However, if POET is an attribute rather than a child element, you're stuck with
unwieldy constructs like this:

<POEM POET="Homer" POET_LANGUAGE="English"
POEM_LANGUAGE="English">

Tell me, 0 Muse, of the cunning man. ..
</POEM>

And it’s even more bulky if you want to provide both the poet’s English and Greek
names.

<POEM POET_NAME_l1="Homer" POET_LANGUAGE_1="English"
POET_NAME_2="Qumos" POET_LANGUAGE_2="Greek"
POEM_LANGUAGE="English"»

Tell me, 0 Muse, of the cunning man. ..
</POEM>

What's Your Meta-data Is Someone Else’s Data

“Metaness” is in the mind of the beholder. Who is reading your document and why
they are reading it determines what they consider to be data and what they consider
to be meta-data. For example, if you're simply reading an article in a scholarly journal,
then the author of the article is tangential to the information it contains. However, if
you're sitting on a tenure and promotions committee scanning a journal to see who is
publishing and who is not, then the names of the authors and the number of articles
they've published may be more important to you than what they wrote (sad but true).

In fact, you may change your mind about what’s meta and what'’s data. What's only
tangentially relevant today, may become crucial to you next week. You can use style
sheets to hide unimportant elements today, and change the style sheets to reveal
them later. However, it’s more difficult to later reveal information that was first
stored in an attribute. Usually, this requires rewriting the document itself rather
than simply changing the style sheet.

Elements Are More Extensible

Attributes are certainly convenient when you only need to convey one or two
words of unstructured information. In these cases, there may genuinely be no
current need for a child element. However, this doesn’t preclude such a need

in the future.

For instance, you may now only need to store the name of the author of an article,
and you may not need to distinguish between the first and last names. However, in
the future you may uncover a need to store first and last names, e-mail addresses,
institution, snail mail address, URL, and more. If you've stored the author of the
article as an element, then it’s easy to add child elements to include this additional
information.

though any such change will probably require some revision of your documents,

tyle sheets, and associated programs, it's still much easier to change a simple

ement to a tree of elements than it is to make an attribute a tree of elements.

owever, if you used an attribute, then you're stuck. It’s quite difficult to extend
your attribute syntax beyond the region it was originally designed for.

’Goo-d Times to Use Attributes

aving exhausted all the reasons why you should use elements instead of
attnbutes I feel compelled to point out that there are nonetheless some times when
attributes make sense. First of all, as previously mentioned, attributes are fully
appropriate for very simple data without substructure that the reader is unlikely to
want to see. One example is the HEIGHT and WIDTH attributes of an IMG. Although

e values of these attributes may change if the image changes, it’s hard to imagine

ow the data in the atiribute could be anything more than a very short string of

axt. HEIGHT and WIDTH are one-dimensional quantities (in more ways than one) so
ﬁaey work well as attributes.

Furthermore, attributes are appropriate for simple information about the document

that has nothing to do with the content of the document. For example, it is often
seful to assign an 1D attribute to each element. This is a unique string possessed
nly by one element in the document. You can then use this string for a variety of

tasks including linking to particular elements of the document, even if the elements
ove around as the document changes over time. For example:

<SQURCE ID="S1">
<AUTHOR ID="A1">Donald Dewey</AUTHOR>
<AUTHOR ID="AZ2">Nicholas Acocella</AUTHOR>
<BOOK ID="B1">
{TITLE ID="B2">
The Biographical History of Baseball
{/TITLE>
{PAGES ID="B3">169</PAGES>
{YEAR ID="B4">1995</YEAR>
</BOOK>
</SOURCE>

D attributes make links to particular elements in the document possible. In this

yay, they can serve the same purpose as the NAME attribute of HTML's A elements.
‘Other data associated with linking—HREFs to link to, SRCs to pull images and
binary data from, and so forth—also work well as attributes.

You'll see more examples of this when XLL, the Extensible Linking Language, is dis-
cussed in Chapter 16, XLinks, and Chapter 17, XPointers.

World Programming Limited.

Attributes are also often used to store document-specific style information. For
example, if TITLE elements are generally rendered as bold text but if you want
to make just one TITLE element both bold and italic, you might write something
like this:

{TITLE style="font-style: italic">Significant Others</TITLE>

This enables the style information to be embedded without changing the tree
structure of the document. While ideally you'd like to use a separate element, this
scheme gives document authors somewhat more control when they cannot add
elements to the tag set they're working with. For example, the Webmaster of a site
might require the use of a particular DTD and not want to allow everyone to modify
the DTD. Nonetheless, they want to allow them to make minor adjustments to
individual pages. Use this scheme with restraint, however, or you'll soon find
yourself back in the HTML hell XML was supposed to save us from, where
formatting is freely intermixed with meaning and documents are no longer
maintainable.

The final reason to use attributes is to maintain compatibility with HTML. To the
extent that you're using tags that at least look similar to HTML such as , <P>,
and <TD>, you might as well employ the standard HTML attributes for these tags.
This has the double advantage of enabling legacy browsers to at least partially
parse and display your document, and of being more familiar to the people writing
the documents.

Empty Tags

Last chapter’s no-attribute approach was an extreme position. It’s also possible to
swing to the other extreme — storing all the information in the attributes and none
in the content. In general, I don't recommend this approach. Storing all the
information in element content — while equally extreme —is much easier to work
with in practice. However, this section entertains the possibility of using only
attributes for the sake of elucidation. '

As long as you know the element will have no content, you can use empty tags as a
short cut. Rather than including both a start and an end tag you can include one
empty tag. Empty tags are distinguished from start tags by a closing /> instead of
simply a closing >. For instance, instead of <PLAYER></PLAYER> you would write
<PLAYER/>.

Empty tags may contain attributes. For example, here’s an empty tag for Joe Girardi
with several attributes:

<PLAYER GIVEN_NAME="Joe" SURNAME="Girardi"
GAMES="78" AT_BATS="254" RUNS="31" HITS="70"
DOUBLES="11" TRIPLES="4" HOME_RUNS="3"
RUNS_BATTED_IN="31" WALKS="14" STRUCK_QUT="38"
STOLEN_BASES="2" CAUGHT_STEALING="4"

SACRIFICE_FLY="1" SACRIFICE H[T="g"
HIT_BY_PITCH="2"/>

XML parsers treat this identically to the hon-empty equivalent, This PLAYER
element is precisely equal (though not identical) to the previous PLAY ER element
formed with an empty tag.

<PLAYER GIVEN_NAME="Joe" SURNAME="Girardi"
GAMES="78" AT_BATS="254" RUNS="31" HITS="70"
DOUBLES="11" TRIPLES="4" HOME_RUNS="3"
RUNS_BATTED_IN="31" WALKS="14" STRUCK_QUT="38"
STOLEN_BASES="2" CAUGHT_STEALING="4"
SACRIFICE_FLY="1" SACRIFICE_HIT="8"
HIT_BY_PITCH="2"></PLAYER>

The difference between <p LAYER/> and <PLAYER></PLAYE R> is syntactic sugar,
and nothing more. If you don't like the empty tag syntax, or find it hard to read, you
don't have to use it.

XSL

Attributes are visible in an XML source view of the document as shown in Figure
5-1. However, once a CSS style sheet is applied the attributes disappear. Figure 5-3
shows Listing 5-1 once the baseball stats style sheet from the previous chapter is

content, not to attributes. If you use CSS, any data you want to display to the
reader should be part of an element’s content rather than one of its attributes.

Figure 5-3: A blank document is displayed when CSS is applied
to an XML document whose elements do not contain any . mited
character data. World Programming Limite

However, there is an alternative style sheet language that does allow you to access
and display attribute data. This language is the Extensible Style Language (XSL);
and it is also supported by Internet Explorer 5.0, at least in part. XSL is divided into
two sections, transformations and formatting.

The transformation part of XSL enables you to replace one tag with another. You
can define rules that replace your XML tags with standard HTML tags, or with
HTML tags plus CSS attributes. You can also do a lot more including reordering the
elements in the document and adding additional content that was never present in
the XML document.

The formatting part of XSL defines an extremely poweriul view of documents as
pages. XSL formatting enables you to specify the appearance and layout of a page
including multiple columns, text flow around objects, line spacing, assorted font
properties, and more. It's designed to be powerful enough to handle automated
layout tasks for both the Web and print from the same source document. For
instance, XSL formatting would allow one XML document containing show times
and advertisements to generate both the print and online editions of a local
newspaper’s television listings. However, IE 5.0 and most other tools do not yet
support XSL formatting. Therefore, in this section I'll focus on XSL transformations.

XSL formatting is discussed in Chapter 15, XSL Formatting Objects.

XSL Style Sheet Templates

An XSL style sheet contains templates into which data from the XML document is
poured. For example, one template might look something like this:

<HTML>
{HEAD>
<TITLE>
XSL Instructions to get the title
</TITLE>
</HEAD>
<HI>XSL Instructions to get the titlel/H1l>
<BODY>
XSL Instructions to get the statistics
</BODY>
{IHTML>

The italicized sections will be replaced by particular XSL elements that copy data
from the underlying XML document into this template. You can apply this template
to many different data sets. For instance, if the template is designed to work with
the baseball example, then the same style sheet can display statistics from different
seasons.

This may remind you of some server-side include schemes for HTML. In fact, this
is very much like server-side includes. However, the actual transformation of the
source XML document and XSL style sheet takes place on the client rather than on
the server. Furthermore, the output document does not have to be HTML. It can be
any well-formed XML.

XSL instructions can retrieve any data stored in the elements of the XML document.
This includes element content, element names, and, most importantly for our
example, element attributes. Particular elements are chosen by a pattern that
considers the element’s name, its value, its attributes’ names and values, its
absolute and relative position in the tree structure of the XML document, and
more. Once the data is extracted from an element, it can be moved, copied, and
manipulated in a variety of ways. We won’t cover everything you can do with XML
transformations in this brief introduction. However, you will learn to use XSL to
write some pretty amazing documents that can be viewed on the Web right away.

Chapter 14, XSL Transformations, covers XSL transformations in depth.

The Body of the Document

Let’s begin by looking at a simple example and applying it to the XML document
with baseball statistics shown in Listing 5-1. Listing 5-2 is an XSL style sheet. This
style sheet provides the HTML mold into which XML data will be poured.

<?xml version="1.0"7>
{xsl:stylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs1">

<xsl:template match="/">
<HTML>

<HEAD>

<TITLE>
Major League Baseball Statistics

<ITLTLE>

</HEAD>

<BODY>
{Hl>Major League Baseball Statistics</H1>

<HR></HR>

Copyright 1999

Elliotte Rusty Harold

<A

Continued

World Programming Limited E . :

elharo@metalab.unc.edu

<A

</BODY>
</HTML>
</xsl:template>

{/xsl:stylesheet>

It resembles an HTML file included inside an xs1:template element. In other
words its structure looks like this:

<?xml1 version="1.0"7?>
<xsl:stylesheet xmins:xs1="http://www.w3.0rg/TR/WD-x51">

<xsl:template match="/">
HTML file goes here
{/xsl:template>

{/xsl:stylesheet>

Listing 5-2 is not only an XSL style sheet; it’s also a well-formed XML document.
It begins with an XML declaration. The root element of this document is xs1:
stylesheet. This style sheet contains a single template for the XML data
encoded as an xs1:template element. The xs1:template element has a match
attribute with the value / and its content is a wellformed HTML document, It's
not a coincidence that the output HTML is well-formed. Because the HTML must
first be part of an XSL style sheet, and because XSL style sheets are well-formed
XML documents, all the HTML in a XSL style sheet must be well-formed.

The Web browser tries to match parts of the XML document against each
xsl:template element. The / template matches the root of the document; that is
the entire document itself. The browser reads the template and inserts data from
the XML document where indicated by XSL instructions. However, this particular
template contains no XSL instructions, so its contents are merely copied verbatim
into the Web browser, producing the output you see in Figure 5-4. Notice that Figure
5-4 does not display any data from the XML document, only from the XSL template.

hing the XSL style sheet of Listing 5-2 to the XML document in Listing 5-1 is
ightforward. Simply add a <?xm1 -st ylesheet?> processing instruction with a
pe attribute with value text/xs1 and an href attribute that points to the style
et between the XML declaration and the root element. For example:

xml version="1.0"2>
¢2xml -stylesheet type="text/xs1" href="5-2.xs1"?>
<SEASON YEAR="1998">

This is the same way a CSS style sheet is attached to a document. The only
jifference is that the type attribute is text/xs]1 instead of text/css.

Major League Baseball
 Statistics

| Copyright 1999 Elliotte Rusty Harold
stharo@metalab.unc,

Figure 5-4: The data from the XML document, not the XSL
template, is missing after application of the XSL style sheet in
Listing 5-2.

The Title

Of course there was something rather obvious missing from Figure 5-4 — the data!
Although the style sheet in Listing 5-2 displays something (unlike the CSS style
sheet of Figure 5-3) it doesn’t show any data from the XML document. To add this,
you need to use XSL instruction elements to copy data from the source XML
document into the XSL template. Listing 5-3 adds the necessary X5L instructions to
extract the YEAR attribute from the SEASON element and insert it in the TITLE and
H1 header of the resulting document. Figure 5-5 shows the rendered document.

World Programming Limited EX

<?xml version="1.0"7>
{xsl:stylesheet xmins:xsT="http://www.w3.0rg/TR/WD-x51">

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>
<xsl:for-each select="SEASON"D>
<xsl:value-of select="@YFAR"/>
</xsl:for-each>
Major League Baseball Statistics
<JTITLES
</HEAD>
<BODY>

<xsl:for-each select="SEASON">
<H1>
{xsl:value-of select="@YEAR"/>
Major League Baseball Statistics
</H1>
{/xsl:for-each>

<HR></HR>

Copyright 1999

E1liotte Rusty Harold

</AS

elharo@metalab.unc.edu

<A

</BODY>
</HTML>
{/xsl:template>

{/xsl:stylesheet>

The new XSL instructions that extract the YEAR attribute from the SEASON element are:

<xsl:for-each select="SEASON">
<xsl:value-of select="@YFAR"/>
</xsl:for-each>

1998 Major League Baseball
Statistics

Copyright 1999 Elliotte Pusty Harol
elharo@metalab urc edu

Figure 5-5: Listing 5-1 after application of the XSL style sheet
in Listing 5-3

These instructions appear twice because we want the year to appear twice in the
output document-once in the H1 header and once in the TITLE. Each time they
appear, these instructions do the same thing. <xs1:for-each select="SEASON">
finds all SEASON elements. <xs1:value-of select="@YEAR"/> inserts the value
of the YEAR attribute of the SEASON element—that is, the string “1998” —found by
<xsl:for-each select="SEASON">,

This is important, so let me say it again: xs1: for-each selects a particular XML
element in the source document (Listing 5-1 in this case) from which data will be
read. xs1:value-of copies a particular part of the element into the output
document. You need both XSL instructions. Neither alone is sufficient.

XSL instructions are distinguished from output elements like HTML and H1 because
the instructions are in the xs1 namespace. That is, the names of all XSL elements
begin with xs1:. The namespace is identified by the xmins:xs] attribute of the
root element of the style sheet. In Listings 5-2, 5-3, and all other examples in this
book, the value of that attribute is http://www.w3.0org/TR/WD-xs1.

Namespaces are covered in depth in Chapter 18, Namespaces.

Leagues, Divisions, and Teams

Next, let’s add some XSL instructions to pull out the two LEAGUE elements. We'll
map these to H2 headers. Listing 5-4 demonstrates. Figure 5-6 shows the document
rendered with this style sheet.

World Programming Limited

<?xml version="1.0"7>
<xsl:stylesheet xmins:xsl="http://www.w3.org/TR/WD-xs1">

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>
<xsl:for-each select="SEASON">
<{xsl:value-of select="@YEAR"/>
</xsl:for-each>

Major League Baseball Statistics
</TITLE>
</HEAD>
<BODY>

<xsl:for-each select="SEASQON">
<H1>
<xsl:value-of select="@YEAR"/>
Major League Baseball Statistics
</HL>

<xsl:for-each select="LEAGUE">
<HZ2 ALIGN="CENTER"»
<xsl:value-of select="@NAME"/>
</H2>
</xsl:for-each>

</xs1:for-each>

<HR></HR>

Copyright 1999

E17iotte Rusty Harold

A

elharo@metalab.unc.edu

<A

</BODY>
</HTML>
</xs1:template>

{/xsl:stylesheet>

\ 1998 Major League Baseball
Statistics

National League

American League

i Copyright 1999 Eiliotte Rusty Harold
elharo@metalab. unc. edu

g

: "l_'e 5-6: The league names are displayed as H2 headers when
e XSL style sheet in Listing 5-4 is applied.

e key new materials are the nested xs1:for-each instructions

{xs]:for-each select="SEASON">
<HI>
<xsl:value-of select="@YEAR"/>
Major League Baseball Statistics
</H1>

{xsl:for-each select="LEAGUE">
<H2 ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
<IHZ>
{/xsl:for-each>

{/xsl:for-each>

he outermost instruction says to select the SEASON element. With that element
ected, we then find the YEAR attribute of that element and place it between <H1>
d </H1> along with the extra text Major League Baseball Statistics. Next,
the browser loops through each LEAGUE child of the selected SEASON and places
the value of its NAME attribute between <HZ ALIGN="CENTER"> and </HZ>.
Although there’s only one xs1: for-each matching a LEAGUE element, it loops over
all the LEAGUE elements that are immediate children of the SEASON element. Thus,
s template works for anywhere from zero to an indefinite number of leagues.

The same technique can be used to assign H3 headers to divisions and H4 headers to
teams. Listing 5-5 demonstrates the procedure and Figure 5-7 shows the document
rendered with this style sheet. The names of the divisions and teams are read from
the XML data.

World Programming Limited

<?xml version="1,0"7?>
{xsl:stylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs1">

<{xsl:template match="/">
<HTML>
<HEAD>
<TETLES
<xsl:for-each select="SEASON">
<xsl:value-of select="@YEAR"/>
</xsl:for-each>

Major League Baseball Statistics
</TITLE>
</HEAD>
<B0ODY>

<xsl:for-each select="SEASON">
<H1>
{xsl:value-of select="@YEAR"/>
Major League Baseball Statistics
</H1>

<xsl:for-each select="LEAGUE">
<HZ2 ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
</H2>

<xsl:for-each select="DIVISION">
<{H3 ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
{IH3>

{xsl:for-each select="TEAM">
<H4 ALIGN="CENTER">
<xs51:value-of select="@CITY"/>
<xsl:value-of select="@NAME"/>
</H4>
</xsl:for-each>
</xsl:for-each>

 </xs1:for-each>
{/xsl:for-each>

<HR>C/HRY
Copyright 1999

Elliotte Rusty Harold
<A

<A HREF="maﬂto:e1haro@meta]ab.unc.edu")

eTharo@metaiab.unc.edu
<A

</BODY>
</HTML>
{/xsl:template>

</xsl:stylesheet>

?‘amm%ﬁ i -
e H
1998 Major League Baseball

Statistics

National League
East

Atlanta Braves

Florida Marlins

Montreal Expos

New York Mets

Philadelphia Phillies

Central

Pl

Figure 5-7: Divisions and team names are displayed after
application of the XSL style sheet in Listing 5-5.

In the case of the TEAM elements, the values of both its CITY and N

are used as contents for the 14 header. Also notice that the nestin
each elements that selec

hierarchy of the docume
possible that don’t re
highly structured dat

AME attributes

gofthe xs1:for-
s seasons, leagues, divisions, and teams mirrors the

nt itself. That’s not a coincidence. While
quire matching hierarchies, this is the simpl
a like the baseball statistics of Listing 5-1.

other schemes are
est, especially for

World Programming Limited E

Players

The next step is to add statistics for individual players on a team. The most natural
way to do this is in a table. Listing 5-6 shows an XSL style sheet that arranges the
players and their stats in a table. No new XSL elements are introduced. The same
xsl:for-eachand xs1:value-of elements are used on the PLAYER element and
its attributes. The output is standard HTML table tags. Figure 5-8 displays the
results.

<?xml version="1.0"?>
<{xsl:stylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs1">

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>
{xsl:for-each select="SEASON">
<xs1:value-of select="@YEAR"/>
{/xsl:for-each>

Major League Baseball Statistics
</TITLE>
</HEAD>
<BODY>

<xsl:for-each select="SEASON">
<H1>
<xsl:value-of select="@YEAR"/>
Major League Baseball Statistics
</HL>

<xsl:for-each select="LEAGUE">
<HZ ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
{/H2>

<xsl:for-each select="DIVISION">
<H3 ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
</H3>

{xsl:for-each select="TEAM">
<H4 ALIGN="CENTER">
{xsl:value-of select="@CITY"/>
<xsl:value-of select="@NAME"/>
</HA>

<TABLE>

<THEAD>

<TR>

{TH>PTayer</TH><TH>P{/TH><TH>G</TH>
{TH>GS</TH><TH>ABL/TH><TH>R</TH> CTHXH/TH>
{TH>DL/THCTHX TS/ TH><TH>HRLS/ TH><TH>RBI</TH>
{TH>SL/TH><TH>CS</TH><TH> SH/TH><TH>SF</TH>
{TH>EL/TH><TH>BBL/TH><TH>SO</ TH><TH>HBP </ TH>
</TR>

{/THEAD>
<TBODY>
<xsl:for-each select="PLAYER">

<TR>

<TD>

{xsl:value-of select="@GIVEN_NAME"/>

<xsl:value-of select="@SURNAME"/>

</TD>

<TD><{xsl:value-of select="@POSITION"/></TD>
<TD><xsl:value-of select="@GAMES"/></TD>
<TD>

<xsl:value-of select="@GAMES_STARTED"/>

</TD>

<TD><xs1:value-of select="@AT_BATS"/><{/TD>
<TD><xs1:value-of select="@RUNS"/></TD>
{TD><xsl:value-of select="@HITS"/>{/TD>
{TD><{xs1:value-of select="@DOUBLES"/></TD>
{TD><xs1:value-of select="@TRIPLES"/></TD>
<TD><xsl:value-of select="@HOME_RUNS"/></TD>
{TD><xs1:value-of select="@RBI"/></TD>
<TD><xs1:value-of select="@STEALS"/></TD>
<TD>

<{xs1:value-of select="@CAUGHT_STEALING"/>
<L TDD

<TD> ,

<xsl:value-of select="@SACRIFICE_HITS"/>
<L FEDY

<TD>

<xsl:value-of select="@SACRIFICE_FLIES"/>
</TD>

<TD><xs1:value-of select="@ERRORS"/></TD>
{TD><xs1:value-of select="@WALKS"/></TD>
{TD>

<xsl:value-of select="@STRUCK_QUT"/>
</TD>

<TD> -~

<{xsT:value-of select="@HIT_BY_PITCH"/>
</TD>
</TR>

{/xs1:for-each>
</TBODY>
</TABLE>

{/xsl:for-each>

Continued

World Programming Limited E

</xsl:for-each>

{/xsl:for-each>
</xsl:for-each>

<HR></HR>

Copyright 1999

Elliotte Rusty Harold

<A

elharo@metalab.unc.edu

<A>

</BODY>
<SHTML>
</xsl:template>

{/xsl:stylesheet>

Separation of Pitchers and Batters

One discrepancy you might notice in Figure 5-8 is that the pitchers aren’t handled
properly. Throughout this chapter and Chapter 4, we've always given the pitchers

a completely different set of statistics, whether those stats were stored in element
content or attributes. Therefore, the pitchers really need a table that is separate from
the other players. Before putting a player into the table, you must test whether he is
or is not a pitcher. If his POSITION attribute contains the string “pitcher” then omit
him. Then reverse the procedure in a second table that only includes pitchers-PLAYER
elements whose POSITION attribute contains the string “pitcher”.

To do this, you have to add additional code to the xs1:for-each element that
selects the players. You don't select all players. Instead, you select those players
whose POSITION attribute is not pitcher. The syntax looks like this:

<xsl:for-each select="PLAYER[(@POSITION != 'Pitcher')">

But because the XML document distinguishes between starting and relief pitchers,
the true answer must test both cases:

<xsl:for-each select="PLAYER[(@POSITION != 'Starting Pitcher')
and (@POSITION != 'Relief Pitcher')1">

1998 Major League Baseball Statistics

National League

East
Atlanta Braves

Player P G GSAB R H DTHRRBIS C5S8H
Marty Malloy SecondBase 11 8 28 3 5 1 01 1 00 O
Ozzie Guillen Shortstop 83 59 26435 V3 1511 22 1 4 4
Danny Bautista Outfield 82 27 14417 36 1103 17 1 0 3

2

Gerald Outfield 12951 26646 81 18310 44 115

Williams
; Starting
Tom Glavine pitcher T]

Javier Lopez Catcher 13312448973 13921134 1065 3 8 5 3085
Ryan Klesko Outfield 12012442769 11729118 70 5 3 4 2 5666
Andres)

Figure 5-8; Player statistics are displayed after applying the XSL style
sheet in Listing 5-6.

For the table of pitchers, you logically reverse this to the position being equal to
either “Starting Pitcher” or “Relief Pitcher”. (It is not sufficient to just change not
equal to equal. You also have to change and to or.) The syntax looks like this:

<xsl:for-each select="PLAYER[(@POSITION = 'Starting Pitcher")
ors (@POSITION = 'Relief Pitcher')]">

Only a single equals sign is used to test for equality rather than the double equals
sign used in C and Java, That's because there's no equivalent of an assignment
operator in XSL.

Listing 5-7 shows an XSL style sheet separating the batters and pitchers into two
different tables. The pitchers’ table adds columns for all the usual pitcher statistics.
Listing 5-1 encodes in attributes: wins, losses, saves, shutouts, etc. Abbreviations
are used for the column labels to keep the table to a manageable width. Figure 5-9
shows the results.

World Programming Limited E;

<?xml version="1.0"7>
<xslistylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs1">

<xsl:template match="/">
<HTML>
<HEAD>
{TITLE>
<xsl:for-each select="SEASON">
<xsl:value-of select="@YEAR"/>
{/xsl:for-each>

Major League Baseball Statistics
</TITLE>
</HEAD>
<BODY>

<xsl:for-each select="SEASON">
<H1>
<xsl:value-of select="@YEAR"/>
Major League Baseball Statistics
</HI>

<{xsl:for-each select="LEAGUE">
<H2 ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
{IH2>

{xsl:for-each select="DIVISION">
<H3 ALIGN="CENTER">
<xsl:value-of select="@NAME"/>
</H3>

<xsl:for-each select="TEAM">
<H4 ALIGN="CENTER">
{xsT:value-of select="@CITY"/>
<xsl:value-of select="@NAME"/>
</H4E»

{TABLE>
{CAPTION>Batters</CAPTION>
<THEAD>
<TR>
<TH>PTayer</TH><TH>PL/THYCTH G/ THY
CTH>GSC/THKTHXABS/ TH> <THY RS/ TH> <THYH</TH>
<TH>D</TH>STH> T</TH><TH>HR</TH><TH>RBI</TH>
CTHYSC/THXKTHCSC/THIKTH> SHE/ THR < THYSFC/THD
<TH>E</TH><TH>BB</TH><TH>S0</TH>
<TH>HBPL/TH>
</TR>
</THEAD>

<TBODY>
{xs1:for-each select="PLAYER[(@POSITION
I= 'Starting Pitcher")
and (@POSITION != 'Relief Pitcher')1">
<TR>
<TD>
<{xsl:value-of select="@GIVEN_NAME"/>
<xsl:value-of select="@SURNAME"/>
<JTD>
{TD><xsl:value-of select="@POSITION"/></TD>
{TD><xs1:value-of select="@GAMES"/></TD>
<TD>
<xsl:value-of select="@GAMES_STARTED"/>
</TD>
{TD><xsl:value-of select="@AT_BATS"/>»</TD>
{TD><xsl:value-of select="@RUNS"/></TD>
{TD><xs]:value-of select="@HITS"/></TD>
<TD><xs1:value-of select="@DOUBLES"/></TD>
<TD><xs1:value-of select="@TRIPLES"/></TD>
<TD>
<xsl:value-of select="@HOME_RUNS"/>
</TD>
{TD><xsl:value-of select="@RBI"/></TD>
{TD><xs1:value-of select="@STEALS"/></TD>
<TD>
{xs1:value-of select="@CAUGHT_STEALING"/>
</TD>
<TD>
<{xsl:value-of select="@SACRIFICE_HITS"/>
</TD>
<TD>
<xsl:value-of select="@SACRIFICE_FLIES"/>
</TD>
<TD><xsl:value-of select="@ERRORS"/></TD>
{TD><xsl:value-of select="@WALKS"/></TD>
{TD>
<xsl:value-of select="@STRUCK_OUT"/>
</TD>
<TD>
<xsl:value-of select="@HIT_BY_PITCH"/>
</TD>
</TR>
{/xsl:for-each> <!— PLAYER —>
</TBODY>
</TABLE>

<{TABLE>
{CAPTION>Pitchers</CAPTION>
<THEAD>
{TR>
{TH>Player</TH><TH>P</TH><{TH>GK/TH>
{TH>GS</THOKTHI WS/ THO>KTHI LS/ TH>KTH> S/ TH>

Continued
World Programming Limi

CTH>CGS/TH><TH> SO/ THY<TH>ERAS/ TH>
STH>IP</TH>XTH>HRS/ THY<TH> RS/ TH><THYERL/ THY
LTHHHBL/ THOCTHSWP </ TH><THYBL/TH><TH>BB</TH>
KTH>KLS/TH>)
/TR
</THEAD>
<TBODY>
<xsl:for-each select="PLAYER[(@POSITION
= 'Starting Pitcher")
or (@POSITION = 'Relief Pitcher')]"»
<TR>
<TD>
<xsl:value-of select="@GIVEN NAME"/>
<xsl:value-of select="@SURNAME"/>
</TD>
{TD><xsT1:value-of select="@POSITION"/></TD>
<TD><xsT:value-of select="@RAMES"/></TD>
<TD>
{xsl:value-of select="@GAMES_STARTED"/>
</TD>
{TD><xsl:valtue-of select="@WINS"/></TD>
<TD><xs1:value-of select="@LOSSES"/></TD>
<TD><xsT:value-of select="@SAVES"/></TD>
<TD>
<xsl:value-of select="@COMPLETE_GAMES"/>
</TD>
R
<xsl:value-of select="@SHUT_OQUTS"/>
<STD>
{ID><xs1:value-of select="@ERA"/></TD>
<TD><xs1:value-of select="@INNINGS"/></TD>
<TD>
<xsl:value-of select="@HOME_RUNS_AGAINST"/>
</TD>
<TD>
<xsl:value-of select="@RUNS _AGAINST"/>
</TD>
<TD>
<xsl:value-of select="@EARNED_RUNS"/>»
<ATDY
<TD>
<xsl:value-of select="@HIT BATTER"/>
<ITDY
<TD>
<xsl:value-of select="@WILD PITCH"/>
</TD>
{ID><xsl:value-of select="@BALK"/></TD>
<TD0>
<xsl:value-of select="@WALKED_BATTER"/>
</TD>
T

<xsl:value-of select="@STRUCK_OQUT_BATTER"/>
<JTDY
<STR>
{/xsl:for-each> <!— PLAYER —>
</TBODY>
</TABLE>

</xsl:for-each> <!— TEAM —>
{/xsl:for-each> <!— DIVISION —>
{/xsl:for-each> <!— LEAGUE —>
</xs1:for-each> <!— SEASON —>

<HR></HR>

Copyright 1999 :

El1iotte Rusty Harold

{BR />

elharo@metalab.unc.edu

<A

</BODY>
<IHTMLS
{/xsl:template>

</xs1:5tylesheet>

Atlanta Braves

Batters
Player P G GSAB R H DTHRRBIS CSSHSFE

Marty Malloy g‘;‘;‘;”d 118 283 5 101 1 00O O

Ozzie Guillen Shortstop 83 59 26435 73 1511 22 1 4 4
Danny Bautista Qutfield 82 27 14417 36 1103 17 t 0 2
Gerald Willlams Qutfield 12951 26646 81 18310 44 1135 2
Javier Lopez Catcher 13312448873 13921134 1065 3 1
0
4]
]

Ryan Klesko Qutfleld 12912442769 11729118 70 5 3

Andres
Galarraga First Base 15315155510316927144 1217 6

Wes Helms ThirdBase 7 2 13 2 4 1 01 2 00
Pitchers

Player P GGSWLSCGSOERA IP HRRERHBWPBE

Tom Glavine Starting Pitcher 3333 20604 3 2,47229.113 6763 2 07

o NN O

2
2
i
8
4
5
0

Florida Matlins

Figure 5-9: Pitchers are distinguished from other players
after applying the XSL style sheet in Listing 5-7.

World Programming Lir'ni‘

Element Contents and the select Attribute

In this chapter, I focused on using XSL to format data stored in the attributes of an
element because it isn’t accessible when using CSS. However, XSL works equally
well when you want to include an element’s character data rather than (or in
addition to) its attributes. To indicate that an element’s text is to be copied into the
output document, simply use the element’s name as the value of the select
attribute of the xs1:value-of element. For example, consider, once again, Listing
5-8:

Listing 5-8greeting.xm1<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="greeting.xs1"?>
<GREETING>

Hello XML!

</GREETING>

Let’s suppose you want to copy the greeting “Hello XML!” into an H1 header. First,
you use xs1:for-each to select the GREETING element:

<{xsl:for-each select="GREETING">
<H1> ;
{/H1>

</xsl:for-each>

This alone is enough to copy the two H1 tags into the output. To place the text of
the GREETING element between them, use xs1:value-of with no select attribute.
Then, by default, the contents of the current element (GREETING) are selected.
Listing 5-9 shows the complete style sheet.

<?xml version="1.0" 7>
{xsl:stylesheet xmins:xsl="http://www.w3.0org/TR/WD-xs1">
{xsl:template match="/">
<HTML>
<BODY>
<xsl:for-each select="GREETING">
<H1> _
<xsl:value-of/>
</H1>
</xsl:for-each>
</BODY>
</HTML>
{/xsl:template>
{/xs1:stylesheet>

You can also use select to choose the contents of a child element. Simply make the
e of the child element the value of the select attribute of xs1:value-of. For
tance, consider the baseball example from the previous chapter in which each

ayer’s statistics were stored in child elements rather than in attributes. Given this
ucture of the document (which is actually far more likely than the attribute-based
structure of this chapter) the XSL for the batters’ table looks like this:

<TABLE>

{CAPTION>Batters</CAPTION>

<THEAD>
<TR>

{TH>Player</TH><TH>P<{/TH><TH>G</TH>
{TH>GS</TH><TH>ABL/TH><TH>R</TH><TH>H</TH>
{TH>DL/TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>

{TH>S</TH><TH>CS</TH><TH>SHS/TH><TH>SFL/TH>
{TH>E</TH><TH>BBL/TH><TH>SOL/TH><TH>HBP</TH>

<JTR>
</THEAD>
<TBODY>

<xsl:for-each select="PLAYER[(POSITION

I= 'Starting Pitcher')
and (POSITION != 'Relief Pitcher')]1">

<TR>
<TD>

<xsl:value-of select="GIVEN_NAME"/>
{Xsl:value-of select="SURNAME"/>

</TD>

{TD>»<xsl:value-of select="POSITION"/></TD>

{TD><xs1:value-of select="GAMES"/></TD>

<TD>

{xsl:value-of select="GAMES_STARTED"/>

</TD>
<TD><xs1
<TD><xs1
{TD><xs1
<TD><xs 1
{TD><xs1
<TD><xs]
{TD><xs1
{TD><xs]
<TD>

(xsl:value-of select="CAUGHT_STEALING"/>

</TD>
<TD>

<xsl:value-of select="SACRIFICE_HITS"/>

</TD>
<TD>

<{xs1:value-of select="SACRIFICE_FLIES"/>

</TD>

<TD><xs1:value-of select="ERRORS"/></TD>

:value-of
:value-of
:value-of
:value-of
:value-of
:value-of
:value-of
:value-of

select="AT_BATS"/></TD>
select="RUNS"/></TD>
select="HITS"/></TD>
select="DOUBLES"/></TD>
select="TRIPLES"/></TD>
select="HOME_RUNS"/></TD>
select="RBI"/></TD>
select="STEALS"/></TD>

World Programming L1

{TD><xsT:value-of select="WALKS"/></TD>
<TD>
<xsl:value-of select="STRUCK QUT"/>
</TD>
<TD> ' .
<xsl:value-of select="HIT_BY_PITCH"/>
</TD>
</TR>
{/xsl:for-each> <l— PLAYER —>
</TBODY>
</TABLE>

In this case, within each PLAYER element, the contents of that element’s
GIVEN_NAME, SURNAME, POSITION, GAMES, GAMES_STARTED, AT_BATS, RUNS,
HITS, DOUBLES, TRIPLES, HOME_RUNS, RBI, STEALS, CAUGHT _STEALING,
SACRIFICE_HITS, SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT and
HIT_BY_PITCH children are extracted and copied to the output. Since we used
the same names for the attributes in this chapter as we did for the PLAYER child
elements in the last chapter, this example is almost identical to the equivalent
section of Listing 5-7. The main difference is that the @ signs are missing. They
indicate an attribute rather than a child.

You can do even more with the select attribute. You can select elements: by
position (for example, the first, second, last, seventeenth element, and so forth);
with particular contents; with specific attribute values; or whose parents or
children have certain contents or attribute values. You can even apply a complete
set of Boolean logical operators to combine different selection conditions. We will
explore more of these possibilities when we return to XSL in Chapter 14.

CSS or XSL?

CSS and XSL overlap to some extent. XSL is certainly more powerful than CSS.
However XSL's power is matched by its complexity. This chapter only touched on
the basics of what you can do with XSL. XSL is more complicated, and harder to
learn and use than CSS, which raises the question, “When should you use CSS and
when should you use XSL?”

CSS is more broadly supported than XSL. Parts of CSS Level 1 are supported for
HTML elements by Netscape 4 and Internet Explorer 4 (although annoying
differences exist). Furthermore, most of CSS Level 1 and some of CSS Level 2 is
likely to be well supported by Internet Explorer 5.0 and Mozilla 5.0 for both XML
and HTML. Thus, choosing CSS gives you more compatibility with a broader range
of browsers.

Additionally, CSS is more stable. CSS level 1 (which covers most of the CSS you've
seen so far) and CSS Level 2 are W3C recommendations. XSL is still a very early

king draft, and won't be finalized until after this book is printed. Early adopters
SL have already been burned once, and will be burned again before standards
Choosing CSS means you're less likely to have to rewrite your style sheets from
onth to month just to track evolving software and standards. Eventually, however,
L will settle down to a usable standard.

ermore, since XSL is so new, different software implements different variations
nd subsets of the draft standard. At the time of this writing (spring 1999) there are
least three major variants of XSL in widespread use. Before this book is published,
re will be more. If the incomplete and buggy implementations of CSS in current
wsers bother you, the varieties of XSL will drive you insane.

However, XSL is definitely more powerful than CSS. CSS only allows you to apply
formatting to element contents. It does not allow you to change or reorder those
ntents; choose different formatting for elements based on their contents or
attributes; or add simple, extra text like a signature block. XSL is far more appro-
priate when the XML documents contain only the minimum of data and none of

“the HTML frou-frou that surrounds the data.

With XSL, you can separate the crucial data from everything else on the page,

like mastheads, navigation bars, and signatures, With CSS, you have to include all

these pieces in your data documents. XML+XSL allows the data documents to live

separately from the Web page documents. This makes XML+XSL documents more
~maintainable and easier to work with.

In the long run XSL should become the preferred choice for real-world, data-intensive
applications. CSS is more suitable for simple pages like grandparents use to post
- pictures of their grandchildren. But for these uses, HTML alone is sufficient. If you've
really hit the wall with HTML, XML+CSS doesn’t take you much further before you run
‘into another wall. XML+XSL, by contrast, takes you far past the walls of HTML. You
till need CSS to work with legacy browsers, but long-term XSL is the way to go.

mmary

In this chapter, you saw examples of creating an XML document from scratch.
Specifically, you learned:

4 Information can also be stored in an attribute of an element.
+ An attribute is a namé-value pair included in an element’s start tag.

+ Attributes typically hold meta-information about the element rather than the
element’s data.

+ Attributes are less convenient to work with than the contents of an element.

World Programming Lim

+ Attributes work well for very simple information that’s unlikely to change its
form as the document evolves. In particular, style and linking information
works well as an attribute,

+ Empty tags offer syntactic sugar for elements with no content.

4 XSL is a powerful style language that enables you to access and display
attribute data and transform documents.

In the next chapter, we'll specify the exact rules that well-formed XML documents
must adhere to. We'll also explore some additional means of embedding
information in XML documents including comments and processing instructions.

“ “ “

ascading Style
heets Level 1

SS is a very simple and straightforward language for
applying styles such as bold and Helvetica to particular
XML elements. Most of the styles CSS supports are familiar
from any conventional word processor. For example, you
‘can choose the font, the font weight, the font size, the
background color, the spacing of various elements, the
_borders around elements, and more. However, rather than
being stored as part of the document itself, all the style
information is placed in a separate document called a style
sheet. One XML document can be formatted in many
different ways just by changing the style sheet. Different
style sheets can be designed for different purposes —for
‘print, the Web, presentations, and for other uses —all with
the styles appropriate for the specific medium, and all
without changing any of the content in the document itself.

at Is CSS?

- Cascading Style Sheets (referred to as CSS from now on) were
introduced in 1996 as a standard means of adding information
about style properties such as fonts and borders to HTML

- documents. However, CSS actually works better with XML
than with HTML because HTML is burdened with backwards-
- compatibility between the CSS tags and the HTML tags. For
instance, properly supporting the CSS nowrap property

' requires eliminating the non-standard but frequently used

- NOWRAP element in HTML. Because XML elements don't have
any predefined formatting, they don't restrict which CSS styles
~ can be applied to which elements.

- A CSS style sheet is a list of rules. Each rule gives the names of
he elements it applies to and the styles it wants to apply to
- those elements. For example, consider Listing 12-1, a CS3 style

sheet for poems. This style sheet has five rules. Each rule has a selector —the
name of the element to which it applies — and a list of properties to apply to
instances of that element. The first rule says that the contents of the POEM element
should be displayed in a block by itself (display: biock). The second rule says
that the contents of the TITLE element should be displayed in a block by itself
(display: block)in 16-point (font-size: 16pt) bold type (font-weight:
boTd). The third rule says that the POET element should be displayed in a block by
itself (display: block) and should be set off from what follows it by 10 pixels
(margin-bottom: 10px). The fourth rule is the same as the third rule except that
it applies to STANZA elements. Finally, the fifth rule simply states that VERSE
elements are also displayed in their own block.

display: block }

{
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block }

T i S S S R i

In 1998, the W3C published a revised and expanded specification for CSS called CSS,
Level 2 (CS52). At the same time, they renamed the original CSS to CSS Level 1]
(CSS1). CSS2 is mostly a superset of CSS1, with a few minor exceptions, which I'll
note as we encounter them. In other words, CSS2 is CSS1 plus aural style sheets,
media types, attribute selectors, and other new features. Consequently, almost

everything said in this chapter applies to both CSS1 and CSS2. CSS2 will be covered
in the next chapter as an extension to CSS1.

Parts of CSS Level 1 are supported by Netscape Navigator 4.0 and Internet Explor
4.0 and 5.0. Unfortunately, they often aren’t the same parts. Mozilla 5.0 is suppose
to provide no-uncompromising support for CSS Level 1 and most of CSS Level 2.
Internet Explorer 5.0 does a better job than Internet Explorer 4.0 but it’s still
missing some major pieces, especially in regards to the box model and pseudo-
elements. I'll try to point out areas in which one or the other browser has a
particularly nasty problem.

Attaching Style Sheets to Documents

To really make sense out of the style sheet in Listing 12-1, you have to give it an
XML document to play with. Listing 12-2 is a poem from Walt Whitman’s classic
book of poetry, Leaves of Grass, marked up in XML. The second line is the <?xm]
stylesheel?> processing instruction that instructs the Web browser loading thi
document to apply the style sheet found in the file poem.css to this document.
Figure 12-1 shows this document loaded into an early alpha of Mozilla.

?xml version="1.0"?>
2xml-stylesheet type="text/css" href="poem.css"?>
POEM>

{TITLE>Darest Thou Now O Soul</TITLE>
l<POET>Wa1t Whitman</POET>

{STANZA>
<VERSE>Darest thou now 0 soul,</VERSE>
<VERSE>Walk out with me toward the unknown region,</VERSE>
<VERSE>Where neither ground is for the feet nor
any path to follow?<{/VERSE>
{/STANZA>
<STANZA>
<YERSE>No map there, nor guide,</VERSE>
<YERSE>Nor voice sounding, nor touch of
human hand, </VERSE>
<VERSE>Nor face with blooming flesh, nor Tips,
are in that land.</VERSE>
{/STANZA>
{STANZA>
<VERSE>I know it not 0 soul,</VERSE>
<VERSE>Nor dost thou, all is blank before us,<{/VERSE>
<VERSE>A11 waits undream'd of in that region,
_ that inaccessible land.<{/VERSE>
C/ISTANZAS>
{STANZA>
<YERSE>Ti11 when the ties loosen,</VERSE>
<VERSE>A11 but the ties eternal, Time and Space,</VERSE>
<VERSE>Nor darkness, gravitation, sense,
nor any bounds bounding us.</VERSE>
<ISTANZA>
{STANZA>
<VERSE>Then we burst forth, we float,</VERSE>
<VERSE>In Time and Space 0 soul,
prepared for them,</VERSE>
<VERSE>Equal, equipt at last, (0 joy! O fruit of alll)
them to fulfil 0 soul.</VERSE>
{/STANZA>

</POEM>

The type attribute in the <?xm]-stylesheet?> processing instruction is the
MIME type of the style sheet you're using. Its value is text/css for CSS and
text/xs]1 for XSL

CSS Level 2 is discussed in Chapter 13. XSL is covered in Chapters 14 and 15.

World Programming Limited

|file:///D:/XHL,

arest Thou Now O Soul
HWalt Whitan
IDarest thou now O soul,
Halk out with me toward the unknown region,
ere neither ground is for the feet nor any path to follow?

Al waits undream'd of n that region, that inaccessible land
ill when the ties lossen,
Al but the tes eternal, Time and Space,
Nor darkness, gravitation, sense, nor any bounds bounding us.

[iThen we burst forth, we foat,
Time and Space O soul, prepared for them,
al, equipt at last, {O joy! O fruit of alll) them to fulfil O soul.

Figure 12-1: Darest Thou Now O Soul as rendered by Moxzilla

The value of the href attribute in the <?xm]1-stylesheet?> processing instruction
is a URL, often relative, where the style sheet is found, If the style sheet can't be
found, the Web browser will probably use its default style sheet though some
browsers may report an error instead.

You can apply the same style sheet to many documents. Indeed, you generally will.
Thus, it's common to put your style sheets in some central location on your Web
server where all of your documents can refer to them; a convenient location is the
styles directory at the root level of the Web server.

<7xm] —styIresheet type="text/css" href="/styles/poem.css"?>

You might even use an absolute URL to a style sheet on another Web site, though of
course this does leave your site dependent on the status of the external Web site.

<?xml-stylesheet type="text/css"
href="http://metalab.unc.edu/xml/styles/poem.css"?>

You can even use multiple <?xm1-stylesheet?> processing instructions to pull in
rules from different style sheets. For example:

<?xml version="1.0"7?>

<?xml-stylesheet type="text/css" href="/styles/poem.css"?>

<?xml-stylesheet type="text/css"
href="http://metalab.unc.edu/xml/styles/poem.css"?>

<POEM>

" g

Style sheets are more or less orthogonal to DTDs. A document with a style sheet
may or may not have a DTD and a document with a DTD may or may not have a
style sheet. However, DTDs do often serve as convenient lists of the elements that
you need to provide style rules for.

In this and the next several chapters, most of the examples will use documents
that are well-formed, but not valid. The lack of DTDs will make the examples
shorter and the relevant parts more obvious. However in practice, most of the doc-
uments you attach style sheets to will probably be valid documents with DTDs.

lection of Elements

- The part of a CSS rule that specifies which elements it applies to is called a selector.
The most common kind of selector is simply the name of an element; for instance
TITLE in this rule:

TITLE { display: block: font-size: l6pt; font-weight: bold }
However, selectors can also specify multiple elements, elements with a particular
CLASS or 1D attribute and elements that appear in particular contexts relative to
other elements.

One thing you cannot do in CSS Level 1 is select elements with particular attribute

names or values other than the predefined CLASS and 1D attributes. To do this,
you have to use CSS Level 2 or XSL.

World Programming Lin

Grouping Selectors

If you want to apply one set of properties to multiple elements, you can include all
the elements in the selector separated by commas. For instance, in Listing 12-1
POET and STANZA were both styled as block display with a 10-pixel margin. You can
combine these two rules like this:

POET, STANZA { display: block; margin-bottom: 10px)

Furthermore, more than one rule can apply style to a particular element. So you
can combine some standard properties into a rule with many selectors, then use
more specific rules to apply custom formatting to selected elements. For instance,
in Listing 12-1 all the elements were listed as block display. This can be combined
into one rule while additional formatting for the POET, STANZA, and TITLE elements
is contained in separate rules, like this:

POEM, VERSE, TITLE, POET, STANZA { display: block }
POET, STANZA { margin-bottom: 10px }
TITLE {font-size: 16pt; font-weight: bold }

Pseudo-Elements

(351 supports two pseudo-elements that can address parts of the document that
aren’t normally identified as separate elements, but nonetheless often need
separate styles. These are the first line and the first letter of an element.

The early betas of Internet Explorer 5.0 and earlier versions of Internet Explorer do
not support these pseudo-elements. The early beta of Mozilla 5.0 does support
them, but only for HTML.

Addressing the First Letter

The most common reason to format the first letter of an element separately from
the rest of the element is to insert a drop cap as shown in Figure 12-2, This is
accomplished by writing a rule that is addressed with the element name, followed
by :first-letter. For example:

CHAPTER:first-letter { font-size: 300%;:
float: Teft; vertical-align: text-top }

As you may notice in Figure 12-2, the “drop” part of the drop cap (f1oat: left;
vertical-align: text-top) does not yet seem to work in either the early
betas of Mozilla 5.0 or Internet Explorer 5.0, though the size of the initial letter can
be adjusted.

PRINCIPIO CREAVIT DEUS CAELUM ET TERRAM TERRA AUTEM ERAT INANIS

vacua et tenebrae super faciem abyssi et spiritus Det ferebatur super aguas dogtgue Deus fiat.
¢t facta est hux ot vidit Deus lucem quod esset bona et divisit lucem ac tenebras
ppellavitque ncem diem et tenebras noctem factumaque est vespere et mane diss unus dixit
oque Deus fiat firmamentum in medio aguarum et dividat aquas ab aguis et fecit Deus
mamentum divisitque aguas quae erant sub Srmamento ab bis quae erant super Srmamentum
t Factum est ita vocavitgue Deus Srmamentum caelum et factum est vespere et mane dies
cundus dixit vero Deus congregentur aguae quae sub caelo sunt in locum unum et appareat
ida fachunque est ita et vocavit Deus anidam terram congregationesque agquanum appeliavit
ia et vicit Deus quod esset bonum et ait germinet terra herbam virenter et facienter semen
gnum pomiferum faciens fructum oda genue suum cuits semen in semet ipso sit super
errain &t factum estita et protult terra herbam virentem et adferentern semen intta genus suum
wnggee faciens fruchum et habens unumquodgue sementem secundum speciem suam et vidit
eus quod esset bonum factumque est vespere et mane dies tertius dixit autem Deus fiant
in firmamento caeli ut dividant diem ac nocterm et sint in signa et tempora et dies et
nos ut uceant in firmamento caeli et inlurninent terram et fachum st tfa fecitque Deus duo
Juminaria Jorminare tafus ut praeesset diei et luminare minus ut praeesset nocti et stellas
et posuit eas in firmamento cael ut lucerent super terram et praeessent dief ac nocti et
dividerent lucem ac tenebras et vidit Deus quod esset bonum et factum est vespere et mane
[idies quartus dixit etiam Deus producant aquae reptile animae viventis et volatile super terram

_ Figure 12-2: A drop cap on the first-letter pseudo element with
- small caps used on the first-line pseudo-element

- Addressing the First Line

- The first line of an element is also often formatted differently than the remainder of

 the text of the element. For instance, it may be printed in small caps instead of
normal body text as shown in Figure 12-2. You can attach the : first-11ine selector
to the name of an element to create a rule that only applies to the first line of the
element. For example,

CHAPTER:first-line { font-variant: small-caps }

Exactly what this pseudo-element selects is relative to the current layout. If the
window is larger and there are more words in the first line, then more words will be
in small caps. If the window is made smaller or the font gets larger so the text
wraps differently and fewer words are on the first line, then the words that are
wrapped to the next line are no longer in small caps. The determination of which
characters comprise the first-11ine pseudo-element is deferred until the
document is actually displayed.

World Programming Limited EX
Pa

Pseudo-Classes

Sometimes you may want to style two elements of the same type differently. For
example, one paragraph may be bold while another has normal weight. To do this,
you can add a CLASS attribute to one of the elements, then write a rule for the
elements in a given CLASS. :

For example, consider a bibliography that contains many CITATION elements. A
sample is shown in Listing 12-3. Now suppose you want to color all citations of the
work of Alan Turing blue, while leaving the other citations untouched. To do this
you have to add a CLASS attribute with a specific value— TURING works well — to
the elements to be colored.

<?7xml version="1.0" standalone="yes"?> .
<?xml-stylesheet type="text/css" href="biblio.css"?>
<BIBLIOGRAPHY>
{CITATION CLASS="HOFSTADTER" ID="C1">
<{AUTHOR>Hofstadter, Douglas</AUTHOR>.
"<{TITLE>How Might Analogy, the Core of Human Thinking,
Be Understood By Computers?</TITLE>"
<JOURNAL>Scientific American</JOURNAL>,
<MONTH>September</MONTH>
<YEAR>1981</YEAR>
{PAGES>18-30</PAGES>
</CITATION>
{CITATION CLASS="TURING" ID="C2">
CAUTHOR>Turing, Alan M.</AUTHOR»
"<TITLE>On Computable Numbers,
With an Application to the Entscheidungs-problem</TITLE>"
<JOURNAL>
Proceedings of the London Mathematical Society</JOURNAL>,
<SERIES>Series 2</SERIES>,
<VOLUME>42</VOLUME>
(KYEAR>1936</YEAR>):
{PAGES>230-65</PAGES>.
</CITATION>
<CITATION CLASS="TURING" ID="C3">»
<AUTHOR>Turing, Alan M.</AUTHOR>»
"<TITLE>Computing Machinery & Intelligence</TITLE>"
{JOURNAL>Mind</JOURNAL>
<VOLUME>59</VOLUME>
(<MONTH>Qctober</MONTH>
<YEAR>1950</YEAR>):
<{PAGES>433-60</PAGES>
</CITATION>
{/BIBLIOGRAPHY>

One of the more annoying aspects of CSS Level 1 is that it makes mixed content
more necessary. There’s a lot of punctuation in Listing 12-3 that is not really part of
the content; for example the parentheses placed around the YEAR element and
the quotation marks around the TITLE. These are presentation elements that
should be part of the style sheet instead. CSS Level 2 allows extra text such as
punctuation to be inserted before and after elements.

The style sheet in Listing 124 uses a CLASS selector to color elements in the
TURING class blue.

- CLASS attributes are supported by IE5 but not by Mozilla as of the milestone 3
release. Mozilla will probably support CLASS attributes by the time it's officially
released.

BIBLIOGRAPHY { display: block }
CITATION.TURING { color: blue }
CITATION { display: block }

JOURNAL { font-style: italic }

In a valid document, the CLASS attribute must be declared as a possible atiribute of
the styled elements. For example, here’s a DTD for the bibliography of Listing 12-3:

C!ELEMENT BIBLIOGRAPHY (CITATION*)>
{IATTLIST CITATION CLASS CDATA #IMPLIED>
<IATTLIST CITATION ID ID #fREQUIRED>

<IELEMENT CITATION ANY>

CIELEMENT AUTHOR (#fPCDATA)>
<IELEMENT TITLE (#PCDATA)>
CIELEMENT JOURNAL (#tPCDATA)>
<IELEMENT MONTH (#{PCDATAY>
<IELEMENT YEAR (#fPCDATA)>
IELEMENT SERIES (#PCDATA)>
CIELEMENT VOLUME (#{PCDATA)>
<IELEMENT PAGES ({fPCDATA) >

In general, | do not recommend this approach. You should, if possible, attempt to
add additional element markup to the document rather than relying on CLASS

~ attributes. However, CLASS attributes may be necessary when the information

- you're selecting does not conveniently map to particular elements.

World Programming Limite

Selection by ID

Sometimes, a unique element needs a unique style. You need a rule that applies to
exactly that one element. For instance, suppose you want to make one element in
list bold to really emphasize it in contrast to its siblings. In this case, you can wri
a rule that applies to the ID attribute of the element. The selector is the name of
element, followed by a # and the value of the 1D attribute.

For example, Listing 12-5 is a style sheet that selects the CITATION element fro
the bibliography in Listing 12-3 with the ID €3 and makes it, and only it, bold. O
CITATION elements appear with the default weight. All CITATION elements are
displayed in block fashion and all JOURNAL elements are italicized. i

BIBLIOGRAPHY { display: block }
CITATION#C3 { font-weight: bold }
CITATION { display: block }
JOURNAL { font-style: italic }

1D selectors are supported by IE5, and by Mozilla for HTML elements, but not
elements as of the milestone 3 release. Mozilla will probably fully support
selectors by the time it's officially released.

Contextual Selectors

Often, the formatting of an element depends on its parent element. You can wri
rules that only apply to elements found inside a named parent. To do this, pr
the name of the parent element to the name of the styled element.

For example, a CODE element inside a PRE element may be rendered in 12-point
Courier. However, if the body text of the document is written in 10-point Times
CODE element that’s inline with other body text may need to be rendered in 10+
Courier. The following rules accomplish exactly that:

BODY { font-family: Times, serif: font-size: 10pt }
CODE { font-family: Courier, menospaced; font-size: 10p
PRE { font-size: 12pt } :
PRE CODE { font-size: 12pt }

This says that inside the BODY element, the font is 10-point Times. However,
CODE element the font changes to Courier, still 10-point. However, if the CODE
element is inside a PRE element then the font grows to 12 points.

You can expand this to look at the parent of the parent, the parent of the parent of the
parent, and so forth. For example, the following rule says that a NUMBER element inside
a YEAR element inside a DATE element should be rendered in a monospaced font:

DATE YEAR NUMBER { font-family: Courier, monospaced 1}

In practice, this level of specificity is rarely needed. In cases in which it does seem
to be needed, you can often rewrite your style sheet to rely more on inheritance,
cascades, and relative units, and less on the precise specification of formatting.

STYLE Attributes

When hand-authoring documents, it’s not uncommon to want to apply a particu-
lar style one time to a particular element without editing the style sheet for the
document. Indeed, you may want to override some standard default style sheet
for the document that you can’t change. You can do this by attaching a STYLE
attribute to the element. The value of this attribute is a semicolon-separated list
of style properties for the element. For example, this CITATION uses a STY LE
attribute to make itself bold:

<CITATION CLASS="TURING" ID="C3" STYLE="font-weight: bold">
(AUTHOR>Turing, Alan M.</AUTHOR>
"¢TITLE>Computing Machinery & Intelligence</TITLE>"
<JOURNAL>Mind</JOURNAL>
<VOLUME>59</VOLUME>
(<MONTH>October</MONTH>
<YEAR>1950</YEAR>):
{PAGES>433-60</PAGES>
{/CITATION>

If the properties defined in a STY LE attribute conflict with the properties defined in
the style sheet, then the properties defined in the attribute take precedence.

Avoid using STY LE attributes if at all possible. Your documents will be much
cleaner and more maintainable if you keep all style information in separate style
sheets. Nonetheless, there are times when STYLE attributes are too quick and
convenient to ignore.

Again, if you use this approach in a valid document, you will need to declare the
STYLE attribute in an ATTLIST declaration for the element you're styling. For
example:

{TELEMENT CITATION ANY>

CIATTLIST CITATION CLASS CDATA #fIMPLIED>
LIATTLIST CITATION ID 1D #REQUIRED>
CIATTLIST CITATION STYLE CDATA #IMPLIED>

World Programming Limi

STYLE attributes are supported by IE5, and by Moxzilla for HTML elements, but not
XML elements as of the milestone 3 release. Mozilla will probably fully support
STYLE attributes by the time it's officially released.

Inheritance

CSS does not require that rules be specifically defined for each possible property
of each element in a document. For instance, if there is not a rule that specifies the
font size of an element, then the element inherits the font size of its parent. If there
is not a rule that specifies the color of an element, then the element inherits the
color of its parent. The same is true of most CS8 properties. In fact, the only
properties that aren’t inherited are the background and box properties.

For example, consider these rules:

P { font-weight: bold:
font-size: 24pt;
font-family: sans-serif}
BOOK { font-style: italic; font-family: serif}

Now consider this XML fragment:

<P>

Michael Willhoite's <BOOK>Daddy's Roommate</BOOK> is

the #10 most frequently banned book in the U.S. in the 1990s.
/P>

Although the BOOK element has not been specifically assigned a font-weight ora
font-size, it will be rendered in 24-point bold because it is a child of the P
element. It will also be italicized because that is specified in its own rule. BOOK
inherils the Tont-weight and font-size of its parent P, If later in the document a
BOOK element appears in the context of some other element, then it will inherit the
font-weight and font-size of that element.

The font-family is alittle trickier because both P and BOOK declare conflicting
values for this property. Inside the BOOK element, the font-fami 1y declared by
BOOK takes precedence. Qutside the BOOK element, P’s font-fami] y is used.
Therefore, “Daddy’s Roommate” is drawn in a serif font, while “most frequently
banned book” is drawn in a sans serif font.

Often you want the child elements to inherit formatting from their parents,

Therefore, it's important not to over-specify the formatting of any element. For

instance, suppose [had declared that BOOK was written in 12-point font like this:
BOOK { font-style: italic; font-family: serif; font-size: 12pt}

Then the example would be rendered as shown in Figure 12-3;

Michael Willhoite's s reonmae is the
#10 most frequently banned book in
the U.S. in the 1990s.

Figure 12-3: The BOOK written in a 12-point font size

You could fix this with a special rule that uses a contextual selector to pick out
BOOK elements inside P elements, but it's easier to simply inherit the parent’s
font-size.

One way to avoid problems like this, while retaining some control over the size of
individual elements is to use relative units like ems and ex’s instead of absolute
units like points, picas, inches, centimeters, and millimeters. An em is the width
of the letter m in the current font. An ex is the height of the letter x in the current
font. If the font gets bigger, so does everything measured in ems and ex’s.

A similar option that’s available for some properties is to use percentage units. For
example, the following rule sets the font size of the FOOTNOTE_NUMBER element to
80 percent of the font size of the parent element. If the parent element’s font size
increases or decreases, FOOTNOTE _NUMBER’s font size scales similarly.

FOOTNOTE_NUMBER { font-size: 80% }

Exactly what the percentage is a percentage of varies from property to property. In the
vertical-align property, the percentage is of the line height of the element itself.
However in a margin property, a percentage is a percentage of the element’s width.

Cascades

It is possible to attach more than one style sheet to a document. For instance, a
browser may have a default style sheet which is added to the one the designer
provides for the page. In such a case, it's possible that there will be multiple rules
a that apply to one element, and these rules may conflict. Thus, it’s important to
determine in which order the rules are applied. This process is called a cascade,
and is where cascading style sheets get their name.

World Programming Limited

There are several ways a CSS style sheet can be attached to an XML document:

1. The <?xm1-stylesheet?> processing instruction can be included in the XML
document.

2. The style sheet itself may import other style sheets using @import.

3. The user may specify a style sheet for the document using mechanisms inside
their browser.

4. The browser provides default styles for most properties.

The @import Directive

Style sheets may contain @ mport directives that load style sheets stored in other
files. An absolute or relative URL is used to identify the style sheets. For example,

@import url(http://www.w3.org/basicstyles.css):
@import url(/styles/baseball.css):

These @import directives must appear at the beginning of the style sheet, before
any rules. Rules in the importing style sheet always override those in the imported
style sheets. The imported style sheets cascade in the order they’re imported.
Cycles (for example, poem.css imports stanza.css which imports poem.css) are
prohibited.

The limportant Declaration

In CSS1, author rules override reader rules unless the reader attaches an
limportant declaration to the property. For example, the following rule says that
the TITLE element should be colored blue even if the author of the document
requested a different color. On the other hand, the font-family should be serif
only if the author rules don’t disagree.

TITLE { color: blue limportant font-family: serif}

However, author rules may also be declared important. In such a case, the author
rule overrides the reader rule.

This is a very bad idea. Readers should always have the option to choose the way
they view something. It simply isn't possible to write one style sheet that's appropri-
ate for people using color and black-and-white monitors, the seeing and the sight-
impaired, people browsing on 21-inch monitors, television sets, and PDAs. Too
many Web designers vastly over-specify their styles, only to produce pages that are
completely unreadable on systems that aren't exactly like their own. Fortunately,
CSS2 reverses this precedence so that reader rules have the ultimate say.

‘Cascade Order

Styles are chosen from the available style rules for an element. In general, more
specific rules win. For instance, consider this fragment:

<QUEVRE>
{PLAY ID="x02" CLASS="WILDE">
The Importance of Being Earnest
</PLAY>
</QUEVRE>

The most specific rules are preferred. Thus, one that selected the PLAY element by
its 10 would be preferred to one that selected the PLAY by its CLASS. A rule that
selected the PLAY by its CLASS would be preferred to one that selected PLAY
elements contained in OUEVRE elements. Finally, if none of those applied, a generic
PLAY rule would be selected. If no selector matches, the value inherited from the
parent element is used. If there is no value inherited from the parent element, the
default value is used.

If there is more than one rule at a given level of specificity, the cascading order is
resolved in the following order of preference:

1. Author declarations marked important.

2. Reader declarations marked important.

3. Author declarations not marked important.

4, Reader declarations not marked important.

5. The latest rule in the style sheet.

Try to avoid depending on cascading order. It’s rarely a mistake to specify as little
style as possible and let the reader/browser preferences take control.

.omments in CSS Style Sheets

CSS style sheets can include comments. CSS comments are like C’s /* */
comments, not like <!— —> XML and HTML comments. Listing 12-6 demonstrates.
This style sheet doesn’t merely apply style rules to elements. It also describes, in
English, the results those style rules are supposed to achieve.

World Programming Limite

/* Work around a Mozilla bug */
POEM { display:block }

/* Make the title Took Tike an Hl1 header */
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10 }

/* Put a blank line in-between stanzas,

only a line break between verses */
STANZA { display: block; margin-bottom: 10 }
VERSE { display: block }

CSS isn’t nearly as convoluted as XML DTDs, Java, C, or Perl, so comments aren’t
quite as necessary as they are in other languages. However, it’s rarely a bad idea to
include comments. They can only help someone who's trying to make sense out of

a style sheet you wrote and who is unable to ask you directly. ')

CSS Units

CSS properties have names and values. Table 12-1 lists some of these property
names and some of their values.

The names are all CSS keywords. However, the values are much more diverse.
Some of them are keywords like the none indisplay: none or the solidin
border-style: solid.Other values are numbers with units like the 0.517n in
margin-top: 0.5inorthe 12ptin font-size: 12pt. Still other values are URLs
like the http://www.idgbooks.com/images/paper.gifin background-image:
url(http://www.idgbooks.com/images/paper.gif) or RGB colors like the
JCC0033 in color: {#CC0033. Different properties permit different values. However,
there are only four different kinds of values a property may take on. These are: :

1. length
2. URL

3. color

4. keyword

Keywords vary from property to property, but the other kinds of values are the
same from property to property. That is, a length is a length is a length regardless
of which property it’s the value of. If you know how to specify the length of a

