&

Code for every numbered

isting in the book and
additional examples

» XML browsers and fools
» Relevant W3C standards

XML Bible

Elliotte Rusty Harold

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA 4 Chicago, IL 4 Indianapolis, IN ¢ New York, NY

World Programming Limited [

XML™ Bible

Published by

IDG Books Worldwide, Inc.

An International Data Group Company

919 E. Hillsdale Blvd., Suite 400

Foster City, CA 94404

wiw . 1dgbooks. com (IDG Books Worldwide Web site)

Copyright © 1999 IDG Books Worldwide, Inc. All rights
reserved, No part of this book, including interior
design, cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

ISBN: 0-7645-3236-7

Printed in the United States of America

109876543

10/QV/QY/ZZ/FC

Distributed in the United States by IDG Books
Worldwide, Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom;
by IDG Norge Books for Norway; by IDG Sweden Books
for Sweden; by IDG Books Australia Publishing
Corporation Pty. Ltd. for Australia and New Zealand; by
TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc.
for Japan; by Norma Comunicaciones S.A. for
Colombia; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for
Germany, Austria and Switzerland; by Distribuidora
Cuspide for Argentina; by Livraria Cultura for Brazil; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by
Contemporanea de Ediciones for Venezuela; by)
Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for
Micronesia; by Grupo Editorial Norma S.A. for
Guatemala; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.
Authorized Sales Agent: Anthony Rudkin Associates for
the Middle East and North Africa.

For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer
Service department at 800-762-2974. For reseller
information, including discounts and premium sales,

please call our Reseller Customer Service department
at 800-434-3422,

For information on where to purchase IDG Books
Worldwide's books outside the U.S., please contact our
International Sales department at 317-596-5530 or fax
317-596-5692.

For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-596-3692, or e-mail
rights@idgbooks, com.

For information on licensing foreign or domestic rights,
please phone +1-650-655-3109.

For sales inquiries and special prices for bulk
quantities, please contact our Sales department at
650-655-3200 or write to the address above.

For information on using IDG Books Worldwide’s books
in the classroom or for ordering examination copies,
please contact our Educational Sales department at
800-434-2086 or fax 317-596-5499.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-655-3000 or fax
650-655-3299.

For authorization to photocopy items for corporate,
personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.

Library of Congress Cataloging-in-Publication Data
Harold, Elliote Rusty.

XML bible / Elliote Rusty Harold.

p. cm.

ISBN 0-7645-3236-7 (alk. paper)

1. XML (Document markup language) I. Title.
QA76.76.H94H34 1999 99-31021
005.7°2-dc21 CIP

LIMIT OF

LITY/DISCLAIMER /ARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST

EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL
BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks,
or registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or
vendor mentioned in this book.

———
e

DG
BOOKS

‘WORLDWIDE

is a registered trademark or trademark under exclusive license
to IDG Books Worldwide, Inc. from International Data Group, Inc.
in the United States and/or other countries.

of ure with IDG's Hi-Tech Beijing, became the first |
1e People’s Republic of China. In record time, 1DG Books Worldwide
readers around the world who want to learn how t

WINNER

WINNER

WINNER . WINNER et

Computer Press TR R Computer Press
AWMEJWZ Ninth Annual Tenth Annual Awardsé]??s
Computer Press Computer Press
Awards. é} 993 Awards. éﬂ'&i

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide 1T spending. IDG's diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG's 290 magazines and newspapers, including
IDG'’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (hitp://www.idgnet), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG's print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/24/99

World Programming Limited EXHI B
Page 4%

Contents

3082602000000 BIGGERLEREEESOODEBBOREOEBEHOSTOEREESS G

Preface .. e T D T A et
Acknow]edgments .. xvii

Part E Introducmg XML

Chapter 1: An Eagle’s Eye View of XML OV,

What Is XML? . o e TR SR
XMLIs a Meta-Markup Language ... 3
XML Describes Structure and Semantics, Not Formattingccccoeveeeenne 4
Why Are Developers Excited about XML? ... 0
Design of Domain-Specific Markup Languages ... 6
Self-Describing Data .. =
Interchange of Data Among Apphcatlons
Structured and Integrated Dataccocvvevniinmnceec e
The Tite of a0 XML DECUTITEIE romysvee e s o s seom st s s ey
Editors .o
Parsers and Processors
Browsers and Other Tools ..
The Process ST aPizad wmmammmsimmmsisssssssrmms eyt tans s ssonsnes s nmmnes
Related Technologies
Hypertext Markup Language
Cascading Style Sheets
Extensible Style LANGUAZE ...ovcvcimiciiiriiess e
VRLS AT VRIS s sncvsssvunierimss s tos e o arems wosiauss s sissvasesos va assnsssusasons
XLinks and XPolnters o .
Thie Unicode CHaracter Seb .cmmeimimsssiniassermassssmnnssorssresssssatsssss
How the Technologies Fit TOGether ...

Chapter 2: An Introduction to XML Applicationsmsssmsssees 17

What Is an XML AppPlCAtIONT ..ot 17
Chemical Markup LangUAZEccccevireermimnmimnenesisissiesssns e sseisssssanes 18
Mathematical Markup Language
Channel Definition FOrmat ... 22
Classic Literature- .
Synchronized Multimedia Integratlon La.nguage 24
Open Software DeSCI’lpthl’l
Scalable Vector Graphics ..
Vector Markup Language
NOEML ovimmomsrssmsamnien ssmmesmmmssamssssmms s

Open Finaneial EXCHANEE ccuniiiimimmmmeimeommmremsamiosssoosstmtsiotmsssis, 34

Extensible Forms Description Languageccoo.oooeovoomooooooooooooo, 36
Human Resources Markup Languageocoooooovuooomeooooeoeooooooooo 38
Resource Description Frameworkcooeooooemeoeeosooooooooooo 40
XML OF XML oottt et teses e e s ess s s e ee oo enn 42

Chapter 3: Your First XML Document 49
(227 . Y 49
Creating a Simple XML DOCUMENL «.......ccouvmeveeemresreemeeeoeeoseoseoooeoe 50
Saving the XML FIlecccoormimieiesieieicteeecereseseeesss e 50
Loading the XML File into a Web BIOWSETo..ooveveeeooooeooooeeooo 51
Exploring the Simple XML DOCUMENTcueeeeeeeeeeeee s 52
Assigning Meaning to XML TagScevveeeereeeneeesesesseeseesesoeoeeooeoooeee oo 54
Writing a Style Sheet for an XML DOCUNENEveeveveeoeeesoeooooooooooeoo 55
Attaching a Style Sheet to an XML Document B rmsesid 56
Chapter 4: Structuring Data 59

EXamining the DAta ... esenseesses et see e

IBEREER: G0iiiiimmrsneamasosersuunvosssmmsmssroessgsvesssscrsaossossdsd oo L S U

Pitchers

XMLizing theDatd oummmsomnmmanii
Starting the Document: XML Declaration and Root Element

................. 65

XMLizing League, Division, and Team Dataco.eeveeoooeeooooeooeooesoo 67

XMLIZING Player DAtaccococoeceiieiieeeeeseciseeeeeeee e esee s es s s, 69

XMLizing Player STatiStiCSovererueeeireviceceeceeeeeeeeseeeseesseee oo 70

Putting the XML Document Back Together Againco.oocoooeeevevrervnnn.. 72

The Advantages of the XML FOIMAtcc.cccccoviuiimsionmmesessssssemessmsessessessesesne 80

Preparing a Style Sheet for Document Displaycoocoeovuvevieeeeeessressssssson 81

LinigliE Y SielaBhert . oioiiboisediimmm s o 82

Assigning Style Rules to the Root Elementccocooeveevoroveeeeeeeerseeenn. 84

Assigning Style Rules t0 TitIes ..ooivcerceciieiieeeeeeee oo 85
Assigning Style Rules to Player

and Statisties BIemenbs .o s i e 88

Summing UD oot e e 89

Empty Tags ...
ASL.

XSL Style Sheet Templates
The Body of the Document

The Title
Leagues, Divisions, and Teams
Plavers .o
Separation of Pltchers ancl Batters

CSS or XSL? .

Chapter 6: Well-Formed XML Documents &

#1: The XML Declaration Must Begin the Documentco......o..... 144
#2: Use Both Start and End Tags in Non-Empty Tagsc..cceecuvmnrriccres 144
Chapter 7: Foreign Languages and Non-Roman Textemssssssees 161

Non-Roman Scripts on the Web . s R e R

Scripts, Character Sets, Fonts, and Glyphs
A Character Set fOr the SCrIPE .ot re e rene
A Font for the Character Set .
An Input Method for the Character Set
Operating System and Application Software

Legacy Character SEES ...ttt
The ASCI Character Set ..ot
The IS0 Character Sets .o
The MacRoman Character Setccccocevvevveeninnen.
The Windows ANSI Character Setccccceveenen.

The Unicode Character Setcccccvevveeneenennns
UTE-8 ..
The Unlversal Character System

How to Write XML in Unicode
Inserting Characters in XML Flles w1th Character References 183
Converting to and from Unicode .. o A P S S TS
How to Write XML in Other Character Sets

Part li: Document Type Definitions

Chapter 8: Document Type Definitions and Validity

Document Type Definitionsccccovevieeiisiiieissisesessces st ssesese e
Document Type Declarations
Validating Against a DTD

Listing the Elementscc....... e e b ane st sasty e pRRA SRR R ARS

Element Declarattons i wupamemsmmmpndaaan s smrnnm s snnas

Sequences
One or More Chrldren R e I e B s B T e i e L Y

Zero or More CRIldIeNcoeveoermeeseesresesosooooooo 215

ZEHG OF ONEChIE covssisiosinssbin umesosbasemmemstins sttt e 216
The Complete Document and DTDoovooveereooo 217
CUBIOES. vy rsnresssesecssss 5505 s messss st 223
Children with Parentheses ... 224
MIXed CONLENL ...ovocvvrrvececeereeeesssnsee e 227
EMPtY EICIMENLS .cooovvvreroeeeceomerseesseoees oo oo 228
COMMENLS INDTDS usssuisssisiissmsivrsmemomsiveiimssinssosstionb o oo 229
Sharing Common DTDS AMONg DOCUMENTSovoc..rooo 234
DTDs at Remote URLScoooocveromesereomes oo 241
PUBHEDEDIS e ivmvessieseocositsbiss s it i s it esmoseont st o 241
Internal and External DTD SUDSEtScoovvovorrros 243
Chapter 9: Entities and External DTD Subsets ... 247
What Is an Entity?c.cceemmeeeeeovooeoeoooosooooo SRC N IR 247
Internal General ENtIHES w............ooccevouvoommeersssesesss oo 249
Defining an Internal General Entity Referencecoooooomerrevsovon, 249
Using General Entity References in the DTD oo 251
Predefined General Entity References ..., .. 252
i s U1 1 253
Internal Parameter ENHIHESoouvuecmrmvessoeesoesoos oo 256
External Parameter ENUES w........oouveoveorvoeeeeeeseoss oo 258
Building 2 DOCUMENL frOM PIECES ...vvvvvvrreveeeeoeeoeesooosoooo 264
Entities and DTDs in Well-Formed DOCUMENLSo 274
Internal ENHHES: w.omiccsissississisbsmmmmsmsssssmesemsensinstsssonsasaan 274
EXternal ERHHES: .uvvccvuune e sinissisisisssissmmmsasssmeereossmmmrssosmsstosssssns 276
Chapter 10: Attribute Declarations in DTDs 283
What Is an Attribute? et e S ae et 283
Declaring Attributes in DTDSoooooccoeeeeoooo VTR 284
Declaring Multiple AUIDULEScco.vvomvveeeeeeeoooooo 285
Specifying Default Values fOr AUHDULESovoeereeoerr s 286
e LR E ——————————— 286
5 140 287
BEINED 50 cnesbmmrmmsman osssibismmsisssisiesssagissie i s SR 288
ACTIBITE TYDES ittt mmmmesmsmsessssmssssssee st b mes o 288
The CDATA Attribute TYDEocourvevesmmrereveeseeeeesrssssees oo 289
The Enumerated Atribute TYDEo.oovovooooesecorooooo 289
The NMTOKEN AHIIDULE TYDE ovvvvvvveeeeeeeeeeeeseeoooooooooo 290
The NMTOKENS AttIDULE TYPE wvvvvvvvveveeeeeeeeermenerooooooeoo 291
The ID ATTriDULE TYDPE w.ooooccccceevereeooreoeeeeeeemsseoeoooooooooossoo 292
The IDREF AtIIDULE TYDE ..ovvvvveeeesvvreereeeeesereooooooooe 292
The ENTITY AtDULE TYDE ooovvvvrvveeeeeoeeeeeeeeeeeseroooooooooesoo 293
The ENTITIES AHITDULE TYPE w.vvovvorrovrerereeeeseeee oo 294
The NOTATION AHIIDULE TYPE wovvvvveveeeeeeeeceeeerososooosooosoo 294
Predefined AHIDULESoooveveccccrveeceeen oo 295
KIMLSPACE wovvvvevecevviricnnieeee et 295

RIEIANG ottt essestsesssss st 297

A DTD for Attribute-based Baseball Statistics
Declaring SEASON Attributes in the DTD ..
Declaring LEAGUE and DIVISION Attrlbutes in the DTD
Declaring TEAM Atfributesfinghe DTD ...conannammmmansmmsaoad
Declaring PLAYER Attributes in the DTD
The Complete DTD for the Baseball Statistics Example

Chapter 11: Embedding Non-XML Data

Notations ..

Unparsed External Entltxes
Declaring Unparsed Entltles
Embedding Unparsed Entities
Embedding Multiple Unparsecl Entltles

Processing Instructions ..

Conditional Sections in DTDs

 Part lll: Style Languages

Chapter 12: Cascading Style Sheets Level 1 323

What Is CS57 .. B OO OO T U OO PR SURURRRTUBUOTO: .12
Attaching Ster Sheets to Documents stasassasensathonnantasrasss ekorns ennatases st arprnnenhe s ers SO
Selectionof EIemMents «ommsnsmmmrmnannn s s nn i i 327
Grouping Selectors: st rn it D oD
PSetudO-EIEMENTScoovccirerrecieiiiceceeece et e D28
PSEUAO-CIASSES ...overeeeeirecire e resns s sessresnsseresss s resnsnssesessssa s 330
Selection bYID cusummnmummnansrsmns s s i a3 32
Contextual SeleBlols weenempsnmmimmmnerrmamRER eI 32
STYLE Attributes 333
INRETIANCE .ot 33D
Cascades SO OSSO RRSRRRPRPURRPUR: 7 7o
The @1mport Dlrectlve RSO =
The limportant Declaranon s ases s assnssenssasaasanss sasssassamssasagrnen DO
Cascade Order 337
Comments in CSS Style Sheets A S e T D
Length vaIues S T R B S T R S RS T R
URL Values .. 341
Color Values 342
Keyword VaIues T T L]
Block, Inline, and List Item Elements s T O
List Items .. 347
The whltespace Property OSSOSO 131 |
Font Properties .. e eetreetee e et et eateeaeeneente et eneenteereeenns et eeteneeereeenes DD
The font- famlly Pmperty SRS i o amysmrmmsnssmssssa s psmeans as snsnsasanseeesn s DV
Thedontstyle Property ovsunssmmesmnnanusssmasaannniana 354
The font-variant Property S R R T P R S S O B0 D
The font-weight PrODertycccveevciinisessreresisneninnns i 300

World Programmmg Limited EX ‘
::1_

o Logrily o e R
N The font Shorthand Property
The Color PIOPEILY ...ucveveeeceeeeereereees oo
Background PrOPEIHIEscocwevcecoouveeeresoeecooreeesooooooooooooo
The background-color Property
The background-image Property ..
The background-repeat Property
The background-attachment Property
i The background-position Propeftyr i
The Background Shorthand Property
Text ErOpertien i s,
The word-spacing Property
The letter-spacing Propertyc.coooeeu...
The text-decoration Property
The vertical-align Property
The text-transform Property
The text-align Property

The line-height Property
Box Propertiesc..cocoovveeervrnnann
Margin Properties
Border Propertiesoooeeeevoovoeo,
Padding Propertiesoooovvveverovo
SZEPIOPETHOS o0t ommmsssmmonssessmmmmmnomsssessiomssimmiontis
The float Property
The clear Property

Chapter 13: Cascading Style Sheets Level 2

What's New in CSS2? ..o
New Pseudo-classes
New Pseudo-Elements ...
Media TYPES woaimmm i, o
Paged Media

389

TABIES i recone s
Generated Content
AGrAl Shyle: Sheels: s it e mmenssnacememeeme s cmsemess
New Implementationsoo.ooeevooeoooooo
Selecting Elements
Pattern Matching
The Universal Selector
Descendant and Child Selectors ...
Adjacent Sibling Selectors
Attribute Selectorsooveeeoooe
@IUIES oo
Pseudo EIEMENTScoovoveeeeeeeeoooeoeeeoeoeoooeoooo

Pseudo Classes
Formatting a Page
Size Property
Margin Property
MarkPropertyi-.wsesmammenmmsms
Page Property
Page-Break Propertiesccccevuenne,
Visual Formatting
Display Property ...
Width and Height Propertles
Overflow Property
Clip Property
Visibility Property
Cursor Property
Color-Related Propert:es &
Font Properties
Text Shadow Property ...
Vertical AlignProperty i nimmsma g

Qutline Properties
Positioning Properties
Counters and Automatic Numbering
AUTA] SEVIe SheErS oottt iensnssnsnsssns snessssssassssssessensasanssassssssbennsd
. Speak Property
Volume Property
Pause Properties .
Cue Properties
Play-During Property
Spatial Properties
Voice Characteristics Properties
Speech Properties

' Chapter 14: XSL Transformations

What Is XSL? oo
Overview of XSL Transformations .
TIrees v oy
XSL Style Sheet Documents
Where Does the XML Transformatlon Happen'?
How to Use XT . v
Direct Display of XML Files wnth XSL Sty]e Sheets
XSL Templates
The xsl:apply-templates Element
The select Attribute
Computing the Value of a Node with xsl:value-of
Processing Multiple Elements with xsl:for-each
Patterns for Matching Nodes
Matching the Root Node
Matching Element Names

World Programming Limited EX]
Page

Matching by ID e et es s sresas e e e s e seeseen s AT
Matching Attributes With @coooooovvecooveeeeoe 456
Matching Comments with comment() ... 458
Matching Processing Instructions with 11 1) [OOSR 459
Matching Text Nodes With teXt()uuemeeormoereroooooo 460
Usifig e OF ODeratnr | s st 460
Testing with [] OO PYUNTURTURRRRSNRNY” 1 - |
Expressions for Selecting Nodes S e R B D e e erer e s T O D
Node Axes S s annaastonsrnen e s S S R S s sme e e B
Expression Types PSSRSO b | |
The Default Template Rules e ees e nae st eesreesnessrossessns o L0
The Default Rule for Elements et neere D80
The Default Rule for Text NOdeSooooooemommmreoooooooo 480

Defining Attribute Sets SO SO RUUURURRRY o 1ot

- Generating Processing Instructions with XSEDE wmtiomiinsmtinermsns 00
Generating Comments with xsl:comment ... 487
Generating Text with XSLteXt ..ovvvuu.oooeoeovereeeoooo 487
Copying the Current Node with KSLCOPY oottt 488
Counting Nodes with xsl:number e et ee e 4O
Default Numbers B OSSO URRRUUORRTRRUY 12} |
Number to String COnVersion ... 493
Sorting Output EICMENTSeevveveeeoeeeeoeseseeooeooooooooooooooooon 494
CDATA and < Signs et sas et e eereser e e e DT
Modes s s e s et OO
Defining Constants with xsl:variable e D0]
Named Templatesccoocoerecermmmeueneeoeeececeseeecsseeseeoeoeooooooooooooeoeeooooo . 502
Parameters Lt OISO R——————————— N | 1]
Stripping and Preserving WhiteSpaceooooovvvvoveoovvooooooooooooooo 505
Making Choices e 306
xsl:choose e s s st s e neessnnnerserneeseeenesesns DU T
Merging Multiple Style Sheets L W - |
Import with XSLIMPOTt «...ooevvveeveeeceeeeeeeeeee oo 508

Chapter 15: XSL Formatting Objects 513

Overview of the XSL Formatting Languagecoooovvooovoooooo 513
Formatting Objects and Their Properties ... 514
The fo Namespace T T e . i
Formatting Properties TS - |

Transforming to Formatting Objects
Using FOP
Page Layout ..

MasterPages T P T)

Page Sequences -
Content ..

Block level Formattmg Ob]ects
Inline Formatting ObJectsccoiiniiiiieie et
Table- oAt ODIEEES e e R e s
Out-of Line Formatting OBJECES s ws
RIIES: oenesspmmmmwmspammssm e s s s ndasens

Graphics .

TABIES oo ri il e hterssmnsesamiissa tiis st bt s n e pra i st semasims s as i an e A S e
CHAYACTEES wvarsigysoim voss oo o sses Sovess svien sy Ty s s o s e P S e an s

Sequences

FOOIMOTES ...ttt e e s eeseabe s ee s sess s sm s nsses s nnnebaresaesesabasasessas

Floatsccce....

roa Formattmg Properties ettt nen
Hhits and Data TVhes sisammmisieeianmsssmnenmsnsrnnyy

Informational Properties .

ParagraphiProperties ovwesmanssmmsnsnsmsnivshanamamsa aas
Character PIODETHES: wusimuimviomummassvissessssvsisisnssvisssss it smsmsssmgs

Sentence Properties ...

ATEA PTOPETHIES ..ot
AUTal- Properties: vy onpsoqamssss s oo s s s mss e i v

Part IV: Supplemental Technologies

Chapter 16: XLinks

XLinks versus HIML LinKS c.onnsmmmmmnmam s i i s i

Simple Links .. -
Descrlptlons of the Local Resource
Descriptions of the Remote Resource

LiNK BERAVIOT ..iiivvviiriererieieciineessessssissssesssressssessssassssesssesssasssssensnseessessnseens

Extended Links
Out-of-Line Links

Extended LINK GIouPs! v ama st
AT EXATIPIE! 5iuuicvmemsvnssm o o s s s s sl s sy

The steps Attribute ..

Renaming XLink AHriDUtes ..o

—1)

Chapter 17: XPointers

Why Use XPointers? ..
XPointer Examples
Absolute Location Terms

...591
w002
..594
World Programming Limited E

Pag

BtmlQ) e

Relative Location Terms
descendant
ancestor
preceding
following,ccsmisie..
£SIDING oo

Relative Location Term Arguments
Selection by Number
Selection by Node Type
Selection by Attribute

String Location Terms .. .

The origin Absolute Locatlon Term

Spanning a Range of Text .

Chapter 18: Namespaces

What Is a Namespace? ...

Namespace Syntax ..
Definition of Namespaces
Multiple Namespaces
Attributes ST b s mas e nams s
Default Namespaces

Namespaces in DTDs

Chapter 19: The Resource Description Frameworkcunn.631

What Is RDF?
RDF Statements

The Description Element_

Namespaces ..

Multiple Propertles and Statements

Resource Valued Properties ...

XML Valued Propertles
Abbreviated RDF Syntax ...
SRR ommsnmrssssoconsesnestnsoss o T8 momsms s sesmearerman

The Seq Container ..
The Alt Container .. B
Statements about Contamers I, -
Statements about Container Members .. 650
Statements about Implied Bags
RDF Schemas

Chapter 20: Reading Document Type Definitions
The Imporiance:of ReadinuDTDE et 505 s seemesrasand
What IS XHITME? e s s st i s, 659
Why Validate HTML? ...t et eeeeeeeeeee e es e sesses s enessases s 659
Modularization of XHTML Working Draftcceccveeinivencreeeeireeenenn, 660
The Structure of the XHTML DTDS ...ovvovvveeeeeeeeeeeeee oo 560
XETMI: SERECETVELY it cooiinsnnssnssnsssrenssenmonssca sensanssnoansanssssmeassnenssibasrasmn ssnmns 662

The XHTML MOAUIEScuooiiriiiciieiciccteecit et esress s sresn e B TO
The Common Names MOAUIoovveeveereeeeeeeeseeeeeesee s eeeess oo 680

The Inline Structural MOAUIEooueeieiieieeeeeeeeeeeeeeeeeeeeeeeeeeve e 704
Inline Presentational MOAULEc.ccoeeeeeeveeecrireessesesseessessssesessssessesnarns T06
Inline Phrasal MOdULEcooeoiieeieeeeee e e eene e 700
Block Structural MOAUIEooviuveeeieeiesieeeee et 711
Block-Presentational Module ..
Block-Phrasal Module
The Scripting Module ..o
The Stylesheets MOAUIEoccocviiiiiiniiciiecceee e neaes
ThelmageMeodulel .commsmammmenrmam s ST
The Frames MOAUIEcoooiiieiieiieeeceeeeeeeeeeee s ses e esse e s seseesseearansans
The Linking Module ...
The Client-side Image Map MoAUleocoovviceeiiereceee s 725
The Object Element Module ..o ssisennes 126
The Java Applet Element Module ..., 728
TheLIStS MOBUIE: oot i s i s S S M sy 730
The Forms MOAUIEocciieeiieiiiiicieesece e se e st snessereeresesreneesen 133
The Table MOAUIEcooviieicceeie ettt eeesseeesemeeeen oo 13T
The Meta Module ..ottt 142
The Structure Modulec.oocociveeeieciereee e sereeeeeerereeeneneeens 143
NomStandard Bodules wsommrrmmms st ity mammacsnns 746
The XHEML-ERHtYSels comarmmmmunsssmrasmimmsiaiimnssassm 106
The XHTML Latin-1 ENTIEIES ©.ovicveeiieeeeieeeeeeeeeeeeeeee e e e sie e easesssseeasaneaseneans 747
The XHTML Special Character Entitiescocococoiviiciieiecieceeeeen. 752
The XHTML Symbol Entities
Simplified Subset DTDSccoooviivvmviieeeeee.
Techniguestodrititate civmmmmmmnnsss
COMIMENTS ..vvvviviveeeieiieecreeiereereseeeeeeenn
Parameter ENtIHIES ..ottt s en e

World Programming Limited E
Pag

Chapter 21: Pushing Web Sites with CDF 775

WHGLISULIF? S o ors e copmsoneaorsssssisssevsvssssstessdissistismmmnns s i 775
How Channels Are Created ..o 776
Determining Channel COntent ... 776
Creating CDF Files and DOCUMENtScruvvveveeooverooooo 777
Description of the Channel ... 780
L D 780
Abstract et e st e T8]
Logos T e b e e e ar e en b emen e ers e s sne e essenss TR
Information Update SChedulesooeeeeeeoervereeosoooooo 783
Precaching and Web Crawlingooooovveeeeeemmmmmveoooso 787
Precaching et eer e se s e see s TRT
oo ————————————— 788
Reader ACCEss LOg w..vvvvvvvvvviueiceceeennrerieiseoeoeeoeeeeeeoeeoeeeoes oo 789
The BASE AUIIDULE w.ocovvvoeoooeeeeooeeoooo 791
The LASTMOD AHIDULEcoeceummrrierreeeeeeeeeeeeeeeeoseeeooooooooooooo 792
Thie USAGE EISMENE: vonisiioimimmmesnsinrmmenssiinsenmonssisasssssonsssomassiiastsssssinn, 794
DesktopComponent Valuecooo..oooeoommecommmmeoooo 795
B VMU occsmmscmsicosisrsnisisass ot o iaisinssnmssrommsmemeessas s scssessmeemsuasatesses) 796
g o T ——— 797
SCreenSaver VAIURcooooccecowerieeeeeeoeseeeemeseeessee oo 798
SoftwareUpdate Value EH e mn e n pe e e A S T R TS Ceenme e D)
Chapter 22: The Vector Markup Language 805
VRIS WIMILE o ot 500005 eomnsmessmpamsmen s s S 805
Drawing with a Keyboardoooveeeeeeeoooooooooveoeeeeeeeeooo 808
T SHARE FIRrmem.cccovvisig st seepessrosssossmseeesssstarem, 808

The shapetype EIOMENtv.v.eeeevvooeereoeemenssoeeesoooooooooooo 811

The group EIEMENtcooucummmveereeeeeeceeeeoessesssroeosoooooooooooo 813
Positioning VML Shapes with Cascading Style Sheet Properties 814
The rotation ProPertyocrvvueeeeeeeeeemeoseeressomooosoooooooeoooooeooeooooo 817

fH1Ga 1] T T o cR———— 817

The center-x and center-y Properties ..o 820

VML in Office 2000 L TP PSSO OO O USRS - 721 |
SO T s i om0 LS R R e 821

A Simple Graphics Demonstration of a HOUSE «...vvvvvnoooo 822

A QU LOOK AL SVIG cxesevsumssiversisss st 365ttt sommmsmmaserssrsssesesmecs seopemmrsomsoomssrs . 830
Chapter 23: Designing a New XML Application 833
Organization of the Datacooemmvveeeveeoomoeeeeeeeeeeeeeeooeseoeeoooooeoooooeoeooooooe 833
Listing the EIementsccc.ooomvvmmveeeeeeeceenessscesoooooooooo 834
Identifying the Fundamental Elementscoooooovooooooooo 835
Establishing Relationships Among the Elements ... 838

ThHE PETBOD DD woncomesuisosorsssossssss St s mmsessmesscrssseastonsssosmesssst sssosoasatestetsesetin 840
L2 0L B R——————————————— — 845

000 e ———————————— T 847

-
The Family Tree DTDooovvvvvnvennennnen. 848
Designing a Style Sheet for FAMIly TreeSoccocoevevsivevmisimsresnssssssssessssesiessennss855
Appendix A: XML Reference Material 863
Appendix B: The XML 1.0 Specification 921
Appendix C: What's on the CD-ROM 971
Index 975
End-User License Agreement 1018
CD-ROM Installation Instructions 1022

World Programming Limited EXI

S e
o \sgl. e

et

R

A

£
L
&

SRR

T

An Eagle
iew of XML

M his first chapter introduces you to XML. It explains in
general what XML is and how it is used. It shows you how
the different pieces of the XML equation fit together, and how
an XML document is created and delivered to readers.

What Is XML?

*XML stands for Extensible Markup Language (often written as
eXtensibleMarkup Language to justify the acronym). XML is a

» set of rules for defining semantic tags that break a document
into parts and identify the different parts of the document. It

+ is a meta-markup language that defines a syntax used to define
other domain-specific, semantic, structured markup languages.

XML Is a Meta-Markup Language

The first thing you need to understand about XML is that it
isn’t just another markup language like the Hypertext Markup
Language (HTML) or troff. These languages define a fixed set «
of tags that describe a fixed number of elements. If the markup
language you use doesn’t contain the tag you need — you're
out of luck. You can wait for the next version of the markup
language hoping that it includes the tag you need; but then
you're really at the mercy of what the vendor chooses to
include.

* XML, however, is a meta-markup language. It’s a language

+in which you make up the tags you need as you go along.

» These tags must be organized according to certain general
principles, but they're quite flexible in their meaning. For
instance, if you're working on genealogy and need to desc-
ribe people, births, deaths, burial sites, families, marriages,
divorces, and so on, you can create tags for each of these.

*You don’t have to force your data to fit into paragraphs, list
items, strong emphasis, or other very general categories.

The tags you create can be documented in a Document Type Definition (DTD). o

You'll learn more about DTDs in Part II of this book. For now, think of a DTD as a
vocabulary and a syntax for certain kinds of documents. For example, the MOL.DTD & i
in Peter Murray-Rust’s Chemical Markup Language (CML) describes a vocabulary , i
and a syntax for the molecular sciences: chemistry, crystallography, solid state

% physics, and the like. It includes tags for atoms, molecules, bonds, spectra, and so
on. This DTD can be shared by many different people in the molecular sciences
: field. Other DTDs are available for other fields, and you can also create your own.

: XML defines a meta syntax that domain-specific markup languages like MusicML,
= ; MathML, and CML must follow. If an application understands this meta syntax, it
automatically understands all the languages built from this meta language. A »

. browser does not need to know in advance each and every tag that might be used ,
« by thousands of different markup languages. Instead it discovers the tags used by
any given document as it reads the document or its DTD. The detailed instructions
g about how to display the content of these tags are provided in a separate style
sheet that is attached to the document.

For example, consider Schrodinger’s equation:

S R A S R

v e dyle] ’
thz -

~2m 3 VO (1) .

S

Scientific papers are full of equations like this, but scientists have been waiting
eight years for the browser vendors to support the tags needed to write even the
most basic math. Musicians are in a similar bind, since Netscape Navigator and
Internet Explorer don’t support sheet music.,

B S e

XML means you don’t have to wait for browser vendors to catch up with what you
want to do. You can invent the tags you need, when you need them, and tell the
browsers how to display these tags.

XML Describes Structure and
Semantics, Not Formatting :

* The second thing to understand about XML is that XML markup describes a

= document’s structure and meaning. It does not describe the formatting of the
elements on the page. Formatting can be added to a document with a style sheet.
The document itself only contains tags that say what is in the document, not what
the document looks like,

* By contrast, HTML encompasses formatting, structural, and semantic markup.
is a formatting tag that makes its content bold. is a semantic tag that
means its contents are especially important. <TD> is a structural tag that indicates
that the contents are a cell in a table. In fact, some tags can have all three kinds of
meaning. An <H1> tag can simultaneously mean 20 point Helvetica bold, a level-1
heading, and the title of the page.

For example, in HTML a song might be described using a definition title, definitibn
data, an unordered list, and list items. But none of these elements actually have
anything to do with music. The HTML might look something like this:

<dt>Hot Cop

<dd> by Jacques Morali, Henri Belolo, and Victor Willis
»

<1i>Producer: Jacques Morali

{1i>Publisher: PolyGram Records

Length: 6:20

Written: 1978

<Ti>Artist: Village People

<ful>

In XML the same data might be marked up like this:

<SONG>
{TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
CLENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
CARTIST>Village People<d/ARTIST>
</SONG>

Instead of generic tags like <dt> and <17>, this listing uses meaningful tags like
<SONG>, <TITLE>, <COMPOSER>, and <YEAR>. This has a number of advantages,
including that it’s easier for a human to read the source code to determine what »
the author intended. ,

XML markup also makes it easier for non-human automated robots to locate all of
the songs in the document. In HTML robots can’t tell more than that an element is
a dt. They cannot determine whether that dt represents a song title, a definition,
or just some designer’s favorite means of indenting text. In fact, a single document
may well contain dt elements with all three meanings.

XML element names can be chosen such that they have extra meaning in additional

» contexts. For instance, they might be the field names of a database. XML is far more
flexible and amenable to varied uses than HTML because a limited number of tags
don’t have to serve many different purposes. ,

World Programming Limited EX
Page'

Why Are Developers Excited about XML?

XML makes easy many Web-development tasks that are extremely painful

using only HTML, and it makes tasks that are impossible with HTML, possible.

Because XML is eXtensible, developers like it for many reasons. Which ones

most interest you depend on your individual needs. But once you learn XML,
+ you're likely to discover that it's the solution to more than one problem

you're already struggling with. This section investigates some of the

generic uses of XML that excite developers. In Chapter 2, you'll see some

of the specific applications that have already been developed with XML,

Design of Domain-Specific Markup Languages

XML allows various professions (e.g., music, chemistry, math) to develop their own
domain-specific markup languages. This allows individuals in the field to trade
notes, data, and information without worrying about whether or not the person on
the receiving end has the particular proprietary payware that was used to create
the data. They can even send documents to people outside the profession with a
reasonable confidence that the people who receive them will at least be able to
view the documents.

Furthermore, the creation of markup languages for individual domains does not
lead to bloatware or unnecessary complexity for those outside the profession. You
may not be interested in electrical engineering diagrams, but electrical engineers
are. You may not need to include sheet music in your Web pages, but composers
do. XML lets the electrical engineers describe their circuits and the composers
notate their scores, mostly without stepping on each other’s toes. Neither field will
need special support from the browser manufacturers or complicated plug-ins, as is
true today.

Self-Describing Data

« Much computer data from the last 40 years is lost, not because of natural disaster or
. decaying backup media (though those are problems too, ones XML doesn’t solve),
but simply because no one bothered to document how one actually reads the data
media and formats. A Lotus 1-2-3 file on a 10-year old 5.25-inch floppy disk may be
irretrievable in most corporations today without a huge investment of time and
resources. Data in a less-known binary format like Lotus Jazz may be gone forever.

XML is, at a basic level, an incredibly simple data format. It can be written in 100
percent pure ASCII text as well as in a few other well-defined formats. ASCII text is
reasonably resistant to corruption. The removal of bytes or even large sequences of
bytes does not noticeably corrupt the remaining text. This starkly contrasts with
many other formats, such as compressed data or serialized Java objects where the
corruption or loss of even a single byte can render the entire remainder of the file
unreadable.

@

At a higher level, XML is self-describing. Suppose you're an information archaeologist
in the 23rd century and you encounter this chunk of XML code on an old floppy disk
that has survived the ravages of time:

<PERSON ID="pl1100" SEX="M">
<NAME>
<GIVEN>Judson</GIVEN>
{SURNAME> McDaniel</SURNAME>
</NAME>
<BIRTH>
<DATE>Z1 Feb 1834</DATE> </BIRTH>»
<DEATH>

<DATE>9 Dec 1905</DATE> </DEATH>
</PERSON>

Even if you're not familiar with XML, assuming you speak a reasonable facsimile of
20th century English, you've got a pretty good idea that this fragment describes a
man named Judson McDaniel, who was born on February 21, 1834 and died on
December 9, 1905. In fact, even with gaps in, or corruption of the data, you could
probably still extract most of this information. The same could not be said for some
proprietary spreadsheet or word-processor format. X
Furthermore, XML is very well documented. The W3C's XML 1.0 specification and
numerous paper books like this one tell you exactly how to read XML data. There
are no secrets waiting to trip up the unwary.

Interchange of Data Among Applications ‘

¢ Since XML is non-proprietary and easy to read and write, it's an excellent
format for the interchange of data among different applications. One such
format under current development is the Open Financial Exchange Format
(OFX). OFX is designed to let personal finance programs like Microsoft Money »
and Quicken trade data. The data can be sent back and forth between programs
and exchanged with banks, brokerage houses, and the like.

OFX is discussed in Chapter 2.

As noted above, XML is a non-proprietary format, not encumbered by copyright,
patent, trade secret, or any other sort of intellectual property restriction. It has
been designed to be extremely powerful, while at the same time being easy for
both human beings and computer programs to read and write. Thus it’s an
obvious choice for exchange languages.

By using XML instead of a proprietary data format, you can use any tool that
understands XML to work with your data. You can even use different tools for
different purposes, one program to view and another to edit for instance. XML
keeps you from getting locked into a particular program simply because that’s what

World Programming Limited E
Pag;

your data is already written in, or because that program’s proprietary format is all
your correspondent can accept.

« For example, many publishers require submissions in Microsoft Word. This
means that most authors have to use Word, even if they would rather use
WordPerfect or Nisus Writer. So it’s extremely difficult for any other company
to publish a competing word processor unless they can read and write Word
files. Since doing so requires a developer to reverse-engineer the undocumented
Word file format, it's a significant investment of limited time and resources. Most
other word processors have a limited ability to read and write Word files, but
they generally lose track of graphics, macros, styles, revision marks, and other
important features. The problem is that Word’s document format is undocu-
mented, proprietary, and constantly changing. Word tends to end up winning
by default, even when writers would prefer to use other, simpler programs. If
a common word-processing format were developed in XML, writers could use
the program of their choice.

Structured and Integrated Data

* XML is ideal for large and complex documents because the data is structured. It not
only lets you specify a vocabulary that defines the elements in the document; it
also lets you specify the relations between elements, For example, if you're putting
together a Web page of sales contacts, you can require that every contact have a
phone number and an email address. If you're inputting data for a database, you
can make sure that no fields are missing. You can require that every book have an

+ author. You can even provide default values to be used when no data is entered.

+ XML also provides a client-side include mechanism that integrates data from -
multiple sources and displays it as a single document. The data can even be
rearranged on the fly. Parts of it can be shown or hidden depending on user

* actions. This is extremely useful when you're working with large information

+ repositories like relational databases.

The Life of an XML Document

XML is, at the root, a document format. It is a series of rules about what XML
documents look like. There are two levels of conformity to the XML standard. The
first is well-formedness and the second is validity. Part I of this book shows you how
to write well-formed documents. Part Il shows you how to write valid documents.

HTML is a document format designed for use on the Internet and inside Web
browsers. XML can certainly be used for that, as this book demonstrates. However,
XML is far more broadly applicable. As previously discussed, it can be used as a
storage format for word processors, as a data interchange format for different
programs, as a means of enforcing conformity with Intranet templates, and as a way
to preserve data in a human-readable fashion.

However, like all data formats, XML needs programs and content before it’s useful. So it
isn’t enough to only understand XML itself which is little more than a specification for
what data should look like. You also need to know how XML documents are edited, how
processors read XML documents and pass the information they read on to applications,
and what these applications do with that data.

Editors

» XML documents are most commonly created with an editor. This may be a basic
text editor like Notepad or vi that doesn’t really understand XML at all. On the

* other hand, it may be a completely WYSIWYG editor like Adobe FrameMaker that
insulates you almost completely from the details of the underlying XML format. Or
it may be a structured editor like JUMBO that displays XML documents as trees. For
the most part, the fancy editors aren’t very useful yet, so this book concentrates on

= writing raw XML by hand in a text editor.

Other programs can also create XML documents. For example, later in this book, in
the chapter on designing a new DTD, you'll see some XML data that came straight out
* of a FileMaker database. In this case, the data was first entered into the FileMaker
database. Then a FileMaker calculation field converted that data to XML. In general,
* XML works extremely well with databases.

Specifically, you'll see this in Chapter 23, Designing a New XML Application.

In any case, the editor or other program creates an XML document. More often
than not this document is an actual file on some computer’s hard disk, but it
doesn’t absolutely have to be. For example, the document may be a record or'
a field in a database, or it may be a stream of bytes received from a network.

Parsers and Processors

« An XML parser (also known as an XML processor) reads the document and verifies

- that the XML it contains is well formed. It may also check that the document is
valid, though this test is not required. The exact details of these tests will be
covered in Part Il. But assuming the document passes the tests, the processor :
converts the document into a tree of elements.

Browsers and Other Tools

Finally the parser passes the tree or individual nodes of the tree to the end
application. This application may be a browser like Mozilla or some other
program that understands what to do with the data. If it's a browser, the data
will be displayed to the user. But other programs may also receive the data.
For instance, the data might be interpreted as input to a database, a series of
musical notes to play, or a Java program that should be launched. XML is extr-
emely flex-ible and can be used for many different purposes.

World Programming Limited E:
Page

The Process Summarized

To summarize, an XML document is created in an editor. The XML parser reads the
document and converts it into a tree of elements. The parser passes the tree to the
browser that displays it. Figure 1-1 shows this process.

Figure 1-1: XML Document Life Cycle

It’s important to note that all of these pieces are independent and decoupled from
each other. The only thing that connects them all is the XML document. You can
change the editor program independently of the end application. In fact you may
not always know what the end application is. It may be an end user reading your
work, or it may be a database sucking in data, or it may even be something that

hasn't been invented yet. It may even be all of these. The document is independent
‘ of the programs that read it.

HTML is also somewhat independent of the programs that read and write it, but it's
really only suitable for browsing. Other uses, like database input, are outside its
scope. For example, HTML does not provide a way to force an author to include cer-
tain required content, like requiring that every book have an ISBN number. In XML
you can require this. You can even enforce the order in which particular elements
appear (for example, that level-2 headers must always follow level-1 headers).

Related Technologies

XML doesn’t operate in a vacuum. Using XML as more than a data format requilf'es
i interaction with a number of related technologies. These technologies include
! * HTML for backward compatibility with legacy browsers, the CSS and XSL style-

» sheet languages, URLs and URIs, the XLL linking language, and the Unicode
» character set.

Hypertext Markup Language

Mozilla 5.0 and Internet Explorer 5.0 are the first Web browsers to provide some
(albeit incomplete) support for XML, but it takes about two years before most users
have upgraded to a particular release of the software. (In 1999, my wife Beth is still

using Netscape 1.1.) So you’re going to need to convert your XML content into
classic HTML for some time to come.

Therelore, before you jump into XML, you should be completely comfortable with

HTML. You don’t need to be an absolutely snazzy graphical designer, but you

should know how to link from one page to the next, how to include an image in a
» document, how to make text bold, and so forth. Since HTML is the most common

output format of XML, the more familiar you are with HTML, the easier it will be to
create the effects you want.

-

On the other hand, if you're accustomed to using tables or single-pixel GIFs to
arrange objects on a page, or if you start to make a Web site by sketching out its
appearance rather than its content, then you're going to have to unlearn some bad
habits. As previously discussed, XML separates the content of a document from the
appearance of the document. The content is developed first; then a format is
attached to that content with a style sheet. Separating content from style is an
extremely effective technique that improves both the content and the appearance
of the document. Among other things, it allows authors and designers to work more
independently of each other. However, it does require a different way of thinking
about the design of a Web site, and perhaps even the use of different project-
management techniques when multiple people are involved. -

Cascading Style Sheets

Since XML allows arbitrary tags to be included in a document, there isn’t any way
for the browser to know in advance how each element should be displayed. When
you send a document to a user you also need to send along a style sheet that tells
» the browser how to format individual elements. One kind of style sheet you can use
» is a Cascading Style Sheet (CSS).

» CS3, initially designed for HTML, defines formatting properties like font size,

*font family, font weight, paragraph indentation, paragraph alignment, and other
styles that can be applied to particular elements. For example, CSS allows HTML
documents to specify that all H1 elements should be formatted in 32 point cent-
ered Helvetica bold. Individual styles can be applied to most HTML tags that
override the browser’s defaults. Multiple style sheets can be applied to a single
document, and multiple styles can be applied to a single element. The styles ¢
then cascade according to a particular set of rules. ,

CSS rules and properties are explored in more detail in Chapter 12, Cascading
Style Sheets Level 1, and Chapter 13, Cascading Style Sheets Level 2.

It’s easy to apply CSS rules to XML documents. You simply change the names of the
tags you're applying the rules to. Mozilla 5.0 directly supports CSS style sheets
combined with XML documents, though at present, it crashes rather too frequently.

World Programming Limited E>
P

Extensible Style Language

* The Extensible Style Language (XSL) is a more advanced style-sheet language
+ specifically designed for use with XML documents, XS, documents are themselves
« well-formed XML documents.

XSL documents contain a series of rules that apply to particular patterns of XML
elements. An XSL processor reads an XML document and compares what it sees to
the patterns in a style sheet. When a pattern from the XSL style sheet is recognized
in the XML document, the rule outputs some combination of text. Unlike cascading
style sheets, this output text is somewhat arbitrary and is not limited to the input
text plus formatting information.

* CSS can only change the format of a particular element, and it can only do so on an
element-wide basis. XSL style sheets, on the other hand, can rearrange and reorder
elements. They can hide some elements and display others. Furthermore, they can
choose the style to use not just based on the ta , but also on the contents and
attributes of the tag, on the position of the tag in the document relative to other
elements, and on a variety of other criteria.

» CSS has the advantage of broader browser support. However, XSL is far more
flexible and powerful, and better suited to XML documents, Furthermore, XML
documents with XSL style sheets can be easily converted to HTML documents with
CSS style sheets.

XSL style sheets will be explored in great detail in Chapter 14, XSL Transformations,
and Chapter 15, XSL Formatting Objects.

*

URLs and URIs *

XML documents can live on the Web, just like HTML and other documents. When they
do, they are referred to by Uniform Resource Locators (URLs), just like HTML files. For
example, at the URL http://www.hypermedic. com/style/xml/tempest.xm] you'll

find the complete text of Shakespeare’s Tempest marked up in XML.

Although URLs are well understood and well supported, the XML specification

«uses the more general Uniform Resource Identifier (URD. URIs are a more general

architecture for locating resources on the Internet, that focus a little more on the

resource and a little less on the location. In theory, a URI can find the closest copy

of a mirrored document or locate a document that has been moved from one site

to another. In practice, URIs are still an area of active research, and the only kinds
+ of URIs that are actually supported by current software are URLs.

XLinks and XPointers

As long as XML documents are posted on the Internet, you're going to want to be
able to address them and hot link between them. Standard HTML link tags can be
used in XML documents, and HTML documents can link to XML documents. For
example, this HTML link points to the aforementioned copy of the Tempest
rendered in XML:

{a href="http://www.hypermedic.com/sty]e/xm]/tempest.xm1“>
The Tempest by Shakespeare

Whether the browser can display this document if you follow the link, depends on
just how well the browser handles XML files. Most current browsers don't handle
them very well.

However, XML lets you go further with XLinks for linking to documents and
XPointers for addressing individual parts of a document.

XLinks enable any element to become a link, not just an A element. Furthermore,
links can be bi-directional, multidirectional, or even point to multiple mirror sites
from which the nearest is selected. XLinks use normal URLs to identify the site
they’'re linking to.

XLinks are discussed in Chapter 16, XLinks.

XPointers enable links to point not just to a particular document at a particular
location, but to a particular part of a particular document. An XPointer can refer to
a particular element of a document, to the first, the second, or the 17th such
element, to the first element that's a child of a given element, and so on. XPointers
provide extremely powerful connections between documents that do not require
the targeted document to contain additional markup just so its individual pieces
can be linked to it.

Furthermore, unlike HTML anchors, XPointers don't just refer to a point in a
document. They can point to ranges or spans. Thus an XPointer might be used to
select a particular part of a document, perhaps so that it can be copied or loaded
into a program.

XPointers are discussed in Chapter 17, XPointers.

World Programming Limited EXH.
Page .

The Unicode Character Set

The Web is international, yet most of the text you'll find on it is in English. XML is
starting to change that. XML provides full support for the two-byte Unicode
character set, as well as its more compact representations. This character set
supports almost every character commonly used in every modern script on Earth.

Unfortunately, XML alone is not enough. To read a script you need three things:

1. A character set for the script
2. A font for the character set

3. An operating system and application software that understands the
character set

If you want to write in the script as well as read it, you'll also need an input method
for the script. However, XML defines character references that allow you to use
pure ASCII to encode characters not available in your native character set. This is
sufficient for an occasional quote in Greek or Chinese, though you wouldn’t want to
rely on it to write a novel in another language.

In Chapter 7, Foreign Languages and non-Roman Text, you'll explore how interna-
tional text is represented in computers, how XML understands text, and how you
can use the software you have to read and write in languages other than English.

How the Technologies Fit Together

XML defines a grammar for tags you can use to mark up a document. An XML
document is marked up with XML tags. The default encoding for XML documents
is Unicode.

Among other things, an XML document may contain hypertext links to other
documents and resources. These links are created according to the XLink
specification. XLinks identify the documents they're linking to with URIs

(in theory) or URLs (in practice). An XLink may further specify the individual
part of a document it’s linking to. These parts are addressed via XPointers.

If an XML document is intended to be read by human beings — and not all XML
documents are—then a style sheet provides instructions about how individual
elements are formatted. The style sheet may be written in any of several style-sheet
languages. CSS and XSL are the two most popular style-sheet languages, though
there are others including DSSSL —the Document Style Semantics and Specification
Language — on which XSL is based.

I've outlined a lot of exciting stuff in this chapter. However, honesty compels me to
tell you that | haven't discussed all of it yet. In fact, much of what I've described is
the promise of XML rather than the current reality. XML has a lot of people in the
software industry very excited, and a lot of programmers are working very hard to
turn these dreams into reality. New software is released every day that brings us
closer to XML nirvana, but this is all very new, and some of the software isn't fully
cooked yet. Throughout the rest of this book, I'll be careful to point out not only
what is supposed to happen, but what actually does happen. Depressingly these
; are all too often not the same thing. Nonetheless with a little caution you can do
real work right now with XML.

Summary

In this chapter, you have learned some of the things that XML can do for you. In
particular, you have learned:

+ XML is a meta-markup language that enables the creation of markup
languages for particular documents and domains.

+ XML tags describe the structure and semantics of a document’s content, not
the format of the content. The format is described in a separate style sheet.

+ XML grew out of many users’ frustration with the complexity of SGML and the
inadequacies of HTML.

4+ XML documents are created in an editor, read by a parser, and displayed by a
browser.

+ XML on the Web rests on the foundations provided by HTML, Cascading Style
Sheets, and URLs.

+ Numerous supporting technologies layer on top of XML, including XSL style
sheets, XLinks, and XPointers. These let you do more than you can
accomplish with just CSS and URLs.

+ Be careful. XML isn’t completely finished. It will change and expand, and you
will encounter bugs in current XML software.

In the next chapter, you'll see a number of XML applications, and learn about some
ways XML is being used in the real world today. Examples include vector graphics,
music notation, mathematics, chemistry, human resources, Webcasting, and more.

@ + “

World Programming Limited EX
Page

ttributes,

=mpty Tags,
and XSL

ou can encode a given set of data in XML in nearly
an infinite number of ways. There’s no one right
way to do it although some ways are more right than others,
and some are more appropriate for particular uses. In this
chapter, we explore a different solution to the problem of
marking up baseball statistics in XML, carrying over the
baseball example from the previous chapter. Specifically,
~we will address the use of attributes to store information
and empty tags to define element positions. In addition,
since CSS doesn’t work well with content-less XML
elements of this form, we’ll examine an alternative —
and more powerful — style sheet language called XSL.

ributes

In the last chapter, all data was categorized into the name of
a tag or the contents of an element. This is a straightforward
and easy-to-understand approach, but it’s not the only one.
As in HTML, XML elements may have attributes. An attribute
is a name-value pair associated with an element. The name
and the value are each strings, and no element may contain
two attributes with the same name.

You're already familiar with attribute syntax from HTML. For
“example, consider this tag:

<IMG SRC=cup.gif WIDTH=89 HEIGHT=67 ALT="Cup
of coffee">

It has four attributes, the SRC attribute whose value is cup.gif, the WIDTH attribute
whose value is 89, the HEIGHT attribute whose value is 67, and the ALT attribute
whose valueis Cup of coffee. However, in XML-unlike HTML-attribute values
must always be quoted and start tags must have matching close tags. Thus, the
XML equivalent of this tag is:

<IMG SRC="cup.gif" WIDTH="89" HEIGHT="§7" ALT="Cup of coffee")
</ IMG> '

Another difference between HTML and XML is that XML assigns no particular
meaning to the IMG tag and its attributes. In particular, there’s no guarantee that
an XML browser will interpret this tag as an instruction to load and display the
image in the file cup.gif.

You can apply attribute syntax to the baseball example quite easily. This has the
advantage of making the markup somewhat more concise. For example, instead of
containing a YEAR child element, the SEFASON element only needs a YEAR attribute.

{SEASON YEAR="1998">
</SEASON>

On the other hand, LEAGUE should be a child of the SEASCON element rather than an
attribute. For one thing, there are two leagues in a season. Anytime there’s likely to
be more than one of something child elements are called for. Attribute names must
be unique within an element. Thus you should not, for example, write a SEASON
element like this;

<{SEASON YEAR="1998" LEAGUE="National" League="American">
</SEASON>

The second reason LEAGUE is naturally a child element rather than an attribute is
that it has substructure; it is subdivided into DIVISION elements. Attribute values
are flat text. XML elements can conveniently encode structure-attribute values
cannot.

However, the name of a league is unstructured, flat text; and there’s only one name
per league so LEAGUE elements can easily have a NAME attribute instead of a
LEAGUE_NAME child element:

CLEAGUE NAME="National League">
</LEAGUE>

Since an attribute is more closely tied to its element than a child element is, you
don’t run into problems by using NAME instead of LEAGUE_NAME for the name of the
attribute. Divisions and teams can also have NAME attributes without any fear of
confusion with the name of a league. Since a tag can have more than one attribute
(as long as the attributes have different names), you can make a team’s city an
attribute as well, as shown below:

<LEAGUE NAME="American League">
<DIVISION NAME="East">
(TEAM NAME="0Orioles" CITY="Baltimore"></TEAM>
{TEAM NAME="Red Sox" CITY="Boston"><{/TEAM>
{TEAM NAME="Yankees" CITY="New York"></TEAM>
{TEAM NAME="Devil Rays" CITY="Tampa Bay"></TEAM>
{TEAM NAME="Blue Jays" CITY="Toronto"></TEAM>
</DIVISION>
</LEAGUE>

Players will have a lot of attributes if you choose to make each statistic an attribute.
For example, here are Joe Girardi’s 1998 statistics as attributes:

<PLAYER GIVEN_NAME="Joe" SURNAME="Girardi"
GAMES="78" AT_BATS="254" RUNS="31" HITS="70"
DOUBLES="11" TRIPLES="4" HOME_RUNS="3"
RUNS_BATTED_IN="31" WALKS="14" STRUCK_OUT="38"
STOLEN_BASES="2" CAUGHT_STEALING="4"
SACRIFICE_FLY="1" SACRIFICE_HIT="8"
HIT_BY_PITCH="2">

{/PLAYER>

Listing 5-1 uses this new attribute style for a complete XML document containing
the baseball statistics for the 1998 major league season, It displays the same
information (i.e., two leagues, six divisions, 30 teams, and nine players) as does
Listing 4-1 in the last chapter. It is merely marked up differently. Figure 5-1 shows
this document loaded into Internet Explorer 5.0 without a style sheet.

<Ixmi version="1.0" standalone="yss" 7>
- <GEASON YEAR="19G8™>
- <LEAGUE NaME="National League’>
- <DIVISION NAME="East">
- <TEAM CI1TY="Atlanta" NAME="Braves™
<PLAYER GIVEN_MNAME="Marty" SURNAME="Mallay"
RPOSITION="Second Base" GAMES="11"
GAMES_STARTED="8" AT_BATS="28" RUNE="8" HITS="5"
DOUBLES="1" TRIPLES="0" HOME_RUNS="1" R8i="1"
STEALS="0" CAUGHT STEALING="0" SACRIFICE_HITS="D"
SACRIFICE_FLIES="8" ERRORS="0" WALKG="2"
STRUCK _OUT="2" HIT_8Y_PITCH="0" />
<PLAYER GIVEN_MNAME="Ozzie" SURNAME="Guillen”
POSITION="Shortstop’ GaMES="83"
GAMES,_ STARTED="59" AT_BATS="264" RUNS="35"
HITS=Y73" DOUBLES="15" TRIPLES="1" HOME_RUNS="1%
DRI STEA] Q4% S EQMT aTEA! TR *al

Figure 5-1: The 1998 major league baseball statistics using
attributes for most information.

World Programming Limit

<?xml version="1.0" standalone="yes"?>
<SEASON YEAR="1998">
CLEAGUE NAME="National League"»
<DIVISION NAME="FEast">
<TEAM CITY="Atlanta" NAME="Braves">
<PLAYER GIVEN_NAME="Marty" SURNAME="Malloy"
POSITION="Second Base" GAMES="171" GAMES_STARTED="8"
AT_BATS="28" RUNS="3" HITS="5" DOUBLES="1"
TRIPLES="0" HOME_RUNS="1" RBI="1" STEALS="0"
CAUGHT_STEALING="0" SACRIFICE_HITS="0"
SACRIFICE_FLIES="0" ERRORS="0" WALKS="2"
STRUCK_OUT="2" HIT_BY_PITCH="0">
</PLAYER>
CPLAYER GIVEN_NAME="0zzie" SURNAME="Guillen"
POSITION="Shortstop" GAMES="83" GAMES_STARTED="59"
AT_BATS="264" RUNS="35" HIT5="73" DOUBLES="15"
TRIPLES="1" HOME_RUNS="1" RBI="22" STEALS="1"
CAUGHT _STEALING="4" SACRIFICE_HITS="4"
SACRIFICE_FLIES="2" ERRORS="§" WALKS="24"
STRUCK_QuUT="25" HIT_BY_PITCH="1">
</PLAYER> -
<PLAYER GIVEN _NAME="Danny" SURNAME="Bautista"
POSITION="Outfield" GAMES="82" GAMES_STARTED="27"
AT_BATS="144" RUNS="17" HITS="36" DOUBLES="11"
TRIPLES="0" HOME_RUNS="3" RBI="17" STEALS="1"
CAUGHT_STEALING="0" SACRIFICE_HITS="3"
SACRIFICE FLIES="2" ERRORS="2" WALKS="7"
STRUCK -0UT="21" HIT_BY PITCH="0">
</PLAYER>
<PLAYER GIVEN_NAME="Gerald" SURNAME="Williams"
POSITION="0utfield" GAMES="129" GAMES_STARTED="51"
AT_BATS="266" RUNS="46" HITS="81" DOUBLES="18"
TRIPLES="3" HOME_ RUNS="1Q" RBI="44" STEALS="11"
CAUGHT_STEALING="5" SACRIFICE_HITS="2"
SACRIFICE_FLIES="1" ERRORS="5" WALKS="17"
STRUCK_QUT="48" HIT_BY_PITCH="3">
</PLAYER>
<PLAYER GIVEN_NAME="Tom" SURNAME="GTavine"
POSITION="Starting Pitcher" GAMES="33"
GAMES_STARTED="33" WINS="20" LOSSES="§" SAVES="0"
COMPLETE_GAMES="4" SHUT 0UTS="3" ERA="2. 47"
INNINGS="22G.1" HOME_RUNS_AGAINST="13"
RUNS_AGAINST="67" EARNED RUNS="g23" HIT BATTER="2"
WILD_PITCHES="3" BALK="0" WALKED BATTER="74"
STRUCK_OUT_BATTER="157">
{/PLAYER>
{PLAYER GIVEN_NAME="Javiear" SURNAME="Lopez"
POSITION="Catcher" GAMES="133" GAMES_STARTED="124"
AT_BATS="489" RUNS="73" HITS="139" DOURLES="21"
TRIPLES="1" HOME_RUNS="34" RBI="108" STEALS="5"

CAUGHT_STEALING="3" SACRIFICE_HITS="1"
SACRIFICE_FLIES="8" ERRORS="5" WALKS="30"
STRUCK_QUT="85" HIT_BY_PITCH="6">
</PLAYER>
<PLAYER GIVEN_NAME="Ryan" SURNAME="Klesko"
POSITION="0Qutfield" GAMES="129" GAMES_STARTED="124"
AT_BATS="427" RUNS="69" HITS="117" DOUBLES="29"
TRIPLES="1" HOME_RUNS="18" RBI="70" STEALS="5"
CAUGHT_STEALING="3" SACRIFICE_HITS="0"
SACRIFICE_FLIES="4" ERRORS="2" WALKS="586"
STRUCK_OUT="66" HIT_BY_PITCH="3">
</PLAYER>
<PLAYER GIVEN_NAME="Andres" SURNAME="Galarraga"
POSITION="First Base" GAMES="153" GAMES_STARTED="151"
AT_BATS="555" RUNS="103" HITS="169" DOUBLES="27"
TRIPLES="1" HOME_RUNS="44" RBI="121" STEALS="7"
CAUGHT_STEALING="6" SACRIFICE_HITS="0"
SACRIFICE_FLIES="5" ERRORS="11" WALKS="63"
STRUCK_OUT="146" HIT_BY_PITCH="25">
</PLAYER>)
<PLAYER GIVEN_NAME="Wes" SURNAME="Helms"
POSITION="Third Base" GAMES="7" GAMES_STARTED="2"
AT_BATS="13" RUNS="2" HITS="4" DOUBLES="1"
TRIPLES="0" HOME_RUNS="1" RBI="2" STEALS="0"
CAUGHT_STEALING="0" SACRIFICE_HITS="0"
SACRIFICE_FLIES="0" ERRORS="1" WALKS="0"
STRUCK_OUT="4" HIT_BY_PITCH="0">
</PLAYER>
{/TEAM>
<TEAM CITY="Florida" NAME="Marlins">
</TEAM>
<TEAM CITY="Montreal" NAME="Expos">
</TEAM>
<TEAM CITY="New York" NAME="Mets">
</TEAM>
<TEAM CITY="Philadelphia" NAME="Phillies">
</TEAM>

</DIVISION>
<DIVISION NAME="Central">

{TEAM CITY="Chicago" NAME="Cubs">
</TEAM>

<TEAM CITY="Cincinnati" NAME="Reds">
</TEAM>

{TEAM CITY="Houston" NAME="Astros">
<{/TEAM>

<TEAM CITY="Milwaukee" NAME="Brewers">
</TEAM>

{TEAM CITY="Pittsburgh" NAME="Pirates">
</TEAM>

<TEAM CITY="St. Louis" NAME="Cardinals">
</TEAM>

</DIVISION>

Continued

World Programming Limite

<DIVISION NAME="West">
{TEAM CITY="Arizona" NAME="D1iamondbacks">
<ITEAMY
<TEAM CITY="Colorado" NAME="Rockies">
</TEAMD
<TEAM CITY="Los Angeles" NAME="Dodgers">
</TEAM> ;
<TEAM CITY="San Diego" NAME="Padres">
</ TEAMD
<TEAM CITY="San Francisco" NAME="Giants">
</ITEAMD
</DIVISION>
</LEAGUE>
CLEAGUE NAME="American League">
<DIVISION NAME="Fast">
<TEAM CITY="Baltimore" NAME="Orioles">
</ TEAM>
<TEAM CITY="Boston" NAME="Red Sox">
</ TEAM>
<TEAM CITY="New York" NAME="Yankees">
</ TEAM>
<TEAM CITY="Tampa Bay" NAME="Devil Rays">
</TEAM>
{TEAM CITY="Toronto" NAME="Blue Jays">
</ TEAM>
</DIVISION>
<DIVISION NAME="Central">
<TEAM CITY="Chicago" NAME="White Sox">
</ TEAM>
<TEAM CITY="Kansas City" NAME="Royals">
<ITEAMD
<TEAM CITY="Detroit" NAME="Tigers">
{/TEAM>
{TEAM CITY="Cleveland" NAME="Indians">
</TEAMD>
<TEAM CITY="Minnesota" NAME="Twins">
</TEAM>
</DIVISION>
<DIYISION NAME="West">
{TEAM CITY="Anaheim" NAME="Angels">
</TEAM>
<TEAM CITY="0akland" NAME="Athletics">
</ TEAMD
{TEAM CITY="Seattle" NAME="Mariners">
</TEAM>
<TEAM CITY="Texas" NAME="Rangers">
</TEAMD
</DIVISION>
</LEAGUE>
</SEASON>

Listing 5-1 uses only attributes for player information. Listing 4-1 used only element
content. There are intermediate approaches as well. For example, you could make
the player’s name part of element content while leaving the rest of the statistics as
attributes, like this:

<P>
On Tuesday <PLAYER GAMES="78" AT_BATS="254" RUNS="31"
HITS="70" DOQUBLES="11" TRIPLES="4" HOME_RUNS="3"
RUNS_BATTED_IN="31" WALKS="14" STRIKE_OUTS="38"
STOLEN_BASES="2" CAUGHT_STEALING="4"
SACRIFICE_FLY="1" SACRIFICE_HIT="8"
HIT_BY_PITCH="2">Joe Girardi</PLAYER> struck out twice
and...

<SP

This would include Joe Girardi’s name in the text of a page while still making his
statistics available to readers who want to look deeper, as a hypertext footnote or
tool tip. There’s always more than one way to encode the same data. Which way
you pick generally depends on the needs of your specific application.

ttributes versus Elements

There are no hard and fast rules about when to use child elements and when to use
attributes. Generally, you’ll use whichever suits your application. With experience,
you'll gain a feel for when attributes are easier than child elements and vice versa.
Until then, one good rule of thumb is that the data itself should be stored in
elements. Information about the data (meta-data) should be stored in attributes.
And when in doubt, put the information in the elements.

To differentiate between data and meta-data, ask yourself whether someone reading
the document would want to see a particular piece of information. If the answer is
yes, then the information probably belongs in a child element. If the answer is no,
then the information probably belongs in an attribute. If all tags were stripped from
the document along with all the attributes, the basic information should still be
present. Attributes are good places to put ID numbers, URLs, references, and other
information not directly or immediately relevant to the reader. However, there are
many exceptions to the basic principal of storing meta-data as attributes. These
include:

4 Attributes can’t hold structure well.

+ Elements allow you to include meta-meta-data (information about the
information about the information).

4 Not everyone always agrees on what is and isn’t meta-data.

4 Elements are more extensible in the face of future changes.

World Programming Limite

Structured Meta-data

One important principal to remember is that elements can have substructure and
attributes can’t. This makes elements far more flexible, and may convince you to
encode meta-data as child elements. For example, suppose you're writing a paper
and you want to include a source for a fact. It might look something like this:

<FACT SOURCE="The Biographical History of Baseball,
Donald Dewey and Nicholas Acocella (New York: Carroll &
Graf Publishers, Inc. 1995) p. 169">
Josh Gibson is the only person in the history of baseball to
hit a pitch out of Yankee Stadium.
</FACT>

Clearly the information “The Biographical History of Baseball, Donald Dewey and
Nicholas Acocella (New York: Carroll & Graf Publishers, Inc. 1995) p. 169" is
meta-data. It is not the fact itself. Rather it is information about the fact. However,
the SOURCE attribute contains a lot of implicit substructure. You might find it more
useful to organize the information like this:

<SOURCE>
<{AUTHOR>Donald Dewey</AUTHOR>
<AUTHOR>Nicholas Acocella</AUTHOR>
<BOOK>
<TITLE>The Biographical History of Baseball</TITLE>
<PAGES>169</PAGES>
<YEAR>1995</YEAR>
</BOOK>
</SOURCE>

Furthermore, using elements instead of attributes makes it straightforward to
include additional information like the authors’ e-mail addresses, a URL where an
electronic copy of the document can be found, the title or theme of the particular
issue of the journal, and anything else that seems important. ;

Dates are another common example. One common piece of meta-data about
scholarly articles is the date the article was first received. This is important for
establishing priority of discovery and invention. It’s easy to include a DATE
attribute in an ARTICLE tag like this:

<ARTICLE DATE="06/28/1969">
Polymerase Reactions in Organic Compounds
</ARTICLE>

However, the DATE attribute has substructure signified by the /. Getting that
structure out of the attribute value, however, is much more difficult than reading
child elements of a DATE element, as shown below:

<DATE>
<YEAR>1969</YEAR>
<MONTH>Q06</MONTH>
<DAY>28</DAY>

</DATE>

' For instance, with CSS or XSL, it’s easy to format the day and month invisibly so
that only the year appears. For example, using CSS:

YEAR {display: inline}
MONTH {display: none}
DAY {display: none}

If the DATE is stored as an attribute, however, there’s no easy way to access only
part of it. You must write a separate program in a programming language like

ECMAScript or Java that can parse your date format. It's easier to use the standard
XML tools and child elements.

Furthermore, the attribute syntax is ambiguous. What does the date “10/11/1999"
signify? In particular, is it October 11th or November 10th? Readers from different
countries will interpret this data differently. Even if your parser understands one
format, there’s no guarantee the people entering the data will enter it correctly. The
XML, by contrast, is unambiguous.

Finally, using DATFE children rather than attributes allows more than one date to be
associated with an element. For instance, scholarly articles are often returned to
the author for revisions. In these cases, it can also be important to note when the
revised article was received. For example:

<ARTICLE>
{TITLE>
Maximum Projectile Velocity in an Augmented Railgun
SITTTLES
<AUTHOR>ET1iotte Harold</AUTHOR>
CAUTHOR>Bruce Bukiet</AUTHOR>
CAUTHOR>William Peter</AUTHOR>
<DATE>
<YEAR>1992</YEAR>
<MONTH>10</MONTH>
<DAY>29<{/DAY>
</DATE>
<DATE>
<YEAR>1993</YEAR>
<MONTH>10</MONTH>
<DAY>26</DAY>
</DATE>
</ARTICLE>

World Programming Limited

As another example, consider the ALT attribute of an IMG tag in HTML. This is
limited to a single string of text. However, given that a picture is worth a thousand
words, you might well want to replace an IMG with marked up text. For instance,
consider the pie chart shown in Figure 5-2.

Major Leagus Baseball Positions

L EStarting Pitcher ®Relief Pitcher t3Catcher @ Outfield mFirst Base @ Shortstop ® Second Base @Third Base

Figure 5-2: Distribution of positions in major league baseball

Using an ALT attribute, the best description of this picture you can provide is:

<{IMG SRC="05021.gif"
ALT="Pie Chart of Positions in Major League Basebhall"
WIDTH="819" HEIGHT="623">

However, with an ALT child element, you have more flexibility because you can
embed markup. For example, you might provide a table of the relevant numbers
instead of a pie chart.

<ALT>
<TABLE>
<TR>
{TD>Starting Pitcher</TD> <TD»242</TD> <TD>20%</TD>
<STR>
<TR>
{TD>Relief Pitcher</TD> <TD>336</TD> <TD>27%</TD>
</TR>
<TR>
<TD>Catcher</TD> <TD>104</TD> <TD>9%</TD>
<JTR>
<TR>
<TD>0utfield</TD> <TD>235</TD> <TD>19%</TD>
</TR>
<TR>
<TD>F1rst Base</TD> <TD>67</TD> <TD>6%</TD>
</TR>
<TR>
{TD>Shortstop</TD> <TD>67</TD> <TDr6%</TD>
</TR>
<TR>
{TD>Second Base</TD> <TD>»88</TD> <TD>7%</TD>
</TR>
<TR>
<TD>Third Base</TD> <TD>67</TD> <TD>6%</TD>
TR
</TABLE>
CSALTS
</ IMG>

ou might even provide the actual Postscript, SVG, or VML code to render the
picture in the event that the bitmap image is not available.

Meta-Meta-Data

Using elements for meta-data also easily allows for meta-meta-data, or information
about the information about the information. For example, the author of a poem
may be considered to be meta-data about the poem. The language in which that
author’s name is written is data about the meta-data about the poem. This isn't a
trivial concern, especially for distinctly non-Roman languages. For instance, is the
author of the Odyssey Homer or Qumos? If you use elements, it’s easy to write:

. <POET LANGUAGE="English">Homer</POET>
<POET LANGUAGE="Greek">Qumos</POET>

World Programming Limite

