CHAPTER 5

Algorithms

1. STRUCTURE OF THE ALGORITHM USED IN PROGRESS

The computation of the least median of squares (LMS) regression
coefficients is not obvious at all. It is probably impossible to write down a
straightforward formula for the LMS estimator. In fact, it appears
that this computational complexity is inherent to all (known) affine
equivariant high-breakdown regression estimators, because they are
closely related to projection pursuit methods (see Section 5 of Chapter 3).
The algorithm implemented in PROGRESS (Leroy and Roussecuw
1984) is similar in spirit to the bootstrap (Diaconis and Efron 1983).
Some other possible algorithms will be described in Section 2.

The algorithm in PROGRESS proceeds by repeatedly drawing sub-
samples of p different observations. (We will use the same notation as in
Section 6 of Chapter 3.) For such a subsample, indexed by J=
{i;,...,i,}, one can determine the regression surface through the p
points and denote the corresponding vector of coefficients by @,. (This
step amounts to the solution of a system of p linear equations in p
unknowns.) We will call such a solution. 8, a trial estimate. For each 9,
one also determines the corresponding LMS objective function with
respect to the whole data set. This means that the value

med (y,—x,6,)° (1.1)

i=1,

is calculated. Finally, one will retain the trial estimate for which this value
is minimal. (Note that this algorithm is affine equivariant, as it should
be.)

But how many subsamples J,, J,,...,J.. should we consider? In
principle, one could repeat the above procedure for all possible sub-
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198 ALGORITHMS

samples of size p, of which there are C »- Unfortunately, C? increases
very fast with n and p. In many applications, this would become
infeasible. In such cases, one performs a certain number of random
selections, such that the probability that at least one of the m subsamples
is “good” is almost 1. A subsample is ‘“‘good” if it consists of p good
observations of the sample, which may contain up to a fraction ¢ of bad

observations. The expression for this probability, assuming that n/p is
large, is

1-(1—(1- &))", (1.2)

By requiring that this probability must be near 1 (say, at least 0.95 or
0.99), one can determine m for given values of p and &. This has been
done in Table 1 for p <10 and for a percentage of contamination varying
between 5% and 50%. For fixed P, the number of subsamples increases
with & in order to maintain the same probability (1.2). This permits us to
reduce the computation time of PROGRESS in situations where there
are reasons to believe that there are at most 25% of bad data. This choice
can be made by answering the question:

WHICH VERSION OF THE ALGORITHM WOULD YOU LIKE TO USE?

Q=QUICK VERSION
E=EXTENSIVE SEARCH

ENTER YOUR CHOICE PLEASE (Q OR E):

Table 1. Number m of Random Subsamples, Determined in Function of pand e

by Requiring That the Probability of at Least One Good Subsample Is 95% or
More

Fraction & of Contaminated Data

Dimension
P 5% 10% 20% 25% 30% 40% 50%
1 1 2 2 3 3 4 5
2 2 2 3 4 5 7 11
3 2 3 5 6 8 13 23
4 2 3 6 8 11 22 47
5 3 4 8 12 17 38 95
6 3 4 10 16 24 63 191
7 3 5 13 21 35 106 382
8 3 6 17 29 51 177 766
9 4 7 21 36 73 296 1533
10 4 7 27 52 105 494 3067
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The number of subsamples computed from (1.2) becomes tremendous
for large p, at least in the most extreme case of about 50% of bad
observations. At a certain stage, one can no longer increase the number
m of replications, because the computation time must remain feasible.
One then incurs a larger risk (the probability of which is known) of not
encountering any “good” subsample during the m replications. Table 2
lists the values of m that are used in PROGRESS. For small p we have
systematically taken m larger than the value needed in formula (1.2), in
order to increase the expected number of good subsamples, so the
objective function (1.1) may become even smaller.

Several elements of this algorithm can also be found in other statistical
techniques. For instance, Oja and Niinimaa (1984) and Hawkins et al.
(1985) have used trial estimates such as 0, for different purposes. The
idea of drawing many (but not necessarily all) subsamples of the data at
hand is related to the bootstrap (Efron 1979), which is, however, mainly
concerned with the estimation of bias and variability of existing (point)
estimators at the actual data. Formula (1.2) was first used by Stahel

Table 2, Number m of Subsamples That Are Actually Used in the Program
PROGRESS, According to the Options “‘Extensive” or “Quick” “

Option “Extensive” Option “Quick”
p=1 m=C! if n=500 m=C? if n =150
m =500 if n> 500 m=150 if n>150
p=2 m=C! ifn=30 m=C? ifn=25
m=1000 if n>50 m =300 if n>25
p=3 m=C! ifn=2 m=C? ifn=15
m=1500 if n>22 m=400 if n>15
p=4 m=C? ifn=17 m=C? ifn=12
m=2000 if n>17 m=500 if n>12
p=5 m=C? ifn=15 m=C! ifn=11
m=2500 if n>15 m=0600 if n>11
p=6 m=C? ifn=14 m =700
m=3000 if n> 14
p=7 m = 3000 m =850
p=8 m = 3000 m=1250
p=9 m = 3000 m = 1500

“The notation m = C” means that all subsamples with p elements are being considered.
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200 ALGORITHMS

(1981) in the context of robust multivariate location and covariance
estimators.

Let us now illustrate the basic idea of the algorithm used in
PROGRESS by means of the artificial two-dimensional example in Figure
1. For this data set, n equals 9 and p equals 2. Because # is very small,
PROGRESS considers all pairs of points. We will restrict the explanation
to only three such combinations, namely (f, g), (f, 2). and (g, k). Let us
start with the points f and g. The regression surface (which is a line here)
passing through f and g is found by solving the system of equations

Yy =07x,+ 03
Vg =0%x,+ 63,

where (x;, y,) and (xg. ¥,) are the coordinates of the points f and g. The
resulting trial estimate is (8%, 82)" Next, the residuals ¥ —0x, — 63 from
this line are determined for all points i in the sample. The median of the
squared residuals is then calculated, and compared with the smallest
value found for previous pairs of points. Because we want to minimize
this quantity, the trial estimate corresponding to f and g will be retained
only when it leads to a strictly lower value. Examining the scatterplot in
Figure 1, we see that (f, g) is better than either (f, k) or (g, k). Indeed,
the majority of the observations have small residuals with respect to the

X

Figure 1. Tllustration of the algorithm used in PROGRESS.
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line passing through f and 8. Repeating this procedure for each pair of
points will finally yield the lowest objective function.

The entry p=1 in Table 2 refers to simple regression through the
origin (see Section 6 of Chapter 2) in which there is no intercept term.
Note that in one-dimensional location we also have p =1, but then we do
not apply the resampling technique because an exact algorithm is avail-
able for that situation (see Section 2 of Chapter 4). Moreover, this exact
algorithm is very useful in any regression model with intercept, because
we can adjust our constant term with it. Indeed, suppose that the
resampling algorithm _has provided regression coefficients 6,,...,8

s
Then we can replace 8, by the LMS location estimate of the # numbers

-~ -~

because we are certain that the resulting objective function (1.1) will
become smaller, since the one-dimensional algorithm yields the optimal
intercept term (conditional on the values of b,..., @F_l)‘ Therefore, this
last step has been incorporated in PROGRESS.

This argument also shows us how we could improve the result even
further. Instead of adjusting the intercept term once (at the end), we
could do the same thing at each replication, so that each trial estimate
would contain an optimal intercept term. It follows that this slight
modification of the algorithm could only lower the resulting objective
function. However, we have decided not to include this version because it
would consume more computation time. At present, we evaluate the
median of the squared residuals (for each trial estimate) in O(n) opera-
tions, whereas we would spend at least O(nlog n) if we wanted to apply
the one-dimensional algorithm each time. On the other hand, the present
evolution of computers might soon allow this refinement.

REMARK. Note that the algorithm can be speeded up enormously by
means of parallel computing, because it is very easy to split it up into
parts that are carried out simultaneously. Indeed, each processing ele-
ment can compute trial estimates , and the associated median squared
residual (1.1). To try this out, a parallelized version of PROGRESS was
implemented on the ICAP 1 system at the IBM Research Center in
Kingston, NY. (This happened in March 1987 in collaboration with Ph.
Hopke and L. Kaufman.) This system contains an IBM 3081. host
computer and 10 loosely coupled FPS-164 processors. PROGRESS was
adapted by adding special statement lines for the precompiler used on the
ICAP 1. Two versions of the program were constructed, one with and one
without shared memory. In both cases, an important reduction of the
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202 ALGORITHMS

computation time was achieved. This speed will, of course, still increase
when a larger number of processors is used. Already systems with
hundreds of processing elements are being developed (such as the DPP87
system in Delft), so eventually all trial values may be computed at the
same time, making the LMS as fast as least squares.

Apart from the regression coefficients, also the scale parameter o (the
dispersion of the errors e,) has to be estimated in a robust way. We begin
by computing an initial scale estimate s°. This s° is based on the minimal
median and multiplied by a finite-sample correction factor (which de-
pends on 7z and on p) for the case of normal errors:

s°=1.4826(1+ 5/(n —p))\/m?d r2(8) . (1;3)

The factor 1.4826=1/®'(0.75) was introduced because med, |z,|/
(D_1(0.75) Is a consistent estimator of o when the z,; are distributed like
N(0, 0*). From an empirical study, it appeared that this factor 1.4826
alone was not enough, because the scale estimate became too small in
regressions with normal errors, especially for small samples. Indeed, if n
is only slightly larger than 2p, then it easily happens that half of the data
(which may mean only p +1 or p +2 points!) almost lie on a linear
structure. As a consequence, also some good points may obtain relatively
large standardized residuals. It was not obvious at all to find an appro-
priate factor to compensate for this effect. On the one hand, such a factor
should not be too small because good points should not possess large
standardized residuals, but on the other hand, a too-large factor would
result in neglecting real outliers in contaminated samples. We have
studied the behavior of the original scale estimate through simulation,
both in normal error situations and in situations where there was contami-
nation in the response or in the explanatory variables. It turned out that
multiplication with the factor 1+ 5/(n — p) gave a satisfactory solution.
(Of course, for large n this factor tends to 1)

This preliminary scale estimate s° is then used to determine a weight w,
for the ith observation, namely

_[1 if|ris® =25
Wi {O otherwise . ., (g

By means of these weights, the final scale estimate o* for LMS regression
is calculated:

(1.5)
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The advantage of this formula for o* is that outliers do not influence the
scale estimate anymore. Moreover, at the classical model, o* would be a
consistent estimator of o if the weights w, were independent of the data
(x;, ¥,).

Like most regression programs, PROGRESS performs its actual com-
putations on standardized data. The main motivation for this is to avoid
numerical inaccuracies caused by different units of measurement. For
instance, one of the explanatory variables might take values around 1
whereas another might be of the order of 10~ '. Therefore, the program
first standardizes the data to make the variables dimensionless and of the
same order of magnitude. The standardization used in PROGRESS is
described in Section 1 of Chapter 4. The regression algorithm is then
applied to these standardized data, but afterwards the results have to be
transformed back in terms of the original variables.
coefficients of LS, LMS, and RLS are transformed in exactly the same
way (by means of the subroutine RTRAN) because all three regression
methods satisfy the equivariance properties listed in Section 4 of Chapter
3. For LS and RLS, the variance-covariance matrix between the coeffici-
ents is also transformed.

The running time of PROGRESS depends not only on the sample size
n, the dimension p, and the required probability in (1.2), but, of course,
also on the computer processing speed. To give an illustration, Table 3

The regression

Table 3. Computation Times on an Olivetti M24 Microcomputer Without 8087
Mathematical Coprocessor, for Some Data Sets Used in Chapters 2 and 3

Computation Time (minutes)

Data Set Option “Extensive” Option “Quick”
Pilot-Plant data 1.37 1:37
Hyperinflation in China 0.90 0.90
Fires data 0.83 0.83
Mickey data 1.32 1.32
Hertzsprung—Russell 3.88 1.93
Telephone data 1.45 1.45
Lactic acid concentration 1.00 1.00
Kootenay River 0.83 0.83
Stackloss data 7.50 2.58
Coleman data 19.13 5.23
Salinity data 9.72 3.05
Air quality data 8.93 2.18
Hawkins—Bradu—Kass data 16.23 4.77
Education expenditure 12.52 3.87
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204 ALGORITHMS

lists some typical running times on an IBM-PC compatible microcompu-
ter. These times can be reduced substantially by means of an 8087
Mathematical Coprocessor.

*2. SPECIAL ALGORITHMS FOR SIMPLE REGRESSION

In simple regression, one only has to find the slope 6, and the intercept 6,
of a line determined by # points in the plane. One can, of course, apply
the above resampling algorithm, as it is implemented in PROGRESS.
However, in this particular situation some other approaches are also
possible.

Our oldest algorithm for the LMS and the LTS was of the ““scanning”
type (Rousseeuw et al. 1984b). As in Section 1, one starts by standardiz-
ing the observations. The idea of the algorithm can be understood most

easily when writing the definition of the LMS estimator in the following
way:

min {min med ((y; - 6,x,) - 6,)%} . (2.1)

Indeed, one can treat the parts in (2.1) separately. The second portion of
the minimization is quite easy, because for any given 6, it becomes
essentially a one-dimensional problem, which can be solved explicitly as
we saw in Chapter 4. (This part even cancels when there is no constant
term in the model.) Then one has to find 6, for which

m2(91) = Irgn mFd (y: - 0,x;) — 62)2

is minimal. This is just the minimization of a one-dimensional function
m®(8,), which is continuous but not everywhere differentiable. In order to
find this minimum, one goes through all angles o from —1.55rad to
1.55rad with a stepsize of 0.02rad and uses the slope 6, =tan a to
compute the corresponding value of mz(ﬂl). Then one scans with a
precision of 0.001 rad in the two most promising areas (as determined by
the local minima of the first step). In this way, the objective function does
not have to be calculated too often. In Figure 2, a part of the function
m*(6,) is plotted for the telephone data in Table 3 of Chapter 2. Such a
plot may also be useful in keeping track of local minima. Indeed, a
prominent secondary minimum indicates a possible ambiguity in that
there may be two lines, each fitting the data reasonably well.

The generalization of this scanning-type algorithm to multivariate
models is not feasible. In such situations, the scanning would have to be




6,

Figure 2. A plot of the function m*(8,) for the telephone data, for 6, between 0.0rad and
1.5rad.

performed on higher-dimensional grids, which leads to a tremendous
amount of computation.

Yohai (1986, personal communication) is presently experimenting with
a multivariate algorithm based on repeated application of the estimate
g =med, y,/med, x; for simple regression through the origin. At each
step, the variable is selected which minimizes med, r;, and then its effect
is swept from the response variable and the remaining carriers, The
objective function med, 77 is also used to decide how many variables are
used within a cycle and as a stopping rule for the iteration of cycles. For
such an algorithm it is difficult to prove anything in the way of
equivariance or overall breakdown point, but some preliminary ex-
perience indicates that the computation time is not too high, and the
results have been satisfactory.

Recently, Steele and Steiger (1986) studied the numerical aspects’ of
the LMS estimator in the framework of simple regression with intercept.
Their first result states that not only are there two points that possess an
LMS residual of *m.,. (as we have proved in Theorem 1 of Chapter 4) but
that there are even three such observations. This property is one out of
tM%(mw%mymdmﬁdmﬂcmﬁﬁmmmﬁawh&apﬁrwp@ﬁsa
local optimizer of the LMS objective function. The two other conditions
say that the three residuals of magnitude *my alternate in sign, and
secondly that the number of points with |r;|>my is at least one more
than the number of points with |r|<m,. As a consequence, this
characterization of local minimizers reduces the continuous minimization
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to a discrete one, in the sense that only lines satisfying the above
conditions have to be considered and that the one with the smallest
objective function value has to be retained, Indeed, it implies that there
exists (at least) one pair of data points such that the line joining them has
the same slope as the LMS line. This provides a posteriori justification of
the way we work in PROGRESS because it means that our algorithm, at
least in the simple regression case and for small n, leads to an exact
solution. (For large n, we only use random pairs of points to reduce the
computation time.) Furthermore, Steele and Steiger also showed that the
LMS objective function can have at most O(n*) local minima, and they
provide some ideas on decreasing the computation time. Finally, they
stated that the necessary and sufficient conditions for local minimizers can
be generalized to p dimensions (p>2). This corresponds with our own
algorithm for multiple regression, where we consider hyperplanes passing
through p points, which are again vertically adjusted by estimating the
intercept term in a one-dimensional way.

Souvaine and Steele (1986) provided even more refined algorithms for
LMS simple regression, making use of modern tools of numerical analysis
and computer science such as heaps and hammocks. Their best computa-
tional complexity is again O(n?), and they also stated that everything can
be generalized to p dimensions, yielding O(n”). It seems reasonable to
conjecture that one can do no better than O(n?) for computing LMS or
any other affine equivariant high-breakdown regression estimator.

*3. OTHER HIGH-BREAKDOWN ESTIMATORS

In addition to the LMS estimator, we have also discussed the LTS
estimator in Section 2 of Chapter 1 and in Section 4 of Chapter 3. In
order to compute the LTS regression coefficients, one only has to change
the objective function in either the resampling algorithm of Section 1 or
the scanning algorithm described in Section 2. That is, we now have to
minimize

instead of med, r?. Note, however, that the calculation of the LTS
objective requires sorting of the squared residuals, which takes more
computation time than the LMS goal function. In a model with a constant
term, one also needs the LTS location estimator in order to adjust the
intercept. For this purpose, Section 2 of Chapter 4 contains an exact
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algorithm, which again consumes more com
counterpart. Therefore, the overall LTS re
more expensive than the LMS one. This effect js shown in Figure 3,
where the computation times of LMS and LTS are plotted for different
sample sizes. (Note that, according to Table 2, the number of trial
estimates m increases until # = 50 and then remains equal to 1000.) Also,
analogous changes in the LMS algorithm are sufficient for computing the
least winsorized squares (LWS) estimator.

The calculation of $-estimators (Section 4 of Chapter 3) is somewhat

more complicated. The objective function now must be replaced by the
solution s of the equation

putation time than its LMS
gression algorithm is somewhat

L 54(2)-s.

which may be computed in an iterative way.
given by (4.31) in Chapter 3.] The residuals
trial estimate @, in the resampling algorithm

[A possible choice for pis
r;in (3.1) correspond to a
or to a certain slope and

180 —

Fully ]
-’GEJ 160 — iterated § —
S 140 |— -
=
S 120 wd
< 100 |— "
Q
g 80 — —
© 60 One-step §

10 30 50 70

_ Sample size
Figure 3. Computation times (in CP seconds on a VAX
one-step S-, and fully iterated S-estimators, for P =2 and sample sizes n = 10,...,70. The

resampling algorithm was used, and the running times have been averaged over several
simulated data sets. (Data from van Zomeren 1986.)

11/750) of the LMS, the LTS,
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intercept in the scanning algorithm. It is possible to restrict our attention
to the first step of the iteration [see (2.12) in Chapter 4] in order to
reduce the computation time. The vector @ minimizing s is called an
S-estimate of the regression coefficients. The final scale estimate is then
given by

6 =5(r,(8),...,r,(8).

From a computational point of view, Figure 3 shows that even the
one-step version of the S-estimator is very time-consuming, not to
mention the fully iterated version. Moreover, some preliminary ex-
perience (both for simple and multiple regression) indicates that S$-
estimators do not really perform better than the LMS, at least from a
practical point of view, which is why we have focused our attention to the
LMS as the most easily computable member of our high-breakdown
family.

*4. SOME SIMULATION RESULTS

In Chapters 2 and 3 we compared the LS and LMS regressions by means
of some real data sets. A shortcoming of this approach is that it may lead
to disputes, because it is impossible to “prove” which analysis is best. A
popular alternative is to carry out a simulation, because then one knows
the true parameter values of the generated data.

In the well-known Princeton robustness study (Andrews et al. 1972), a
large number of location estimators have been tried out in a variety of
situations. This large-scale simulation has provided many new insights,
resulting in a significant impact on robustness theory. We hope that, some
day, funds may be raised to carry out a similar project devoted to
regression estimators. In the meantime there have been some smaller
comparative studies, such as Kihlmeyer’s (1983) investigation of 24
regression estimators of the types M, L, and R, and the article by
Johnstone and Velleman (1985b). In the present section we report on
some of our own simulation results, which focus on the LMS and its
variants.

As a preliminary step, we investigated the scale estimate & associated
‘with LMS regression. This was necessary because the naive estimate

1.4826/med (@) (4.1)

underestimates o in small-sample situations, as was already explained in
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Section 1 above. To determine a suitable correction factor, we generated
many samples according to the standard linear model. For each choice of
n and p we considered 200 samples and compared the resulting values of
(4.1) with the true o. [It turned out that (4.1) behaved somewhat
differently depending on whether # and p were even or odd. A first
attempt to understand this phenomenon was restricted to p =1, so only
the effect of n had to be studied (Rousseeuw and Leroy 1987). The effect
of parity—or of mod (n, 4)—persisted even in artificial samples of the
type {®'(i/(n + 1)),i=1,...,n} and could be traced back by expand-
ing @' by means of Taylor series in the endpoints of the shortest halves.]
In order to determine a reasonable overall adjustment factor, we have
plotted the average values of (4.1) versus 1/(n — p), yielding the factor
14+ 5/(n—p) in (1.3) above.

After this preliminary step, we set up the actual simulation experiment
in order to investigate the LS and the LMS, as well as the one-step
reweighted least squares (RLS) based on the LMS, and the one-step
M-estimator (OSM) based on the LMS. For this purpose, we have

resorted to three types of configurations. The first one is the normal
situation,

yi=x¢.,1+---+x,-,p_1+x,-,p+e,. s

in which e, ~ N(0,1) and the explanatory variables are generated as
x;,;~N(0,100) for j=1,..., p (if there is no intercept term) or for
J=1,..., p—1 (if there is an intercept term, and then X, =

In the second situation we construct outliers in the y-direction. For this
purpose, we generate samples where 80% of the cases are as in the first
situation and 20% are contaminated by using an error term e, ~ N(10, 1).

Finally, in the third situation we introduce outliers in the x-direction.
Eighty percent of the cases are again as in the first situation. In the
remaining 20% the y, are generated as before, but afterwards the x;, are
replaced by values that are now normally distributed with mean 100 and
variance 100.

Figure 4 shows an example of each of these three configurations in the
framework of simple regression through the origin, with n = 50.

The purpose of our simulation is to measure to what extent the
estimates differ from the true values by=---=6 =0=1. Some sum-

mary values over the m =200 runs are computed, such as the mean
estimated value

m

6]_:

6", (4.2)

3=

k=1
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Figure 4. Examples of simulated data with 50 points: (2) normal situation, (b) outliers in y,
and (¢) outliers in x.

which yields the bias 5}.— 6. Also, the mean squared error

S @ gy (4.3)

1
MSE (9}) = e =

is an important quantity, which can be decomposed into a sum of the
squared bias and the variance:

m

> (@9 -4y, (4.4)

1
=1

MSE (8) = (§ - 6)° +

The same summary statistics are also computed for the estimates of o.
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In our simulation we performed 200 replications for each value of p
between 1 and 10; for n equal to 10, 20, 30, 40 and 50; and for all three
sampling situations; this was repeated for models with and without
intercept term. (This being only a modest study, we did not yet investi-
gate the suitability of variance reduction techniques as described by
Johnstone and Velleman 1985a.) Table 4 lists the results for regression
with intercept term, for n = 40 and p =4. (The tables for other values of
n and p are all extremely similar, so we only display one of them to save
space.)

In Table 4, we see that in the normal error situation the mean
estimated values produced by the robust techniques are almost as good as
the LS ones, whereas their MSE and variance do increase, but not
dramatically. (The constant term produces the largest MSE and variance
for all four techniques.) For all estimates, one also sees that the variance
makes up most of the MSE, which means that the bias is negligible in this
situation. To conclude, the LS provides the best results when the errors
are normally distributed, but then the robust techniques also behave quite
well,

However, the LS becomes very bad when there are outliers in y. In
this situation the mean estimated intercept and scale differ considerably
from the true value of 1, and they have a high MSE. This large MSE is
mostly due to the bias, since the variances are rather small. This also
means that the LS estimates behave in the same way in all 200 runs. In
other words, the LS breaks down systematically at these contaminated
samples. On the other hand, the robust regression estimates are scarcely
altered when compared to the normal error situation. Only the scale
estimate of the OSM is too large, which is because the outliers are not
really rejected since the OSM scale is not defined by means of a
redescending function. (Note that the LMS scale does contain a rejection
step, given by (1.4) above.)

In the situation of outliers in x, we only have put contamination on
¥;,1- The LS regressions are pulled in the direction of these leverage
points, thereby affecting the mean estimated value of 6, and causing a
large MSE. The LS estimates of intercept and scale also break down in a
spectacular way. On the other hand, the robust regressions still yield
good results for all parameters. (Note that the OSM again performs
somewhat less than the RLS, especially for the scale parameter. This is
one of the reasons why we have preferred to use the RLS in the previous
chapters, some of the other reasons being intuitive appeal and ease of
interpretation.)

It may be noted that the LMS columns in Table 4 are exactly equal in
the situations of outliers in y and outliers in x, and the same holds for the
RLS. This is not surprising since the samples in both situations share the
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214 ALGORITHMS

80% of “good” observations, whereas the 20% of outliers are properly
rejected by the LMS and the RLS. This is no longer true for the OSM,
because there the outliers still have an (albeit very small) influence.

Table 5 contains the summary statistics for regression without inter-
cept, with n =50 and p = 8. (The results for other choices of n and p are
very similar and hence are not listed here.) For the normal situation we
arrive”at the same conclusions as before, the robust techniques behavmg
almost as well as LS.

In the presence of outliers in the response variable, we find that the LS
coefficients are still quite good. This is because the model now forces the
fit to go through the origin, so the contamination (as in Figure 4b) cannot
move up the fit as in a model with intercept. (Moreover, the contamina-
tion happens to be balanced about the origin, so the solution does not
even tilt in this experiment.) However, the LS scale estimate clearly
breaks down because all points are taken into account, including the bad
ones. On the other hand, the robust estimators provide decent estimates
of both the 6, and ¢. The simulation results also show that the RLS is
really an improvement on the LMS as the mean squared errors are
decreased even more, particularly that of the scale estimate. This is not
true for the OSM, Whlch again overestimates ¢ because it does not really
reject the outliers.

The last columns of Table 5 deal with the outliers in x, ;, which cause
the LS estimate of 6, to break down. As was to be expected, also the
corresponding scale estimate explodes. Fortunately, the robust techniques
yield satisfactory estimates for all quantities. Moreover, the RLS again
constitutes a slight improvement on the LMS results.

The overall conclusion of these simulations is that the LMS indeed
achieves the goals for which it was constructed, because it gives reason-
able results in the normal situation and is also able to withstand substan-
tial amounts of outliers in x and in y.

EXERCISES AND PROBLEMS

Section 1

1. Tllustrate that the LMS algorithm in PROGRESS is regression, scale,
and affine equivariant by running one or more example(s) in which
you transform the data as in (4.2), (4.3), and (4.4) of Section 4 in
Chapter 3.

2. Derive the probability (1.2).
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3. Write down formulas expressing the regression coefficients éjin terms
of the regression results on the standardized data. Why are these
formulas the same for LS, LMS, and RLS regression?

Section 2

4. Why is it useful to look at more tha
objective function (2.2
analytic aspects.

n one local minimum of the
)? Consider both computational and data-

5. (Rescarch problem) Is it true that one can do no better than O(n”

algorithms for computing affine equivariant high-breakdown regres-
sion estimators?

Section 3

6. In Section 3 the computation times of the LMS, the LTS, and
S-estimators are discussed. What do you think would be the total cost
of a combination of LMS with a subsequent one-step improvement

(cither a one-step RLS or a one-step M-estimator)? Indicate the
computation time of such an estimator in Figure 3.

Section 4

7. (Research problem) Why does the behavior of (4.1) depend on n and
P being even or odd?
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