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Lemma 1. The LMS estimator is regression equivariant, scale
equivariant, and affine equivariant.

Proof. This follows from

med ({y; +x,v} — x;{0 + V})z = mf—’d (y: _Xiﬂ)z >

med (cy; — Xi{ca})z =c’ med (y, — xie)z )
and

m?d (y:i = {xA}A™ 0})2 = m?d (y:— Xi0)2 s

respectively. 0

On the other hand, it may be noted that the repeated median, defined
in (2.14) of Chapter 1, is regression and scale equivariant but not affine
equivariant. N

In what follows we shall say the observations are in general position
when any p of them give a unique determination of @. For example, in
case p =2 this means that any pair of observations (% %5, 7,) and
(X105 X5, ¥;) determines a unique nonvertical plane through zero, which
implies that (0, 0, 0), (x,,, x,,, ¥:); and {x,, %, ¥;) may not be collinear.
When the observations come from continuous distributions, this event has
probability one.

As promised in Chapter 1 we will now investigate the breakdown
properties of the LMS, using the finite-sample version of the breakdown
point introduced by Donoho and Huber (1983). Take any sample Z of n
data points (x,, y,),..., (%,, y,) and a regression estimator T. This
means that applying 7 to Z yields a regression estimate @. Let
bias (m; T, Z) be the supremum of ||T(Z )= T(Z)|| for all corrupted
samples Z', where any m of the original data points are replaced by
arbitrary values. Then the breakdown point of T at Z is

B

£:(T, Z) = min {m/n; bias (m; T, Z) is infinite} . (4.5)

We prefer replacing observations to adding observations, which some
authors do, because replacement contamination is simple, realistic, and
generally applicable. Indeed, from an intuitive point of view, outliers are
not some faulty observations that are added at the end of the sample, but
they treacherously hide themselves by replacing some of the data points
that should have been observed. Replacement contamination does not
cause any formal problems because the contaminated sample has the
same size as the original one, so we only have to consider one estimator
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T, and not several T,,,. This means that replacement still applies to
many situations where adding observations does not make sense (for
instance, one cannot just add cells to a two-way table). Therefore, we
would like to defend the standard use of the above definition.

Theorem 2. If p>1 and the observations are in general position, then
the breakdown point of the LMS method is

([n/2]-p+2)/n.

Proof. 1. We first show that (7T, Z) = ([n/2] — p + 2)/n for any sample
Z={(x;, y;);i=1,...,n} consisting of n observations in general posi-
tion. By the first theorem, the sample Z yields a solution @ of (4.1). We
now have to show that the LMS remains bounded when n — ([n/2] -
p +2)+ 1 points are unchanged. For this purpose, construct any corrup- :
ted sample Z'= {(x,’, y}); i=1,...,n} by retaining n —[n/2]+p —1 ;
observations of Z, which will be called the “good” observations, and by
replacing the others by arbitrary values. It suffices to prove that ||@ — 8'||
is bounded, where 8’ corresponds to Z'. For this purpose, some geometry
is needed. We again work in the (p +1)-dimensional space E of the 1
observations (x;, y;) and in its horizontal hyperplane through the origin, '
denoted by (y=0). Put

p = ; inf {7 > 0; there exists a ( p — 1)-dimensional subspace V of
(y =0) through the origin such that V" covers
at least p of the x,},

where V7 is the set of all x with distance to V not larger than 7. Because Z
is in general position, it holds that p > 0. Also, put M := max, |r,|, where
r; are the residuals y, — x,0. The rest of the proof of part 1 will be devoted
to showing that :

|6 — o'l <26l + Mip), i

which is sufficient because the right member is a finite constant. Denote
by H the nonvertical hyperplane given by the equation y = x8, and let H’
correspond in the same way to @'. Without loss of generality assume that
6'# 0, hence H'# H. By the dimension theorem of linear algebra, the
intersection H N H' has dimension p — 1. If pr (H N H') denotes the
vertical projection of H N H' on (y =0), it follows that at most p — 1 of
the good x; can lie on (pr (H N H'))*. Define A as the set of remaining
good observations, containing at least n — [n/2]+p—1—(p—1)=n—
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[7/2] points. Now consider any (x,, y,) belonging to A, and put r,=
Y.~ X,0and r, =y, —x_,0'. Construct the vertical two-dimensional plane
P, through (x,, y,) and orthogonal to pr (H N H'). It follows, as in the
proof of Theorem 1, that
o= ral=1x,0" —x,6]> pltan (a') - tan (a)|
= pl Jtan (a")] - [tan ()] |
=olllo'-elll,

where a is the angle formed by H and some horizontal line in P and o’
corresponds in the same way to H'. Since

16" —oll=1loll +[lo"| =2ll0ll + (llo'l| - o]y =<1 l’]| - [}o] | + 2llo]],

it follows that
|ra—r.l>p(ll6" — 6]l —2]la]]).

Now the median of the squared residuals of the new sample Z' with
respect to the old 6, with at least n —[n/2] + p — 1 of these residuals
being the same as before, is less than or equal to M”. Because 8’ is a
solution of (4.1) for Z’, it follows that also

med (y; —x,0')° = M*>.
4

If we now assume that [|6' — 6| =2(||0|| + M/p), then for all  in A it
holds that i

el >p(ll6" - 0]l - 2| 6]))
>pQ2lloll+2Mip —2)j6|))=2M,
) Irl=lri—r|=lrl>2M - M= M
and finally
m}ed (= x;t)')z >M?,
a contradiction. Therefore,

lle" —oll <2(llo|| + Mip)

for any Z’,
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2. Let us now show that the breakdown point can be no larger than
the announced value. For this purpose, consider corrupted samples in
which only n — [n/2] + p — 2 of the good observations are retained. Start
by taking p — 1 of the good observations, which determine a (p —1)-
dimensional subspace L through zero. Now construct any nonvertical
hyperplane H' through L, which determines some 8’ by means of the
equation y =x@'. If all of the “bad” observations are put on H', then Z’
has a total of

([n/2]-p+2)+(p-1)=[n/2]+1

points that satisfy y; =x:0" exactly; so the median squared residual of Z'
with respect to @' is zero, hence @' satisfies (4.1) for Z'. By choosing H'
steeper and steeper, one can make ||@’ — 0|| as large as one wants. [

Note that the breakdown point depends only slightly on n. In order to
obtain a single value, one often considers the limit for n—>o (with p
fixed), so it can be said that the classical LS has a breakdown point of
0%, whereas the breakdown point of the LMS technique is as high as
50%, the best that can be expected. Indeed, 50% is the highest possible
value for the breakdown point, since for larger amounts of contamination
it becomes impossible to distinguish between the good and the bad parts
of the sample, as will be proved in Theorem 4 below.

Once we know that an estimator does not break down for a given
fraction m/n of contamination, it is of interest just how large the bias can
be. Naturally, it is hoped that bias (m; T, Z) =sup || T(Z’) — T(Z)|| does
not become too big. For this purpose, Martin et al. (1987) compute the
maximal asymptotic bias of several regression methods and show that the
LMS minimizes this quantity among a certain class of estimators. [The
same property is much more generally true for the sample median in
univariate location, as proved by Huber (1981, p. 74).]

We will now investigate another aspect of robust regression, namely
the exact fit property. If the majority of the data follow a linear relation-
ship exactly, then a robust regression method should yield this equation.
If it does, the regression technique is said to possess the exact fit
property. (In Section 5 of Chapter 2, this property was illustated for the
case of a straight line fit.) The following example provides an illustration
for the multivariate case. We created a data set of 25 observations, which
are listed in Table 18. The first 20 observations satisfy the equation

RN -2 Fieilsidad

y=x,+2x,+3x,+4x,, (4.6)

and five observations fall outside this hyperplane. Applying LS regression
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Table 18. Artificial Data Set IMustrating the Exact
Fit Property”

Index X, X, X5 Ky y
1 1 0 0 0 1

2 0 i 0 0 2

3 0 1 1 0 5

4 0 0 1 1 7

5 1 1 0 1 7

6 1 1 1 0 6

7 0 1 1 1 9

8 1 0 0 1 3.

9 1 1 1 1 10
10 0 1 0 1 6
11 1 0 1 0 4
12 1 0 1 1 8
13 1 0 2 3 19
14 2 0 1 3 17
15 1 2 3 0 14
16 2 3 1 0 11
17 2 0 3 1 15
18 2 1 1 3 19
19 1 0 2 1 11
20 1 1 2 2 17
21 1 2 0 1 11
2 2 1 0 1 10
23 2 2 1 0 15
24 1 1 2 2 20
25 1 2 3 4 40

“The first 20 points lie on the hyperplane y = x, +2x, +
3x; +4x,

without intercept to this data set leads to the fit
¥ =0.508x, +3.02x, + 3.08x; +4.65x, .

Although a large proportion of the points lie on the same hyperplane, the
LS does not manage to find it. The outlying points even produce small
residuals, some of them smaller than the residuals of certain good points.
This is visualized in the LS index plot in Figure 17.

On the other hand, the LMS looks for the pattern followed by the
majority of the data, and it yields exactly equation (4.6) as its solution.
The 20 points lying on the same hyperplane now have a zero residual (see
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Figure 17. LS index plot for the data in Table 18.

the LMS index plot in Figure 18). Consequently, the scale estimate
associated with LMS equals zero. In the index plot, the five outlying
points fall far from the line through zero. The magnitude of their residual
corresponds to their vertical distance from the hyperplane. In the exact fit
case, reweighting on the basis of the LMS residuals is unnecessary,
because the reduced data set would contain only the points that lie on the
hyperplane.

The following theorem shows that the LMS satisfies the exact fit
property.

Theorem 3. If p>1 and there exists a @ such that at least n — [n/2] +
p—1 of the observations satisfy y,=x,8 exactly and are in general
position, then the LMS solution equals @ whatever the other observations
are.

Proof. There exists some @ such that at least n —[n/2]+p — 1 of the
observations lie on the hyperplane H given by the equation y =x@. Then
6 is a solution of (4.1), because med, r*(8) = 0. Suppose that there is
another solution @' @, corresponding to a hyperplane H'# H and
yielding residuals r,(8'). As in the proof of Theorem 2, (H N H') has
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Figure 18. LMS index plot for the data in Table 18.

dimension p — 1 and thus contains, at most, p — 1 observations. For all
remaining observations in A it holds that r;(8)>0, and there are at least
n —[n/2] of them. Therefore med, r7(8')>0, 50 8’ cannot be a solution.

O

ReMARrk 1. It appears that Theorem 3 is a special case of a more general
relation between breakdown and exact fit. (This remark was derived from
joint work with D. Donoho in 1983.) Let us consider a possible formaliza-
tion of this connection, by defining the exact fit point as

8,(T, Z) =min {m/n; there exists Z’' such that (Z')#6}), (4.7)

where Z is a sample {(x,, y,),..., (X, ¥,)} such that y, =x,0 for all i,
and Z’ ranges over all corrupted samples where any m points of Z are
replaced by arbitrary values. The smallest fraction of contamination

capable of pulling T away from @ is the exact fit point. If T is regression
and scale equivariant, then

83(T, Z)= eX(T, Z). (4.8)
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Indeed, by regression equivariance we may assume that @ =0, so all
y;=0. Take any m=n8*(T, Z). Then there exists Z'= 1G5 1),
(x3, ¥3)s - - ., (x,,, ¥,)} obtained by replacing m points of Z, such that
T(Z')#0. Now construct the sample Z’"= {x1, cvD), x5, epl),...,
(x,, cy,)}, where c is a positive constant. But then

I7(z") = T(2)|| = el 7(2")|| =0

and Z" differs from Z in at most m points (because at most m of the cy!
can be different from zero). By choosing ¢ large we see that T breaks
down, so &3(T, Z)=m/n, which proves (4.8). This result becomes
particularly useful if T is well behaved so that e3(T, Z) is the same at
most Z (say, at any Z in general position), as is the case for LMS.

Unfortunately, the reverse inequality is not generally true, because
one can construct counterexamples for which & is strictly smaller than
87. Consider, for instance, an estimator (for zn = 20 and p =2) that gives
the right answer whenever at least 15 observations are in an exact fit
situation, but which is put equal to LS in all other cases. Nevertheless,
this example is clearly pathological, and it should be possible to prove
e, = 8 under some “reasonable” conditions.

REMARk 2. The breakdown point in Theorem 2 is slightly smaller than
that of the repeated median, although they are both 50% breakdown
estimators. We are indebted to A. Siegel (personal communication) for a
way to overcome this. Instead of taking the median of the ordered
squared residuals, consider the hth order statistic (%), .» and

Minimize (), , where h=[n/2]+[(p+1)/2]. (4.9)
6

It turns out (analogous to the proof of Theorem 2) that this variant of the
LMS has breakdown point equal to ([n — p) /2] + 1) /n, which is exactly
the same value as for Siegel’s repeated median. In Theorem 4, we shall
show that this is the best possible result. Therefore, we actually use this
version of the LMS in PROGRESS. For this variant of the LMS,
Theorem 3 holds whenever strictly more than 3(n+ p — 1) of the observa-
tions are in an exact fit situation. (This can be proven as in Theorem 3,or
by making use of Remark 1 above.)

ReMark 3. The LMS estimator can be viewed as a special case of a
larger family of estimators, namely the least quantile of squares estimators
(LQS), which are defined by

Vw3 2
Minimize (°) (1 - aynt+fa(ps 0y n 5 (4.10)
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where 0=a =50%. For a tending to 50%, (4.10) is asymptotically
equivalent to the LMS. The breakdown point of the LQS is equal to « for
n—> . Putting @ =0% in (4.10), one finds the L estimator

Minimize max r7 () ,
8 i

which is also referred to as minimax regression because the largest
(absolute) residual is minimized. This method was already considered by
Euler, Lambert, and Laplace (see Sheynin 1966 and Plackett 1972).
Unfortunately, it is even less robust than least squares (see exercise 10).

Theorem 4. Any regression equivariant estimator T satisfies

en(T,Z)=([(n -p)2]+1)/n

at all samples Z.

Proof. Suppose that the breakdown point is strictly larger than ([(n —
P)/2] +1)/n. This would mean that there exists a finite constant # such
that T(Z’) lies in the ball B(T(Z), b) for all samples Z’ containing at
least n —[(n — p)/2] — 1 points of Z. Set g=n—[(n~-p)/2]—1, which
also equals [(n + p + 1)/2] — 1. Here B(T(Z), b) is defined as the set of
all @ for which ||7(Z) — 8|| < b. Now construct a p-dimensional column
vector v#0 such that x,v=0, ... X, v=0. If n+ p +1 is even, then
2q — (p — 1) = n; otherwise 2g—(p—1)=n—1. In general one can say
that 2 — (p — 1) < n. Therefore, the first 2q —(p—1) points of Z can
be replaced by

(X13 y1)9 SRl (xp—l! yp*l)’ (xp: yp)S =% .y (qu yq) L]

x,, y, +x,7v),..., (%, ¥, +x,7v)

for any 7>0. For this new sample Z', the estimate T(Z') belongs to
B(T(Z), b), since Z’ contains g points of Z. But looking at Z' in another
way reveals that 7(Z') can also be written as I(Z") + 7v, where T(Z") is
in B(T(Z), b). Therefore, I(Z’) belongs to B(T(Z) + v, b). This is a
contradiction, however, because the intersection of B(T(Z),b) and
B(T(Z) + v, b) is empty for large enough values of r. O

Note that this maximal breakdown point is attained by the repeated
median (Siegel 1982) and the version (4.9) of the LMS.
By putting p=1 and x,, =1 for all ; in (4.1), one obtains the special
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case of one-dimensional estimation of a location parameter @ of the
sample (y;);-; ... The LMS estimator then corresponds to

Minimize med (y, — 6)* . (4.11)
8 L

This estimator will be investigated more fully in Chapter 4, where it will
be shown that the LMS estimate T for 6 corresponds to the midpoint of
the “shortest half” of the sample, because one can prove that

T—myand T + m, are both observations in the sample, (4.12)

where m7 =med, (y, — T)" equals the minimum of (4.11). This property
can also be used in the regression model with intercept term, obtained by
putting x,, = 1 for all i. From (4.12) it follows that for an LMS solution 0,
both hyperplanes

y=x.6+ - +x,6 —m;

and

-~

y=x,0+---+x,0 +my

contain at least one observation. Therefore, the LMS solution corre-
sponds to finding the thinnest “hyperstrip” (i.e., the region between two
parallel hyperplanes) covering half of the observations. To be exact, the
thickness of the hyperstrip is measured in the vertical direction, and it
must contain at least [n/2] + 1 points.

From previous experience with robustness, it seems natural to replace
the square in (4.1) by the absolute value, yielding

Minimize med |r,| . (4.13)
e 14

However, it turns out that (4.12) no longer holds for that estimator,
because there may be a whole region of solutions with the same objective
function (4.13). (This can only happen when n is even, because med, |7,]
is the average of two absolute residuals. An example will be given in
Section 2 of Chapter 4.) We will show in Chapter 4 that every solution of
(4.1) is also a solution of (4.13), but not vice versa. Things become much
more simple when the hth ordered squared residual is to be minimized, as
in (4.9) and (4.10), because this is always equivalent to

Minimize |7|,., , (4.14)
a .

where |r|;.,=<|r|,., = -=|r|,., are the ordered absolute residuals.
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Steele and Steiger (1986) also investigated some properties of the
estimator defined in (4.14), where they put £ =[n/2] + 1. This reduces to
the median for 7 odd and to the high median, or larger of the two middle
values, if n is_even. Their work is restricted to the case of simple
regression y = élx + 52. They propose necessary and sufficient conditions
for a local minimum of the objective function, which yield necessary
conditions for global minimizers. More details on these algorithms are
given in Section 2 of Chapter 5.

In order to show that the objective functions of (4.13) and (4.14)
satisfy a Lipschitz condition, we need the following lemma.

Lemma 2. Let (a,,a,,...,a,) and (b1, by,...,b,) be any pair of
samples with real elements. Then:

(i) For each integer 1= A < n, it holds that

lah:n - bh:niim‘,;dxiak‘ bk] *

(i) Also |med, a, — med, b,| <max, |a, — b.|.
(iii) The sharpest upper bound on (i) and (ii) is

miy:i max lay = brg| = max la,.,—b

fe k:nl:

(where ¥, is the set of all permutations on {1,...,n}), whichis a
metric on the set of all samples {a,,..., a,} in which the
sequence of the observations is disregarded.

Proof. (i) Put ¢:=max, |a, — b,|. We first show that

’alzn _bl:n!Sc

(otherwise assume without loss of generality that a,,, +¢<b,.,, but
then there can be no element b; such that |a, ., — bj[ = ¢). Analogously,
we can show that |a,., —b,. |=<c. For the general case, assume that
there exists some 1< % < 5 such that a,., +¢<b,. . From the definition
of c, there exists a permutation f of {I,.... n} such that |a,,, —
byjy.al=c for all j. However, j=<h must imply f(j)=<h because
otherwise b ., — 8., =by.,—a,.,>c. Therefore, f({1,..., h})=
{1,..., h}, but this is a contradiction because 7 itself cannot be attained.

(ii) If 7 is odd (n =2k —1) then the median is simply the Ath order
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statistic. If » is even (n = 2h), then

Imiedai _m]edbjl = J%(ah:n +ah+1:n)_ %(bh:n +bh+1:n)'

= %Iah:nuﬁbh:nl—k %Iahi-l:n —-b

h+l:n|

=,

(iii) The inequality < is immediate because this combination corre-
sponds to a particular choice of f, and = follows from (i). To see why
this is a metric, note that max, |a,., — b, .| =0 if and onlyifa,., =5, ,
for all h. The symmetry property and triangle inequality are also
straightforward. 't AL

For continuous distribution functions F and G, this metric amounts to

aisfiser

By

d(F, G)y=sup|F () - G~'(1)|,

which gives the right answer at translation families but can easily become
infinite.

Theorem 5. (i) For each integer 1 =% =<n it holds that

: 1))y, = 18"}, |

; b 6—6 =max x,[| .
f  Imed|r(0)| - med|r(8)] |
| o 6o sat [l

Proof. From (i) of Lemma 2 it follows that

Hr@)s.n = 1761 = max [ [7,(0)] - |7,(8")] |

= m?xl |yi *xiﬂl - l}’i _xi6’| |

=max |y, —x,0 -y, + x,0'|
E

= max [x,(6 — 8")]

<16~ 6] max [x,

Part (ii) is completely analogous.
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Note that Theorem 5 implies that ||, ., and med, |r,| are continuous in
6 (but they are not everywhere differentiable).

A disadvantage of the LMS method is its lack of efficiency (because of
its n71"? convergence, which is proved in Section 4 of Chapter 4) when
the errors would really be normally distributed. Of course it is possible to
take an extreme point of view, wanting to stay on the safe side, even if it
costs a lot. After all, saying that the LS method is more efficient at the
normal is merely a tautology, because Gauss actually introduced the
normal distribution in order to suit that method (Huber 1972, p. 1042).
However, it is not so difficult to improve the efficiency of the LMS
estimator. One can use the LMS estimates as starting values for comput-
ing a one-step M-estimator (Bickel 1975) in the following way: suppose
we have the LMS solution (6%,..., Bj)" and a corresponding scale
estimate o*; then the one-step M-estimator (OSM) is defined as

Oosn = 0% + (X'X) X' (Y(r? o), . .., W(r*fo*))’ -B(:—@) ., (4.15)

where

B ®) = [ 0'w) d0() and r* =y, 5,00

and X is an n-by-p matrix, the rows of which are the vectors x,.
Afterwards o* can be replaced by Gosu» Using a M-estimator for scale.

If one uses a redescending -function in (4.15), that is, a function for
which ¢(x) =0 whenever |x|=c, the large outliers will not enter the
computation. One possible choice is the hyperbolic tangent estimator
(Hampel et al. 1981), which possesses maximal asymptotic efficiency
subject to certain robustness requirements. It is given by

X, O0=|x|=d
$(x) =1 (Ak = 1)) tanh {3((k ~ 1)BYA4)"(c — |x|)} sgn () , dﬁ [x|=e (4.16)
E x|=c,

where 0<d<c satisfies d=(A(k—1))"*tanh {4((k - 1)B’A)*(c -

d)}, A=[y*d®, and B= [ y' d®. (For instance, ¢ =3.0 and k=5.0

yields A =0.680593, B = 0.769313, and d =1.47.) Another possibility is
the biweight ¢-function (Beaton and Tukey, 1974) corresponding to

x(1=(x/c)*)?, x|=c¢

¢(x)={0( (x/e)) || Ilac. (4.17)

In either case, such a one-step M-estimator converges like n™'"* and
possesses the same asymptotic efficiency (for normal errors) as a fully
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iterated M-estimator. This was proven by Bickel (1975) when the starting
value is n'’? consistent, but in general it even holds when the starting
value is better than n'* consistent (Bickel, personal communication,
1983) as is the case for LMS. Formally,

E(nIIZ(BOSM _ 8)_)N(0, V((!/&y F)L_}) ’

where @ is the unknown parameter vector, &= Gosms L=
lim,_,. (X'X/n), and F is the true distribution of the errors. V(ys, F) is
called the asymptotic variance. When the errors are really normally
distributed, then F(r) = ®(1/6) and the asymptotic variance can be calcu-
lated. Indeed, in that case

-} | wwa ara)
iy V(y;, F) = .
1y || wwey aro)|

f A (116) dD(t15)
6’2

[ f ) dcp(;/&)]z

v aew

| v aoq)|
= 5*V(y, D). (4.18)

For ¢ defined as in (4.16),

V(y,®)= A/B*. - (4.19)

Consequently, one can say that the variance—covariance matrix of the
estimated regression coefficients is (approximately) equal to the p-by-p
matrix

GV (y, DYX'X) . (4.20)

For the LS estimator, ¢(r) = r and hence V(¢, ®) equals 1. Replacing
this value in (4.20) one recovers the well-known formula. Furthermore,
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expression (4.20) can be used to calculate the asymptotic efficiency e for

the combined procedure (LMS + one-step M) in a normal error model,
namely

e=1/V(y, D).

Hampel et al. (1981, Table 2) give a list of values of e for different
constants ¢ and k, as well as the corresponding A, B, and 4. For instance,
forc=3 and k=5 in (4.16), they obtain e = 86.96%.

The diagonal elements of the matrix in (4.20) are the variances of the
estimated regression coefficients E); Therefore, it is possible to construct
an approximate (1 — a) confidence interval for each 6, namely

16— VV &) ((XX) ™)t 1 ra

6+ GVV, O((XX) ) b iun]l. (421

Another possibility for improving the efficiency is to use reweighted
least squares. To each observation (x;, ¥;), one assigns a weight w, that is
a function of the standardized LMS residuals ri/o* (in absolute value).
For this purpose, one can choose several types of functions. The first kind
of weight function that we will consider here is of the form

1 if[rio*|=c,
w"‘{O otherwise . (+.22)

This weight function, yielding only binary weights, produces a clear
distinction between “accepted” and “rejected” points.

The second type of weight function is less radical. It consists of
introducing a linear part that smoothes the transition from weight 1 to
weight 0. In that way, far outliers (this means cases with large LMS

residuals) disappear entirely and intermediate cases are gradually down-
weighted. In the general formula

1 if [r,./o'*[ ='e,
LA (e Irila*,)/(CB —¢y) if ¢, = l"i/'i"*| =cy (4.23)
0 otherwise

the constants ¢, and ¢, have to be chosen.

A third weight function can be defined by means of the hyperbolic
tangent function (4.16), namely

1

if |r/o*| =d

iy (Al —1)" tanh{%(l(f/;i’)B 1A)"?(c — |rio*])} ita<jrier =g (4.24)
0

otherwise ,
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where the constants c, k, d, A, and B correspond to those already defined
in (4.16).

Once a weight function is selected, one replaces all observations
(x;» y;) by (w;”’x;, w;”?y,). On these weighted observations, a standard
least squares program may be used to obtain the final estimate. The RLS
results in PROGRESS are obtained with the weight function (4.22) with
¢; =2:5; )

Another way to improve the slow rate of convergence of the LMS
consists of using a different objective function. Instead of adding all the
squared residuals as in LS, one can limit one’s attention to a “trimmed”’
sum of squares. This quantity is defined as follows: first one orders the
squared residuals from smallest to largest, denoted by

(rz)I:RE(rz)Z:uS..'S(rz)n:n .

Then one adds only the first 4 of these terms, In this way, Rousseeuw
(1983) defined the least trimmed squares (LTS) estimator

h
Minimize >, (r%),., . : (4.25)
[ i=1

Putting 2 =[n/2] + 1, the LTS attains the same breakdown point as the
LMS (see Theorem 2). Moreover, for h=[n/2] + [(p+1)/2] the LTS
reaches the maximal possible value for the breakdown point given in
i Theorem 4. (Note that the LTS has nothing to do with the trimmed least
‘ squares estimators described by Ruppert and Carroll 1980.) Before we
investigate the robustness properties of the LTS, we will first verify its
equivariance.

Lemma 3. The LTS estimator is regression, scale, and affine
equivariant. :

Proof. Regression equivariance follows from the identity

h h
E (i +xv—x{v+0})),., = 2 (y:—x,0)%),..

for any column vector v. Scale and affine cquivariance are analogous.

a

Theorem 6. The breakdown point of the LTS method defined in (4.25)
with & =[n/2] + [(p + 1) /2] equals

eX(T, Z)=([(n—p)/2] + 1) /n.
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Proof. In order to prove this theorem we again assume that all observa-
tions with (x,, ..., x;,) = 0 have been deleted and that the observations
are in general position. '

1. We first show that (T, Z) = ([(n — p)/2] + 1)/n. Since the sample

Z={(x;,y,);i=1,...,n} consists of n points in general position, it
holds that

p = 3 inf {7 >0; there exists a ( p — 1)-dimensional subspace V of
(¥ =0) such that V" covers at least p of the x,}

1s strictly positive. Suppose @ minimizes (4.25) for Z, and denote by H
the corresponding hyperplane given by the equation y =x8. We put
M =max, |r,|, where r,=y,—x,0. Now construct any contaminated
sample Z'={(x;,y;); i=1,...,n} by retaining n—[(n—p)/2]=
[(n + p +1)/2] observations of Z and by replacing the others by arbitrary
values. It now suffices to prove that ||@ —@'|| is bounded, where @'
corresponds to Z’'. Without loss of generality assume 6’6, so the
corresponding hyperplane H' is different from H. Repeating now the
reasoning of the first part of the proof of Theorem 2, it follows that

ri=ra|>p(ll0" - 6l - 2]l])),

where r, and r, are the residuals associated with H and H' corresponding
to the point (x,, y,). Now the sum of the first # squared residuals of the
new sample Z’ with respect to the old 6, with at least [((n + p + 1)/2] = h
of these residuals being the same as before, is less than or equal to #M”.
Because @' corresponds to Z’ it follows that also

h
2y —x0')),.,<hM>.
i=1

If we now assume that

6"~ 6l =2[l6]| + M(1+VR)/p,

then for all 2 in A it holds that

= r.>p(ll0" -0l -2]l6])= M(1+ V),

SO
lril=lri—r,| = |r)>MQA+Vh) - M=MVh.

Now note that n — |A| = h — 1. Therefore any set of & of the (x/, y!) must
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contain at least one of the (x,, y,), so -

h
2 (v = X0, = () > hM?
i=1

a contradiction. This implies that

16" — 6] <2||0]| + M1+ VE)/p <

for all such samples Z'.
2. The opposite inequality £X(T, Z) < ([(n — p)/2] + 1) /n immediately
follows from Theorem 4 and Lemma 3. O

REMARK 1. Another way to interpret Theorem 6 is to say that T remains
bounded whenever strictly more than 1 (n + p — 1) observations are un-
contaminated.

REMaRk 2. The value of h yielding the maximal value of the breakdown
point can also be found by the following reasoning based on the proofs of
Theorems 2 and 6. On the one hand, the number of bad observations
n — | A| must be strictly less than /; on the other hand, [A] + p — 1 must
be at least 4. The best value of # is then obtained by minimizing | A| over
g h subject to [A| =1=n—hand |A| - 1= h — p, which yields h = [n/2] +
[(p +1)/2]

REMARK 3. In general, 2 may depend on some trimming proportion «,
for instance by means of & = [n(1 - a)] +[a(p +1)] or h = [n(1— )]+
1. Then the breakdown point ¢} is roughly equal to this proportion a. For
a tending to 50%, one finds again the LTS estimator, whereas for a
tending to 0%, the LS estimator is obtained.

The following corollary shows that also the LTS satisfies the exact fit
property.

Corollary. If there exists some @ such that strictly more than fn+p-
1) of the observations satisfy y, = x.8 exactly and are in general position,
then the LTS solution equals @ whatever the other observations are.

For instance, in the case of simple regression it follows that whenever
11 out of 20 observations lie on one line, this line will be obtained.
Unlike the slow convergence rate of the LMS, the LTS converges like

n~ ' with the same asymptotic efficiency at the normal distribution as




PROPERTIES OF THE LMS, THE LTS, AND S-ESTIMATORS

the M-estimator defined by

_lx,  |x[=@7(1-a/l2)
(x) = {0, otherwise , (4.26)

which is called a Huber-type skipped mean in the case of location (see
Chapter 4 for details). The main disadvantage of the LTS is that its
objective function requires sorting of the squared residuals, which takes

O(n log n) operations compared with only O(n) operations for the
median.

REMARK.  Until now we have considered the estimators obtained by
substituting the sum in the definition of the LS estimator by a median,
yielding LMS, and by a trimmed sum, leading to LTS. Another idea
would be to replace the sum by a winsorized sum, yielding something that
could be called least winsorized squares (LWS) regression, given by

Minimize 2 ()i + (n=B)(FY), ., | (4.27)

where & may also depend on some fraction . Like LMS and LTS, this
estimator is regression, scale, and affine equivariant, and it possesses the
same breakdown point for a given value of 4. However, some preliminary
simulations have revealed that the LWS is inferior to the LTS.

S-estimators (Rousseeuw and Yohai, 1984) form another class of

high-breakdown affine equivariant estimators with convergence rate
n 2 They are defined by minimization of the dispersion of the residuals:

Minimize s(r,(8), . . . , 7,(6)) , (4.28)

with final scale estimate

&=5(r(0),...,r,8)). (4.29)
The dispersion s(r,(8), . .., r,(0)) is defined as the solution of
1s p(ﬁ) -k (4.30)
ni1"\s

K is often put equal to E,[p], where ® is the standard normal. The
function p must satisfy the following conditions:
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(S1) p is symmetric and continuously differentiable, and p(0) = 0.

(52) There exists ¢>0 such that p is strictly increasing on [0, ¢] and
constant on [c, ).

[If there happens to be more than one solution to (4.30), then put
s(rys ..., r,) equal to the supremum of the set of solutions; this means
s(rys ..., r,)=sup {s;(1/n) T p(r,/s)= K}. If there exists no solution to
(4.30), then put s(r,,...,r,)=0.]

The estimator in (4.28) is called an S-estimator because it is derived
from a scale statistic in an implicit way. (Actually, s given by (4.30) is an
M-estimator of scale.) Clearly S-estimators are regression, scale, and
affine equivariant.

Because of condition (S2), ¢(x)=p'(x) will always be zero from a
certain value of x on, so ¢ is redescending. An example is the p-function
corresponding to

6
-+ 63—4 for |x|< ¢

¢ (4.31)
for x| >¢c,

the derivative of which is Tukey’s biweight function defined in (4.17).
Another possibility is to take a p corresponding to the hyperbolic tangent
estimator (4.16).

In order to show that the breakdown point of S-estimators is also 50%
we need a preliminary lemma, in which an extra condition on the function
p is needed:

K 1
(53) ple) 2
This condition is easy to fulfill. In the case of (4.31) with K = E,[p], it is
achieved by taking ¢ =1.547. Let us now look at the scale estimator
$(r1,. .., r,), which is defined by (4.30) for any sample (7., . . ., 3

Lemma 4. For each p satisfying conditions (51)-(S3) and for each n,
there exist positive constants « and g such that the estimator s given by
(4.30) satisfies

amed|r|=s(r,...,r,)<Bmed|r|.

Here med, |r,| or s(r;,...,r,) may even be zero.
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Proof. 1. We first consider the case n odd (n=2m+1). Put §=
s(ry, ..., r,) for ease of notation. We will show that

med |r,| med |r,|
o PR = S = — 4 i
c P (p(e)/(n+1))

Suppose med, |r,| > cS. Because med, |r| =|r|,ns1., it holds that at
least m + 1 of the |r,|/S are larger than c. Consequently,

% ; P(F_I:ST'l)2 % (m+1)p(c)>p(c)/2=K,

i=1

which is a contradiction. Therefore, med, |r,| < cS.
Now suppose that med, |r,| < p~*(p(c)/(n + 1))S. This would imply

that the first m + 1 of the |r,|/S are strictly smaller than p (ple)/(n+ .
’ 1)) Introducing this in (1/n) £, p(|r,|/S), we find that '
E:': n "
e ff-

ip(c)=K,

which is again a contradiction, so med, |r,|=p " {p(c)/(n + 1)}S.

2. Let us now treat the case where 7 is even (n=2m). We will prove
that

med [r,] med [r,|
u...'__;-:_:SS £

¢ 3 (2p(0)/(n +2))

Suppose first that med, |r.|>cS. Since n is even, med, |r,| =
3l in + 17| ,ess.0)- Then, at least m of the |r;]/S are strictly larger than

¢, and
ol
=1

1

LS

I;"‘)> 4'3 p(o)=1p(c)=K,

o Limited EXHIBIT 1008
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except when all other |r,| are zero, but then the set of solutions of (4.30)
is the interval (0,2med, |r,]/c], so S=2 med; [r,[/c. In either case,
med, [r,| < cS.

Suppose now that med, |r,| < 1p ™" {2p(c)/(n + 2)}8. Then |l 4. &
P {2p(c)/(n +2)}S. Hence, the first m+ 1 of the [r,|/S are less than
p~{2p(c)/(n + 2)}. Therefore,

1< (fr,l) m+12p(c) m—-1
nizzlp b = n n+2+ n ple)

_pl)  m-1
n n

p(c)
=(m/n)p(c)=p(c)/2=K.

Finally, med, |r,|= 5 p ™" {2p(c) /(n +2)} §.

3. We will now deal with special cases with zeroes.

Let us start with n odd (7 =2m + 1). When med, |r,| =0, then the first
m +1 of the |r,| are zero, and whatever the value of §, we always have
(1/n) Z_; o(|7,]/8) < % p(c). Therefore the set of solutions is empty, so
8§ =0 by definition.

On the other hand, when med, [r,| >0, then there are at least m + 1
nonzero |r,|, hence

li\l;% {;11— ::il p(lz—’,)} =((m+1)/n)p(c)>K
(23 () o<

Therefore, there exists a strictly positive solution S.

Let us now consider n even (n=2m). When med, [r,/=0, then the
first m + 1 of the |r,| are zero, and whatever the value of §, we have again
that (1/n) Z7_; p(|7;|/8) < Lp(c), so §=0.

When med, |r,| >0, then we are certain that [7],4s1.n >0 too. We shall
consider both the case |r|,.,>0 and |r|,., =0. If |7|.n is strictly
positive, then there are at least 7 + 1 nonzero |r.] and one can follow the
same reasoning as in the case where 7 is odd. If on the other hand
|7],n., =0, then we are in the special case where the ordered |r,| can be
written as a sequence of m zeroes and with 2med, [r,| in the (m + 1)th
position. By definition

§=sup (0,2med|r,|/c]=2med |r,|/c>0.
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We may therefore conclude (for both odd and even n) that med, |r,| is
zero if and only if S is zero. O

REMARK. Note that Lemma 4 (as well as Theorems 7 and 8) do not rely
on the assumption that K = Eg[p], which is only needed if one wants
(4.30) to yield a consistent scale estimate for normally distributed
residuals.

Theorem 7. For any p satisfying (S1) to (S3), there always exists a
solution to (4.28).

Proof. Making use of the preceding lemma, this follows from the proof
of Theorem 1, where the result was essentially given for the minimization
of med, |r,|. O

Theorem 8. An S-estimator constructed from a function p satisfying (S1)
to (S3) has breakdown point

e, =([n/2]=p+2)/n
at any sample {(x;, y,);i=1,...,n} in general position.
Proof. This follows from Theorem 2 by making use of Lemma 4. |

The breakdown point depends only slightly on n, and for n— o we
obtain ¢* =50%, the best we can expect. The following result concerns
the exact fit property for S-estimators, which again illustrates their high
resistance.

Corollary. If there exists some 6 such that at least n — [1/2]+ p — 1 of
the points satisfy y, =x,0 exactly and are in general position, then the
S-estimate for the regression vector will be equal to @ whatever the other
observations are.

REmMARK 1. If condition (S3) is replaced by

K
ey T a 4
p(c)
where 0 < o <1, then the corresponding S-estimators have a breakdown
point tending to £* = @ when n— . If it is assumed that K=E,j[p]in
order to achieve a consistent scale estimate for normally distributed

World P
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residuals, one can trade a higher asymptotic efficiency against a lower
breakdown point.

RemARk 2. Note that S-estimators satisfy the same first-order necessary
conditions as the M-estimators discussed in Section 2 of Chapter 1.
Indeed, let @ be any p-dimensional parameter vector. By definition, we
know that

5(0)=s(r,(0),...,7,(0)=6=5@0).

Keeping in mind that S(@) satisfies

(11m) 3 p(r(0)/5(0) = K

and that p(u) is nondecreasing in |u|, it follows that always

5 chinad

W RIS

3 (1/n) 2, p(r(0)/6)=K .
& =
% At @ =6, this becomes an equality. Therefore, 8 minimizes (1/n) X}_,

p(r{@)/d). (This fact cannot be used for determining @ in practice,
because & is fixed but unknown.) Differentiating with respect to 8, we
find

(1/n) 2, $(r(8)/3))x,=0.

If we denote p — K by x, we conclude that (6, &) is a solution of the
system of equations

U(r,(8)/8)x, =0

IM:

1
R o=y

(4.32)

x(r,(8)/6)=0

ehols

I
-

4
n

i

(described in Section 2 of Chapter 1) for defining an M-estimator.
Unfortunately, these equations cannot be used directly because there are
infinitely many solutions (i is redescending) and the iteration procedures
for the computation of M-estimators easily end in the wrong place if there
are leverage points. [This means we still have to minimize (4.28) with
brute force in order to actually compute the S-estimate in a practical
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situation.] Therefore it would be wrong to say that S-estimators are
M-estimators, because their computation and breakdown are completely
different, but they do satisfy similar first-order necessary conditions.

Besides their high resistance to contaminated data, S-estimators also
behave well when the data are not contaminated. To show this, we will
look at the asymptotic behavior of S-estimators at the central Gaussian
model, where (x;, y,) are i.i.d. random variables satisfying

y:i=x,0,te,, (4.33)

x; follows some distribution H, and e, is independent of x,; and distributed
like ®(e/a,) for some g, > 0.

Theorem 9. Let p be a function satisfying (S1) and (82), with derivative
p’' = . Assume that:

(1) ¥(u)/u is nonincreasing for u > 0;
(2) E4]l|x|]] <, and H has a density.

Let (x;, ;) be i.i.d. according to the model in (4.33), and let 0, be a

solution of (4.28) for the first # points, and &, = s(r, (8,), .. ., r.(8,). If
n—c then

8,—06, as.

T, ~F0, A8

Proof. This follows from Theorem 2.2 and 3.1 of Maronna and Yohai
(1981), because S-estimators satisfy the same first-order necessary condi-
tions as M-estimators (according to Remark 2 above). |

Let us now show the asymptotic normality of S-estimators.

Theorem 10. Without loss of generality let 6, =0 and oy =1. If the
conditions of Theorem 9 hold and

(3) W is differentiable in all but a finite number of points,
bounded, and [ ¢’ d®>0;

(4) E,[x'x] is nonsingular and E,[||x|]*] <, then

¢'| is

Page
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L(n''*(8,— 6,))— N| 0, EH[x‘xl‘i{f e d@}/{f o' dtb}z

and

[ (o)~ Ealo))* d2(y)

L(n*'*(5, — ay))— N|O, ;
{[ vy a0

Proof. This follows from Theorem 4.1 of Maronna and Yohai (1981)
using Remark 2. ]

As a consequence of Theorem 10, we can compute the asymptotic
efficiency e of an S-estimator at the Gaussian model as

(o)

Table 19 gives the asymptotic efficiency of the S-estimators corres-
ponding to the function p defined in (4.31) for different values of the
i breakdown point £*. From this table it is apparent that values of ¢ larger
L than 1.547 yield better asymptotic efficiencies at the Gaussian central
B 4 model, but yield smaller breakdown points. Furthermore we note that
taking ¢ = 2.560 yields a value of e which is larger than that of L, (for

DOiE B ERRN

46 W By

Table 19. Asymptotic Efficiency of S-Estimators for
Different Values of £*, Making use of Tukey’s
Biweight Function

&* e c K

50% 28.7% 1.547 0.1995
45% 37.0% 1.756 0.2312
40% 46.2% 1.988 0.2634
35% 56.0% 2.251 0.2957
30% 66.1% 2.560 0.3278
25% 75.9% 2.937 0.3593
20% 84.7% 3.420 0.3899
15% 91.7% - 4.096 0.4194

10% 96.6%
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which e is about 64%), and gains us a breakdown point of 30%. In
practice, we do not recommend the estimators in the table with a
breakdown point smaller than 25%. It appears to be better to apply the
¢ =1.547 estimator because of its high breakdown point. From this first
solution, one can then compute a one-step M-estimator or a one-step
reweighted least squares in order to make up for the initial low efficiency.
Such a two-stage procedure inherits the 50% breakdown point from the
first stage and inherits the high asymptotic efficiency from the second. An
algorithm for computing S-estimators will be described in Chapter 5.

5. RELATION WITH PROJECTION PURSUIT

The goal of projection pursuit (PP) procedures is to discover structure in
a multivariate data set by projecting these data in a lower-dimensional
space. Such techniques were originally proposed by Roy (1953), Kruskal
(1969), and Switzer (1970). The name “projection pursuit” itself was
coined by Friedman and Tukey (1974), who developed a successful
algorithm. The main problem is to find “good” projections, because
arbitrary projections are typically not very informative. Friedman and
Stuetzle (1982) give some examples of point configurations with strong
structure, which possess projections in which no structure is apparent.
Therefore, PP tries out many low-dimensional projections of a high-
dimensional point cloud in search for a “most interesting” one, by
numerically optimizing a certain objective function (which is also called a
“projection index”). Some important applications are PP classification
(Friedman and Stuetzle 1980), PP regression (Friedman and Stuetzle
1981), robust principal components (Ruymgaart 1981), and PP density
estimation (Friedman et al. 1984). A recent survey of the field has been
given by Huber (1985). The program MACSPIN (D? Software 1986)
enables us to look at two-dimensional projections in a dynamic way.

Let us now show that there is a relation between robust regression and
PP. To see this, consider the (p + 1)-dimensional space of the (x,, y,),
where the last component of x, equals 1 in the case of regression with a
constant. In this space, linear models are defined by

x, y)(_ﬂl) =0 (5.1)

for some p-dimensional column vector @. In order to find a “good” .‘.3, we
start by projecting the point cloud on the y-axis in the direction orthogon-
al to (8, —1) for any vector @. This means that each (x;, y;) is projected
onto (0, 7,(9)), where r,(6) =y, — x,0. Following Rousseeuw (1984, p.
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874) and Donoho et al. (1985), we measure the “interestingness” of any
such projection by its dispersion

5(r(8), ..., r,(0)), (5.2)
where the objective s is scale equivariant
s(tryy .o Tr) =|7|s(ry, ..., r,) forall (5.3)

but not translation invariant. The PP estimate @ is then obtained by
minimization of the projection index (5.2). If 5(rys..n,r)=
(Z7_, r2/m)""% then this “most interesting” @ is simply the vector of least
squares coefficients. Analogously, s(r, ..., r,) =2/, |r,|/n yields the Ly
estimator, and minimizing (Z_, |r,|%n)"'? gives the L ,-estimators (Gen-
tleman 1965, Sposito et al. 1977). Using a very robust s brings us back to
our high-breakdown regression estimators: s = (med, r?)""? yields the
LMS, s = (L}, (+*);.,/n)""? yields the LTS, and by putting s equal to a
robust M-estimator of scale we obtain S-estimators. Note that the
minimization of any s satisfying (5.3) will yield a regression estimator that
is regression, scale, and affine equivariant (as discussed in Section 4). So
any nice s defines a type of regression estimator; by varying s one obtains
an entire class of regression estimators belonging to the PP family. Thus
the PP principle extends to cover the linear regression problem and to
encompass both classical procedures and high-breakdown methods. This
notion is best thought of as “PP Linear Regression,” to distinguish it
from Friedman and Stuetzle’s (1981) nonlinear and nonrobust “PP
Regression.”

It appears that the only affine equivariant high-breakdown regression
estimators known so far (the LMS, the LTS, and S-estimators) are
related to PP. (GM-estimators do not have high breakdown, and the
repeated median is not affine equivariant.) There is a reason for this
apparent relation between high breakdown and PP. Indeed, Donoho,
Rousseeuw, and Stahel have found that breakdown properties are deter-
mined by behavior near situations of exact fit: These are situations where
most of the data lie exactly in a regression hyperplane (see Remark 1
following Theorem 3 of Section 4). Such configurations are precisely
those having a projection in which most of the data collapse to a point. In
other words, high breakdown appears to depend on an estimator’s
behavior in those situations where certain special kinds of projections
occur. Since PP can, in principle, be used to search for such projections,
the usefulness of PP in synthesizing high-breakdown procedures is not
surprising. ‘




OTHER APPROACHES TO ROBUST MULTIPLE REGRESSION

Table 20. Schematic Overview of Some Affine Equivariant Regression

Teclmiques

Criterion Method Computation g?

Best linear unbiased LS Explicit 0%

Minimax variance M Iterative 0%

Bounded influence @~ GM Iterative, Down to 0%
with weights on x, if p
(harder) increases

High breakdown LMS, LTS, S Projection pursuit Constant,
techniques up to 50%

Note, however, that PP is not necessarily the only way to obtain
high-breakdown equivariant estimators, at least not in multivariate loca-
tion where Rousseeuw (1983) gives the example of the minimal volume
ellipsoid containing at least half the data. Also, not every PP-based affine
equivariant estimator is going to have high breakdown (Fill and John-
stone 1984).

The relation of our robust regression estimators with PP also gives a
clue to their computational complexity. In principle, all possible projec-
tions must be tried out (although the actual algorithm in Chapter 5 can
exploit some properties to speed things up). This means that the LMS,
the LTS, and S-estimators belong to the highly computer-intensive part of
statistics, just like PP and the bootstrap, to which the algorithm is also

related. In Table 20 we have a schematic overview of criteria in affine
equivariant regression.

*6. OTHER APPROACHES TO ROBUST MULTIPLE
REGRESSION

We have seen that the conditions under which the LS criterion is optimal
are rarely fulfilled in realistic situations. In order to define more robust
regression alternatives, many statisticians have exploited the resistance of
the sample median to extreme values, For instance, the L, criterion can
be seen as a generalization of the univariate median, because the
minimization of X;_, |y, — 8| defines the median of 7 observations y;. In
the regression problem, the L, estimator is given by

Minimize , |r,| . (6.1)
[’}

i=1
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The substitution of the square by the absolute value leads to a
considerable gain in robustness. However, in terms of the breakdown
point, L, is not really better than LS, because the L, criterion is robust
with respect to outliers in the y, but is still vulnerable to leverage points.
Moreover, Wilson (1978) showed that the efficiency of the L, estimator
decreases when » increases. From a numerical point of view, the minimi-
zation in (6.1) amounts to the solution of a linear program:

n
Minimize > (wxw)
6 i=1

under the constraints

P
yi=“:216kxik+uiHvi! ujzo?vjzo'

Barrodale and Roberts (1974) and Sadovski (1977) described algorithms
and presented FORTRAN routines for calculating L, regression coef-
ficients.

The minimization of an L, norm (for 1= g =2) of the residuals has
been considered by Gentleman (1965), Forsythe (1972), and Sposito et
al. (1977), who presented an algorithm (with FORTRAN code) for the
L, fit of a straight line. Dodge (1984) suggested a regression estimator
based on a convex combination of the L, and L, norms, resulting in

iU (8 semmrgg

n 2
Minimize 2, ((1 - &) _r2_, + Siril) with 0=6=1.
] i=1

Unfortunately, all these proposals possess a zero breakdown point.

In Section 7 of Chapter 2, we listed some estimators for simple
regression which are also based on the median. Some of them have been
generalized to multiple regression by means of a “‘sweep” operator (see
Andrews 1974).

The idea behind Theil’s (1950) estimator, which consists of looking at
the median of all pairwise slopes (see Section 7 of Chapter 2), has also
been the source of extensions and modifications. A recent proposal comes
from Oja and Niinimaa (1984). For each subset J= {i,,i,,...,i,} of
{1,2, ..., n} containing p indices, they define

O, =00 has s v 51,) (6.2)

as the parameter vector corresponding to the hyperplane going exactly
through the p points (x;, y;), .- ., (xip, y;p)- They call these 8, pseudo-
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observations, and there are C; of them. Their idea is now to compute a
multivariate location estimator (in p-dimensional space) of all these 0,. A
certain weighted average of the 6, yields LS, but of course they want to
insert a robust multivariate estimator. If one computes

ﬁf:m;:d (6,); forallj=1,...,p (6.3)

(coordinatewise median over all subsets J), then one obtains a regression
estimator that fails to be affine equivariant. For simple regression, (6.3)
indeed yields the Theil-Sen estimator described in Section 7 of Chapter
2. In order to obtain an affine equivariant regression estimator, one has
to apply a multivariate location estimator 7° which is itself affine
equivariant, meaning that

I(z,A+b,...,z,A+b)=T(z,,...,2,)A+Db (6.4)

for any sample {z;,...,z,} of p-dimensional row vectors, for any
nonsingular square matrix A, and for any p-dimensional vector b. For this
purpose they propose to apply the generalized median, an ingenious
construction of Oja (1983) which is indeed affine equivariant and will be
discussed in Section 1 of Chapter 7. Unfortunately, the computation
complexity of this generalized median is enormous (and it would have to
be applied to a very large set of 8, vectors!). Even when the coordinate-
wisc median (6.3) is applied, the Oja—Niinimaa regression estimator
needs considerable computation time because of the C¥ pseudo-observa-
tions. In either case the consideration of all @, is impossible, so it might
be useful to consider a random subpopulation of pseudo-observations.

Let us now consider the breakdown point of this technique. We can
only be sure that a pseudo-observation 8, = 6(i,, . . . , i) is “good” when
the p points (x;, y;), .- - (xjp, y,.p) are all good. If there is a fraction & of
outliers in the original data, then we can only be certain of a proportion
(1—&)” of “good” pseudo-observations. Therefore, we must have that

(1-g)f=1 (6.5)

because the best possible breakdown point of a multivariate location
estimator is 50%, which means that still 50% of “good” pseudo-observa-
tions are needed. Formula (6.5) yields an upper bound on the amount of
contamination that is allowed in the original data, namely

g =1-(5)". - (6.6)

World Pro
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For p =2, one finds again the breakdown point of Theil’s estimator. The
value of £* in (6.6) decreases very fast with P, as shown in Table 21.

M-estimators (Huber 1973) marked an important step forward in
robust estimation. Much research has been concentrated on constructing
functions p and ¢ (see Chapter 1) such that the associated M-estimators
were as robust as possible on the one hand, but still fairly efficient (in the
case of a normal error distribution) on the other hand. Note that LS is
also an M-estimator with (f) = ¢ and that L, regression corresponds to
¥(r) = sgn (). Huber (1964) proposed the following ¢ function:

e if [t]<b
W= {b sgn (¢) ;f %t| =b, - (6.7)

where b is a constant. Actually, in a univariate location setting, this
estimator was already constructed by the Dutch astronomer Van de Hulst
in 1942 (see van Zwet 1985). Asymptotic properties of this estimator are
discussed in Huber (1973). Hampel (1974) defined a function that
protects the fit even more against strongly outlying observations, by
means of '

t if]t}<a
_Jasgn(t) ifa<|t|<b
YOV (eI -bpasgn(y itb=lf=c 6B
0 otherwise ,

which is called a three-part redescending M-estimator. Figure 19 shows
Y-functions of both types. In the literature one can find many more
y-functions (see Hampel et al. 1986 for a detailed description).

Of course, it is not sufficient to define new estimators and to study
their asymptotic properties. Besides that, one has to develop a method
for calculating the estimates. The solution of the system of equations
(4.32) corresponding to M-estimates is usually performed by an iterative

Table 21. Value of £*=1—(1)"” for Some Values of p

P g" p g*

1 50% 6 11%
2 29% 7 9%
3 21% 8 8%
4 16% 9 T%
5 13% 10 7%
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(a) (b)

Figure 19. () Huber-type y-function. (b) Hampel-type y-function.

procedure. In each step, one has to estimate the coefficients and the scale
simultaneously. However, it is very important to start the iteration with a
“good” starting value, that is, an estimate which is already sufficiently
robust. Without this precaution, one can easily end up in a local
minimum that does not correspond at all to the expected robust solution.
Dutter (1977) proposed some algorithms for solving the numerical prob-
lems associated with M-estimators. The calculation of GM-estimators or
bounded-influence estimators [Chapter 1, equation (2.12)] presents simi-
lar problems. Dutter (1983a) described a user-oriented and portable
computer program (BLINWDR) for calculating these estimates. Marazzi
(1986) developed the subroutine library ROBETH, which computes
M-estimators and bounded influence estimators. ROBETH also contains
robust tests for linear models (Ronchetti 1982) and a variable selection
procedure (see also Ronchetti 1985). The corresponding system control
program is called ROBSYS (Marazzi 1987). TROLL (Samarov and
Welsch 1982, Peters et al. 1982) is a large interactive system for statistical
analysis which also includes the computation of bounded influence regres-
sion estimators.

Note that the breakdown point of M- and GM-estimators is quite
different. Where &* is again. 0% for M-estimators because of their
vulnerability to leverage points, it becomes nonzero for GM-estimators
(Maronna et al. 1979, Donoho and Huber 1983). For p tending to o, the
breakdown point of GM-estimators drops to 0% (a small numerical study
was performed by Kamber 1985). Yohai (1985) observes that some

World Progra
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GM-estimators have very low efficiency in the presence of good leverage
points. Exact breakdown points of GM-estimators are computed by
Martin et al. (1987).

Another approach to robust regression is based on the ranks of the
residuals. In the framework of univariate location, these so-called R-
estimators are due to Hodges and Lehmann (1963). The idea of using
rank statistics has been extended to the domain of multiple regression by
Adichie (1967), Jureckova (1971), and Jaeckel (1972). The proposal of
Jaeckel leads to the following definition: If R, is the rank of r, = y, — x,8,
then the objective is to

Minimize , a,(R))r,, (6.9)
@ i=1

where the scores function a, (i) is monotone and satisfies Liia,(i)=0.
Some possibilities for the scores a,(i) are:

a,(D)=i-(n+1)/2
a,(i)=®7'(i/(n+1))
a,(i}=sgn(i—(n+1)/2)

a,(i) = min(c, max{®~'(i/(n + 1)), — c}).

(The latter scores were proposed by Rousseeuw 1979 and Ronchetti
1979.) In the case of regression with intercept, one has to estimate the
constant term separately, since the objective function is invariant with
respect to the intercept. This can be done by using a robust location
estimate of the residuals. An important advantage of R-estimators com-
pared to M-estimators is that they are automatically scale equivariant, so
they do not depend on a simultaneous scale estimator. Nevertheless,
Jureckova (1977) showed that (under certain conditions) R-estimators are
asymptotically equivalent to M-estimators. Heiler and Willers (1979)
prove the asymptotic normality of R-estimators under weaker conditions
than those imposed by Jureckovi. Lecher (1980) developed (and im-
plemented) an algorithm for R-estimators, in which the minimization
(6.9) is carried out by a direct-search algorithm of Rosenbrock (1960).
Cheng and Hettmansperger (1983) proposed an iteratively reweighted
least squares algorithm for solving (6.9).

The class of L-estimators also plays a prominent role in robust
univariate location. They are based on linear combinations of order
statistics, and their popularity rests mainly on their simple computation.
Bickel (1973) has proposed a class of one-step L-estimators for regres-
sion, which depend on a preliminary estimate of .

Wilcoxon scores:
Van der Waerden scores:
median scores:

bounded normal scores:
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Koenker and Bassett (1978) formulated another proposal for L-
estimators, making use of analogs of sample quantiles for linear regres-

sion. They defined the a-regression quantile (0 < a < 1) as the solution ﬁa
of

n
Minimize >, e,
6y i=1
where

_Jar, ifr,=0
Pa(rs) = (@ —1)r;, ifr,=0.

(For @ =0.5, one obtains the L, estimator.) Koenker and Bassett then
proposed to compute linear combinations of these 0,. Portnoy (1983)
proved some asymptotic properties of these estimators. However, note
that their breakdown point is still zero.

Also the trimmed least Squares estimators of Ruppert and Carroll
(1980) are L-estimators. They are counterparts of trimmed means, which
are well-known L-estimators of location. (Note that they are not related
to the LTS discussed in Section 4.) Ruppert and Carroll proposed two
ways to select observations to be trimmed: one of these uses the concept
of regression quantiles, whereas the other employs residuals from a
preliminary estimator.

Heiler (1981) and Kiihimeyer (1983) describe the results of a simula-
tion study about M-, L-, and R-estimators for linear regression. The
behavior of these classes of estimators for different designs and error
distributions was compared. It is important to note that the generated
samples were rather small, n < 40 and p =3, and that no leverage points
were constructed. The conclusions from this study can be summarized as
follows: LS is very poor, even for mild deviations from normality.
M:-estimators with redescending -function turn out to work quite well.
R-estimates with Wilcoxon scores, which have the advantage of being
scale equivariant (and of being simple to use because no parameter has to
be fixed in advance), are a good alternative. L-estimates achieved less
satisfactory results.

The first regression estimator with maximal breakdown point is the
repeated median due to Siegel (1982). Like the proposal of Oja and
Niinimaa (1984) discussed above, it is based on all subsets of p points.
Any p observations (x;,» Vidstinay (x!.p, yip) determine a unique parameter
vector, the jth coordinate of which is denoted by 8(i,...,1,). The
repeated median is then defined coordinatewise as

é}: mied (... (med (mt_ed LR N | - (6.10)

lp_l
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This estimator can be calculated explicitly. The fact that the medians are
computed sequentially (instead of one median over all subsets) gives the
estimator a 50% breakdown point, in which respect it is vastly superior to
the Oja-Niinimaa proposal. (The asymptotic efficiency of the repeated
median, as well as its influence function, appear to be unknown as yet.)
Unfortunately, two disadvantages remain: the absence of affine
equivariance and the large number of subsets. However, the second
problem might be avoided by selecting some subsets at random instead of
using all C¥ of them.

Recently, Yohai (1985) introduced a new improvement toward higher
efficiency for high-breakdown estimators like LMS and LTS. He called
this new class MM-estimators. (Note that they are not related to the
MM-estimators considered in Chapter 9 of Rey 1983.) Yohai’s estimators
are defined in three stages. In the first stage, a high-breakdown estimate
6% is calculated, such as LMS or LTS. For this purpose, the robust
estimator does not need to be efficient. Then, an M-estimate of scale S,
with 50% breakdown is computed on the residuals 7,(6*) from the robust
fit. Finally, the MM-estimator @ is defined as any solution of

> 0, 0)15,)%, =0,

which satisfies

S(0) < 5(6%)

where

n

S(0) =2 p(r(0)/s,) .

i=1

The function p must be like those used in the construction of S-estimators
in Section 4; in particular, it must satisfy conditions (S1) and (S2). This
implies that ¢ = p’ has to be properly redescending: Some possibilities
are three-part redescenders (6.8), Tukey’s biweight (4.17), or the hyper-
bolic tangent ¢ (4.16). The trick is that this p may be quite different from
that of the scale estimate s, of the second stage, because the first and the
second stage must achieve the high breakdown point whereas the third
stage is allowed to aim for a high efficiency. Indeed, Yohai showed that
MM-estimators inherit the 50% breakdown point of the first stage and
that they also possess the exact fit property. Moreover, he proved that
MM-estimators are highly efficient when the errors are normally distri-
buted. In a small numerical study, he showed that they compare favor-
ably with GM-estimators.
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In the same spirit of combining high breakdown with high efficiency,
Yohai and Zamar (1986) consider ““7-estimators™ defined by

s

n

Minimize 5’ ¥ > p(fi) ;

7 R o=
where again p may be different from that of the scale estimate s, which is
applied to the residuals 7,(8). Asymptotically, a 7-estimator behaves like
an M-estimator with a p-function that is a weighted average of the two
p-functions used in this construction.

Another possibility, which we have not yet investigated, would be to
minimize an objective function of the type

2 5 5@ aesioy, (6.11)

i=1

where A denotes the minimum of two numbers, k>1, and () is a
high-breakdown estimator of scale on the residuals r,(8),...,r,(0),
which is consistent under normality. For instance, §$%(0) may be a
multiple of med, 7;(8) or (1/n) I, (r(8)),.,, or §(#) may be a suitable
M-estimator of scale. It seems that the minimization (over 8) of (6.11)
would combine high asymptotic efficiency with a high breakdown point,
because most often the first part (LS) would be used at “good” configura-
tions whereas the second part protects from “bad” configurations. How-
ever, it remains to be verified whether the actual (finite-sample) behavior
of this estimator would be good enough to compete with simple but
effective methods like the combination of LMS with a one-step im-
provement.

REmaRK. Suppose that we apply a weighted LS with weights given by

. ={1 if |[r/a*| < ¢
g 0 otherwise ,

where r, is the LMS residual of Y:» and o is the corresponding LMS scale
estimate. For each constant ¢ > 1, this estimator has breakdown point
50%, whereas for ¢ — » it becomes more and more efficient, and tends to
LS. This paradox can be explained by understanding that the breakdown
point is only a crude qualitative notion. Indeed, the above estimator with
large ¢ will not become unbounded for less than 50% of contamination,
but it will not be very good either. [The same is true for the univariate
M-estimator of location (6.7) with large b.] One should not forget that
the breakdown point is only one out of several robustness criteria, S0 a
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high breakdown point alone is not a sufficient condition for a good
method. We personally consider a good breakdown point as a necessary
condition, because we do not want estimators that can become arbitrarily
bad as a result of a small fraction of contamination. Indeed, Murphy’s
Law guarantees us that such contamination is bound to oceur in practice.

EXERCISES AND PROBLEMS

Sections 1-3 ‘
1. Table 22 was taken from Gray (1985). It deals with 23 single-engine
aircraft built over the years 1947-1979. The dependent variable is
cost (in units of $100,000), and the explanatory variables are aspect

Table 22. Aircraft Data
Aspect Lift-to-Drag

Index Ratio Ratio Weight Thrust Cost
1 6.3 1.7 8,176 4,500 2.76
2 6.0 1.9 6,699 3,120 4.76
3 5.9 1.5 9,663 6,300 8.75
4 3.0 L2 12,837 9,800 7.78
5 5.0 1.8 10,205 4,900 6.18
6 6.3 2.0 14,890 6,500 9.50
7 5.6 1.6 13,836 8,920 . 5.14
8 3.6 1.2 11,628 14,500 476
9 2.0 1.4 15,225 14,800 16.70

10 2.9 2.3 18,691 10,900 27.68
11 2.2 1.9 19,350 16,000 26.64
12 3.9 2.6 20,638 16,000 13.71
13 4.5 2.0 12,843 7,800 12.31
14 43 0.7 13,384 17,900 15.73
15 4.0 29 13,307 16,500 13.59
16 32 4.3 29,855 24,500 51.90
17 4.3 43 29277 30,000 20.78
18 24 2.6 24,651 24,500 29.82
19 2.8 3.7 28,539 34,000 32.78
20 39 33 8,085 8,160 10.12
21 2.8 3.9 30,328 35,800 27.84
22 1.6 4.1 46,172 37,000 107.10
23 34 235 17.836 19,600 11.19

Source: Office of Naval Research.

S o S S, S
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=

ratio, lift-to-drag ratio, weight of the plane (in pounds), and maximal
thrust. Run PROGRESS on these data. Do you find any outliers in
the standardized observations? Does LS identify any regression out-
liers? How many outliers are identified by LMS and RLS, and of
what type are they? Is there a good leverage point in the data?

Table 23 lists the delivery time data of Montgomery and Peck (1982,
p. 116). We want to explain the time required to service a vending
machine (y) by means of the number of products stocked (x,) and
the distance walked by the route driver (x;). Run PROGRESS on
these data. The standardized observations reveal two leverage points.
Look at the LMS or RLS results to decide which of these is good and

Table 23. Delivery Time Data

Index Number of Products Distance Delivery Time
@) (x) (x) )
1 7 560 - 16.68
2 3 220 11.50
3 3 340 12.03
4 4 80 14.88
5 6 150 13.75
6 7 330 18.11
% 2 110 8.00
8 7 210 17.83
9 30 1460 79.24
10 5 603 21.50
11 16 688 40.33
12 10 215 21.00
13 4 255 13.50
14 6 462 19.75
15 9 448 24.00
16 10 776 29.00
17 6 200 15.35
18 7 132 19.00
19 - 3 36 9.50
20 17 770 35.10
21 10 140 17.90
2% 26 810 52.32
23 9 450 18.75
24 8 635 19.83
25 4 150 10.75

Source: Montgomery and Peck (1982).
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which is bad. How does deleting the bad leverage point (as done by
RLS) affect the significance of the regression coefficients?

Table 24 was taken from Prescott (1975), who investigated the effect
of the concentration of inorganic phosphorus (x,) and organic phos-
phorus (x,) in the soil upon the phosphorus content (y) of the corn
grown in this soil. Carry out a multiple regression analysis of y on x,
and x, by means of PROGRESS. Are there extreme standardized
observations? Which outliers are identified by LMS and RLS? In
view of the fact that one of the explanatory variables has a very
insignificant coefficient in both LS and RLS, it is recommended to
run the analysis again without that variable. Indicate the previously
discovered outliers in the scatterplot of this simple regression. Judg-
ing from the statistics and p-values in both models, do you think that
switching to the smaller model is justified?

4. When fitting a multiplicative model

= 10,8 6
Yi=XaXa .. X5,

Table 24. Phosphorus Content Data

Index Inorganie Organic Plant
(i) Phosphorus (x,) Phosphorus (x,) Phosphorus (y)
1 0.4 53 64
2 0.4 23 60
3 31 19 7114
4 0.6 34 61
5 4.7 24 54
6 1.7 65 77
7 9.4 44 81
8 10.1 31 93
9 11.6 29 93
10 12.6 58 51
11 10.9 37 76
12 231 46 96
13 234 50 77
14 21.6 44 93
15 23.1 56 95
16 1.9 36 54
17 26.8 58 168
18 29.9 51 99

Source: Prescott (1975).
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it is natural to logarithmize the variables. However, in economics it
happens that some observations are zero (typically in one of the
explanatory variables). It is then customary to put the transformed
observation equal to a very negative value. Would you rather use LS
or a robust regression method on these transformed data? Why?

5. (Research problem) Is it possible to develop collinearity diagnostics
that are not so much affected by outliers?

Sections 4—6

6. Show that the repeated median estimator is regression and scale
equivariant, and give a counterexample to show that it is not affine
equivariant.

7. (Research problem) It would be inter
behavior of the repeated median re
its influence function.

8. Show that the variant of the LMS given by formula (4.9) has
breakdown point ([(n — p)/ 2] +1)/n.

9. Explain why the breakdown point of the least quantile of squares
estimator (4.10) is approximately equal to a. Why doesn’t the
breakdown point become higher than 50% when o > 19

10. The L, fit is determined by the narrowest band covering all the data.
Consider again some of the simple regression examples of the
preceding chapters to illustrate that the L_ line is even less robust
than LS,

11. Prove that the LWS estimator (4.27) is regression, scale, and affine

equivariant, and show that its breakdown point equals the desired
value.

esting to know the asymptotic
gression estimator and to obtain

12. (Research problem) What is the maximal asymptotic efficiency of an

S-estimator defined by means of function p satisfying (S1), (S2), and
(S3) with K= E,[p]?




