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REDUCING THE COMPUTATIONS OF THE SINGULAR VALUE

DECOMPOSITION ARRAY GIVEN BY BRENT AND LUK‘

B. YANG? AND J. F. BOHMEt

Abstract. A new, eflicient, two-plane rotation (TPR) method for computing two-sided rotations involved
in singular value decomposition (SVD) is presented. It is shown that a two-sided rotation can be evaluated by
only two plane rotations and a few additions. This leads to significantly reduced computations. Moreover, if
coordinate rotation digital computer (CORDIC) processors are used for realizing the processing elements (PEs)
of the SVD array given by Brent and Luk, the computational overhead of the diagonal PEs due to angle
calculations can be avoided. The resulting SVD array has a homogeneous structure with identical diagonal and
off-diagonal PEs. Similar results can also be obtained if the TPR method is applied to Luk’s triangular SVD
array and to Stewart’s Schur decomposition array.
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1. Introduction. One important problem in linear algebra and digital signal pro-

cessing is the singular value decomposition (SVD). Typical applications arise in beam-

forming and direction finding, spectrum analysis, digital image processing, etc. [1]. Re-

cently, there has been a massive interest in parallel architectures for computing SVD

because of the high computational complexity of SVD, the growing importance of real-

time signal processing, and the rapid advances in very large scale integration (VLSI) that

make low-cost, high-density and fast processing memory devices available.

There are different numerically stable methods for computing complete singular

value and singular vector systems of dense matrices, for example, the Jacobi SVD method,

the QR method, and the one-sided Hestenes method. For parallel implementations, the

Jacobi SVD method is far superior in terms of simplicity, regularity, and local com-

munications. Brent, Luk, and Van Loan have shown how the Jacobi SVD method with

parallel ordering can be implemented by a two-dimensional systolic array [2 ], [3]. Various

coordinate rotation digital computer (CORDIC) realizations ofthe SVD array have been

reported by Cavallaro and Luk [4] and Delosme [5], [6].

The Jacobi SVD method is based on, as common for all two-sided approaches,

applying a sequence of two-sided rotations to 2 X 2 submatrices of the original matrix.

The computational complexity is thus determined by how to compute the two-sided

rotations. In most previous works, a two-sided rotation is evaluated in a straightforward

manner by four plane rotations, where two of them are applied from left to the two

column vectors of the 2 x 2 submatrix and the other ones are applied from right to the

row vectors, respectively. In the diagonal processing elements (PEs), additional operations

for calculating rotation angles are required. This leads to an inhomogeneous array ar-

chitecture containing two different types of PBS.

In this paper, we develop a two-plane rotation (TPR) method for computing two—

sided rotations. We show that the above computational complexity can be reduced sig-

nificantly because each two-sided rotation can be evaluated by only two plane rotations

and a few additions. Moreover, the SVD array given by Brent and Luk becomes ho-

mogeneous with identical diagonal and off-diagonal PEs when CORDIC processors are
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used. In a recent work [6], Delosme has also indicated this possibility in connection
with “rough rotations" independently. He has taken, however, a different approach that

is based on encoding the rotation angles. He has still required four plane rotations on
the off-diagonal PEs while diagonal and off-diagonal operations can be overlapped.

Our paper is organized as follows. In § 2, we briefly reexamine Jacobi’s SVD method
and Brent and Luk’s SVD array. Then, we develop the TPR method in § 3. The CORDIC

algorithm is described in § 4, where in particular CORDIC scaling correction techniques
are discussed and examples of scaling-corrected CORDIC sequences are given. In § 5, a
unified CORDIC SVD module for all PEs of the SVD array is presented. This module

is compared to those proposed by Cavallaro, Luk, and Delosme in § 6. Finally, we stress
the applicability of the TPR method to several other problems.

2. Jacobi SVD method. In this paper, we consider real, square, and nonsymmetric

matrices. Let ME RNX N be a matrix of dimension N. The SVD is given by

(l) M=UEVT,

where U 6 R” X” and V e lit”>< N are orthogonal matrices containing the left and right
singular vectors, and E 6 IR” "N is a diagonal matrix of singular values, respectively. The
superscript Tdenotes matrix transpose. Based on an extension of the Jacobi eigenvalue
algorithm [7], Kogbetliantz [8] and Forsythe and Henrici [9] proposed to diagonalize
M by a sequence of two-sided rotations,

{2) Mo=M, Mr+.=Ui'MrI/t (k=0.1.2, ---).

Ur and Vk describe two rotations in the (i, j)-plane [1 E i < j 3 N), where the rotation

angles are chosen to annihilate the elements of My, at the positions (1', j) and (j, 1‘).
Usually, several sweeps are necessary to complete the SVD, where a sweep is a sequence
of N( N -— l ) / 2 two-sided rotations according to a special ordering of the N(N — 1N2

different index pairs (1‘, j).
For sequential computing on a uniprocessor system, possibly the most frequently

used orderings are the cyclic orderings, namely, the cyclic row ordering

(3) (i,j)=(1,2),(1,3), ,(13N).(2,3). JAN}. WAN" LN)

or the equivalent cyclic column ordering. Sameh [10] and Schwiegelshohn and Thiele
[11] have shown how to implement the cyclic row ordering on a ring-connected or a
mesh-connected processor array. Recently, a variety of parallel orderings have been de-
veloped. Luk and Park [12 ] have shown that these parallel orderings are essentially equiv-

alent to the cyclic orderings and thus share the same convergence properties.
Brent and Luk have suggested a particular parallel ordering and developed a square

systolic array consisting ofIN/ 21 X IN/ 21 PBS for implementing the Jacobi SVD method
(Fig. 1 ). To do this, the matrix M is partitioned into 2 X 2 submatrices. Each PE contains

one submatrix and performs a two-sided rotation

where

(5) A=(a“ 6312) and B=(b” (312)(121 022 521 ll322
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FIG. 1. The SVD array given by Brent and Lttk.

denote the submatrix before and after the two-sided rotation, respectively, and

cos 9 sin 6

—sin 6 cos 6(6} R(9):(
describes a plane rotation through the angle 6. At first, the diagonal PEs (symbolized by

a double square in Fig. l ) generate the rotation angles to diagonalize the 2 X 2 submatrices
(1),; = [321 = 0) stored in them. This means that 3. and fig are first calculated from the

elements ofA and then relation (4) is used to compute (an and an. We call this the

generation mode. Then, the rotation angles are sent to all off~diagonal PBS in the following
way: the angles associated to the left-side rotations propagate along the rows while the
angles associated to the right-side rotations propagate along the columns. Once these
angles are received, the off-diagonal PEs perform the two-sided rotations (4) on their

stored data. We call this the rotation mode. Clearly, if we compute the rotation mode
straightforwardly, we require four plane rotations. For the generation mode, additional

operations for calculating 61 and 62 are required.

3. TPR method for computing two-sided rotations. In order to develop the TPR
method for computing two-sided rotations more efficiently, we first discuss the com-

mutative properties of two special types, the rotation-type and the reflection-type, of
2 X 2 matrices. We define

(7) M’°‘=[( x y)x,yen] and caret=[(x 3’)_.V x y -x

The former is called rotation-type because it has the same matrix structure as a 2 X 2

plane rotation matrix. Similarly, the latter is called reflection-type because it has the
same matrix structure as a 2 X 2 Givens reflection matrix [13]. Note that x and y must

not be normalized to Jr2 + y2 = 1. Using the above definitions, the following results can
be shown by some elementary manipulations.

LEMMA 1. HA, E at!“ andA2 e M“, then/11A; : A2141 e all“.

LEMMA 2. HA, 6 car“ and A2 6 at“, then .41212 = A§A1 e an”?
In particular, if we consider two plane rotations, we know the following.
LEMMA 3. .9" R891) and R(62) are piane rotations described by (6), then

R(31}R(02) = R(31+ 32) and R(01)TR(62) = 53092 — 31)-
Now, we give a theorem describing the rotation mode of the TPR method.
THEOREM. Ifthe 2 X 2 matrix A and the two rotation angles 31 and 62 are given,

then the two-sided rotation (4} can be computed by two plane rotations, ten additions,

  x,yelR].
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andfour scoffngs by l:

(8) P1=(322+011)/2. P2=(022"flil)/2,
Q1=iflzl_a|2)i’2, G2 =(a21'l'aI2M29

(9) 9-=32—9I, 6+=62+6h

(swirll l

bll=rI—r2, biz=—Ii+12.
(ll)

b2|:t1+lz, b22=r1+r2.

Proof. Using {8), the matrix A can be reformulated as

A=A1+A2=(p1 why-(“”2 Q2).(11 PI 612 P2

Clearly, Rail), Run) in (4) and A. are elements of}:r "°‘ while A; belongs to JP“. This
leads to the following reformulation of the matrix B by using Lemmas 1—3:

B=R(6.)TAR{62)

= R(9.)TA,R(62)+ R(61)TA2R(62)

= R(e,)TR(62)A. +remainusgfii2

=R(62— 61)A1+R(61+ 607A;

PI ‘ql

’31 PI )+R(9.)T(_‘”1 ‘12)92 P2

This completes the proof.

The generation mode of the TPR method follows directly from the above theorem.

COROLLARY. [fine 2 X 2 matrix A is given, we can diogonaiize A and calculate
the corresponding rotation angles til and 62 by two Cartesian-to-poiar coordinates con-

versions, eighi additions, andfour scalings by %:

PI:(022+GH)/2. P2:(£122"311)/2,
(12)

Q1:(flzl—a|2)/2, 42=(flzi+012)/2,

r1= sign (pt) Vpi+ qt, r2= sign (p2) Vpé+qi
(13)

9— earctan (qifpi). 6+ =arctan (fit/P2).

(l4) 31=(3+*3—)/2, 92=(3++3—)f2,

(15) bl1=rl_r2s b22=rl+r2-

Proof. Regarding ( l l ), b]; = .62] = O is equivalent to I. = t2 = 0. Equation (13)
follows then from (10). This completes the proof.

In equation (13), we choose the rotation through the smaller angle. All vectors
lying in the first or the fourth quadrant are rotated onto the positive x—axis, and all vectors

lying in the second and the third quadrant are rotated onto the negative x—axis. For
vectors on the y-axis, the rotation direction is arbitrary. Thus, the generated rotation

f 
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angles (L and 6+ satisfy ltL I , |6+| g 90". This results in

(l6) |al|s90° and wean:

due to ( 14).
Equation (16) is important with respect to the convergence of the Jacobi SVD

method. Forsythe and Henrici [9] have pr0ven the convergence for cyclic orderings if
the rotation angles 6. and 62 are restricted to a closed interval inside the open interval
(-90”, 90°). They have also demonstrated that this condition may fail to hold, Le, 61

and 62 may be :90°, if the off—diagonal elements blz and 1);, in (5) have to be exactly
annihilated. As a remedy, they suggested an under- or overrotation by computing the

two-sided rotation (4) with angles (1 — 106. and (l — 7mg (—1 < "y < I) and proved
its convergence. In practice, however, the finite machine accuracy in the real arithmetic

allows only an approximative computation of the rotation angles and implies under- or
overrotations. So the Jacobi SVD method converges without using under— or overrotations

as shown by the experimental results ofBrent, Luk, and Van Loan [3]. In case ofCORDIC
implementations, the effect of implicit under- or overrotations is more apparent. The

angles i90° can never be exactly calculated because of the limited angle resolution are-
tan (2") of the CORDIC algorithm, where p denotes the mantissa length.

4. The CORDIC algorithm. In the previous section, we have seen that the main

operations of the TPR-method are plane rotations and Cartesian-to-polar coordinates
conversions. These operations can be carried out by multiplier—adder—based processors
supported by software or special hardware units. An alternative approach is the use of
dedicated processors that usually map algorithms more effectively to hardware. The

CORDIC processor is such a powerful one for calculating trigonometric functions.
The CORDIC algorithm was originally designed by Volder [l4] as an iterative pro-

cedure for computing plane rotations and Cartesian-to-polar coordinates conversions. It
was later generalized and unified by Walther [15], enabling a CORDIC processor to
calculate more functions, including hyperbolic functions, as well as multiplications and

divisions. In the following, we consider Volder’s CORDIC algorithm because only trig-
onometric functions are involved in SVD applications.

The CORDIC algorithm consists of iterative shift-add operations on a three—com-
ponent vector,

(17) xr+i)_(xr—Ur5ryi)_ l ( costar) earsin(ar))(xs)n+1 yr+arém costar) UrSiHUIr') costar) yr ’

(18) Zr+I=Zr—wrar io<5r<1;Ur=i1§€=i1;i=0,1;"‘3fl—1),

 

in which the iteration stepsize 5,- is defined by

(19) 5,-=tan(a,-)=2‘S(”.

The set of integers {8(5)} parametrizing the iterations is called CORDIC sequence.
Equation ( 17) can be interpreted, except for a scaling factor of

(20) I‘ll: I =lll+6,3,
cos (an)

 

as a rotation of (16,-, yr)? through the angle arr, where the sign a, = i1 gives the rotation
direction. After 11 iterations, the results are given by

(21) (xn)=K(cosa —sina)(xo),y» Slnoc cosa yo

(22) zfl=zo—car,

f 
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