properties:




