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interactive input. The program then picks out the response and the
explanatory variables for the analysis.

GIVE. THE NAME OF THE FILE CONTAINING THE DATA (e.g. TYPE A:EXAMPLE.DAT),
or TYPE KEY IF YOU PREFER TO ENTER THE DATA BY KEYBOARD.
~ WHAT DO YOU CHOOSE? KEY

Moreover, PROGRESS enables the user to store the data (in case
KEY has been answered) by means of the following dialogue:

DO YOU WANT TO SAVE YOUR DATA IN A FILE?
PLEASE ANSWER YES OR NO: YES

IN WHICH FILE DO YOU WANT TO SAVE YOUR DATA?

(WARNING: IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME,
THEN THE OLD FILE WILL BE OVERWRITTEN.)

TYPE e.g. B:SAVE.DAT : B:PILOT.DAT

The whole data set will be stored, even those variables that are not
used right now. This enables the user to perform another analysis
afterwards, with a different combination of variables.

Depending on the answer to the following question, the output

provided by PROGRESS will be written on the sCreen, on paper, or in a
file.

. WHERE DO YOU WANT YOUR OUTPUT?
TYPE CON IF YOU WANT IT ON THE SCREEN

‘or TYPE PRN IF YOU WANT IT ON THE PRINTER

or TYPE THE NAME OF A FILE (e.g. B:EXAMPLE.OUT)

(WARNING: IF THERE ALREADY EXISTS A FILE WITH THE SAME NAME,
5 THEN. THE OLD FILE WILL BE OVERWRITTEN.)

WHAT DO YOU CHOOSE? PRN

We would like to give the user a warning concerning the latter two
questions. The name of a DOS file is unique. This means that if the user
‘enters a name of a file that already exists on the diskette, the old file will
be overwritten by the new file.

_ The plots constructed by PROGRESS are intended for a printer using
8 lines per inch. (Consequently, on the screen these plots are slightly
stretched out.) It is therefore recommended to adapt the printer to 8 lines
per inch. For instance, this can be achieved by typing the DOS command

ODE LPT1:80,8” before running PROGRESS.

Next, PROGRESS requests a title, which will be reproduced on the
tput. This title should consist of at most 60 characters. When the user

ou
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enters more characters, only the first 60 will be read:

PLEASE ENTER A TITLE FOR THE QUTPUT (AT MOST 60 CHARACTERS):

PILOT-PLANT DATA SET WITH ONE LEVERAGE POINT

The answer to the following question tells PROGRESS the way in
which the data has to be read. Two possibilities are available. The first
consists of reading the data in free format, which is performed by
answering YES to:

DO YOU WANT TO READ THE DATA IN FREE FORMAT?

THIS MEANS THAT YOU ONLY HAVE TO INSERT BLANK(S) BETWEEN NUMBERS.

(WE ADVISE USERS WITHOUT KNOWLEDGE OF FORTRAN FORMATS TO ANSWER YES.)
MAKE YOUR CHOICE (YES/NO): YES

In order to use the free format, it suffices that the variables for each
case be separated by at least one blank. On the other hand, when the
user answers NO to the above question, PROGRESS requests the
FORTRAN format to be used to input the data. The program expects the
format necessary for reading the total number of variables of the data set
(in this case 5). The program will then select the variables for actual use
by means of the positions chosen above. The FORTRAN format has to
be set between brackets, and it should be described in at most 60
characters (including the brackets). The observations are to be processed
as real numbers, so they should be read in F-formats and/or E-formats.
The formats X and / are also allowed.

Because the execution time for large data sets may be quitelong, the
user has the option of choosing a faster version of the algorithm in that
case. In other cases it is recommended to use the extensive search version
because of its greater precision. (More details about the algorithm will be
provided in Chapter 5.)

WHICH VERSION OF THE ALGORITHM WOULD YOU LIKE TO USE?
Q=QUICK VERSION

E=EXTENSIVE SEARCH

ENTER YOUR CHOICE PLEASE (Q OR E): E

PROGRESS also allows the user to deal with missing values. How-
ever, we shall postpone the discussion of these options until Section 2 of
Chapter 3.
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CHOOSE AN OPTION FOR THE TREATMENT OF MISSING VALUES

O=THERE ARE NO MISSING VALUES IN THE DATA

1=ELIMINATION OF THE CASES FOR WHICH AT LEAST ONE VARIABLE IS MISSTING
2=ESTIMATES ARE FILLED IN FOR UNOBSERVED VALUES

ENTER YOUR CHOICE: 0

Finally, PROGRESS gives a survey of the options that were selected.

**************************************************
* PROGRESS WILL PERFORM A REGRESSION WITH CONSTANT TERM =
**************************************************

THE NUMBER OF CASES EQUALS 20
THE NUMBER OF EXPLANATORY VARIABLES EQUALS 1
TITRATION IS THE RESPONSE VARTIABLE.

THE DATA WILL BE READ FROM THE KEYBOARD.

THE DATA WILL BE SAVED IN FILE: B:PILOT.DAT
TITLE FOR OUTPUT: PILOT-PLANT DATA SET WITH ONE LEVERAGE POINT
THE DATA WILL BE READ IN FREE FORMAT.

LARGE OUTPUT IS WANTED,

NO RESIDUAL PLOTS ARE WANTED.

THE EXTENSIVE SEARCH VERSION WILL BE USED.

THERE ARE NO MISSING VALUES.

YOUR OUTPUT WILL BE WRITTEN ON: PRN

ARE ALL THESE OPTIONS OK? YES OR NO: YES

When the data have to be read from the keyboard, the user has to type

the measurements for each case. For the cxample we are working with,
this would look as follows:

ENTER YOUR DATA FOR EACH CASE.

THE DATA F®R CASE NUMBER 1: 1 123 0 76 28
THE DATA FOR CASE NUMBER 2: 2 109 0 70 23
THE DATA FOR CASE NUMBER 3: 3 62 I 55 29
THE DATA FOR CASE NUMBER 4: 4 104 1 71 28
THE DATA FOR CASE NUMBER 5: 5 57 0 55 27
THE DATA FOR CASE NUMBER 6: 6 370 0 48 35
THE DATA FOR CASE NUMBER 7: 7 44 I 50 24
THE DATA FOR CASE NUMBER 8: § 100 I 66 23
THE DATA FOR CASE NUMBER 9: 9 16 0 41 27

THE DATA FOR CASE NUMBER 10: 10 28 1 43 29

THE DATA FOR CASE NUMBER 11: 11 138 0 82 21
THE DATA FOR CASE NUMBER 12: 12 105 0 68 28
THE DATA FOR CASE NUMBER 13: 13 159 1 88 24
THE DATA FOR CASE NUMBER 14: 14 75 1 58 26

THE DATA FOR CASE NUMBER 15: 15 88 0 64 26

THE DATA FOR CASE NUMBER 16: 16 164 0 88 26
THE DATA FOR CASE NUMBER 17: 17 169 1 89 23
THE DATA FOR CASE NUMBER 18: 18 167 1 88 36
THE DATA FOR CASE NUMBER 19: 19 149 0 84 24
THE DATA FOR CASE NUMBER 20: 20 167 1 88 21
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Out of these five variables, we only use two. (In fact, in this example
the other three variables are artificial, because they were added to
illustrate the program.)

The output file corresponding to this example is printed below, and is
followed by a discussion of the results in Section 3.

AR A AR ACK KKK KKk KKK Kok KRR OR Rk K
* ROBUST REGRESSION WITH A CONSTANT TERM. x*
SRR AKARIOR KK IR K KK KA K KKK KKKk 3k Kk ok ok ok ok oK

NUMBER OF CASES = 20
NUMBER OF COEFFICIENTS (INCLUDING CONSTANT TERM) = 2

THE EXTENSIVE SEARCH VERSION WILL BE USED.
DATA SET = PILOT-PLANT DATA SET VITH ONE LEVERAGE POINT

THERE ARE NO MISSING VALUES.

LARGE OUTPUT IS WANTED.

THE OBSERVATIONS ARE:

EXTRACTION TITRATION
123. 0000 76.0000

1 3. .

2 109. 0000 70.0000
3 62.0000 55.0000
4 104.0000 71.0000
5 57.0000 55.0000
=] 370.0000 48,0000
T 4.0000 50.0000
8 100.0000 66. 0000
9 16.0000 41.0000
0

1

2

3

e

OBSERVED
TITRATION %—: + : + : + + : : + +§
. 8G00E+02 ;- 23 +
I
I I
I 1 I
I 1 1
+ +
I
I i
I
I 1
+ +
I
1
I 1
I 1 I
+ +
I 1
1
I 1
I 1
+ +
I
1
1
I 1
+ ¥
I I
I 11 I
1 I
I I
+ +
I 1 I
I 1
I u S €
I 1
+ +
I I
I 1 1
I 1
1 I
. 4100E+02 -{ 1 t
I+ + T : + : e+ : : +-1
. 1600E+02 .3700E+03

OBSERVED EXTRACTION




COMPUTATION OF THE LEAST MEDIAN OF SQUARES LINE

MEDIANS =
EXTRACTION TITRATION
107.0000 69. 0000
DISPERSIONS =
EXTRACTION TITRATION
70.4235 21.4977
THE STANDARDIZED OBSERVATIONS ARE:
EXTRACTION TITRATION
L2272 . 3256

1

2 0284 . 04865
3 =.6390 -.6512
4 -.0426 . 0930
5 -.7100 -.8512
6 3.7345 -.9768
7 —.8946 -.8838
8 —. 0994 =.13

9 -1.2922 -1.3025
10 -1.1218 —-1.2094
T 402 .6047
12 -.0284 —. 0465
13 7384 8838
14 4544 -. 5117
15 -.2698 -.2326
16 8094 8838
17 8804 9303
i8 8520 8838
19 5964 6977
20 8520 8838

PEARSON CORRELATION COEFFICIENTS BETVEEN THE VARIABLES

¢ TITRATION 1S THE RESPONSE VARIABLE>

EXTRACTION 1.00
.38

TITRATION 1.00

SPEARMAN RANK CORRELATION COEFFICIENTS BETWEEN THE VARIABLES

¢ TITRATION IS THE RESPONSE VARIABLE)

EXTRACTION 1.00
TITRATION .76 1.00

*x***xx**x**xxx*xxx***x*xxx***xx********x*xx******x****x**xxxx*x*xx**x***x****

LEAST SQUARES REGRESSION
SRR AOKK Kk K KKK KKK K KoK

VARIABLE COEFFICIENT STA¥D. ERROR T - VALUE P - VALUE
EXTRACTION .08071 . 04605 1.71014 .10274
CONSTANT 58.93883 6.61420 8.91096 . 00000
SUM OF SQUARES = 4379.69300
DEGREES OF FREEDOM = 18
SCALE ESTIMATE = 15,59860
VARIANCE - COVARIANCE MATRIX =
. 2204D-02
—.2638D+00 . 4375D+02
COEFFICIENT OF DETERMINATION (R SQUARED) = .14103
THE F-VALUE = 2.955 (VITH 1 AWND 18 DF> P - VALUE = .10274
OBSERVED ESTIMATED RESIDUAL ¥O RES/SC
TITRATION TITRATION
76.00000 68. 86635 7.13365 i .46
70.00000 67.73638 2,26362 2 .15
55. 00000 63.54204 -8.94204 3 —=. 57
71.00000 67.33282 3.66718 4 .24
55. 00000 63.53938 —8.53938 5 —=. 55
48.00000 88.80200 —40.80209 6 -2.62
50. 00000 62.49014 —-12.46014 T -.80
66, 00000 67.00998 ~1.009 8 -.06
41.00000 6 -19,.23021 9 =-1.23
43. 00000 61.19875 -18.19875 10 =417
82.00000 70.07702 11.92298 11 .76
68. 00000 67.41354 586. 12 .04
88.00000 71,77196 16,22804 i3 1.04
58. 00000 64.99220 -6.99220 14 —. 45
64.00000 66.04144 -2.04144 a5 =.13
88.00000 72.17552 15.82448 16 1.01
89.00000 72.57908 16, 42092 17 .05
88.00000 72.41766 15.58234 18 1.00
84.00000 70.96484 13.03516 19 .84
88. 00000 72.41766 15,58234 20 1.00

X**********************************************************X***********K******
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LEAST MEDIAN OF SQUARES REGRESSION
sokack ok RoRIooIolocloRoRoksoksoksiok ok oksokk

VARIABLE COEFFICIENT

EXTRACTION .31429
CONSTANT 36.34286

FINAL SCALE ESTIMATE = 1.33279
COEFFICIENT OF DETERMINATION = . 99641

8
el
3
8

OBSERVED ESTIMATED RESIDUAL
TITRATION TITRATION

76.00000 75.00000 1.00000 1 .75
70.00000 70.60000 -.80000 2 ~.45
55.00000 55. 82857 -. 82857 3 -.862
71.00000 69. 02856 1.97144 4 1.48
55.00000 54.25714 . 74286 5 .56
48.00000 152. 62860 -104.62860 6 -78.50
50.00000 50,17143 —-.17143 T -.13
66.00000 67.77142 -1.77142 ] -1.33
41.00000 41.37143 —. 37148 2 -.28
43.00000 45. 14286 -2.14286 10 -1.61
82.00000 79.71428 2.28572 11 1, 2L,
68. 00000 69. 34285 —1.34285 12 -1.01
88, 00000 86.31429 1.68571 13 1.26
58. 00000 59.61428 —-1.91428 14 -1.44
64.00000 64.00000 000 15 .00
88.00000 87.88571 11429 16 .09
89. 00000 89.45714 -.45714 1 -.34
88.00000 88.82857 —-. 82857 i8 -.62
84, 00000 83.17142 .82858 19 .62
88.00000 88.82857 —-.82857 20 -.62

KKK KRR KKK KKK KR okok R okok K kokok KoKk R SOR KRRk ok kR ook ko koo ko ok

REVEIGHTED LEAST SQUARES BASED ON THE LMS
KRR KKK R HOK Ko KRR R KOORORR KRR KRR R KRR AR KX

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE
EXTRACTION . 32261 . 00595 54.21467 . 00000
CONSTANT 35.31744 . 69617 50.73091 . 00000

WEIGHTED SUM OF SQUARES = 26.75224
DEGREES OF FREEDOM = 17
SCALE ESTIMATE = 1.25446

VARIANCE — COVARIANCE MATRIX =

.3541D-04
—-.3772D-02 . 4847D+00

COEFFICIENT OF DETERMINATION (R SQUARED) = . 99425
THE F-VALUE = 2939.231 (VITH i AND 17 DF> P - VALUE = .00000

THERE ARE 19 POINTS WITH NON-ZERO WEIGHT.
AVERAGE WEIGHT = .95000

OBSERVED ESTIMATED RESIDUAL NO RES/SC WEIGHT
TITRATION TITRATION

76.00000 74.99884 1.00116 1 .80 1.0
70.00000 70.48225 —.48225 2 -.38 1.0
55. 00000 55.31945 -.31945 3 =.25 1.0
000 68.86919 2.13081 4 1.70 1.0
55.00000 53.70638 1.29362 =] 1.03 1.0
48. 00000 154.68420 -106.68420 6 -—-85.04 .0
50.00000 49.51241 . 48759 e . 1.0
66. 00000 67.57874 -1.57874 8 -1.26 1.0
41.00000 40.47925 52075 o .42 1.0
43.00000 44.35061 -1.35061 10 -1.08 1.0
82. 00000 79.83803 16197 11 1.72 1.0
68, 00000 69.19180 -1.19180 12 -, 05 1.0
£8.00000 86.61290 1.38710 3 1.11 1.0
58. 00000 50.51341 -1.51341 14 -1.21 %.g
1.0

1.0

1.0

1.0

1.0




ATION OF THE RESULTS

PRETATION OF THE RESULTS

‘provided by PROGRESS starts with some general informa-
‘about the data set. In the above example, the data were two-
nal so they could be plotted. A point in the scattergram is
ed by a digit. This digit corresponds to the number of points
approximately the same coordinates. When more than nine points
an asterisk (*) is printed in that position. In simple regression,
lot reveals immediately which points may exert a strong influence
1S estimates.
program then prints the median m; of each variable j. In the
t output displayed above, the median extraction value is 107
‘median titration value equals 69. On the next line, the dispersion
variable is given, which can be considered as a robust version of
d deviation (the exact definition will be given in Section 1 of
“When large output has been requested, the program then

a list of the standardized observations, in which each measure-
is replaced by

fh‘e'response variable is standardized in the same way). The columns of
€ resulting table each have a median of 0 and a dispersion of 1. This
nables us to identify outliers in any single variable. Indeed, if the
absolute value of a standardized observation is large (say, larger than 2.5)
then it is an outlier for that particular variable. In the Pilot-Plant output
we discover in this way that case 6 has an unusually large extraction
measurement, because its standardized value is 3.73. (Sometimes the
standardized values can tell us that the distribution in a column is skewed,
thereby suggesting data transformation.) The standardization is per-
formed differently when there is no constant term in the
shall see in Section 6.

Next, PROGRESS provides the Pearson (product-moment) correla-
tion coefficients between the variables, as well as the nonparametric
Spearman correlation coefficients.

Before giving the robust estimates, PROGRESS starts with the classi-
cal LS results. A table is printed with the estimated coefficients, along
with their standard error. The standard error of the jth LS regression
coefficient is the square root of the Jth diagonal element of the variance—
~ covariance matrix of the LS regression coefficients, given by UZ(X’X)_I,

regression, as we

World Prog ,;
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40 SIMPLE REGRESSION

where the matrix X is given by

[y o xy,

Xz xn - x.

_xnl xan

The ith row of X equals the vector X; consisting of the p explanatory
variables of the ith observation. The unknown o is estimated by

2 1 En: 2
s = F, 3.2
R=—p ;5" G2

where 7, = y, — §, is the ith residual. The estimated variance—covariance
matrix s°(X'X) ' is also contained in the output. (Because this matrix is
symmetric, only its lower triangular part is given, including the main
diagonal.) For simple regression, p =1 when there is no intercept term,

and p =2 otherwise. In the output, the quantity indicated by SCALE
ESTIMATE is s = Vs>

To construct confidence intervals for the parameters 6, one has to

assume that the errors e, are independently normally distributed with
mean zero and variance ¢”. Under these conditions, it is well known that
each of the quantities

0.— 8

7 4

Sz((XrX)_E)jj , ]= 1, ol (33)

has a Student distribuﬁbn with n — p degrees of freedom. Let us denote
the 1—a/2 quantile of this distribution by 4, ,1_472- Then a
(1-a)x100% confidence interval for 6. is given by

[éj “lupi-a2V Sz((XrX)_l)jj > é; + Ly pii—arzV 52((XIX)71)J]] (3.4)

for each j=1,..., p. The same result can also be used for testing the
significance of any regression coefficient, such as .. The hypetheses are

H,:
H:

=0 (null hypothesis)
0

3.3
7 (alternative hypothesis) . (3-5)

9
0,
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Such a test may be helpful in determining if the jth variable might be
deleted from the model. If the null hypothesis in (3.5) is accepted (for a
certain value of «), then this indicates that the jth explanatory variable
does not contribute much to the explanation of the response variable.
The test statistic for this hypothesis is

)

i

m 5= Yawoan . (3.6)

This ratio corresponds to “T-VALUE” in the output of PROGRESS. The
null hypothesis will be rejected at the level o when the absolute value of
“T-VALUE” is larger than r, —p.1-as2 (In this case we will say that the jth
regression coefficient is significantly different from Zero).

In the present example, n =20 and p =2. The 97.5% quantile (since
we use « =5%) of the Student distribution with n — p =18 degrees of
freedom equals 2.101. Therefore, one can conclude that the LS slope is
not significantly different from zero, because its associated z-value equals
1.719. On the other hand, the intercept t-value equals 8.911, which is
quite significant.

Next to each r-value, PROGRESS also prints the corresponding
(two-sided) “p-value” or “significance level.” This is the probability that
a Student-distributed random variable with n — p degrees of freedom
becomes larger in absolute value than the r-value that was actually
obtained. In order to compute this probability, we used the exact
formulas of Lackritz (1984) as they were implemented by van Soest and
van Zomeren (1986, personal communication). When the p-value is
smaller than 0.05, then the corresponding regression coefficient is signific-
ant at the 5% level. In the above output, the p-value of the LS slope
equals 0.10274 so it is not significant, whereas the p-value of the LS
intercept is given as 0.00000, which makes it significant (even at the 0.1%
level). The printed p-values make hypothesis testing very easy, because
probability tables are no longer necessary.

However, (3.6) has to be used with caution because it is not robust at
all. The distribution theory of this statistic only holds when the errors
really follow a Gaussian distribution, which is rarely fulfilled in practice.
It is therefore advisable to look first at the robust fit in order to be aware
of the possible presence of outliers. In Section 4, we will give some
guidelines based on the residuals resulting from the robust fit for identify-
ing the harmful observations. When it appears that the data set contains
influential points, then one has to resort to the f-values of the RLS
solution, which will be presented below.

World Pro
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42 SIMPLE REGRESSION

In order to obtain an idea of the strength of the linear relationship
between the response variable and the explanatory variable(s), the coef-
ficient of determination (R?) is displayed in the output. R* measures the
proportion of total variability explained by the regression. For the exact
formula one has to distinguish between regression with and without a
constant term. For LS regression, R* can be calculated as

SSE _
RP=1~ ST in the model without constant term

SE
R*=1- DO in the model with constant term,

SSE = residual error sum of squares

\ =2 Gn -9
SST = total sum of squares

n

_ 2

_E J’,- 3
i=1

SST,, = total sum of squares corrected for the mean

=§<y,-—f)2,

Il
S | =

¥

E ¥i
i=1

In the case of simple regression with constant term, the coefficient of
determination equals the square of the Pearson correlation coefficient
between x and y, which explains the notation R>

For the Pilot-Plant data (with outlier), the R* value corresponding to
LS equals 0.141. This means that only 14.1% of the variability in y is
explained by the simple regression model.
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One can also consider testing the hypothesis that R® equals zero.
Formally,

H;: R?*=g (null hypothesis)
Hy: R*#0  (alternative hypothesis) .

(3.7)

These hypotheses are equivalent to testing whether the whole vector of
regression coefficients (except for the constant term if the model has one)
equals the zero vector, that is, (3.7) is equivalent to

H,: All nonintercept 6s are together equal to zero
H,: H,is not true .

(3-8)

This is quite different from the above r-test on an individual regression
coefficient, because here the coefficients are considered together. If

the e; are normally distributed, then the following statistics have an F-
distribution:

R(p-1) _ (SST,, —SSE)/(p —1) N
(1-R*/(n—p) SSE/(n—p) P=1-p

for regression with a constant, and

Rlp _ (SST—SSE)/p .
= Rz) I =) = SSE/(n — p) ~F, .., otherwise.

If the calculated value of the appropriate statistic is less than the
(1— a)th quantile of the associated F-distribution, then H, can be
accepted. If not, H, may be rejected. To facilitate this test, PROGRESS
prints the p-value of the F-statistic. This p-value (again computed accord-
ing to Lackritz 1984) is the probability that an F-distributed random
variable with the proper degrees of freedom exceeds the actual F-value.

For the contaminated Pilot-Plant data we obtain an F-value of 2.955,
with 1 and 18 degrees of freedom. The corresponding p-value is 0.103, so
we have no significance at the 5% level. Consequently, one can say that it
appears from the LS estimates that the explanatory variable does not
really “explain” the response in a significant way, since one cannot reject
H,

The interpretation of t-test, R% and F-test is still valid for the
multidimensional data sets that will be considered in Chapter 3.

When intermediate or large output is requested, the program con-
tinues by listing, for each observation, the actual value of the response

World Progi
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(7:), the estimated response (7,), the residual (r;=y,—7,), and the
standardized residual (r,/s). This table allows us to identify outlying
residuals. However, because case 6 has attracted the LS line so strongly
(see Figure 2), and has also blown up s, its standardized residual is merely
—2.62, which is perhaps slightly conspicuous but in no way dramatic.

The results for LMS regression are printed below the output for LS.
First the estimates of the regression parameters are given, together with a
corresponding scale estimate. This scale estimate is also defined in a
robust way. For that purpose a preliminary scale estimate s is calculated,
based on the value of the objective function, multiplied by a finite sample
correction factor dependent on » and p:

S _5__) 2
s = 1.4826(1 =+ R \;mf:d Fiw

With this scale estimate, the standardized residuals 7,/s” are computed
and used to determine a weight w, for the ith observation as follows:

s {1 if |r/s%|=2.5 (3.9)

0 otherwise .

The scale estimate for the LMS regression is then given by

(3.10)

Z w,—p
i=1

Note that o* also has a 50% breakdown point, which means that it does
not explode (o*— ) or implode (o*— 0) for less than 50% of contami-
nation. More details on this scale estimate will be given in Chapter 5. In
the present example, o* = 1.33, which is much smaller than the LS scale
s =15.6 computed in the beginning.

The LMS also possesses a measure to determine how well the fitted
model explains the observed variability in v. In analogy to the classical
one, we called it also R” or coefficient of determination. In the case of
regression with constant term, it is defined by

2_ med |7,] \*
R —1—(m) (3.11)
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and by

R2=1—(med |r5|)2

med y,] iz

when the model has no intercept term. Here, the

abbreviation “mad”
stands for median absolute deviation, defined as

mad (y;) =med {|y, - med y,} .

Independent of our work, formula (3.11) was also proposed by Kvalseth
(1985). In the Pilot-Plant output the robust coefficient of determination
equals 0.996, which means that the majority of the data fits a linear model
quite nicely.

Also for the LMS, a table with observed Y;» estimated y,, residual r,,
and standardized residual ri/a* is given. It now shows clearly that case 6
is an outlier, because r/g* equals the enormous value of —78.50.

The last part of the output is about reweighted least squares (RLS)

regression. This corresponds to minimizing the sum of the squared
residuals multiplied by a weight w;:

Minimize D, w,r2 . (3.13)
[ i=1

The weights w, are determined from the LMS solution as in (3.9), but

with the final scale estimate o* (3.10) instead of s°. The effect of the

weights, which can only take the values 0 or 1, is the same as deleting the

cases for which w; equals zero. The scale estimate associated with (3.13)
is given by

(3.14)

(One finds again the scale estimate for ordinary LS when putting w,=1
for all cases.) Therefore, the RLS can be soen as ordinary LS on a
“reduced” data set, consisting of only those observations that received a
nonzero weight. Because this reduced data set does not contain regres-
sion outliers anymore, the statistics and inferences are more trustworthy
than those associated with LS on the whole data set. The underlying
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distribution theory is no longer entirely exact (because the weights
depend on the data in a complicated way), but is still useful as a good
approximation, as was confirmed by means of some Monte Carlo trials.

In the present example all w; are equal to 1, except for case 6, which
indeed was the outlier we had produced. The regression coefficients
obtained by RLS strongly resemble those determined in the first step by
LMS. Note that, without the outlier, the slope estimate becomes signific-

antly different from zero.

The determination coefficient for the RLS is defined in an analogous

way as for LS, but all terms are now multiplied by their weight w;. In this
example it is highly significant, because the F-value becomes very large
and hence the corresponding p-value is close to zero.

To end this section, we would like to warn the reader about a common
misunderstanding. When the LS and the RLS results are substantially
different, the right thing to do is to identify the outliers (by means of the’
RLS residuals) and to study them. Instead, some people are inclined to
think they have to choose between the LS and the RLS output, and
typically they will prefer the estimates with the most significant ¢-values or
F-value, often assuming that the highest R? corresponds to the “best”
regression. This makes no sense, because the LS inference is very
sensitive to outliers, which may affect R” in both directions. Indeed, the
least squares R? of any data set can be made arbitrarily close to 1 by
means of one or more leverage points. It often happens that RLS discards
the outliers that were responsible for a high R” and correctly comes to the
conclusion that the R” of the majority is not so high at all (or it may find
that some 6, are no longer significantly different from ZETO).

4. EXAMPLES

on we will further explain the results provided by

In this secti
mples appearing in the

PROGRESS, by means of some real-data exa
literature.

First Word—Gesell Adaptive Score Data

This two-dimensional data setl COTIES from Mickey et al. (1967) and has
been widely cited. The explanatory variable is the age (in months) at
which a child utters its first word, and the response variable is its Gesell
adaptive score. These data (for 21 children) appear in Table 4, and they
are plotted in Figure 5.

Mickey et al. (1967) decided that observation 19 is an outlier, by
etect outliers via stepwise regression.

means of a sequential approach to d
Andrews and Pregibon (1978), Draper and John (1981), and Paul (1983)

Example 1:




Table 4. First Word—Gesell Adaptive Score Data

Child Age in Months Gesell Score
(@) (x) (»)
1 15 95
2 26 7l
3 10 83
4 9 9
5 15 102
6 20 87
7 18 93
8 11 100
9 8 104
10 20 94
11 7 113
12 9 96
13 10 83
14 11 84
15 11 102
16 10 100
17 12 105
18 42 57
19 17 121
20 11 86
21 10 100

Source: Mickey et al. (1967).

100

80

Gesell adaptive score

10 20 30 40

Age at first word (months)
Figure 5. Scatterplot of Gesell adaptive score versus age at first word.
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applied outlier diagnostics to this data set. (The use of such diagnostics
will be discussed in Chapter 6.) The most important results of our own
analysis are given below.

LEAST SQUARES REGRESSION
KK K KRR HOKIOKR KO IOK RO K K

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE

AGE (MONTH)> =1.12699 .31017 —3.63343 00177

CONSTANT 109.87380 5.06780 21.68077 . 00000
SUM OF SQUARES = 2308.58600

DEGREES OF FREEDOM = 1o
SCALE ESTIMATE = 11.02291

VARIANCE — COVARIANCE MATRIX =

.9621D-01
-.1384D+01 . 2568D+02

COEFFICIENT OF DETERMINATION (R SQUARED) = . 40987

THE F-VALUE = 13.202 (WITH 1 AND 19 DF) P — VALUE = .00177
OBSERVED ESTIMATED RESIDUAL NO RES/SC

GESELL SC. GESELL SC.
©5.00000 92.96001 2.0309¢9 1 .18
71.00000 80.57213 ~9.57213 2 -.87
83.00000 98.60395 —-15.60395 3 -1.42
©1.00000 65.73094 —-8.73094 4 -.79
102. 00000 52.96901 . 03099 5 .82
87.00000 87.33406 —.33406 6 -=. 03
93.00000 89.58804 3.41196 7 .31
100. 00000 . 47696 2.52304 8 .23
104,00000 100.85790 3.14207 2 29
00000 87.33406 6.66594 10

57.00000 62.54031 -5.54031 18 =

121.00000 90.71503 30.28497 19 2.75
86. 00000 97.47696 ~-11.47696 20 -1.04
100.00000 98.60395 1.38605 21 .18

KKK KKK AR KRR KRR KR KKK KKK KKK KR A KRR KK R K KRR KRR KKK KKK KKK KK KK Ak KK Kok ok

LEAST MEDIAN OF SQUARES REGRESSION
SRR AR HOK SO K KK RCKOR AR K KKK X KKk KKk K

VARIABLE COEFFICIENT

AGE (MONTH) -1.50000
CONSTANT 119. 75000

FINAL SCALE ESTIMATE = 8.83928
COEFFICIENT OF DETERMINATION = . 44460

OBSERVED ESTIMATED RESIDUAL FO RES/SC
GESELL SC. GESELL SC.
95. 00000 97.25000 -2.25000 1 =.25
71.00000 80.75000 -9, 75000 2 -1.10
83.00000 104.75000 —21.75000 3 -2.46
91, 00000 106.25000 -15.25000 4 -1.73
102. 00000 S7.25000 4,.75000 =3 .54
87.00000 89.75000 —-2.75000 6 -=.31
93. 00000 92.75000 . 25000 7 .03
100.00000 103.25000 —3.25000 8 -.37
104.00000 107.75000 -3.75000 9 —-.42
94.00000 89.75000 25000 10 + 48
113.00000 109.25000 3.75000 11 A2
00000 . 25000 —-10.25000 iz -1.16
83.00000 104.75000 —-21.75000 3 -2.46
4.00000 103.25000 —-19.25000 14 -2.18
102. 00000 103.25000 -1.25000 i5 -.14
100.00000 1 .

< - .25000 8 .03
121.00000 94, 25000 26.75000 19 3.03
86.00000 103.25000 =17.25000 20 =1.95
100. 00000 104.75000 -4,75000 21 -.54

HORSKK KK KO K KKK KK KKK KKK KKK KKK KKK KK ok KKKk KKK oK Kk KKK Kk KKK B KKk KRR KKK KKK o Kok
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REWEIGHTED LEAST SQUARES BASED ON THE LMS
***X***¥X****************X***X********X*#

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE
AGE (MONTH)> -1.19331 . 24348 —4,90100 .0001;
CONSTANT 109.30470 3.96997 27.53290 . 00000
WEIGHTED SUM OF SQUARES = 1340. 02400
DEGREES OF FREEDOM = i8
SCALE ESTIMATE = 8.62820

VARIANCE - COVARIANCE MATRIX =

.5928D-01
—.8448D+00 . 1576D+02
COEFFICIENT OF DETERMINATION (R SQUARED) = -57163
THE F~VALUE = 24.020 (WITH 1 AND 18 DF) P - VALUE = .o00012
THERE ARE 20 POINTS WITH NON-ZERO WEIGHT.
AVERAGE WEIGHT = . 95238

OBSERVED ESTIMATED RESIDUAL DO REB/SC WEIGHT
GESELL SC. GESELL ScC.

85. 00000 91. 40502 3.59498 1 42 1.0
71,00000 78.27860 ~7.27860 2 -.84 1.0
83.00000 97.37157 —14.37157 3 =1, B¢ 1.0
91.00000 98.56488 -7.56488 4 -.88 1.0
102.00000 91.40502 10.59498 =3 1.23 i.0
00000 85.43846 1.56154 6 .18 1.0

93, 00000 87.82509 5.17491 T .60 1.0
100. 00000 56. 17826 3.82174 8 .44 1.0
104.00000 99.75819 4.24181 =] .49 1.0
94.00000 85.43846 8.561564 10 .99 1.0
113.00000 100.95150 12. 04849 11 1.40 1.0
96. 00000 98.56488 -2.56488 12 -.30 1.0
83.00000 97.37157 -14.37157% 13 -1.67 1.0
84.00000 96, 17826 -12.17826 14 =-1.41 1.0
102. 00000 $6.17826 5.82174 15 .67 1.0
100.00000 87.37157 2.62843 16 .30 1.0
105. 00000 54.98455 10.01505 17 1.16 1.0
00000 59. 18563 -2.18563 18 =.25 1.0
121.00000 89.01840 31.98160 15 3.71 .0
86.00000 96. 17826 -10.17826 20 -1.18 1.0
100. 00000 97.37157 2.62843 21 .30 1.0

Because medium-sized output was requested, PROGRESS gives for
cach estimator a table with the observed response variable (y,), its
estimated value (7,), the residual (r,), and the standardized residual
(denoted by “RES/SC”). The standardized residuals for each regression
are obtained by dividing the raw residuals by the scale estimate of the fit.
A supplementary column with weights is added to the table for RLS
regression. (These weights are determined from the LMS solution, as
described in Section 3.) In this example, the case with index 19 received a
zero weight. Indeed, this case has been identified as outlying because it
has a large residual from the LMS fit. The equations of the LS and the
RLS do not differ very much for this data set. The pair of points 2 and 18
has pulled the LS in the “good” direction. These points are good leverage
points and possess small LMS residuals as well as small LS residuals.
(The deletion of one or both of these points would have a considerable
effect on the size of the confidence intervals.) One might even say that
this data set is not a very good example of linear regression because
deleting the leverage points (2 and 18) would not leave much of a linear
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50 SIMPLE REGRESSION

relationship between x and y. (We will return to this at the end of
Section 6.)

Example 2: Number of Fires in 1976 -1980

This data set (listed in Table 5) shows the trend from 1976 to 1980 of the
number of reported claims of Belgian fire-insurance companies (from the
annual report of the Belgian Association of Insurance Companies). It is
included here to have an example with very few points.

When looking at the scatterplot in Figure 6, one notices a slight
upward trend over the years. However, the number for 1976 is extraordi-
narily high. The reason lies in the fact that in that year the summer was
extremely hot and dry (compared to Belgian standards), causing trees and

Table 5. Number of Fire Claims in Belgium from 1976
to 1980

Year Number of Fires
(x:) (¥:)
76 16,694
77 12,271
78 12,904
79 14,036
80 13,874

Fire claims

14,000

76 77 78 79 80
Year

Figure 6. Number of fire claims in Belgium for the years 1976-1980.
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bushes to catch fire spontaneously. It is striking that the LS y=
—387.5x +44180.8 (dashed line) and the LMS § = 534.3x — 28823 .3 (solid
line) are very different. The LS fits the data with a decreasing trend,
whereas the LMS line increases. The outlier lies on the outside of the
x-range and causes LS to grossly misbehave. It does not even possess the
largest LS residual. This example shows again that examination of the LS
residuals is not sufficient to identify the outlier(s).

Of course, in such a small data set one cannot draw any strong
statistical conclusions, but it does show that one should think carefully
about the data whenever LS and LMS yield substantially different results.

Example 3: Annual Rates of Growth of Prices in China

Table 6 contains the annual rates of growth of the average prices in the

main cities of Free China from 1940 to 1948 (Simkin 1978). For instance,

in 1940 prices went up 1.62% as compared to the previous year. In 1948 a

huge jump occurred as a result of enormous government spending, the

budget deficit, and the war, leading to what is called hyperinflation.
The LMS regression equation is given by

y=0.102x —2.468 ,
whereas the LS estimate corresponds to

7 =24.845x — 1049.468 ,

Table 6. Annual Rates of Growth of Average Prices in the Main Cities of Free
China from 1940 to 1948

Year Growth of Prices Estimated Growth
(x;) (y:) By LMS By LS
40 1.62 1.61 —55.67
41 1.63 1.71 -30.82
42 1.90 1.82 —5.98
43 2.64 1.92 18.87
44 2.05 2.02 43.71
45 243 2.12 68.56
46 1.94 2.22 93.40
47 15.50 2.33 118.25
48 364.00 2.43 143.09

Source: Simkin (1978).

World Pro
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which is totally different. To show which of these lines yields the better

fit, Table 6 lists the estimated values by both methods. The LMS provides .
a fair approximation to the majority of the data, except of course for the

last two years, where the observed y, go astray. On the other hand, the

LS fit is bad everywhere: The estimated j, is even negative for the first ;
three years, after which it becomes much too large, except for the 1948
value, which it cannot match either. Least squares smears out the effect
(of nonlinearity of the original data) over the whole column, whereas i
LMS fits the majority of the data (where it is indeed linear) and allows ;
the discrepancy to show up in those two years where actually something :
went wrong. Applying PROGRESS to this data set yields (among other 1
things) the following output: :

SAKKACK KR K SORCK KRR OK AR KKK SRR IR O ORICK SRR KOk K K
% ROBUST REGRESSION WITH A CONSTANT TERM., X
FAHERIIRACKR KKK KKK KKK KKK KK K HORK KKK kK K

HUMBER OF CASES = 9
NUMBER OF COEFFICIENTS (INCLUDING CONSTANT TERM) = 2

THE EXTENSIVE SEARCH VERSION WILL BE USED
DATA SET = ANNUAL RATES OF GROVTH OF PRICES IN CHINA
THERE ARE NO MISSING VALUES.

ANNUAL RATES OF GROWTH OF PRICES IN CHINA

OBSERVED
PRICEGROWT I-+-———+ + + ¥ + + + + I
I
.3640E+03 Y i 3
I
I I
I I
I I
+ +
I I
I I
1 I
I I
+ +
I I
1 1
I 1
1 I
+ +
I 1
I I
I 1
T I
+ +
I I
1 I
I I
1 I
+ +
I I
% I
I
I I
+ +
I E
I I
18 i
I I
+ +
I I
I 1 I
% 1. 1 1 1 1 %
. 1620E+01 ; b 1 +
I
I—4- + + + + + —+ + + s +—1
. 4000E+02 . 4800E+02

OBSERVED YEAR
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MEDIANS =

YEAR PRICEGROWT
44.0000 2.0500

DISPERSIONS =

YEAR PRICEGROWT
2.9652 . 6227

THE STANDARDIZED OBSERVATIONS ARE:
YEAR PRICEGROWT
. 349 -.6906

1 = 0

2 -1.0117 -.6745
3 —-. 6745 -.2409
4 -.3372 L9475
5 0000 - 0000
<] 3372 . 1285
4 6745 = 176
8 1.0117 21,5998
S 1.3490 581.2665

PEARSON CORRELATION COEFFICIENTS BETWEEN THE VARIABLES
{ PRICEGROVT IS THE RESPONSE VARIAELE)

YEAR 1.00
PRICEGROWT .57 1.00

SPEARMAN RANK CORRELATION COEFFICIENTS BETVWEEN THE VARIABLES
¢ PRICEGROWT IS THE RESPONSE VARIABLE)

YEAR 1.00
PRICEGROWT .85 1.00

x***x*x**x***x*****x*x********xx****x****xx*x******x*********x**x*x*x****x****

LEAST SQUARES REGRESSION
RAIKKKKICKK R KRR KRR KKK

VARIABLE COEFFICIENT  STAFD. ERROR T - VALUE P - VALUE
T yEaw 24.84500 13.67404 1.81695 . 11207
CONSTANT -1049. 46800 602, 69280 -1.74130 12517
SUM OF SQUARES = 78531, 34000
. DEGREES OF FREEDOM = 7
SCALE ESTIMATE = 105. 51870

VARIANCE — COVARIANCE MATRIX =

. 1870D+03
-.8227D+04 .3632D+06

COEFFICIENT OF DETERMINATION (R SQUARED) = . 32047
THE F-VALUE = 3.301 (WITH 1 AND 7 DF) P - VALUE = .11207

OBSERVED ESTIMATED RESIDUAL HO RES/SC
PRICEGROWT PRICEGROVT
1.62000 -55.66766 57.28766 k5 .54
1.63000 —-30.82269 32. 45269 2 .31
1.80000 -56.97766 7.87766 3 .07
2.64000 18.86731 -16.22731 4 -.15
2.05000 43.71228 -41.66228 5 -.39
2.13000 68.55737 —66.42738 8 =.63
1.94000 $3.40234 -91.46234 7 -.86
15.50000 118.24730 =102, 74730 8 —. 97
364.00000 143. 09230 220.90770 ] 2.09

World Prograt
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ANNUAL RATES OF GROVTH OF PRICES IN CHINA

SIMPLE REGRESSION

-——LEAST SQUARES-——

STAND. RESIDUAL I-+-— + + + T + + +
R R R e R o T L S PP

bl bt b bt et et b b s bt bt el o b b et bt o B et e b o b ol b et e et ot b et

2.5 dhbtdbrdb bbbt bbb bbb bbb bbb bbb bbb bR bbb bbb b

B T T B T P A L A R S

]

—.5567E+02

ESTIMATED PRICEGROVWT

41*]*4!4%1}1‘!*&1‘4*!44*“*llliliJI\JJIJ«FK#*J‘K**K*J\JJ&&I-*II*4**-‘*!ll&xlll&l**#-ﬁl!lll*

LEAST MEDIAN OF SQUARES REGRESSION
KAHH KA KKK oKk Rk koK

COEFFICIENT
TEAR . 10200
CONSTANT -2.46800
FINAL SCALE ESTIMATE = . 15475
COEFFICIENT OF DETERMINATION = . 93824
OBSERVED ESTIMATED RESIDUAL
PRICEGROWT PRICEGROVT
1.62000 1.61200 . 00800
1.63000 1.71400 -.08400
1.90000 1.81600 108400
2.64000 1.91800 172200
2.05000 2.02000 . 03000
2.13000 2.12200 . 00800
1.94000 2.22400 -.28400
15.50000 2.32600 13.17400
364.00000 2.42800 351.57200

CEAONEON0E




ANNUAL RATES OF GROWTH OF PRICES IN CHINA
—~—~LEAST MEDIATN OF SQUARES ——
STAND. RESIDUAL I-+ + + - + + + + + + +
. 2336E+04

[y
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1
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1 1 I
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0.0 I-1 IR e e GRS L
I o i o S SO T ,4++++++++++;
I %
I-+ + + +-1
-1612E+01 L 2428E+01

ESTIMATED PRICEGROWT

Note that observations 8 and 9 are outliers in the y-direction, which
show up in the second column of the standardized data. Also, the
Spearman rank correlation is much higher than the Pearson correlation
because the outliers have disturbed the linear relation, whereas they obey
the near-monotone relation between both variables.

For this example, we will discuss the residual plots (printed above)
provided by PROGRESS. They display the standardized residual versus
the estimated value of the response. An index plot is similar, except it
contains the standardized residual plotted versus the index of the observa-
tion. (This makes it easier to find which observation corresponds to a
_given point in the plot. The index plot is also useful because the indices
~often reflect the order in which the observations were measured, so it
may reveal sudden changes in the data recording process.) In both plots,
-a dashed line is drawn through zero, and a horizontal band on the interval
—2.5,2.5] is marked. These lines facilitate the interpretation of the

World Progra
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56 SIMPLE REGRESSION

results. When the observed value y, equals the estimated value ¥;, then
the resulting residual becomes zero. Points in the neighborhood of this
zero line are best fitted by the model. If the residuals are normally
distributed, then one can expect that roughly 98% of the standardized
residuals will lie in the interval [—2.5, 2.5]. Thus, observations for which
the standardized residuals are situated far from the horizontal band can
be identified as outlying.

The first residual plot in the above output shows how the LS fit masks
the bad point. The LS has been pulled away by this outlier, and its scale
estimate has exploded. The LS residual associated with the outlier even
lies within the horizontal band. Because of this effect, the interpretation
of a residual plot corresponding to the LS estimator is dangerous. In the
residual plot of the LMS, the outlier is very far away from the band.
Residual plots corresponding to robust estimators are even more useful in
problems with several variables, as will be illustrated in Chapter 3.

These graphical tools are very convenient for spotting the outlying
observations. The LS result can be trusted only if the residual plots of
both the robust and nonrobust regression methods agree closely.

Besides the identification of outliers, the residual plot provides a
diagnostic tool for assessing the adequacy of the fit and for suggesting
transformations. An ideal pattern of the residual plot, which indicates an
adequate model and well-behaved data, is a horizontal cloud of points
with constant vertical scatter. Anomalies in the pattern of residuals can
lead to several courses of action. For instance, the plot may indicate that
the variance of the residuals increases or decreases with increasing
estimated y or with another variable. (See the education expenditure data
in Section 3 of Chapter 3 for an illustration.) This is called heteroscedas-
ficity, in contrast to the classical model where the errors have a constant
variance, in which case we speak of homoscedasticity. This problem may
be approached by applying a suitable transformation on either an ex-
planatory or the response variable. If this heteroscedasticity appears in an
index plot, then one should turn back to the origin of the data in order to
look for the cause of the phenomenon. For example, it could be that a
time-related variable has to be included in the model.-Also, other model
failures may be visible in residual plots. A pattern resembling a horseshoe
may be caused by nonlinearity. (See the cloud point data in Section 3 of
Chapter 3 for an example.) In such a situation, a transformation on an
explanatory or on the response variable, or an additional squared term or
a cross-product term in the model, or the addition of an extra explanatory
variable may be required. (In many applications of regression, there is a
substantial amount of prior knowledge that can be useful in choosing
between these possibilities.)
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Example 4: Brain and Weight Data

Table 7 presents the brain weight (in grams) and the body weight (in
kilograms) of 28 animals. (This sample was taken from larger data sets in
Weisberg 1980 and Jerison 1973.) It is to be investigated whether a larger
brain is required to govern a heavier body.

A clear picture of the relationship between the logarithms (to the base
10) of thesc measurements is shown in Figure 7. This logarithmic

Table 7. Body and Brain Weight for 28 Animals

Index Body Weight* Brain Weight®
(5 Species (=) (r:)
1 Mountain beaver 1.350 8.100
2 Cow 465.000 423.000
3 Gray wolf 36.330 119.500
4 Goat 27.660 115.000
5 Guinea pig 1.040 5.500
6 Diplodocus 11700.000 50.000
7 Asian elephant 2547.000 4603.000
8 Donkey 187.100 419.000
9 Horse 521.000 655.000
10 Potar monkey 10.000 115.000
11 Cat 3.300 25.600
12 Giraffe 529.000 680.000
13 Gorilla 207.000 406.000
14 Human 62.000 1320.000
15 African elephant 6654.000 5712.000
16 Triceratops 9400.000 70.000
17 Rhesus monkey 6.800 179.000
18 Kangaroo 35.000 56.000
19 Hamster 0.120 1.000
20 Mouse 0.023 0.400
21 Rabbit 2.500 12.100
22 Sheep 55.500 175.000
23 Jaguar 100.000 157.000
24 Chimpanzee 52.160 440.000
25 Brachiosaurus 87000.000 154.500
26 Rat 0.280 1.900
27 Mole 0.122 3.000
28 Pig 192.000 180.000
“In kilograms.
*In grams.

Source: Weisberg (1980) and Jerison (1973).
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Figure 7. Logarithmic brain weight versus logarithmic body weight for 28 animals with LS
(dashed line) and RLS fit (solid line).

transformation was necessary because plotting the original measurements
would fail to represent either the smaller or the larger measurements.
Indeed, both original variables range over several orders of magnitude. A
linear fit to this transformed data would be equivalent to a relationship of
the form

" 2, B
y=0x"

between brain weight (y) and body weight (x). Looking at Figure 7, it

seems that this transformation makes things more linear. Another impor-

tant advantage of the log scale is that the heteroscedasticity disappears.
The LS fit is given by

log ¥ =0.49601 log x + 1.10957

(dashed line in Figure 7). The standard error associated with the slope
equals 0.0782, and that of the intercept term is 0.1794. In Section 3, we
explained how to construct a confidence interval for the unknown regres-
sion parameters. For the present example, n = 28 and p = 2, 50 one has to
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use the 97.5% quantile of the ¢-distribution with 26 degrees of freedom,
which equals 2.0555. Using the LS results, a 95% confidence interval for
the slope is given by [0.3353; 0.6567]. The RLS yields the solid line in
Figure 7, which is a fit with a steeper slope:

log 7 =0.75092 log x + 0.86914 .

The slope estimated by the RLS technique even falls outside the 95%
confidence interval associated with the LS fit! The standard error of the
regression coefficients in RLS is reduced remarkably as compared with

Table 8. Standardized LS and RLS Residuals for the Brain and Body Weight Data
Standardized LS Standardized RLS

Index Species Residuals Residuals w,
1 Mountain beaver —0.40 —0.27 1
2  Cow 0.29 —1.13 1
3 Gray wolf 0.29 0.17 1
4 Goat 0.36 0.50 1
5 Guinea pig ~(/57 —0.65 1
6  Diplodocus =2.15 —10.19 0
7  Asian elephant 1.30 1.08 1
8  Donkey 0.58 0.21 1
9  Horse 0.54 —-0.43 1

10 Potar monkey 0.68 ' 2.02 1
11 Cat 0.06 0.68 1
12 Giraffe 0.56 -0.37 1
13 Gorilla 0.53 0.00 1
14  Human 1.69 4.15 0
15 African elephant 1.13 0.08 1
16 Triceratops —1.86 =9.20 0
17 Rhesus monkey 1.10 3.47 0
18  Kangaroo —0.19 —1.29 1
19 Hamster —0.98 —0.81 1
20  Mouse —1.04 -0.17 1
21 Rabbit —0.34 —0.39 1
22 Sheep 0.40 0.29 1
23 Jaguar 0.14 —0.80 1
24 Chimpanzee 1.02 2.22 1
25  Brachiosaurus —2.06 —10.94 0
26 Rat —0.84 —0.80 1
.27 Mole -0.27 1.35 if
28  Pig 0.02 —=1:50 1

Page



60 SIMPLE REGRESSION

the LS, namely 0.0318 for the slope and 0.0618 for the constant term. A
95% confidence interval for the unknown slope is now given by [0.6848;
0.8171], which is narrower than the interval coming from LS. The r-values
associated with the RLS regression coefficients are very large, which
implies that the slope and intercept are significantly different from zero.
Moreover, the determination coefficient R*, which is a summary measure
for overall goodness of fit, increases from 0.608 for LS to 0.964 for RLS.
This example shows that not only the LS regression coefficients, but also
the whole LS inference, may become doubtful in the presence of outliers.

Table 8 lists the standardized LS and RLS residuals and the w,
determined on the basis of the LMS. From the RLS, it is easy to detect
unusual observations and to give them special consideration. Indeed,
looking at the five cases with zero w;, one can easily understand why they
have to be considered as outlying. The most severe (and highly negative)
RLS residuals are those of cases 6, 16, and 25, which are responsible for
the low slope of the LS fit. These are three dinosaurs, each of which
possessed a small brain as compared with a heavy body. In this respect
they contrast with the mammals which make up the rest of the data set.
The LMS regression also produced a zero weight for cases 14 and 17,
namely the human and the rhesus monkey. For them, the actual brain
weight is higher than that predicted by the linear model. Unlike the
dinosaurs, their residuals are therefore positive. Concluding, one could
say that dinosaurs, humans, and rhesus monkeys do not obey the same
trend as the one followed by the majority of the data.

5. AN ILLUSTRATION OF THE EXACT FIT PROPERTY

The phrase “exact fit” stands for situations where a large percentage of
the observations fits some linear equation exactly. For example, in simple
regression this happens when the majority of the data ke exactly on a
straight line. In such a case a robust regression method should recover
that line. At an Oberwolfach Meeting, Donoho (1984) called this the
exact fit property. For instance, the repeated median satisfies this property
(Siegel 1982), as well as the LMS (Rousseeuw 1984). When at least
n—[n/2] + 1 of the observations lie on the same line, then the equation
of this line will be the LMS solution. More details on the exact fit
property and its relation to the breakdown point can be found in Section
4 of Chapter 3.

The data in Table 9 come from Emerson and Hoaglin (1983, p. 139).
They were devised by A. Siegel as a counterexample for the resistant line
estimator (which will be briefly discussed in Section 7). Looking at the
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Table 9. Siegel’s Data Set

i X; ¥:
1 -4 0
2 =3 0
3 =2 0
4 =] 0
5 0 0
6 1 0
7 2 =5
8 3 5
9 12 1

Source: Emerson and Hoaglin (1983).

scatterplot of these data (Figure 8), Emerson and Hoaglin suggest that a
line with slope 0 would be a reasonable summary. Indeed, six out of the
nine points actually lie o the line with zero slope and zero intercept. By
running PROGRESS we see that least median of squares yields this line
exactly, unlike least squares.

Exact fit situations also occur in real data. One example has to do with
the use of an electron microscope in crystallography. Several discrete
variables (such as the number of edges and certain symmetry properties)
are observed for a large number of ““cells” (consisting of molecules) in a

T A N A A I T
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Figure 8. Example of exact fit: Scatt
LMS fit (solid line).

erplot of Siegel's data set with LS (dashed line) and
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regular lattice. In practice, most of these cells are good (and hence fit
exactly), whereas a fraction are damaged by the radiation of the micro-
scope itself.

6. SIMPLE REGRESSION THROUGH THE ORIGIN

When it is known in advance that the intercept term is zero, then one has
to impose this on the model. This leads to equation (1.2) in Section 1 of
this chapter.

Afifi and Azen (1979, p. 125) give an example (copied in Table 10)
where such a model is suitable. The data concern the calibration of an
instrument that measures lactic acid concentration in blood. One com-
pares the true concentration x; with the measured value y,. The explana-
tory variable in this data set is designed. This means that its values are
fixed in advance. Consequently, such a data set does not contain leverage
points. The scatterplot in Figure 9 displays a roughly linear relationship

Table 10. Data on the Calibration of an Instrument
that Measures Lactic Acid Concentration in Blood

Index True Concentration Instrument
® (x) (x)
1 1.0 14
2 1.0 0.7
3 1.0 1.8
4 1.0 0.4
5 3.0 3.0
6 3.0 1.4
7 3.0 4.9
8 3.0 4.4
9 3.0 4.5
10 5.0 7.3
11 5.0 8.2
12 5.0 6.2
13 10.0 12.0
14 10.0 13.1
15 10.0 12.6
16 10.0 13.2
17 15.0 18.7
18 15.0 19.7
19 15.0 17.4
20 15.0 17.1

Source: Afifi and Azen (1979).
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15.0

10.0

Measured concentration

5.0

0.0 S Y
0.0 5.0 10.0 15.0

True concentration

Figure 9. Scatterplot of the data in Table

LS estimator corresponds to the dashed Jin
line.

10. A model without intercept term is used. The
e and the LMS estimator corresponds to the solid

between both variables. Indeed, for this example the LS (dashed line)
and the LMS (solid line) almost coincide. However, the literature also
contains calibration data with outliers. Massart et al. (1986) apply the
LMS to detect outliers and model errors in some real-data examples from
analytical chemistry.

Let us now look at data used in Hampel et al. (1986, Chapter 6),
which are reproduced here in Table 11. They are measurements of water
flow at two different points (Libby, Montana and Newgate, British
Columbia) on the Kootenay river in January, for the years 1931-1943.
The original data came from Ezekiel and Fox (1959, pp. 57-58), and
Hampel et al. changed the Newgate measurement for the year 1934 to
15.7 for illustrative purposes (thereby converting a “good” leverage point
mnto a “bad” one).

For each variable j, PROGRESS will now compute another type of
dispersion,

s;=1.4826 med lx,l, (6.1)

because it is logical to consider the deviations from zero (and not from
Some average or median value). For the same reason, the data are
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Table 11. Water Flow Measurements in Libby and

Newgate on the Kootenay River in January for the
Years 1931-1943

Libby Newgate
Year (x) (y:)
31 27.1 19.7
_ 32 20.9 18.0
33 33.4 26.1
3 34 716 15:7°
35 37.0 26.1
36 21.6 19.9
37 17.6 15.7
38 35.1 27.6
39 32.6 24.9
40 26.0 23.4
41 27.6 23.1
42 38.7 31.3
43 27.8 23.8

“The original value was 44.9.
Source: Ezekiel and Fox (1959).

0.0 tlr!!rlllfllltlllll
0.0 20.0 40.0 60.0

Libby

Figure 10. Scatterplot of the water flow in Libby and Newgate, with LS (dashed line) and
LMS fit (solid line).
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standardized by replacing each x; by

i
;}f ) (6.2)

which is printed when large output was requested. For the Kootenay
data, this yields the following output:

DISPERSION OF ABSOLUTE VALUES=
41.2163 34.6928

THE STANDARDIZED OBSERVATIONS ARE:

LIBBY NEWGATE
1 0.6575 0.5678
2 0.5071 0.5188
3 0.8104 0.7523
4 1.8828 0.4525
5 0.8977 0.7523
6 0.5241 0.5736
7 0.4270 0.4525
8 0.8516 0.7956
9 0.7909 0.7177
10 0.6308 0.6745
11 0.6696 0.6658
12 0.9389 0.9022
13 0.6745 0.6860

This shows us that case 4 (the year 1934) is a leverage point.

Estimating the unknown slope with the LS technique and the LMS
technique gives rise to the dashed and the solid lines in Figure 10.

The LS line (7 = 0.5816x) is attracted by the leverage point associated
with the year 1934. On the other hand, this contaminated case produces a
large standardized residual with respect to the LMS fit given by j =
0.8088x. The coefficient of determination corresponding to this fit is
rather large too, namely 0.997, whereas it was only 0.798 for the LS fit.
From the scatterplot in Figure 10, it appears that the LMS fits the good
points very closely, whereas the LS fit fails to give a good prediction for
the response variable because its slope is too small.

*7. OTHER ROBUST TECHNIQUES FOR SIMPLE REGRESSION

During the past 50 years, many techniques have been proposed for
estimating slope and intercept in a simple regression model. Most of them
do not attain a breakdown point of 30%, as will be shown by means of
the breakdown plot discussed below.

Emerson and Hoaglin (1983) give a historical survey that contains
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some explanation about the techniques of Wald (1940), Nair and Shrivas-
tava (1942), Bartlett (1949), and Brown and Mood (1951). These regres-
sion methods are all based on the idea of splitting up the data set and
then defining a summary value in each group. They testify to the concern
about the dramatic lack of robustness of least squares regression, but can
only be applied to simple regression.

The resistant line method of Tukey (1970/1971) is a variant of some of
these first approaches to robust estimation. This “pencil-and-paper”
technique for fitting a line to bivariate data starts from a partition of the
data set into three parts, as nearly equal in size as possible. This
allocation is performed according to the smallest, intermediate, and
largest x-values. Tied x-values are assigned to the same group. Then, the
resistant slope is determined such that the median of the residuals in the
two outermost groups (L stands for left, and R stands for right) are
equal, that is,

I?EELd (y;—bix;) = I?EeRd (3= 6x,), (7.1)

and the intercept is chosen to make the median residuals of both groups
zero. The worst-case bound on the available protection against outliers
for this technique is 1/6 because one uses the median, which has a
breakdown point of 1/2, in both groups. Velleman and Hoaglin (1981)
provide an algorithm and a portable program for finding the resistant
line. Some theoretical and Monte Carlo results on this estimator are
provided by Johnstone and Velleman (1985b). The Brown and Mood
(1951) technique is defined in a similar way, but with two groups instead
of three. As a consequence, the breakdown point for this technique
increases to 1/4.

Andrews (1974) developed another median-based method for obtain-
ing a straight-line fit. He starts by ordering the x-values from smallest to
largest. Then he eliminates a certain number of the smallest and of the
largest x-values, and also a certain number of the values in the neighbor-
hood of the median x-value. Of the two remaining subsets of x-values, he
calculates the medians (med x, and medx,). For the corresponding
y-values, the medians are calculated too (med y, and med y,). The slope
of the fit is then defined as

~ medy,—medy,

1

med x, — med x,

The breakdown point of this procedure is at most 25% because half of the
data in either subset can determine the fitted line. Andrews generalized
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this technique to multiple regression by applying a so-called “sweep”
operator. This means that at each iteration the dependence of one
variable on another is removed by adjusting a variable by a multiple
(determined in an earlier stage) of another. The same idea has been used
to generalize the resistant line (Johnstone and Velleman 1985b, Emerson
and Hoaglin 1985).

Another group of simple regression estimators uses the pairwise slopes
as building stones in their definition, without splitting up the data set.

Theil (1950) proposed as an estimator of 51 the median of all C? slopes,
namely

fi= et H7% (1.2)

¥ = i
1=i<j=n xj = xi

which possesses a high asymptotic efficiency. Sen (1968) extended this
estimator to handle ties among the x,. It turns out that the breakdown
point of these techniques is about 29.3%. This value can be explained by
the following reasoning: Since the proportion of “good” slopes has to be
at least 1/2, one needs that (1 — ¢)° be at least 1/2, where & is the fraction
of outliers in the data. From this it follows that

e<1-(1/2)"?=0.293. (7.3)

More recently, Siegel (1982) increased the breakdown point to 50% by
means of a crucial improvement, leading to the repeated median es-
timator. In this method, one has to compute a two-stage median of the
pairwise slopes instead of a single median such as in (7.2). The slope and
intercept are then defined as

~ Yi= Y
6, = med med ~-——
i Vi x]*x!

(7.4)

éz =med (y, — élxs) .

This list of simple regression techniques is not complete. Several other
methods will be dealt with in Section 6 of Chapter 3.

In order to compare the fit obtained by different regression methods in
the presence of contamination, we considered an artificial example.

Thirty “good” observations were generated according to the linear
relation

¥, =1.0x 420+, (7.5)

World Progra
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where x, is uniformly distributed on [1,4], and ¢, is normally distributed
with mean zero and standard deviation 0.2. Then a cluster of 20 “bad”
observations was added, possessing a spherical bivariate normal distribu-
tion with mean (7,2) and standard deviation 0.5. This yielded 40% of
contamination in the pooled sample, which is very high. Actually, this
amount was chosen to demonstrate what happens if one goes above the
breakdown point of most estimators for simple regression. Let us now see
which estimator succeeds best in describing the pattern of the majority of
the data. The classical least squares method yields é{ =—0.47 and 6, =
5.62: It clearly fails because it tries to suit both the good and the bad
points. Making use of the ROBETH library (Marazzi 1980), three robust
estimators were applied: Huber’s M-estimator [Chapter 1, equation
(2.10)] with ¢(x)=min (1.5, max (=1.5,x)), Mallows’ generalized M-
estimator [Chapter 1, equation (2.12)] with Hampel weights, and
Schweppe’s generalized M-estimator [Chapter 1, equation (2.13)] with
Hampel-Krasker weights (both Mallows’ and Schweppe’s estimators use
the same Huber function). All three methods, however, gave results
virtually indistinguishable from the LS solution: the four lines almost
coincide in Figure 11.

The repeated median estimator (7.4) yields 91 =0.30 and 6§, =3.11. If
the cluster of “bad” points is moved further down, the repeated median
line follows it a little more and then stops. Therefore, this method does
not break down, although in this particular example it does not yield a

6.00

4.00

2.00

]lll|]l|;|lll|l

2.00 4.00 6.00 8.00

Figure 11. Regression lines for the simulated data using six methods (RLS, reweighted least
squares based on LMS; LS, least squares; M, Huber’s M-estimator; GM, Mallows’ and
Schweppe’s generalized M-estimators; RM, repeated median). Source: Rousseeuw (1984),
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very good fit. On the other hand, the LMS-based RLS yields 6, =0.97
and 52 =2.09, which comes quite close to the original values of 6, and 6,.
When the cluster of bad points is moved further away, this solution does
not change any more. Moreover, the RLS method does not break down
even when only 26 “good” points and 24 outliers are used.

The breakdown properties of these estimators were investigated more
extensively in a larger experiment. To begin with, we generated 100
“good” observations according to the linear relation (7.5). To these data,
we applied the same fitting techniques as in the above example (see
Figure 11). Because the data were well behaved, all estimators vielded
values of 6, and 8, which were very close to the original 6, and 6,. Then
we started to contaminate the data. At each step we deleted one “good”
point and replaced it by a “bad” point generated according to a bivariate
normal distribution with mean (7,2) and standard deviation 0.5, We
repeated this until only 50 “good” points remained. The LS was im-
mediately affected by these leverage points, so the estimated slope 6,
became negative, moving away from the ideal value 6, =1.0. In Figure
12, the value of , is drawn as a function of the percentage of outliers. We
call this a breakdown plot.

1.0

Estimated slope
o
3]

o
(=]

-05 =

L 0y Vg v Pog b §oy a e Lo o d

0 10 20 30 40 50
Percentage of contamination

Figure 12. Breakdown plot, showing the estimated slope as a function of the percentage of

contamination. The estimators are those of Figure 11, applied to a similar data configura-
tion. Source: Rousseeuw et al. (1984b). .
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We see that LS breaks down first and is then followed by the
Huber-type M-estimator and the GM-estimators. (The best of those
appears to be the Mallows estimator with Hampel weights, which could
tolerate slightly over 30% of outliers in this experiment. Note, however,
that GM-estimators will break down much earlier in higher dimensions.)
The repeated median goes down gradually and becomes negative at about
40%, whereas the RLS holds on until the very end before breaking down.

REMARK. At this point we would like to say something about the
interpretation of breakdown. By definition, breakdown means that the
bias || 7(Z") — T(Z)|| becomes unbounded. For smaller fractions of con-
tamination the bias remains bounded, but this does not yet imply that it is
small. Although the breakdown point of LMS regression is always 50%,
we have found that the effect of outliers may differ according to the
quality of the “good” data. For instance, compare the data configurations
in Figure 134 and b. In both situations there is a fraction 1 — & of original
data and a percentage ¢ of outliers. Because & < 50%, moving the outliers
around does not make the LMS break down in either case. Nevertheless,
its maximal bias becomes much larger—though not infinite!—in Figure
13b, where the majority of the data is “ball-shaped” with R close to 0,
than in Figure 13a, where the good data already have a strong linear
structure with R>~1. It seems to us that this behavior lies in the nature

l—e
']
°®
o.'
e®
%
o’
€
0.0. oEo e e
@8 g ® (]
ee®
e ®
R%=~1
(a) (b)

Figure 13. Sketch of two data configurations: (@) the good data possess a strong linear
structure so the LMS will have only a small bias, and (b) the majority of the points have no
linear structure so the effect of outliers will become much larger.
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of things. For instance, the data in Figures 2, 3, 4, 6, 7, 10, and 11 are
like Figure 134, whereas the Mickey data (Figure 5) are not much better
than Figure 135,

EXERCISES AND PROBLEMS

Sections 1-4

1.

Which is more robust, the Pearson product-moment correlation
coefficient or the Spearman rank correlation coefficient? How does
this reflect in the correlation coefficients (between extraction and
titration) in the PROGRESS output reproduced at the end of Section
2?

In the framework of LS regression with intercept, explain why the
(one-sided) p-value of the coefficient of determination equals the
(one-sided) p-value of the F-statistic. If there is only one explanatory

‘variable apart from the intercept, show that this probability is also

equal to the (two-sided) p-value of the t-statistic of the slope and to
the (two-sided) p-value of the Pearson correlation coefficient. What
happens if we switch to RLS?

Making use of the definition of the LMS, can you explain heuristical-
ly why it is required that the number of cases be more than twice the
number of regression coefficients (i.e., n>2p)? Apart from this
constraint, can you also argue why small n might lead to problems,
based on the probability of linear clusters occurring merely by virtue
of random fluctuations?

Reanalyze the Pilot-Plant data (Table 1) with an outlier in the
y-direction. For instance, assume that the y-value of the 19th obser-
vation was recorded as 840 instead of 84. Apply PROGRESS to these
contaminated data, and compare the effect of the outlier on LS,
LMS, and RLS.

Find (or construct) an example where the least squares R’ is larger
with the outlier included than without it.

Apply PROGRESS to the monthly payments data of exercise 8 of
Chapter 1. Give a detailed discussion of the results, including the
standardized observations, the correlation coefficients, the p-values,
the coefficients of determination, and the standardized residuals,
Compare the LMS and the RLS with the eye fit. How many outliers
are identified?

Let us look at an example on Belgian employers’ liability insurance.
Table 12 lists the number of reported accidents of people going to or

World P
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Table 12. Number of Accidents in 1975-1981

Year Number of Accidents
(x:) (y:)

75 18,031

76 18,273

i 16,660

78 15,688

79 23,805

80 15,241

81 13,295

Source: The 1981 Annual Report of the Belgian Association
of Insurance Companies.

coming from work, from 1975 to 1981. Only accidents leading to at
least 1 day of absence were counted. When looking at these data, we
notice a downward trend over the years. However, the number for
1979 is very high. This is because during the first few months of 1979
it was extremely cold, with snow and ice on most days (one has to g0
back many decades to find records of a similar winter). Therefore,
the number of fractures, sprains, and dislocations in J anuary and
February was overwhelming. Discuss the PROGRESS output for
these data. Is 1979 an outlier in x or in y? (Look at the scatterplot.)
Can the outlier be identified by means of the standardized observa-
tions? Explain the difference between the Pearson correlation and
the Spearman correlation. How many outliers can be identified on
the basis of the standardized residuals of the LS solution? And with
the robust regressions? What is the effect of the outlier on the
p-value of the LS slope?
8. Table 13 lists the total 1981 premium income of pension funds of
Dutch firms, for 18 professional branches. In the next column the
respective premium reserves are given. The highest amounts corre-
spond to P.G.G.M., the pension fund for medical care workers. Its
premium income is three times larger than the second largest branch
(the building industry). Draw a plot of reserves versus income (e.g.,
by means of PROGRESS). Compare the simple regression of re-
serves as a function of income using LS with the LMS regression line.
Is P.G.G.M. a good or a bad leverage point for this model? Does it
have the largest LS residual? How does this compare with the RLS
residuals, and what happens to the p-values of the coefficients? The
residual plot indicates that a linear model is not very suitable here. Is
it possible to transform either variable to make the relation more
linear?
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Table 13, Pension Funds for 18 Professional Branches
Index Premium Income® Premium Reserves”
1

10.4 272.2
2 15.6 2129
3 16.2 120.7
4 17.9 163.6
§ 37.8 226.1
6 46.9 622.9
7 52.4 1353.2
8 52.9 363.6
9 71.0 917
10 73.9 307.2
11 76.3 588.4
12 77.0 952.5
13 131.2 11573
14 151.7 2105.6
15 206.1 3581.4
16 314.7 3404.7
17 470.8 4095.3

18 1406.3 6802.7
“In millions of guilders.

Source: de Wit (1982, p. 523,

Sections 5 and 6

9.

10.

11.

12,

13,

Run the exact fit €xample of Section § again as a simple regression
through the origin,

Look for an example where a Jipe through the Origin is more
appropriate (from subject-matter knowledge) than with Intercept.
Repeat exercige 8 (on the pension funds of 1§ professions) by means
of simple regression withoyt Intercept, This makes sense because the
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14.

SIMPLE REGRESSION

bers of positive residuals on both sides of med, x;. (He then dismissed
this estimator by stating that it may lead to a fousy fit.) Simon (1986)
proposed the “median star” line, which also goes through (med, X,
med; y;) and has the slope

R y;—medy,
81=med( : )

i

X; —medx,

7
Show that this is the same estimator. What is its breakdown point?
Write a small program and apply it to the situations of Figures 11 and
12. Repeat this for another version of the median star in which the
intercept is chosen so that med, (r,) = 0.

(Research problem). Is it possible to construct a standardized version
of the breakdown plot, which does not depend on random number
generation?




