PTO/SB/57 (09-16)

Approved for use through 09/30/2018. OMB 0651-0064

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

(Also referred to as FORM PTO-1465)

REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM

Address to:

Mail Stop Ex Parte Reexam

Commissioner for Patents Attorney Docket No.:
P.O. Box 1450

Alexandria, VA 22313-1450 Date: 05-16-2018

1. This is a request for ex parte reexamination pursuant to 37 CFR 1.510 of patent number 9104842
issued 08-11-2015 . The request is made by:

|:| patent owner. third party requester.

2. The name and address of the person requesting reexamination is:
Fisch Sigler LLP

5301 Wisconsin Avenue, NW, Fourth Floor
Washington, DC 20015

3. Requester asserts [_]small entity status (37 CFR 1.27) or [_] certifies micro entity status (37 CFR 1.29). Only a
patent owner requester can certify micro entity status. Form PTO/SB/15A or B must be attached to certify micro
entity status.

4. |:| a. A check in the amount of $ is enclosed to cover the reexamination fee, 37 CFR 1.20(c)(1);

|:| b. The Director is hereby authorized to charge the fee as set forth in 37 CFR 1.20(c)(1)
to Deposit Account No. ;

c. Payment by credit card. Form PTO-2038 is attached; or
d. Payment made via EFS-Web.

5. Any refund should be made by [/]check or Dcredit to Deposit Account No.
37 CFR 1.26(c). If payment is made by credit card, refund must be to credit card account.

6. A copy of the patent to be reexamined having a double column format on one side of a separate paper is
enclosed. 37 CFR 1.510(b)(4).

7. |:| CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table
D Landscape Table on CD

8. I:I Nucleotide and/or Amino Acid Sequence Submission
If applicable, items a. — c. are required.

a.[] Computer Readable Form (CRF)
b. Specification Sequence Listing on:
i. [] CD-ROM (2 copies) or CD-R (2 copies); or
i. 1 paper
c.[] Statements verifying identity of above copies
9. |:| A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.

10. Reexamination of claim(s) 11,12, 13, and 14 is requested.

11. A copy of every patent or printed publication relied upon is submitted herewith including a listing thereof on
Form PTO/SB/08, PTO-1449, or equivalent.

12. |:| An English language translation of all necessary and pertinent non-English language patents and/or printed
publications is included.

[Page 1 of 2]
This collection of information is required by 37 CFR 1.510. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO
to process) a request for reexamination. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 18 minutes to
complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any
comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer,
U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS
TO THIS ADDRESS. SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PT0-9199 and select option 2.

DISH-Blue Spike 842
Exhibit 1005, Page 0001

PTO/SB/57 (09-16)

Approved for use through 09/30/2018. OMB 0651-0064

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

13. The attached detailed request includes at least the following items:

a. A statement identifying each substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1.510(b)(1).

b. An identification of every claim for which reexamination is requested, and a detailed explanation of the pertinency
and manner of applying the cited art to every claim for which reexamination is requested. 37 CFR 1.510(b)(2).

14. [l A proposed amendment is included (only where the patent owner is the requester). 37 CFR 1.510(e).

15. It is certified that the statutory estoppel provisions of 35 U.S.C. 315(e)(1) or 35 U.S.C. 325(e)(1) do not prohibit
requester from filing this ex parte reexamination request. 37 CFR 1.510(b)(6).

16. a. It is certified that a copy of this request (if filed by other than the patent owner) has been served in its entirety on
the patent owner as provided in 37 CFR 1.33(c).
The name and address of the party served and the date of service are:

Wistaria Trading LTD
Clarendon House, 2 Church Street, Hamilton HM 11, Bermuda

Date of Service: May 16, 2018 ; or

|:| b. A duplicate copy is enclosed since service on patent owner was not possible. An explanation of the efforts
made to serve patent owner is attached. See MPEP 2220.

17. Correspondence Address: Direct all communication about the reexamination to:

|:| The address associated with Customer Number:

OR

-
L ol Name Fisch Sigler, LLP

Address

City State Zip
Washington DC 20015
Country

United States

Telephone Email

(202) 362-3524 Joe.Edell@fischllp.com

18. The patent is currently the subject of the following concurrent proceeding(s):
[] a. Copending reissue Application No.
[] b. Copending reexamination Control No.
[J ¢ Copending Interference No.

d. Copending litigation styled:
Blue Spike, LLC v. Juniper Networks, Inc., 6:17-cv-00016-KNM (ED. Tex. 2017)

WARNING: Information on this form may become public. Credit card information should not be
included on this form. Provide credit card information and authorization on PTO-2038.

/Joseph F. Edell/ 05-16-2018
Authorized Signature Date
Joseph F. Edell 67,625 [] For Patent Owner Requester
Typed/Printed Name Registration No.
For Third Party Requester
[Page 2 of 2]

DISH-Blue Spike 842
Exhibit 1005, Page 0002

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your
submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of
the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2)
furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the
U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or
patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to
process and/or examine your submission, which may result in termination of proceedings or abandonment of the
application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of
Information Act (5 U.S.C. 5652) and the Privacy Act (5 U.S.C 552a). Records from this system of records may
be disclosed to the Department of Justice to determine whether disclosure of these records is required by the
Freedom of Information Act.

2. Arecord from this system of records may be disclosed, as a routine use, in the course of presenting evidence
to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of
settlement negotiations.

3. Arecord in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a
request involving an individual, to whom the record pertains, when the individual has requested assistance from
the Member with respect to the subject matter of the record.

4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having
need for the information in order to perform a contract. Recipients of information shall be required to comply
with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).

5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of
records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property
Organization, pursuant to the Patent Cooperation Treaty.

6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes
of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C.
218(c)).

7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General
Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency’s
responsibility to recommend improvements in records management practices and programs, under authority of
44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing
inspection of records for this purpose, and any other relevant (ie., GSA or Commerce) directive. Such
disclosure shall not be used to make determinations about individuals.

8. Arecord from this system of records may be disclosed, as a routine use, to the public after either publication of
the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a
record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record
was filed in an application which became abandoned or in which the proceedings were terminated and which
application is referenced by either a published application, an application open to public inspection or an issued
patent.

9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law
enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

DISH-Blue Spike 842
Exhibit 1005, Page 0003

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

United States Patent No.: 9,104,842
Inventors: Scott A. Moskowitz
Formerly Application No.: 11/895,388
Issue Date: ~ August 11, 2015

Filing Date: August 24, 2007
Former Examiner: Izzuna Okeke
Former Group Art Unit: 2497

For: DATA PROTECTION METHOD AND DEVICE

MAIL STOP EX PARTE REEXAM
Central Reexamination Unit

Office of Patent Legal Administration
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

CERTIFICATE OF SERVICE

It is certified that, pursuant to 37 C.F.R. § 1.510(b)(5), copies of the following documents
have been served in their entireties on the patent owner at the correspondence address of record
as provide for in 37 C.F.R. § 1.33(c):

1. Request for Ex Parte Reexamination of U.S. Patent No. 9,104,842 Transmittal Form,
PTO/SB/57.

2. Request for Ex Parte Reexamination of U.S. Patent No. 9,104,842 Pursuant to 35 U.S.C. §
302 and 37 C.F.R. § 1.510 and accompanying exhibits:

Exhibit 1 U.S. Patent No. 9,104,842 (“the ‘842 patent™)

Exhibit2 File History of U.S. Patent No. 9,104,842 (“the *842 Prosecution History™)
(other than the prior art of record) (consecutive page numbers added for ease of
citation)

Prior Art

Exhibit3 U.S. Patent No. 5,933,497 (“Beetcher”)

Exhibit4 JP Patent No. 05-334702 (“Beetcher™)

Exhibit 5 JP Patent No. 05-334702 Translation (“Beetcher Translation™)
Exhibit 6 International Application No. W09,726,732 (“Cooperman’)
Exhibit 7 U.S. Patent No. 5,935,243 (“Hasebe™)

DISH-Blue Spike 842
Exhibit 1005, Page 0004

Exhibit8 [INTENTIONALLY LEFT BLANK]

Expert Materials

Exhibit9 Declaration of Claudio T. Silva In Support of Request for Ex Parte
Reexamination of U.S. Patent No. 9,104,842

Exhibit 10 Curriculum Vitae of Claudio T. Silva

Claim Charts

Exhibit 11 Blue Spike LL.C’s Proposed Terms for Construction for U.S. Patent 9,104,842
(“the *842 patent™) Blue Spike, LLC. v. Juniper Networks, Inc., Case No. Case
No. 6:17-cv-00016-KNM (EDTX)

3. Information Disclosure Statement, PTO/SB/08, listing references cited in the Request for Ex
Parte Reexamination of U.S. Patent No. 9,104,842 pursuant to 35 U.S.C. § 302 and 37
C.F.R. §1.510

4. A copy of U.S. Patent No. 9,104,842.
5. A copy of this Certificate of Service.

The copies have been served on May 16, 2018 by causing the aforementioned documents
to be deposited in the United States Postal Service as first class mail postage pre-paid in an
envelope addressed to:

Wistaria Trading LTD,

Calrendon House, 2 Church Street
Hamilton HM 11

Bermuda

Blue Spike, LLC
Garteiser Honea
119 W Ferguson
Tyler, TX 75702

Neifeld TP Law, PC

5400 Shawnee Road

Suite 310

Alexandria, VA 22312-2300

DISH-Blue Spike 842
Exhibit 1005, Page 0005

May 16, 2018

Requester:
Fisch Sigler LLP

5301 Wisconsin Ave. NW
Fourth Floor
Washington, DC 200015

[Joseph F. Edell/

Joseph F. Edell

Attorney for Requester

Reg. No. 67,625

DISH-Blue Spike 842
Exhibit 1005, Page 0006

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention: DATA PROTECTION METHOD AND DEVICE
First Named Inventor/Applicant Name: Scott Moskowitz

Filer: Joseph Edell

Attorney Docket Number:

Filed as Large Entity

Filing Fees for ex parte reexam

Description Fee Code Quantity Amount Suz-;'g(t;)l in
Basic Filing:
EX PARTE REEXAMINATION (1.510(A)) NON-STREAMLINED 1812 1 12000 12000
Pages:
Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

DISH-Blue Spike 842
Exhibit 1005, Page 0007

Description Fee Code Quantity Amount Suz-s'l'g(t;)l in
Extension-of-Time:
Miscellaneous:
Total in USD ($) 12000

DISH-Blue Spike 842
Exhibit 1005, Page 0008

Electronic Acknowledgement Receipt

EFS ID: 32645771
Application Number: 90014138
International Application Number:
Confirmation Number: 7638

Title of Invention:

DATA PROTECTION METHOD AND DEVICE

First Named Inventor/Applicant Name:

Scott Moskowitz

Correspondence Address:

Joseph F. Edell

5301 Wisconsin Avenue NW

Washington DC 20015
us -
Filer: Joseph Edell
Filer Authorized By:
Attorney Docket Number:
Receipt Date: 16-MAY-2018
Filing Date:
Time Stamp: 18:42:59

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment yes
Payment Type CARD
Payment was successfully received in RAM $12000

DISH-Blue Spike 842
Exhibit 1005, Page 0009

RAM confirmation Number

051718INTEFSW18464300

Deposit Account

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

File Listing:
Document Document Description File Name File Slze(Bg{tes)l Mu“'. .Pages
Number Message Digest | Part/.zip| (if appl.)
118072
1 Application Data Sheet WebADS.pdf no 7
69095c289f22e27891a2eba563449f2b63f2)
dbc4
Warnings:
Information:
9778204
) Reexam - Affidavit/Decl/Exhibit Filed by Request.pdf no 129
3rd Party
00796b026a25ae1f7657a06a7f48615b5780)
Warnings:
Information:
3314824
3 Reexam - Affidavit/Decl/Exhibit Filed by Exhibit1.pdf no Y
3rd Party
eB8acacc5b481e9achcf3786bcf3a0276ae8|
2a75
Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:
1821085
4 Reexam - Affidavit/Decl/Exhibit Filed by Exhibit3.pdf no 20
3rd Party
dfd01b4ea3a4794f3d85875e166edfeb9cod
Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

DISH-Blue Spike 842
Exhibit 1005, Page 0010

1848899

Reexam - Affidavit/Decl/Exhibit Filed by

3rd Party Exhibit4.pdf no 21

979e6c2347a99bb2d73a5c32982feb18ebi
c6b22

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

2545083

Reexam - Affidavit/Decl/Exhibit Filed by

3rd Party Exhibit5.pdf no 20

a13b232d3f94af4fe5d924d29fabbd9easéd|

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

1599448

Reexam - Affidavit/Decl/Exhibit Filed by

3rd Party Exhibit6.pdf no 23

3a9c1e141e15472429861731665b7d74911)
8135f

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:
1463313
8 Reexam - Affidavit/Decl/Exhibit Filed by Exhibit7.pdf no 15
3rd Party
bdbb3dfdSb355e25f8aed 1a4762673f1d8e
46436
Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

9008

Reexam - Affidavit/Decl/Exhibit Filed by

3rd Party Exhibit8.pdf no 2

5f7ad6b36fea2ad4234b760c801f7ee023ca)|
e683

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

4774536

Reexam - Affidavit/Decl/Exhibit Filed by

10 3rd Party

Exhibit9.pdf no 128

115478734b8b236254506c66735de6f5212)
15fc0

Warnings:

DISH-Blue Spike 842
Exhibit 1005, Page 0011

Information:

4060940

Reexam - Affidavit/Decl/Exhibit Filed by

1 3rd Party

Exhibit10.pdf no 39

e537f7ab45da08718e43d29859017dff7857]
72e9

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:
7568429
12 Reexam - Affidavit/Decl/Exhibit Filed by Exhibit11.pdf no 62
3rd Party
cef8b6d11d31d161a891597075b6f61455c|
616e3
Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

330957
Information Disclosure Statement (IDS)
. no 4
13 Form (SBOS) IDS.pdf
b7638d3415f4a62f12d54814e4acef8as63ffl
bed

Warnings:

Information:

This is not an USPTO supplied IDS fillable form

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

318599

14 Transmittal of New Application TF.pdf no 3

dd247fdeb9fc602f0cb715d79004b6426e9
74ab7

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

121696

Reexam - Affidavit/Decl/Exhibit Filed by

= 3rd Party

COS.pdf no 3

c59f1ac39bcb8ce2d2db4f03c66650dab2bt
Oe38

Warnings:

The page size in the PDF is too large. The pages should be 8.5 x 11 or A4. If this PDF is submitted, the pages will be resized upon entry into the
Image File Wrapper and may affect subsequent processing

Information:

DISH-Blue Spike 842
Exhibit 1005, Page 0012

17144565

Reexam - Affidavit/Decl/Exhibit Filed by

16 3rd Party

Exhibit2P1.pdf no 478

31d0b2094983e85c1a7b0974c3e07d21cad|

2a26a

Warnings:

Information:

12839391

Reexam - Affidavit/Decl/Exhibit Filed by

7 3rd Party

Exhibit2P2.pdf no 481

808d7ebdbB05a9e294897e85b205441ec6
a8ladf

Warnings:

Information:

29589

18 Fee Worksheet (SB06) fee-info.pdf no 2

aBad2eac018546a3dfc8074a51e83e7bafSa)
abc7

Warnings:

Information:

Total Files Size (in bytes)* 69686638

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

DISH-Blue Spike 842
Exhibit 1005, Page 0013

PTO/AIA/14
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

.. Attorney Docket Number
Application Data Sheet37 CFR1.76

Application Number

Title of Invention DATA PROTECTION METHOD AND DEVICE

The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the
bibliographic data arranged in a format specified by the United States Patent and Trademark Office as outlined in 37 CFR 1.76.

This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the document
may be printed and included in a paper filed application.

Secrecy Order 37 CFR 5.2:

Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to 37
[CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

Inventor Information:

Inventor 1

Legal Name
Prefix| Given Name Middle Name Family Name Suffix
Scott Moskowitz
Residence Information (Select One) {®) US Residency (O Non US Residency (O Active US Military Service
City | Sunnylsles Beach ‘ State/Province ‘ FL | Country of Residence il ous

Mailing Address of Inventor:

Address 1 16711 Collins Avenue #2505
Address 2

City Sunny Isles Beach | State/Province | DC
Postal Code | 20015 | Country i | us

All Inventors Must Be Listed - Additional Inventor Information blocks may be generated

within this form by selecting the Add button.

Correspondence Information:

Enter either Customer Number or complete the Correspondence Information section below.
For further information see 37 CFR 1.33(a).

[X] An Address is being provided for the correspondence Information of this application.

Name 1 Joseph F. Edell Name 2

Address 1 5301 Wisconsin Avenue NW

Address 2

City Washington State/Province DC

Country' | US Postal Code 20015

Phone Number Fax Number

Email Address Add Email | [Remove Email
WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0014

PTO/AIA/14 (08-15)

Approved for use through 04/30/2017. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respend to a collection of information unless it contains a valid OMB contrel number.

.. Attorney Docket Number
Application Data Sheet37 CFR1.76

Application Number

Title of Invention DATA PROTECTION METHOD AND DEVICE

Application Information:

Title of the Invention DATA PROTECTION METHOD AND DEVICE

Attorney Docket Number Small Entity Status Claimed]
Application Type Nonprovisional

Subject Matter Utility

Total Number of Drawing Sheets (if any) Suggested Figure for Publication (if any)

Filing By Reference:

Only complete this section when filing an application by reference under 35 U.S.C. 111(c) and 37 CFR 1.57(a). Do not complete this section if
application papers including a specification and any drawings are being filed. Any domestic benefit or foreign priority information must be
provided in the appropriate section{s) below (i.e., "Domestic Benefit/National Stage Information” and “Foreign Priority Information”).

For the purposes of a filing date under 37 CFR 1.53(b), the description and any drawings of the present application are replaced by this
reference to the previously filed application, subject to conditions and requirements of 37 CFR 1.57(a).

Application number of the previously Filing date {YYYY-MM-DD) Intellectual Property Authority or Country h
filed application

Publication Information:

[] Request Early Publication (Fee required at time of Request 37 CFR 1.219)

Request Not to Publish. | hereby request that the attached application not be published under 35US.C

] 122(b) and certify that the invention disclosed in the attached application has not and will not be the subject of an
application filed in another country, or under a multilateral international agreement, that requires publication at eighteen
months after filing.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32).

Either enter Customer Number or complete the Representative Name section below. If both sections are completed the customer Number
will be used for the Representative Information during processing.

Please Select One: (® Customer Number | () UsPatent Practitioner ‘ (O Limited Recognition {37 CFR 11.9)

Customer Number

Prefix Given Name Middle Name Family Name Suffix

Remove

Registration Number

WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0015

PTO/AIA/14 (08-15)

Approved for use through 04/30/2017. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respend to a collection of information unless it contains a valid OMB contrel number.

.. Attorney Docket Number
Application Data Sheet37 CFR1.76

Application Number

Title of Invention DATA PROTECTION METHOD AND DEVICE

Prefix Given Name Middle Name Family Name Suffix

Remove

Registration Number

Additional Representative Information blocks may be generated within this form by
selecting the Add button.

Domestic Benefit/National Stage Information:

This section allows for the applicant to either claim benefit under 35 U.5.C. 119(e}, 120, 121, 365(c), or 386(c) or indicate National
Stage entry from a PCT application. Providing benefit claim information in the Application Data Sheet constitutes the specific
reference required by 35 U.S.C. 119(e) or 120, and 37 CFR 1.78.

When referring to the current application, please leave the “Application Number” field blank.

Prior Application Status

Filing or 371(c) Date
Application Number Continuity Type Prior Application Number (YYYY-MM-DD)

Additional Domestic Benefit/National Stage Data may be generated within this form by
selecting the Add button.

Foreign Priority Information:

This section allows for the applicant to claim priority to a foreign application. Providing this information in the application data sheet
constitutes the claim for priority as required by 35 U.S.C. 119(b) and 37 CFR 1.55. When priority is claimed to a foreign application that is eligible
for retrieval under the priority document exchange program (PDX) the information will be used by the Office to automatically attempt retrieval
pursuant to 37 CFR 1.55(i)(1) and (2). Under the PDX program, applicant bears the ultimate responsibility for ensuring that a copy of the foreign
application is received by the Office from the participating foreign intellectual property office, or a certified copy of the foreign priority
application is filed, within the time period specified in 37 CFR 1.55(g}1).

Application Number CountryI Filing Date (YYYY-MM-DD) Access Codel(if applicable)

Additional Foreign Priority Data may be generated within this form by selecting the Add
button.

Statement under 37 CFR 1.55 or 1.78 for AlA (First Inventor to File) Transition
Applications

This application (1) claims priority to or the benefit of an application filed before March 16, 2013 and (2) also

contains, or contained at any time, a claim to a claimed invention that has an effective filing date on or after March
[] 16,2013

NOTE: By providing this statement under 37 CFR 1.55 or 1.78, this application, with a filing date on or after March

16, 2013, will be examined under the first inventor to file provisions of the AlA.

WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0016

PTO/AIA/14 (08-15)

Approved for use through 04/30/2017. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respend to a collection of information unless it contains a valid OMB contrel number.

.. Attorney Docket Number
Application Data Sheet37 CFR1.76

Application Number

Title of Invention DATA PROTECTION METHOD AND DEVICE

Authorization or Opt-Out of Authorization to Permit Access:

When this Application Data Sheet is properly signed and filed with the application, applicant has provided written authority to
permit a participating foreign intellectual property (IP) office access to the instant application-as-filed (see paragraph A in
subsection 1 below) and the European Patent Office (EPO} access to any search results from the instant application {see
paragraph B in subsection 1 below).

Should applicant choose not to provide an authorization identified in subsection 1 below, applicant must opt-out of the
authorization by checking the corresponding box A or B or both in subsection 2 below.

NOTE: This section of the Application Data Sheet is ONLY reviewed and processed with the INITIAL filing of an application.
After the initial filing of an application, an Application Data Sheet cannot be used to provide or rescind authorization for access
by a foreign IP office(s). Instead, Form PTO/SB/39 or PTO/SB/69 must be used as appropriate.

1. Authorization to Permit Access by a Foreign Intellectual Property Office(s)

A. Priority Document Exchange (PDX) - Unless box A in subsection 2 {opt-out of authorization) is checked, the undersigned
hereby grants the USPTO authority to provide the European Patent Office (EPQ}, the Japan Patent Office (JPO), the Korean
Intellectual Property Office (KIPO), the State Intellectual Property Office of the People’s Republic of China (SIPQ), the World
Intellectual Property Organization (WIPQ), and any other foreign intellectual property office participating with the USPTC in a
bilateral or multilateral priority document exchange agreement in which a foreign application claiming priority to the instant
patent application is filed, access to: (1} the instant patent application-as-filed and its related bibliographic data, (2) any foreign
or domestic application to which priority or benefit is claimed by the instant application and its related bibliographic data, and
(3) the date of filing of this Authorization. See 37 CFR 1.14(h}(1).

B. Search Results from U.S. Application to EPO - Unless box B in subsection 2 (opt-out of authorization) is checked, the
undersigned hereby grants the USPTO authority to provide the EPO access to the bibliographic data and search results from
the instant patent application when a European patent application claiming priority to the instant patent application is filed. See
37 CFR 1.14(h)(2).

The applicant is reminded that the EPQ’s Rule 141(1) EPC (European Patent Convention) requires applicants to submit a copy of
search results from the instant application without delay in a European patent application that claims priority to the instant
application.

2, Opt-Out of Authorizations to Permit Access by a Foreign Intellectual Property Office(s)

A. Applicant DOES NOT authorize the USPTO to permit a participating foreign IP office access to the instant
[] application-as-filed. If this box is checked, the USPTO will not be providing a participating foreign IP office with any
documents and information identified in subsection 1A above.

n B. Applicant DOES NOT authorize the USPTO to transmit to the EPO any search results from the instant patent
application. If this box is checked, the USPTO will not be providing the EPO with search results from the instant application.

NOTE: Once the application has published or is otherwise publicly available, the USPTO may provide access to the application in
accordance with 37 CFR 1.14.

WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0017

PTO/AIA/14 (08-15)

Approved for use through 04/30/2017. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respend to a collection of information unless it contains a valid OMB contrel number.

Attorney Docket Number

Application Data Sheet37 CFR1.76
Application Number

Title of Invention DATA PROTECTION METHOD AND DEVICE

Applicant Information:

Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of CFR to have
an assignment recorded by the Office.

Applicant 1

If the applicant is the inventor (or the remaining joint inventor or inventors under 37 CFR 1.45), this section should not be completed. The
information to be provided in this section is the name and address of the legal representative who is the applicant under 37 CFR 1.43; or the
name and address of the assignee, person to whom the inventor is under an obligation to assign the invention, or person who otherwise shows
sufficient proprietary interest in the matter who is the applicant under 37 CFR 1.46. If the applicant is an applicant under 37 CFR 1.46 (assignee,
person to whom the inventor is cbligated to assign, or person who otherwise shows sufficient proprietary interest) together with one or more
joint inventors, then the joint inventor or inventors who are also the applicant should be identified in this section.

O Assignee O Legal Representative under 35 U.S.C. 117 O Joint Inventor

O Person to whom the inventor is obligated to assign. O Person who shows sufficient proprietary interest

If applicant is the legal representative, indicate the authority to file the patent application, the inventor is:

Name of the Deceased or Legally Incapacitated Inventor:

If the Applicant is an Organization check here.]

Prefix Given Name Middle Name Family Name Suffix

Mailing Address Information For Applicant:

Address 1

Address 2

City State/Province
Country' Postal Code
Phone Number Fax Number
Email Address

Additional Applicant Data may be generated within this form by selecting the Add button.

WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0018

PTO/AIA/14 (08-15)

Approved for use through 04/30/2017. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respend to a collection of information unless it contains a valid OMB contrel number.

.. Attorney Docket Number
Application Data Sheet37 CFR1.76

Application Number

Title of Invention DATA PROTECTION METHOD AND DEVICE

Assignee Information including Non-Applicant Assignee Information:

Providing assignment information in this section does not substitute for compliance with any requirement of part 3 of Title 37 of
CFR to have an assignment recorded by the Office.

Assignee 1
Complete this section if assighee information, including non-applicant assignee information, is desired to be included on the patent application

publication. An assignee-applicant identified in the "Applicant Information" section will appear on the patent application publication as an

applicant. For an assignee-applicant, complete this section only if identification as an assignee is also desired on the patent application
publication.

If the Assignee or Non-Applicant Assignee is an Organization check here.]

Prefix Given Name Middle Name Family Name Suffix

Mailing Address Information For Assignee including Non-Applicant Assignhee:

Address 1

Address 2

City State/Province
Country i Postal Code
Phone Number Fax Number

Ermail Address

Additional Assignee or Non-Applicant Assignee Data may be generated within this form by
selecting the Add button.

WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0019

PTO/AIA/14 (08-15)
Approved for use through 04/30/2017. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Application Data Sheet37 CFR1.76

Attorney Docket Number

Application Number

Title of Invention

DATA PROTECTION METHOD AND DEVICE

Signature:

NOTE: This Application Data Sheet must be signed in accordance with 37 CFR 1.33(b). However, if this Application Data Sheet
is submitted with the INITIAL filing of the application and either box A or B is not checked in subsection 2 of the
“Authorization or Opt-Out of Authorization to Permit Access” section, then this form must also be signed in accordance
with 37 CFR 1.14(c).
This Application Data Sheet must be signed by a patent practitioner if one or more of the applicants is a juristic entity (e.
g., corporation or association). If the applicant is two or more joint inventors, this form must be signed by a patent practitioner,
all joint inventors who are the applicant, or one or more joint inventor-applicants who have been given power of attorney {e.g.,
see USPTO Form PTO/AIA/81) on behalf of all joint inventor-applicants.

See 37 CFR 1.4(d) for the manner of making signatures and certifications.

Signature

/Joseph F. Edell/

Date (YYYY-MM-DD}

First Name

Joseph

Last Name

Edell

Registration Number 67625

Additional Signature may be generated within this form by selecting the Add button.

WEB ADS 1.0

DISH-Blue Spike 842
Exhibit 1005, Page 0020

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: Scott A. Moskowitz

U.S. Patent No.: 9,104,842

Issue Date: August 11, 2015

Appl. No.: 11/895,388

Filing Date: August 24, 2007

Title: DATA PROTECTION METHOD AND DEVICE
Control No.: To be assigned

Mail Stop Ex Parte Reexam
ATTN: Central Reexamination Unit
Commussioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR EX PARTE REEXAMINATION OF
U.S. PATENT NO. 9.104.842

Dear Sir or Madam,

Pursuant to 35 U.S.C. § 302 and 37 C.F.R. § 1.510, ex parie reexamination is requested
for claims 11, 12, 13, and 14 of United States Patent No. 9,104,842 (“the '842 Patent,” Exhibit
1), issued on August 11, 2013, The 842 Patent is currently assigned to Wistaria Trading Ltd. and

remains in force.

DISH-Blue Spike 842
Exhibit 1005, Page 0021

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

TABLE OF CONTENTS

L INTRODUCTION ... e e e e e ee e e 1
IL CLAIMS FOR WHICH REEXAMINATION IS REQUESTED ... 1
III. IDENTIFICATION OF PATENTS AND PRINTED PUBLICATIONS PRESENTED
TO SHOW SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY ...ccoovovviiie 2
Iv. CO-PENDING LITIGATION ... e e e 2
V. ESTOPPEL ..ot e e nn e nnne e 3
VL OVERVIEW OF THE ORIGINAL PROSECUTION HISTORYcccocoiiiiiiiie 3
VII. THE PRIORITY DATE OF THE "842 PATENT ... 10
VIII. CLAIM CONSTRUCTION.....ooiiiiiii i 10

IX. THE PRIOR ART PROVIDES NEW, NON-CUMULATIVE TECHNICAL

TEACHINGS. ...t ettt et ea et b et eb et see et ae e sbe e e ennae 12
X. DETAILED EXPLANATION UNDER 37 C.F.R. 1.510(b)2) e ce e 19
A. SNQ-1: Claims 11, 12, 13, and 14 are Anticipated by Beetcher Under 35 U.S.C.
LT) T (S TSRS 19
1. Beetcher Anticipates Independent Claim 11..........cccooiiiiiiiiiin e 19
2. Beetcher Anticipates Independent Claim 12. ..o 28
3. Beetcher Anticipates Independent Claim 13. ..., 40
4. Beetcher Anticipates Independent Claim 14........c..ccooi v, 46
B. SNQ-2: Claims 11, 12, 13, and 14 are Anticipated by Beetcher 072 Under 35
L O T <2 07) T (0 T PRSP 50
1. Beetcher 072 Anticipates Independent Claim 11.cooovveiiiieiiiccenecne. 50
2. Beetcher 072 Anticipates Independent Claim 12.cooooiiiiiiiniiiniennnen. 59
3. Beetcher 072 Anticipates Independent Claim 13,cooooeveiiiie e, 71
4. Beetcher 072 Anticipates Independent Claim 14, ..o veevvicee v, 76
i

DISH-Blue Spike 842
Exhibit 1005, Page 0022

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

C. SNQ-3: Claims 11, 12, 13, and 14 are Anticipated by Cooperman Under 35

L T S L1) TSR 81
1. Cooperman Anticipates Independent Claim 11. ... 82
2. Cooperman Anticipates Independent Claim 12. ... 86
3. Cooperman Anticipates Independent Claim 13.ccocoviivivieniiin e, 92
4. Cooperman Anticipates Independent Claim 14. ..., 96
D. SNQ-4: Claims 11, 12, 13, and 14 are Anticipated by Hasebe Under 35 U.S.C. §§
LT) T (= T PP 102
1. Hasebe Anticipates Independent Claim 11. ...coooveiiieeii v 103
2. Hasebe Anticipates Independent Claim 12. ... 109
3. Hasebe Anticipates Independent Claim 13.ooooeiieivci e 116
4. Hasebe Anticipates Independent Claim 14. ..., 121
XL CONCLUSION ...ttt ettt et et et see st e ae s e b sbe et e es bt b et neeebeaees 125
il

DISH-Blue Spike 842
Exhibit 1005, Page 0023

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

TABLE OF EXHIBITS

“Exhibit 1 | U.S. Patent No. 9,104,842 to Moskowitz (“the "842 Patent”)

Exhibit 2 Prosgcution History of the 842 Patent

Exhibit 3 LL.S. Patent No. 5,933,497 (“Beetcher™)

Exhibit 4 Japanese Patent Application Publication No. H05334072 (“Beetcher
0727y
Exhibit 5 English Translation:of Beetcher 072

Exhibit 6 PCT Application Publication No. WO 97/26732 (“Cooperman™)
Exhibit 7 U.S. Patent No. 5,935,243 (*Hasebe”)

Exhibit 8 [INTENTIONALLY LEFT BLANK]

Exhibit 9 Declaration of Dr. Claudio Silva (*Silva Declaration™)

Exhibit 10 Curriculum Vitae of Dr. Silva

Exhibit 11 Plaintiff Blue Spike LL.C’s Proposed Terms for Construction, Pursuant to
Patent Rule (P.R.) 4-2 in Blue Spike, LLC v. Juniper Networks, Inc., Case
No. 6:17-cv-16-KNM (E.D. Tex.)

iii

DISH-Blue Spike 842
Exhibit 1005, Page 0024

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

L INTRODUCTION

The "842 Patent claims methods of adding a license key to computer software. As the
patent explains, the function of the key is to discourage consumers from making unauthorized
copies of the software. During its original prosecution, the *842 Patent was subject to four
rejections and an appeal resulting in an affirmation-in-part of the Examiner’s rejections. The
Examiner only allowed claims 11-14 to issue after the Board found the Holmes and Houser
references did not teach or suggest the claimed license key. The Board found that the prior art
did not include three elements: (1) software underlying functionality relating to code resource
interrelationships, (2) a license key enabling software functionality, and (3) decoding an encoded
code resource.! When rendering this conclusion, however, the Examiner and the Board were not
aware of the prior art references that indeed disclose these three elements, as well as the
remaining elements of claims 11-14. These prior art references—Beetcher, Beetcher *072,
Cooperman, and Hasebe—establish that each of independent claims 11-14 are invalid as
anticipated. In light of the substantial new questions of patentability that these references raise,
as explained in further detail below, Requester respectfully seeks ex parfe reexamination.
IL CLAIMS FOR WHICH REEXAMINATION IS REQUESTED

In accordance with 35 U.S.C. § 302 and 37 C.F.R. § 1.510, Requester seeks
reexamination of claims 11, 12, 13, and 14 of the *842 Patent in view of the prior art patents and

publications discussed herein.

L Ex. 2, Prosecution History at 1944-47 (Patent Board Decision (filed Mar. 12, 2013)); id. at
797-801 (Notice of Allowability (filed May 31, 2015)).

DISH-Blue Spike 842
Exhibit 1005, Page 0025

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

III. IDENTIFICATION OF PATENTS AND PRINTED PUBLICATIONS
PRESENTED TO SHOW SUBSTANTIAL NEW QUESTIONS OF
PATENTABILITY
The following four prior art patents and printed publications establish substantial new

questions of patentability of claims 11, 12, 13, and 14 of the "842 Patent:
1. U.S. Patent No. 5,933,497 (“Beetcher” (Ex. 3));

2. Japanese Patent Application Publication No. H05334072 (“Beetcher "072” (Ex.
H);

3. PCT Application Publication No. WO 97/26732 (“Cooperman” (Ex. 6)).
4. U.S. Patent No. 5,935,243 (“Hasebe” (Ex. 7)).

Beetcher, Beetcher "072, and Hasebe were not cited in the "842 Patent itself, nor were they
identified as being considered by the Examiner during prosecution. The 842 Patent lists
Cooperman in its References Cited section, but Cooperman was not subject to any rejection or
prior art discussion during the original prosecution. And as detailed in Section IX ., this request
presents Cooperman in a new light and a different way that escaped review during earlier
examination.
IV. CO-PENDING LITIGATION

Requester is currently engaged in pending litigation concerning the 842 Patent in Blue
Spike, LLC v. Juniper Networks, Inc., Case No. 6:17-cv-16-KNM (E.D. Tex.).

U.S. Patent No. 9,021,602 claims to be a continuation of the application that issued as the
’842 Patent. Requester has filed an ex parte reexamination request for the *602 Patent in Control
No. 90/014137.

Requester is unaware of any pending prosecution concerning the 842 Patent.

2842 Patent at page 2.

DISH-Blue Spike 842
Exhibit 1005, Page 0026

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

V. ESTOPPEL

The statutory estoppel provisions of 35 U.S.C. § 315(e)(1)and 35 U.S.C. § 325(e)(1) do
not prohibit Requester from filing this ex parte reexamination request.
VI. OVERVIEW OF THE ORIGINAL PROSECUTION HISTORY

The "842 Patent’s claims 11-14 recite methods for adding license information to
computer software and using that information to decode the software.? The 842 Patent was
subject to four rejections, an appeal resulting in an affirmation-in-part of the Examiner’s
rejection, and an amendment after allowance. This extended prosecution raises multiple issues
relating to patentability.

Preliminary Amendments and Restriction Requirement

The application for the *842 Patent was filed on August 24, 2007 with 31 claims.* With
this initial filing, Patent Owner added 30 paragraphs to the specification.® Patent Owner asserted
that these new paragraphs were disclosed in U.S. Patent No. 5,745,569 (“the 569 Patent™).%
Patent Owner stated that the parent application, for which the instant application claims to be a

continuation, incorporated by reference the application that issues as the *569 Patent.” Based on

3 Id. at claims 11-14.

4 Ex. 2, Prosecution History at 26-28 (Claims (filed Aug. 24, 2007)).

3 Id. at 30-28 (Specification (filed Aug. 24, 2007)).

6 Id. at 82 (Applicant Arguments/Remarks (filed Aug. 24, 2007)).

7 Id. Requester is not aware of any rule or precedent that permits a Patent Owner to amend an
application to includes substantially all of an issued patent into that application’s specification
based on a prior incorporation-by-reference in entirety statement. On the contrary, a general
incorporation of a patent in its entirety is insufficient. See, e.g., Callaway Golf Co. v. Acushnet
Co., 576 F.3d 1331, 1346 (Fed. Cir. 2009) (“‘To incorporate matter by reference, a host document
must contain language ‘clearly identifying the subject matter which is incorporated and where it
is to be found’; a ‘mere reference to another application, or patent, or publication is not

an incorporation of anything therein....”” (quoting /n re De Seversky, 474 F.2d 671, 674
(C.C.P.A. 1973)).

DISH-Blue Spike 842
Exhibit 1005, Page 0027

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

this incorporation-by-reference, Patent Owner asserted that it was permissible to add
substantially all of the *569 Patent’s disclosure into the specification of the application for the
842 Patent.

Along with the preliminary amendment to the specification, Patent Owner cancelled
certain claims from the parent application and added new claims.® Shortly thereafter, Patent
Owner requested another preliminary claim amendment.’ Patent Owner then requested yet
another preliminary amendment to further amend claims and to include new claims.!? And nearly
two years later, Patent Owner requested vet another preliminary amendment.'!

Based on a restriction requirement, Patent Owner elected to prosecute claims 32-45 and
52-59.12

Non-Final and Final Rejections

The Examiner’s first office action rejected all claims on several grounds.!? Specifically,
the Examiner provisionally rejected all claims, 32-45 and 52-59 on the ground of non-statutory
obviousness-type double patenting as being unpatentable over claims 1-20 of co-pending
Application No. 08/587943. The Examiner further rejected claims 32-39 under 35 U.S.C. § 101
as not falling within one of the four statutory categories of invention. The Examiner found that
the “process” claimed in the application was “neither positively tied to a particular machine that

accomplishes the claimed method steps nor transform underlying subject matter.”!# The

8 Ex. 2, Prosecution History at 63-82 (Preliminary Amendment (filed Aug. 24, 2007)).
 Id. at 120-24 (Preliminary Amendment (filed Oct. 19, 2007)).

10 7d. at 175-80 (Preliminary Amendment (filed Sept. 8, 2009)).

W 1d at 208-09 (Preliminary Amendment (filed Oct. 14, 2009)).

12 1d. at 218-20 (Response to Election/Restriction (filed Dec. 10, 2009)).

13 1d at 222-31 (Non-Final Rejection (filed Apr. 5, 2010)).

14 1d at 225 (Non-Final Rejection (filed Apr. 5, 2010)).

DISH-Blue Spike 842
Exhibit 1005, Page 0028

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Examiner further rejected claims 32 and 52 under 35 U.S.C. § 112 as failing to comply with the
written description requirement and indefiniteness respectively.!® Finally, the Examiner held that
all claims 32-45 and 52-39 were anticipated by Moore (U.S. Patent No. 6,067,622).16

In response to these rejections, Patent Owner amended the claims and provided
arguments.!” Patent Owner argued that the provisional rejection on the ground of non-statutory
obviousness-type double patenting may be incorrect given that Application No. 08/587,943 had
issued.!® Patent Owner amended the claims to include generic computer components to
overcome the Examiner’s § 101 rejection.!” Patent Owner also amended claims 32 and 52 to
remove recitation of elements lacking written description support and definiteness.?’ Patent
Owner also argued that disclosures in Moore pertained to code modules and a copyright module,
and not to watermarking.?! Patent Owner then asserted that Moore “does not disclose encoding a
license key in software, using license information to identify a watermark in software, or
decoding software using license information.”??
Subsequently, the Examiner issued a final rejection of all claims.?? In his final rejection,

the Examiner reiterated his rejection of all claims 32-45 and 52-64 on the ground of non-

statutory obviousness-type double patenting as being unpatentable over claims 1-20 of co-

15 1d at 226 (Non-Final Rejection (filed Apr. 5, 2010)).

16 Jd. at 226-29 (Non-Final Rejection explaining how each claim was anticipated by Moore (filed
Apr. 5,2010)).

17 1d at 292-302 (Patent Owner Arguments/Remarks Made in Amendment (filed Sept. 3, 2010)).
18 Jd. at 292.

19 14

20 14

21 Id

214

B Id at 389-489 (Final Rejection (filed Nov. 26, 2010)).

DISH-Blue Spike 842
Exhibit 1005, Page 0029

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

pending Application No. 08/587,943.2 The Examiner also rejected claims 32 and 41 due to
informalities under § 112.%° The Examiner found that claim 32 was inconsistent with the
specification’s disclosure and that claim 41 was too broad.?® The Examiner additionally rejected
claims 62-64 under § 112 as failing to comply with the written description requirement. The
Examiner found that the specification provided no support for the element “software code
interrelationships™ in claim 62, as it fails to teach or mention that term. The Examiner similarly
found that the specification provided no support for the elements “encoding, by said computer
using at least a first license kev and an encoding algorithm, said software code, to form a second
license key encoded software code; wherein said first license key encoded software code is not

RERTS

identical to said second license key encoded software code,” “second license key,” and “second
license key encoded software” in claims 63 and 64.%7 Finally, the Examiner rejected claims 32-45
and 52-61 as anticipated by Houser et al (U.S. Patent No. 3,606,609).2

In response to the final rejection, Patent Owner amended the claims and responded to the
final rejection.?” Patent Owner rescinded its assertion that the application was a continuation-in-
part to U.S. Patent Application No. 08/587,943, filed January 17, 1996.%° And Patent Owner

argued that the rejection on the ground of non-statutory obviousness-type double patenting was

incorrect because U.S. Patent 5,745,569 “do[es] not define ‘a license watermarked into the

M Id at 391-92.
B Id. at 392-93.
26 Id

27 Jd. at 393-94.
28 14 at 394-97.

Y Id. at 414-28 (Patent Owner Arguments/Remarks Made in an Amendment (filed Feb. 28,
2011)).

30 1d at 419.

DISH-Blue Spike 842
Exhibit 1005, Page 0030

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

software.”*! Further, in response to the rejections of claim 32, Patent Owner removed elements
not supported by the specification.*? Patent Owner also amended claim 41 to include the
additional element of “[information] defining an executable code providing a functionality of
said software.”* Patent Owner argued that claims 62-64 had sufficient written description
support, ¢iting to various passages in the proposed specification.? Patent Owner further argued
that Houser does not anticipate claims 32-45 and 52-61 because it does not disclose the claimed
embedding of a watermark into sofiware nor encoded software “designed to decide a first license
code encoded in said software.”*®

Upon consideration of Patent Owner’s after-final rejection responses, the Examiner
issued a non-final rejection of all claims.?® The Examiner rejected claims 32-45 and 52-64 as
obvious in view of Houser and Holmes (U.S. Patent No. 5,287,407).37 The Examiner maintained
his §112 rejection of claims 62-64, finding that the application fails to explicitly disclose or

EENT

define “software code interrelationships,” “encoding, by said computer using at least a first

license key and an encoding algorithm, said software code, to form a second license key encoded

software code; wherein said first license key encoded software code is not identical to said

EERTS

second license key encoded software code,” “second license key,” and “second license key

31 Id. at 415 (emphasis in original).

32 Id

34

3 1d at 415-17.

3 Id. at 417-19.

36 Id. at 436-44 (Non-Final Rejection (filed April 1, 2011)).
37 Jd. at 437, 440-43.

DISH-Blue Spike 842
Exhibit 1005, Page 0031

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

encoded software.”*® The Examiner further determined that claim 37 provides insufficient
antecedent basis for the limitation “determine said key.””

In response to this non-final rejection, Patent Owner amended the claims and submitted
arguments.*® Patent Owner argued that claims 62-64 were improperly rejected under §112
because one skilled in the art would understand the elements at issue.*! Patent Owner also argued
that the obviousness rejection of claims 32-45 and 52-64 by Holmes in view of Houser was
incorrect.*? Patent Owner argued that Holmes was not relevant because Holmes disclosed
changing of data rather than code and does not mention licenses or activation of software.*
Patent Owner further argued that Houser did not disclose modifying the underlying functionality
of'the software as set forth in claim 32°s preamble, but instead teaches moditying a file
containing software by changing nonfunctional identifying data contained in the file.** Patent
Owner further argued that there was no motivation to combine Holmes in view of Houser.*
On September 20, 2011, the Examiner issued a final rejection.*® The Examiner restated

its obviousness rejection of claims 32-45 and 52-64 based on Holmes and Houser*” and withdrew

its § 112 rejection of claims 62-64.°

38 Id. at 437-40.
39 Id. at 440.

4 1d at 516-31 (Patent Owner Arguments/Remarks Made in an Amendment (filed Feb. 28,
2011)).

N Id. at 517-21.

2 1d at 521-23.

B Id at 521-22.

M Id. at 523.

45 Id

46 Id. at 537-44 (Final Rejection (filed Sept. 20, 2011)).
47 1d at 537-42.

48 Id at 538, 542-43.

DISH-Blue Spike 842
Exhibit 1005, Page 0032

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Appeal

In response to this final rejection, Patent Owner submitted a notice of appeal® and later
filed an appeal brief.*® In response, the Examiner filed the Examiner’s answer to the appeal brief,
which, in part, withdrew the § 103 rejection of claim 58.°! And Patent Owner filed its reply on
August 13, 2012.°?

Thirty-one months after submission of the appeal reply, the Board issued its decision
affirming-in-part the Examiner’s final rejection.** In its decision, the Board affirmed the
Examiner’s obviousness rejection of claims 32, 33, 35, 37, 39, 52, 53, 55-57, 59, and 63-64 and
reversed the Examiner’s obviousness rejection of claims 36, 38, 40-44, and 60-62. The Board
found, in pertinent part, that neither Holmes nor Houser teaches or suggests enabling software
functionality based on a license key. and thus did not sustain the rejection of claims 36 and 60.%*
With respect to claim 61, the Board found that neither Holmes or Houser teaches or suggests “a
modified software code comprising an encoded first code resource and a decode resource for
decoding the encoded first code resource, wherein the decode resource is configured to decode
the encoded first code resource upon receipt of a first license key.””>® The Board further found

that the Examiner failed to show how Houser or Holmes teaches or suggests all the limitations of

¥ Id at 564 (Notice of Appeal (filed Mar. 12, 2012)).
S0 Jd. at 569-682 (Appeal Brief (filed May 14, 2012)).

SUJd. at 687-91 (Examiner’s Answer to Appeal Brief (filed Aug. 8, 2012)) (original claim 58
corresponds to issued claim 11).

32 Id. at 692-700 (Reply Brief (filed Aug. 13, 2012)).

33 Id. at 705-16 (Patent Board Decision (filed Mar. 12, 2015)).
3% Id_ (original claim 60 corresponds to issued claim 12).

35 Id. at 715 (original claim 61 corresponds to issued claim 130).

DISH-Blue Spike 842
Exhibit 1005, Page 0033

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

claim 62, such as “software code interrelationships between code resources that result in a
specified underlying functionality.”

On June 4, 2015, the Examiner issued a notice of allowance based on the Board’s March
12, 2015 decision.?” After the notice of allowance, Patent Owner requested claim amendments,
adding, in pertinent part, the term “product” to claim 58.°® The patent issued on August 11, 2015.
VII. THE PRIORITY DATE OF THE *842 PATENT

The "842 Patent lists on its face that it is a continuation of'the application that issued as
U.S. Patent No. 7,664,263 (*the "263 Patent™), which was filed on June 25, 2003.>* And the 842
Patent lists on its face that the *263 Patent is a continuation of the application that issued as
6,598,162 (“the 162 Patent™), which was filed on March 24, 1998.%°

Requester does not concede that the 842 Patent is entitled to claim priority to the filing
date of either the "263 Patent or the *162 Patent but assumes, for purposes of this proceeding
only, that the earliest possible priority date for the *842 Patent is March 24, 1998.
VIII. CLAIM CONSTRUCTION

During reexamination of an unexpired patent, claims are given their “broadest reasonable
interpretation” consistent with the specification.®! This standard, however, differs from the claim

construction standard used in district court litigation. ®> Accordingly, the discussion below is

36 Jd. at 715-16 (original claim 62 corresponds to issued claim 14).

ST Id. at 793-801 (Notice of Allowance (filed June 4, 2013)).

58 Id. at 874-81.

39 °842 Patent at [Related U.S. Application Data].

0 Id

61 MPEP 2258(G) (citing In re Yamamoto, 740 F.2d 1569 (Fed. Cir. 1984)).

2 Phillips v. AWH Corp., 415 F.3d 1303, 1316 (Fed. Cir. 2005) (words of a claim “are generally
given their ordinary and customary meaning” as understood by a person of ordinary skill in the
art (“POSITA™) at the time of the invention).

10

DISH-Blue Spike 842
Exhibit 1005, Page 0034

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

directed to the broadest reasonable interpretation of the claims and is without prejudice to any
claim interpretation that Requester may urge in litigation involving the *842 Patent.

“encoding algorithm” (claims 12-14): Requester proposes that the term “encoding
algorithm™ means “a process or set of instructions for encoding data.” This construction is the
broadest reasonable interpretation consistent with the specification. Indeed, the specification
refers to various processes related to encoding data for the generation of a license key. For
example, the specification states that “any authenticating function can be combined, such as
Digital Signature Standard (DSS) or Secure Hash Algorithm (SHA)” to generate an encoded
key.® The patent also provides other example algorithms, including “[a] block cipher, such as a
Data Encryption Standard (DES) algorithm, in combination with a sufficiently random seed
value, such as one created using a Message Digest 5 (MDS5) algorithm™ to emulate a
cryptographically secure random bit generator.®* A POSITA would have recognized these
examples as processes or sets of instructions for encoding data.%

“code resource” (claims 12-14): This term is unclear, and the intrinsic evidence fails to
provide any boundaries for it, thus rendering it indefinite. But, because an ex parte
reexamination request may not challenge a claim based on indefiniteness,% Requester uses
Patent Owner’s construction for this term proposed in the litigation, namely, that this term is
subject to its plain and ordinary meaning.®” The *842 Patent refers to sub-objects and a memory

scheduler as examples of code resources.

63 °842 Patent at 8:5-9, 21-23.

 Jd. at 8:12-16.

¢ Silva Declaration at 9 22.

% MPEP 2258.

¢ Ex. 10, Blue Spike Proposed Constructions at 57-38.
8 °842 Patent at 11:55-65, 15:36-42.

11

DISH-Blue Spike 842
Exhibit 1005, Page 0035

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

“software code interrelationships” (claims 14): This term is unclear, and the intrinsic
evidence fails to provide any boundaries for it, thus rendering it indefinite. But, because an ex
parte reexamination request may not challenge a claim based on indefiniteness,% Requester uses
Patent Owner’s construction for this term proposed in the litigation, namely, that this term is
subject to its plain and ordinary meaning.”® Notably, during the original prosecution, Patent
Owner stated “interrelationship™ is defined as “the way in which two or more things affect each
»71

other because they are related in some way.

IX. THE PRIOR ART PROVIDES NEW, NON-CUMULATIVE TECHNICAL
TEACHINGS.

The Patent Office did not consider Beetcher, Beetcher 072, and Hasebe individually or
in combination during the original prosecution of the 842 Patent. And the Patent Office did not
consider Cooperman in the new light presented herein. As such, these four references provide
new, non-cumulative teachings that warrant a reexamination of the "842 Patent.

Beetcher was issued on August 3, 1999 based on a U.S. application filed January 29,
1993, which in turn was a continuation application to a U.S. application filed December 14,
1990.7 Beetcher is a patent granted on a U.S. application by another before the earliest possible
priority date for the "842 Patent and is thus prior art under at least pre-AIA 35 U.S.C. § 102(a)
and § 102(e). As explained in more detail below, Beetcher discloses an apparatus and method of
key-protected software distributed separately from an encrypted entitlement key that enables

execution of the sofiware.” Beetcher further discloses (a) enabling software functionality based

% MPEP 2258.

70 Ex. 10, Blue Spike Proposed Constructions at 58-39.

"L Ex. 2, Prosecution History at 518.

72 Beetcher at Date of Patent [45], Filed [22], Related U.S. Application Data [63].
73 Id at Abstract, 4:3-46.

12

DISH-Blue Spike 842
Exhibit 1005, Page 0036

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

on a license key, (b) decoding an encoded a code resource upon receipt of a license key, and (¢)
interrelationships between code resources that result in a specified underlying functionality,
which the Board found was missing from the prior art of record during the original prosecution.”
Beetcher’s disclosures raise substantial questions as to the anticipation of claims 11-14 of the
’842 Patent.

Beetcher "072 is a Japanese Patent Application Publication published on December 17,
1993.7% Beetcher is a printed publication published more than one year prior to the earliest
possible priority date for the *842 Patent and is thus prior art under at least pre-AIA 35 U.S.C. §
102(a) and § 102(b). Beetcher *072 claims priority to the U.S. application No. 07/629,295,7¢
which is the parent application to the Beetcher reference discussed above. This Request refers to
Beetcher "072’s Japanese disclosures as well as to the corresponding translation of those
Japanese disclosures, Ex. 5.77 As explained in more detail below, Beetcher *072 discloses an
apparatus and method of key-protected software distributed separately from an encrypted
entitlement key that enables execution of the software.”® Beetcher *072 further discloses (a)

enabling software functionality based on a license key, (b) decoding an encoded a code resource

upon receipt of a license key, and (c) interrelationships between code resources that result in a

" Ex. 2, Prosecution History at 1944-47 (Patent Board Decision (filed Mar. 12, 2015)).
7> Beetcher "072 at Publication Date (43).
76 Id. at Related Application Data (31), (32). (33).

’7Ex. 5 is amachine translation of Beetcher "072 available at https:/www19.j-
platpat.inpit.go.jp/P Al/cgi-
bin/PAIDETAIL?MaxCount=1000&PageCount=1000&SearchType=0&TempName=w--
adaa&MaxPage=1&DispPage=1+1000& HitCount=3 1 &ResultId=100333004701 & Cookield=2&
DetailPage=9& Language=ENG&Reservel=DetailPaging& Reserve2=j60EUdc54 KVb6al6leg
&Reserve3=/ (last visited Apr. 18, 2018).

'8 E.g., Beetcher "072 at Abstract.

13

DISH-Blue Spike 842
Exhibit 1005, Page 0037

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

specified underlying functionality, which the Board found was missing from the prior art of
record during the original prosecution.”®

Beetcher "072’s disclosures raise substantial questions as to the anticipation of claims 11-
14 of the *842 Patent. These questions are non-cumulative of Beetcher because Beetcher "072
was published more than one year before the carliest potential priority date of the "842 Patent.
Thus, it will not be possible for Patent Owner to attempt to ante-date Beetcher 072 by arguing
the named inventor conceived and diligently reduced to practice the invention claimed in the
’842 Patent prior to the publication date of Beetcher "072.

Hasebe was issued on August 10, 1999 based on a U.S. application filed July 1, 1993 and
claims priority to a Japanese patent application filed August 31, 1995.3° Hasebe is a patent
granted on a U.S. application by another before the earliest possible priority date for the *842
Patent and is thus prior art under at least pre-AIA 35 U.S.C. § 102(a) and § 102(e). Hasebe
discloses a license notification system for converting license-protected software to an executable
form using license information, as explained in more detail below.®' Hasebe further discloses (a)
enabling software functionality based on a license key, (b) decoding an encoded code resource
upon receipt of a license key, and (c) interrelationships between code resources that result in a
specified underlying functionality, which the Board found was missing from the prior art of

record during the original prosecution.®” Thus, Hasebe’s disclosures raise substantial questions as

to the anticipation of claims 11-14 of the 842 Patent.

7 Ex. 2, Prosecution History at 1944-47 (Patent Board Decision (filed Mar. 12, 2015)).
80 Hasebe at Date of Patent [45], Filed [22], Related U.S. Application Data [30].

81 1d at Abstract, 2:42-3:15.

82 Ex. 2, Prosecution History at 1944-47 (Patent Board Decision (filed Mar. 12, 2015)).

14

DISH-Blue Spike 842
Exhibit 1005, Page 0038

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Cooperman was published on July 24, 1997%* and is prior art under at least pre-AIA 35
U.S.C. § 102(a). Cooperman lists on its face inventors Marc Cooperman and Scott Moskowitz.
As such, the Cooperman reference is a printed publication “by others,” as set forth in pre-AIA §
102(a). This is because the entities identified as the inventors of this reference differ from those
of the *842 Patent by at least one person, namely Mr. Cooperman. %

While Patent Owner listed Cooperman among the 665 documents provided to the
Examiner during the original prosecution,® Cooperman presents a substantial new question of
patentability because this Request presents it in a new light. As set forth in MPEP 2216, a
substantial new question of patentability exists when the pertinent publication raises:

[QJuestions of patentability [that] are substantially different from those raised in

the previous examination of the patent... The substantial new question of

patentability may be based on art previously congidered by the Office if the

reference is presented in a new light or a different way that escaped review during
earlier examination.%¢

During the original prosecution of the 842 Patent, none of the rejections or prior art discussions
refer to Cooperman. The Board has routinely affirmed that a prior art reference cited on the face
of a patent but neither relied upon to reject any claims during the prosecution nor discussed in

the statement of reason for allowance of that patent should not preclude the existence of a

8% Cooperman at 1.

8 MPEP 2132, 2136.

85 7842 Patent at page 5.

8 See also 35 U.S.C. § 303(a) (“The existence of a substantial new question of patentability is
not precluded by the fact that a patent or printed publication was previously cited by or to the
Office or considered by the Office.”); In re Swanson, 540 F.3d 1368, 1380 (Fed. Cir. 2008)
(““The appropriate test to determine whether a ‘substantial new question of patentability” exists
should not merely look at the number of references or whether they were previously considered

or cited but their combination in the appropriate context of a new light as it bears on the question
of the validity of the patent” (quoting H.R. Rep. No. 107-120, at 3)).

15

DISH-Blue Spike 842
Exhibit 1005, Page 0039

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

substantial new question of patentability.®” Here, Cooperman is presented in a new light because
the question of whether Cooperman anticipates claims 11-14 was not addressed or resolved
during the original prosecution, thus raising a substantial new question regarding patentability.
Accordingly, SNQ-3 in Section X.C. presents a limitation-by-limitation discussion of
Cooperman’s teachings that is new and non-cumulative to the original prosecution’s record.

Large portions of Cooperman’s disclosure are identical to portions of the *842
specification.® During the original prosecution, Patent Owner admitted that these portions
common to the *842 Patent and Cooperman teach limitations recited in independent claims 11-
14.%

More specifically, Cooperman discloses a method that ensures licensing information is
preserved in copies of an original works, including application software, as explained in more
detail below.®® Cooperman further discloses (a) enabling software functionality based on a
license key, (b) decoding an encoded code resource upon receipt of a license key, and (¢)
interrelationships between code resources that result in a specified underlying functionality,

which the Board found was missing from the prior art of record during the original prosecution.”!

87 See, e.g., Fx parte Civix DDI LLC, 2011 WL 4007697, at *12 (B.P.A.L Sept. 7, 2011) (“[T]he
record reveals that Examiner did engage in a fact-specific inquiry and correctly determined that
the “old art™ of Tornetta raises an SNQ. Among other things, the Examiner stated that “a review
of the prosecution history of application 08/920,044 Reveals that ... “Tornetta’ even though
considered by the Examiner [was] not relied upon to reject any claims during the prosecution of
the 307 patent, nor was it discussed by the examiner of record in the statement of reason for
allowance of that patent.”); Ex parte Allied Mach. & Eng’e Corp., 2015 WL 5719730, at *6
(P.T.A.B. Sept. 25, 2015) (similar).

8 F g., compare Cooperman at 11:9-12:2 with *842 Patent at 13:44-14:6.

% FE.g., Ex. 2, Prosecution History at 577-81 (original claim 38, 59, 61, and 62 issued as claim
11, 12, 13, and 14, respectively).

0 Cooperman at Abstract, 5:25-6:9.

°l Ex. 2, Prosecution History at 1944-47 (Patent Board Decision (filed Mar. 12, 2015)).

16

DISH-Blue Spike 842
Exhibit 1005, Page 0040

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

Moreover, as discussed with respect to the prosecution history overview in Section VI,
Patent Owner initially claimed priority to Application No. 08/587,943 filed January 17, 1996.
Later; Patent Owner rescinded its priority claim to Application No, 08/587,943,°% and relied on
Application No. 09/046.627 to establish the earliest possible priority of March 24, 1998.%% Yet
the prosecution history indicates that the Examiner limited his search to prior-art dated after
January 17, 1996 (filing date of Application No. 08/587,943), even after Patent Owner rescinded
its claim to that priority date.™ As annotated and shown below, the Examiner’s search histories

show limiting consideration of prior art dated after January 17, 1996 (dashed boxes):

Hintaey

Breaneed Histary § Reior Aoy

R O RN Y

SRS

B . o
SRR W

i 7
21

e

e A SR ST R SR

2 1d. at 1630 (Patent Owner A-rgumentsﬂemarfm Made in an Amendment (1iled Feb, 28, 2011)).
93 7842 Patent at [Related U.S. Application Data].

Ex. 2, Prosecution History at 448-57, 547-57, 863-69 (Examiner Search Strategies and Results
(filed Apr. 1, 2011, Sept. 20, 2011, June 4, 2015)),

17

DISH-Blue Spike 842
Exhibit 1005, Page 0041

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

S s R s
SN N

g VA
N

Q\\é: ESSENSS R S SERSENNEE NSRS NRNS
¥

As such, the Examiner would not have considered Cooperman (which was respectively
filed and published on January 16 and July 24, 1997) to be prior art as it was published after
January .17, 19956, Because Cooperman ig prior art under at least § 102¢a), Requester hag
presented Cooperman in a new light not considered during the original prosecution.

As explained, the Examiner did not consider the Beetcher, Beetcher *072, and Hascbe
references. And this Request presents Cooperman in a new light and in a different way that
escaped sarlier review. As such, no consideration has been given whether any of these references
anticipates claims 11-14, including limitations toward underlying functionality relating to code
resource Interrelationships, a license key enabling software functionality, and decoding an
encoded code resource that the Board found missing from the prior art during the original

prosecution.

18

DISH-Blue Spike 842
Exhibit 1005, Page 0042

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

The substantial new questions of patentability under 37 C.F.R. § 1.510(b)(1) presented in
this Request are listed below and based on the four prior art references Beetcher, Beetcher "072,

Hasebe, and Cooperman that were not the subject of any final decision by the Patent Office or

court:

1 Claims 11, 12, 13, and 14 are anticipated by Beetcher under pre-AlA 35 U.
§§ 102(a), (e).

2 Claims 11, 12, 13, and 14 are anticipated by Beetcher 072 under pre-AIA 35 U.S.C.
§§ 102(a), (b).

3 Claims 11, 12, 13, and 14 are anticipated by Cooperman under pre-AIA 35 U.S.C.

§ 102(a).

4 Claims 11, 12, 13, and 14 are anticipated by Hasebe under pre-AIA 35 U.S.C.
§§ 102(a), (e).

.C

X. DETAILED EXPLANATION UNDER 37 C.F.R. 1.510(b)(2)

A. SNQ-1: Claims 11, 12, 13, and 14 are Anticipated by Beetcher Under 35
U.S.C. §§ 102(a), (e).

Beetcher anticipates claims 11, 12, 13, and 14 under 35 U.K.C. §§ 102(a), ().

1. Beetcher Anticipates Independent Claim 11.
a) Preamble: “A method for licensed software use, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Beetcher discloses claim 11°s preamble. Specifically, Beetcher describes a method of controlling
access to licensed software using an encrypted entitlement key.”® Beetcher, for instance,
summarizes its invention as:

Software is distributed according to the present invention without entitlement to

run. A separately distributed encrypted entitlement key enables execution of the
Software. The key includes the serial number ofthe machine for which the Software

3 Beetcher at Abstract, 4:3-13, 4:39-44, 10:48-11:3; see also id. at 1:7-11, 1:54-57, 3:54-62.

19

DISH-Blue Spike 842
Exhibit 1005, Page 0043

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

is licensed, together-with a plurality of entitlement bits indicating which Software

modules are entitled to run on the machine.®

Beetcher’s Figure 10, as provided below, illustrates the use of an-entitled version of software

based on the customer’s license:

BEHE

As such, Beetcher teaches this preamble®.

% Beetcher at 4:3-9.
7 Silva Declaration at ¢ 35-36.

GENERATE EXCEPTIN az»: i
CONTITION T ABORT

{REE
R

Fin
- sgggk

S STERS

DISH-Blue Spike 842
Exhibit 1005, Page 0044

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

b) Element 11.1: “loading a software product on a computer, said
computer comprising a processor, memory, an input, and an
output, so that said computer is programmed to execute said
software product”

Beetcher discloses element 11.1. Specifically, Beetcher’s system includes a customer
computer 101 including a CPU 102, memory 104, and storage devices 106-108.%® This customer
computer 101 also includes a media reader 110 (i.e., an input) and an operator console 109 (i.e.,
an output).”” As shown below in annotated Figure 1, Beetcher discloses a computer having

software product 112 loaded for execution (dashed perimeter)!%:

°8 Beetcher at 5:14-21, Fig. 1.
% Id. at 5:25-32, 6:7-15, Fig, 1.
100 Silva Declaration at 99 38-40.

21

DISH-Blue Spike 842
Exhibit 1005, Page 0045

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

BT e

| DEVOPUERT SYOTEY SASERET 80 RYRTeN
12w i '

32

Y
} z
?”9,,,”,,,”,2,5

=3
o S
\ §§
3

S

2
,
‘.

299

A

£

cosetstoressss.

) . . S . ;
TRRINE RARAANRIRGY SRONL ARG ARG NN AR i e RRERE RINE GIRRAN LIRS SN

Beetcher details that the customer loads the media, such as an optical disk, containing a
software product onto the computer to execute the software product:

[Sloftware media 112 comprise one or more optical read/only disks, and unit 110
is an optical disk reader, it being understood that electronic distribution or other
distribution media could be used. Upon receipt of software media 112, the customer
will typically load the desired software modules from unit 110 into system 101, and
storc the software modules on storage devices 106-108.1%

101 Beetcher at 6:7-15; see also id. ‘at Abstract, 3:48-50, 9:51-55, Fig. 1, claim 6.

B
%]

DISH-Blue Spike 842
Exhibit 1005, Page 0046

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

©) Element 11.2: “said software product outputting a prompt for
input of license information™

Beetcher diseloses element 11.2. Specifically, Beetcher explains that its software product
includes a user interface routine for the customer to input a license key into the computer before
the product can be used.!%? For instance, Beetcher explains that the software product prompts the
user to input license information:

This operation system support at virtual machine level 404 contains two user
interface routines needed to support input of the entitlement key. General input
routine 441 is used to handle input during normal operations. In addition, special
install input routine 440 is required to input the key during initial installation
of the operating system. This 1s required because that part of the operating system
above machine interface level 405 1s treated for purposes of this invention as any
other program produet; it will have a product number and its object code will be
infected with entitlement verification triggers.!%

Beetcher’s Figure 2 illustrates this license information in unenerypted form:

w o oaw

p EUIREEH

‘3€3i§3

"*\\ “f

C‘%&R
‘?iiP
LERITS

VERRION MACHINE SERIAL

{8 BUIS) ‘ {:53 RITS:

Beetcher further explains that the software’s “install mput routine 440 interacts with the
operator to receive the input” of the customer’s license information during the software’s. initial

installation.'® And as discussed with respect to clement 11.1, the customer’s computer includes

102 rd at 7:66-8:8; see also id. at 3725-28.
193 Id. at 7:66-8:8.
1M 74 at9:51-55; see also id. at Fig, 4 (reference number 440), claim 6.

23

DISH-Blue Spike 842
Exhibit 1005, Page 0047

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

an operator console 109 shown with a monitor and keyboard that “can receive input from an
operator.”%

d) Element 11.3: “said software product using license information
entered via said input in response to said prompt in a routine
designed to decode a first license code encoded in said software
product”

Beetcher discloses element 11.3. Upon inserting the software’s disk 112, Beetcher
explains that the operator console prompts the customer to enter a license key.!% Beetcher details
that the customer enters entitlement key 111, i.e., license information, in response to the prompt
initiated by install input routine 440.'%7 Afier entering that key, Beetcher teaches that the
customer’s computer uses a decode key to initiate unlock routine 430 to decode the license code
encoded in the sofiware product.!%® Beetcher’s Figures 4 and 9a, which are provided below,
show the software using the key (i.e., license information) entered by the customer to decode a
first license code encoded in the software product. For instance, annotated Figure 4 illustrates
that the install input routine 440 starts unlock routine 430 once the customer inputs key 111 into
the computer.!® And “[u]nlock routine 430 uses the unique machine key to decode[] entitlement

key 1117 (dashed perimeter):'1°

105 1d. at 3:25-28, Fig. 1; Silva Declaration at 9 42-44.

106 7 o, Beetcher at 6:11-19, 7:66-8:8, Figs. 1, 9a.

107 1d. at 7:66-8:8; see also id. at 9:51-55, Figs. 1, 4, claim 6.

108 14 at 7:39-42, 9:49-60; see also id. at 6:66-7:5, 8:60-62 Figs. 4, 9a.
109 14 at 8:3-13, 9:52-60.

10 74 at 7:39-42; see also id. at 8:62-62; 10:27-36.

24

DISH-Blue Spike 842
Exhibit 1005, Page 0048

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

RER

R WA I

¥
el

L . VARE |
VIRTHAL w RINSEIMLL:
RENTEE B
LEVEL

e

458

TR ey
{ERcOntR

SaERERR

N oinawm

- \&?&3

W aaaaan s

Beetcher details that unlock routine 430 “handles the decoding process,” which is
illustrated in Figure 9a’s steps 902-909: “Unlock routine 430 causes get machine key function
420 to retrieve the machine serial number and generate the machine key at 902. Unlock routine
430 then uses the machine key to decode the entitlement key 111 at step 903.7111

Beetcher specifies that its unencrypted entitlement key includes multiple fields, which

includes version field 202 specifying entitled version levels and product entitlement flags 205

UL 7 at 9:57-60.

DISH-Blue Spike 842
Exhibit 1005, Page 0049

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

specifying customer’s accessible product numbers.!!? Beetcher’s Figure 2 shows this license

information with fields 201 to 205:

ENTITLEMENT X

3 {UNERCRYPTEDY 3%
oy , 08 ¢
W chpnke \\ ™~ . . }

3
“wloo10loonoiio0looooo0o0lootn . . . e . . . W
| PRODUCT ENTITLEMENT FLAGS
(30 RIS}

Beetcher’s unlock routine 430 will complete the decoding process by building an

encoded product key table (step 904), populating the key table for the relevant sofiware product
specified in the entitlement key (steps 905-908), and saving the key table (step 909).11* Beetcher
also specifies that the customer’s RAM ineludes table 460 populated with products having:
entitlement keys.!'* Beetcher’s software product uses the key’s version and product number
fields to decode a license code.

When compiling and translating the software code, Beetcher explains that the code
includes entitlement verification triggering instructions encoded into the software.!1? Beetcher’s
triggering instructions are encoded into the software when the software code is compiled and

translated, as shown in Figure 3 provided below:

12 74 at 6:22-40,

13 1d at 9:60-10:19, Figs. 5, 9a.

14 Id. at 7:42-44, 8:43-52, 10:20-47, Fig. 6, Fig. 9a,

15 74 at 6:41-58, 11:4-39; see aiso id. at 4:14-23, 8:5-22, 8:56-9:20.,

26

DISH-Blue Spike 842
Exhibit 1005, Page 0050

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

\

i
R j} Ry W
\ , s & i

I e
: : 2 : :

Novoeo cosamiyveessesesey

S

Fig &

Beetcher explains that'its software code verifies the customer ig entitled to use the
software when the code encounters a triggering instruction. When it encounters one of these
instructions, Beetcher’s code accesses the license key information stored in the key table 460,116
As such, a POSITA would have understood that Beetcheruses its-license information in a
routine, such as check lock function 422, designed to decode a first license code encoded in a
software product via the triggering instructions:

If any instruction is an entitlement verification triggering instruction 301 (step

1004 y-check lock function 422 is invoked. Check lock function 422 aceesses the

product lock table entry 601 corresponding to the product number contained in the
triggering instruction at step 1005. If the version number in product lock table 460

U6 74 at 10:48-11:39; see also id. at Abstract, 8:14-22, 8:53-9:20, Fig. 10.

DISH-Blue Spike 842
Exhibit 1005, Page 0051

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

is equal to or greater than the version number 303 contained in triggering instruction
301, the software is entitled to execute (step 1006).'!7

Moreover, Beetcher teaches that the triggering instructions will be encoded into the code
resources controlling software functionality:

[An] additional barrier would be to define the entitlement triggering instruction to
simultaneously perform some other function.... The alternative function must be
s0 selected that any compiled software module will be reasonably certain of
containing a number of instructions performing the function. If these criteria are
met, the compiler can automatically generate the object code to perform the
alternative function (and simultaneously, the entitlement verification trigger) as
part of its normal compilation procedure. This definition would provide a
significant barrier to patching of the object code to nullify the entitlement triggering
instructions.!'®

And Beetcher details that “the triggering instruction is also a direct instruction to perform some
other useful work [E]xecution of the triggering instruction causes system 101 to perform
»119

some other operation simultancous with the entitlement verification.

Accordingly, Beetcher discloses claim 11.

2. Beetcher Anticipates Independent Claim 12.
a) Preamble: “A method for encoding software code using a
computer having a processor and memory, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting. 2%

Nevertheless, Beetcher discloses claim 12°s preamble. Specifically, Beetcher describes a method

U7 14 at 10:52-62, Fig. 10; Silva Declaration at 99 46-51.

118 Beetcher at 11:14-28; see also id. at 4:25-33, 6:58-65.

19 14, at 6:58-65 (Beetcher specifies that these functions are those “which do not require that an
operand for the action be specified in the instruction.”); Silva Declaration at Y 52-53.

120 Claim 12°s preamble recites “a computer” and claim 12°s body recites “a computer system.”
It is unclear whether those elements refer to the same or separate computing devices. For
purposes of this Request and using the broadest reasonable interpretation consistent with the
specification, it is assumed that the “computer” recited in the preamble is a device separate from
the “computer system.”

28

DISH-Blue Spike 842
Exhibit 1005, Page 0052

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

for encoding software code using a computer with a processor and memory. Beetcher details that
the software distributor has “development computer system 125, which contains compiler 126
and translator 1277 where “[t]he software modules are recorded on sofiware recording media
112 and “entitlement key generator/encrypter 122 and a database 123 containing customer
information.”'?' Beetcher specifies these compiling and key generating functions may be
performed by a single computer.!?> Below annotated Figure 1 illustrates the distributor’s

computer system distributing memory media 112 and compiling encoded software code:

121 Beetcher at 5:38-48; see also id. at 9:1-20.
122 14 at 5:51-58.

29

DISH-Blue Spike 842
Exhibit 1005, Page 0053

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

e

)

S

RSN \\\E
o S
WY

e

b

3

A

P

g

S

R
e S B

\\\\\“\\s\\\\\i

3 REXAE ¢ § o
HARRRRR s

g

Bosaaaaisrrrrsscds

7

Gosrsssssisorss
s,
o

%

Beetcher’s Figure 7 illustrates the software code being encoded to include watermarking

triggers decoded by the customer’s licensing information:1%?

128 14 at 9:1-20, Fig. 7.

30

DISH-Blue Spike 842
Exhibit 1005, Page 0054

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

oo L,
SOURCE CODE INPUT
T0 COMPILER
{ o702

COMPILER PRODUCES
PROGRAM TEMPLATE

4 - 703

PROGRAM TEMPLATE
INPUT 1O TRANSLAYOR

I
TRANSLATOR INSERTS
TRIGOERS

. f“ms
NSLATOR PRODUCES
{gg&?ﬁ.ﬁ SOFTWARE

&

IR
EXE
y H

As such, a POSITA would have understood that Beetcher’s distributor compiles and
stores the encoded software code using a processor and memory akin to the console’s CPU 102
and memory devices 106-108. As expert Dr, Silva explains in his declaration (Ex. 9), Beetcher’s
computer would necessarily include a processor and memory in order to function. 124

As such, Beetcher teaches this preamble.

124 Silva Declaration at 19 56-59.

31

DISH-Blue Spike 842
Exhibit 1005, Page 0055

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

b) Element 12.1: “storing a software code in said memory”
Beetcher discloses element 12.1. Specifically, Beetcher discloses a development system

125 for compiling and translating for the software code.!?® Beetcher details that the software
code is stored as disks 112 in warchouse 120. A POSITA would have understood that developer
system 125 stores the compiled and translated code in memory and records that code onto disks
112 for distribution to customers. As expert Dr. Silva explains in his declaration (Ex. 9),
Beetcher’s computer would necessarily include store software code in memory in order to
function. 126

c) Element 12.2: “wherein said software code comprises a first

code resource and provides a specified underlying functionality
when installed on a computer system™

Beetcher discloses element 12.2. Specifically, Beetcher explains that its software code
includes multiple code resources that include a first code resource.!?’ Beetcher’s code resources
include software modules 300 (dashed box) including sub-objects within the code, as shown
below in annotated Figure 4 and Figure 3.1?® These sub-objects control multiple functions of the
software installed on the customer’s computer system 101.12° And Beetcher’s sofiware prevents
unwanted “patching” of these sub-objects by including entitlement verification triggering

instructions 301.13°

125 Beetcher at 5:38-48, 9:1-20.

126 Silva Declaration at Y 62.

127 Beetcher at 5:40-43, 6:1-15.

128 Id. at 6:41-45, 8:14-17, Fig. 4; see also id. at 7:45-48, Fig. 3.

129 1d. at 6:58-65, 11:4-39; see also id. at Abstract, 4:28-33, 6:65-7:5, claim 3.
130 14 at 4:25-33, 11:11-39; see also id. at Abstract, 3:14-18.

32

DISH-Blue Spike 842
Exhibit 1005, Page 0056

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

AORLZONTAL faey PRODUCY
MICRRCRDE i NACWIRE LK
LEVEY ST TaiE
it st e
saroane | SERIAL B &m&&§ wr | 1w

AR Rl T _ >
N \\%‘ N

0 s60

33

DISH-Blue Spike 842
Exhibit 1005, Page 0057

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

EEETHY
LG

5O OIR

Sy

RO R0

151 7842 Patent at 11:55-65, 15:36-42.
132 Silva Declaration at 19 65-66.
133 1d. at 9 67.

L3

The 7842 Patentrefers to sub-objects and a memory scheduler as examples of code

resources. 31 A POSITA would have understood that Beetcher’s module sub-objects are sub-

Based on Beetcher’s description, a POSITA would have understood that one sub-object
in module 300 is a first code resource providing a speeified underlying functionality when

installed on the customer’s computer system 101 and unlocked using the license information

34

DISH-Blue Spike 842
Exhibit 1005, Page 0058

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

d) Element 12.3: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Beetcher discloses element 12.3. Beetcher describes encoding its software code by the
distributor svstem that includes development system 125 and marketing system 124, which may
be “a single computer system performing both functions.”!** Specifically, Beetcher describes
encoding a first license kev into the software code where that key is used to authorize access to

the software product:

Software module 300 is part of a program product in compiled object code form which
executes on system 101.... [T]he actual executable code operates at executable code level
403, as shown by the box in broken lines. The executable code contains entitlement
verification triggering instructions 301 (only one shown), which are executed by horizontal
microcode check lock function 422,13

This encoding is illustrated in Figure 3:

134 Beetcher at 5:37-58, 6:41-65, 11:4-39.
135 1d. at 8:13-23; see also id. at 4:3-21, 6:20-55, 7:39-44, 8:58-67, 9:51-56, 10:22-38.

35

DISH-Blue Spike 842
Exhibit 1005, Page 0059

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

SN TRE WInAE

5O OIR

RO R0

NS nan g

The computern Beetcher’s development system 125 performs the encoding, as shown in
Figure 7 at step 704, detailed as: “The program template serves as input to translator 127 at step
704, along with its product number and version number identification. Translator 127
automatically generates a substantial number of entitlement verification triggers, inserts them in

random locations in the object code7"136

136 1d. at9:10-16; see also id. at 5:38-47, 9:1-10, 9:16-20, Fig. 7; Silva Declaration at 9 70-72.

36

DISH-Blue Spike 842
Exhibit 1005, Page 0060

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

Moreover, the computer in Beetcher’s development system 125 uses an encoding
algorithm to encode the first license key. Beetcher’s system uses a set of instructions;, as shown.

in Figure 7, to encode triggers into the software code to form the first license key;!¥’

STARY

o1 |
A
SOURCE COBE INPUT
10 CONRILER |

. <70
COMPILER PROBUCES :
PROGRAN TEMPLATE | |

+ ~703

PROGRAM TEMPLATE |
INPUT 1O TRANSLATOR |

TRANGLATOR INSERTS
TRIGGERS

TRANSLATOR PRODUCES |
EXECUTARLE SUFTWARE
NODULE

The compiler begins the process by producing a template (step 702); next the template is:
input into the translator (step 703), then the translator encades the triggers/license keys into the
code (step 704),.and finally the translator resolves references after key insertion to produce the

executable modile. 13 As such, a POSITA would have understood Beetcher’s Figure 7 illustrates

137 Beetcherat 9:10-16; see also id. at 5:38-47,9:1-10, 9:16-20, Fig. 7; Silva Declaration at § 73.
138 Beetcher at 9:6-20, Fig. 7.

37

DISH-Blue Spike 842
Exhibit 1005, Page 0061

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

an encoding algorithm.13” Beetcher’s encoding process is further described with respect to
element 11.3.

Moreover, during the original prosecution, Patent Owner specified that “[e]ncoding using
a key and an algorithm is known.”!#? As such, a POSITA would have understood that Beetcher’s
encoding technique necessarily includes a first license key and an encoding algorithm to form a
first license key encoded software code!#!,

€) Element 12.4: “wherein, when installed on a computer system,
said first license key encoded software code will provide said
specified underlying functionality only after receipt of said first
license key”

Beetcher discloses element 12.4. Specifically, Beetcher explains that its first license key
encoded software code provides the specified underlying functionality only after receipt of the
first license key.!*? For instance, Beetcher states:

For support of such a traditional compilation path where the object code format is
known by customers, additional barriers to patching of the object code to nullify or
alter the entitlement triggering instructions may be appropriate. One such additional
barrier would be to define the entitlement triggering instruction to simultaneously
perform some other function. In this case, it is critical that the alternative function
performed by the triggering instruction can not be performed by any other simple
instruction. The alternative function must be so selected that any compiled software
module will be reasonably certain of containing a number of instructions
performing the function. If these criteria are met, the compiler can automatically
generate the object code to perform the alternative function (and simultaneously,
the entitlement verification trigger) as part of its normal compilation procedure.
This definition would provide a significant barrier to patching of the object code to
nullify the entitlement triggering instructions. 43

139 Silva Declaration at 9 74.

140 Ex. 2, Prosecution History at 519.
141 Silva Declaration at 9 70-75.

142 Beetcher at 6:58-65, 11:4-39; see also id. at Abstract, 3:14-18, 4:25-33, 6:65-7:5, claim 3.
143 14 at 11:10-28.

38

DISH-Blue Spike 842
Exhibit 1005, Page 0062

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

And as described with respect to element 12.3, Beetcher teaches encoding the triggering
instructions into the software code that is decoded via the first license key.

Beetcher’s Figure 10, 8s provided below, illustrates providing the software’s underlying
functionality based on the first license key (ﬁ'i‘gger information). For instance, Bectcher explains:

System 101 executes the module by fetching (step 1001) and executing (step 1002)
object code instructions until done (step 1003). If any instruction is an entitlement
verification triggering instruction 301 (step 1004) check lock function 422 is
invoked. Check lock function 422 accesses the product lock table entry 601
corresponding to the product number contained in the triggering instruction at step
10635. If the version number in product lock table 460 is equal to or greater than the
version number 303 contained in triggering instruction 301, the software is entitled
to execute (step 1006).14

- 10y
&

PP : , ¥ M\
';&}5'\\},@‘ o '\\?{}“{3\\}‘ ¥§R§§\3§J i
s wg«tz\ N

I 1d at 10:49-60; see also id. at 10:48-49, 10:60-11:3; Silva Declaration at 99 78-82.

39

DISH-Blue Spike 842
Exhibit 1005, Page 0063

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Accordingly, Beetcher discloses claim 12.

3. Beetcher Anticipates Independent Claim 13.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Beetcher discloses claim 13’s preamble. Claim 13°s preamble is the same as claim 12°s

preamble. As explained above, Beetcher discloses a method for encoding software using a

computer with a processor and memory. As such, Beetcher teaches this preamble. '

b) Element 13.1: “storing a software code in said memory”
Element 13.1 is identical to element 12.1. As explained above, Beetcher discloses each
limitation of element 12.1. For the same reasons, Beetcher teaches element 13.1.146

c) Element 13.2: “wherein said software code comprises a first
code resource and provides a specified underlying functionality
when installed on a computer system™

Element 13.2 is identical to element 12.2. As explained above, Beetcher discloses each
limitation of element 12.2. For the same reasons, Beetcher teaches element 13.2.1%

d) Element 13.3: “modifying, by said computer, using a first
license key and an encoding algorithm, said software code, to
form a modified software code; and wherein said modifyving
comprises encoding said first code resource to form an encoded
first code resource”

Beetcher discloses element 13.3. As described with respect to element 12.3, Beetcher’s
distributor system includes a computer that encodes software code using a first license key (e.g.,

triggering information) and an encoding algorithm (e.g., Figure 7). And Beetcher’s encoding

145 Silva Declaration at q 85.
146 4 at 9 87.
147 74, at 9 89,

40

DISH-Blue Spike 842
Exhibit 1005, Page 0064

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

process modifies the software code by inserting triggering information into the code.'*® For
instance, Beetcher details that system inputs compiled software code into a translator which
modifies the code by “automatically generat[ing] a substantial number of entitlement verification
triggers” and “insert[ing] them in random locations in the object code,” as shown in Figure Ts
steps 703 and 704.1% Figure 3 illustrates this modifying by inserting triggering information 301

to form amodified software code:

¥

%mésmié

:
4 i

i §
&
; ;
o

SR0ECT
F 81108

148 Beetcher at 8:13-23, 9:1-20; see also id. at 5:38-47, 9:1-10, 9:16-20, Fig. 7; Silva Declaration
at 1.

149 Beetcher at 9:11-15.

41

DISH-Blue Spike 842
Exhibit 1005, Page 0065

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

As described with respect to element 12.2, Beetcher’s software code includes a series of
code resources corresponding to sub-objects. And Beetcher teaches a code resource is modified
to encode the first code resource via the triggering information.!>° For instance, Beetcher
teaches:

For support of such a traditional compilation path where the object code format is
known by customers, additional barriers to patching of the object code to nullify or
alter the entitlement triggering instructions may be appropriate. One such additional
barrier would be to define the entitlement triggering instruction to simultaneously
perform some other function. In this case, it is critical that the alternative function
performed by the triggering instruction can not be performed by any other simple
instruction. The alternative function must be so selected that any compiled software
module will be reasonably certain of containing a number of instructions
performing the function. If these criteria are met, the compiler can automatically
generate the object code to perform the alternative function (and simultaneously,
the entitlement verification trigger) as part of its normal compilation procedure.
This definition would provide a significant barrier to patching of the object code to
nullify the entitlement triggering instructions.'”!

A POSITA would have understood that such modification results in an encoded first code
resource. 152

Moreover, during the original prosecution, Patent Owner specified that “[e]ncoding using
akey and an algorithm is known.”'** As such, a POSITA would have understood that Beetcher’s
encoding technique necessarily includes a first license key and an encoding algorithm to form a

modified encoded first code resource.!>*

150 1. at 4:25-33, 11:11-39; see also id. at Abstract, 3:14-18.
151 1d. at 11:10-28.
152 Silva Declaration at 9 92.

133 Ex. 2, Prosecution History at 519.
134 Silva Declaration at 9 93.

42

DISH-Blue Spike 842
Exhibit 1005, Page 0066

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

€e) Element 13.4: “wherein said modified software code comprises
said encoded first code resource, and a decode resource for
decoding said encoded first code resource”

Beetcher discloses element 13.4. Beetcher explains that its modified sofiware code
includes a decode resource for decoding the encoded first code resource. Specifically, Beetcher
teaches that executing a trigger 301 invokes check lock function 422, which results in accessing
“unlock (decode key)” function 430 upon confirmation that the customer possesses the
software’s license key.!>® Beetcher’s Figure 4, as annotated below, illustrates the decode

resource (dashed perimeter) of the modified software code:!>®

135 Beetcher at 10:22-39, 10:52-65, Figs. 9b, 10; see also id. at 7:16-38, 8:18-22, 9:49-10:7.
136 Silva Declaration at 9 96.

43

DISH-Blue Spike 842
Exhibit 1005, Page 0067

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

‘I\m

- SOS

ARRRRT ANRRAAL mxxg ANNRNNR

! ﬁaﬁme m\&s BT et 805

MM%\\wmiv
5 \,\\f‘fﬂ&\&-\‘:ﬁ\‘ S

A —"
ERL Y g
§4 Q 3 X 5}}& oo
:§ i » e«:p 3
\\\) \\\\\\\\\\\&\\\\\\\ % AR A AR R ‘; K
% i §
. S Y
§oaw FYw
& 5 H
8 ! X
N § A
g = R
; FTEE e e o o o g
HIDNEMT I e »
.| e ER 3
| 4
SR

%;
3

1{//7&’ G

B * T8N
N \&\\\;\\\&\ RS

%&V\\\wu\w\v«

LRERG

H Element 13.5: “wherein said decode resource is configured to
decode said encoded first code resource upon receipt of said
first license key”

Beetcher discloses element 13.5, Beetcher specifies that its decode resource decodes the
encoded first code resource upon receipt of the license key. Beetcher, for example, states that

unlock routine 430 “fetches the encrypted entitlement key from ... table 450 ... and decodes the

entitlement key The triggering mstruction is then retried and program execution continnes at

44

DISH-Blue Spike 842
Exhibit 1005, Page 0068

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

step 928.71%7 And Beetcher’s Figure 9b illustrates accessing the decode resource to decode the

encoded first code resources based on the entitlement key, reflected in steps 921 to 928:

EXCERTION RaLuED
PRUDIST XY

N EERE

BEYRIEVE SERIAL &
D SUARRATR
BACHINE REY

) é ST

P

i -
W, ;

SNEEOTINE

STIME IR PRubuCT
BEY TARLE
BERE]

by .

Ag such, a POSITA would have understood that Beetcher’s decode resource is configured
to decode the encoded first code resource based on first license key. '®

Accordingly, Beetcher discloses claim 13,

137 Beetcherat 10:27-38.
138 Silva Declaration at 19 99-100.

45

DISH-Blue Spike 842
Exhibit 1005, Page 0069

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

4. Beetcher Anticipates Independent Claim 14.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Beetcher discloses claim 14’s preamble. Claim 14°s preamble is the same as each of claim 12
and 13’s preamble. As explained above, Beetcher discloses a method for encoding software
using a computer with a processor and memory. As such, Beetcher teaches this preamble.!*®

b) Element 14.I: “storing a software code in said memory”
Element 14.1 is identical to element 12.1. As explained above, Beetcher discloses each
limitation of element 12.1. For the same reasons, Beetcher teaches element 14.1.160
c) Element 14.2: “wherein said software code defines software
code interrelationships between code resources that result in a
specified underlying functionality when installed on a
computer system”

Beetcher discloses element 14.2. Beetcher details that its software code is compiled into
executable code by compiler 126. This compiler works with translator 127 to compile the
software sub-objects and insert triggering information. %! And Beetcher specifies that translator
127 “resolves references” in the software code, which corresponds to defining code
interrelationships between code resources.!®? As shown in steps 701 and 702 of Figure 7,
Beetcher teaches its software code is input into compiler 126 that produces a template of the

software code:!%3

159 74, at 9 103,
160 77, at 9 105,
161 Beetcher at 8:14-17.

162 14 at 9:11-18; Silva Declaration at § 107.
163 Beetcher at 8:14-17, 9:1-20, Fig. 7; see also id. at 5:37-39, 6:41-45, 7:63-66

46

DISH-Blue Spike 842
Exhibit 1005, Page 0070

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

STARY
i
9 Fd
SOURCE COBE PUY
10 CoMRiicR o

I o0

CONPILER PRODBUCE:
PROCION TERE RS

203
PROGRAM TEMPLATE
INPUT 1O TRANSLATOR 5
TRANSLATOR INSERYS
TRIBSERS

i AUs

TRANST STOR PROMICES

A POSIT A would have understood that this software code template also defines the code
interrelationships between the code resources. 14 As the Patent Owner spccified during the
original prosecution, software ¢ode interrelationships are defined during the compiling process of

conventional software applications:

or mention 'software code interrelationships' is that software code
interrelationships were somehow unknown in the art, which clearly is not the case.
As admitted, in the specification at the beginning of paragraph [0051]; an
"application" comprises "sub-objects" whose "order-in the computer memory is of
vital importance® in order to perform an intended function. And as admitted further
in paragraph [0051], "When a program is compiled, then, it consists of a
collection of these sub-objects, whose exact order or arrangement in memory
is not important, so long as any sub-object which uses anether sub-object
knows where in memory it can be found.” Paragraph [0031] of course refers
to conventional applications. Accordingly, that is admittedly a discussion of

164 Silva Declaration at 1 108.

47

DISH-Blue Spike 842
Exhibit 1005, Page 0071

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

what is already know by one skilled in the art. Accordingly, the examiner's
statement that the specification lacks written description support for "software code
interrelationships" is inconsistent with the fact that such interrelationships were
explained in paragraphs [0051] and [0052] as a fundamental basis of pre-
existing modem computer programs.'5’

Moreover, during the original prosecution, Patent Owner specified that
“interrelationships between code resource are not that which is novel.”1¢® Based on Patent
Owner’s concessions, it is clear that a POSITA would have understood that Beetcher’s code
necessarily defines code interrelationships between code resources'®’.

Beetcher further teaches that the code resource interrelationships specify the underlying
application functionalities when installed on the customer’s computer 101. For instance,
Beetcher’s software code includes multiple entitlement verification triggers.'®® And Beetcher
details that certain code resources include triggering instruction that controls the underlying
functionalities of the software code:

[An] additional barrier would be to define the entitlement triggering instruction to

simultaneously perform some other function.... The alternative function must be

so selected that any compiled software module will be reasonably certain of

containing a number of instructions performing the function. If these criteria are

met, the compiler can automatically generate the object code to perform the
alternative function (and simultaneously, the entitlement verification trigger) as

part of its normal compilation procedure. This definition would provide a

significant barrier to patching of the object code to nullify the entitlement triggering

instructions. 67

Beetcher further explains that “the triggering instruction is also a direct instruction to perform

some other useful work [E|xecution of the triggering instruction causes system 101 to

163 Ex. 2, Prosecution History at 519.
166 J,1
167 Silva Declaration at 9 109.

168 Beetcher at 4:15-33, 9:1-3, 10:22-34, Fig. 3; see also id. at 6:45-65, 8:19-22, 10:52-11:39.
162 1. at 11:14-28; see also id. at 4:25-33, 6:58-65.

48

DISH-Blue Spike 842
Exhibit 1005, Page 0072

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

perform some other operation simultaneous with the entitlement verification.”!’® As such, a
POSITA would have understood that the code interrelationships between Beetcher’s code
resources result in a specified underlying functionality once installed.!"

d) Element 14.3: “encoding, by said computer using at least a first

license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Element 14.3 is identical to element 12.3. As explained above, Beetcher discloses each
limitation of element 12.3. For the same reasons, Beetcher teaches element 14.3.

Moreover, during the original prosecution, Patent Owner specified that “[e]ncoding using
a key and an algorithm is known™ and that “an interrelationship in software code is necessarily
defined by digital data, and digital data can obviously be encoded by an encoding process.” 2 As
such, a POSITA would have understood that Beetcher’s encoding technique necessarily includes
a first license key and an encoding algorithm to form a first license key encoded software

code.1”

€) Element 14.4: “in which at least one of said software code
interrelationships are encoded”

Beetcher discloses element 14.4. As described with respect to element 14.2, Beetcher
teaches that its software code defines code interrelationships between code resources and
triggering information 301 in the code control certain underlying software functionality. And

Beetcher details that triggering information 301 is encoded into the software code.!™ For

170 Id_ at 6:58-65 (Beetcher specifies that these functions are those “which do not require that an
operand for the action be specified in the instruction.”).

171 Silva Declaration at 99 110-11.

172 Ex. 2, Prosecution History at 519.
173 Silva Declaration at 9 114-15.

174 Beetcher at 4:25-33, 6:58-65, 11:4-39.

49

DISH-Blue Spike 842
Exhibit 1005, Page 0073

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

instance, Beetcher explains that the triggering instructions will be encoded into the code
resources controlling software functionality:

[An] additional barrier would be to define the entitlement triggering instruction to
simultaneously perform some other function.... The alternative function must be
so selected that any compiled software module will be reasonably certain of
containing a number of instructions performing the function. If these criteria are
met, the compiler can automatically generate the object code to perform the
alternative function (and simultaneously, the entitlement verification trigger) as
part of its normal compilation procedure. This definition would provide a
significant barrier to patching of the object code to nullify the entitlement triggering
instructions.!”

And Beetcher details that “the triggering instruction is also a direct instruction to perform some
other useful work [E]xecution of the triggering instruction causes system 101 to perform
some other operation simultancous with the entitlement verification.”’% Accordingly, a POSITA
would have understood that this encoded triggering information includes encoded code
interrelationship of the coder resources.!”’

Accordingly, Beetcher discloses claim 14,

B. SNQ-2: Claims 11, 12, 13, and 14 are Anticipated by Beetcher 072 Under 35
U.S.C. §§ 102(a), (b).

Beetcher "072 anticipates claims 11, 12, 13, and 14 under 35 U.S.C. §§ 102(a), (b).
1. Beetcher *072 Anticipates Independent Claim 11.

a) Preamble: “A method for licensed software use, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,

Beetcher "072 discloses claim 11°s preamble. Specifically, Beetcher "072 describes a method of

175 1d. at 11:14-28; see also id. at 4:25-33, 6:58-65.

176 Id. at 6:58-65 (Beetcher specifies that these functions are those “which do not require that an
operand for the action be specified in the instruction.”).

177 Silva Declaration at 9 117-19.

50

DISH-Blue Spike 842
Exhibit 1005, Page 0074

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

controlling access to licensed software using an encrypted entitlement key.!”® Beetcher 072, for
instance, summarizes ity invention as:

According to the present invention, software is distributed without the qualification
grant: for performing. Execution of software is attained by the enciphered
qualification grant key which is distributed independently. This qualification grant
key contains a plurality of qualification grant bits which instruct the consecutive
numbers of the machine with which software is licensed to it, and which software
module has the qualification it runs by that machine.'”

Beetcher "072’s Figure 10, as provided below, illustrates the use of an entitled version of

software based on the customer’s license:

178 Beetcher 072 at Abstract, 19 0020, 0022, 0043; see also id. at 9 0001, 0004, 0016 (See Ex. 5
for English translation).
179 Beetcher 072 at 0020 (See Ex. 5 for English translation).

51

DISH-Blue Spike 842
Exhibit 1005, Page 0075

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

As such, Beetcher "072 teaches this preamble. %
b) Element 11.I: “loading a software product on a computer, said
computer comprising a processor, memory, an input, and an

output, so that said computer is programmed to execute said
software product”

Beetcher "072 discloses element 11.1. Specifically, Beetcher *072’s system includes a
customer computer 101 including a CPU 102, memory 104, and storage devices 106-108.'8! This
customer computer 101 also includes a media reader 110 (i.e., an input) and an operator console
109 (i.e., an output).'¥? As shown below in annotated Figure 1, Beetcher "072 discloses a

computer having software product 112 loaded for execution (dashed perimeter):

180 Silva Declaration at 99 122-25.

181 Beetcher *072 at 4 0023, Fig. 1 (See Ex. 5 for English translation).
182 Beetcher *072 at 90023, 0027, Fig. 1 (See Ex. 5 for English translation).

52

DISH-Blue Spike 842
Exhibit 1005, Page 0076

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

SRR IR

iy

I S A

B

T

R

i e

By

H

",

e sssiisrgrrsd:

R

Ees

o

I

¢
§
§
i

%

N
ERNRERR

AR

Beetcher "072 details that the customer loads the media, such as an optical disk,

containing a software product onto the compuiter for execution:'®

[Sloftware media 112 comprise one sheet or a plurality of read-only optical discs,
and the medium reader 110 is an optical disc reader. However, please understand
that an electronic distribution medium and other distribution media can also be
used. If the software media 112 are received, a customer will load a desired software
moduleio the system 101 from the medium reader 110, and will usoally memorize
the software module to the memory storage 106-108.1%

1% Silva Declaration at 9 127-29.

18 Beetcher 072 at §0027; see also id. at Abstract, 9 0014, 0040, Fig. 1, claim 6 (See Ex. 5 for

English translatiomn).

53

DISH-Blue Spike 842
Exhibit 1005, Page 0077

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

c) Element 11.2: “said software proeduct outputting a prompt for
input of license information”

Beetcher *072 discloses element 11.2. Specifically, Beetcher 072 explains that its
software product contains a user interface routine for the customer to input a license key into the
compiiter before the product can be used,'® For instance, Beetcher *072 explains that the
software product prompts the uiser it inpiit license information:

The support of this operation system contains two user interface routines
required to support the input of a qualification grant key on the virtual-
machine level 404. The general input routine 441 is. used-for processing an input
in normal operation. The installation input routine 440 special to inputting a
qualification grant key is required during the. initial introduction of an
operation system. The thing which needs this is because the portion -of an upper
level operating system is treated as other program products by the present invention
from the machine interface level 405. Namely, such a portion has product number
and the target code is subject to the influence of a qualification verification
trigger. 1%

Beetcher 2072°s. Figure 2 illustrates this license information in unencrypted form

. 289 262 205 gpe mmeses- (smamy 108

R8O \ ~ SN
\\._,imw]smmmse mwﬁamsiwm ... 11} 1t100 .. 10
§ ? i § T 3
e e _
| mazaid R - ¥

,;,;,f,ui ;(w{!f%)% P RRRREETIF (B0 B

N §

! ; z

: j { !

Y g N ~ s

| #n WAL S

2 (8w) SEITTY

Beetchér *072 further explains that the software’s “installation input routine 440 has a

dialog with an operator; and receives an input” of the customer’s. license information:during the

185 Beetcher 072 at 90033; see also id. al 10010 (See Ex. 5 for English translation).
18 Beetcher 072 at 0033 (See Ex: 5 for English translation).

54

DISH-Blue Spike 842
Exhibit 1005, Page 0078

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

187

software’s initial installation.'®’ And as discussed with respect to element 11.1, the customer’s

computer includes an operator console 109 shown with a monitor and keyboard that “receive the

input from an operator. ™18

d) Element 11.3: “said software product using license information
entered via said input in response to said prompt in a routine

designed to decode a first license code encoded in said software
product”

Beetcher "072 discloses element 11.3. Upon inserting the software’s disk 112, Beetcher
*072 explains that the operator console prompts the customer to enter license information. %
Beetcher "072 details that the customer enters entitlement key 111, i.e., license information, in
response to the prompt initiated by install input routine 440.'%° After entering that key, Beetcher
*(072 teaches that the customer’s computer uses a decode key to initiate unlock routine 430 to
decode the license code encoded in the software product.'®! Beetcher "072’s Figures 4 and 9a,
which are provided below, show the software using the key (i.e., license information) entered by
the customer to decode a first license code encoded in the software product. For instance,
annotated Figure 4 illustrates that the install input routine 440 starts unlock routine 430 once the
customer inputs key 111 into the computer.'®? And “unlocking routine 430 decodes the

qualification grant key 111 using a peculiar machine key” (dashed perimeter):!®?

187 Beetcher *072 at § 0040, see also id. at Fig. 4 (reference number 440), claim 6 (See Ex. 5 for
English translation).

188 Beetcher *072 at § 0023; see also id. at 90025, 0033, 0039, Fig. 1 (See Ex. 5 for English
translation); Silva Declaration at 9 131-133.

189 [g, Beetcher 072 at 990033, 0040, Figs. 1, 9a.

190 Beetcher *072 at § 0033; see also id. at 0040, Figs. 1, 4, claim 6 (See Ex. 5 for English
translation).

191 Beetcher *072 at 90032, 0040, see also id. at 190030, 0037, Figs. 4, 9a (See Ex. 5 for
English translation).

192 Beetcher *072 at 90033, 0040 (See Ex. 5 for English translation).
193 Beetcher *072 at § 0032; see also id. at 190037, 0041 (See Ex. 5 for English translation).

55

DISH-Blue Spike 842
Exhibit 1005, Page 0079

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

%

i . S Y

7

SR ;\\“\\“\\\Q\mN\m}-

Rt

R

Beetcher *072 details that unlock routine 430 “handles the decoding process,” which is
illustrated in Figure 9a’s steps 902-909: “The lock release routineg 430 makes the machine-key
acquisition function 420 search machine consecutive numbers with Step 902, and makes it
generate a machine key at it. Subsequently, the lock release routine 430 decodes the qualification.
grant key 111 at Step 903 using a machine key.”'™

Beetcher "072 specifies that its unencrypied entitlement key includes multiple fields,

which includes version field 202 specifying entitled version levels and produet éntitlement flags

19 Beetcher 072 at 0040 (See Ex. 5 for English translation).

56

DISH-Blue Spike 842
Exhibit 1005, Page 0080

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

205 specifying customer’s accessible product numbers.!** Beetcher "072°s Figure 2 shows this

license information with fields 201 to 205:

-

N

v

h

e ¥

P

froso e RET: e
W

N P
Boaiarn $. 0y
¢ i ; ¥ .
N N R a &R [
A 1 L RONRRB RS BUE e b N
& N eN : §
: ¢ i N
: i | s
; \:_
2) N

s L S §;
N

h

&

R

Y

Beetcher "0727s unlock routine 430 will complete the decoding process by building an
encoded product key table (step 904), populating the key table for the relevant softwarg product
(steps 905-908), and saving the key table (step 909).1%¢ Beetcher "072 also specifies that the
customer’s RAM includes table 460 populated with products having entitlement keys.!?
Beetcher "072’s software productuses the key’s version and product number fields to decode a
license code.

When compiling and translating the software code, Beetcher "072 explains that the code
includes entitlement verification triggering instructions encoded into the software. ' Beetcher
072%s triggering instructions are encoded into the software when the software code is compiled

and translated, as shown in Figure 3 provided below:

15 Beetcher 7072 at 9§ 0028.

196 I at 90040 (See Ex. 5 for English translation).

197 Beetcher "072 at 0032, 0036, 0041-42, Fig. 6, Fig. 9a.

198 Id. at 9910029, 0044 see also id. at 90021, 0033-34, 0037-38 (See Ex. 5 for English
trans lation).

57

DISH-Blue Spike 842
Exhibit 1005, Page 0081

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

FONENNEY IR aPORTs o8

Beetcher?072 explains that its software code verifies the customer is entitled to use the
software when the:code encounters a triggering instruction. When it encounters one of these
instructions, Beetcher 072°s code accesses the license key mformation stored in the key table
460.1 As such, a POSITA would have understood that Beetcher uses its license informationin a

routine, such as check lock function 422, designed to decode a first license code encoded in a

software product via the triggering instructions:>%

When a command is the qualification verification trigger 301 (Step 1004), the lock
checking feature 422 is called. At Step 1003, the lock checking feature 422 dccesses
the product locking table entry 601 to which it corresponds to the product number
incladed in a qualification verification trigger. The qualification for the version
number in the product locking table 460 being equal to the version number 303

19 Beetcher *072 at 99 0043-44; see also id. at Abstract, 99 0034, 0037-38, Fig. 10 (See Ex. 5 for
English translation).
200 Silva Declaration at 4% 135-39.

58

DISH-Blue Spike 842
Exhibit 1005, Page 0082

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

contained in the qualification verification trigger 301, or performing software, in
being larger than it is given (Step 1006). In this case, the lock checking feature 422
does not perform treatment beyond it, but a system proceeds to execution of the
next target code command in a software module.2%!

Moreover, Beetcher 072 teaches that the triggering instructions will be encoded into the
code resources controlling software functionality:

[An] additional barrier|]| is defining a qualification verification trigger, as other
functions of a certain are performed simultaneously.... This alternate function must
be selected so that any compiled software modules may include some commands
which perform that function quite reliably. When having coincided in these criteria,
the compiler can generate automatically the target code which performs the
alternate function (it is also a qualification verification trigger simultaneously with
it) as a part of the usual compilation order. This definition should bring about the
important barrier to ‘patching’ of a target code which invalidates a qualification
verification trigger.??

And Beetcher "072 details that “a qualification verification trigger is also the direct instruction ...
which performs other useful work of a certain.... [I]f a trigger command is executed, the system

101 will perform other operations of a certain simultaneously with qualification verification.”2%*

Accordingly, Beetcher 072 discloses claim 11.
2. Beetcher ’072 Anticipates Independent Claim 12.
a) Preamble: “A method for encoding software code using a
computer having a processor and memory, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting.2%*

Nevertheless, Beetcher 072 discloses claim 12°s preamble. Specifically, Beetcher 072 describes

201 Beetcher 072 at 9 0043, Fig. 10.

202 1d. at 9 0044; see also id. at 90021, 0029 (See Ex. 5 for English translation); Silva
Declaration at 4 140.

203 Beetcher 072 at 9 0029 (Beetcher "072 specifies that these functions are those “which does
not need to divide, does not need to be ordering the operand for the processing and does not need
to be specified”) (See Ex. 5 for English translation); Silva Declaration at 9§ 140,

204 Claim 12°s preamble recites “a computer” and claim 12’s body recites “a computer system.”
It is unclear whether those elements refer to the same or separate computing devices. For

59

DISH-Blue Spike 842
Exhibit 1005, Page 0083

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

a method for encoding sofiware code using a computer with a processor and memory. Beetcher
072 details that the software distributor has “computer system 125 for development contain the
compiler 126 and the translator 127 where “[a] software module is recorded on the software
recording medium 112" and “generation/enciphered program 122 of a qualification grant key,
and the data base 123 containing customer data.”?% Beetcher *072 specifies these compiling and
key generating functions may be performed by a single computer.?°¢ Below annotated Figure 1
illustrates the distributor’s computer system distributing memory media 112 and complying

encoded software code:

purposes of this Request and using the broadest reasonable interpretation consistent with the
specification, it is assumed that the “computer” recited in the preamble is a device separate from
the “computer system.”

205 Beetcher *072 at 9 0024, see also id. at 10038 (See Ex. 5 for English translation).
206 Beetcher 072 at § 0024 (See Ex. 5 for English translation).

60

DISH-Blue Spike 842
Exhibit 1005, Page 0084

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

Sond

s i

e

s R

A e

S

s

i

o

Grvroosacn

o

E

“,

&

o
%

R

V\;{‘\,\Y(t‘"\\\\?“?&t«\‘ S

¥ >
oy

T

3
3
3

2

R

%,

)
P s)
28
7

A
% 7

i

Beetcher "072%s Figure 7 illustrates the software code being encoded to include

watermarking triggers decoded by the customer’s licensing information:

207

207 Beetcher 072 at 0038, Fig. 7 (See Ex. 5 for English translation).

61

DISH-Blue Spike 842
Exhibit 1005, Page 0085

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

RO SR AR

L

______________ 3

 FRESL . FO T fath L TR
R e PR RS

PR LR yw PUHERL LT

RS R e PUWMITIHRYF b T RN
AR BR e A R

¥

As such, .a POSITA would have understood that Beetcher *072% distributor compiles and
stores the encode software code using a processor and memory akin to the console™s CPU 102
and memory devices 1106-108. As expert Dr. Silva explains in his declaration (Ex. 9), Beetcher
208

"072’s computer would necessarily include a processor and memory in order:to function.

As such, Beetcher "072 teaches this preamble.2%

28 Silva Declaration at 9 147.
29 140 at 49 144-47,

DISH-Blue Spike 842
Exhibit 1005, Page 0086

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

b) Element 12.1: “storing a software code in said memory”

Beetcher "072 discloses element 12.1. Specifically, Beetcher *072 discloses a
development system 125 for compiling and translating for the software code.?'” Beetcher "072
details that the software code is stored as disks 112 in warehouse 120. A POSITA would have
understood that developer system 125 stores the compiled and translated code in memory and
records that code onto disks 112 for distribution to customers. As expert Dr. Silva explains in his
declaration (Ex. 9), Beetcher "072°s computer would necessarily include store software code in
memory in order to function.?!!
c) Element 12.2: “wherein said software code comprises a first

code resource and provides a specified underlying functionality
when installed on a computer system™

Beetcher "072 discloses element 12.2. Specifically, Beetcher 072 explaings that its
software code includes multiple code resources that include a first code resource.?!? Beetcher
’072’s code resources include software modules 300 (dashed box) including sub-objects within
the code, as shown below in annotated Figure 4 and Figure 3.2!* These sub-objects control
multiple functions of the software installed on the customer’s computer system 101.214 And
Beetcher "072’s software prevents unwanted “patching” of these sub-objects by including

entitlement verification triggering instructions 301.213

210 Beetcher 072 at 990024, 0038 (See Ex. 5 for English translation).
21 Gilva Declaration at 9§ 150.
12 Beetcher 072 at 990024, 0026-27 (See Ex. 5 for English translation).

213 Beetcher 072 at 990029, 0034, Fig. 4; see also id. at 10032, Fig. 3 (See Ex. 5 for English
translation).

24 Beetcher 072 at 990029, 0044 see also id. at Abstract, 190021, 0030, claim 3 (See Ex. 5 for
English translation).

215 Beetcher 072 at 990021, 0044; see also id. at Abstract, § 0009 (See Ex. 5 for English
translation).

63

DISH-Blue Spike 842
Exhibit 1005, Page 0087

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

SR

IIIIIISIRIRIIIIE

Sos iphpsrs,

A
¥
N
R
SN

¥ diiiang

AX e

&
Q;g:w\
P W
TRRE

sasanan

3
i
3

AR ARANA Saasan

v

§
N
S

64

DISH-Blue Spike 842
Exhibit 1005, Page 0088

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

FONENNEY IR aPORTs o8

The *842 Patent refers to sub-objects and a memory scheduler as examples of code
resources.”1¢ A POSITA would have understood that Beetcher *072°s module sub-objects are
sub-objects.?!”

Based on Beetcher "072°s description, a POSITA would have understood that one sub-
ij ect in-medule 300 is a first code resource providing a specified underlying funetionality when

installed on the customer’s computer system 101 and unlocked using the license information

(key)_zls

216 2842 Patent at 11:55-65, 15:36-42.
217 Silva Declaration at 19 153-54.
218 74 0t 9155,

635

DISH-Blue Spike 842
Exhibit 1005, Page 0089

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

d) Element 12.3: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Beetcher "072 discloses element 12.3. Beetcher "072 describes encoding its software code
by the distributor system, which includes development system 125 and marketing system 124,

via a “single computer systems may be physically used performs both of functions.””?1

Specifically, Beetcher 072 describes encoding a first license key into the software code where
that key is used to authorize access to the software product:

The software modules 300 are some program products of the compiled target code form
which is performed on the system 101.... [T]he code which can actually be executed
operates on the executable code level 403 as shown by the frame of the broken lines. The
executable code contains the qualification verification trigger 301 (only one is shown in
the figure) performed by the lock checking feature 422 of a horizontal microcode. 22°

This encoding is illustrated in Figure 3:

19 Beetcher 072 at 490024, 0029, 0044 (See Ex. 5 for English translation).

220 Beetcher *072 at § 0034; see also id. at 9 0020-21, 0028-29, 0032, 0037, 0040, 0041 (See Ex.
5 for English translation).

66

DISH-Blue Spike 842
Exhibit 1005, Page 0090

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

FONENNEY IR aPORTs o8

The computer in Beetcher "072°s development system 125 performs the encoding, as
shown m Figure 7 at step 704, detailed ag: “At Step 704, a program template identifies the
product niumber and version number, and it works as an input to the translator 127,
Automatically, the translator 127 generates most number of qualification verification triggers,
inserts this in the random position in a target code Lo

Moreover, the.computer in Beeteher *072%s development system 125 uses an encoding:
algorithm to.encode the first Heense key. Beetcher 2072 system uses a set of instructions, as

shown in Figure 7, to encode triggers into the software code to form the first license key:**?

221 Beetcher *072 at §0038; see also id. at 0024, Fig. 7 (See Ex. 5 for English translation);
Silva Declaration at 99 158-60.

222 Beetcher 072 at 9 0038; see also id. at 0024, Fig. 7 (See Ex. 5 for English translation);
Silva Declaration at 9 161,

67

DISH-Blue Spike 842
Exhibit 1005, Page 0091

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

The compiler begins the process by producing atemplate (step 702), next the template is
input into the translator (step 703); then the translator encodes the triggers/license keys into the
code (step 704), and finally the translator resolves references after key insertion to produce the
executable module.>® As such, a POSITA would have understood Beetcher "072’s Figure 7
illustrates an encoding algorithm.?** Beetcher’s encoding process is further described with

respect to clement 11.3.

223 Beetcher "072 at 0038, Fig. 7 (See Ex. 5 for English translation).
324 Silva Declaration at 162,

68

DISH-Blue Spike 842
Exhibit 1005, Page 0092

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Moreover, during the original prosecution, Patent Owner specified that “[e]ncoding using
akey and an algorithm is known.”??* As such, a POSITA would have understood that Beetcher
*072’s encoding technique necessarily includes a first license key and an encoding algorithm to
form a first license key encoded software code??®.

e) Element 12.4: “wherein, when installed on a computer system,
said first license key encoded software code will provide said
specified underlying functionality only after receipt of said first
license key”

Beetcher "072 discloses element 12.4. Specifically, Beetcher *072 explains that its first
license key encoded software code provides the specified underlying functionality only after
receipt of the first license key.??’ For instance, Beetcher *072 states:

[[Jnvalidating a qualification verification trigger, in order that the format of a target
code may support the compile course of the conventional type known by the
customer | - - or it may become suitable to add the barrier to ‘patching’ of a target
code which is changed. One of such the additional barriers is defining a
qualification verification trigger, as other functions of a certain are performed
simultaneously. In this case, it is important that the alternate function carried out
by the qualification verification trigger cannot carry out with other simple
commands. This alternate function must be selected so that any compiled software
modules may include some commands which perform that function quite reliably.
When having coincided in these criteria, the compiler can generate automatically
the target code which performs the alternate function (it is also a qualification
verification trigger simultaneously with it) as a part of the usual compilation order.
This definition should bring about the important barrier to ‘patching’ of a target
code which invalidates a qualification verification trigger.??8

And as described with respect to element 12.3, Beetcher *072 teaches encoding the triggering

instructions into the software code that is decoded via the first license key.??

223 Ex. 2, Prosecution History at 519.

226 Silva Declaration at 9 163.

227 Beetcher *072 at 490029, 0044; see also id. at Abstract, 99 0009, 0021, 0030, claim 3 (See
Ex. 5 for English translation).

228 Beetcher *072 at § 0044 (See Ex. 5 for English translation).
229 Silva Declaration at 9 166.

69

DISH-Blue Spike 842
Exhibit 1005, Page 0093

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

Beetcher 7072%s Figure 10, as provided below, illustrates providing the software’s
underlying functionality based on the first license key (trigger information).?® For instance,
Beeteher "072 explains:

Execution of the software module by the system 101 is made by what this is taken
out and performed for (Step 1002) (Step 1001) until a modular target code
command is completed (step 1003). When a command is the qualification
verification trigger 301 (Step 1004), the lock checking feature 422 is called. At Step
1003, the lock checking feature 422 accesses the product locking table entry 601 to
which it corresponds to the product number included in a qualification verification
trigger. The qualification for the version number in the product locking table 460
being equal to the version number 303 contained in the qualification verification
trigger 301, or performing software, in being larger than it is given (Step 1006).23!

20 11 at 49 167-69.
331 Beetcher *072 at 90043 (See Ex: 5 for English translation).

70

DISH-Blue Spike 842
Exhibit 1005, Page 0094

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Accordingly, Beetcher 072 discloses claim 12.

3. Beetcher ’072 Anticipates Independent Claim 13.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Beetcher "072 discloses claim 13’s preamble. Claim 13’s preamble is the same as claim 12°s
preamble. As explained above, Beetcher "072 discloses a method for encoding software using a
computer with a processor and memory. As such, Beetcher *072 teaches this preamble.?*?

b) Element 13.1: “storing a software code in said memory”

Element 13.1 is identical to element 12.1. As explained above, Beetcher 072 discloses
each limitation of element 12.1. For the same reasons, Beetcher *072 teaches element 13.1.%733

c) Element 13.2: “wherein said software code comprises a first
code resource and provides a specified underlying functionality
when installed on a computer system”

Element 13.2 is identical to element 12.2. As explained above, Beetcher 072 discloses
each limitation of element 12.2. For the same reasons, Beetcher 072 teaches element 13.2.234

d) Element 13.3: “moditying, by said computer, using a first
license key and an encoding algorithm, said software code, to
form a modified software code; and wherein said modifying
comprises encoding said first code resource to form an encoded
first code resource”

Beetcher "072 discloses element 13.3. As described with respect to element 12.3,

Beetcher "072’s distributor system includes a computer that encodes software code using a first

232 Silva Declaration at 9 172.
233 14 at 9 174,
24 14 at 9 176.

71

DISH-Blue Spike 842
Exhibit 1005, Page 0095

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

license key (e.g., triggering information) and an encoding algorithm (e.g., Figure 7). And
Beetoher "072’s encoding process modifies the software code by inserting triggering information
into the code.”*’ For instance, Beetcher 7072 details that its system inputs compiled software
code into a trans lator which modifies the code by “autom‘atically ... generat[ing] most number of
qualification verification triggers™ and “insert[ing] this in the random position in a target code,”
as shown in Figure 7’s steps 703 and 704.2%¢ Figure 3 illustrates this modifying by inserting

triggering information 301 to form a modified software code:

IR

335 Beetcher *072 at Y 0034, 0038; see also id. at 0024, Fig. 7 (See Ex. 5 for English
translation); Silva Declaration at 9 178.
36 Beetcher "072 at 90038 (See Ex. 5 for English translation).

DISH-Blue Spike 842
Exhibit 1005, Page 0096

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

As described with respect to element 12.2, Beetcher *072°s software code includes a
series of code resources corresponding to sub-objects. And Beetcher "072 teaches a code
resource is modified to encode the first code resource via the triggering information. >*” For
mstance, Beetcher "072 teaches:

[IJnvalidating a qualification verification trigger, in order that the format of a target
code may support the compile course of the conventional type known by the
customer] - - or it may become suitable to add the barrier to ‘patching’ of a target
code which is changed. One of such the additional barriers is defining a
qualification verification trigger, as other functions of a certain are performed
simultaneously. In this case, it is important that the alternate function carried out
by the qualification verification trigger cannot carry out with other simple
commands. This alternate function must be selected so that any compiled software
modules may include some commands which perform that function quite reliably.
When having coincided in these criteria, the compiler can generate automatically
the target code which performs the alternate function (it is also a qualification
verification trigger simultancously with it) as a part of the usual compilation order.
This definition should bring about the important barrier to ‘patching’ of a target
code which invalidates a qualification verification trigger.?’%

A POSITA would have understood that such modification results in an encoded first code

resource.¥?
Moreover, during the original prosecution, Patent Owner specified that ““[e|ncoding using

a key and an algorithm is known.”?** As such, a POSITA would have understood that Beetcher

*072’s encoding technique necessarily includes a first license key and an encoding algorithm to

form a modified encoded first code resource.?!

237 Beetcher 072 at 990021, 0044; see also id. at Abstract, § 0009 (See Ex. 5 for English
translation).

238 Beetcher 072 at § 0044 (See Ex. 5 for English translation).
239 Silva Declaration at 9 178-79.

20 Ex. 2, Prosecution History at 519.

21 Gilva Declaration at 9 180.

73

DISH-Blue Spike 842
Exhibit 1005, Page 0097

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

e) Element 13.4: “wherein said modified software code comprises
said encoded first code resource, and a decode resource for
decoding said encoded first code resource”

Beetcher "072 discloses element 13.4. Beetcher "072 explains that its modified software.
code includes a decode resource for decoding the encoded first code resource. Specifically,
Beetcher "072 teaches that executing a trigger 301 invokes check lock function 422, which
results in accessing “unlock (decode key)” function 430 upon confirmation that the customer
possesses the software’s license key.?"? Beetcher "072%s Figure 4, as annotated below, illustrates

the decode resource (dashed perimeter) of the modified software code 2

B A S

22 Bectoher *072 at 9 0041, 0043, Figs. 9b, 10; see also id. at 9 0031-32, 0034, 0040 (See Ex.
5 for English translation).
3 Silva Declaration at ¥ 183.

74

DISH-Blue Spike 842
Exhibit 1005, Page 0098

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

f Element 13.5: “wherein said decode resource is configured to
decode said encoded first code resource upon receipt of said
first license key”

Beetcher "072 discloses element 13.5. Beetcher "072 specifies that its decode resource
decodes the encoded first code resource upon receipt of the license key. Beetcher "072, for
example, states that “the qualification grant key enciphered from the suitable entry in the product
key table 450 in which the lock release routine 430 was coded ... is taken out ... and a
qualification grant key is decoded Subsequently, at Step 928, a qualification verification
trigger is retried and execution of a program is continued.”*** And Beetcher "072’s Figure 9b
illustrates accessing the decode resource to decode the encoded first code resources based on the

entitlement key, reflected in steps 921 to 928:

244 Beetcher *072 at 0041 (See Ex. 5 for English translation).

75

DISH-Blue Spike 842
Exhibit 1005, Page 0099

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

TR ORI

As such,-a POSITA would have understoed that Beetcher "072’s decode resource is
configured to decode the encoded first code resource based on first license key.***
Accordingly, Beetcher 2072 discloses claim 13.
4. Beetcher *072 Anticipates Independent Claim 14.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,

Beetcher *072 discloses claim 14°s preamble. Claim 14’s preamble is the same as each of claim

2 Gilva Declaration at 9 186.

76

DISH-Blue Spike 842
Exhibit 1005, Page 0100

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

12 and 13’s preamble. As explained above, Beetcher "072 discloses a method for encoding
software using a computer with a processor and memory. As such, Beetcher "072 teaches this
preamble.?4¢
b) Element 14.I: “storing a software code in said memory”
Element 14.1 is identical to element 12.1. As explained above, Beetcher 072 discloses
each limitation of element 12.1. For the same reasons, Beetcher “072 teaches element 14.1.27
c) Element 14.2: “wherein said software code defines software
code interrelationships between code resources that result in a

specified underlying functionality when installed on a
computer system”

Beetcher "072 discloses element 14.2. Beetcher “072 details that its software code is
compiled into executable code by compiler 126. This compiler works with translator 127 to
compile the software sub-objects and insert triggering information.?*® And Beetcher *072
specifies that translator 127 generates the verification triggers and randomly inserts the triggers
into the target code.?* Translator 127 then resolves references to the positions of the triggers in
the target code, which corresponds to defining code interrelationships between code resources.?*

As shown in steps 701 and 702 of Figure 7, Beetcher 072 teaches its software code is input into

compiler 126 that produces a template of the software code: 2!

26 14/, at 4 190.

27 14 at 9 192.

248 Beetcher 072 at 9 0034 (See Ex. 5 for English translation).

249 Beetcher *072 at 0038 (See Ex. 5 for English translation).

250 Beetcher 072 at 4 0038 (See Ex. 5 for English translation); Silva Declaration at ¥ 194.

231 Beetcher 072 99 0034, 0038, Fig. 7, see also id. at 170024, 0029, 0033 (See Ex. 5 for
English translation).

77

DISH-Blue Spike 842
Exhibit 1005, Page 0101

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

A POSITA would have understood that this software code template also defines the eode
interrelationships between the code resources.™* As Patent Owner specified during tlie original
prosecution, software code interrelationships are defined during the compiling process of
conventional software applications:

What the examiner has implied by alleging that the "specification ... fails to teach
or mention software code interrelationships™ s that sofiware code
interrclationships were somchow unknown:in the art, which clearly is not the case.
As admitted, in the specification at the beginning of paragraph [0051], an
"application” comprises "sub-ohjects" whose "order in the computer memory is of
vital importance” in order to perform an intended function. And as admitted further
in paragraph [0031], "When a program is compiled, then, it consists of a
collection of these sub-objects, whose exact erder or arrangement in.memory
is mot important, so long as’ any sub-object which uses another sub-cobject
knows where in memory it can be found.” Paragraph [(0051] of course refers

232 Silva Declaration at 1% 194-95.

78

DISH-Blue Spike 842
Exhibit 1005, Page 0102

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

to conventional applications. Accordingly, that is admittedly a discussion of
what is already know by one skilled in the art. Accordingly, the examiner's
statement that the specification lacks written description support for "software code
interrelationships" is inconsistent with the fact that such interrelationships were
explained in paragraphs [0051] and [0052] as a fundamental basis of pre-
existing modem computer programs.>?

Moreover, during the original prosecution, Patent Owner specified that
“interrelationships between code resource are not that which is novel.”?** Based on the Patent

Owner’s concessions, it is clear that a POSITA would have understood that Beetcher *072°s code

necessarily defines code interrelationships between code resources.?>*

Beetcher "072 further teaches that the code resource interrelationships specify the

underlying application functionalities when installed on the customer’s computer 101. For

instance, Beetcher "072’s software code includes multiple entitlement verification triggers.?>

And Beetcher "072 details that certain code resources include triggering instructions that control
the underlying functionalities of the software code:

[An] additional barrier[] is defining a qualification verification trigger, as other
functions of a certain are performed simultaneously.... This alternate function must
be selected so that any compiled software modules may include some commands
which perform that function quite reliably. When having coincided in these criteria,
the compiler can generate automatically the target code which performs the
alternate function (it is also a qualification verification trigger simultaneously with
it) as a part of the usual compilation order. This definition should bring about the
important barrier to ‘patching” of a target code which invalidates a qualification
verification trigger.?*’

Beetcher "072 further explains that “a qualification verification trigger is also the direct

instruction ... which performs other useful work of a certain. ... [I|f a trigger command is

233 Ex. 2, Prosecution History at 519.

234 Id. at 519.

233 Silva Declaration at 9 196.

236 Beetcher 072 at 490021, 0038, 0041, Fig. 3; see also id. at 0029, 0034, 0043-44 (See EX.
5 for English translation).

357 Beetcher *072 at § 0044; see also id. at 190021, 0029 (See Ex. 5 for English translation).

79

DISH-Blue Spike 842
Exhibit 1005, Page 0103

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

executed, the system 101 will perform other operations of a certain simultaneously with
qualification verification.”?’® As such, a POSITA would have understood that the code
interrelationships between Beetcher "072’s code resources result in a specified underlying
functionality once installed. >

d) Element 14.3: “encoding, by said computer using at least a first

license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Element 14.3 is identical to element 12.3. As explained above, Beetcher 072 discloses
each limitation of element 12.3. For the same reasons, Beetcher 072 teaches element 14.3.

Moreover, during the original prosecution, Patent Owner specified that “[e|ncoding using
akey and an algorithm is known™ and that “an interrelationship in software code is necessarily
defined by digital data, and digital data can obviously be encoded by an encoding process.”?¢? As
such, a POSITA would have understood that Beetcher "072°s encoding technique necessarily
includes a first license key and an encoding algorithm to form a first license key encoded
software code.

€) Element 14.4: “in which at least one of said software code
interrelationships are encoded”

Beetcher "072 discloses element 14.4. As described with respect to element 14.2,
Beetcher "072 teaches that its software code defines code interrelationships between code
resources and triggering information 301 in the code control certain underlying software

functionality. And Beetcher "072 details that triggering information 301 is encoded into the

238 Beetcher 072 at 9 0029 (Beetcher "072 specifies that these functions are those “which does
not need to divide, does not need to be ordering the operand for the processing and does not need
to be specified”) (See Ex. 5 for English translation).

239 Silva Declaration at 9 197-98.
260 Ex. 2, Prosecution History at 519.

80

DISH-Blue Spike 842
Exhibit 1005, Page 0104

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

software code.?%! For instance, Beetcher *072 explains that the triggering instructions will be
encoded into the code resources controlling software functionality:

[An] additional barrier[] is defining a qualification verification trigger, as other
functions of a certain are performed simultaneously.... This alternate function must
be selected so that any compiled software modules may include some commands
which perform that function quite reliably. When having coincided in these criteria,
the compiler can generate automatically the target code which performs the
alternate function (it is also a qualification verification trigger simultaneously with
it) as a part of the usual compilation order. This definition should bring about the
important barrier to ‘patching’ of a target code which invalidates a qualification
verification trigger.?

And Beetcher "072 details that “a qualification verification trigger is also the direct instruction ...

which performs other useful work of a certain.... [I]f a trigger command is executed, the system

101 will perform other operations of a certain simultancously with qualification verification.”?6?

Accordingly, a POSITA would have understood that this encoded triggering information

includes encoded code interrclationship of the coder resources. %

Thus, Beetcher "072 discloses claim 14,

C. SNQ-3: Claims 11, 12, 13, and 14 are Anticipated by Cooperman Under 35
U.S.C. § 102(a).

Cooperman anticipates claims 11, 12, 13, and 14 under 35 U.S.C. § 102(a).

261 Beetcher 072 at 990021, 0029, 0044 (See Ex. 5 for English translation).
262 Beetcher 072 at 9 0044, see also id. at 90021, 0029 (See Ex. 5 for English translation).

263 Beetcher 072 at 9 0029 (Beetcher "072 specifies that these functions are those “which does
not need to divide, does not need to be ordering the operand for the processing and does not need
to be specified™) (See Ex. 5 for English translation).

264 Silva Declaration at 49 201-02.

81

DISH-Blue Spike 842
Exhibit 1005, Page 0105

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

1. Cooperman Anticipates Independent Claim 11.
a) Preamble: “A method for licensed software use, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Cooperman discloses claim 11°s preamble. Specifically, Cooperman describes a method for use
of licensed software.?®* Cooperman, for instance, provides a method of encoding a license key
into software code where the code operates by “ask[ing] the user for personalization information,
which include the license code.”?%6 And Cooperman specifies that, to extract a digital watermark
essential to operate the software, “the user must have a key. The key, in turn, is a function of the
license information for the copy of the software in question.”?¢’

As such, Cooperman teaches this preamble. 26
b) Element 11.1: “loading a software product on a computer, said

computer comprising a processor, memory, an input, and an

output, so that said computer is programmed to execute said
software product”

Cooperman discloses element 11.1. Specifically, Cooperman’s system includes a
computer having a processor, memory, input, and output. Cooperman initially recognizes that
“la] computer application secks to provide a user with certain utilities or tools, that is, users
interact with a computer or similar device to accomplish various tasks and applications provide

222

the relevant interface.”?®” And Cooperman discloses loading software object code into “computer

memory for the purpose of execution.”?’? Cooperman further discusses that software products

265 Cooperman at 5:35-6:5, 11:24-33; see also id. at 3:24-31, 11:34-37, 12:13-35, claim 2.
266 1 at 11:24-33.

27 Id. at 12:13-16.

268 Silva Declaration at 4 208-10.

269 Cooperman at 3:16-20.

20 Id. at claim 3; see also id. at 13:31-36, claim 7.

82

DISH-Blue Spike 842
Exhibit 1005, Page 0106

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

include functions made from executable object code whose “order in the computer memory is of
vital importance.”?’! Accordingly, a POSITA would have understood that Cooperman’s
computer includes a processor and memory for executing the stored software code because, as
expert Dr. Silva explains, inclusion of a processor and memory is standard in such computers.?’?

Cooperman explains that the computer may “process|] a digital sample stream for the
purpose of modifying it or playing the digital sample stream.”?’”* A POSITA would have
understood that such digital sample stream processing is performed by a computer’s processor
and an output plays the digital sample stream.?’*

Cooperman further describes loading a software product on the computer, so the
computer can execute the software product. For instance, Cooperman further describes the
operation of the disclosed software product requires

1. Installing, i.e., loading, the software on the computer;
2. Asking the user to input a license code;

Generating, i.e., outputting, a decoding key after receiving the license code to
access the software resources.?’>

c) Element 11.2: “said software product outputting a prompt for
input of license information™

Cooperman discloses element 11.2. Specifically, Cooperman explains that its software
product requests that the user input license information, i.¢., a license key, into the computer

before the product can be used.?’® For instance, Cooperman explains that the software product

2 Id. at 7:1-5.

272 Silva Declaration at ¥ 212.

273 Cooperman at claim 4; see also id. at claims 5, 6 (processing digital sample stream and a map
list).

274 Silva Declaration at 4 213.

273 Cooperman at 11:24-34; Silva Declaration at § 214.

276 Cooperman 11:24-33; see also id. at Abstract, 3:24-28, 5:35-6:5, 11:6-8, 12:10-16.

83

DISH-Blue Spike 842
Exhibit 1005, Page 0107

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

prompts the user it input license information: 1) when it is run for the first time, after
installation, it asks the user for personalization information, which includes the license code.
This can include a particular computer configuration.”?’” Cooperman specifies that such license
codes are entered by the user “when prompted at start-up.”?’® A POSITA would have understood
this request corresponds to the software product outputting a prompt to input license
information.”

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 11.2. For instance, Patent Owner’s May 14, 2012 Appeal Brief
states that element 11.2 is taught by: ““1) when it is run for the first time, after installation, it asks
the user for personalization information, which includes the license code. This can include a

22280

particular computer configuration. Cooperman includes this same teaching, and thus

discloses element 11.228L,

d) Element 11.3: “said software product using license information
entered via said input in response to said prompt in a routine
designed to decode a first license code encoded in said software
product”

Cooperman discloses element 11.3. Specifically, Cooperman explains that its system
includes a routine designed to decode a first license code encoded in the software product based

on inputted license information. For instance, Cooperman states:

Given that there are one or more of these essential resources, what is needed to
realize the present invention is the presence of certain data resources of a type which

277 Id. at 11:25-28.
278 Id. at 1:25-28.
27 Silva Declaration at § 216.

280 Ex. 2, Prosecution History at 577 (original claim 58 issued as claim 11).
281 Silva Declaration at §217.

84

DISH-Blue Spike 842
Exhibit 1005, Page 0108

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

are amenable to the "stega-cipher" process described in the "Steganographic
Method and Device" patent application. %

And Cooperman discloses: “3) Once it has the license code, it can then generate the proper
decoding key to access the essential code resources.”® As explained regarding element 11.2,
Cooperman details that the user enters license information via an input in response to the prompt.

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 11.3. For instance, Patent Owner’s May 14, 2012 Appeal Brief
states that element 11.3 is taught by:

Given that there are one or more of these essential resources, what is needed to
realize the present invention is the presence of certain data resources of a type which
are amenable to the “stega-cipher” process described in the “Steganographic
Method and Device” patent U.S. Pat. No. 5,613,004 [issued from U.S. Application
No. 08/489,172].

* ok ok ok

3) Once it has the license code, it can then generate the proper decoding key to
access the essential code resources.?®*

Cooperman includes these same teachings, and thus discloses element 11.3.28°

Accordingly, Cooperman discloses claim 11.

282 Cooperman at 9:22-27; see also id. at 2:34-37, 4:7-17 (incorporating by reference U.S. Patent
Application No. 08/489,172 entitled “Steganographic Method and Device™).

83 Cooperman at 11:31-33.

84 Ex. 2, Prosecution History at 577 (original claim 58 issued as claim 11); see also id. at 664

(Patent Owner explaining that element 11.3 is met by teachings corresponding to Cooperman at
10:7-11:33).
285 Silva Declaration at 49 220-23.

85

DISH-Blue Spike 842
Exhibit 1005, Page 0109

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

2. Cooperman Anticipates Independent Claim 12.
a) Preamble: “A method for encoding software code using a
computer having a processor and memory, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting, 2%
Nevertheless, Cooperman discloses ¢laim 12°s preamble. Specifically, Cooperman describes a
method for encoding software code using a computer with a processor and memory. Cooperman
details that, during the software code assembly, the computer system will “choose one or several
essential code resources, and encode them into one or several data resources using the
stegacipher process.”?®” As expert Dr. Silva explains, Cooperman’s computer would necessarily
include a processor and memory in order to function.?®®

As such, Cooperman teaches this preamble.?%®

b) Element 12.I: “storing a software code in said memory”

Cooperman discloses element 12.1. Specifically, Cooperman describes techniques for
randomizing the location of software code stored in memory.?*® Cooperman explains that this
randomization makes the software code more resistant to patching and memory capture

analysis.”' As such, a POSITA would have understood that these techniques are used for code

286 Claim 12°s preamble recites “a computer” and claim 12’s body recites “a computer system.”
It is unclear whether those elements refer to the same or separate computing devices. For
purposes of this Request and using the broadest reasonable interpretation consistent with the
specification, it is assumed that the “computer” recited in the preamble is a device separate from
the “computer system.”

387 Cooperman at 10:13-16; see also id. at claim 6.

288 Silva Declaration at 9 227.

89 Id. at 99 226-28.

290 Cooperman at 3:32-37; see also id. at 4:1-6, 6:5-9, 13:23-46, 14:4-9.

2114 at 3:13-16, 14:37-15:18, claim 7.

86

DISH-Blue Spike 842
Exhibit 1005, Page 0110

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

stored in memory because, as expert Dr. Silva explains, storage of code in memory is standard in
computers like Cooperman’s.?*?

Cooperman further explains that its software code is compiled and assembled: “When
code and data resources are compiled and assembled into a precursor of an executable program
the next step is to use a utility application for final assembly of the executable application.”??
Cooperman also states that code resources are stored separately from applications, i.e., software,
code.?® A POSITA would have understood that Cooperman’s compiled and assembled
application code is stored in memory. As Dr. Silva explains, Cooperman’s computer would
necessarily include store software code in memory in order to function.??

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 12.1. For example, Patent Owner’s May 14, 2012 Appeal Brief
states that element 12.1 is taught by: “When code and data resources are compiled and assembled
into a precursor of an executable program the next step is to use a utility application for final
2296

assembly of the executable application.

Cooperman includes this same teaching, and thus discloses element 12.1.

22 Silva Declaration at 9 230.

293 Cooperman at 10:8-11; see also id. at 7:1-21.
294 Id. at 7:26-30.

295 Silva Declaration at §231.

296 Ex. 2, Prosecution History at 578 (original claim 59 issued as claim 12); see also id. at 415-16
(original claim 61, which issued as claim 13, includes the same limitation “wherein said software
code comprises a first code resource and provides a specified underlying functionality when
installed on a computer system™); Silva Declaration at §232.

87

DISH-Blue Spike 842
Exhibit 1005, Page 0111

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

c) Element 12.2: “wherein said software code comprises a first
code resource and provides a specified underlying functionality
when installed on a computer system™

Cooperman discloses element 12.2. Specifically, Cooperman explains that its software
code includes multiple code resources that include a first code resource.?” And Cooperman
discloses that its software code includes the code resources and provides an underlying
functionality when installed on the computer.?®® For instance, Cooperman states: “The basic
premise for this scheme is that there are a certain sub-set of executable code resources, that
comprise an application and that are ‘essential” to the proper function of the application.”?*?

As another example, Cooperman details that software applications include code resources
providing functionalities specified in the application:

The memory address of the first instruction in one of these sub-objects is called the
"entry point" of the function or procedure. The rest of the instructions comprising
that sub-object immediately follow from the entry point. Some systems may prefix
information to the entry point which describes calling and return conventions for
the code which follows, an example is the Apple Macintosh Operating System
(MacOS). These sub-objects can be packaged into what are referred to in certain
systems as "code resources," which may be stored separately from the application,
or shared with other applications, although not necessarily. Within an application
there are also data objects, which consist of some data to be operated on by the
executable code. These data objects are not executable. That is, they do not consist
of executable instructions. The data objects can be referred to in certain systems as
"resources."00

27 Cooperman at 10:11-29, 11:13-33; see also id. at Abstract, 7:26-30, 9:10-21, 13:31-36, claim
6

298 1d. at 7:19-36, 11:24-37; see also id. at $:30-33, 10:11-29.
299 14 at 8:30-33.
300 14 at 7:19-36.

88

DISH-Blue Spike 842
Exhibit 1005, Page 0112

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

The 842 Patent refers to sub-objects and a memory scheduler as examples of code resources.3%!

In this additional and alternative way, a POSITA would have understood that Cooperman’s sub-

objects and code resources. 0

During the original prosecution, Patent Owner confirmed that such teachings disclosed by
Cooperman meets element 12.2. For example, Patent Owner’s May 14, 2012 Appeal Brief states
that element 12.2 is taught by: “The basic premise for this scheme is that there are a certain sub-
set of executable code resources, that comprise an application and that are ‘essential’ to the
proper function of the application.”® As another example, Patent Owner’s May 14, 2012
Appeal Brief states this element is taught by:

The memory address of the first instruction in one of these sub-objects is called the
"entry point" of the function or procedure. The rest of the instructions comprising
that sub-object immediately follow from the entry point. Some systems may prefix
information to the entry point which describes calling and return conventions for
the code which follows, an example is the Apple Macintosh Operating System
(MacOS). These sub-objects can be packaged into what are referred to in certain
systems as "code resources," which may be stored separately from the application,
or shared with other applications, although not necessarily. Within an application
there are also data objects, which consist of some data to be operated on by the
executable code. These data objects are not executable. That is, they do not consist
of executable instructions. The data objects can be referred to in certain systems as
"resources."*04

Cooperman includes these same teachings, and thus discloses element 12.2.3%

301 °842 Patent at 11:55-65, 15:36-42.
302 Silva Declaration at 9 235-36.
303 Ex. 2, Prosecution History at 578 (original claim 59 issued as claim 12).

304 Id. at 579-80 (original claim 61, which issued as claim 13, includes the same limitation
“wherein said software code comprises a first code resource and provides a specified underlying
functionality when installed on a computer system”).

393 Silva Declaration at 49 235-37.

89

DISH-Blue Spike 842
Exhibit 1005, Page 0113

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

d) Element 12.3: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Cooperman discloses element 12.3. Specifically, Cooperman describes encoding its
software code to form a first license key encode software code.3"® Cooperman details that this
encoding uses a first license key and an encoding algorithm.3*” For instance, Cooperman details
that “[t]he assembly utility can be supplied with a key generated from a license code generated
for the license in question.”?% And Cooperman states: “The utility will choose one or several
essential code resources, and encode them into one or several data resources using the
stegacipher process.”3%

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 12.3. For instance, Patent Owner’s May 14, 2012 Appeal Brief
states that “encoding, by said computer using at least a first license key and an encoding

algorithm, said software code” is taught by:

The assembly utility can be supplied with a key generated from a license code
generated for the license in question.

k ok koK

The utility will choose one or several essential code resources, and encode them
into one or several data resources using the stegacipher process.??

As another example, Patent Owner’s May 14, 2012 Appeal Brief states that “to form a first

license key encoded software code” is taught by:

306 Cooperman at 10:28-35, 11:6-15; see also id. at 2:27-31, 3:24-31, 12:13-23, claim 6.
307 Id. at 10:13-16, 11:9-11, claim 6.

308 74 at 11:9-11.

309 1 at 10:13-16; see also id. at claim 6.

310 Ex. 2, Prosecution History at 578 (emphasis in original) (original claim 59 issued as claim
12).

90

DISH-Blue Spike 842
Exhibit 1005, Page 0114

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

The purpose of this scheme is to make a particular licensed copy of an application
distinguishable from any other. It is not necessary to distinguish every instance of
an application, merely every instance of a license.

LI S

3) Once it has the license code, it can then generate the proper decoding key to
access the essential code resources.!!

Cooperman includes this same teaching, and thus discloses element 12.3.
Moreover, during the original prosecution, Patent Owner specified that “[e]ncoding using
a key and an algorithm is known.”*!? As such, a POSITA would have understood that
Cooperman’s encoding technique necessarily includes a first license key and an encoding
algorithm to form a first license key encoded software code.!?
€) Element 12.4: “wherein, when installed on a computer system,
said first license key encoded software code will provide said

specified underlying functionality only after receipt of said first
license key”

Cooperman discloses element 12.4. Specifically, Cooperman explains that its first license
key encoded software code provides the specified underlying functionality only after receipt of
the first license key.?!* For instance, Cooperman states: “Once it has the license code, it can then
generate the proper decoding key to access the essential code resources. Note that the
application...must contain the license code issued to the licensed owner, to access its essential
code resources.”!® Cooperman describes that these essential code resources correspond to the

underlying functionalities of the software program installed on the computer.3!6

311 Ex. 2, Prosecution History at 578-79 (original claim 59 issued as claim 12).

32 1d. at 519.

313 Silva Declaration at 99 240-43.

314 Cooperman at 10:28-35, 11:6-15; see also id. at 2:27-31, 3:24-31, 12:13-23, claim 6.
315 1d. at 11:31-37.

36 Id at 5:35-6:9, 11:6-8, 11:31-37, 12:10-16;, see also id. at 6:26-30, 7:1-5, 8:25-37, 9:14-21;
Silva Declaration at 99 246-47.

91

DISH-Blue Spike 842
Exhibit 1005, Page 0115

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Accordingly, Cooperman discloses claim 12.

3. Cooperman Anticipates Independent Claim 13.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Cooperman discloses claim 13°s preamble. Claim 13°s preamble is the same as claim 12’s
preamble. As explained above, Cooperman discloses a method for encoding sofiware using a
317

computer with a processor and memory. As such, Cooperman teaches this preamble.

b) Element 13.1: “storing a software code in said memory”

Element 13.1 is identical to element 12.1. As explained above, Cooperman discloses each
limitation of element 12.1. For the same reasons, Cooperman teaches element 13.1.

And during the original prosecution, Patent Owner confirmed that such a teaching
disclosed by Cooperman meets element 13.1. For instance, Patent Owner’s May 14, 2012 Appeal
Brief states that element 13.1 is taught by: “When code and data resources are compiled and
assembled into a precursor of an executable program the next step is to use a utility application
for final assembly of the executable application.”*'® As explained with respect to element 12.1,
Cooperman includes this same teaching.?!®

c) Element 13.2: “wherein said software code comprises a first

code resource and provides a specified underlying functionality
when installed on a computer system”

Element 13.2 is identical to element 12.2. As explained above, Cooperman discloses each

limitation of element 12.2. For the same reasons, Cooperman teaches element 13.2.32°

317 Silva Declaration at 99 249-50.

318 Ex. 2, Prosecution History at 579 (original claim 61 issued as claim 13).
319 Silva Declaration at 9 252.

320 1d. at 99 254-55.

92

DISH-Blue Spike 842
Exhibit 1005, Page 0116

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

And during the original prosecution, Patent Owner confirmed that such a teaching
disclosed by Cooperman meets element 13.2. For instance, Patent Owner’s May 14, 2012 Appeal
Brief states that element 13.2 is taught by:

The memory address of the first instruction in one of these sub-objects is called the
"entry point" of the function or procedure. The rest of the instructions comprising
that sub-object immediately follow from the entry point. Some systems may prefix
information to the entry point which describes calling and return conventions for
the code which follows, an example is the Apple Macintosh Operating System
(MacOS). These sub-objects can be packaged into what are ref erred to in certain
systems as "code resources," which may be stored separately from the application,
or shared with other applications, although not necessarily. Within an application
there are also data objects, which consist of some data to be operated on by the
executable code. These data objects are not executable. That is, they do not consist
of executable instructions. The data objects can be referred to in certain systems as
"resources."*?!

As explained with respect to element 12.2, Cooperman includes this same teaching.???

d) Element 13.3: “modifying, by said computer, using a first
license key and an encoding algorithm, said software code, to
form a modified software code; and wherein said modifying
comprises encoding said first code resource to form an encoded
first code resource”

Cooperman discloses element 13.3. Specifically, Cooperman describes modifying its
software code using a license key and an encoding algorithm.*?* And Cooperman’s modification
includes encoding the first code resource to form an encoded first code resource. For instance,
Cooperman teaches code modification using a “digital watermarking™ process to encode a code

resource: “The first method of the present invention described involves hiding necessary ‘parts’

or code ‘resources’ in digitized sample resources using a “digital watermarking’ process, such as

321 Ex. 2, Prosecution History at 579-80 (original claim 61 issued as claim 13).
322 Silva Declaration at 9 254-55.

323 Cooperman at 3:10-31, 8:25-30, 10:8-31; see also id. at 2:19-37, 4:7-17, 11:6-24, claim 6.

93

DISH-Blue Spike 842
Exhibit 1005, Page 0117

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

that described in the ‘Steganographic Method and Device’ patent application.”*?* Cooperman
further discloses “watermarking with ‘keys’ derived from license codes... and using the
watermarks encoded with such keys to hide an essential subset for the application code
resources.”?* A POSITA would have understood that such modification results in a modified
software code.??6

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 13.3. For instance, Patent Owner’s May 14, 2012 Appeal Brief
states that element 13.3 is taught by: “The first method of the present invention described
involves hiding necessary “parts’ or code ‘resources’ in digitized sample resources using a
‘digital watermarking’ process, such as that described in the ‘Steganographic Method and

Device’ patent application.”?’

Cooperman includes this same teaching, and thus discloses
element 13.3.3%8

Moreover, during the original prosecution, Patent Owner specified that ““[e|ncoding using
akey and an algorithm is known.””3? As such, a POSITA would have understood that

Cooperman’s encoding technique necessarily includes a first license key and an encoding

algorithm to form a modified encoded first code resource.?*?

324 Id. at 8:25-30; see also id. at 2:34-37, 4:7-17 (incorporating by reference U.S. Patent
Application No. 08/489,172 entitled “Steganographic Method and Device™).

325 Cooperman at 5:15-22.
326 Silva Declaration at 4 257

327 Ex. 2, Prosecution History at 580 (original claim 61 issued as claim 13).
328 Silva Declaration at ¥ 258

329 Ex. 2, Prosecution History at 519.
330 Silva Declaration at 9 259.

94

DISH-Blue Spike 842
Exhibit 1005, Page 0118

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

€e) Element 13.4: “wherein said modified software code comprises
said encoded first code resource, and a decode resource for
decoding said encoded first code resource”

Cooperman discloses element 13.4. Specifically, Cooperman explains that its modified
software code includes a decode resource for decoding the encoded first code resource.??! For
instance, Cooperman describes the modified application code has a decoding resource: “Note
further that the application contains a code resource which performs the function of decoding an
encoded code resource from a data resource.”®¥? And Cooperman further discloses that “[o]nce
[the application] has the license code, it can then generate the proper decoding key to access the
essential code resources.”?3

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 13.4. For instance, Patent Owner’s May 14, 2012 Appeal Brief
states that element 13.4 is taught by: “Note further that the application containg a code resource
which performs the function of decoding an encoded code resource from a data resource.”**
Cooperman includes this same teaching, and thus discloses element 13.4.33

f) Element 13.5: “wherein said decode resource is configured to

decode said encoded first code resource upon receipt of said
first license key”

Cooperman discloses element 13.5. Cooperman specifies that its decode resource decodes
the encoded first code resource upon receipt of the license key:

The application must also contain a data resource which specifies in which data
resource a particular code resource is encoded. This data resource is created and

31 Cooperman at 11:17-20, claim 6; see also id. 11:31-33, claim 5.
332 1d. at 11:17-20.
333 Id. at 11:31-33; Silva Declaration at 9§ 262.

334 Ex. 2, Prosecution History at 580 (original claim 61 issued as claim 13).
333 Silva Declaration at 9 263.

95

DISH-Blue Spike 842
Exhibit 1005, Page 0119

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

added at assembly time by the assembly utility. The application can then operate as
follows:

1) when it is run for the first time, after installation, it asks the user for
personalization information, which includes the license code. This can include a
particular computer configuration;

2) it stores this information in a personalization data resource;
3) Once it has the license code, it can then generate the proper decoding key

to access the essential code resources.33¢

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 13.5. For instance, Patent Owner’s May 14, 2012 Appeal Brief
states that element 13.5 is taught by:

The application must also contain a data resource which specifies in which data
resource a particular code resource is encoded. This data resource is created and
added at assembly time by the assembly utility. The application can then operate as
follows:

1) when it is run for the first time, after installation, it asks the user for
personalization information, which includes the license code. This can include a
particular computer configuration;

2) it stores this information in a personalization data resource;

3) Once it has the license code, it can then generate the proper decoding key
to access the essential code resources.??’

Cooperman includes this same teaching, and thus discloses element 13.5.338
Accordingly, Cooperman discloses claim 13.
4. Cooperman Anticipates Independent Claim 14.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,

Cooperman discloses claim 14°s preamble. Claim 14°s preamble is the same as each of claim 12

336 Cooperman at 11:20-33; see also id. at claims 5 and 6.
337 Ex. 2, Prosecution History at 580-81 (original claim 61 issued as claim 13).
338 Silva Declaration at 9 266-68.

96

DISH-Blue Spike 842
Exhibit 1005, Page 0120

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

and 13’s preamble. As explained above, Cooperman discloses a method for encoding software
using a computer with a processor and memory. As such, Cooperman teaches this preamble.*

b) Element 14.I: “storing a software code in said memory”

Element 14.1 is identical to element 12.1. As explained above, Cooperman discloses each
limitation of element 12.1. For the same reasons, Cooperman teaches element 14.1.

And during the original prosecution, Patent Owner confirmed that such a teaching
disclosed by Cooperman meets element 14.1. And as another example, Patent Owner’s May 14,
2012 Appeal Brief states that element 14.1 is taught by: “When code and data resources are
compiled and assembled into a precursor of an executable program the next step is to use a utility
application for final assembly of the executable application.”?? As explained with respect to
element 12.1, Cooperman includes this same teaching,**!

c) Element 14.2: “wherein said software code defines software
code interrelationships between code resources that result in a

specified underlying functionality when installed on a
computer system”

Cooperman discloses element 14.2. Specifically, Cooperman explains that its software
code establishes software code interrelationships between code resources.** For instance,
Cooperman details that its software code includes a special code resource, such a memory
scheduler, that knows the code interrelationships of all other code resources:

Under the present invention, the application contains a special code resource which

knows about all the other code resources in memory. During execution time, this

special code resource, called a "memory scheduler,” can be called periodically, or
at random or pseudo random intervals, at which time it intentionally shuffles the

339 Silva Declaration at §9270-71.

30 Ex. 2, Prosecution History at 581 (original claim 62 issued as claim 14); see also id. at 415-16

(Patent Owner explaining that element 14.1 is met by teachings corresponding to Cooperman at
13:31-36).
31 Silva Declaration at ¥ 273.

32 Cooperman at 14:35-15:17.

97

DISH-Blue Spike 842
Exhibit 1005, Page 0121

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

other code resources randomly in memory, so that someone trying to analyze
snapshots of memory at various intervals cannot be sure if they are looking at the
same code or organization from one "break" to the next. This adds significant
complexity to their job. The scheduler also randomly relocates itself when it is
finished. In order to do this, the scheduler would have to first copy itself to a new
location, and then specifically modify the program counter and stack frame, so that
it could then jump into the new copy of the scheduler, but return to the correct
calling frame. Finally, the scheduler would need to maintain a list of all memory
addresses which contain the address of the scheduler, and change them to reflect its
new location.’*?

Cooperman further describes its software code as including sub-objects that are code
resources that provide entries point to the software’s various functions:

The memory address of the first instruction in one of these sub-objects is called
the "entry point" of the function or procedure. The rest of the instructions
comprising that sub-object immediately follow from the entry point. Some systems
may prefix information to the entry point which describes calling and return
conventions for the code which follows, an example is the Apple Macintosh
Operating System (MacOS). These sub-objects can be packaged into what are
referred to in certain systems as "code resources," which may be stored separately
from the application, or shared with other applications, although not necessarily. 3

And Cooperman discloses that these code resources will be fixed once installed on the computer:
“Once the code resources of a program are loaded into memory, they typically remain in a fixed

position.”**

During the original prosecution, Patent Owner confirmed that such a teaching disclosed
by Cooperman meets element 14.2. For example, Patent Owner’s February 28, 2011 Remarks
explain that element 14.2 is taught by:

Under the present invention, the application contains a special code resource which
knows about all the other code resources in memory.

* %k ok ok

During execution time, this special code resource, called a "memory scheduler,”
can be called periodically, or at random or pseudo random intervals, at which time
it intentionally shuffles the other code resources randomly in memory, so that

33 Cooperman at 14:35-15:17; Silva Declaration at 9 275.
34 Cooperman at 7:19-30.
33 Id. at 13:31-32; Silva Declaration at § 277.

98

DISH-Blue Spike 842
Exhibit 1005, Page 0122

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

someone trying to analyze snapshots of memory at various intervals cannot be sure
if they are looking at the same code or organization from one "break” to the next.
This adds significant complexity to their job. The scheduler also randomly relocates
itself when it is finished. In order to do this, the scheduler would have to first copy
itself'to a new location, and then specifically modify the program counter and stack
frame, so that it could then jump into the new copy of the scheduler, but return to
the correct calling frame. Finally, the scheduler would need to maintain a list of all
memory addresses which contain the address of the scheduler, and change them to
reflect its new location. 46

And ag another example, Patent Owner’s May 14, 2012 Appeal Brief states that element
14.2 is taught by:

The memory address of the first instruction in one of these sub-objects is called the
"entry point" of the function or procedure. The rest of the instructions comprising
that sub-object immediately follow from the entry point. Some systems may prefix
information to the entry point which describes calling and return conventions for
the code which follows, an example is the Apple Macintosh Operating System
(MacOS). These sub-objects can be packaged into what are referred to in certain
systems as "code resources," which may be stored separately from the application,
or shared with other applications, although not necessarily.

k ok ok ok

Once the code resources of a program are loaded into memory, they typically
remain in a fixed position.**’

Cooperman includes these same teachings, and thus discloses element 14.2.343

Moreover, during the original prosecution, Patent Owner specified that
“interrelationships between code resource are not that which is novel.””**® The Patent Owner
continues by conceding:

What the examiner has implied by alleging that the "specification ... fails to teach

or mention ‘software code interrelationships™ iz that sofiware code

interrelationships were somehow unknown in the art, which clearly is not the case.
As admitted, in the specification at the beginning of paragraph [0051], an

36 Ex. 2, Prosecution History at 416 (original claim 62 issued as claim 14) see also id. at 669-71
(Patent Owner explaining that element 14.2 is met by teachings corresponding to Cooperman at
5:18-22, 6:30-7:36).

37 Id. at 581-82 (emphasis in original) (original claim 62 issued as claim 14).

348 Silva Declaration at 99 278-79.

39 Ex. 2, Prosecution History at 519.

99

DISH-Blue Spike 842
Exhibit 1005, Page 0123

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

"application" comprises "sub-objects" whose "orderin the computer memory
is of vital importance" in order to perform an intended function. And as
admitted further in paragraph [0051], "When a program is compiled, then, it
consists of a collection of these sub-objects, whose exact order or arrangement in
memory is not important, so long as any sub-object which uses another sub-object
knows where in memory it can be found." Paragraph [0051] of course refers to
conventional applications. Accordingly, that is admittedly a discussion of what
is already know by one skilled in the art. Accordingly, the examiner's statement
that the specification lacks written description support for "software code
mterrelationships" is inconsistent with the fact that such interrelationships were
explained in paragraphs [0051] and [0052] as a fundamental basis of pre-
existing modem computer programs.**

Based on the Patent Owner’s concession, it is clear that a POSITA would have understood that
Cooperman’s code resources necessarily define code interrelationships resulting in specific
application functionalities once installed on a computer.33!

d) Element 14.3: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Element 14.3 is identical to element 12.3. As explained above, Cooperman discloses each
limitation of element 12.3. For the same reasons, Cooperman teaches element 14.3.

And during the original prosecution, Patent Owner confirmed that such a teaching
disclosed by Cooperman meets element 14.3. For example, Patent Owner’s May 14, 2012
Appeal Brief states that element 14.3 is taught by:

The assembly utility can be supplied with a key generated from a license code
generated for the license in question.

k ok koK

The utility will choose one or several essential code resources, and encode them
into one or several data resources using the stegacipher process.

IR S

350 7
331 Silva Declaration at 49 280-82.

100

DISH-Blue Spike 842
Exhibit 1005, Page 0124

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

The purpose of this scheme is to make a particular licensed copy of an application
distinguishable from any other. It is not necessary to distinguish every instance of
an application, merely every instance of a license.

LI S

3) Once it has the license code, it can then generate the proper decoding key to
access the essential code resources.?*?

As explained with respect to element 12.3, Cooperman includes these same teachings.?*?
Moreover, during the original prosecution, Patent Owner specified that “[e]ncoding using

a key and an algorithm is known” and that “an interrelationship in software code is necessarily

defined by digital data, and digital data can obviously be encoded by an encoding process.”* As

such, a POSITA would have understood that Cooperman’s encoding technique necessarily

includes a first license key and an encoding algorithm to form a first license key encoded

355

software code.

€) Element 14.4: “in which at least one of said software code
interrelationships are encoded”

Cooperman discloses element 14.4. Specifically, Cooperman explains that its encoding
technique results in the encoding of a software code interrelationship. Cooperman, for instance,
states that the software code includes a data resource that specifies where in the code the code
resource 1s encoded:

The application must also contain a data resource which specifies in which data

resource a particular code resource is encoded. This data resource is created and
added at assembly time by the assembly utility. 3

332 Ex. 2, Prosecution History at 582 (original claim 62 issued as claim 14); see also id. at 416
(Patent Owner explaining that element 14.3 is met by teachings corresponding to Cooperman at
10:7-20).

353 Silva Declaration at 99 284-86.

334 Ex. 2, Prosecution History at 519.

355 Silva Declaration at ¥ 287.

356 Cooperman at 11:20-24

101

DISH-Blue Spike 842
Exhibit 1005, Page 0125

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

And Cooperman further discloses that one of the code resources, such a memory scheduler, is
encoded to include the software code interrelationships:

Under the present invention, the application contains a special code resource which
knows about all the other code resources in memory. During execution time, this
special code resource, called a "memory scheduler,” can be called periodically, or
at random or pseudo random intervals, at which time it intentionally shuffles the
other code resources randomly in memory, so that someone trying to analyze
snapshots of memory at various intervals cannot be sure if they are looking at the
same code or organization from one "break" to the next."**’

During the original prosecution, Patent Owner confirmed that such teachings disclosed by
Cooperman meets element 14.4. For instance, Patent Owner’s May 14, 2012 Appeal Brief states
that element 14.4 is taught by:

The application must also contain a data resource which specifies in which data
resource a particular code resource is encoded. This data resource is created and
added at assembly time by the assembly utility.

k ok ok ok

Under the present invention, the application contains a special code resource which
knows about all the other code resources in memory. During execution time, this
special code resource, called a "memory scheduler," can be called periodically, or
at random or pseudo random intervals, at which time it intentionally shuffles the
other code resources randomly in memory, so that someone trying to analyze
snapshots of memory at various intervals cannot be sure if they are looking at the
same code or organization from one "break" to the next."*%

Cooperman includes this same teaching, and thus discloses element 14.4.3%
Accordingly, Cooperman discloses claim 14.

D. SNQ-4: Claims 11, 12, 13, and 14 are Anticipated by Hasebe Under 35 U.S.C.
§§ 102(a), (e).

Hasebe anticipates claims 11, 12, 13, and 14 under 35 U.S.C. §§ 102(a), (e).

337 Cooperman at 14:35-15:8.
338 Ex. 2, Prosecution History at 577 (original claim 58 was issued as claim 11).
339 Silva Declaration at 49 289-91.

102

DISH-Blue Spike 842
Exhibit 1005, Page 0126

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

1. Hasebe Anticipates Independent Claim 11.

a) Preamble: “A method for licensed software use, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,

Hasebe discloses claim 11°s preamble. Hasebe describes a method of providing software to a

user in a non-executable form as well as separate license information.*® And Hasebe teaches that

the user uses the license information to convert the software into an executable form. ¢! Hasebe’s

Figure 6 illustrates this method for licensed software use:

STRT
A s
A)’fé m&g\ < 3
CORRESPONDING. ey
L

o s1a2
™ s
“TI8 THE DATA N

“‘(i\ LEGTTHATE?

{0 ¥

103

&

DISPLAY USER NAME

]

5188

EYXECUTE MAIN PROCRAM

e

Haisebe explains the steps of this method as follows:

When this software is actuated, as shown in FIG. 6, the CPU, first. of all, by
checking the contents ID in the license file, decides whether or not data
corresponding to the software that is being actuated is present in the license file
(step:S101), Then, if the corresponding data exists (step $101:Y), the CPU performs

360 Hagebe at Abstract, 2:47-3:15.
361 Id

103

DISH-Blue Spike 842
Exhibit 1005, Page 0127

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

a check of'the legitimacy of the corresponding data (step 102). In this step, the CPU
encodes the information consisting of contents ID and user name stored in the
license file using the signature key that is set as data in license display routine 25,
and if the result of this encoding agrees with the signature information, decides that
the data is legitimate.

If it is legitimate (step S102:0K), the CPU digplays the user name which is read
from the license file (step S103), and commences operation in accordance with the
main program (step S104).

Also, if the corresponding data is not present in the license file (step S101:N) or if
the content of the license file is found to be not legitimate (step S102:NG), i.e. if
the content of the license file is found to be different from the result of the
compilation performed by license file compilation unit 23, the CPU terminates
operation without displaying the user name or executing the main program.%?

As such, Hasebe teaches this preamble.3¢?

b) Element 11.1: “loading a software product on a computer, said
computer comprising a processor, memory, an input, and an
output, so that said computer is programmed to execute said
software product”

Hasebe discloses element 11.1. Hasebe describes a user’s computer having a processor
and memory.*%* For instance, Hasebe’s system includes a user terminal with a computer having a
“CPU [that operates] when the software that is the subject of the present license system is
actuated.” % And Hasebe’s computer includes memory for storing software:

The user terminal comprises a storage unit, a conversion unit, and license file
creating unit. In more detail, the storage unit is employed for storing the license
file and software converted to executable form. The license information, which
is generated by the license information generating unit in the management center,
is given to the conversion unit. The conversion unit then converts the software to
executable form using the license information and installs it in the storage unit. The
license file creating unit creates the license file which contains the user

32 Id. at 7:61-8:16.
363 Silva Declaration at 99 294-97.

364 Hasebe at 3:62-67, 6:21-25, 7:50-53.
365 Id. at 7:50-53; see also id. at 6:21-25, 7:7-10, 7:61-8:16, 9:6-9.

104

DISH-Blue Spike 842
Exhibit 1005, Page 0128

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

identification information confained in the license information, and stores the
license file in the storage unit. %

Moreover, Hasebe’s computer includes an input (e.g., a keyboard) and output (e.g., a display).*¢’

As shown below, Hasebe illustrates the user’s terminal in Figure 7:

kS
-
R I -
$ 3
3
-
3
!
: I o ke A
: Y RV 3
: ' % -
3 - DL LR &
| sorowet PRI el s
| evoome ;
ey

§ v
\ !
1 DSIAAIN L
¢ LI

B o s e i

Hasebe further discloses loading a'sottware product on the user’s computer wherein the
computer is programmed to execute the program. For instance, Hasebe details that its “software
in non-executable form is presented to a user, and license information: for converting the
software into executable form is informed to the user on condition of payment of a charge, and

the software is converted into executable form using this license information.”%® And Hasebe

366 I a1 2:66-3:10; see also id. at 3:62-67 (“convert|[ing] the software to executable form using
the license information stored in the license file and expands it into memory, and commences
operation™); 8:53-539,.claims 3, 14,

367 Hasebe at 7:1-10, 8:47-53, claim 5; see also id. at Abstract, 7:54-60, 8:6-21, 8:38-43, 9:33-39,
Figs. 6, 9.

368 Hasebe at 2:47-54; see also id. at claim 1.

DISH-Blue Spike 842
Exhibit 1005, Page 0129

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

further describes loading the software onto the user’s memory for execution.?*® And as shown

above, Hasebe’s Figure 6 illustrates executing software loaded onto the user’s computer using

the license information.37

c) Element 11.2: “said software product outputting a prompt for
input of license information™

Hasebe discloses element 11.2. Specifically, Hasebe explains that its software product
requests that the user input “license information™ into the computer via the keyboard before the
product can be used.?”! For instance, Hasebe explains that the sofiware product prompts the user
to input license information: “[N]otification of the contents ID etc to the management center and
notification of the encoded license information to the user terminal were performed by another
information transmission unit, such as the post... The user terminal is constituted such that
installation is effected using encoded license information input from the keyboard.”*"?

Moreover, Hasebe describes the use of a prompt to enter user ID information which
management center 12 uses to generate the encoded-version of the license information:

Request transmission unit 18 commences operation when the keyboard (not shown)

of user terminal 11 is operated in accordance with a prescribed procedure that is

predetermined as the procedure for request of information for removal of functional
restrictions. This request procedure includes keyboard input of the user ID and
contents ID; request transmission unit 18 transmits to management center 12 the

keyboard input information and the user's characteristic information, which is
constituted by the ID of the CPU which is employed in user terminal 11.37

369 Id. at 3:28-34, 3:57-67, 8:47-52; see also id. at 3:11-15, 8:17-23, Figs. 6, 9.
370 Silva Declaration at §9299-301.

37 Hasebe at 7:1-10, 8:34-42.

372 Id. at 8:34-42.

33 Id. at 7:1-10; see also id. at 6:60-7:10, claims 1-2.

106

DISH-Blue Spike 842
Exhibit 1005, Page 0130

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

A POSITA would have understood Hasebe’s request for the user ID and contents ID for
removal of functional restrictions corresponds to the software outputting a prompt to input
license information.?™

d) Element 11.3: “said software product using license information
entered via said input in response to said prompt in a routine
designed to decode a first license code encoded in said software
product”

Hasebe discloses element 11.3. Hasebe describes that the user’s computer receives
“encoded license information” from management center 12:

When a request for information for removal of functional restrictions is received

from user terminal 11, management center 12 sends to user terminal 11 encoded

license information. As a result, after request transmission unit 18 has been

operated, user terminal 11 receives encoded license information from management

center 12.37°
And Hasebe discloses that decoding unit 20 decodes a license code encoded in the software viaa
decode routine that uses the encoded license information.?”® For instance, Hasebe details that its
system will “make the software that is presented to the user encoded, and to make the conversion
information for decoding the encoded software. Also, ... it is possible to employ information, as
license information, which is the result of encoding the conversion information and user
identification information, combined in integrated manner.”?”” As shown below in annotated
Figure 1, Hasebe’s system includes the input of “encoded license information™ (dashed box) into

the user’s computer 11 which is used to decode the encoded software via decoding unit 20

(dashed oval):

374 Silva Declaration at 49 303-04.

375 Hasebe at 7:11-16; see also id. at 4:39-58, 6:42-50, Figs. 1, 7.
376 Id. at 7:17-31, 9:19-35.

377 Id. at 4:48-58; see also id. at 9:29-36.

107

DISH-Blue Spike 842
Exhibit 1005, Page 0131

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

3 "
; :
g s wuwmmw»«wméb«:h*\smme\ g x‘“‘) i
! EER TERINNL ; N
% ¥ i 3
3 § 3 3
¥
H SR : H
: ! ‘ :
} ! 3
v {
3
§

USER CHARADTERIENE

% 3
‘\\v-‘ {‘
By By
T e §
&‘&{“\Mm\i 3
RER ; .
m;?ﬁm@& ﬁ“& & SR S §
3 BER ‘%%\\%} SRR . §
1 RN ol HEAR <opy N
Y
- oo \aw“ -
b N IR
SITWERE | Q DA
@m& E §\ N R e A §
o b |
g i i, & &
Ly =T .
™ L BENRE Y %
; §§&m&m 5 2\ . ! .
3 igﬁg N SO H §
S N . 3 R
N
&
&

Moreover, Hasebe describes the decoding routine as:

(a) decoding the license information, which includes the key and user name,
(b)installing the encoded software using the decoded key,

(¢) writing the user name into the license display routine 25,

(dy displaying the user name, and

(€) eéxecuting the main portion of software program. 3’8

Hasebe’s Figure 8 illustrates the license code (routine 25) encoded into the software and main
routinie 26, and Figure 9 1llustrates the decode routine that uses the license information to decode

the license code:

378 Id. at 9:19-39.

108

DISH-Blue Spike 842
Exhibit 1005, Page 0132

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

Fic. 8 FiG. 9

:

%

R

5
... % 01
LICENSE DISPLAY RUUTNE R ————

PR RO R RN : it
H . E S22
f 01 DISPLAY DECODED USER NANE

i i
:z: B y MaD PROGRAM § } 35'03
: g; EXECITE. VAR PROGRAM
:
- s (w)
E
:
R

APOSIT A would have understood that Hasebe’s routine 25, with the encoded user name 27, is a.
license code because it is encoded into the software program and controls the accessibility of the
program.3”™ And as explained regarding element 11.2, Hasebe details that the user enters license
information via-an input in response to the prompt. 3%
Accordingly, Hasebe discloses claim 11.
2. Masebe Anticipates Independent Claim 12.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, the method
comprising”

Under the broadest reasonable construction, the preamble is non-limiting.3®!

Nevertheless, Hasebe discloses claim 12’s preamble. Specifically, Hasebe describes a method for

37 Silva Declaration at §9307-11.

%0 7d. at 312,

3?1 Claim 12’s preamble recites *“a computer” and claim 12’s body recites “a computer system.”
It is unclear whether those elements refer to the same or separate computing devices. For
purposes of this Request and using the broadest reasonable interpretation consistent -with the
specification, it is assumed that the “computer” recited in the preamble i a device separate from
the “computer system.”

109

DISH-Blue Spike 842
Exhibit 1005, Page 0133

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

encoding software code using a computer with a processor and memory. Hasebe details that
management center 32 generates the software code provided to the user via CD-ROM. %2
Alternatively, Hasebe’s software code may be downloaded from the management center.*¥* And
Hasebe explains that the link-up unit 15 of the management center performs “processing”
reversed by separating unit 21.3% As such, A POSITA would have understood that the
management center includes a processor and memory to create these CD-ROMs and to provide
the downloading capability. As expert Dr. Silva explains, Hasebe’s computer would necessarily
include a processor and memory in order to function. *$

As such, Hasebe teaches this preamble.

b) Element 12.I: “storing a software code in said memory”

Hasebe discloses element 12.1. As described with respect to claim 12°s preamble,
Hasebe’s management center 32 either generates a CD-ROM containing the software code or
provides downloadable versions of the software code.?®® A POSITA thus would have understood
that Hasebe’s management center stores the software code in its memory for CD-ROM
generation or user downloading because, as Dr. Silva explains, storage of code in memory is
standard in computers like Hasebe’s.?®” And as shown in Hasebe’s Figure 1, as annotated below,

management center 14 includes a software database 14 (dashed box) capable of software storage:

382 Hasebe at 1:9-14, 6:9-13, 9:22-26.
383 1d. at 9:60-64.

384 Id. at 7:23-26, Fig. 1.

385 Silva Declaration at 49 314-17.

3% Hasebe at 6:9-13, 9:22-26, 9:60-64.
387 Silva Declaration at 9§ 319.

110

DISH-Blue Spike 842
Exhibit 1005, Page 0134

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

R R

. CEER TERAL

el
3

R o T

3
bé
57

ERERR

UOER SHANBUTERESRE

e s

Bibricccon I
R R R R SRR

g

B R T TN RY RV IV RVVEIRIPRY. SIENPRVIRIy L

]

S ¢ “‘-‘-‘3“’.1-‘2\";{“‘?‘)
Ay o aiatkbtees o Flnd 3&%_. A Y
o S EENGNEN 2 4 W rrwer LABE 3
N S ¥ LRGN Abacel o
o 3 RSRteh
CREEN feas . bl

RS g 3
3 IR A
&x\\x\x\xx\\\\\\\\\\\\\\\&

e
Sk ‘“«\“X;“’x\@
S

L eprrrrire,

,
:
4

©) Elentent 12.2: “wherein said software code comprises a first
code resource and provides-a specified underlying funectionality
when installed ona computer system”

Hasebe discloses element 12.2. Hasebe teaches that its software code includes multiple
code resources such as those used in license display routine 25.%%% Hasebe explains that routine
25 determines whether the user’s license information is legitimate and, if so, permits aceess to
the main program routine 26.%%° For instance, Hasebe states: “In the main program there are
defined the operating procedures relating to the proper functions of this software; in license
display routine 25, there is defined the content to be executed prior to execution of main program

26.7%% Hasebe illustrates routines 25 and 26 of the software code in Figures 5 and 8:

3%8 Hasebe at 7:55-8:9, 9:25-35, Figs. 5, 8.
38 Id. at 7:65-8:9.
390 1. at 7:55-60.

111

DISH-Blue Spike 842
Exhibit 1005, Page 0135

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

26 RAIN PROSYAN 1 a pROGRA

The "842 Patent refers to sub-objects, a memory scheduler, and data as examples of code
resources.>”! Hasebe’s routine 25 consists of software code that controls access to the underlying
functionality of the software’s main program, or sub-objects.*? In this additional and alternative
way, a POSITA would have understood that Hasebe’s routine 25 contains a first code
resource. 39

Moreover, Hasebes software code provides underlying functionalities when installed on
the user’s computer system (terminal 31). Hasebe, for instance, explains that the code’s routine

25 provides access to the main program medule 26 upon verification of the user’s license

information.’®*

391 * QA Patent at 11:55-63, 15:36-42.

392 Silva Declaration at 9 323-24.

393 Idl. at 9324

3 Hasebe at 7:65-8:9, 9:20-36; Silva Declaration at ¥ 325,

112

DISH-Blue Spike 842
Exhibit 1005, Page 0136

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

d) Element 12.3: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Hasebe discloses element 12.3. As discussed with respect to element 12.1, Hasebe’s
management center 32 provides the user the software code via CD-ROM or download from the
seller.*?® Hasebe details that the management center 32 encodes the software code:

[I]t is also possible to make the software that is presented to the user encoded, and
to make the conversion information for decoding the encoded software. Also, it is
possible to employ, in such a licensee notification system, license information
containing the user identification information in a form that cannot be separated
without special information. For example, it is possible to employ information, as
license information, which is the result of encoding the conversion information and
user identification information, combined in integrated manner. 3%

It is also possible to constitute the system such that, instead of the user name and
signature information, information representing the user name in encoded form is
stored in the license file, and, when the installed software is executed, the
information in the license file is decoded by the software and displayed.**’

With respect to the code illustrated in Figure 9, Hasebe explains that the customer’s computer
system “effects installation by decoding the software in the CD ROM using the software
decoding key, and generates the user name in encoded form by encoding the user name.”3%%

Moreover, Hasebe describes its encoding technique uses a license key and an encoding
algorithm. For instance, Hasebe states its system includes: “a DES (data encryption standard)
algorithm [| employed for encoding and decoding.”**® And Hasebe details that the system uses a
license key to encode the software code: “generat[ing] license information including user

identification information encoded with a characteristic key of the software.”* Figure 3, for

395 Hasebe at 6:9-13, 9:22-26, 9:60-64.

39 Id. at 4:48-58; see also id. at 7:32-38, 9:22-26.

397 Id. at 8:47-53.

398 1d. at 9:22-26.

399 Id. at 6:48-50.

400 14, at 4:40-43; see also id. at 6:33-47, 7:33-38, 9:19-26.

113

DISH-Blue Spike 842
Exhibit 1005, Page 0137

Request for Ex Parte Reexamination,
U.S. Patent No. 9,104,842

example, illustrates a license key in the management center’s sofiware database 14 used to

encode:the software:

CONTENTS {0 | DECODING KEY

ABCROUG EXRAXRKAX

As.such, a POSITA would have understood that Hasebe’s encoded sofiware code utilizes the
encoded license information to generate the claimed “first license key encoded software
code.”40
Moreover;.during the original prosecution, Patent Owner specified that “[¢]ncoding using
a key and an algorithm is known.™92 As such, a POSITA would have understood that Hasebe’s
encoding technique necessarily includes a first licensc key and an encoding algorithm to form a
first license key encoded software code. 0
e) Element 12.4: “wherein, when installed on a computer system,
said first license key encoded software code will provide said
specified underlying functionality only after receipt of said first
license key”

Hasebe discloses element 12.4. Hasebe describes the installation of the software code

upon verification of the first license key by the user’s computer.4% For instance, Hasebe details

401 gjlva Declaration at 9 328-30.

402 Ex, 2, Prosecution History at 519.

403 Silva Declaration at 9 331.

40 Hasebe at 3:5-15, 3:30-38, 9:19-39; see also id. at 7:32-38, 8:47-53.

114

DISH-Blue Spike 842
Exhibit 1005, Page 0138

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

the software code will provide access to specified underlying functionality of the code contained
in main program routine 26 only after receipt of the fust license key in license display routine
25:

(a) decoding the license information, which includes the key and user name,

{(b) installing the encoded software using the decoded key,

(¢) writing the user name into the license display routine 25,

(d) displaying the user name, and
(e) executing the main portion routine 26 of software program *5
And Hasebe’s Figure 9 illustrates the user’s ¢omputer providing the underlying functionality of

thie main program routing 26 after the receipt and decoding of the first license key:

Lo

-1G. 9

A POSITA would have understood that Hasebe’s main program routine 26 includes
specified underlying functionality of the first license key encoded software code accessible via
confirmation of the encoded license key. 1%

Accordingly, Hasebe discloses claim 12.

405 Hasebe at 9:19-39.
406 Silva Declaration at 19 334-36.

DISH-Blue Spike 842
Exhibit 1005, Page 0139

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

3. Hasebe Anticipates Independent Claim 13.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Hasebe discloses claim 13’s preamble. Claim 13’s preamble is the same as claim 12°s preamble.
As explained above, Hasebe discloses a method for encoding software using a computer with a

processor and memory. As such, Hasebe teaches this preamble.*0

b) Element 13.1: “storing a software code in said memory”
Element 13.1 is identical to element 12.1. As explained above, Hasebe discloses each
limitation of element 12.1. For the same reasons, Hasebe teaches element 13.1.4%8

c) Element 13.2: “wherein said software code comprises a first
code resource and provides a specified underlying functionality
when installed on a computer system™

Element 13.2 is identical to element 12.2. As explained above, Hasebe discloses each
limitation of element 12.2. For the same reasons, Hasebe teaches element 13.2.4%°
d) Element 13.3: “moditying, by said computer, using a first
license key and an encoding algorithm, said software code, to
form a modified software code; and wherein said modifying
comprises encoding said first code resource to form an encoded
first code resource”
Hasebe discloses element 13.3. As described with respect to element 12.2, Hasebe’s
system includes multiple code resources (e.g., license display routine 25) for accessing software

functionality.*'® Hasebe illustrates routine 235 and main program routine 26 of the software code

in Figures 5 and 8:

407 1d. at 9 338-39.
408 14, at 4 341.
409 1. at 4 343.

410 Hasebe at 7:55-8:9, 9:25-35, Figs. 5, 8; Silva Declaration at q 345.

116

DISH-Blue Spike 842
Exhibit 1005, Page 0140

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

26 RAIN PROSYAN 1 a pROGRA

411 in management

And as described with respect to element 12.3, Hasebe’s computer
center 12 modifies the software code to form an encoded first code resource.*!2 For example,
Hasebe’s software code 1s modified to include routing 25 used for verification of the user’s
license information, which permits execution of the software code.'!?

Hasebe discloses that its code modification uses a license key and an encoding algorithm,
as described with.-respect to element 12.3.414 Moreover, during the original prosecution, Patent
Owner specified that “[e]ncoding using a key and an algorithm is known.”*"> Ag such, a POSITA
would have understood that Hasebe’s encoding technique necessarily includes a first license key

and an encoding algorithm to form an encoded first code resource, %

411 Hasebe at 6:21-24.

M2 1 at 4:48-58, 8:47-53; see also id. at 7:32-38, 9:22-26; Silva Declaration at q 346.
13 Hascbe at 4:48-58, 8:47-53; Silva Declaration at ¥ 346.

14 Hasebe at 6:48-50, 4:40-43, Fig. 3; see also id. at 6:33-47, 7:33-38, 9:19-26.

415 Bx. 2, Prosecution History at 519.

416 Silva Declaration at 9 347.

117

DISH-Blue Spike 842
Exhibit 1005, Page 0141

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

€e) Element 13.4: “wherein said modified software code comprises
said encoded first code resource, and a decode resource for
decoding said encoded first code resource”

Hasebe discloses element 13.4. As described with respect to element 13.3, Hasebe’s
modified software code includes the encoded first code resource. And Hasebe details that user
terminal 11 includes decode unit 20 and separating unit 21 to produce the decoding key for the
relevant software code.*'” Hasebe’s user terminal sends the decoding key to the software
installation unit (Fig. 1°s unit 22 or Fig. 7°s unit 29), and “[i]|nstallation unit 29 effects
installation by decoding the software in the CD ROM using the software decoding key, and
generates the user name in encoded form by encoding the user name.”*'¥ As shown below in
annotated Figure 7, Hasebe’s user terminal 11 includes a decode resource including the
separating and decoding units 20, 21 (dashed box) and installation unit 22 (dashed oval) to

decode the encoded code resource for software execution:

417 Hasebe at 7:17-31.
48 14 at 7:27-39, 9:22-26.

118

DISH-Blue Spike 842
Exhibit 1005, Page 0142

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

1t
P — e e vy
§ 1B USER TERMNAL
| e USER 10 o
i e ;s -
3 %«"“@ ¢
| =R !
. CONTERTS B !
§ § X HA 8 -
! S USER CHARATTERISE

IFRRMATION {TPU-I -

N%%%N&M

.

{ s “NNR%RW ES
: R &}\ %\\ W e

NEWUATION L 281

S
‘\‘

A i

SRR R \\\“ AT ARNENAY RN RRVAR AR o S

As such, Hasebe teaches a decoding resource for decoding the encoded first code resource.

f) Element 13.5: “wherein said decode resource is configured to
decode said encoded first code resource upon receipt of said

first license key”

Hasebe discloses element 13.5. As described with respect to element 12.3; Hasebe details
that the system uses a license key to encode the software code: “generat|ing] license information
including user identification information encoded with a characteristic key of the software, ™20
And Hasebe specifies that its decode resource decodes the encoded first code résouiree upon

receipt of the license key. For instance, Hasebe teaches that theuser terminal receives the

encoded license information at decoding unit 20, de¢odes the mformation to produce the

412 Silva Declaration at 9 350.
420 Hasebe at 4:40-43; see also id. at 6:33-47, 7:33-38, 9:19-26, Fig. 3.

119

DISH-Blue Spike 842
Exhibit 1005, Page 0143

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

decoding key, and decodes the encode first.code resouree (routine 25) “by-decoding the software
in the CD ROM using the software decoding key.”**! Figure 7, as annotated below, shows the
decode resource (dashed box) receiving the first license key (dashed ovaly to decode the encoded

software —including the encoded first code resource:

0 LSRR IR ‘

: &

e HER B -
53R

§ N W 3

& LONTEN B :

3: & AAAAAA w
= USER CHARACTERBIS

|1 DREORMATEN OB -

BN &&ﬁs\ﬁ%&
woid \&5‘3@&“ AN

«m‘%&«ﬁx\\\&“‘;\w, N

B3
| ENCODED LICENSE

s %
$: 3
i WRTE \\ R
S i O e
& §£&§§§ R
¥

R E
SRR AR

SRR R

SR

Aceordingly, Hasebe discloses claim 13.

421 1d. at 7:27-39, 9:22-26; Silva Degclaration at §353.

120

DISH-Blue Spike 842
Exhibit 1005, Page 0144

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

4. Hasebe Anticipates Independent Claim 14.

a) Preamble: “A method for encoding software code using a
computer having a processor and memory, comprising”

Under the broadest reasonable construction, the preamble is non-limiting. Nevertheless,
Hasebe discloses claim 14°s preamble. Claim 14’°s preamble is the same as each of claim 12 and
13’s preamble. As explained above, Hasebe discloses a method for encoding software using a
422

computer with a processor and memory. As such, Hasebe teaches this preamble.

b) Element 14.I: “storing a software code in said memory”

Element 14.1 is identical to element 12.1. As explained above, Hasebe discloses each
limitation of element 12.1. For the same reasons, Hasebe teaches element 14.1.423
c) Element 14.2: “wherein said software code defines software
code interrelationships between code resources that result in a

specified underlying functionality when installed on a
computer system”

Hasebe discloses element 14.2. Hasebe explains that its software code interrelates code
resources relating to routines 25 and 26 upon verification of the license key.*?* For instance,
Hasebe details that its sofiware code includes routine 25 which permits access to the main
program routine 26 upon validation of user’s license information.*** Hasebe states: “In the main
program there are defined the operating procedures relating to the proper functions of this
software; in license display routine 25, there is defined the content to be executed prior to
execution of main program 26.42¢ Hasebe illustrates routines 25 and 26 of the software code in

Figures 5 and 8:

422 Silva Declaration at § 356-57.
423 14 at 9359,

424 Hasebe at 7:55-8:9, Figs. 5, 8, 9.
45 1d. at 7:65-8:9.
426 14 at 7:55-60.

121

DISH-Blue Spike 842
Exhibit 1005, Page 0145

Request for Ex Parte Reexamination,
11.8. Paterit No, 9,104,842

' TLCENST preRay woUTNE

25 1| DISPLAY ROUTEE 1B e
26 RAIN PROSYAN 1 a pROGRA

Moreover, the "842 Patent refers to sub-objects and a memory scheduler as examples of
code resources.*?” Hasebe’s routine 25 contains a sub-object of the software code because it
controls access to the underlying functionality of the software’s main program.*?® And HHasebe
specifies routine 25 “directly rewrite[es]” the software code when the software code is
decoded. ®® In this additional and alternative way, a POSITA would have understood that
Hasebe’s routines 25 and 26 are code:resources and that the software code defines software code
interrelationships between these code resources.*** And a POSITA would have understood that
the interrelationship between Hasebe’s routines 25 and 26 result in a specified underlying

functionality upon code installation.*3!

427 78472 Patent at 11:55-65, 15:36-42.
428 Silva Declaration at 19361-62.

429 Hasebe at 5:10-32, 9:22-39.

430 Silva Declaration at 9 362.

B at 9362,

122

DISH-Blue Spike 842
Exhibit 1005, Page 0146

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

Moreover, during the original prosecution, Patent Owner specified that
“interrelationships between code resource are not that which is novel.” 32 Patent Owner
continued by conceding:

What the examiner has implied by alleging that the "specification ... fails to teach
or mention ‘'sofiware code interrelationships™ is that sofiware code
interrelationships were somehow unknown in the art, which clearly is not the case.
As admitted, in the specification at the beginning of paragraph [0051], an
"application" comprises "sub-objects" whose "order in the computer memory
is of vital importance" in order to perform an intended function. And as
admitted further in paragraph [0051], "When a program is compiled, then, it
consists of a collection of these sub-objects, whose exact order or arrangement in
memory is not important, so long as any sub-object which uses another sub-object
knows where in memory it can be found." Paragraph [0051] of course refers to
conventional applications. Accordingly, that is admittedly a discussion of what
is already know by one skilled in the art. Accordingly, the examiner's statement
that the specification lacks written description support for "software code
interrelationships" is inconsistent with the fact that such interrelationships were
explained in paragraphs [0051] and [0052] as a fundamental basis of pre-
existing modem computer programs.*3?

Based on the Patent Owner’s concession, it is clear that a POSITA would have understood that
Hasebe’s code resources necessarily define code interrelationships resulting in specific
underlying functionality once installed on a computer.***

d) Element 14.3: “encoding, by said computer using at least a first

license key and an encoding algorithm, said software code, to
form a first license key encoded software code”

Element 14.3 is identical to element 12.3. As explained above, Hasebe discloses each
limitation of element 12.3. For the same reasons, Hasebe teaches element 14.3.433
Moreover, during the original prosecution, Patent Owner specified that “[e|ncoding using

a key and an algorithm is known” and that “an interrelationship in software code is necessarily

2 Ex. 2, Prosecution History at 519.
433 1q
434 Qilva Declaration at § 363-64.

435 14, at 9 367.

123

DISH-Blue Spike 842
Exhibit 1005, Page 0147

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

defined by digital data, and digital data can obviously be encoded by an encoding process.”**¢ As
such, a POSITA would have understood that Hasebe’s encoding technique necessarily includes a
first license key and an encoding algorithm to form a first license key encoded software code.*}’

€) Element 14.4: “in which at least one of said software code
interrelationships are encoded”

Hasebe discloses element 14.4. As described with respect to element 14.2, Hasebe
teaches that its software code defines code interrelationships between code resources and routine
25 control certain underlying software functionality. Hasebe further details that its software code
is encoded:

[I]t is also possible to make the software that is presented to the user encoded, and
to make the conversion information for decoding the encoded software. Also, it is
possible to employ, in such a licensee notification system, license information
containing the user identification information in a form that cannot be separated
without special information. For example, it is possible to employ information, as
license information, which is the result of encoding the conversion information and
user identification information, combined in integrated manner. **8

It is also possible to constitute the system such that, instead of the user name and
signature information, information representing the user name in encoded form is
stored in the license file, and, when the installed sofiware is executed, the
information in the license file is decoded by the software and displayed.**

And Hasebe states that the software code includes the code interrelationships between routines
25 and 26, all of which would encoded as part of the software code.*4

Accordingly, Hasebe discloses claim 14,

43¢ Ex. 2, Prosecution History at 519.
437 Silva Declaration at 4 368.

438 Hasebe at 4:48-58; see also id. at 7:32-38, 9:22-26.
439 1d. at 8:47-53.
M0 14 at 7:55-8:9, Figs. 5, 8, 9; Silva Declaration at 9 370-71.

124

DISH-Blue Spike 842
Exhibit 1005, Page 0148

Request for Fx Parte Reexamination,
U.S. Patent No. 9,104,842

XI. CONCLUSION

As shown above, the prior art references establish that independent claims 11, 12, 13, and
14 are invalid as anticipated. In light of the substantial new questions of patentability raised by
these references, Requester respectfully seeks ex parte reexamination of claims 11, 12, 13, and
14 of the *842 Patent.

As identified in the attached Certificate of Service and in accordance with 37 C.F.R. §§
1.33(¢c) and 1.510(b)(5), a copy of the present Request, in its entirety, is being served to the
address of the attorney of record reflected in the publicly available records of the United States
Patent & Trademark Office’s Patent Application Information Retrieval system.

Please direct all correspondence in this matter to the undersigned.

Dated: May 16, 2018 By: /Joseph F. Edell/
Joseph F. Edell
Reg. No. 67,625
Counsel for Requester

Fisch Sigler LLP

5301 Wisconsin Avenue NW
Fourth Floor

Washington, DC 20015
Phone: (202) 362-3524

Fax: (202) 362-3501

125

DISH-Blue Spike 842
Exhibit 1005, Page 0149

Exhibit 1

DISH-Blue Spike 842
Exhibit 1005, Page 0150

a2 United States Patent

Moskowitz

US009104842B2

(10) Patent No.: US 9,104,842 B2
45) Date of Patent: Aug. 11,2015

(54)

(76)

")

(60)

(51)

(52

DATA PROTECTION METHOD AND DEVICE (58) Field of Classification Search

(O O HO4L 63/0428; HO4L 2209/608;
Inventor: Scott A. Moskowitz, Sunny Isles Beach, HO4L 2209/60
FL (US) See application [ile for complete search history.
Notice: Subject to any disclaimer, the term of this (56) References Cited

patent is extended or adjusted under 35
U.S.C. 154(b) by 1965 days.

Appl. No.: 11/895,388

Filed: Aug. 24,2007

US 2008/0016365 Al

Prior Publication Data

Jan. 17, 2008

Related U.S. Application Data

U.S. PATENT DOCUMENTS

3,947,825 A 3/1976 Cassada
3,984,624 A 10/1976 Waggener
3,986,624 A 10/1976 Cates, Jr. et al.
4,038,596 A 7/1977 Lee
4,200,770 A 4/1980 Hellman et al.
4,218,582 A 8/1980 Hellman et al.
4,339,134 A 7/1982 Macheel
4390,898 A 6/1983 Bond el al.
4,405,829 A 9/1983 Rivest et al.
4424414 A 1/1984 Hellman el al.
4,528,588 A 7/1985 Lotberg

Division of application No. 10/602,777, filed on Jun. (Continued)
25, 2003, now Pat. No. 7.664,263, which is a

continuation of application No. 09/046,627, filed on

Mar. 24, 1998, now Pat. No. 6,598,162.

Int. Cl.
GO6F 21/16
GO6F 21/10
GO6F 21/12
GO6F 21/33
Go6T 1/00
HO4L 9/06
HO4L 9/32
U.S. CL

CPC

(2013.01)
(2013.01)
(2013.01)
(2013.01)
(2006.01)
(2006.01)
(2006.01)

FOREIGN PATENT DOCUMENTS

EP 0372601 6/1990
EP 0372601 Al 6/1990
(Continued)
OTHER PUBLICATIONS

US. Appl. No. 08/999,766, filed Jul. 23, 1997, entitled
“Steganographic Method and Device”.

(Continued)

GOGF 21/10 (2013.01); GO6F 21/125 Primary Examiner — Izunna Okeke

(2013.01); GOGF 21/16 (2013.01); GO6F (74) Attorney, Agent, or Firm — Ncifcld IP Law. PC

21/335 (2013.01); GO6T 1/0021 (2013.01);)

HO4L 9/065 (2013.01), HO4L 93236 (57) ABSTRACT
(2013.01); HO4L 9/3247 (2013.01); GOGF An apparatus and method for encoding and decoding addi-

2211/007 (2013.01); GO6F 2221/0737 tional information into a digital information in an integral
(2013.01); GOGF 222172107 (2013.01); GO6T manner. More particularly, the invention relates to a method
2201/0064 (2013.01); GO6T 2201/0083 and device for data protection.
(2013.01); HO4L 2209/605 (2013.01); HO4L

ENCODE |
DIGITAL !
INFORMATION |

DECODE
L
INFORMATION

2209/608 (2013.01) 14 Claims, 1 Drawing Sheet

110,

ID Portion of Formst
information to be
Encodad

1 120
Generate |/
Encadad

Format |
Information 1

[’ :

Encoded Digital
Information

140 |
Decode With
Predetermined Kuy

150

Play Digital
Information

e ’

DISH-Blue Spike 842
Exhibit 1005, Page 0151

US 9,104,842 B2

Page 2
(56) References Cited 5,579,124 A 11/1996 Aijala et al.
5,581,703 A 12/1996 Baugher et al.
U.S. PATENT DOCUMENTS 5583488 A 12/1996 Sala etal.
5,598,470 A 1/1997 Cooper et al.
4,529.870 A 7/1985 Chaum 5,606,609 A 2/1997 Houseretal. 713/179
4,633.462 A 12/1986 Stifle 5,613,004 A 3/1997 Cooperman et al.
4,672,605 A 6/1987 Hustig et al. 5,617,119 A 4/1997 Briggs et al.
4,748,668 A 5/1988 Shamir et al. 5,617,506 A 4/1997 Burk
4,749.354 A 6/1988 Kerman 5,625,690 A 4/1997 Michel et al.
4,789,928 A 12/1988 Fujisaki 5,629,980 A S/1997 Stefik et al.
4,790;564 A 12/1988 Larcher 5,633,932 A 5/1997 Davis et al.
4,827;503 A 5/1989 Shear 5,634,040 A 5/1997 Her et al.
4,855,584 A 8/1989 Tomiyama 5,636,276 A 6/1997 Brugger
4876617 A 10/1989 Best et al. 5,636,292 A 6/1997 Rhoads
4,806,275 A 1/1990 Jackson 5,640,569 A 6/1997 Miller et al.
4.908.873 A 3/1990 Philibert et al. 5,644,727 A 7/1997 Atkins
4939515 A 7/1990 Adclson 5,646,997 A 7/1997 Barton
4969204 A 11/1990 Melnychuk et al. 5,049,284 A 71997 Yoshinobu
4972471 A 11/1990 Gross ct al. 5,657461 A 8/1997 Harkins et al.
4977594 A 12/1990 Shear 5,659,726 A 8/1997 Sandford, II et al.
4979210 A 12/1990 Nagata ct al. 5,664,018 A 971997 Teighton
4,980,782 A 12/1990 Ginkel 5,673,316 A 9/1997 Auerbach et al.
5‘050"213 A 0/1991 Shear 5,675,653 A 10/1997 Nelson
5073925 A 12/1991 Nagata et al. 5,677,952 A 10/1997 Blakley et al.
5,077.665 A 12/1991 Silverman et al. 5,680,462 A 10/1997 Miller et al.
5,103.461 A 4/1992 Tymes 5,687,236 A 11/1997 Moskowitz et al.
5,111,530 A 5/1992 Kutaragi 5,689,587 A 11/1997 Bender ef al.
5,113,437 A 5/1992 Best et al. 5,696,828 A 12/1997 Koopman, Jr.
5,123.045 A 6/1992 Ostrovsky 5,719.937 A 2/1998 Warren et al.
5,136,581 A 8/1992 Muehreke 5,721,781 A 271998 Deo
5,136,646 A 8/1992 Ilaber et al. 5,721,788 A 2/1998 Powell et al
5,136,647 A /1992 Haber et al. 5,734,752 A 3/1998 Knox
5,142,576 A 8/1992 Nadan 5,737,416 A 4/1998 Cooper et al.
5,161,210 A 11/1992 Druyvesteyn et al. 5,737,733 A 41998 Eller
5,164,992 A 11/1992 Turk 5,740,244 A 4/1998 Indeck et al.
5,189;41[A 2/1993 Collar 5,745,569 A 4/1998 Moskowitz ct al.
5210.820 A 5/1993 Kenyon 5,748,783 A 5/1998 Rhoads
5243423 A 9/1993 DelJean et al. 5751811 A 5/1998 Magnotti ct al.
5’243‘:515 A 9/1993 Lee 5,754,697 A 5/1998 Fuetal.
5287407 A * 2/1994 HOIMES ..ccorvevverrrmecrvereens 705/58 5754938 A 5/1998 Herz
5,291,560 A 3/1994 Daugman 5,757,923 A 5/1998 Koopman, Jr.
5293633 A 3/1994 Robhins 5,765,152 A 6/1998 Erickson
5297032 A 371994 Trojan 5,768,396 A 6/1998 Sone
5319735 A 6/1994 Preuss et al. 5774452 A 6/1998 Wolosewicz
5’327;520 A 7/1994 Chen 5,781,184 A 7/1998 Wasserman
5341429 A 8/1994 Stringer et al. 5,790,677 A 8/1998 Fox et al.
5341477 A 81994 Pitkin etal. 5,790,783 A 8/1998 Lee
5,363.448 A [1/1994 Koopman et al. 5,799,083 A 8/1998 Brothers et al.
5,365,586 A 11/1994 Indeck et al. 5,809,139 A 971998 Girod etal.
5369707 A 11/1994 Follendore, ITI 5809,160 A 971998 Powell etal.
5375055 A 12/1994 Togher 5818818 A 10/1998 Soumiya
5’379"345 A 171995 Greenberg 5,822,432 A 10/1998 Moskowitz et al.
5,394,324 A 2/1995 Clearwater 5,822,436 A 10/1998 Rhoads
5,398;285 A 3/1995 Borgeltetal. 5,828,325 A 10/1998 Wolosewicz et al.
5,406.627 A 4/1995 Thompson et al. 5,832,119 A 1171998 Rhoads
5,408,505 A 4/1995 Indeck et al. 5,839,100 A 1171998 Wegener
5,410,598 A 4/1995 Shear 5,842,213 A 111998 Odom
5,412,718 A 5/1995 Narasimhalv et al. 5845266 A 12/1998 Lupien
5,418,713 A 5/1995 Allen 5,848,155 A 12/1998 Cox
5,428,606 A 6/1995 Moskowitz 5,850,481 A 12/1998 Rhoads
5’437"050 A 7/1995 Lamb 5,859,920 A 1/1999 Daly et al.
5’450"490 A 9/1995 Jensen et al. 5,860,099 A 1/1999 Milios et al.
5,469,536 A 11/1995 Blank 5,862,260 A 171999 Rhoads
5’471;533 A 11/1995 W’a.ngetﬂl. 5,864,827 A 1/1999 Wilson
5,478,990 A 12/1995 Montanari et al. 5,870,474 A 2/1999 Wasilewski et al.
5479210 A 12/1995 Cawley etal. 5875437 A 2/1999 Atkins
5,487,168 A 171996 Geiner et al. 5,884,033 A 3/1999 Duvall et al.
5493.677 A 2/1996 Balogh et al. 5,889,868 A 3/1999 Moskowitz et al.
5497419 A 3/1996 Hill 5,892,900 A 471999 Ginter
5,506.795 A 4/1996 Yamakawa 5,893,067 A 4/1999 Bender et al.
5,513,126 A 4/1996 Harkins et al. 5,894,521 A 4/1999 Conley
5,513.261 A 4/1996 Maher 5,901,178 A S/1999 Lee
5,530,739 A 6/1996 Okada 5903721 A 5/1999 Sixlus
5,530,751 A 6/1996 Morris 5,905,800 A 5/1999 Moskowitz et al.
5,530,759 A 6/1996 Braudaway et al. 5,905,975 A 5/1999 Ausubel
5,539,735 A 7/1996 Moskowitz 5912,972 A 6/1999 Barton
5,548,579 A 8/1996 Lebrun et al. 5915027 A 6/1999 Cox et al.
5,568,570 A 10/1996 Rabbani 5917915 A 6/1999 Hirose
5570339 A 10/1996 Nagano 5918223 A 6/1999 Blum

DISH-Blue Spike 842
Exhibit 1005, Page 0152

US 9,104,842 B2

Page 3
(56) References Cited 6,363,488 Bl 3/2002 Ginter
6,373,892 Bl 4/2002 Ichien et al.
U.S. PATENT DOCUMENTS 6,373,960 Bl 4/2002 Conover et al.
6,374,036 Bl 4/2002 Ryan et al.
5920900 A 7/1999 Poole et al. 6,377,625 Bl 42002 Kim
5,923,763 A 7/1999 Walker el al. 6,381,618 Bl 4/2002 Jones et al.
5,930;369 A 7/1999 Cox et al. 6,381,747 Bl 4/2002 Wonfor et al.
5930377 A 7/1999 Powell et al. 6,385,324 Bl 5/2002 Koppen
5,940,134 A 81999 Wirtz 6,385,329 Bl 5/2002 Sharma et al.
5943422 A 8/1999 Van Wie et al. 6,385,596 BL 5/2002 Wiser
5,949,055 A 0/1999 Fleet 6,389,402 Bl 5/2002 Ginter
5,949.973 A 9/1999 Yarom 6,389,538 Bl 5/2002 Gruse et al.
5963909 A 10/1999 Warrcn of al. 6,398,245 Bl 62002 Gruse
5973731 A 10/1999 Schwab 6,405,203 Bl 6/2002 Collart
5,974,141 A 10/1999 Saito 6,415,041 Bl 7/2002 Oami et al.
5991426 A 11/1999 Cox etal. 6,418,421 Bl 7/2002 Hurtado
5391.’431 A 11/1999 Borza 0,425,081 Bl 7/2002 Iwamura
5999.217 A 12/1999 Berners-Lee 6,427,140 BL 7/2002 Ginter
6,009,176 A 12/1999 Gennaro ct al. 6,430,301 Bl 82002 Petrovic
6,018.722 A 12000 Ray 6,430,302 B2 8/2002 Rhoads
6,029.126 A 2/2000 Malvar 6,442,283 Bl 82002 Tewlik el al.
6,029.146 A 2/2000 Hawkins 6,446,211 Bl 9/2002 Colvin
6.029;195 A 2/2000 Herz 6,453,252 Bl 9/2002 T.aroche
6,032,957 A 3/2000 Kiyosaki 6,457,058 Bl 9/2002 Ullum et al.
6.035.398 A 3/2000 Bjorn 6,463,468 Bl 10/2002 Buchel al.
6,041.316 A 3/2000 Allen 6,480,937 Bl 11/2002 Vorbach
604471 A 372000 Colvin 6,480,963 Bl [1/2002 Tachibana
6,049,838 A 4/2000 Miller et al. 6,484,153 Bl 11/2002 Walker
6,051.029 A 4/2000 Paterson et al. 6,484,264 Bl 11/2002 Colvin
6,061,793 A 5/2000 Tewfik et al. 6,493,457 Bl 12/2002 Quackenbush
6,067,622 A * 52000 MOOTE ...coorermrrirrivrrensones 726/31 6,502,105 Bl 12/2002 Colvin
6,069;914 A 5/2000 Cox 6,510,513 Bl 172003 Danieli
6,078.664 A 6/2000 Moskowitz et al. 6,522,767 Bl 2/2003 Moskowitz et al.
6,081;25[A 6/2000 Sakai et al. 6,522,769 Bl 2/2003 Rhoads et al.
6,081.:587 A 6/2000 Reyes et al. 6,523,113 Bl 2/2003 Wehrenberg
6,081,597 A 6/2000 Hoffstein 6,530,021 Bl 3/2003 Epstein ct al.
6,088;455 A 7/2000 Logan et al. 6,532,284 B2 3/2003 Walker et al.
6,108,722 A 8/2000 Troeller 6,532,298 Bl 3/2003 Cambicr
6,111.:517 A 8/2000 Atick 6,539,475 Bl 3/2003 Cox etal.
6,131,162 A 10/2000 Yoshiura et al. 6,556,976 Bl 4/2003 Callen
6,134.535 A 10/2000 Belzberg 6,557,103 Bl 4/2003 Boncelet, Jr. et al.
6,141,753 A 10/2000 Zhao et al. 6,584,125 Bl 6/2003 Katto
6,141;754 A 10/2000 ChOy 6,587,837 Bl 7/2003 Spagnact al.
6,148333 A 11/2000 Guedalia 6,590,996 Bl 7/2003 Reed
6,154,571 A 11/2000 Cox etal. 6,594,643 Bl 7/2003 Freeny
6,173;322 Bl /2001 Hu 6,598,162 Bl 7/2003 Moskowitz
6,178,405 Bl /2001 Ouyang 6,601.044 Bl 7/2003 Wallman
6,185,683 Bl 2/2001 Ginter 6,606,393 Bl 8/2003 Xieetal.
6,192,138 Bl 2/2001 Yamadaji 6,611,599 B2 8/2003 Natarajan
6,199,058 Bl 3/2001 Wong et al. 6,615,188 Bl 9/2003 Breen
6,205,249 Bl 3/2001 Moskowitz 6,618,188 B2 9/2003 Ilaga
6,208.745 Bl 3/2001 Florencio et al. 6,647,424 Bl 11/2003 Pearson et al.
6,226;618 Bl 5/2001 Downs 6,650,761 Bl 11/2003 Rodriguez
6,230,268 Bl 5/2001 Miwa et al. 6,658,010 B1 12/2003 Enns et al.
6,233,347 Bl 5/2001 Chen et al. 6,665,489 B2 12/2003 Collart
6,233;566 Bl 5/2001 T.evine 6,668,246 Bl 12/2003 Yeung et al.
6,233;684 B1 5/2001 Stefik et al. 6,668,325 Bl 12/2003 Collberg et al.
6,240,121 Bl 5/2001 Senoh 6,674,858 Bl 1/2004 Kimura
6,253,193 Bl 6/2001 Ginter 6,674.877 Bl 1/2004 Jojic
6263313 BL 7/2001 Milsted el al. 6,687,683 BL 2/2004 Harada etal.
6,272.474 Bl 8/2001 Garcia 6,704.451 Bl 3/2004 Hekstra
6,272.535 Bl 8/2001 Twamura 6,725,372 Bl 4/2004 Lewis et al.
6,272,634 Bl 82001 Tewfiketal. 6,735,702 Bl 5/2004 Yavatkar
6,275,988 Bl 82001 Nagashima et al. 6,754,822 Bl 6/2004 Zhao
6,278.780 Bl $/2001 Shimada 6,775,772 Bl 8/2004 Binding et al.
6,278,791 Bl 82001 Honsinger et al. 6,778,968 BL 82004 Gulati
6,282300 Bl 82001 Bloom etal. 6,784,354 BL 82004 Luetal.
6,282,650 Bl %2001 Davis 6,785,815 Bl 8/2004 Serret-Avila et al.
6,285,775 Bl 9/2001 Wu ctal. 6,785,825 B2 82004 Colvin
6,301.663 Bl 10/2001 Kato etal. 6,792,424 Bl 92004 DBurns
6,310.962 Bl 10/2001 Chung ct al. 6,792,548 B2 9/2004 Colvin
6,317,728 Bl 11/2001 Kane 6,792,549 B2 9/2004 Colvin
6,324,649 B1 11/2001 Dyres 6,795,925 B2 9/2004 Colvin
6,330,335 Bl 12/2001 Rhoads 6,799,277 B2 9/2004 Colvin
6,330,672 Bl 12/2001 Shur 6,804,453 Bl 10/2004 Sasamoto
6,345.100 Bl 2/2002 Levine 6,813,717 B2 11/2004 Colvin
6,351,765 Bl 2/2002 Pietropaolo et al. 6,813,718 B2 11/2004 Colvin
6,363.483 Bl 3/2002 Keshav 6,823,455 Bl 11/2004 Macy et al.

DISH-Blue Spike 842
Exhibit 1005, Page 0153

US 9,104,842 B2

Page 4
(56) References Cited 8,121,343 B2 2/2012 Moskowitz
8,161,286 B2 4/2012 Moskowitz
U.S. PATENT DOCUMENTS 8,179,846 B2 5/2012 Dolganow
8,214,175 B2 7/2012 Moskowitz
6,834,308 Bl 12/2004 lkezoye et al. 8,265278 B2 9/2012 Moskowitz
6.839.686 Bl 172005 Galant 8,307,213 B2 11/2012 Moskowitz
6,842,862 B2 1/2005 Chow etal. 8,400,566 B2~ 3/2013 Terry et al.
6,853,726 BL 2/2005 Moskowitz et al. 8,492,633 B2 7/2013 Ellis
6,856,967 Bl 2/2005 Woolston et al. 8.949.619 B2 2/2015 Parry
6,857.078 B2 2/2005 Colvin 2001/0010078 Al 7/2001 Moskowitz
6,865.747 Bl 3/2005 Mercier 2001/0029580 Al 10/2001 Moskowitz
6,876,982 Bl 4/2005 Lancaster 2001/0043594 Al 11/2001 Ogawa et al.
6931.534 Bl 82005 Jandel ct al. 2002/0009208 Al 1/2002 Alattar
6.950.941 Bl 9/2005 Lee 2002/0010684 Al 1/2002 Moskowitz
6:957;330 Bl 10/2005 Hughes 2002/0026343 Al 2/2002 Duenke
6,966,002 BL 1172005 Torrubia-Saez 2002/0056041 Al 5/2002 Moskowitz
6.968.337 B2 11/2005 Wold 2002/0057651 Al 5/2002 Roberts
6,977,894 Bl 12/2005 Achilles et al. 2002/0069174 AL 6/2002 Fox
6:978;370 Bl 12/2005 Kocher 2002/0071556 Al 6/2002 Moskowitz et al.
6,983,058 Bl 1/2006 Fukuoka 2002/0073043 Al 6/2002 Herman et al.
6.986.063 B2 1/2006 Colvin 2002/0097873 Al 7/2002 Pelrovic
6,990.453 B2 12006 Wang 2002/0103883 Al 8/2002 Haverstock et al.
7.003;480 B2 2/2006 Fox 2002/0152179 Al 10/2002 Racov
7,007,166 Bl 2/2006 Moskowitz et al. 2002/0161741 Al 10/2002 Wang et al.
7.020.285 Bl 3/2006 Kirovski et al. 2002/0188570 Al 12/2002 Holliman
7.035.049 B2 4/2006 Yamamoto 2003/0002862 Al 172003 Rodriguez
7:035;409 Bl 4/2006 Moskowitz 2003/0005780 Al 172003 Hansen
7,043,050 B2 5/2006 Yuval 2003/0023852 Al 1/2003 Wold
7,046.808 Bl 5/2006 Metois et al 2003/0027540 Al 2/2003 Kiel
7,050,396 Bl 5/2006 Cohen et al. 2003/0033321 AL 2/2003 Schrempp
7,051,208 B2 5/2006 Venkatesan et al. 2003/0126445 Al 7/2003 Wehrenberg
7,058.570 Bl 6/2006 Yu et al. 2003/0133702 Al 7/2003 Collart
7,093.295 Bl 8/2006 Saito 2003/0200439 Al 10/2003 Moskowitz
7’095;715 B2 8/2006 Buckman 2003/0219143 A1 11/2003 Moskowitz et al.
7,095.874 B2 8/2006 Moskowitz et al, 2004/0028222 Al 2/2004 Sewell et al.
7’103;134 B2 0/2006 Jian 2004/0037449 Al 2/2004 Davis ct al.
7,107;451 B2 /2006 Moskowitz 2004/0049695 Al 3/2004 Choi et al.
7,123,718 Bl 10/2006 Moskowitz et al, 2004/0059918 Al 3/2004 Xu
7,127,615 B2 10/2006 Moskowitz 2004/0083369 Al 4/2004 Erlingsson et al.
7,150,003 B2 12/2006 Naumovich etal. 2004/0086119 Al 52004 Moskowitz
7,152,162 B2 12/2006 Moskowitz et al. 2004/0093521 Al 5/2004 Hamadeh et al.
7,159;116 B2 1/2007 Moskowitz 2004/0117628 Al 6/2004 Colvin
7,162,642 B2 1/2007 Schumann et al. 2004/0117664 Al 6/2004 Colvin
7177429 B2 2/2007 Moskowitz et al. 2004/0125983 Al 7/2004 Recd ctal.
7,177.430 B2 2/2007 Kim 2004/0128514 Al 7/2004 Rhoads
7,206,649 B2 4/2007 Kirovski et al. 2004/0225894 Al 11/2004 Colvin
7’231"524 B2 6/2007 Burns 2004/0243540 Al 12/2004 Moskowitz et al.
7,233,669 B2 6/2007 Candelore 2005/0135615 Al 6/2005 Moskowitz et al.
7,240,210 B2 7/2007 Mihcak et al. 2005/0160271 A9 7/2005 Brundage et al.
7,254,538 Bl $/2007 Ellis 2005/0177727 Al 8/2005 Moskowitz et al.
7.266.697 B2 /2007 Kirovski et al. 2005/0246554 A1 11/2005 Batson
7.286.451 B2 10/2007 Wirtz 2006/0005029 Al 1/2006 Petrovic et al.
7,287.275 B2 10/2007 Moskowitz 2006/0013395 Al 1/2006 Brundage et al.
7,289;643 B2 10/2007 Brunk et al. 2006/0013451 Al 1/2006 Haitsma
7310.815 B2 12/2007 Yanovsky 2006/0041753 Al 2/2006 Haitsma
7,343,492 B2 3/2008 Moskowitz et al. 2006/0101269 Al 5/2006 Moskowitz et al.
7346472 Bl 3/2008 Moskowilz el al. 2006/0140403 Al 6/2006 Moskowitz
7,362;775 B1 4/2008 Moskowitz 2006/0251291 Al 11/2006 Rhoads
7363.278 B2 4/2008 Schmelzer el al. 2006/0285722 A1 12/2006 Moskowitz et al.
7:409;073 B2 8/2008 Moskowitz et al, 2007/0011458 Al 1/2007 Moskowitz
7,444,506 Bl 10/2008 Datia 2007/0028113 Al 2/2007 Moskowitz
7,457.962 B2 11/2008 Moskowitz 2007/0064940 Al 3/2007 Moskowitz et al.
7,460.994 B2 12/2008 Herre el al. 2007/0079131 Al 4/2007 Moskowitz et al.
7,475,246 Bl 1/2009 Moskowitz 2007/0083467 Al 4/2007 Lindahl et al.
7.530.102 B2 5/2009 Moskowitz 2007/0110240 Al 5/2007 Moskowitz et al.
7:532;725 B2 5/2009 Moskowitz et al. 2007/0113094 Al 5/2007 Moskowitz et al.
7,568,100 Bl 7/2000 Moskowitz et al. 2007/0127717 AL 6/2007 Herre et al.
7:630;379 B2 12/2009 Morishita 2007/0226506 Al 9/2007 Moskowitz
7.647.502 B2 172010 Moskowitz 2007/0253594 Al 112007 Luetal
7.647.503 B2 1/2010 Moskowitz 2007/0294536 Al 12/2007 Moskowitz et al.
7,664,263 B2 2/2010 Moskowitz 2007/0300072 A1 12/2007 Moskowitz
7,672.838 Bl 3/2010 Ellis 2007/0300073 Al 12/2007 Moskowitz
7,672,916 B2 3/2010 Poliner 2008/0005571 Al 172008 Moskowilz
7,719,966 B2 5/2010 Luft 2008/0005572 Al 172008 Moskowitz
7,743,001 Bl 6/2010 Vermeulen 2008/0016365 Al 1/2008 Moskowitz
7,761,712 B2 7/2010 Moskowitz 2008/0022113 Al 1/2008 Moskowitz
7,779.261 B2 8/2010 Moskowitz 2008/0022114 Al 172008 Moskowitz
7,812.241 B2 10/2010 Ellis 2008/0028222 Al 1/2008 Moskowitz
8,095,949 Bl 1/2012 Hendricks 2008/0046742 Al 2/2008 Moskowitz

DISH-Blue Spike 842
Exhibit 1005, Page 0154

US 9,104,842 B2

Page 5
(56) References Cited U.S. Appl. No. 08/674,726, filed Jul. 2, 1996, entitled “Exchange
Mechanisms for Digital Information Packages with Bandwidth
U.S. PATENT DOCUMENTS Securitization, Multichannel Digital Watermarks, and Key Manage-
ment”.

20080075277 Al @;2008 Moskowitz et al. U.S. Appl. No. 11/895,388, filed Aug. 24, 2007, entitled “Data Pro-

2008/’01094’])7 Al)»/2008 M()sknw!l'/ tection Method and Device”.
2008/0133927 Al /2008 Moskowitz et al. U.S. Appl. No. 11/900,065, filed Sep. 10, 2007, entitled “Methods,

2008/0151934 Al 6/2008 Moskowitz et al. . : : :
2009/0037740 Al 22009 Moskowitz Systems and Devices for Packet Watermarking and Efficient Provi-

2009/0089427 Al 4/2009 Moskowitz et al. sioning of Bandwidth”.) e
5009/0190754 Al 72009 Moskowitz et al. U.S. Appl. No. 11_/900,066, filed Sep. 10, 2907. entitled ‘ Methodg,
2009/0210711 Al 82009 Moskowitz Systems and Devices for Packet Watermarking and Efficient Provi-
2009/0220074 Al 9/2009 Moskowitz ct al. sioning of Bandwid(h”.

2010/0002904 Al 1/2010 Moskowitz U.S. Appl. No. 11/599,964, filed Nov. 15, 2006, entitled “Optimiza-
2010/0005308 Al 1/2010 Moskowitz tion Methods for the Insertion, Protection, and Detection of Digital
2010/0064140 Al 3/2010 Moskowitz ‘Watermarks in Digital Data”.

2010/10077219 Al 3/2010 Moskowitz 1.S. Appl. No. 11/897,790, filed Aug. 31, 2007, entitled “Oplimiza-
2010/0077220 Al 3/2010 Moskowitz tion Methods for the Insertion, Protection, and Detection of Digital

2010/0098251 Al 4/2010 Moskowitz
2010/0106736 Al 4/2010 Moskowitz
2010/0153734 Al 6/2010 Moskowitz

Watermarks in Digital Data”.
U.S. Appl. No. 11/897,791, filed Aug. 31, 2007, entitled “Optimiza-

5010/0182570 Al 75010 Matsumoto et al. tion Melhi()ds ﬁ)r_lhea}nserlif:n, Protection, and Detection of Digital
2010/0202607 Al $/2010 Moskowitz Watermarks in Digital Data”.) o
2010/0220861 Al 9/2010 Moskowitz U.S. Appl. No. 1 1/899‘,661, filed Sep. 7,2007, enFltled O_pFlszanon
2010/0313033 Al 12/2010 Moskowitz Methods for the Insertion, Protection, and Detection of Digital Water-
2011/0019691 Al 1/2011 Moskowitz marks in Digital Data”.

2011/0069864 Al 3/2011 Moskowitz U.S. Appl. No. 11/899,662, filed Scp. 7. 2007, entitled “Optimization
2011/0128445 Al 6/2011 Carrieres Methods for the Insertion, Protection, and Detection of Digital Water-
2012/0057012 Al 3/2012 Sitrick marks in Digital Data”.

2013/0145058 Al 6/2013 Shuholm U.S. Appl. No. 10/049,101, filed Feb. 8, 2002, entitled “A Secure

2013/0226957 Al 82013 Lllis Personal Content Server” (which claims priority to International

Application No. PCT/US00/21189, filed Aug. 4, 2000, which claims

FOREIGN PATENT DOCUMENTS priority to LS. Appl. No. 60/147,134, filed Aug. 4, 1999, and to U S.
, Appl. No. 60/213,489, filed Jun. 23, 2000).
LP 0565947 10/1993 U.S. Appl. No. 09/657,181, filed Sep. 7, 2000, entitled “Method and
EP 0365947 Al 1071993

Device for Monitoring and Analyzing Signals”.

o T 2’1}33 U.S. Appl. No. 11/518,806, filed Sep. 11, 2006, entitled “Improved
EP 0649261 ;/ 1995 Sec'urity Based on Subliminal and Supraliminal Channels for Data
EP 0651554 5/1995 Object™)
TP 0651554 A 5/1995 PCT Application No. PCT/US95/08159, filed Jun. 26, 1995, entitled,
EP 0872073 7/1996 “Digital Information Commodities Exchange with Virtual Menu-
EP 1547337 3/2006 ing”.
EP 1547337 Bl 3/2006 PCT Application No. PCT/US96/10257, filed Jun. 7, 1996, entitled,
EP 1354276 12/2007 “Steganographic Method and Device”—corresponding to—EPO
EP 1354276 Bl 12/2007 Application No. 96919405 .9, entitled “Steganographic Method and
NL 100523 9/1998 Device”.
NL . 1005523 21998 PCT Application No. PCT/US97/0065 1, filed Jan. 16, 1997, entitled
%g \%%9955/ }3%23 g,}gg; “Method for Stega-Cipher Protection of Computer Code”—corre-
WO 96/29‘7_'95 ;/1998 sponding to AU19971829A (not available).
WO WO 9629795 9/1996 PCT Application No. PCT/US97/00652, filed Jan. 17, 1997, entitled
WO WO 9642151 12/1996 “Method for an Encrypted Digital Watermark”—corresponding to
WO WO09701892 /1997 AU199718295A (not available).
WO W09726733 1/1997 PCT Application No. PCT/US97/11455, filed Jul. 2, 1997, entitled,
WO 97/24833 7/1997 “Optimization Methods for the Insertion, Protection and Detection of
WO WO 9724833 7/1997 Digital Watermarks in Digitized Data”—corresponding to
WO W09726732 71997 AU199735881A (nol available).
WO W(O98002864 71997 PCT Application No. PCT/US99/07262, filed Apr. 2, 1999, entitled,
WO WO 9744736 1111997 “Multiple lransform Utilization and Applications for Secure Digital
wo WOIB02864 L1998 Watermarking”—corresponding to—Japan App. No. 2000-542907
WO WO0Y8/37513 8/1998 aermaring ITESponding 1o-—Japan App. 0. 2OU)->42707,
WO WO9837513 8/1998 entitled “Mulitple Transform Utilization and Application for Secure
WO WO 9952271 10/1999 Digital Watermarking”(included herein).
WO WO 99/62044 12/1999 PCT Application No. PCT/US00/06522, filed Mar. 14, 2000, entitled,
WO WO 9962044 12/1999 “Utilizing Data Reduction in Steganographic and Cryptographic
WO WO 9963443 12/1999 Systems”
WO WO 0057643 9/2000 PCT Application No. PCT/US00/21189, filed Aug. 4, 2000, entitled,
WO WOO0118628 3/2001 “A Secure Personal Content Server”.
WO WO0143026 6/2001 PCT Application No. PCT/US00/33126, filed Dec. 7, 2000, entitled,
WO W00203385 1’2002 “Systems, Methods and Devices for Trusted Transactions”—corre-
%8 “‘,’g)co)%gggg ii }8’,;38% sponding to AU200120659A5 (not available).

- o PCT International Search Report, completed Sep. 13, 1995; autho-

OTHER PUBLICATIONS rized officer Huy D. Vu (PCT/UUS95/08159) (2 pages).
US. Appl. No. 11/894,443, filed Aug. 21, 2007, entitled PCT International Search Report, completed Jun. 11, 1996; autho-
“Steganographic Method and Device”. rized officer Salvatore Cangialosi (PCT/US96/10257) (4 pages).
U.S. Appl. No. 11/894476. filed Aug. 21, 2007, entitled Supplementary European Search Report, completed Mar. 5, 2004,
“Steganographic Method and Device™. authorized officer J. Hazel (EP 96 91 9405) (1 page).

DISH-Blue Spike 842
Exhibit 1005, Page 0155

US 9,104,842 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

PC'|' International Search Report, completed Apr. 4, 1997; authorized
officer Bernarr Earl Gregory (PCT/US97/00651) (1 page).

PCT International Search Report completed May 6, 1997, authorized
officer Salvatore Cangialosi (PCT/US97/00652) (3 pages).

PCT International Search Report; completed Oct. 23, 1997, autho-
rized officer David Cain (PCT/US97/11455) (1 page).

PCT International Search Report, completed Jul. 12, 1999; autho-
rized officer R. Hubeau (PCT/US99/07262) (3 pages).
Supplementary European Search Report, completed Jun. 27, 2002;
authorized officer M. Schoeyer (EP 00 91 9398) (1 page).

PCT International Search Report, date of mailing Mar. 1S, 2001;
authorized officer Marja Brouwers (PCT/US00/18411) (5 pages).
PCT International Search Report, completed Jul. 20, 2001; autho-
rized officer A. Sigolo (PCT/US00/18411) (5 pages).

PCT International Search Report, completed Mar. 20, 2001; autho-
rized officer P. Corcoran (PCT/US00/33126) (6 pages).

PCT International Search Report, completed Jan. 26, 2001; autho-
rized officer Gilberto Barron (PCT/US00/21189) (3 pages).
Schneier, Bruce, Applied Cryptography, 2nd Ed., John Wiley & Sons,
pp. 9-10, 1996.

Menezes, Alfred J., Handbook of Applied Crypography, CRC Press,
p. 46, 1997,

Merriam-Webster’s Collegiate Dictionary, 10th Ed., Merriam
Webster, Inc., p. 207.

Brealy, ct al., Principles of Corporate Finance, “Appendix A—Using
Option Valuation Models”, 1984, pp. 448-449.

Copeland, et al., Real Options: A Practioner’s Guide, 2001 pp. 106-
107, 201-202, 204-208.

Low. S.H., “Equilibrium Allocation and Pricing of Variable
Resources Among User-Suppliers”. 1988. http://www.citesear.nj.
nec.com/366503 html.

Gruhl,Daniel et al.,.Iicho Iliding. In Proceeding of the Workshop on
Information Hiding. No. 1174 in Lecture Notes in Computer Science,
Cambridge, England (May/Jun. 1996).

Oomen,A.W.J. et al., A Variable Bit Rate Buried Data Channel for
Compact Disc, J.Audio Ing.Sc.,vol. 43, No. 1/2,pp. 23-28 (1995).
‘len Kate,W. et al., A New Surround-Stereo-Surround Coding 'lech-
niques, J. Audio Eng.Soc., vol. 40,No. 5, pp. 376-383 (1992).
Sklar,Bernard, Digital Communications, pp. 601-603 (1988).
Jayant, N.S. et al., Digital Coding of Waveforms, Prentice Hall Inc.,
Englewood Cliffs,NJ, pp. 486-509 (1984).

ten Kate, W. et al.,, “Digital Audio Carrying Extra Information”,
IEEE, CH 2847-2/90/0000-1097, (1990).

van Schyndcl, ¢t al. A digital Watermark, IEEE Int’l Computer Pro-
cessing Conference, Austin, TX, Nov. 13-16, 1994, pp. 86-90.
Smith, et al. Modulation and Information Hiding in Images, Springer
Verlag, 1stInt'l Workshop, Cambridge, UK, May 30-Jun. 1, 1996, pp.
207-227.

Kutter, Martin et al., Digital Signature of Color Images Using Ampli-
tude Modulation, SPIE-E197, vol. 3022, pp. 518-527.

Puate, Joan et al., Using Tractal Compression Scheme to Embed a
Digital Signature into an Image, SPIE-96 Proceedings, vol. 2015,
Mar. 1997, pp. 108-118.

Swanson, Milchell D..el al., Transparent Robust Image Watermark-
ing, Proc. of the 1996 ILLL Int’l Conf. on Image Processing, vol. 111,
1996 , pp. 211-214.

Swanson, Mitchell D, et al. Robust Data Hiding for Images, 7th
TEEE Digital Signal Processing Workshop, T.eon, Norwary, Sep. 1-4,
1996, pp. 37-40.

Zhao, Jian et al., Embedding Robust Labels into Images for Copy-
right Protection, Proceeding of the Know Right "95 Conference, pp.
242-251.

Van Schyandcl, ct al., Towards a Robust Digital Watcrmark, Second
Asain Image Processing Conference, Dec. 6-8, 1995, Singapore, vol.
2.pp. 504-508.

Tirkel,A.Z., A Two-Dimensional Digital Watermark, DICTA ’95,
Univ. of Quecnsland, Brisbane, Dec. 5-8, 1995, pp. 7.

Tirkel,A.Z., Image Watermarking—A Spread Spectrum Application,
ISSSTA 96, Sep. 1996, Mainz, German, pp. 6.

O’Ruanaidh, et al. Watermarking Digital Images for Copyright Pro-
tection, IEEE Proceedings, vol. 143, No. 4, Aug. 1996, pp. 250-256.
Cox, ot al., Sccure Spread Spectrum Watermarking for Multimedia,
NEC Research Institude, Techinal Report 95-10, pp. 33.

Kahn, D., The Code Breakers, The MacMillan Company, 1969, pp.
xlll, 81-83.513,515,522-526,863.

Boney. et al., Digital Watermarks for Audio Signals, EVSIPCO, 96,
Pp. 473-480.

F. Hartung, et al., Digital Watermarking of Raw and Compressed
Video, SPIL vol. 2952, pp. 205-213.

Craver, et al., Can Invisible Watermarks Resolve Rightful Owner-
ships? IBM Research Report, RC 20509 (Jul. 25, 1996) 21 pp.
Press, et al., Numerical Recipes in C, Cambridge Univ. Press, 1988,
pp. 398-417.

Pohlmann, Ken C., Principles of Digital Audio, 3rd Ed., 1995, pp.
32-37,40-48,138,147-149,332,333,364, 499-501,508-509,564-571.
Pohlmann, Ken C., Principles of Digital Audio, 2nd Ed., 1991, pp.
1-9,19-25,30-33,41-48,54-57,86-107,375-387.

Schneier, Bruce, Applied Cryptography, John Wiley & Sons, inc.,
New York.1994. pp. 68,69,387-392.1-57,273-275,321-324.

Bender, et al., Techniques for Data Hiding, IBM Systems Journal,
vol. 35, No. 3 & 4,1996.pp. 313-336.

Moskowitz, Bandwith as Currency, IEEE Multimedia, Jan.-Mar.
2003, pp. 14-21.

Steinauer D. D., et al.,, “Trust and Traceability in Electronic Com-
merce”, Standard View, Sep. 1997, pp. 118-124, vol. 5 No. 3, ACM,
USA.

Rivest.et al., PayWord and MicroMint: Two simple micropayment
schemes, MIT Laboratory for Computer Science, Cambridge, MA
02139, Apr. 27 2001, pp. 1-18

Horowitz. et al.; The Art of Electronics, 2nd Ed., 1989, pp. 7.
Delaigle, J.-F., et al. “Digital Watermarking,” Proceedings of the
SPIE, vol. 2659, Feb 1, 1996. pp. 99-110 (Abstract).

Cox, L1, et al. “Secure Spread Spectrum Walermarking for Multi-
media,” IEEE Transactions on Image Processing, vol. 6, No. 12, Dec.
1, 1997, pp. 1673-1686.

‘Wong, Ping Wah. “A Public Key Watermark for Image Verification
and Authentication,” TEEE International Conference on Image Pro-
cessing, vol. 1, Oct. 4-7, 1998, pp. 455-459.

Ross Anderson, “Stretching the Limits of Steganography,” LNCS,
vol. 1174, May/Jun. 1996, 10 pages, ISBN: 3-540-61996-8.
European Search Report, completed Oct. 15,2007; authorized officer
James Hazel (EP 07 11 2420) (9 pages).

Arctic Monkeys (Whatever People Say I Am, That’s What I"'m Not),
Domino Recording Co. Ltd., Pre-Release CD image, 2005, 1 page.
Radiohead (“Hail To The Theif”), EMI Music Group—Capitol, Pre-
Release CD image, 2003, 1 page.

Qasis (Dig Out Your Soul), Big Brother Recordings Ltd., Promotion
CD image, 2009, 1 page.

Rivest, R. “Charring and Winnowing: Confidentiality without
Encryption”, MI'l' Lab for Computer Science, http://people.csail.mit.
edw/rivest/Chaffing.txt, Apr. 24, 1998, 9 pp.

VeriDisc, “The search [or a Rational Solution to Digital Righis Man-
agement (DRM)”, hittp://64.244.235.240/news/whitepaper/docs/
veridisc_ white_ paper.pdf, 2001, 15 pp.

Cayre, et al., “Kerckhoff’s-Based Embedding Security Classes for
WOA Data Hiding”. IEEE Transactions on Information Forensics
and Security, vol. 3, No. 1, Mar. 2008, 15 pp.

Namgoong, H. “An Intergrated Approach to Legacy Data for Multi-
media Applications”, Proceedings of the 23rd EUROMICRO Con-
ference, Vol., Issue 1-4, Sep. 1997, pp. 387-391.

Wayback Machine, dated Aug. 26, 2007, http://web.archive.org/web/
20070826 151732/http://www.screenplaysmag.com/tabid/96/
articleType/ArticleView/articleld/495/Default.aspx/.

EPO Application No. 96919405.9, entitled “Steganographic Method
and Device”; published as EP0872073 (A2), published Oct. 21, 1998.
Jap. App. No. 2000-542907, entitled “Multiple Transform Utilization
and Application for Secure Digital Watermarking”, JP national stage
of PCT/US1999/007262, published as WO99052271, Oct. 14, 1999.
PCT Application No. PCT/US00/21189, filed Aug. 4, 2000, entitled,
“A Secure Personal Content Server”, Pub. No. W0O018628 ; Publica-
tion Date: Mar. 15, 2001.

DISH-Blue Spike 842
Exhibit 1005, Page 0156

US 9,104,842 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

Merriam-Webster’s Collegiate Dictionary, 10th Ed., Merriam
Webster, Inc., p. 207. 1997.

Sarkar, M. “An Assessment of Pricing Mechanisms for the
Internet—A Regulatory Imperative”, presented MIT Workshop on
Internet Economics, Mar. 1995, http://www.press.vmich.edu/iep/
works/Sark Asses.himl on.

Crawford, D.W. “Pricing Network Usage: A Market for Bandwidth
of Market Communication?” presented MIT Workshop on Internet
Economics, Mar. 1995 http://www.press.vmich.cdu/icp/works/
CrawMarket.html on March.

Kutter, Martin et al., “Digital Signature of Color Images Using
Amplitude Modulation”, SPIE-E197, vol. 3022, pp. 518-527. 1997.
U.S. Appl. No. 09/671,739, filed Sep. 29, 2000, entitled “Method and
Device for Monitoring and Analyzing Signals”, abandoned

PCT International Search Report, completed Jun. 30, 2000, autho-
rized officer Paul E. Callahan (PCT/US00/06522) (7 pages).

Rivest, R. “Chaffing and Winnowing: Confidentiality without
Encryption”, MIT Lab for Computer Science, http://pcople.csail mit.
edu/rivest/Chaffing.txt Apr. 24, 1998, 9 pages.

PortalPlayer, PPS02 digital media management system-on-chip,
May 1, 2003, 4 pp.

‘Wayback Machine, dated Jan. 17, 1999, http://web.archive.org/web/
19990117020420/http://www.netzero.comv/, accessed on Feb. 19,
2008.

“YouTube Copyright Policy: Video Identification tool—YouTube
Help”, accessed Jun. 4, 2009, hutp://www.google.com/support/
youtube/bin/answer.py?hl—en&answer—83766, 3 pp.

PCT Application No. PCT/US00/18411, filed Jul. 5, 2000, cntitled,
“Copy Protection of Digital Data Combining Steganographic and
Cryptographic Techniques™—corresponding to AU200060709A5
(not available).

EPO Divisional Patent Application No. 071124200, entitled
“Steganographic Method and Device” corresponding to PCT Appli-
cation No. PCT/US96/10257.

TPO Application No. 96919405.9, entitled “Steganographic Method
and Device”; published as EP0872073 (A2), Oct. 21, 1998.

Jap. App. No.2000-542907, entitled “Multiple Transform Utilization
and Application for Secure Digilal Walermarking™; which is a JP
national stage of PCT/US1999/007262, published as WO/1999/
052271, Oct. 14, 1999.

PCT Application No. PCT/US00/21189, filed Aug. 4, 2000, entitled,
“A Secure Personal Content Server”, Pub. No. W0/2001/018628 ;
Publication Date: Mar. 15, 2001.

Menezes, Alfred J., Handbook of Applied Cryptography, CRC Press,
p. 46, 1997.

Merriam-Webster’s Collegiate Dictionary, 10th Ed., Merriam
Webster, Inc., p. 207. 1997

Copeland, et al., Real Options: A Practitioner’s Guide, 2001 pp.
106-107, 201-202, 204-208.

Sarkar, M. “An Assessment of Pricing Mechanisms for the
Internet—A Regulatory Imperative”, presented MIT Workshop on
Internet Economics, Mar. 1995 http://www.press.vmich.edu/iep/
works/Sark Asses.himl on.

Crawford, D.W. “Pricing Network Usage: A Market for Bandwidth
of Market Communication?” presented MI'1' Workshop on Internet
Economics, Mar. 1995 http://www.press.vmich.edu/iep/works/
CrawMarkel.html on March

Caronni, Germano, “Assuring Ownership Rights for Digital Images™,
published proceeds of reliable IT systems, v15 °95, H.H.
Bruggemann and W. Gerhardt-Hackel (Ed) Viewing Publishing
Company Germany 1995.

Zhao, Jian. “AWWW Secrvice to Embed and Prove Digital Copyright
‘Watermarks™, Proc. of the European conf. on Multimedia Applica-
tions, Services & Techniques Louvain-La-Nevve Belgium May
1996.

Gruhl, Danicl ct al., Echo Hiding. In Procceding of the Workshop on
Information Hiding. No. 1174 in Lecture Notes in Computer Science,
Cambridge, England (May/Jun. 1996).

Oomen, A.W.J. et al., A Variable Bit Rate Buried Data Channel for
Compact Disc, J.AudioEng. Sc., vol. 43, No. 1/2, pp. 23-28 (1995).
Ten Kate, W. ot al., A New Surround-Sterco-Surround Coding Toch-
niques, J. Audio Eng. Soc., vol. 40,No. 5,pp. 376-383 (1992).
Gerzon, Michael et al., A High Rate Buried Data Channel for Audio
CD, presentation notes, Audio Engineering Soc. 94th Convention
(1993).

Sklar, Bernard. Digital Communications, pp. 601-603 (1988).
Jayant, N.S. et al., Digital Coding of Waveforms, Prentice Hall Inc.,
Inglewood Cliffs, NJ, pp. 486-509 (1984).

Bender, Walter R. et al., Techniques for Data Hiding, SPIE Int. Soc.
Opt. Eng., vol. 2420, pp. 164-173, 1995.

Zhao, Jian et al., Embedding Robust Labels into Images for Copy-
right Protection, (xp 000571976), pp. 242-251, 1995.

Menezes, Alfred J., Handbook of Applied Cryptography, CRC Press,
p. 175, 1997.

Schneier, Bruce, Applied Cryptography, 1st Ed., pp. 67-68, 1994.
Van Schyndel, et al., “A digital Watermark,” IEEE Int’l Computer
Processing Conference, Austin, TX, Nov. 13-16, 1994, pp. 86-90.
Smith, et al. “Modulation and Information Hiding in Images”,
Springer Verlag, 1 st Int’l Workshop, Cambridge, UK, May 30-Jun. 1,
1996, pp. 207-227.

Kutter, Martin et al,, “Digital Signature of Color Images Using
Amplitude Modulation”, SPIE-E197, vol. 3022, pp. 518-527.
Puate, Joan et al., “Using Fractal Compression Scheme to Embed a
Digilal Signature into an Image”, SPIE-96 Proceedings, vol. 2915,
Mar. 1997, pp. 108-118.

Swanson, Mitchell D. et al., “Transparent Robust Image Watermark-
ing”. Proc. of the 1996 IEEE Int’l Conf. on Image Processing, vol.
111, 1996 , pp. 211-214.

Swanson, Mitchell D., et al. “Robust Data Hiding for Images”, 7th
1EEE Digital Signal Processing Workshop, Leon, Norway. Sep. 1-4,
1996, pp. 37-40.

Zhao, Jian et al., “Embedding Robust Labels into Images for Copy-
right Proteclion”, Proceeding of the Know Right *95 Conference, pp.
242-251.

Koch, L., et al., “Towards Robust and Ilidden Image Copyright
Labeling”, 1995 TEEE Workshop on Nonlinear Signal and Image
Processing, Jun. 1995 Neos Marmaras pp. 4.

Van Schyandel, et al., “Towards a Robust Digital Watermark”, Sec-
ond Asain Image Processing Conference, Dec. 6-8, 1995, Singapore,
vol. 2, pp. 504-508.

Tirkel, A Z., “A Two-Dimensional Digital Watermark”, DICTA ’95,
Univ. of Queensland, Brisbane, Dec. 5-8, 1995, pp. 7.

Tirkel, A Z., “Image Watermarking—A Spread Spectrum Applica-
tion”, ISSSTA *96, Sep. 1996, Mainz, German, pp. 6.

O’Ruanaidh, et al. “Watermarking Digital Images for Copyright Pro-
tection”, IEEE Proceedings, vol. 143, No. 4, Aug. 1996, pp. 250-256.
Kahn, D., “The Code Breakers”, The MacMillan Company, 1969, pp.
111, $1-83, 513, 515, 522-526, 863.

Boney, et al., Digital Watermarks for Audio Signals, EVSIPCO, 96,
pp. 473-480 (Mar. 14, 1997).

Dept. of Electrical Engineering, Del Ft University of Technology, Del
ft the Netherlands, Cr.C. Langelaar et al.,“Copy Protection for Mul-
timedia Data based on Labeling Techniques”, Jul. 1996 9 pp.

F. Hartung, et al., “Digital Watermarking of Raw and Compressed
Video”, SPIE vol. 2952, pp. 205-213.

Craver, et al., “Can Invisible Watermarks Resolve Rightful Owner-
ships?”, IBM Research Report, RC 20509 (Jul. 25, 1996) 21 pp.
Press, et al., “Numerical Recipes in C”, Cambridge Univ. Press, 1988,
pp. 398-417.

Pohlmann, Ken C., “Principles of Digital Audio”, 3rd Ed., 1995, pp.
32-37,40-48:138, 147-149, 332, 333, 364, 499-501, 508-509, 564-
571.

Pohlmann, Ken C., “Principles of Digital Audio”, 2nd Ed., 1991, pp.
1-9, 19-25, 30-33, 41-48, 54-57, 86-107, 375-387.

Schneier, Bruce, Applied Cryptography, John Wiley & Sons, Inc.,
New York, 1994, pp. 68, 69, 387-392, 1-57, 273-275, 321-324.
Boney, et al., Digital Watermarks for Audio Signals, Proceedings of
the International Conf. on Multimedia Computing and Systems, Jun.
17-23, 1996 Hiroshima, Japan, 0-8186-7436-9196, pp. 473-480.

DISH-Blue Spike 842
Exhibit 1005, Page 0157

US 9,104,842 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

Johnson, et al., “Iranstorm Permuted Watermarking for Copyright
Protection of Digital Video”, IEEE Globecom 1998, Nov. 8-12, 1998,
New York New York vol. 2 1998 pp. 684-689 (ISBN 0-7803-4985-7).
Rivest, et al., “Pay Word and Micromint: Two Simple Micropayment
Schemes,” MIT Laboratory for Computer Science, Cambridge, MA,
May 7. 1996 pp. 1-18.

Bender, et al., “Techniques for Data Hiding”, IBM Systems Journal,
(1996) vol. 35, No. 3 & 4,1996, pp. 313-336.

Moskowitz, “Bandwith as Currency”, IEEE Multimedia, Jan.-Mar.
2003, pp. 14-21.

Moskowitz, Multimedia Security Technologies for Digital Rights
Management, 2006, Academic Press, “Introduction—Digital Rights
Management” pp. 3-22.

Rivest, et al., “PayWord and Micromint: Two Simple Micropayment
Schemes,” MIT Laboratory for Computer Science, Cambridge, MA,
Apr. 27, 2001, pp. 1-18.

Tomsich, et al., “Towards a secure and de-centralized digital
watermarking infrastructure for the protection of Intellectual Prop-
erty”, in Electronic Commerce and Web Technologies, Proceedings
(RCWERB)(2000).

Moskowitz, “What is Acceptable Quality in the Application of Digi-
tal Watermarking: Trade-offs of Security; Robustness and Quality”,
IEEE Computer Society Proceedings of ITCC 2002 Apr. 10, 2002 pp.
80-84.

Lemma, ct al. “Sccure Watermark Embedding through Partial
Encryption, International Workshop on Digital Watermarking”
(“TWDW™ 2006). Springer Lecture Notes in Computer Science 2006
(to appear) 13.

Kocher, ot al.. “Sclf Protecting Digital Content”, Technical Report
from the CRI Content Security Research Initiative, Cryptography
Research, Inc. 2002-2003 14 pages.

Sirbu, M. et al., “Net Bill: An Internet Commerce System Optimized
for Network Delivered Services”, Digest of Papers of the Computer
Society Computer Conference (Spring) Mar. 5, 1995 pp. 20-25 vol.
CONF40.

Schunter, M. et al., “A Status Report on the SEMPER framework for
Secure Electronic Commerce”, Computer Networks and ISDN Sys-
tems, Sep. 30, 1998, pp. 1501-1510 vol. 30 No. 16-18 NL North
Holland.

Konrad, K. et al., “Trust and Electronic Commerce—more than a
technical problem,” Proceedings of the 18th IEEE Symposium on
Reliable Distributed Systems Oct. 19-22, 1999, pp. 360-365
Lausanne

Kini, ct al., “Trust in Electronic Commerce: Definition and Theoreti-
cal Considerations”, Proceedings of the 3 1st Hawaii Int’l Conf on
System Sciences (Cat. No. 98TB100216). Jan. 6-9, 1998. pp. 51-61.
Los.

Hartung, ctal. “Multimedia Watermarking Techniques™, Proccedings
ofthe IEEE, Special Issue, Identification & Protection of Multimedia
Information, pp. 1079-1107 Jul. 1999 vol. 87 No. 7 IEEE.
Turopean Search Report & Turopean Search Opinion in
EP07112420.

STAIND (The Singles 1996-2006), Warner Music—Atlantic, Pre-
Release CD image, 2006, | page.

Radiohead (“Ilail to the Thief”), CMI Music Group—Capitol, Pre-
Release CD image, 2003, 1 page.

U.S. Appl. No. 60/169,274, filed Dec. 7, 1999, entitled “Systems,
Methods and Devices for Trusled Transactions™.

U.S. Appl. No. 60/234,199, filed Sep. 20, 2000, *“Improved Security
Based on Subliminal and Supraliminal Channels for Data Objects”.
U.S. Appl. No. 09/671.739, filed Sep. 29, 2000, entitled “Method and
Device for Monitoring and Analyzing Signals”.

Tirkel, AZ., “A Two-Dimensional Digital Watermark”, Scientific
Technology, 686, 14, date unknown.

EP0581317A2

PCT International Search Report in PCT/TUS95/08159.

PCT Intcrnational Scarch Report in PCT/US96/10257.
Supplementary European Search Report in EP 96919405,

PCT International Search Report in PCT/TUS97/00651.

PCT International Search Report in PCT/US97/00652.

PCT International Search Report in PCT/US97/11455.

PCT International Search Report in PCT/US99/07262.

PCT International Search Report in PCT/US00/06522.
Supplementary European Search Report in EP00919398.

PCT International Scarch Report in PCT/US00/18411.

PCT International Search Report in PCT/US00/33126.

PCT International Search Report in PCT/US00/21189.

Delaigle, J.-F,, et al. “Digital Watermarking,” Proceedings of the
SPIE, vol. 2659, Feb 1, 1996, pp. 99-110.

Schneider, M., et al. “A Robust Content Based Digital Signature for
Image Authentication,” Proceedings of the International Conference
on Image Processing (IC. Lausanne) Sep. 16-19, 1996, pp. 227-230,
1EEE ISBN.

Cox, L. I, et al. “Secure Spread Spectrum Watermarking for Multi-
media,” TEEE Transaclions on Image Processing, vol. 6 No. 12, Dec.
1, 1997, pp. 1673-1686.

Wong, Ping Wah. “A Public Key Watermark for Image Verification
and Authentication,” IEEE International Conference on Image Pro-
cessing, vol. 1 Ocl. 4-7, 1998, pp. 455-459.

Fabien A D. Detitcolas, Ross J. Anderson and Markkus G. Kuhn,
“Attacks on Copyright Marking Systems,” LNCS. vol. 1525, Apr.
14-17, 1998, pp. 218-238 ISBN: 3-540-65386-4.

Joseph J.K. O’Ruanaidh and Thierry Pun, ‘“Rotation, Scale and
Translation Invariant Digital Image Watermarking”. pre-publication,
Summer 1997 4 pages.

Joseph J.K. O’Ruanaidh and Thierry Pun, “Rotation, Scale and
Translation Invariant Digital Image Watermarking”, Submitted to
Signal Processing Aug. 21, 1997, 19 pages.

Oasis (Dig Out Your Soul), Big Brother Recordings Itd, Promotional
CD image, 2008, 1 page.

Rivest, R. “Chaffing and Winnowing: Confidentiality without
Encryption”, MI'l' Lab for Computer Science, http://people.csail. mit.
edu/rivest/Chaffing.txt Apr. 24, 1998, 9 pp.

PorlalPlayer, PP5002 digilal media managemenl system-on-chip,
May 1, 2003, 4 pp.

VeriDisc, “I'he Search for a Rational Solution to Digital Rights
Management (DRM)”, http://64.244.235 240/news/whitepaper,/
docs/veridisc.sub.--while.sub.--paper.pdf, 2001, 15 pp.

Cayre, et al.. “Kerckhoff’s-Based Embedding Security Classes for
WOA Data Hiding”, IEEE Transactions on Information Forensics
and Security, vol. 3 No. 1, Mar. 2008, 15 pp.

Wayback Machine, dated Jan. 17, 1999, http://web.archive.org/web/
19990117020420/http://www.net zero.com/, accessed on Feb. 19,
2008.

Namgoong, H., “An Integrated Approach to Legacy Data for Multi-
media Applications”, Proceedings of the 23rd EUROMICRO Con-
ference, vol., Issue 1-4, Sep. 1997, pp. 387-391.

‘Wayback Machine, dated Aug. 26, 2007, http://web.archive,org/web/
20070826151732/http://www.screenplaysmag.com/t-abid/96/
articleType/ArticleView/articleld/495/Default. aspx/.

“You'lube Copyright Policy: Video Identification tool—You'lube
Help”, accessed Jun. 4, 2009, http://www.google.com/support/
youtube/bin/answer.py?h1=e n&answer=83766, 3 pp.

PCT Application No. PCT/US95/08159, filed Jun. 26, 1995, entitled,
“Digital Information Commodities Exchange with Virtual Menu-
ing”. published as W0/1997/001892; Publication Date: Jan. 16,
1997.

PCT Application No. PCT/US96/10257, filed Jun. 7, 1996, entitled
“Steganographic Method and Device”—corresponding to—EPO
Application No. 96919405 .9, entitled “Steganographic Method and
Device”, published as WO/1996/042151; Publication Date: Dec. 27,
1996.

PCT Application No. PCT/US97/0065 1, filed Jan. 16, 1997, entitled,
“Method for Stega-Cipher Protection of Computer Code”. published
as WO/1997/026732; Publication Date: Jul. 24, 1997.

PCT Application No. PCT/US97/00652. filed Jan. 17, 1997, entitled,
“Method for an Encrypted Digital Watermark”, published as
WO/1997/026733; Publication Date: Jul. 24, 1997.

PCT Application No. PCT/US97/11455, filed Jul. 2, 1997, entitled,
“Optimization Methods for the Insertion, Protection and Detection of
Digital Watermarks in Digitized Data”, published as WO/1998/
002864 Publication Date: Jan. 22, 1998.

DISH-Blue Spike 842
Exhibit 1005, Page 0158

US 9,104,842 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

PC1 Application No. PC'1/US99/07262, filed Apr. 2, 1999, entitled,
“Multiple Transform Utilization and Applications for Secure Digital
Watermarking”, published as W0/1999/052271; Publication Date:
Oct. 14, 1999.

PCT Application No. PCT/US00/06522, filed Mar. 14,2000, entitled,
“Ulilizing Dala Reduclion in Steganographic and Cryplographic
Systems”, published as WO/2000/057643; Publication Date: Sep. 28,
2000.

PCT Application No. PCT/US00/18411, filed Jul. 5, 2000, cntitled,
“Copy Protection of Digital Data Combining Steganographic and
Cryptographic Techniques”.

PCT Application No. PCT/US00/33126, filed Dec. 7, 2000, entitled
“Systems, Methods and Devices for Trusted Transactions™, pub-
lished as W0/2001/043026; Publication Date: Jun. 14, 2001.

EPO Divisional Patent Application No. 071124200, entitled
“Steganographic Method and Device” corresponding to PCT Appli-
cation No. PCT/US96/10257, published as WO/1996/042151, Dec.
27, 1996.

U.S. Appl. No. 60/222,023 filed Jul. 31, 2007 entitled “Method and
apparatus for recognizing sound and signals in high noise and distor-
tion”.

“Techniques for Data Hiding in Audio Files,” by Morimoto, 1995.
Howe, Dennis Jul. 13, 1998 http:/foldoc..org//steganography.
CSG, Computer Support Group and CSGNetwork.com 1973 http://
www.csgnetwork.com/glossarys.html.

QuinStreet Inc. 2010 What is steganography?—A word definition
from the Webopedia Computer Dictionary http://www.webopedia.
com/terms/steganography.html.

Graham, Robert Aug. 21, 2000 “Hacking Lexicon” http://
robertgraham.com/pubs/hacking-dict.html.

Tarkex, Inc 2010 “Steganography definition of steganography in the
Free Online Encyclopedia” http://encyclopedia2. Thefreedictionary.
comy/steganography:.

Horowitz, et al., The Art of Eletronics. 2" Ed., 1989, pp- 7.

Jimmy eat world (“futures”), Interscope Records, Pre-Release CD
image, 2004, 1 page.

Aecrosmith (“Just Push Play”), Pre-Release CD image, 2001, 1 page.
Phil Collins(Testify) Atlantic, Pre-Release CD image, 2002, 1 page.
U. are U. Reviewer’s Guide (U are U Software, 1998).

U. are U. wins top honors! —Marketing Flyer (U, are U. Software,
1998).

Digital Persona, Inc., U. are U. Fingerprint Recognition System: User
Guide (Version 1.0, 1998).

Digital Persona White Paper pp. 8-9 published Apr. 15, 1998.
Digital Persona, Inc., “Digital Persona Releases U. are. U Pro Fin-
gerprint Security Systems for Windows NT, 2000, *98, *95”, (Feb.
2000).

SonicWall, Inc. 2011 “The Network Security SonicOS Platform-
Deep Packet Inspection” http://www.sonicwall com/us/en/products/
Deep_ Packet_ Inspection html.

Rick Merritt, PARC hosts summit on content-centric nets, EETimes,
Aug. 12, 2011, http://www.eetimes.com/electronics-news/4218741/
PARC-hosts-summil-on-conlent -cenlric-nels.

Afanasyev, et. al., Communications of the ACM: Privacy Preserving
Network Forensics 2011.

SonicWall, Inc., 2008 “The Advantages of a Multi-core Architecture
in Nelwork Security Appliances™ hitp://www.sonicwall.com/down-
loads/WP-ENG-010 Multicore.

Voip-Pal.Com Inc’s Lawful Intercept Patent Application Receives
the Allowance for Issuance as a Patent. http://finance.yahoo.com/
news/voip-pal-com-inc-lawful - 133000133 html.

Deep Content Inspection—Wikipedia, the free encyclopedia, http://
en.wikipedia.org/wiki/Deep__content__inspection (last visited Apr.
4,2013).

Dexter, et. al, “Multi-view Synchronization of Human Actions and
Dynamic Scenes” pp. 1-11, 2009.

Kudrle, et al., “Fingerprinting for Solving A/V Synchronization
Issues within Broadcast Environments™, 2011.

Junego, et. al., “View-Independent Action Recognition from Tempo-
ral Self-Similarities”, 2011.

Dexter, ot al., “Multi-view Synchronization ot Image Scquences”,
2009.

Blue Spike, LLC. v. Texas Instruments, Inc et. al, (No: 6:12-CV-499-
MHS), Audible Magic Corporations’s amended Answer (E.D. TX
filed Jul. 15, 2013) (Document 885 page ID 9581), (PACER).
Moskowilz, “Introduction-Digital Rights Management,” Mullimedia
Security Technologies for Digital Rights Management (2006),
Clsevier.

George, Mercy; Chouinard, Jean-Yves; Georgana, Nicolas. Digital
Watermarking of Images and video using Direct Sequence Spread
Spectrum ‘lechniques. 1999 IEEE Canadian Conterence on Electri-
cal and Computer Engineering vol. 1. Pub. Date: 1999 Relevant pp.
116-121. http://ieeexplore.ieee org/stamp/stamp.
jsp?tp=arnumber=807181.

Apr. 4, 2014, Shazam Entertainment Limited’s Amended Answer to
Blue Spike, LLC’s complaint and counterclaims against Blue Spike
LLC, Blue Spike, Inc and Scott A. Moskowitz , Shazam Entertain-
ment Ltd v. Blue Spike, LLC, Blue Spike, Inc, and Scott Moskowitz
(E.D.T.X Dist Ct.) Case No. 6:12-CV-00499-MHS.

Apr. 4, 2014, Audible Magic Corporation’s Second Amended
Answer to Blue Spike LLC’s Original Complaint for patent infringe-
ment and counterclaims against Blue Spike LLC, Bluc Spike, Inc and
Scott Moskowitz. Blue Spike LLC v. Texas Instruments, Audible
Magic Corporation (E.D.T.X Dist Ct.) Case No. 6:12-CV-499-MHS.
Dec. 19,2011, Shrivastava, et.al. ,“Data-Driven Visual Similarity for
Cross-Domain Image Matching”, 2011 ACM Transaction of Graph-
ics (TOG), ACM SIGGRAPH Asia vol. 30 No. 6, http://graphics.cs.
cmu.edu/projects/crossDomainMatching/

Spice, Byron, “Carnegie Mellon Researchers Develop Computerized
Method for Finding Similar Images in Photos, Paintings, Sketches”,
Carnegie Mellon News, Dec. 6, 2011, Carnegie Mellon University.
hitp://www.cmu.edu/mews/stories/archives/201 1/december/dec6__
matchingimages.html.

Oct. 16, 2014, Memorandum Opinion and Order, Blue Spike LLC v.
Texas Instruments, Inc. et al., (E.D.T.X Dist Ct), Case No. 6:12CV-
0499-MHS-CMC.

Yu, Che-Fn,“Access Control and Authorization Plan for Customer
Control of Network Services”, IEEE Globecom 1989 Pub 1989. pp.
862-869. http://ieeeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber—64085.

Jacger, Trent; Prakash, Atul; Rubin, Avid D, “A System Architecture
for Flexible Control of Downloaded Executable Content.” Proceed-
ings of the Fifth International Workshop on Object-Oreintation in
Operating Systems. Pub 1996, pp. 14-18. http://iecexplore.icee.org/
stamp/stamp jsp?tp—&arnumber—557855.

“Activate Your Product Through the Online License Management
System (LMS)”, May 2011 Juniper Networks, Inc., USA.

“Activate Your Software Capacity and/or Features”, May 2011, Juni-
per Networks, USA.

“Download and Activate Your Software™, May 2011, Juniper Net-
works, Inc., USA.

“Electronic Fulfillment of Feature, Capacity and Subscription
License Activation Keys via the License Management System
(LMS)”, Sep. 2009, Juniper Networks, Inc., USA.

“Juniper Networks License Management System (LMS) FAQ”, Jul.
2009, Juniper Networks, Inc., USA.

“License Activation Keys”, Dec. 14, 2014, http://www juniper.net/
generate_license/.

“License code and configuration key reference [AX 2012]”, Mar. 25,
2014, Microsoft http:/technet.microsoft.com/en-us/library/
hh378074.aspx.

“License Codes™, Dec. 14, 2014, Oracle http://'www.oracle.com/us/
support/licensecodes/index.html.

“PeopleSoft Enterprise: License Codes”, Dec. 14, 2014, http://www.
oracle.com/us/support/licensecodes/peoplesoft-enterprise/index.
html.

“Primavera License Key Tiles”, Dec. 14, 2014, http://www.oracle.
com/us/support/licensecodes/primavera’index.html.

“Siebel License Keys”, Dec. 14, 2014, http://www.oracle.com/us/
support/licensecodes/siebel/index html.

DISH-Blue Spike 842
Exhibit 1005, Page 0159

US 9,104,842 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

“How to transfer a license activation key to an RMA replacement
device”, Mar. 2009, Juniper Networks, Inc. USA.

“How to register a license key in My VMware (2011177)”, Dec. 14,
2014, http://kb. vmwarc.com/sclfscrvice/microsites/scarch.
do?cmd=displayKC&docType=ex&bbid=TSEBB__
1334428459608&url=&stateld=1%200%204629 14399
&dialogID=462898852&docTypelD=DT KB 1 |
&externalld=2011177&sliceld=1&rfld=.

Chaussce, “Inside Windows Product Activation”, Jul. 2001, http://
www licenturion.com/xp.

“How to generate and validate a software key license”, Dec 14, 2014,
Stack Overflow, http://stackoverflow.com/questions/599837/how-
to-gencrate-and-validate-a-sottwarc-licensc-koy.

Donsw, “License Key Generation”, Jul 2005. Code Project, http://
www.codeproject.com/articles/1 1012/License-Key-Generation.
“How are Software License Keys generated?”, Dec. 14, 2014, Stack
Overflow, http://stackoverflow.com/questions/3002067/how-are-
softwarc-liccnse-keys-gencrated.

Decision on Appeal, USPTO PTAB Appeal No. 2012-011854 for
U.S. Appl. No. 11/895,388 issued Mar. 12, 2015.

* cited by examiner

DISH-Blue Spike 842
Exhibit 1005, Page 0160

U.S. Patent Aug. 11, 2015 US 9,104,842 B2

T START

ENCODE
DIGITAL
INFORMATION

ID Portion of Format /
information to be
Encoded

‘ 120

1

|

:

|

i

1

i
Generate |/ '
Encoded |
1

H

1

i

]

Format
Information

L’ 130

Generate /
Encoded Digital

Play Digital
Information

Information
______________________________ ‘
DECODE . /140 |
DIGITAL Decode With ~
INFORMATION Predetermined Key :
& /150 :
i
{
i

DISH-Blue Spike 842
Exhibit 1005, Page 0161

US 9,104,842 B2

1
DATA PROTECTION METHOD AND DEVICE

CROSS-REFERENCE 1O RELATED
APPLICATIONS

This application is a division of application Ser. No.
10/602,777, filed Jun. 25, 2003, now U.S. Pat. No. 7,664,263,
issued Feb. 16, 2010, which is acontinuation of of application
Ser. No. 09/046,627, filed Mar. 24, 1998, now U.S. Pat. No.
6,598,162, issued Jul. 22, 2003. The entire disclosure of U.S.
patent application Ser. No. 09/046,627 (which issued Jul. 22,
2003, as U.S. Pat. No. 6,598.162) and U.S. patent application
Ser. No. 08/587,943, (iled Jan. 17, 1996, (which issued Apr.
28,1998, as U.S. Pat. No. 5,745,943) are hereby incorporated
by reference in their entireties.

FIELD OF THE INVENTION

The invention relates to the protection of digital informa-
tion. More particularly, the invention relates (o a method and
device [or data protection.

With the advent of computer networks and digital multi-
media, protection of intellectual property has become a prime
concern for creators and publishers of digitized copies of

copyrightable works, such as musical recordings, movies, 2

video games, and computer software. One method of protect-
ing copyrights in the digital domain is to use “digital water-
marks.”

The prior art includes copy protection systems attempted at
many stages in the development of the software industry.
These may be various methods by which a software engineer
can writc the software in a clever manner to determine if it has
been copiced, and if so to deactivate itself. Also included arc
undocumented changes to the storage format of the content.
Copy protection was generally abandoned by the software
industry, since pirates were generally just as clever as the
software engineers and figured out ways to modify the soft-
ware and deactivate the protection. The cost of developing
such protection was not justified considering the level of
piracy which occurred despite the copy protection.

Other methods for protection of computer software include
the requirement of entering certain numbers or facts that may
beincluded in a packaged software’s manual, when prompted
al start-up. These may be overcome il copies of (the manual
are distributed to unintended users, or by patching the code to
bypass these measures. Other methods include requiring a
user to contact the software vendor and to receive “keys™ for
unlocking software after registration attached to some pay-
ment scheme, such as credit card authorization. Further meth-

ods include network-based searches of a user’s hard drive and 5

comparisons between what is registered to that user and what
is actually installed on the user’s general computing device.
Other proposals, by such parties as AT&T’s Bell Laborato-
ries, use “kerning” or actual distance in pixels, in the render-

ing of text documents, rather than a varied number of ASCII 5

characters. However, this approach can often be defeated by
graphics processing analogous to sound proccssing, which
randomizes that information. All of these methods require
outside determination and verification of the validity of the
software license.

Digital watermarks can be used to mark each individual
copy of a digitized work with information identifying the
title, copyright holder, and even the licensed owner of a par-
ticular copy. When marked with licensing and ownership
information, responsibility is created for individual copies
where before there was none. Computer application programs
can be watermarked by watlermarking digital content

_
<

e
o

40

W
&

60

o
o

2

resources used in conjunction with images or audio data
Digital watermarks can be encoded with random or pseudo
random keys, which act as secret maps for locating the water-
marks. These keys make it impossible for a party to find the
watermark without having the key. In addition, the encoding
method can be enhanced to force a party to cause damage to
awatermarked data stream when trying to erase a random-key
watermark. Other information is disclosed in “Technology:
Digital Commerce”, Denise Caruso, New York Times, Aug. 7,
1995; and “Copyrighting in the Information Age”, Harley
Ungar, ONLINE MARKETPLACE, September 1995, Jupi-
ter Communications.

Additionally, other methods for hiding information signals
in content signals, are disclosed in U.S. Pat. No. 5,319,735—
Preuss et al. and U.8. Pat. No. 5,379,345—Greenberg.

Tt is desirable to use a “stega-cipher” or watermarking
process to hide the necessary parts or resources of the execut-
able object code in the digitized sample resources. It is also
desirable to further modify the underlying structure of an
execulable computer application such that it is more resistant
(o attempts al patching and analysis by memory capture. A
computer application seeks to provide a user with certain
utilities or tools, that is, users interact with a computer or
similar device to accomplish various tasks and applications
provide the relevant interface. Thus, a level of authentication
can also be introduced into software, or “digital products,”
that include digital content, such as audio, video, pictures or
multimedia, with digital watermarks. Security is maximized
because erasing this code watermark without a key results in
the destruction of one or more essential parts of the underly-
ing application, rendering the “program” useless to the unin-
tended user who lacks the appropriate key. Further, if the key
is linked to a license code by means of a mathematical func-
tion, a mechanism for identifying the licensed owner of an
application is created.

It is also desirable to randomly reorganize program
memory structure intermittently during program run time, to
prevent attempts at memory capture or object code analysis
aimed at eliminating licensing or ownership information, or
otherwise modifying, in an unintended manner, the function-
ing of the application.

In this way, attempts to capture memory to determine
underlying functionality or provide a “patch” to facilitate
unauthorized use of the “application,” or compuler program,
without destroying the [unctionality and thus uselulness of a
copyrightable computer program can be made difficult or
impossible.

It is thus the goal of the present invention to provide a
higher level of copyright security to object code on par with
methods described in digital watermarking systems for digi-
tized media content such as pictures, audio, video and multi-
media content in its multifarious forms, as described in pre-
vious disclosures, “Steganographic Method and Device” Ser.
No. 08/489,172, filed Jun. 7, 1995, now U.S. Pat. No. 5,613,
004, and “Human Assisted Random Key Generation and
Application for Digital Watermark System”, Ser. No. 08/587,
944, filed on Jan. 17, 1996, now U.S. Pat. No. 5,822,432, thc
disclosure of which is hereby incorporated by reference.

It is a further goal of the present invention to establish
methods of copyright protection that can be combined with
such schemes as software metering, network distribution of
codeand specialized protection of software that is designed to
work over a network, such as that proposed by Sun Micro-
systems in their HotJava browser and Java programming lan-

5 guage, and manipulation of application code in proposed

distribution of documents that can be exchanged with
resources or the look and feel of the document being pre-

DISH-Blue Spike 842
Exhibit 1005, Page 0162

US 9,104,842 B2

3

served over a network. Such systems are currently being
offered by companies including Adobe, with their Acrobat
software. 1his latter goal is accomplished primarily by means
of the watermarking of font, or typeface, resources included
in applications or documents, which determine how a bitmap
representation of the document is ultimately drawn on a pre-
sentation device.

‘The present invention includes an application of the tech-
nology of “digital watermarks” As described in previous
disclosures, “Steganographic Method and Device™ and
“Human Assisted Random Key Generation and Application
for Digital Watermark System,” watermarks are particularly
suitable to the identification, metering, distributing and
authenticating digitized content such as pictures, audio, video
and derivatives thereof under the description of “multimedia
content.” Methods have been described for combining both
cryptographic methods, and steganography, or hiding some-
thing in plain view. Discussions of these technologies can be
found in Applied Cryptography by Bruce Schneier and The
Code Breakers by David Kahn. For more information on prior
art public-key cryptosystems see U.S. Pat. No. 4,200,770
Diffie-Hellman, U.S. Pat. No. 4,218,582 Hellman, U.S. Pat.
No.4,405,829 RSA, U.S. Pat. No. 4,424,414 Hellman Pohlig.

Computer code, or machine language instructions, which arc 2

not digitized and have zero tolerance for error, must be pro-
tected by derivative or alternative methods, such as those
disclosed in this invention, which focuses on watermarking
with “keys” derived from license codes or other ownership
identification information, and using the watermarks encoded
with such keys to hide an essential subset of the application
code resources.

BACKGROUND OF THE INVENTION

Increasingly, commercially valuable information is being
created and stored in “digital” form. For example, music,
photographs and video can all be stored and transmitted as a
series of numbers, such as 1’s and 0’s. Digital techniques let
the original information be recreated in a very accurate man-
ner. Unfortunately, digital techniques also let the information
be easily copied without the information owner’s permission.

Because unauthorized copying is clearly a disincentive to
the digital distribution of valuable information, it is important
{0 establish responsibility [or copies and derivative copies of
such works. For example, if each authorized digital copy of a
popular song is identified with a unique number, any unau-
thorized copy of the song would also contain the number. This
would allow the owner of the information, such as a song

publisher, to investigate who made the unauthorized copy. 3

Unfortunately, it is possible that the unique number could be
erased or altered if it is simply tacked on at the beginning or
end of the digital information.

As will be described, known digital “watermark™ tech-
niques give creators and publishers of digitized multimedia
content localized, secured identification and authentication of
that content. In considering the various forms of multimedia
content, such as “master,” stereo, National lelevision Stan-
dards Committee (N'1'SC) video, audio tape or compact disc,
tolerance of quality will vary with individuals and affect the
underlying commercial and aesthetic value of the content. I'or
example, if a digital version of a popular song sounds dis-
torted, it will be less valuable to users. It is therefore desirable
to embed copyright, ownership or purchaser information, or
some combination of these and related data, into the content
in a way that will damage the content if the watermark is
removed without authorization.

w

2

=}

e
o

w
IS]

&
>

45

w
IS)

w
&

4

To achieve these goals, digital watermark systems insert
ownership information in a way that causes little or no notice-
able effects, or “artifacts,” in the underlying content signal.
For example, if a digital watermark is inserted into a digital
version of a song, it is important that a listener not be bothered
by the slight changes introduced by the watermark. It is also
important for the watermark technique to maximize the
encoding level and “location sensitivity” in the signal to force
damage to the content signal when removal is attempted.
Digital watermarks address many of these concerns, and
research in the field has provided extremely robust and secure
implementations.

What has been overlooked in many applications described
in the art, however, are systems which closely mimic distri-
bution of content as it occurs in the real world. For instance,
many watermarking systems require the original un-water-
marked content signal to enable detection or decode opera-
tions. These include highly publicized efforts by NEC, Digi-
marc and others. Such techniques are problematic because, in
the real world, original master copies reside in arights holders
vaults and are not readily available to the public.

With much activity overly focused on watermark surviv-
ability, the security of a digital watermark is suspect. Any
simple linear operation for encoding information into a signal
may be used to erase the embedded signal by inverting the
process. This is not a difficult task, especially when detection
software is a plug-in freely available to the public, such as
with Digimarc. In general, these systems seek to embed cryp-
tographic information, not cryptographically embed informa-
tion into target media content.

Other methods embed ownership information that is
plainly visible in thc media signal, such as the mcthod
described in U.S. Pat. No. 5,530,739 to Braudaway ct al. The
system described in Braudaway protects a digitized image by
encoding a visible watermark to deter piracy. Such an imple-
mentation creates an immediate weakness in securing the
embedded information because the watermark is plainly vis-
ible. Thus, no search for the embedded signal is necessary and
the watermark can be more easily removed or altered. For
example, while certainly useful to some rights owners, simply
placing the symbol “©” in the digital information would only
provide limited protection. Removal by adjusting the bright-
ness of the pixels forming the “©” would not be difficult with
respect Lo the computational resources required.

Other relevant prior arl includes U.S. Pat. Nos. 4,979,210
and 5,073,925 to Nagata et al., which encodes information by
modulating an audio signal in the amplitude/time domain.
The modulations introduced in the Nagata process carry a
“copy/don’t copy” message, which is easily found and cir-
cumvented by one skilled in the art. The granularity of encod-
ing is fixed by the amplitude and frequency modulation limits
required to maintain inaudibility. These limits are relatively
low, making it impractical to encode more information using
the Nagata process.

Although U.S. Pat. No. 5,661,018 to Leighton describes a
means to prevent collusion attacks in digital watermarks, the
disclosed method may not actually provide the sccurity
described. For-example, in cases where the watermarking
technique is linear, the “insertion envelope” or “watermark-
ing space” is well-defined and thus susceptible to attacks less
sophisticated than collusion by unauthorized parties. Over-
encoding at the watermarking encoding level is but one
simple attack in such linear implementations. Another con-
sideration not made by T .eighton is that commercially-valu-

5 able content may already exist in a un-watermarked form

somewhere, easily accessible to potential pirates, gutting the
need for any type of collusive activity. Digitally signing the

DISH-Blue Spike 842
Exhibit 1005, Page 0163

US 9,104,842 B2

5

embedded signal with preprocessing of watermark data is
more likely to prevent successful collusion. Furthermore, a
“baseline” watermark as disclosed is quite subjective. It is
simply described elsewhere in the art as the “perceptually
significant” regions of a signal. Making a watermarking func-
tion less linear or inverting the insertion of watermarks would
seem to provide the same benefit without the additional work
required to create a “bascline” watermark. Indeed, water-
marking algorithms should alrcady be capable of defining a
target insertion envelope or region without additional steps.
What is evident is the Leighton patent does not allow for
initial prevention of attacks on an embedded watermark as the
content is visibly or audibly unchanged.

It is also important that any method for providing security
also function with broadcasting media over networks such as
the Internet, which is also referred to as “streaming.” Com-
mercial “plug-in” products such as RealAudio and
RealVideo, as well as applications by vendors VDONet and
Xtreme, are common in such network environments. Most
digital walermark implementations focus on common file
base signals and fail (0 anticipate the securily of streamed
signals. It is desirable that any protection scheme be able to
function with a plug-in player without advanced knowledge
of the encoded media stream.

Other technologies focus solely on file-based security. 2

These technologies illustrate the varying applications for
security that must be evaluated for different media and dis-
tribution environments. Use of cryptolopes or cryptographic
containers, as proposed by IBM in its Cryptolope product,
and InterTrust, as described in U.S. Pat. Nos. 4,827.508,
4,977,594, 5,050,213 and 5,410,598, may discourage certain
forms of piracy. Cryptographic containcrs, howcever, requirc a
uscr to subscribe to particular decryption softwarc to decrypt
data. IBM’s InfoMarket and Interlrust’s DigiBox, among
other implementations, provide a generalized model and need
proprietary architecture to tfunction. Livery user must have a
subscription or registration with the party which encrypts the
data. Again, as a form of general encryption, the data is
scrambled or encrypted without regard to the media and its
formatting. Finally, control over copyrights or other neigh-
boring rights is left with the implementing party, in this case,
IBM., InterTrust or a similar provider.

Methods similar to these “trusted systems” exist, and Cer-
berus Central Limited and Liquid Audio, among a number of
companies, ofler systems which may functionally be thought
of as subsets of IBM and InterTrust’s more generalized secu-
rity offerings. Both Cerberus and Liquid Audio propose pro-
prietary player software which is registered to the user and
“locked” in a manner parallel to the locking of content that is

distributed via a cryptographic container. The economic 5

trade-off in this model is that users are required to use each
respective companies’ proprietary player to play or otherwise
manipulate content that is downloaded. If, as is the case
presently, most music or other media is not available via these
proprietary players and more companies propose non-com-
patible player formats, the proliferation of players will con-
tinuc. Cerberus and Liquid Audio also by way of extension of
their architectures provide for “near-CD quality” but propri-
etary compression. This requirement stems from the neces-
sity not to allow content that has near-identical data make-up
to an existing consumer electronic standard, in Cerberus and
Liquid Audio’s case the so-called Red Book audio CD stan-
dard of 16 bit 44.1 kHz, so that comparisons with the propri-
etary file may not yield how the player is secured. Knowledge
of the player’s file format renders its security ineffective as a
file may be replicated and played on any common player, not
the intended proprietary player of the provider of previously

w

_
<

w

e
o

w
IS)

=N
IS

6

secured and uniquely formatted content. This is the parallel
weakness to public key crypto-systems which have gutted
security if enough plain text and cipher text comparisons
enable a pirate to determine the user’s private key.

Many approaches to digital watermarking leave detection
and decoding control with the implementing party of the
digital watermark, not the creator of the work to be protected.
A sct of sccurce digital watermark implementations address
this fundamental control issue forming the basis of key-based
approaches. These are covered by the following patents and
pending applications, the entire disclosures of which are
hereby incorporated by reference: U.S. Pat. No. 5,613,004
cntitled “Steganographic Mcthod and Deviee” and its deriva-
tive U.S. patent application Ser. No. 08/775,216 (which
issued Nov. 11,1997, as U.S. Pat. No. 5,687,236), U.S. patent
application Ser. No. 08/587,944 entitled “Human Assisted
Random Key Generation and Application for Digital Water-
mark System” (which issued Oct. 13, 1998, as U.S. Pat. No.
5,822,432), U.S. patent application Ser. No. 08/587,943
entitled “Method for Stega-Cipher Protection of Computer
Code™ (which issued Apr. 28, 1998, as U.S. Pat. No. 5,748,
569), U.S. patent application Ser. No. 08/677,435 entitled
“Optimization Methods for the Insertion, Protection, and
Detection of Digital Watermarks in Digitized Data” (which
issued Mar. 30, 1999, as 1J.S. Pat. No. 5,889,868) and 1J.S.
patent application Ser. No. 08/772,222 entitled “Z-Transform
Implementation of Digital Watermarks™ (which issued Jun.
20, 2000, as U.S. Pat. No. 6,078,664). Public key crypto-
systems are described in U.S. Pat. Nos. 4,200,770, 4,218,582,
4,405,829 and 4,424,414, the entire disclosures of which are
also hereby incorporated by relerence.

In particular, an improved protection scheme is described
in “Method for Stega-Cipher Protection of Computer Code,”
U.S. patent application Ser. No. 08/587,943 (which issucd
Apr. 28, 1998, as 11.S. Pat. No. 5,748.569). This technique
uses the key-based insertion of binary executable computer
code within a content signal that is subsequently, and neces-
sarily, used to play or otherwise manipulate the signal in
which it is encoded. With this system, however, certain com-
putational requirements, such as one digital player per digital
copy of content, may be necessitated. For instance, a con-
sumer may download many copies of watermarked content.
With this technique, the user would also be downloading as
many copics of the digital player program. While this form of
security may be desirable for some applications, it is not
appropriate in many circumstances.

Finally, even when digital information is distributed in
encoded form, it may be desirable to allow unauthorized users
to play the information with a digital player, perhaps with a
reduced level of quality. ['or example, a popular song may be
encoded and freely distributed in encoded form to the public.
The public, perhaps using commonly available plug-in digital
players, could play the encoded content and hear the music in
some degraded form. The music may-sound choppy, or fuzzy
or be degraded in some other way. This lets the public decide,
based on the available lower quality version of the song, if
they want Lo purchase a key from the publisher to decode, or
“clean-up,” the content. Similar approaches could be used to
distribute blurry pictures or low quality video. Or even
“degraded” text, in the sense that only authenticated portions
ofthe text can be determined with the predetermined key or a

5 validated digital signature for the intended message.

In view of the foregoing, it can be appreciated that a sub-
stantial need exists for a method allowing encoded content to

DISH-Blue Spike 842
Exhibit 1005, Page 0164

US 9,104,842 B2

7
be played, with degraded quality, by a plug-in digital player,
and solving the other problems discussed above.

SUMMARY OF THE INVENTION

The disadvantages of the art are alleviated to a great extent
by a method for combining transfer functions with predeter-
mined key creation. In one embodiment, digital information,
including a digital sample and format information, is pro-
tected by identifying and encoding a portion of the format
information. Encoded digital information, including the digi-
tal sample and the encoded format information, is generated
to protect the original digital information.

In another embodiment, a digital signal, including digital
samples in a file format having an inherent granularity, is
protected by creating a predetermined key. The predeter-
mined key is comprised of a transfer function-based mask set
to manipulate data at the inherent granularity of the file format
of the underlying digitized samples.

It is thus a goal of the present invention, to provide a level
of security for executable code on similar grounds as that
which can be provided for digitized samples. ['urthermore,
the present invention differs from the prior art in that it does
not attempt to stop copying, but rather, determines responsi-

bility for a copy by ensuring that licensing information must 2

be preserved in descendant copies from an original. Without
the correct license information, the copy cannot function.

An improvement over the art is disclosed in the present
invention, in that the sofiware itsell is a set of commands,
compiled by software engineer, which can be configured in
such amanner as to tie underlying functionality to the license
or authorization of the copy in possession by the user. Without
such verification, the functions sought out by the user in the
form of sofiware cease to properly work. Attempts to tamper
or “patch” substitute code resources can be made highly
difficult by randomizing the location of said resources in
memory on an intermittent basis to resist most attacks at
disabling the system.

With these and other advantages and features of the inven-
tion that will become hereinafter apparent. the nature of the
invention may be more clearly understood by reference to the
following detailed description of the invention, the appended
claims and to the scveral drawings attached hercin.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block flow diagram of a method for copy
protection or authentication of digital information according
to an embodiment of the present invention.

DETAILED DESCRIPTION

In accordance with an embodiment of the present inven-
tion, a method combines transfer functions with predeter-
mined key creation. Increased security is achieved in the
method by combining elements of “public-key steganogra-
phy” with cryptographic protocols, which keep in-transit data
secure by scrambling the data with “keys” in a manner that is
not apparent to those with access to the content to be distrib-
uted. Because different forms of randomness are combined to
offer robust, distributed security, the present invention
addresses an architectural “gray space” between two impor-
tantareas of security: digital watermarks, a subset of the more
general art of steganography, and cryptography. One form of
randomness exists in the mask sets that are randomly created
to map watermark data into an otherwise unrelated digital
signal. The second form of randomness is the random permu-

_
<

w

(%}
=}

e
o

w
IS]

w
<

IS
O

50

8

tations of data formats used with digital players to manipulate
the content with the predetermined keys. These forms can be
thought of as the transfer function versus the mapping func-
tion inherent to digital watermarking processes.

According to an embodiment of the present invention, a
predetermined, or randomly generated, key is used to
scramble digital information in a way that is unlike known
“digital watermark” techniques and public key crypto-sys-
tems. As used herein, a key is also referred to as a “mask sct”
which includes one or more random or pseudo-random series
of bits. Prior to encoding, a mask can be generated by any
cryptographically secure random generation process. A block
cipher, such as a Data Encryption Standard (DES) algorithm,
in combination with a sufficiently random seed value, such as
one created using a Message Digest 5 (MD5) algorithm,
emulates a cryptographically secure random hit generator.
The keys are saved in a database, along with information
matching them to the digital signal, for use in descrambling
and subsequent viewing or playback. Additional file format or
transfer property information is prepared and made available
{o the encoder, in a bit addressable manner. As well, any
authenticating function can be combined, such as Digital
Signature Standard (DSS) or Secure Hash Algorithm (SHA).

Using the predetermined key comprised of a transfer func-
tion-based mask set, the data representing the original content
is manipulated at the inherent granularity of the file format of
the underlying digitized samples. Instead of providing, or
otherwise distributing, watermarked content that is not
noticeably altered, a partially “scrambled”” copy of the con-
tent is distributed. The key is necessary both to register the
sought-after content and to descramble the content into its
original form.

The present invention uscs mcthods disclosed in “Mcthod
for Stega-Cipher Protection of Computer Code,” U.S. patent
application Ser. No. 08/587,943 (which issued Apr. 28, 1998,
as U.S. Pat. No. 5,748,569), with respect to transter functions
related to the common file formats, such as PICT, TIFF, AIFF,
WAY, etc. Additionally, in cases where the content has not
been altered beyond being encoded with such functional data,
it is possible for a digital player to still play the content
because the file format has not been altered. Thus, the
encoded content could still be played by a plug-in digital
player as discrete, digitally sampled signals, watermarked or
not. That is, the structure of the file can remain basically

5 unchanged by the watermarking process, letling common file

format based players work with the “‘scrambled” content.
For example, the Compact Disc-Digital Audio (CD-DA)
format stores audio information as a series of frames. Each
frame contains a number of digital samples representing, for
example, music, and a header that contains file format infor-
mation. As shown in FIG. 1, according to an embodiment of
the present invention some of the header information can be
identified and “scrambled” using the predetermined key at
steps 110 to 130. The music samples can remain unchanged.

5 Using this technique, a traditional CD-DA player will be able

to play a distorted version of the music in the sample. The
amount of distortion will depend on the way, and cxtent, that
the header, or file format, information has been scrambled. It
would also be possible to instead scramble some of the digital
samples while leaving the header information alone. In gen-
eral, the digital signal would be protected by manipulating
data at the inherent granularity, or “frames,” of the CD-DA
file format. To decode the information, a predetermined key is
used before playing the digital information at steps 140 and

5 150.

Akey-based decoder canactas a “plug-in” digital player of
broadcast signal streams without foreknowledge of the

DISH-Blue Spike 842
Exhibit 1005, Page 0165

US 9,104,842 B2

9

encoded media stream. Moreover, the data format orientation
is used to partially scramble data in transit to prevent unau-
thorized descrambled access by decoders that lack authorized
keys. A distributed key can be used to unscramble the
scrambled content because a decoder would understand how
to process the key. Similar to on-the-fly decryption opera-
tions, the benefits inherent in this embodiment include the
fact that the combination of watermarked content sccurity,
which is key-based, and the descrambling of the data, can be
performed by the same key which can be a plurality of mask
sets. The mask sets may include primary, convolution and
message delimiter masks with file format data included.

The creation of an optimized “envelope” for insertion of
watermarks provides the basis of much watermark security,
butis also acomplementary goal ofthe present invention. The
predetermined or random key that is generated is not only an
essential map to access the hidden information signal, but is
also the descrambler of the previously scrambled signal’s
format for playback or viewing.

In a syslem requiring keys for watermarking content and
validating the distribution of the content, different keys may
be used to encode different information while secure one way
hash functions or one-time pads may be incorporated to
secure the embedded signal. The same keys can be used to

later validate the embedded digital signature, or even fully 2

decode the digital watermark if desired. Publishers can easily
stipulate that content not only be digitally watermarked but
that distributors must check the validity of the watermarks by
performing digital signature-checks with keys that lack any
other functionality. The system can extend to simple authen-
tication of text in other embodiments.

Before such a market is cconomically fecasible, there arc
other methods for deploying key-based watermarking
coupled with transter functions to partially scramble the con-
tent to be distributed without performing full public key
encryption, i.e., a key pair is not necessarily generated, sim-
ply, a predetermined key’s function is created to re-map the
data of the content file in a lossless process. Moreover, the
scrambling performed by the present invention may be more
dependent on the file in question. Dissimilarly, encryption is
not specific to any particular media but is performed on data.
The file format remains unchanged, rendering the file useable
by any conventional viewer/player, but the signal quality can
be intentionally degraded in the absence of the proper player
and key. Public-key encryption seeks (o complelely obscure
the sensitive “plaintext™ to prevent comparisons with the
“ciphertext™ to determine a user’s private keys. Centralized
encryption only differs in the utilization of a single key for
both encryption and decryption making the key even more

highly vulnerable to attacks to defeat the encryption process. 3

With the present invention, a highly sought after photograph
may be hazy to the viewer using any number of commonly
available, nonproprietary software or hardware, without the
authorized key. Similarly, a commercially valuable song may
sound poor.

The benefit of some form of cryptography is not lost in the
present invention. In fact, some piracy can be deterred when
the target signal may be known but is clearly being protected
through scrambling. What is not anticipated by known tech-
niques, is an ala carte method to change various aspects of tile
formatting to enable various “scrambled states™ for content to
be subsequently distributed. An image may lack all red pixels
or may not have any of the most significant bits activated. An
audio sample can similarly be scrambled to render it less-
than-commercially viable.

The present invention also provides improvements over
known network-based methods, such as those used [or the

_
<

w

20

e
o

w
<

&
>

w
&

10

streaming of media data over the Internet. By manipulating
file formats, the broadcast media, which has been altered to
“fit” within electronic distribution parameters, such as band-
width availability and error correction considerations, can be
more eflectively utilized Lo restrict the subsequent use of the
content while in transit as well as real-time viewing or play-
ing.

‘I'he mask set providing the transfer function can be read on
a per-use basis by issuing an authorized or authenticating
“key” for descrambling the signal thal is apparent (o a viewer
or a player or possessor of the authenticating key. The mask
set can be read on a per-computer basis by issuing the autho-
rized key that is morc gencralized for the computer that
receives the broadcast signals. Metering and subscription
models become viable advantages over known digital water-
mark systems which assist in designating the ownership of a
copy of digitized media content, but do not prevent or restrict
the copying or manipulation of the sampled signal in ques-
tion. ['or broadcast or streamed media, this is especially the
case. Message authentication is also possible, though not
guaranteeing the same security as an encrypted file as with
general crypto systems.

The present invention thus benefits from the proprietary
player model without relying on proprietary players. No new
players will be necessary and existing multimedia file formats
can be altered to exact a measure of security which is further
increased when coupled with digital watermarks. As with
most consumer markets for media content, predominant file
formats exist, de facto, and corresponding formats for com-
puters likewise exist. For a commercial compact disc quality
audio recording, or 16 bit 44.1 kHz, corresponding file for-
mats include: Audio Interchange File Format (AIFF),
Microsoft WAV, Sound Designer 1I, Sun’s .au, Apple’s
Quicktime, etc. For still image media, formats are similarly
abundant: TII'T, PICT, JPEG, GII, etc. Requiring the use of
additional proprietary players, and their complementary file
formats, for limited benefits in security is wasteful. Moreover,
almost all computers today are multimedia-capable, and this
is increasingly so with the popularity of Intel’s MMX chip
architecture and the PowerPC line of microchips. Because file
formatting is fundamental in the playback of the underlying
data, the predetermined key can act both as a map, for infor-
maltion to be encoded as watermark data regarding ownership,

5 and a descrambler of the (ile that has been distributed. Limi-

tations will only exist in how large the key must be retrofitted
for a given application, but any manipulation of file format
information is not likely to exceed the size of data required
versus that for an entire proprietary player.

As with previous disclosures by the inventor on digital
watermarking techniques, the present invention may be
implemented with a variety of cryptographic protocols to
increase both confidence and security in the underlying sys-
tem. A predetermined key is described as a set of masks.
These masks may include primary, convolution and message
delimiter mask. In previous disclosures, the functionality of
these masks is defined solely for mapping. The present inven-
tion includes a mask set which is also controlled by the
distributing party of a copy of a given media signal. T'his mask
set is a transter function which is limited only by the param-
eters of the file format in question. To increase the uniqueness
or security of each key used to scramble a given media file
copy, a secure one way hash function can be used subsequent
to transfer properties that are initiated to prevent the forging
ofa particular key. Public and private keys may be used as key
pairs to further increase the unlikeliness that a key may be
compromised.

DISH-Blue Spike 842
Exhibit 1005, Page 0166

US 9,104,842 B2

11

These same cryptographic protocols can be combined with
the embodiments of the present invention in administering
streamed content that requires authorized keys to correctly
display or play the streamed content in an unscrambled man-
ner. As with digital walermarking, symmetric or asymmetric
public key pairs may be used in a variety of implementations.
Additionally, the need for certification authorities to maintain
authentic key-pairs becomes a consideration for greater sccu-
rity beyond symmetric key implementations. The crypto-
graphic protocols makes possible, as well, a message of text
to be authenticated by a message authenticating function in a
general computing device that is able to ensure secure mes-
sage cxchanges between authorizing partics.

An executable computer program is variously referred to as
an application, from the point of view of a user, or executable
object code from the point of view of the engineer. A collec-
tion of smaller, atomic (or indivisible) chunks of object code
typically comprise the complete executable object code or
application which may also require the presence of certain
data resources. These indivisible portions of object code cor-
respond with the programmers’ function or procedure imple-
mentations in higher level languages, such as C or Pascal. In
creating an application, a programmer writes “code” in a

higher level language, which is then compiled down into 2

“machine language,” or, the executable object code, which
can actually be run by a computer, general purpose or other-
wise. Each function, or procedure, written in the program-
ming language, represents a self-contained portion of the
larger program, and implements, typically. a very small piece
of'its functionality. The order in which the programmer types
the code for the various [unctions or procedures, and the
distribution of and arrangement of these implementations in
various files which hold them is unimportant. Within a func-
tion or procedure, however, the order of individual language
constructs, which correspond to particular machine instruc-
tions is important, and so [unctions or procedures are consid-
ered indivisible for purposes of this discussion. That is, once
a function or procedure is compiled, the order of the machine
instructions which comprise the executable object code of the
function is important and their order in the computer memory
is of vital importance. Note that many “compilers” perform
“optimizations” within [unctions or procedures, which deter-
mine, on a limited scale, il there is a betler arrangement for
executable instructions which is more efficient than that con-
structed by the programmer, but does not change the result of
the function or procedure. Once these optimizations are per-
formed, however, making random changes to the order of
instructions is very likely to “break”™ the function. When a
program is compiled, then, it consists of a collection of these
sub-objects, whose exact order or arrangement in memory is
not important, so long as any sub-object which uses another
sub-object knows where in memory it can be found.

The memory address of the first instruction in one of these
sub-objects is called the “entry point” of the function or
procedure. The rest of the instructions comprising that sub-
object immediately follow from the entry point. Some sys-
tems may prefix information to the entry point which
describes calling and return conventions for the code which
follows, an example is the Apple Macintosh Operating Sys-
tem (MacOS). These sub-objects can be packaged into what
are referred to in certain systems as “code resources,” which
may be stored separately from the application, or shared with
other applications, although not necessarily. Within an appli-
cation there are also data objects, which consist of some data
{0 be operated on by the executable code. These data objects

_
<

2

=}

e
o

w
<

4

>

IS
O

w
IS)

w
&

12

are not executable. That is, they do not consist of executable
instructions. The data objects can be referred to in certain
systems as “resources.”

When a user purchases or acquires a computer program,
she seeks a computer program that “functions” in a desired
manner. Simply, computer software is overwhelmingly pur-
chased for its underlying functionality. In contrast, persons
who copy multimedia content, such as picturcs, audio and
vidco, do so for the entertainment or commercial valuc of the
content. The difference between the two types of products is
that multimedia content is not generally interactive, but is
instead passive, and its commercial value relates more on
passive not interactive or utility features, such as those
required in packaged software, set-top boxes, cellular phones,
VCRs, PDAs, and the like. Interactive digital products which
include computer code may be mostly interactive but can also
contain content to add to the interactive experience of the user
or make the underlying utility of the software more aestheti-
cally pleasing. It is a common concern of both of these cre-
alors, both of interactive and passive multimedia products,
that “digital products” can be easily and perfectly copied and
made into unpaid or unauthorized copies. This concern is
especially heightened when the underlying product is copy-
right protected and intended for commercial use.

The first method of the present invention described
involves hiding necessary “parts” or code “resources” in digi-
tized sample resources using a “digital watermarking” pro-
cess, such as that described in the “Steganographic Method
and Device” patent application. The basic premise for this
scheme is that there are a certain sub-set of executable code
resources, that comprise an application and that are “essen-
tial” to the proper function of the application. In general, any
code resource can be considered “cssential” in that if the
program proceeds to a point where it must “call” the code
resource and the code resource is not present in memory, or
cannot be loaded. then the program fails. [lowever, the
present invention uses a definition of “essential” which is
more narrow. This is because, those skilled in the art or those
with programming experience, may create a derivative pro-
gram, not unlike the utility provided by the original program,
by writing additional or substituted code to work around
unavailable resources. This is particularly true with programs
that incorporate an optional “plug-in architecture,” where
several code resources may be made optionally available at

5 run-lime. The present invention is also concerned with con-

centrated efforts by technically skilled people who can ana-
lyze executable object code and “patch”™ it to ignore or bypass
certain code resources. Thus, for the present embodiment’s
purposes, “essential” means that the function which distin-
guishes this application from any other application depends
upon the presence and use of the code resource in question.
The best candidates for this type of code resources are NOT
optional, or plug-in types. unless special care is taken to
prevent work-arounds.

Given that there are one or more of these essential
resources, what is needed to realize the present invention is
the presence of certain data resources of a type which arc
amenable to the “stega-cipher” process described in the “Ste-
ganographic Method and Device” patent U.S. ’at. No. 5,613,
004. Data which consists of image or audio samples is par-
ticularly usetul. Because this data consists of digital samples,
digital watermarks can be introduced into the samples. What
is further meant is that certain applications include image and
audio samples which are important to the look and feel of the

5 programor are essential to the processing of the application’s

functionality when used by the user. These computer pro-
grams are familiar (0 users of computers but also less obvious

DISH-Blue Spike 842
Exhibit 1005, Page 0167

US 9,104,842 B2

13

to users of other devices that run applications that are equiva-
lent in some measure of functionality to general purpose
computers including, but not limited to, set-top boxes, cellu-
lar phones, “smart televisions,” PDAs and the like. However,
programs still comprise the underlying “operating systems™
of these devices and are becoming more complex with
increases in functionality.

Onc mcthod of the present invention is now discussed.
When code and data resources are compiled and assembled
into a precursor ol an executable program the next step is to
use a utility application for final assembly of the executable
application. The programmer marks several essential code
resources in a list displayed by the utility. 'The utility will
choose one or several essential code resources, and encode
them into one or several data resources using the stegacipher
process. The end result will be that these essential code
resources are not stored in their own partition, but rather
stored as encoded information in data resources. They are not
accessible at run-time without the key. Basically, the essential
code resources that provide functionality in the final end-
product, an executable application or computer program, are
no longer easily and recognizably available for manipulation
by those seeking to remove the underlying copyright or

license, or its equivalent information, or those with skill to 2

substitute alternative code resources to “force” the applica-
tion program to run as an unauthorized copy. Forthe encoding
of the essential code resources, a “key” is needed. Such a key
is similar to those described in U.S. Pat. No. 5,613,004, the
“Steganographic Method and Device” patent. The purpose of
this scheme is to make a particular licensed copy of an appli-
cation distinguishable from any other. It is not nccessary to
distinguish cvery instance of an application, merely cvery
instance of a license. A licensed user may then wish to install
multiple copies of an application, legally or with authoriza-
tion. This method, then, is to choose the key so that it corre-
sponds, is equal to, or is a function of, alicense code or license
descriptive information, not just a text file, audio clip or
identifying piece of information as desired in digital water-
marking schemes extant and typically useful to stand-alone,
digitally sampled content. The key is necessary to access the
underlying code, i.e., what the user understands to be the
application program.

The assembly utility can be supplied with 1 key generated
from a license code generated [or the license in question.
Alternatively, the key, possibly random, can be stored as a
data resource and encrypted with a derivative of the license
code. Given the key, it encodes one or several essential
resources into one or several data resources. Exactly which
code resources are encoded into which data resources may be
determined in a random or pseudo random manner. Note
further that the application contains a code resource which
performs the function of decoding an encoded code resource
from a data resource. The application must also contain a data
resource which specifies in which data resource a particular
code resource is encoded. This data resource is created and
addced at assembly time by the assembly utility. The applica-
tion can then operate as follows:

1) when it is run for the first time, after installation, it asks
the user for personalization information, which includes
the license code. This can include a particular computer
configuration;

2) it stores this information in a personalization data
resource;

3) Once it has the license code, it can then generate the
proper decoding key to access the essential code
resources.

(%}
=}

e
o

&
>

w
IS)

w
&

=N
IS

14

Note that the application can be copied in an uninhibited
manner, but must contain the license code issued to the
licensed owner, to access its essential code resources. The
goal of the invention, copyright protection of computer code
and establishment of responsibility for copies, is thus accom-
plished.

This invention represents a significant improvement over
prior art because of the inherent difference in use of purcly
informational watcrmarks versus watcrmarks which contain
executable object code. If the executable object code in a
watermark is essential to an application which accesses the
data which contains the watermark, this creates an all-or-none
situation. Cither the user must have the extracted watermark,
or the application cannot be used, and hence the user cannot
gain full access to the presentation of the information in the
watermark bearing data. Tn order to extract a digital water-
mark, the user must have a key. The key, in turn, is a function
of the license information for the copy of the software in
question. The key is fixed prior to final assembly of the
application [iles, and so cannot be changed at the option o[the
user. That, in turn, means the license information in the soft-
ware copy must remain fixed, so that the correct key is avail-
able 1o the software. The key and the license information are,
in fact, interchangeable. One is merely more readable than the
other. In U.S. Pat. No. 5,613,004, the “Steganographic
Method and Device, patent”, the possibility of randomization
erasure attacks on digital watermarks was discussed. Simply,
it is always possible to erase a digital watermark, depending
on how much damage you are willing to do to the watermark-
bearing content stream. The present invention has the signifi-
cant advantage that you must have the watermark to be able to
usc the code it contains. If you crasc the watcrmark you have
lost akey picee of the functionality of the application, or cven
the means to access the data which bear the watermark.

A preferred embodiment would be implemented in an
embedded system, with a minimal operating system and
memory. No media playing “applets,” or smaller sized appli-
cations as proposed in new operating environments envi-
sioned by Sun Microsystems and the advent of Sun’s Java
operating system, would be permanently stored in the system,
only the bare necessities to operate the device, download
information, decode watermarks and execute the applets con-
tained in them. When an applet is finished executing, it is
erased [rom memory. Such a system would guarantee that

5 content which did not contain readable watermarks could not

be used. This is a powerful control mechanism for ensuring
that content to be distributed through such a system contains
valid watermarks. Thus, in such networks as the Internet or
set-top box controlled cable systems, distribution and
exchange of content would be made more secure from unau-
thorized copying to the benefit of copyright holders and other
related parties. The system would be enabled to invalidate, by
default, any content which has had its watermark(s) erased,
since the watermark conveys, in addition to copyright infor-
mation, the means to fully access, play, record or otherwise
manipulate, the content.

A sccond method according to the present invention is to
randomly re-organize program memory structure to prevent
attempts at memory capture or object code analysis. The
object of this method is to make it extremely ditficult to
perform memory capture-based analysis of an executable
computer program. This analysis is the basis for a method of
attack to defeat the system envisioned by the present inven-
tion.

Once the code resources of a program are loaded into
memory, they typically remain in a fixed position, unless the
compuler operating system [inds it necessary 0 rearrange

DISH-Blue Spike 842
Exhibit 1005, Page 0168

US 9,104,842 B2

15

certain portions of memory during “system time,” when the
operating system code, not application code, is running. Typi-
cally, this is done in low memory systems, to maintain opti-
mal memory utilization. The MacOS for example, uses
Handles, which are double-indirect pointers to memory loca-
tions, in order to allow the operating system to rearrange
memory transparently, underneath a running program. If a
computer program contains countermcasurcs against unli-
censed copying, a skilled technician can often take a snapshot
of the code in memory, analyze it, determine which instruc-
tions comprise the countermeasures, and disable them in the
stored application file, by means of a “patch.” Other applica-
tions for designing code that moves to prevent scanning-
tunnelling microscopes, and similar high sensitive hardware
for analysis of electronic structure of microchips running
code, have been proposed by such parties as Wave Systems.
Designs of Wave Systems” microchip are intended for pre-
venting attempts by hackers to “photograph” or otherwise
determine “burn in” to microchips for attempts at reverse
engineering. The present invention seeks to prevent attempts
atunderstanding the code and its organization for the purpose
of patching it. Unlike systems such as Wave Systems’, the
present invention seeks to move code around in such a manner

as to complicate attempts by software engineers to reengineer 2

ameans to disable the methods for creating licensed copies on
any device that lacks “trusted hardware.” Moreover, the
present invention concerns itself with any application soft-
ware that may be used in general computing devices, not
chipsets that are used in addition to an underlying computer to
perform encryption. Wave Systems’ approach to security of
software, if interpreted similarly to the present invention,
would dictate separate microchip sets for cach picce of appli-
cation software that would be tamperproof. This is not con-
sistent with the economics of software and its distribution.
Under the present invention, the application contains a
special code resource which knows about all the other code
resources in memory. During execution time, this special
code resource, called a “memory scheduler,” can be called
periodically, or at random or pseudo random intervals, at
which time it intentionally shuffles the other code resources
randomly in memory, so that someone trying to analyze snap-
shots of memory at various intervals cannot be sure if they are
looking at the same code or organization [rom one “break” to
the next. This adds significant complexity to their job. The
scheduler also randomly relocates itself when it is finished. In
order to do this, the scheduler would have to first copy itselfto
a new location, and then specifically modify the program
counter and stack frame, so that it could then jump into the

new copy of the scheduler, but return to the correct calling 3

frame. Finally, the scheduler would need to maintain a list of
all memory addresses which contain the address of the sched-
uler, and change them to reflect its new location.

The methods described above accomplish the purposes of
the invention—to make it hard to analyze captured memory
containing application executable code in order to create an
identifiable computer program or application that is different
from other copies and is less susceptible to unauthorized use
by those attempting to disable the underlying copyright pro-
tection system. Simply, each copy has particular identifying
information making that copy different from all other copies.

Although various embodiments are specifically illustrated
and described herein, it will be appreciated that modifications
and variations of the present invention are covered by the
above teachings and within the purview of the appended
claims without departing from the spirit and intended scope
of the invention.

e
o

w
<

w
IS)

w
&

=N
IS

16

What is claimed is:

1. A computer-based method for modifying software, com-
prising: receiving, in a computer having a processor and
memory, software, wherein said software provides a specified
functionality; embedding a watermark into said software,
using said computer, said watermark encoding at least one
first license code, thereby resulting in a first license code
cncoded watcrmarked softwarc; and whercin said first licensc
code encoded watermarked softwarce is configured to query a
user for personalization information during its installation.

2. A computer-based method for moditying software, com-
prising: receiving, in a computer having a processor and
memory, software, wherein said software provides a specified
functionality: embedding a watermark into said software,
using said computer, said watermark encoding at least one
first license code, therehy resulting in a first license code
encoded watermarked software; wherein said watermark is
accessible with a key; and said key enables said first license
code encoded watermarked software to provide said specified
[unctionality.

3. A compuler-based method for modifying software, com-
prising: receiving, in a computer having a processor and
memory, software, wherein said software provides a specified
functionality: embedding a watermark into said software,
using said computer, said watermark encoding at least one
first license code, thereby resulting in a first license code
encoded watermarked software; and wherein the step of
embedding the software with a watermark is performed dur-
ing execution of the software.

4. An article of manufacture comprising a machine read-
able medium, having thereon stored instructions adapted to
be cxecuted by a processor of a computer system, said com-
puter system including a memory, which instructions when
executed by said computer system result in a process com-
prising:

said computer system storing a software in said memory;

said computer system receiving licensing information as

an input and using said licensing information in an algo-
rithm to identify a watermark in said software.

5. The article of manufacture of claim 4, wherein said
watermark encodes therein information defining an execut-
able code providing a functionality of said software.

6. The article of manufacture of claim 4, wherein the water-
mark aflects [unctionalily of the watermarked soliware.

7. The article of manulacture of claim 5, wherein said
instructions comprise decode instructions for said computer
system to use said licensing information to generate a decode
key for decoding said software.

8. The article of manufacture of claim 7, wherein said
licensing information comprises a license key, and said
decode instructions instruct said computer to determine said
license key from said licensing information and to generate
said decode key using said license key.

9. The article of manufacture of claim 4:

wherein said watermark encodes a license key;

said instructions include a prompt to enter licensing infor-

mation;

wherein said software provides a certain functionality after

receipt of licensing information in response to said
prompt only if said licensing information comprises a
license key encoded in said watermark.

10. A computer-based system for modifying software,
comprising: a computer having a processor and memory;
wherein said computer is programmed to receive software
that provides a specified functionality when installed on a
computer system; wherein said computer is programmed to
embed a walermark into said soflware; wherein said walter-

DISH-Blue Spike 842
Exhibit 1005, Page 0169

US 9,104,842 B2

17

mark encodes at least one first license code, thereby resulting
in a first license code encoded watermarked software; and
wherein said [irst license code encoded watermarked soli-
ware is designed (o prompt for entry of licensing information
and only provides a certain functionality if licensing infor-
mation entered in response to said prompt comprises at least
one of said at least one first license code encoded in said
watermark.

11. A method for licensed software use, the method com-
prising:

loading a software product on a computer, said computer

comprising a processor, memory, an input, and an out-
put, so that said computer is programmed to execute said
software product;

said software product outputting a prompt for input of

license information; and

said softwarc product using license information entered via

said input in responsc to said prompt in a routinc
designed to decode a first license code encoded in said
software product.

12. A method for encoding software code using a computer
having a processor and memory, comprising: storing a soft-
ware code in said memory; wherein said software code com-
prises a first code resource and provides a specified underly-
ing functionality when installed on a computer system; and
encoding, by said computer using at least a first license key
and an encoding algorithm, said sofiware code, to form « (irst
license key encoded soflware code; and wherein, when
installed on a computer system, said first license key encoded
software code will provide said specified underlying func-
tionality only after receipt of said first license key.

18

13. A method for encoding software code using a computer
having a processor and memory, comprising:
storing a software code in said memory;
wherein said software code comprises a first code resource
5 and provides a specified underlying [unctionality when
installed on a computer system; and
modifying, by said computer, using a first license key and
an cncoding algorithm, said softwarc code, to form a
modified software code; and
wherein said modilying comprises encoding said first code
resource to form an encoded first code resource;
wherein said modified software code comprises said
encoded first code resource, and a decode resource for
decoding said encoded first code resource;
wherein said decode resource is configured to decode said
encoded first code resource upon receipt of said first
license key.
14. A method for encoding software code using a computer
having a processor and memory, comprising:

w

20 . Lo
storing a softwarce code in said memory;
wherein said softwarc code defines software code interre-
lationships between code resources that result in a speci-
fied underlying functionality when installed on a com-
25 puter system; and

encoding, by said computer using at least a first license key
and an encoding algorithm, said software code, to form
a first license key encoded software code in which at
least one of said software code interrelationships are
encoded.

DISH-Blue Spike 842
Exhibit 1005, Page 0170

Exhibit 3

DISH-Blue Spike 842
Exhibit 1005, Page 0171

United States Patent

US005933497A

[19] [11] Patent Number: 5,933,497
Beetcher et al. 451 Date of Patent: Aug. 3, 1999
[54] APPARATUS AND METHOD FOR 4,932,054 6/1990 Chou et al. 380/4
CONTROLLING ACCESS TO SOFTWARE 4,959,861 9/1990 Howlette - 380/4
[75] Inventors: Robert Carl Beetcher; Michael Primary Examiner—Bernarr E. Gregory
Joseph Corrigan; Francis Joseph Attorney, Agent, or Firm—Roy W. Truelson
Reardon, Jr., all of Rochester; James <
William Moran, Eyota, all of Minn, [57] ABSTRACT
. . . X Software is distributed without entitlement to run, while a
[73] Assignee: lntornatl(}nal Business Machines separately distributed encrypted entitlement key enables
Corporation, Armonk, N.Y. execution of the software. The key includes the serial
number of the computer for which the software is licensed,
[21] Appl. No.: 08/011,042 together with a plurality of entitlement bits indicating which
[22] Filed: Jan. 29, 1993 softwarc modu_lcs arc crm_tlcd to run on the machine. A
secure decryption mechanism contained on the computer
Related U.S. Application Data fcl(fhes its sqial number anq uses il as a key o decrypt the
entitlement information, which is then stored in a product
|63] Continuation of application No. 07/629,295, Dec. 14, 1990, lock t@blc in memaory. Thc. dlsnjlbmc.d software contains a
abandoned. plurality of entitlement verification triggers. Each trigger is
e a single machine instruction in the object code, identilying
(5] Int. ClL eveee. HOAL 9/00 a product number of the software module. When a trigger is
[52] US.Cloe. 380/45 380/9; 380/21; cncountered during execution, the computer checks the
. 380/23; 380/25; 380/49; 380/50 product lock table entry corresponding to the product num-
[58] Field of Search 380/4,9, 20,21, ber of the software. If the product is entitled o run, execu-
380/23, 25, 43, 44, 49, 50 tion continues normally; otherwise execution is aborted.
. Bcecause this verification involves only a singlc machinc
[56] References Cited instruction, it can be done with virtually no impact to overall

U.S. PATENT DOCUMENTS

system performance. As a result, it is possible to place a
substantial number of such entitlement verification triggers

3,609,697 9/1971 Blevins et al. . 364/200 in the object code, making it virtually impossible for some-
4,433,207 2/11984 Best ... - 380/4 one to alter the code by “patching” the triggers. The trig-
jggégg 3/122‘7‘ 5{01;13‘“ g:gﬁ gering instruction may alternatively perform some useful
5,065,00 / ollier g B . . N
4685055 1987 Thomas .. 364200 work in parallel with entitlement verification.
4,866,769 9/1989 Karp ... 380/4
4,903,296 2/1990 Chandra et al. 380/4 26 Claims, 10 Drawing Sheets
125 124

DEVELOPMENT SYSTEM MARKETING SYSTEM

126 kY o

1272+ TRANSLATOR] EE?EWS%’ \r 123

WAREHOUSE

som:

Py | A RAM
CONTROL
STORE
SERIAL WO,
¥ A
101
106 “I] 108

DISH-Blue Spike 842
Exhibit 1005, Page 0172

U.S. Patent Aug. 3, 1999 Sheet 1 of 10 5,933,497
125 124
DEVELOPMENT SYSTEM MARKETING SYSTEM
126 COMPILER KEY DATA-
GENERATOR/| |BASE
127 = TRANSLATOR ENCRYPTOR 123
.4
1227
D
121 ¢
120 [SALES T
OFFICE R
WAREHOUSE I
M B
U
M W% 5
ii!iﬂ\l@i R
111 ﬁ
S
[100110 . 5
P
102 K
\ Y
CPU Q\\~ RAM
N CONTROL
STORE
SERIAL NO.
L 7 ‘\Q
1052 101
-
106 108
FIG. | 107

DISH-Blue Spike 842
Exhibit 1005, Page 0173

ENTITLEMENT KEY

TS N

201 202 203 204 (UNENCRYPTED) 205
200 \ \ \ ™~)
*~=f0010[00001100]00000000[0010 . . . 11]11100 0]
I | | i | a%
~— —y—" ™ Y /L
CHARGE | KEYTYPE | | PRODUCT ENTITLEMENT FLAGS &
(4BITS)! ! | | (80 BITS)
| | | |
N J

0T Jo T 1248

L6V'EE6°S

DISH-Blue Spike 842
Exhibit 1005, Page 0174

U.S. Patent Aug. 3,1999 Sheet 3 of 10 5,933,497
EXECUTABLE
SOFTWARE MODULE

300
301
301

/V
301
301
301

i::j;;01

302 303 305 304
\ Vi [)

301 00011 1100001100 |00000000]00101100
| | | | |
~ Y g I\“V‘*/} |

OPERATION CODE | ! UNUSED !
(16 BITS) . | (8 BITS) | ,
VERSION PRODUCT
FIG 3 (8 BITS) NUMBER
) (8 BITS)

DISH-Blue Spike 842
Exhibit 1005, Page 0175

U.S. Patent

Aug. 3,1999 Sheet 4 of 10 5,933,497
ey st
440 SOFTWARE
Y /‘/‘“ MODULE
VIRTUAL INSTALL| [GENERAL
MACHINE INPUT INPUT
LEVEL
404 T
_ __*———J________Ll__
. __| _HACHINE INTERFACE ! __ < =405
430 - XZ___ w0
EXECUTABLE [UNLOCK_ B~ 300 5—* EXECUTABLE | S ENCODED
CODE (DECODE }e | SOFTWARE | 5 PRODUCT
LEVEL KEY) + | MODULE | KEY
I v
1]
1PL = —p——s
(RAM)
s REVERTFY N
"éz 11LoCKs
EXCEPTION |¢_& A
HANDLER f 3
HORIZONTAL GET SET CHECK PRODUCT
MICROCODE MACHINE Lock | | Lock LOCK
LEVEL Y \ TABLE
402 420 422
- T ——[—"——_—_
HARDWARE | SERIAL NUMBER |49 (RAM)
401
\'\410 460 2"
FIG. 4

DISH-Blue Spike 842
Exhibit 1005, Page 0176

~~ PRODUCT O

80
ENTRIES '<

LPRODUCT 79

ENCODED PRODUCT KEY TABLE

506 50
4

2
A

503

504 5({5

1[100110 . . .

10{00101 . .

. 11/00001100]0010

450

‘\\
(LEILE Ny}

501

TN
6661 °¢ 8Ny

01 Jo § 199YS

FIG. 5

L6V'EE6°S

DISH-Blue Spike 842
Exhibit 1005, Page 0177

U.S. Patent Aug. 3, 1999 Sheet 6 of 10 5,933,497
PRODUCT
LOCK TABLE
(‘ PRODUCT 0O
/460
00001100 |—= 601
80 <
ENTRIES
\< PRODUCT 79
FIG. 6

DISH-Blue Spike 842
Exhibit 1005, Page 0178

U.S. Patent Aug. 3, 1999 Sheet 7 of 10 5,933,497

701 801
/4 4

SOURCE CODE INPUT INPUT_ORDER TO
T0 COMPILER MARKETING SYSTEM

l 702 I
COMPILER_PRODUCES CUSTOMER . DATABASE
PROGRAM TEMPLATE ACCESSED FOR

SERIAL #,

J _-703 PROCESSOR TYPE

PROGRAM TEMPLATE ! 803

INPUT TO TRANSLATOR

ENTITLEMENT KEY
704 BUILT FROM ORDER

& DATABASE INFO
TRANSLATOR INSERTS
TRIGGERS 804

| _705 ENCRYPT
ENTITLEMENT

TRANSLATOR PRODUCES KEY

EXECUTABLE SOFTWARE
MODULE /,805

TRANSMIT ENCRYPTED

KEY TO CUSTOMER
(DONE)
DONE

FIG. 8

FIG. 7

DISH-Blue Spike 842
Exhibit 1005, Page 0179

U.S. Patent Aug. 3, 1999 Sheet 8 of 10 5,933,497

START
901
4 s

ENTITLEMENT KEY
INPUT TO
CUSTOMER SYSTEM
! 902
RETRIEVE SERIAL #
AND GENERATE
MACHINE KEY
SAME
4 903 VERSION, C.G.
NUMBERS
T v
YES
KEY 907
¢ %0 A
REBUILD TABLE [—»— SET_PRODUCT
LOCK ENTRY
DO FOR 0 0
EACH FLAG o5 I
! 909 "\
REPLACE
SAVE_PRODUCT KEY PRODUCT KEY [e—
TABLE IN STORAGE TABLE ENTRY
FIG. 9a

DISH-Blue Spike 842
Exhibit 1005, Page 0180

U.S. Patent Aug. 3, 1999 Sheet 9 of 10 5,933,497

/,920

EXCEPTION RAISED

. ~

FETCH PRODUCT KEY
TABLE _ENTRY
(ENTITLEMENT KEY)

Alg, //,922

RETRIEVE SERIAL #
AND GENERATE
MACHINE KEY

«
DECRYPT
ENTITLEMENT
KEY

921

924 926

N
PRODUCT YES PUT VERSION #
» IN PRODUCT
ENTIgLED LOCK TABLE
NO 0z 927 l
SET DATE/TIME
/[STAMP IN PRODUCT
PROGRAM KEY TABLE
EXECUTION
ABORTED
928
A
RETRY

PROGRAM
DONE INSTRUCTION

FIG. 9b

DISH-Blue Spike 842
Exhibit 1005, Page 0181

U.S. Patent Aug. 3, 1999 Sheet 10 of 10 5,933,497
(START)
» 1001
L
FETCH NEXT
INSTRUCTION
t 1004
YES 1005
TRIgGER »>— rl \
NO ACCESS DESIGNATED
1002 PRODUCT LOCK
TABLE ENTRY
/
EXECUTE
INSTRUCTION
NO ENTITLEE:yERSION
PRODUCT XERSION
1007
4
GENERATE EXCEPTION
CONDITION TO ABORT
(SEE FIG. 9, STEPS
920 - 928)
(DONE)

DISH-Blue Spike 842
Exhibit 1005, Page 0182

5,933,497

1

APPARATUS AND METHOD FOR
CONTROLLING ACCESS TO SOFTWARE

This application is a continuation of Ser. No. 07/629,295,
filed Dec. 14, 1990, now abandoned.

FIELD OF THE INVENTION

The present invention relates to computer software usage,
and in particular to restricting the ability of a computer user
to use licensed software in a manner inconsistent with the
license.

BACKGROUND OF THE INVENTION

A modern computer system is an enormously complex
machine, incorporating the results of countless hours of
engineering and programming skill in its design. A computer
syslem contains many e¢lements, but these may generally be
broken down into hardware and software. Hardware is the

tangible circuits, boards, cables, storage devices, enclosurcs,

etc. that make up the system. But the hardware, in and of
itsell, can not solve problems in the real world, any more
than a typewriter can compose a Pulitzer-winning play. The
hardware requires instructions which tell it what to do. In it
purest form, “software” refers to these instructions which
make the hardware perform useful work (although it is
sometimes loosely applied to the media on which software
is stored and distributed). Like hardware, software is the
product of human ingenuity. High quality software requires

considerable creativity, training and intelligence on the part -

of the creator, also known as the programmer. Universitics
offer courses of instruction in “computer science” and
similar disciplines, [or the purpose of teaching people the art
of creating software. An entire industry, encompassing thou-
sands of carccrs, has grown up to crcatc softwarc which
performs useful work. As a result of the extensive effort that
can be expended in the development of software, it is nol
uncommon for the value of the software which is part of a
computer system to cxceed the value of the hardware.
One of the characteristics of a modern computer system is
its ability to transmit and copy data with great speed and
case. [n general, this is a necessary and beneficial capability.
But it also means that software which may have taken years
of creative cffort to develop can be replicated in a fraction
of a second on relatively inexpensive magnetic media, a
capability which can be abused. Unauthorized persons can,
with little cost or effort, replicate valuable software. This
practice is generally known as software piracy. In recent
years, various laws imposing criminal and civil liabilities

have been enacted to curb software piracy. However, given 5

the relative ease with which one may copy software, and the
temptation to do so which arises from the value of the
software, software piracy remains a problem.

In the case of inexpensive mass distributed software for
small computers known as “personal computers™, it is com-
mon to license the software for a fixed one-time charge
which is the same for all customers. This is less practical for
large mainframe computer systems. Software for such sys-
tems can involve millions of lines of code, requiring a very
large investment to develop and maintain. A single fixed
one-time charge sufficient for the developer to recoup this
investment is likely to be prohibitively expensive for many
smaller users. Therefore, it is common in the mainframe
environment to charge license fees for software based on
usage. On such method, known as “tiered pricing”, involves
charging according to a variable fee scale based on the
capability of the customer’s machine. The customer with a

Ju
o

40

73
S

[
@

o
72

2

faster machine, with more terminals attached, will pay a
higher license fee for the same software than a customer
with a less capable machine. Another common practice is to
charge separately for maintenance upgrades of the software.

Given the level of expertise required to create quality
software, and the amount of time and effort that must be
expended, creation of such software requires money. If
softwarc developers arc not paid proportionate to their
training and effort, it will not be possible to find people to
creale soltware. It is not merely a practical imperative that
the investment in software made by its developers be
protected, but a moral onc as well. Legitimate owners of
software have therefore sought to develop ways to distribute
software which will make it difficult to use the software in
an unauthorized manner, and ensure that software develop-
ers are fairly compensated for their products.

Software may be distributed by the legitimate owner in a
number of dilferent ways. From the standpoint of preventing
unauthorized use, these distribution methods may broadly be
classificd in three groups: unrestricted entitlement methods,
restricted entitlement methods, and non-entitlement meth-
ods.

Unrestricted entitlement means that the software as dis-
tributed will run on any machine for which it was designed,
without restriction. An owner distributing software with
unrestricted entitlement must distribute to each user only the
software which that user has paid for and is entitled to run.
Apart from legal and contractual obligations, there is noth-
ing to prevent the recipient of such software from copying
or using it in an unauthorized manner. For inexpensive
software which is licensed for a one-time charge, such as
that used on most personal computers, this is the most
common method of distribution.

Restricted entitlement means that the software contains
some built-in restriction, limiting the ability of a user to copy
and run it on any number of machines. There are several
varieties of restricted entitlement methods. One of these is
copy protection, which restricts the number of copies that
can be made from the distributed original. While it achieves
some level of protection from software piracy, copy protec-
tion has certain disadvantages. Like unrestricted entitlement,
copy protection requires that the owner distribute (o each
user only the software that the user is entitled to run. It is not

5 foolproof, and some programs exist which can make literal

copies of copy protected software, defeating the protection
mechanism. Finally, it interferes with the user’s ability to
make legitimate copies for backup purposes or to run the
software from a fast storage device. Another restricted
entitlement method is to encode user or machine specific
information in the software itself. When the software is run,
the machine will perform a check to make sure the software
is authorized for that machine or user. This method achieves
protection without interfering with the user’s ability to make
legitimate copies. However, it requires a very expensive
distribution system, since each copy of the distributed soft-
ware must be uniquely compiled, placed on distribution
media, and shipped.

Non-entitlement means that the soltware as distributed is
disabled, and requires a separately distributed authorization
to be able to run. A non-entitlement method has the potential
of avoiding customized software distribution entirely,
although not all such methods have this capability. For
example, the owner can distribute the same set of multiple

5 software programs on a single generic medium to all its

customers, and separately distribute individualized authori-
zation keys to the each customer which allow the customer

DISH-Blue Spike 842
Exhibit 1005, Page 0183

5,933,497

3

to run only those programs he has paid for. While non-
entitlement methods avoid many of the problems associated
with other methods, current designs suffer a high exposure
to fabricated entitlement or significant performance degra-
dation. In most cases, the mechanism used to withhold
entitlement to run the software requires that the provision for
entitlement verification be centralized in the software mod-
ule (either as data or instructions), to avoid performance
degradation overhead of the verification. In some cases, this
entitlement overhead is due to the size of the product
identificr and the packaging of protection routines within the
distributed software. In other cases, the overhead is due to
the need to perform complicated decode procedures while
running the software. As a result of this centralization of the
catitlement check, it is rclatively casy for an cxpericnced
programmer to nullify the protection mechanism by
“patching”, i.¢., modilying a small, selected portion of the
object code. In another case, the object code doesn’t provide
for entitlement verification, but a secure call path does,
which identifies the module by producing a bit signature
from it. While this avoids exposure to patching, it unavoid-
ably causes severe performance degradation of the call
mechanism.

The protection methods taught by prior art involve trade-
olls between level of protection and ease ol use. It is possible
to obtain a relatively high level of protection by encoding
machinc specific information in the software, but at a cost of
maintaining a very complex distribution system in which
cach distributed copy of the soltware is unique. Less costly

distribution is possible, but at the expense of losing some of -

the protection. A need cxists for a method which achicves a
high level of protection, can be easily distributed using mass
distribution techniques, and does not unduly interfere with
system performance, the user’s ability to make legitimate
back-up copies, or other necessary functions. At the same
time, there is a need for a method which supports tiered
pricing, and separate licensing fees for different versions of
a software product.

It is therefore an objeet of the present invention to provide
an enhanced method and apparatus for controlling the use of
soltware in a compuler system.

Another object of this invention is to provide a greater
level of protection against unauthorized use of software in a
computer system.

Aunother object of this invention is to reduce the cost of
protecting software against unauthorized use.

Another object of this invention is to increase the perfor-
mance of a computer system running software which is
protected against unauthorized use.

Aunother object of this invention is to simplify the distri-
bulion system of a distributor of soltware protected against
unauthorized use.

Another object of this invention is to provide a method
and apparatus of protecting software from unauthorized use
which reduces the impact of such protection on legitimate
uses of the software.

Another object of this invention is to provide an enhanced
method and apparatus of protecting software from unautho-
rized use while allowing the user to make legitimate back-up
copies of the software.

Another object of this invention is to make it more
difficult to alter software in a manner that will enable
unauthorized use.

Another object of this invention is to provide an enhanced
method and apparatus for distributing tier-priced software.

Ju
o

[
@

4
SUMMARY OF THE INVENTION

Software is distributed according to the present invention
without cntitlement to run. A scparatcly distributed
encrypted entitlement key enables execution of the software.
The key includes the serial number of the machine (or which
the software is licensed, together with a plurality of entitle-
ment bits indicating which softwarc modulcs arc cntitled to
run on the machine. A secure decryption mechanism is
contained on the machine. The decryption mechanism
fetches the machine serial number and uses it as a key to
decrypt the entitlement key. The entitlement information is
then stored in a product lock table in memory.

The distributed soltware contains a plurality of entitle-
ment verification triggers. In the preferred embodiment,
cach trigger is a singlc machine instruction in the objcet
code, identifying a product number of the software module.
When such a triggering instruction is encountered during
execution of the software module, the machine checks the
product lock table entry corrcsponding to the product num-
ber of the software module. If the product is entitled to run,
execulion continues normally; otherwise execution is
aborted. Because this verification involves only a single
machine instruction, it can be done with virtually no impact
to overall system performance. As a result, it is possible to
place a substantial number of such entitlement verification
triggers in the object code, making it virtually impossible for
someone to alter the code by “patching” the triggers. In an
alternative embodiment, the triggering instruction also per-
forms some useful work necessary for the software module
to properly cxccute. This renders the software cven morc
difficult to “patch”, and further reduces the impact to per-
formance of such verification triggers.

Because the software itself does not contain any
entitlement, no restrictions on the distribution are necessary.
In the preferred embodiment, the distributor of software may
record multiple software modules on a single generic
medium, and distribute the same recorded set of modules to
all its customers. Each customer will receive a unique
entitlement key, enabling the customer to run only those
software modules to which he is licensed. It makes no
difference that the customer is given some modules to which
hc is not licensed, as he will be unable to cxccute them
without the appropriate key. The customer may freely load
the sofltware onto other storage devices in his syslem, or
make any number of back-up copies of the software.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the major components of a software pro-
tection mechanism according to the preferred embodiment
of this invention;

FIG. 2 shows the unencrypted contents of an entitlement
key according to the preferred embodiment of this invention;

FIG. 3 shows the contents of a typical cxccutable softwarc
module according to the preferred embodiment;

TIG. 4 shows the hardware and software structures
required on the customer’s computer system to support the
software protection mechanism according to the preferred
embodiment;

FIG. 5 shows the format of the encoded product key table
according to the preferred ecmbodiment;

FIG. 6 shows the format of the product lock table accord-
ing to the preferred embodiment;

FIG. 7 is a block diagram of the steps required to place
authority verification triggers in a software module, accord-
ing to the preferred embodiment;

DISH-Blue Spike 842
Exhibit 1005, Page 0184

5,933,497

5

FIG. 8 is a block diagram of the steps required to generate
an encrypted entitlement key according to the preferred
embodiment;

FIG. 9 is a block diagram of the steps required to decode
an entitlement key and maintain a record of entitlement
status on the cuslomer’s compulter system, according to the
preferred embodiment;

FIG. 10 is a block diagram of the steps required to verify
entitlement during execution of a software module accord-
ing to the preferred embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A diagram of the major components of a software pro-
tection mechanism according to the preferred embodiment
of the present invention is shown in FIG. 1. A customer’s
computer system 101 comprises a central processing unit
(CPU) 102 tightly coupled to control store 103, a random

access system memory 104, a non-crasable electronically

readable unique identifier 105, and a plurality of storage
devices 106, 107, 108. In the preferred embodiment, unique
identifier 105 is a machine serial number. In the preferred
embodiment, storage devices 106—108 are rotating magunetic
disk drive storage units, although other storage technologies
could be employed. Computer system 101 also comprises an
operator console 109 through which it can receive input
[rom an operator, and a unit for reading soltware media 110.
While one operator console, one unit for reading software
media, and three storage units are shown in IIG. 1, it should

S

1

1S3

Ju
o

=)
U

be understood that the actual number of such devices °

attached to system 101 is variable. It should also be under-
stood that additional devices may be attached to system 101.
In the preferred embodiment, computer system 101 is an
IBM AS/400 computer system, although other computer
systems could be used.

Sofltware modules are distributed separalely [rom the
entitlement keys required to operate them. The software
modules are originally crcatcd on development computer
system 125, which contains compiler 126 and translator 127.
The soltware modules are recorded on soltware recording
media 112 and stored in warehouse 120, from which they are
distributed to the customer. Encrypted cntitlement key 111 is
distributed from a sales office 121 of the distributor. Sales
office 121 has access to marketing computer system 124,
comprising an entitlement key generator/encrypter 122 and
a database 123 containing customer information. In
particular, database 123 contains machine serial numbers
and processor types necessary for generation of the
cnerypted cntitlement key. In the preferred ecmbodiment,
marketing system 124 is a centrally located computer com-
municating with a plurality of sales olfices. However, system
124 could in the alternative be located at the sales office
itsclf, acccssing a local or centralized databasc. While two
separate computer systems 124,125 under the control of the
distributor are shown, it should be understood that systems
124 and 125 could physically be a single computer system
performing both functions.

Encrypted entitlement key 111 is sent from the software
distributor to the customer by mail, telephone, or other
appropriate means. While it is possible to transmit the key
electronically or on magnetic media such as a diskette, the
key is sufficiently bricf that an operator can cnter it into
system 101 by typing the key on console 109.

In the preferred embodiment, multiple software modules
are distributed on the same media 112. The distributor may
independently grant entitlement to use each module via the

)
G

40

~
b7

W
S

[
@

6

entitlement key. Warchouse 120 stocks a generic set of
software modules on media 112. Each customer is shipped
the same generic set ol soltware modules, irespective ol
which ones the customer is licensed (o use. The separalely
distributed entitlement key contains information enabling
system 101 to determine which software modules are
entitled to execute on it.

In the preferred embodiment, software media 112 com-
prise one or more optical read/only disks, and unit 110 is an
optical disk reader, it being understood that electronic dis-
tribution or other distribution media could be used. Upon
receipt of software media 112, the customer will typically
load the desired software modules from unit 110 into system
101, and store the software modules on storage devices
106-108. The customer may create one or more back-up
copics of the softwarc modules on any suitable media, and
store these in an archive. Software media 112 contains no
restriction on copying or loading into the system, and is
freely copyable and loadable.

The contents of entitlement key 200 before encryption
according to the preferred embodiment are shown in FIG. 2.
The key contains charge group field 201, software version
field 202, key type field 203, machine serial number field
204, and product entitlement flags 205. Charge group 201
specifies one of 16 possible machine tier values, and is used
for supporting tier pricing of software. Software version 202
specifies the version level of the software which is entitled.
It is anticipated that separate charges may be imposed for
maintenance upgrades of software. The version 202 speci-
fied in the key 200 will entitle software at that version level
and all previous (lower) levels. Key type field 203 is a
reserved area for future changes to the key format, key
chaining, or for an extension of the number of different
product supported. Machine serial number field 204 contains
the serial number of the machine for which the entitlement
key is intended. Product entitlement flag 205 is an 80-bit
field containing 80 separate product flags, each correspond-
ing to a product number. The bit is set to ‘1’ if the
corresponding product number is entitled; otherwise it is set
to ‘0.

In the preferred embodiment, software modules are dis-
tributed as compiled object code. A typical software module
300 is shown in FIG. 3. The softwarc modulc compriscs a
plurality of object code instructions capable of executing on

5 compuler system 101. According Lo this invention, a4 number

of entitlement verification triggering instructions 301 are
cmbedded in the object code. All triggering instructions 301
contained within a software module are identical. ITiggering
instruction 301 comprises operation code field 302, version
field 303, and product number ficld 304. Field 305 is unused.
Onpcration code 302 is the verb portion of the object code
instruction, identitying the operation to be performed. Ver-
sion 303 identifies the version level of the software module.
Product number 304 identifies the product number associ-
ated with the software module. A single operation code is
used for all triggering instructions, although the version and
product number information may vary from module to
module. Tn an alternative embodiment, the triggering
instruction is also a direct instruction to perform some other
uscful work (from among those instructions which do not
require that an operand for the action be specified in the
instruction). In this altcrnative cmbodiment, cxceution of the
triggering instruction causes system 101 to perform some
other operation simultaneous with the entitlement verilica-

5 tion.

Computer system 101 contains means for receiving and
decoding encrypted entitlement key 111 as well as means for

DISH-Blue Spike 842
Exhibit 1005, Page 0185

5,933,497

7

verifying that the system has entitlement to execute a
software module in response to a triggering instruction. In
the prelerred embodiment, these [unctions are divided
among dillerent levels ol system hardware and sollware as
shown in FIG. 4. In this embodiment, system 101 comprises
four levels of hardware/software function: hardware level
401, horizontal microcode level 402, executable code level
403, and virtual machine level 404. Machine interface 405
separates the virtual machine level from all lower levels.
Machine interlace 405 is the lowest level interlace delined
to the customer, i.e., the instruction set at the virtual machine
level is defined to the customer, but operations at lower
levels are not. The customer therefore lacks capability to
directly alter instructions below the machine interface level.
A permanent, unalterable machine serial number 410 is
containcd at hardwarc level 401.

Horizontal microcode 402 contains microcode entries
interpreting the executable instruction set. It is physically
stored in control store 103, which in the preferred embodi-

ment is a read-only memory (ROM) which is not capable of

alteration by the customer. Entries in horizontal microcode
support get machine key 420, set lock 421, and check lock
422 functions. Get machine key function 420 fetches a
unique identifier, which in the preferred embodiment is
based on the system serial number, from some permanent
hardware location. Set lock function 421 accesses product
lock table 460 and alters an entry in the table. The set lock
function is the only microcode function capable of altering
product lock table 460. Check lock function 422 accesses

product lock table 460 and reads one of the entries to verify -

entitlement.

Exccutable code level 403 contains low level supervisory
support and the support which implements instructions
defined at the machine interface. It is physically stored in
memory, but because the internal specifications are not
defined to the customer, it is for all practical purposes not
capable of being altered by the customer. Low level support
includes unlock routine 430, IPL reverify locks routine 431,
and exception handler 432. Unlock routine 430 uses the
unique machine key to decodes entitlement key 111, and
stores encrypted entitlement key 111 in encoded product key
table 450. IPL reverify locks routine 431 fetches the contents
of encoded product key table 450 to rebuild product lock
table 460 when the system is re-initialized. Exception han-
dler 432 responds Lo exception conditions raised by [unc-
tions in horizontal microcode 402. Executable code level
403 additionally contains the object code form of softwarc
module 300.

Virtual machine level 404 refers to software as it is

represented in terms of machine instructions. The machine at 3

this level acts as a virtual machine in the sense that the
machine instructions are not directly executable. Because
the machinc level is the lowest level of interface available to
a customer, a nontraditional compilation path is required to
produce an object code form of a module which can be
executed on the system. This compilation process is
described in a later paragraph. Although, in the trucst scnsc,
software which is produced through this nontraditional
compilation path must take [orm as executable object code
to be executed, it is normally and more clearly discussed in
terms of its representation in machine instructions at the
virtual machine level as if the machine instructions were
directly executable. With this established, we can then say
that virtual machine level 404 contains compiled user soft-
ware. It also includes the higher level operating system
support for system 101. This operation system support at
virtual machine level 404 contains two user interface rou-

Ju
o

1>
S

)
G

40

~
b

73
S

[
@

o
72

8

tines needed to support input of the entitlement key. General
input routine 441 is used to handle input during normal
operations. In addition, special install input routine 440 is
required Lo input the key during initial installation ol the
operating system. This is required because that part of the
operating system above machine interface level 403 is
treated for purposes of this invention as any other program
product; it will have a product number and its object code
will be infected with entitlement verification triggers. Install
input routinc 440 is the only part of the operating system
which will not have entitlement verification triggers, thereby
allowing the entitlement key to be input when the system is
originally installed.

Soltware module 300 is part of a program product in
compiled object code form which executes on system 101.
It exists as an cntity in virtual machine level 404 in the sensc
that it is accessible to other objects in this level. However,
the actual executable code operates at executable code level
403, as shown by the box in broken lines. The executable
codc contains cntitlement verification triggering instructions
301 (only one shown), which are executed by horizontal
microcode check lock function 422.

Encoded product key table 450 is shown in FIG. 5. The
table is contained in random access memory 104, and
duplicated on a non-volatile storage device so it can be
recovered if the system must be powered down or otherwise
re-initialized. Table 450 contains 80 entries 501, one corre-
sponding to each possible product number. Each entry 501
comprises a complete copy of the encrypted entitlement key
502 applicable to the product number of the entry, a date/
time stamp 503 indicating when the key was first used, a
version number 504 of the key, a charge group 505 of the
key, and an entitlement bit 506 indicating whether the key
unlocks the product. Date/time stamp 503 may be encrypted.
Version number 504, charge group 505 and entitlement bit
506 repeat information contained in encrypted key 501.
They are contained in the table to support queries. However,
no entry in product lock table 460 can be altered, granting
entitlement for a program to execute, without first verifying
the information in encrypted key 502. Because each key 502
in product key table 450 is in its encrypted form, no special
measures are required to prevent user access to the table.

Product lock table 460 is shown in FIG. 6. This tablc is
contained in a special low address range of random access
memory 104, which is under complete control ol horizontal
microcode. Table 460 contains 80 entries 601, one corre-
sponding to cach possible product number. Each cntry
contains a version number indicating the maximum version
level of entitlement. A version number of O indicales no
entitlement to any version of the product. The version
number may be serambled to add another degree of protec-
tion against alteration of table 460.

The operation of a softwarc module on computer system
101 in accordance with the preferred embodiment of the
present invention will now be described. There are [our parts
to this operation. In the first part, a plurality of entitlement
verification triggering instructions arc placed in the cxceut-
able object code form of the software module. In the second
part, an encrypted entitlement key 111 authorizing access o
the software module is generated. In the third part, computer
system 101 receives, decodes and stores entitlement key 111,
and sets product lock table 460. In the fourth part, the
software module executing on system 101 causes system
101 to verify entitlement upon encountering an entitlement

5 verification instruction. The first two parts are performed

under the control of the software distributor. The last two are
performed on the customer’s system 101.

DISH-Blue Spike 842
Exhibit 1005, Page 0186

5,933,497

9

When the software distributor compiles a software
module, it must place the entitlement verification triggers in
object code. A typical such process, which takes place on
development system 125, is shown in FIG. 7. Source code
is generated by a programmer in the normal fashion, without
inclusion of entitlement verification triggers. The source
code is input into compiler 126 at step 701 to produce a
program template at 702. The program template comprises
machine instructions at virtual machine level 404 (i.e. above
machine interface 405). The program template serves as
input to translator 127 at step 704, along with its product
number and version number identification. Translator 127
automatically generates a substantial number of entitlement
verification triggers, inserts them in random locations in the
object code, and resolves references after the triggers have
been inserted. The resultant executable object code form of
the software module which is output at 705 contains the
embedded triggers. This executable form of the module
comprises object code instructions at executable code level
403.

The process for generating an encrypted entitlement key
is shown in FIG. 8. An order [or licenses (o one or more
program products at some version level generated by a sales
representative is input to marketing computer system 124 at
step 801. In theory, the customer could order products at
multiple version levels, although there is generally little
reason for him to do so. However, since each entitlement key
opcrates at only a spccificd version level, a scparate key
would have to be generated for each difterent version level

ordered by the customer. Upon receipt of the customer’s ;

order, key generator/encryptor 122 executing on system 124
would access database 123 containing information about the
customer, particularly the serial number and processor type
of his machine, at step 802. This information is used to
generate charge group field 201 and machine serial number
field 204 of the unencrypted entitlement key 200. The
remaining fields are generated by reference to the customer
order and a database of possible product number offerings,
building the complete unencrypted key at step 803. Key
generator/encryptor 122 then encrypts the key, using any of
a number of encryption techniques known in the art, at step
804. The resultant encrypted entitlement key 111 is then
transmitted to the customer at step 805. Although key 111 is
shown in FIG. 1 as a plurality of binary bits, it may be
presented o the customer in some other [orm, such as
hexadecimal digits or alphanumeric equivalents of groups of
binary bits, in order to simplify the task of cntering the key
from a keyboard.

The process for receiving entitlement key 111 and main-
taining product lock table 460 on computer system 101 is
shown in FIG. 9. A customer enters entitlement key 111 into
computer system 101 via console 109 at step 901. If this is
an initial installation, install input routinc 440 intcracts with
the operator to receive the input; otherwise general input
routine 441 receives the input. The entitlement key is passed
to unlock routine 430, which handles the decoding process.
Unlock routinc 430 causcs gct machinc key function 420 to
retrieve the machine serial number and generate the machine
key at 902. Unlock routine 430 then uses the machine key
to decode the entitlement key 111 at step 903. Unlock
routine then rebuilds encoded product key table 450 at step
904, as described below. The decoded entitlement key takes
the form shown in FIG. 2. It includes an 80-bit product
entitlement flag array 205 indicating, for each product
number, whether the product is unlocked under the new
entitlement key. The new entitlement key is viewed as a
replacement key for all products it unlocks. Unlock routine

)
G

40

[
@

10

430 scans cach product entitlement flag 205 in the decoded
key (step 904). If the product entitlement flag is set to ‘1’
(indicating entitlement) at step 905, the corresponding entry
in product key table 450 is replaced with the new enlitlement
key, version number, and charge group value at step 908.
The entitlement bit field 506 is set to ‘1°, and the date/time
stamp field 503 is set to a zero value to indicate that the
entitlement key has not yet been used. If the product
entitlement flag of the new key is ‘0’ the new entitlement key
has no ellect unless the version number and charge group
number are the same as those stored in product key table
450. If the version and charge group number are the same
(step 906), the entitlement key has the effect of locking the
product. Unlock routine 430 will therelore invoke set lock
function 421 to set the version number in product lock table
460 to ‘0’ at step 907, and replace the corresponding cntry
n product key table 450 with the new entitlement key values
at step 908. When Lable 450 has been rebuill, its contents are
saved in storage at step 909.

Unless a previously entitled product is unentitled, the
rebuilding of table 450 has no immediate effect on product
lock table 460. Products are unlocked on demand. Upon first
execution of a previously unentitled software product, an
exception is generated by the syslem when a triggering
instruction is encountered. Exception handling routine 432
then calls unlock routine 430 to attempt to unlock the
product at step 920. Unlock routine 430 then fetches the
encrypted entitlement key from the appropriate entry in
encoded product key table 450 at step 921, obtains the
machine key at step 922, and decodes the entitlement key at
step 923. If entitlement is indicated (step 924), set lock
function 421 is invoked to set the version number in the
entry 601 in product lock table 460 corresponding to the
product number of the software product at step 926. At the
same time, unlock routine 430 records the date and time of
first use in date/time stamp field 503 at step 927. The
triggering instruction is then retried and program execution
continues at step 928. If entitlement is not indicated at step
924, program execution aborts at step 925.

Product lock table 460, being stored in RAM, will not
survive system re-initialization. During re-initialization
(“IPL™), IPL reverify locks routine 431 is called. to rebuild
the product lock table. This routine will get the machine key
as described above, and systematically decode each entitle-
ment key enlry in encoded product key table 450 to verily
entitlement and rebuild the corresponding entry in product
lock tablc 460.

The process for executing a software module according to
the preferred embodiment is shown in FIG. 10. System 101
executes the module by fetching (step 1001) and executing
(step 1002) object code instructions until done (step 1003).
If any instruction is an entitlement verification triggering
instruction 301 (stcp 1004) check lock function 422 is
invoked. Check lock function 422 accesses the product lock
table entry 601 corresponding to the product number con-
tained in the triggering instruction at step 1005. If the
version numbcer in product lock table 460 is cqual to or
greater than the version number 303 contained in triggering
instruction 301, the soltware is entitled 0 execute (slep
1006). In this case, check lock function 422 takes no further
action, and the system proceeds to execute the next object
code instruction in the software module. If the software is
not entitled, check lock function generates an exception
condition, causing control to pass to exception handler 432,
which will terminate program execution (step 1007). The
system does not save the results of an entitlement check
which shows that the software is entitled. Therefore, when

DISH-Blue Spike 842
Exhibit 1005, Page 0187

5,933,497

1

a triggering instruction is again encountered in the software
module, the system again verifies entitlement as described
above.

In alternative embodiments, additional sophistication
could be defined for the cntitlement verification triggering
instructions to cnable their being injected into the object
code through a traditional compilation path. This would be
one where the machine interface available to customers and
compiler writers is that same set of executable instructions
in which the object code form of a module is executed by the
system. Tor support of such a traditional compilation path
where the object code format is known by customers,
additional barriers to patching of the object code to nullify
or alter the entitlement triggering instructions may be appro-
priate. One such additional barrier would be to define the
eatitlement triggering instruction to simultaneously perform
some other function. In this case, it is critical that the
alternative function performed by the triggering instruction
can not be performed by any other simple instruction. The
alternative function must be so selected that any compiled
software module will be reasonably certain of containing a
number of instructions performing the function. If these
criteria are met, the compiler can automatically generate the
object code o perform the alternative [unction (and
simultaneously, the entitlement verification trigger) as part
of its normal compilation procedure. This definition would
provide a significant barrier to patching of the object code to
nullify the entitlement triggering instructions. Another alter-
native embodiment is to define that the entitlement trigger-

ing instruction must be positioned in the object code with an -

addressability alipnment that has a simple relationship to the
product number that it identifies. It should be a relatively
simple matter for a compiler to inject the instructions at the
proper code alignment as part of the normal compilation
process and a simple matter for the instruction implemen-
tation to perform this additional verification. This definition
would provide a significant barrier to patching of the object
code to alter the identity of the product number supplied in
the entitlement triggering instructions.

In the preferred embodiment, provision is made for 80
independent product numbers. It should be understood that
the actual number of product numbers supported according
to this invention is variablc. It is anticipated in the preferred
embodiment that the number of separately compilable soft-
ware modules distributed by the distributor may well exceed
80 by a large factor. The number of product numbers
corresponds to the number of scparatcly priced softwarc
packages offered by the distributor’s marketing organiza-
tion. While cach soltware module has only one product
number, there may be many software modules sharing that
product numbcr. For cxample, the distributor may offer a
word processing package, which includes separate software
modules to handle screen editing, spell checking, document
formatting, etc. If these software modules are always
licensed as part of the word processing package, they would
have a common product number. In an alternative
embodiment, it would be possible to have a separate number
for each software module.

In the preferred embodiment, software is licensed [or a
one-time charge, although additional charges can be made
for maintenance upgrades. In an alternative embodiment,
software can be licensed for a period of time. In this
alternative embodiment, the entitlement key will contain an
additional field indicating a length of time for which soft-
ware is licensed. IPL reverify locks routine 431 will be
called periodically to compare the date/time stamp associ-
ated with a product number in encoded product key table

40

45

[
@

65

12

450 with the length of time of the license, to determine
whether the license has expired. If a license has expired, the
corresponding unlock bit in product lock table 460 will be
sel 1o ‘0’, preventing [urther execution ol the sollware until
additional entitlement is obtained.

Although a specific embodiment of the invention has been
disclosed along with certain alternatives, it will be recog-
nized by those skilled in the art that additional variations in
form and detail may be made within the scope of the
following claims.

What is claimed is:

1. An apparatus for controlling the use of a software
module executing on a computer system, said computer
system comprising:

means for granting entitlement for said computer system
to exceute said softwarc module, said software module
being a program unit that is discrete and identifiable
with respect to compiling, combining with other units,
and loading;

a plurality of independent triggering means in said soft-
warc module for triggering cntitlement verification;

entitlement verification means, responsive to each of said
plurality of independent triggering means, for verifying
that said computer system has entitlement to execute
said soltware module; and

means, responsive to said entitlement verification means,
for aborting execution of said software module if said
entitlement verification means determines that said
computer system lacks cntitlement to cxccute said
software module.

2. The apparatus lor controlling the use of a soltware
module of claim 1, wherein each of said plurality of inde-
pendent triggering means is a single object code instruction
which triggers said entitlement verification means.

3. The apparatus for controlling the use of a software
module of claim 2, wherein said object code instruction
which triggers said entitlement verification means also
causes said computer system to perform an additional func-
tion required for proper execution of said software module
concurrently with verifying that said computer system has
entitlement to execute said software module, whereby if said
software module is modified by removing said object code
instruction, said additional function required for proper
execution of said software module will not be performed.

4. The apparatus for controlling the use of a software
module of claim 2, wherein said object code instruction
which triggers said entitlement verification means contains
a product number for said softwarc module.

5. The apparatus for controlling the use of a software
module of claim 4, wherein said entitlement verilication
means comprises:

a product lock table in said computer system, said product
lock table comprising a plurality of entries containing
cntitlement information, wherein cach of said plurality
of entries is associated with a product number; and

means, responsive to said object code instruction, for
accessing entitlement information contained in an entry
in said product lock table associated with said product
number contained in said object code instruction.

6. The apparatus for controlling the use of a software
module of claim 1, wherein said means for granting entitle-
ment for said compulter system to run said software module
comprises:

means [or generating an entitlement key consisting ol
data; and

means for inputting said entitlement key into said com-
puter system.

DISH-Blue Spike 842
Exhibit 1005, Page 0188

5,933,497

13

7. The apparatus for controlling the use of a software
module of claim 6, wherein said computer system contains
a unique identifier, wherein said means [or generating an
entitlement key uses said unique identifier o generale said
entitlement key, and wherein said entitlement key grants
entitlement to run software only on a computer system
containing the same unique identifier.

8. The apparatus for controlling the use of a software
module of claim 7, further comprising:

means for encrypting said entitlement key using said

unique identifier, wherein the resultant encrypted
entitlement key may be decrypted only on a computer
system having the same unique identifier;

means in said computer system for accessing the unique

identifier of said computer system; and

means in said computer system, responsive to said means

for accessing said unique identifier, for decrypting said
encrypled entitlement key.

9. A method [or controlling the use of a soltware module
executing on a computer system, said software module
comprising a plurality of objcct codc instructions, said
method comprising the steps of:

granting cntitlement for said computer system to cxccute

said software module, said software module being a
program unit that is discrele and identifiable with
respect to compiling, combining with other units, and
loading;

placing in said software module a plurality of independent

triggering means for triggering entitlement verification;

executing object code instructions contained in said soft- -

warc modulc;
triggering an entitlement verification in said computer
system to verify that said computer system has entitle-
ment to execute said software module whenever one of
said plurality of independent triggering means is
encountered during execution of said object code
instructions contained in said software module;
aborting execution of said software module if said entitle-
ment verification determines that said computer system
lacks entitlement to execute said software module.
10. The method for controlling the use of a software
module of claim 9, wherein said step of placing in said
software modulc a plurality of independent triggering means
comprising placing, at each of a plurality of separate loca-
tions in said sollware module, a single object code instruc-
tion which triggers said entitlement verification.
11. The mcthod for controlling the usc of a softwarc
module of claim 10, wherein said object code instruction
which triggers said entitlement verification also causes said

computer system to perform an additional function required s

for proper cxeecution of said software module concurrently
with verifying that said computer system has entitlement to
execute said software module, whereby if said software
module is modified by removing said object code
instruction, said additional function required for proper
execution of said software module will not be performed.
12. The method for controlling the use of a software
module of claim 10, wherein said object code instruction
which triggers said entitlement verification contains a prod-
uct number for said software module.
13. The method for controlling the use of a software
modulc of claim 12, further comprising the step of:
maintaining a product lock table in said computer system,
said product lock table comprising a plurality of entries
containing entitlement information, wherein each of
said plurality of entries is associated with a product
number; and

Ju
o

)
G

40

[
@

60

14

wherein said step of triggering an entitlement verification
comprises accessing entitlement information contained
in an entry in said product lock table associated with
said product number contained in said object code
instruction.

14. The method for controlling the use of a software
module of claim 9, further comprising the steps of:

generating an entitlement key consisting of a plurality of

data bits, said entitlement key providing information
enabling said computer system to determine whether or
not it has entitlement to execute said software module;
and

inputting said entitlement key into said computer system.

15. The method for controlling the use of a software
module of claim 14, wherein said computer system contains
a unique identifier, wherein said step of generating an
entitlement key uses said unique identifier to generate said
entitlement key, and wherein said entitlement key grants
entitlement to run software only on a computer system
containing the same unique identifier.

16. A program product apparatus for controlling
entitlement, wherein said program product apparatus
executes on a computer system having means for receiving
entitlement to execute a software module, and having
entitlement verification means responsive to triggering
means in said software module for verifying that said
computer system has entitlement to execute said software
module, said program product apparatus comprising:

at least one software module recorded on recording

media, said software module being a program unit that
is discrete and identifiable with respect to compiling,
combining with other units, and loading; and

a plurality of independent triggering means in said soft-

ware module for triggering said entitlement verification
means on said computer system.

17. The program product apparatus for controlling entitle-
ment of claim 16, wherein each of said plurality of inde-
pendent triggering means is a single object code instruction
which triggers said entitlement verification means.

18. The program product apparatus for controlling entitle-
ment of claim 17, wherein said object code instruction which
triggers said entitlement verification means also causes said
computer system to perform an additional function required
for proper execution of said software module concurrently
with verifying that said computer system has entitlement to
execute said software module, whereby if said software
module is modified by rcmoving said object code
instruction, said additional function required for proper
execution of said soltware module will not be perlormed.

19. The program product apparatus for controlling entitle-
ment of claim 17, whercin:

said object code instruction which triggers said entitle-

ment verification means contains a product number for
said software module;

said entitlement verification means on said computer

system comprises a product lock table in said computer
system, said product lock table comprising a plurality
of entries containing entitlement information, wherein
each of said plurality of entries is associated with a
product number; and

said entitlement verification means on said computer

system further comprises means, responsive to said
object code instruction, for accessing entitlement infor-
mation contained in an entry in said product lock table
associated with said product number contained in said
object code instruction.

DISH-Blue Spike 842
Exhibit 1005, Page 0189

5,933,497

15

20. A method for distributing a software module, wherein
said software module is capable of executing on any one of
a plurality of computer systems, each of said computer
systems having means for receiving entitlement to execute
said software module, and having entitlement verification
means responsive to triggering means in said software
module for verifying that said computer system has entitle-
ment to execute said software module, said method com-
prising the steps of:
placing in said soltware module 4 plurality of independent
triggering means for triggering said entitlement verifi-
cation mcans, said softwarc module being a program
unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading;

distributing a copy of said software module to each of said
computer systcms; and

granting entitlement for at least one of said computer

systems to execute said software module.

21. The method for distributing a software module of
claim 20, wherein said step of placing in said software
module a plurality of independent triggering means com-
prises placing, at each of a plurality of separate locations in
said software module, a single object code instruction which
triggers said entitlement verification means.

22. The method for distributing a software module of
claim 21, wherein said object code instruction which trig-
gers said entitlement verification also causes said computer
system to perform an additional function required for proper
execution of said software module concurrently with veri-

=)
U

[ying that said computer system has entitlement (o execute

said software module, whereby if said software module is
modified by removing said object code instruction, said
additional function required for proper execution of said
software module will not be performed.
23. The method for distributing a software module of
claim 21, wherein:
said object code instruction which triggers said entitle-
ment verification means contains a product number for
said software module;
said entitlement verification means on said computer
system comprises a product lock table in said computer

35

40

16

system, said product lock table comprising a plurality
of entries containing entitlement information, wherein
each of said plurality of entries is associated with a
product number; and

said entitlement verification means on said computer
system [urther comprises means, responsive lo said
objcct codc instruction, for accessing entitlement infor-
mation contained in an entry in said product lock table
associated with said product number contained in said
object code instruction.

24. The method for distributing a software module of
claim 20, wherein said step of granting entitlement for said
computer system to execute said software module comprises
the steps of:

generating an entitlement key consisting of a plurality of
data bits, said entitlement key providing information
enabling said computer system to determine whether or
not it has entitlement to execute said software module;
and

transmitting said entitlement key to said computer system.
25. The method for controlling the use of a software
module of claim 24, wherein said computer system contains
a unique identifier, wherein said step of generating an
entitlement key uses said unique identifier to generate said
entitlement key, and wherein said entitlement key grants
entitlement to run software only on a computer system
containing the samc unique identificr.
26. The method for controlling the use of a software
module of claim 20, wherein:
said step of distributing said software module comprises
distributing a plurality of software modules, each hav-
ing a plurality of independent triggering means for
triggering entitlement verification, on a single record-
ing medium; and
said step of granting entitlement for said computer system
to cxccute said softwarc modulc compriscs granting
separate entitlement to at least two of said plurality of
soltware modules on said single recording medium.

DISH-Blue Spike 842
Exhibit 1005, Page 0190

Exhibit 4

DISH-Blue Spike 842
Exhibit 1005, Page 0191

(19) BAEH#T (J P) OAFBEEFAE®W® QDASFFHIANES
Kb 5 —334072
()ABIA Tt 5 4(1993)12/1178
GDIntCL" WEEE PMERER FI Belige T
GO06F 9/06 450 C 7232-5B

FEFR A AREOM(S 20 H)
@DHEHS PR3 —308350 (T1HEBEAA 390009531

v —Fvarre VR e vy~
(22)iREH SRR 34E(1991)10A29H Red—Rrfav

INTERNATIONAL BUSIN
GDELETRES 629295 ESS MASCHINES CORPO
(3245l 19904F12H14H RATION
(DESHEERE KE (US) T AU AERE04, = 23— I

F—rvy (FE#igl)

(T2)R%E

(THREA

2ol b e Gl e B F o —

T A Y AAHREBS04, IRV IHeT e
RE = ITHEALY—F FVR -2
b 810
fEL EE F- (H48)

BHEWHE L

(54) [FHADEFR]

a7 [B3]

[HW] RREOHMIZ, 20 Ea—% - YATLEE
5 7 7 = 7 O EET L0038 SNV TERY
EEPRETLIZECh S,

(FERE] V7 b7 = Pld. EATT 2 &R 572 LTl
B, IEEAS AL S ERTsr—iz -
T ASLDTEDY 7 b7 =2 TORTHEE A . 2
DH¥—IL. VIR T 2TDIA 2B ELH5RA
Eao—¥MELESE, OV 7727 - T2 —
PR LETETT 2 ERETESNTVWEPERT. &
BOERTSEY FR2EATWA, B3NV 7 R
=7 BROERSEEN) AR AT, ENU AL Y
TR T - BV A NOBEEESRENT . BT
—FEROE—DEMEG S TH L.

R AREAIC X > T, AYEa—% - LAFLRE
2 7 =27 O EET S WEFESWHER
UEEENRE SIS,

VI M7 TOEREEET A LOOREBRT L

=R
| ¥7 kD=7
[T

| EZa-1 :3

1
SR —— |

R
Bt
F=7n
CRAM)

HRRrY-

7 =7y

{RAM)

DISH-Blue Spike 842
Exhibit 1005, Page 0192

UHEragkoodai)

[G8KkEL] 20 Ea—7 - YAFAZY 7727 -
BV 2N EETTLERY 5T L2FRE.

FHY 22T - BV A VAIREE SR, BB
WAL %) A B RO Lz B U A FRE
LEEOEBOMIT L B U A FROZNFIUCIRE L
T, kEdarvEa—% - > AFLPLERY 7 72T
BV 2N EETTHERE L DI L EWEET 5 EREM
FAEFEL L
FEOBEBBMTFRIOEEL T, EEarE2—2 -
AFEPLETDOV 77 2T - BV - EEFTAE
fEE LI WE FIEEEE RS E LoSE. B
HY TR 2T - B 2 OETRT B AFRE ®
ffiis. AyCa—2% - VATFLATETINEY 7 77
T BV 2 NOBHEREET L OOEE,
(FRIE2] Edo@EgoMsr L v A FB . B3
ERRELTFRE P AT A2R—NENI—FGaTh
H.EKRHELICEHED, V7727 BV 2—IDE
FREIT 220 0%EE.

(GERIE3] FRtEissarFEE:) 495 FiHD
—FRaaht, ERY I N7 2T - BV a0k
TRZOEREMA Ty 72 LETL . FoER. EXE
Ma—RsERETrIickTEEY 7727
RV 2—VAEESRAEE. FREoBIAT 7
PEFINT. ERVY 7MY 27 - BV 2 dNETN
IR A BRE2 G #H., Y7 T
BV 2 =N OMEHREHT B0 DS,

(GERIEA] FRtEfstssrFEE) 445 FEEHMD
—Rigadt, ROV TR 27 - 'Y a—ILOBNE
FEeh, FHREESED. VI T 2T 'Y 2—
NOFEREZEHT L7200EE,
(F5kTES] LRl EEMEETF B

EA S ERE AP OTR IR ERESICRET S
BHOZC MR LS, LAY Ea—% - V2T A
AOEE Y 7 - =Tk |

FEHHEHA - FHFIEEL T EEEI— N
EHEINAH LHENESICEET S PRy 2 - T
TAHROLY FIZETR G FEER S ERIC T 22
2T L FREEBED. FREACHEED. VI T
RV 2 VO EREET A0 NEE.,
(HREG) LD arEa—% - VY AFAICLEEDY
TR T - BV a—NEETTLIERR TS S LR
FE.
F—=2PLBRI NS ERMN G —3ERTHFEE .
FEHOERFEF—Z2 EH2 L Ea—F - Y ATAIRZA
NT2FEREERHLL. EFRELRERD. V772
7Y 2 VOFEHRERTAIDOEE,
[FFRE7] FearBa—2 - Y AFAMBEDER
TEEH.

BTG —% 4R 2 LEEFR . EiRoMBE 0]

HRFE5—-334072

FERAGWT EETERT 5 —%2ERL .

LEER SR —5 . ALMBEOENTAEDa B
—% - VAFALETOARY 7 b 2 T REFT HERY
525,
FERHECWZEEHD, VI 72T - BV 2a—OERE
BT HI2DDEE,

[GERIES] Lt DA% W L ERTS
F—2ESLL . ZORRE LN HESLE TR
L —SRUMBOFNTELO>A L Ea—7 - 27
L ETLPHERTET WL IZTAFR L.
riEarEa—% - L A7 A0MBEDRINTIZT I 2
Th, A Ea—F - PAFLNDFERE
FEoMmB BN 7 AT A FEFRIZIEEL
T. LEdowgs{b SRt 55— 4R35, ki
DAY 2—F - PATFLHDTRE 22 5 . F#RE
TIZEHED. V77T - Y 2N OdHEREET
LI DEEE .,

[FERIEO) BEROBIE VAT 2EROM L2k
WHFREY 7727 - BY 2 —IVAICEE T 5 B
PN

LY I T - BV 2N EFTT AR
FRY IV 2T 'Y A OETR FEREROM
ML RUAFRO—DICHE»T2EE OV Ea—%
CVAFLIPEDY TR 2T BV 2V EETTS
EgE LD L 2EET A EREIENEY Eifar B
—% - VAFLHRT NI AT LR L
FEERMET. FERarYa—F - VAT AT LR
VIR 2T - BY 2= ERTTAERD WS LE
EnelEg. FRY IR T - BV - OEFTRT
LUILEREE 240, ava—% - VAFAETER
ENAHYZRT2T - BV 2 OFEHEEHT L0
ok,

[5:RIE1 0) #Eosr L M) AFR%E L3V 7+
7 'Y a—IVNICEET 5 LB . EEEY 7
R T Y 2=V ADEBROR OB, LETE
TEMETENER N AT A E—o M- Fis 2 EE T
BIrEED. EREIHES. VI T - ®Y
2 —VOFERE BT 7005 E.

(&R 1 1] LEoEighaEranteEs ~V 43 % L3dAm
a—Rapss. FEY 7727 Y a— ot
ETICHELBINAT » 7% LETL . FOE. BH
I—-FiacEETsI L TEEY 7 727
BV 2= PBIESNAGEIS. FEOBMATF v 75
EFE3n®, bV T M7 BV A BEDICE
FEINGLLA FHRELOREHS., Vo727
BV 2 — IO EMT A7 RE.

[FERTE1 2] LarEigharanfes » vV 43 5 FsdAHm
I—Fipghs, FEEY 7727 BY a—I OB
FEED. FERELORE®D. Y7 7T - €Y
—NOEHEERT 570D HE,

DISH-Blue Spike 842
Exhibit 1005, Page 0193

(kI 1 3) B 5E#R % &A20> FRERDES
ESICEET 2RO M) B2 B8Ry 7 - T
—7N%E. EEFOACEa—% - L AFLAPNTHER T2
Bl % &4, EfgsereifEs B A3 4 LEBmL. £
ZLEMI— Firghic g i 5 B8 GnES (CEhET 2 B
Qw27 - F—7NAHOTy R IZE TS FEERMATY
fEMCT 2L 2F5 L EET.

FEREL 2ICHHEO., V7T BV 2L OEH
FET AT,

(FRIEL 4] BEFOF—7 - Ev MpofRdh, Lk
LaArEa—F PAFAPLERY TN T XV 2
—NEETTLIERRLOPE AT HETELL IR
THEREFRET L ERTGX -2 ER TR/ |
FErERTSE—% Oy Ea—% - YAFALICAT
FTLEEr &L, FREOICKHD. VIR T -
T2 — N OEHAEREET L 7200,
(FRIE15) ERarEa—% - L AFLPMBEOE
BIF%&H .

11 B St s 1 A Il w2 12 p7 N e L = [i |
FERAWT EEERBA TS —%4K L |
FEEERMSES A AUMBEOERTEEDI Y E
—% - YATALETOR T N 2 TR FETT L ERE
525,
FERE14ICHHD, V7 b7 B 2O ER
RETT 27D FE,
(FBREL16) V7727 - BV 22— 2ETTHE
REZITMAFHREAEL . oY 7727 Y
2= VAD NI FFRIIGE LT, FarEa—7% -
SAFABERY IR 2T - BV 2 —VEENTTAE
BELOZE AT HERBTIFEREET A
—% -2 AFLET FREY IR - B 2
FKTEND . ERONEEREHT L2007 07 7 LE
WmTH-T.

SRR EICEEBR S AL Ll 7 2 27
SE Y a—ibk

Ay a—F - P ATAETEROWEF M) AT 5.
FEHY 22T - 'Y a—bhotEE oM L)
HEEEEELL . 77T L8N,

(5R1E 1 7] LEoEEoMsr L b ATFBROF R
WA, LEERONGELE N AT E—0 HI T — Ry
FThS. BREL 6lCHE0 . BERT5REET LR
HOTT T LB,

(FERIE 1 8] LETERREE T Y 455 LEHIY
a—Ragh. FEY IR 2T - 'Y a7
FATIZHBLBINAT v 72 LETL . FORER. B
B2 —FaisdbhEdai izt~ T Y 72
T Y a—MEIE RN A A, FEEINAT v
PEIEINT. Y7727 - BV a— L NETICET
BN h, FREL 72 Ho . EBRTEEERT
BN T T AE,,

(3)

HRFE5—-334072

[FERIEL O] FErEWMEITFRY NI4T % EE®
aA—Rawss. LY 7727 - Y2 —LOEEE
BEEA,
FRarEa—% - L AFLLED FEERRET RS,
BT ST &AL O AN FNPEGES IZBET 2
RO N EELCHR Yy 7 - =TV EarE
2= - VATFLPIZETS.

FERTAL 7 ICEER . EEMSEEHET SO0 TTY
Z LB,
[ZERE20) V7 =7 BV 2—LEEFTEHE
BEZINAFBREEL. oLV 227 - =Y
2= VAD Y HFRIIFEL T, FEarCa—% -
VAFLWERY N 2T - BV 0N RRITTAE
BELOZ L AHELT 2 EMBEI TR ET a0
—% P AFLALET, FEV I ET - BV 2R
EFENE. V7RI 2T - TV 2V REHT L HE
TH-T.

BROBEEE MU AT AEROM L2) AFE % E
BY 7727 BV 2= PINCEHET HEREE |
VY227 BV AN F POV E -8 -
AT AR SR L

FarCa—% CAFARZEEY IR 2T - BY
2= IVEETTLERENS TR 26T, Y7
VLT BV I REATT S FE,

[3#ERIE2 1) EE0EROMr L2 v A FEE B30y
Zh T BY 2—ILPICHLE T B PR, LA
EROWEER N AT A R—Fa—Ripad . L
V7R T - BY 2= RO 2 OMEICEE
TAHIERE, ERE20RE#HN. VIR 2T -
BV 2 NEERTET S5

[FERIE2 2] Led&EBEE: U455 LB a—
Rapgdd, LY 777 - Y 2 — N0 ET
[ZREASEINAT v 7R LETL . TR, A
A—RfsEkET L TRV 7 R a7 -
EV 2= NABIESN AL, LB AT v 79
EHEShd, V2727 BY - ETS
N h ERE2 LIE&E. Y72 2T - 'Y
2—VEET S HE.

[FERIE2 3] LEoEEwErs: Y 432 LA~
Rangss, FEY 77T - BV 2 NORGESE
EH.

aAvEa—7% - Y A7 L0 FEUERMET TS, B
1552 &R FNFIHD GRS ICBET 2 18
DLy M) EELEEO Y2 - =T E . a2V
—% - LRAFAPNCETA.

R 1 IEHE, VI T - BY 2 —)L FEAR
THRE.

[ZERkE24) FEarvEa—2% - Y AFARRERY T
727 - BV 2V EERTLERETE TS LR
B3

DISH-Blue Spike 842
Exhibit 1005, Page 0194

WROF—% - Ev oS h, EERarta—v
CVAFABERY TN T BV - EETTR
EELOPE DI pRHETEL LT A EHRE RE
Th., ERATGS—FERT LB
FEHERTER -0 a—% - VAFAERTS
By 24t #RE2 0I2HHO, VI 72T - E
Va—IVEEART 5.

(FBRE25] Ldara—% - P AFAMEDF
BIF% &

BTG —% 4R % LSRR . EiRoiE 0@
FEAWT ETEDERBT S X —% 4R .
FERRERMSES . ALMBOEITEEar Y
—% - VAT LLETORY 7 W 2 T EERTTAERE
52%.

R 2 Al V72T Y 2L R EAG
FTEHE,

(FRE26) LY 7Y =27 - Y 2N REATT
2 LEBMES . AR R — SR b SR %
R AT AEEOMY L2 I HFBEE TS . BWEO
VI T - BV o NEFRWTAI R EA,
FEHaAYEa—F YAFARERY I M7 - ®Y
2=V ERITT HERENST 5 LS. o
—EtERk o RO Y TR 2T - BV 2L
DI EL 2012 DERE 5252 L%
.
ERE20REHD. V72T - BV -2 EAR
TEHE,

[FEADFHMIZ3HHA]

(0001

(R FOFIEHTF] AR, a0 Ca—% - Y7k
v 7OERAICEL . XDBEiE, avEa—% -
2RI A VT2 TETA L RACHD
ZWBTHEHTE 20%FIRT A2 L2753,
[0002]

Uikt] Mt arEa—% - v 25703 B2
SR Wb A E RIS T 2 7 ok
BORES £ OFEHZI) Adurz | fwd T T
Bb, ArCa—% - VAT LEELOBRERE A
TWEP, FNLIEIN—F7 27 LY 7 b7 2 TICKH
TED, N—F7x7lk. YATLRERTS. HED
E#. K—K. 5r—70 . PEEE. BWEELYTH
5, LPL. 24794 7T =) Y T7—E2EZET
ELHAZEF L VOLREEK. N—RT 273, FhHE
T, HEOWMRORBEEFRT 2 Z L I3TEL N, N
—R7 =27t AR IREDPEFETFILGHELEE T
L, IYT7brrz7) Eld. 0L - L LERLIBT
X, N—Fr e TICHRA R ETS Y0555
5, (FELERE. V7P THREINET SN
TWAIEHKICEHZNAZELHE) . N—FraTk
FfElc. V7 b7 =2 75 AROBIBEIROEMTH L.

(4)

HRFE5—-334072

BEEDY 72T 7RSSl LRI A 1R
FBOW . 7 Y olENE. k. JEERSEET 5.
ZLDREP. ARV 7 7 2 TRERT 22
ZHEWNT, Tar¥a—2f) RUSEEOERDE
BIfEEZRITTWE, ZOEREESN, MTFALOX Y
U7k, FRGHEEETEY 7 TR ERT S
FTICREL TR, V7 b7 e TORRICER LS
PERLINAER, I Ea—% « L AFAD—EHT
HHY 7 R TOMHES . N— R = 7 ollE% EE
BZELBLIRW,
[0003])HlnarBa—%F L XF2DHHI—
o3, IERICESHETHERITF -2 R A LIRETE S
ZETHL, BRI ZRUSBEOBEIRLRENTH
L, Ll CoZ kg, MELHHE P TER
Lizy 7 b2 2 708 B Z e SIiE T 1 oM
HO—ITERETE . BHSAZTRESHEZLER
BRLTWa, FTEE TG WALRS, EpaBHE Y
NT.AEDH LY 7+ 2 7R EET L L HBTE
%, ZOWETIE. —RIZ. V7 R 2 TEEREEE LI
T Wa, B, V7 M7 TERRESE ZIT S
7o, FIERURE FOFEE T 58 = 2o AhlE
BNTETWE, LGS V7 7z 7S
BRICEETE oV 7 b7 = TS iedizE D
LG 28z b b iz, V7 b TOEEE
REMIAE LTHEEE > T WA,

[0004]) TH=YFN - artEa—% LIHINA
NIV E 2= HORBEMINAEMZY 7 F 7 x
TG BRI LT EBEOERE LS Bk
T VY272 TOFRATA € AR LDFEBET
Ba, L ABOAL T —4 - AV E—F -
SATFATIE. FRTETHDRTWE W, 2D 57K
W 2F LDV 7 v 27, BEHTOI—FEHE
THILDHY . BHREUHERHCIFSICRBORE L L
L35, BREFIOREREIT 2DIZF N7 H—
OEE LIz —EAEEERET S L. 2</h02—
W2y T, FHTELWIESMZ O THE,
LiziinT . A » 7 L—20BEld. FRHEBIESL
VIR 2 TOTA R AR ERT LONEETH
%, TERRSOMERGERSE) IR D Z L 3 h—o0)
i, EESIRRICHE » THEEOEROIE RIS
REERERTLLOTHS. LS OmKRPERS
iz L DEEoERE FHT AT ALY 7R
= 7ICHL . MRS 2EMOBEE LD LEWIA
AEEFELS . Li—omBEFEOBTIE. Y2 T
DEFIL — R 7 w7 2nf LT RS 2H kT 500
Thb.

[0005]) S5lud Y 7 b7 x 7E{EET 5 DicssE
ZEMARROL L E | FRUChRAEER U HOR
2EZDE. DX 7 7 2 TOERIZIZES R
b, VI s TORREPFOIR B LT

DISH-Blue Spike 842
Exhibit 1005, Page 0195

Wb WIEEIZ. VI N7 2 7R ERT A APV
b, EREPT7V 7 P 2 7 ANORE R RET
ZHiE. ERLOEEETH LT TR EE TR
TLhbL, L -T, Y7 b2 7O SLHiaE
. Y7 e TEHTLLICERTL L L
V7 7w TORRESF OB H LT ES Iz b
. V7 b s THEATEDRIRE TR,
[0006] Y7 boaTid. EXLAHEEPHEZHD
BB HETEHATSNG . WA OEH % B1E 5 8l
»h . ZRSOBMATFEL. IR, BIRE
FafT5-. FEERSED 32D N— I KFIT &
%,

[0007] EHRERMTS 212, BRIy 7 Ry
2T, FOHRFAOHETH -2 FOBMTTL . HIRE
LICETT 5 L VI BT H S, EFRERTS5 DY
7R 2 TEREATAIAEGEIL. 21—, 2—FH
FUzH L Ol 2 LW ENEETT L EREE TS
V7 =T RRA LTS S, 2k
2V 7 b7 2 TOSZIRAN - B FE S AU WE TR
L7z ERLDT50%05 5 Lokt ENEUERY
FOJBATTH S KEHOIN—Y P - AV 2~
STHEAINTVA LY | WS TIA £
APGZONEEMLY 72T T, Zhibb ok
LEBOEAHETHS.

[0008] HIBERMNGLIZ. VI 72T, 2—
FHFNFEEL TV HTHLE OB ETETTE
BOEHETE. HAEOHEZABEL TWAZLE2E
W5, W ohDEL LHIRERTEES DS, F0
—2li. RSN A) VAP SR TELIE—0
BERIRT2, BERRTHL, EEHRS. V77
2 TEEREECH L THL LNV DEELEHT S
B B TOREE Lo, EHIRERBTS L Hfkiz. B85
BT L . BrEESgEL—FIz, FOI—FPETT
BREPFTHY 7 M7 e T REAAT 5 2 LR EE
Hh, RETZLTPAN—T7 T (REEER TR
AT . WEREISN Y 7 M7 7oOEEIOIE
—%EBIEDTERIOYILLIET S, BiElZ.
ZhUd, 2—FHNy 77y TOEMTES o —%
B 3RV 7 b T R e EREE) ST T
XZ0EMTS, L —o0fERTSEL. 22—
F o EICE R OBERE Y 7 M 2 7 HikoOHica—
B3 240 Ths. V77 =7 2ETT AR i
X, VY7 b7 =7 EOB Sl — T 3R T
WA Z L EEPD AIDIIHERTS . JOFER. 1
—HHRIELL A —F LN ADEWIT I, gL R
A, il RIS BESheY 7 Rra To&a
E—% AN R Y8 VL | BRI
FE L 2R 570 WoT | IERICEIli R S R T
LIPREET S,

[0009] JEEMTFEL. BEHINALY IR =T

HRFE5—-334072

IERAZEEICINTWT . BT A 3R EA I NS
RS2 LEET AL RERT A, HAIFEHRTS
EZ BHEY 7 N7 = T OB SeR IR A TTREME S
Bo, 1250 BFLLIDL I HEN2THIIL
FREENZ L 2 TWADLITThRW, 7ok 218, IrEE.
EL1#EDZEHEDOY 7 2T - 7T I L E B0
Bk LT 202 TOBEICEA L . BES LV EF
FRLTOITARETERTT S LR, @IS
NEH R — 2 KEER IR T2 2P TES, JF
R 5EIL. B EIC T 22 < D% EhEd
2705, BIEDEEHI . ERGORERE L WikieL ik
FRITAEBNARE O, KROBE. Y7 72T EE
T 2008 fEE2ZLIED L 70ICAWLR A
Wi, HEeeBib: WO BEL EOA — 23—~y R T
ey, EREBELTFREY 72T T A
(F=2Hb0itmat LT) EFT5I L 2LHET
5, BEIC LT, ZOERMNSOA—1N—~Ny K
. BRENTFOT A X RUBHHSNWLY 77T
HADREN —F DRI LB Z DB A, HAWIEE
Fo, FOF—IN=Ny RV 7 N7 2 TEEFIEN
SEMLEESFRPETTALEICLL LS, 2
9 LI-ERIEEOEROR. BRbh o0 728,
TNy F 7| 37bbENT— FOBRE N
FEAICT ALK » T, REERBLTENICTLD
1. HMAESTH A, Hlods . BRa— RITERE
HEITHT. TV 2—E . ZHPLHE Y N BELEER
FAHILIZE->TEOT A ZEWPHRRS Th 1T
G, SISy F P RRITEES T AH, ARz
HLEBOEAL RS L ERIT,

[001 0] PEkEMh THRIN TV HIRER L. /
FEL NV EFENRTIEDITEVWEDIIBLDOTHS,
BREEOERE Y 7 by 7HIiCa—-MEda I ki
Lo THEBASL NV ORELEL Z EHFTETHS
B, EAINAEEY 7T A= EDLOE
b, IEFITHEMLRAA S AT LT T A L WO R
FEOATUEA 6%, £ D EWAETEL TRETH S
M. RES—HRbR S OB HALITREL S
v, SLVOREEZFRL . KBEMREEZHAWT
BRICHAHTE . oY AT L0, 2—FFELic
Ny 2 7y THEERIE—% L 5 HetE. Z oo E
LHEEE T YT WHEPRD LT WA, FR
2. EBRRSEIMESRE. RUBZLAY 7 72 TORLA
N=a Tzl D54y 2R E R T5F
ELFDLNT WA,

[0011]

[FEAS L &5 L3 A5] ARHHOBMIZ. 2>
Ea—2% - PAFTALREZBITEY 7 M7 7OFEHEEH
FTHWHES N HERVEE2RET 2L 12H5.
[001 2] FRHDMDEMIL, A2 E2—F - PR
FAZBITAEHT DY 7 s TERICETA L DS

DISH-Blue Spike 842
Exhibit 1005, Page 0196

LNV ORERRET S L I2H 5,

(00 13] ARHOMOEMIZ, V7 7o 7R EDS
TERICH L TRETZERALHR T2 chb.
[{0014] &RF#EFOMOBEWINL, FESAERICH LT
REENY I P72 TEETTEIVE2—F - 22
FADERERETLZ LICHhD.

{00 15] FRHOMOEH ML, JFFAI ISR LT
fREES Y 7 B 7 2 TOBRAE OB S X7 L% fH
IZTAZEIzhA.

(00 16] AFEHOMOBEMIZ, ZOL I ZfRENY
787 s TOEY R RITTHELERT A, VT
I 77w 7RIS HIRE T L HFERUEE R
FTEIEREHD,

[0017]) AREOMBOHMIZ, 2—FHVY 77 =
TOEENy 2 Ty 7HAC—% L 20%FF LM
5. Y7 N7 T REFMEAS L RETAWES AL
FERVEEXRETEZLIZH A,

(00 18] ARHOMOEMIZ, V7 Mo 7 kS
TOERFTEEE 22 L3 CWETANRHL T4
kb,

{001 9] FEHEOMOE N, BRI E L
27N =2 TREAT S, WESWHERVEEY
R]itFr2ichsd,

{0020]

(GREX R T 5 7200FE] A7z LS. Y7 R
w7, BT Al hOERM S LICEARINA.
Bz icEm SNBSS ER S ¥ —ickh . vV
TN e TOEFTHEEL 2 b, COERMEF—I3,
FHUZHLTY 7 3727054 v AHE 2 60T 0
LEMOBLESE FOY IR 2T - BY 2
ZFOBMTHEITT 2 ER8E L Oor R T 58RO &N
FEE Y FEFATWS, BefFaSi s
Wb, ZeEsBErfmoE L F5 2oL L.
INEBETGF — LGRS AN X —L LTERT
B RWT, ERRASERS . ATUAOELD Y 7 -
F=TIAZEER RS,

(0021])EMENAY 7 b7 27, BEOERM
ANV HEFELTVS, FE LWERERTIE, S0
3. Y 7h 27 - Y o — OB ESEFENT A .
B2 — KRB —EBHEEGSTha, Y7 b7 a7
BV 2 —NOEFTRICZOL D AEREEE N) Ao s
Sk B, V77T BV 2 —LOBERE S
HIET 580y 7 - F—TNDIY b 2T S,
BINHSERT 58K L0BE . EFICETSIEES
. E I ThRWEENE. ERSTBIsing ., JogE
137272 VEOBHEEG S LPBELL WO T, AT AR
ROMREICIZE A EHEE 52 FICEITTE S, 208k
B, P OOBROZ DL S ERBEE N U AR EH T~
FrlcREL . PR VAE TNy T2 7 T3
ZrE T a—FEUET LI L2 BELEFTRICT

(6)

HRFE5—-334072

BIEHFTE L, JIOEMERTIL. ERGEE) A5,
V7R T 'Y 2= NOBIELETIC BB S
OFERALHER2LEY . Zhick-T. VY7 2T
(N F 27| THOP—BELZD ., DL I 7%
AE DA ORI 5 ERE LR ENS .,
[0022]) V722 7EHBIZEDL S ERTSL
BATWEZWOT, BAOHBRIZLETW, FZLw
EiEFITit, V7 b7 = TOBRTEIL. BROY T Ry
=27 'Y 2NV ER—RPERICEESE L | SRS
AL L#MORY 2—V % 7O CORFICEATT S 2
LHTEL, HHEEL. BPI4 ey A2 52L60T
WAY 2 727 BV 2a—NSTEREFTESL, hE
DEETEX—2RITWE ., BEIZ. 742 252
LHRTWEWAISPOEY 2—N 352 5T h |]
LX —7Z LI TN EFTTELWOT, AELMEC
e oson, BEL. BRIZY 7 7275 BADY A
FLDFOMUDFREEEBICO—R L, HBWIEY T 7
27Ny 7Ty THAC—EWS STLERTEZE
WTEL,

[0023]

[Z2hfA]] AFEBEDHF F L WEREFIZL =Sy 7 b7
= T RERBOTERROFUHEH 1 (RT ., BIED
ayEa—% - YAFA10 1, SIMEiEEE103
RIS SRR EREE (CPU) 10
2.9V FL-TIRA - VATFAL-AEV104{#
ETRECTETINCHI D THZMBEONT 1 05 . #®
BOTEEELIO06. 107, 108%HATWAS, #F
F LWEHEFITIE, MEOET 1 0 SI3EHoE LEF
SThHE. WE LWEHFITE, ZEEE106~10
Sid, MR T « A7 BEEETH LS. hoidE
HiE AT L LMRETHS, AV Ea—F - 22
FLLO LIEE ANRL =2 5D ANERZITIN A1
ER1OORUY 77 e PIEHIEEE L 1 0% L&
ATWS, M1zl 1 HkER. 1EDY 777
EFIEEE . 3{EDOFEEESRINTWAS, 2
FA10 1RO ss 2ok) ZEEOEREOE
IEETHAZ EFEBEIRW, S BI0EES
PAFALL O LIZMY AT ong Z - 2RI icn,
FELWERITIE, aryEa—2 - Y 274101
iZ. IBM#H®DAS /4003 Ea—% - Y AFAT
HEH AMNALE—F - VAFLLEATES.
[0024) V7 727 - £V 2a—E. FhEEiE
BE2DIPELERMNSF— (entit lemen
t key) EiANCEmEINE. Ak, V272 T
BV EREO VY -V ATAL 25
FTERENA . ERAIVE—% - L AFA125
i, Ay M F126RUNIFTVAL—F21 275 EA
TWh, Y777 - B a— IV 7 b TEcE:
iRl 12 LicEiash, AL 2 0iCEAEh, £2
POBEICEAM SN G, BATEDRGCER L 2 17»

DISH-Blue Spike 842
Exhibit 1005, Page 0197

5. BRI ERTSF—1 1 1/EmA3R5. K
SRERHL21E. v—rv Ty ZHaryEa—% -
VAFLL 24TV RTEILEPTEL, =TT
4RIV E =% - Y ATFLL 240, BTSSR
—DER WS L TaY A1 22 BEEERE ST
F—F - N—RA123L%2FATWS, BEMICIZ. 7
—% - N—21 2 3if. BE LI ERTEY—0%
RO B EROME L ES L 70t v T oORBEOERE
EATWA, FZ LWERFITIE, v—5 v 74 7 H
ArEa—% - L2551 2405 hRIChE L T ER
OIRGEEHEHEMAETA AL Ea—8ThHb, 2L,
R—rwF 4y ZHACa—% - P AFAL 2415,
I HME R MEL . B idhRaoF—5 - X
—ARZT7RATEIELTES, B 2L, BiAED
HIMTFICHRRZ D200y Ea—% - Y AFAL2
4. 125BRENTWES, WHOBREE ETT 5
W H—D a2y Ba—% - VAFATLLI VI L 2H
RIS,

(0025] V7 7= 7OBEHEP SR, Sl
BNIERTES—1 1 12885, Bl Fotan
BELLFRETELNS, ERMTSS—2ETIICET
Ty E— - F g A7 OB ETEETLH I E
FHRETH B, ¥k, ARL—245#EA1 00
TEAZ7LT, SHEVAFLL O 1HIZANTE ST
ETREEELDTHS.

(0026] IFE LWEBFITIE, 2HOVY IR 27
C BV 2 —VPE—EER L 1 2 B TR RIRG . BiE
1. ERTES— 2N L TR EY 2L 2T 2 &%
PMNICEZ LI ENTEL, BHEL 2003, iRl 1
2 Rz, BRI LY 2 2727 - BV 2R R
WIS, FHEERE, FOTRY 22— E2EHTL5(&y
252 LTV 53 E LR 1
DY TR T - B 2 —NHREIND, BhRICEAT
BNBERFGF—IE. LDV I 2T BV 2
70 ETCETTRERP D LPELVATALLO LR
SETAIHOEREEA TS,

(0027]) 3% LWHEHHITIZ, V7 Mo 7R
128, —RERITERORNOERET + A7 68
REA. BRGIEEE 1 1 01T + A7 FCEETH
%, 1222 BT RELHE S F OO B L
TELIEEHEESNI WV, VY72 TRL L 2%
ZUNA L EBE. BElL. g0y 7 ka7 - 'Y
2L REREFIEEE L 1 0Ly AFAL 0 LIca—
RL. #F0V 2727 - BV 2—N%MEEEL106
~108(23ET4. BEIZ. Y7 727 Y 2—
ND—DF 73 EOIy 2 7 v 7RI E—E{EEDE
Ltk FlcRR L . S bR T -4 TREET A
EIATEL, VIR THEKL L 212, SATLAND
HEen— R T 58RE5ATE LT, BhHicEE
WHE P OO — RAHETH 5.

HRFE5—-334072

[0028] #Fg L WEiEFz X A8ESLaT &kt 5
F—20 0DAEHNB2ITRINT WS, ZDF—iZ.
BEIN—7" 74— RF201 . V7R 27 - 25—
Yary 74 RE202, F—HX71—EF20
3. BEELES T 4 —ILF 20 4 BRUREEiTS o
F7205%FATVS, BEIIN—7 74—l F2
01id. 1 6EYOBEERENS. 12%EEL. ¥
7 b7 7 OBRBESHERESE L N — TS DICEE
A, V77 - N=Vary - 74—JLRE202
2. P52 6NEY T2 T7ON—Y)y - LA
WEEET A, V772707 L — R 7y PR
B 72D FIEEE R A Z EBATHEENTWA,
ERFEX—200hTHRESHLEZ NNV a v, 20
W= g > - LNLE DL (TR D2LANLay 7
e TICERES LS, F—BRT 4+ —LFE2031%
F— - 73— b, F—OREEOIBREED D,
HEWETR— 35827 A /RO BSILIRD/ 2O
FEINHERTHE . BELES 74— F204
I3, ERTSS— e LW 2EHoBLES 2 &
ATWS, BEERTE 7522 0513, FFh0E
MESIIHIET 5 8 0FRDFz OB 7 7 7% &1, 8
OEw hDT7 4 =L RTH L. 3T BB IER
WEZLRTWAEE, OBy ME “17 2y B E
. FITRVGEIE. 07 gty FERD,
[0029]) FELWEEHATIZ, V7 727 €Y
2—WL, 2NV EREMa—RE LTEMAIN
%, BRI 7 b 27 - Y 2300232
TG, CcAY IR 72T - BV a—ME, Ay Ea—4
S VAFTL1 01 ETEFTELEEOBN I — Ry
BEATWS, BRI LHUT . W oD ERRIREE -
U Aee (LI, TEEBEEN Y 4 LREE) 3014
Ha—FicllAAZ N TWE, Y777 - £a
—NACEENAETOERBEE VA3 0 1iZ. F—
Thbh. BEBELF)A30 LI, ama—F - 74—
LE302. N=Yary - -74=)VF303 . EFES
74—=IVR304%H5ATWA, 74—)LK305F
BA3hTwiwn, ;fa—F - 74— F302i% £
TERERIEEREIGT 2. B2 — iy gO@)FHiaT
Hhd, "—Yary - T74—NLF303ik. V77T
RV a2 NON—Y g v LNLEER S, BN
F74—=NVR304lF. £V 72T BV 2—
[CEET A ERES L EIT L. =Y 2 Y RUELE
BOBRITY 2 - T EICEH LN T OEGIHET
M A E—OmS - FAERS L. BI0EEF]
Thd. ERAREE R) i, o L0 ERHSEEE
T AEEGS (L Dbl 2ONEROANT Y R E
e CEL TEBLBED T Wie) TLhb., 2D
LI LRIDFERHAITIE, I HamEhETEhs L, ¥
AT A1 0 VIEEREWGEE L ERAC O &S OELE
175,

DISH-Blue Spike 842
Exhibit 1005, Page 0198

[0030)art-—% 257410110 BSL
JRER/TSFR—11 1 2% W->TFa—-FT5F
B, Ze SUNICERSHEE B) A BB LTS AT LBV 7
FreT - BV A NEETTLAERE L O LRI
TEPREHEATWS, I LWHEIERTI, 41275
ENTWA LI, LD, BXaLLdy
AFh - N—=RP 2 TR ATFN -V T 727 O”
THEISNTWS, ZOEBEHTIE, > AF745101
. N—F27 - LNL4 01, KERA A 70a—F
SLALA 02, BTMEEI—R - L4 03 REE
SEEBLLA04 505 AL DN—RT7 2T
VI THREEEEATWS, B v P —T7 2 —2
4058, (FHEEEEL L ETHOLTHOL IS
DRELTWA, WA 7 — 72— 24 0513, BEIIC
HLTCERSNTVAERL UL ICHEA VP 7z
—ATHb. Thbb, HEFEERLNLOmaE » b
IZEZICH L CERINGD . FREDTOLNL0
fREdERS N, Lo T, BEl. Bk > & —
Tx—Z - LR L D TOL XD 2 EENZET 2
RENA 7o\, AR SEAREEGEL BS54 10
BN—FE 27 - LAULA O LIZBISIT WA,
[0031]) AE2A270a—R40 20, EfFTEE.
gty FEFRTL VA, 7na—F - LRI EEA
TWa, Jhid. FIHEE#EEL 03, T4bbirkl
WESEFITIE . FRFIC & AT RS S D) S A
€Y (ROM) (o, MHEMICTEIN TS, KETA
73— ROy MU, RS-SR4 2 0.
Oy 7 REEEE4 21, Oy 2HTEERE4 2 2 F R —
FLTWE, RS —TSHERE4 2 013, I L\WEEhE
BICiEe A5 LB LESIESS . MEOBTF2. b
BRAMLN—F 7 2 TREP S HT. 0w 7 #%E
HERE4 2 113, By 2 - 7= 4601277 kR
L. 5F=7NHDIy) 2ERT S, Oy 7 REfbE
3. 8y 7 - =746 03 ERTELE—DT
70— REEETHA, v I HEEEEd 2 213 B
Sy 2 - F=7 46012772 Ty M) O—
DEHRA - TERPFESTOE P E S PERIET
%,

[0032] EfTmaET—F - L~UL4 0 31, Fhil
NILVOBERY R— b . RUHERA > — 7 2 — A TER
BN HEEET 2T R—FE2EATWS, ZhidA
Y IR EEI NS FORNSERER I
LCERBRINTWWDT, KR FISERRIC L - T
TEL WV, FTRHLNAOFR—RMM2id, oy 28R —
F430. W7 5L40—R (IPL)Y vy /?E
BEDL—F 43 1 WML —F 43 2HaEh
5, Traw? - b—Fr4 300k, BEEOEY —%
AWCTERTSF—111%Fa—RL ., BEEEhne
EEFSF—11 1 2885 — - 7—7J14 5 0I25E
T3, Hirassasu—Ray 2EREIL—F >4 3

HRFE5—-334072

1iZ, ¥ 2AFAHPFCPHREI NS L . 2—F{E3h
FERE— - F—TL A5 00MERIDH LT, 85
Qv - F=7N46 0k HHBEET L. FFMUELL—F
YA 320, KPERA 20a—FR - LAUL4 0 208EkE
2k > TERSN BRI GEEIBET 5. ETTRED—
K- L~Ub4 0313, BI—KEROY 7 b7 -
EYa2—=N300%FATVS,

[0033) {RAESTEEL L4 0 413, BHEEGSIC
LoTRINTVWAELOELTY 7 =7 2387

5, ZOLNVOFEEIL . EREEGS EEETTRE
TIZZWE WIBERT ., RESHEEE LTEMETA. K
REEEL L4 0 4 WHEIFIATE R0 FHLA
WA 28— 2= A DT, ¥ AT L TR R
B — BBROEY 2 — N 2B 2002 . JEREkA
DANA VRGBT TH L, ZOa 34 LIz
DWW, HRICHIT 5. BERICIE. ZodEfekiiona
SINANBERENLUCERSNA Y 7 7 7, EiT
L5 L2 A I — ROz L o%hith
B 67000, BREEGSEEEITTRTH 20D L
3z, (KRR L AL OEREE G S TR L TERT S
DPFFETHY . LD bBrDFT W, BT ENRS
b RAEEEEREL LA QAR LI)L LT —FD
VI TEEATWAES I ZEWTESL, iUt
Fle. YAFTLL01IEHT 5 LD EMLNLoARL
—F 4y VAT AOTE—FLEATWS, {RiEE
BREELANA0ATIDANL— 3y - YAFLADY
F=1g. EEAES—DANZIR—F T 5DIC0H
L2 D2— - A =T 2 — A - N—F I EFHAT
Wa, — AT —F 44 113, BEOBRERICAD
PO LTS, 612 ARL—F 17
VAT AOTMHEEARICERG TS5 —% AT T 512138
BDA S 2= AT —F >4 A 0BRBETHSL, &
NPRELDE. B vy —T7 2 —2 - LNL405
I D ERDANL —F 4 7 - ¥ AT LOER . AF
BTt 70y 5 L8 e LTRbNAIHOTH S,
Thabhb, COXILHINHAESELE . FOEK
a— RIGEREE N) A OREE 2T, 1 A=
ATN—F2 440, ARL—F 1 ¥ - P AT A

D, EREBEL TV A% L WE—DEGTH D . o
T YAFLERNCEAT HRICERNEX— AN
TELLShD,

[0034) Y7727 - EY2—N300lF. ¥&
FA101 FCEFSRA VA NENHa—R
BROTQ 77 LEGO—ETH L. Jhu. (EEE
BLAIDMOREGZ 7 7 2 AMEETH S L v Bk

T, G EEL AL A 04D T 4 7 4 & LTTEE
5, FE L FERICETE e 2 — R, BERoORT
RENTWA I, EfTEEa—K - L~Njb4 03T
BT 5. FTTRET— Rt KFEeAf Z7oa—Fon
v PHETHEREA 2 212 L > THATS NG . EIBHEL Y

DISH-Blue Spike 842
Exhibit 1005, Page 0199

H301 (=23 HPBHIGRINT VWS) 2EATW

5,

{0035] a— R{IESHEREF— - F—71450
BRSIRINT WA, g% — - 7—714 50137
VEL-T2RA - ATV 04IZASTEYD | IR
HEMEREEICERINTWA I, VATADEEIE
L7z 2Ot THAEE L iUl 5%
WIEEIZ, MRS A EAEETHS, 771450
1Z. TP EEGESICHIELES S 0fHnZ
J501%28ATVE, EZF)501E. D1
) OERESZ B S ARG S R 55 —
502, FOF—BEMCVOFERIRpERTH
BAY 75038, F0OF%F—ON—Y a2 rFS504
L. FOF—DEEIN—T505 L, FOF—EG
BTy Ov 2RI R RTERMNSE Y RF506
EOEELAC—REATWS, HERAY > 750 311
WEbTAZENTEL, N—VarEF504 . B
TN—750 5 RUERTSEY 50 613, BEESLS
BRI S—50 2128 TN A EMERDET, %
o, BAEFYR— 357022077z EE
Wb, 72720 B S{L 3 ERTEX —5
0 2hDEREMIEL THLThWE, BEnmy 2 - 7
—7N46 0Ny M) ERELT., 7077 LETD
EREESLHZLETE W, B — - F—7-45
0D BB S5 —5 0 2185 S B e DT,
2—F—DIDT—TNNDT 7 2% T 57802
RO EI LB T\,

[0036] X6z, BiayZ - 7—704 6 045K
ENTWE, ZOF—TMid. KERA 70— K5
EHMTICRL, 9L -T2 - A€V104
DR T FLAFEREICA->TwWE, Eifoay 7 -
F—=7N46 013, FRFNPEHRGESITRHIG LS
SOMNTY Y6012 EFATWA, HITMJIiT.
B GORANN—Y a VDL NIV EREN—V a V&
FEEATWS, 00—V a yEFFIT. Ehao L os
—Va VIZLERAELST W EERLTWS, BT
w7 T4 6 0T ARENELAET IS
2R g A7edlc, "= a v BFBSEZ A2 TNT 5
S EIRTED,

[0037] iz, RRHDEFZ L\ WHhigilic L 2 a2
Ea—% L 27A101 ETHOY 7R 727 - Y2
—ILOEMEIZOWTHRNE . ZOEEICIZ4 SO S
Ba., B1OBMEL. BWEROEMKEL N U 4% ETTHE
ZHBA—REROVY 7 M7 27 - Y PR EE
ThH, B208EL. VIR 2T - BV 2—AANDT
IR A RFATABSIN - ERTEF—111 %%
B35, B308EL. arEa—% - Y2AFA101
PERSEE—1 1 13230 . Fa—RLT., &g
L. #lEay s - F—7N460%H/ETSLH, 5408
B, Y7 =27 - XY 2—NEVAFALOLET

HRFE5—-334072

ETLT. EEEEE) Hicis -7k & l2iE. VA5
L1 0 VICEREREERIES . D 2208 EL. v
7+ PEATEOEH T TERIN S, BO208
R, AEOIAFL1 01 FTEESNS,
[0038] V77 7HIEIL. YIFRT727 - €
Fa—)lEIANAINTHEES EREWELER) AR EHW
T— FARCEE LU S 7w, BB Ea—
- VATFAL 25 TR S MBR: Z OMEERT I
Y. BRI — RiE, EREEGEE N) A2 &P, 3
BRIz EoTERSNAS, 27977701
T, FRRa—FHarn4 312612 AN3N. X5y
TTQ2T, 7arsh - FrrL—rEERTE, 7
Q750 - Fr7l— i, (EEEIERL 1404
(FhbbA % —72—2405 L0 LOLX
L) OBEFEGSEEATWS, AFy 7 T04T. 7
Q755 - Fr7L— M. FORNESRUIN— 7
VEERFIT AL, FILVAL—F 1 2TANDA
HELTEIL, 32 —%1 2713, GEEIC. »
D OBOVERBEE N) A RERL . ZhE Ea—K
BT 2 F LB L | ERIREE N) A O AR
ZBRERHET L, 257 v 77 0 5 THN SRS
SRAFETTREL AN - FBADOY 2 727 - =Y
22—z, EBREEE B) AP E T WS, ZOFET
WEELTRDY 7 b7 27 - B a—Wd. EiTRED
=R LR 4030EMI—RaREEATWS,
[0039]) LI NIERT 55 —% AR T %87
RHSISRT., A7 w780 1T, llkgick-»T
ERINIHEN— gy - LRLD 1 {AZ 7213688k
702G AT AT A 2y AR v—T T
¢ YR E =% VAFAL 24 ATIERS,
Bizh E . B ZHON—T 3 v LAULOBIEE ST
FHIEUGFRETH L, —EANIEE 53 A HEAIXT
LEAET N, 2L BETE S —I3EE ST —
YVary - LNVTLPEHEL W T, BESEL 58
—Yar LNLVEREXTL L. lroEflitis—%
ERLATIEZ 0w, BEOFXEZITRAE . A
Fu 80 27T, YAFLL 24 TETHOR—HK
BSbrnrsoal 2 24, BEICET AEHR. Bk
i3 OE L B S R T 0 v BROERE 507
—H#R—2A1 23277 €ATD, ZOEREME-T.
S L3R TWLWERTS%—2 0 0E&Es L —7°
- 74— NVE20 1 RUEMEBELES 7+ —ILE204
PERSNS, 2F v 780 3T, BEDFXRUHE
R BRI F— 9 K — ANDBRIC L > THEY D
74— RBFERINT . el G S o0&k Ts
X—PREEINDL, RWT. AFv78047T, ¥—4
ST O 51 2 248, SR CREIODW
L OPOBEEALFED S b FupE - T KBS
X—%MEEILT S, KWT. AT v 7805T, Ok
FEEOIESL SN ER TS —1 1 155, BRI

DISH-Blue Spike 842
Exhibit 1005, Page 0200

A3 NA, B Tlds—11 LizEHEn 2y M &
LTORINTWABH, BRI 55— 288r 5 AT 5
HEZEHRICT2720. 1 6 ERTPERTIC L 5 5b
W7e & 23y B R 2NN —7 L L S o THE
IR LTE v,

(0040] 2> Ea—%- - ¥ AFA1 01 LCTEBN
FX—111%2%00. #ymy7 - 7—71460
FHEF T 5BEEHO a RIHO bITRY, A7 v 79
01T, BZIE. #ME51 0 9% N LT, &R %—
11123y 2—% -3y 2AFA101ICANTA, &
RIPHEEATH BBEICE. A A=A —F
VAL OQOHBANL —P LR TANE RIS, 29
TRWEEE, AT —F 44 1P AHEZIT
2, EEEE—lt. Fao— @B Ty 2
Bl—F>4301CEINE, AFvy 79027, Ay
IR —F >4 3 078, BT —ISERE4 2 01C.
BWoE LB 2 R34, By —2ERSE5, Kw
T, ATy 790 3T, Oy ZHREN—F 243095,
B — 2 AWTERSS S —111%25F2—-175.
FNT, A7 7904, LIFldRs L5z, ay
SRR —F A 3 00— FLS S — - F—
T4 5 0FFHETS, Fa— RENERMGE S —
X, B2icrLizBiE s, Zhud, EERESTE
2. TORGHF L WERBMEX—DO T Ty 2 2k
BRTWEPE S HERT . 80Y y OEERTY
757 - TLA205%F5ATWS, HLWER 5%
—li3. Fhday 7 2 ERT 22T OBERICHT 5 &l
BRieR—E B3NS, vy 2B —F430
12, 72— FSNERTE S — o EERT S 7
FZ205%FEHTE (AFv7904) . AFv 79
05T, EERTS 7370 “17 (EEit5R D%
f59) Iy FENTWEHE, AT v 7008T,
¥ — - F=7NA4A50hDORIETAT RS FHL
WERTSF—, N—=V 2 VBSRURES N —7ET
ER3NA, EEMTSEy L - 74— R506%
“1" 2y hEh, B/B2Y7 - By b 74—
JES 035, ERAEX—PEEHEE STV NS
EERRTEONEIy R3S, FL W —oilhE
573779 “07 OEICiZ. N~ a v /5 EH
&N —T7BESPEGLF— - TN 45 0EESR
TVBLDERE TZVERY | #LVWERT 55 —13%)
BiZew, N—=V 2 VESRURIE N —7ESHRL
BE(AT7v7906) | BRMTEGX—IIBHMEZO v
TAHEMESHA, LT, 0y 2EBIL—343
0. 27y 7907 C. By 27 - 771460
HAON— 3 yFSE 07 2y b ADIZ. ay
7 ESEMEEA 2 1 P . 25TV 9 08T, B
F— - F=INA 50O ET LY FUEHLWE
B 5EX—OETERT S, Bh%—- 771450
PHEBEShL L. AFy 700 9T. FORENITE

HRFE5—-334072

HEEICL—T3INS.

[004 1) BicER2 5 INAERIERE Kb
VIRD | B — - F—T1 4 5 0 OB REEIELE T
7 - T—7N460REEEERE LG, Bl B
RIZEL T, gy 7 #WBEINL ., TCERZTEIR
TWeWY 7 b PEGEBIICETTL L 5 &%
BEE R VA ICHES & . L RAF AL > TR RS
na, WT, AF 979207, BHMLEIL—F > 4
32/, Bhooay 2EBRERA LD, Oy 7RI
—Fr A3 0% T, Kz, AFv 7921 T, 1
o PN —F2 4 3 075, 2— RME3h-8l5 % — -
F—=TN4 5 0hDE LT) SRS hE
5 —%MWOIL | 27y 79 2 2 THERs—25
T A7y 79 23 TERMNGX —% s 5. B
53N TWE (AFy7924) HEZ. AFv79
26T, V7R THEGORGESICHET . 85
2v7 - F—=7NA60DI Y60 1HTN—Ya
VESRIETAIDIS. Oy 7 B4 2 1 RS
H3ha, AWz, A5y 792 7T, 0y 2R —
FA3045, B1EEHOHERH By 7 -7
1 —=JVR5 0325835, RWT, AF» 77928
T, BREERE N) ABRFRATE N, T2 T ADETH
BATENS . AT v 79 2 4 TERN SR IR WG
Hli. AF Y7925 T, 7S I LDETHETHY L
na.
[0042])#Fay 7 - F—7 14600k, RAM{IZ
HEINTED . Y AFLOEMEEERIIES 2,
FEHEEE (TIPL,) iz, 8oy r - 770
43 0%FHEETL/O, IPLOy 7HHREFLV—F2
43 1HPUHENL, Zo—F i3, LS
2. ERBEMELL . #Eny 2 - F—70 4 6 Orhoxt
ETATy Y R EEETIDICENT—2ET. 0
—RIESRAEGF— - =T 4 5 OFFDE&ERAS
F— - IY MY EREMICFI—FT5,

[0043]) FELWEEFIzLSL, YI7h7=7 - &
Vo=l FFEATABREERLOIRT., YATALO
12EAY 728727 - B 2—NVOFETE. £ 2—
VOB —RagHRT42ET (ZFvy 7100
3) . CRERVHELT (AFv 771001) 755
(AFv7°1002) ZEiZk»>THENE, iiiE
BN A301THL (AF7v71004) BE
13, Oy 7 A 2 2RSSR, XF v 7L
005T., vy 7HREERE4 2 208, EIIE N A
HEINAHNESICHIET S, Biay 2 - 7= -
IZryRJ601ZT7ead s, Eiays - =71
46 0HDIN— g XESHPERBMEIEF) A 30 1128
FRAEN—L a3 FBF303FELVpIoEsnLD
REWEECE, V7 b7 TIEETTAERE ISR
NBEA(ATFTy71006) . ZOHE. 0y 7 REHERE
42 213 Fh L EDIMERTH T, P RAFAIEY 7 7

DISH-Blue Spike 842
Exhibit 1005, Page 0201

27 - BV 2= HADRD BRI — R i OEITIHE
L. V7 M 2 THERE TS INTWEWSAIZ. O
v 7 RIS SRR AR LT . % Gl
—FrA321Z%L . PMLEL—F 4328707
FEDOEFEERTEESE (AFy7°1007) ., ¥ 27
AlE. VI R 2 THEREFEERTVWA I L ERT
BEEREOERE =7 LW, Uo7, Y7k
27 - 'Y a—)LTERGE N U AAICEFREED £
FEDEH T, Y AFAIHESREREIT S,
(0044]) FInEEFITIs. ERREE) A% sk
Boya A NEHE AL TENI—RRZEATES
Az, BIOFERFTLILHTEETHSL. Zhid,
FRE R 3 FHEREDFIRTS 28iA > 5 —7
=20, BT —FBROTY 2 -y A7 Ak
2 TEFEINLO L AUETRLHEOE v FEdo
TWELDEZRIITTHE, HRNI—FD 74—
FBEICHI SN T WARERT D 2 0S4 LR 2 R
— g A7 EREEEE N A RN T A0 323
TR LIGENI—RD TNy ond 2
BT 2 LB 2 HEYH L. Z0L 7R
TopERED—DIL | B fHOM S BEER R X
Iz, BRI VAR ERTLHIETHL, 205
& CBERBREL N) A2k - TERR LA LR . fth
DEHG S TITE LW L PIFETHSL, ZONRE
BHES . a0 A AR EALRY 7 727 - BV 2
=L 7 DRI ZOBEE R BT v oh0maE
stk 9ic, BELLITEL A%, ZRADHIER
HEIZEFZLUTWAES, ar A Fid, BEMZ. 20
BED DA VFRIRDO—ER L LT, FofEIEES
(FREFBSIZERBEE N) A L) RedHMa—r%
ERTHIEHFTESL, ZOERIL. BN 7%
£ (i A N o R =1 e Bl NZD R IPA DT SVl iy 1 -3
BELREL LS TIETTH L, MOEMERNS . &S
WEE R A% BRa2— KT, 2R84 2 BR%E
Blont U B ERE L7 RL RATREMEIS . BiE
LS R 6 WeERT AL THE., A4 5
B BED DA LERO—EE LT Ihs0maE
7 2 — WRE AT S OIS B R TH
Y . e SEERERR T Z OB INRIRGEE % 4T 5 OIS E AT
FThL, SOTRE. ERHEE NV APTHEREE RS
HABRSOHFEEFTE . BI—RoNyF 71
W B EELEE 23T THD.

[0045] #FF LWEfiflid. 8 0@y 8imE
Bz LTWA , AR L - TR — b 3 s B,
BEDEROEIIETHAE Z L F MBI\, FE
LVESEFITiE . BifmE, BRSNS . Jlelza oy
ANAEEL Y 2372 T - BV 2= NS 0% KR
cHk? 27 XL TMENTWS, BRSSO, B
HOT—rT 4 > 2RI X o TIRIES LB B2 12THE
BREINALY I T LT Ny —YORicHiET 5.

HRFE5—-334072

BT 72T - BY 2= E—20BRE S LipLI
Wi, ZOBEGESEFHETLAY IR T - V2
—WAIEBAEE LSS . 72k 21 BifElL . EER
g2 Fey 7 HFE Ty MU EERRD
FLE42 VAV Ny R gl SR I S A N i w]
Ty Ny =V RRET S, o LY TR
27 B =PI —R - oy g Ny
r—VD—EL LTIy A% 52 LNBEEICIE.
FRHEDEY 2 —UIHHEOBRES ¥ LOZ L7
. JlOEBEATIE, KV 7727 - Y 2Tk
2. Bz nEBSELOZELAHETH A,

[004 6] g LWERATIE, V7 M7 27—
HWHEETIf ey a2 shdh, 7L —R7v 7
RS 2 7200 BINEE TR SN A Z L BSTRETH
%, HlOEEETIE. HHEREOBY 7727054
Y ARFHETHIEWTE L, Dk ISR
ZBWI, EREX—0. VY7 27054
2552 SN A HBORIZRTEMOT « =V RE &
I Xl d, A-REIRERLF— - F—TN45
OFORGESICHETLIH BAY 72T LA
FHEOHEOES LB LT, 4 v AT Lizh
EApEREET AIHIZ, [PLay 27BN —F>
4315, FHICECHENS, ZDEE Tk
ZIFET LA, BAvy 2 - =714 6 0
DOHIETH T M) IZay ZERE Y b (BREd) %
BITEBEZLAE “0" Ty hTh2kiCk-T #
P BRT S PELNEET. VIR T - BV 2—
NDENL EOEFTREd 2L 25 L LTE
L.
[REFOFR] ARAIC L -T, 20 Ea—2% - ¥ 2F
LB Y 7 2 TOMHZERT S | WEIN
FERFCEEPRESNS .,

[A o> i B2 350]

[X1] AFEHOIF & L WEEFlic L 5V 7 B2 2 7R
EREOFTERLRIHTH S,

[[X2] &FEAOHF & L WEgliz & 28R A55—
BELIRTWEWARERTHETHL.

[3] & LWkl & 2 B 72 5247 Ee 7 b
a7 BV a—NONELTRTHETHD,

(4] #FE LWEiEhlick 2 7 b7 = 7 ki s
HHR— T E5DICEZENIAVE2—F - Y ATFALLET
PBEZN— R 2 TR 7 377 . 7 OBE R TR
Hb.

(5] #F LWEGHlz L 2 02— RSBy —
CTF=TNDT =y FERTHTHAS.

[H6] iFE LnWEifllc L 2800y 7 - 5—71D
Tr—v FERTHTHS .

(7] #FELnFEhplick s, SRR A% Y 7
R T Y 2 JVICEE T B DICRETL ATy 7D
Jay 7HlTHS,

DISH-Blue Spike 842
Exhibit 1005, Page 0202

(12)

FHFE5-334072

(B8) 73 L WSEhEAllc L D . BSL 3/ El% S 104 F55 - 7272 - X% (RAM)
=2 ERT BB AT v THTy 7ETH 106 FIEEE
5. 107 IEEE
(9] s LWEHHIICE S, EENILEa—2 - 108 ZEEE
AT L ETERTSE—FF a— R L | BTSRRI 109 e
DR EHMEFT L DICBEL AT v 7T DTy 2RTH 110 #EEFEINEEE
%, 112 V7 h7x 7TRles
(B1 0] wE LWEEACLS, Y777 - &Y 120 BE
2 — IV DOETHIZEREREET 5 DIZRBEL AT v 7°D 121 RSB
Ty ZETHS, 123 F—% -R—2
(75 Ei] 124 ==y /Hara—% - v 2574
101 EEHzYC2—% - Y24 125 BFARAICE2—% - ¥ RAFA
102 HiEENUEEE (CPU) 126 343
103 HIHECERERE 127 FI2AL—%
[H2]
201202 205 04 msHSE- CERSR) 0D
200 \
HBDH]IODDDHDDDGUODODO Go10 11I 11100 P 10J
’ L _/
(4w k) (BESF) RA " SH(8UEY k)

H—/k*ﬁf—/

v b AL
(BEw) (28Ev

E=3
)]

DISH-Blue Spike 842
Exhibit 1005, Page 0203

(13) HRFE5—-334072

(1]
/125 124\
BERERBRYAF A =T 4 R ATA
R EEEN
A fici F-tp EE | | F-s
127 t7nds.u A= 1z

122 /

121

100110 . . . 10J—> “

o ™
NEER

™ #mzte
o RAM

Iiﬁbﬁ%l

DISH-Blue Spike 842
Exhibit 1005, Page 0204

(14)

[X3]
RTAES T b7« EDa—JL
300
301
301
f/
301
/,/501
301
/_/
301
302
303 306 304
5U1=/ﬁ[00011 R 11Iuoum1uo|uuuuuuuu|uu1u11ou
[| ! | i
N A |
AEI-F(16Ew) | | EkER |
I (8K I‘)} |
AP LS
(BEw k) (8w M)

FHFE5-334072

(B171]

Bgo— BSavnNA4SIcAS b

2nd

!

INASHTRTSL-Fo | 702

TL— bEERT D

:

TOSSn - FoIL—rhik 703

DUAL=FIEAHEND

|

FSRL - FUHEBA |- 704

EX]

l

FSUAL-ShsEITERY 7 700

FOZT B2 -NEFRT D

(a7

DISH-Blue Spike 842

Exhibit 1005, Page 0205

(15)

FHFE5-334072

(4]

440 444
\ Vo Y797
sl —KAD ESa-N
f_l’;jj N—F
{RARE BREL ~L
404 (______J
| mEAYy-Ii-R_
EITAIRE 430
St Quoms 300
403 H’-;?*‘)
5
431 ;—anl-:
J/ B
F—7n
IPLOY (RAM)
432 1 H o i
#5650 12 o
Mo F (
KETAZ0 - LI . »
402 ik — - A Ay
Smemn| 5 R R R
420 - 422 HRAY Y-
”“‘_‘—_“—“"‘_‘_""(e 7 — 7y
L\—F'j::?l: | B L ' 5 I421 (RAM)
~
401 \
460 |

DISH-Blue Spike 842
Exhibit 1005, Page 0206

(16) HRFE5—-334072

(5]

S-FfeEALBRE- - F—TA
(5'“%9 450

505

506 502 503 504 501
< N /
1} 100110 . . . 10{00101. . . 11]00001100]0010

80
ThU

DISH-Blue Spike 842
Exhibit 1005, Page 0207

840
b

B2 &0
s

)<

(17)

(B6]

Y
Eh]
huj
&

\L\‘.r

90001100 40"

AN (-1 B

FHFE5-334072

(8]

€

801

ENET-F 4B
FAICAHTD

l

EBUES, 7ot yyiElts
ROTHEET - FN—X{IT
TERT S

802

|

EXBRERUF -5 - x—2
B D SFIEE F —bER

| 803

=hd
l

WIS+ -ERESLT S

l

BRI £+ — 2R BICEE
EX-)

GO

DISH-Blue Spike 842
Exhibit 1005, Page 0208

901

BERAST~-PREOLR
FLICAHENS

[o

WL ES%E R M+~
EERT S

L 903

BERfS+-E8RT 5

L 904

Bt~ F-TIEHR

(18)

(B19al

EERS)

EBEISYELFTRS

L 909

Ba%— « T-TNERR
ZWICE—TTS

HMEOwvY TR E
0ty bgsd

08 l{

BRF-— T
v U ERRT S

FHFE5-334072

DISH-Blue Spike 842
Exhibit 1005, Page 0209

P

pishpiRimEh B

|

BR+t—--F—T-x
M) (RS-) ER
0 iy

l

BLHEBERRL, Ba+
—EHEMT B

=

REI5+-2mEd 5

(19)

(B19Db]

920

921

922

923

A4ILA

FHFE5-334072

926

\

F RIS AORITIHTSE
ehd

925

927

92

N—TaEBERKO Y
T F=TNIAND

L

B/ BRY s TERGE—
C T TNRTHET D

7o I ameEEGT
)

DISH-Blue Spike 842
Exhibit 1005, Page 0210

(20) HRFE5—-334072

[H10]
B
1001
ROSBEEROHT
1004
husmy > TT2 1005
1
= RN BSOS . T
1002 Tib e T MECT 9ERTS
B e EEHT B 1006
- :‘——7JL¢mé\'~;a>§%
1003 kAR R
qAIR '
HBANS DI
1007
0% BT HOISNRL
EERTE
(BY®R7 w7920~
9288E/)
70y hR—VDEE
(T2REH <A77 - LYa—E7 - a)H»r (TORAE 729002 - Ya—¥7 - UTRY -V
T AN AEREDNE, AV FMOF 2 =7
AL — 0FTRZ2—, S—A - —R TRV G ERERS01. I AV M aF e
b 1510%:Hh A=, xbh—-0O—F, /—2A -7z
b F68HEM

(207 Y2—2X 74 UT7h-TF
T A AEREREBL, S AV IMTIS
FrzA¥—-0—K HIA - 4=
32217

DISH-Blue Spike 842
Exhibit 1005, Page 0211

Exhibit 5

DISH-Blue Spike 842
Exhibit 1005, Page 0212

(11)Publication number 05-334072
(43)Date of publication of application 17.12.1993

(51)Int.CL GO6F 9/06

(21)Application number 03-308350

(22)Date of filing 29.10.1991

(71)Applicant INTERNATL BUSINESS MACH CORP
<IBM>

(72)Inventor ROBERT CARL BEECHER
MICHAEL JOSEPH CORRIGAN
FRANCIS JOSEPH RIADON JR
JAMES WILLIAM MORAN

(30)Priority

Priority number : 90 629295 Priority date : 14.12.1990 Priority country : US

(54)DEVICE AND METHOD FOR MANAGING USE OF SOFTWARE

(57)Abstract
PURPOSE: To provide an improved method and device for managing the use of software in a
computer system.

CONSTITUTION: Software is distributed with no execution qualification and can only be
executed with a separately distributed enciphered qualified key 111. The key 111 contains the
serial number 410 of a computer to which the license of the software is given and a plurality of
qualifying bits indicating the software module qualified to be run on a machine. The distributed
software contains a plurality of qualification verifying triggers. Each trigger is an object code
type of single machine word instruction which discriminates the product number of a software
module. Therefore, an improved method and device for managing the use of software in a
computer system can be provided.

DISH-Blue Spike 842
Exhibit 1005, Page 0213

FFEFaH

ESE
EE R
o
] B TR

. L K]

i
I I -

=
-

| TERLY
: y Fom T A
popRar EEEN R

Fa

AT oy

I

[Claim(s)]

[Claim 1]Equipment characterized by comprising the following for managing use of a software
module performed with computer systems.
A means to give qualification for performing a software module to computer systems.
An independent trigger means of plurality which carries out the trigger of the verification of
qualification arranged in the above-mentioned software module.

A qualification verifying means which verifies that respond to independent cach of a trigger
means of the above-mentioned plurality, and the above-mentioned computer systems have the
qualification for performing the above-mentioned software module.
A means to close execution of the above-mentioned software module when it responds to the
above-mentioned qualification verifying means, the above-mentioned computer systems did not
have the qualification for performing the above-mentioned software module and the above-
mentioned qualification verifying means judges.

[Claim 2]Equipment for managing use of a software module of a description to Claim 1 whose
independent trigger means of the above-mentioned plurality is the single target code command
which carries out the trigger of the above-mentioned qualification verifying means.

[Claim 3]An addition step which needs for suitable execution of the above-mentioned software
module the above-mentioned target code command which carries out the trigger of the above-

DISH-Blue Spike 842
Exhibit 1005, Page 0214

mentioned qualification verifying means is also performed, As a result, when the above-
mentioned software module is corrected by removing the above-mentioned target code
command, Equipment for managing use of a software module of a description to Claim 2 with
which the above-mentioned addition step is not performed, but the above-mentioned software
module is no longer performed appropriately.

[Claim 4]Equipment for managing use of a software module of a description to Claim 2 with
which the above-mentioned target code command which carries out the trigger of the above-
mentioned qualification verifying means includes product number of the above-mentioned
software module.

[Claim 5]Equipment characterized by comprising the following for managing use of a software
module of a description to Claim 4.

A product locking table in the above-mentioned computer systems for which the above-
mentioned qualification verifying means is provided with a plurality of entries with which each
is related to product number including qualification grant information.

A means to access the above-mentioned qualification grant information included in an entry in
the above-mentioned product locking table relevant to the above-mentioned product number
which responds to the above-mentioned target code command, and is included in the above-
mentioned target code command.

[Claim 6]Equipment characterized by comprising the following for managing use of a software
module of a description to Claim 1.

A means by which an above-mentioned means to give qualification for performing the above-
mentioned software module to the above-mentioned computer systems generates a qualification
grant key which comprises data.

A means to input the above-mentioned qualification grant key into the above-mentioned
computer systems.

[Claim 7]An above-mentioned means by which the above-mentioned computer systems generate
a qualification grant key including an original identifier, Equipment for managing use of a
software module of a description to Claim 6 which generates the above-mentioned qualification
grant key using the above-mentioned original identifier, and gives qualification for performing
software only on computer systems with which the above-mentioned qualification grant key
contains the same original identifier.

[Claim 8]Equipment characterized by comprising the following for managing use of a software
module of a description to Claim 7.

A means prevent from decoding only on computer systems in which an enciphered qualification
grant key which enciphers the above-mentioned qualification grant key using the above-
mentioned original identifier, and is obtained as a result has the same original identifier.

A means in computer systems to access an original identifier of the above-mentioned computer
systems.

A means in the above-mentioned computer systems to respond to an above-mentioned means to
access the above-mentioned original identifier, and to decode the enciphered above-mentioned
qualification grant key.

[Claim 9]A method characterized by comprising the following for managing use of a software
module performed on computer systems.

DISH-Blue Spike 842
Exhibit 1005, Page 0215

A stage of arranging an independent trigger means of plurality which carries out the trigger of
the verification of qualification in a software module.

A stage of performing the above-mentioned software module.

A stage of carrying out the trigger of the qualification verification operation which verifies
computer systems having the qualification for performing the software module when it meets
with one of the trigger means plurality became [above-mentioned] independent of during
execution of the above-mentioned software module in the above-mentioned computer systems.
A stage of closing execution of the above-mentioned software module when judged with there
being no qualification for performing the above-mentioned software module in the above-
mentioned computer systems by the above-mentioned qualification verification.

[Claim 10]The above-mentioned stage of arranging a plurality of independent trigger means in
the above-mentioned software module, A method for managing use of a software module of a
description to Claim 9 including arranging a single target code command which carries out the
trigger of the above-mentioned qualification verification operation to a plurality of separate
positions in the above-mentioned software module.

[Claim 11]An addition step which needs for suitable execution of the above-mentioned software
module the above-mentioned target code command which carries out the trigger of the above-
mentioned qualification verification operation is also performed, As a result, when the above-
mentioned software module is corrected by removing a target code command, A method for
managing use of a software module of a description to Claim 10 that the above-mentioned
addition step is not performed but the above-mentioned software module is no longer performed
appropriately.

[Claim 12]A way for managing use of a software module of a description to Claim 10 the above-
mentioned target code command which carries out the trigger of the above-mentioned
qualification verification operation includes product number of the above-mentioned software
module.

[Claim 13]Each a product locking table provided with a plurality of entries in relation to product
number, including qualification grant information, The above-mentioned stage of carrying out
the trigger of the qualification verification operation including a stage maintained within the
above-mentioned computer systems, A method for managing use of a software module of a
description to Claim 12 including accessing the above-mentioned qualification grant information
included in an entry in a product locking table relevant to product number included during the
above-mentioned target code command.

[Claim 14]A method characterized by comprising the following for managing use of a software
module of a description to Claim 9.

A stage of generating a qualification grant key which provides information which enables it to
judge whether it comprising a plurality of data bits, and the above-mentioned computer systems
having the qualification for performing the above-mentioned software module.

A stage of inputting the above-mentioned qualification grant key into the above-mentioned
computer systems.

[Claim 15]The above-mentioned stage where the above-mentioned computer systems generate a
qualification grant key including an original identifier, A method for managing use of a software
module of a description to Claim 14 of generating the above-mentioned qualification grant key
using the above-mentioned original identifier, and giving qualification for performing software

DISH-Blue Spike 842
Exhibit 1005, Page 0216

only on computer systems with which the above-mentioned qualification grant key contains the
same original identifier.

[Claim 16]Have a means to receive qualification for performing a software module, and it
responds to a trigger means in the above-mentioned software module, In a program product for
managing qualification in which the above-mentioned software module is performed on
computer systems which have a qualification verifying means which verifies that the above-
mentioned computer systems have the qualification for performing the above-mentioned
software module,

A program product comprising:

At least one software module recorded on a recording medium.

An independent trigger means of plurality in the above-mentioned software module which
carries out the trigger of the verification of qualification on computer systems.

[Claim 17]A program product for managing qualification grant of a description to Claim 16
whose independent each of a trigger means of the above-mentioned plurality is the single target
code command which carries out the trigger of the verification of the above-mentioned
qualification.

[Claim 18]An addition step which needs for suitable execution of the above-mentioned software
module the above-mentioned target code command which carries out the trigger of the above-
mentioned qualification verifying means is also performed, As a result, a program product for
managing qualification grant of a description to Claim 17 in which the above-mentioned addition
step is not performed, but a software module is no longer appropriately performed when the
above-mentioned software module is corrected by removing the above-mentioned target code
command.

[Claim 19]The above-mentioned target code command which carries out the trigger of the
above-mentioned qualification verifying means includes product number of the above-mentioned
software module, A program product for managing qualification grant of a description to Claim
17 which has the product locking table in which the above-mentioned qualification verifying
means on the above-mentioned computer systems was provided with a plurality of entries for
which each relates to product number including qualification grant information in computer
systems.

[Claim 20]Have a means to receive qualification for performing a software module, and it
responds to a trigger means in the above-mentioned software module, In a method of distributing
a software module that the above-mentioned software module is performed on computer systems
which have a qualification verifying means which verifies that the above-mentioned computer
systems have the qualification for performing the above-mentioned software module,

A method characterized by comprising the following of distributing a software module.

A stage of arranging an independent trigger means of plurality which carries out the trigger of
the verification of qualification in the above-mentioned software module.

A stage of distributing the above-mentioned software module to the above-mentioned computer
systems.

A stage of giving qualification for performing the above-mentioned software module to the
above-mentioned computer systems.

[Claim 21]The above-mentioned stage of arranging an independent trigger means of the above-
mentioned plurality in the above-mentioned software module, A method of distributing a

DISH-Blue Spike 842
Exhibit 1005, Page 0217

software module of a description to Claim 20 including arranging a single target code command
which carries out the trigger of the verification of the above-mentioned qualification in a
plurality of separate positions in the above-mentioned software module.

[Claim 22]An addition step which needs for suitable execution of the above-mentioned software
module the above-mentioned target code command which carries out the trigger of the above-
mentioned qualification verification is also performed, As a result, a method of distributing a
software module of a description to Claim 21 that the above-mentioned addition step is not
carried out but a software module is no longer appropriately performed when the above-
mentioned software module is corrected by removing the above-mentioned target code
command.

[Claim 23]The above-mentioned target code command which carries out the trigger of the
above-mentioned qualification verification includes product number of the above-mentioned
software module, A method of distributing a software module of a description to Claim 21 of
having the product locking table in which the above-mentioned qualification verifying means on
computer systems was provided with a plurality of entries for which each relates to product
number including qualification grant information in computer systems.

[Claim 24]A method characterized by comprising the following of distributing a software
module of a description to Claim 20.

The above-mentioned stage of giving qualification for performing the above-mentioned software
module to the above-mentioned computer systems, A stage of comprising a plurality of data bits
and providing information which enables it to judge whether the above-mentioned computer
systems having the qualification for performing the above-mentioned software module and of
generating a qualification grant key.

A stage of transmitting the above-mentioned qualification grant key to computer systems.

[Claim 25]The above-mentioned stage where the above-mentioned computer systems generate a
qualification grant key including an original identifier, A method of distributing a software
module of a description to Claim 24 of generating the above-mentioned qualification grant key
using the above-mentioned original identifier, and giving qualification for performing software
only on computer systems with which the above-mentioned qualification grant key contains the
same original identifier.

[Claim 26]The above-mentioned stage of distributing the above-mentioned software module has
the independent trigger means of plurality which carries out the trigger of the qualification
verification on a respectively single storage medium, The above-mentioned stage of giving
qualification for performing the above-mentioned software module to the above-mentioned
computer systems including distributing a plurality of software modules, A method of
distributing a software module of a description to Claim 20 including giving separate
qualification to at least two of a plurality of above-mentioned software modules on the above-
mentioned single storage medium.

[Detailed Description of the Invention]

[0001]

[Industrial Application]The present invention relates to use of computer software, and relates to a
computer user restricting more specifically that license software can be used in the form where a

license is not followed.
[0002]

DISH-Blue Spike 842
Exhibit 1005, Page 0218

[Description of the Prior Art]present-day computer systems are continued for the time which it
cannot finish counting -- technically -- and it is the very complicated machine which adopted the
result of skill on programming to the design. They can be divided roughly into hardware and
software although computer systems include many components. Hardware is a material circuit, a
board, a cable, memory storage, enclosure, etc. which constitute a system. However, the same
with the ability of the scenario which can win the Pulitzer prize with a typewriter not to be
written, hardware is itself and cannot solve the problem in the actual world. Hardware needs the
command which tells what you should do. "Software" means the command which makes
hardware perform useful work in the reasonable pure form. (However, software may be vaguely
applied to the medium memorized and distributed). Software as well as hardware is a product of
human being's originality and creativity. High quality software needs the remarkable creativity
by the side of the maker called a programmer, training, and intelligence. The curriculum of
"computer science" and a similar subject of study is provided in order for many universities to
teach people the technology which creates software. This whole industry held thousands of
persons' carrier, and by the time it creates the software which does useful work, it will have
grown up. As a result of spending an immense labor on development of software, the worth of
software which is some computer systems of exceeding worth of hardware is not new, either.
[0003]One of the characteristics of present-day computer systems is being able to transmit and
copy data easily at high speed dramatically. Generally, this is required and useful capability.
However, this means that the software which applied to which and created the labor for many
years can reproduce with what [for 1 second / 1/], and may be abused with comparatively
inexpensive magnetic media again. People who have not got permission can reproduce worthy
software by few expenses and labors. This custom is generally called software copyright
infringement. In order to inhibit software copyright infringement in recent years, various laws
which impose the duty on criminal law and Civil Code have been enacted. However, since it is
cut by temptation [software can copy comparatively easily, and] to come to do so since
software is expensive, the copyright infringement of software still poses a problem.

[0004]In the case of the inexpensive software for the small computers called a "personal
computer” by which extensive distribution is carried out, usually, the license to use of software is
accepted at the lump sum payment charge which the same amount fixed to all the customers.
This is not performed so much in a large-sized mainframe computer system. Such software for
large-sized systems may require the code of millions of lines, and needs very a lot of investment
for development and maintenance. If fixed sufficient single lump sum payment charges for a
developer to recoup this investment are set up, it tends to become so expensive for many petty
users that it cannot be used. Therefore, in the case of a mainframe, usually, the license fee of the
software based on the amount used is charged. Such one method called "gradual price setting"
charges the charge based on the performance of a customer's machine according to the variable
tariff structure. A license fee higher than the customer of the machine which is inferior in
performance is paid to the same software as the customer who uses a high-speed machine rather
than more terminals were connected. Another usual custom charges a charge separately to
maintenance upgrade of software.

[0005]Considering the level of a know how required to create high-definition software, and the
quantity of the time concerning it, and a labor, money is required for creation of such software.
When the developer of software is not rewarded as compared with the training and efforts, those
who create software stop there being. It is not only actually the upper request to protect the
investment in the software which the developer performed, but it is also a moral request.

DISH-Blue Spike 842
Exhibit 1005, Page 0219

Therefore, it is difficult for the proper owner of software to use it without permission of
software, and he has asked for development of the software distribution method that the
developer of software is properly rewarded to the product.

[0006]Software is distributed by the way a large number differ from a proper owner. These
distribution methods can be divided roughly into three groups, the unrestricted qualification
giving method, the restriction qualification giving method, and the non-qualification giving
method, from a viewpoint of preventing unauthorized use.

[0007]Unrestricted qualification grant means that the distributed software runs without
restriction by every machine which was an object of the design. The owner who distributes the
software of unrestricted qualification grant has to distribute only the software which has the
qualification for a user paying it a remuneration and performing it to each user. What bars
reproducing in the form where the receiving area of such software is not permitted this, or using
it is legal, and only a contractual obligation. In the inexpensive software to which it is licensed at
a lump sum payment charge, it is the distribution method with this most ordinary which is used
with most personal computers.

[0008]Restriction qualification grant means that software builds in a certain kind of restriction
which restricts that a user copies it and can perform on without limit many machines. There are
some different restriction qualification giving methods. One of them is copy restrictions which
restrict the number of the copies which can be created from the distributed original copy.
Although copy restrictions realize protection of a certain level against software copyright
infringement, they have some defect. It is necessary to distribute only the software which has the
qualification for the user also performing copy restrictions to each user in an owner like
unrestricted qualification grant. This strikes not a full proof but a protection feature, and the
program which can make the literal copy of the software with which copy protection of the bush
was carried out also exists. Finally, this prevents him from the ability for a user to make a proper
copy or run software from a high speed storage for the object of backup. Another restriction
qualification giving method codes information peculiar to a user or a machine in the software
itself. When performing software, a machine inspects in order to confirm that software is
permitted to the machine or user. This method realizes protection, without preventing a user from
the ability of a proper copy to be made. However, this compiles each copy of the distributed
software uniquely, respectively, and puts it on a distribution medium, and since it must ship, a
very expensive distribution system is needed.

[0009]The non-qualification giving method means that distributed software is made into the
disable and needs the qualification grant separately distributed for performing. A certain non-
qualification giving method may avoid distribution of custom software completely. However,
such not all methods necessarily have such capability. For example, the owner can distribute the
many software program of the same set to all those customers on a single general term medium,
and can distribute separately the individualized permission key for which it allows running only
the program for which the customer substituted payment to each customer. Although the non-
qualification giving method avoids many problems which accompany other methods, the present
design has a large possibility of receiving counterfeit and the remarkable performance
degradation of qualification grant. When the most, the mechanism used in order to prohibit the
qualification grant for performing software needs to concentrate a qualification verifying means
in a software module (as data or a command), in order to avoid the overhead on verification
called performance degradation. Depending on the case, the overhead of this qualification grant
may be based on mounting of a product identification child's size, and the protection routine

DISH-Blue Spike 842
Exhibit 1005, Page 0220

within the distributed software. Or while the overhead makes it run software, it may be based on
the necessity of performing a complicated decoding means again. As a result of concentration of
a such qualification inspection, when an experienced programmer invalidates the small part as
which "patching, i.e., a target code," was chosen, it is comparatively easy to invalidate a
protection feature. When another, a target code does not perform qualification verification but
the safety call course of identifying a module by creating a bit signature from it performs it.
Although patching is made hard to receive, this is called unescapable and causes the serious
performance degradation of a mechanism.

[0010]The protection method currently taught by the prior art makes a compromise of a
protecting level and facility. Although it is possible to obtain protection of a high level
comparatively by coding information peculiar to a machine in software, each software copy
distributed must pay the sacrifice used as an original thing of maintaining a very complicated
distribution system. Although more inexpensive distribution is also possible, the sacrifice that a
part of protection is lost must be paid. A possibility that protection of a high level will be
realized, and it can distribute easily using extensive distribution technique, and system
performance and a user will make the copy for a backup copy properly, and the method which
does not bar other required functions unfairly are called for. Simultancously, gradual price
setting and the method of supporting a separate license fee for every version that different
software differs are also called for.

[0011]

[Problem to be solved by the invention]There is the object of this invention in providing the
method and equipment which manage use of the software in computer systems and which have
been improved.

[0012]Other objects of the present invention are providing protection of a high level to the
unauthorized software using in computer systems rather than.

[0013]Other objects of the present invention are to reduce the expense which protects software
against unauthorized use.

[0014]Other objects of the present invention are to reinforce the performance of the computer
systems which perform software protected against unauthorized use.

[0015]Other objects of the present invention are to simplify the distribution system of the
distribution person of software protected against unauthorized use.

[0016]Other objects of the present invention have such protection in providing the method and
equipment which reduce the influences which it has on proper use of software and which protect
software from unauthorized use.

[0017]Other objects of the present invention are to provide the method and equipment which
protect software from unauthorized use and which have been improved, while a user allows
making the proper copy for backup of software.

[0018]Other objects of the present invention are to make it difficult to change software so that
unauthorized use may be attained.

[0019]Other objects of the present invention are to provide the method and equipment which
distribute the software which carried out price setting gradually and which have been improved.
[0020]

[Means for solving problem]According to the present invention, software is distributed without
the qualification grant for performing. Execution of software is attained by the enciphered
qualification grant key which is distributed independently. This qualification grant key contains a
plurality of qualification grant bits which instruct the consecutive numbers of the machine with

DISH-Blue Spike 842
Exhibit 1005, Page 0221

which software is licensed to it, and which software module has the qualification it runs by that
machine. The safe decipherment mechanism is built in the machine. A safe decipherment
mechanism takes out mechanical consecutive numbers, and it uses this as a key for decoding a
qualification grant key. Subsequently, qualification grant information is memorized by the
product locking table in a memory.

[0021]The distributed software contains a plurality of qualification verification triggers. In a
preferable Example, each trigger is a simple-machine word command in a target code which
identifies the product number of a software module. If meeting it with such a qualification
verification trigger during execution of a software module, a machine will inspect the entry of
the product locking table in which it corresponds to the product number of a software module.
When it has the qualification a product runs, execution is continued normally, and execution is
closed when that is not right. Since this verification requires only only one machine language
instruction, it can be performed without hardly affecting the performance of the whole system.
As a result, most number of such qualification verification triggers can be arranged in a target
code, and when someone does "patching" of this trigger, it can make it impossible to change a
code as a matter of fact. In another Example, a qualification verification trigger also performs a
certain useful work required for proper execution of a software module. By this, it becomes
much more difficult to carry out "patching" of the software, and influence on the performance of
such a verification trigger is further reduced.

[0022]Since the software itself does not include any qualification grants, restriction of
distribution is not required. In a preferable Example, the distribution person of software can
record a plurality of software modules on a single general term medium, and can distribute 1 set
of recorded same modules to all those customers. Each customer receives the original
qualification grant key to which he can perform only the software module to which it is licensed.
Since it cannot be performed without a suitable key even if a certain module in which it is not
licensed to a customer is given, it does not become a big problem. The customer can load
software to the memory storage of others of his own system freely, or can create the copy for
backup of software without limit.

[0023]

[Working example]The explanatory view of the main elements of a protection-of-software
mechanism based on the preferable Example of the present invention is shown in Fig.1. A
customer's computer systems 101, The original identifier 105 which can be read, and a plurality
of memory storage 106, 107, and 108 are included that the central processing unit (CPU) 102
closely combined with the control storage 103, the random access system memory 104, and
elimination are impossible, and electronically. In a preferable Example, the original identifiers
105 are mechanical consecutive numbers. Although the memory storage 106-108 is a revolving
magnetic disc memory in a preferable Example, it is also possible to use other storing
technology. The computer systems 101 also contain again the console 109 and the software-
media reader 110 which receive the input from an operator. Although one set of a console and
one software-media reader and three memory storage are shown in Fig.1, please understand that
the actual number of such equipment attached to the system 101 is variable. Please understand
that additional equipment is attached by the system 101. In a preferable Example, although the
computer systems 101 are AS/400 computer systems of IBM, other computer systems can be
used.

[0024]A software module is distributed separately from a qualification grant key (entitlement
key) required to operate it. Originally, a software module is created on the computer systems 125

10

DISH-Blue Spike 842
Exhibit 1005, Page 0222

for development. The computer systems 125 for development contain the compiler 126 and the
translator 127. A software module is recorded on the software recording medium 112, is stored
in the warehouse 120, and is distributed to a customer from there. The enciphered qualification
grant key 111 is distributed from a distribution person's sales office 121. The sales office 121 can
access the computer systems 124 for marketing. The computer systems 124 for marketing
include generation / enciphered program 122 of a qualification grant key, and the data base 123
containing customer data. Specifically, the data base 123 includes the information on the
consecutive numbers of a machine required for generation of the enciphered qualification grant
key, and the kind of processor. In a preferable Example, the computer systems 124 for marketing
are computers which are placed in the center and communicate with a plurality of sales offices.
However, the computer systems 124 for marketing can be placed at the sales office itself, and
can also access the data base of a part or a center. Although the two separate computer systems
124 and 125 under a distribution person's control are shown in Fig.1, please understand that that
single computer systems may be physically used performs both of functions.

[0025]The enciphered qualification grant key 111 is sent to a customer by mailing, a telephone,
or other suitable means from the distribution person of software. Although it is possible to
transmit a qualification grant key on magnetic media, such as a floppy disk, electronically, a key
is so sufficiently [that an operator types on the console 109 and can input this into the system
101] brief.

[0026]In a preferable Example, a many software module is distributed on the same medium 112,
The distribution person can give independently the qualification for using each module via a
qualification grant key. The warehouse 120 stores 1 set of software modules generically on the
medium 112. 1 set of same generic software modules are shipped irrespective of whether the
license which uses which module for each customer is given. The qualification grant key
distributed separately includes information for the system 101 to determine whether there is any
qualification for performing which software module on it.

[0027]In a preferable Example, the software media 112 comprise one sheet or a plurality of read-
only optical discs, and the medium reader 110 is an optical disc reader. However, please
understand that an electronic distribution medium and other distribution media can also be used.
If the software media 112 are received, a customer will load a desired software module to the
system 101 from the medium reader 110, and will usually memorize the software module to the
memory storage 106-108. The customer can generate one or more copies for backup of a
software module on any suitable medium, and can memorize these to an archive. The software
media 112 can be freely copied excluding the restriction to the copy and loading to a system, and
loading is possible for them.

[0028]The contents of the qualification grant key 200 before encryption by a preferable Example
are shown in Fig.2. This key contains the charge group field 201, the software version field 202,
the key type field 203, the machine consecutive-numbers field 204, and the product qualification
grant flag 205. The charge group field 201 is used for specifying one and supporting the gradual
price setting of software from 16 kinds of machine stage values. The software version field 202
specifies the version level of the software with which qualification is given. The thing for which
a charge is imposed separately in order to maintain upgrade of software is expected. The version
specified in the qualification grant key 200 gives qualification to the software of all the former
(lower level) levels from the version level. The key type field 203 is the region suspended for
number extension of a different product of a key format and future change of the relevance of a
key sake [a product | or supported. The machine consecutive-numbers field 204 contains the

11

DISH-Blue Spike 842
Exhibit 1005, Page 0223

consecutive numbers of the target machine [key / qualification grant |. The product qualification
grant flag 205 is the 80-bit field where each contains 80 separate product flags with which it
corresponds to product number. When qualification is given to the product number to which it
corresponds, this bit is set to "1", and it is set to "0" when that is not right.

[0029]1n a preferable Example, a software module is distributed as a compiled target code. The
typical software module 300 is shown in Fig.3. This software module includes a plurality of
target code commands which can be executed on the computer systems 101. According to the
present invention, some qualification verification trigger commands (the following, a
"qualification verification trigger", and the notation) 301 are included in the target code. All the
qualification verification triggers 301 contained in a software module are the same. The
qualification verification trigger 301 includes the operation code field 302, the version field 303,
and the product number field 304. The field 305 is not used. The operation code field 302 is a
verb portion of the target code command which identifies the operation which should be
performed. The version field 303 identifies the version level of a software module. The product
number field 304 identifies the product number relevant to the software module. Although the
information on a version and product number changes for every module, a single instruction
code is used for all the qualification verification triggers. In another Example, a qualification
verification trigger is also the direct instruction (command which does not need to divide, does
not need to be ordering the operand for the processing and does not need to be specified) which
performs other useful work of a certain. In such an another Example, if a trigger command is
executed, the system 101 will perform other operations of a certain simultancously with
qualification verification.

[0030]The computer systems 101 contain a means to receive and decode the enciphered
qualification grant key 111, and a means to verify having the qualification for responding to a
qualification verification trigger and a system performing a software module. In the preferable
Example, these functions are divided between the system hardware of a different level, and the
system software as shown in Fig.4. In this Example, the system 101 includes the
hardware/software function of four levels called the hardware level 401, the horizontal-
microcode level 402, the executable code level 403, and the virtual-machine level 404. The
machine interface 405 has separated the virtual-machine level from all the lower level levels.
The machine interface 405 is an interface which has at least the bottom defined to the customer
in a level. That is, although the order bit of a virtual-machine level is defined to a customer,
operation of the level below it is not defined. Therefore, a customer does not have the capability
to change the command of the level below a machine interface level directly. The machine
consecutive numbers 410 unchangeable [eternal | are stored in the hardware level 401.
[0031]The horizontal microcode 402 includes the microcode entry which interprets the
instruction set which can be performed. This is physically memorized by the control storage 103,
i.e., a preferable Example, by the read-only memory (ROM) in which change by a customer is
impossible. The entry in a horizontal microcode is supporting the machine-key acquisition
function 420, the lock setting up function 421, and the lock checking feature 422. The machine-
key acquisition function 420 takes out the original identifier based on system consecutive
numbers from a certain eternal hardware position in the preferable Example. The lock setting up
function 421 accesses the product locking table 460, and changes the entry in a table. A lock
setting up function is the only microcode function in which the product locking table 460 can be
changed. The lock checking feature 422 verifies whether the product locking table 460 is
accessed, one of the entries is read, and qualification is given.

12

DISH-Blue Spike 842
Exhibit 1005, Page 0224

[0032]The executable code level 403 includes the monitoring support of a lower level, and the
support which carries out the command defined by the machine interface. Although this is
physically memorized by the memory, since the internal specifications are not defined to the
customer, it is unchangeable by a customer in practice. The lock release routine 430, the initial
program load (IPL) lock re-verification routine 431, and the exception-handling routine 432 are
contained in the support of a lower level. The unlocking routine 430 decodes the qualification
grant key 111 using a peculiar machine key, and memorizes the enciphered qualification grant
key 111 to the product key table 450. If initial setting of the system is carried out again, the
initial-program load-locks re-verification routine 431 will take out the contents of the coded
product key table 450, and will reconstruct the product locking table 460. The exception-
handling routine 432 responds to the exception condition generated by the function of the
horizontal-microcode level 402. The executable code level 403 contains the software module 300
of target code form.

[0033]Refer to the software for the virtual-machine level 404 as what is expressed by the
machine language instruction. The computer of this level operates as a virtual machine in the
meaning that immediate execution is not possible for a machine language instruction. Since at
least the bottom which can be used for a customer is an interface of a level, although the module
of the target code form which can be performed on a system is created, the compile course of a
non-conventional type is required for the virtual-machine level 404. About this compile process,
it describes behind. Strictly the software created via the compile course of this non-conventional
type, Although the form of the excecutable target code which it is going to execute must be
taken, usually the machine language instruction of a virtual-machine level expresses and
discusses [that] like with immediate execution possible for a machine language instruction, and
it is more intelligible. If this is established, it can be said that a user's software which the virtual-
machine level 404 compiled is included. This also includes the support of the operating system
of an upper level again rather than receiving the system 101. The support of this operation
system contains two user interface routines required to support the input of a qualification grant
key on the virtual-machine level 404. The general input routine 441 is used for processing an
input in normal operation. The installation input routine 440 special to inputting a qualification
grant key is required during the initial introduction of an operating system. The thing which
needs this is because the portion of an upper level operating system is treated as other program
products by the present invention from the machine interface level 405. Namely, such a portion
has product number and the target code is subject to the influence of a qualification verification
trigger. The installation input routine 440 is the only portion without a qualification verification
trigger of an operating system.

Therefore, when introducing a system first, a qualification grant key can be input.

[0034]The software modules 300 are some program products of the compiled target code form
which is performed on the system 101. This means being accessible for other objects of a virtual-
machine level, and exists in them as an entity of the virtual-machine level 404. However, the
code which can actually be executed operates on the executable code level 403 as shown by the
frame of the broken lines. The executable code contains the qualification verification trigger 301
(only one is shown in the figure) performed by the lock checking feature 422 of a horizontal
microcode.

[0035]The coded product key table 450 is shown in Fig.5. Recovering is possible, when it must
intercept the electric power of a system or reinitialization must be carried out for other Reasons,

13

DISH-Blue Spike 842
Exhibit 1005, Page 0225

since the product key table 450 is contained in the random access memory 104 and is reproduced
by the nonvolatile storage. The table 450 includes the 80 entries 501 to which each can
correspond to each product number. The enciphered qualification grant key 502 by which each
entry 501 is applied to the product number of the entry, The perfect copy of the time stamp 503
in which it is shown when the key was used first, the version number 504 and the charge group
505 of a key of the key, and the qualification grant bit 506 that shows whether the key unlocks a
product is included. The time stamp 503 can be enciphered. The version number 504, the charge
group 505, and the qualification grant bit 506 repeat the information included in the enciphered
qualification grant key 502. They are contained on this table, in order to support checking.
However, unless it is after verifying the information in the qualification grant key 502
enciphered first, the entry of the product locking table 460 cannot be changed and qualification
of program execution cannot be given. Since each qualification grant key 502 in the product key
table 450 is the enciphered form, in order to prevent access to this table of a user, it does not
need a special measure.

[0036]The product locking table 460 is shown in Fig.6. This table is contained in the special
lower address range of the random access memory 104 under perfect control of a horizontal
microcode. The product locking table 460 includes the 80 entries 601 to which each can
correspond to each product number. Each entry contains the version number which shows the
level of the maximum version of qualification grant. It is shown that the version number of 0
does not have qualification grant in every version of a product. In order to further strengthen the
degree of protection to change of the product locking table 460, the scramble of the version
number can be carried out.

[0037]Next, operation of the software module on the computer systems 101 by the preferable
Example of the present invention is described. There are four portions in this operation. First
operation is arranged in the software module of the target code form that a plurality of
qualification verification triggers can be performed. Second operation generates the enciphered
qualification grant key 111 which permits access to a software module. The computer systems
101 receive, decode and memorize the qualification grant key 111, and the 3rd operation sets up
the product locking table 460. The 4th operation makes the system 101 verify qualification, when
a software module is performed on the system 101 and it meets with a qualification verification
trigger. Two operations to begin are carried out under a software distribution person's
management. Two next operations are carried out on a customer's system 101.

[0038]The software distribution person has to arrange a qualification verification trigger in a
target code, when compiling a software module. This typical process in which it happens with
the computer systems 125 for development is shown in Fig.7. Without including a qualification
verification trigger, it usually passes along a source code and it is generated by the programmer.
A source code is input into the compiler 126 at Step 701, and a program template is created at
Step 702. The program template includes the machine language instruction of the virtual-
machine level 404 (namely, level above the machine interface 405). At Step 704, a program
template identifies the product number and version number, and it works as an input to the
translator 127. Automatically, the translator 127 generates most number of qualification
verification triggers, inserts this in the random position in a target code, and solves reference
after insertion of a qualification verification trigger. The qualification verification trigger is
contained in the software module of the target code form which is acquired as a result of being
output at Step 705 and which can be performed. The software module of the form in which this
execution is possible includes the target code command of the executable code level 403.

14

DISH-Blue Spike 842
Exhibit 1005, Page 0226

[0039]The process in which the enciphered qualification grant key is generated is shown in
Fig.8. At Step 801, the order of the license over one piece or a plurality of program products of a
certain version level generated by the sale charge member is input into the computer systems 124
for marketing. Theoretically, although a customer is able to order the product of a many version
level, there is almost no Reason for generally doing so. However, if the version level with which
customers differ is ordered since each qualification grant key operates only on the specified
version level, it must generate a separate qualification grant key. If a customer's order is
received, the key generation / enciphered program 122 under execution will access the database
123 including the consecutive numbers of the information about a customer, specifically a
machine, and the information on processor form by the system 124 at Step 802. The charge
group field 201 and the machine consecutive-numbers field 204 of the qualification grant key
200 which are not enciphered are generated using this information. At Step 803, the remaining
fields are generated by a customer's order and the reference to the database of possible product
number offer, and the qualification grant key of a perfect non-code form is built by them.
Subsequently, key generation / enciphered program 122 enciphers a qualification grant key at
Step 804 using one of some known encryption techniques by this technical field. Subsequently,
the enciphered qualification grant key 111 which is Step 805 and was obtained as a result is
transmitted to a customer. Although the key 111 is shown by Fig.1 as a plurality of binary bits, in
order to simplify work which inputs a qualification grant key from a keyboard, binary bits, such
as an equivalent by the hexadecimal digit or an alphanumeric character, may be shown to a
customer in a certain form which carried out grouping.

[0040]The qualification grant key 111 is received on the computer systems 101, and the process
in which the product locking table 460 is maintained is shown in Fig.9 a and Fig.9 b. At Step
901, a customer inputs the qualification grant key 111 into the computer systems 101 via the
console 109. When this is initial introduction, the installation input routine 440 has a dialog with
an operator, and receives an input. When that is not right, the general input routine 441 receives
an input. A qualification grant key is passed to the lock release routine 430 which processes a
decoding process. The lock release routine 430 makes the machine-key acquisition function 420
search machine consecutive numbers with Step 902, and makes it generate a machine key at it.
Subsequently, the lock release routine 430 decodes the qualification grant key 111 at Step 903
using a machine key. Subsequently, at Step 904, the product key table 450 in which the lock
release routine 430 was coded is reconstructed so that it may state below. The decoded
qualification grant key takes the form shown in Fig.2. This contains 80-bit product qualification
grant Flagg Alley 205 who shows whether the lock is released under the qualification grant key
with the new product for every product number. It is considered that a new qualification grant
key is the replaced key to all the products in which it releases a lock. The lock release routine
430 scans each product qualification grant Flagg 205 in the decoded qualification grant key (Step
904). When product qualification grant Flagg is set to "1" (those with qualification grant are
pointed out) at Step 905, the entry to which it corresponds in the product key table 450 at Step
908 is replaced with a new qualification grant key, a version number, and a charge group value.
The qualification grant bit field 506 are set to "1", and the stamp bit field 503 are set to the value
of the zero which show that the qualification grant key has not been used yet at the time of the
day /. When product qualification grant Flagg of a new key is "0", unless a version number and
the charge group number are the same as what is memorized by the product key table 450, a new
qualification grant key is ineffective. When a version number and the charge group number are
the same (Step 906), a qualification grant key has an effect which locks a product. Therefore, in

15

DISH-Blue Spike 842
Exhibit 1005, Page 0227

order for the lock release routine 430 to be Step 907 and to set the version number in the product
locking table 460 to "0", The lock setting up function 421 is called and the entry to which it
corresponds in the product key table 450 at Step 908 is replaced with the value of a new
qualification grant key. When the product key table 450 is reconstructed, it is Step 909 and the
contents are saved to memory storage.

[0041]Unless the product given qualification before loses qualification, reconstruction of the
product key table 450 does not have direct influence on the product locking table 460. A product
is released in a lock according to a demand. An exception will be generated by the system, if it
meets with a qualification verification trigger when performing the software product to which
qualification is not given in front first. Subsequently, at Step 920, in order that the exception-
handling routine 432 may try the lock release of a product, the lock release routine 430 is called.
Next, the qualification grant key enciphered from the suitable entry in the product key table 450
in which the lock release routine 430 was coded at Step 921 is taken out, a machine key is
obtained at Step 922, and a qualification grant key is decoded at Step 923. When qualification is
given (Step 924), in order to set up a version number in the entry 601 of the product locking table
460 in which it is Step 926 and corresponds to the product number of a software product, the
lock setting up function 421 is called. Simultaneously, the lock release routine 430 records the
time of the 1st use on the stamp field 503 at Step 927 at the time of the day /. Subsequently, at
Step 928, a qualification verification trigger is retried and execution of a program is continued.
When qualification grant is not shown by Step 924, it is Step 925 and execution of a program is
closed.

[0042]The product locking table 460 is memorized by RAM.

After reinitialization of a system does not remain.

During reinitialization ("IPL"), in order to reconstruct the product locking table 430, the IPL lock
re-verification routine 431 is called. As mentioned above, this routine verifies qualification, and
in order to reconstruct the entry in the product locking table 460 to which it corresponds, it
obtains a machine key, and it decodes systematically each qualification grant key entry in the
coded product key table 450.

[0043]The process by a preferable Example in which a software module is performed is shown
in Fig.10. Execution of the software module by the system 101 is made by what this is taken out
and performed for (Step 1002) (Step 1001) until a modular target code command is completed
(Step 1003). When a command is the qualification verification trigger 301 (Step 1004), the lock
checking feature 422 is called. At Step 1005, the lock checking feature 422 accesses the product
locking table entry 601 to which it corresponds to the product number included in a qualification
verification trigger. The qualification for the version number in the product locking table 460
being equal to the version number 303 contained in the qualification verification trigger 301, or
performing software, in being larger than it is given (Step 1006). In this case, the lock checking
feature 422 does not perform treatment beyond it, but a system proceeds to execution of the next
target code command in a software module. When software is not given qualification, a lock
checking feature generates an exception condition, control is passed to the exception-handling
routine 432, and the exception-handling routine 432 terminates execution of a program (Step
1007). A system does not save the result of the qualification inspection which shows that
software is given qualification. Therefore, if it meets with a qualification verification trigger
again in a software module, a system will verify qualification again as mentioned above.
[00441]1t is possible for another Example to define an addition so that a qualification verification
trigger can be injected into a target code via the compile course of a conventional type. This

16

DISH-Blue Spike 842
Exhibit 1005, Page 0228

should serve as a bit of the command in which the execution as the module of target code form
being performed by a system with same machine interface that a customer and a compiler maker
can use is possible. or [invalidating a qualification verification trigger, in order that the format of
a target code may support the compile course of the conventional type known by the customer] -
- or it may become suitable to add the barrier to "patching" of a target code which is changed.
One of such the additional barriers is defining a qualification verification trigger, as other
functions of a certain are performed simultaneously. In this case, it is important that the alternate
function carried out by the qualification verification trigger cannot carry out with other simple
commands. This alternate function must be selected so that any compiled software modules may
include some commands which perform that function quite reliably. When having coincided in
these criteria, the compiler can generate automatically the target code which performs the
alternate function (it is also a qualification verification trigger simultancously with it) as a part of
the usual compilation order. This definition should bring about the important barrier to
"patching" of a target code which invalidates a qualification verification trigger. It is defining it
as having to arrange other Examples to the addressable location which has a simple relation to
the product number from which it discriminates a qualification verification trigger in a target
code. It must be comparatively simple for a compiler to inject these commands into a suitable
code position as a part of usual compile process, and it must be easy to perform this additional
verification in the command embodiment. This definition should serve as an important barrier to
patching of a target code which changes identification of the product number supplied in a
qualification verification trigger.

[0045]The preferable Example is corresponding to 80 independent product number. Please
understand that the actual number of the product number supported by the present invention is
variable. In the preferable Example, it is also expected that the number of the software modules
which can be compiled independently distributed by the distribution person exceeds 80
substantially. It corresponds to the number of the software packages in which the number of
product number is provided by a distribution person's marketing organization and by which price
setting was carried out independently. Although each software module has only one product
number, many software modules which share this product number may exist. For example, a
distribution person provides the word processing package containing the separate software
module treating editing on screen, spell checking, document formatting, etc. When such a
software module can always license as some word processing packages, those modules will have
common product number. It is also possible to have a separate number for every software
module in another Example.

[0046]A surcharge for software to maintain upgrade in a preferable Example, although licensed
at a lump sum payment charge is able to be charged. In another Example, the license of the
software between a certain periods is permissible. In such an another Example, a qualification
grant key will include the field of the addition which shows the length of a period to which
software is licensed. In order to judge whether the license completed the stamp as compared with
the length of the period of a grant of license at the time of the day /relevant to the product
number in the coded product key table 450, the IPL lock re-verification routine 431 is called
periodically. Until new qualification grant is obtained by providing the lock release bit (not
shown) for the entry in the product locking table 460 to which it corresponds, and setting this to
"0", when the license expires at this time, Execution beyond it of a software module can be
prevented.

17

DISH-Blue Spike 842
Exhibit 1005, Page 0229

[Effect of the Invention] The method and equipment which manage use of the software in
computer systems by the present invention and which have been improved are provided.

[Brief Description of the Drawings]

A [FIG. 1] It is the figure showing the main elements of the protection-of-software mechanism
by the preferable Example of the present invention.

A [FIG. 2] It is the figure showing the contents as which the qualification grant key by the
preferable Example of the present invention is not enciphered.

A [FIG. 3] It is the figure showing the contents of the typical software module by a preferable
Example which can be performed.

A [FIG. 4] Tt is the figure showing the structure of hardware required on a customer's computer
systems in order to support the protection-of-software mechanism by a preferable Example, and
software.

A [FIG. 5] It is the figure showing the format of the coded product key table by a preferable
Example.

A [FIG. 6] It is the figure showing the format of the product locking table by a preferable
Example.

A [FIG. 7] It is a block diagram of a step required to arrange the qualification verification trigger
by a preferable Example to a software module.

A [FIG. 8] It is a block diagram of a step required to generate the enciphered qualification grant
key according to a preferable Example.

A [FIG. 9] It is a block diagram of a step required to decode a qualification grant key on a
customer's computer systems by a preferable Example, and maintain record of a qualification
grant situation.

A [FIG. 10] It is a block diagram of a step required to verify qualification during the execution of
a software module by a preferable Example.

[Explanations of letters or numerals]

101 Customer side computer system

102 Central processing unit (CPU)

103 Control storage

104 Random access memory (RAM)

106 Memory storage

107 Memory storage

108 Memory storage

109 Console

110 Medium reader

112 Software recording medium

120 Warehouse

121 Sales office

123 Data base

124 Computer systems for marketing

125 Computer systems for development

126 Compiler

127 Translator

18

DISH-Blue Spike 842
Exhibit 1005, Page 0230

19

DISH-Blue Spike 842
Exhibit 1005, Page 0231

Exhibit 6

DISH-Blue Spike 842
Exhibit 1005, Page 0232

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification S : (11) Internationa! Publication Number: WO 97126732
HO4L 9/00 Al

(43) International Publication Date: 24 July 1997 (24.07.97)

(21) International Application Number: PCT/US97/00651 | (81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU,

CZ, EE,GE, HU, IL, 1S, JP, KP, KR, LC, LK, LR, LT, LV,

(22) International Filing Date: 16 January 1997 (16.01.97) MG, MK, MN, MX, NO, NZ, PL, RO, SG, 8], SK, TR, TT,

UA, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(30) Priority Data: European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB,
08/587,943 17 January 1996 (17.01.96) us GR, [E, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ,
CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicant: THE DICE COMPANY [US/US]; 20191 E. Coun-
try Club Drive, Townhouse 4, Aventura, FL 33180 (US). Published

With imternational search report.

(72) Inventors: MOSKOWITZ, Scott, A.; 20191 E. Country
Club Drive, Townhouse 4, Aventura, FL 33180 (US).
COOPERMAN, Marc; 2929 Ramona, Palo Alto, CA 94306
(US).

(74) Agents: ALTMILLER, John, C.et al.; Kenyon & Kenyon, 1025
Connecticut Avenue, N.W., Washington, DC 20036 (US).

(54) Title: METHOD FOR STEGA-CIPHER PROTECTION OF COMPUTER CODE
(57) Abstract

A method for protecting computer code copyrights by encoding the code into a data resource with a digital watermark. The digital
watermark contains licensing information interwoven with essential code resources encoded into data resources. The result is that while
an application program can be copied in an uninhibited manner, only the licensed user having the license code can access essential code
resources to operate the program and any descendant copies bear the required license code.

DISH-Blue Spike 842
Exhibit 1005, Page 0233

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational
applications under the PCT.
AM Armenia GB United Kingdom MW Malawi
AT Austria GE Georgia MX Mexico
AU Australia GN Guinea NE Niger
BB Barbados GR Greece NL Netherlands
BE Belgium HU Hungary NO Norway
BF Burkina Faso IE Ireland NZ New Zealand
BG Bulgaria IT ltaly PL Poland
BJ Benin Jr Japan PT Portugal
BR Brazil KE Kenya RO Romania
BY Belarus KG Kyrgystan RU Russian Federation
CA Canada KP Democratic People's Republic sD Sudan
CF Central African Republic of Korea SE Sweden i
CG Congo KR Republic of Korea SG Singapore
CH Switzerland Kz Kazakhstan S1 Slovenia
C1 Céte d'Ivoire LI Liechtenstein SK Slovakia
M Cameroon LK Sri Lanka SN Senegat
CN China LR Liberia SZ Swaziland
cs Czechoslovakia LT Lithuania D Chad
Ccz Czech Republic LU Luxembourg TG Togo
DE Germany LV Latvia TJ Tajikistan
DK Denmark MC Monaco TT Trinidad and Tobago
EE Estonia MD Republic of Moldova VA Ukraine
ES Spain MG Madagascar uG Uganda
FL Finland ML Mali us United States of America
FR France MN Mongolia vz Uzbekistan
GA Gabon . MR Mauritania VN Viet Nam

DISH-Blue Spike 842
Exhibit 1005, Page 0234

WO 97/26732 PCT/US97/00651

10

15

20

25

METHOD FOR STEGA-CIPHER PROTECTION OF COMPUTER CODE

FIELD OF INVENTION

With the advent of computer networks and digital

multimedia, protection of intellectual property has
become a prime concern for creators and publishers of
digitized copies of copyrightable works, such as musical
recordings, movies, video games, and computer software.
One method of protecting copyrights in the digital
domain is to use "digital watermarks."

The prior art includes copy protection systems
attempted at many stages in the development of the
software industry. These may be various methods by
which a software engineer can write the software in a
clever manner to determine if it has been copied, and if
so to deactivate itself. Also included are undocumented
changes to the storage format of the content. Copy
protection was generally abandoned by the software
industry, since pirates were generally just as clever as
the software engineers and figured out ways to modify
the software and deactivate the protection. The cost of
developing such protection was not justified considering
the level of piracy which occurred despite the copy
protection.

Other methods for protecticn of computer software
include the requirement of entering certain numbers or
facts that may be included in a packaged software’s

manual, when prompted at start-up. These may be

DISH-Blue Spike 842
Exhibit 1005, Page 0235

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

overcome if copies of the manual are distributed to
unintended users, or by patching the code to bypass
these measures. Other methods include requiring a user
to contact the software vendor and to receive "keys" for
unlocking software after registration attached to some
payment scheme, such as credit card authorization.
Further methods include network-based searches of a
user’'s hard drive and comparisons between what is
registered to that user and what is actually installed
on the user’s general computing device. Other
proposals, by such parties as AT&T’'s Bell Laboratories,
use “kerning” or actual distance in pixels, in the
rendering of text documents, rather than a varied number
of ASCII characters. However, this approach can often
be defeated by graphics processing analogous to sound
processing, which randomizes that information. All of
these methods require outside determination and
verification of the validity of the software license.
Digital watermarks can be used to mark each
individual copy of a digitized work with information
identifying the title, copyright holder, and even the
licensed owner of a particular copy. When marked with
licensing and ownership information, responsibility is
created for individual copies where before there was
ncne. Computer application programs can be watermarked
by watermarking digital content resources used in
conjunction with images or audio data. Digital
watermarks can be encoded with random or pseudo random
keys, which act as secret maps for locating the
watermarks. These keys make it impossible for a party
to find the watermark without having the key. In
addition, the encoding method can be enhanced to force a
party to cause damage to a watermarked data stream when
trying to erase a random-key watermark. Digital
watermarks are described in "Steganographic Method and
Device" - The DICE Company, Serial No. 08/489,172, the
disclosure of which is hereby incorporated by reference.

DISH-Blue Spike 842
Exhibit 1005, Page 0236

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

Other information is disclosed in "Technology: Digital
Commerce”, Denise Carusoc, New York Times, August 7,
1995; and "Copyrighting in the Information Age", Harley
Ungar, ONLINE MARKETPLACE, September 1995, Jupiter
Communications.

Additionally, other methods for hiding information
signals in content signals, are disclosed in U.S. Patent
No. 5,319,735 - Preuss et al. and U.S. Patent No.
5,379,345 - Greenberg.

It is desirable to use a "stega-cipher" or
watermarking process to hide the necessary parts or
resources of the executable object code in the digitized
sample resources. It is also desirable to further
modify the underlying structure of an executable
computer application such that it is more resistant to
attempts at patching and analysis by memory capture. A
computer application seeks to provide a user with
certain utilities or tools, that is, users interact with
a computer or similar device to accomplish various tasks
and applicaticns provide the relevant interface. Thus,
a level of authentication can also be introduced into
software, or "digital products," that include digital
content, such as audio, video, pictures or multimedia,
with digital watermarks. Security is maximized because
erasing this code watermark without a key results in the
destructicn of one or more essential parts of the
underlying application, rendering the "program" useless
to the unintended user who lacks the appropriate key.
Further, if the key is linked to a license code by means
of a mathematical function, a mechanism for identifying
the licensed owner of an application is created.

It is also desirable to randomly reorganize program
memory structure intermittently during program run time,
to prevent attempts at memory capture or object code
analysis aimed at eliminating licensing or ownership
information, or otherwise modifying, in an unintended

manner, the functioning of the application.

DISH-Blue Spike 842
Exhibit 1005, Page 0237

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

In this way, attempts to capture memory to
determine underlying functiocnality or provide a "patch"
to facilitate unauthorized use of the "application," or
computer program, without destroying the functionality
and thus usefulness of a copyrightable computer program
can be made difficult or impossible.

It is thus the goal of the present invention to
provide a higher level of copyright security to object
code on par with methods described in digital
watermarking systems for digitized media content such as
pictures, audio, video and multimedia content in its
multifarious forms, as described in previous
disclosures, "Steganographic Method and Device" and
"Human Assisted Random Key Generation and Application
for Digital Watermark System", filed on even date
herewith, the disclosure of which is hereby incorporated
by reference.

It is a further goal of the present invention to
establish methods of copyright protection that can be
combined with such schemes as software metering, network
distribution of code and specialized protection of
software that is designed to work over a network, such
as that proposed by Sun Microsystems in their HotJava
browser and Java programming language, and manipulation
of application code in proposed distribution of
documents that can be exchanged with resources or the
look and feel of the document being preserved over a
network. Such systems are currently being offered by
companies including Adobe, with their Acrobat software.
This latter goal is accomplished primarily by means of
the watermarking of font, or typeface, resources
included in applications or documents, which determine
how a bitmap representation of the document is
ultimately drawn on a presentation device.

The present invention includes an application of
the technology of "digital watermarks." As described
in previous disclosures, "Steganographic Method and

DISH-Blue Spike 842
Exhibit 1005, Page 0238

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

Device” and "Human Assisted Random Key Generation and
Application for Digital Watermark System," watermarks
are particularly suitable to the identificaticn,
metering, distributing and authenticating digitized
content such as pictures, audio, video and derivatives
thereof under the description of "multimedia content.®
Methods have been described for combining both
cryptographic methods, and stegancgraphy, or hiding
something in plain view. Discussions of these
technologies can be found in Applied Cryptography by
Bruce Schneier and The Code Breakers by David XKahn. For
more information on prior art public-key cryptosystems
see US Pat No 4,200,770 Diffie-Hellman, 4,218,582
Hellman, 4,405,829 RSA, 4,424,414 Hellman Pohlig.
Computer code, or machine language instructions, which
are not digitized and have zero tolerance for error,
must be protected by derivative or alternative methods,
such as those disclesed in this invention, which focuses
on watermarking with "keys" derived from license codes
or other ownership identification information, and using
the watermarks encoded with such keys to hide an

essential subset of the application code resources.

Y OF E NTION

It is thus a goal of the present invention, to
provide a level of security for executable code on
similar grounds as that which can be provided for
digitized samples. Furthermore, the present invention
differs from the prior art in that it does not attempt
to stop copying, but rather, determines responsibility
for a copy by ensuring that licensing information must
be preserved in descendant copies from an original.
Without the correct license information, the copy cannot
function.

An improvement over the art is disclosed in the
present invention, in that the software itself is a set

of commands, compiled by software engineer, which can be

DISH-Blue Spike 842
Exhibit 1005, Page 0239

WO 97126732 PCT/US97/00651

10

15

20

25

30

35

configured in such a manner as to tie underlying
functionality to the license or authorization of the
copy in possession by the user. Without such
verification, the functions sought ocut by the user in
the form of software cease to properly work. Attempts
to tamper or "patch" substitute code resources can be
made highly difficult by randomizing the location of
said resources in memory on an intermittent basis to
resist most attacks at disabling the system.

DETAILED DESCRIPTION

An executable computer program is variously
referred to as an application, from the point of view of
a user, or executable object code from the point of view
of the engineer. A collection of smaller, atomic (or
indivisible) chunks of object code typically comprise
the complete executable object code or application which
may also require the presence of certain data resources.
These indivisible portions of object code correspond
with the programmers’ function or procedure
implementations in higher level languages, such as C or
Pascal. 1In creating an application, a programmer writes
"code" in a higher level language, which is then
compiled down into "machine language," or, the
executable object code, which can actually be run by a
computer, general purpose or otherwise. Each function,
or procedure, written in the programming language,
represents a self-contained portion of the larger
program, and implements, typically, a very small piece
of its functionality. The order in which the programmer
types the code for the various functions or procedures,
and the distribution of and arrangement of these
implementations in various files which hold them is
unimportant. Within a function or procedure, however,
the order of individual language constructs, which
correspond to particular machine instructions is

important, and sc functions or procedures are considered

DISH-Blue Spike 842
Exhibit 1005, Page 0240

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

indivisible for purposes of this discussion. That is,
once a function or procedure is compiled, the order of
the machine instructions which comprise the executable
object code of the function is important and their order
in the computer memory is of vital importance. Note
that many "compilers" perform "optimizations" within
functions or procedures, which determine, on a limited
scale, if there is a better arrangement for executable
instructions which is more efficient than that
constructed by the programmer, but does not change the
result of the function or procedure. Once these
optimizations are performed, however, making random
changes to the order of instructions is very likely to
"break" the function. When a program is compiled, then,
it consists of a collection of these sub-objects, whose
exact order or arrangement in memory is not important,
so long as any sub-object which uses another sub-object
knows where in memory it can be found.

The memory address of the first instruction in one
of these sub-objects is called the "entry point" of the
function or procedure. The rest of the instructions
comprising that sub-object immediately follow from the
entry point. Some systems may prefix information to the
entry point which describes calling and return
conventions for the code which follows, an example is
the Apple Macintosh Operating System (MacCS). These
sub-objects can be packaged into what are referred to in
certain systems as "code resources," which may be stored
separately from the application, or shared with other
applications, although not necessarily. Within an
application there are also data cbjects, which consist
of some data to be operated on by the executable code.
These data objects are not executable. That is, they do
not consist of executable instructions. The data
cbjects can be referred to in certain systems as
“resources."

DISH-Blue Spike 842
Exhibit 1005, Page 0241

WO 97/26732 PCT/US97/00651

When a user purchases or acquires a computer
program, she seeks a computer program that "functions®
in a desired manner. Simply, computer software is
overwhelmingly purchased for its underlying

5 functionality. In contrast, persons who copy multimedia
content, such as pictures, audio and video, do so for
the entertainment or commercial value of the content.
The difference between the two types of products is that
multimedia content is not generally interactive, but is

10 instead passive, and its commercial value relates more
on passive not interactive or utility features, such as
those required in packaged software, set-top boxes,
cellular phones, VCRs, PDAs, and the like. Interactive
digital products which include computer code may be

15 mostly interactive but can also contain content to add
to the interactive experience of the user or make the
underlying utility of the software more aesthetically
pleasing. It is a common concern of both of these
creators, both of interactive and passive multimedia

20 products, that "digital products" can be easily and
perfectly copied and made into unpaid or unauthorized
copies. This concern is especially heightened when the
underlying product is copyright protected and intended
for commercial use.

25 The first method of the present invention described
involves hiding necessary "parts" or code "resources" in
digitized sample resources using a "digital
watermarking" process, such as that described in the
"Steganographic Method and Device" patent application.

30 The basic premise for this scheme is that there are a
certain sub-set of executable code resources, that
comprise an application and that are "essential" to the
proper function of the application. In general, any
code resource can be considered "essential" in that if

35 the program proceeds to a point where it must "call" the
code resource and the code resource is not present in
memory, oOr cannot be loaded, then the program fails.

DISH-Blue Spike 842
Exhibit 1005, Page 0242

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

However, the present invention uses a definition of
“essential” which is more narrow. This is because,
those skilled in the art or those with preogramming
experience, may create a derivative program, not unlike
the utility provided by the original program, by writing
additional or substituted code to work around
unavailable resources. This is particularly true with
programs that incorporate an optional "plug-in
architecture," where several code resources may be made
optionally available at run-time. The present invention
is also concerned with concentrated efforts by
technically skilled people who can analyze executable
object code and "patch" it to ignore or bypass certain
code resources. Thus, for the present embodiment’s
purposes, "essential" means that the function which
distinguishes this application from any other
application depends upon the presence and use of the
code resource in question. The best candidates for this
type of code resources are NOT optional, or plug-in
types, unless special care is taken to prevent work-a-
rounds.

Given that there are one or more of these essential
resources, what is needed to realize the present
invention is the presence of certain data resources cf a
type which are amenable to the "stega-cipher" process
described in the "Steganographic Method and Device"
patent application. Data which consists of image or
audio samples is particularly useful. Because this data
consists of digital samples, digital watermarks can be
introduced into the samples. What is further meant is
that certain applications include image and audio
samples which are important to the look and feel of the
program or are essential to the processing of the
application’s functionality when used by the user.

These computer programs are familiar to users of
computers but alsoc less obvious to users of other

devices that run applications that are equivalent in

DISH-Blue Spike 842
Exhibit 1005, Page 0243

WO 97126732 PCT/US97/00651

some measure of functionality to general purpose
computers including, but not limited to, set-top boxes,
cellular phones, "smart televisions," PDAs and the like.
However, programs still comprise the underlying

5 ‘operating systems" of these devices and are becoming
more complex with increases in functionality.

One method of the present invention is now
discussed. When code and data resources are compiled
and assembled into a precursor of an executable program

10 the next step is to use a utility application for final
assembly of the executable application. The programmer
marks several essential code resources in a list
displayed by the utility. The utility will choose one
or several essential code resources, and encode them

15 into one or several data resources using the stega-
cipher process. The end result will be that these
essential code resources are not stored in their own
partition, but rather stored as encoded information in
data resources. They are not accessible at run-time

20 without the key. Basically, the essential code
resources that provide functionality in the final end-
product, an executable application or computer program,
are no longer easily and recognizably available for
manipulation by those seeking to remove the underlying

25 copyright or license, or its eguivalent information, or
those with skill to substitute alternative code
resources to "force" the application program to run as
an unauthorized copy. For the encoding of the essential
code resources, a "key" is needed. Such a key is

30 similar to those described in the "Steganographic Method
and Device."” The purpose of this scheme is to make a
particular licensed copy of an application
distinguishable from any other. It is not necessary to -
distinguish every instance of an application, merely

35 every instance of a license. A licensed user may then
wish to install multiple copies of an application,
legally or with authorization. This method, then, is to

10

DISH-Blue Spike 842
Exhibit 1005, Page 0244

WO 9726732 PCT/US97/00651

10

15

20

25

30

35

choose the key so that it corresponds, is equal to, or
is a function of, a license code or license descriptive
information, not just a text file, audio clip or
identifying piece of information as desired in digital
watermarking schemes extant and typically useful to
stand-alone, digitally sampled content. The key is
necessary to access the underlying code, i.e., what the
user understands to be the application program.

The assembly utility can be supplied with a key
generated from a license code generated for the license
in question. Alternatively, the key, possibly random,
can be stored as a data resource and encrypted with a
derivative of the license code. Given the key, it
encodes cne or several essential resources into one or
several data resources. Exactly which code resources
are encoded into which data resources may be determined
in a random or pseudo random manner. Note further that
the application contains a code resource which performs
the function of decoding an encoded code resource from a
data resource. The application must also contain a data
resource which specifies in which data resource a
particular code resource is encoded. This data resource
is created and added at assembly time by the assembly
utility. The applicaticn can then operate as follows:

1) when it is run for the first time, after
installation, it asks the user for personalization
information, which includes the license code. This can
include a particular computer configuration;

2) it stores this information in a personalization
data resource;

3) Once it has the license code, it can then
generate the proper decoding key to access the essential
code resources.

Note that the application can be copied in an
uninhibited manner, but must contain the license code
issued to the licensed owner, to access its essential

code resources. The goal of the invention, copyright

11

DISH-Blue Spike 842
Exhibit 1005, Page 0245

WO 97/26732 PCT/US97/00651

protection of computer code and establishment of
responsibility for copies, is thus accomplished.

This invention represents a significant improvement
over prior art because of the inherent difference in use

5 of purely informational watermarks versus watermarks

which contain executable object code. If the executable
object code in a watermark is essential to an
application which accesses the data which contains the
watermark, this creates an all-or-none situation.

10 Either the user must have the extracted watermark, or
the application cannot be used, and hence the user
cannot gain full access to the presentation of the
information in the watermark bearing data. In order to
extract a digital watermark, the user must have a key.

15 The key, in turn, is a function of the license
information for the copy of the software in guestion.
The key is fixed prior to final assembly of the
application files, and so cannot be changed at the
option of the user. That, in turn, means the license

20 information in the software copy must remain fixed, so
that the correct key is available to the software. The
key and the license information are, in fact,
interchangeable. One is merely more readable than the
other. In the earlier developed "Steganographic Method

25 and Device," the possibility of randomization erasure
attacks on digital watermarks was discussed. Simply, it
is always possible to erase a digital watermark,
depending on how much damage you are willing to do to
the watermark-bearing content stream. The present

30 invention has the significant advantage that you must
have the watermark to be able to use the code it
contains. If you erase the watermark you have lost a
key piece of the functionality of the application, or -
even the means to access the data which bear the

35 watermark.

A preferred embodiment would be implemented in an
embedded system, with a minimal operating system and

12

DISH-Blue Spike 842
Exhibit 1005, Page 0246

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

memory. No media playing "applets," or smaller sized
applications as proposed in new operating environments
envisioned by Sun Microsystems and the advent of Sun's
Java operating system, would be permanently stored in
the system, only the bare necessities to operate the
device, download information, decode watermarks and
execute the applets contained in them. When an applet
is finished executing, it is erased from memory. Such a
system would guarantee that content which did not
contain readable watermarks could not be used. This is
a powerful contrcl mechanism for ensuring that content
to be distributed through such a system contains valid
watermarks. Thus, in such networks as the Internet or
set-top box controlled cable systems, distributicn and
exchange of content would be made more secure from
unauthorized copying to the benefit of copyright holders
and other related parties. The system would be enabled
to invalidate, by default, any content which has had its
watermark (s) erased, since the watermark conveys, in
addition to copyright information, the means to fully
access, play, record or otherwise manipulate, the
content.

A second method according to the present invention
is to randomly re-organize program memory structure to
prevent attempts at memory capture or object code
analysis. The object of this method is to make it
extremely difficult to perform memory capture-based
analysis of an executable computer program. This
analysis is the basis for a method of attack to defeat
the system envisioned by the present invention.

Once the code resources of a program are loaded
into memory, they typically remain in a fixed position,
unless the computer operating system finds it necessary
to rearrange certain portions of memory during "system
time, " when the operating system code, not application
code, is running. Typically, this is done in low memory

systems, to maintain optimal memory utilization. The

13

DISH-Blue Spike 842
Exhibit 1005, Page 0247

WO 97/26732 PCT/US97/00651

10

15

20

25

30

35

MacOS for example, uses Handles, which are double-
indirect pointers to memory locations, in order to allow
the cperating system to rearrange memory transparently,
underneath a running program. If a computer program
contains countermeasures against unlicensed copying, a
skilled technician can often take a snapshot of the code
in memory, analyze it, determine which instructions
comprise the countermeasures, and disable them in the
stored application file, by means of a "patch." Other
applications for designing code that moves to prevent
scanning-tunnelling microscopes, and similar high
sensitive hardware for analysis of electronic structure
of microchips running code, have been proposed by such
parties as Wave Systems. Designs of Wave Systems’
micreochip are intended for preventing attempts by
hackers to "photograph" or otherwise determine "burn in"
to microchips for attempts at reverse engineering. The
present ilnvention seeks to prevent attempts at
understanding the code and its organization for the
purpose of patching it. Unlike systems such as Wave
Systems’, the present invention seeks to move code
around in such a manner as to complicate attempts by
software engineers to reengineer a means to disable the
methods for creating licensed copies on any device that
lacks "trusted hardware." Moreover, the present
invention concerns itself with any application software
that may be used in general computing devices, not
chipsets that are used in addition to an underlying
computer to perform encryption. Wave Systems’ approach
to security of software, if interpreted similarly to the
present invention, would dictate separate microchip sets
for each piece of application software that would be
tamperproof. This is not consistent with the economics
of software and its distribution.

Under the present invention, the application -
contains a special code resource which knows about all

the other code resources in memory. During execution

14

DISH-Blue Spike 842
Exhibit 1005, Page 0248

WO 97/26732 PCT/US97/00651

time, this special code resource, called a "memory
schedulexr, " can be called periodically, or at random or
pseudo random intervals, at which time it intentionally
shuffles the other code resources randomly in memory, so
5 that someone trying to analyze snapshots of memory at
various intervals cannot be sure if they are looking at
the same code or organization from one "break" to the
next. This adds significant complexity to their job.
The scheduler also randomly relocates itself when it is

10 finished. In order to do this, the scheduler would have
to first copy itself to a new location, and then
specifically modify the program counter and stack frame,
so that it could then jump into the new copy of the
scheduler, but return to the correct calling frame.

15 Finally, the scheduler would need to maintain a list of
all memory addresses which contain the address of the
scheduler, and change them to reflect its new location.

The methods described above accomplish the purposes
of the invention - to make it hard to analyze captured

20 memory containing application executable code in order
to create an identifiable computer program or
application that is different from other copies and is
less susceptible to unauthorized use by those attempting
to disable the underlying copyright protection system.

25 Simply, each copy has particular identifying information
making that copy different from all other copies.

15

DISH-Blue Spike 842
Exhibit 1005, Page 0249

WO 97/26732 PCT/US97/00651

What is Claimed Is:

1 1. A method of associating executable object code with
2 a digital sample stream by means of a digital watermark
3 wherein the digital watermark contains executable object
4 code and is encoded into the digital sample stream.
1 2. The method of claim 1 wherein a key toc access the
2 digital watermark is a function of a collection of
3 license information pertaining to the software which is
4 accessing the watermark
s where license information consists of cne or more
6 of the following items:
7 Owning Organization name;
8 Personal Owner name;
9 Owner Address;
10 License code;
11 Software serialization number;
12 Distribution parameters;
13 Appreopriate executable general computing
14 device architecture;
15 Pricing; and
16 Software Metering details.
1 3. The method of claim 1 further comprising the step
2 of transmitting the digital sample stream, via a
3 transmission means, from a publisher to a subscriber
4 wherein transmission means can selected from the
S group of
6 soft sector magnetic disk media;
7 hard sector magnetic disk media;
8 magnetic tape media;
9 optical disc media;
10 Digital Video Disk media;
11 magneto-optical disk media; P
12 memory cartridge;
13 telephone lines;

16

DISH-Blue Spike 842
Exhibit 1005, Page 0250

WO 97/26732 PCT/US97/00651

14
15
16
17
18
19
20
21
22
23
24
25

[B~ VN B 6 B

© 9 W N R

W @ N0 N bW N

SCSI;

Ethernet or Token Ring Network;
ISDN;

ATM network;

TCP/IP network;

analog cellular network;
digital cellular network;
wireless network;

digital satellite;

cable network;

fiber optic network; and
electric powerline network.

4. The method of claim 1 where the object code to be
encoded is comprised of series of executable machine
instructions which perform the function of

processing a digital sample stream for the purpose

of modifying it or playing the digital sample stream.

5. The method of claim 3 further comprising the steps
of:

decoding said digital watermark and extracting
object code;
locading object code into computer memory for the
purpose of execution;
executing said object code in order to process said
digital sample stream for the purpose of playback.

6. A method of assembling an application to be
protected by watermark encoding of essential resocurces
comprising the steps of:

assembling a list of identifiers of essential
code resources of an application where identifiers allow
the code resource to be accessed and loaded into memory;

providing license information on the

licensee who is to receive an individualized copy of the
application;

17

DISH-Blue Spike 842
Exhibit 1005, Page 0251

WO 97/26732 PCT/US97/00651

10 storing license information in a

11 personalization resource which is added to the list of
12 application data resources;

13 generating a digital watermark key from
14 the license information; using the key as a pseudo-

15 random number string to select a list of suitable

16 digital sample data resources, the list of essential
17 code resources, and a mapping of which essential code
18 resources are to be watermarked into which data

19 resources;

20 storing the map, which is a list of

21 paired code and data resource identifiers, as a data
22 resource, which is added to the application;

23 adding a digital watermark decoder code
24 resource to the application, to provide a means for

25 extracting essential code resource from data resources,
26 according to the map;

27 processing the map list and encoding

28 essential code resources into digital sample data

29 resources with a digital watermark encoder;

30 removing self-contained copies of the
31 essential code resources which have been watermarked
32 1into data resources; and

33 combining all remaining code and data
34 resources into a single application or installer.

7. A method of intermittently relocating application
code resources in computer memory, in order to prevent,
discourage, or complicate attempts at memory capture
based code analysis.

oW e

8. The method of claim 7 additionally comprising the
step of

assembling a list of identifiers of code resources
cf an application where identifiers allow the code -

(52 I VR S

resource to be accessed and lcaded into memory.

18

DISH-Blue Spike 842
Exhibit 1005, Page 0252

WO 97/26732 PCT/US97/00651

9. The method of claim 8 additionally comprising the
step of modifying application program structure to make
all code resource calls indirectly, through the memory
scheduler, which looks up code resources in its list and

nl o W

dispatches calls.

10. The method of claim 9 additiocnally comprising the
step of intermittently rescheduling or shuffling all
code resources prior to or following the dispatch of a

S oW R

code resource call through the memory scheduler.

11. The method of claim 10 additionally comprised of
the step of the memory scheduler copying itself to a new

W

location in memory.

12. The method of claim 11 additionally comprising the
step of modifying the stack frame, program counter, and
memory registers of the CPU to cause the scheduler to
jump to the next instruction comprising the scheduler,
in the copy, to erase the previous memory instance of
the scheduler, and changing all memory references to the
scheduler to reflect its new location, and to return
from the copy of the scheduler to the frame which called
the previous copy of the scheduler.

W o N1 0 d W N

19

DISH-Blue Spike 842
Exhibit 1005, Page 0253

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/00651

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO4L 9/00

US CL : 380/54
According to International Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
U.S. . 380/54, 2, 4, 9, 21, 23, 25, 28, 49, 50, 59; 283/73, 113, 17

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,349,655 A (MANN) 20 September 1994, see| 1

Abstract.
X US 4,262,329 A (BRIGHT et all 14 April 1981, see| 7

Abstract.

D Further documents are listed in the continuation of Box C. D See patent family annex.

hd Special categorics of cited documents: T ma‘nd bk ‘m 2 ﬁln.dlhnrpmnly
ot in coaflict wi ion but cited 1o
“A* document. ing the general state of the ast which is not idered
Honuma defining the g o w conside; mkor&ewyud«ly-(&envm
"E* earbier document publishod on or after the international filing date X connderdont;vd or tbe ‘.i' fl:::fo:::? u.nnm.;
"L dmmlﬂvldlu-yﬁlwduiﬁonpnwltychn(l)mwhm when the document is taken slone
cited 0 colublish the pm date of smother citation R
special reason (as specificd) Y d of ik 4 the claimed invention cannot be
(e considered to involve an nvmhve:q: when the document is
"0 d ferring 10 an oral disck usc, cxhibition or other combined with one or more other such documents, such combination
means being obvious 10 a person skilled in the an
P wﬁrmmummuumm & document member of the sume patest family
Date of the actual completion of the international search Date of mailing of the international search report
Name and mailing address of the ISA/US Authonzod officer
Commissioner of Patents and Trademarks 1)r) Lo
Box PCT /‘/
Washington, D.C. 20231 Y/ BERNARR EARL GRE
Facsimile No. (703) 305-3230 Telephone No. (703) 306-4153

Form PCT/ISA/210 (second sheet)(July 1992)w

DISH-Blue Spike 842
Exhibit 1005, Page 0254

Exhibit 7

DISH-Blue Spike 842
Exhibit 1005, Page 0255

US005935243A

United States Patent . (1] Patent Number: 5,935,243
Hasebe et al. 451 Date of Patent: *Aug. 10, 1999
[54] LICENSEE NOTIFICATION SYSTEM 2245724 1/1992 United Kingdom .
[75] Inventors: Takayuki Hasebe; Naoya Torii, both OTHER PUBLICATIONS
of Kawasaki, Japan European Search Report issued Oct. 6, 1997.
[73] Assignee: Fujitsu Ltd., Kawasaki, Japan Primary Examiner—Robert W. Beausoliel, Jr.
[*] Notice: This patent issued on a continued pros- ﬁff;i’[im ix%ms:?fjs?ies[?agb&d]mse .
ecution application filed under 37 CFR Y, £gent) ¥
1.53(d), and is subject to the twenty year [57] ABSTRACT
patent term provisions of 35 U.S.C. o
154(a)(2). There is disclosed a licensee notification system for imple-
) menting a software sales system wherein license information
[21] Appl. No.: 08/673,108 for converting to executable form software }hal is presented
to a user in non-executable form is communicated to the user
[22] Filed: Jul. 1, 1996 from a management center on condition of payment of a
. L .. charge, and the software is converted into executable form
[30] Foreign Application Priority Data at the user terminal using this license information. The
Aug. 31,1995 [TP] JAPAN ..oovevvoemsccreseenses s T-224338 subjcct of the licensee notification system is software that
we s decides whether or not the correspondence relationship
[51] Int. CL® oo GOOF 11700; HOAL 9/00 between user identification information and signature infor-
[52] US. CL . 713/200; 382/23 mation stored in the license file is legitimate, and, if it is
[58] Ficld of Scarch ... 38073, 4, 23, 25, legitimate, displays the uscr identification information to the
380/26; 395/186, 187.01, 188.01, 182.16, user before starting proper operation; or, if it is not
182.18, 183.12 legitimate, does not start proper operation. The licensee
. notification system is constituted by connecting the man-
[50] References Cited agement center and user terminals by communication cir-
U.S. PATENT DOCUMENTS CultS: It license information is rcquechd.trom .the user
terminal, the management center transmits license informa-
4,866,769 9/1989 .. 380/4 tion combining in integral form the user identification infor-
5,103,476 4/1992 mation identifying the user and conversion information for
5,2Of~897 41:1993 - 380/4 converting the software to executable form. The user termi-
2’52 { ’ggg g’/igg: O - 380/4 nal enables the software using the conversion information
319705 6/1994 H?Ilt]; ryet al contained in this license information and writes user iden-
5;479:6 2 1 21,1995 Kenton ot a.l.‘ 385/186 ﬁﬁca'tion infm"rnati'on and signaturt“j information whﬂose con-
5,757,907 5/1998 Cooper et al. .. . tent is determined in accordance with the content of the user
identification information to a license file that is referred to
FOREIGN PATENT DOCUMENTS when this software is operating.
0367 700 A2 5/1990 Europcan Pat. Off. .
0613073 Al 8/1994 European Pat. Off. . 14 Claims, 6 Drawing Sheets

11 12
J)
15 USER TERVINAL MANAGEMENT CENTER
~13
USER ID
23 USER DB S
G 2
=4 ~14 =
4 CONTENTS ID 2
m
Z | USER CHARACTERISTIC SFTWARE D
S | INFORMATION (GPU-ID) 28
ENCODING &m
K s 5
USER 7
INDIVIDUAL KEY 15
IUENN(I:TODING LINK=UP
ENCODED LICENSE L_UNIT
LICENSE
SOFTWARE ‘(-:[gIENP]?_i‘I'[FCI}hE INFORMATION L INFORMATION
DECCIING o

DISH-Blue Spike 842
Exhibit 1005, Page 0256

(LEILE Ny}

L ——— bl T e e e "___1
! 1 USER TERMINAL { ! MANAGEMENT CENTER }
~_13
9 USER D | | o |
u g% i i USER DB S |
1 8 | I m |
I 2 [| o |
I &9 i | ~_14 = |
{ g CONTENTS 1D { } £ | 2
L |2 [TUSER craraCTERISTIC ! i SOFTWARE D I E
{ Z | INFORMATION (CPU-ID) | ! g ! =
; 5| i 16 S| | g
1 ’ — | 1 ‘ Z0 1 N
o m o
| K ENCODING i ([ENCODING 1
| § TV lunr ; U [UNIT K's 3 {
{ 21 USER 20 | USER 17 151
. INDIVIDUAL KEY , INOMDUAL KEY g Yy v @
i DECODING | _ | | _[ENCODING UNK-UP | | g
i LICENSE LUNIT PO TENCODED [LUNIT LICENSE L_UNIT ! e
I INFORMATION ({3cENSE FIiE | ILCENSE | INFORMATION 1 o
SOFTWARE [INFORMATION Lo —mmmmme 7 1 S
DECCDING COMPILATION | | =
v USER NAME | UNIT ;
24 |
| /22 -l Bavall
| LICENSE !
! [INSTALLATION FILE ,
[LUNIT I
[—_— e
e
&
FIG. | Y
=
>

DISH-Blue Spike 842
Exhibit 1005, Page 0257

U.S. Patent Aug. 10, 1999 Sheet 2 of 6 5,935,243

FIG. 2

13
[\/
USER ID USER NAME
Moo01111 TOKKYO TARO
14

fj

CONTENTS ID DECODING KEY

ABC00001 XXXXXXXXX

FIG. 4

/34
SIGNATURE

CONTENTS ID USER NAME INFORMATION
ABC00001 TOKKYQ TARO 722722222

DISH-Blue Spike 842
Exhibit 1005, Page 0258

U.S. Patent Aug. 10,1999 Sheet 3 of 6 5,935,243

LICENSE
25 DISPLAY ROUTINE

26 MAIN PROGRAM

FIG.

START

S101
IS THER
CORRESPONDING
DATA?

Y s
IS THE DATA
LEGITIMATE?
0K

DISPLAY USER NAME
| $104
EXECUTE MAIN PROGRAM

-

o
FIG. 6

DISH-Blue Spike 842
Exhibit 1005, Page 0259

U.S. Patent Aug. 10, 1999 Sheet 4 of 6 5,935,243

r m

| 18 USER TERMINA !

| |

| USER ID |

| A n >

| go ,

- |Ef :

! % CONTENTS ID !

l e . »

} S | USER CHARACTERISTIC }

; =] INFORMATION (CPU-ID) |

| ; -

| b |

ENCODING

| K's =N !

l 91 USER l

. 5 INDIVIDUAL KEY 00 |

| SN |

B e (o™

| ENCODED LICENSE

SOFTWARE INFORMATION I
DECODING | INFORMATION
KEY USER NAME i

| |

|| INSTALLATION | 29 :

i L UNIT I

1 S U .

DISH-Blue Spike 842
Exhibit 1005, Page 0260

U.S. Patent

25

26<

Aug. 10,1999

N\ —A—

Sheet 5 of 6 5,935,243

LICENSE DISPLAY ROUTINE
[ENCODED USER NAME~-

127

MAIN PROGRAM

FIG. 8

START

S201
—

DECODE ENCODED USER NAME

5202

DISPLAY DECODED USER NAME

l

$203

EXECUTE MAIN PROGRAM

END

FIG. ©

DISH-Blue Spike 842
Exhibit 1005, Page 0261

«
<
(LEILE Ny}

/___/ ,~/

[e e e e e e e e e e -"————'} ;— ————————————————— -

|

USER TERMINAL | | MANAGEMENT CENTER i

i ! |

CONTENTS ID ! } !
USER ! ! SOFTWARE DB | & ! >
CHARACTERISTIC ! ! 3 ! =
INFORMATION ‘ 36 | l 34 5 | =
(cPU-ID) T | U , it
K < —p| ENCODING ! | [ENCODING | o 2 $

USERS UNIT | [Lunm S |

| = |

37 1 USER =
INDVIDUAL KEY y 5 | INDIVIDUAL KEY B S .
SE(IJ?DING | | [ENCODING 5| £
SOFTWARE | RESTRICTIONS LUNIT l z
382 DECODING KEY | REMOVAL CODE | s
e e e e e e e e e e e e e e e e e L)
INSTALLATION I >
UNIT l
_______________________ A

n
FIG. 10 s
9]
PRIOR ART %
&

DISH-Blue Spike 842
Exhibit 1005, Page 0262

5,935,243

1
LICENSEE NOTIFICATION SYSTEM
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a licensee notification
system employed for the sale of software using a high speed
communication network such as B-ISDN and a large-
capacity storage medium such as a CD-ROM.

2. Description of the Related Art

With the development of high speed communication
technology such as B-ISDN (broad-band integrated services
digital network) and high-capacity storage media such as
CD-ROMs (compact disk read only memory) such means
can now be used to distribute computer programs or video
data or audio data. For example, video works which were
previously supplied on video tape are now being sold stored
on CD-ROM. Also, game programs etc, which contain a
large amount of picture data, are being sold stored on
CD-ROM. The same applies to high speed communication
networks, in which the software supplier can now distribute
the software by various methods. One of these methods of
software sales is the so-called “locked software” sales
system. In the locked software sales system, a CD ROM on
which are stored a large number of software items whose
functions are restricted is sold cheaply. By using the various
items of software on the CD-ROM that is purchased, in a
condition with the functional restrictions imposed, the end
user is able to make a decision as to whether or not he needs
cach softwarc item. Then, if the cnd user docs require the
software, he obtains (purchases) a restriction-removal code

corresponding (o this software [rom a management center

operated by the software distributor, and is able to use this
restriction-removal code to remove the functional restric-
tions on the software.

Such a sales systcm may be implemented, as a specific
example, using the software sales system shown in FIG. 10.
As shown in this Figure, this sollware sales syslem com-
prises user terminals 31 and management center 32. The user
tcrminal 31 and thc management center 32 arc connceted by
means of a communication circuit.

When actually purchasing the software (i.e. when pur-
chasing a restriction-removal code), the end user, using a
user ID ele, sels up a communication path with the man-
agement center and executes the prescribed procedure
required to request that a restriction-removal code be sent to
the user terminal 31. This procedure includes the input of a
“contents ID”, which is information for identifying the
software item that is to be purchased actually. In response to
the execution of such a procedure, the user terminal 31 sends

to the management center 32 the contents ID and for s

example the characteristic information of the user, consist-
ing of the ID of the CPU provided in user terminal 31.

Within the management center 32, there is provided a
software database (software DB) in which software decod-
ing keys employed for encoding the various software items
are stored in association with the contents 1D. When a
contents ID is received from user terminal 31, the software
decoding key corresponding to the contents ID is read from
software database 33. Also, encoding unit 34 in management
center 32 generates a user individual key by encoding the
user characteristic information from user terminal 31 by the
key “Ks”. Encoding unit 35 sends the results of the encoding
of the software decoding key from software database 33 to
user lerminal 31 as restriction-removal code, using the user
individual key from encoding unit 34.

Encoding unit 36 in user terminal 31 penerates a user
individual key by encoding the user characteristic informa-

40

~
b

[
@

2

tion with the key “Ks”. Decoding unit 37 uses the user
individual key generated by encoding unit 36 to decode the
restriction removal code [rom management center 32,
thereby generating the soltware decoding key. Installation
unit 38 then uses this software decoding key to decode the
software in CD-ROM corresponding to the contents ID sent
to center terminal 32: thus the software is put in a condition
where it can be used with the functional restrictions
removed, and, in this form, is installed on to a storage device
such as a hard disk device.

With such a software sales system, it is possible to
determine the software item to be purchased after actually
ascertaining its contents: thus, the possibility that the pur-
chased software might be completely different from that
intended, as could happen if the purchase were made solely
on the basis of the details contained in a catalogue, can be
completely eliminated. Also, since the software on the CD
ROM is stored in a form which is not executable without
knowing special information, illicit installation can be pre-
vented.

Ilowever, once the software has been installed, it is an
extremely easy operation to copy this. Thus, the problem has
arisen of unscrupulous persons copying the software without
the consent of the software supplier. Various methods (so-
called protection methods) of preventing such illicit copying
are known but there is no way to prevent illicit copying by
a person possessing knowledge at the level of the BIOS
(basic input/output system). Whichcever mcthod is used, it
can do no more than make it more difficult to perform illicit
copying.

For this reason, software is sold in which the name of the
authorized user is displayed on start-up, with the object of
preventing illicit copying psychologically rather than physi-
cally. That is, the aim is to prevent illicit copying of software
by displaying the name of the authorized user of the software
when the illicitly copied sofltware is executed.

ITowever, even with such software, if the copying is
inclusive of the installation software that sets the user name,
when the software is run, it can be made to display the name
of the person who made the illicit copy: thus, sufficient
effectiveness in preventing illicit copying was not obtained.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a licensee
notification system whose psychological effectiveness in
preventing illicit copying is very high.

A first licensee notification system according to the
present invention consists in a system for implementing a
software sales system in which software in non-executable
form is presented to a uvscr, and license information for
converting the software into executable form is informed to
the user on condition ol payment of a charge, and the
software is converted into executable form using this license
information.

The first licensee notification system is constituted of a
management center and user terminals; its subject is soft-
ware which includes instructions that command a terminal to
read user identification information in a license file and to
notify the user identification information to the user on
commencement of its operation.

The management center comprises a license information
gencrating unit that gencrates license information combin-
ing in integrated form user identification information that
specilies a user and conversion information [or converting

5 software to executable form.

The user terminal comprises a storage unit, a conversion
unit, and license file creating unit. In more detail, the storage

DISH-Blue Spike 842
Exhibit 1005, Page 0263

5,935,243

3

unit is employed for storing the license file and software
converted to executable form. The license information,
which is generated by the license inlormation generaling
unil in the management center, is given o the conversion
unit. The conversion unit then converts the software to
executable form using the license information and installs it
in the storage unit. The license file creating unit creates the
license file which contains the user identification informa-
tion contained in the license information, and stores the
license file in the storage unit.

That is, in the first licensee notification system, software
is installed in the user terminal so that the user identification
information of the legitimate user is notified to the user on
its start-up, using the license information which is generated
in the management center and contains the user identifica-
lion information.

A sccond licensec notification system according to the
present invention is constituted of a management center and
user terminal; its subject is software which includes instruc-
tions that commands the user terminal to read user identi-
fication information 1n the prescribed location in the soft-
ware and to notify the user identification information to the
user on commencement of its operation.

The management center comprises a license information
generating unit that generates license information combin-
ing in integrated form user identification information iden-
tifying a user and conversion information for converting
softwarc into cxccutable form.

The user terminal comprises a storage unit, a conversion
unit and a soltware rewriting unit. Of these, the storage unit

is employed for storing the soltware after this has been ;

converted to executable form. The conversion unit converts
the software to executable condition using the license infor-
mation generated by the license information generating unit
in the management center, and then installs it in the storage
unit. The software rewriting unit rewrites the information of
the prescribed location of the software that has been
installed by the conversion unit with the user identification
information contained in the license information.

That is, in this sccond liccnsce notification system, instal-
lation is performed with the content of the software rewritten
such that the user identification information of the legitimate
user is notified on start-up, using the license information
which is gencrated in the management center and contains
the user identification information.

The third licensee notification system according to the
present invention has as its subject software that, on com-
mencement of operation, includes instructions commanding
the user terminal to read user identification information in a
license file and to notify the user identification information
to the user.

The management center in the third licensce notification
system comprises a license information generating unit that
generates license information consisting of an integral com-
bination of conversion information for converting the soft-
ware to executable form and user identification information
identifying a user.

The user terminal compriscs a storage unit for storing a
license file, a license file creating unit, and a software
execulion unit. The license file creating unil creales the
license file containing the license information generated by
the license information generating unit, and stores the
license file in the storing unit. The software execution unit,
when execution of the software is designated, converts the
software to executable form using the license information
stored in the license file and expands it into memory, and
commences operation in accordance with the expanded
software.

10

Ju
o

4

‘That is, in the third licensee notification system, the
software, which is presented to the user in non-executable
form, is converted to executable form in accordance with the
license information containing the user identification infor-
mation every time execution is designated.

‘The fourth licensee notification system according to this
invention is constituted of management center and user
terminal. The subject of the system is software which judges
the legitimacy of user identification information on the basis
of signature information stored in a license file on com-
mencement of operation and, if the user identification infor-
mation is legitimate, commences proper operation after
notifying this user identification information to the user, and,
if the user identification information is not legitimate, ter-
minates operation.

The management center comprises a license information
generating unit that generates license information combin-
ing in integral form the user identification information
identifying the user and signature information whose content
is determined in accordance with the user identification
information.

The user terminal comprises a storage unit for storing the
license file and a license file crcating unit that crcates the
license file containing the user identification information
contained in the license information generated by the license
information generating unit and stores the license file in the
storagc unit.

That is, in the fourth licensce notification system, the
license information which is necessary for running the
software normally is generated on the basis ol the user
identification information in the management center and is
informed to the user terminal.

It may be noted that although in the first to the fourth
licensee notification system any means could be employed
for notification of the license information, if notification of
license information is performed using a communication
circuit, a system that is simple to operate can be formed.

Also, it is possible to employ information including the
name of the user as user identification information. It is also
possible to employ a unit that generates license information
including user identification information encoded with a
characteristic key ol the soltware. In this case, soltware is
presented to user which including instructions that command
the user terminal to notify to the user the result of decoding
the user identification information using the characteristic
key.

In the first to the third licensee notification systems, it is
also possible Lo make the soltware that is presented to the
user encoded, and to make the conversion information for
decoding the cncoded softwarc. Also, it is possible to
employ, in such a licensee notification system, license
information containing the user identification information in
a form that cannot be separated without special information.
Tor example, it is possible to employ information, as license
information, which is the result of encoding the conversion
information and user identification information, combined in
integrated manner.

Also, it is possible to make the first to third licensee
notification system a system whose subject is software that,
if the signature information stored in the license file does not
correspond to the user identification information, terminates
operation, and, as the license file creating unit, to employ a
unit that generates signature information whose content is
determined in accordance with the content of the user
identification information, and creates the license file con-
taining the signature information. In this case, it can be made

DISH-Blue Spike 842
Exhibit 1005, Page 0264

5,935,243

5

more difficult to alter the user identification information that
is notified to the user on start-up of the software. Also, in the
case of such software, it is possible to employ as license
information generating unit a unit that generates license
information containing signature information whose con-
tents are determined in accordance with the contents of the
user identification information, and, as license file creating
unit, to employ a unit that creates the license file containing
signature information contained in the license information.

Also, it is possible to make the second licensee nolifica-
tion system a system whose subject is software that, if
signaturc information stored in the sccond predetermined
location does not correspond to user identification informa-
tion stored in a prescribed location, terminates its operation,
and, as software rewriting unit, to employ a unit that rewrites
the information of the prescribed location of the software
with the user identification information contained in the
license information and that rewrites the information at the
second prescribed location of the software with signature
information whose content is determined in accordance with
the user identification information. Also, in the case of such
software, it is possible to employ as license information
generating unit a unit that generates license information
containing signature information whose content is deter-
mined in accordance with the content of the user identifi-
cation information, and, as software rewriting unit, to
cmploy a unit that rewrites information of the prescribed
location with user identification information contained in the
license information and that rewrites the information at the

second prescribed location in the software by signature -

information contained in the license information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating the layout
of a licensee notification system according to a first embodi-
ment of the present invention;

FIG. 2 is a diagram given in explanation of the content of
the user databasc provided in the management center com-
prised in the licensee notification system according to the
first embodiment;

FIG. 3 is a diagram illustrating the content of the software
databasc provided in the management center compriscd in
the licensee notification system according to the first
embodiment;

FIG. 4 is a diagram illustrating the content of a license file
provided in a user terminal comprised in the licensee noti-
fication system according to the first embodiment;

FIG. 5 is a diagram illustrating the structurc of softwarc
that is the subject of the licensee notification system accord-
ing to the first embodiment;

FIG. 6 is a [low chart illustrating the operaling sequence
of software that is the subject of the licensee notification
system according to the first embodiment;

FIG. 7 is a function block diagram illustrating the orga-
nization of a user terminal employed in the licensee notifi-
cation system according to a second embodiment;

FIG. 8 is a diagram illustrating the structure of software
that is the subject of the licensee notification system accord-
ing to the second embodiment;

FIG. 9 is a flow chart showing the operating sequence of
softwarc that is thc subject of the licensce notification
system according to the second embodiment; and

FIG. 10 is a functional block diagram showing the struc-
ture of the licensee notification system used in a prior art
locked software sales system.

Ju
o

)
7

40

W
S

o
@

6
DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is deseribed in detail below with
reference to the drawings.

First embodiment

FIG. 1 is a [unctional block diagram ol a licensee noti-
fication system according to a first embodiment of the
present invention. This licensce notification system is a
system where CD-ROMs storing a large number of software
items ol restricted function are sold cheaply, and soltware
sales are effected by selling the information needed to cancel
the function restrictions of the software in this CD-ROM.
Payment of the fee could be effected by for example
notification of the subscriber number of a cash card or
notification of a bank account withdrawal number or the
like.

As shown in the drawings, the licensee notification sys-
lem is conslituled by user terminals 11 and management
center 12 connected by means of a communication circuit.
Uscr terminals 11 and management center 12 may be
described as computers and commence operation as an
ensemble of the function blocks illustrated when prescribed
programs are run.

First of all, the operation of management center 12 will be
described.

Management center 12 is provided with two databases,
called user database (user DB) 13 and software database
(software DB) 14. As shown in FIG. 2, user DB 13 stores the
correspondence relationship between the user ID, which is
identification information given to users of this system by
the manager, and the user name, which is the identification
information ol the user as employed in ordinary societly. As
shown in FIG. 3, software DB 14 stores the correspondence
relationship between the contents ID, which is the identifi-
cation information of each software item supplied and stored
in the CD ROM, and the software decoding key, which is the
decoding information needed to decode this software item.

A link-up unit 15 in management center 12 generates
license information by combining the two data items: user
name and software decoding key. An encoding unit 16
generates a user’s individual key by encoding with key “Ks”
the user characteristic information (details to be explained
later) from user terminal 11. An encoding unit 17 generates
coded license information by encoding the license informa-
tion [rom link-up unit 15 using the user’s individual key
generated by encoding unit 16. In the present licensee
notification system, a DLS (data encryption standard) algo-
rithm is employed for encoding and decoding.

The various function blocks that are not in management
center 12 are arranged 1o operate synchronously when there
is a request from user terminal 11 for information for
removal of the function restrictions. Specifically, when
management center 12 receives a request for information for
removal ol [unction restrictions relating (o a sollware ilem
from user terminal 11, it transmits to user terminal 11 coded
license information containing the wscr’s namc and the
software decoding key needed to remove the functional
restrictions on the soltware item.

Next, the operation of user terminal 11 will be described.
When user terminal 11 runs the programs for communica-
tion and installation, it cxccutes the operation described
below.

A request transmission unit 18 in user terminal 11 trans-
mits to management center 12 information including the
user ID, contents ID, and user’s characteristic information.

DISH-Blue Spike 842
Exhibit 1005, Page 0265

5,935,243

7

Request transmission unit 18 commences operation when
the keyboard (not shown) of user terminal 11 is operated in
accordance with a prescribed procedure that is predeter-
mined as the procedure for request of information for
removal of functional restrictions. This request procedure
includes keyboard input of the user ID and contents ID;
request transmission unit 18 transmits to management center
12 the keyboard input information and the user’s character-
istic information, which is constituted by the ID of the CPU
which is employed in user terminal 11.

As already explained, when a request for information for
removal of functional restrictions is received from user
terminal 11, management center 12 sends to user terminal 11
encoded license information. As a result, after request trans-
mission unit 18 has been operated, user terminal 11 receives
cncoded license information from management center 12.

As shown in the drawings, the encoded license informa-
tion is input to decoding unit 20 in user terminal 11.
Decoding unit 20 also inputs the user’s individual key,

which is generated by encoding unit 19 using the user’s 2

characteristic information and “Ks”. Using this user’s indi-
vidual key, decoding unit 20 decodes the encoded license
information from center terminal 12. The license
information, which is the result of this decoding, is input to
separating unit 21, which is a unit that performs reverse
processing against link-up unit 15 in management center 12.
Separating unit 21 separates and extracts the software
decoding key and user name from the license information,
and respectively supplies the extracted software decoding

key and user name to installation unit 22 and license file -

compilation unit 23.

Lostallation unit 22, using the software decoding key from
separating unit 21, removes the functional restrictions on the
specific software item (details to be described later) in
accordance with the contents ID transmitted by request
transmission unit 18. License (ile compilation unit 23 com-
piles a license file 24 using the user name and contents ID
from scparating unit 21.

FIG. 4 shows diagrammatically the contents of license file
24. As shown in the drawing, license file 24 stores infor-
mation consisting of contents ID and user name, and signa-
ture information, which is information encoded using a
signature key.

Further detailed description of the operation of installa-
tion unit 22 and the operation of the software installed by
installation unit 22 is given below using FIG. 5 and FIG. 6.
Of these Figures, FIG. 5 is a view showing diagrammatically
the structure of software that is the subject of the present

licensee notification system and FIG. 6 is a flow chart

showing the operating sequence of the CPU in the user
terminal when the software that is the subject of the present
licensee notification system is actuated.

As shown in FIG. §, the software that is the subject of the
present system includes a license display routine 25 and
main program 26. In the main program there are defined the
operating procedures relating to the proper functions of this
software; in license display routine 25, there is defined the
content to be executed prior to execution of main program
26.

When this software is actuated, as shown in I'IG. 6, the
CPU, first of all, by checking the contents 1D in the license
file, decides whether or not data corresponding to the
software that is being actuated is present in the license file
(step S101). Then, if the corresponding data exists (step
$101:Y), the CPU performs a check of the legitimacy of the
corresponding data (step 102). In this step, the CPU encodes

10

Ju
o

G

[
@

60

o
72

8

the information consisting of contents ID and user name
stored in the license file using the signature key that is set as
data in license display routine 25, and il the result of this
encoding agrees with the signature information, decides that
the data is legitimate.

If it is legitimate (step S102:0K), the CPU displays the
user name which is read from the license file (step $103),
and commences operation in accordance with the main
program (step S104).

Also, if the corresponding data is not present in the license
file (step S101:N) or if the content of the license file is found
to be not legitimate (step S102:NG), i.e. if the content of the
license file is found to be different from the result of the
compilation performed by license file compilation unit 23,
the CPU terminates operation without displaying the user
name or executing the main program.

As described above, with the licensee notification system
according to the first embodiment, in the user terminal,
installation of the software is performed such that the user
name 1s displayed on start-up, using the encoded license
information supplied from the management center. Also, the
installed software is executed only when the legitimacy of
the license file is verificd. As a result, with this liccnsce
notification system, even if the software and license file are
copied illicitly after being installed, it is difficult to change
the user name appearing on start-up of the software. The
person who has made the illicit copy has no altcrnative but
to use the software with the name of another person being
displayed. As a result, illicit copying ol the sollware can be
prevented if the present licensee notification system is
cmploycd.

Tt should be noted that the licensee notification system of
the first embodiment could be modified in various ways.

It would for example be possible to constitute the system
such that notification of the contents ID cte to the manage-
ment center and notification of the encoded license infor-
mation to the user terminal were performed by another
information transmission unit, such as the post. In this case,
the user terminal is constituted such that installation is
effected using encoded license information input from the
keyboard. It is also possible to conslitute the system such
that the license information is notified in un-encoded form.

Tuis also possible Lo arrange that the signature information
is generated at the management center end, and encoded
license information containing this signaturc information is
notified to the user terminal.

It is also possible to constitutc the system such that,
instead of the user name and signature information, infor-
mation representing the user name in encoded [orm is stored
in the license file, and, when the installed software is
cxceuted, the information in the license file is decoded by
the software and displayed.

It would also be possiblc to arrange that the softwarc was
converted into executable condition not on installation of the
soltware but rather every time execution of the soltware was
specified, the software then being expanded in the memory
and opcration commenced in accordance with the softwarc
now in the memory.

Also, the medium whereby the software is supplied is not
restricted to CD-ROM; a supply mode could be adopted in
which the soltware was stored on another recording medium
such as a floppy disk, or downloaded through a communi-
cation circuit.

Second embodiment

A licensee notification system according to a second
embodiment of the present invention is described below

DISH-Blue Spike 842
Exhibit 1005, Page 0266

5,935,243

9

with reference to FI1G. 7 thru F1G. 9. Of these Figures, FIG.
7 is a functional block diagram illustrating the layout of a
user terminal wherein a licensee notification system accord-
ing to the second embodiment is provided. FIG. 8 is a
diagram illustrating the structure of software that is the
subject of this licensee notification system. FIG. 9 is a flow
chart showing the operating procedure of the CPU when the
software that is the subject of the present licensee notifica-
tion system is executed.

In the licensee notification system according to the second
embodiment, a management center of the same construction
as management center 12 in the first embodiment is
employed. Also, as can be seen from the functional block
diagram shown in FIG. 7, the difference of the action of the
user terminal 11 is slight, so the description will be confined
to the parts of which the details of opcration differ with
respect to the licensee notification system of the first
embodiment.

As shown in FIG. 7, in user terminal 11 according to the

second embodiment, the software decoding key and user 2

name that are separated by separating unit 21 are both input
to the installation unit 29. Installation unit 29 effects instal-
lation by decoding the software in the CD ROM using, the
software decoding key, and generates the user name in
encoded form by encoding the user name. Thus, installation
unit 29, as shown diagrammatically in FIG. 8, writes the
encoded user name 27 that is thus generated in a prescribed
location of license display routine 25.

As shown in FIG. 9, when the software that is the subject
of the licensee notification system of the second embodi-
ment is started up, the encoded user name that was written
in the prescribed location in license display routine 25 is
read and decoded (step S201). Then, after display of the
decoded user name has been performed (step S$202), main
program 27 is executed (step S203).

That is, with this licensee notification system, the user
name that is displayed on start-up of the sottware is set by
directly rewriting the content of the software.

Even with the licensee notification system of this second
embodiment, enabling of the software such that the user’s
name is displayed on start-up is effected independently of
keyboard input from the uscr terminal, so it is not possible
to alter the user name that is displayed by the software
simply by making an illicit copy of the installation software.
Also, the installed software is executed only when the
legitimacy of the license file has been verified.
Consequently, with this licensee notification system, even if
the installed software is illicitly copied, it is difficult to alter

the user name that is displaycd on start-up, so the person s

who has made the illicit copy has no alternative but to use
the soltware with another person’s name displayed. Thus,
use of this licensee notification system can psychologically
prevent illicit copying.

It should be noted that with this licensee notification
system according to the second embodiment, various modi-
fications are possible just as in the case of the licensee
notification system according to the first embodiment.

['or example, it would be possible to constitute a system
such that the notification of the contents ID etc to the
management center and the notification of the encoded
license information to the user terminal were performed by
another information transmission unit such as the post. And
it is also possible (o constlitute a system such that license
information is notified in un-encoded form.

Also, it is possible to constitute a system such that the
software in question is made software wherein operation is

1

o

30

40

=N

0

10

stopped if signature information stored in a second pre-
scribed location of the software does not correspond to user
identification information stored in a first prescribed location
and to arrange that the installation unit 29 writes the user
name to the first prescribed location in the software and
writes the signature information, consisting of this user
name in encoded form, to the second prescribed location.

‘What is claimed is:

1. A licensee notification system for use in a software
sales system in which software in non-executable form is
presented to a uscr, and license information for converting
the software into executable form is transmitted to the user
on condition of payment of a charge, said licensee notifica-
tion system comprising:

a management center that stores and maintains license
information combining, in integrated form, conversion
information for converting software to executable form
and user identification information specifying the user;
and
a user terminal including:

a slorage;

a converter that converts the software in non-
cxccutable form into cxccutable form using the
license information maintained by said manage-
ment center and installs the soltware in execulable
form into said storage; and

a license file creator that creates a license file con-
taining the user identification information along
with signature information created based on the
user information and stores the license file in said
storagc, and

wherein the software includes instructions that command
the user terminal (o read user identification information
in the license file and to notify the user identification
information to the uscr on commencement of its opera-
tion and commands the user terminal to terminate
operation il the signature information in the license [ile
does not correspond to the user identification informa-
tion in the license file.

2. A licensee notification system for use in a software
sales system in which software in non-gxecutable [orm is
presented to a user, and license information for converting
the software in non-executable form to executable form is
informed to the user on condition of payment of a charge,
said licensee notification system comprising:

a management center that stores and manages license
information combining, in integrated form, conversion
information for converting software to executable form
and user identilication information specilying a valid
user; and

a user terminal including:

a storage;

a converter that converts the software in non-
executable form into executable form using the
license information maintained by said management
center and installs the software in executable form in
said storage; and

software rewriting means for rewriting the license
information and user information in a prescribed
location of the software and for rewriting signature
information, determined in accordance with the user
identification information, in a second location in the
software; and

wherein the software includes instructions that commands
the user terminal to read user identification information
from the prescribed location in the software and to

DISH-Blue Spike 842
Exhibit 1005, Page 0267

5,935,243

1

notify the user identification information to the user on
commencement of the software operation along with
instructions that command the user terminal to termi-
nate operation il the signature information stored in the
second prescribed location does not correspond to the
user identification information stored in the prescribed
location.

3. A licensee notification system for use in a software
sales system in which software in non-executable form is
presented Lo a user, and license inlormation [or converting
the software in non-executable form to executable form is
transmitted to the user on condition of payment of a charge,
said licensee notification system comprising:

a management center that stores and manages license
information combining, in integrated form conversion,
information for converting software to executable form
and user identification information specifying the user;
and
a user terminal including:

a storage;

a license file creator for creating a license file
containing the user identification information
and signature information created based on the
conlent of the user identification information,
and that stores the license file in said storage;
and

software execution means for converting, when
execution of the software is designated, the
software into executable form using the license

information in the license file and expanding -

the software in executable form into memory
and executing operation in accordance with the
software in the memory; and

wherein the software includes instructions that commands

the user terminal to read user identification information
in the license file and to notify the user identification
information to a user on commencement of its opera-
tion and commands the user terminal to terminate
operation if the signature information in the license file
does not correspond to the user identification informa-
tion in the license file.

4. A licensee notification system for use in a software
sales system in which softwarc that refers to license infor-
mation is presented to a user, and the license information
about the sofltware is informed (o the user on condition of
payment of a charge, said licensee notification system com-
prising:

a management center that stores and maintains license

information combining, in integrated form, user iden-

tification information specifying the user and signature 3

information whose content is determined in accordance
with the user identification information; and
a uscr terminal including;
a storage; and
license [ile creating means for creating the license
file containing the license information maintained
by said managcmcent ccnter and that stores the
license file in the storage; and
wherein the soltware includes instructions that com-
mand the user terminal to judge the legitimacy of
the user identification information in the license
file using the signature information in the license
file on commencement of operation of the soft-
ware and, if the user identification information is
legitimate, to commence proper operation of the
software after notitying the user identification
information to the user, but, if the user identifica-

=)
U

40

[
@

65

12

tion information is not legitimate, to stop the

operation of the software.

5. A licensee notification system according to claim 1,
wherein the software includes instructions that command the
user terminal to display the user identification information
on a display of the user terminal.

6. A licensee notification system according to claim 1,
wherein the user terminal further comprises:

transmitting means for transmitting a request signal which
requests license information Lo the management center
through a communication circuit; and

said management center, when the request signal is
received from the user terminal, generates license
information and transmits the license information to the
user terminal through the communication circuit.

7. A licensce notification system according to claim 1,
wherein the user identification information includes the
name of the user.

8. A licensee notification system according to claim 1,
wherein the license information includes uscr identification
information encoded with a characteristic key of the soft-
ware; and

the software includes instructions that command the user
terminal to inform to the user the result of decoding the
user identification information using the characteristic
key.

9. A licensee notification system according to claim 1,
wherein the software is presented to the user in encoded
form, and the conversion information is information for
decoding the software.

10. A licensee notification system according to claim 1,
wherein the license information contains the user identifi-
cation information in a form that is incapable of being
separated without special information.

11. A licensee notification system according to claim 1,
wherein the license information is the result of encoding the
conversion information and user identification information,
combined in integrated manner.

12. A Ticensee notification system for use in a software
sales system in which software in non-executable form is
presented to a user, and license information for converting
the software into executable form is transmitted to the user
on condition of payment of a charge, said licensee notifica-
tion system comprising;

a management center that stores and maintains license
information combining, in integrated form, conversion
information for converting software to executable
form, user identification information specifying the
user and sipnature information whose content is deter-
mined in accordance with the content of the user
identification information; and
a user terminal including:

a storage,

a converter that converts the software in non-
executable form into executable form using the
license information maintained by said man-
agement center and installs the software in
executable form into said storage; and

a license file creator that creates a license file
containing the user identification information
and signature information contained in the
license information and stores the license file
in said storage, and

wherein the software includes instructions that command
the user terminal to read user identification information
in the license file and to notify the user identification

DISH-Blue Spike 842
Exhibit 1005, Page 0268

5,935,243

13

information to the user on commencement of its opera-

tion along with instructions that command the user

terminal to terminate operation if the signature infor-
mation in the license file does not correspond to the
user identification information in the license file.

13. A licensee notification system for use in a software
sales system in which software in non-executable form is
presented to a user, and license information for converting
the software in non-executable form to executable form is
informed to the user on condition of payment of a charge,
said licensce notification systcm comprising:

a management center that storcs and manages licensc
information combining, in integrated form, conversion
information for converting software to executable
form, user identification information specifying a valid
user and signature information determined in accor-
dance with the content of the user identification infor-
mation; and

a user terminal including
a storage;

a converter that converts the software in non-
executable form into executable form using the
license information maintained by said management
center and installs the software in executable form in
said storage; and

software rewriting means for rewriting the license
information in a prescribed location of the software
installed by said converter with the user identifica-
tion information contained in the license information

and rewriting the signature information in a second -

prescribed location in the softwarc; and
wherein the software includes instructions that commands
the user terminal to read user identification information
in the prescribed location in the software and to notify
the user identification information to the user on com-
mencement of the software operation along with
instructions that command the user terminal to termi-
nate operation if the signature information stored in the
second prescribed location does not correspond to the

Ju
o

=)
U

. . B . . . 40
user identification information that is stored at the

prescribed location.

14. A licensee notification system for use in a software
sales system in which software in non-executable form is
presented to a user, and license information for converting
the software in non-executable form to executable form is

14

transmitted to the user on condition of payment of a charge,
said licensee notification system comprising:

a management center that stores and manages license
information combining, in integrated form conversion,
information for converting software to executable
form, user identification information specilying the
uscr and signaturc information dctcrmincd in accor-
dance with the content of the user identification infor-
mation; and
a user lerminal including:

a storagg;

license file creator for creating a license file
containing the user identification information
and signature information contained in the
license information maintained by said man-
agement center, and that stores the license file
in said storing; and

software execution means for converting, when
execution of the software is designated, the
software into executable form using the license
information in the license file and expanding
the software in executable form into memory
and executing operation in accordance with the
software in the memory; and

wherein the software includes instructions that commands
the user terminal to read user identification information
in the license file, notify the user identification infor-
mation to a user on commencement of its operation and
command the user terminal to terminate operation if the
signature information in the license file does not cor-
respond o the user identification information in the
license file;

wherein said license information containing signature
information whose content is determined in accordance
with the content of the user identification information;

said license file creator creates the license file containing
the signature information contained in the license infor-
mation; and

the software includes instructions that command the user
terminal to terminate operation if the sipnature infor-
mation in the license file does not correspond to the
user identification information in the license file.

DISH-Blue Spike 842
Exhibit 1005, Page 0269

Exhibit 9

DISH-Blue Spike 842
Exhibit 1005, Page 0270

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: Scott A. Moskowitz

U.S. Patent No.: 9,104,842

Issue Date: August 11, 2015

Appl. No.: 11/895,388

Filing Date: August 24, 2007

Title: DATA PROTECTION METHOD AND DEVICE
Control No.: To be assigned

Mail Stop Ex Parte Reexam
ATTN: Central Reexamination Unit
Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

DECLARATION OF DR. CLAUDIO T. SILVA IN SUPPORT OF REQUEST FOR
EX PARTE REEXAMINATION OF U.S. PATENT NO. 9,104,842

DISH-Blue Spike 842
Exhibit 1005, Page 0271

TABLE OF CONTENTS

L INTRODUCTTION ...t 3
. QUALIFICATIONS ...t 3
1. DOCUMENTS AND INFORMATION CONSIDERED ... 7
IV. SUMMARY OF OPINIONS.o 7
V. UNDERSTANDING OF THE LAW ..o 8
A, Claim COnSITUCTIONoivii e e 8
B. Anticipation under 35 U.S.C. § 102 ..o 8
VI. PERSON OF ORDINARY SKILL IN THE ART ... 8
VII. CLAIM CONSTRUCTION ...t 10
A. “encoding algorithm™ (claims 12-14)cc.ccooiiiiiiiiieeeee 10
B. “code resource” (claims 12-14)oooiiiiiiiii 11
C. “software code interrelationships™ (claims 14)cccoooiiii 11

VIII. CLAIMS 11,12, 13, AND 14 ARE ANTICIPATED IN VIEW OF THE

PRIOR ART ... 12
A. Claims 11, 12, 13, and 14 are Anticipated by Beetcher. 12
1. Beetcher Anticipates Independent Claim 11................cocooo 12
2. Beetcher Anticipates Independent Claim 12.................cooeen 22
3. Beetcher Anticipates Independent Claim 13................ccooeee 34
4. Beetcher Anticipates Independent Claim 14...............cccooen 41
B. Claims 11, 12, 13, and 14 are Anticipated by Beetcher "072................ 46
1. Beetcher 072 Anticipates Independent Claim 11....................... 46
2. Beetcher "072 Anticipates Independent Claim 12....................... 56
i

DISH-Blue Spike 842
Exhibit 1005, Page 0272

3. Beetcher Anticipates Independent Claim 13.............cccoeovienen 67

4. Beetcher "072 Anticipates Independent Claim 14....................... 73
C. Claims 11, 12, 13, and 14 are Anticipated by Cooperman. 79
1. Cooperman Anticipates Independent Claim 11.ccooe 79
2. Cooperman Anticipates Independent Claim 12. 84
3. Cooperman Anticipates Independent Claim 13. 90
4. Cooperman Anticipates Independent Claim 14. 95
D. Claims 11,12, 13, and 14 are Anticipated by Hasebe........................ 102
1. Hasebe Anticipates Independent Claim 11. 102
2. Hasebe Anticipates Independent Claim 12. 109
3. Hasebe Anticipates Independent Claim 13. 117
4. Hasebe Anticipates Independent Claim 14. 122

i

DISH-Blue Spike 842
Exhibit 1005, Page 0273

I, Claudio T. Silva, declare as follows:

L. Introduction

1. I have been retained by Juniper Networks. Inc. as an independent expert consultant.
Although I am being compensated at my usual rate for the time I spend on this matter, no part of
my compensation depends on the outcome of this proceeding, and I have no interest in the
outcome of this proceeding.

2. I have been asked to consider whether claims 11-14 of U.S. Patent No. 9,104,842 (“the
842 Patent™) are valid in view of certain prior art discussed below. As I explain in more detail
below, in my opinion, claims 11-14 are invalid in view of the prior art discussed in this
declaration.

1I. Qualifications

3. I am a Professor of Computer Science and Engineering and Data Science at New York
University. Prior to my work in academia, I worked in industry for six years in the area of
computer graphics and visualization. I received a Bachelor of Science in Mathematics from the
Federal University of Ceara in Brazil, and a Ph.D. from State University of New York at Stony
Brook in Computer Science. My curriculum vitae, which includes a more detailed account of my
background, experience, and publications, is attached hereto (Ex. 9).

4. From July 1998 until July 2000, I served as an adjunct assistant professor in the
Department of Applied Mathematics and Statistics at SUNY Stony Brook. From September
2002 until April 2006 [was an associate professor in the Department of Computer Science &
Engineering at Oregon Health & Science University. From October 2003 until June 2011, I was
a faculty member at the Scientific Computing and Imaging Institute at the University of Utah.
From January 2008 until May 2009, I served as Associate Director at the University of Utah’s

Scientific Computing and Imaging (SCI) Institute. I also served as an Associate Professor of

3

DISH-Blue Spike 842
Exhibit 1005, Page 0274

Computer Science from October 2003 until June 2010, and a Professor of Computer Science
from July 2010 until June 2011 at the University of Utah. I am currently a Professor of Computer
Science and Engineering at NYU’s Tandon School of Engineering, a position I have held since
July 2011 (when the school was called Polytechnic Institute of NYU). I also serve as a faculty
member to a number of organizations within NYU, including the Center for Urban Science and
Progress, the Center for Data Science, and Courant’s Department of Computer Science.

5. Between 1998 and 2002, I worked in industry at the IBM T. J. Watson Research Center
and AT&T Labs—Research. At both places, I worked on 3D data acquisition, modeling, and
rendering techniques. As part of my activities at IBM, I was part of the MPEG—4 3D Model
Coding (3DMC) standardization committee.

6. In 2011, I co—founded Modelo, Inc., a company that creates custom advanced 3-D
modeling solutions for its clients.

7. I have published over 250 technical articles, most at highly competitive refereed
conferences and rigorously reviewed journals. I currently serve as chair of the executive
committee for the [IEEE Computer Society Technical Committee on Visualization and Graphics.
I also hold 12 U.S. patents. My publications have received awards from organizations and
programs such as the IEEE Shape Modeling International, IEEE Visualization, EuroVis (a
conference co—sponsored by Eurographics and the IEEE Visualization and Graphics Technical
Committee), and Eurographics (the European Association for Computer Graphics).

8. My research has been funded by the National Science Foundation, the Department of
Energy, the National Aeronautics and Space Administration, the National Institutes of Health,
the Alfred P. Sloan Foundation, the Gordon and Betty Moore Foundation, Defense Advanced

Research Projects Agency, AT&T, IBM, and MLB Advanced Media.

DISH-Blue Spike 842
Exhibit 1005, Page 0275

9. Regarding the subject matter of the *842 Patent relating to encoding and decoding license
information into software applications, I have been an editor on several journals relating to
digital encoding, such as Computer Graphics Forum, Computer and Graphics, IEEE Transactions
on Visualization and Computer Graphics. [have been co-chair at several symposiums on digital
encoding, such as the IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics and
the IEEE Parallel & Large-Data Visualization & Graphics Symposium. I have won several
awards, such as Best Paper Award at the 2011 ACM Eurographics Symposium on Parallel
Graphics and Visualization. I have been a member of program committees relating to digital
encoding, such as the Pacific Graphics and Eurographics. I have also helped develop techniques,
codes, and tools to enable new forms of encoding and decoding data with the MPEG-4 3D
Model Coding (3DMC) standardization committee. Furthermore, [was the founding director of
Graphics and Visualization Track at University of Utah’s School of Computing. Lastly, I have
done research on the subject of digital encoding.
10. With regard to these research projects, I have published several papers, including this
small sample (please see my CV for many more):
¢ “Parallel Volume Rendering of Irregular Grids,” Ph.D. thesis, State University of
New York at Stony Brook (1996),
o “A Unified Infrastructure for Parallel Out-Of-Core Isosurface and Volume
Rendering of Unstructured Grids,” Y.-J. Chiang, R. Farias, C. Silva, and B. Wei,
IEEE Parallel & Large-Data Visualization & Graphics Symposium, pages 59-66

(2001);

DISH-Blue Spike 842
Exhibit 1005, Page 0276

“Out-Of-Core Sort-First Parallel Rendering for Cluster-Based Tiled Displays,” W.
Corréa, J. Klosowski, and C. Silva, Parallel Computing, Vol 29, pages 325-338
(2003);

Image-Space Acceleration for Direct Volume Rendering of Unstructured Grids
using Joint Bilateral Upsampling, S. P. Callahan and C. Silva, Journal of
Graphics, GPU, & Game Tools, 14(1): page 115 (2009);

Hardware Accelerated Simulated Radiography, D. Laney, S. Callahan, N. Max, C.
Silva, S. Langer, and R. Frank. IEEE Visualization 2005, pages 343-350 (2005);
“Multi-Fragment Effects on the GPU Using the k—Buffer,” L. Bavoil, S.P.
Callahan, A. Lefohn, J.1..D. Comba, and C. Silva, ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, pages 97-104 (2007);,
“Hardware—Assisted Visibility Sorting for Unstructured Volume Rendering,” S.
Callahan, M. Ikits, J. Comba, and C. Silva, IEEE Transactions on Visualization
and Computer Graphics, 11(3):285-295 (2005),

iWalk: Interactive Out—-Of—Core Rendering of Large Models, W. Correa, J.
Klosowski, and C. Silva, Technical Report TR-653-02, Princeton University
(2002),

“Efficient Conservative Visibility Culling Using The Prioritized—Layered
Projection Algorithm,” J. Klosowski and C. Silva, 7(4):365-379, IEEE
Transactions on Visualization and Computer Graphics (2001); and

“Efficient Compression of Non—Manifold Polygonal Meshes,” A. Gueziec, F.
Bossen, G. Taubin, and C. Silva, 14(1-3):137-166, Computational Geometry:

Theory and Applications (1999).

DISH-Blue Spike 842
Exhibit 1005, Page 0277

11. I have also taught graduate and undergraduate courses with a strong focus on digital

encoding, courses which also cover topics related to cryptography and watermarking,

IIL

Documents and Information Considered

12. I have reviewed the "842 Patent, including the claims of the patent in view of the

specification, and I have reviewed the 842 Patent’s prosecution history. In addition, I have

reviewed the following documents:

Iv.

U.S. Patent No. 5,933,497 (“Beetcher™);

Japanese Patent Application Publication No. H05334072 (“Beetcher '072);
English Translation of Beetcher *072;

U.S. Patent No. 5,935,243 (“Hasebe™),

PCT Application Publication No. WO 97/26732 (“Cooperman’); and

Plaintiff Blue Spike LLC’s Proposed Terms for Construction, Pursuant to Patent
Rule (P.R.) 4-2 in Blue Spike, LLC v. Juniper Networks, Inc., Case No. 6:17-cv-16-
KNM (E.D. Tex.)

Summary of Opinions

13. In my opinion, claims 11, 12, 13, and 14 of the "842 Patent are anticipated by the prior

art. As I explain in more detail throughout this declaration, Beetcher anticipates every element of

claims 11-14. Moreover, Beetcher 072 anticipates every element of claims 11-14. And as I

further explain in this declaration, Cooperman anticipates every element of claims 11-14.

Additionally, as I further explain in this declaration, Hasebe anticipates every element of claims

11-14. Therefore, claims 11-14 are invalid as anticipated by the prior art.

DISH-Blue Spike 842
Exhibit 1005, Page 0278

V. Understanding of the Law
14. Counsel has advised me of the legal concepts, summarized below, that are relevant to

reexamination proceedings. I have applied those concepts in rendering my opinions in this

declaration.
A. Claim Construction
15. I understand that during a reexamination of an unexpired patent, claim terms are accorded

their broadest reasonable interpretation in light of the specification to a person of ordinary skill
in the art at the time the invention was made. Counsel has advised me that the broadest
reasonable interpretation must be consistent with the specification, and that claim language
should be read in light of the specification and teachings in the underlying patent.

B. Anticipation under 35 U.S.C. § 102

16. I understand that anticipation of a claim requires that every element of a claim be
disclosed expressly or inherently in a single prior art reference, and arranged in the prior art
reference as arranged in the claim. A single prior art reference inherently discloses a claim
feature if that feature is necessarily present, or inherent, in the reference.

VI Person of Ordinary Skill in the Art

17. I understand that I must analyze and apply the prior art from the perspective of a person
having ordinary skill in the art as of March 24, 1998, which I understand is the patent’s earliest
possible priority date. When forming my opinions, I analyzed and applied the prior art from the
perspective of a skilled artisan as of March 24, 1998.

18. It is my opinion that in March 24, 1998, a person of ordinary skill in the art in digital
encoding would have been a person with a computer science degree, or closely related field, and
2 years of experience in the field of data encoding and/or digital watermarking. I recognize that a
person of ordinary skill in the art could have less education and more industry experience, or

8

DISH-Blue Spike 842
Exhibit 1005, Page 0279

vice versa, and still meet the definition of a person of ordinary skill in the art. My opinion is
based on my personal knowledge and experience working with persons of ordinary skill in the
art in the 1998 timeframe.

19. In March 1998, I had a Ph.D. in computer science and had several years of practical
experience both in industry and academia (including M.S. and Ph.D.). As of the year 1998, I was
teaching and working with individuals who met the above criteria for persons of ordinary skill in
the art. In particular, I have taught and worked with distinct groups of graduate students, and
even back in 1998 I had advised a number of MS students on various projects. One group entered
the graduate program with B.S. degrees in CS/CE/EE and several years of industry training.
Finally, I have worked with and taught advanced Ph.D. students that had at least two years of
post—BS experience and knowledge gained while in the graduate program. During my time in
industry, many of my colleagues possessed at least a B.S. in the relevant fields and had several
years of work experience.

20. These students and colleagues all possessed basic knowledge regarding the design and
development of digital encoding and/or watermarking technologies. Further, many of these
students ultimately found employment at companies that had an expressed interest in and need
for skills relating to these technologies, further corroborating that these were ordinarily skilled
artisans.

21. Thus, I am familiar with the understanding and knowledge of persons of ordinary skill in
the art as of March 24, 1998, and was at least as qualified as the POSITA that I have identified
above. Thus, I understand the perspective of a POSITA, which I have applied in my analysis. My
opinions would be the same, however, even if the level of ordinary skill varied by some time or

varied somewhat with respect to subject matter.

DISH-Blue Spike 842
Exhibit 1005, Page 0280

VII. Claim Construction

A. “encoding algorithm” (claims 12-14)
22. The term “encoding algorithm™ should be given its broadest reasonable interpretation
consistent with the specification of “a process or set of instructions for encoding data.” The *842
specification includes several examples of encoding algorithms illustrating that these functions
are processes or sets of instructions for encoding data to generate license keys. In one instance,
the specification states that “any authenticating function can be combined, such as Digital
Signature Standard (DSS) or Secure Hash Algorithm (SHA)” to generate an encoded key.! In
another, the specification states:

A block cipher, such as a Data Encryption Standard (DES) algorithm, in

combination with a sufficiently random seed value, such as one created using a

Message Digest 5 (MD3) algorithm, emulates a cryptographically secure random
bit generator.’

A POSITA would have interpreted these examples as processes or sets of instructions for
encoding data.

23. This 1s also consistent with how a POSITA would have understood an “encoding
algorithm.” An algorithm, whether for encoding or some other function, is a process or set of
instructions for performing a task. An encoding algorithm is thus a process or set of instruction
for encoding data.

24, Therefore, the term “encoding algorithm™ should be interpreted as “a process or set of

instruction for encoding data.”

1>842 Patent at 8:5-9, 21-23.
2°842 Patent at 8:12-16.

10

DISH-Blue Spike 842
Exhibit 1005, Page 0281

B. “code resource” (claims 12-14)

25. Based on my review of the *842 patent and its prosecution history, the meaning of term
“code resource” is unclear to a POSITA. Yet, I understand that a requester for an ex parte
reexamination may not challenge a claim based on indefiniteness of a claim term.

26. The *842 Patent states that sub-objects and a memory scheduler, as well as simply data,
are examples of code resources.? But the “842 Patent provides no objective boundaries on what
resources in software code would qualify as “code resources,” which would have left a POSITA
uncertain as to the meaning of the term and the scope of the claims.

27. I understand that, in the litigation involving the "842 Patent, Patent Owner proposes that
this term should have its “plain and ordinary meaning.” For the purposes of analyzing the term
and the prior art, | use Patent Owner’s proposed interpretation for this term.

C. “software code interrelationships” (claims 14)

28. Based on my review of the 842 patent and its prosecution history, the meaning of term
“software code interrelationships™ is also unclear to a POSITA. As previously explained, I
understand that a requester for an ex parfe reexamination may not challenge a claim based on
indefiniteness of a claim term.

29. As an expert with more than 27 years of relevant experience, I have never encountered
this term outside of the *842 Patent. I therefore looked to the "842 Patent for guidance on the
meaning of the term.

30. The term “software code interrelationship™ does not appear in the specification nor is
there any meaningful discussion regarding interrelationships between code resources. I also

looked to the "842 Patent’s prosecution history for guidance as to the meaning of this term.

37842 Patent at 11:55-65, 15:36-42.

11

DISH-Blue Spike 842
Exhibit 1005, Page 0282

During the prosecution, Patent Owner stated an “interrelationship™ is “the way in which two or
more things affect each other because they are related in some way.” But this statement provides
little guidance to a POSITA as to the objective boundaries as what constitutes “software code
interrelationships.” This would have left a POSITA uncertain as to the meaning of the term and
the scope of the claims.

31. I understand that, in the litigation involving the *842 Patent, Patent Owner proposes that
this term should have its “plain and ordinary meaning.” For the purposes of analyzing the term
and the prior art, [use Patent Owner’s proposed interpretation for this term.

VIII. Claims 11, 12, 13, and 14 are Anticipated in View of the Prior Art.

A. Claims 11, 12, 13, and 14 are Anticipated by Beetcher.

1. Beetcher Anticipates Independent Claim 11.
aj Claim 11’s Preamble

32. The preamble of claim 11 reads: “A method for licensed software use, the method
comprising.”
33. I understand that a claim’s preamble generally does not limit the scope of the claim under
the broadest reasonable interpretation applied during reexamination. Still, Beetcher discloses
claim 11°s preamble.
34. Specifically, Beetcher teaches a method of controlling access to licensed software using
an encrypted entitlement key.® Beetcher summarizes its invention as:

Software is distributed according to the present invention without entitlement to

run. A separately distributed encrypted entitlement key enables execution of the
Software. The key includes the serial number of the machine for which the Software

4 *842 Prosecution History at 518.
* Beetcher at Abstract, 4:3-13, 4:39-44, 10:48-11:3; see also Beetcher at 1:7-11, 1:54-57, 3:54-62.

12

DISH-Blue Spike 842
Exhibit 1005, Page 0283

1g:licensed, together with a plurality-of- entitlement bits indicating which Software
‘miodules are entitled to run on the frachine ®

35, Beetcher' s Figure 10, as provided below, depicts the use of an entitled version of

software based on the customer’ s license:

36, AsIdetail below, Beetcher teaches the remaining steps that cornprise the method

¢ Beetcher at4:3-9.

13

DISH-Blue Spike 842
Exhibit 1005, Page 0284

b) Element 11.1
37. The first element of claim 11 reads: “loading a software product on a computer, said
computer comprising a processor, memory, an input, and an output, so that said computer is
programmed to execute said software product.” I refer to this as Element 11.1 throughout this
declaration.
38. Beetcher discloses element 11.1. Specifically, Beetcher’s system includes a customer
computer 101 including a CPU 102, memory 104, and storage devices 106-108.7 This customer
computer 101 also includes a media reader 110 (i.e., an input) and an operator console 109 (i.e.,
an output).® As illustrated in annotated Figure 1, Beetcher discloses a computer having software

product 112 loaded for execution (dashed perimeter):

’ Beetcher at 5:14-21, Fig. 1.
8 Beetcher at 5:25-32, 6:7-15, Fig. 1.

14

DISH-Blue Spike 842
Exhibit 1005, Page 0285

i, %
b

s,

NN RN

G R

SRR

G B

s

‘\N\m\\

s

g

it rersitieeeess!

%

sy
2
‘o

39 Beetcherexp 1a1ns that the cistorner 1oads the med1a such as-an optical dislk, containing a
software product onto the computer to execute the software product:

[Bloftware media 112 cormprise-one or more optical readfonl Iy disks, and unit 110
15 an optical disk reader, it being understood that electronic distr ibution or other

~distribution media could be used. Upon receipt of softwaremedia 112, the customer
will typically load the desired software modules from unit 110 into system 101, and.
store the software modules on storage devices 106-1087

40 Thus, each limitation of element 11.1 is disclosed by Beetcher.

? Beetcher at 6:7-15; see also Beetcher at Abstract, 3:48-50, 9:51-55, Fig 1, claim 6,

15

DISH-Blue Spike 842
Exhibit 1005, Page 0286

c) Element 11.2

41. The second element of claim 11 reads: “said software product outputting a prompt for
input of license information.” I refer to this as Element 11.2 throughout this declaration for
convenience.
42. Beetcher discloses element 11.2. Beetcher explains that its software product includes a
user interface routine for the customer to input a license key into the computer before the product
can be used.!® As an example, Beetcher explains that the software product prompts the user to
input license information:
This operation system support at virtual machine level 404 contains two user
interface routines needed to support input of the entitlement key. General input
routine 441 is used to handle input during normal operations. In addition, special
install input routine 440 is required to input the key during initial installation
of the operating system. This is required because that part of the operating system
above machine interface level 405 is treated for purposes of this invention as any
other program product; it will have a product number and its object code will be

infected with entitlement verification triggers.!!

Beetcher illustrates an unencrypted version of this license information in Figure 2, provided

below:

10 Beetcher at 7:66-8:8; see also Beetcher at 3:25-28.
! Beetcher at 7:66-8:8.

16

DISH-Blue Spike 842
Exhibit 1005, Page 0287

@

AT
201 202 203 pp (U NCRVPTED) 205

| “ﬁaﬁm oocortoofoooocooofooro . . . mfinee ... 10

: ? | ‘ ;‘\,, e —
CHARGE IKEY TYPE !
EKOUp By | IPR{}!}MT gs;»aﬂnﬂ%%m FLAGS
(4 BITSH ; 4 |

; :Ii i ;

y ot \ ».

VERSTON mgmua\gzm AL

{8 RITS) {28 BITS)

43. Beetcher goes on to explain that the software’s “install input routine 440 interacts with
the operator to receive the input™ of the customer’s license information during the software’s
initial installation.'> And as I explain with respect to element 11.1, the customer’s computer
includes an operator console 109 shown with a monitor and keyboard that “can receive input
from an eperator.”'®
44. Thus, each limitation of element 11.2 is disclosed by Bccfchcr.

d) Element 11.3
45. The third element of claim 11 reads: “said software product using license information
entered via said input in response to said prompt in a routine designed to decode a first license
code encoded in said software product.” I refer to this as Flement 11.3 throughout this

declaration for convenience.

2 Beetcher at 9:51-55; se¢ also Beetcherat Fig. 4 (reference number 440), claim 6.
13 Beetcher at 3:25-28, Fig. 1.

17

DISH-Blue Spike 842
Exhibit 1005, Page 0288

46. Beetcher discloses element 11.3. Beetcher explains that, afier inserting the software’s
disk 112, the operator console prompts the customer to enter a license key.!? Beetcher teaches
that the customer enters entitlement key 111, i.e., license information, in response to the prompt
initiated by install input routine 440.!> After entering that key, Beetcher discloses that the
customer’s computer uses a decode key to initiate unlock routine 430 to decode the license code
encoded in the software product.'® Beetcher’s Figures 4 and 9a, provided below, show the
software using the key (i.e., license information) entered by the customer to decode a first license
code encoded in the software product. For instance, annotated Figure 4 shows that the install
input routine 440 starts unlock routine 430 once the customer inputs key 111 into the computer.!’
And “[u]nlock routine 430 uses the unique machine key to decode[] entitlement key 111~

(dashed perimeter):'®

1 Beetcher at 6:11-19, 7:66-8:8, Figs. 1, 9a.

15 Beetcher at 7:66-8:8; see also Beetcher at 9:51-55, Figs. 1, 4, claim 6.

16 Beetcher at 7:39-42, 9:49-60; see also Beetcher at 6:66-7:5, 8:60-62 Figs. 4, 9a.
7 Beetcher at 8:3-13, 9:52-60.

18 Beetcher at 7:39-42; see also Beetcher at 8:62-62; 10:27-36.

18

DISH-Blue Spike 842
Exhibit 1005, Page 0289

SR S— iii&
- B <A ER
g et
F e, o
SR E O

N S -
g B
gaw
FRPGY

TR R
&

R

RS
&

{8a8y

B A

[

NN SN NN NN ONNNRNSS R NN \V&\\\“\\W A »\\\\\\h%«\'\\&b‘ NN

HADMMARY | DERIML MOMRRN g R — fRa
it

47, Beetcher details that unlock routine 430 “handles the decoding process,” illustrated in
Figure 94’ s steps 902-909 “Unlock routine 430 canses get machine key function 420 to retrieve.
the machine serial nurnber and generate the machine key at 902. Unlock routine 430 then uses
the machine key to decode the entitlemnent key 111 at step 90371

48 Theunencrypted entitlemnent key includes, among otherthings, version field 202

specifying the user’s entitled version level as well as product entitlernent flags field 205

12 Beetcher at 9:57-60.

12

DISH-Blue Spike 842
Exhibit 1005, Page 0290

specifying which product number to which the user is entitled.”” Beetcher iil’us_tra‘tes‘ an

unencrypted version of this license information in Figure 2, provided below:

FKTI?LEHEM XY
. “+Joo1c]oooo1100]00000000[00r0 . . . 1fuee . .. 0]
. CHAR%%@ [KEY TYPE | | PRODUET wmmm FLAGS |
GROUP. ! (8 BITST | i (30 B
. (4 BITS) fl; ! :
. f : = .
a i ' ! ! .
. VERSTON MACHINE SERTAL
. {8 BITS) {28 BITS)
Y :

49. Beeicher's unlock routine 430 will complete the decoding process by building an
encoded product key table (step 904), populating the key table for the relevant software product
specified in the entitlement key (steps 905-908), and saving the key table (step 909).2! And
Beetcher’s RAM includes table 460 reflecting which products the user has entitlement keys.” As
I detail below, the license information decodes a license code in the software product using the
key’s version and product number fiel ds.

50. When gcneraﬁng"its software code, Beetcher exp_léinsﬂiat the code includes a series of
entitlement verification triggering instructions.” These triggering instructions are encoded into

the software code when being compiled and translated, as shown in Figure 3 below:

2 Beetcher at 6:22-40.

2 Beetcher at 9:60-10:19, Figs. 5, 9a.

2 Beetcher at 7:4244, 8:43-52, 1Q:2ﬁ-47, Fig. 6, Fig, 9a.

Beetcher at 6:41-38, 11:4-39; see also Beetcher at 4:14-23, 8:5-22, 8:56-9:20.

20

DISH-Blue Spike 842
Exhibit 1005, Page 0291

%

L sd

o

L
.. A
roven ///

O
T

&

51. 'Whenever Beelcher’s software code encounters one of the triggermg instructions, the
code verifies that the customier 13 entitled to use the software. It does o by accessing the license
ey information stored in the key table 460.2 For instance, Beetcher details that the custorner’ s
cornputer will access routines, such as check lock function 422, to interpret the license code
information contained in cne of the triggering instructions:

If any instruction is an entitlement werification triggering instriction 301 (step

1004 check lock function 422 15 invoked Chedt lock function 422 accesses the

product lack table entry 601 corresponding to the product number contained in the
triggering instruction at step 1005, If the version number in product lock table 460

M Beetcher at 1048-11:39; see also Beetcher at Abstract, 81422, 8:53-9:20, Fig. 10

21

DISH-Blue Spike 842
Exhibit 1005, Page 0292

1s equal to or greater than the version number 303 contained in triggering instruction
301, the software is entitled to execute (step 1006).%

Thus, a POSITA would have understood that Beetcher teaches using license information in a
routine designed to decode a first license code encoded in a software product.

52. Moreover, Beetcher explains that the triggering instructions are encoded into the code
resources to control software functionality:

[An] additional barrier would be to define the entitlement triggering instruction to
simultaneously perform some other function.... The alternative function must be
so selected that any compiled software module will be reasonably certain of
containing a number of instructions performing the function. If these criteria are
met, the compiler can automatically generate the object code to perform the
alternative function (and simultaneously, the entitlement verification trigger) as
part of its normal compilation procedure. This definition would provide a
significant barrier to patching of the object code to nullify the entitlement triggering
instructions.?®

Beetcher further teaches that “the triggering instruction is also a direct instruction to perform
some other useful work [E]xecution of the triggering instruction causes system 101 to
perform some other operation simultancous with the entitlement verification.”?’
53. Therefore, each limitation of element 11.3 is disclosed by Beetcher. And as I explain
above, Beetcher discloses all the other elements of claim 11. Thus, in my opinion, claim 11 is
anticipated by Beetcher.

2, Beetcher Anticipates Independent Claim 12.

aj Claim 12°s Preamble

54, The preamble of claim 12 reads: “A method for encoding software code using a computer

having a processor and memory, the method comprising.”

25 Beetcher at 10:52-62, Fig. 10.
26 Beetcher at 11:14-28; see also Beetcher at 4:25-33, 6:58-65.

7 Beetcher at 6:58-65 (Beetcher specifies that these functions are those “which do not require that
an operand for the action be specified in the instruction.”).

22

DISH-Blue Spike 842
Exhibit 1005, Page 0293

55. I understand that a claim’s preamble generally does not limit the scope of the claim under
the broadest reasonable interpretation applied during reexamination. Nevertheless, Beetcher
discloses claim 12’s preamble.

56. Claim 12 recites both a “computer” and a “computer system.” It is unclear whether those
elements refer to the same computing device or separate computing devices. When analyzing
claim 12 using the broadest reasonable interpretation, I interpret the “computer” recited in the
preamble to be a device separate from the term “computer system.”

57. Beetcher discloses a method for encoding software code using a computer with a
processor and memory. Beetcher explains that the software distributor has “development
computer system 125, which contains compiler 126 and translator 127" where “[t]he software
modules are recorded on software recording media 1127 and “entitlement key
generator/encrypter 122 and a database 123 containing customer information.”?® Beetcher
specifies these compiling and key generating functions may be performed by a single
computer.”” Annotated Figure 1, below, illustrates the distributor’s computer system distributing

memory media 112 and compiling encoded software code:

28 Beetcher at 5:38-48; see also Beetcher at 9:1-20.
2 Beetcher at 5:51-58.

23

DISH-Blue Spike 842
Exhibit 1005, Page 0294

e

g

e

e

i

A

e

b

4

g S

s

RN
e

SARE

Ve 2

bsrtrtsassiits

£
e
& |y
PR T

o
N s
3 ~
§ 8§ & RS
R R N
o ¥ BN
VRt]
i8R]
LSS N

R

¥
=

Y

58, Beetcher'sFigure 7 shows the software cade being

triggers decoded by the customer’s licensing information:*

0 Bestcher at 9:1-20, Fig. 7.

enicoded to include watermarking

DISH-Blue Spike 842
Exhibit 1005, Page 0295

?Rﬁiﬁﬂﬁﬁ Ei‘ﬁ%‘ié?&
§8¥§§§T ‘i“%} ?ﬁ&ﬁiﬁ&ﬁ?ﬁ&

T e |

%‘R&ﬁi’s& ATOR INSERTS
RIGGERS

59, Thus, a POSITA would have understood that Bestcher’s distributor compiles and stores
the encode software code using a processor and merriory akin to the congole’s CPU 102 and
mermory devices 1106-108 Indeed, for as long as computers hav e beer around, it'has:been
standard practice to store the c_omputervcode that executes programs—such as the software code
used for Beetcher’ s invention—in mernory. In fact, a POSITA would have had fio option but to
store Beetcher’s software code in memeory, as this is required in'computer programrming,
Similarly; it has been standard practice to execute such programs using a processor in the
computer.

60, Az Tdetailbelow, Beetcher teaches the remaining steps that comprise the method.

25

DISH-Blue Spike 842
Exhibit 1005, Page 0296

b) Element 12.1
61. The first element of claim 12 reads: “storing a software code in said memory.” I refer to
this as Element 12.1 throughout this declaration.
62. Beetcher discloses element 12.1. Specifically, Beetcher describes a development system
125 for compiling and translating for the software code.?! Beetcher states that the software code
is stored as disks 112 in warehouse 120. A POSITA would have understood that developer
system 125 stores the compiled and translated code in memory and records that code onto disks
112 for distribution to customers. And as I discuss regarding claim 12°s preamble, it has been
standard practice to store computer code—such as Beetcher’s software code—in memory. In
fact, a POSITA would have had no option but to store this software code in memory, as this is
required in computer programming,.
63. Thus, each limitation of element 12.1 is disclosed by Beetcher.

c) Element 12.2

64. The second element of claim 12 reads: “wherein said software code comprises a first
code resource and provides a specified underlying functionality when installed on a computer
system.” I refer to this as Element 12.2 throughout this declaration.

63. Beetcher discloses element 12.2. Specifically, Beetcher teaches that its software code has
multiple code resources that include a first code resource.’? Beetcher’s code resources include
software modules 300 (dashed box) including sub-objects within the code, as shown below in

annotated Figure 4 and Figure 3.% These sub-objects control multiple functions of the software

3 Beetcher at 5:38-48, 9:1-20.
32 Beetcher at 5:40-43, 6:1-15.
33 Beetcher at 6:41-45, 8:14-17, Fig. 4; see also Beetcher at 7:45-48, Fig. 3.

26

DISH-Blue Spike 842
Exhibit 1005, Page 0297

inistalled on the custarier’s computer system 1013 And Beetcher’s software prevents uriwanted
“patching” of these sub-objects by including entitlement verification triggering instructions

3017

IR

¥ ARAN S o
Doy ‘\\\\\\\x\\\\\\\\\\&

SOFIRaR
Ry

> Q Fraason0nnosny

o

AR

7

HARGRaE §N*§“‘§ 1t

3 Beetcher at 6:58:65, 11:4-39" sée also Beetcher at Abstract, 4:28-33 6:65:7:5. clairn 3.
35 Beetcher at 4:25-33, 11:11-39; see also Beetcher at Abstract, 3:14-18.

27

DISH-Blue Spike 842
Exhibit 1005, Page 0298

i
%

P rtstsssrssssaent

9%

i

66. The’842 Patent refers to sub-objects and a mermory scheduler as examples of code

resouri:es.% A PORITA would have understood that Beetcher’ smodule sub-objects are sub-
objects
67. Relying on Beetcher’s description, a POSITA would have understood that one sub-object
in module 300) iz a first code rescurce providing a specified underlying functionality when
installed on the custemer’s computer systern 101 and unlocked using the license mformation

(key). .

68 Thus, each limitation of elernent 12.2 is disclosed by Beetcher

37842 Patent at 11:55-65, 153642,

28

DISH-Blue Spike 842
Exhibit 1005, Page 0299

d) Element 12.3

69. The third element of claim 12 reads: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to form a first license key encoded
software code.” [refer to this as Element 12.3 throughout this declaration.
70. Beetcher discloses element 12.3. Beetcher details encoding its software code by the
distributor system which includes development system 125 and marketing system 124, which
may be “a single computer system performing both functions.”’ As demonstrated, Beetcher
describes encoding a first license key into the software code where that key is used to authorize
access to the software product:
Software module 300 is part of a program product in compiled object code form
which executes on system 101.... [Tlhe actual executable code operates at
executable code level 403, as shown by the box in broken lines. The executable
code contains entitlement verification triggering instructions 301 {only one shown),

which are executed by horizontal microcode check lock function 422.%8

71. The encoding referenced is illustrated in Figure 3:

37 Beetcher at 5:37-58, 6:41-65, 11:4-39.
38 Beetcher at 8:13-23; see also Beetcher at 4:3-21, 6:20-55, 7:39-44, 8:58-67, 9:51-56, 10:22-38.

29

DISH-Blue Spike 842
Exhibit 1005, Page 0300

B

o
A

P rtstsssrssssaent

i

!

g
iy
#45G,
%

72, The computer in Beetcher’s development system 125 performs the encoding, as depicted

i Figure 7 at step 704, and described as: ,“Thfev program template serves as iriput to translator 127
at step 704, 'air:::nng swith i‘ts prodUr::‘t nmnber and v el‘sion numbefidmf_iﬁcation. Translator 127

antomatically generates a substantial number of entitlemnent verification triggers, inserts them in

random locations in the cbject code ... 7%

3 Beetcher at 9:10-16; see also Beetcher at 5:38-47, 9:1-10, 9:16-20, Fig. 7.

30

DISH-Blue Spike 842
Exhibit 1005, Page 0301

7% Futthermore, the computer 1n Beetchers developrnent systern 125 uses an encoding
algorithrn to encode the first license key. Beetcher's system uses a set of instruction, as

illustrated in Figure 7, to encode triggers into the-software code to form the first license key*

SIARY

;Siﬁi&&& i«%}iﬁ%; iﬁ%l\ﬁi“
?2} {OMPILER

PROGRAM TEMPLATE |
mﬁﬁﬁﬁ§mwm§ﬁm;

7%

5

TRANSLATOR INSERTS
TRIGGERS

s

CDONE

74 The compiler starts the process by producing a tﬁmpl ate (step 702), next the template is
input into the translator (step 703), then the translator encodes the triggers/license keys into the
code (step 704), and finally the translator resolves references after key insertion to produce the-

executable module ™ The generation of “a substantial number of entitlement triggers” and:

0 Beetcher at 9:10-16; see also Beetcher at 5:38-47, 9:1-10, 9:16-20, Fig 7.
Bestcher at 9:6-20, Fig. 7.

31

DISH-Blue Spike 842
Exhibit 1005, Page 0302

“insert[ing] them in random locations in the object code™ that would require “an encrypted
entitlement key” would require an encoding algorithm.*? Thus, a POSITA would have
understood Beetcher’s Figure 7 illustrates an encoding algorithm. Beecher’s encoding process is
additionally described with respect to element 11.3.
73. Moreover, during the original prosecution, Patent Owner stated that “[e]ncoding using a
key and an algorithm is known.”? Thus, a POSITA would have understood that Beetcher’s
encoding technique necessarily includes a first license key and an encoding algorithm to form a
first license key encoded software code.
76. Thus, each limitation of element 12.3 is disclosed by Beetcher.
e Element 12.4

77. The fourth element of claim 12 reads: “wherein, when installed on a computer system,
said first license key encoded software code will provide said specified underlying functionality
only after receipt of said first license key.” I refer to this as Element 12.4 throughout this
declaration.
78. Beetcher teaches element 12.4. Specifically, Beetcher discloses that its first license key
encoded software code provides the specified underlying functionality only after receipt of the
first license key.** For example, Beetcher states:

For support of such a traditional compilation path where the object code format is

known by customers, additional barriers to patching of the object code to nullify or

alter the entitlement triggering instructions may be appropriate. One such additional

barrier would be to define the entitlement triggering instruction to simultaneously

perform some other function. In this case, it is critical that the alternative function
performed by the triggering instruction can not be performed by any other simple

2 Beetcher at 9:12-48.
4 2842 Prosecution History at 519.

Beetcher at 6:58-65, 11:4-39; see also Beetcher at Abstract, 3:14-18, 4:25-33, 6:65-7:5, claim
3.

32

DISH-Blue Spike 842
Exhibit 1005, Page 0303

mstruction. The alternative function must be so selected that any compiled software
module will be reasonably certain of containing a number of instructions
performing the function. If these criteria are met, the compiler can automatically
generate the object code to perform the alternative function (and simultancously,
the entitlement verification trigger) as part of its normal compilation procedure.
This definition would provide a significant barrier to patching of the object code to
nullify the entitlement triggering instructions.*’

79. And as described with respect to element 12.3, Beetcher teaches encoding the triggering
instructions into the software code that is decoded via the first license key.

80. Beetcher’s Figure 10, as reproduced below, illustrates providing the software’s
underlying functionality based on the first license key (triggering information). For instance,
Beetcher explains:

81. System 101 executes the module by fetching (step 1001) and executing (step 1002) object
code instructions until done (step 1003). If any instruction is an entitlement verification
triggering instruction 301 (step 1004) check lock function 422 is invoked. Check lock function
422 accesses the product lock table entry 601 corresponding to the product number contained in
the triggering instruction at step 1005. If the version number in product lock table 460 is equal to
or greater than the version number 303 contained in triggering instruction 301, the software is

entitled to execute (step 1006).46

4 Beetcher at 11:10-28.
46 Beetcher at 10:49-60; see also Beetcher at 10:48-49, 10:60-11:3.

33

DISH-Blue Spike 842
Exhibit 1005, Page 0304

AN .
& e

AR \}\ 3
&

82 Consequently, each limnitation of elemnent 124 is disclosed by Beetcher And as I explain
above, Beetcher discloses all the other elements of claim 12. Thus, in my opinion, claim 12 is
anticipated by Beetcher:

3. Beetcher Anticipates Independent Claim 13,

e Claim 135 Preamble

83, Thepreamble of claim 13 reads: “ A method for encoding software code using a computer
'_h'aving a processor and memw}r,;comprisi'ng.”
84 Tunderstand that a clair’s preamble generally does not limit the scope of the claim under
the broadest reasonable interpretation applied during reexamination. Nevertheless, Beetcher

discloses clain 13% s preamble.

34

DISH-Blue Spike 842
Exhibit 1005, Page 0305

85. Claim 13’s preamble appears to be the same as claim 12°s preamble. And as I explain
above, Beetcher discloses a method for encoding software using a computer with a processor and
memory. Thus, Beetcher teaches this preamble.

b) FElement 13.1

86. The first element of claim 13 reads: “storing a software code in said memory.” I refer to
this as Element 13.1 throughout this declaration.

87. Element 13.1 is identical to element 12.1, which I discuss above. For the same reasons as
I explain above, Beetcher discloses each limitation of element 13.1.

c) Element 13.2

88. The second element of claim 13 reads: “wherein said software code comprises a first
code resource and provides a specified underlying functionality when installed on a computer
system.” I refer to this as Element 13.2 throughout this declaration.

89. Element 13.2 is identical to element 12.2, which I discuss above. For the same reasons as
I explain above, Beetcher discloses each limitation of element 13.2.

d) Element 13.3

90. The third element of claim 13 reads: “modifving, by said computer, using a first license
key and an encoding algorithm, said software code, to form a modified software code; and
wherein said modifying comprises encoding said first code resource to form an encoded first
code resource.” [refer to this as Element 13.3 throughout this declaration.

91. Beetcher discloses element 13.3. As identified with respect to element 12.3, Beetcher’s
distributor system includes a computer that encodes software code using a first license key (e.g.,

triggering information) and an encoding algorithm (e.g., Figure 7). And Beetcher’s encoding

35

DISH-Blue Spike 842
Exhibit 1005, Page 0306

process modifies the software code by inserting triggering information into the software code ¥
For example, Beetcher teaches that compiled software code is input to a translator which
rodifies the code by “automnatically generat[ing] a substantial number of entitlement verification
triggers” and «“ insert[in‘g] thern in randor locations i the object code™ as shown in Figure s
steps 703 and 704.% Figure 3 illustrates this modifying by inserting triggering information 301 to

formn a modified software code:

47 Beetcher at 8:13-23, 911-20; see also Beetcher at 5:38-47, 9:1-10, 9:16-20, Fig 7.
%8 Beetcher at 9:11-15.

DISH-Blue Spike 842
Exhibit 1005, Page 0307

92. As explained with respect to elements 12.2, Beetcher’s software code includes a series of
code resources corresponding to sub-objects. And Beetcher teaches a given first code resource is
modified to encode the first code resource via the triggering information.*® For instance,
Beetcher teaches:

For support of such a traditional compilation path where the object code format is known
by customers, additional barriers to patching of the object code to nullify or alter the
entitlement triggering instructions may be appropriate. One such additional barrier would
be to define the entitlement triggering instruction to simultaneously perform some other
function. In this case, it is critical that the alternative function performed by the triggering
instruction can not be performed by any other simple instruction. The alternative function
must be so selected that any compiled software module will be reasonably certain of
containing a number of instructions performing the function. If these criteria are met, the
compiler can automatically generate the object code to perform the alternative function
(and simultaneously, the entitlement verification trigger) as part of its normal compilation
procedure. This definition would provide a significant barrier to patching of the object code
to nullify the entitlement triggering instructions.>

A POSITA would have understood that such modification results in an encoded first code
resource.

93. Further, during the original prosecution, Patent Owner specified that “[e]ncoding using a
key and an algorithm is known.”! Therefore, a POSITA would have understood that Beetcher’s
encoding technique necessarily includes a first license key and an encoding algorithm to form a
modified encoded first code resource.

94. Thus, each limitation of element 13.3 is disclosed by Beetcher.

4 Beetcher at 4:25-33, 11:11-39; see also Beetcher at Abstract, 3:14-18.
0 Beetcher at 11:10-28.
51 842 Prosecution History at 519.

37

DISH-Blue Spike 842
Exhibit 1005, Page 0308

e Element 13.4

9s. The fourth element of claim 13 reads: “wherein said modified software code comprises
said encoded first code resource, and a decode resource for decoding said encoded first code
resource.” I refer to this as Element 13.4 throughout this declaration.

96. Beetcher discloses element 13.4. Beetcher explains that its modified software code
includes a decode resource for decoding the encoded first code resource. Beetcher discloses that
executing a trigger 301 invokes check lock function 422, which results in accessing “unlock
(decode key)” function 430 upon confirmation that the customer possesses the software’s license
key.’? Beetcher’s Figure 4, as annotated below, illustrates the decode resource (dashed

perimeter) of the modified software code:

32 Beetcher at 10:22-39, 10:52-65, Figs. 9b, 10; see also Beetcher at 7:16-38, 8:18-22, 9:49-10:7.

38

DISH-Blue Spike 842
Exhibit 1005, Page 0309

R PR S

b
EERRRRRS

G

3
¥
e e &
b B e e e e o

e N

Y
3 f23
B3
B
£
o
W
¥

- N o1 et
ANNNNNN NN Q AN '7\“\\\\. RN R
: b |
% R Y 3 E R] -
HANDNARE 81 fham

0

ae

97 Thus, each limitation of element 13 4 is disclosed by Beetcher.

1 Element 13.5
98 Thelast el'e_ment of claim 13 reads: Wha‘ein ,sai»id decode resource 15 configured to
decode said encoded first code resource upon receipt of said first license key” Trefer to this as
Element 13, 5'thr*oughout‘this declaration:
99, Beetcherdiscloses element 13.5, Beetcher states that its decode resource decodesthe
encoded first coderesource Upon receipt of the license key. Beetcher, forinstatice; states that
unlock routine 430 *fetches the encrypted entitlernent key from . table 450 and decodes the

entitlernent key The triggering instruction is then refried and program execution continues at

39

DISH-Blue Spike 842
Exhibit 1005, Page 0310

step 9287 And Beetcher' s Figire Sb illustrates accessing the decode resourceta decode the

encoded first code rescurces based onthe entitlernent key, reflected in steps 921 to 928:

Thus, a POSITA would haveunderstood that Beetcher's decode rescurce 15 configured to decode
the encoded first code resource based on first license key.

100, Therefore, each limitation of element 135 iz disclosed by Beetcher. And as T explain
above, Beetcher discloses all the other elaments of claim 13 Inmy cpinton; claim 13 is

anticipated by Beetcher:

33 Beetcher at 10:27-38,

a0

DISH-Blue Spike 842
Exhibit 1005, Page 0311

4. Beetcher Anticipates Independent Claim 14.
aj Claim 14’s Preamble

101. The preamble of claim 14 reads: “A method for encoding software code using a computer
having a processor and memory, comprising.”

102. ITunderstand that a claim’s preamble generallv does not limit the scope of the claim under
the broadest reasonable interpretation applied during reexamination. Nevertheless, Beetcher
discloses claim 14’s preamble.

103. Claim 14’s preamble appears to be the same as each of claim 12 and 13°s preamble. As |
explain above, Beetcher discloses a method for encoding software using a computer with a
processor and memory. Thus, Beetcher teaches this preamble.

b) Element 14.1

104. The first element of claim 14 reads: “storing a software code in said memory.” [refer to
this as Element 14.1 throughout this declaration.

105. Element 14.1 is identical to element 12.1, which I discuss above. For the same reasons as
I explain above, Beetcher discloses each limitation of element 14.1.

c) Element 14.2

106. The second element of claim 14 reads: “wherein said software code defines software
code interrelationships between code resources that result in a specified underlying functionality
when installed on a computer system.” I refer to this as Element 14.2 throughout this declaration.
107. Beetcher discloses element 14.2. Beetcher describes that its software code is compiled
into executable code by compiler 126. This compiler works with translator 127 to compile the

software sub-objects and insert triggering information.>* And Beetcher specifies that translator

4 Beetcher at 8:14-17.

41

DISH-Blue Spike 842
Exhibit 1005, Page 0312

127 *resolves referances™ in the softare code, which corresponds to defining code
interrelationships between code resources. ™ As shown in steps 701 and 702 of Figure 7,
Beetcher discloses its software code is inputinto compiler 126 that produces a template of the

software code™

108 A POSITA would have understood that this software code ternplate also defines the code
interrelationships betweer the code resources. As the Patent Owner stated during the original
prosecution, software code interrelationships are defined during the compiling process of

conventional software applications:

35 Beetcher 9:11-18,
3 Beetcher & 14-17, 9:1-20, Fig 7; see also Beetcher at 5:37-39, 6:41-45, 7:63-66

42

DISH-Blue Spike 842
Exhibit 1005, Page 0313

What the examiner has implied by alleging that the "specification ... fails to teach
or mention ‘'software code interrelationships™ is that software code
interrelationships were somehow unknown in the art, which clearly is not the case.
As admitted, in the specification at the beginning of paragraph [0051], an
"application" comprises "sub-objects" whose "order in the computer memory is of
vital importance” in order to perform an intended function. And as admitted further
in paragraph [0051], "When a program is compiled, then, it consists of a
collection of these sub-objects, whose exact order or arrangement in memory
is not important, so long as any sub-object which uses another sub-object
knows where in memory it can be found." Paragraph [0051] of course refers
to conventional applications. Accordingly, that is admittedly a discussion of
what is already know by one skilled in the art. Accordingly, the examiner's
statement that the specification lacks written description support for "software code
interrelationships” is inconsistent with the fact that such interrelationships were
explained in paragraphs [0051] and [0052] as a fundamental basis of pre-
existing modem computer programs.

109. Additionally, during the original prosecution, Patent Owner specified that
“interrelationships between code resource are not that which is novel.” *® Based on the Patent
Owner’s admissions, it is clear that a POSITA would have understood that Beetcher’s code
necessarily defines code interrelationships between code resources.
110. Beetcher further discloses that the code resource interrelationships specify the underlying
application functionalities when installed on the customer’s computer 101. For example,
Beetcher’s software code includes multiple entitlement verification triggers.’® And Beetcher
details that certain code resources include triggering instruction that controls the underlying
functionalities of the software code:
[An] additional barrier would be to define the entitlement triggering instruction to
simultaneously perform some other function.... The alternative function must be
so selected that any compiled software module will be reasonably certain of
containing a number of instructions performing the function. If these criteria are

met, the compiler can automatically generate the object code to perform the
alternative function (and simultancously, the entitlement verification trigger) as

572842 Prosecution History at 519.
58 *842 Prosecution History at 519.
3 Beetcher at 4:15-33, 9:1-3, 10:22-34, Fig. 3; see also Beetcher at 6:45-65, 8:19-22,10:52-11:39.

43

DISH-Blue Spike 842
Exhibit 1005, Page 0314

part of its normal compilation procedure. This definition would provide a
significant barrier to patching of the object code to nullify the entitlement triggering
instructions.®’

111. Beetcher further teaches that “the triggering instruction is also a direct instruction to
perform some other useful work [E]xecution of the triggering instruction causes system 101
to perform some other operation simultaneous with the entitlement verification.”® Thus, a
POSITA would have understood that the code interrelationships between Beetcher’s code
resources result in a specified underlving functionality once installed.

112. Thus, each limitation of element 14.2 is disclosed by Beetcher.

d) Element 14.3

113. The third element of claim 14 reads: “encoding, by said computer using at least a first
license key and an encoding algorithm, said software code, to form a first license key encoded
software code.” I refers to this as Element 14.3 throughout this declaration.

114. Element 14.3 is identical to element 12.3, which I address above. For the same reasons |
explain above, Beetcher discloses each limitation of element 14.3.

115. Also, during the original prosecution, Patent Owner stated that “[e]ncoding using a key
and an algorithm is known” and that “an interrelationship in software code is necessarily defined
by digital data, and digital data can obviously be encoded by an encoding process.”®? Therefore,
a POSITA would have understood that Beetcher’s encoding technique necessarily includes a first

license key and an encoding algorithm to form a first license key encoded software code.

0 Beetcher at 11:14-28; see also Beetcher at 4:25-33, 6:58-65.

¢! Beetcher at 6:58-65 (Beetcher specifies that these functions are those “which do not require that
an operand for the action be specified in the instruction.”).

62 *842 Prosecution History at 519.

44

DISH-Blue Spike 842
Exhibit 1005, Page 0315

e Element 14.4

116. The fourth element of claim 14 reads: “in which at least one of said software code
interrelationships are encoded.” I refer to this as Element 14.4 throughout this declaration.
117. Beetcher discloses element 14.4. As described with respect to element 14.2, Beetcher
teaches that its software code defines code interrelationships between code resources and
triggering information 301 in the code control certain underlying software functionality. And
Beetcher explains that triggering information 301 is encoded into the software code.®® For
instance, Beetcher details that the triggering instructions will be encoded into the code resources
controlling software functionality:
[An] additional barrier would be to define the entitlement triggering instruction to
simultaneously perform some other function.... The alternative function must be
so selected that any compiled software module will be reasonably certain of
containing a number of instructions performing the function. If these criteria are
met, the compiler can automatically generate the object code to perform the
alternative function (and simultancously, the entitlement verification trigger) as
part of its normal compilation procedure. This definition would provide a
significant barrier to patching of the object code to nullify the entitlement triggering
instructions.
118. And Beetcher teaches that “the triggering instruction is also a direct instruction to
perform some other useful work [E]xecution of the triggering instruction causes system 101
to perform some other operation simultancous with the entitlement verification.”® Therefore, a

POSITA would have understood that this encoded triggering information includes encoded code

interrelationship of the code resources.

6 Beetcher at 4:25-33, 6:58-65, 11:4-309.
¢ Beetcher at 11:14-28; see also Beetcher at 4:25-33, 6:58-65.

%5 Beetcher at 6:58-65 (Beetcher specifies that these functions are those “which do not require that
an operand for the action be specified in the instruction.”).

45

DISH-Blue Spike 842
Exhibit 1005, Page 0316

119. Therefore, each limitation of element 14.4 is disclosed by Beetcher. And as I explain
above, Beetcher discloses all the other elements of claim 14. Thus, in my opinion, ¢laim 14 is
anticipated by Beetcher,

B. Claims 11, 12, 13, and 14 are Anticipated by Beetcher *072.
120. Tt is my understanding that Beetcher '072 claims priority to U.S. Application No.
07/629,295, as reflected on the cover of Beetcher "072. It is also my understanding that Beetcher,
which I discuss in Section VIILB, also e¢laims priority to U.S. Application No. 07/629,295.
Throughout my discussion of Beetcher "072, I refer to the figures from Beetcher 072 and the
English translation of Beetcher "072’s specification and claims.

1. Beetcher *072 Anticipates Independent Claim 11.
aj Claim 11" 5 Preamble

121. The preamble of claim 11 reads: “A method for licensed software use, the method
comprising.”
122. Tunderstand that a claim’s preamble generally does not limit the scope of the claim under
the broadest reasonable interpretation applied during reexamination. Nevertheless, Beetcher "072
discloses claim 11°s preamble.
123. Beetcher "072 discloses a method of controlling access to licensed software using an
encrypted entitlement key.®® Beetcher *072 summarizes its invention as:

According to the present invention, software is distributed without the qualification

grant for performing. Execution of software is attained by the enciphered

qualification grant key which is distributed independently. This qualification grant

key contains a plurality of qualification grant bits which instruct the consecutive

numbers of the machine with which software is licensed to it, and which software
module has the qualification it runs by that machine.®’

% Beetcher 072 at Abstract, 19 0020, 0022, 0043; see also Beetcher "072 at Y 0001, 0004, 0016.
%7 Beetcher *072 at ¥ 0020.

46

DISH-Blue Spike 842
Exhibit 1005, Page 0317

124, Beetcher' 072" Figure 10, reprodiced bielow; depicts theise of an entitled wersion of

software based on the customer’s license;

125, Asldetailbelow, Beetcher “072 teaches the remaining steps that comprise the method.
bl Elemer 11.1

126, The first.element of claim 11 reads: “loading a software product on a computer, said

cornputer comprisinig a processor, memory, an input, and an cutput, so that said computer is

programmed to execute said software product” Irefer tothis as Elemnent 11.1 throughout this

declaration

47

DISH-Blue Spike 842
Exhibit 1005, Page 0318

127 Beetcher’ 072 discloses elemnent 11,1, Beetcher’ (172’5 gystern inclides a tustomer:
cornputer 101 including a CPU 102, memory 104, and storage devices 106-108% This customer
computer 101 also includes a mediareader 110 (i e, an input) and an operator console 109 (1.2,
an output) ® As shown below in annotated igure 1, Beetcher *072 discloses a computer having

software product 112 loaded for execution (dashed perimeter):

v
}f\\x\\‘\

AL
.

T

i

S

%

g

R
b

B

R

P

i

g

p §
= b e
§ § §
B R ¥
& 33 *
& W -
& R \.
kS R %
3 ¥
e R £
b 3 &
® ¥
e 3
B

#
3 o
kS S

5% Beetcher "072 at § 0023, Fig. 1.
9 Beetcher 072 at] 0023, 0027, Fig: 1.

a8

DISH-Blue Spike 842
Exhibit 1005, Page 0319

128. Beetcher "072 teaches that the customer loads the media, such as an optical disk,
containing a software product onto the computer to execute the software product:

[S]oftware media 112 comprise one sheet or a plurality of read-only optical discs,
and the medium reader 110 is an optical disc reader. However, please understand
that an electronic distribution medium and other distribution media can also be
used. If the software media 112 are received, a customer will load a desired
software module to the system 101 from the medium reader 110, and will usually
memorize the software module to the memory storage 106-108.7

129. Thus, each limitation of element 11.1 is disclosed by Beetcher "072.
c) Element 11.2
130. The second element of claim 11 reads: “said software product outputting a prompt for

input of license information.” I refer to this as Element 11.2 throughout this declaration for
convenience.

131. Beetcher '072 discloses element 11.2. Beetcher *072 teaches that its software product
contains a user interface routine for the customer to input a license key into the computer before
the product can be used.”! For instance, Beetcher "072 explains that the software product prompts

the user to input license information:

The support of this operation system contains two user interface routines
required to support the input of a qualification grant key on the virtual-
machine level 404. The general input routine 441 is used for processing an input
in normal operation. The installation input routine 440 special to inputting a
qualification grant key is required during the initial introduction of an
operation system. The thing which needs this is because the portion of an upper
level operating system is treated as other program products by the present invention
from the machine interface level 405. Namely, such a portion has product number
and the target code is subject to the influence of a qualification verification
trigger.’?

0 Beetcher "072 at 4 0027; see also Beetcher "072 at Abstract, 19 0014, 0040, Fig. 1, claim 6.
"I Beetcher 072 at § 0033; see also Beetcher 072 at § 0010.
2 Beetcher *072 at § 0033.

49

DISH-Blue Spike 842
Exhibit 1005, Page 0320

Beetcher "072 illustrates an unencrypted version of this license information in Figure 2, provided

below?

] i
,. .
. 200202 203 204 RistsE- CRESE) 205
32 & [
§ 200 2 ™ M ~ N .
. ootofooonsioniocoonano|ontn . . . 11| 11100 N 1w} 3
N : N
2 \ : L N
A fa - S (A 5USH(BOEY b N
\ CaEw bl CBE Ty ! | MREREEVSY(BUESR)
R [S
§ ! | 3 ' \
3 | b i ! N
. ' | 4 I
. e N /
X = AL
A (8Ew D (28Ev b)Y .

132. Beetcher "072 further teaches that the software’s “installation input routine 440 has a
dialog with an operator, and receives an mput’” of the customer’s license information during the
software’s initial installation.” And as I discuss with respect to element 11.1, the customer’s
computer includes an operator console 109 shown with a monitor and keyboard that “receive the
input from-an operator.”™
133. Thus, each limitation-of element 11.2.1s disclosed by Beetcher "072.

d) Flement11.3
134. Thethird element of claim 11 reads: “said software product using license information
entered via said input in response to said prompt in a routine designed to decode a-first license

code encoded in said software product.” I refer to this as Element 11.3 throughout this

declatation for convéniends.

3 Beetcher "072 at 9 0040; see also Beetcher "072 at Fig. 4 (reference number 440), claim 6.
™ Beetcher "072 at 9 0023; see also Beetcher "072 at §§ 0025, 0033, 0039, Fig. 1.

50

DISH-Blue Spike 842
Exhibit 1005, Page 0321

135. Beetcher "072 discloses element 11.3. Beetcher 072 explains that, after inserting the
software’s disk 112, the operator console prompts the customer to enter license information.
Beetcher *072 explains that the customer enters entitlement key 111, i.e., license information, in
response to the prompt initiated by install input routine 440.”° After entering that key, Beetcher
’072 teaches that the customer’s computer uses a decode key to initiate unlock routine 430 to
decode the license code encoded in the software product.’® Beetcher "072’s Figures 4 and 9a,
which are provided below, show the software using the key (i.e., license information) entered by
the customer to decode a first license code encoded in the software product. For example,
annotated Figure 4 depicts that the install input routine 440 starts unlock routine 430 once the
customer inputs key 111 into the computer.”” And “unlocking routine 430 decodes the

qualification grant key 111 using a peculiar machine key” (dashed perimeter):

> Beetcher *072 at Y 0033; see also Beetcher *072 at § 0040, Figs. 1, 4, claim 6.

76 Beetcher "072 at 49 0032, 0040; see also Beetcher “072 at 99 0030, 0037, Figs. 4, 9a.
T Beetcher 072 at 7 0033, 0040.

8 Beetcher 072 at § 0032; see also Beetcher 072 at 7 0037; 0041.

51

DISH-Blue Spike 842
Exhibit 1005, Page 0322

Y

!

AN

ey,

ey
At ¥

136 'Beetéher 07 E-teaches that unlock routi.ne_»f}%@ “handles the decoding process” which is
illustrated in Figure 9a’s steps 902-909:“The lock release routine 430 makes the machine-key
acquisition function 420 search machine consecutive numbers with Step 902, and makes it
generate a machine key at it. Bubsequently, the lock release routine 430 decodes the qualification
grantkey 111 at Step 903 using a machine key.” " The unencrypted entitlement key includes,
among omﬁ:'mmgs, version field 202 specifj.%ing:ﬂle user’s entitled v ersion level as well as

produét vait:itlement"ﬂags field 205 specifying which prfodud numberto ‘Which the useris

™ Beetcher 072 at 0040,

52

DISH-Blue Spike 842
Exhibit 1005, Page 0323

entitled ¥ Beetcher 7072 illustrates an unencrypted version of this license information in Figure

2, provided below:

1 202 203 204 RS £~ (RSN

‘ &\ « RIBAS - (SR) K\ .
2040, R By Ty N
ootojgooosiapigocogecol 0ot . . . 11| 11100 .. 1wl oL

Y N

!
P
| MeRMEETSS(B0EYR) |
i
|
|
|

i
I
i
i
[

SS=g AL ES .
(BEw 1) (28w b L

137. Beetcher "072’s unlock routine 430 will complete the decoding process by building an
encoded product key table (step 904), populating the key table for the relevant software product
(steps 905-908), and saving the key table (step 909).81 And Beetcher "072’s RAM includes table
460 reflecting which products the user has entitlement keys.®* As 1 detail below, the license
information decodes a license code in the software product using the key’s version field and
product number fields.

138. When generating its software code, Beetcher 072 teaches that the code includes a series
of entitlement verification triggering instructions.®® These triggering instructions are encoded

into the software when being compiled and translated, as shows in Figure 3 provided below:

8 Beetcher "072 at 9 0028.

81 Beetcher "072 at 9 0040, Figs. 5, Qa.

82 Beetcher 072 at] 0032, 0036, 0041, 0042, Fig. 6, Fig. 9a.

% Beetcher *072 at Y 0029, 0044; see also Beetcher *072 at] 0021, 0033-34, 0037-38.

53

DISH-Blue Spike 842
Exhibit 1005, Page 0324

R

138 Whenever Beetcher ' 072’5 software code encounters one of the verification triggers, the
code verifies that the customer is entitled to use the software, Tt does so by accessing the licerise
key information stored in the key table 460 For instance, Beetcher *072 details that the
customer’s computer will access routines, such as check lock finction 422, to interpret the
license code information contained in one of the-iriggers:

Whern a command is the qualification verification trigger 301 (Step 10043, the lock:
checking feature 422 is called. At Step 1005, the lock checking feature 422 accesses
the product locking table entry 601 fo-which it corresponds to the product number-
included i .a qualification verification trigger. The qualification for the version
rumber in the product locking table 460 being equal to the version number 303
contained in the qualification verification trigger 301, or performing software, in
being largerthan it is given (3tep 1006). In this case, the lock checking feature 422

3 Beetcher 072 at] 0043-44; see aiso Beetcher *072 at Abstract,] 0034, 003738, Fig 10

54

DISH-Blue Spike 842
Exhibit 1005, Page 0325

does not perform treatment beyond it, but a system proceeds to execution of the
next target code command in a software module.®3

Thus, a POSITA would have understood that Beetcher *072 teaches using license information in
aroutine designed to decode a first license code encoded in a software product.

140. Additionally, Beetcher 072 teaches that the triggering instructions will be encoded into
the code resources to control software functionality:

[An] additional barrier[] is defining a qualification verification trigger, as other
functions of a certain are performed simultaneously.... This alternate function must
be selected so that any compiled software modules may include some commands
which perform that function quite reliably. When having coincided in these criteria,
the compiler can generate automatically the target code which performs the
alternate function (it is also a qualification verification trigger simultaneously with
it) as a part of the usual compilation order. This definition should bring about the
important barrier to ‘patching’ of a target code which invalidates a qualification
verification trigger.®¢

Beetcher *072 further discloses that “a qualification verification trigger is also the direct
instruction ... which performs other useful work of a certain.... [IJf a trigger command is
executed, the system 101 will perform other operations of a certain simultancously with
qualification verification.”’

141. Therefore, each limitation of element 11.3 is disclosed by Beetcher 072. And as [

explain above, Beetcher "072 discloses all the other elements of claim 11. Thus, in my opinion,

claim 11 is anticipated by Beetcher "072.

8 Beetcher 072 at § 0043, Fig, 10.
% Beetcher 072 at ¥ 0044; see also Beetcher 072 at 49 0021, 0029.

87 Beetcher *072 at ¥ 0029 (specifiying that these functions are those “which does not need to
divide, does not need to be ordering the operand for the processing and does not need to be
specified™).

55

DISH-Blue Spike 842
Exhibit 1005, Page 0326

2. Beetcher *072 Anticipates Independent Claim 12.
aj Claim 12’s Preamble

142. The preamble of claim 12 reads: “A method for encoding software code