

Fig. 5. A standand 500×480 image of a mandrill.

Fig, 6. A log polar map of the inage of a mandrill. The las-polar map employs bilinear interpolation and the log-polar grid is 600×600 samples.

6 Conciusion

This paper has outlined the theory of integral transform invariants and showed that this can be used to produce watermarks that are resistant to translation,

Fig. 7. The image of a mandrill neconstructed from a log polar map of size 100×100 samples. This reconstruction wises nearest neighbour interpolation.

Fig. 8. A walermarked image of a mandrill that has been rotated by 143 degrees and scaled by 75%. The embedded mark was recovered from this image.
rotation and scaling. The importance of invertibility of the invariant representation was emphasised. One of the significant points is the novel application of the Fourier-Mellin transform to digital image watermarking.

There are several advantages in osing integral transform domain marks. The main advantage is that the transforms can be computed very quickly (although in practice it has been found that the inverse log-polar mapping is a computational bottleneck). In addition, transform space contains a large number of samples which can be used to hide a spread spectrum signal.

An example of a rotation and scale invariant watermark was presented. As one might expect, this proved to be robust to changes in scale and rotation. It was also found to be weakly resistant to lossy image compression and cropping. The nobustmess of the embedded mark to these attacks will be greatly improved with future work.

On its own, the invariant watermark discussed in this paper cannot resist changes in aspect ratio or shear transformations. There is no obvious means of constructing an integral transform-based operator that is invariant to these transformations. However, work is currently in progress to find a means of searching for the most likely values of aspect ratio and shear factor, and then to apply the necessary corrections during watermark extraction.

In addition to the above, we intend to investigate the possible use of phasebased complete invariants. This would have some advantage over only marking strong invariants, since a complete invariant presents a maximal number of potential communications channels through which watermark information may be transmitted.

Acknowledgement

We wish to thank Dr David McG. Squire, Sergei Starchik and Dr Feng-Lin for their extremely helpful advice on the theory of invariants and $\operatorname{Dr} A . Z$. Tirkel for many stimulating conversations and for exchanging many ideas. We ere also grateful to Dr Alexander Herrigel and Adrian Perng for their useful comments.

References

II R. E Blahut, The theory and pructice of error control codes: Addison-Wesley, 1988.
[2] R. D. Brandt and F. Lin. Representations that uniquely characteripe images modulo teanslation, fotation and scaling. Pattern Recognition Letters, 17:10011015, August 1996.
[3] G. Caronii. Assuring Ownership Rights for Digital Images. In H. H. Brueggemann and W. Gerhardl-Hacelsl, editors, Reltable IT Systems VIS 995. Vieweg Publishing Company, Germany, 1995.
[4] W, G. Chambers. Basies of Commurnications and Coding. Oyiord Science Publications. Clarendon Press Oxford, 1985.
[5] L. Cooc, J. Kilitian, T. Leightom, and T. Stamoon. Secure spread spectrum communication for multimedia. Technical report, N.E.C, Research Institute, 1995. ftp://ft.p.njubcicom/pub/ingemar/papers/watermark.ps.Z.
[6] I. Cos, J. Killian, T. Leighton, and T. Shamoon, Secure apread specteum watermarking for images, audio and video. In Proceedings of the IEEE Int, Conf. on Irnage Processing ICIP-96, pages 243-246, Lausanne, Switzerland, September 16-19 1996.
[7] L. Cox, S. Roy, and S. L. Hingorani. Dynamic histogram warping of image pairs For constant image brightness. In Proceedings of the IEEE Jnt. Conif. an Image Processing JCIP-95, Austin, Texas, 1995.
[8]S. Craver, N. Memon, B. Yeo, and M. Yeung. Can invisible marks resolve rightful ownerships? In ISET/SPIE Electronic Imaging 797 : Slorage and Retrieunl of Image and Video Databrases, 1997.
[9] P. Davern and M. Scott. Fractal based imagesteganography. In Ress Anderson, editor, Proceedings of the First Internationat Workshop in Inforrnation Hiding, Lecture Notes in Computer Science, pages 279-294, Cambridge, UK, May/June 1996. Springer Verlag.
[10] J.F. Delaigle, C. De Vleeschouwer, and B Macq. A psychovisual approach for digital picture waternarking, submitted to the lournal of Electronic Imagiog: 1996.
[11]'Mario Ferearo and Terry M. Caelii. Lie transform groups, integral transforms, and invariant pattern recognition. Spatial Vision, $8(1): 83-44,1991$.
[12] James Gibson. The Serises Considerod as Penceptual Systems. HoughtonMiffliz, Boston, Massaclusetts, 1966.
[13] K. Matsui and K. Tanaka, Video-Steganography: How to sectolly embed a signature in a picture. In IMA Intelleotual Rroperty Project Proccedings, pages 187-206, January 1994.
[14] R. Milatese, S. Gil, and T, Pun. Atkentive mechanisms for dynamic and static scene analysts. Oplical Engineering, 34(8):2428-2434, August 1995
[15] J. J. K. O Ruanaidh, W, J, Dowling, and F. M. Boland. Phase watermarting of digital images. In Proceedings of the IEEE Int Conf. on Image Processing ICIP-96, pages 239-242, Lausanne, Switzerland, September 16-19 1996.
[LG] J. J. K. 6 Ruanaidh, W, J. Dowting, and F. M. Boland. Watermarking digutal images for copyright protection. IEE Pracredings on Virion, Iruaye and Styrial Processing, 143(4):250-256, August 1996. Invited paper, based on the paper of the same title at the IEE Conference on lmage Processing and its Applications, Edinburgh, Joly 1995.
[17] A. V. Oppenteim and 1. S. Lim. The importance of phase in signals. Proceedings of the JEEE, 69(3):529-541, May 1981.
[18] B Pfitamann. Information kiding terminology, In Ross Anderson, editor, Proceedings of the First International Workshop in Information Hiding, Lexture Notes in Computer Science, pages 347-350, Cambridge, UK, May/June 1996. Springer Verlag.
$[19]$ R. L. Pickholtz, D, L. Schilling, and L. B. Milstein. Theory of spread spectrum communications - a tutorial IEEE Transactions on Communications, COM-30(5):855-884, May 1982.
[20] I Pitas. A method for signatare casting on digital images. In Proceedings of the IEEE Int. Conf, on Inage Processiny ICIP-96. pages 215-218, Lausanne, Switzerland, September 16-191996.
[21] W.H. Press, S.A. Teukolsky, W.T, Vetterling, and B.P. Flannery. Numerical Recipes in C. Cambridge University Press, second edition, 1992.
[22] J. Puate and F. Jordan. Using fractal compression scheme to embed a digital signature into an image hup://tswww.epfi.ch/kutter/publications/fvt.htenl, November 1996.

123] T. H. Reiss Recomnixity planan Objecls Using Invariant Image Features Lecture Notes in Computer Science. Springer-Verlag, 1993:
[24] B. Schneier. Applied Cruptography. Wiley, 2nd edition, 1995.
[25] J. Smith and B. Comiskey. Modulation and information hiting in images. In Ross Anderson, editor, Praceedings of the First Intemational Workshop in Information Biding, Lecture Notes in Computer Science, pages 207-226, Cambridge, UK, May/June 1996. Springer Verlag.
[26] D. McG. Squire. Model-based Neural Netwarks for Inwarrant Pattern Recognition. PhD thesis, Curtin University of Technology, Perth, Western Australia, October 1996.
[27] M. D. Swansor, B. Zhu, and A. Tewifk, Transparent robust image watermarking. In Proceedings of the IEEE Int. Conf. on Image Processing ICIP-96, pages 211-214, Lausanne, Switzerland, September 16-19 1996.
[28] P, Sweeney. Etror Control Coding: An Introdsction. Prentice-Hall, 1991,
[29] A. Z. Tirkel, G. A. Rankin, R, G, van Schyndel, W. J. Ho, N. R. A. Mee, and C. F. Osborne. Electronic watermark. In Dietio-99, pages 666-672, Macquarie University Sydney, December 1993.
[30] A. Z. Tirkel, R. G. van Schyndel, and C. F. Ostrorne. A two-dimensional digital watermark. In ACCV'g5, pages 378-383, University of Queensland, Brishane, December 6.81995.
131] A.Z. Tickel. Image and watermark registration: Submitted Lo Signal processing; January 1997.
[32] R. G. van Schyndel, A. Z. Tirhel, and C. P. Osborne, A digital watermark: In IEEE Iru. Conf. on Image Processing JCIP-95, pages 80-90, Austin, Texas, 1995.
[33] R, G, van Schyndel, A. Z. Trikel, and G. F. Osthorne, Towards a rotrust digital watermark. In Dicta-95, pages 504-508, Nanyang Technological University, Singapore, Docember 5-8 1995.
[34] J. Zhao and E. Koch. Einbedding robust labuls into images for copyright protection. Technical report, Fraunhofer Institute for Gomputer Graphics, Darmstadt, Germany, 1994.

DISH - Blue Spike-408
Exhibit 1010, Page 1900

DISH - Blue Spike-408
Exhibit 1010, Page 1901

DISH - Blue Spike-408
Exhibit 1010, Page 1902

DISH - Blue Spike-408
Exhibit 1010, Page 1903

DISH - Blue Spike-408
Exhibit 1010, Page 1905

METHOD AND DEVICE FOR MONITORING AND ANALYZING SIGNAIS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of pending U.S. Patent Applicalion Serial No. 08/999,766, filed July 23, 1997, entitled "Steganographic Method and Device"; pending U.S. Patent Application Serial No. 08/772,222, filed December 20, 1996, entitled "Z-Transform Implementation of Digital Watermarks"; perding U.S. Patent Application Serial No. 09/456,319, filed December 8, 1999, entited "Transform Implementation of Digital Watermarks"; pending U.S. Patent Application Serial No. 08/674,726, filed July 2, 1996, entifled "Exchange Meghanisms for Digital Information Packages with Bandwidth Securitization, Multicbannei Digital Watermarks, and Key Management"; pending U.S. Fatent Application Serial No. $09 / 545,589$, filed April 7, 2000, entitled "Method and System for Digital Waternarloing"; pending U.S. Patent Application Serial No. 09/046,627, filed March 24, 1998, entitled "Method for Combining Transfer Function with Predetermined Key Creation"; pending U.S. Patent Application Scrial No 09/053,628, filed April 2, 1998, entifled "Moltiple Transform Utilization and Application for Secure Digital Watermarking": pending USS. Patent Application Seriai No, 09/281,279, filed March 30, 1999, entifled "Optimization Methods for the Insertion, Protectiont, and Detection..M U.S. Patent Application Serial No.09.594,719, filed June 16, 2000, entitled "Utilizing Data Reduction in Steganographic and Cryptographic Systems" (which is a continuation-in-part of PCT application No. PCT/US00/06522; filed March 14, 2000, which PCT application claimed priority to U.5. Provisional Application No, 60/125,990, filed March 24, 1999); pending U.S. Application No 60/169,274, filed December 7. 1999, entitled "Syotems, Methods And Devices For Trusted Transactions"; and PCT Application No. PCT/US00/21189, filed August 4, 2000 (which claims prionty to U.S. Patent Application Serial No. 60/147,194,

$$
-2
$$

filed August 4, 1999, and to US Patent Application No. 60/213,489, filed June 23, 2000, both of which are entitled, "A Secure Personal Content Server"), The previously identified patents and/or patent applications are bereby incorporated by reference, in their entireties.

In addition, this application hereby incorporates by reference, as if fully stated herein, the total disclosures of US Parent 5,613,004 "Steganographic Method and Device"; U.S. Patent 5,745,569 "Method for Stega-Cipher Protection of Computer Code", and U.S. Patent 5,889,868 "Optimization Methods for the Insertion, Protection, and Detection of Digital Waternarks in Digitized Data."

BACKGROUND OF THE INVENTION

1. Ficld of the Invention

The invention relatas to the monitoring and analysis of digital infornation. A method and device are described which relate to signal recognition to enhance identification and monitoring activities.

2. Description of the Related Art

Many methods and protocols are known for transmitting data in digital form for multimedia applications (including computer applications đelivered over public networks sucb as the internet or World Wide Web ("WWW"). These methods may include protocols for the compression of data, such that it may more readily and quickly be delivered over limited bandwidth data limes. Among standard protocols for data compression of digital files may be mentioned the MPEG compression standards for audio and video digital compression, promulgated by the Moving Picture Experts Group. Numerous standard reference works and patents discuss such compression and transmission standards for digitized information.

Digital watermarks help to authenticate the content of digitized multimedia information, and can also discourage piracy, Because piracy is clearly a disincentive to the digital distribation 0с01:244302.5
of copyrighted content, establishment of responsibility for copies and derivalive copies of such works is invaluable. In considering thī yarious forms of multimedia content, whether "mester," stereo, NTSC video, andio tape or compact disc, tolerance of quality will vary with individunls and affect the underlying commercial and aesthetic value of the content. It is desirable to tie copyrights, ownership rights, purchaser information or some combination of these and related data into the content in such a manner that the content mast undergo damage, and therefore reduction of its value, with subsequent, nnauthorized distmbution, sommercial or othenwise. Digital watermsrks address many of these concems. A general discussion of digital watermarking as it bas been applied in the art may be found in U.S. Patent No. 5,687,236 (Whose specification is incorporated in whole berein by reference).

Further applications of basic digital watermarking functionality have also been developed. Examples of such applications are shown in U.S. Patent No. $5,889,868$ (whoso specification is incorporated in whole herein by reference). Such applications have been drawn, for instance, to implemeniations of digital watermarks that were deemed most suited to particular transmissions, or particular distribution and storage mediums, given the nature of digitally sampled audio, video, and other multimedia works. There have also been developed techniques for adapting watermark application parameters to the individual characteristics of a given digital sample stream, and for impiementation of digital watermarks that are feature-based - i.e., at system in which watennark information is not carried in individual samples, but is carried in the relationships between unultiple samples, such as in a waveform shape. For instance, natural axtensions may be added to digital watermarks that may also separate frequencies (color or audio), chamnels in 3D while utilizing discreteness in featuro-based encoding only known to those with pseudo-random keys (i.e., cryptographic keys) or possibly tools to access such information, which may one day exist on a quantum level.

A matter of general weakness in digital watermark technology relates directly to the manner of implementation of the waterouark. Many approaches to digital waternarking leave ocoi:244302.5
detection and decode control with the implementing party of the digital watermarl, not the creator of the work to be protected. This weakness removes proper economic incentives for improvement of the technology. One specific form of exploitation mostly regards efforts to obscure subsequent watemark detection. Others regard successful over encoding using the same waternarkiog process at a subsequent time Yet another way to perform secure digital watermark implementation is through "key-based" approaches,

SUMMARY OF THE INVENTION

A method for monitoring and anslyzing at least one signal is disolosed, which method comprises the steps of. receiving at least one reference signal to be monitored; creating an abstract of the at least one roference sigual; storing the abstract of the at least one reference signal in a reference database; receiving at least one query signal to be malyzed; creatiog an abstract of the at least one query signal; and companing the abstract of the at least one query signal to the abstract of the at least one reference signal to determine if the abstract of the at least one query signal matches the abstract of the at least one reference signal.

A method for monitoring a plurality of reference signals is also disclosed, which method comprises the steps of: creating an abstract for each one of a plurality of referenoe signals; storing each of the abstracts in a reference database; receiving at least one query signal to be analyzed; creating an abstract of each at least one query signal; locating an abstract in the reference database that matches the abstract of each at least one query signal; and recording the identify of the reference signal whose abstract matched the abstract of each at least one query signal.

A computerized system for monitoring and analyzing at least one sigual is also disclosed, which aystem comprises: a processor for creating an abstract of a signal using selectable criteria, a first input for receiving at least one refercnce signal to be monitored, the first input being coupled to the processor such that the processor may generate an abstract for cach reference DCO1244:02.5
signal input to the processor, a reference database, coupled to the processor, for storing abstracts of each at least one reference signal; a second unput for receiving at least one query sigual to be analyzed, the second input being coupled to the processor such that the processor may generate an abstract for each query signal; and a comparing device, coupled to the reference database and to the second input, for comparing an abstract of the at least one query signal to the abstracts stored in the reference database to determine if the abstract of the at least one query signai matches any of the stored abstracts.

Further, an electronic system for monitoring and analyzing at least one signal is disclosed, which system comprises: a first input for receiving at least one reference sigual to be monitored, a lirst processor for creating an abstract of each reference signal input to the first processor through the first inpur; a second input for receiving at least one query signal to be analyzed, a second processor for creating an abstract of each query sigual; a reference database for storing ebstracts of each at least one reference signal; and a comparing device for companing an abstract of the at least one query signal to the abstracts stored in the reference database to determune if the abstract of the at least one query signal matches any of the stored abstracts.

DETAILED DESCRIPTION OF THE INVENTION

While there are many approaches to data reduction that can be utilized, a primary concern is the ability to reduce the digital signal in such a manner as to retain a "perceptual relationship" between the original signal and its data reduced version. This relationship may either be mathematically discernible or a result of market-dictated needs. The purpose is to afford a mors consistent means for classifying signals than proprietary, related text-based approaches. A simple analogy is the way in which a forensic investigator uses a sketch artist to assist in deternuning the identity of a human.

In one embodiment of the invention, the abstract of a signal may be generated by the following steps: 1) analyze the charateristics of each sigoal in a group of audible/perceptible DC01:244302.5
wariations for the aame signal (e.g, analyce each of five versions of the same song-which versions masy have the same lyrics und music but which are sung by different artists); and 2) solect those charactenstics which achieve remain relatively constant (or in other words, which Have minimum variation) for each of the signals in the group. Optionally, the null case may be defined using those characteristics which are conmon to each member of the group of versions.

Lossless and lossy compression schemes are appropriate candidates for data reduction technologies, as are those subset of approaches that are based on perceptual models, such as AAC, MP3, TwinVQ, JPEG, GIF, MPEG, etc. Where spectral transforms fail to assist in greater data reduction of the signal, other signal characteristics can be identified as candidates for further data reduction. Linear prediotive coding (LPC), x-transiorm analysis, root mean square (rms), signal to peak, may be appropriate toola to measure signal characteristics, but other approaches ar combinations of signal characteristic analysis are contemplated. While such signal characteristics may assist in determining particulat applications of the present invention, a generalized approach to signal recognition is necessary to optimize the deployment and ase of the present invention.

Increasingly, valuable information is being created and stored in digital form. For example, music, photographs and motion pictures can sll be stored and transmitted as a series of binary digits - I's and 0's, Digital techniques permit the oniginal information to be duplicated repeatedly with perfect or dear perfect accuracy, and each copy is perceived by viewers or Biateners as indistinguishable from the original signal. Unfortunately, digital techniques also permut the information to be easily copied without the owner's permission. While digital representations of analog waveforms may be analyzed by percoptually-based or percepfuallylimited analysis it is usually costly and time-consuming to model the processes of the lughly effective ability of humans to identify and recognize a signal. In those applications where malog signals require analysis, the cost of digitizing the analog signal is minimal when compared to the benefits of increased accuracy and speed of signal analysis and monitoring when the processes DCOY 24×302.5
contemplated by this invention are afilized.
The present invention relates to identification of digitally-sampled information, such as images, audio and video. Traditional methods of identification and monitoring of those signals do not rely on "perceptual quality," but rather upon a separate and additional signal. Within this mpplication, such signals will be called "additive signals" as they provide information about the original images, audio or video, bat such information is in addition to the onginal sjgrail. One traditional, text-based additive signal is title and aufhor information The title and author, for example, is information about a book, but it is in addition to the text of the book. If a book is bsing duplicated digitally, the tifle and author could provide one means of monitoring the number of times the text is being duplicated, for example, through an Internet download. The present invention, however, is directed to the identification of a digital signal-whether text, audio, or video-using only the digital signal itself and then monitoring the number of times the signal is duplicated. Reliance on an additive signal has many shortcomings. For example, first, someone mast incorporate the additive sigual within the digital data being transmitted, for example, by concatenation or through an embedding process. Such an additive signal, however, can be cassily identified and removed by one who wants to utilize the original signal wifhout paying for its usage. If the original signal itself is used to identify the content, an unauthorized user could not avoid payment of a royalty simply by removing the additive signal-because there is no additive signal to remove. Hence, the present invention avoids a major disadvantage of the prior art,

One such additive signal that may bo utilized is a digital watermark-which ideally cannot be removed without perceptually altering the original signal. A watermark may also be used as a monitoring signal (for example, by encoding an identifier that uniquely identifies the original digital signal into which the identifier is being embedded). A digital watermark used for monitoring is also an additive signal, and suoh a signal may make it difficult for the user who wants to duplicate a signal without paying a royalty-mainiy by degrading the perceptual quality of the original signal if the watermark (and hence the additive monitoring signal) is removed. 0c01:244302,5

This is, however, is a different solution to the problem:
The preseni invention elimingtes the need of any additive monitoring signal because the present invention utilizes the underlying content signal as the identifier itself. Nevertheless, the watermark may increase the value of moniloning techniques by increasing the integrity of the embedded data and by indicating tampering of either the original contont signal or the monitoring signal, Moreover, the design of a watermarking embedding aigorithm is closely related to the perceptibility of noise in any given signal and can represent an ideal subset of the original signal: the waternark bits are an inverse of the signal to the extent that lossy compression schemes, which can be used, for iostance, to optinize a watermarking embedding scheme, can yeld information about the extent to which a data sigral can be compressed while holding steadfast to the design requirement that the compressed signal maintain its perceptual relationship with the orignal, uncompressed signal. By describing those bits that are candidates for impereeptible embedding of watermark bits, further data reduction may be applied on the candidate watermarks as an example of retaining a logical and perceptible relationship with the original uncompressed signal.

Of course, the present invention may be used in conjunction with watermarling technology (including the use of keys to accomplish secure digital watermarking), but watermarking is not necessary to practice the present invention. Keys for watermarking may fave many forms, including: descriptions of the original carrier fie formatting; mapping of embedded data (actually imperceptible changes made to the carrier signal and referenced to the predetermined key or key pairs), assisting in establishing the watermark message data integrity (by incorporation of special one way functions in the watermark message data or key), etc. Discussions of these systems in the patents and pending patent applications are incorporated by reference above. The "recogrifion" of a particular signal or an instance of its transmission, and its monitoring are operations that may be optimized through the use of digital watermark analysis.

DCO1244302.5

A practical difference between the two approaches of using a separate, additive moritoring signal and using the original signal itself as the monitoring signal is control. If a separate signal is used for monitoring, then the originator of the text, audio or video signal being transmitted and the entity doing the monitoring have to agree as to the nafure of the separate signal to be used for monitoring-otherwise, the entity doing the monitoring would not know where to look, for what to look, or how to interpret fhe monitoring signal once it was identified and detecter. On the othet band, if the original signal is used itself as a monitoring signal, then no such agreement is necessary. Moreover, a more logical and self-sufficient relationship between the original and its data-reduced abstract enhances the transparency of any resulting monitoring efforts. The entity doing the monitoring is oot looking for a separate, additive monitoring system, and further, need not have to interpret the content of the monitoring signal.

Moritoring implementations can be handled by robust watermark techniques (those techniques that are able to survive many signal manipulations but are not inherently "secure" for yerification of a catrier sigoal absent a logically-related watermarking key) and forensic walermark techniques (which enable embedding of watermarks that are not able to survive perceptible alteration of the carrier signal and thus enable detection of tampering with the originally watermarked carrier signal). The techniques have obvious trade-offs between speed, performance and secunity of the cmbedded watermark data.

In other disclosures, we suggest improvements and implementations that relate to digital watermarks in particalar and ernbedded signaling in general. A digital watermark may be used to "tag" content in a manner that is not bumanly-perceptible, in order to ensure that the human perception of the signal quality is maintained. Watermarking, however, must inherently alter at least one data bit of the original signal to represent a minimal change from the original signal's "unwatermarked state", The cbanges may affect only a bit, at the very least, or be dependent on information hiding relating to signal characteristics, such as phase information, differences between digitized samples, root mean square (RMS) calculations, z-transform analysis, or similat DC01:244302.5
signal characteristic category.
There are weaknesses in using digital watermark technology for monitoring purposes, One weakness relates directly to the way in which watermarks are implemented. Often, the persons responsible for encoding and decoding the digital watermark are not the creator of the yaluable work to bo protected. As such, the creator has no input on the placement of the monitoring signal within the valuable work being protected. Hence, if a user wishing to avoid payment of the royalty can find a way to decode or remove the watermark, or at least the monitoring signal embedded in the watermark, then the unauthorized user may successfully daplicate the signal with impunity. This could occur, for example, if either of the persons responsible for encoding or decoding were to have their security compromised such that the encoding or decoding algorithms were discovered by the unauthorized user.

With the present invention, no such disadyantages exist because the creator need not rely on anyone to insert a monitoring signal-as no such signal is necessary. Instead, the creatot's work itself is used as the monitoring signal. Accordingly, the value in the signil will have a strong relationship with its recognizability.

By way of improving methods for efficient monitoning as well as effective confirmation of the identity of a digitally-sampled signal, the present invention describes useful methods for using digital signal processing for benchmarking a novel basis for differencing signals with btnary data comparisons. These techriques may be complemented with perceptual techuiques, but are intended to leverage the generally decreasing cost of bandwidth and signal processing power in an age of increasing availability and exchange of digitized binary data.

So long as there exist computationally inexpensive ways of identifying an entire signal with some fractional representation or relationship with the original signal, or its perceptuaily observable representation, we envision methods for faster and more accurate auditing of signals as they are played, distributed or otherwise shared amongst providers (transmitters) and consumers (receivers). The ability to massively compress a signal to its essence-which is not DC01:2443025
strictly equivalent to "lossy" or "lossless" compression schemes or peroeptual coding techmiques, but designed to preserve some underlying "aesthetic quality" of the signal-represents a useful means for signal analysis in a wide variety of applications. The Gignal analysis, however, must maintain the ability to distinguish the perceptual quality of the signals being compared. For example, a method which analyzed a portion of a song by compressing it to a single line of lyrias fails to maintain the ability to distinguish the perceptual quality of the songs being compared. Specifically, for example, if the song "New York State of Mind" were compressed to the lyrics "T'm in a New York State of Mind," sach a compression fails to maintain the ability to distinguish between the various recorded versions of the song, say, for example between Billy Joel's recording and Barbara Streisand's recording. Such a method is, therefore, incapable of providing accurate monitoring of the artist's recordings because it could not deternine which of the two artists is deserving of a royalty-unless of course, there is a separate monitoning signal to provide the name of the artist or other information sufficient to distinguish the two versions, The present invention, however, aims to maintain some level of perceptual quality of the sigrals being compared and would deem such a compression to be excessive.

This analogy can be miade clearer if it is understood that there are a large number of सpproaches to compressing a signal to, say, $1 / 10,000^{\text {th }}$ of its original size, not for maintaining its signal quality to ensure computational ease for commercial quality distribution, but to assist in identification, analysis or monitoring of the signal. Most compression is either lossy or lossless. and is designed with psychoacoustic or psychovisual parameters. That is to say, the signal is compressed to retain what is "humanly-perceptible." As long as the compression successfilly mimies humar perception, data space may be saved when the compressed file is complared to the uncompressed or original file. While psychoacoustic and psychovisual compression has some relevance to the present invention, additional data reduction or massive compression is auticipated by the present invention. It is anticipated that the original signal may be compressed to create a realistic or self-similar representation of the original signal, so that the compressed DCO1244:32.5
signal can be referenced at a subsequent time as unique binary data that has computatiomal releyance to the original sigral. Diepenting on the application, genernl data yeduction of the onginal signal can be as simple as massive compression or may relate to the watermark eneoding envelope parameter those bits which a watermarking encoding algorithm deam as candidate bits for mapping independent data or those bits deemed imperceptible to humin senses but detectahle to a watermark detection algorifhi) In this manner, certain media which are commonly known by signal characterisfies, a painting; a song, a TV commercial, a dialect, etc., may be analyzed move accurately, and perlaps, mote efficiently than a text-based descriptir of the signal. So long as flee sender and receiver agree that the data representation is accurate, even insofar as the datareduetion techmique has logieal relationships with the perceptibitity of the original signal, as they must with commonly agreed to text desoriptors, no independent calaloging is necessary,

The present invention generally contemplates a signal recognition system that has at lesst five elements. The actual mumber of elements may vary depending on the number of domina in which a signal resides (for ecample, audio is at least one domain while visial carriers are at least two dimensional). The present invention contemplates that the number of elements will be sufficient to effectively and efficientiy meet the demands of vanious classes of signai recogution. The design of the sigual recognition that may be used wifh data reduction is berter understood in the context of the general requiroments of a pattern or signal recognition syatem,

The first olement is the reference dutabase, which contans information ahout a pluralify of potential signals that will be monitored. In one torm, the reference database mould contain digital copies of origina sorks of art as they are reconded by the various artists, for example, contam digital copiea of all songs that will be played by a particular radio station. In another Form, the rofarnoe database woula contain not perfect digital onjpies of originai woiks of art, but digital copies of abstracted works of art, for example, comrain digital copies of all songs that have been proprocessed such that the copies represent the perceptual charaoteristics of the original Songs. to another form, the reference dalabise would contain digitai copies of procesged data DCOH2443025
files, which files represent works of art that have been preprocessed in such a fashion as to identify those perceptual differences that can differentiate one version of a work of at from another version of the same work of aut, such as two or more versions of the same song, but by different artists. These examples have obvious application to visually communicated works such as itrages, trademarks or photographs, and video as well.

The second element is the object locator, which is able to segment a portion of a signal being monitored for analysis (i,ie, the "monitored signal"). The segmented portion is also referred to as an "object" As zuch, thic signal being monitored may be thought of comprising a set of objects. A song recording, for example, can be thought of as having a multitude of objects, The objects need not be of uniform length, size, or coatent, but merely be a sampie of the signal being monitored. Vistually communicated informational signals have related objects; color and size are examples.

The third element is the feature selector, which is able to analyze a selented object and identify perceptual features of the object that can be used to uniquely describe the selecleil object. Ideally, the feature selector can identify all, or nearly all, of the perceptaal qualities of the object that differentiate il from a simularly seleoted object of other signals. Simply, a feature selector has a direct relationship with the perceptibility of features commonly observed. Counterfeiting is an activity which specifically seeks out features to misrepresent the authenticity of any given object. Highly granular, and arguably successfui, counterfeiting is typically sought for objects that are easily recognizable and valuable, for example, currency, stamps, and trademarked or copyrighted works and objects that have value to a body politic,

The fourth element is the comparing device which is able to compare the selected object using the features selected by the feature seleotor to the plurality of signals in the reference database fo identify which of the signals matches the monitored signal. Depending upon how the information of the plarality of signals is stored in the reference database and depending upon the available computational capacity (e.g., speed and efficiency), the exact nature of the companson nC11:2443025
will vary. For exsmple, the comparing device may compare the selected object directly to the signal information stored in the database. Aifernatively, the comparing device may need to process the signal information slored in the database using input from the feature selector and then compare the selected object to the processed signal information. Altematively, the companing device may need to process the selected object using input from the feature seloctor and then compare the processed selected object to the signal information. Alternatively, the comparing dovice may need to process the signal information stored in the database using input from the feature selector, process the selected object using input from the feature selector, anit then compare the processed selected object to the processed sigual information.

The fifth element is the recorder which records information about the number of times a given signal is analyzed and detected. The recorder may comprise a database which keeps track of the number of times a song, image, or a movie has been played, or may gencrate a serial output which car be subsequently processed to detemine the total number of times various signals have been defected.

Other elements may be added to the system or incorporated into the five elements identified above: For example, an error handler may be incorporated into the comparing device. If the comparing deviee identifies multiple signals which appear to contain the object being sought for analysis or monitoring, the entor handler may offer further processing in order to identify additional qualities or features in the selected object such that only one of the set of captured signals is found to contain the further analyzed seleoted object that actually conforms with the object thought to have been transmitted or distributed.

Moreover, one or more of the five identified elements may be implemented with software that mins on the same processor, or which uses multiple processors. In addition, the eloments may incorporate dynamic approaches that utilize stochastic, beuristic, of experience-based adjustments to refine the signal analysis being conducted within the system, including, for example, the signal analyses being performed within the feature selector and the comparing DCOY:34450.5
device. This additional analyses may be viewed as filters that are designed to meel the expectations of accuracy or speed for any intended application.

Since maintenance of onginal signal quality is not required by the present inyention, increased efficiencies in processing and identification of siguals can be achieved. The present invention concerns itself with perceptible relationships only to the extent that efficiencies can be achieved both in acouracy and speed with enabling logical relationships between an original signal and its abstract.

The challenge is to maximize the ability to sufficiently compress a signal to both relain its relationship with the original signal while reducing the data overhead to enable mofe efticient analysis, archiving and monitoring of these signals. In some cases, data reduction alone will not suffice: the sender and recciver must agree to the accuracy of the recognition. In other cases, agreement will actually depend on a third party who authored or created the signal in question. A digitized signal may bave parameters to assist in establishing more accurate identification, for example, a "signal abstract" which naturally, of by agreement with the creator, the copyright owner or other interested parties, can be used to describe the original sigual. By utilizing less than the original signal, a computationally inexpensive means of identification can be used. As long as a realistic set of conditions can be arrived at governing the relationship between a signal and its data reduced abstract, increases in effective monitoring and transparency of information data flow actoss communications channels is likely to result. This feature is significant in that it Tepresents an improvement over how a digitally-sampled signal can be cataloged and identified, though the use of a means that is specifically selected based upon the strengths of a generai computing device and the economic needs of a particular market for the digitized information data being monitored. The additional benefit is a more open means to uniformly catalog, analyze, and monitor signals. As well, such benenits can exist for third parties, who have a signinfeant interest in the signal but are not the sender or receiver of said information.

As a general improvement over the art the present invention incorporates what could hest DC01:2443025
be described as "computer-acoustic" and "computer-visual" modeling, where the signal sbstraots are created using data reduction lechniques to determine the smallest amount of data, ut lenst a single bit, wbich can represent and differentiate two digitized sigual representations for a given predefined signal get. Each of such representations must have at least a one bit difference with a)l other members of the database to differentiate each such representation from the others in the database. The predefined signal set is the object being analyzed. The signal identifier/detector should recejve its parameters from a database engine. The engine will identify those characteristics (for example, the differences) that can be ased to distinguish one digital signal from all other digital signals that are stored in its collection. For those digital signals or objects which are seemingly identical, excepting that the signal may have different performance or pithzation in the newly created object, benefits over additive or text-based identifiers are achieved. Additionaily, decisions regarding the success or failure of an accurate detection of any given object may be flexably implemented or changed to reflect market-based demands of the engine. Appropriate examples are songs or works or art which have been sampled or reproduced by others who are not the original creator.

In some cases, the engine will also consider the NULL case for a generalized item not in its database, or perbaps in situations where data objects may bave collisions. For some upplications, the NULL case is not necessary, thus making the whole system faster. For instance, databases which have fewer repetitions of objects or those systems which are intended to recogrize signals with time constraints or capture all data objects. Greater efficiency in processing a relational database can be obtained because the rules for comparison are selected for the maximum efficiency of the processing hardware and/or software, whether or not the processing is based on psychoacoustic or psychovisual models. The benefits of massive data reduction, flexibility in construoting approprate signal recognition protocols und incorporation of cryptographic techniques to further add accuracy and confidence in the system aro clearly improvernents over the art. For example, where the data reduced abstract needs to have further DC0012443025
uniqueness, a hash or signature may be required. And for objects which have firther uniqugness requirements, two identical instances of the objeot could be made unique with cryptographic techniques.

Accuracy in processing and identification may be increased by using one or more of the Following fidelity evaluation functions:

1) RMS (root mean square). For example, a RMS function may be used to assist in determining the distance between data based on mathematically determinable Euclidean distance between the begining and end data points (bits) of a particular signal carrier.
2) Frequency weighted RMS. For example, different weights may be applied to different frequency components of the carrier sigual before using RMS. This selective weighifing can assist in further distinguishing the distance between beginning and end points of the signal carner (at a given point in time, described as bandwidth, or the number of total bits that can be transmitted per second) and may be considered to be the mathematical equivalent of passing a camier signal difference through a data filter and figuring the average power in the output carrier.

Absolute error criteria, inclading particularly the NULL set (described above) The NULL may be atilized in two significant cases: First, in instances where the recognized signal appears to be an identified object which is inaccurately atributed or ifentified to an object not handled by the database of objects; and second, where a collision of data occurs. For instance, if an artist releases a second performance of a previously recorded song, and the two performances are so similar that their differences are almost imperceptible, then the previously selected criteria may not be able to differentiate the two recordings. Hence, the database must be "recalibrated" to be able to differentiate these two versions. Similarly, if the system identifies pot one, but two or more, matches for a particular search, then the dalabase may need
"cecalibration" to further differentiate the two objects stored in the database
4) experience-based analysis within a recognition engine. Once suoh analysis may involve mathematically determining a spectral fransform or its equivalent of the carriet signal. A spectral transform enables signal processing and should maintain, for certain applications, some cognitive or perceptaal relationship with the original analog waveform. As a novel feature to the present invention, additional classes may be subject to humanly-perceptible observation. For instance, an) experience-based criteria which relates particalarly to the envisioned or perceived accuracy of the data information object as it is used or applied in a particular market, product, or implementation. This may include a short 3 second segment of a commercially available and recognizable song which is used for commercials to enable recognition of the good or service being marketed. The complete song is marketed as a separately valued object from the use of a discrete segment of the song (that may be used for promotion or marketing-for the complete song or for an entirely different good or service). To the extent that an owner of the song in question is able to further enable value through the licensing or agreement for use of a segment of the original signal, cognitive identification is a form of filtering to enable differentiations between different and intended uses of the same or subset of the same signal (object). The implementation relating specifically, as diselosed herein, to the predeternined identification or recognition means and/or any specified relationship with subsequent use of the identification means can be used to create a bistory as to how often a particular signal is misidentified, which history can then be used to optimize identification of that signal in the future. The difference between use of an excerpt of the song to promote a separate and distinct good or service and use of the excerpt to promote recogoition of the song itself (for example, by the artist to sell copies of the
song) relates informationally to a decision based on recognized and approved use of the song. Both the song and applications of the song in its entirety or as a subset are typically based on agreement by the creator and the sender who seeks to utilize the work. Trust in the means for identification, which can be weighted in the present Invention (for example, by adjusting bit-addressable information), is in important Factor in adjusting the monitoring or recognition features of the object of carrier signal, and by using anly misidentification information, (including any expariencebased or heuritaic information), additional features of the monitored signal can be used to improve the performance of the moritoring system envisioned herein. The issue of central concern with ooguitive identification is a greater understanding of the parameters by which any given object is to be analyzed. To the extent that a creator choobes varying and separate application of his object, those applications having a cognitive difference in a gignal recognition sense (e.g, the whole or an excerpt), the system contemplated herein includes rules for goveming the application of bitaddressable information to increase the accuracy of the database.
5)

Emally, the predetermined parameters that are associated with a discrete case for any given object will have a significant impact upon the abrility to accurately process and identify the signals. For example, if a song is transmitted over a FM carrici, then one skilled in the art will approciate that the FM signal has a predetermined handwidth which is different from the bandwidth of the original recording, and different even from song when played on an AM carrier, and different yet from a song played using an 8-bit Internet broadcast. Recognition of these differences, bowever, will permit the selection of an identification means which can be optimized for monitoring a FM broadcasted signal. In other words, the discreteness intended by the sender is limited and directed by the fidolity of the transmission means. Objects may be cataloged and assessing with the understanding

$$
-20=
$$

that all monitoring will occur using a specific transmission fidelity. For example, a database may be optimized with the understanding that only AM broadcast signals will be monitored. For maximum efficiency, different data bases may be created for different transmission channels, e.g., AM broadcasts, FM broadoasts, Internet broadcasts, etc.

For more information on increasing efficiencies for infonmation systems, see The Mathematical Theory of Communication (1948), by Shannon.

Because bandwidth (which in the digital domain is equated to the total number of bits that Can be transmitted in a fixed period of time) is a limited resource which places limitations upon transmission capacity and information coding schemes, the importance of monitoring for information objects transmitted over any giveu channel must take into oonsideration the nature and utilization of a given channel. The supply and demand of bandwidth will have a dramatic impact on the transmission, and ultimately, upon the decision to monitor and recognize signals. A discussion of this is found in a co-pending application by the inventor under U.S. Patent Appitcation No. 08/674,726 "Exchange Mechanisms for Digital Information Packages with Bandwidth Securitization, Muitichannel Digital Watermarks, and Key Management" (which application is incorporated herein by reference as if fully setforth herein).

If a filter is to be used in conncetion with the recognition or monitoring engine, il may ba desirable for the filter to anticipate and take into consideration the following factors, which affect the economics of the transmission as they relate to triggers for payment and/or relate to events requining audits of the objeots which are being transmitted: 1) time of transmission (i.e, the point in time when the transmission occurred), including whether the transmission is of a five performance); 2) location of transmission (e.g., what channel was used for transmission, which usually determines the associated cost for usage of the transmission channel); 3) the point of origination of the transmission (which may be the same for a signal carrier over many distinct chamela); and 4) pre-existence of the information carrien signal (pre-recorded or newly created 0 CO 1244902.5
information camier signal, which may require differentiation in certain markets or instances).
In the case of predetemnined carrier signals (those which have been recorded and atored for subsequent use), "positional information carner signals" are contemplated by this invention, namely, parceptual differences between the seemingly "same" information carrier that can be recognized as consumers of information seek different versions or quality levels of the same carrier signal. Perceptual differences exist between a song and its reproduction from a CD , an AM radio, and an Internet broadcast. To the extent that the creator or consumer of the sigual can defire a difference in any of the four criteria above, means can be derived (and programmed for selectability) to recognize and distinguish these differences. It is, however, quite possible thal the ability to monitor carner signal transmission with these factors will increase the variety and richness of available carrier signals to existing commumeations channels. The differmntiation between an absolite case for transmission of an object, which is a time dependent exent, for instance a live or real time broadcast, versus the relative case, which is prerecorded or stored for transmission at a later point in time, creates recogoizable differences for signal monitoring.

The monitoring and analysis contemplated by this invention may have a variety of purposes, including, for example, the following: to determine the number of times a song is broadcast on a particular radio broadeast or Internet site; to control security thougln a voiceactivated security system; and to identify associations between a beginner's drawing and thase of great arfists (for example to draw comparisons betwean technique, compositions, or color schemes). None of these examples could be achieved with any significant degree of accuracy using a text-based analysis. Additionally, strictly text-based systems fail to fully capture the tnherent yafue of the data recognition or monitoring information itself.

SAMPLE EMBODIMENTS

In order to better appreciate and understand the present invention, the following sample ambodiments are provided. These sample embodiruents are provided for exemplary purposes DCO1:244302.5
only, and in no way limit the present invention.

SAMPLE EMBODIMENT 1

A database of andio signals (e.g., songs) is stored or maintained by a radio station or Intemet streaming company, who may belect a subset of the songs are stored so that the stbset miay be later broadcast to listeners. The subst, for example, may comprise a sufficient number of songs to fill 24 hours of music programming (between 300 or 500 songs). Tradifionally. monitoring is accomplished by embedding some identifier into the signal, or affixing the identifier to the signal, for later amalysis and determination of royalty payments. Most of the traditional analyais is performed by actual persons who use play lists and other statisticai approximations of audio play, including for example, data obtained through the marual (i.e., by persons) monitoring of a statistically significant sample of stations and transmission times so that an extrapolation may be made to a larget number of comparable markets.

The present invention creates a second đatabase from the first database, wherein each of the stored audio signals in the first database is data reduced in a manner that is not likely to reflect the human perceptual quality of the signal, meaning that a significantly data-reduced sigual is not likely to be played back and recognized as the original signal. As a result of the data reduction, the size of the second database (as measured in digital terms) is much smaller than the size of the first database, and is determined by the rate of compression. If, for example, if 24 hours worth of audio signals are compressed at ai $10,000: 1$ compression rate, the rehuced data could occupy a little more than 1 megabyte of data. With such a large compression rate, the data to be compared and/or analyzed may become compulationally small such that compatationai speed and efficiency are significantily improyed.

With greater compression rates, it is anticipated that similarity may exist between the data compressed abstractions of different analog signals (o.g., recordings by two different artists of the same song). The present invention conteroplates the use of bit-addressable differences to DC01:244302.5
distinguish between such cases. In applications where the data to be analyzed bas higher value in some predetermined sense, cryptographic protocols, such as a hash or digital signature, can be used to distinguish such olose cases.

In a preferred embodiment, the present invention may utilize a cenitralized database where copies of new recordings may be deposited to ensure that copynght owners, who anthorize transmission or use of their recordings by othets, can independently verify that the object is correctly morotored. The rules for the creator himself to enter fis work would differ from a umiversally recognized number assigned by an independent authority (say, ISRC, ISBN for recordings and books respectively). Those skilled in the art of algoritimic information theory (A1T) can recognize that it is now possible to describe optimized use of binary data for content and functionality. The differences between objects must relate to decisions made by the usex of the data, introducing sabjective or cognitive decisions to the design of the contemplated inveotion as described aboye. To the extent that objects can have an optimized data size when compared with ather objects for any given set of objects, the algonithms for data reduction would have predetermined flexibility directly related to computational efficiency and the set of objects to be monitored. The flexibility in having transparent deternination of unique signal abstraels, as opposed to independent third party assignment, is likely to increase confidence in the monitoring effort by the owners of the original signals themselves. The prior art allows for no such transparency to the copyright creators.

SAMPLE EMBODIMENL 2

Another embodiment of the invention relates to visual images, which of course, involve at least two dimensions.

Similar to the goals of a psychoacoustic model, a psychovisual model attempts to represent a visual image with less data, and yet preserve those perceptual qualities that permit a human to recogrize the original visual image. Using the very same techaiques described abōve DCO1:244302.5
in comection with an audio signal, signal monitoring of visual images may be implemented.
One such application for monitoring and analyzing visual images invoives a desire to find works of other artists that relate to a particular theme. For example, finding paintings of sonsets or surifises. A traditional approach might involve a textual search involving a database wherein the bvorks of other artists have been described in writing. The present invention, however, involves the scanning of an image involving a sun, compressing the data to fts essential characteristics (iet, those perceptual characteristics related to the sum) and then finding matches in a database of other visual images (stored as compressed or even uncompressed data): By studying the work of other artists using such techniques, a novice, for example, could leam mich by comparing the presentations of a common theme by different artists.

Another useful application involving this type of monitoring and analyzing is the identification of photographs of potential suspects whose identity matches the sketch of a police artist.

Note that combinations of the monitoring techniques discussed above can be used for audio-visual monitoring, such as video-transmission by a television station or cable stalion. The techiques would haye to compensate, for example, for a cable station that is broadcasting a audio channel unaccompanied by video.

Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herem. The specification and exarnples should be considered exemplary only with the true scope and spirit of the mivention indicated by the following claims. As will be easily understood by those of ondinary skill in the art, variations and modifications of each of the disclosed embodiments can be easily made within the scope of chis invention as defined by the following claims.

WHAT IS CLATMED IS:

1. A method for monitoring and analyzing at least one sigral comprising:
receiving at least ono reference sigual to be monitored;
creating an abstract of said at least one reference signal; storiog the abstract of said at least ove reference signal in a reference database; receiving at least one query signal to be analyzed;
creating an abstract of said at least one query signal;
companing the abstract of said at least one query signal to the abstract of said at least one reference signal to determine if the abstract of said at least one query signal matches the abstract of said at least one reference signal.

3. The method of claim 1 wherein

the step of creating an abstract of said at least one reference signal comprises:
ioputing the reference signal to a processor;
creating an abstract of the reference signal using perceptual qualities of the reference signal such that the abstract retains a perceptual relationship to the reference sigual from which it is derived; and
the step of creating an abstract of said at least one query signal comprises:
inputting the at least one query signal to the processor,
creating an abstract of the at least one query signal using perceptual qualities of the at least one query signal suoh that the abstract retains a perceptual relationship to the at least one query signal from which it is derived.
3. The method of claim 1 further comprising:
creatiog at least one coumter corresponding to one of said at least one reference signals, said at least one counter being representative of the number of times a match is found between DC01:244302.5
the abstract of said at least one query signal and the abstract of said at least one reference signal; and
incrementing the counter corresponding to a particular reference signal when a match is found between an abstract of said at least one query signal and the abstract of the particular reference signal.
4. The method of claim 1 further comprising:
recording an occurrence of a match between the ahstract of said at least one query signal and the abstract of said at ieast one reference signal; and
generating a report that identifies the referance signal whose abstract matched the abstract of zaid at least one query sigual.
5. The method of claim 4, further comprising:
recording an occurrence of a match between the abstract of said at least one query signal and the abstract of said at least one reference signal.
6. The method of claim 1 , further comprising pernitting access to a secured area when the abstract of said at least one query signal matches the abstract of said at least one reference signal,
7. The method of claim L, wherein
the step of creating an abstract of said at least one reference signal comprises:
using a portion of said at least one reference signal to create an abstract of said at least one reference signal; and
the step of creating an abstract of said at least one query signal comprises:
using a portion of said at least one query signal to create an abstract of said at DC01:244902.5
least one query signal
8. A method for monitoring a phrality of reference signale, conmprising:
creating an abstract for each of the plurality of reference signals;
storing each of said abstracts in a reference databasé;
receiving al least one query signal to be analyzed;
creating an abstract of each of the at least one query signals;
locating an abstract in the reference database that matches the abstract of each at least one query signal; and
recording the identify of the reference signal whose abstract matched the abstract of each at least one query signal.
9. The method of claim 8 , wherein the step of creating an abstract for each of a plurality of reference signals compribes:
inputting each of the plurality of reference signals to a processor;
oreating an abstract of each one of the plurality of reference signals using perceptual qualities of each one of a plurality of reference signals such that the abstract retains a perceptual relationship to the reference signial from which it is derived; and the step of creating an abstract of each of the at least one query signals comprises:
inputting each of the at least one query signals to a processor; creating an abstract of each one of a plurality of reference signals using perceptual qualities of each one of a plurality of reference signals such that the abstract relains a perceptual relationship to the reference signal from which it is derived
10. The method of claim 8 , wherein the step of creating an abstract of said at least one referenioe signal compnises) $0001: 249302.5$
using a portion of said at least one reference signal to create an abstract of said at least one reference signal;
and the step of creating an abstract of said at least one query signal comprises:
using a portion of said at least one query signal to create an abstract of said at least one query signal.
11. The method of claim 8 , further comprising:
creating at least one counter corresponding to one of said plurality of reference signals, said at least one counter being representative of the number of times a match is found between the abstract of said at least one query signal and an abstract of one of said plurality of reference signals; and
incrementing the counter comesponding to a particular reference signal when a match is found between an abstract of said at least one query signal and the abstract of the particular reference signal.
12. The method of claim 8, further comprising permitting acocss 10 a secured area when the abstract of said at least one query signal matches an abstract of one of said pluality of reference signals.
13. A computerized system for monitoring and analyzing at least one signal: a processor that creates an abstract of a signal using selectable oriteria;
a first input that receives at least one reference signal to be monitored, said first input being coupled to said processor such that said processor may generate an abstract for each reference signal input to said processor;
a reference database, coupled to said processor, that stores abstracts of each al least. one reference signal;

DCO12443025
a second input that reocives at least one query signal to be manilyzed, said second input being coupled to said processor such that said processor may generate an abstract for each query signal;
a comparing device, coupled to said reference database and to said second imput, that compares an abstract of said at least one query signal to the abstracts stored in the reference database to determine if the abstract of said at least one query signal matches any of the stored abstracts.
14. The system of claim 13 , further comprising:
a storage medium coupled to said first input, that stores each of said at least one reference signals to be monitored; and
a controller coupled to the first input, the processor, the companing device, the reference database and the storage medium, said controller causing an abstract for each reference signal being input for the first time to ba compared to all previously stored abstracts in the reference database, such that in the event that the companing device determines that it catnot distinguish between the abstract of a reference signal being input for the first time from a previously stored abstract in the reference database, the controller adjusts the criteria being used by the processor and re-generates the reference database, by re-processing each reference signal stored on the storage medium to create new abstracts and storing said new abstracts in the reference database.
15. The system of olaim 14, wherein the controller includes a means to adjust compression rates at which the processor processes a signal to create an abstract.
16. The system of claim 13 , wherein the comparing device identifies at least two abstracts in the reforence database that match the abstract of said at least one query sigual and an index DC01:2443025
of relatedness to said at least one query signal for each of said at least two matching absiraols.
17. The system of clafm 13, further comprising:
a security controller that controls access to a secured area, such that access is granted only if the comparing device confinms that an abstract of said at least one query signal matches an abstract of said at least one reference signal.
18. The system of claim 13, wherein said first joput and said second input are the same.
19. The system of elaim 13 , wherein said second input is remotely coupled to the processor.
20. The system of claim 13, further comprising: a recorder that records the identify of the reference signal whose abstract matched the abstract of said at least one query signal; and a report generator that generates a report that identifies the reference signals whose nbstracts matched the abstract of said at least one query signal.
21. A electronic system for montoring and anialyzing at least one signal, comprising: a first input that receives at least one reference signal to be monitored, a first processor that creates an abstract of each reference signal input to said first processor through said first input; a second input that receives at least one query signal to be analyzed, a second processor that creates an abstract of each query signal; If reference database that stores abstracts of each at least one reference signal; a comparing devioe that compares an abstract of said at least one query signal to the 15Ca1:242902.5
abstracts stored in the reference database to determine if the abstract of said at least one query signal matches any of the stored abstracts.
22. The system of claim 21, wherein said second irput is remotely coupled to the system.
23. The system of claim 21 , wherein said second processor is remotely coupled to the system
24. The system of claim 21, wherein the system transmits the criteria that are being used by the firgt processor to the second processor.
25. The system of claim 21, further comprising:
a storage medium coupled to said first input, that stores cach of said at least one reference siguals to be monitored; and
a controller that compares mabstract for each reference signal being input for the first time to be compared to all previously stored abstracts in the reference database, such that in the eyent that the comparing device detentines that it cannot distinguish between the abstract of a reference signal being input for the first time from a previously stored abstract in the reference database, the controller adjusts the criteria being used by the processor and regenerates the reference database, by re-processing each reference signal stored on the storage medium to create new abstracts and storing said new abstracts in fhe reference database.

DC01:244302.

-32-
 METHOD AND DEVICE FOR MONITORING AND ANALYZING SIGNALS

Abstract

OF THE DISCLOSURE A method and system for monitoring and analyzing at least one signal are disclosed. An abstract of at least one reference signal is generated and stored in a reference database. An abstract of a query signal to be analyzed is then generated so that the abstract of the query signal can be compared to the abstracts stored in the reference database for a match. The method and system may optionally be used to record information about the query signals, the number of matches recorded, and other useful information about the query signals. Moreover, the method by which abstracts are generated can be programmable based upon selectable criteria. The system can also be programmed with error control software so as to avoid the re-occurrence of a query signal that matches more than one signal stored in the reference database.

DCO1;244302.5

EXCHANGE MECHANISMS FOR DIGITAL INFORMATION PACKAGES WITH BANDWIDTH SECURITIZATION, MULTICHANNEL DIGITAL WATERMARKS, AND KEY MANAGEMENT

Methods For The Insertion, Protection, and Detection of Digital Watermarks in Digital Data", Serial No. \qquad filed on \qquad $-$

These related applications are all incorporated herein by reference,
This application is also related to U.S. Patent No. 5,428,606,
111589-1
"Digital Information Commodities Exchange", issued on June 27, 1995, which is incorporated herein by reference.

BACKGRQUND OF THEINVENTION

 service providers, aggregators of content for some form of electronic delivary, on-line retailers, individuals and other related parties that participate in thetransfer of funds or arbitrate the actual delivery of content to intended recipients.

There are a number of hardware and software approaches that attempt to provide protection of multimedia content, including encryption, cryptographic containers, cryptographic envelopes or "cryptolopes", and trusted systems in general. None of these systems places control of copyrights in the hands of the content creator as content is created. Further, none of these systems provide an economically feasible model for the content to be exchanged with its identification embedded within the signals that comprise the content. Given the existence of over 100 million personal computers and many more noncopyright-protected consumer electronic goods (such as audio clips, still pictures and videos), copyrights are most suitably placed within the digitized signals. Playing content is necessary to determine or "establish" its commeroial value. Likewise, advertising and broadcast of samples or complete works reinforces demand for the content by making its existence known to market participants (via radio, lelevision, print media or even the INTERNET).

Generally, encryption and cryptographic containers serve copyright holders as a means to protect data in transit between a publisher or distributor and the purchaser of the data. That is, a method of securing the delivery of copyrighted material from one location to another is periormed by using variations of public key cryptography or other cryptosystems. Cryptolopes are
suited specifically for copyrighted text that is time sensitive, such as newspapers, where intellectual property rights and origin are made a permanent part of the file.

The basis for public key cryptography is provided, for example, in a

SUMMARY OF THE INVENTION

The present invention allows the establishing of responsibility of specific copies or instances of copies using digital watermarks.

The present invention relates to methods for the management and distribution of digital watermark keys (e.g., private, semiprivate and public) and the extension of information associated with such keys in order to create a mechanism for the securitization of multimedia tities to which the keys apply,

The present invention additionally relates to "distributed" keys to better define rights that are traded between transacting parties in exchanging information or content.

The present invention additionally provides improvements in using digital watermark information. For example, the speed of performing a key search for watermarks within content is increased. Additionally, more than one party can cooperate in adding distinguished watermarks at various stages of distribution without destroying watermarks previously placed in the content.

Digital watermarks make possible more objective commercial exchanges of content. Trusted systems are more costly but achieve the same goal by establishing the identity of all electronic exchange participants. Digital watermark per copy systems, however, are not on a simple level of establishing responsibility of a master work and its derivative copy only. Multichannel watermarks with private, semiprivate and public keys used as different levels of neighboring rights assist in the creation of a self-contained model for the exchange of copyrighted works. Private key watermarks can be inserted into content to establish ownership rights (copyright, master right, etc.) with the content creator or an agent of the content creator maintaining control
over the key. Semiprivate watermark keys can exist in a separate channel of the information signals that make up the work to be exchanged for subsequently delegating responsiblity to distributors or sales entities to restrict resale rights in the same manner that physical goods have an exchange of title
mechanism for the securitization of multimedia titles to which the keys apply. To differentiate the present invention from public key cryptography, use of "private", "semiprivate", and "public" keys herein refers to the use of such "information" with the stated purpose of distributing goods and watermarking

Randorn Key Generation and Application for Digital Watermark System". Serial No D8/587,944: and "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data", Serial No. \qquad -

In addition, the present invention improves upon the techniques of network will also be differentiated.

DETAILED DESCRIPTION

There are several issues preventing greater volumes of electronic distribution of multimedia content. While such distribution is in fact technically feasible at the present time, attempts at commercially-viable systems are still plagued by these problems, and render digital multimedia exchanges unsatisfactory on a scale comparable to mass retailing in consumer goods markets, such as that of digital audio recordings on compact discs (CDs). While it is possible to transmit a single copy of a digital recording, as 16 -bit 44.1 kHz stereo (CD-quality), to an individual from an archive, making such copies available to a large number of paying consumers on demand is still not yet being implemented. The problems fall into several classes, including distribution bandwidth, copyright protection, technological complexities, and "efficient shopping."

In a similar vein to distribution of physical goods in the real world, bandwidth and developments that effectively increase bandwidth are creating profound new business models in how content creators and publishers can distribute their works. From the simplest compression schemes, to actual use of "wired" technology including ISDN, cable modems, ATM and fiber optic lines, the trend is moving toward greater amounts of bandwidth available to on-line users. It is a conundrum of the digital age that the object of bandwidth use vill most likely require downloads of copyrighted works, or transaction-based models, to justify such increases in bandwidth availability.

The actual works sought exist as a predefined set of protocols or standards that, when adhered to by hardware or software, can be played back flawlessly many times over. Such works include 74 minute CDs and 300 MB CD-ROMs. among the many physical transport media that now exist. However, the actual digital signals that make up the audio or video clip are not dependent on new playback standards or PC playback soltware. Simply putt, "clips" do not need additional steps to be played back. The signals that a CD carnies are not dependent on the CD for its commercial value and could just as easily be carried on a DAT, Minidisc, DVD or any other physical medium that can carry to a consumer audio signals (for example) in a format of 44.1 kHz and 16 bits ("CD quality"). The most apparent drawback is that CDs are not recordable mediums, like cassettes or the above mentioned mediums, so that they are not as economical when coupled with prevalent recording devices such as DAT recorders, PC hard drives, DVD recorders, etc., or when coupled with the advent of electronic lines or "pipes" to the home.

Compression can be both lossless and lossy and has an effect on how a given piece of content can be commercially-valued in the marketplace. Physical goods pricing can be thought of similarly with cassette tapes and CDs which trade at divergent values because of audio quality and degradation, or lack thereof, of such quality over time. Although manufacturing costs of CDs are lower than cassettes, CDs are actually more expensive than cassettes in the marketplace. Presumably a premium is placed on the quality of the stored
content, music or otherwise, and the durability of the medium itself, which cait be played without loss of quality far more times than any analog tape. However, the CD is a storage media that must be manufactured, put into inventory, sent by carnier to physical locations, eto., and has an inherent
for distribution at N number of sites to capture the optimal market of consumars. The present invention is predicated on not only the existence of a plurallity of access points, as discussed in the DICE patent (U,S. Patent No, $5,428,606$), but also on a domain where digital content can pass freely between networks much as the INTERNET works with a common prolocel (TCP/IP) to facilitate the exchange of data files. However, the ability and desire to orient delivery of digitized content around the specs that describe the content, rather than protocols necessary to redefine the content for exchange over a specific protocol (such as TCP/IP), can better define more convenient delivery of the content between publishers and subscribers given the heterogeneous nature of transmission media 〈POTs, cable, etc.), the unchanging behavior of "consumer electronically-described" media content (FM-quality, CD-quality, etc.), and the varying configurations of pipes utilized by both publishers and subscribers more concerned with the distribution and exchange of digital goods, not configurations of the immediate input and output devices that are linked by a multitude of electronic exchanges (cable, POTs. wireless, electric power, efc.). Indeed, shifting only the recordable media cost to consumers that, for the most part. already own one or more such devices and may have exposure to a number of broadcast and adventising media (INTERNET, on-line services, radio, cable, print, etc.) may afford both buyers and sellers the cheapest means of profitably exchanging digital goods:

At present, over 15% of the U.S. population has more than one phone
line, 60 million households have cable television, and 15 million consumers are on-line subscribers. ISDN is also experiencing growing demand in the U.S. to give consumers higher bandwidth in the interim. Projected increases of bandwidth portend future supply and demand of larger data files of copyrighted passive works (e.g., music, pictures, video, etc:) and interactive works (e.g., games, software, etc.), thus putting pressure on the need for increases of bandwidth. Never before has increased available bandwidth suffered from a lack of demand by users. In other words, new bandwidth seems to create its own demand. Much of the presumption in increased investments in creating the bandwidth has been to enable the transfer of audio, video, and multimedia files that typically oocupy more than 5 MB of space per file. The misanalyzed aspect of these investment plans is a method for addressing digital piracy of copyrighted works and elficient, market-based allocation of the subsequent bandwidth by users. The present invention better defines maximized operationis dependent more on the specs that describe playback of content than redefining additional protocols which add additional and unnecessary levels to the playback of the content. With such advances, exchanging media content can potentially be made as easy as exchanging physical content.

The present invention additionally reduces costs in the distribution process, provides the monitoring of, and thus ability to protect, copyrights within the media, and allows the implementation of better payment systems suitect to the distribution of digital goods. What is clear is that bandwidth may
never be unlimited, but with consideration made to real world economics, efficient and reallstic methods for considering "fill rate" (the actual titles "delivered" to a purchaser versus the titles "ordered"), speed (actual time it takes for a consumer to receive desired content), and cost (expense given trade-offs of immediate availability at a given price point to the consumer, e.g., immediate fulfilment equates to higher pricing, versus delayed delivery of the sarne content at a lower price) all represent input variables in a real world "retail experience" that may be replicated in the digital domain. The present invention takes into consideration the behavior of parties engaged in selling content that may not be initially valued at the same price by all market participants and is subject to the same promotion hype as goods in the real world. In the digital domain, sampling, trailers, and pre-release hype can be replicated to foster demand for a given title of a digital good with many of the same results that are experienced in the real world.

Evidence of supposedly more efficient schemes for retail include U.S. Patent No. $4,528,643$ to Freeny, which shifts much of the manufacturing costs to physical retail sites, thus increasing the cost of doing business on the retail side with possible increases of convenience to the consumer. In the Freeny patent, retailers are envisioned to have localized reproduction of given digitized products (music, video, etc.) and a means to use "owner authorization codes" to verify the electronic transmission of a given work from some "master file unit" to recordable media (VCR, recordable CD, etc.). Freeny refers to mail order

Docket No. 2377111 clubs and other direct marketing efforts as being inefficient versus the localized manufacturing structure. These predictions have since been proven false. It is because of the nebulous concept of intellectual property coupled with the extreme expense on retailers for the in-store manufacturing units that makes clear the benefit of leveraging available bandwidth to content creators, publishers, consumers and "pipe owners." The efficiency of such operations as Federal Express in delivering even small packages in under 24 hours and the ability of "fulfilment houses" to effectively carry all but the most obscure titles (music, books, videos, etc.) has made actual "manufacturing" of a given physical media object (CD, VHS tape, etc.) or what Freeny describes as a "material object" simply uneconomical and increasingly irrelevant in an age when bandwidth and digital recording devices such as PCs, Minidiscs, digital video disks (DVD), etc. make physical retail-based, or in-store, copying more of an inconvenience.

The paradox of digital copies is the ease and relatively inexpensive operation of making perfect copies from a single instance of a work, thus providing the potential of unauthorized copies or piracy. The binary data that comprises a digitized work is an approximation of an analog signal. As is well known binary ones and zeros can be manipulated to form words, audio, pictures, video, etc. Manners in which individual copies can be marked so that responsibility can be assigned to individual copies that are derivatives of the master copy is documented in the patent applications by The DICE Company

Docket No. 2377/11
referenced above (i.e., U.S. Patent No. 5,428,606, and the "Steganographice Method and Device", "Method for Human-Assisted Random Key Generation and Ápplication for Digital Watermark System", "Method for Stega-Cipher Protection of Computer Code", "Digital Information Commodities Exchange" and "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks In Digital Data" applications), and in alternative proposals by Digimare Corporation (a form of pseudo-randomly encoding digital signatures into images), Bolt Beranek \& Newman (Preuss et al. patent, U.S. Patent No. $5,319,735$) (embedded signaling) and others. Additional proposals for cryptolopes and cryptographic containers by IBM and Electronic Publishing Resolirces (EPR) place control of copyrights and other "rights" in the controf of IBM and EPR, not the individual content creator or publisher. IBM and EPR are creating a form of "trusted systerns." What is clear is that trusted systems, Where all parties are known in some way to establish responsibility for instances of copied files, are not reallstically possible with the number and ease of manufacture of digitization systems such as general purpose computing devices. At present, over 100 million such devices are in existence. and it is not possible to guarantee that all of these systems will be made to adhere to the defined parameters of a trusted machine for verification and the establishment of responsibility for individual copies made of digital works. Profit motives continue to exist for individuals to make perfect copies and distribute these coples without paying the parties responsible for creating and
distributing the content. Moreover, beyond considerations of digital exchanges that do establish responsibility for the goods beling sought, the digital bits that comprise the commercially-valuable works suifer both from lack of use by parties seeking more secured means of distributing and marking content, anid legal tanglings by parties that own the copyrights and seek any entity deemed to copy works ilicitly for settlement of disputes. That is; with the great number of untrusted systems in existence, many copyright holders have resorted to legal challenges of on-line services and individuals found to be in possession of unauthorized copies of copyrighted works. The resultant digital marketplace fends to favor larger companies who can afford to seek legal settlements without delivering any substantial benefit over smaller companies that for many reasons would otherwise favor digital distribution of content to minimize overall costs. The remedy for such problems is addressed in the previously discussed related U.S. patent and patent applications by The DICE Company and other parties mentioned above (e.g., NEC, Digimarg, EPR, IBM, etc.)

The present invention relates to methods for parceling rights to benenft buyers and sellers of digital works in ways that even the playing field of the marketplace given the resource of electronic marketplaces that can work with such networiks as the INTERNET. Too often physical world solutions are offered where digital domain considerations are completely ignored.

Another issue relating to the present irvention involves haphazard grafting of physical world pricing and automated payment systems onto digital
systerns. Issues of inventory, physical movement, and manufacture of goods are completely muted in digital exchanges, but are replaced by bandwidth utilization and efficiency, one-to-one connections, and one-to-many connections, i.e., seeking and reaching customers in an anonymous
which all distribution parties are engaged in the marketplace to pay for bandwidth rights to market-fest given digital goods. The only alternative avallable to smailer content creators and artists is to sell content at no charge, thus jeopardizing potential future returns, or purehasing outright the hardware to plug-in to existing networks, an excessive cost if such "bandwidth" could be more failly-priced in a need-based system such as that discussed in this diselosure.

As an improvement to the system discussed in U.S. Patent No. $5,428,606$, the present invention ties so-called "header" files into the actual content. U.S. Patent No. 5,428,606 addresses the separation of content from its references ("header") to facilitate more efficient access and exchange of digital content. The "headers" described in this patent might be construed in the real world as options or futures, and is discussed below. The present invention concems itself with creating a method for introducing a layer of price and distribution determination given the necessity of payment in delivering digital content between points in the digital domain which may not suffer from any physical limitations but are limited by bandwidth considerations.

Some attempts at the exchange of content are being tried with existing networks such as the INTERNET. The complexities extant are apparent in the requirements of the operating protocols and the dependence of TCPIP for orienting content and subsequently playing it back through "players" that are TCP/IP compliant. if the INTERNET is solely considered. More issues
regarding the INTERNET are further discussed below.
Conceptually. "agents" partially meet some of the expectations of a content-based system, except agents are also dependent on participation by sites willing to allow for pure price comparisons and later reporting to the purchasing party. At present, many sites lock out such agents as they seek to profit by value-added services which are not considered by an agent when "shopping prices." Video-on-demand systems also propose a more closed system that is reliant on a proprietary network to deliver a video (or audio for that matter) to a consumer with the least amount of time delay while satisfying the demands for the video by many other consumers seeking the same video at the same time. The difference between such a system and that disclosed in the present invention is that such video-on-demand networks propose "subscriber" models where all consumers are deemed to have the same right to a given, demanded, piece of content at any time. That is, all participants are "subscribers" who prepay a fee structure that carinot necessarily be justified given bandwidth and processing limitations for delivering digital goods "on demand." In such a system, infrastructure cost can run as high as 5,000 dollars per subscriber, as with Time Warner's system in Orlando, Florida.

In the present invention, time is not an absolute standard to measure satisfaction: In the same manner that retail stores cannot always have a given audio or video work "on demiand," other factors may play into the competitiveness of that entity to contribute to the satisfaction of a given
consumer. These issues include a depth (number of copies or copyrights of a given title) or breadth (number) of tities offered, a variety of delivery mediums to satisfy customers with varying access infrastructure (cable, telephone, fiber optic, electric power, etc.), pricing, and, finally, service as it can be applied in an anonymous marketplace. Services may include the know-how of buyers employed by a given digital broker in offering samples of new releases or unknown artists, as well as special price offers given the amount and types of digital goods being purchased. What is certain is that a "subscriber" model is subject to the same deficiencies of a cable model or proprietary on-line seryice that may not be able to balance financial considerations with the variety and cost of titles sought by individuals at any given time. On the seller side, maximizing profit per title cannot always be satisfied if distribution control or proprietary rights are granted to any single entity which, by the present nature of the INTERNET and future interpretations of on-line commerce, cannot be guaranteed. Indeed, the above-mentioned U.S. Patent No. 5,428,606 discusses a situation where all subscribers can be publishers. For smaller parties, naturally lacking sufficient resources to initially and adequately markel and promote titles, a more open system for negotiating distribution rights must be sought by commodifizing the good that most effects exchange of their goods in the digital domain (1.e., bandwidth),

Moreover, in an anonymous marketplace, even small aggiegators of content may be able to adequately promote the digital properties of other small
content creators with yalue-added services. These services, such as samples of content, used to entice buyers, just as trailers create demand for upcoming movies, could be delivered to a differing type of subscriber, much as the music aficionados who subscribe to College Music Journal (CMJ) and other resources to sample new, relatively uncommercial music. Samples of 10-30 seconds could be sent directly to consumer e-mail addresses replicating the prevalent listening bars set up by physical music retailers seeking to introduce new tities to eager listeners. Other services might be more representative of "music chat rooms" or special title web-sites, to more fully entice potential buyers with a greater amount of purchase information. Much of the premise of such services and fuifiling demand for content, however, will require a more efficient means to allocate bandwidth according to an embodiment of the present invention. Without such bandwidth allocation, even small digital goods vendors will need to purchase substantial hardware, from T1 lines to highpowered UNIX machines, meaning high entry or fixed costs, to effectively market what may only be a single title in a year.

The present invention deals with commoditization of the digital distribution of multimedia content. It is important to note that in creating such a market, one must consider two commodities. One is the title, or data itself, of which there is a theoretical unlimited supply over time (limited only by how many copies of a given tite that can be made). The second commodity is bandwidth. This is a commodity which must be treated more like traditional

Docket No. 2377/11
oommodities, since its supply is physically limited over discrete periods of time "Fatter" pipes and compression can only increase upper llmits given the observed tendency for larger data files to accompany bandwidth increases in the short term. In practice, bandwidth limits act as a parameter on the capacity of a distribution channel at any given moment in time, since there is a fixed amount of bandwidth. In dealing with commercial markets, where, for example, 80% of the consumers want 20% of the products, (and for digital marketplaces, genersily all at the same instant), some premium can be observed as with "first come first serve" principles in physical sales channels. The difference is that an additional copy of a digital work can be made almost instantaneously, although additional bandwidth cannot be replicated. Even in instances with theoretically infinite time to fill all orders, most buyers will have given up and "left" the exchange after waiting a short period, during which time they get no satisfaction, measured explicitly by an access or download of a specifically desired title. On-line services today are typically plagued by this shortfall, leading most users to complaints of access and speed. Market-based principles could alleviate some of this problem on both the buyer and seller side if bandwidth is treated as the commodity it is. "Quality-of-service" proposals partially address this issue, though costs are stacked on the seller side because such systerns are almost always proprietary given the requirement of high infrastructurt expenses to enable timely delivery to all subscribers to the "private" network.

The present invention combines "efficlent shopping" principles with the commoditization of bandwidth and titles to create an exchange, under principles as described in the DICE patent, where in place of a secunty, one can buy titles where a component of the title price is actually a bandwidth option, or bandwidth right. The purchaser buys a right on the undertying title to take delivery of the title via a particular transport medium which uses a particular allocation of transmission bandwidth at a particular time. According to an additional embodiment of the present invention, distributor or content aggregator-only purchases of bandwidth are stipulated as options for digital distribution increase, in terms of available channels (such as cable, satellite, etc.). In this case, the end user never deals with the bandwidth right, although the costs of such rights may by passed on in the retail price of the title which is purchased and downloaded. In other words, the distributor must purchase rights in advance to support a projected volume level of distribution. These pre-purchased rights are then attached to individual downloads. Thess instruments can vary in price, much like stock options, based on time. Only, in this case, it is the amount of time required to receive the underlying security, which implicitly indicates how much bandwidth will be used by the buyer. The bandwidth actually implies time. The spectrum could range from lowest bandwidth, such as an e-mail delivery by POTs lines, whioh uses bandwidth When it is otherwise not in use and is at the convenience o- the seller (sender), and not the buyer (receiver), to highest bandwidth that may be parallel or direct
access fiber optic line which may be necessary for users acting as wholesalers between èlectronically -linked parties who seek content for negotiated delivery.
U.S. Patent No. 5,428,606 uses the concept of a "DIP" ('digital information packet') header to create an advertising, distribution, and pricing device which allows for the dissemination of references to and description of particular titles available electronically. The DICE Company's related digital watermark patent and patent applications as discussed previously disclose an exchange model for digitally-watermarked content and digital watermark keys whereby keys which allow a party to scan or imprint watermarks are distributed, possibly electronically, at the discretion of the controlling party. Both these methods have in common the fact that they allow for the distribution of some information related to an underlying work, without distributing the work itself. It is in the interest of simplicity, therefore, to allow for the combination or conjunction of these informationiterns in addition to associating them with a bandwidth right or option for the downloading of the copyrighted work.

Essentially, some of this negotiation of bandwidth takes place between the "Baby Bells" and AT\&T or other long distance providers when settling rights-of-way between points of a telephone conversation. At present, a key difference is that the utility value of a phone call sets the value of the "phone time ${ }^{4}$ being sold. Bandwidth rights as envisioned in an embodiment of the piesent invention price the commodity of bandwidth given the luxury item being suught (i,e, data or content), The present invention seeks to value the
immediacy as well as conventence (of which price may play a role) in recelving a given packet of data (media content, soffware, etc.) from one or many locations where it may be available to other locations. The lines may be heterogeneous between points, thus offering a more open bidding system between line owners, content creators and publishers, and end users or consumers. At present, no such "negotiation" can be handied by network operators runining lines to the same home or office. Indeed, lines are usually charged at a fixed fee, not by what amount they are used. In some cases; lines are billed by a raw measure of the data transferred, but not in relation to the actual value of such data nor with respect to the value of other transfers Which might occur simultaneously via the same line. This sort of billing-by-byte fends to discourage use, but it is a very coarse tool with which to manage utillization. To fill the middie market for demand of these lines for telecommunications lines in particular, long distance carriere such as AT\&T, MCl and Sprint sell excess capacity to "wholesalers," while the larger companies generally have price constraints.

The potential demand for bandwidth is clearly evident with such widespread use of networks, epitomized by the INTERNET. But, as previously discussed, smaller, specialist "retallers" and "wholesalers" of services or content that could be marketed over these lines are not efficient. The potential for efficient pricing exists a: demonstrated by "call-back" services, which route calls from one location through a third party location, benefitting from that
location's line pricing, though the overall market for such services is still only about $\$ 300$ million annually. What restricts more open allocation of bandwidth is polltical in nature. At the same time, cross subsidization of local phone access from more expensive long distance and international service is open for upgrade their lines to offer comparable bandwidth access as that presently available through cable companies. A final issue for consideration is the mobile market of cellufar phones and other similar technologies though there
are far more restrictions on the amount of available bandwidth for content distribution, the move to free up more radio speotrum for digital signals may lead to increases as high as a hundredfold in the capacity of the network which would make the electronic delivery of a single audio track realistic. Still. the present invention seeks the imposition of market-based pricing of available bandwidth to end users and content providers given the absence of any such system currently.

With the recent removal of barriers which previously prevented competition between cable companies, felecommunications companies, and regional Bell operating companies (RBOCs) the matter of cost of services or content being delivered over common pipes and the concept of a single entity dominating the "network" will almost surely come to an end as many companies are strongly positioned in their local markets. At present, "local loop" access to end users still presents formidable barriers to competition-40$45 \%$ of the oost of a long distance call is paid to the RBOC whose lines run into the home or business making the call. In total, the cost to a network for local distribution is approximately 80%. Proposals for separating a network into its infrastructure and service components would likely benefii from the invention being outtined. In such a scenario, the owner of the network would offer access to providers on the same terms, while managing the operation of the infrastructure. Simple models, such as flat rate INTERNET access, are problematic in the overall model for market-based pricing of-bandwidth in that

Docket No. $2377 / 11$
capital costs are completely lgnored though such costs are the parameter by which any business model must be judged. Though the cost of an extra phone call over a given network may be negligible, the cost of pumping large multimedia files, which have far different utility value to users of the network versus a "Yelephone conversation, "is relatively high in the aggregate and can be witnessed with the progressively slow performance of many on-line providers and the INTERNET. The goal for network providers will be to offer value-added services to users as well as value-added access to content that is controlled by copyright holders seeking maximum distribution (given speed and quality) to content seekers. These parties may only need the network at certain times or for certain releases of content. Meanwhile, periphery services such as music sampling, game testing, beta software distribution, will most likely comprise value-added services beyond the present scope of strict telephony. The pressure, generated from capital cost concerns, to provide a system that prices speed and line capacity is aptly answered with the creation of bandwidth rights and incorporation of such rights into the electronic distribution of content. In this way, specialist companies will strive through buying bandwidth of transmission capacity and adding value by attracting customers seeking said companies' accessible content.

Bandwidth rights are necessary as an improvement over the art. The INTERNET currently tominates any discussion of digital distribution. The INTERNET is built over lines or pipes. It is an important observation that a)
these pipes cost money to build, deploy and maintain, and b) the owners of the pipes must pay for their investment and earn some return, which is their motivation for building the infrastructure. The means by which files are transferred over the World Wide Web, the most mainstream segment of the INTERNET, is the use and interpretation of Hypertext Mark-up Language (HTML) and embedded URLs (Uniform Resource Locators) which is designed to "allas" and designate a singie path between the party that is viewing a reference of a file and the underlying file. The user is unnecessarily "connected" to the actual file, which is called "aliasing," and has effectively created more network traffic and thus wasted bandwidth. This shortfall in HTML is affecting the INTERNET through inefficiencies resultant from the underlying connection-based TCPAP protocol. In short, a lot of needless, bandwidth-wasting connections are continuously being created and destroyed. The current mechanics of the INTERNET will not be conducive to electronic commerca, and must necessarily change. This fundamental aspect of splitting content from relerences to that content is amply addressed in U.S. Patent No 5,428,608,

The biggest problem can be summed up by observing that users of the INTERNET generally live under the misconception that data or content is, or should be, free. Although one can find specific instances of goods and services sold over the INTERNET, even downiJadable software, the basic mechanism that underlies the sale is subject to this "fallacy of the free." There
are actually many hidden costs, some of which were discussed above. As for the content creator or publisher of said works, monitoring of sites and legal enforcement of copyrights is still significantly difficult without better education of consumers and site administrators, as well as a means for detecting unauthorized copies on an archive as disclosed in the digital watermark filings. Recent legal actions against parties that distribute copyrighted music titles and game software has resulted in setting a "for price " trend that can be made more efficient by the present invention.

The present invention deals with creating a coherent pricing model for on-line distribution, which accounts for bandwidth utilization, maximizes pricing options and efficiency for sellers and buyers, and, additionally, as a result of the process of trading and pricing of the bandwidth options, ensures that usage of the limited bandwidth is orderly. All orders result from requests filled and thus are generally a function of the prica of the so-called option on bandwidth. The present invention also presents improvements over exchanges that exist for the purpose of trading commodities such as stocks, bonds and other such securities. The distinctive feature of the preferred embodiment described below is the nature of the commodities being traded, bandwidth, and the unbounded potential of derivative copies of copyrighted works.

In current trading mechanisms NASDAQ (National Association of Securities Dēalers Automated Quote system) is a well-known model. Lcoking at details of the NASDAQ market will illuminate exchange operations and the
present invention's improvements over the present att for both market exchange mechanisms and implementations of a content-based system that monitors copyrights and optimizes the distribution of the underlying content.

5 The NASDAQ Market
NASDAQ is an exchange that trades in a finite number of "titles" or stock certificates, whereas the present invention is concerned with the potential of an infinite number of "itites" made up of digital bits- each derivative copy having the same potential commercial value as the original master copy that was intended for trade. The limited or finite commodity in question on a DICE exchange is available bandwidth for the actual transmission and thus delivery of a demanded, digitized "piece" of content (audio clip, picture, video, virtual reality, software, etc.). Bandwidth is characterized by the pipes that connect buyers and sellers of digital information and include POTs, cable, fiber optic, ISDN, satelite, electric power lines, etc. On the other hand, NASDAQ deals with basic stock securities, publicly-traded shares in companies. There are a small number of derivative securities traded, notably warrants, but the mechanisms for supporting a particular security are fairly uniform. NASDAQ is primarily an electronic bulletin board where market makers advertise at what prices they are willing to buy and sell a particular security. These market makers maintain an inventory of tradeable securities for sale to other parties, whether agency or principal-based transactions. A market maker does not
necessarily equal a broker, although a market maker can also be a broker. Both market makers and brokers can participate in the system, but market makers are the heart of it. A market maker is a paying member of the NASD (National Association of Securities Dealers). In effect, they own a stake in the
trade the same stocks competitively, and in general, the more firms that make a market in a given stock, the more liquid the trading of that stock is, simply because there are more ready buyers and sellers. Again as a means to describe the present invention some understanding of these market participants may be required in implementing the proposed systern.

Although NASDAQ can be thought of as an "electronic" market, it is electronic, for the most part, only in the sense that instead of shouting across a floor at each other, traders generally advertise their price levels on a BBS (Bulletin Board System), which legally binds them to honor the price. They then field phone calls from traders at other member firms, who have seen the advertisements on the BBS, and agree to trades over the phone. Then, each side enters their transaction (ff one side is a BUY, the other is a SELL) into on -sife computers, which all feed into central mainframes and link up with each other. Many errors are introduced by this process, and an error report is produced at the end of the day, to be settled among the parties involved through after-hours reporting. So, there is really still a large low-tech component to NASDAQ which leads to discrepancies and inefficiencies.

The general public interacts with the market through brokers, who might also happen to work for a member firm. The chain of contact is individual to broker to trader, with traders interacting among each other, and flling orders for brokers. This also touches the issues of primary and secondar! markets. When a stock goes public, called an IPO (Initial Public Offering), shares are
bought up by a syndicate of market makers. This is the primary market. The proceeds of the IPO go to the issuing company, minus the underwriting fees, which are divided among the syndicate. The syndicate then sells shares to the public through brokers, and any other traders who want to trade them. The or incorre ct prices for some stocks, and delay the dissemination of electronic orders on an unequal basis. Traders generally have several sources of
information. and need to be "on their feet", so the burden of detection is, in effect, placed on humans. NASDAQ terminals do maintain a "heartbeat." If the terminal cannot get a response from the hub for a prescribed period of time, a problem is signaled by turning the screen a uniiorm yellow on black. However, most significant information delays do not trip this mechanism. Market makers have cooperated to run independent tests, and are well aware that one trader may see information up to several minutes before another. There is no aging of information. The present invention partially concerns itself With information aging as content can be time-sensitive, and up-to-date bandwidth tights pricing is important. Such instances include news reports, live broadcasts, initial "be first" demand for a particular piece of media content, and the like.

A NASDAQ hub may send out information to all routes simultaneously, but there can be large delays before it arrives at the destination. An example of a timing performance protocol, which can be employed to counter such problems, is NTP (Network Time Protocol) on UNIX networks. NTP does advanced diagnosis of point-to-poinf network performance to forecast timing delays between pairs of machines. It is used with time critical applications, but not widely so, as it is still considered quite esoteric. NASDAQ makes no use of such protocols. For more trustworthy information about bandwidth rights and the aging of a media content good, the present invention takes into account forecasted timing delays for pricing the subsequent bandwidth right as an
overall component of the pricing of the med Docket No. $2377 / 11$ delays in content being demanded, and delays in actually distributing this information. This is an improvement over the art as it is a more appropriate aspect of pricing media versus disseminating stock price information.

Before considering the present invention's clearing operations, which are vital to simplifying the otherwise tremendous task of figuring out who owes what to whom at the end of the day, a description of the art, a la NASDAQ, is required. Basically, clearing is the matching up of trades. If one side reports a SELL. and the other a BUY, these two sides must be put together to form a trade which resuits in the transfer of money to the seller, and the transfer of the security to a buyer. Any halves of trades that do not match are kicked back to the member firm who entered them, for resolution. Provided the trade is resolved, both sides again enter their sides, only latéf. The securities can be held in street name, meaning the brokerage house can hold the physical shares for the buyer. However, the task of transferring stock certificates and cash among brokerage houses is onerous. Instead, a special holding organization was created. This organization is independent of the stock exchanges, but works with their clearing computers. The holding organization maintains vauits filled with stock certificates, held for the brokerage, which in Zum hold the stock in the names of their clients. Everyone maintains records of who owns what relative to their own organization. Should an owner actually request their certificates, they can be removed from the vault and delivered by
way of the brokerage firm. At the end of a day's trading, the hub computers at each exchange (whether NASDAQ or NYSE) net out the differences among the member firms, in cash and stock, over many trades, and produce a report of who owes what to who, in net terms, relative to each stock. The firms have a certain number of days to settle the trades (which allows for correction of errors, and transfer of funds). This allows a single day to result in one transaction for each trading firm for each stock it trades. This sort of clearing is key to the efficiency of any trading system. With the exception of a certificate delivery request, no security certificates need be moved, and cash can be transferred by wire.

Defining the Value of Bandwidth Rights

If is an object of this invention to create a trading instrument which will break bandwidth resources into diserete, bsable component pieces, and allow an electronic market system to set a price fon this scarce commodity which sets an equilibriunt-levelof supply and demad The net effect of this instrument, and its trading system, will be to efficienilly apportion bandwidth to users who wish to download or upload valuable information, in whatever form it takes. Bandwidth affects the speed ofinformation transfer. If more bandwidth is used, speed increases, and the transfer is accomplished in less time. If an individual instance of this instrument is a bandwidth right; it can be observed that several factors will affect its value:

- Intrinsic Value

This value is measured versus a minimal standard telecommunications cost. If there is a single underlying telecommunications cost to the owner of the right of X dollars per minute, let min 0 represent the number of minutes it takes to download the information using the minimal bandwidth. and min 1 represent the number of minutes a to transfer the information at the bandwidth represented by this right. Note that $\min 0>=\min 1$.

Then the intrinsic value $\mathrm{VI}=\mathrm{X} \times(\min 0-\min 1)$, or the amount of money saved in telecom costs at the higher bandwidth. The intrinsic value can be negative, which would imply a compensating premium placed on the time saved by using the more expensive transport.

- Percentage Chance of Failure

This probability recognizes the generally unreliable nature of the current telecommunications and transmission mediums as well as underlying computer systems. Rather than be burdened with the task of solving all of the "bugs" in a given piece of commercial soffware, it would be beiter to account for failure in the valuation. This value could be adjusted over time, as the failure probability of a system becomes more apparent, or changes. In short, this represents the percentage chance a user cannot exercise their right. It affects the expected value of the right. In this baseline approach, if the probability of failure is Pf.
where $0<=\operatorname{Pf}<=1$, and the value of the right is vo, in the absence of failure, then $\mathrm{Vr}=(1-\mathrm{P} f) \mathrm{V} 0$. this is made more complex by congestion factors. For instance, if a user has a right for $10,000 \mathrm{kbps}$ for 10 seconds, and the user wants to transfer 100,000 kb , it is not likely that the transfer can be done in exactly 10 seconds. Protocol
overhead and congestion will add some increment of time. It is advisable to leave room in the exercise period for these factors, rather than trying to value the time value in some manner which accounts for these transient conditions.

Thus:

$$
\begin{aligned}
& V=(1-P f)(V I+V T+V C) \\
& \text { or } V=(1-P f)((X(\min 0-\min 1)+V T)+V C
\end{aligned}
$$

The convenience premium, VC, should be independent of all other values (except V).

The equation behaves as such:
With increased failure probability decreasing rights value, independent of other variables, while increased demand relative to supply would drive up VC. We might try to compute VC by accounting for known demand and supply values, and in fact, it is of vital importance to know the supply, and to allocate it so that any right issued can be exercised within its exercise period.

Additionally, it is observed that a method is needed to allocate supply based on demand which accounto for unused rights. In other words, the system needs to over allocate supply to some degree, knowing that some rights may go unexercised, so that demand is filled as much as possible. This Is similar to airfines' practice of overbooking fights.

Some mechanism must be in place to prevent attacks on the systern. by a party, who, in effect, tries to corner the market in bandwidth, with no intention
of using it, so that it goes unused. Naively, one would think that since one has to pay for the bandwidth, why would someone want to comer the market? Although bandwidth is not free, it should only comprise a small fraction of the value of the information to be transferred, and so this is not an unthinkable
across various types of lines. This problem at least, might be solved by active maintenance of cost tabies, designation codes for types of lines, and the designation of a low cost standard. The problem of moving rights between exchanges is made more difficult since supply/demand planning for one
rights. Additionally, a method for authenticating the party is required. With these two elements, a trading market can be implemented by the following methods:

The exchange creates and manages a supply of uniquely distinguished bandwidth rights certificates. These certificates are good for a specific period only. They may traded over the course of time, anywhere from the moment they are created to the expiration time. It is questionable whether a right should be exercisable once it is clear that even if a transfer is initiated, it cannot be completed given that right only. However, consider that the right is usable, but its value decreases rapidly as it approaches expiration (i.e. value is based on time left, not total transfer time). Once a certificate is expired it is deleted. Hash values incorporating a timestamp could be used to serialize certificates. Such a cryptographic method is well noted in the art. US Pat Na 5,136,646 and 5,136,647 ("Digital Document Time-Stamping With Catenate Certificate" and "Method For Secure Time-Stamping Of Digital Documents" respectively) describe methods for cryptographic time-stamping,

The exchange creates a central hub for planning bandwidth supply. accounting, and disseminating pricing information. Client-side soltware will value the rights relative to a particular user's needs, and used by any party Irading rights. A seller creates a SELL advertisement, which is entered into the "exchange". The exchange verifies that the seller actually holds the right in their account. A buyer then enters a BUY offer against the sell advertisement.

The exchange validates the buyers, and then clears the fransaction, transferring money from the buyer's payment method (credit card; etc.) to the seller's account, and the right to the buyer's account. The unbundled right may be so infinitesimal that the actual cost of the right must be bundled with the

Multichannel Watermarking Mechanisms and Techniques

One problem with previous digital watermark systems is the need for a mechanism by which multiple parties may add watermarks to a given piece of content at different stages of distribution, without requiring any one party to compromise the security of its watermarks to any other party. Although an "exchange" system allows for two-way communication, a particular "distribution path" may be taken to be the path by which a package of data travels from a source party to a destination party. So, a distribution may be a single side of an "exchange". In this context, it is useful to speak of parties to the distribution as "upstream" or "downstream" in relation to each other. The initial source would be farthest upstream, while the ultimate destination party would be farthest downstream, with any number of parties along points in the middle. If the data in a distribution flows from party A,
through party B, to party C, then:
party A is upstream from parties B and C ;
party B is downstream from party A , but upstream from party C ; and party C is downstream from parties A and B .

The above example should make clear the relationships between upstrearn and downstream parties.

It is a useful goal, and an accomplishment of embodiments of the present invention, to provide a mechanism and technique for the purpose of allowing any party to the distribution to add at least one channel of watermark information, which exists separately and is secured by means of a separate. key, to the data of the distribution in such a manner as to ensure that one or more watermarks of the other parties to the distribution remain present in the data when it reaches its final destination.

A significant improvement over traditional metering systems is that exchange mechanisms are beneficialiy tied into content for more realistic metering of playing or recording content. With muttichannel digital watermarks, a more robust means for metering content is made possible by parties not Willing to create expensive proprietary distribution channels, but who do wish to capitalize on selling content in the economic method of metering. There are two immediately apparent schemes which might accomplish this. The first is described as a "passive" scheme and the sacond is described as an "active" scherne.

In a passive scheme, several assumptions must be decided and jointly agreed upon beforehand by all parties who wish to add watermarks. Based upon the total number of watermark channels to be used, where each party that wants to add a watermark is assumed to use at least one watermark channel, and the amount of data, and the desired minimal level of watermark security, a watermark system could encode watermarks at an appropriate sparsity such that random chance will cause some watermarks added by downstream parties to obliterate watermarks added by upstrearn parties. But by the same token, random chance will allow some of the watermarks of upstream parties to survive the encoding of watermarks by downstream parties by virtue of the fact that such watermarks do not occupy enough of the same data space to cause one to significantly interfere with the reading of another, The end resulf is that at least one watermark added by each party will be readable at the final destination. While such a passive scheme is appealing because of its relative simplicity, in which each party can add watermarks without considering the impact of any other party, once some initial parameters are set, this type of scheme requires a lot of testing to determine optimal settings given various initial conditions, and does not guarantee any particular level of watermark redundancy. It is quite haphazard, although technically feasible.
active scheme is implemented which is described as follows. The farthest party upstream, who presumably controls the ultimate copyrights and distribution rights of the data generates twa keys. The first key is a regular watermark key, as described in previous related patent application disclosures
chooses to participate in the distribution. Such master keys could be distributed using well-known cryptographic art for key transmission. Each downstream party is responsible for generating their own regular waterrnark key, and watermarking their assigned channel with appropriately generated
work and hence time required to search this set of keys, or keyspace, while ensuring confidence that all potential candidate keys have been searched, or at least those candidates with a significant probability of constituting the actual target of the search,

The watermark decode operation proceeds generally as follows: First a candidate key search group is generated, then a decode process is run using each candidate key until either all keys are exhausted and no watermark is extracted, or a watermark is extracted using a candidate key. Depending on the nature of the information in the extracted watermark, the search might continue with remaining keys, or terminate. One obvious method for improvement is to perform paraliel searches trying multiple keys at the same time. Using powerful parallel hardware, real gains may be obtained using this method simply.

On slower, serial CPU-based hardware, real parallel gains are more difficult to make. However, using dynamic programming techniques and intelligent search scoring and management, one could configure the search engine to start with several or all keys, checking each packet of data against each key before proceeding. As each iteration is completed, factoring in the next data packet, cumulative "scores" for the resuits of each key may be computed and compared. Keys which appear to have more posential to ultimately yield a match and extract a watermark continue to be used in the
process, while those with lower potential, as measured by score, are dropped from the process. This process has an attractive characteristic that it gefs faster as more keys are progressively eliminated from the search space, and can consider a large number of keys. Its drawback, in the absence of other techniques, is that the initial key space may be very large, and it may take considerable time to narrow the search keys to the point where the search proceeds at a reasonably fast pace. It is also possible that the process of finding a match does not score in a monotonically increasing manner, resulting in the early elimination of the correct key, In other words, scores may get worse before they get better.

Without considering any information about the source copy used to generate the suspect copy, one could limit the search work done by imposing a limit on how much time a decoder can spend checking data versus a particular key, or a maximal percentage, or number of packets of the copy to process before giving up on a given key. One could do well with a heuristic rule that says, "if I have checked 50% of the recording without finding a watermark, then In all likelihood I will not find a watermark in the other 50% of the recording with this particular key, "for instance. However, the best gains can be made by eliminating as many keys as possible from the initial search pool. In order to do this the keys are expanded to included several items of information regarding the source copy or master that was watermarked using the key in question. This information includes any of the following items:

Docket No. 2377/19
Title, Artist, Date, size of recording, format of the recording, quality of the recording:
and may also include mathematically calculated properties of the recording which can identify the recording to some significant degree of

Docket No. $2377 / 11$
privacy watermark has not somehow been removed from the digital sample stream.

An embodiment of the decoder key search system encodes private key identifiers in lower privacy waternarks and uses descriptive information in the
of a work as it is transmitted over a network with a plurality of transmission media (say, the backbone of the network may be fiber but the end loop is coax: etc.). Given the existence of other traffic over these lines, including telephony, the pricing of a given DIP should necessarily include the price of the bandwidth resources necessary to transfer the DIP between at least two parties. As previously discussed, the difference in this embodiment and systems such as video-on-demand or proprietary cable and satellite systems is the necessity to value bandwidth between points in a network to facilitate the exchange of a demanded work at a given instant in time not continuously as with traditional "subscriber models." Similarly, "time-share" systems are onented around selling a parcel of time to users seeking "processor" access to perform some activity, while, bandwidth is not the commodity being bid, time shares are reservation systems not capable of bidirectional or end-to-end "negotiation" of resources to facilitate the exchange of a DIP in real or next-to-real time. Further, the preferred embodiment differs in that all participants may have significantly different access infrastructure (differing modems, cable, electric powerline, satellite, etc, and pricing preferences given demand for a particular DIP.

The price of the bandwidth resources is, thus. proportional to the percentage of bandwidth allocated to the transfer of the DIP and inversely proportional to the duration of the transfer. With these factors, the aggregate of available bandwidth must change with time and can appropriately be pricad
given the demand of certain DIPs or publishers seeking to effectively distribute DIPs, Bandwidth allocation can then be securitized to reflect the varying needs of market participants to exohange DIPs. How this security is priced relates to the nature of the underlying DIP which is most likely a luxury item such as a musical recording or video game. The securities must then trade independently of the DIPs and are based in part on a convenience premium, given demand for bandwidth allocation at any given time. Additionally, network resources as measured by present digital packet switches provide the variable of "supply of bandwidth resources" and estimated demand for said resources at a given time. For networks that are more centralized, such as cable or satelifie, sstimating bandwidth resources may actually be far easier as traficic is generally downstream to customers not bidirectional like telephone networks. Further means for computing bandwidth securitization instruments lake into consideration probability of failure to exercise an instrument, the time period for which said instrument is valid, Intrinsic value relative to minimum standard bandwidth utilization for the line in question. These factors, when coupled with a convenience premium, are improvements over the prior art as described in the U.S. Patent No. 5,428,606. Bidirectional exchange of content by parties who can be both subscribers or publishers or both, are possible when the party wishing to sell content or DIPs can set distribution, pricing, and other informational fields at its discretion. These issues are well documented in U.S. Patent No. 5,428,606 and are increasingly important in the growing popularity
of the World Wide Web (WWW) portion of the INTERNET. But, given that the marketplace in which digital goods can be traded digitally is itself digital, the evident or potential scarcity of bandwidth or the ability to value existing bandwidth given a commercial market for digital goods exchange is invaluable.

Further, security of the content and records of said content can be further described as an improvement over methods to undeniably identify content through the use of digital watermarks and other similar technologies. It is desirable to take appropriate measures to protect as many parties as possible in the transaction of a copyrighted work. These parties may include the copyright holder, publisher, distributor, retailer, and consumer. As with the physical monitoring of media producto such as CDs, where physical cheeks are conducted by the label, manufacturer, distributor, retailer and even outside parties such as SoundScan, Billboard, etc. the digital domain contains far less means for "hands-on" metering without including watermarks as "secured Identification" for parties involved in the distribution chain. As a preferred embodiment of the present invention, a record of a given DIP should include at least two of any of the following three elements: a digital watermark key, a DIP header, and a bandwidth securitization instrument (bandwidth right). The DIP header describes the content, its address, pricing, and distribution. The bandwidth right is unique in its instance but also varies according to network bandwidth availability for a given period of time and the duration of the actual use of bandwidth on said network.

Optimizing key searches and increased use of multichannel digital walemarks are delineated in the discussions that follow this preferred embodiment as they are additional improvements over the art. The embodiment thus far discussed makes possible a more "democratically" or
goods.

WHATIS CLAIMED IS:

information packages ultimately transferred using said bandwidth.

1. 5. A method of computing a convenience premium, comprising steps of:
determining a supply oit bandwidth resources:
determining a plurality of bandwidth securitization instruments which
allocate the bandwidth resources; and
determining an estimated demand at a given moment in time for the bandwidth resources.
1. A method of computing a price for a bandwidth securitization security instrument as a function of its intrinsic value relative to a minimum standard bandwidth utilization, comprising steps of:
a) obtaining a minimum standard price:
b) determining an estimated convenience premium of the bandwidth securitization security instrument with respect to said minimum standard price;
c) determining a probability of failure to effect an exercise of the security:
d) determining an exercise period of the security instrument corresponding to a time during which it may be executed or redeemed; and
e) determining a price for the bandwidth securitization security instrument based on said steps a), b), c), and d),
2. A method of combining into one record, at least two of:
a digital watermark key,
a' digital information packet (DIP) header, and
[15002-1
a bandwidth securitization instrument (Bandwidth Right):
wherein the DIP header contains information including content
description, content addressing and content pricing;
wherein a bandwidth gecuritization instrument may be incorporated by
including a serialization identification code which is unique to an individual bandwidth right, where record of said right may exist separately from the record containing the serialization identification code;
wherein the bandwidth securitization instrument is a unique security which values the right to use a specific allocation of telecommunications bandwidth for a specific duration, where such right exists for a specified period of time, and where the duration begins at or after the temporal issuance of the security, and the exercise period ends contemporaneously with the termination of the duration period.
3. The method according to claim 7, wherein the bandwidth securitization instrument provides a right to use a given bandwidth allocation for a net duration over the exercise period where the net duration may be comprised of smaller sub-durations which are not necessarily temporally contiguous.
4. A method for optimizing key search operations comprising steps of: associating content descriptive information with a key used to watermark content for candidate keys;
comparing the content descriptive information from each candidate key in a key;
searching against a suspect copy of a title, and using said comparison
to eliminate keys whioh are evaluated as unlikely based on the matching criteria of the content descriptive information;
wherein criteria includes at least one of:
media format:
content length;
content title;
content author; and
content signal metrics which provide heuristic characterizations of the recorded signal.
5. A method for performing multi-party, multi-channel encoding of watermarks comprising generating a master framework key, wherein the master framework key describes packetization and channel allocation of a complete signal.
6. The method according claim 10, further comprising a step of: distributing the master key and a channel assignment to each party who needs to watermark a channel described in the master key.
7. The method according to claim 11, further comprising a.step of limiting distribution of the master key only to parties who reed to add watermarks to the signal.
8. The method according to claim 12, further comprising a step performed at least one stage thereafter of:
generating a general watermark key, for use with the master key which dictates waternarking of packets assigned to a single channel of the master key watermanking said packets with said key.
9. A method of including a key İentifier for a distinct watermark channel in the watermark contained in an additional separate and distinct watermark channel in the same digital sample stream, which is encoded and decoded with its own distinct key.
10. The method according to claim 14 further comprising a step of:
including the key identifier of a higher privacy watermark channel in the watermark contained in a Jower privacy watermark channel for a purpose of expediting watermark search operations.

ABSTRACT OF THE DISCLOSURE

Responsibility can be established for specific copies or instances of copies of digitized multimedia content using digital watermarks. Management and distribution of digital watermark keys (e.g., private, semiprivate and public) and the extension of information associated with such keys is implemented to
apply. Bandwidth rights can be created to provide for a distributed model for digital distribution of content which combines the security of a digital watermark with efficient barter mechanisms for handling the actual delivery of digital goods. Distributed keys better define rights that are traded between transacting parties in exchanging information or content. More than one party can cooperate in adding distinguished watermarks at various stages of distribution without destroying watermarks previously placed in the content. Additionally, the amount of information which any one party must divulge to another party can be minimized, and "downstream" parties can be prevented from compromising or otherwise gaining control of watermarks embedded by "upstream" parties.

Intruational eppliention No . PCTMS\% / OR159

Foral PCT/ISA/210 (arocind Aluct)(July 1992)

Hax I Observabians where cerrala claime were faund unsearchuble (Continuution of itean 1 of first shees)

1.Chims Nos.
because they relate to subject materr sot maluined to be rearchod by thir Authority, mamely:
2.

Ctains Nos.:
 an cutent that ao menningid intemational search cas be earriad ouf. gerifically:
3.

Ctaims Nos.

Bos II Observaliout whare unity of tavention is lacking (Continustion of tiem $\mathbf{2}$ af first shert)

Telephone Practice

II. Claims 8-17, drawn to a method for publizhing dirpetring entrise and publistice addrees. (375/260)

1. X] Na ell roquired eddhional eearch feer were timely pid by the spplicent, this intemmional seurch report ofvers ill suacheble ethims.
2.

 ut eny additinnal foe
3.
 unly those ghims for which fieca were prid, specilizilly chime Noo.t
4.

No requirod additional asarch feat wess timely paid by the applisans. Consequantly, Ulis Intercastional search report is restricted to the inveation firm montioned in the clabens; it is cevered by claime Nes.:

Form PCT/RA/210 (continuasion of firat abeet(1))(fuly 1992)*

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCI)

(5i) International Patent Classiliuntion 6 ; HOAE 5/00	(II) Internationul Publication Number: WO 96/42151 (43) Intarmatinnal Publication Thate: 27 Dcoember 1996 (27.12.95)
(21) Internatieral Application Number: (22) Intermational Filing Dates PCT/US96/10257 7 Jue 1996 (07n6.96)	(B1) Derignated States; CA, CN, FI, JP, XR, SO, European patrat (AT, BE, CH, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/499.172 9 Jeme 1995 (0906.95) (71) Applicant: THE DICE COMPANY [US/US], F,O. BC\% 60471 Pala Alts, CA 94306-0471 (US). (7I) Inventars: COOPZRMAN, Marc, S; 2929 Ramons, Palo Alio CA 94306 (US). MOSKOWITZ, Sees, Λ_{\ddagger} Townhoass 4 30191 East Coantry Club Drive, Nath Mrami Brach, FL 33180 (US). (74) Agents; ALTMMLLER, John, C et al; Kenyan \& Krnyna, 1025 Cennocticut Averous, N.W., Washingion, DC 201236 (US)-	Published With Endarnational search reporh Before the expiration of the time timit for mnending the claims and to be republished in the evenit of the receipt of ariendments. (B6) Date or pobleation of the interqailional soarch requits 13 February 1997 (13 ,12,97)
(54) THE: STBGANOGR-APRIC METHOD AND DEVICB (57) Alestract	
As afpemtus and method for encoding and drooding additiona The information in encuded using special heys. The information is stream. The method mates if extremety difficult to find the informan The method does pot cause a signilicant degratetion to the ssmapte sic roultincill content and provide a disincentive of piracy of such ma	al information into a strean of digitized samples in an infrgral menner. s combiged io the semples, not prepeniod or appenied to the sample tion in the samples if the proper keys ame not possessed by the doooder. tream. The mothod is used to ectnblish ownerstip of copyrighted itgial tertal.

FOR THE PURPOSES OF INFORAMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Amperia
AT	Axsuia
AU	Ansmalia
BB	Barbestos
BE	Belgiam
BF	Butbina Paso
BG	Bulgatia
BJ	Berin
BR	Benzil
BY	Belsins
CA	Cenada
CF	Cenral Afticm Plegrublic
CG	Congo
CH	Swimertend
Cl	Cote d'luvire
CM	Cemervon
CN	Chin
CS	Crechosboratia
C2	Croch Repriblic
DE	Germany
DK	Deamati
ER	Estocias
RS	Spain
HI	Fintasd
ER	Frace
GA	Gabon

GB	United Kinglom
GE	Goorgia
GN	Guinta
GR	Greoce
HU	Fimgary
IE	Ireland
IT	Haly
IP	Jaxen
KE	Kenya
KG	Syryystas
EPF	Democraric People's Republic of Sares
ER	Reprublic of Kores
EZ	Kazekhstins
\mathbf{L}	Liscltenstein
LK	Stíl Lanka
LR	Liberia
LT	Lidhumia
L 1	tuembourg
LV	Lamia
MC	Mousco
MD	Republic of Moldova
MG	Metogzasar
MIL	Masi
Man	Mangolla
M ${ }^{\text {P }}$	Mauritanis

MW	Malawi
MX	Mexico
NE	Niger
NL.	Netheriands
NO	Norway
Nz	Ner 2ealund
PL	Poland
FT	Pertiges
RO	Remunia
RU	Russian Federation
SD	Sedan
SE	Sweden
SG	Singapore
SI	Sloveain
SK	Slovatia
SN	Senegal
52	Swaziland
TD	Chat
TO	Togo
T]	Tajicisan
TY	Thinided and Tolego
UA	Ukraine
UG	Werads
US	Unined Sates of America
U2	Ulbeldema
WN	Viet Nam

INTERNATIONAL SEARCR REPORT
Internabinnal applieadion No. PETVSDO6/10257

A. CLNSIFICATION ON SUDJECT MATTEH TPC(6) $+\mathrm{HO} 4 \mathrm{~L} 9 / 00$ US CL. 7380/25 			
B. FIELDS SIIARCHED			
Minimum docausentelion zarched (ciweificeban bystam fallowed by cliveifinaion symbele) U.5. ; $380 / 23 ; 340 / 42534,4,23$			
C. DOCUMENTS CONSIDRKED TO TE RELEVANT			
Caingory*	Citution of tooumes, with indication, where op	opproprets of the rulevart parapes	Eelevare to cterm No.
A	US, A, 4,908,873 (PHILIBERT ET col. 5, linas 1-25.	a() 13 MARCH 1990, See	1-32
A	US,A, 4,979.210 (NAGATA et al) Fig. 13.	18 DECEMBER 1990, See	1-32
A	US, A, 5,073,925 (NAGATA at all Fig. 1.	17 DECEMBER 1991 , See	1-32
A	US, A, 5, 287,407 (HOLMES) 16 F 1.	FEERUARY 1994, See Fig.	1-32
A	US, A, 5, 365,586 (INDECK et al) cols. 3 and 4 .	15 NOVEMBER 1994, See	1.32
A	US,A, 5,408,505 (JNDECK et al) 7	19 APRIL 1995, See Fig. 4.	1-32
X] Furitre documente are lined in the oontinution of Bos C C Sep potem family amma			
$\begin{aligned} & \mathrm{e} \\ & \mathrm{~L} \end{aligned}$	 	*- diecoen or peinder rimazes d	elatari imatira gama be
		Whan the dovinatito wisw whoe ${ }^{\prime}{ }^{\prime}{ }^{\prime}$	toimbraulimeinen
	oon	 	
docsoen potuibud Ie mierly dato intrait			
Date of the sctusl mampletion of the intermsianal earch		Date of mailing al the ioternetional saatil roport	
O1 JUNE 1996		$\text { 24DEC } 1996$	
Name and muiling addiess of the ISANU5 Crumingoer or heraus sod Tridemarta Bas JCT Whaingos, D.C 7 (03)		Aucharized oflicer (0) SALVATORE CANOIALOST Telryhane No. (703) 305-1837	

INTERNATIONAL SEARCH REPORT
International application No. PCT/US96/10257

| C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT | | |
| :--- | :--- | :--- | :--- |
| Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
| A | US,A, 5,412,718 (NARASIMHALU et al) 02 MAY 1995, See
 Figs. 6A-6C | $1-32$ |

Form PCT/1SA/210 (continuation of second sheet)(July 1992)*

Eurapean Patent
Oflise

```
SUPPLEMENTARY EUROPEAN SEAFCH REPORT
```

Agulleatlon Nuntiber EP 96919405
2

INTERNATIONAL SEARCH REPORT

Internatienal application No , PCTIUS97/006S1

Form PCT//EN/210 (acoond aboet)(July 1992)*

INTERNATIONAL SEARCH REPORT

Iniematimal application Nin. PCTIUS971006S2

Form PCT/KKN/210 (fexund shest)(Ivly 19921k

INTERNATIONAL SEARCH REPORT

Doo 1 Observations where certain claims were found unsearchabte (Continuation of tem 1 or firse theal)

1. \square Cluime Nos:
because they relate it subjecd mater not requirad to be searched by thia Aultarrity, namely:
2. Claims Nos:
becsure they relate to parts of the iniernational application thay do ant comply with the preterited requiremeats to such on extent fiat so meaning(u) invermational starch con ho carriod out, sperifieally:
3.

Claims Nar: $:$
foremse they we dependent clains and aro not dratiod in aecordanco with the stodiond arel thisd stritenoer of Rule 6.4(a),
Hox If Observations where unity of inyeation is boking (Cnotinumtion of them 2 of first sheei)
This International Searchiog Aunharity found muftiple inventions in thir international upplication, as fallows:
Plouse Ser Eura Shoet

1. As all requimed additional seareh fees were timely psid by the applieant, this international tearch report vovers ald searchable slains.

2As all searchable elaims could be searched without effrur jualifying an additional foe, this Authenty did not invite paymeai of any additionel fee,
3. As anly some of the required additional srarch fea werc timely paid by the applieant, thit interantional search regort eayers only chose cluims for which foes were paid, specifinally clains INos.i:
 retrieted to the invention firai mentianed in the olrims: it is coverad by claims Now:
$1-11$ and 22

Remarts on Proteat The adifitional totrch feer were accompanied by the applienat'e protest.
 No proteat accompaniod tho payment of additional rearoh fees.

Form PCTISAR10 (conlinustion of firat shoet(i))(2uly 1992)*

International application No.
PCT/US97/00652

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:
Group 1. Claims 1-11, 22, drawn to an method of generating an enerypted digital watermark.
Group II, Claims 12-2I and 23 method of making and using a digital watermark.
The inventions listed \&s Groups I-II do not relate to a single inventive concept under PCT Rule 13.1 because under PCT Rule 13.2. they lack the same or corresponding tecturical features for the following Reasons: The invention of Group I lack the separate software, hardware devices or content monitoring. The invention of Group II lack the pseudo-Random key.

[^0]Interintional aprifieabion Ho PCTASSVMIISSS

$$
\text { U.S.: } \quad 380 / 54,3,4,23,55,49,56,39,2 \pi 3 / 73,113,17
$$

C. DOCUMENTS CONSIDERED TO BE REL.EVANT

Form PCT/5SA/210 (zecond abeet)(July 1992)a

C. DOCUMENTE CONSIDEFED TD ES RES FVAMT

page 2 of 2

DISH - Blue Spike-408
Exhibit 1010, Page 2015

INTERNATIONAL SEARCH REPORT

afformation on patent fanlly inambers

Inta mal Appleation No PCT/US 99/07262

Patent document citad in search report	Publication date	Patsnt family memberr(s)			
US 5613004	A	$18-03-1997$	EP	0872073	A
			WO	9642151	A

PATENT COOPERATION TREATY

From the NJTERMATIOMAL SEARCIGNG AUTHORITY

Tí FLOYD B CHAPMAN EAXER BOTTB LL.P. 1299 PENTNSYLVAKTA AVE, TMW WAOHINGTON DE 20004	NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL SEARCH REPORT? OR THE DECLARATION (PCT Rule A.1)
Applicanfe or agenfe file reiarence 0661120135	FOR FIURTHER ACTION Ses garggraphe fand thelow
Enlamatianal application NO. PCT/KS00/06522	Intemational filiog days (day/month)yerr) 14 MARCH 2000

Applisant
BLUE SFIKE IWG.

Vhing of amendmento and ats tement andian Atticle 19:
The applicant if entived, if fee so withes, id amead the olaime of the lammitional appileanon (iee Raie 46):
Whenf The lime limif for filing anch amendments is normally 2 mumbs from the date of transminal of the

Where? Directly to ile Joternatined Euroaz of YIPO
34. chemin tics Colomberter
[21) Geasya 20, SNatacrland
Farsimile Na: 44.22) 740.1435
For more detalled insiructions, sos the nates on the asenenjunymy whet.

$1 . \square$
 Article $17(2)(a)$ to that elfect is trancmithd herewith

\square The prosest togotion with the docision theroon bes bean innamitled to the Intamaimani Rureau iogether vith ffe
 wa daciaioa has been mede yet on the protest; the appliesnt will bo notified as yuow at a decision at fado
4. Further action(s); The applicalle ta teminded or the fallrwing
 the applimnt whenes to avoid os poetpoer pablication, a acrice of withdratwal of the intemstimal applichtion, or of the pristity slam, must reach the intemabenal Burenis os provided is niles 90 lols 1 and 90 bit 3 , mapectively, bafore the enmpletion of the vechnical prepsentions for iatartational publicotion.
 wistes to postone the entry into the notional plase ontil 30 mondos from we procity date (in some Ollices even later).
Within 20 months from the priarity dave, the appliant musi periorm tie pretcribed acis far sutcy inta the national phase before
 dafo or aculd not be elecled because thay are not boond by Chapor II,

```
Neme and manling address of the ISA/US
Commisuaner ar Fatemte ind Tidedenuls
Box PCI
Waihinarm, DE 202a)
```


Authorized olifeer

PATENT COOPERATION TREATY

 PCT
INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicants or agent's file referapon 066112.0135	EOR FURTHER $=$ Notification of Transmital of Lntemstional Search ReportACTION	
Intemational opplization Na. OCT/US00/06522	Intemational flling dute (day/manihtyear) 14 MARCH 2000	(Earliest) Pronity Date (Iay/mowih/year) 24 MARCH 1999
Applicani BLUE SPIKE, NCC.		

This isternational seareh report has boen prenared by whis Ieternational Segrehing Authotity and is tranmitted so vhe upplicant noourding to Article 18. A copy is heing uansmitsed to the Infernistional Bureau.

This intematiound search ruport consiate of a total of \qquad
If is also accompanied by a cupy of each prior art dociment citted in this roport.

1. Basis of the repore
a. With rogard to tha language, the intemetional search was ommed oat of the bivis of the intemnional applieation in the languger in whieh if wes filei, unless oheraise indicated under this itom.
\square the internetional search was carried out on the bacis of a translation uf ibe insemational spplication furmisted to this Authority (Rule 23.L(b))
b. Whth regard to any nucteotide and/or amino acid sequence disclosed in the internatiogal application, itise indamational search Whs conried out oo the fasis of the sequedoe lixtiog:crantained in the intemational spplication in writien form.filed together with the interiational application in computes readeble form.furuisted subraquentily to wis Autbority in writera form.furnished subsequenty to this Aumarify in eormpater rugbifble formthe statement that the subsequently furnished written sequence listing does not go beyond the difelarure in the international applicatiom as filed hus boen ©uminhed.
the statement thal the infonmatim recuried in computer readible form is identival to the viritem sequerce lisling has been
fumisbed.
2. Certain claims were Tound unsearchable (5ae Box I)
3. Unity of invention Is fucking (Sec Box II),
4. With regard to the intto.
the text ts approved as submitted by the applicint:
the sexte has bean escablishod by this Autuority fo sead as follows.
5. With regard to the abstract.

the fext is approved as submited by the applicani
the lext has been establishod, ascording to Rule 38 2(b), by this Adihenty an it appears in Box IL. The applicant may, within une ancath fom the date of mailing of this interoational searah report, sobmit comments to this Antfinity.
6. The Ggure of the drawings as be published with the abstract is Figure No. \qquad 1

X ss suggested by the applizanc.
None of the İgurea.

because the applitunt falled to suggesi a figure
because this figare berter characterizes the invontion.

INTERNATIONAL SEARCH REPORT

Intemeaional application No PCT/US00/06522

Box III TEXT OF THE ABSTRACT (Continuation of item 5 of the first sheet)
The present invention is a method for protecting a data signal where the method comprises the following steps: applying a data reduction technique [200] to the signal to produce a reduced signal, subtracting [60] the reduced data signal from the original signal to produce a remainder signal [39], embedding [300] a first watermark into the reduced data signal to produce a watermarked reduced data signal, and adding [50] the watermarked reduced signal to the remainder signal to produce an output signal [90]. A second watermark [301] may be embedded into the remainder signal [39] before the final addition [50] step. Cryptographic techniques may be employed to encrypt the remainder signal and/or the reduced signial prior to the addition step [50].

A. GLASSIVICATION OR SURIECT MATTER IRC(7) HOIN T/IG7 USCL 719/176. 			
日. TIELDS SEARCHID			
Mirimum toeamentation rexched (elassification sysime followed by Elasalicatín symibak) U.3: 380/200,206,207,237,235; 705/54: 704/216-214, 226-225, 500, 501, 203,509; 713/776; 360/99; 345/461,462			
Watermaik Digest: Art Unit 2767			
TEEE: EAST, Intamer. Dialog			
E DOCLIMENTS CONSIDERED TO EE RELEVANT			
Categne ${ }^{\text {F }}$	Cluation of 8ocurnart, with indicstion, whent opp	coprisie. if the tolevant passages	Eléevantia claim No.
X, E	US 6,061,793 A [TEWFIK et al. 109 M	AXY 2000. Entire Document	1-25
X	US $5,809,139 \mathrm{~A}$ [GIROD et al.] 15 Document.	SEPTMBER 1998, Entire	1-25
X	US 5,848.155 A [COX] 08 DECEMBE	R 1998, Entire Document	1.25
A, P	US $5,889,868$ \& [MOSKOWITZ et al Document	J 30 MARCH 1999, Eitire	1-25
A, P	US 5,915,027 A [COX et al.] 22 JUNE	E 1999, Entire Documemz	1.25
A.P	US 5,940,134 A [WIRTZ] 17 AUGUS	T 1999, Entire Documėnt	1-25
Dave of the actual uompletion of (toc intemetional seath 30 JUNE 2000		Date of maiting af the intermtiapal sarehreport 18 AUG 2000	
Name and malling addess of the 15A/US Cochmitsiont of Putantr and 'Trileranko		Suborizel oftiest 0xil: F Cacitartan	

Form PCT/ISA/210 (continuation of second sheet) (July 1998)*
DISH - Blue Spike-408
Exhibit 1010, Page 2021

[^1]

From the INTERNATIONAL SEARCHING AUTHORTY

Eormi PCTVSARIOE (A)


```
    PCT/US 00/18811
```

This Internavianal Searching Authority found soltiple (groups of)
inventions in this international application, as follows:

1. Chaims: $1-5,26-29$

Protecting tha diatribution of aigital data to be used w(th a digital player charachterined by ancrypting format informstion and allowing low quatisy play Dack to case of iack of decrypting key.
2. Claims: $6-25$

Digital signal encrypting technigue coabining teanster functions with predetermined key creation.

This finding ts based on the following reasons:
The prlor ant has deen identiffed as NLIO05523 (01), This document shows a method for protecting the distelbution of digital Information, the digital information incluarng two subparts, a digital sample and format inforination, comprising the steps of: Identifying and separating the two subparts; ancoding the format foformation subpart using a kay: recombining the encoded first subpant with the un-encoded second subpart, generating in this way an encoded version of the digital Inforsation. A predetermined key correspanding to the encoding key is then required for the decryption of the format Information. Ail the faatures which form the subject matter of clalms 1 and 2 are then disclosed by 01 (see following passages: abstract; page 1 , 11 ne 35 page 3. IIne 9; page 9, 1 (0e 21 -page 10 , Mne 5 ; fig. 4)
From the comparison between DI and the Lat Invention (see clalm 3) the following techntcal features can be seen to make a contribution aver this prior art (In the sense of PCT roTe 13,2):

- the digifal information is configured to be used with a digital player and the 1 nformation output frem satd digital olayer bas a degrauled quality unless it is provided with a predetermined key (Spec) al
Technigal Features 1, STFi).
Frow these STFI the objective problen to be soived can be summarized 35:
- permitting preview of distributed 0591tal information

From the comparison between D1 and the 2nd Invention (sea clatm 6) the following Peature can bs seen to make a contribution over the same pritor art:

- using a transfar function-based mask aet for sreating a key to
manipulate data at the ioherent granularity of the file format of a digital sample (STFZ).
From this STF2 the objective probleif to be solved can be summarized 35 :
- fiproving the security of techniques for data protection

The above analysis shows that Inventions I and z do not nave same or similar Special Technical Features. Furtheraiore, a comparison of the objective problem I with the objective problem 2 , both seen in the itght of the description and the drawings of the present application. indicates that there is no technical correspandence between these problems nor do they show any sorresponding technical effact.

As a result, inventions 1 and 2 fall to demonstrate a single general inventive concept as required by PCT rule 13.1 .

page 1 of 2

DISH - Blue Spike-408
Exhibit 1010, Page 2030

DISH - Blue Spike-408
Exhibit 1010, Page 2031

Bax I Observationa where certain cialans were found unsearchable (Continuation of tiem 1 of firsl gheat)

7.Clinmo Riges.
becauss they rafate to subjec mather not required to ho saarchad by thle Authorith, nemoly:
2.

Cleims Ness:-
 an axtan that no meaningtil Intemational Search can be carned but, specitically:
3.

Claims hlos:

Box 4 Observalinns where unity of Invention ta thelang (Cuntinuation of itom 2 of lised aneef)

see additional sheet

1. As alf requited edditionsl esarch ises wera tinchy paid by the applieant, thia international Eunch Rupor covirs all agarohable calime.
2.

 alsry actoiltand fee.
3.
 covnos orily those claitno fer which feac wase poid, specinically ctalma Nos:-
λ.

FURTHER INFOR期ATION CONTINUED FROM PCTASA 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. Claims: $1-5,26-29$

Protecting the distribution of digital data to be used with a digital player characterized by encrypting format information and allowing low quallty play back in case of lack of decrypting key.
2. Claims: 6-25

Digital signature encrypting technique combining transfer functions with predetermined key creation.

INTERNATIONAL SEARCH REPORT Iniornaition on paitent fandly membero					foncral Applitation tive PCT/US 00/18411
Patent documen diad to search report		$\begin{aligned} & \text { Publlention } \\ & \text { dato } \end{aligned}$		mbt lamilly	Publuation data
NL 1005523	C	15-09-1998	NONE		
W0 9744736	A	27-11-1997	All	3206397 A	09-12-1997
US 5687236	A	11-11-1997	$\begin{aligned} & \text { US } \\ & \text { EP } \\ & \text { WO } \end{aligned}$	$\begin{aligned} & 5613004 \mathrm{~A} \\ & 0872073 \mathrm{~A} \\ & 9642151 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 18-03-1997 \\ & 21-10-1998 \\ & 27-12-1996 \end{aligned}$
US 5974141	A	26-10-1999	$\begin{aligned} & \text { US } \\ & \text { US } \\ & \text { US } \end{aligned}$	6076077 A 6002772 A 6097618 A	$\begin{aligned} & 13-06-2000 \\ & 14-12-1999 \\ & 01-08-2000 \end{aligned}$
W0 9952271	A	14-10-1999	$\begin{aligned} & \text { US } \\ & \text { EP } \end{aligned}$	$\begin{aligned} & 6205249 \mathrm{~B} \\ & 1068720 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 20-03-2001 \\ 17-01-2001 \end{array}$
EP 0649261	A	19-04-1995	$\begin{aligned} & \mathrm{Jp} \\ & \text { us } \end{aligned}$	$\begin{aligned} & 7115638 \mathrm{~A} \\ & 5933499 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 02-05-1995 \\ 03-08-1999 \end{array}$
W0 9963443	A	09-12-1999	$\begin{aligned} & \mathrm{AU} \\ & \mathrm{EF} \end{aligned}$	$\begin{aligned} & 7683398 \text { A } \\ & 1103026 \text { A } \end{aligned}$	$\begin{aligned} & 20-12-1999 \\ & 30-05-2001 \end{aligned}$

INTERNATIONAL SEARCH REPORT		Inta seal Appleation Na^{2} PCT/US 00/33126
Catapoy ${ }^{\circ}$		Asimentitaminioa
A	KINI A ET AL: ${ }^{\text {P }}$ Trust in electronic comeerce: definition and theoretical considerations ${ }^{\circ}$ PROCEEDINGS OF THE THIRTY-FIRST HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (CAT. NO. 98 TB100216), PROCEEDINGS OF THE THIRTY-FIRST HANAII INIERNATIONAL CONFERENCE ON SYSTEM SCIENCES, KOHALA COAST, HI, USA, 6-9 JAN. 1998, pages 51-61, XP002162271 1998, LOS Alasitos, CA, USA, IEEE Comput. SOC, USA ISBN: 0-8186-8255-8 1.3 The Significance of Trust in Electronic Commerce,	1-19
A	STEINAUER 00 ET AL: "Trust and traceability in electronic commerce" STANDARO YIEW, SEPT. 1997, ACM, USA, vol. 5, no. 3, pages 118-124, XP002162272 ISSN: 1057-9936 The whole document	1-19
A	US 5687236 A (MOSKOWITZ SCOTT A ET AL) 11 Noyember 1997 (1997-11-11) abstract.	8,9
A	US 5745569 A (MOSKOWITZ SCOTT A ET AL) 28 Apri1 1998 (1998-04-28) abstract.	8,9

Box 1 Observations where cantiln ciaima ware found unsearshable 〈Continumiton of flem 1 of first sheet)

1.Claims Nos:

2. X] Cluns Nes: 20-186

see FURTHER INFORMATION sheet PCT/ISA/210
3. Oidma Nis: Gecsusa thay are depardent edaire and aro not drattod in acourdanca with tho supond and trird sentencas of Filie A.4(a).

Box II Observatlone where unity of invention ia leclding (Canifnusion of liem 2 of first aheel)

I.
 searichable claims,

2
 of ary adcivional toe.

2
 cevers only thess cluints for which fees wire palo, spedfically onims hiss:-

iemord on Mroteat \square The eddotonal seanh bees wese acrompentied by the applicant's pritest.
\square No prolant accorrpanted the payranif ef eddilionisl earich toes,

Form PCTISN210 (contruatinn of fits stiset (1)) (Jury 1 SOB)

Continuation of 80x 1.2

C1aims Nos.: $\quad 20-186$

In view of the large number and also the wording of the claims presently on file, which render it difficult, if not impossible, to determine the matter for which protection is sought, the present application fails to comply with the clarity and conciseness requirements of Article 6 PCT (see also Rule 6.1(a) PCT) to such an extent that a meaningful search is impossible.

Moreover, the proliferation of independent claims and the broad manner in which these have been worded make it impossible to determine which parts of the clains may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons, a meaningful search over the whole breadth of the claim(s) is ropossible.

Consequently, the search has been restricted to the subject matter recited in claims 1-19.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.I(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following recespt of the search report or during any Chapter II procedure.

(12) INTERNATIONAL APPLICATION PIBLISEED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intelfectual Property Organization International Burvan
(43) International Publication Date 15 March 2001 (15.03 .2001)

PCT

(10) International Publication Number WO 01/18628 A3
(51) International Pateni Classificstion ${ }^{T}$; H04N $7 / 167$
(21) International Application Number PCT/US00/21189
(22) Interbational Biling Date: A Augis 200X) (0408.2000)
(25) Eiling langazge:

English
(20) Publication Lugorge:

Englith
(30) Priority Data:

601147,134	4 August $1999(04,08.1999)$	US
$60 / 213,489$	23 Jone $2000(23.06 .2000)$	US

(71) Applicant (for all designaticd States exaght UG: : HLUE SFIKE, INC. [US/US]: 16711 Collís, Aventre \#2505, Miand, FL 33160 (US).
(72) Inventors; and
(75) Inventers/Applicants for US ondy): MOSKOWITZ,

Scots, A. [US/USj; 1671I Coltine Avenis N2505, Miund, RL 33160 (US). BERRY, Micheel [US/U5]; 12401 Princess Jeanne, Albirquerquis. NM 87112 USS).
(74) Agents CHAPMAN, Floyd, B. ef al; Baks Botts LLP. The Warner, 1299 Peonsylyunia Aycoue, N.W., WastingeIOR, DCC 21004 (US).
(81) Designated Stites (narional) 7 IP, US.
(eid) Derignates States (rggionu(): European patent (AT; BE, CH, CY, DE, DK, ES, F, FR, GB, GF, IE, TJ, LU, MC, NL. PT, SET,

Published:

- with miernational selorch repart
(\$9i) Date of pabticstien of the finterwatineal senrch repart: 22 Noyembice 2001

(5d) Tille A SECURE PERSONAL OONTENT SERVER

(57) Abstract: A tecal content server system (LCS) Irar creating a socure environment for digital contont is disclosod, which syatem coraprises: a communicrifons porr in communicution (Puth 1) For connecting the LCS via a network to aif leas one Secine Electroxic Cessient Disurinutor (SECD), which SECD is capsble of staring a plurality of data sets. is capable of receiving a request to transfer at leass one contect dall set, is crapable of transmitting the at least one cinntent data set in a secured transmission; a rewritahle storage medium (Rewritable Media) viencby contem recelved from outside the LCS mily be stored and retrieved; a domain processor that imposes rules and procedures for content being trapsferred between the LCS and devices outside He LCS; and a programmable address modute Which cas be programmed with an idendificatiom code uaiguely assocized with the LCS. Optionally, the system may furtho camprise on Interfacs to pernit the LCS as communicare with ooe or more Satellite Uaits (54).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Form PCT/1SA/210 (scoond wheet5 (Juty 1998)*
 Slebertstrasse 4 81675 Munchen ALLEMAGNE

Best Available Copy

Datn

$$
19.10 .07
$$

Referaniae B3379 EP/1	Applienilarf Fas Raient No $07+12420.0-1229$

Appluamulefupneter
Wistaria Trading, the

Communication

The extended Europeam search report is enolosed.
The extended Europesh search report includes, pursuant to Rule 44 E EPC, the European search report (R. 44 EPC) ar the partial European search report declaration of no search (R. 45 EPC) and the Eutopean search opinion.
Copies of documents cited in the European search report are attached.
\square additional set(5) of copies of such documents is (are) enclosed as well.
The following haye been approved:
घ Abstract
(a) Title

- the Abstract was modified and the definitive text is attached to this communication.

The following figore will be publiatied together with the abstract

Retund of the search fee

A spplicable under Article 10 Fules relating to fees, a separate yommunication from the Fleceiving Seation on the retund of the search fee will be sent later.

DISH - Blue Spike-408
Exhibit 1010, Page 2046
 \qquad $\begin{array}{llll}\text { Appication Nia: } & 07 & 112 & 420.0\end{array}$ Oemionsan me

The examination is being catied out or the following application documents:
Description, Pages
1-37 as ongimatly filed
Ctaims, Numbers
$1-28$
as originally tiled

Ehe lollowing documents (D) are referred to in this cor adhered to in the rest of the procedure:

D1. EP-A-0 581317 (INTERACTIVE HOME SYSTEMS) 2 February 1994 (1994-02. 02)

D2. BENDER W ET AL: 'TECHNIQUES FOR DATA HIDING' PROCEEDINGSOF
THE SPIE, SPIE, BEILINGHAM, VA, US, vo 2420,9 February 1995 (1995-02-
O9), pages $164-173$, XPO00566794 ISSN: $0277-786 \mathrm{X}$
0. It is noted that the present application is a divisional from EP96 919 405.9,
which has ended its examination procedure with a grant. The present applicafion has been filed with an identical setjof claims to that of the parent application. According to the Guidelines C.IV 6.4 , two patents cannot be granted tif the same applicant for one invention. It is permissible to allow an applicant to proceed with two applications hay ing the same description where the claims are quite distinct in scope and direoled to different inventions.

1. Clarity

The application does not meet the requirements o
Article 84 EPC, because claims 1-

dependent claims.
Under Article 84 in combination with Rule 29(2) EPC an application may contain more than one independent claim in a particular category, only if the subject mater claimed falls within one or more of the exceptional y situations set out in paragraphs (a), (b) or (0) of Rule 29(2) EPC. This appears not to be the case in the present application.

The aforementioned claims therefore lack conciseness, which is contrary to Article 84 EPC. Moreover, lack of clancy of the claims as a w independent claims makes it difficult, if not impose which protection is sought, and places an undue b establish the extent of the protection,
1.2 Similar objections arise for independent claims 7
13. The applicant is requested to file an amended set pi claims which complies with Rule 29(2). Failure to do so, or to submit convincing arg aments as to why the current set of claims does in fact comply with these provisions, will lead to refusal of the application under Article 97(1) EPC.
1.4 Claim 1 does not meet the requirements of Article protection is sought is not defined. The claim atten terms of the result to be achieved (this definition is the expression "such that"), Such a definition is only elaborated in the Guidelines C-III, 4.7. In this instar not allowable because it appears possible to define concrete terms, viz. in terms of how the effect is to
1.5 The expressions "key" and "mask" seem to be used for the same or corresponding features in claims $1-4,7$ and 8 . This is confusing and detracts from the clarity of the claims. If is suggested to use only one of these terns. "key" would appear to be preferable since this is a generally accepted term for this feature.

84 EPC in that the matter for which pts to define the subjecl-matter in embodied by the repeated use of y allowable under the conditions ce, however, such a formulation is e the subject-matter in more be achieved.
2. Novelty and inventive Siep

The present application does not meet the requirements of Article 52(1) EPC, because the subject-matter of claims 1-4,7 and 8 in so far as it can be understood, does not involve an inventive step in the sense of Article 56 EPC.

D1 (see page 3, line 6-page 4, line 48) discloses a method and system (apparatus) for encoding (embedding) additional Information (a signature) into digitized samples (digital image 24) at a number of signature points, which signature points (in one embodiment) are chosen randomly. It is well known in the field of generating random sequences to use a key as a seed.

D2 (see sections 3.4 and 3.4.1 in particular) discloses a spread spectrum technique for hiding data by encoding if using a pseudo-random noise sequence to spread the frequency spectrum of the data over an available frequency band. The spread data sequence is then added to an original file to hide the data in the file. A key is used to encode the information, and the same key is used to decode it.

The features of the independent claims which are hot explicitly disclosed in D1 or D2, in so far as they can be understood, appear to relate to particular details of alternative methods or apparatus for performing known encoding or decoding of additional information. These features would seem obvious to the skilled person as ways of implementing the method or apparatus knpwn according to D1 or D2, and don't appear to solve any particular problem assodiated with said known method or apparatus. They cannot, therefore, be regarded as

3. Conclusion

3.1 It is not at present apparent which part of the appication could serve as a basis for a new, allowable claim. Should the applicant neverifeless regard some partioulan matter as patentable, independent clatms should EPC. The applicant should also indicate in the the subject-matter of the new claim vis-à-vis th
e filed taking account of Rule 29 etter of reply the difference of e state of the art and the

significance thereot. It particular the problem to be solved by the subject matter of the new independent claim(s) (not imgre than one in each category) should be discussed ir the letter of reply to assist the examining division in assessing the inventive step of the claim(s).
3.2 These indepenclent claims, ane per calegory, should be in two-part form in accordance witti Rule 29 (1) EPC, with those lealufes known in combination from the prior art (D1) being placed in the preamble (Rule 299(1)(a) EPC) and with the remaining features being included in the character sing part (Plule 29(7)(b) EPC). If, however, the applicant is of the opinton that the two partorm would be inapproptiate, Then reasons thetelor should be provided in the ietler of reply.
3.3 To meet the requirements of Rule 27(1)(b) EPC, the documents D1 and $D 2$ should be identified in the descripilon and the relevant baskground art clisclosed therein should be briefly discussed.
3.4 The attention of the applicant is drawn to the lact that the application may not be amfended in such a way that it containe subject-meffer which extends beyond the content of the application as filed (Article +23(2) EPC), Care should be taken to conform with this Article when bringing the descrip ion into conformity with any amended claims, in particular during revision of the introductory portion or any statements of problem or advantage.
3.5 in order to lacilitate the examination of the contorn ily of the amended application With the requirements of Article $123(2)$ EPC, the arplicant is requested to cleariy Idenilify the amendments carred out, irrespective of whether they concern amendments by acdition, replacement on deletion, and to indicate the prassages of the application as filect on which these amendmerifs are based.
3.6 When drawing up the new independent olaims, the applicant should futher take care to:

1) include all features essential to the delinilion of 2) avold using leafures relaling to a method in the ensure thar any sidditional features introduced, e. o
he invention (Rule 29 EPC): apparatus claim (Art. 84, EPG);3) from the dependent claims; are
clear (Art. 84); and
2) provide the features of the claims with reference signs placed in parantheses to increase the intelligibility of the claims (Rule 29(7) EPC).

Bitte beachten Sie, dass angeführte Nichtpatentileratur (wie z. B. wissenschaftliche oder technische Dokumente) je nach geltendem Recht dem Urheberrechtsschutz und/oder anderen Schutzarten für schriftliche Werke unterliegen könnte. Die Vervielfältigung urheberrechtlich geschützter Texte, ihre Verwendung in anderen elektronischen oder gedruckten Publikationen und ihre Weitergabe an Dritte ist ohne ausdrückliche Zustimmung des Rechtsinhabers nicht gestattet.

Veuillez noter que les ouvrages de la littérature non-brevets qui sont cités, par exemple les documents scientifiques ou techniques, etc. peuvent être protégés par des droits d'auteur et ou toute autre protection des écrits prévue par les législations applidables. Les textes ainsi protégés ne peuvent être reproduits ni utilisés dans d'autres publications électroniques ou imprimées, ni rediffusés sans fautorisation expresse du titulaire du droit d'auteur.

Please be aware that cited works of non-patent literature such as scientific or technical documents or the like mal be subject to copyright protection and/or any other protection of written works as appropriate based on applicable laws. Copyrighted texts may not be copied or used in other electronic or printed publications or re-distributed without the express permission of the copyright holder.

Appl. No Applicant Filed
TC/A.U.
Examiner

10/049,101
Scott MOSKOWITZ
July 23, 2002
2131
Jeremiah L. AVERY
80408.0011

Docket No.

MAIL STOP: ABENDMENT - IDS
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Deat Sir:
Applicant(s) submit copies of the references listed on the attached SB08 Form(s) for consideration and request that the U.S. Patent and Trademark Office make them of record in this application.

Applicant(s) state the following:
Each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the Information Disclosure Statement; or
\square No item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application, and to the knowledge of Applicant(s) no item of information contained in this

Appl No. 10/049,101
Information Disolosure Statement dated February 29, 2008
Information Disclosure Statement was known to any individual designated in 5 more than three months prior to the filing of this Information Disclosure Statement
\square In accordance with 37 C.F.R. \& 1.97 (b), this Information Disolosure Statement is believed to be submitted prior to issuance of a first Office Action and/on within three months of the filing date of the application. It is respectfully submitted that no fee is required for consideration of this information.

Х This Information Disclosure Staternent is being submitted affer the mailifg of a non-final Office Action, but is belleved to be prior to a final Office Action or a Notice of Allowance. Pursuant to 37 C.F.R. § 1 97(c), payment in the amount of $\$ 180,00$ as set forth in 37 C.F.R. $\S 1.17$ (p) is enclosed.

While the information and references disclosed in this Information Disclosure Statement are submitted pursuant to 37 C.F.R. $\S 1.56$, this submission is not intended to constifute an admission that any patent, publication or other information referred to is "prior art" to this invention. Applicant(s) reserve the right to contest the "prior art" status of any information submitted or asserted against the application.

Additionally, pursuant to G.FR § 1-78, Applicant(s) wish to inform the Examiner of the existence of the following co-pending U.S. patents and patent applications that share a common inventor with the present application. Under 37 C.F.R. §§ $1,98(a)(1)$, Applicant(s) atso wish to inform the Examiner of the existence of the following copending foreign patents and patent applications that share a common inventor with the present application in the "section separate from the citations of other documents" entitled "Foreign Patent Documents", below:

Appli No. 10/049,101
information Disclosure Statement đated February 29, 2008

U.S. PATENT DOCUMENTS

EXAMINER'S

INITIALS

EXAMINER: Please inillal if reference is considered, whether or nol the citation is in conformance with MPEP 8609 Draw line through citation if not in conformance and not considered. Please include copy of this form with next communication to the applicant.
U.S. Patent Application Nō. 12/005,230, filed December 26, 2007, entitled "Method and System for Digital Watermarking",
\qquad U.S. Patent Application No. 09/046,627, Filed March 24, 1098, entitled "Method for Combining Transfer Function with Predetermined Key Creation" (issued as U.S. Patent No. B, 598,162);
\qquad U.S. Patent Application 10/602,777, Filed Juñe 25, 2003, entitled "Method for Combining Transfer Function with Predetermined Key Creation Publication No. 20040086119 - May 6, 2004 ,
\qquad U.S. Patent Application 11/895,388, filed Augus(24, 2007, entited "Data Protection Method and Device" - Publication No. 20080016365 - January 17, 2008;
\qquad U.S Patent Application No 09/053,628, filed April 2, 1998, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking ${ }^{\circ}$ (issued as U. S. Patent No. 6, 205,249);
\qquad U.S Patent Application No 09/644.098, filed August 23, 2000, entitled MMultiple Transform Utilization and Application for Secure Digital Watermarking (issued as U.S. Patent No. 7.035.408):
\qquad U.S. Patent Application No. 09/767,73s, filed January 24, 2001, entitied "Multiple Transform Utilization and Application for Secure Digital Watermarking ${ }^{\text {T}}$ - Publication No 2001001007 B - July 26, 2001;
\qquad U.S. Patent Application No. 11/358,874. filed February 21, 2006, entitled 'Mulliple Transform Utilization and Application for Secure Digital Watermarking" - Publication No. 20060140403 - June 29, 2006;
\qquad U.S. Patent Application No. 10/417,231, filed April 17, 2003, entitled 'Methods, Systems And Devices For Packet Watermarking And Efficient Provisioning Of Bandwidth" - Publication No. 20030200439 - October 23, 2003 (issued as U.S. Patent No, 7,287,275);
\qquad U.S. Patent Application No. 11/900,065; filed September 10, 2007, entitled "Methods, Systemis And Devices For Packet Watermarking And

EXAMINER: Please indial if reference is considered, whether of not the citation is in conformance with MPEP ES 609 Draw line through citation if not in conformance and not considered. Please inclode copy of lhis lamm with next communication to the applicant.

Appl No. 10/049,101
Information Disclosure Statement dated February 29, 2008
Efficient Provisioning Of Bandwidth - Publication No. 20080005571 January 3, 2008;
\qquad U.S Patent Application No. 11/900,066, filed September 10, 2007. entitiled "Methods, Systerns. And Devices For Packet Watermarking And Efficient Provisioning Of Bandwidth" - Publication No. 20080005572 January 3, 2008;
\qquad US. Patent Application No. 09/789,711, filed February 22, 2001, enfitiled 'Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data* - Publication No. 20010010078 October 11. 2001 (issued as U.S. Patent No. 7.107.451):
\qquad U.S. Patent Application No 11/497,822, filed August 2, 2006, entited ${ }^{4}$ Optimization Methods for the Insertion, Prolection. and Delection of Digital Watermarks in Digital Data' - Publication No. 20070011458 January 11. 2007;
\qquad U.S. Patent Application No. 11/599,964, filed November 15. 2008, entified "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data" - Publication No 20080046742 February 21, 2008;
\qquad U.S Patent Application No, 11/599,838, filed November 15, 2006, entitled "Optimization Methods for the Insertion. Protection. and Detection of Digital Watermarks in Digital Data" - Pubilication No. 20070226506 September 27, 2007:
\qquad U.S. Patent Application No. 11/897.790, filed August 31, 2007. entiled *Optimization Methods for the Insertion. Protection, and Detection of Digital Watermarks in Digital Data" - Publication No. 20070300072 December 27. 2007.
\qquad U.S Patent Applitation No. 11/897.791, filed August 31, 2007, entitled 'Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data' - Publication No. 20080022113 January 24, 2008;

[^2]Appl No 10/049,101
Informatian Disclosure Statement dated February 29, 2000
U.S. Patent Application No. 11/899,661. filed September 7. 2007, entitled Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data" - Publication No. 20070300073 December 27. 2007 :
\qquad U.S. Palent Application No. 11/899,662, filed September 7, 2007, entitied 'Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data* - Publication No. 20080022114 January 24, 2008,
\qquad U.S. Patent Application No. 10/369,344, filed February 18, 2003, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data" - Publication No. 20030219143 November 27, 2003 (issued as U.S. Patent No. 7.095,874);
\qquad U.S Patent Application No. 11/482,654, filed July 7. 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data" - Publication No. 20060285722 December 21, 2005:
\qquad U.S. Patent Application No. 09/594,719, filed June 16, 2000, entitied *Utilizing Data Reduction in Steganographic and Cryptographic Systems* (issued as U.S. Patent 7,123,718);
U.S. Patent Application No. 11/519,467, Filed September 12, 2006, entitled "Utiking Data Reduction in Steganographic and Cryptographic Systems" - Publioation No 20070084940 - March 22. 2007.
-U.S. Patent Application No 09/731,040, filed December 7, 2000, entitied "Systems, Methods And Devices For Trusted Transactions" - Publication No. 20020010684 - January 24, 2002 (issued as U.S. Patent 7.159,116);
\qquad U.S. Patent Application No 11/512,701, filed August 29, 2008, entitled 'Systems, Methods And Devices For Trusted Transactions" - Publication No. 20070028113 - February 1, 2007;

- U.S. Patent Application No. 10/049,101, filed February 8, 2002, entitied "A Secure Personal Content Server' (which claims priority to International

EXAMINER: Please irulial il reference is considered, whether or not the citation is in conlormance with MPEP $\overline{9} 609$, Draw Nine through citation if not in conformance and not considered. Please include copy of this form with next communication to the applicant.
A.ppl. No. 10/049, 104

Information Disclosure Statement dated February 29, 2006
Application No. PCT/US00/21189, filed August 4, 2000, which claims prionty to U,S. Patent Application No. 60/147,134, filed August 4, 1999, and to U.S. Patent Application No. 60/213,489, filed June 23, 2000);
\qquad U.S. Patent:Ápplication No. 09/657.181, filed September 7, 2000, entitted "Method And Device For Monitoring And Analyzing Signals" (paid issue fee January 23,2008);
\qquad U.S Patent Application No, 12/005,229, fled December 26, 2007, entited "Method And Device For Monitoring And Analyzing Signals" - Publication No. NA - -
U.S. Fatent Application No. 10/805,484, filed March 22, 2004. entited "Method And Device For Monitoring And Analyzing Signals"(which claims priority to U.S. Patent Application No. 09/671,739, filed September 29, 2000, which is a CIP of U.S. Patent Application No, 09/657,181) Publication No. 20040243540 - December 2, 2004 - abandoned;
\qquad U.S. Patent Application No 09/956,262; filed September 20, 2001, entitied IImproved Security Based on Subliminal and Supraliminal Channels For Data Objects* - Publication No. 20020056041 - May 9, 2002 (issued as U.S. Patent No. 7, 127,615)
\qquad U.S. Patent Application No 17/518,806; filed September i1, 2006, entitied "Improved Security Based on Subliminal and Supraliminal Channels For Data Objects - Publication No. 20000028222 - January 31, 2008;
U.S, Patent Application No. 11/026,234. filed December 30, 2004, entitled "Z-Transform Implementation of Digital Watermarks" - Publication No 20050135615 - June 23, 2005 (issued as U.S. Patent No. 7.152.162):
U.S. Patent Application No. 11/592,079, filed November 2, 2006, entitled
"Linear Predictive Coding Implementation of Digital Watermarks" -
Publication No. 20070079131 - April 5, 2007.
U.S. Patent Application No. 09/731.039, filed December 7, 2000, entitled
"System and Methods for Permitting Open Access to Data Obiects and

EXAMINER Please initial if reference is considered, whether or not the ctiation is in conformance with MPEP 5809 Draw line through citation if not in conformance and not considered. Please include copy of this form with next communication to the anolicant.
for Securing Data within the Data Objects" ~ Publication No 20020071556 - June 13, 2002 (issued as U.S. Patent No. 7, 177, 429);
\qquad U.S. Patent Application No. 11/647,861; filed December 29, 2006, entited "System and Methods for Permitting Oper Access to Data Objects and for Securing Data within the Data Objects" - Publication No. 20070110240 -A Aoil 5, 2007;
\qquad U.S. Patent No. $5,428,606$, issued June 27, 1995, entitled "Digital Commodities Exchange*:
\qquad U.S. Patent No. $5,539,735$, Issued July 23, 1996, entitied 'Digital information Commodities Exchange*;
U.S Patent No 5,613,004, issued March 1B, 1997, entitted "Steganographuc Method and Device";
\qquad U.S Patent No. 5,687,236, issued November it 1997, entitled "Steganographic Method and Device":
U.S Patent No 5.745,569, issued April 28, 1998, entitled "Method for Stega-Protection of Computer Code".
\qquad U.S. Patent No. 5.822,432, issued October 13, 1998, entitled Method for Human Assisted Random Key Generation and Application for Digital Watermark System".
\qquad U.S. Patent No $6,889,868$, issued July 2, 1996, entited "Optimization Methods for the Insertion, Prolection, and Detection of Digital Watermarks in Digitized Data";
\qquad U.S. Patent No. $5,905,800$, issued May 18, 1999, enfitled "Method \& System for Digital Watermarking";
\qquad U.S. Patent No. 6,078,664, issued June 20, 2000, entilled "Z-Transionm implementation of Digital Watermarks";
U.S. Patent No, 6,205,249, issued March 20, 2001, entitled "Mutfipie Transform Utilization and Application for Secure Digital Watermarking"..

EXAMINER: Plesse initial it relerence is considered, whether of not the citation is in conlormance with MPEP \& 60 A. Draw line through citation it not in conformsmce and not cansidered. Please include copy of this form with next communication to the anplicant.

Appil No. 10/049, 104
Infarmation Disclosure Statoment dated February 29, 2000
U.S Patent No. 6,522,767, issued February 18, 2003, entifled "Dptimization Methods for the Insertion, Protection; and Detection of Digital Watermarks in Digitized Datal:

U US Ratent No. 6.598,162, issued July 22, 2003, entitied "Method for Combining Transfer Function with Predetermined Key Creation:
— U.S. Patent No. 6.853.726, issued February 8, 2005, entitled 2 Transform implementation of Digital Watermarks";
\qquad U,S. Patent No. 7,007,166. Issued February 28, 2006, entitled "Methed \& System for Digital Watermarking;
\qquad U.5. Patent No $7,035,049$, issued April 25, 2006, entitied "Multiple Transform Utilization and Application for Secure Digital Watermarking";
\qquad U.S. Patent No 7.095, 874, issued August 22, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data":
\qquad U.S Patent No. 7.107.451, issued September 12, 2006, entited "Optimization Methods for the Insertion. Protection, and Detection of Digital Watermarks in Digital Data",
\qquad U.S. Patent No. 7,123,718, issued October 17, 2006, entitled, "Utilizing Data Reduction in Steganographic and Cryptographic Systems".
U.S. Patent No. 7,127,615, issued October 24, 2006, *mproved Security Based on Subliminal and Supraliminal Channels for Data Objects",
\qquad U.S. Patent No. 7,152,162, issued December 19, 2006, entitled 2 Transform Implementation of Digital Watermarks*;
\qquad U.S. Patent No. $7,159,116$, issued January $2_{i}, 2007$, entitled "Systems, Methods and Devices for Trusted Transactions*'
\qquad U.S. Patent No. 7,177,429, issued February 13, 2007, entitled "System and Methods for Permitting Open Access to Data Objects and for Securing Data within the Data Objects*:

EXAMINER. Pleage initial if reference is considered, whether or not the cildion is in coniomance with MPEP \& 609 Draw line trrough citation if not in conformance and not considered. Please inclüde copy of this lorm with next: commuricalion to the spplicant.

Appl. No. 10/049,101
Information Disclosure Statement dated February 29, 2008

\qquad
 U.S. Patent No. 7,287,275, issued October 23, 2007, entitled "Methods, Systems And Devices For Packet Watermarking And Efficient Provisioning Of Bandwidth"

EXAMINER: Please initial if reference is considered, whether or not the citation is in conformance with MPEP § 609 . Draw line through citation if not in conformance and not considered. Please include copy of this form with next communication to the applicant.

Appl No. 10/049,101
Information Disclosure Stalement dated Fetruary 29, 2008

FOREIGN PATENT DOCUMENTS

EXAMINER'S
INITIALS
\qquad PCT Application No. PCT/US95/08159, filed June 26, 1995, entitled. "Digital Information Commodities Exchange with Virtual Menuing";
\qquad PCT Application No. PCT/US96/10257, filed June 7. 1996, entitled, "Steganographic Method and Device' - comesponding to - EPO Application No. 96919405.9 , entitied Steganographic Method and Device ${ }^{\text {T, }}$
\qquad PCT Application No. PCT/US97/00651, filed January 16, 1997, entitied. "Method for Stega-Cipher Frotection of Computer Code" - corresponding to AU199718294A (not available);
\qquad PCT Application No. PCT/US97/00652, filed January 17. 1997, entitled; "Method for an Encrypted Digital Watermark" - corresponding to AU199718295A (not available);
\qquad PCT Application Na PCT/US97/11455, filed July 2, 1997, entitted, "Optimization Methods for the Insertion, Protection and Detection of Digital Watermarks in Digitized Data ${ }^{\circ}$ - corresponding to AŪ199735881A (not available);

PCT Application No. PCT/US99/07262. Filed April 2. 1899. entitled. "Multiple Transform Utilization and Applications for Secure Digital Watermarking" - corresponding to - Japan App. No. 2000-542907. entiled "Mültiple Transform Litilization and Application for Secure Digital Watermarking":
\qquad PCT Application No. PCT/US00/06522, filed March 14, 2000, entitled, "Utilizing Data Reduction in Steganographic and Cryptographic Systemis"; comminication to the aoolicant.

Appl, No 10/049,101
Information Disolosure Stalement dated February 29, 2008
\qquad PCT Application No. PCT/US00/18411, filed July 5, 2000, entilled, "Copy Protection of Digital Data Combining Steganographic and Cryptographic Techniques" - corresponding to AU200080709A5 (not available).

PCT Application No. PCT/USO0/21188, filed August 4, 2000, entitied, "A Secure Personal Content Server;

PCT Application No. PCT/US00/33126, filed December 7, 2000, entited, "Systems, Methods and Devices for Trusted Transactions" corresponding to AU200120659A5 (not available):

EPO Divisional Patent Application No. 07112420.0, entitled "Steganographic Method and Device" (corresponding to PCT Application No. PCT/US96/10257, filed June 7. 1996, entitled, "Steganographic Method and Device" - cited above - previously provided)

In accordance with 37 C.F.R. $\S 1.97(\mathrm{~g})$, the filing of this Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 C.F.R. § 1.56 (a) exists. This Information Disclosure Statement is in compliance with 37 C.F.R. § 1.98 and the Examiner is respectfully requested to consider the listed documents and information.

Respectfully submitted,

Date: February 29, 2008

For Blue Spike, Inc.

EXAMINER: Please initial if reference is considered, whether or nol the citation is in conformance with MPEP $\$ 609$. Draw line through citation if not in conformance and not considered. Please include copy of this form with next communication to the applicant.

ENCLOSURES [Chech al that appl\|				
V Eae Taismila foom [V) Fins Allactived (V) Amendmenusieply Mer Firmal Affogitshectanation(s) Externion of Time Requast Eapress Abmationmeni Request infomator Discosule Staveman - Centifed Copy of Prionty Documintial Redy fo Mirving Parts \square Fapy to Mesing Pars ynder 37 CFR $1 / 52$ ar 153				Ahes Allowanos Comimunicalinn to TC Appest Comimunicalion io Elaard of Appeais anti interterembes. Appeal Comimunizalion (o TO Propsiefary informision Stalis Letien Oyher Enclasures(s) (plousa kentify beliow)
		LEemams		
SIIGNATURE OF APPLICANT, ATTORNEY, OR AGENT				
Egrabe - Suafrunking				
Pfinetr mame				
Diate	Fea 2	20er ${ }^{\text {reg }}$		

CERTIFICATE OF TRANSMISSIONMMAILING

 the data shown botow:

 ADDIESS SEND YO: Commissioner tor Paténts, P.O. Boy 1450, Ale eandie, VA 22313-1A50

Complete if Known	
Applation Number	10.049401
Filligg Date	July es) 2002
Fliog Nameol livenior	MoskowVtz
Examin - kante	AvE发
Artupe	2131
Attomey Dockat No.	80408.0011

SLKBMITEDEY

Sigratiom	Storsamey	Regietration Na . (AAtumsiAg	Teleptione 3059F6\% 641
Name (PrintType)	SoIT AOSkomite		Dale Fag 29 1008

 AONFESSSEND TO: Commiesiononfor Prtatm, P.O. DOX 1450, Alosandria, VA 22513-1450

(12)

Eurupaiischea Patentamt Eutopean Patent Offleo otfice européon des bravets
(45) Dele ot publicalion and mention of the grent of the patent: 28.05.1997 Butletin 1997/22
(21) Apolication number 93105323.5
(22) Dale ot filing 31.03.1993
(54) Procedure for including digital information in an audio signal prior to charinel coding Verfahren zum Eintügen digitaler Daten in ein Audiosignal vor der Kanalkodierung Möthode pour inclusion d'information digitale dans un signal audio avant decoder le canal
(84) Designated Contracting States: DEFRGBIT
(30) Prionty: 13.04.1992 F 921644
(43) Datd ol pubication of applicsation: 20.10.1993 Bulletin 1993/42
(73) Ptoprietor. NOIIIA TECHNOLOGV GmbH 75175 Prorzheim (DE)
(72) Inverioc Kunaama, Juhs SF- 33720 Tampere (Fi)
(56) Reterances cited: EP-A- 0137855 WO-A-89/10661

EP-A-0 167364 US-A-5 12858

Note: Within nine monlhs Irom the publication of the mention of the grant of the European palent, any persori may give

 notice to the European Patent Orrice of oppoettion to the European patani granted. Notice of oppostion shall bo filed in a writen zeasoned stafement. It shall not be deemed to have been lifed until the opposition lue has been paid. (Ant. 98(7) Europeari Palent Convention).
Deactription

The orosent invention relatere to in mehod with Which data riformation can be adsad in an audita signal prespnil m- bigital fomi so thet alien the ehannel coding cll ansuade migral accampliohed tria Jansmaller anittho coding ol an audio signal nocomplithed in a recenwi no intomation is loat.
in a comarence procesdings paper Proc. IEASS" 90. Aterquarque. New Maxico. April $=6.1890, \mathrm{D}$ 7097,1100 , Wien Kale, L van de E'mithel and F Ziderveld. Diglial Audia Earrying Extra Informalion, a encodingmalhod s descritied wilh whicha buur-chennel avidio signal can be siocood to be appropimate for wiee in s Iranamizan pativ of a two-dnamelaudio signal, in sad inooding inethod two charactorstic featuras of the fu. man thanng aense ore mado use of: heating throbibld arid masking offoct. The mesking affoct means (hat in any audio signal anolhar, less powerlul agnal =an be adifad, whith is not alidible to the ear bocalise of the masking metact. The makong oftect is a peychoacoustic phenomanon in Which the hoaring throshold movos upwards when other sounce aro presoni. The muslang aifect is mosi succosaful in sounds in which ithe specirum componenfs are it the priximity of the comporvents of lhe meshista saund The fivquency masking togilneas more rapidly when maving to lowar saunde. This is inve afso in the lame pirne the masking aflect is greatast in sounte which are simultancously audible. The dopendesce of the masking offoci an timo and lrequency is weil known in simple signalk. The woistarice of masting afloci can be ulifizod in that signale balow the nevering Threshedd ean bs added into an auctio signal In principla, ins takes place so that an anaiogous auolo signal ia sampled and in the place of the bite of the sampies not audible to the humen asar othar information a placed, Thus, information is insoried in plece of the lean signillicant bits of the sample in digtal form. When such es aife nol is repeated, The lourran ear is nol al all ablo to hoar the signal added therain becaude the ackual signal inIanded la bo foserd maske an. it is the masking abolry of the human est which determines how many lose signifcant bite can bo substivitad whout mil being audible A algnar tive added can bo ured lor variaus purpcase. Similarly, when a scund signet te compreased, The a/gnale bolow thas hearing threshold can be oxcruchad liom siorage, or only the aignale nudibio to the human sat are liansmmand

The principla of sato known coding mathod Utiking the masking etfect is presemed in Fig. 1. An ircarting audio aignal is samplud and olvided lust mi a filer bank 7 mo a greai numbor al subbonts and ihe signal sarnpler of the subbends are tlecinaled in meanh 2 The zubbandis are preterably wqual in siles an that the sampling frequancy meeling the Myqvisi critericn in the dBCinslizing ineany 2 of oach wubband is oqual. The samples al ebch subband a/e men grouped invo subsequent sime wodows in means 3. The length of in linta window

IE A tand enicioder Eimples of one and same point of fing frem nacti suloband. So, the simataneous time win down of oech subband consteute one block. A pews Epertium s calculated for each block in sosctum onelysin ineans 4 and Sram tho spoctrun thus ciarived a mestung lhrashald te detarmined foc eech block in means 5 . Aller determining the mesking threshok it su oloar whal the resumum aigral powas is which can be added in an abidio इignaf of à aubtend in said time win0. dow DATA INN bits of the date aignal are addoo bolow The masking threshove calculated for the qudja egnoal II Iicamed oul 20 thal a tiven numbur of subsequent bilk of a data flow, eg. Throo subsequbtif bils, form one word. Each word is iviefprafed io be an address impresionting 5. a givon eample value, thus, fira thrme bil case thene aie Bipbl placea of sample values Snkicten of a word and the sampin vatue tooresponding thavato is camed owi in meank B. The ssmple valuas are groupad lor appropifate uample Windows of the subbands corresponding io The equivalerce of the sample value and the frreshotd of the sample wondow of a subband, and dats bith ace subsillulat for hite ol the zutio signal samples of a subband in an alddor 7. Aflor the substitution, the sample Ifequancy of the efgrale of the subbarids is inctausuro th mbans 2 and the signals ard again connected in the filtar oank 9 nio a wido-band audo signal which to a listenal sounds totaly similar to the original audio signal silihough cata informaitor nas been andad thamen The tacegrion e triponcjple a revintag incictont to the Trema. 00 mistion A typlcal tealurn in inte metnod of pilor ert is That a hedring threatrold benefaitig the masking offect has to be caleutsted both in the encoder of the hrampiltar and in the deccober of the receiver by uming a maph modeling model of the humtan hearing syalom U: in Pisypho Acpusi(c Modal). Thue the encoder and ine codor eel modeundant of one another The rasulin in sertain piotaleme

In the Fifinien patone sppifation Mo. 916714, fince cate Cologor 30,1991 , correrpooding fo EP-A-Q S40 369. publiood 05 May 1993, sald applicalion beng fincluded as vetoronco in the prosed applicalian, The inforinutben prodiced by the eneoder bl the abeve delloribed sysiam ie mede uge of Suct informalion incivitas informalion condaming data moda, intomestion rolated to quemsation, and information ralatod to dernetering Saict/ifometion li tranamited on a soparaieside channel at the same timu as the aupla sjgrats to a recerver Which corite clus by side channel informalion is onnmiled to process the iwn-chernel eudila aigral recelved and to convart il. eg inio a mullicharinill akio signsi Thos. the coder of the iecaiver acts controllad by the Iransmetler arooder, ie as a slavie grocoder An audio signat Iranemilied on a stereo chamies and the informstion daIt hidden therain aro therofore agaralod ueng the conirat information sianmmnted by the ancodof my yeceived on a separate channel

The principle of the Finnich palent applicesion is shown in Fisg 2. A coding block thamin is inclested thy
reference numaral 31, sajd block baing in esaential alenente sivilar to the price att sneoding block shown in Fly. I The ancodor combites an incoming mulficharinel audio olgnal into a combenad slereo signal "hiding" a dath egrial therein by making issin of tha mesking elfect. infomation abcur trie dais mode, quentizatian and masrixing are recelved from the encoder. The dalla mode doscribes the apecial arrangoments neoded for neximizing: the tranemicsion expepify of the hiddan efata Such ar rungements are eg. ifformailon aboul that con then ohannels conlain ra signals campared with the stato of the rest of the charmols, so thal attor Dengerad. ad said channels are attenuatabio: On the wrolo. the mode contains the way of processing the apecial if. stances concerneng aignal ooding whan theas are not included in nomal irue-up, The qugriluaion dater ins form of tha quantizalion steps of the rashing eghal and the sigrial to be rreaked (hietdon), and the nimber of bits as well ss the neatong threshola cakculated for the time intervats of oach subpend in the mannor dor acribed ebove. Tha matrixitg uformation yielde infor: malion 三boul how the ariginal musichannef nucio oignal Wat downmbod in bsial, all the تitomalion requiead in carrying out the cooing can bo achioved trom the oncoder. The combined atereokignsi derivod from the ancoder, in which dais has beven "Tidjen", is aclapsed for The avilo stgnal io be used un a rudid peith to be reatismiltent to ag the NICAMI Iormal The above informeifon requivad in coding as traramilted sfimufainecusly in a soparala loweopesed digital channel. If the data noiden intheaudio channal cannot at a point of tima be inductod in the sudio chanre(becsusa Jho "trasking oapacity" of the audla algnal dicas nct suttics, ssid datu cary be trensmitted an baid seprarale dala charne), the information tranamiled wheroorn can be called ade fommetion because it franamitted on the alde of ine lictuaf nudio channal

The coder 32 in the raceivaf peceiver the signal of Ifax autio drannel and the slde intormarion of the celle channeh so thet ocintrolled by the coiding intormation Iransmittod therein is is eneoled to code thes slgnalal the audlo oxannal and to separate the oata hioton thansin. Conirallad by eva matraxing infomation it is furtior enazbled io form erg, a multichannel audo sigrai

The method of said Firvish gatent application fo in principle well approprate for vas in transmeting an qualio signal containing hidden stata on a Ifangmission paih. One of in application being the cound trariamisaion of any KDTV syajam. In tranamitting an audio signal digially frough the racio, In muet firet be encoded to be appiripriale lor a lranemesion chunnel Tharo are ai groaf numbin of channowcoding sysiems avaitabla using compressing, the NICAM sysiam may be mentioned hbis \geqslant an example themof, as it ir alreacy in Use and as it may become the audio trinamiasion system in the Evecooan ADVF syatem. Whan the above-dolianbed methed is applied in the audo signal, whion ia channatooded Therisher isaing any existiggmeliod, thes raises
a dillicull problem in practloes the recahvad docead andia kipnol s nol prockably the alme as the Bulb signal of the transmisaton head pricy to channalocding. This is due to the laci that inclependant on the aystam the 5 channal-ooding cousas estare Moet oftan, ona or iwo of the least sigminearl tale mby bacome tompatad in the ancoder, so lhei Wer coded till stroami is simose tuit noch pranasoly the sume as the bil stream prion in the enicodIng Crnoququently tan aikick 6anol if ised as such in a tranumittor as a dignal masking some ctata to De nidcert if would isad etber io e signicant increasa in arrot rals of the bils beng Iransmelied of io a significant efoce in the hiding cepacily because the dala is hildien epegiliaally by subarituling ite (fest s'gnifteani bits

According to the invention, thite probkern ran be aoved uning the oftafacterialic leature of trie metnoxt declosed in he Finmsh potanf appicaston No, 915114 . sajd feature maening a popereto nido Wormation chanlnaf cantaining informalion farriation tor controlling the encoidier Sirce not only on the amound of the dete to bo used in transmined on serd side channol, assuggested in the applcation, but also precise intormation on the localion of ald dats sampief, an minaculate original data Egnal ean ba provided wilt the ald of said intormetion Knowledge of the locatlon of the drie egmples pres. requires intomatimg about which al the laasl significan! bill of the audio skgnal can be substantid for itala informotoni Ifalis, which of thabits are gure lo pess through the channel-oodot wilhout boing shanged,

This information is deserfibed according lo claim? 1
The insight of the loventor ties in that an oribinal qutio aignal is separaled info wo bramehes, in the firel of which the eignst ts. tist channei-coded and thmosiamoty themestoria ra dacoded. In the second bybnct ithe signsi is doloyed as long as in the liras branch the aignal is encodad and codod. In this aiep suctr signate ato tesulled which Elmasf resemble one aqaiher: in the aliqnal of the filsl bramah the ancoding/docoding apieralian caused a fow bil errora. Thetestier, the anco mignels of boih branchus are divided rifo a pluraity of suobasos in the liller tank and tho stgnal camples of the subbands are decimated The subbarels have to be bquat if size. In each branioh the asmplas of every subband are then grouplad into simouquent tima windows. The length of one time whocw is $A T$ and it inchuder esmples of the same coint of time riom each subbend. The simureanaaus lime winurwa of ench wubbund thus loum aweh time ane block. Now, the equivalent semples of the wubbands af Bech branch block atb mutually pompurable II ail bits are the same a is huown linal sald Lils hava nol boen
 est, 1. 0 . the least Eigrificant bit of the ample at the oncoding/coding brach diffars from the lowssi bit of the sample of the non-ancoded branch, whle the rast of the bits are squa), sald lowesi bi if known to bes a oit not axpecteri to oullast the cremis-osding opalation, 30 that a data bit ia nol Butustactoditieretor Fariol Ine ather bis can be replood by cata bith pacause thoy are
known to oulswe in erannel coding．The is the imbinod which is used for all sumbards The masking Uroathoid si then calculsiod for the audio eignal and the cata 10 be higdan ts added in pece of the bits of tre audio signel wheh are krown to qutiva．The informaliort ibout which of tha biep it augh sampla netve deani subsillified te in－ cluded in the stads chanesl intamelion St，on the trsis α which ilie faceiver asble ta rectonatruct the poiract Riddon intommation prosinoy

An impimmontation of the invention a described be－ low，roterance being nade to ihe accompanying scha－ maile ligures，in which

Fig 1 presents an incodier used in the msthod af prior ant，
Fig 2 sficivis the coder as disclosed in the Finnish applialion Mo．Fr． 91571 and
Fir 33 showe principally the procadise of the inven－ Hion

The procedorat showh in Figo 1 and 2 are aireacly uescribed above．The principle of the method according to the invanilon le presonind ir Fig 3；A digial audio signil AUDIOIN，within which DATA IN dala intormation hes beusehidien ullizing the musking elfect，is seprarat．日只 infolwe branches．In the uppor branch the audio sig： nal is chanmer－coded in an encoder 325 uning the same coding mathod as uacd in the wotuil tranmerimaion pein， Tor imbiance in the NiCAM esding．An aution zignal chan－ nel－coded inmedialely theranilior ts codnd in a coder 315 ，whareby II should resum in the arigival aiddo signal． The audbaigral AUDIO iN is at the same time conduct－ is also tmo tho lowor branch in which it is dolayed in a desty mers 917 procisuly the lime which passes for the ancoding and coding in Une upper branch，to the in－ lertees，marknd with Pn the asdia agrala are not how． bver，bil by bit the stmb，owlig 10 encrat maved by the enooder 225 and decoder 216．The defective b／is are found by dividing ing audio signat in Une filis baries 37 and 311 ，alter the intertace F_{n} inibe a plunality of sur－ bands．and the signal semples of the subtands ariedea－ linafad fo means 92 and 312 Said subbunds hre pros－ apably 日quat in siza．The eamples of each subDand are Thwmattor groupod invo aupsequent time windavas in moans 23 and 375 The lengits 69 at the time window are the same and tivey inclida the same amount cl sam－ plas of orge and samie point of time ficm onch subbend Thus the dirmilanacus lima windowis af peach zubbend alwaye form ane block．So，at cone point of sime，the sig－ nal earnples of boththe branch of the coded audic eigoal arid of the branch of the oblayod atedio Fignslare known． grouped according to theif lonquency bends the sarn－ plos of one point of fine aie theri comparsd in a com－ poralon $\$ 70$ so that a sample of cre subbant of maine 30 ie compered with a semple of tha corraippontani subs－ band of means 315．If the encoding／coding process hau changad any of the bdr．The comparison cevalits which of the bits ware charged．For inulanca，II the low．

Bat，Ia The leasi signilleant bit in a samplo of block 99 es difiereasi trom the one in the sampie of block 615 ，it it known that no data bit chould be placod in the pleod of end bif becalse il will in any case be bal in the couran af channal－coding Afler the inleriace marked with P_{2} if： was this foumd gat which of the bita of the sudio scinas shouid not be suberituted for by data bits．The casenilal cove of the invention liee precisely in this lact and the iniormaion obisined therealior can be applied in an an－ a．codor complving with the Finnish application No 915114，The inode al operalian is mescribed below in pulling

A spgetrum aralysis is actompitshed in a mannor kncrant in the an in the lowor beanch in rurany 34 and os the calculation of the masling theshold is maze 35 After find ing cul how many of the biis of the audlo argral can be sobstituted tor by dats bits and wrikh of the bitt in the nudio Egral do not outiva the channel－ooding． only the bile below the masking threshold can lae tuls． attutedin an adger 3q0 which outive in the drarmel bod． hg．On the besis of line mesking threshold infarmalion by block 35 and lina intornalian providat by rataronoo block 313，the deta lo bo hiddan le arisenged to be mp－ propitate in an arrangomant block 36 ．

The intormation divuiged in roterence mente 3534 convayed to the adder 910 ．For instiones， 6 the spiecturn anslyzis and ine calculation of the masking theishold irdicale that data bits could be sutasilitied for timee bite in a sample，wilhcart being aithile lo the human Ear，and w）If z has bien analysed io referencermeant 313 lomen ihe same sample that the first bit will perish in the channel－ coding prooves，only the two bits of the sample are sub－ saitulud lar by data bita which ware leamt 1o oullive tha charvel poding．The information on the point of a aam： 5 ple ot an audza sigral at which some data has been litct－ den，i，e．which of the bita have beer substituted for by Cata bis，estranamited as side information on a St chan nel，On the basis of said intormation arvd otber intorme－ gon fransniffed an the side channel，the recever is an－ abled fodiscovar in chan audiasignal a chan sogrelhidion therein：

Ai autio samptas are analyged simarly in eech aubband，regarding the duralion of the channel coding， end anty thoas bits buiow the mashery threstnild are mubelthied whichere sure lo oitliva the chammeleoding After simmires up，the sample trequency of the algnals of the subbands is inctaseod in masiss 38 and the rig． male are reoombined in terer loank 38 into a wideband audio signat which after being chennol－cocled rithe vensmiter and doeosed in tha recarvar zound io the lis－ innarid ant the same as the original aucia signal ifre－ spective of the faci trai date inlormation has tieen aitd－ ed therein end thet the ctata Intormation ia recelved witi． outary doficiancies．A low－epeed aide chisnnel S ia pro－
55 Cucectin the mannar oisclosad in Finniah application No． 915174．inoluded thorain an addition that now also ift－ formexion about the bocalion of the bids hiddace iheresi to added lhersin．

The mein fortiones of the matiod afe ofebcribed Gbove. it is obbypus this a praclicsi infolamentalion can bo accomplithod in a number of ways whris rambining Whith the protective scope of the stairns, The meithout te parifieularly appropitate for uas in agsociation with the melhod cilsclornd tim Firinah patent application No 91519A becatas the zde channici diselosed tharein le particuiarly well appropriate for medjating the informa fion Ebout the location of the substruted bas to the 16 gaivar

Claime

1. A method lor combining à date signal weth an mudio mignal prior to channal-ocoling the combined arenal, on whion

- En audio signal antaring in hampla kequence mocto ie sonducted lo a first Dianeth ana dividad into gubbanda, whereby in each cubband anterray of zuolo rignal eanpiag of eqvaljizs is cer tanved in ane and the sama liene window,
- a mesking threshoild ls calculaled simuane. Dusly for zaid sampho ariby in iech sutbonct the sounds wharabolow being wraichible to the liuman ear,
- The bita of the datasfgnal aro subsiltutod lot tive bits of the samples of tive sumpia ansya tetwaiding below the maslling Ureshold
- (bo bubbands zy cormined, wheraby a combined signal in be tranemilted on an audio. channol ta obtained. and
- ail ine intormation is gatnered that is noected in re-saparating the combirwd sigral, Bind sand iftformation s tranamiled an the lam al eida information on a separate data chennel el the iarna lime wilh the pombiniod signal;

Wimety

- ari audio Eignal is conductod slex to a moond branch in which itis channol-codes hand onocelbd, and thureethac 4 tin clvided into 88 mary subbainds as in the fist brench; whereby in gech subband an anray of aticio eignal samples at equal magnitude is obtainad ir the same time window es to the fist Dranch,
- the audio signal conducted into the lifsi barach is debyed for as time equivsiant io ine itens requirad for chamaleoding and decodlug.
- |he audiosigral semples al ane and same paini of time of the caneoponding subbierda of wack branch ate contipered,
- only the bite of tha samples of the fifsi brenco sree substitued for by data bits whicr sare tho same as in the eacond branch, and
- information on the foculion of tho subsiliting
 of sicie mitamalion oir Eakd data onannei.

2. Maihod for anperaling an audio signal and a dais stgnai combinad artho menruy ulsclesed ivelaim I ir a rocal(e) in which a algral milaring in dampla sequerne modo is cerdad dividat inlo subbands. and lihe bils are separalid from the combinedisignal wheh ramain below the masking threshold, and the separated bila are combined. whureby tho rocever roceives in tha form of side infarmutian ani a sopsBate data channel such information which is nescied for saperating the datu signal lrom the rudia signai, whereby the docoder ancomplishus said sarpalation conbollod by the poder, triemistorizet in that tre s/ija informalion aiso neludins niormation abou which al the pita in the augio sarmbla heve boensube stifined tor dy cdata bite.
3. An appayatus for combyeng a data sional with an aydio slaral belore channsl-ccding the oombined signal in the (ranemiliac, frald apparalus comprisog:

- a frat ilter mearys (3iti lor diviliog an autio aignal entering in the form of sarnple eaquerse mode into subbands.
- a grouping mears (915) Ia group in eech mike band en arty of audio signal samplise of the same size in ung and ssme tima Window.
- inmialysing and caloulating means (54,35), 5imillanoousiy calcufasing in each subbarid a masiking threshold for 3 sample group, the sound bolow which tha humen ser a ncl able fo hear.
- a sulbstiluting means (B7) in wich the bilts of a dala signal ate substhuted for the bise of the iamplas of the sample groupt which remaln Dekw the inaskirg itheshold.
- asecond fillor moent (39) zo ormbine The subbands, wheruby a combined algnal to bo lraniomilied on an zudio chennel is ciblaned,
- a tale channel contral mbans to gzilmer afl the indomation neaded for nessaramting the combiniad signal, which information os tranmmitted as side intormation on the dasa channel timultencously with the comoinod signat.

Wherdby the apparatay compysed Jurliver

- a perallal barich to which the aidia wigrail te also conductes, whila that brinch comprised in aucoession a pharinal-coder (325) and a docoder (316), a third filter means (31) to ofylde the outpul signal of the encodar into 15 rrany subbands as the first fin a romenk (5if) \& sacond grouping meares (33) to group wilhin each subband an equal number of andinsignal sam: plats in one tirrie window. Whoretry in said aub-
bend an equal number of audiongul jampies fre obleined iry orie and the same lirne whdow as in the firs branch.
- a delay mesins (diz) to delay thr awdio nignal entering the fintititer mbans (arti) ton a patiod of time which corresponds to the teiny of the shannal coder (315) anid the cleceroder (316)
- a comparator meank (312) which comparas the same-momentaudio stigral samplay of tho correaponding subbands ol the list (315) and the sacond grouping neans (33) with one enaltien) whereby the Eubstluting means aubritidete with dala bils conly for the bits of the sarmplae of the lirst grouping means (315) wtich are the same as those in the samples of the second groupingmeans (33), and the comparanor (390. 5ta) fritarme the contiol menane of the arde chemnel of the focalion of the substifuling cata bils in the sarmple.

Patentancproche

1. Vertahien rumKonbinieren enes Latensignelsme ainem Tansignal var diar Karnalcodierung dea hamGiniarten Signale fei dam

- ainimAbtastecquenzmodus gingethandes Tonafgraizu ainarersion Verzwilqunggoleitot und in Toilbiliden unleritill wirdis sa dais in sedern Torcund ping Fuilhe van Tansignalprober glatdier Caräßa in Bir und demssiben Zaitensten sintation wirts
: furdie genanme Probencatio gielchzellig injodem Tailband gino Maskierungsechwelle orractive whed, unianiste forer dle Topa tar das murschiche ohe unhdrbay sind.
- vïe allo dea Dálersignala dirth dia Bla dar Fioben den unter dor Maskiarungsictivwila varblaibenider Ptobermainen subathulort wei: zim:
- oie Tailbander kombiniort marden, 30 dand ath auf ginem Tonkanal zu übenragendes xormb. niorters Sigral ahailfer witd, und
- due inlomaiconan gemammell werter die bsim emeuten Trennen des kombihienten sic srate benbign werden, und dase intormationen it der Form von Nabenintormatonen auf enem saparbien Datankanal glaiohzeillg mif Tiem kambinigren Signal Obbnragen warden; wobei
- in Tansignal auch zu ener zwaden Verzwal: gung geleñet with, in des es kamalcodient und -Jocudian ind danach in obenso viala Toilbânzat we in der ersien Derzwelging unterteil wird, so dall in ledam Telband ehe Raiho yon Tonsignabroben qlaicher Gröpe in demeelber Zeitdanstor mormater wird wia in dar msion Var-
zwoigung:
- das tr die arsie Varzweigung gatilefe Tansigrail tûr athic Zeit verzägent wirć dies ginich der Zeil ist, dilo Zut Kanallcodianurig unt -clecadia ring efforcarich at,
- die Tonsigialprobon won en und demmalben Zakpunkt dor anisorechenden Toilearnder jeobor Verzweigung varglicher warden.
- nor diejanigen Buas dar Proben der artitan Varzwaiguing dufth Datembilis subsabliot Worcons dia diapoben ind wie ni der zweltan (Yerzworgong, und
- Intarmationen Dber den Det der Gubasitution won Dateriblis in der Frobe in def Form yor Nobeninformalionar Ôbar den geriannten Defentanat abervagen warden.

2. Verfahren zum Trannen einee Tongignale und aines In dar in Anspruch i chlentatten Waisa kombiniarten Datansignale in einem Emplangor, in demi sin in Abtastraquenzmodus aingehendes Signal podient ind in Talbarcia unterteill wird und diajonigen Bllis von dern tombiniartan Signä! gottonnt warden. die unterfath dier Maskienungssatiwalle blelben. und die galrennten lits kombiniert wetcen, so dal? dor Emplanger in der Form yor Nebenirsormathnen aul einem separator. Daterkaral astcha intormationon ombil, dio zum Troenen das Dalensignals von dom Tareignal arictedatich sind, sodal der Deoodar die genamnle Trenniung cuictr darr Codiarer genfeuen durchtüht dediuch goikennzedchnat ciar die Nebenntomulionan auoh Informationen daruber entrellan, walche ger Bite in der Tonprobo duioh Datenbils cubrituarl wurdan
3. Venchaurg zum Kombiniaren pines Datonsignata mil shere Tonsignal vor dar Kanailcodierung deskumbiniartion Signals in dem Sonder, wobol die gereinitra Voinconung Joigendas imiast:

- ainan aroten Fitoe (371) xum Umafielien eines if Abtasyoscumazinodis angehenden TonElansis in Taillaundor.
- em Gruppiarungannltial (315), um in adam Tell. bend Eina Roiha Van Tonasignalprovén dimbel ben Grofie in an und damsetben Zenfantrea zu grupparen.
- ain Ansilyoo- and Brechnurqs.ritial (34, SS) cias cjaichzolly in iedem Talbend aina Maskiatunguechwalte tor aina Probengruppe arfachnel anlernalt decer der Tan für das monsichiche Ofir nictit fionitiar ist,
- ef Substhalionamitui (37), bei dam die Byt ef nias Datenaignall surch Bite der Froben dor Probengrappen substiviert wardon, dia untarhaio det Masklerungsschwalla blobor.
- inan zwaltern Fillar (99) zurt Kombiniaran der Tollberdaf, so dari sirn aul ainern Tonkeniziza
abortrgendes hombinierus Sigial erhaitan wird,
 ine infomtaifonen, dia lie diti arnaule Trennumg des Kornbinlotert Signals Denoligt wurdon, wo. bgi diesa Intormationen ale Nebanintormationoin gleichzeitig mit dem kombinierton Siçnal auf dem Datankmal ubertigen wardon, wobe Ule Vorrichtung (emur loigandiss umiant:
- one paralelo Varzwaigung, aut die das Ponet glel abense gelsitgi wird; wähend die Varzwaigung nachainaridat loigerides umilall ainen Kamalcocileroi (225) und einan Decodiavor (916), ainen dritien Filer (3i) zum Untertelfen Tles Ausgangssignata des Codiorers in ebeneco Nialo Toilbander wie dor arasia Firnt (311), Bit awaiess Gruppieriangsrittal (3a), Lm Ionemhalt: jedes Teilbantles sine gitiche Zahl vom Torssigrialproben in olnom Zoltoneter Xu gruppipion, so dablin dem genannten Teiband aine gealche Zaht voin Tonsignaiproben in eir und demselben Zatfienster wïs in der अrsion Vorzwargung arhaiter warder.
- ain Varzogerungamital (317) zum Vervigam des irs dem arslen Fiter (311) aingahanden Tonsignala Iar sime Zailperiode, tie dar Varzogerung des Nanalcodierere (315) und ous Decodierere (016) ontspricht,
- oinen Kommeraior (313), dot do zailgibichon Tonsignaloroben der anlaprechendern Teilbän-
 Gruppleringgrillets mitninander vergiaieht, ©o dan dane Subasiturerungamutol mul dilajenigon dite der Proben deve areten Bruppierungemittele (315) durch Datenbile evbsinuiars, dio diaselban sind wie de in dan Proben des z wailen Gruppiorungertituale (33), und dar Kermparcior (313,314) inlormieri das Slaummillel ona Sai-
 lantiks in dest Frolen.

Revendientions:

T. Procédé pour combinar ifn aignal de donnéan avac In stgnal audo avent cie coder en canaux le zignsl : sombiné, marla loqual
 "tiet ć́chantillorve est amené jusqu'a une premiere brencho al divise an acus-hundas, incyamnant quoi dane chiaque scus-bende, an ensembia óéchembibibs de signal avida de
 me tenêtra tamporelle,

- inr mouil de mesquage 3st oalculé an même tamps pour ladil onsemble didchanillons daris chequa soug-bancla les sons au-depscue de
caiul-g elaril yazobles pour Tor cille Mirmino,
- Ves bies do signal de dorndea viennant remipia:
 d'échentikna resiant zous lo saull de mequius. 50.
- Ea soun-oandes apol eombades. mayennani quol un signel ocmbind devent alre lranoric mur un cartal audío esl dolenu, al
- bovise las inlormaliank bont iessemu2ien, gat sanil nécassaures pour huparer de nouvosu it signal combvos. ot jesdites hiormatione sönt Irankmined sous la formo ó'informations P0oon"dalias sur un canal de doméos sépare nu inoThe monvent que le sigual combint, moynoriaril quol
- un signal audio esr agalomerti ameno junqu'a ung seconide trancha dena lequail if eat code en canaux et décodé, at par la suite, II esi divise on autam de souz-bandes que dans la premib ro brenche, moyesnant quol, dens chique sous-tanido, un esserrble d'echantillans de si5 shl audio d'ampilifudes égalos est obtenis tans le mAine lanètre tamporello que dans ts premibre branchs
le signal nudio imend cans la premiere branthe ast fetardé pendant une duree équlyalonte 3 colle raguas pour coder an canaus at décodor.
Its echantilione de signal audio dun Geuisi meme Inslant dea sole-bandes correspondentes. de chaque bremche sont companda,
- seule los bite des échentilicone de la prem'éres branche sonl ramplaces pati des bjes dh doflnobes quil sont learträrres quaciane la seconde branthe; af
- les intormailons stif Terriplacamont dos dis co donnáas de ramplacomint dant lacimintiber sunl Iranamisos aous la formes dintormations secondaires: sur)edil eanar de dorneor

2. Procitén pouf soparal un sejnal audod at un signal de dornéses corphoess de la maniéro técrite ctans a erevendiralion 1. dans un nfapteun đars lequel Urf signal entrant darar untmode á̂guantiel d'echantthilena rial cods, divisís an sowe-bendes, el lad bits sont saparés ctu sigrai combino qui ressent au dingsous du sevis de masquage, en les bís shpards soni combines. inoyennant quol lertecoplaur reçall nous fil lome dinformstions sccondaires, sur bu canal dé dormáes siparoi, les vifornatione qui sonl nt cesserrea pour setperar le aignal de donnéea diu ai"gral audion, moymnanl quait te decodeur TGalfer iroite séparation commandóe par le cocdeur, caractoNiak en ce que les informations secondalros camprennant Egaiement des informations aus aujel dob bils dane Fíchangilort sudio qui ant até termplacès par les bita da dicrodes.
3. Dispoatifi pour combinar un signal de donnees aven un sigral audio avant ds euder en canauk le signal nombinó dans l'émetieur. ledil disposilt comprenent:

- des premiers moyens de filie (311) pour diviaer un signal audio entuant sous la forme diun mode séquentiel d'échantillons on sous-bandas.
- des mayens de groupamant (1 (1Б) pout groupar dans chaquia sous-bande un ensembie d'áchantillons do elgnalaudio do la méme taille. dans uno goule et mème fenétra temporelle,
- dea moyens d'analyse af de caicul $(34,35)$, calculsat en meme temps dans chaque sous bande un sauil de masquage pout uri groupe d'echanillons, Poreilie hurraine coelant pas caipable d'entendre les sons au-dessoua de coluiEi)

4. des moyens de substinution (97) dens leequale 10an bits d'un signai de données remplacent les bits des échantilions des groupes d'echentilons qui resteni au-dieseous dil beull de mesquaga,

- des douxiemes moyens de fitte (39) pour combiner los sous-bendes, moyerment quof un argral combiné devent être transmis sur uncenal zudio est obtonu.
- des moyens de cormmande de canal de donnóes pout rassembler toutes les informalions nécessaires pour sóparsr da nouvenu le signal combine, lesquellee informationa zont transmises an tant qữntormations sacondaires aur le canal de donnéas anmêno iernps qua la signal combine. le dispositil ocmprenant an outre
- une branche parallale vers laquelle la sigral sudio ast égalemenl amenó, tandís quee lá branche comprend, à la suite. un codour (325) de canaux et un décodeur (316), des troisiernes moyens de filtre (31) pour diviser le signal de sortie ducodaur en actant de sous-bandes que dans las premiers moyens de filtre (311), des saconds moyens de groupement (33) poist grouper à Tintériaut de chaque sous-bande un nambre egal etróchamtilions de signal audio dans une feneste lemporelle; moyennant quo on obtient dans ladite sous-bande un norribre egal déchansilions de signal audic dans une seule st méme tenétre temporetle cpmme dana la première branche.
- dos moyens de ratardement (317) pour retarder la signal aucio antramt dans los pramiera moyens de filte (319) pour une ducese qui correspond au retard du codeur (315) et du décodeur (316) de canaux,
- des moyens formant comparateur (313) qui comparent, los uns aved les autree, los achantillons da signal audio, pris au méme mament, des sous-banides correspondantes des pre-
miars (315) el seconds (33) moyents de groupement, moyennent quó los moyene de samp placement remplacem par des bits de dornées seulement les bits des échantitions des premiars moyens de groupernent (315) qui sont)es mêmids que caux dans les echantifone des soconds mayans de groupement (33), ot le comparalour (313, 914) informe les moyans de carmmande du cansel secondaira da l'emplacement des bits de données de rerriplacament dans rechantilon.

Fig. 1

Fig. 2

PCT
WORLD INTELAECTUAL PROPERTY OROATKATIOA International Burzan
INTERNATIONAL APPLICATION PUBLISFIED UNDER THE PATENT COOPERATION TREATY (PCT)

FOR THE PURPOSES OF INFORMATION ONLY					
app	Codes used to identit tions under the PCT.	$y \text { to }$	PCT on the front pages	lets p	ishing international
ΔT	Austria	GB	United Kingdom	MR	Mauritania
AU	Ausumalia	GE	Georgia	NW	Malawi
EB	Bartados	GN	Guipea	NE	Niger
BE	Belgiam	GR	Greoce	NL.	Netheriends
BF	Burkina Raso	HU	Hongary	No	Norwny
BG	Buigaria	IE	Ireland	Nz	New Zealand
M	Benim	IT	traly	PL	Polent
BR	Brail	JP	Japan	PT	Porragal
BY	Belarus	KE	Kexym	RO	Romrenia
CA	Canads	KG	Kyrgytan	RU	Russian Rederation
CF	Ceaural African Republic	KP	Democratic People's Repubile	SD	Sudan
CG	Congo		of Xarra	SE	Sweden
CH	Switearland	$\mathrm{H}_{\mathbf{K}} \mathbf{R}$	Repablic of Korea	5 SI	Slovenir
CI	Cote d'tyoire	KZ	Kazachosizo	SK	Slovalia
CM	Cameroon	1	Liechtenstioin	SN	Senegal
CN	Crimi	LK	Stilma	T0	Chad
CS	Crechoslovalia	LV	Luxembourg	TG	Togo
CZ	Crech Republic	LV	Latvia	TJ	Tajkistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobsgo
DK	Denmark	MD	Republic of Moldova	UA	Uraine
ES	Spain	MG	Madagasear	US	United States of America
FI	Finland	ML	Mali	Uz	Uzbekistan
FR	France	MN	Mongolis	VN	Viet Nam
GA	Gabon				

IDENTIPICATION/AUTHENIICATION CODING METHOD AND APPARATUS

Field of the Tnvention

The present invention relates to the embedding of robust ideatification codes in electronic, optical and physical media, and the subsequent, objective discermment of such coder for identification parposes even after intervening distortion or comuptian of the media.

The invention is illustreted with reference to saveral exemplary applicationa, including identification/authengration coding of electronic imagery, serinal data signals (eg audio and video), emulsion film, and paper curreacy, but is not so limRed.

Barkeround and Summary of the Invention

TW wald never put it it the power of any printer or publisher to nippress or alter a work of mince, by maling him masier of the copy"

Thomas Paine, Rights of Man, 1792.
"The printer dares not go beyond his licensed copp"
Milton, Aeropagetico, 1644.
Since time imomemorial, unauthorized ise and outright piracy of proprietary sourse material has been a souree of lost reveaue, confusiou, and artistic comuption.

These historical problems have been compounded by the advent of digital techonology. With it, the rechnology of copying materisha and retistributing them in unauthorizad mamers has reached new heights of sophistication, and more importantly, ammpresance. Lacking objective memns for comparing an alleged copy of material with the origina, owners and possible litigation procendings are left with a subjective opinion of whether the alleged copy is stolen, or has boen used in an umithorized maner. Furchermare, tiers is no siexple means of tracing a path to ur original purchaser of the maturial, something which can be valuable in tracing where a possible "leak" of the material first occured.

A variety of mefhiods for protecting commercial matarial have been attompted. One is to scramble signals via min encodiag method prior to distribution, and descramble prior to use. This technique, however, requires that both the orgimal and lator descrambled signals never teave closed and controlled networks, lest they be intercepted and recarded. Furthermore, this arrangement is of little use in the broad ficid of cmass marketing audio amd visual material, where even a few dollars extra cost calses a major reduction in marken, and where the signal noust eventually be descrambled to be perceived, und thus can be easily recorited.

Another class of tectiniques relies on modification of source andio or wideo signsls to inclucio a subitminal identification signal, which oan be sensed by electranic means. Eranoples of such systems are found in U.S. Patent $4,972,471$ and European parent publication EP 441,702, as well as in Komatsu et al, "Authentication Syatem Using Conoetted image in Telematics," Memoirs of the School of Selence \& Engivecring, Waseda University, No. 52, p. 45 60 (198S) (Kommsu uses the tern "digital woternmk" for this rechnique). An elemenary ibroduction to these methods is foumt in the artiele "Digital Signatures," Byte Mugazine.

Novenbes, 1993, 0. 309 These zechniques have the cormmon chamateritic thas deterministic signals with well definod paturns und uequencos within the source materal convey the idenafieation infurmation. For certain spplicationa thin is not a drawisck. But in genesal, this is an inefficient form of emiboding identifiention information for a varitery of reasons: (a) the whale of the sonrce material is nat uscat; (b) deterninistle patume have a higher likelifood of being dispavered and renoved by a would-be pirater, and (c) the sigusle are not peacrally holographle In that identifications miny be difficall la mate given ouly sections of the whole. ("Holographic' is wed hercin to refis to the property that the tienufioution information is disrributed globelly Groughour the coded signil, and can be fulfy discerned from an examination of eveas afraction of Ghe codad signal. Coding of this rype is sometmes eirmed "distribeled" hereibi)

Amoug the citei reforncta as degerivitios of severol grograms which perform iteganoyrapby - described th one document a ${ }^{\circ}$... the ancient ant of hiding information in some
 thcif own messages inside digital ingce files and digital andionites. All do so by toggling the (ena sigaificant bit (the lowest order Dht of a single data sample) of a given audio data strean or usterized imuse. Some of theso programs embed mpsages quite directly into the last sienifiomt biit, while other "pre-encrypt" or scrimfile a messuge fina wod then embed the encrypted data tom tho least aignifican hit:

Our curreat undesstanding of thee programs is that they generally refy om ano-Ice trastuistion of the of digital data in ordar to burrody tramenit I given massage in its enirety, Typically the mesage is passed only unce, is, it is ant repesed. These progruns alon "eem to "takte over" the leat significant bit autirely, where setual data is obliterated anil the soosage plectd accordingly. This might menn liat such codes could be easily erased by merely stripping off the lonst significant blt of all data yufues in a given image or audio file. it is there and oither considerations which suggest bar the anly alarlarity between our invantion and the Eslablishod att of ateganugrapiby is in the placement of information mita data files with mintund
 there.

Another citad referente is US. Patumt $\$, 325,167$ to Nelen. in the service of wilhuaticating a given donumah, the high precision scaninie of chail dacumeml novents pattenas and "mirroseople grain seruarure" whith mpanmily is a kind of emique fingerprint for the underlyine docment media, weh as paper liself or post-applied materialk such as toner. Melen further Tesches Hhat senning and staring this fingerprime can leter be used in autheatication by anaming a piaporteri document and compurieg it to the oricitasl Eingerprint. Applicant is aware of 3 kimilar iden employed in the very bigh precision recording of ceredit cadd magnetic astips, as reported in the feemuary 8,1994 , Wall Syent Joumil, page 81 , wherein vary fint maguetic fluenatoong fead

 aame credit card.

Both of the forcegoing techniques appear to rast on tho same identification principles on which the maturg science of fingerprint annlysia reast: the imnte uniqoeness of some localinad phyaical property. Tuese nuthods then rely upon s nuggle jugement and/or measurement of "similarity" or "correlation" between a suspect and a pre-recording mistes. Though fingerprint analysis has brought this to a high ath, these mathods aro nevertheless open to
 Melen's patem, mavoidahly tend to bie the resulting judgenant of aimilarity, and would cmate a aced for moro moteric "expert teximuny" to explaten the confidence of a found mutch or miomuets. to object of itbe present invention is io avoid this relimes on expen testimony mod to
 call lie porrect coin Dip 16 times in a row. Attempls iv ideaify fragnume of a fingerprint, document, or Dtherwise, enamarbale this issue of coofidence in a jodgumen, where it is an object of Hic preent invention to objectivefy apply the intuitive "coin flip" cunfilence to the grallest Frguremi possible. Alsa, ztoring umique fingurpints for sach and every docament ot credit card magnetc surip, ind hiving these fingerpints reatilly available for later auss-cbecking, stould prove to be quito an economio underaking In is an object of this anvention fo allow for the Trous? of noise coder and "snowy images" in the service of essing storage requiremente.
U.S. Putant 4,921, 278 to Sbiang et al, tearhes a kind of spatill eacryption techmique wherein a signaure or photograph is splayed out into whut the untraned cye would
 similaritien of the present invention to shiang's system appear to be ofe of anise-me patterne which oevertheless carry information, and the use of this principle ou credit tands und other identification cads.

Othern of the cited patenis decl with ofhar sechuignes for identifiomion and/or urthontication of sigasle or modis. U.S. Pateat 4,941,036 to Nyate does not mppess io be spplicable to the present jovention, puit tibes point out thant tho (erm "signature" can be equally spplied to signals which carry unique characterisics bated on physital strucure

Despite the foreguing and othur diverse work in the field of identificainom/authuntication, there still rumums a noed for a refiable and efficlent method ôor puriorming a positive ldentification berwem a copy of an onginal sigual ams the ociginal Desimbly, his method shoild bot only prerinm identification, it should abo bee able to canvoy sourta-version nifoumation in arder to beter phapoim the poins of sale. The method ahould nok sorupromise the arate quality of mstorial which is being sold, La does the placement af localized toggrs on Imafec. The mathad should be robust 30 thar an idealifinatinu can be made aven after mulliple cupies hawo been made and/or compresion and decumprescion of the aignal bid taken

should be capable of working even on fractional pieses of the original signal, such as a 10 second "riin" of an audio signal or the "clipped and pasted" sub-section of en original inage.

The existence of such a method would have profound consequences on piracy in that it could (a) cost effectively monitor for unnuthorized uses of material end perform "quick checkst; (b) become a deterreat to unauthorized uses when the method is known to be in use and the consequences well publieized; and (c) provide unequivocal proof of identity, similar to fingtaprint idenfification, in litigntion, with poteatiolly more reliability than that of fingerprinting.

In accordance with an exeopplary embodiment of the inveation, the forcgoing and udditionnl objects are achieved by embedding an impercoptible identification code throughout a source signal. In the preferred umbodiment, this embedding is achieved by modulating the sowre signal with a simall noise signal in a coded fachion. More particulafly, bite of a binary identificution code are referenced, one at a time, to control modulation of the source signal with the noise sigmal.

The copy with the embedded sigoal (the "eacoded" copy) becones the material which is sold, while the original is socured io a safo place. The new copy is nearly identical to the original except under the finest of sautiny; thus, its conmacial value is not compromised. After the new copy has been sold and distributed and potentially distorted by multiple copies, the preeat disclosure details metbods for pasitively identifying my suppect sigmal against the original,

Ameng its other ndvantages, the praferned embodimunts' use of edentifieation signats which ate glotral (hologropficic) and which minic natural noise sources allows the maximization of ideatification signal enstgy; as oppased to merely having it present 'sumewhere in the original mesterial" This allows the ideutification coding to be much more robust in the face of thousends of real world degradation processes and material transformations, soch as cuiting and cropping of imagery.

The forcgoing end additional feanures and advantages of the present invention will be more readily apparent from the following detailed description thereof, which procseds with reference to the accompanying drawings.

Brief Descrintion of the Drawinge

Fig. I is a simple and classic depiction of a one dimersional digital signal which is discretized in both axes.

Fig. 2 is a general overview, with detailed description of steps, of the process of embedding an "imperceptible" identification signal onto another signal.

Fig. 3 is a suep-wise description of how a suspetted copy of an original is
identified.
Fig. 4 is a scheratic view of un appuratus for pre-exposing film with identificalion information io accordance with another embodiment of the present invention.

Fig. 5 is a diapmon of a "black box" embodiment of the present invention.
Fig. 6 is a shianatic bloth tiagran of the ambodment of Fig 5.
-5

Fig. 7 showi a variant of the Fig. 6 embodiment atapted to encode saccessive sets of input data with different code words but with the same noise dath.

Fig. 8 shows a variant of the Fig. 6 embodiment adspied to encode each frame of a videotaped production with a unique code number.

Figh. 9A-9C are representations of an todustry standard noise secand that can be werd in one embediment of the present invention.

Fig. 10 shows an integreted circuit used in detesting standard noiso codes.
Fig, 11 shows a process flow for detecting a stmadard noise code that ran be used in the Fig. 10 embodiment.

Fig. 12 is an embodiment employing a plurality of detectors in accordence with 3 nother embodiment of the present inventics.

Detailed Description
It the following discussion of an illustrative embodiment, the words "signal" and "image" are used interchangeably to refer to both one, two, and even beyond two dimensions of digital signal. Examples will routinely switch brack and forth betveen a nae dimensional audio-type digital signal and a two dimeusional image-type digital aignal.

In order to fully describe the datails of an illustrative embodiment of the invention, it is necessary first ta describe the basic properties of in digital signal. Fig, 1 thows a classic representation of a one dimensional digital sigoal. The x-axis defines the index numbers of sequence of digital "samples," and the y-axis is the instanteneous value of the sigual an that sample, being constraired to exist oaly as a finite mumber of fevels defined as the "binary depth" of a digital sample. The example depieted in Flg. I has the value vi? 2 to the fourth power, or "d bits," giving 16 allowed states of the sample value.

For audio information auch ns sound waves, it is commonly acrapted that the digitization process discretizes a continuous phenomena bath in the time domain and in the signal level domain. As such, the process of digitiantion iteolf introduces a fundarnental emur source, in that if carnot record detail amaller thin the discretiation interval in either domain. The industry lass referned to this, among othes Wiys, as "alissiog" in the time domnin, and "qqantization noise" in the signal level domalo. Thus, there will always be a basic error floor of a digital signal. Pure quastization noise, measured in a root mean square sease, is theoretically known to hnve the value of ose over the square root of sweive, or about 0.29 DN, where DN stunds for 'Digital Numbe' or the finest unit increment of the signal level. For example, a perfect 12 -bit digitizer will heve 4096 allowed DN with an innate root memn square noise floor of $-0,29$ DN.

All known physical measurement processes add sdditional noise to the transformation of a continuons signal into the uhgital form. The quantization noise typically adds in quadrature (square rool of the mean squarres) to the "analog noise" of the mesaurement procest as it is sometimes reforred to.

With almosi all commarcial and tectirical processes, the use of the decibel scale 15 used os a measure of signal and noise in a given recording mediam. The expression "signal-ipnoise ratio" is generally used, as it will be in this disclosure. As an example, this disclosure refors to sigral to neise ratios in remms of signal power and noise power, thus 20 dB represents a 10 times increase in signal mplitude.

In summary, the presently preferred embodiments of the inveation embed an N-bit value unto un entire agnal through the addition of a very low amplitude encodation signal whiris hes the look of pure noise. N is usually at least 8 and is cspped on the higher end by uftimate algoal-forwotse considerations and "bit emor" in retrieving and decoding the N-bit valua As a practical matter, N is chosea based on upplication apecific considerations, such it the number of imique different "aignatures" that aro desired. To illustante, if $\mathrm{N}=128$, then the number of unique digital signarures is in excess of $10^{\wedge} 98\left(2^{\wedge} 128\right)$. This number is beliaved to be more than adequate to both idextify the material with sufficieot statistical certantry and to index exact. sale and distritution infocmation.

The amplitude or power of this added signal is determined by the asthetic and imfromational considerations of each and every application using the present methodology. For tastmoe, non-professional video can stand to have a higher embedded signal level without becoming noticeable to the average human eye, while high precision audio may only bo able to socept a relatively small signal level lest the human ear perceive an objectionable increaso in "hiss." These statements are generalities and each application has its own set of criteria in choosing the signial level of the embedded identification signal. The thigher the level of embedded signal, the more consupied a copy can ba and still he identified. On the other hand, the higher the level of embedded signal, the more objectionahle the perceived noise might be, potentially impacting the value of the distriboted material.

To illusmate the range of different opplications to which the principles of the preseal trivention can be applied, the present specification details rwa differnt systems. The first (termed, for lack of a berter name, a "batch mending" syslem), applies idmatification coding to wa existing data signal. The second (termed, for lark of a better uame, a "rall timis encoding" system), applies identification coding to a signil as it is proditced. Those skilled in the art will recognize that the principles of the present invention cain be applied in a number of other contexts in tididition to these particulariy described.

The discussions of these rwo syotems can be read in cither order. Bome readers may find the latter more intuitive than the formar, for others the contrary miy be tue.

EATCH ENCODING

The following disarsion of a firs clats of embodiments is best prefaced by a section defining reievarg terms:

The ogipinal signal refers to zither the original digital nignal or the high quality digitizod capy af a nim-digital miginal.

The N-fit identification word refers to a mique identification binary value, typicalify having N range amywhere from 8 to 128 , which is the identification code ultimately placed anto tose ofiginal signal via the diselosed transformation proces. In the illustrated embodiment, each N-bit identification word begins with the sequence of vahes '0101,' which is thed to determine an optimization of the signal-to-noise ratio in the identification procecture of a suspect sigual (see definition below),

The m'th bit value of the N-bit identification word is either a zero or poe corresponding to the value of the m'th place, reating teft to right, of the N -bit word. E.B. the first ($\mathrm{m}=1$) bit value of the $\mathrm{N}=8$ identification word 01110100 is the valise ' 0 ;' the second bit value of this identification word is ' 1 ', ete.

The m'th indiyiduni embedded code sional refers to a signal which has dimensione and extent procisely equal to the otiginal signal (e.g. both are a 512 by 512 digital image), and which is (in the illastrated embodiment) an independent psendo-random sequence of digitial values. "Preudo" pays homage to the difficulty in philosophically dafining pire randomeness, and also inclicates that there are various acceptahle wayn of geverating the "random" signal. There wlll be exactly N individual conbedded code aignals associated with any given original signal,

The arosentable perceived noise level refera to an application-specific determination of bow mich "extra noise," Le. amplitede of the composite embedded code signal described neat, umin be added to the original signal and still baye an acceptable signal to sell or ocherwise distribate. This diselosure uses a 1 dB inurase in nivise as a typiral value which might be acceptable, but this is quite arbitrary.

The conposite enbedded code signal refers to the sigual which has dimensious and extear precisely equal to the original signal, (0.E. both are a 512 by 512 digital image), and which cantains the addition amd approprite uttenuation of the N individnal embedded code signals. The individus embedded sigmals are generated on an arbitrary scale, whereas the amplitude of the composite signal must not exceed the preset acceptable perocived noise level, hence the need for "attenuation" of the N adided individual code sigmols.

The distributable signal refers to the nearly similar copy of the original sigpal, consisting of the original signal plas the camposite embedded code signal. This is the signal which is distributed to the nutside comununity, having only slightly higher but acceptable "noise properties" than the uniginal.

A susnect simal refers to a sigonl which has the general appearance of the original and distrihated signal and whose potential identification match to the original is being questioned. The maspect sigmal is thea annlyzed to pee if it mstches the N -bit identification word.

The detailed methodology of this firat embodinent begins by nating that the N-bit identification word is emcoded unto the original gignal by having each of the in bit values minliply their cocresponding initividual enbedded code sigoals, the resultant beinjs accumulated in
the compesite signal, the filly summed campasite signal thed being attecuated down to the acceptable parcived noise amplitude, and the resultant composite signal added to the original to besome the distritrumble sigual.

The origumal signal, the N -hit identification word, and all N individual embedded code signals are then stered away in is secured place. Δ suspect signal is thea found. This signsl may have undergone multiple coptes, compressions and decompressions, resamplings onto different spaced digital signals, trensfers frons digital to malog back to digital media, or any combination of these items. If the signal still uppears similar to the original, i.e. its unnte quality is not thoroughly destroyed by all of these transformations and nolse additions, then depending on the signal to noise propertics of the embedided sigral, the identification process should fanction to sotme objestive degree of sumtistical confidence. The extent of comptioc of the suspect signal and the original acceptable persaived noise level are two key parametars in detemining an expected confidmere level of identification.

The identification process mon the mispected sigual begins by resumpling and aligning the sispected signal outo the digital farmat and extent of the original signal. Thus, if sin timage has been rednced by a factor of two, it aeeds to be digitally enlarged by that same fartor. Likewise, if a piest of music has bean "out sub," but may still bave the same smopling rate as the original, it is neossary to registor this cat-out piece to the original, typically done by performing a local digital crostrcorrelation of the two signals (a commion digital operation), finding at what delay value the correlation peaks, thea using this found delsy value to register the cut piece to a segment of the original.

Once the suspect aignal has been samplospacing matched and regirered to the ariginal, the signal levels of the surpeet signal slould the matched in an mas sease to the signal loyel of the original. This can be done vie a search on the parameters of offise, amplificuion, and ganmi being optimized by using the minimum of the mean squared terrot berween the two signals ar a finction of the three parameters. We can call the saspest signal narmalized and regintered at this point, or jost nermalked for convenieace,

The nowly matched pair then has the original signal sabtracted from the normalized suspect signal to produce a difference signal. The differcnce signal is then cross-correlated with each of the N individanal embetders conde sigpais and tho peak cross-correlation value recorded. The first four bit code (0101 ') is used es an calibrator both on the meen values of the zero value and the one valine, and oo further registration of the two sigunls if a finer signal to noise ratio is devired (ies, the optimal separation of the 0101 signal will Indieate an optimsl registration of the two signils and will also incicate the probable existence of the N -bit identification signal being prisent)

The resulting peak cross-carrelation values will form a noisy series of floating point numbers which can be transformed into 0 's and I's by their proximity to the mean values of 0 and I frimd by the 0101 calibration sequence. If the suspect aignal has indeed been derived
from the orighal, the identification mumber retalting frum the above process will mstel the N -bi identification word of the original, beating in mind either prodicted or unknown "bit error" statistics. Signal-to-noise considerations will determine if there will be some kind of "bit enor" in the identification process, leading to a form of $\mathrm{X} \%$ probability of identification where X might be desired to be 99.9% or whatever. If the suspect copy is indeed not a copy of the original, an essentially random sequence of 0 's and 1 's will be producod, as well is an spperent lack of separation of the resultant values. This is to say, if the resultant values are ploted on a histompam, the existence of the N-bit identification signal will exhibit strong bi-level characteristics, wherex the got-existence of the code, or the existence of a different code of a different original, will exhibit a type of random gaussian-like distribution. This histogram separation alone should be sufficient for an identifigation, but it is even stronger proof of identification when an exact bintery sequence can be objectively reproducod.

Spexific Example

Imagine that we hive taked a valuable picture of two heads of state at a cocktail party, pietures which irce sure to eams sums reasonahle fec tin the commercial market. We desire to sell this picture and ensure that it is not used in an unamhorized or ancompansased ananger. This and the following toeps are summarized in Fig. 2.

Assume the picture is transformed into a positive color print. We first scan this into a digitized form via a normal high quality black and white seamer with a typical phatametric spectral respouse curve. (It is possible to get heter ultinate signal to noise ratios by seanning in each of the thres primary colort of the color image, but this puance ia not central to describing the basic procass.)

Let us mesume that the scanned fmage now becomes a 4000 by 4000 pixel mixnochrome digitar image with a grey scale acranucy defined by 12 -bit grey values or 4096 allowed levels. We will call this the "original digital image" realizing that this is the same as our "original signal" in the above definitioas.

During the seanning procass we hrye arbitrarily set absolute black to correspond to digital value ' 30 '. We estimate that there is a basic 2 Digital Number root mean squara noise existing on the original digital image, plas a theoretical noise (known in the indastry as "shot noise") of the square root of the brightassa value of any givea pixel. In formuta, we have:

$$
\begin{equation*}
\left.<\text { RMS NOisc }_{a n}\right\rangle=\operatorname{sqnt}\left(4+\left(\mathrm{V}_{i, \mathrm{p}}-30\right)\right) \tag{I}
\end{equation*}
$$

Here, n and m are simple indexing values on rows and colarms of the image ranging from 0 th 3999. Squt is the square root. V is the DN of a given indexed pixel on the original digital amage. The $<>$ brackets around the RMS poise merely indicates that this is an expected average value, where it is clear that each and every pixel will have a rendom error individually. Thus for a pixel
value having 1200 ot a digital mumber or "brightuus value", we find that its experted mes naise walue is sgri(1204) $=34.70$, which is quite close io 34.64 , the square root of 1200 .

We furthemore realiza that the square root of the innate brightess value of a pixel is not precisely what the eye perceives as if minimum objectionable noise, thus we come up with the formula:

Where X and Y bave been sdded as empirical parameters which we will xdjust, and "addable" noise reftrs to our scceptable perceived voise level from the definitiona above. We now intend to experiment with what exact value of X and Y we can choost, but we will do so at the same time that we are perrorming the next steps in the process.

The next step in our process is to choose N of our N -bis identification wori. We decide that a 16 bit main identification value with itt 65536 possible values will be sufficiently large to identify the finage as aurs, and that wt will be direetly selling po more than 128 cogies or the image which we wish to treck, giving 7 hits plus an eighth bit for an odd/even asding of the first 7 bits (iie. an urror cheching bit on the first sevee). Tbe tolal bite required bow are at 4 bita for the D101 calibration sexpemen, 16 for the main identification, 8 for the versing, and we now throw in mintier 4 as a firther error checking value on the first 28 bits, giving 32 bits as N . The Final 4 bits car nee coe of many industry standard errer checking methods to choose its four values.

We now randomly determine the 16 bit main identification number, finding for example, 110100011001 1110; our first versjons of the original sold will have all 0^{\prime} 's as the version identifier, and the error clecking bits will fall out where they may. We now have our unique 32 bit ideotitication ward whith we will embed on the original digital image.

To do this, we geoerale 32 indepreadent random 4000 by 4000 encoding images for each bit of our 32 bit identification wori. The manner of genenating these madom inages is ravesling. There are namerase ways to gensrate theste. By far the simplest in to turn up the gain un the same scaaner that was usedi to scan in the original photograph, only this time placing a pure thack imge as the igput, then scanning this 32 times. The only drawback to this technique is that it does require a large amount of memary and that "fixed pattern" noise will be pant of each independent "noise image." But, the fired pertem noise can be reanoved via normal "drik frume" subbraction tachniques. Assume that we set the absolute black average value at digital number ' 100 ,' end that rather than finding a 2 DN ms poise as we did in the normal gain setting, we now find an mss poise of 10 DN about ach and every pixel's mean valuc.

We next apply a mid-apatisl-frequency bandpass filter (spatiel convolution) to each and every independent random image, essentislly removing the very high and the very low spatinl frequencies from them. We remove the very low frenuencies because simple real-world
etror sourers fike geometrical warping, splotches oni scamers, mis-registrations, and the like will exhibit themselves most at lower froquencies also, and so wo want to concentrute our ideatificanton signil at highet spatial frequencies in muter to avoid these types of comuptions, Likewise, we remove the higher fiequencies because miltiple generation copies of a given imege, ws well is comprestion-decuarpression frmaformatious, tend to wipe out higher froquencies anyway, so there it no point in placing too minch identification signal into these froquencice if they will be the ones most proae so hetng artenuated. Therefort, pur new filtered independent noise jmages will be dominated by mid-patrial frequencles. On a practical note, siice we are using 12 -bit values on our scanner and we have removed the DC value effectivaly and our new rms noise will be slightly less than 10 digital numbers, it is usefil to boil this down to a 6 -bit value ranging from - 32 through 0 to 31 as the resultant rondom image.

Next we add all of the random images rogether which have a ' 1 ' in their corresponding bit value of the 32 -bit identification word, arcoumblating the result in a 16 -hit signed integer image. This is the unattcousted and un-scaled vossion of the composite embedded signal, Next we expariment visunily with adding the composite embedded signal to the anginnl digital imege, urrough varying the X and Y parmeters of equation 2. In formula, we visually fterate to both maximize X and to find the appsopriate Y in the following:
where dist refers to the candidate distributable image, Le. we are visually iterating to find what X and Y will give us an acceptable imuge; orig refies to the pixel value of the anginal inager and comp refiess to the pisel value of the composite image. The n's and m's still index rows and columns of the fmage and inchieate that this oporation is done on all 4000 by 4000 pixels. The symibol V is the DN of a given pixel and a given imige.

As un arbitrary nesimption, now, we assume that our visual experimentation has [ound that the value of $X=0.025$ and $Y=0.6$ are acceptahle valnes when cxaparing the origina image with the candidate distributable image. This is to say, the distributable image with the "extra noise" is acoeptably close to the original in an ansthetic sense. Note thrt since our individual rendom fruges had a random ma poise value around 10 DN , and that adding approximately 16 of these images together will increase the comiposite noise to around 40 DN, the χ multiplication value of 0,025 will bring the added mes nolse back to around 1 DN , or half the amplitudo of our innate noise on the original. This is roughly a 1 dB gain in noise at the darf pixel values and cortespondingly more at the brighter values modified by the Y value of 0.6 . So with these two values of X end Y , we now have corastructed oim first versions of a distributable capy of the original, Other versions will merely create a new compasite signal and possibly change the X slighly if deemed necessary. We now lock up the original digital image ulong with the 32 -bit identification word for tach version, and the 32 independenr random

4-bit images, waiting for our first case of a suspested pirsey of our eriginal. Stomge wise, this is nbout 14 Megabytet for the original image and $32^{\circ} 0.5$ bytiss ${ }^{*} 16$ million $=-256$ Megabytes for the random individual encoded imges. This is quite scceptable for a singlo valuable image, Some storage ectionary can be gained by simple lossless compression.

Finding a Suspuccen Piracy of our Imege
We sell our image and sevenal montis later find our two heods of state in the eract poses we sold them in, teerningly cur and liftod out of our image and ploced into apoliher stylized background scenc. This naw "swspect" imnge is being printed in 100,000 copias of a given mbgazins insuc, lef ta say. We now go about determining if a portion of our original image fias inteed been wel in an unsuthorized manner. Fig. 3 sumusirizes the detaile,

The first step is to take an issue of the magazing, cut out the puge with the Image on it, then careffilly but not too carcfully cut out the two figures from the backgroumd triage using ordinary trissors. If possible, we will aut out only one coanected piece rather thens the two figares sepanitely. We paste tifis onto a black background and sean this into a digital form. Next we electromically flag or musk out the black background, which is easy to do by visual inspection.

We now procare the original digital image from our secured place along with the 32 -sir identification ward and the 32 individaal embedded fmages. We place the original digital tmage auto our computer screen ising stenderd image manipulation sofiware, and we roughly eut along the same borders as our masked area of the suspect image, masking this image at the same time in roughly the same mamper. The word 'roughly' is used since me exact cutting is not needed, it merely aids the identification statistios to grt it reasonnhly close.

Next we reseale the masked suspect image to roughly mitch the size of our masked originsl digital image, thast is, we digitally scale up or down the suspect image end rouphly overlay it oo the original innge. Once we have perfurmed this rongh registration, we then tbrow the two images into an automated scaling and regisation program The program periorms is search on the three parametiss of x position, y position, and spatial stale, with the figure of merit being the mean squared error hetweca the two images given any given scale variable and x and y offet. This is a fairly standand image procesting metiodology. Typically this would be dope using generally smooth interpolation fechniques and done to sub-pixel accurucy. The search method can be one of many, where the simplex method is a typical one.

Once the optimal scaliog and x-y position variables are foumd, next comes another sterch on optimizing the black level, brightress gain, and gemmn of the two imuges. Again, the figure of merit to be used is mean squared error, and ajain the aimplex or other search methodologies can be used to ogtimize the three varisbles. After these tiree variables are optimized, we apply theit corrections to the suspect image and align it to exsetly the pixel spacing and masking of the original digital image and its mask. We can now call this the stendard mask

The pert step is to subtract the ariginal digital fmage from the newly namalized suspect image only withis the standard mask region. This new imiage is catled the difference image.

Then we step through all 32 individual randorn embedded imgges, doing a local crosscorrelation betwean the matkeal difference fmage and the masked individual embedded image. 'Local' refers to the idea that one geed only start correlating over an offiset region of $+1 / 1$ pixels of offet between the nominal registration points of the two images foand daring the searb procedares above: The peak corrclation should be very close to the bominal registration point of 0,0 offset, and we can edd the 3 by 3 correlation values together to give one grand carrelation value for esch of the 32 individual bita of our 32 -bit identification word.

After doing this for all 32 bif places end their corregponding randam images, we have is quasi-floating point sequance of 32 values. The first four values represeat our calibration signal of 0101. We now take the mean of the first and third flating point value and call this floating point value ' 0 ,' and we take the mean of the sarnod and the frourth value and call this floating point value ' 1 ,' We then step through all remaining 28 hit values und assign eitber a ' 0 ' or a ' 1 ' bared simply on which mean valve they arce closer to. Strited simply, if the suspect image is indeed a copy of our arigital, the embeddad 32 -bis resulting code ahould match that of out rocords, and if it is not a copy, we should get general randomness. The third and the fourth possibilities of 3) Is a copy but doesu'r matcic identification number and 4) isn't a copy but does match are, in the case of 3), possible if the s(gnal to noise ratio of the process has plumanetod, ie. the 'suspect image' is truly a very poor copy of the original, and in the case of 4) is basically ane elamee in four billion since we were using a 32 -bil identification number. If we are truly worried about 4), we can just have a secund independent hab perform their own tests on a different issie of the same mingazine. Finally, checking the eror-check bics against what the values give is one final and possinly gverkill cbeck on the whole process. In situations where signal to noiso is a possible probjern, these erros checking bits might be eliminated without too much harm.
Benarits
Now that a full description of the first embodiment has been described via a deralled example, it is appropriate to point out the rationale of same of the process steps and their benefits.

The ultimnte beacifis of the foregoing process are that obtaining an identificution number is fully independent of the manoers and methods af meparing the difference tmage. That is to say, the manners of prepuring the difference image, such as cuting, registaring, scaling, atcetera, caunot increase the odde of finding an idenifitution mumber when pone exists; if only helps the signal-to-noise ratio of the identification process when a trae identificatimn number is present. Mechods of preparing images for identifipation can be different frum each other even, providing the poasibility for multiple independent methodnlogies fie making a match.

The ability to oftain a mutch bven en mb-sch of tho originil signal or finage is a kcy ploint in laday's informition-rici warid. Cuting and pasting both imoges and somd clipg is beorming more comman, allowing such in embodiment in be used in deterfing à cupy zven whan original mererial he been tiur corrupted. Finally, the signal to noise rato of marctumg ahoula begin to become difficult only when the copy material iself has boen Merifficunt)y altered either by anine or by algrificant dlatortion; both of these afeo will affect that copy's commercial valus, so that trying to thwart the ryatemi can oniy be done at the oxperne of a huge decrenso in commencial valuc.

An eurly zooception of this invemion was the cese where only a lingle "enovry image" or randow sigual was anded to on origing image, ite the case where Nod. "Decoding" thia rigont would involve a pabsequant muthematical analyais using (jemerally suatistica) algorithas to male a judgnem on the preance or abyence of this signal. The reason this approach whe abandoned of the preferred enbodimant wes that there was in inherent gray arca in tho dertainty of detecting the presence of ahzence of the sigual. By moving onward to a muititude of bit planes, l.e $\mathcal{N}>7$, combined with simple pre-definod algorithms prescribing the mames af choneing betwear a " 0 " and a "1s the invention minved the corainty guestion fram tie reaim of soxpert statistical anslysis into the raikm of guessing a random limary event suih as a zuin flip. This is seas as in powerful fature relative to the fituinive afceptaces of this lavertion ta bout the cyurtroom and the tuatkatplace. The unalogy which summuixes the miventor's thoughots on this whole question is as followes. The serrb for a siagle identification signal anownte to colling a min tip unly cuce, und relying ou artane experts to makn the call; whereas tie $N>1$ prefermed anbodiment of thit invention relies on the broadfy intaitive pinciple of carsectiy calling a coin flip if tines in a raw. This situation is greatly exangibated, it the ponblems of "Imperpretarion" of the prasence of a siggle signal, whex impes and sound elips get smalles and smafler in extent.

Anothar important reason that the N >1 case is dia preferred embodiment aver the $\mathrm{N}=1$ embodiment is that in the $\mathrm{N}=1$ cnse, the manar in which as suapest imige is prapared and mastipulated has a direct bearing on the likelihood of making a positfve identification Thus, the maxnoer with which ut expert makea ay identifiestion determination besomes an integril part of that Seterminmion. The existence of azoutitude of nathematical and statistical appronches to makiog this detenmistation leave open the possibility that some testif might moke positive identifications while others mighs make negative deteminations, iuviting funh arr atame debate
 of fisis invention avoids fis further gray wes by presenting if mehod where no amound of prepuccesing of a signal - other than pro-processing which surceptitiouly user knowledge of the

The fallest exprestion of the preseat syatem will come when it becomel an indictuy standiad and aumarois mdependeat groups tex up with their ows means of "in-house? brand of ampiying embedded Identifintion mumben ted in Uroir dociptarment Invocroer

-15

independent group ideotification will further enhance the ultimate objectivity of the method, thereby enhancing its appens as an indestry standard.
Use of True Polanity in Creatine the Composite Embedded Codo Signal
The foregoing discussion made use of the 0 and 1 formalism of binary
technology to accormplish its ends. Specifically, the 0 's and 1's of the N -bit identigication wond directly multipied their comenonding individunl emhedided code aignal to farm the composite embedded codo signal (istep 8, figure 2). This approach certrinly har its croceptual simplicity, turt the multiplication of an embedded code signal by 0 along with the storage of that embeddiod codn contains a kind of iveficiency.

It is preferred to maintain the formalism of the 0 and 1 nature of the N -fit identification word, but to bave the $0 / 5$ of the word induce a subtraction of their correspoodiogs. embeddod code signal. Thus, in step I of figure 2 , rather thian only "udiding' the individual embedded code siguals wíich correspond to a ' 1 ' in the N -hit identification word, we will aleo 'subtruct' the individual embedded code siguals which comespond to a ${ }^{\prime} \mathrm{O}$ ' in the N -bit ideatification word.

At first glance this seems to add more appareat nolse to the final composite signal. But if alko increases the energy-wise separation of the 0^{\prime} 's from the 1 's, and thes the 'gain' which is applied in zepp 10 , figure 2 am be emmespondingly lower.

We can refer to this improvemeat as the use of true polarity. The main sidvartage of this improvement can largely be sammarized as 'informational efficiency.' 'Percomtual Orthogonality' of the Individual Embedded Code Signals

The forcgoing discussion contemplates the use of generally random boise-like siguals as the inilividual embedded code sigonas. This is perhaps the simplest form of signal to generate. Hawevef, fhere is a form of informational optimizntion whici can be appliod to the zat of the individual embedded signals, wbich the applicant describes under the rubric 'perteptual orthogonality.' This term is loosely based on the mathematical concept of the erthogenality of vectors, with the current additional roquirement that this orthogooality should maximize the signal energy of the identificatinn informution while maintaining it below some perceptibility threstioti. Put another way, the embedied code signals need not recessarily be random in nature. Use and limprovements of the Fint Embodiment in the Field of Emulsion-Based Photacerphy

The foregoing discusaioo butlined rechniques that are applicible to photographic materials. The following setion explores the details of this ares further and diseloses centain inprovements which feed themsetves to a bruad range of applications.

The first area to be discussed invalves the preapplication or pro-sxposing of a serial number onto traditional plootogaphic products, such as peguive film, print paper, transpareacfes, eto. In general, this is a way to embed a prieri unique serial numbers (and by implication, ownarsibip and recking information) into photograpic material. The serial numbers themselve wonld be a permsnam part of the nomally exposed picture, as opposed to being
relegited to the margins of atemped on the back af a pristed photegraph, which all require separate locationa and sepranate methods of copying. The 'serial aumbur' as it is cafled here is penerally synonymots with the N -bit identification worit, only pow we are bing a more common induatrial termínolozy.

In Figure 2, step 11, the diecolosure calls for the storage of the "original [imuge]" along with colde images. Then in figure 9, step 9, it diruts that the original ba subtracted from the saspect image, theroby leaving the possible identification codes plas whatever noise and comption has accumulated. Therefore, the previous diselosure made the tasit assumption that there exists an original without the composite embodded signals.

Now in the case of selling print paper mid other duplication film producta, this, will still be the eave, fie, an "ariginal" witarout the embedded codes will indeed exist and the basic methodology of the fitst embodiment can be employed. The original film serves perfectly well ass an. 'unexcoded original.'

However, in the case where pro-exposed negative film is used, the composite embedded aignal pre-axists on the original film and thims there will never be an "original" sefparate from the pre-embedded signal. It is this later case, therefnes, which will be examined a bit mare closely, along with observations on how to bext use the principles discussed above (the former cases edhering to the previousiy outlined metbods).

The clearest point of departure for the case of pre-mumberal negative film, i.e. ncgative film which bas had each and every frene pre-exposed with a very faint and unique composite embedded signul, comes at step 9 of figure 3 as previously noted. There are certainly other differenpes as well, but they are mostly logistical in nature, such at how and when to embed the signals on the film, bow to sore the code numbers and serial number, etc. Obvionsly the prosexposing of film would involve a mujor change to the general mass production process of creating. and parknging film.

Fig. 4 has a schematic autlining one pateatial post-hne mecbanisul for preexpasing film. 'Post-hoc' refess to applying a provess affer the full cammun manufactuing procees of film has already taken place. Eveutually, economies of stale maty dictate placing this pre-exposing process diructly into the chain of manuficturing film. Depicted in Fig, 4 is what is conmonity known as a film writing system: The compoter, 106, displays the composite signal produced in step 8 , figure 2 , or its phosphor sereen. A given fayne of film is then eqposed by imaging this phosphor screen, where the expesure level is gencrally vary faint, ie, generally imperteptible. Clearly, the marketplsce will set its owa deminds an how faint this stiould be, that is, the level of added 'graininess' as practitoners would put if. Each frame of film is sequertially upposed, where in general the composite minge tisplayed on the CRT 102 is changed for each and every frime, therehy giving each frame of film a different serial number. The transfer lens 104 highlights the focal conjugate planes of a film frame and the CRT fuce.

$$
-17
$$

Getting bnck to the applying the principles of fhe foregolog embodiment in the case of pre-zpaised negadive filmin As step 9, figure 3, if we wert to subtruct the "orlginal" with站 ambedded code, we would obviously bo "erasing" the code as well since the code is an integral parf of the original. Fortunately rumedfar do oxist and identificalions can still be made. Hawever il will be a challenge to artisans who refine tbis emboditonent to have the signal to nolse tatio wif the jifentification prooest in the pro-axposed negative cese appronch the aignal to nats; ratio of the cass where the un-encoded onj ginal exists.

A succinct detuition of the problem in in order at this point. Given a saspect piature (stgual), find the mobedida identification pode IF z codo exits at al. The problem reduces to one of Ginding the implitnde of eard and every individmi emboided code silymi within the suspect picture, not only within the conteat of noine and aimpiption as was previnusfy eqplaigai, bur now also withair the contexi of the conpling batween a captired image and the codes 'Couppling' here rafora to the idea har the captured image "randumbly thases" the cross-comelatimi.

50, bearing in mind this additional tem of algnal coupling, the identification process naw estimates the siganal amplitude of each and every indivitual embedded code signal (es oppoxed to taking the caoss-correlation result of step J 2 , $\overline{\text { iggure }}$ 3). If our identification signil erists in the fuppen gicture, the amplitudes thas found will split late a polarity with positive kuplitudes being assignod a ' 1 ' mad negnive anpplitudes being assigned a ' 0 '. Our unique Identification code manifeste itself. If, on the otier hand, ne such ideatificution oode oxime or it is sombond alse's pode then à random gaussian-liks distribution of amplitule is found with a random bash of yahucs.

It remnine to provide in fow more dotaily on how the implitudes of the indivithen embedded codes arv founch Agein, ianumitely, this exact problem has been treated in other vecimilogieal applications Besides, throw tivis problion and a fitle food mato a crowded room of inathematicians and satisticians and sirnly a balF dozet oppinized methodologis will pop ont afies zonde rearomeble period of time. If it 4 rathe cleanly defuted problan.

Oac specific cemple polution conse from the fteld of asmonomical imuging Here, ir is a.matere prioc artzo anbtract out a "hermai noise frame" from a given CCD mage of in object. Ofter, however, in is nol presisely known what scaling fartor to nse in subtracting the themal frome, and a search for the consect scaling factor in performen. This is precisily the test of thets sop of the present embodiment
 factor, whers is sualing fetter is chosen and a gew imsge in created eccording io:
NEW IMAGE = ACQUTRED IMAGE - SCALE * THERMAL DMAGE

The new image is applied to fou fast fourier trmonem routine and a scale facor E aventually fourd which minimion the integrated high frequency contern of the nasv image.
This erneal type of search operation wifh lis minimization of a particular quantity is excoeatingly Eumani. The scale factor thus found is the faught-for "oroglitode" Refinements which as
contemplated bar not yet impiemented are where the coupling of the higher derivatives of the acquired image and the embodded codes are extimated and removed from the calculated scale factor. In other words, cerrain bian effrcto from the coupling mentioqed earliet are present and should be evenpuasly accumented far and removed both through theoration and ampirical experimustation.

Use and Improvements in the Datection of Sional or Image Alteration

Apart from the basic need of identifying of signal or imnage an a whole, there is also a rather ubiguitous need to derect possible aluentions to a signal or image. The folloswing section describes how the foregoing embodiment, with certain modifications and improvemeats, can be ued as a powafful tool in this area. The potential serarios and applications of detecting altentions are innumarable.

To firat summarize, assume that we bave a given signal or lemage whith has bean positively identified using the basie methods outiined above. In other words, we know its N-bit identification werd, its individual embodded code aiguals, and its composite eubedded code. We ean then fairly simply create a spatial map of the composite code's muplinde within our given signel or image. Furthernare, we can divide this amplitude map by the known composite codo's sparial amplifade, giving a nommlized mapi, i.e a map which should fluctuate ahout zonse globat mienn valus. By simple examination of this map, we can visually detect any areas which have been signifiently altered wherein the value of the normalized emplitude dips below some statistically set tireshold based purely on typical noise and comption (enor).

The details of implementing the creation of the meplitude map have a verrety of choices. Oae is to perfirm the same procedure which is used to deternine the signal amplitude as described above, only now we step and repeat the multiplication of any given area of the signal/image with a gaussian weight function centered about the area we are investigating.

Iniversal Verus Custom Codes

The diaclasure thas far hes outlined how ench and every source sigpal har its own migue set of individual embedded code signals. This entails the storage of a significant amount of additional code information above and beyond the original, and many applications may meit same form of economiring.

One such approach to coonomizing is to have a given see of individan emhedded code signals be common to a batch of source materials. For example, one thousand images can alf utilize the same basic set of indivjdial emhedded cade signals. The storage requirements of these codes then become a small fraction of the overall stirage requirements of the source material.

Furthermore, some applicatioas cen atilize a universal set of individual embedded code signals, i.e., codes which remain the same for all instances of distributed material. This type of requiresent would be seen by syanges which wish to bide the N-bit identification word itself, yet have standardized equipront be able to rad that word. This can be used in systems which make go/no go decisions at point-of-read locations. The poteotin) drawbeck to this set-1p is this
the universal codes arc more prone to be aleuthed or stolen; therefore they will not be as secure as the appuratus and methodology of the previously disclosed arrangement. Perihaps this is just the difierence berween 'high security' and 'sir-tight security,' a distinction cerrying little weight with the bulk of potential applications.

Ure in Primtitg, Paper, Documents, Plastic Coated Identification Cards, and Other Material Whare

Global Embedded Codes $\mathrm{C}=\mathrm{n}$ Be Imprinted

Tho term 'signal' is often wed natrowly to refer to digital data informuion, audio signals, images, etc. A broader interpretation of 'signal,' and the one more generally intraded, includes ayy form of modulation of any material whassever. Thus, the micro-topology of a piece of common paper becomes a 'Signal' (c.g. It height as a fumetion of x - y coordinates). The reflective propetiga of a flat piece of plastic (as a function of space also) becomes a sigasi, The point is fist photographic emulsions, aunin signals, and digitizad information are not the anly types of siguals capable of utilizing the principles of tie present invention.

As a case in point, a machine very much resembling a braille printing machins can be designed so as to impriat unigue 'roise-like' indentations as outlined above. These indentations can be applied with a pressure which is much amaller than is rypically applied in creating braille, to the point where the petterns are not noticed by a noroal user of the paper. But by following the steps of the present disclosure and applying them via the mechimisan of microindentations, a uinique identification code can be placed onto sny given sheet of paper, be it intended for everyday statioanry porposes, or be it far timportmil documents, legal tender, or other securod materinl.

The reading of the identification material in such an embediment generally procands by merely realing the docament optically as a variety of angies, This would become an inampensiye mechod for dedueing the micro-topology of the paper surface Cerninly other forms. of reading the topology of the propar are possible as well-

In the case af plastic encosed material such as idantification carrls, e.gr driver's linenses, a similur traillo-hike impressions machime can be utilized to imprior unique idendification codes. Subtle layest of photoreactive materials can also be embedded inside the plastic mad 'exposied.'

It is clear that wherever a material exirst which is capable of being modulated by 'noise-like' signals, that material is an appropriate carrier for unique identifieation codes mad utilization of the priaciples of the invention. All that remains is the matter of economically applying the identifeation informstion and maintaining the aignal level below en noceptadility flureshold which each and every application will define for itself.
Appenctix A Descrittion
Appendix A contains the source code of an implemensation and verifeation of the foregoing embodiment for an g -bit black and white imaging system:

REAL TIME ENCODER

Whila the first class of exbodifreas most commonly employs a sumdirid microprocessor or computar to perfarm the eacodation of man image or bignal, it is possible to utilize a custom ancodation device whatch mogy be teistar than a typieal Voo Neumentype processon. Such a system can be utilized witb all menner of strial data streams,

Music and videotope recordingz are examples of serial data struams - data streams which aro often pirated. It would assist enforoement effirts if authorized recoedings were encoded with identification data so that pirsted knock-offs could be traced to tha ariginal frows which they wero maxde.

Piracy is but one concen driving the need far the prasunt invention. Abothar in authentication. Often it is important to confunm that a given set of date is really what it is purported to be (often several ycas after its generation).

To addross these mad other needs, the system 200 of Fig S can be cmployed. Sypeom 200 can be thought of as an identification coding black bex 202. The system 200 recaives an input signal (tometimes termed the "mater" or "unencoded" signal) and a cade word, and produce (generally in real time) an identification-coded ourput sigual. (Usually, the system provides key deta for nise io luter decoding.)

The coutants of the "black box" 202 can take various forms. An exemplary bleck bor syatem is showa in Fig. 6 and includes a look-up table 204, a digital noise source 206, first and second sealers 208, 210, an adderlsubasecter 212 , a memory 214 , and a register 216 .

The imput signal (whirich in the illustrated embodimeat is an $8-20$ bit data signial provided at a rate of one million samples per secundi, but which in other embodiments coald be an analog signal if appropriate A / D and D / A canversion is provided) is applied from an inpat 218 to the address inpur 220 of the look-up table 204. For earch inpat sample (ie. look-up table address), Sbe table provides a corresponding 8-bit digital output word. This output word is used as a scaling factor thus is applied to one input of the first scenler 208.

The firs scaler 208 hes a second input, ta which is applied in 8 -bit digital noise sigral fivm source 206. (In the illustrated embodiment, the noise source 206 chmprises an malog noise source 222 and an amalog-in-digital converter 234 aithough, again, other implementations can be nsed) The noise source in the illustated embodiment has a zaro mean ourput value, with a full width baif maximum (FWHM) of $50-100$ digital numbent (e.e. from -75 to +75).

The first ricaler 208 multiplies the two 8 -bit words at its inputs (scalo factor and noise) to prockice - for each sample of the system input signal - a I 16 -bit ourput word. Since the noise signal has a zero mem value, the oufput of the first scaler likewiso has a soro mean valae.

The outpul of the furst sceler 208 is applied to the input of the second sealer 210 . The sesond sealer serves a global scaling function, establisting the absolute megnitude of the identification signal that will ultimately be enibedded futo the input data signal. The scaling fazior is set througa a scale pontrol device 226 (which may teke a number of forms, from a simple

Theostat to a mrophically implemented control in a graphical user interfaco), permitting this factor to be changed in accordance with the requirements of different applicationa. The seconnt seaver 210 provides on its ourput line 228 a scated noise signal. Each sample of this sealal noise signal is suceasively stored in the memory 214.
(In the illustrated embodiment, the output from the first scaler 208 msy range between -1500 and +1500 (decimal), while the ourput from the socond sealer 210 is in the low single digits, (such as batween -2 . and +2).)

Register 2I6 stores a multi-bit identification codo word. In the illestrated embodiment this code word consists of 8 bits, ailhough larger code words (up to hundreds of bits) are coamonly bsed. These bits are refercuced, one at a time, to costrol how the input signal is modalated with the gealed noiss signal.

In particulat, a pointer 230 is cycled sequentially through the bit positions of the code word in regitter 216 to provide a control bit of " 0 " or "1" to a control input 232 of the adder/sobincter 212. If, for a particuler input signal ssmple, the control bit is a " 1 ", the scaled noise sigial sample an line 232 is addid to tha irput signal sample. If the control bit is a " 0 ". the sealed noise signal simple is sobtracted from the input signal sample. The output 234 from the adder/sabtracter 212 provides the blick box's outiput signal.

The addition or subtrattion of the sealed paise signal in acconedance with the bits of the code word effocts a modulation of the input signal that is generally imperceptible.

However, with lazowledge of the contents of the memory 214, a user can later decode the ancoling, betermining the code number used in the origisal encoding process. (Actually, use of memory 214 is optional, ase explained below.)

It will bo recognized that the eneoded sigmal can be distributed in well known Wrys, including converted to printed image form, stored on magnetic mellas (foppy diskette, analog or DAT tape, etc.), CD-ROM, ste, etc, Decadjing

A variety of techiniques can be used to detemine the ideotification code with which a suspect sigat has been enepded. Two are diacussod below. The firat is less preferable than the latter for mon spplications, but is discussed herein so that the reader may have a fuller ctantert within which to undestand tie invention.

More particalarly, the first deroding method is a difference method, relying on subtraction of carresponding samples of the original signal from the suspect signal to obtain difference samples, which are then axamined (typically individually) for deterministic coding indicia (ie. the stored noise data), This epproach may thus be termed a "sample-based, deterministic" decoding technique.

The second decoding metiod does nor make use of the original signal. Nor dues it examine particular samples looking for predeternimed uoise characturistics. Rather, the statistios of the sutipeit signal (ot ז partion theroff) are considered in the aggegate nod analyzed to discern
the presence of iderilification coding that permeates the entire signal. The reference to porneation means the entire identification code can be discorned from a small fragnent of the snopect signal. This later approach may thets be termed a "Folographic, statistical" decuding technipuis.

Both of thase methods begion by segistering the suspect signal to masth the original. This cnatails scaling (e.gr in amplitude, duration, color balance, etc), and sampling (or resampling) to restote the ariginal sample rate. As in the earlier destribed embodiment, thero are a varicty of well understood rechnigues by which the operations associated with this registrution function can be performed.

As noted, the frat decoding eqproach proceeds by anatracting the original sigmal from the registered, suspect signal, leaving a difference sigmal. The polarity of successive difference signal samples can then be compared with the polanities of the comresponding stored noisc signal samples to determine the identification code. That is, if the polarity of the first difference signal sample matches that of the first noist signil smmple, then the first hit of the identification code is a " L " (组 such case, the polarity of the 9 th, 17 th, 25 th, etc, samples shonld also all be positive) If the polarity of the firsi differeace signal sample is opposite that of the comesponding noise signal sample, then the first bit of the identification code is a "0."

By candurfing the foragoing analysis wibl eighi suecesaive sumples of the difference signal, the sequence of hita that comprise the original code word can be determined. If, is in the prefined embadiment, pointer 230 steppod through the code word one bit at in time, begioning with the first bit, during encoding, firn the first 8 samples of the difference sigoal can be malyzed to uniquely determine the value of the $\$$-bit conde word.

In a noise-free world (speaking bere of noise fridependent of that with which the identification coding is effected), the foregoing analysis would always yleld the correct ideatification code. Bat a process that is ouly mppliable in a notse-fres world is of timited utility indeod.
(Further, accurate identification of signals in noige-free contexts can be hamdled in a variety of other, simpler ways: e.g checksums; statistically improbable correspondence between suspect end original signals; ele.)

While noise-indaced aberations in decoding ean be dealt with - to some degroe - by analyzing large portions of fhe signal, such abarratious still place a practical ceiling on the confidener of be process. Furcher, the villain that moer be canfronted is not elways as bexign is rundow noise. Rathes, it increasingly takes fhe form of human-cansed corruption, distortion, manipulation, etc. In such cases, the desired degree of identification confidence can only be actilieved by other appraschus.

The presentiy preferred approach (the "Holographic, statistical" decoding tratnique) relies on recombining the suaper signal with cernain noise duta (typically the data sarad in memory 214), and analyzing the entropy of the resulting signal. "Entropy" need not be
undersiood in its most strict mathematical deffuitice, is being merrely the moss concieo word to describe randomaness (poise, amoothness, snowiness, etc.).

Most serial data signals are not randon. That is, one sample aspally correluts to some degree - with the adjavent samples. Noise, in contrast, typically it rundom. If a random signal (cge noise) is added to (or sobtracted from) a non-random signal, the entropy of the resulting sigual geverally fiereases. That is, the resulting signal hes more randam variations than the original signul. This is the case with the encoded output signal produced by the present encoding process; it has more encropy than tho ofiginal, unencoded signal.

If, in contrast, the addition of a randem signal to (ar subtraction frome) a donrandom signal reduces cotropy, then something unuenal is happening It is this anownly that the preferted decoding process uses to detect embedded identification coding

To fully undersiand this entropy-based decoding method, it is first helpful to highlight a characteristic of the origional encodiug process; the similar treatment of every Eighth sample.

In the ericoding process discusserl above, the pointer 230 increments through the code word, one bit for each sucesessive sample of the input signal. If the oode word is eight bite in length, then the pointer returns to the same bit position in the code word every eighth aignil sample. Wh this bit is a " 1 ", noise is added to the inpor signal; if this bit is a " 0 ", noise is subtractel from the inpun signal. Due to the cyclic progression of the pointer 230, every eighth sample of an encoded signel tirus shares a characteristic: they are all either augroented by the corresponding notse data (which may be negative), or bhey aty all diminished, depending on whether the bit of the code word thea being addressed by pointer 230 is a "1" or a " 0 ".

To exploit this charatteristic, the eotropy-based decoding process treats every eighth sample of the axpect signal in like farhion. In particuilar, the prucess begins by adding to the 15t, 9th, 170, 25th, etc, samples of the suspeet stgnal the corresponding scaled noise signal Values stored in the mumpry 214 (i.e. those storod in the $351,9 \mathrm{th}, 17 \mathrm{th}, 25$ th, ete, memory Iocations, respentively). The catropy of the resulting aignal (ie. the suspect signal with every $8 \% \mathrm{~b}$ sample madified) is then compated.
(Computation of a signal's entropy or randomess is well understood by artians
In this field. One geaerally arcepted technique is to take the derivative of the signal at each sample poim, square these values, and then sum over the entire signal. Fiowever, a variety of other well known techniques can altematively be used.)

The foregoing atep is iten repeated, this time gubtrecting the stored noise values from the $15 t, 9 \mathrm{th}, 17 \mathrm{th}, 25$ etc. suspect signal samples.

One of these two operations will undo the encoding procesa and reduce the resulting sigal's entropy, whe other will aggravate it. If adding the noise date in memory 214 to the surpect aignal reduoes its entropy, then this dath must earlice have been nobtracted from the original signal. This indicates that pointer 230 was pointing to a "0" bit when these samples were
encoded. (A " 0 " at the control mput of adde/sabtratter 212 caissed it to subtruct the scaled noice from the input signal,)

Conversely, if fubtracting the noise date from every ciehth sumple of the euspect signial reduces its entropy, then the encoding process must have earlier added this noise, This madicates that pointer 230 was pointing to a " 1 " bit when samples $1,9,17,25$, stc., were ervoded.

By noting whether catropy decreases by (a) adding or (b) subtracting the stored noise data to/from the suspect sigoal, it can be determined that the first bit of the code word is (a) a "0", or (b) a " 1 ".

The foregoing operations are then conducted for tine group of spaced samples of the saspect ajgnal beginning with the second sample (i.e, 2, 10, 18, 26 m). The enoropy of the resulting signals indicato whether the second bit of the code word is a " 0 " or a " 1 ". Lilcswise with the following 6 groups of spaced samples in the suspect signal, urtil all 8 bits of the cade warl have been discemed.

It will be apprectated that the foregoing approach is not sensitive to corruption mechanisoss that alter the velues of individual samples; instead, the process considers the entropy of the signal as a whole, yielding a high degree of confidence in the results. Further, even amall exeerpte of the sigual can be entilyzed in this manner, permitting pincy of oven small details of en original work to be detected. The results are thas statistically roburt, both in the face of naturil and human corruption of the surpect signil.

It will further tie appreciated that the use of an N -bit cade word in this real time embodiment provides benefits analogous to those discossed above in comnection with the batch encoding system. (fidece, the preseat embodiment may be cenceptualized es making ues of N different noise gignals, furt as in the batch encoding system. The first noise signal is a sigual having the same extent as the imput signal, and comprismg the seated noise signal at the $15 t, 9$ h, $17 \mathrm{tb}, 25$ th, etc., samples (sssuming $\mathrm{N}=8$), with zuroes at the istervening samples. The secoad noise sigaal is a similar one comprising the scalod noise signal at the 2 d , 10 th , 18th, 2 oftb, efc., samples, with zeroes at the interveniug semples. Etc. These stegnals are all combined to provide a composite noise signal.) One of the importuat adyantages inherent in such a system is the high degree of statistical confideoce (confidence whiri doubles with each successive bit of the identificaion code) that a matth is really a match. The syatem doss not rely on aubjective evaluatiou of a surpect sigoal for a single, deterministic embedded code signal. Iliustrative Varimions.

From the foregoing description, it will be recognized that numerous modifications can be made to the illustrated symens without changing the findamental principlese. A few of theso variations are described below.

The above-described decoding process rries both adding and subunucting atored noise data to/fiom the suspect signal in order to find which operation reduces eatropy, In otber embodimears, only one of these operations needs to be conducted. For example, in one altomative
docoting proces the stored nolse data comsponding to every eiginti sumple of the seppoct figail te only added to said samplex. If the sntropy of the resolting siguna it thereby facreased, then tho correpponding bit of the code Ford ia $a^{71} 1^{n}$ (i.e. this nate was added earlier, durtug the eacoing process, so adding it agmin only compounde the sigral's mondomilez), If the amtropy of the ravitigg signal is thereby decreaset, then the corraponiding bit of the code word is s "0" A fumber test of antropy if the atorod noiso samples are subtrated is not required.

The ratistical relisbility of the identifiestion procress (coding and decoding) can be designed to exceod virmelly any confidence threhhold (e.g, 99.95%, 99.999%, $99,999 \%$, ete ponfidenea) by wppropriate uelection of the global scaling factors, ElC Additiunal cuafideace in uny stiven epplication (umnocesary in mont appileationa) can be actieved by rechockiog the dearditg procese

One way to rechock the decoding process in to remove the stored nhite dita from the suppect sigund to secerdance with the bitz of the discerned code word, ylelding a "restored" signal (eg. if the inft bit of the code word is ornud to be " 1, " then the noise samples stored in the
 the sumpect sigral). Fie eatropy of the returas signal is mengured and used ir in baseline in furbor moasurmente. Kext, the process is rppeased, this time reurving the norod noise data from the suspect signal in acourtance with a modiferi code word. The modified code word is the same as the discorned codo word, except I blt is roggted (eg, the finst). The entropy of the resulting signal is determined, and compared with the baseine. If the foggling of the bit in the tiscamed code word resuited in incerased antropy, then the acoiracy of that bit of the deseaned code word if confirmed. The proces repeats, each tivu with a different bit of the discanod mide word togeglet, until all bits of die code ward liave been 90 cbooked. Each change ebould result in en facresso in entropy sompared to the bescline value

Tho data stored in memory 214 is subject to a vemiety of alternatives. In Ufe foregolog discuesion, menory 214 contahas tha secaled boise dati in iffier umbodimnita, the urealed gole = dum can be stocrd metend.

In stll othat enbodinente, if con be desinible to stere at feast pant of the lupal signal ithiff in menvry 2I4. For example, the memory can sllocate A signed bits to the noise sample, and 16 bits to storc the most stgificant bits of en 18 - or 30 -bir audio signal sample This
 Whe une of encoding an taput signal which wes alresdy ancoded, the chats in memory 214 can be,
 Signal data in metury $21 / 4$ filbait incomplete, it is generally postible to determme with whice of nwo code warls it hen been arcoded.

Yet aoouber 山iternative for memary 214 is that is can be omitred altogether.
One way this can bo arhieveci is to wse a detomsinistic volte source in the encoring proiess, such as an algorithmic poise gentrator seeded with a lanown key muber, The
same derenatiniatic noise source, seeded with the pant key pumber, can be used in tion decoding process. In such un arragemeril. anly the koy number noeds be stored for later usp in desiding. iossead of the large data set usually starsal in memory 214.

Allematively, if the nolso signil jofded diming ensoding does not have a zero mbear vilue, and del length N of the code wand is known to the decondet, then auntversal decoding process can be implemented. Thin process ibes the same cniropy lest is the foregoing procedwes, but cycles through pmeible code words, adding/subtrecting a small dummy poive value (o.g. less than the expectod mean nolie yaluo) to every Nith sample of the anspect algnal, in accontance with the bles of the code word being tissed, milil a relaerion in ennopy is noted. Such mapproach is not favored for most applications, bawnver, bocmase it offers lies sscarity than the other rmbodiments (ez if is subject to crocking by brute forve).

Many applications are well seryed by tho enibodiment illusmated in Fiz , , ir Whith diftrent code worde are ued to produce several diffierently encoded versions of ion inpur sienal, each making use of the same noise date More particularly, the embodinment 240 of Fis. 7 includes a noike store 242 into wìith nolse from source 206 is writter during the identificationcoding of the inpat sigun) with a first code word. (The nolse sance of fig. 7 is ahown outside of the teal time encoder 202 位 comvenience of illestration.) Thereaffer, adititnmal identificationsoded vareions of the jupat itganl can be produced by reading the stored nofee dasta from tie arore and using is in conjunction with second through Nth code worts to encode the signal. (While binary-soqucatini codie words are Illustrated in Fig. 7 , in other amitodiments arbifrary sapuanoes af code worde esn be auployed.) With such in arragement, a great mumber of differently yencoded siganls nan be produced, without requifure a proportionally-sized long term noise meany, Instead, is fixeo amomit of poise dital if storod, whether unooding an priginal moe or a housand timus.

If desired, soveral difteready-ooded output signals tan be produood at the same timg rather thans seriatim. One such implementation includer a plumalify of adder/anburicter circatis 212, ch driven with the sama juput signal and with the lame scaled natse efganl, bas with different code words. Each, than, prodvoes a diffierently encoded output signal.)

In applications having a great pumber of differeotly-eocodod yorsions of tho sante uriginal, if will be resogntized that the decediag process peed aot always diseam every bit of the code ivord. Somolimesi for uxauple, bee appilemion may require identifying only a group ior todes to which bie ausped ajgual belongs. EEg, bigh order bits of he oodo word might iedieate
 provided, wilh fow-arder bite identifylug sperific copims. To identify the orgumentian with which s surpeet signoi is associted, it may not be pecesary to gemmin= the low order bies, lince the aryanication can be identfied by the bigh order bits alope.) If the identificasion requiverments cant bo met by tisceraing if gubset of tive ocete word bite in the suspert signal, the decodiug procesg pan De mboreneat

Some applications may bo best served by restarting the cnending proems nometimes with a different sode ward - several times within an integral worke Consides, as an example, videotiped productions (eg, televisioa programing). Each frame of a videataped production can be identifiestion-coded with a unique code number, procossed in real-time with an urangement 248 like that shown in Fig. 8. Fach time a vertical rutace is detected by syac detcctor 250, the noise solirce 206 resets (e.g. to Jrpeat the sequence just produced) and an identification code inerements to the rent value Each thume of the videotape is thereby uniquely identification-coded. Typically, fie pacoded signal is stored on a videotape for long temm storage (although other storage madin, includiog laser disks, can be used).

Retiming to the encoding apparatos, the look-up table 304 in the illustrated embodimeat exploits the fact that high annglitude samples of the input data signal can volecate (without objectiomable degratation of the output sigani) a higher level of encoded identification coding than can low moplitude input amples, Thus; for example, input data samples having decimal values of 0,1 or 2 may be comespond (in the look-ap table 204) to scalo factors of unity (or evensero), whereas input data samples having values in expess of 200 may comespond to scale factors of 15. Gererally speaking, the seale factors and the input sumple values correspond by a square noot relation. That is, a four-fold increase in a value of the sampled inpur sigonal cirresponds to mproxinately a two-fold increnge io a value of tie scaling fartor associated therewith.
(The prazathetical refermee to zero as a scaling fector allades ro cases, Cg , in which the source aignal is temporally ar spatially devaid of information content, In an emege, for example, a ragion charasterized by several contiguois sampla values of zero may correspond to a jut black region of the frome. A scaling value of zero may be appeopriate bere since there is essentinlify no imige dita to be pirated.)

Contiming with the encoding process, chase shilled in the art will rocojnized the poteatial for "rail crrus" in the illustrated embodiment. For example, if the imput signal consiaty of 8 -bit samples, and the samples span the entive mange from 0 to 255 (decimal), then the ardition or suburaction of scaled noise to/from the input sigsal may prodice output signafs that mannot be represented by 8 bits (e.g -2, or 257). A uumber of well-anderstood techaniques exist to rextify this situation, soare of them prouctive and some of thens recetive. (Among these known techniques are: specifying that the mput signal shall not have samples in the range of $0-4$ ur 251 255, thereby safely permiring modalation by the noise signal; or including provision for detecting and adsptively mindifying input sigmal samples that would otherwise csuse rail entus.)

While the illistrated embodineot destribes stepping through the code ward sequentially, ane bit at a time, ta control modulation of successive bits of the input signal, it will be appresiated that the bits of the code word eal be osed other than sequearially firt this purpose Indeed, bits of the cuide word can be selezted in accordance with any predeternined algonitim.

The dynamic scaling of the noise signol based on the instantaneous value of the inpaf sigrad is an optimization that can be oruitted in many embodinents. That is, the look-up table 204 and the first scaler 208 can be omitted entirely, and the n figual from the digital noise вource 206 applied direelly (or through the second, global acaler 210) to the adder/5ubtratter 212

It will be further recogrized that the lise of a zero-mean boise sturce simplifies the ullastrated embidimanh, bat is not necessury to the invention. A noise aignal with anothor meas value cian readily be used, and D,C. compenstion (if neetod) can be eftected elsewhere in the system.

The nse of a noise sumee 206 is also optiogal. A variety of other signal somptes can be used, depending on application- dependent constringts (ee the threchold at which the ancoded identification signal benomes perxeptible). In maruy instances, the level of the embedded idertification signal is Jow enough that the identification signal needn't have a random arpect; it is imperceprible regardless of its nature. A psevdo randoms source 206, however, is usually desireit becase if provides the greatest idenofication code sigpal B/N ratio (a somewhar awkward term in this instance) for a level of impareqpibility of the embedded identification sigual.

H will be rewognized that identification ooding need nat occur after a siguinl hiss been reduced to stored formir as data (Le, "Froed in tangible form," in the words of the U.S. Copyright Act). Cansider, for example, the eage of popolar musicions whose performance are often recorded illicitly. By identification coding the audio before it driver poneer ball speakers, unauhorized recordings of the conoert ran be trami to a parcicular place and time. Likewise, itive sudio sources such as 911 amergency calls can be eneoded pror to recording so as to facilitate their later suthentication.

While the black box embodiment has been deseribed as a stand ulone unit, it will be recognized that if can be integrated into a number of different foola/instrumatis as a compoent. One is a scanner, which can embed identification codes in the seanned output datil (The codes can simply serve to memorializo that the deta was ganerand by a particule scamer). Another is in crentivity solfwate, such as popular drwing/graphice/atimation/paint programs offered ty Adote, Mancomectili, Corel, and the like.

Finally, while tha real-time encoder 202 has been thustretad with refermare to a patimilar herdiwara implemmention, if will be recognized that a variety of ether implementatiota can alternatively be employed. Some utilizo other haraware coaflguraions. Others make use of software routinu for some ar all of the illusuated functional blocks. (The softwure routines can be precuted un any number of different general purpose progremmable computss, such as 80×86 PC-compatiole trmpurers, RISC-based workstations, ste.)
TYPES OF NOISE QUASI-NOISE AND OPITMIZED-NOISE
Heretofore this disclosure postulated Gaussian noise, "whits nojse," and noisa generated directly from epplicalion instrumentation as a few of the many exangles of the kind of carrier signal uppropriate to carty a single bit of information throughont an image or sigsal, Tt is
poasible to be even more proactive in "designing" characteristies of poise in ordes to nehieve vertain gonls. The "design" of using Ganssim or instrumental noise was amed sumewhat foward "absolute" security. This soction of the disclosure takes a look af other considienutions fur the design of the noise sifunls whicb may be considered the ultimste carriens of the identification information.

For some applieations it might be adventageous to design the noise carrier signal (eg. the Nth embedded cade sigmil in the first embodinant; the sealed noise dera in the gecond embodirnent) so $_{\text {se }}$ to grovide miore absolute sigual streagth to the identification sifgal relative to the perceptibility of that signal. Ons example is the following. It is recogrized that a true Gausian noise signal has the value '0' occur most frequantly, foliowed by 1 and -1 at exual probabliftes to esch other but lower than' 0,2 und -2 nect, and no on. Clearly, the value zero. csuries no information es it is used in the service of this invention. Thns, ope simple adjustmeat, or desigo, would be that any time a zero oceurs in the gencration of the emberided code signal, a new process taker over, whereby the value is converted "randomly" to eiffur a 1 of a-1. In Iogical tems, a decision would be made: if ${ }^{\prime} 0$, then random $(1,-1)$. The histogran of ruch a process would appeer as a Gausaing/Poissonim type distribution, except that the 0 bin would be cmpty and the I and -I bin would be incrussed by half the usual histogram value of the 0 bin. In this case, identification signsl enegy would always be applied at all parte of the signal. A few of the trude-offs ixclude there it a (probably negligible) lowering of sccurity of the codes in that a "deurministic component" is a part of generating tha noise signal. The reason this might be complately negligible is that we still wind up with a coin flip type situation on andomly choosing the 1 or the -1 . Another urde-oif is that this fype of deaigoed noise will have a highier threshold of perceptibility, and will oaly be applicable to applications where the least sfgnificant bit of a data stream or iminge is alrañy negigitle relative to the commercial value of the material, i,e. [f the least signifienat trit wene strippod from the signal (for all sigmal samples), no one would know the difference and the value of the meterial would not suffer. This blocking of the zaro value in the example above is but one of many ways to "optimive" the notse properties of the signal earrier, as anyone in the art ean realize. We refer to this also as "quasi-noise" in the sense that natural nuise can be transformed in a pre-determined way into signats which for all intents and puposes will read es noise. Also, ayptographic metbods and algorithms ean easily, and often by affintion, create signals which are paveived as completely mandom. Thas the word "toise" ean bave different counotations, primirily between that as defined subjectively by an observer or listerfer, end that defined mathematically. The differenge of the latter is that msthematical naice has different properties of security and the simplicity with which it can eithar be "zleutied" or the simplicity with which instruments can "automatically rocognize" the existance of this noise.

Whiveroill Emheddol Codes

The bulk of this disclosure teeches Ohut for abnolure security, the nuige-\{ike mbedded oofe slgials Which camy the bite of information of the identification sigmal shrold be unique to each and avery enended slgual, or, alightily less sprtictive, that embedded conde signals should be genieratod sparingly, such as using the same embedded ocdes for a batch of 1000 pieczs of 立m, for axample. Be this as in may, there is is wbole other approach to ints issue vibereia the use of what we will call "(niviversal" smhodded oode sigoals can open up large new applications for this technology" The eamomics of chase uses would be auch that the de frotn lowered security of these universal codes (6 ge they would bo anmlymble by time honored cryplognophic decoding methods, and thus potentally dwarted is roverad) would be conomdeally negligible ritalive to the economic goins that the intended hetes would provide: Bracy md illogitimate uses would become meroly a prodictable "cost" and a soures of uncullected revenue only 4 slmple fine ftem is an economic mafysin of the white A geved enalogy of this is in the cable indutry and the serambling of vidoo algnals. Everybody spemas to know that craity, ekilled techrical individouls, who may be peamally low abiding citizans, can olimb a ledder and asp a fevy wires io their cable jumction box in ordes io get all the pay channels for: fire The peble midustry loowe this and takes retive mencures in $9 t 0 \mathrm{p}$. it and proseruo those emught, biti die "Josi raveaue" derived from this preeties raming prevalem but almost regigigible as a percentage of profite gained from the scrambling sysiem as a whule. The scrunbling syerem as a whole is an coonomic surcase deapite its lack of "aboalue seanity."

The same bolds unte for applitallons of this tectnology whercin, for the price of lowaing secarity by mame amourt, Jerge oconomic opportanity presens itself. Then gection fire describes what is meent by univernil cocles, then moves on to soma of the interesting unes to which tiese codes car be applted.

Universal enbedded codes generaily refer to the ides that knowledge of the exeer codes can be diatibuted. The anhedded codes won't be pur into a dark sife never to be touchet
 (0) varions locuions phere ob-the-ggot amatysis can take place. Gencrally mis dismibuin will afill take place within a eccurity coatrolled anviromant, moaning that stegs will be triken io fimul the knowleage of the codes to those with in need to hoow. Instrumentadan which arrempts to autwoufally detect copyrighted matetin is a mos-bumen example of "ammethmg" with a nuea to know the codes.

There are many wayn to implement the idea of universal padas, ech with beir owal mertis regarding any given application. For the purposer of texcting fils art, we separate there approaches into throe erond artagories anivaral coder based an litriates, universsi coies
 pattens. A rough role of thumb is that the first is more socure than the latter rwo, bull thisi live Inter two $\begin{aligned} & \text { ro } \\ & \text { positbly niorc ocouomical to implement than the first }\end{aligned}$

Univensal Coder: II Lbrense of Univerel Codes

The we of lannanes af universal codes elmgly weuns that the techniquas of this invertion arg employed as dercribed, except inf the fuct that onily a lemited set of the individund embeddod code signals tre generated and thal aily given zncoded materinl will make we of somo sub-tel of this limited "universaf set" A0 sxample it in orter ferc. A phospgraphic priat paper maxufacturer may wish to pre-expose every ploce of A by 70 inch pill paper which they mith svilh a auique Identifisation code. Thuy also with to sell identification conde rocognition soffwaro (os their large cratomers, rervice burenus, srock ngencies, and individual photognpisers, 30 that all these peopie can ast ouly verify that (hair owa mitcial is correctly markod; but so that they can altn ofeturnine if bird party manerial which chey ue about to acquire has heen identifed by thits teamplogy as being copytighted. This lifter inforatation will help them verify copyright holders
 they sealize that generation unique individual embedded codea for each land every piame of prinil papes Would generale Trrabytes of independent information, which would nesd storing and to which resognition snffiware would peed nooees. latend, tiey docide to cmbed their print paper with 16 de identifieation codes derived from a sait of ooly 50 independen "universal" ambeddod oode aiguals. The detals of bow this is deme are in the raxt paragraph, but the point is than nown
 cudes, typienlly on the order of 1 Magibyte to 10 Megabytes of tniommation for 5 oxel6 indiyidial embiefided codes splayed out outo an Exi0 photogegphic print gallowing for digital commasian) The reasna for picking 50 insteal of just 16 is ove of a littlo moro added sesurity, where if it wae
 capability be limited to 2 to the 16 th power, buil lesser and lesser supblsticased pirates could owric: the codes and remove them esaing software toolb.

There are ounay different ways to implement this sclemes, where the following is Catt one extmplary mathod. if is determined by the wisdon of compuny memgemetit thut a 300 pidals per inch criterin for the embeddod oode bigals is sufficdent tesolution for most appliraliuns. This mams lime i cowpaste embedded code ionge will conain 3000 pixels by 2400 pixels 6 on bo exposed at a very low leved onin anch 8810 shoee This gives 72 million pixcls. Using oof unggened Eading syatem such as described in the blerk box implementation of Fige 5 and b, eacti tanividual embedded code rignai will commin ooly 7,2 million divided by 16 , or approximately 450 K true information carrying pbrelb, ite every $16 i \mathrm{~h}$ pize) alays in given raster lizo. Those values will typleally be in the rages of 2 it -2 in digital aumbers, of adequately described by a slerned 3 blt number. The raw laformation cantent of in ambedied pode is ben approxtomtely
 All of these decisious tre subject so standard egginoaing gptimization primciples as defined by my given application at hand, es is well known in the art. Thiss we find tiat 50 of these indepcudent
 ureogoition techniqua maghit in this dilscossure.

The recomitian noftwase liself would centainily hisve a vanity of feameres, buis the core bask it would parform is detormining If there is some universal copyright cende wition a given imaye. The key guestions become WHICH 16 of the total 50 universal codes if might contain, if wiy, mid if ihero ure 16 fowid, whas are deir bir values The key virialles in debernining the
 gancral case with no helpfil hists whasoever, all variailes mast be iodependentiy varied acroas wilt rumal combinations, add eech of the 50 universal codies must lhen be checked by alding and
 many belpfil bints will he found wblct make lhe job much simpler, such as having an origimal Unigge to compare to the suspected copy, or knowing the gemanal oriantation and exteut of the amuge relative to an $80 / 0$ print papor, which ben turough simple regianation toctmigues can detemine ail of the varitbles to sume exceprable degroc. Then it merely Tequires eycling through the 50 universal oodes to find any decrease in auturgy. If ouv does, than 15 others ahould as woll. A protucol needs to be set up whereby a given orde of fhe 50 tranulues into a soquace of most significant bit through least signifieant bit of the ID code wart. Thus if we find lbeneniverabl codo number "an" is presmet, and we find its bit value to be " 0 ", und that aniversal codef "I" through "3" are deñintely pot progent, than our moss sjguificant bit of our N-bit ID pode number is $\varepsilon^{\circ} 0^{\circ}$. Likewisc, we find that the nart lowest universal code present is pumber " 7 " and it furm Got to bee " I ", ther our next most sigifficant bit is a " 1 ". Done properly, this systum can clealy trive hack to he copyright owner so long as thicy registred their pholographic paper stock serial sumber with some registry or with the mannficturar of the paper frelf. That is we look up in the regitry that a papur using noivermol aribedded codes $4,7,11,12,15,19,21,26,27,28,34,35,37,38, A 0$, and 48, and laving the embedded oode 011001010111050 helonges la Leonarde de Botirelli, an ankowe wildifin photographer and placier cinemstographer whose address is in Nortrom Canais. We know the becate fie dutifully regiseged his film mad papee stock, ifev minuter of work when he boughi the stock, which be plopped into the 'no pestage nesary' envelope that the menufatturing compnay kindly provided to make the process ridicoloasly atmple Somebody owes Lemardo a royatify cbeck it would appear, mid cartainly ste regiary has automated this royaly. prymeni proceus as part of its farvjeen.

One foral puini is thrs truly sophixiented pirates and others with silicir intentions oar indeed employ a variety of cryprograplio and not 30 erptograplio methods fo crack these universai codes, seil them, and maloe software mat handware tools which can assist in the removing

any cvent. his is une of tha prices which must be paid for the ease of universal codes and the spplications they opun up.

Universal Cobes; 21 Univesal Codia Bred on Doterministic Formula

The ithoure of miversal codes requint the atorage end tranamital of Megaizytes of independent, generilly fundgin data as the keyn with which to unlock the existeace and identity of ajguls and imagery tiat have been marked with uriversal coder. Altarnatiyely, various detemuinistio formulas oun be ised which "genente" what appes to be random data/mage frnmes, thereby obvinting the need to sore all af thise podtes in wemory and faterogate each and of the " 50 " univeral codes. Deterministic formulas can also anslas in meedieg up the procrss of determinting the ib codo oncs one is knowe io exiat in 3 given sigal or tonge. Da the othea
 sleuthed, they leod themolves to easiur communicution, suck as porting on the lotermet to a
 publithing, and daterminitific formulas for goacratag the fodividual universal awbedded codia might be just the ticleth.
Vhiveral Codes: 3) "Simple" Luiversal Codes
This caltogery in a bit of a hybrid of the fires swo, and is most dirated at fruly large scale implementations of the principles of this toclunology. The applicatims employing udy clase ane of the type where stameh security if moch less imporant thim low cort, harge sale implewentation and the yatily larger esonomic bencfits that hir eusbles. One exemplary applination is plemmant of identification recognition units difectly withis wodketly priced home: mudio. and vidso infrrumentation (such as a TY). Such recognition imits wurd typically monifor mudio end/or viden looking for ihear copynight ideatification codes, and wence triggering simple decitions basod on the findinge, suthe ats disahling ar eantliag rocording espablifiles. of incrementing progran speelfir billing meters which are transaitted bask to a elunal mudic/viden service proviexur and placed ouro monthly invoices. Likewise, it can be foresean that "black Bozer in bars end other public places can muailitr ((istem with n microphone) for copyrighted matrials and gencrete detrailed reports, for we by ASCAP, BML, and the liko.

A core principle of simple universal cades ie bur gone betic indurry zendard "nuvalike" and reamlealy repetitive pattorse are injerted into siguals, images, und inuge sequeaces so firt inuxprasive recoguition unite ban either A) detaraine the mare existence of a copyright "Ulyg", and B) additiomulty ro A , determine presive identifienion information which can frelliate nowe complex decision making and actions.

In order io implement this particular embodimant of the present fiveotion, the basic prinesples of genstating the indiviciaal embuddod notse signals qued to be simplified is order is aroomoodate inexpansive recogntion signal processing circuitry, wbile maintining the properties of effective randomess and hologaphic pormeation. Wih lurge soale indrany adomion of these sumple caides, the endes ihmorelves would border oo poblis domain infmuminn (much as

Abstract

cable suambiligg bogiss are almost $d=$ facto public diomsia), leaviog the deor open for daternumed pirites to developp black marith poimtermeasures, hut this sinmigion would be quite analogoun to the scrambling of cable sider and the objective eevonnuic analysis of suct jilegai activity,

Ono prior an kniwn to the applicant io this general iren of pro-active cupyripht detertion is the Berfal Copy Mangermear System antapted by musy fimer in the andio indistry, Ta the hest of applicant's zalowJedge, this syytem nuploys a nop-andin "flag" signal which is ast part of the auilio data stream, hat which is revertieless grathed ouro the adio stream und can tudicate whother the asociated mudio data should or should not the duplleated. One poblem with this syaum is thut it is rostriced to media and fastrmeatation which can myport thls extra "flag" nigual. Atroller deficfency ta that the flagging system carries no identity information which would be पseful in makiag more comylex decisions, Yet mothar difficulty is that high quality sudio digital master and tione seems to bo no provision for inhibting this posibisility.

The principles of thit invantion can he brought to beat on these and other problemes, in aucio applications, video, and all of the othar applicatims previously discussed, An exempley application of stimple univarial codes is the following. A single industry standard "1,000000 sccand of nofer" would be defined as the mast basie inditititur of the presence or absence of the copytight marking of any given sudio signal. Eg 9 hes in example of whilt the wavefonm of an indusery standard noise soond mighi look like, both in the time domain 100 and the frequency domain 402. It is by definition 4 coptiaupos limetion med would adapt to my combination of smpling nates and bit gumitzations. If hise in pormaiized amplitude and can be scoled arbinsily to any digital signal mplitude. The signal level and the first M'tir derivatives of "brak" in the signal would not bo visible (az a wavefoms) or audible when played through a figh end andio syriem. The cholee of I second is athitrary in this example, where the precise leagh of the interval will be derived from consideratione neh as audibility, quari-white noise satis, ramles repeatabilify, situplicify of raconition procesting, and spoed with which a copyrighil marking deternuinulion can fe owade. The injection of thits repeated noise signial omto a sigral of imsge ((aguin, al levels bulow haman perception) would indicure the presence of copyright inaterial This is casenflally is me bit identification code, and the embelding of further identification Enfarmation will be distassed later un in this sartion. The ase of this identification lechnigur can odend far beyond the low post hamis implementastions digoussed here, where stadion cruld use the fechnque, and moditering stations could be set op which literally monitor humdrods of chamels of infurmation sumultaneousfy, searching for monkei dafs sweans, mad furthemane kearching for the associatod lifentity ooder winch cruld be thed in with billing networks ind royaly teckiug systers.

This bacic, stenderdized noige signuure in seamlessly repeatod over and over aggir and added io endio signale which we to be merked with the base copyright identification.

Part nif the samon for the word "Iniple" is been bere cleanly pirater will kow ahout bla factustry
 will be emamically minuscule roleive to the semumic volue of the overall techimgue io the uase market. For most high end audio this signal will bo ame 80 to 100 dB down from fill sale, or eyer much fartien each aituation can choose its own levels though cerrainly there will the recommendationst The amplitede of the sijmal oan be modelated nocording to the audio aignal tovel's to which the nime tignture it being applied, fie the aimplitude can inercase significanily
 measures merely aeist the recogroition circuitry to be described.

Recognition of the presence of this zolise stguncure by low cost inmumentation can be effected in a variety of waya. Ope rests on batic modifications in the simple principles of audio signel power metering Saftware recognition programs can aiso be written, and more nyphisticated mathemstical defection algorithms can be applied to midio in order to minke tigher counidence derection Identifeationen In such embodiments, dereaion of the copyright noise: signumare involvos compraiag the time avernged powet level of an midio signal with the time averiged power level of that hame adidia algnal which has het the noise signature subtracted from If. Tithe aution signul with tho moise signames subtractod har a lowe powe level thit live mochaged audio signul, then the copyrient agpanire ir prean and some astas figg to that effect neodin to be lite. The main engineoring sobtieties involved in minting this comparisun inctude dealing with sudio speed playbeck diverepancies (e.g. en instrumat mithit be 0.5% Hlow reltrive io exaritly one recond intervale); and, deuligg with the anknowa phase of the one socond nofsie signinure withbn my given audlo (brasically, it "plinse" can be mywhere from 0 so 1 seconds). Another subtiety, not so central al the above fwa but which noncheles should be sodifesod, is that the recognlion circuits stould not submat a higher ampliade of the noise of guntira than wes originally amhedede onie the audio siznal. Formmetly this can be nocomplached by mevily aubencting only i fimall amplitude of tho nolse signal, enid if tho power level goes down, this is an Indication of "leadlug lownd a trough" in the powet leyels. Yet arother related subtlety is titel the power level changes will be very amall relative to the ovarall power lovels, and calculations yencrally will nesd to be dage with appropriate bit precirion, es. 32 ble value operations and sceumulations on $16-20$ fil mindic in the calculation of time avernged power lovels.

Clearly, defgning and puchoging thly powa level cumpartson processing circuify for low cost appllestions is an enginsering optimitarion cask. One gride-off will bo the acturacy of making en identification relative to the "short-cuns" which can be owde to the circoiny, in ordar to lown lis cout and complexify: A preferred mbodiment for the plocennent of this recognition ciraniry insido of insmumentation is through a single programinable integrated circuit which if curnoor mado for the task. Fig 10 shows one such inteprated chreait 306, Here the pudio aignal comes its, 500 , either as a digital signal or as an anulog simal to be digitized insido the le 500. and the gapput is is गug 502 which is set lu one level if the copyright moise signure is
loumd, and to another level if if is nol fomi. Abio depictod is the fact that the atandardiand noize siguature waveform tis slored in Rend Unly Memory, 504, imside the le. $9 \% 6$. There will be a nilght time delay beween the applicition of an anillo sigoal to the 10506 and the ouppot of i valld flas 502 , due to the Betd to monitat anme fimute purtion of the audia before a resogntition caun place. In thir case, there miny need to be a "flag valid" output 508 where the IC informs the exterual world if it has had ealugh time to meke is propar determination of the prextice or abseuce of the copyright noke signamre.

There are a wide vuiety of spacific detigns and philosophies of desiens applicd to examplishing the basi= function of the IC 506 of Flg, 10. Andio enginears and difleal signal processing angingars tre bble fo gencrece several fundannatally diffreat desigus One such debien is depicted in Fig 11 by a provess 599, which itedf it abject to firthes engineaing optimizailion Es will be disqussed. Fig, It depicts a flow chart far any of an annlag sigoal proeasing neiwark. a digitai signul procesting nenvork, or programing steps in a softwwe program. We find an cuput signai 600 which aloug one path is applled to 6 time averiged power meter 602, and the raulting power ourpur itsalf troired as a signal $P_{\text {sef }}$. To the upper rigit wo find the standand nute signamre 30 M which will he reaid out at 125% of normal speod, 604, thux changing its pitch, giving the "pirch chamged poise + figai" 606. Theo the ingut signal has this pitch changed noiso signal subtrected in step 60%, ad this new signall is upplied to the same form of time aveaged power meter is in 600, here labelled 610. The output of (his oparation is ales a time based sitmal bere labelled as $P_{\text {rear }} 610$. Step 612 then mibtrects the power signal 602 from the power signal 610, giving an oupput differnve signal $P_{\text {a }}$, 613. If the anivasal standard noles tigmoture does
 611 of approximately 4 seoond period will shaw up on the output signal 613 , and it remning to detect this beat signal with a step stict as in Fig. 12,622 Cese 1, 619 , is 5 steady notry higral which exbibits no periodic bexting 125% if stop \quad an le cbosen erbiturily herc, whese enginearing considerations would detemine in uptimal yolue, leading to different beat signal frequencies 61t. Whereas walting 4 socouds in this exsmplo would be quite a waile, eppecially is you wondd want to detect in leas iwa or three beats, Fig 12 outlines how the basic destign of Fgg. 11 coald be repeated and opanted upon various delayed versions of the inpur signal, delayed by something like I/20ih of a seconc, with 20 parallid crcults working in concert each on a regrent of the mudio delayad by 0.05 secands fram their pelghborn. In this way, a beat aignal will strow up a mproximuely every I/sin of a second and will look lue a travelime wave down the colnamiss of beat detertion circutte. The exiatence or Lfacics af wis travelliog beat wave triggora the detection flag 502. Meanwhile, there would be an audio gignol monitor 624 which would ensuro Utes, for example, at least two seconds of widio has been heard before seltiog the flag valtd signsl 308.

Though the audio esumple was deseribed above, it chould be clear to anyous in The art bui the rmo rype of defmition of sume repettiye miversal polse tignat or raage could ba applien of the meny olher signals, innges, fictures, and physieal media already discussed.

The ubave ctse deals only midh a single bit plane of information, i.e, the roise sfgnature signal is etther there (1) or it in't (0). For masy applifations, it would be nice to detect betial dumber informution as wall, whach could then be used ofr cuore complex decisions, pr fir Kigging informution on billing stacments or whatnoL. Thes same principles as the above would appty, bat nuw thers would bo N indipendent noise signatures as depicted in Fig. 9 tratead are angle such egnamire. Typically, one such bignatare would be the moseur upon which the mere existeace of a copyright marking is detocted, and this would hove generally higher powe than whe Others, and then the othe lower power "jidentification" aubse aignamres would be embedded fiato sudio. Recognition cricaiti, agoe haviog found the existence of the primary noise signature, would
 a bead signal is datocted, this indieates the bit valuo of ' 2 ', and where no beal signal is detected, tifis indicatea a bit value of ' A '. It mighit be typical that X will equal 32 , that way $2^{3 x}$ number of itentifention podes are availetale lo any given industry omploymg chis inveation.

Uoe of tifis Technolory When the ingeth of the Ident fication Code io I

The priaciples of this trivention cun obviously be applied in the sase where only 4 single prisence ar ahyence of an identificatioa signil - a füperpriat if you will - is ised to provide confidence that some sumat or mege is copyrighted. The examplo above of the ladastry standard nois siguature is one case in point. Wo no longer bave the ndded confidence of the coln fip analogy, we no longer havo tricting code capublitien or betc berial number capnhilities, but many applicatons any not require there aitributes ned the edded simplicity of a sígle forgerprint: might outweigh Nuat othar amibutes io any eveme

The "Whalpapur Anslogy

The term "holographic" has beea ised in thit discloutre to describe how in identification mide number is disisibwed tir a largely hitegral form throughour ar encoded slgail or fimage. This ilso jefers to the ided thet any given fngment of the signal or limuge conteins the antire woique idcutifeation node number. As with physical Implemmataians of holography, thenc sere fantations on how sumall i frogmant can becone before one begins to lase this propery, whaso fie resoifion limits of the holograplic medie ane the main factor in ilif regard for bolognophy itself. It the ease of an inicompted distribusion sjgnul which has used the ancoding device of Gigure 5, and which firthermare has ised our "darigaed noive" of ehove wherein the ero's were randamiy changed to a 1 or -1 , then the otent of the frafment requirod is merely N contiguoun cauples in a signil or image nater line, whare N is at defined previously being the langite of ourr identifiantion code pumber. This is in mformational exbvme; pactical aitustions where noine and corruppion are operative will requise genarally ons, two or higher afters of migginude mase camples than this bimple mumber N. These skilled in the urt will reacnize that there are many
varibles involved in pinring down precise statistics on the sien of the suallest fragmeat with which an identification can be made.

For tutorial purposes, the applicant also user the amaiogy that the unique ideatification code qumber is "wellpupared" ecross end image (or bigraia). That is, it is repeated over und over aggin all throughour an image. This repetition of the D code number can be regular, as in the ure of the encoder of figure 5, or manom itself, where the bits in the TD code 216 of figure 6 are not stepped through in a nomal repetitive fashicn but nather are randomly Felected on each sample, and the random selection stored along with the value of the output 228 itself. in any event, the informetion cerrier of the ID code, the individual embedded code sigmal, does change teross the ininge or signal. This as the wallpaper analogy sumamaizes: the In code repeats itself over and over, but the patterns that esch repetition imprints change randoroly ucourdingly to a generally unsleuthable key.
Lossy Dath Compressiun
As earlien mextioned, the dientification coding of the preferred embodiment withstands lossy drta compression, and subsequent decompression. Such compressimn is finding increasing use, particularly in contaxts such as the mass diatribution of digitizad entertainment programing (movies, etc.).

While dsia encoded according to the proferred embodimeat of the present invention ean withetand all types of lossy compressian known to applicunt, those expocted to be most commercially importent are the CCITT Gi3, CCIIT G4, JPEG, MPEG and JBIG cunpression/decampression standards. The CCIIT stundards are widely used in blark-and-white document compression (e.g. farsimile and document-stonge). JPEG is most widely used with still 3mages. MPEG is most wislely used with moving fragges. IBIG is a likely successor to the CCIIT standirds for use with black-and-wbite imagery. Such rechniques are well known to these in the lossy data comprossion field, a good overview can be found in Pconebaker et al, JPEG, Sull Imuge Data Compreasion Stardari, Van Nouund Reinhald, N.Y., 1993.
Towards Stegmogniony Prupar and the Use of this Tecinology in Passing More Complex Messages or information

This disolasure concentrates on what above was called wallpapering a single Identification code across an entire signal Thits appeary to be a desizable feature for meny applications. However, there are nther applications where it might bo desirable to pass messages of to curbed very lamg strings of pertinent identification information in signals and images. One of many such posible applications would be where a given sigual or image is meant to be mamipulated by teveral different groups, and that certain regions of an image are reserved for each group's identification and insertion of pertinent manipolation information.

In these cases, the code word 216 in figure 6 man actualty change in some pre-defined manner as a function of signal or image position. For example, in in image, the cude could change for each and every ratter line of the digital image. It might be a I6 bit coole word,

216, but each scan line would have a new code word, and thus a 480 scan line image could pass a 980 (480×2 bytes) byte message. A receiver of the message would need to have access to either the noise signal stored in memory 214, or would have to know the universal code structure of the noise codes if that method of coding was being ased. To the best of applicant's knowledge, this is a novel approach to the mature field of steganography.

In all three of the foregoing applications of universal codes, it will often be desirable to append a short (perhaps 8- or 16 -bit) private code, which users would keep in their own secured places, in addition to the miversal code. This affords the user a further modicum of security against potential erasure of the universal codes by sophisticated pirates.

Conclusion

In view of the great number of different embodiments to which the principles of my invention can be put, it should be recognized that the detailed embodiments are illnstrative only and should not be taken as limiting the scope of my invention. Rather, I claim as my invention all such embodimeuts as may come within the scope and spirit of the following claims, and equivalents thereto,

APPENDIXA

```
#incluce "main.h"
#cefine XDIM 512L
#cefine XDINR 512
#define YDIM 480L
#define BTTS 8
#define RMS VAL 5.0
#define NOM NOISY 16
#define NUM=DENOS 3
#define GRAD_THRESKOLD 10
struet char buf I
    char fi\ename [80];
    FILE *ID;
    fpos_t fpos;
    Char buE[XDIMR];
];
struct nchar buf (
    char filename [BO] f
    FILS *Ip;
    fpos_t fpos;
    unsigned char buf[\OXVVR];
):
struct int buf {
    char filename [80];
    BILE *fp;
    fpos,t fpos;
    int buf [SDINTR];
)/
struct oortex s {
    chan fileñame[80];
    gTh: *fp:
    fpos_t fpos;
    unsigned chas buf[XDIMR];
Y=
struct uchax buí test_image;
struct cbar buf snow composite:
struct uchar buf dietzibuted_image;
struct uchar_buf temp_1mage:
akruct int busf temp_wordbuffer;
struct int buf temp_wordbuffer2;
struct vehar_buf suow_imagea;
seruct cortex & corte\overline{x}
int demoa0I /* which demo is beảg performed, see notes */
int oux_coder /* 1d value embedied onto image */
int found_coder0; /% holder for found codet/
int Waitvbb(void) (
    while((Imp(PORT RASE)aE));
    whilel !( ing (POR\overline{T}_BASE)AE) ; ;
    retura (1);
}
int grahb(vold);
    waitvibl\:
    OutP (PORT RASE +1,0);
    OOUTD(2ORT-EASE, B);
    vaitvbb();
    waitvbb ();
    outp(PORT_BASE,0\times10):
    return (1) i
```

```
        4).
\
int livee(void) (
        _OUtP(PORT GAgR, 0N00) )
j
Int: 2iva_videa(roid) (
    ivyee\{
    retuma(1) !
I
int freeze. fcame (void) (
    grabb (5;
    retuma(1);
l
int grab frame (strunt yebar_bus *image) (
    Iong 4;
    grabb () ;
    fgetpos (image->Ep, Gimage-> fpos );
    faetpos (cortex. fp, scortex.fpos );
    for(1)=Dzi<YDDM;i++) (
        fread<cortex, buf, sizeof̆ (unsigned ohar), %om, cor, oortex.fpl;
        fwrite (cortex.buf,gizeof (unsigned char), XDINR, image->ipl)
    Ilvee();
    retuzn(1) ;
}
int wait vertical blanks (Int number) (
    long i;
    tor(i=0;i<numbur;i++)wajtvib ();
    retuzn(1);
)
fnt clear char_inage(struct char buf *ohmrbuffor) (
    long I,j%
    char tpchar,
    fpos_t tap_fpoe;
    fsetpos (charbuffer->fp, fcharbuffer->fpog l/
    For (1=0;1<XDIM; 1++)
        fgetpos (charbuffer->fp, Etmp_fpou if
        pchar = cherbuffer-3buf,
        Eread (charbuffer->buf,sigeof(char), XDIMR, charbuffer->Ep) ;
        for (j=0;j<XDMMz j++) + (pchar + + ) = 0;
        Esetpog(charbuffer->Fp, &cmp fpos)];
    j
    retums(1);
}
Int diaplay uchar (atruct uchax buf *image,int atzetcoh) {
    unsigned char *pimege;
    unsigmed char highest =0 O
    unsigned char lowest =255;
    long 1,1:
    double dtemp,scale,dlowest;
    fpos_t tmp_fpos:
    if(stretch) (
            fsetpod \image->fp, Eimage-sEpos, );
            fread (image->buf, mizeof (unsigned char),V⿴囗IVR, image->Ep);
            Eread (image->buf,aizeof(mnsigned char), XDIMR, image->fp);
```

```
    for(1.2;i< (YOTM-2)Ti++)(
    fread(image-sbuf,sixeof(ynsigned char) ,xDIMR, image->Ep);
    pimage = Elmage->buf[3];
    for(je3;)< (XDIM-3),j++)
            if( *pimage > highost )highest = *pimage:
            If( *pinage & lovect )lowest = *pimage;
            pimage+t;
        1
    I
        f(highest == lowest )/ 
        printf("gomething wrong in contrast stratch, zero
        exit(1),
    J
    scale = 255.0 / ((0uble)highent - (double) Movest ) &
    dloweat = (dcuhle)loweat;
    fastpos(image->fp, kimage->fgogt);
```



```
        Egetpos(inage->Ep, scuro fpos);
        fread(image-sbuf, sizeof (unaigned clanr), XDINR, image->f(p);
        pimage = inage-sbuf;
        for(j=0;j< XDIM; j++) {
            dtemp = ((double)*pimage - Clovest)*scale;
            if(\mathrm{ dtenp < 0.0) * (pimage++) = O2}
            elve if(atemgy > 255.0)*(pimage++) = 255;
            else *(pisage++) = (unsigned char) Stemp;
        )
        fsetpos(image-sfp, &tmp fpos);
        fvritelinage->buf, sizeof(ungigned
char), XDIMR, {mage->fp)
    )
    fsetpor (image-sfp, cimage-sepon iJ
    fsetpos (cortex. Ip, ficortex, fpos i;
    for(i=0 fi<YDIM; i++) (
        Ereac(inage->buf,sizeof(unsigned char), XDIMR,image->fp);
        fwrite (image->buf, sizeqE (unsigned char), XDIMr, cortex.fp);
    }
    retwrn(1);
I
int clear inc irage(atruce int buf tworabutfer) {
    long I,j:
    int *pword;
    fpos_f tmp_fpor:
```



```
    for ({=0;i<YDIM;1++) (
        Egetpos(wordbuffer->Efp, &tmp_fpos ):
        pword = wordbuffer->buf,
        fread(wordbuffer-sbuf, Bizeof(int), XDIMR,wordbuffer->fp);
        for (j=0;j<XDIN; j++) +(pword ++)=0;
        fserpos (wordbuffer->fp, stmp fpos);,
        fwrite(worabuffer->buf, sizeof (int), zODMR,wordbuffor->fp);
    I
    retura (1);
l
double innd mean_int (atruct int_bur "wordbuffer)(
    long i, 5; ;
    int *pwardi
    double mean=0.0;
    feergas(wordbuffer->fp, swordbuffer->fgon )/
```

```
43-
    For(i=0;i<YDIM;i++)
        pword = wordbuffer-sbuE;
        fread(wordbuffer->buf, sizeof (int), IDINR, Wardbuffer->fp);
```



```
    }
    maan /= ((couble)XDIM * (vlonble) YDIM) ,
    recum(mean)?
\jmath
int add uchar_to_int (atruct uchar_buf *imago, struct int_buf *word) (
    unsigned हhař kpimage;
    int *pword;
    long 1,j%
    fpos_t tmp_zpos;
    Agetpos(image->EP, Gimage->fpos ):
    fsetpos(word->fp, Ewond->fpos);
    For(i=0,i<YDIM;i+h) (
        pword = word->buf;
        fgatpos (word->Ep, दtmp fpos );
        fread (ward->buE, Bizeof̈(int), XDTNm,word->Ep);
        pimage = image->buE;
        Eread (jmage->buf, sizeof(unnigned char), tolMM, image->fp);
        fOr ( j=0;j<XDIM; }1++1*(\mathrm{ pword + +) +o (int)* (pimage ++);
        Esetpos(rord->Ip, Etump fpos );
        fwrite (word->buf, 01zCoÉ ({nt), XDIMR, word->Ep);
    }
    retura (1);
\jmath
int and_ char to uchar creating_uchar (Btruct char_buf *cimage,
    struct ucluar but Timage,
    struct ucbar_but *ont_image) (
    unsfgred char *pimage,*pout image;
    char tpcimage;
    int termp;
    long 1,j%
    faecpon (image->fp, Eimage->fpos );
    faetpos (out imager>fp, tout_image->fpoe If
    faetpos (cimage->Ep, Ecimage->fpos );
    for(i=0;i<YDIM;i++)\
        pcimage = cimage->brof;
        Eread(oimage->buf,, Bizeof(char), ZDINB, cimage->fp);
        pimage = image->buf;
        Eread (Image->buf, aizeol (mbigned char), xDTMR, imager>&p);
        pour intage = out image->buf;
        FOI (j=0;j<|DIM;j\mp+){
            temp = (int) vipimaget+) + (int) * (peimage+i);
            if(temp<0) temp = 喑
            elge if(temp > 255) temp = 255;
            * (pout_imaget+) a (ungigned char) cemp;
        I
        fwzite(ont_{mage-sbuf, Eizaof(unsigned
Chaz), XDIMR,OUE_imEger>IDl?
    retumg(2);
)
```



```
    Egetpos(Wardz->Ep, kword2->fpos- ) f
```

```
44-
    fsetpos(word->fp, sword->1pos 1t
    EOR (i=0;i<YOIM; i++)}
        fresd(word->buf, Fizeof(inc), TDIMR,wDYa->Ep),
        fvrite(word->buf, bizcof (int),XOLMR, word2->fp);
    )
    return (1) ;
}
vold get gnow imagea (vaid) (
    unsigned char *penov,*ptempy
    int number_snow_inputs;
    Int temap;*pword,
    iong i, j;
    double mis, dtemp;
    1ive_video(); /* device specific */
    printF("\n\nplease point camera at a medium lit blank vall, ")/_
    printf(")DNafocus the lens a hit as well ");
    printE("\nif possible, place the camera 1nto ita highest gain,
and n);
    printe ("\nput the gramma to 2,0.0);
    grintF (" Eusure that the yideo is not aaturated ");
    printf(a\nPress any key when ready... " ");
    while ( !kbhit (1) )
    printif("\n#ow finding difference frame reis value... ");
    /* subtract one image from another, find the zus affeerence +/
    live_video();
    wait-vertical blanks (2);
    grab Erame (ctemp_image);
    live-video(\:
    walt_vertical blanke (2);
    grab_ixame (Ediatributed_2mage); /* use Eirat image an buffer *//
    2NS = 0.0it
    fsetpos(temp image.fp, ftenp_image.fpos );
    fsetpos(divtributed image,ip, Eefmtzibuted_image, &pos);
    for(1=0;1<XDIM; i++)T
        ptemp = temp_image.buff
        Eread(temp_imige,buf, sizeot'(unalgned
char), XDIMG, temo image.fp) f
    psnov = \overline{diakributed_image.buf;}
```



```
char), XIMMM, distributed ingage, fp);
    for (j=0,j<XDIM; j + ) (
            terp = (int) * (panowt+) - (int) * (pteap++);
            dtemp = (donble) temp;
            dtemp ** dtemp;
            zms += dtemp;
        ]
    }
    Tms }/=(\mathrm{ (double) XDIM * (double) YDIM );
    cms = sqzt(mms);
    printE("\n\nAn zтыs Erame difference noisd %alue of the vas
founc, ,, 2ms);
    printy ("\nke went at least sle for good meesure", PMS VAL);
    /* we want zms to be at leaat RMS_VML DM, so ... *7
    if(zms > PNG_VAL) number_snow_irpu\ts = II
    elae !
        Ut.emp = RMS_VAL / mms;
        dtemp *= dtemp;
        number_snow_frputs = 1 + (int) dtemp;
    )
    grintí("\n圱 imagea will achieve thie nolse
level",number snow_埴位和)
```

```
    /* now creabe sach enmwy image k/
    printe{"\nstarting to [reate gnow pictures... (n");
    factposisnow_imagea. Ep, ksnow_innges. fpos;); %* get on firat
lmage*/
    for(bit = Of bit < aITS; bit+t) {
        cleat_int_image (Etemp_wordbuffer);
        forid=0;icnumber_gnol_juputs;i++11
            Inve v\aeo(\
            wait_vertical blanka (2);
            grab frame (stemp Image);
            add पchar_to_int(tvemp_image, stemp_wordbuffer),
        }
        clear int image (&tamp wordbufferz);
        for(i=0;i<number_anow_Inplats;i++) {
            live video(\
            wait vertical blanka (2);
            grab_frame (taterip imags):
            add_uchar_ro_int\istemp_image, tremp_vardbuffer 2);
        F
        I* now load smow_imagealbit] with the difference Erame
bjased by
        228 in an ungigned char foxm just to keep thinge ciean */
        /* display it on cortex also +/
        fsetpos (temp_wordbuffer, fp, stemg_wordbuffer2.fpos );
        faretpos (temp_wordbaffer,fp, ttemp_wordbuffer.fpos );
        Enetpos(temp imuge, fp, stemm_image. Epos i,
        {or(i=0;i<YDIM;il+){
            pword = temp vardbuffer,buf:
            fread(vemp_WDZtbuffer.buf, sizeof(1nt), XDT0R, teup_pordbuf
fer,fpl;
    pword2 = temp wordhuffer8.buf;
    fread(cemp_wordbuffer2.buf, siteof (int),XOIMR, temp_varabu
#ferz.fp);
            psnove = snon images , buf;
            ptemp = bemp_{nugo_buf;
            for( (j=0;jeXXIM:j++) (
                        * (psnow ++) m < (ptemp ++) = (unaigned char)
**(pwordt+) -*(pword2 ++) + 12e) ;
            J
            forite (anov_ images.buF, sizeos (unaigned
Chax), XDINJR, Bnow imagenffpl,
            Ewzite (temp image.bur, sizeof(unaigned
char) , XDIMN, temp Smage.fp),
        !
        Erease Erame |);
        display, luchar (cteme_image,0); l*1 uignifies to stretch the
concraat*/
            printf(")rDome anowy %d n,bit);
            wait_vertical blanks (30);
    )
    returas
I
```

void 200 p viaual (void) 1
unaignea char *panow;
char epcomp;
long i, j, count $=O_{i}$
ink oke0, temp, bit, add_it;

```
void search 1 (otruct ichar buf *guspect)
    unsigned char *psuspect, "psnowf
    int bit, *pword, temp;
    lang i,j;
    double add_metric, subtract_metric;
    Epos_t tmp_Ipos;
    /* this algorithm is concepthally the simplest. The idea da co
etep
    through each bit at a time and merely see if adding or
subtracting the
    individual snowy picture minimizes some 'oontrastl metrio.
    This shoula be the most grude and inefiscient, no where to go
but
    better */
    fsetpos(5nOw_images.fp, &enow_images.fpon )|
    texp=256;
    cleaz_int_inage (ftemp_wordbuffer),
    add nohar to int(ruspect, Etemp wordruffer)?
    find grad(ftemp_wordburfer, 1) %/* I meane load temp_wordbufferz
*
```



```
    /* add first */
        Egetpos(smow_images.fP, Ltmp fpos )/
```



```
        fsetpos (temp wordbuffer.fp; stemp_ wordbu{fer.fpos ) I;
        EOR (i=0;1<YDMM; it+) {
            pword = team wardtuffer,buf;
            psuspect = quspect->buf;
            pgnov = snok imagea buf;
            fread (suspect:>buf, alzeaf(unsigried
            suspect->位);
            fread (snov-images, bui, Eizeof(unsigned
char), xDIMR, snow (snoves,fmage
        for (J=0;j<<WIM;年+)(
            *(pword++)= (int) * (psuspect++) + (int) *(panow+t) -128;
        }
        IWriteltemp_wordbuffer,buf, gizeof (ine), XDIMR, teeg_wordbu
Efer.fp);
    add_motric = find_grad(6temp_wordbuffer,0) ;
    /* then subtract */
    fsetpos(Enon_imagea. Ip, Qtup fpou),
    Esetpos (suspect->ff, EsuapecE->fpoc),
    fsetpos (tenp mordbuffer.Ip, itemp_wordsuffer.fpos ),
    for(i=0;1<ZDIM; i++){
        pword a temp_Wordbuffer,buf;
        pouspect = suspect-sbuf;
        pmow = snow images.buf;
        fread (suspect->buf, rizeof(unsigned
chatl,XDYME, Buspect-> Ep);
            Eread (mow inages bufisizeof(unsigmed
char) , XDIMR, snow inmages, fp);
            For(J=0,j<XDIM,{+t) {
            *(pword t+i) ( (int) * (pguapect++) - (int) * (panow++) +220,
        !
        Ewrite(temp_wordbuffer,buf, sizeof (int), xDING, temp_vardiby
fEer.Ip);
    gubtract_setrio = find_grad(etemp,wordbuffer,0);
pzinte\n\nbie place tos add-f1a.
sub=%le a ,bit, add_metria, subtract_tmetric);
    temp/=25
    if(add metrio < aubtract mecric) (
            polnte(" bit value = =00);
```

1
elae (
printe (" bit value $\left.=I^{\prime \prime}\right)$)
founa_oode to terp;
)
)
printf (${ }^{\prime}|n|$ nYout magic numbet was *a" ${ }^{2}$ found_dode) I
return;
1)
void ssarch_z (unsigned chav *suspect) (
if (suspect) ${ }_{i}$
return
)
void loop simulatifon(void) (
unsigned chav *ptemp, +palbt,
1nt *pword, int mean, ok=0, tamp;
$10 \mathrm{gg} \mathrm{i,j}$;
double mean, scale:
/s grab a naiey image tnto one of the temp boffera \#/
printl (" \backslash ngrahhing noisy frame... $\mid \mathrm{a}^{n}$) ;
clear_int_image (6 temp vordbuffer) ;

Live_videol);
vait verticai blanks (2) ;
grab-frame (stemp image) ;
add uchar to int Tatemp inage, ftomp_wordbutfer);
$j=$ (Iong) NuM WOISY;

)
/* Eind mean value of tenp_wordbufler */
mean n find msan int (Etenp_wardbuffer);
int_mean = (int) mean;
It now we will add ncaled veraion of this 'corruption' to our
distributed
image ${ }^{\text {*/ }}$
acale $=1 . D_{p}$
while(10 k) $\{$
/* add noise to dist image atoring in temp image */
fretpos (distributed image. ing, ndiatribated image, fpos) it
fsetpos (temp_wordbuffer.fp, ktemp_vardbuffer +fpos)/
fsetpos (temp image. Ip, Eterm isage fipos) I
for $\left(1=0 ; 1<\mathrm{YD} \overline{I M}_{;} 1++1\right.$ 1
pdist $=$ distributed innge buf;
pyord $=$ temp_Mordbreffer.buf)
ptemp $=$ temp image.buf;
fread (distziDuted_image buf, sizeof (unsigned
chas), XDIMR, aistributed image.fp) ;
fer_Ip); fread(temp_wordbuffer, buf, sizeof (int), Toulmp, temp_wordine
for $(j=0 ; j<\chi D I M ; j+\cdots)($
temp $=$ (int $) *($ pdist ++$)+*($ pmord ++$)-$ int_mann;
if $($ temp<0 $)$ termp $=0$;
else if (temp >255) temp $=255$;
*(ptenp+ +) (unsigned chaz) temp;
I

```
-51.
            Fwrite (temp Image.buF, aiseof (unnigmed
charl, XDIMM, temp_ivage. Ip);
        F
        /t display the dist image and the corrupted image */
        display_uchar (ctemp_images,0);
        /* apply new 'corzupted' Image to search algorithm 1 for id
        gearch_2 (stemp_2mage);
value t/f/* apply nev 'corrmpted' 'image to search algorithm }2\mathrm{ for id
        Gearch_2(temp_image);
        */
        &* prompt Ior upping noise content or ok 4/
        OK}=1
    )
    recurn:
1
int initialize _evesything(void) (
    long 1,j;
    unsigned ohar *punbuf,
    char *pebuF;
    Ink *pibur;
    /* Iqitialize cortes */
    gtrcpy(cortex. Itiename; "f:image");
```



```
        gysteam("% & g")
    )
    Elge Celose (cortex. Ep);
    If( (Imp(PORT_BASE)== OxFF) ) {
        printf("oons ");
        exit(0);
    }
    /* upen cortex for read and write *)
    if((cortex. Fpofopen(corkex.filemame, "rb+*)) wnMOLL) (
        grinte(" No good on open Eile joe ")s
        exit(0);
    ]
    fgetpos(corter.fg, tcortax. Fpos 1;
/* test imagez original image */
    atrcgy(test image.eilename. "e;tet img");
    If((test image, fp=fopen(test image. Eilemame, "wh")) ==Numw) (
        printe(" No good an open fille joe ");
        exit (0) :
    1
    pucbuf a cest image.buf;
    Por(1=0;1<x0IM; i++)* (pucbuf }++\mathrm{ ) =0;
    EOF(1,0;i<\DIM; I++e) {
        Evrite伦新_Inage.buf, Bizeof (unsignen
charl, XDIMR, test image.Ep):
    Eclose(test_image.fp)T
```



```
        printe(" No good on open file joe "l;
        exit(0);
```

```
            -50.
    fgetpos(test_image.Ep. sceat_imaga. Fpos it
/* snow_oonponite, ultimate image adied to original image */
    stcopy(snow_cormponite, filename, "e+8nv_cmp") I
```



```
        printf(" No goad on open Eile joe ");
        exit(0)?
    }
    pcbuf a mmovecosposice.bul, 
    for (i=0;i<XD\overline{IM};1++)* (pcbuf + + )=0;
    for(i=0,1<<ZDZMi+1+i) (
Fwzite (ancw_composite.buf, si„eaf(char), XDIMR, anow_composite.fp);
    fclobe (mon_composite,fp) y
```



```
        printe(" No good on open file joe ") f
        ezit(0);
    J
    fgetpos(snow_composite.fp, bsmow_compoćite,_fpog );
/* diatributed_Image; test_img plos mnow ocmpogite * )
    #trcpy(digtributed_image.ifiename,"ora|t img"),
if((distribuced_image.fp=Eopen (digtribited_ image, Eilename, "wb"))=\mp@code{kN}
LL) {
        princf(" Ho good om open Elle joe ");
        exit(0);
    F
    pucbuf = Aistributed image.buf;
    For ( }1=0;1<\times\mathrm{ XDIM; 1++)*T(puciruf + ) =0;
    EOR (i=0; i<\WIM; i++) {
        fwriteldigtribured image,but, chzeof(unsigned
char), XDIMN, fliatributed inage, fpl;
    Eclose (dinatributed_mage.fp) ;
```



```
(#L) \
        printil" No good on open file joe "):
        exit(0):
    }
    Igetpor(distributed_image.fp, tdiatributed_image.fpos is
/* remp_image; buffer if noeded */
    atrepy(terp_image.ijlename, "e, terp_img");
```



```
        grinte(".NO good on open file joe M);
        exche (0);
    }
    pucbuf = temp_ image.buf;
    for (i=0;i<XDIM, 1++)*(puctruf++)=0;
    for(i=0; {<YDIM, i++) (
        fnrite(temp Inage.buf, alzeof (unsigned
char), JDIMR, teup imege.ip) I
    L
    Eclose (temp_image.ip);
    if((temp_image, Eq=fopen (terw_image, Eilename, "rb+")) ==kण|) {
        prinEf(" No good on omen file joe ")f
        exit(0);
    l
    Igetpos(temp_jnage.fp, &temp_image,tpou )/
/s tamp_wordbuffer; 16 bit tmage buffer for averaging */
```

```
-53.
    stropy(temp_wordbufferigilenawe, "e:temp_wrd");
    if ({temp_wordbuffer, fpefopen (temp, wordbufger. filename, "Wb")) m=NULL) (
        printif(= zo good on open file joe "l;
        exit(0);
    }
    ptbuf - temp wordhuffer,buf;
    for (100;i<XDIN;1++) *(gibuf++)=0;
    Ear (1*0;i<YDIM;i++) (
    fwrite(temp_vordbuffer.buf, sizeof(fnt), XDYNR,temp_vordbuffer.fp),
    }
    fcJose (temp wordbuzEer, fp);
    if( (tenp_wordbuffer, fp=fopen(temp_vordbu{fer.filename,"zb+s)|={uLa.)
        printf(= %o good ar open file joe -i);
        exit(0);
    l
    Egetpoe (tamp wordbuf\tilde{er.fp, &temp_worabu&fer.Epos);}
    /* temp wordbuffer2; 1* 16 bit image buffer sor averaging */
    stropy(temp_Nordbufterz. filename, "eftmp_wrdz");
    if(\'temp_wordbuffer2.fp=fopen (temp_wordbuffer2.{i2ename,"wb"))==roulu
        printf(" No good on open file joe "):
        exit(0);
    I
    pibuf a temp_wardbufferz buf;
    Tor(i=0;i<<0IMM;i++)*(pibuf +i)=0;
    for(i=0;1<YOIM;1++)(
    fvrite (termp_woxdbukfer2,huf, simeof(int), XDIMQ, tenm_worabb{ferz.fp),
    f
    fclose (ternp_wordbufferz.Ip);
    if((temp_wordhufferz. Ip=fopen (temp,vardbuffer2.Eilename, "rb+"))==MUN
        printe(" No good on open file joe "),
        exit(0);
    $
    fgetpos(temp_wordbuffer2.fp, ccemp_wordbaffer2.fpos );
/* snow images, 目Tz number of constituent smowy pictures */
    stropy(Enow 2mages.filevame, "gnw imgs"),
    if(know images, fp=fopen (gnov imäges, filename, "Wb")) ==vith) (
        printef(" Ma good on open File joe "),
        exic(0);
    I
    pucibuf = mow images,buF;
    for (i=0;i<MDIM};1++)*(\mathrm{ pucbur t+) =0;
    for (j=0;j<BITS;jt+})
    TOF(i=0;i<YDMM;1++1}
            fwritelanow images,bof, (1zeof (unsigned
char),XDIMR, gnov_magea,{p);
    \mathrm{ (eloge(mon_images.fp);}
    If (smow imiges.fp-fopen (gnoN,imagen. Eilename,*rb+*'))==SULL) {
    printe("Na good on open file joe "),
        exit (0);
    %
    Egatpos(snow_inages.Ip, sanow_imagee.ipos );
    recurn(I);
l
```

```
            -24,
int close_everything (vald)(
    folose (tort Image, fp);
    Fclose (snow oomposito.fp):
    fclose (distributed image, fp) /
    fcloge (temp_image, Ip);
    fclose(temp-wordbuffez.fp)
    falose(temp_wordbufferz.fp)/
    fclose(mnow_lmages.fp);
    retuma(2) I
1
main()(
    int i,j;
    grinte("\nIn1tializing...\n\n");
    initialize_sverythingl); /* devipe epecifice and global malloce
    IIve_video();
    /* prompt for which of the threo demos to perfore */
    while( demo & 1 | demo > MM, DevOS) [
        printf("Which demo do you want to rmm?\\Omega\a"),
        printf("I: Digital Imagery and Very Digh End Photography
simulation\nos):
            printf("2x pre-exposed Print Paper and other Dupping\n");
            printf("3; Pre-exposed Original Film (i.a. In-Camera)\n")
            printf("\nBnter number and return: "),
            scant ("sa", sdemo);
            1E(deno < i 1| demo > NUM_DEMOS) {
                printe("\n eh eh alf
    )
    }
    1/ zcquire test. image +/
    printf(")npress any key after your test scene is ready... ");
    grab_-{rame (Ecest_image); /*grab_frame takes care of device
apecifle stuff*/
    1* graret for ia number, 0 through 255 */ *
    printf("\nEatex ary number between 0 and 255. \a");
    printf "This will be the tmique magic code placed into the
image: *);
    Ecanf("*d", sour code);
    while (our codecz |/ our coder256) (
        pyintF(" Betwenn 0 and 255 please "),
        gcanf("5d", kour_code) I
    }
    /* Feed back the binary code which will be ambedded in the trage
*/
    printf (")nThe binary sequence '0);
    for ({=0;i<8ITSS % 1+t)}
        j=138>> 1/
        if( our oode 6 j) print?(01n);
        else printf("ON),
    )
    printf(f (td) will be embedded on the image\n",our_code) ;
    /* now generate the indivialal soov images *)
    get_mow_imeges {\:
```

-55-

```
        loop_visual (); /* this gives visual feedback on 'tolerable'
noise level */
        printf("\nWe're now to the simulated suspect... \n");
        loop_simulation();
    close_everything();
    return(0);
}
```

Claing

1. A method of identification coding an unput aignal so as to pernit iss later identification, the mathod including the steps:
toodulating a noise signal with a code number to produce a signature signal; and modulating the fnpor sigual with the sigomure signal to prodice an identification coded output signal;

Whercin the coded output signal can bs amalyzed to discem the code number with Which it was modulated.
2. A method of identification coting an input sigunl so as to prodnce an encoded oufpat signal, the irpput signal being a quantized signal baving inhereat notse, said signa! correpponding to aural or visual information, the identification coding of the output signal prescrving the nomespoeding sural/visual infomation without human-perceptible degradation, the ideatificaion coding pernitting later identification of the output signal, the method inclading modulating a anise signal with a code number to produce a signanure signal, adding the signarart signal to the imput signal to produce an identifiestion coded outpur signal, the aignature signal having an amplitide bejow a threshold of human oural/visual parceptibility when aided to the input signal, the adiling step effecting distribution of the signature signol thronghout the entirety of the output signal.
3. A method of data processing including: providing a digital carrier sigual, and modulating the digital carrier signal to imperceptibly embed anidentification signal thercon, the method characterized by: compressing the modulated digital carrier signal with lossy data compression to produce a compressed signal, decompressing the compretsed aignal, and disceraing the embedied identification Bignal from the decomprassed signal, whercio the lassy data compression does not preclade recovery of the embedded identification signal.
4. An apparams for encoding a sampled input sigon, the sampled ingut aignal heving inhereut noise, the apparatus meluding an inpur terminal, e digital nolse sourec, storage for an identification code word, means for maintaining a pointer to a bit of the identification code word, an adder, and an outpht terminal, the input terminal being caupled to a first input of the udder, the roise source being coupled to a sesuod input of the adder, the pointer providing said bit of the ideutification code word to a control input of the adder, an output of the adder being coupled to the output terminal.
5. The uppantas of clnim 4 which further includes a lonk-up table, a first seales, a second scaler, a scale control device, and a mepory, the look-up table having an input coupled to the inpun temminal, one of said scalera haviag a control input caupled to an output of the lookup table, the other of said sealers having a cosntrol input coupled to the scale control davice, anid scalers being serially interposed between the nolse source and the adder, the memory huving ant iopuc coupled to a location berween the noise source and the secand laput of the adder.
6. A method of ideatificatimn coding a sampled inpui signal, the sampied input signal having finbrent noise, the method cocoprising:
providing an N-bit code ammber;
for each of a plurality of sumples of the inpur signat:
(a) providing a sample of a time- or spatilly-varying modolation sienal;
(b) selecting one bit of the N -bit code number, and
(c) if said ble has a first valae, adding the moduiation signal sample io
the simmple of the iopur signal, yielding a sample of an identification coided ourput signal.
7. The method of elaim 6 which inclades performing stepa (a) - (c) for each semple of the imput signal.
8. The metiod of elaim 6 whleb firther Eucludes storing, for later use, data from Which the modulation signal sample can be reconstructed.
9. The method of clain 6 which includes generatiog tho time-varying modelation sigoil sample by providing a pseudo-random number and weighting said number with a scating factor, said sealing factor being a funotion of the irput signal sample.
10. The method of claim /a which includes refecting the one bit of the N -pht code number by cycling through the number, advancing one bit position for each successive sample of the input sigmal.
11. The method of clain 6 which further includes:
if said selected bit of the N -bit code number bas a second value, stibtractigg the modulation signal sample from the sample of the input sigmal, yielding is sample of the Identification coded oupput sjgal.
12. Storage modium having stured thereon a signal prucessed in accordance with the method of clainn 6 .
13. The invention of chaim 12 in wabch the storage medium is a magretio
medrum
14. The inveation of elaim 12 in which the storage medium is a primsed
medium.
15. The invention of chim 12 in which the storage medium is a compact dist: (CD).
16. A metiod of identification coding each of a plurality of samples of a sempled input signal, the input signal having inherent noise, characterised by:
using the sample of the input signal to obtain a sealing factor uniquely associated!
therelo;
weighting a afgrature datum in accordance with said scaling factor, and modulating the ample of the input signal in ascordanee with said weighted signamre đahum:

-58-

17. The method of claim 16 io which the scaling factors increase monotonically with the valves of the input sjignal samples with winch they we associfted.
18. The method of clain 16 in which a foor-fold inerease in a value of the sampled input algnal corresponds to approximately a two-fold increase in a value of the scaling factor nesociated therewiff.
19. A method of processing a sampled input signal with m N-bit sigature Noord to produce an identification-coded output signal, the sampled input signal having inberent noise, wherein the complete N -bit gignature finds expression M times in an excerpt of the ideatifieationcoded output signal having a length of $M^{*} N$ samples, for some value of M greatar than one
20. The method of chain 19 characterized by processing each sample of be input sigual in accondence with at least part of the signature ward.
21. In a meftod of processing a source signal that includes a number of elements, each with in associates value, an improvement charamanized by altering the source signal in sconedance with an embedded aignal so as to enoode an ideatification codo therein, the cmbedded and altuod signals each including a number of elements, ench with an associated valuc, wherein an element of the altered sigeal has a velue different fran that of corresponding elements in both the source and mbeedded signais, and in which the identification code und certain psevidoreadom reference diata are used to generate the embedded signal, the associafon between the embedded signal and the identification code being undiscemible withour availability of the reference data.
22. In a method of processing a sowree nignal that includes a mumbar of elemunts, ach with an associated value, an improvement cheracterised by:
providiog an N bit digital identification code, eacb bit having a " 1 " or " 0 " valur,
providing N different reference signals, one being asociated with each bit position in the digital identification code;
summing the refercace signals for whicin the currespanding bit position in the identification code has a " " " value, thereby producing an embetded signal;
altering the source signal in accordance with the embedded signal so is to encode am identification code therein;
lic cmbedided and eitered signals esch incloding a mumber of elements, each with an assnciated value, wherein an element of the altered signal has a value different than that of corresponding elements in both the source and embedded signals.

$1 / 7$

FIG. 4

FIG. 1

CUT AND MASK PORTION OF SIGNAL OR IMAGE BELIEVED TO BE SUSPECT
(ONLYIF ENTIRE SIGNAL OR IMAGE IS NOT SUSPECT)
PROCURE ORIGINAL DIGITAL SIGNAL OA IMAGE AND CUT AND MASK TO ROUGHLY THE SAME LOCATION OR SEQUENCE

VISUALLY RESCALE AND REGISTER THE CUT-OUT SUSPECT SIGNAL TO THE CUT-OUT ORIGINAL SIGNAL

1
RUN THROUGH SEARCH PROGRAM WITH MEAN SQUARED ERROR AS CRITERIA AND X OFFSET, Y OFFSET, AND SCALE AS THE THREE VARIABLES

APPLY X OFFSET, Y OFFSET, AND SCALE TO CUT-OUT SUSPECT, THEN RESAMPLE ONTO EXACT GRID AND CUT-OUT OF ORIGINAL SIGNAL

STEP THROUGH ALL N RANDOM INDEPENDENT SIGNALS; MASKED AS ORIGINAL AND CROSS-CORRELATED WITH DIFFERENCE SIGNAL IN IMMEDIATE NEIGHBORHOOD OF REGISTRATION POINTS

FIND O AND 1 LEVEL BY AVERAGING FIRST FOUR 0101 CODE VALUES

DISH - Blue Spike-408
Exhibit 1010, Page 2137
$4 / 7$

FIG. 5

FIG. 6

$6 / 7$

FIG. 9A
400
TIME

FIG. 9B

FIG. 9C BORDER
CONTINUITY
404

FIG. 10

$7 / 7$

INIERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

DISH - Blue Spike-408

Fin RT/EINze fred entol flaty amb

DISH - Blue Spike-408
Exhibit 1010, Page 2144

Europălsches Patantamt European Patent Office Oifice europeen des breverta

0581317 A2
(a)

EUROPEAN PATENT APPLICATION

(23) Application rumber: 93112990.7
(2) Date of Filing: $\mathbf{3 0 , 0 7 . 9 3}$

(2) Inventor: Powell, Robert $\mathbf{D}_{\text {t }}$
$13720-246$ th Avenue Southeast
issaquah, Washington 98027(US)
Inventur: Nitzberg, Mark al.
20A Prescot Street No.sB
Cambridge, Massachuset1s 02136 (US)
(26) Pepresentative: Patentanwaite Granecker,
Kinkeldey, Stocionalf \& Fartner
Maximillanstrasse 50
D-g0538 MUnchen (DE)
(9) Method and system for digital image signatures.
(0) A mathod and system for ambedding signateres within visual images in both digital representation and prini or film. A signature is inseparably ambedded wittin the visible imege, the signature persisting through image translormet that include resizing as well as conversion to print or film and back to digital lorm. Signature peinty are selocted from among the pixels of an original lmage. The pixel values of the signature points and surrounding pixets are adjusted by an amount detectable by a digital searmer. The adjusted signature points Iorm a digitai signature which is sfored for future identificafion of subject images derived from the image. In ane embodiment, a signature is embedded within an image by loceting relative extrerna in the continuous space of pixel velues and selecting the signature points from among the extrema. Proferably, the signature is redundantly embedded-in the image such that any of the redundant represwntations can be tised to fdentify the signalure. Idertification of a subject image includes ensunng that the subject image is normaized with respect to the original image or the signed image. Preferably, the normalized subject image is compared with the stored digital signaturo.

Rank Yeroi (UK) Eusineaz Bervices
13.10/3.03/3.5.4

Techrical Fueld

This livemifor relalse to a method of and system for incoaing esigneture into a digial imege ams autiling a ingiai subjact imego to datermina if it was derived hom lis ancodod inaga.

Blackground of the livantion:

Vatious imagos in tracilionol orint or photographic maed are pervinonly distiteuted to many uses. Exampies inciude the distimbuliou of prime of pointings to the general public: and phaiugraphs and fim dips to and umiong the madia. Giwness may with 6 audit usage of their images in prini ard olnctranic media and so requira a method to analyze ptinh, flter and digital imapes to deteminh it ther were pblained diocily, flom the owriers or dervived fram their mages. For oxample, the owner of an image may desion to Im it abgess or use of the image. To mianitor and entorco auch a limitation, it would he barialicial to havo a method of verifvify that a subfect mage is copiet or defived from the owner's image. Tha mathod of prod stould ba aocurale and incapable of being circumyented. Furthor, the method shouid be able lo deted unaulharized copies that have been vesized, intated, cropped, or oihorwise Eitered silghtiy

In the computer fiold. digital ssenatores have been zgpilad to nen-inago digitu data in arder to ldemilly the origin of the dela. For various ceascris these prior art digital stgnaturos have not been applied to digitat Image dats One reangen is that these prior art digital signatures are lost it the dota to which they are appliard
 graphed due to inintenfional "noiso" created by the mochianical reproduction suvipmont used, Further, it is ofon dosited to resian, cotate, crob or ohnowiso intentionally moatity the linage. Apcordingly, the axsstiog digital signetures wo uncroptable lor use with olgitai imeges:

Sururary of the invention

Tha invantion includes à meftisd and systam for umbodding imaje signatires willin wisuat inagos. applicable te the preferred embodimente describad herein to digital cepresentatione as well as other mebia such as print dr Bith: The signatures identify the sourde or ownerchip of 'imagee and distinguish belweem Giffocant copies of a single image, in pmoforrid ambodunenth, these signatures persist triough image Tranatiome suct as resizing and conversion to or from oriat or film and so provido a method to track subsequent use of digital stragos including derivalive images in priot or other form.
in a peremeo ambodiment described herein, a plarility of signature points are sobicteo that are pesitioned within an originas ingga having pixels with pixel vatiees The pixal values of the signatuin goints aro adpustod by an amount detectable by a digital scanner, The elfusfeid sjgnature points form a digital signature that is stored for tuture idarutication of subject images derived trom the images.

This proforrad embodiment of the invention dnscribed herein embeds à signaturs within the otiginal imege by locating candidate pointe such as iskaive extrema. in thg phes values. Signoturo points me setincted frem among she candidate points and a dala bit is ancoded at bach slgnature poinf by adjusting The pisel value at and surroundine bach poink Prelerably, the signature is redundanily embeddod in tove image such thet any of the redundant repressentailers can be used to iobentity the signatury. The sighature is slared tor lates use in identifying a subject image.

According to a preferrod embcaiment, the ldendfication of a subject image includes enswing thet the subjec image is pomerailized, to. of the semus sico. sotationt, and brightness lovel as the ariginal Image. It not airesdy normalized, tha subjoct image is normaizod by aligning and adjusting the luminance values of subsets of the pareits in tho subject imags to match porosponding subsets in the original image. The rormultasd subject imege is than subtracted from the original impge and the result te complered with the stored tighal signature. (a an allomato smbodiment. the normaliced zubject imago is comparéc directly wilts the signed images.

Btiet Doscription of the Drawings

Figurd 1 it a diagram of a pormpuler system used in a praiared pribodiment of the present invention.
Figure \& is a serpplo digital imaga upon which a proterred ambodiment of tho present invention in Bimployed

Figure 3 谒 a representaion of a digilai imago in the form of an array of plyels with pixel valuas.
Figury 4 is graphical iepresentation al pixel values showing ralailve minima and maxims pixal values

Figure 5 is a drigitas suclect image thet it Cumpared to the image of Figura \& asconaing 40 a praigred 3mboilment of the presani-invention.

Detalled Descripitori of the Invertion
The prosent invention includzs a mathod and systom tar amlieddien s slunifue ineo an ongimai imagr to croate a skged image. A prelined embodiment inchitas selscling a large number of earvidato points in the orkginal linage and solecting a number of signatien points liom among the carloldate pcints. The siguaturo points aro attered aightly is larm tho stanature. The aignalure points are stared lor later use in audiling a zubject image to determine whather the subject imiegu is derivad from the signed imege.

The ajpratures aro encoded ion the wisale dennalh of the imane ind so became part of the image and chingol be defactod or remioved villiout prior lonvwisdge of the bigriatire A bey poini is liat whilo the dienges manilusind by the signatore are too alight fo be visibio to then human ayes, they are eusily and consistently rocugnieabla by il commoin olgital image scanner, affer which the sigruiture is exttactod, intergintad and veriliod by a soltware algormhm.

In contrast ta prie art slanature methods used on non-irnage data, the sionatues parsist through slgnificant image franstormallons that preserve the visiblo imago but may complately olvinga the digiled Gata. The specific transfame allowod include rmicing tye imego lavgor or smaller, rotating the image, uniformly adjusting coles brighiness and/or comtrast, and kmiferd copping. Significantly; the signationeg porvitit Urough the proceess at priniling lite image to paper or film and reseanning it into digital form.

Shown in Figure 1 tis a compular sysiom 10 that is sisud to carry oul an ambodimont of the prisumi ilwenlion. The computer syatien 10 [ncludes a computer 12 having the usual cormplement of memory and bgic circulte, a diaplay monilor 14 , a heyboard $\sqrt{6}$, and a mausa 18 ne olher pojoting dovico. The cornpution systam alen includes a digital scanner eto that is usod to creato a digital image representative of an origunal image such as a photograph or painting. Typically, delicate imagas, such as paintings, are converted to pint of film belore boing scannod into digital tomi, In ono embodiment a printer te2 is cermactad to the computer 12 to print digital images output tram the procossor. in addition, digital images can be output in a data formal to a storage medium 23 such as a llappy ifsk for displaying later at a remote site. Aoy digitat cisplay dovice miay be used, such a pommon compular printer, X-Y ploter, or a display screen.

An exenple of the bulput of the scamer 20 to the camputer i2 is a oigitas image 24 shown in Figute 2 More accurstaly, the scarnier oulputs data represoniative of the digital image and the somputar causes the digital mage 24 to be displayed on the dispiny monitor 14. As used horein "digital image" relers la the digital data roprosentative of the digltal imaga, the digital image alsplayed of the monitor or other display screet, and the digitel image printed by the printon 22 or a remote prinier,

The digilal imrge 24 is deplclod using numbrous pixeln 24 having various pixel values, in the gray-sicate Image 24 the plxel values are luminances values roptosontigg a bifgntness leyst varyitg from black to white. In a coloy image the plixgls have color valuas and tuminance values, both of whicl being pikef values. The colar values can arelude the values of ary campenents in a reptesentation al the color by a vector. Figure 3 stows digital imege $24 \wedge$ in the torm of an array ol pinele 26 . Each pixal is associatad wilh ane or more pixel values, which in lbe axample aniown in figure 3 are luminanco yatias from 0 ig 15.

The digital inage 24 shown in Figura 2 includes licussands of pixals. The digital image 24A ropresenteo in Figum 3 liclades 225 plxals. The invention pretarably is usod for images having pipels numbering in the milfons. Tharaforg, the descriotion herein is neceasarily a simplistic discussion of the utsilty of the invention.

According to a preferred ambodiment of the invention numerous candidate paints are locrited within tho originat imago, Bignaturs paints are selected from umang the candjdate pointi and ara ellered la lorm a signaturo. The eignative is a vatiom of any number af signature peinte In a prafored ambadiment, the sigreature is a binary nomber bsiweer 10 and 32 bits in lengith. The signsture pointio may be anywlere within an image, but are prelerably chossn to be aE inconspicuoua as possibla. Prelbiably, lhe nurbbar at signalure points is much groiter than bro number of bits in a dignature. This alfows the shonature la bo ruduidanlly encodod in tha imaga. Ushur a 16 ta 32 ble ehgnatum, 50 -200 sigueture polnts are preferahler ia obtain mulfoplo zignatures for the irespo.

A prelerfed ombodiment of the invention focavess candidata points by finding ralative mavoma and mittrma, coleclivoly referred to an extrama, in the lmage. The bxtruma represont local extiemes al luminance ar color. Figure-4 ahows what is meant by relative externe. Figure i is a graphigal raprosentation of the priel values of a amail portion al a digital image. The vartical wies of the graph showe pikel valuas Whise the forizontal axis shows pliol posiltane slong a single line of the cagital image. Small undulations in pixel values, indicated at 32 represent portione of the digital image where only amall changes in fuminance or solor beccur between plxels. A rolafive maximum 34 represents a pixel that has Dro highest plxat value for

EPD $58: 317$ A2

a glvan aroa of tho irmago. Similarly, a retaive minimum 36 revrosents a powel that has the lowest pepei value for a givon zrua of bie image

Relative axtrman wh preterred signature pointh for swo major (eusons First, they are easily localad by aimplo. Wall known proceesing second, they ailow signature poinls lo be encodad very incorrepleciousiy.

One of the simpleant melhode io dotormine refative extroma is to usa a "Diferanco of Averacer lechinique. This technique employs predeternined neighborhcods around each $v \times \operatorname{col} 20$: a amail neighborfiocid 28 and a Imrge neighbortiood 30 , as shown in Figuras 2 and 3. in the pravont example the naightartbode aco squate for simpicily, but a preferrad ambodiment emplays circular neighbortrods. The jechnigus doformines the dilterenca belwern the average pikel value in the anall nelghbornood and the average pikel value of the ferge naightomood it the difference is large compeued io the difterence for suricuinding pikole then the lirsi ponel value is a relative maxima or minima

Ulinge the imige of Figure 3 as an oxample, the Ditterence of Averages tor the piosel 26A 5 s determinen as failows The pleal values withen the 3xa pixel smat refighborhood $28 A$ add up to 88 dividing by 9 pipelr gives an avarage of 767 The pleol values within the 5×5 poel targe nelghboriood 30 A add up $102(9)$ diviling by 95 pisele gives on aurege of 0.75 and e Difterence of Averagos of -1.09 , Similarly, the sverage In amall neightorfiood 28G is 100 ; tha average in large naigltbothood 30G \& 9.8 , the Diffinenge al Avorages lor pixel 26G is therabare 0.2 Similar compurations on pixals 26e-26F produce the following table:-

	28A	268	260	260	28 E	26 F	266
Smbll Nelghbortiocd	767	10.56	+2.09	14.71	13.71	1156	10.0
Larus Noighborhood	878	10.56	18.0	12.52	1252	5136	28
Dilferanco of Avornges	-1.08	0.0	0.89	1.59	0.58	32	0.2

Based on paints 26A-26G. thots may be a muativg makinumi nt pixal 260, whate Difimence of Averagey of 5.59 Is greater than the bilference of Averagea far the biher oxamined pixets in the raw To datarmint whather plxal 260 wi a felative maximum rather than mewify a simull undulation, Its Differencie of Averages must bo compared wath the Dileranto of Avorages for tim pixela surreunding it in a larger area.
 protecte agailit fons of signalure points cruspd by the practice of orppleg the bordor aroa of an imagon it is alsci prelerable that ralafive extrema that ars candomly and widoty spacad are used rother than those that appeer in regulier pattons.

Using Die Differonce of Averaged fechnique or other known techniques, a large number of extrome ate abthined, the number depending on trea pibel densily und contrisat of the image or the tolar number of extreme foumg, a prelarred omoodiment chocress 50 io 200 signature points. This may be dage manually by a user choizing with the heyboard 16, mouse i8, or other pointing davice ancir signature poinf form amone the eareman dirplayed on the dlaplay monitor 14. The extrema may be aisplayed as a diglal inage with gack point choeen by using the mouse or other pointing devica to point to a pixel or mey may be deaployed as a lisd of coorbinates which are chosen by keyboard, mouse, on other pointing devico. Altematively the cornputer 12 can be programmed to ctoose Bignature pointa fandomly or according to a proprugrampred pottorm

Ore bit of binury data is wnooded in eem elanature point in the unags by adjusing the pikel valies at and surrounding the point: The limage is modifiod by making a small, proterably $2 \% / 10 \%$ positive of negative adjuvimiont in the pixel valiue at the avect xignature point, to represant a binary zero or one. The pivels surounding each signatura peint, in appravimuoly $a 5 \times 5$ to $10 \geqslant 10 \mathrm{gtid}$, ave proterably adjusted proportonally to ansuro a continuous transifton to the how value at the signatura poinh. A number of bits ea ancoded in the signature points to torm a pattarn which is the signatue for the inege-

In a prelarrod ombodiment, the apoatore te a pottom of al of tie signatire paints. When auditing a subject imagen it a sleilsticalify significant oumber of volonvial signature points in the subject image match corresponsing sjgnature poinfs in the signoid image, thon the subjoct imagy is deamed ia be derived from the signed image, A stafisfically significant number is somewhat less than 100%, bul enought to be reasonably porilidem thet the zubloct inege was dorived from the signed image.

In an aitimate ambodiment. the signature is emooded using a redundint patem that citstributas if anong the signature points fir a manner that can be raliably lettioved using onty a sultsel of lhe points: Gne
 representation methods, such as an error-correcting obde, may also bo used.

In ordier to allow fulure autlling of images to deternine whother they match the sfgnerd image, Hie -signatire is stored in a ditabses in which it is assuclaled with the original image. The zojnsture car be
siored by associating phe bit value of gach sigature point togethot with x-y coordinetag of the stgneture point The aignatine may to stofot separalaly en as pert of the sipued impge The slgned image if then distributod in digital tom:

As disussed above, the signal image may be transtorroed and meripulated to form a derived image: The damed inage is donved from the signed imege by matious yanslormuiovs, auch as resizing-rotaling;
 pleca in multipla stept on processes or miny simply be the copying of the spand limige dicectly

It is assumed that defivations of thesey impges that an owner wisties to teuck incluio only applicatione which subsfanilaily presenve the resoldion end general quallity at the insage White a size reduction by 90%.
 Imiges significance and value such that no auditing is desirad.

In order to audit a suibject image accoxving to a prefiared ambodimunt, a issen identilise iha enginal image of which the subject imege is suasected of baing a diplicale- For e pimt or film image, Ihe subjeot imege is acannad to croale a digital imape flia, For a digita imagu, nio scaming is nucessary. The subject Whgital ikruge iz normalized using tachniques es describod below to the same sies, anid same everall brightuear, confromt and color profies as the unimodifand origiral fimage. The subject image is analyzed by the motlod dascribod bolow to mexract the signature. if aresent, and compare it to any signatures stored for that image

The nomalizolion process awolves a sequenca of steps to undo trensiormations previousty made io ite subjecil insge, ta rotum it as eloso as possible to the resolution and appearance of the original imaga. It is assumed that the subject lmago has boen manipulated and menstormed as dascribed above. To align the subject imagn with the arighal imege, a profored antodinvert chooses three ar more painta form the sabi)joct mage which comrspond fo points in the original irnage. The three or more points of the subject image atre aligned with the cormsponding points in the original limage, The points of the subject mage not selected are rotated and resiand as neczasary to accomenodate the allgnment of the points selected.

For examplt, Figury 5 showa a digital subject image 38 thet is antallor lisan the original inrege 24 shown in Figure 2. To resizo the subjoct images a urac pointa io ithees pointe avch 25 He mouth 40 E, as 428 and eye 48 of the subject mage using the mauka 18 or qther pointar. Since 11 is usually dificull to uccuratoly point to a singls piket, We compiter sevicts the nearest autrame to the pixal painter to by the usen. The usar points to the mooth 40A, ear 42A, and sye 44A of the original longe. The computer 12 resizs and
 to osch other in the same way that points 40A, 42A, and 44A are posilloned with respeci to each olher in the original image. The rematning pixats are meparitioned in proportion to the reposillawing al goints a0B, 428 and 448, Ey aligning three points the enties subject image is algned with the original lirage whoul having to aigign esch pixel independentiy.
 The subject inage Nomalizing involves adjussing pixel walues of the subject image to match the valuadilstritelion pralle of the ofignal image. This is accomplished by a bechnique analogous to that usad to diggo Bie sulject image. A wbsat of the pixals in the subject image tre adjueded to mpial cormesponding pisels ite the onigine imega. The pixets not in the subset are adjustad in proportion in the adjustrnents mede in the pleets ift the subsot. The phols of the sublect image corresponding to the signature pointy shoud na! be among Vie plxels in tho subsot. Dithormise any signature points in tive subject /mage wili se hiddan fiom dotection when they are adjustod to oqual corrospending pixela in the original image.

In e prelerred embodimorf. Bro subsot includes the brightest and darkest pixels of the subject inages Thisee plesele are adjusled to hayd lumipance values equal to the luminance vatuas of corresponding pinels In tho original image. To eneure that any signaturo pointe can be detected. no aignatura points should bo subected daring the stgnature embedting procoss described above that are among the brightest and darkest pians of the oniginit image Far axemple, onc coukd usa pikels among the brightest and darkeat 3% for tho adjusting subsal, atler gelectiog sgnature pointe among loss than the brightest and darkest 5% to ensura hist there is no overlap.

Whan the subjact imege te fully nompalzed, it proforobly compared to the originat image, One way to compnia images is lo swotract one imege fram the ether The result of tha subtracipon ia a digitat image that incildes any signather points that wara present in the subjec intage. Mesa signature points, it any, are compared to the stored signature poinifa lor tha sligoed inage-. It the signaturo points do not match, then the subject anage ia not an image derivest trom the signed imege, unless the subjoct image was chsnged substentiatly from the eigned imape.

In an attemotive ambodiment, tha nommalized sulyeet finsge is compared diroctly with the kigned image instesed of subataoting the sutpect irriage from the obginal mage. This compafison involvas subtracting the
subject image form Bie signed image, if there ts inta of no image resulting forn ita aubtration then the subject immge equais to the saned imega, and therefore has been dervect trom the signed images

In anotver allemate embodiment listeid of normalzing the enture subject imapo, only a section of the subject mage surrounding each potemial signature point if normalized to bo of the same genelal resolution and eppesrance as a conesponding section of the oripina/ imepe. This is acoonpleshed by sshacting each pokentui signature point of the sublect image and welesing wectons murmunding each potental signature point. The normalization of each solected seotion proveods according to meshuds similar to these disclesod above for normelizing the entire subject imauge.

Normalling sach selected section individually ollowi esef pelential esgraturs point af tie subjuct imaga to be comparad difectly with a corrosponaling signoture point of the sagnid image. Pteferabty, an
 signature point with the pixal values of a plurality of relxels surraunding the patential signallian point. The ayaragn-combuted for each signiture is comparad diegelly wilt a corresprinuing signature point of the' अigned imagu.

Whle the methods of nornefizing and extracting a sigmaluce from à subject image as dellcribed aboya ete ilvacted to luminarce yaluens siniler matiods may ba used for conor values. Instead of or In addition to memeliang by allering luminances values, the color values of the subject image cari also be adiusted to
 values in ardar to aricode a signatura in or extract a aignature from a color imaga. Color images use pixalis having piail valises that inctude luminarics values and color velues, A digital signature can be ancoded in any piodi values regardlass of whether the plaet values are luminanca values, color values. or any atien typen of pixet values, Lumkence velues are prefersed berause ailarations may be mede more besily to fuminance values witcut the altaralions being visible to the humar eye.

From the soregoting it will be appreciated thet, although specilic ambodimants of the invention have bean delloribed herein for purposes of illuatration, various modificationg may be made without daviaEng from the spirt and scope of tha imvantion. Accordingly, Hea èvention is bot Imited sxciept as by fire appended claims

Clatmy

1. A method of maga signature processing of an arighail image nawng paneis with uminance vaives, emprising:
localing a pluraility of candidate points itom amorg the pixials os tro arigona imago:
selacting e first pluratity of signatire poine from ainong the candidate poims:
adfusting The posel vaties of the signatiee pointa to form a ignect image. the adi/isted zignaume point poral values turming a siginature for the signod insgs: anct
soing the signtire for fulure idenofication.
2 The mathod acoording to chaim 7 wherain the candioato points are located by locating rolatiws axiom In the original imege and wherein the solecting step includes salocting the eignoturs point irom among the extrema.
2. The method according to claim 2 whoroin the axicuma are nelative minima or muzima of luminanco velues of the pix日佔 of the ariginal imsige.

4 The mathod scoording fo claim x. Futher poinpising adjusting a pluralify of piael values sarrounding the signature points to provide mooth transilens to the adjusted pixel yalues at the signature points.
B. The miathod according to cikim 7 , Jurther compriting
selvesing a zocost plurally of efpnature poinls frunt ameng the candidate points, and adjusting the pocel valuos of the sacond pluraity of signalere pointa to form a redindant signaume kox the signed imuge
6. A mothod of image signature processing of an original image having porela with poral values, cermpiaing:

adjustivg the pixet salues of the slanature points, the adjusted sfgeturo point pixat valuas formug es signatuve for the imaga; and
storing the symature for futtire identification
7. The method according to chaim 6. Turther comprising locating relative extrema in the original image and whiwein the selecting step includes selecting the signature points from among the extroma.

- The method according to claim 7 wherein the extrema are relalivo minima or maxima of luminemica valuas of the pixats of the original image.

9. The method according io claim 6 further comprising: zolecting a second plurafily of signature points from among the candidate points; and ndjusting the pixpl valuos of the second plurality of signature points to form a redundant signature for the signed inage.
10. The melhod according fo clainn is wherein the digital image has a border surrounding the image and ife pinel values adjusted are selacied so as not to bo within a predetermined distance from the border.
11. The method according to claim B. further comprising adjusting a plurality of pivel values surrounting the signature points is provide smooth fransilions io the adiustod pixel values at the signature points:
12. The method according ta claim 6 wharein the pisel values adyustad are luminarvea values.
13. The method according to ctaim 6 whercin the porol yalueg adjusted are calor valuet.
14. Thie method acoording to claim 6. further compriaing analyzing whether a digital subject image constitutes or is derived from a signed linage having pixel values that were adjuated to form a signatioe accordirig to claim 6,
15. The method according to claim 14 wherein the analyzing step inctudes normalizing the sub/ect insge.
16. The mathod according to claim 15 whergin the normallzing step includes alligning the subject Image wilh the signed imege or the original imago.
17. The method according to elain 16 whervin the aligning stop includes selecting three or more pixels in the subject image and aligning the three or mote peels. with corresponding pixely in the original or the signod image.
18. The method scoording to claim. 15 wherelt the pixel values of the subject image and the riginal image incude luminance values and the normalizing step incledes adjusting the luminence values of a suhasi of the pixals in the subject imege to equal the iuminence values of a corresponding subset of pixelts in the original image.
19. The mathod according to claim 14 wheroin the analyzing step includes subtracting the subject ingegy from the original image to obtain in resulting image and comporing the resulting image with the stored signaturg.
20. The rrethod according to claim 14 wherein the analyzing stop includes companing the subject image witr the signed image.
21. The method according to claim i4 wherein the analyzing step includes selecting a potenthal signatiana poift in the subjoct image corresponding to a signature point of the signed image and comparing the pixal value of the selected point to the pixel value of the corresponding signature point of the signea mage.
22. The method according to claim 14 whersin the analyzing step includes selecting a potentiat signature point in the subjoct image corresponding to a signature point of the signed image, computing an average of pixol values of the potential signature point and a plurality of pixels surrounding the potenubi gignatura point, and comparing the average to the pivel value of the corresponding signatiro paint of the signed Irnage.
 Gervid hime a stgned mage having pixols with plyal values that have been adjusiod to colloctively form a signtitue, comprisngl
ensuring that lise sub/act imagis is nomedized wiff respect to an otiginal image or the signal imago:
companifg the signature of the signed imape with votontas signatura pointe of the subject imape corresponding to the pixels of the sigroatire.

24- The method acsording to cleim 22 wherain this sisuing sitep inciudes normalizing the subject inege will cespect to the onginal image or the signed image.
5. The melthed according to claim 24 wherein the noimalising stop metudes alligning the sutiget limepe (wilb) the sigrsal image or the criginel image.
26. The mathod according io clain 25 wharsin the aligning step licudes spleating tweo at more prown in the subject image and aligning the three or more plxats with a fike nuimhar of pinets in that originai ir signind mage
27. The method according to ctain 24 wharein lis pivol valuos of the eubject image and ure original imege include luminanca values and tha narmalizing slep inaludes adjustinu the luninance values of a subsot. of the pixeks in the subject imagit to equal the luminanca value af a corsoponding subsat of piopls in bitw ociginat inage.
24. The rodthod acoording to dialm 23 wherein the compinimititep inchudes subtracting the subieci imege Thate Vie arigipat inage to cotair a resuting imege and comparing the resulting image with the stared digital signatura.
29. The methed accarding to claith 23 whwrest the ocmparing step includes compang met subjoct imgue will the signed image.
30. The method aczording to olaim 23 wherain the connpating step includes selecting the potential aignaure points corresponiting to pixeik of the signature, crumputing atl evorage of the pixal vatuas of sach potantial signatura point and a plumily of pixels parfoundigg each signulum povit, and comparing exch werage to the pixet valua of the commponding stgriains point of the signed imego,
31. A sysiom for image signature processing of ant ariginal imiage having pinals wilh pural valuye, Dampitising: a dilsplay devica for displaying digital images to a user: saluetion means to selecting a plurolity of eignature points irom among the pixels of tive eriginal imagei
a camputing devics in communication with tho display devica and the selersion means, tim sompileng device adjusling the pixel values of the sigriture points to form a signed imaga. the ualistad signature point pieal values farming a signeived essociatod with the signed images and memory in communication with the camputing device, the nomary recaiving the signature from the computing devica and stering the signature far luture ldenilicalion.
32. The syEtam according to claim 3T whernin the compuling devics includus location maans for locating candidate points from among the plikels in the originef imiage and the selecting inaens aslecta signaturo pointa from among the candidate points.
35. Tho syatam acoording to claim 92 wherain the solection means includas a pointion operatively conmetod to the dizalay dovice and the computing davice auch that a usser can zallict signalure points from among the candidste points displayed on the display devica and the computing device allern Ih wancture pointe seloctoo to form a signatuce associatect with the signed image.
39. The systom according to claim 32 whoroin the location means includes meants for foceling pinel valum extreme in the original imege, the extreme being the candidata points.
35. The system according to claim 31 wharein the compuling device includes means for idenitying a uubjact image derived from the signed image.
36. The system according to claim 35, further comprising normalizing means for normalizing the subject inage wilh the original image or the signed limage.
37. The system according to claim 36 wherein the normalizing means includes a pointer operatively connacted to the display device and the computing dovico such that a user can select alignment points from among the pixets of the subject inage displayed on the display device and the computing device receives the alighment points. selected and alligns the subject image with the original image or the signed image in response thereto.
39. The system according to claim 36 wherein the computing device includes comparing meane for comparing the normalized subject image with the original image or the signed image.
39. The system according to claim 36 wherevin the competing device inclutes:
subject selection means for solecting a potential signature point on the subject image corresponding to a signature point of the signed image:

Gveraging means for computing an avarage of the pixel values of the potential signature point and a plurality of plxels surrounding the potential signature point; and
comparing means for comparing the average to a pixal value of the corresponding signature point of this signed image

EP 0 581 317 A2

Figure 3

Figure 2

Figure 5

Europaticches Patenfamit European Patent Ofiles
Otice europetan des brevets

EUROPEAN PATENT APPLICATION

(80) Date of publication A9i
01.05.1996 Builetin 1998/18
(43) Date of publication A2: 0202.1994 Bulliteth 1994/05
(21) Application mumber: 93112290,7
(22) Dats of filing: 30.07.1993
(84) Desigratad Contacting Staters:

AT BE CH DE DK ES FR GB GRIE IT LILUMCNL. PT SE
(30) Prionty. 31.07.1992 US 923541
(77) Applicant: CORsis CORPORATION Gallevue, Washington 98007.6537 (US)
(7g) Inventors:

- Powell, Roben D. Issaquah, Washington 98027 (US)
+ Nitaburg, Mark J.
D-50677 Koln (DE)
(74) Representative: Grönecker. Kinkeldey, Stookmair a Schwanhatusser Anwaltssozietar Maximillanstrasse 58 O-80538 Máncheri (DE)
(54) Method and system for digital Imago signatures
(57) A musthod and system for embedding sigriatires within visual önages in bolh digital representation and print on film A eignature is inseparably arboedded within the visible inage, the aignature persisting through inage trandorms that include resizing as well as conversion to print or film and back to digital form. Signahre points are selected from ansongthe pixele of an original image. The pixel values of the signature pointe and surrounding pix. eff are adjusted by an amrcurit defectable by a digital scamer. The adusted signeatire points form a digital signalure which is itiored for future identification of subject ifragos derived from the image In one embodiment. a signature is ambodded within an image by locating relative eatrente in the corritinuous space of ploal values and selecting the signature points from among the eatremia. Freferably, the signature is redurdantly embedded in the inrage such that any of the reccundant regresemtations can be used to ideatify the signature. Identification of a subject image includes ensuring that the sibiect /nrage it normalized with respect to the original image or the signed imape. Prelerably, the normalized sutject intage is compared with the stored digital signature.

EUROPEAN SEARCH REPORT
Aypuration Nivamar
Office
EF 93112290

(58) Codor for incorporatiag exta information in a digital audio signai having a prodetermined format. decodor for eztractiog such antra irformation from a digital signal, dovice for recording a digltal slgnal on a record carrien, comprising such a coder, and rocord carriar obtainod by means of such a device.
(30) Priority: 10.11 .88 NL 8302761 25.04.15 NL 8901032
(43) Date of pubilication of application:
13.06.20 Bullotin $90 / 24$
(12) Inventor;Druyvastoyn, Willen Frederit cfo INT. OGTROOIBUREAU B.V. Prof. Helstiaan 6
NL-5656 AA Eindhover (NL)
Inventar: Hoogendoorn, Abrahem
EO INT. OCTROOIBUREAd E.V.
Prof. Holetias 6
NL-585s AA Eindhoven (NL)
Inventor: Van do Kerkhof, Leon Marla
Publication of the grant of the patunt:
22.02.95 Eulletin 95/06
(84) Designated Contracting Stales:

AT BE DE ES FR GB IT SE

Raferences cited:
EP-A- 0145332
EP-A- 0209000
(33)

Propriater : Phillps Elactronics N.V.
Groanawoudaswag 1
NL-5E21 BA Eindhoven (NL)
CJO INT. OCTROOIBUREAU B.V.
Prof. Holstiean 6
NL-5656 AA Eindhoven (ML)
Invanter: Veldhuis, Raymond Nicolass Johan
E/O INT. OCTROOIBUFEAU B.V.
Frof Molstaan 6
NL-5556 AA Elndhoven (ML)
(70) Representative: Van der Krak, Willem

Loonardus ot al
INTERNATIONAAL OCTROOIBUREAU B.V., Prof. Holstiasan 6
NL-5656 AA Eindhoven (NL)

[^3]
Doucriotion

The invantion relalas to a coder for incornorating estra fintornstion in the form of an aualliery signad in a filgltal audlo plgnes having a rredetarnined tormai. loa decoiler forsaifacting thit eidra intormation from digilal slgnel, to a dovice for recarding a illglal higrel an a rochid rariar and to 4 rocortd carter ableined by meirens of suction deviar.

In agitol sound transensaioin and recording sya(iems sucti as CD players, futuen talevilion syatems, suok me D2MAG, and soo on, the format, to, tha baint piling rate and the number of bits par sample, in which the digitai sound signal is recorded or thansmitted, is ogrmally prodeternsing, for axemple, in commection with intorpatiormil agmements, Sometimes, howover, there is a need for recording or transmiting mone inforpaterr thar posshbe on tha bess of the Aveliabie number of channets, For exampla, on the batie of internallanal agrearnentia, noil more thay two highquailty algital sudio charmelts, for example, sech chaninel for 14 -bs digital ahgrielf, can bs avaliable ion specilic foture television aystumts. These channals are used for trammitting aulo information for the respectiveleft and right-hand channets. Howavar, zinin Is a wish to trammitinformation for rear channela too, for oxamble, $\mathbf{v i \text { ifft-hand and a right-hand rearchannel }}$ for so-called zurround sound. Also in other cases k. may be very ureful if exted information can be noded to akisting cheirmels for dijgtal ulgrols traving a predelemined farmal, withoul the need for axianding tits number of cliannale for this purposa, in thes context ane may itink of adding mudicalginde cantaining musik: mformuition without vocals, which is commanly tereved to $\$$ karaoke, 50 that the weor himnell car provide the vocale; or adding munkio signats in which a speolfic instrument is omitea, so that the unar can play thif insinument slong with the rest of the recordIng, One ruyyaliso think of adding extra informationty way of dato sigrous, गuch es, for example, for Cestex Information,

II will be suident fisi In ail ithee catea the system is. desired to bn compatible with state of the art tyy. tams, that in to may, ishould be possitle fo reproduce the original signal Imenmalian in an undisturbed mooner eittrequipmant not cornpinsing a spec:flc đ̈erocter for extracting the entra informialion Tcer the stanel. If, for example, thare is a levevalon signal candaining ashraind-taund information, in a television aet not equipped for producing sumpound soumd, It showld be possible to reproduce the information for tha left and right-hand channels without thia roprodiction being disturbed in any aualbia way by the "maskad informetion for axtracuing the stgas from the fear channels

Itis an object of the invantionto provide a systam preserting this feature end it thereto proviaes a sys. tem of tha ahove typo wherein the coder caimprises
meann for ansyysing the digltal aiginal means for quantzing the anelysed digital signal in an unaquivocal mannor and means for determiong, on the besis of the ecousice properties of tho numsn auditory aype ed fa tho quamized digital aignei witnoutthls extra in: formation bsing qudbler with unimodiflad detection; meseni for sornbining the extra information and the quantized diglai sigrai to n compound signd. The the may furher carmpisa nearis for reconverting The compound algial into a digltal sigred hewing itb prodetermisod formal.

Accoriding th a prefered ambadimmit of lie intvention the psychoacoustic property of the fiumen quadicoy systam le exploited that whan the audia jeeovency band is anided tmo a nomber of suln fandis, whose banowidths approximataly correspond with the bandwidiths of the critioal bands of the humani audroury syotom, the muantibing nofse in such a sub-
iv bond is opilimally- maskee by the agnaln of thin subband.

M phould be nated in trie respoct that a poder for ganerating subband signala ie known From EP-A-0 289080
25 In an amtiodiment in whiltt this mashing principte Es implembated the means for anatyaing the digital algnal comprise amalysis filter means for generaling a wumber of 'P subb-tand sigmats in terporise ta the digitai sgrad, whiten analysal fitten meame diviste the 30 - Trequency tand at the digital sigmad into comsticuliva sub-bandin hawing band numbers $p(1 \leq \rho \leq F)$ ate cording to a fliter method with sample irequency veduclors. whillo the bandwidths of the sub-bands preturably approximstely corransiond to the critical bandr 35. wlaths of the hummauditory syotani inthe respecive Frquency renges uilthough it is likewise possible io use a amalar number of subibands, wherens, if the auxillary algral Is a digllal audio sigral, gasalysion Fhear meins are preferably also provided for generailred a
 Mlary slgral, which analysla fller meand divide the frogomicy tand of the auzillary signal inla consacuthe sub-tainds with bend numburs $\mathrm{B}(1 \leq \mathrm{p} \leq \mathrm{P}$) aceconding to s liter methot wilh sample frequency reduction, whilla the Dandwiaths of the tab-bandagagain prefarably approximately corraupond with the ciltical osondwidths of the fwiman auditory system in the respective froquancy ranges, wherees for each of the respocive sub-banas means are providad for guankleng the digitail slonel in an unoquivocal maboor and means for combinina the respoctive quantized wibband signate and the correspondiog sub-band alonela. Prefarably, the codor further convrises the pusillery signal for constiluling P coropound sub-band nignate, and synithesta tilor mesras for construcurig a replica of the ampound signus in fecpopies to tha sompound sub-band signals, which synithesis fitien meapis combine the uubbunde bcearding is a ilfler
methoit with sample frequency entencentent cortesponding to the sub-tivition in the annlyris filer means.

For extracting the aukiliacysignal incorpornted in such a compound slgnal there are peovided s deooder, comprising analyats iliter means for generaling e number ol campound sub-bandzignein in respanae io the onmpound signal. theas anelysle fitter meant suhdividing the frequency bend of the campouna signal into coneccultive sub-bnnds having band numbers $p(7 \leqslant \mathrm{p} \geqslant \mathrm{P})$ according to a filter maifood with Eample frogiency reduction, the bardwidtiss of the subhinds carespanding wats those of the amalysir filter means in the transmilter, means for quantizing in an Hirequlvocal way the campouind subband signale: means for swotracing the resprotive quantized subband sigrale from the corresponding sub-band sig. mals of the compound sigmifin corder to form sub-band diffornonco tagnsia, and synthesis fifter means forconsifucing a repilca of the suxilary signal in responsu (o subland diffurance signals, which synthesits filer Theans eornbine the subbands according to 4 filter method wath semple froquancy enfangement comespopaling with the sub-division in the analysts filter misars. The analynis filer moums and the synthasil Filfar muans logether coresillule a perfact reconstruction fliter boow in the cadier and the decoder,

Although the invartion can be appiled to rocordinp digitsil informetion on, for axample, a campact diec or a vidoo tape, as well asveproducing same, and alpo appillod to iransmitting and recaving digital intormallan as is done im. for example, televlsion, tranimitsshan and recsotion will be mantioned in the sequal for trevily, wheress recorting and subsequentreprofucllon are alao impleilly rolornod to.

The invention is based on the recognition of the fact thal quanizing the digltai zudiosignal in a predetemined manner omables ta mach in resulfent quanIbing notse owim informstion in the form of an suxil. lery aigrail, in the form of a discrete lime siguna, generally a glgtal signal, or in the form of a dete signal, and thm this re-quantized digital sudio signel with the incorporated auxiltary aignal can subaequently be recorvented into a compound digital tignal again havige the predetarmined format. while when recaiving thin compound digial signei in a recaiver that does noi compitsa a specilile decodet, the audiainformation incorporraind in the ariginal dgital auctio kigral can be extractsd from this bompound algnal in the cuslomary fastion, without the suxdlimy signal effecting this signal to ais gudibfe level because thits auxiliary signal Her below the mesking threshold of the wudia signal and ramains mensked in the quantising notso, in A reQelver that doas cimprise a decoder, however, the fir formatuon relating to the auzillary signal can be der rived fram the difterence batween the compound digtral algnal and the compound digital siond quantzed in the prodolimmined manner.

The reoogrillan on which the invenilon la besed enables in a retativery somple marmer to add extra irformation, in the form of an auxiliary egina, to an asIsting digital audie signal having a foxed format, to the oumud the rnain aignal haraliuatter and, subsequently, extract same again, without affecting to an audible extent the originai information, whereas this orginal informution catl bs reproduced aven without any modifleation of the recolving equipmant.

The recngnition underlying this mvention can only be applied if a mumber of mquifements avo futfillod, which are the follawnig:

1) The quaniznillon meithod for the mein shanal le

Io be selected such thal the quentizalion meif.
ods implemented both during iransmissianf unis reception is alway the sams.
2) The ampitude of the auxiliary signai th oet audad is to be ameller than half the quantizationsiep of the matr signal; and
3) The quantication of the nain signat is to the performed such that the quantization noise in rios audibly arihanood.
Condifiof 1) can bo tulluind in a slinple manner when a choice is mude in favour of a ilxed quansizaVion step, whase sizs is thus independont of the empitude of the main signel. When quaruizstion is offected both at the tranmmit end and Hns ceceive end the quanticestion step in tised and no prableres will cocur. In practioes, however, an asaptlve géanitanilan ptop is preferably gased becautsa a will then be proasiole to roal (se 3 maximum amplitude rangu for the aurliary signal. With such an scoptive goantizallon mpeciel measures aro to be taken so as to decide aways unequlyccally an the same quantizetion during tranemisaion and recaption, both at the transmit End and al We recatve terd, ifrespoctive of the skgna ampht lude of the main rigirel.

According io a preferred mbodiment of the in. vention the mingnilitude of the quasization step per suk-bang depende on the emplliude of the mien slenof, whilat there is an exporienilal relationship wift os predekermined baato mumber bel ween 3ny consencus tive staps. Thus it ia passiale to athtain adequive quarflestion whilah accommocaates iteall to the ampillude of tive main signal and can be derived in an unequiv. pocal manner from the compround aignal atitie pecrive end. pa ay bo rectalmthus the imain aigrat. Themaiter will be futher axplained hereinbelow.

The above condition 2) can be futfited by atternaling by a apecific factor thes nuxiliary signal per subland at the tramemil and and ampifying this sigrinil agnin ty the eame lactor at the recelve end, whilut the magnillude of inla factor can be selected in dep=ndance an the megnillude of the quartication stap used for quanteing the main signal, If the auxiliary algnad is a data aigrus, no attenualipn ib reculred because in tmar cases it can be delermined for each quaritesed aimple of the mmin signal how many bles form a haif
quantizalian atep ans, zonegequanily, how many data per simple can be atded.

Gondiliona) eam bralcally be fullilided by chootino the quanciation atope email enisugh se ithet fins quanlisakon noba can Do máhteined at a very low leves. Howover, this witl lesd to a connict wilf condilion 2). For. If a amail quantizataristep is cancampor, the amphluces availacte to the auxiliary zignal, which ampit tude. For that matter, ithoudd be amailler ifien this hall quantiation stap, is alio very amelf, which will leed te problang in conneotion wath notst and reproduct billiy of the auxillary ilgnat Therofere, a ralher etares quartization of the main alenad is preferably used in cainluination with meanuress to make the resalJant quandization noisa tmuodible to the fumari audt tory syatem-Suah mousams are known per seb.

A first messure is besed on the phanomenon that when the audio slgrat tand is dividod into a pluraility of suthbande, whise bendividfler acopoximately correspond with the banidwaiths of the eritical bandir of the human suaditory syslem in Lherespective frequency ranges, 5 imay to expreated on grounds of psyohoacountio experimenta thes the quantzation noise in suct a aub-trand will be optimatiy masked by the sigmats in this sub-band when the noise masking curve of the human aualtory syatom ie takon into scocount when the quantization ts effectoc, This curve indleates the throshold voluo for inasking nolse in a critfagl bend by a single fone in the inidale of the cratical bind. If a high-quallity digital mualc skanal, rapresert:ed, far example, in acoordanco with the oompact disc stanitard, ty 16 bils per nignes simplo with s sampling rate of $\mathrm{U} / \mathrm{T}=44.7 \mathrm{~h} \boldsymbol{\mathrm { H } z}$, tilurns out that tha use of this proc-art subth-hand encoding wilh it suluably chosen bandwidth and a sultably chasall quantization for the rospective sub-benids resulisinquantlead hanamiter output signale wilch can be moresentied by en neveage number of approximataty is bils per oignal omt bio, whulst the quility of the reptica of the music signal does not percaptually differ from that of the orginul music algnai in vintually ail patsages af virtually all sorte of musio slgnase. For a further explanalion of this phenomenon reference is made to the artide enlited TTHE ORITICAL BAND CODER - DIGTTALENCODING OF SPEECH SIGNALS BASED ON THE PERGEPTUAL REQUIREMENTS OF THE ALIDTIORV 3YSTEM by M.E Krasmer ir procestiligs IEEE ICAB8P 80, Vol. 1, ppi 327-331. April 9-11, 1980. By implenientlag thlo no-called simultaneoun masking in frequency sub-bandy the mairn signal can yet be quamtiond wilte a minhmum lass of quality despite a ocarse quanlizalion, as a resull of whloh the maxh miun quantiestion range for the auviliary signal, that in to sey, the renge sniellar fiant of fult quantiaztion atep, is relatively large, to that inls algnal too can be reconstruoted with a minimumy loss of quaility.

A further meanare knawn per se ullizen the paychia aemanatic efleent of lemporal marking, that ie to
syy, the property of the fumpan auditory syatem that the threshoid value tor perceiving signaln thortly before ank Shartly ather the oczurrence of anothisesignal naviog a rolatively high slgneil anergy sppesara to be 5. temporariyy toigler then during the absences of tha fatsernignal. in the pariod of Hme betore and offer zuch a algnat nowig a : high algnal anargy, estra ifformoflon of the auxiliary signal tan naw be recurded, It 2e slao poesible to combine turmporal maeking with tre kuency sub-pand masking. Affrst possibilay in tila re: spect scocording to the havantion fes the implemente: lion of the knowledge about the momituate of nime or marg praceding difyitaisignai samplea. H1 there itin decreasmep umplitude the quantization stepp can, in the case of ainplive quantagalion, be chosen to be larger Ihen would be permssibles on the Dasiz of the actuel ETgnal ernplly ude and tho selected quantiastion conterian, because lize rasulant extra quantzation noilse at this relatively low amplitude is masked by the precad-
no. ing larger ampollude(a). Since a coarser quariteation can be chosen. more extra information can be mussked in the digital sigral ramples following a large signal aimplifodes which favourably affects the signal to-nolse ratio when the aupilary signal is recalved: A groat advanuge of this manner of ternporal nashling In the foct that no additional delay oczurs when the emples are taken tor whith if is permitted to quanilep more coarsely on the bauin of tamporal masking

A further possibility is moring the farmplea of ine main signal in blocka and deciding to come to 3 aingla quantizalton ste0 which holes for asi samples in thal block on the basi of the maximum signal amplitude In (hat block, whitet zssuming that owing to temporal msaking the aclusily too coarse quantization of the samples having a lower sample amplitade is innudible. However, a block hignal sample is Invarravily to be stored before a quandiastion step can be doterminea.

Aapacial use of the coderis in a devices for roconding e digital signel on a reocird tarter, for example s magnatic recom cartanc: The aurillary stequer which ly then slino recorded may now aepve as a bpey thtibit code zakd device will he uned by the soikway foduity lo ganarate prewecintand rmoond carisers provided with e copy-inhibit coide. Whmn such recard eariers. are played the ennalog elgral athained iffer. D/A cont. version atill contains the auxiltary storal whilon, howover, ss stated above, la not audible. Every sutioequent recording viae sild analog patir, can mow be intiblud if a recording device intendied for the consumerplartel comprisea a detection Unì which is capabis of delecting said auxiliary salgnal.

Such a device for recording a cuigtal suidio aignai an reoard carfer courprising a coder for sub-band cabing of the digital audiosignal of given sampte treQuaricy $1 / T$, the codar comprising: analysis fiter menns iesposizivo to the audio signal to generate a ofurmily of P sub-biand signals, whicn analysis fiter
micans divide the froquencybana of the audia signtid in Accordances with a Illar mothod with samine tre quency redoblan inle consacutlve stit-bands having band numbers $p(\eta \leq p \leq P)$. Whictir anafyeit filler means ara further adepled fo apply the P buith-band signats to. P culfouns, which outputs ara coluplad to P oorresponding inpule of a

- reconding unit which is canstruged to record ine F sub-band eigmaif on the recond camer.
Is therefor chamctomzos in tiar the device further comprises a detection nimit caupied to the analyan filfer means, if that the dithection unlue adoptad to deLect the presenca of an wulilary signal in one or more sub-band zunals and to generale a conitrol signal unon detaothon of the maillary nignal and to apply the conlial signai to an outpur, fin thal said outpoifis courpled to a control signal liput of the racording unit, and in ifat the recording vitils adapted to inhithil recaroling of the eudio signal in the presencice of the cantrol eignat end to recprd the audio signal in the absence of the contral egraal, When the suxilary signal is detacked cesording is inhibleed, or the signat to be recarded is díatortad are purpoas beforo it is recordedi, it is abvioun thatrequaducing devices should comprize a decodar with which dising ieproduction the digital audio sgnal te ferd together wath tuv ouvilary signel, without the two algnals Deing separated from ine anothw: During a subeequem tecording the auxlliary jignat in the oudio slonat ann then be delected, If present, so that it is possible to inhiblt unautharized copying of copy-protesctod audio information.

It is athernivively posaitite not th inhlite copyprolectad information butmerely to detoct that the eudio aignal io be copled comprises an aloollary signal. and fo signel that in the relevant case the informution is protected and shoula not be copled.

Stich a devico, which is aloointendedfor the consuinar markel, foe recorring a digitan audio siznal ap the record tarions camplition a coder for sub-frand coding of the digital audio signal ot given sainple jrequency 1π, whrereln the coder comprisess

- Bnelykis filer meany royponilve to the andio 3lginal to grnembe a plurallty of P sub-band aignels, which antilyeis filler mearis dilykte ifie for quency band of the audia sigual'into consectir tive sub-bancs having liand mumbors of is of a 9) in accordance with a lliter methoct using sample fiequency reducilon, which anaiy yals Il.tor meam ane further adapled to apply the F sub-band alonate to P oulpuls, which outputs are coupled to P corresponding inputs of in
- cecording unit whiten is constructed to record the P syb-band algnade on the recond cartor, which device is oapatise of reatizing tite. is cheracterized in that the device Further comppriaes a datection una coupled io the enalyulis Fifter maans, in that ma datection unifis adaptade to detect the presence of an aunillary अignal

Th one of more of the sub-band stonatia and to genarate a cagimi sigral vport detaction of tioh muxilary signal and fo apply tho control signal to En outpuh, in that said output e couphed to a signaliong unit, and in that tho signallog untith constructad io signal thet the audiosignal to be resordect, whien a control segnal is preaent, is an audiasigmai contrining an guxilary Elonel,
The above recording fevicas, which am intond90 Par the consumar markem, may be charactariznd fur ther in that ithe codes furtiat comprises signal corpbinailon maans coupted to the amalysis ciller meners, in thai the stonat comblantion mwans are adepted to telectively udd the nuxillary stignal, in the absences of a canimal sigmst, to one or more of the sub-band sigruts ta zam P composile sub-bancalgomes and lo epPly Nild P composile mib-kand aignsha to P outputs, which P outpuls are coupiad to the P corresponding ingus of the recarding unit. Thin enablea a user of the devire la provide his recordings, if desired, with a copy Inhibil cods, if arder to omure that no sopitas can be made of recond carrieramado by the user and provided with the awn recardinge.

The devices intanded tor the consumer markes may alternativoly tee characterized in that the coden furthor comprises signal cumbinallon mesme coupled to the analysin fiter meand, in that Lhe wignil combination moans are sdaptod to andd the auziliary signs). In the absence of the control algnet, to one armara of the sob-band signelas lo form P compasile sult-hand signals and to gpply said P componite aub-band signals ta P oulyuta, which P outputa ane coupled is the Pcaprespanding tipute of the recording unit fo that cast thera it no longer a salection poseibiblity and in sill catzs an autiliary signal will be adoed to the audlio signai to be recorded, which does not yet contaln the a wxillay y sigral; This enables original recordinga (hat provided with the alusillary अigne) of perecorcea tapes (neithor provided wibthe auciliary signal) to bo uopled, while it is not pasgole fo moke coples of tis rocordinge thas copied.

Embodimente if the invention will now be desenbud in mora cotalli, by way of example, witit referenca to the drawings if wirich:

Fig. I shows a block dragram of a prefenud embodimenti of s tranamibrecesive sytlam comprisIng a coder and zateoder in ecoordenca with the invention.
Fig- 2 lluasmies dingrammalitally the quantesLlon mathad in the coder.
Fig. a thaws a dovice for recording a digital audio Bignal an a cecond cartier
Fig. 4 showe a devke for reproducing the signal recordet on ttes record carrier by misans of the devices showm in Flg .3 ,
Fig. 5 shows anolfar emtiodiment,
Fig. $\overline{6}$ shavs if furtior embodiment,
Fig. Z asiows still another emtiodiment, and

FIf 8 shawa yet another embodiment of a device
for remareling a duldel audio signat.
Fig. 1 dimgramenatically showe a syatem compreing = transant tear 1 and a recaiver 2 for adding and exinacting rospectively, evira informition to and fromin digkal audio algnal hisying a predelerminod format, which information is Irarslurred yla or stored if ime dium a. Thls medium can be a trangindesion channai but, tor example, atso a compacs ctisc or a magnelie: tape or dise.

The trangriitter compnges a coder in the formel a processar 7 himing an input terminal a for the diflal signal $u(M)$ heving the predetarmined foymal and on input terminal 5 for the addilionat aigital aidoliary algnail $v(k)$ and fraving in output terminal 6 . The output terminal 6 of the processor circull 7 a coopled to the medrum 3.

The receiver 2 comprises a delay circuil 9 heving a delay s , es wall bs a deooder in the form of a processor clrout 10. Tha input lerminaly of these twe circults ero connected to one anoithor and aranged for recsiving the digital compoundsignel produood by the modiam 3. At the output termiral at the delay circuil \& the reoin stgnel la avaitable again, an will be explained heroinatter, in the form of a slanal $u^{\prime}(4)$ and nt the output ferminal of procesaor cirtalt the the suallary alanel is avsilabio in the form of a signal wi(h).

The aperalion of the syatem according to Fig. 1 is sa follaws. Al the input terminal of the tranamilter 1 soribditutive samples of the signal $u(k)$ sre presen-
 In Accompanca with the compact diec ftanderd, each Itgnal tumpla camprises ta bite and the sempling rate fo $\mathbf{4 . 7} \mathbf{7} \mathrm{kHiz}$ in the proceasor circull. 7 it is determined how much information of the signal v(k) ran be added to oach lampla of the rignal u(h) on the basis. ofthe chosen method according to which ihe nuvillary signel $v(k)$ Is adood, that is, by meare of lemporal msstiong of simultansous frequiency sub-band mestIng or ty rrauns of e combliation of the two. Il leme poral reasking is used, thils may be done in the lime intervele shorlyy beflene undior stictily afler a loud passegis in the signel u(k) and if simulanerve rasko. ing is choserc, It will be possikte to add informution about the slignal $\mathbf{w}(\mathrm{k})$ to eoth signal sampla of the sig: nal u(k) hy means of the pubdivision into trequancy sub-banda. As slated earlier, a comblinstion ot the iwo typas of masking is possibits. The comolied output signaf of the processor cricuit T is ruconverted in a convertor 28 Into the pridibiermined format of the diglas main algrai and applied to the modiuma.

In the recelver 2 the recelved stignal is aublocted to a detoding operation in the prosessor circult 10 in order to split up the algnaws $u(N)$ and $w(3)$, so that at the nelput of sirouil to the sigral vigh te avallable, whereas through dessy circuit 9 , whinse deliey ia equal (a) thal whioh la produced ay the processor ofrout 10 . the algnal $u^{\prime}(k)$ il avaliabla in aymetrontemn w/th the
stgnal $\mathrm{F}^{\prime}(\mathrm{K})$
In the sequet ine structure of the procpesen ofrculte 7 and 10 will be oxplathed.

The procassor circuilf 7 oompnses fifter bania 2?
(and za for zoiating up througn sample linquency is: diaction the respuctive vanets $\mu(\mathrm{k})$ and v(k) into p consecutive sub-bands, whose bandwiaths uppronemalety correspond with the critical bandwathe of the funkin hearing in the tespectiye froquency binds. The use and structure of such niter banks is known from, for ekample, thin sbove article by Kmisner and the chapper of "Sulb-band coding" in the book sintitlect "Digitai coding of wavetorma" by N.S. Jayoin and p. Noll. Prentica Hall ince, Englowcend cullis, Naw Jorrey. 1894, pp. 488-579. Ench of Uie p aub-band slonals of fittor tank 22 is applid ta er actaplive quap. Elzer 24(p). with $15 \rho \leq \mathrm{S}^{2}$, wherena sach sub-band oulputsignil of filter bank 23 is applad to an allentualor $25(\mathrm{p})$, with f \& $\mathrm{p} \equiv \mathrm{P}$. The outpue sigrain of summing chrall $25(p)$ ane now opplied to a symbieniertiter bànk 27 in whict the P sub-bands are combined tha bignal heving the same bandwidth as the original signala $u(k)$ and $v(h)$ - The culput nignat of the हymthesis filter bank 27 is encoded in a contvertur 29 into a digItal stgnal having a predelermined format for oxample, is bits, and appliad la the medium 3 as a compound aigmal 4 (K).

If the number of quantizalionfevels per frequency band in the tramamitter 2 is chasen in the right way, noibling can be percetved mo the digial tilgral appllad to medhum a of the addition of ine sigarial v(k), provided that Ure condition ls Foffliled that the ampiliude of an autillaty algnes semplo to be added to amaior then q/2 in each frequoncy sub-band for each sample oil $u_{\mathrm{p}}(\mathrm{k}) \mathrm{t}$ whara g is the quantization step of that tamples.

Al the recalve end the original nignel $u(k)$ cin now bo reprocused tirectly without any acaptation by means of a non-adapled dovipe, bucesuse in the compound digital signal s(1) the exxra information of the shanal $\mathrm{v}(\mathrm{h})$ (s) not audille, becaunt It mesked by the signal u(k).

A receiver which is indead nullable for receiving both the signtal u(k) and the signal $W(k)$, for sxampes; a D2MAC felevisian receiver with sigrounis-sound ieproduction features comprises, however, a Mer bank. St whlch te arranged in the same wey es the rllter baok 22 The filter pank 31 spite up again ite yopefves compound slonal akky into P sub-bentis having the same bandwidthe and cenifaifiequencion as Die aulh-bants of the fitter bank 22. Each of thege nubthand tignate is applisa to in adaptive quantums 33(p), with $1 \leq p \leq P$. A proper dimerasianing of this quanlirer provides that for each sub-band the alghat up(1) la egsin obtained froim each ot the P mub-banaa Bller quantizaton. By subrmeting ach of these subtand algasb $u_{0}(k)$ from the compound sub-tand alg.
 sobtminedfor ouch sub-band p. Each of these signalk
$\mathrm{V}_{\mathrm{e}}(\mathrm{K})$ is amplifted in an amplifier $35(\mathrm{p})$, with 1 s p : P, by a factor G which it the sarne as that which is used in the poder for attomuating ine relevant subband and, subosquentily, thesa scaled signols v_{0} (k) are applited to c symthente fituer bank 36 which reconstructs (tie slanal y (k) from the individual sub-bands Yo(k). The al(gral u (k) can be extracted direet y, as obsaryed nersinbefore, from the compound stanal a (k) and neseds ondy to be detayed in a detay circailig over a lime wrich to spual to the celay lims intioltuced by the procassor 10, It the mais wignal and the aupiltary aigral are destend fo be synctronotis.

In the case of n tolevislon tranimit-recalve sys. (em with surround-sound reproduction facilties, Ift the left channel the signale U(k) and voK) may be the Higlal ryproducion of, for exemple, the kignal LV + LA and Uie signal LA respucilvely. An unmodifiad recaivar will gacatye the complato sound signat L.V + LA and Can teprodves this withoutcomplicationa, whsiesas in a modifiad racelver, the Bignale LAA and LV can be applied sopperalety to the relovant reproduction chamnals atler u(k) and vikg thave bube spilt ue by meina of io aubtracting citcuil.

If the suque il will be discussed in what way the adsplive chomitars 24 (p) and 33 (p) can bo arrangad in the cmanmiter and fecaiver of the systam according to fig. 1 soan to obtain in an uriaquivocal manner amadapive quantication for each af the wib-band Elariala. For this purpois the number of quanitization intaps casired for eacti ar tire sub-hande ia detarmined baforahand, which this number (p) is censtant for each of the sub-biands.

If viow of the wish that quantizalion be atiaptivo, the guantiasion steps are to he chasen approsinnaio. Iy in prowortionto the signal siza. For this purpone the ampillude axiu te subdidived into sectionts T, whilse, If the anpllfude of a sample of the Eignal u(k) is situated
 quantization stepa for lhat sample have a spacific magnilude which is equal to the megnikude of tie seoHan T_{m} The quantizulion lovel ls postioned in the cenIre of said sacilons, ao is to allow the nuxilury aignal $v(k)$ la have equal armifitudo ranges on siltier one of the fwo sides of this section reiative to the quamianFion lavel, without the comppound signal $s_{p}(k)$ teing sitLuated in ansifier quartizatlon section.

Stince one wishes to choose the quaritization steps in properiton to the meximum signal atze, and the mumfier of quantizalion steps is It sudes of the bections 7 which alwayan determine the magnitude of the quanlizalion siop. have to enhance in proportian ta the arrplafude. Therefore, the varitethon of the bection magniltudes le preferably exponen-
 a isa cmistantand dian herger: Tho wuantiration leval befonging to a epachic sector $T_{\text {a }}$ fo then $1 / 2 / 2-2 / 2$. $\left.\mathrm{a}^{10-19}\right)$

Fig. 2 shows an ampliude axis on whion the di-
the raletionship wilin exists betwean these iwo sigกаіа.
in order (o avold $\%(\mathrm{k})$ novertheters encasaing ihe value $q / 2$ in any way, the output ine of gach atteruafor $25(\rho)$ can camprise the limiter $30(\beta)$ shown in a dashed line in Fig. T, which Invilas raceives information about thesimitation value to be set from the girculto 28 (p) and limits the output signal of the altemisalor 35(b) to 3 maximan of $\mathrm{g} / 2$

It a choice is made in Favour of simultenéous mesking combined with temporal maskling. the dirculls 28(p) end 32(p) comprise the circulte necessary for comparing the current ismple of $u_{0}(h)$ lo one or mone previous samples no as to derdde to a larger quandiztion slap on the baris of pre-slored infomatlon atroun the varialion of the temocral masking curvo beionging io a specitie maximum amplitude of $\mathrm{u}_{\mathrm{p}}(\mathrm{k})$, If the current samples has a fower amplitudi than the umplitude of and se inver of the previoun samples.

Ifr the casa of Moch quanikstion, a buifer cirsuil is to ben wovided between eech of the P outputs of the fllet bouk 22 and the injut of the relevant quantizer $24(\mathrm{p})$, which circult constantly stares a block of Misignel samples, dotermines the manimuin block ampir tude and user thlo value for deternining ite quanti. vation step for the entico block.

Finally, 1 ie obyarved thet addalional reom can bo found for adding vsh) in a syb-band ρ by alan mansicering the ampuitude variatioris in adjacent sub-banda: H. in an adjiolent sub-bend, o farge amplitade of $u(1)$ occurs, wheraas in the p sub-band ampilitite of u(i) Ia vary sinall or evin awn, one may docide, on the basla of the matking properties of the signal in this modjacent sub-band, yet to aifow a speciflo emount of the signal vilo to anter the suth-band p.

II I s furiner pointed out that al the oueput of the quantizers $33(\mathrm{p})$ a signal $u_{0}(\mathrm{k})$ is ivalialile whleh beskally has lesa quaniteation nolso than the eigrel sik) ao thiat in a recalver compitsing a dacocter a belfus repilios of the sigrial u(i) can be dertved frem (tiege ourput slgants by means of an additionai byrihesis ?llter:

Fig. 3 showa e devica for recoroling a calgitel autio itgnat, such is the digile eudio slgnal U(k) in Fig. 1 , ant a rocord camer. The device cornprlses a coder 7 ' whict besrs inuch resumblanca ta the coder shiown in Fig. T-Ths only difference ts that the syntiert's ifter barik 27 has bean dinpensed with. inslead, the cals puls of the summing circuit $26\{\rho\rangle$ are coupled to are corriling unit 47. This recording unit is constructed to Fioord the Prob-band ajgnain applied to lis inputa on a record carvier 4б. Ayoraged over all sub-bancly this enables muche dela roduction to be achlaved that the information to be recorded on the record carrier fit iscorded with, for examplo, 4 olts per sample, while the Imformation spplled to tho Input 4 comprises; for axampin, ie bles por sample.

The ausillary signal $V(k)$ is genemated in an anx-

Hiary aignal gumentor 40 which his an outpul coupled to tha impul 5 , fo andy the acxiliary sigoafto the coder 7: Ey means of the coder T the suxiliary wignal la ite serted in the audio siymal in the manner described
3. ieveinbifore. The ausillary signol can thus be inoorteginte one or more of the sub-brna aignsili into whien the audio signal (M) has beert divided.

Prefonity, tho sugullofy aignul io ecoommodatad (trone or more of the lower subi usecis fof law frequen.
mh cy). if Bte aub-Danas which are situdied it the lowTrequancy range the algrial Dinderit oftro oudjo algrial Is gervernly maximes. This means then ithe maviblog threshodd in sald avb-band(s) is also high. This antEbles an avaliay y igonal of large amplitude to be intthe aunillary Nigmbl.

Thus, by ussmy of the devke anowo in Fig. 3 racond camiere is we obtained on which the nudlo algheil iroluding the aumiliary signel in recorder. The mathod of recording on the record camer 48 , ase is offocted in the recorting upil 47 . is not relevant to Itie prosant Invention, it is passible, for axample, to erre play a recording method as knawn in RDAT or BDAT Ecarders. The operation of RDAT und SDAT recokdera ia lyown per se and it described comprohansively inter alla irt the book. The art of rigital audiot by J. Walldrason, Focal Press (Lonion) 1888. Obyk ously, the recarding unit 47 ahowid be capable of cort Verting the paralle dotastream of the A but-bendsitgnetn into a signel strean whikh can be recordad by means of an RDAT of SDAT recorder.

Fig. 4 shows dlagrarvynatically a covice for repioducing the auidio algnal as resorded on the record carrier 48 by meanis of the devica shown in Fig. 9, Fce: this purpose the device comprises a rand unic 41 which is construcked to read the date stram from the recond camier 48 and to supply the P sub-bund signals var P outpuls. Theare P sub-band signals are thon appled to P iniputa of a synitiesies fiter bak 27 ; thaving the same fenotion ea the flter bank 27 in Fig. Ti This means that the Prub-band signais are recombined to form a digltal signal of a predetermined formet of, for example, is biliz. Aller O/A converrion in the D/A oon: vorter 42 the audfa ajgrel is then evailable agsif on the output termiraul 43

The aucio signal, then sill conteinte the suailiby slgned. However, this auslliery signal ie not audible bycause it is maknod by the audio signal.

Fig. 5 shows a devics for recording an audio sigral. for example the mudio signal reproduced by the tevica shown in Fkg. 4. Soch a devica is intended tor Etample for the consumar markel The devica ls capabie of nommalify rocording audio infommation noa bontaining a copy thblblt code on a record cartor. ES Howevar, Iho doylce compnies a datactor unit to dotirct a mopy inhiblt codo In eerted in the audla fagnei to inhibil recording of this audio signal

The device shown in Fi9, 5 biers much reswn:-
blance to the device athawn in Fige, 3, the difference berng thal the dovice hown if Fig. 5 to nal capable of inserting a cepy inhibz code into an audia signal. Thid maene that the eitements posing the raferance numarale 23, 25(4) to 25(P), 38(1) to 28(P) and 26(1) to $26(P)$ are dispensed with. The dovlca stiown In Fig.
 aingifiors $35(9)$ to $35(P)$, a symithonis filter bank 38. and a detactor ura 60 . The suction I0 of the device shown in Fig. 5 , indicsted by meares of a solia ime, is infactidentical is the decoder to in fig. 1 . Thumeans that the sestion to' 'f adapted so 'lller out the awxillary signal which, if present in the digluel mudio sigital upplled to the inpul 51 . then becomen swsillabte on the output 52 The detacior unit 50 , wich has an ingut 53 coupled so the outpul 52 . In constructed th dutbct vaid auxlliary slgnai and to genemse tife montiol signsi wilich is then appitied to the control sianal mput 55 of Her rocording unt 47 v via the ourput 54.

The recording unit Al ' la consitucted in such a way that ifa control of gnel appears on the control silgnat inout 05 the recording unit A7' coen not recoard the Sub-band aignale appliéd lo lis inpute or sariousty ditotaris theat sub-band silgmals heloro they are recorded. In tha ebcence of a control $⿰ 丬 g$ gnal on the control shimat input 55 the reconding unit 47^{\prime} will record the sut-bond signoie applied to lie liputs.

In the way an audio alanal eantoining a copyinvibin code in the form of that sumilary slgnalinaertsd In the sudia alinell is provented trom being recorded or the necard cartier $4 \theta^{\prime}$ by the devile

Io the devies strown in Fig. 5 it is ansumod that the auxittary signal is occommodated in a number of sub-band algnels, Howover, at atready statod, the suxillary signal may alno be inserted in aifly one sub-
 and one emplifier 35 are mquirect and the Hiler benk 36 contpisen onty ane inulut in the symtheste ther bapk $3 s$ the acoillary signal to converted into a digltail shanal of. for example, $16 \mathrm{~b} / \mathrm{ts}$:

The detactor unis 50 may be a detectoc unia which (ai) direotly detect the pressnce or abaincia of a dilgHal signuw. Arother posaibilliy is tree use of an analog delector unit 50 . In that case the output signeat of the niter leank is first convertud into an anolog signal. The deliestir unil 50 them comprisese e namow band bandpaiss filler, a rectifler ana a theeshoid detactar. If the inpul elanel of the device is an andog slanal an A / L coiverter is erranged botween the tominal at and the upif of the filtor bank 22

It is now assumed that the ausillery ignal in inserted in onty one sub-band, for axample the lower aub-bend. In that case if may be adequate to use a simpler detedlon circult th tho farm of a digital fittar couplea to tho outsut $\mathrm{P}=1$ of the anmyals filter meanio 22. This filter may be for exemple a recuralve filter having a aharp Itler charactaristic, the maximum in Uto Fifter chamchoritice coinciding with the frequency

Fig. 6 chows an embodiment wblen beare much resamblance to the embodimani athawn in Fig.7. The embodiment hown in Fig. a accludes the presibility of making a chojice whether the audia signal wbich does nal contaid a copy inhibit cocte wel be provided with such an mibibit codo. This meane that if tye detector unit 50 detecte that the signal to be necardett does not sontain an ausiliary signal, this auzillary signat will be ineerted autametioalty. Fig. B shows thai ifterconnections are now mranged between the outpute of the amgififers 25(1) to 25(P) and the (secand) Incuts of the slgnal combinalion uni(s 26(1) to 26(P). The switches S_{1} to S_{s} and the controi algnal mpill 60 for Fics 7 aro conilequently dispensed with.

Such a dayica la very useful it il has been dacided to allow copleat to ba made anfy af prerercorded record carrians (vhlich pra not provised wilh asid auxiliary kigrad) and original recordings (which reilher pontain said ainiliary pignal), copying of these coples, how ever, being inhlblted. Aprerecorded recard carrier can now be copled namelly, Howover, the resulling copy is provided with an aupillary signal and cannal be copled again.

It is is oe noled that all the ambodimants have beon doscribed for divices far recording a digitar atrdio eignal on a magnotic recard cartipr. Howevet, thes should not be regarded an aliminting io magretie reeard carriere only. The Ifivention lliowhe rotates to davices which rocordine audiosigint on an cptical recond cerien in the future thin posalbilly will bocome availsble to the consumer. With the stiven of the CD enasable and the CD writo-oncs and megneiboptical recording techmologies:

Cisima

v. A oodor for incorporating exira information in the form of an auxilisry signas v(l) io a digicar audio Eigersl u(b) twiving a prodetermined formar, cherEcibrisad in that the poider it) comprises manne $(22,28)$ for anslysting the uigital signal, maans (24) Far quantiang the analysed silgital egnal in an unequluodel marnar and mesans (985) for determining, on the beata of the aroustic propuriliss of the hursien audilory eystem, the amount of sxTre informetlor that can be adderd lo Hus quartizisd diglesl elgnal without this extra infarmaiton being aud bla with unmodiliad delectlon:meuns (26) For cambleting the extra informal/on and the quantized dejtal signal to a compounid Eigeal
2. A coam as defmed in Claim 1, charactarizad in that it compriaes mesing (29) for reconverting the compound gifini intor a digltal stegnal fisylng the pradeterminad formet.
4. A poder is claimed incluim io or 2, chamatertgad

In that tie means for analysing the duytai signal comprise analysis filter means (22) for gonorating a number of P sub-biend signals in respotise Io Hie digitai signal, which analysis inter meane 5 divide lhefrvquoncy band of the digital aignal into conmeculivs sub-bimde having band numbent p I1 $\leq \mathrm{p} \leq \mathrm{P}$), whereas for ssich of ithe rBspeciva sub-tuands (${ }^{2}$) mesns (2 (D)) are proviled Tot quantizing the digliss slgnel in an unequivacai. manner and means (26) tor combining the bespecilive quanilzed subiband stgnais and me auxiliwy sigral for consllultig P compound sukband ugnale
5. A codar as claimed in Claim 4, characterimen in that the awxiliary aignol v(V) is s algital audio aigmd end in that analyoia 1plar means (23) are provided for ganersting a number of P sub-band sietrals in response to thenacillary signul $y(k)$, which argalysis filter means ofvite the fequency band of the auxilinry signal into conseculive sub-bends' having band numbers $\rho(1 \leq p \leqslant p)$ bcoarding to. \& fillar melhod with sample rrequency reduation.
6. A coder as cleimod in Claim 4 or 5 , characterlesed in that the bandwidthe of the sub-brands epproutThately comreapond lo the critical bandwioths of the human anditory systom in the reapectrve frequency rangen:
7. A coder as ataimed in Claims 4. 6 or 6, obaracterfinedir that the treans (24) for quantizing the dioEal sigrail In an unuqulyocal manner are arranged for adrulivelyguantiengin this signal and inthat for sach sab-bind the alze of the quentication step dignimeds on the ampaltado of the diglial signal sampile, while thare is aive teponential cellalloushiy with a presat basio number a beiween the noseible saceessive stops.
8. A cocer be dalined in Olaim 7, characteribed in that the sizn of the quantazifion step of a sample to be quantizad also depande on the arae of of lenstis grevioua gampls,
8.. A coder lan cinimed in Claim 7 or 0. Chametenised in that mearts (2s) ara provided for attenualing: Bachsub-band signal of the auxiliary signe) by is
factor G, fos which boles $0=2 a(a-1)$
10. Adecoder to bo useld moombination will a cxder (7) as claimed in Clalms 8 to 9 , charscterisad in thit the decoder (90) comptises analysia filter means (31) for goneraling a nurnber of compound sub-band signais in resporese to the compoumd signal. which analysis fiter meane dlvide the Trequancy band of the compowind signal into consecuilve sub-bands hsving band nuntuers p (ispa R) according to a filtes method wilh lemple frequinicy teduction, while tier handwidtis of the sub-bands correapond with thooe of Lhe anslyes Fife means (22) in the coder, means (39) for quantiang compound aub-band algnala in an unoquivocal inanmeh. nvans (59) for subtiacling the respective spantized pab-band signels fram the corresponding sutb-band slanals of the compound slgmis for cooskitutisg sub-band difference aignials, and symtheals filvor meana (36) fer oonstructing a yeplice of the auxlliary aignal v'(h) In response to the sub-band difforence aigoala; which synthosis /ilter means comibne the subfainds acoarding to a lifter mailhad with samples frequency onhancament carresponding to the sub-divistan in the analysto ititior meats
11. A decoow as claimbed in Claim io, charactorised If that the means (33) for quantieng tha digilal aignal in an unequlvecal monner are arrmiged far adeptlvoly quantizing thit signal and in that per mub-band the size of the quantication step defende on the ampilude of the sample of the digItal signat, whilst betwuen the possible aucnes sive aleps thero is an axponential enlationsnip with a prodoterminad basit mumbur z

12 Adecoiter an dalmed in Clafin 9, chanacterieed in that means (35) ara proyided for ampallying tach zub-band dirference aignal by a factor G, which pomplise vith $\mathrm{G}=2 \mathrm{a} /(\mathrm{a} \cdot 1)$.

12 A duvice for recorning a digitas audlo aignes on a record carrer (48), sumprising a coder (7) an claimed in any one of the cialms it to s.
14. A devios for rocoroing $=$ ctipital audio ilgnal on a record carrier (48^{\prime}), comprising a ooder for whband rodigg of the digitad auctio stgual of plvem Sampla irequency \mid / T, the coder campriaing:

- annalyak filter means (22) respanefye to the butlo signel io gonemate e purailty of PsubBarid zignals, whion malyais miter muano divide the frequervay band of the audio signal in cantormity with a tiftes method with sampla frequancy raduction ints eapreoutive bub-trande having band numbere pil $\rho \leq P)$ whith analyats filter miaans aro fur-

Her adapted to apply that P sub-tand signasis io P outputs, which oulpuls ans collHed to P comesponding inputs of a
recarding unit $\left(47^{7}\right)$ which io adepled lo rofand the P sub-band signals on the recond camer,
characierized (a) lhat the device furthier canprites es a fotection unll (50) conpled to the andyser of. ter means (22), in that the detection unt ts adopt od to detect the prasence of an auxillary signail in one or more of the autb-band slanata and to gumrats a control sigmal upan detuction of the hisellary signal and to apply Jhe control signel to an output (54), in that said outpul is coupied to nocinrod slanal input (55) of the recarsing unit $(47 \%$, arid in tiat the recording unal is adapted to inhibi! recording of the nudio slonal in the presurice of the sintrol signel and to record the audia skanel In the alrsance on the control signal.
15. A dovice tor recoreling a digital audio signal on a recond carrier (48'), comprising a codier for subband coding of the difital sudio slanal of givan simpie frequincy $1 / 5$, whereie the coder Domprives:

- malyEksilitor means (22) renponsive to the audio signai to generate a plurally of R subLand signasis, with analysie nifer mosnt alvido the frequency band of the sudio signal into consecutive sab-bants hoving bend numbere $p(1 \leq \rho \equiv P$) in accurdanca with a tillermethod ualng sample Irequency reduction, which amalyail thter mesins ard further altapted to apply the P mub-hand signate to P oulpuls, which outputs are coypled to P carreuponding lapurs of a
- reocoding unill (A7) which is adapsed to (abord the P हub-bend sfigivis on the (fecond carviere
ctracacterieed in that the device further comprilees a detertion unit (50) which is cpupled to the gralyeis thler means (22), In thal the civtection unir ie artapled to detect the presence of an euxlary shanel in one or mome of the sub-band ailyhíts and lo generate a control Eignal upon dutection or the austilary s/gnal and to apply the control slonet than cutput (54), in that said culpulis poupled to a signelling unl((56), and in that the sig: neiling unit in constructed to signat that the audio a)gnal to be recarded, when the control kigrial is prosont. is an audicuelgual contailiing an auxiliery slgnei.

16. Adevics as chalimed in Claim 14 or 15, charncterized in that the coder futher comprises mignal eombination merans (26,37 to 5 p) coupleo to the enalysis filter meanes, in that the nignal combinitiameane are eanpted to nolectivaly (vis 60) and
the auxiliary signal, in the absence of the control ingrai, to one or more of the sub-hard 0 ginels to form P composite gub-bond sigials and to epply sak! P composita mul-tand signals in P cuiputs, whith Poutpuis ave coupled es tha P cornspondmo Ifpels of the yecarding unit (47^{\prime}) (Fig 7),
17. A deviea an claimed in Ctaim 14 or 15, charactertred tri that the coller further comprisel bignal combination means (26) coupled to the anelyaie nifer mesrs (22), in that the algnad combination weams am adtipted to add the aubluery signal, in the abinince of the control signal, to one of more of the sub-band signals roform P composites rubband signals and to apply said P composite subbene signais to P outpers. which P ouipuls are couplud io the P corresponding Inpuls of the recording unit (Fig 8),
18. Adovico as ciolined in Clalen 14, characierized in that the coder forms fart uf a coder as claimed in sny une of Lhe Clams ito 9 .
19. A record carrier an which à digital audio 3 ghal has bwen recorded by means of n device as clamea in any one of the Claims 19, 16, 17 or 18, oraminctorreed in trin the audio sighar ts divided into P sub-bondsanals and in then the audio sitgnal n combined with an zuxillary signol in one or more of the wak-bands it ordar fo obtaik P compoaite sub-bamd slgnals reconded on the pecard cartior (48), and if that the aukillary signal is relactod in euch a way that during raproduction of the emmpoilie audid sigital fecorded onf the record sarrier vta a loudspasicer dévica sald zuodlury aignal is mutratanilaily impurceptablef to a iteterier

Patentansprache

1. Kodierer zum Aufnehmen zubatzicher 'nformation in Form elnes Hilfssignela $\mathrm{v}(\mathrm{k})$ In ain digitales Audiosignat is(k) eines norbestimmten Formatg. daduroh gekemmecichinei, deß dor Kodimer (7) mi Muteln (22,28) zumi Analysioran dos digitslam Signeit. mit Milelf (24) zum aut aindentige Art und Wolse Quentisfar=n des aralyglerten Sigeale, sowie mil Mitain (28) zum auf Gfund der akuptischen Eigenscheften des menschlichan Ohras Beslinuven der Manga musâtzilotur Informalion, dje dams quantisuerten ilgitalen Signal zugaf Ogt warden kann, phot dal diese zusntitiche Information bel einer urunadilzierten Detaktion härber (5t, und nit Mutoon (26) zum Hombineren
 Ien dightalan Sgnats zu Einem zusammengeants ton Sigral vertetien at.
2. Kodjarar nsch Ansprueh 1 , dandurch gekanstzaichhim, dab uleger mit Mittan (24) versehwn iat, zain Unwandele des zunamimengesotzien Sigmais in ein dightales Sigral diey varbestimmen Fomnatl.
wobel as rwisciven dan möglichen aureinander. folgendem Schritert afnon exponentiatian: Zusammenthang mil einor orbesilimmton Grundzahi 3 g \% L
B. Kaderar nach Anizpruch $\mathcal{T}_{\text {, }}$ dedurch gekeniazelchnst, daB die Grobe des Quanilitarungis sahrites pines zu quantislerenden Ablastwertes zuglatch von dor Gröse mindestens eines vorhar-

g. Kodierer nect Anspruch 7 odet a, dadirch gekennzalchnet, dal Mittel (25) vorgesothien aind umf jedes Tellizanduignal des Hiltsagnale um alnen Faktor G zu damplen, wabel git: $G=2 n /$ /a -12.
3. पefoidar zum Cabrauch zusammen mel binem
 (turch gehenizeichuel, das den Deluder (10) mil Analysenfiliermitteron (3)) varsefien bat zunt in Antworl suf das zusaminengisetzie Seynal Erzaugen einer Armahl zusammengegetziar Tellbandaignain, wobei die Arralysenfilurmiltol thes Frequenaband des zusamimengesedzen Sigraia mach sinem Fitterverfahrein mà Abtastinequenz werverringorung in aulainanderfotgende Teil-
 wobeizle Aandbreiten der Tailbänder deren xeq Andysentilemittel (22) in dem Kodimer onisprechan. mit Mlltelr (33) zum aut eindeotige Woise Ouantaieran der zusarminengesetalan Tellbendsignale, mit Milfeln \{34) zum Subtrafleren der belfaffender quantisierten Tailbendal: opale yon den enteprechenden Teilbandaignalen das zuâammengeantzan Signaik zum Bildèn Von Toilbenddifferonzalgraten und mitt Synthanemfiremituein (38) zum in Antwort awf dia Teilbandaifferenzsignsia Gilden einer Replik des Hllfesh gnals $v^{\prime}(k)$, wobel die Zynthesemitter dle Talbannder nach einemi der Auftaliung in den Analysel:Filtermittain enteprechenden Filterverfahreri mit: Abtastfrequarcwortottiohung zusamurarikigen.
4. Delloder fach Anspruch 10, dadurth gehempzeicinet, das dia Mitter (33) zurn aul Blndeulige Welae Quantigieren des dfatelen S(gnale zum) adaptiven Ouantinieren dieses Signails eingerich. tet sind und je Teiltand tile Gible das Cusantielerungasctirbtes var dar Ampillude bineer Ablestverles des digitalen Signals abhängig ist, wobel es zwischan den mögicher autatrianderfolgenden Schintten sheen exponentiaifen Zuaammunheng mite elner vorbestimmien Grundzah in pibt.
5. Dokoder nach Anapruoh i1, Gadureh gakanizolctinet, das Mittoi (35) vargesehen atind umjes des Teiltranadaifterenzilgrail um einen Faktor G
zu vantarken, Wobsi gif: $G=2 a /(a-1)$.
6. Ancránung zumin Auizbichren efrea digithan Audiosigrals aut einem Aufzetohnungstcalger 148) mileinamkodiere: (7) macheiflem der Ansaricha 16/69.
7. Aroardnung num Aufzaichnen Einaib digitilan AlsUionignele auf binum) Aufzechnungratēgur (48) mil minem Kodiarew zur Teilbanakodiarung aes algitaten Auclosigraile einien besilmumion Abtmutreguerrwert 1/t, wobelder Kodierermitden folgentdor Eemanten versetieniat:

- Analyaenflitarmititarn (22) zum or Antwort auf das Audiosignal Erzeugm olne Anzaiy
 sentillemiltel dess Frequercharid des AltAlicoiguels nacts ainam Fillerverfatiren mil Ablastfrequercwertverringeruing in auteinBnderiolgende Tellbāntier mill Baniduun-
 Aralysenfitermittes weilerhin daza eingbríhtel sind, P Ausigangam die P Teilliands: grate zizuliôtren, wobill clese Ausglingo gekoppeit shad nit P antuprechenden Englingen.
- Biner Aufzeiohnungselinhat (67\%). die zum Aufzaichnent der PTeilbandsigisale aut dom Aufzalchnungstribor singerchtet iat, tadurah petkemizelcomet, das siè Arordrung wellerhïr ane mil dert Analysenfilemiltein (22) gehoppelte Daleitiongeinhell (50) aufweith, da\& die Deleidiongeinheif zuin Delektieren des Vorhandenseins aines Hiltselgrats in ainem odef mefureran der Tellbandaignale sowie zum Erzaugen einas Stucerragnisis bai Datekton des Ffiltesigrats und sum Zufolmen desses Stoungigyath 20 binem Ausgang (54) aingericitat las, dall dieser Ausgung mill einem Stedersignslethgang (55) ders Butzelchnungseliha! (4 47^{\prime}) gekoppatt Etund daff die Aufzeichnungaeinhal! zum Sperran der Aultialme des Autloslgnals belm Yortiandonsein das Stauersignats und zum Aufzeich Audocignale beim Fellen des Steupreignels piogerieflet ist.

15. Ancrunung zum Aufzeichtuan Elpes digitalen Asdioslgnals auf einam Autzaictrungeirager (48') Thil eibam Kadierer zur Tellhendikodienung des oigtasean Audfasignals ina der hestimiman Abtastreayueriz 10, wobel der Kodierar mil dien folgen: obr Elementen vertelien st

- Arelysemratematem (22) zum in Antwort auf das Aualosignai Erzaugan alnes Amzatu von P Tailbandalginuien. wobel dlese Analy: sentuermittal das Fraquenzband dess Als alosignain nach elnem Filtarvesfaheon mu: Ablastfrequenzvertverringerung in aufeine-
andierfolgondis Tuibbinder mit Bandndmmern $p(1 \leq p \geqslant P)$ aufleiten, wobel dlane Ansilysenfitermittel weitertin dazu eingenohtet aind, P Aubglingen die P Tailbandaf gnaje zupufohren, waber dlese AuEgärne gekoppeit sind mit P anteprechenden Eingingen,
- siner Aufzelcimurgashbutil (47\%, dio zum Aufzeiomen dor P Teilbandsegnele auf dam Anfzeichnungstr\&ger aingerichle! lat, dadurch gakannzaichnet tsals the Avordnung weilerbia elne mit den Analyserfluemmillefn (22) gelioppalis Detahtionsalinhell (50) aufwalst, oing die Detshuanesinhell aim Dasklimmint tles Vor: trandentsetrs aines Hiffelgmak in sinem oder melintren der Telfandiggole sowie zam Erzalugen bines Stavanignaic ber Detektion dea Helfeslghaie und zum Zufonnen dieses Stauersignals zu einem Ausgang (SA) aingarichtet ist, das disser Ausgang mit elner Anzalgeeinher (56) gukoppelt list, die dazu oingarichiet ist, boim Vorhan: densain dos Sioversianals mayzbigen: das ata nulzuselchnende Audlasignal einmineinemritilsAlgnal veraehenes Agdiosigtal ist.

12. Anorditung nech Anegruch 1A oder 15, dadurch pokennzaichinet, dä der Kodierst wefterhin mit S(gnalikamblniarmittetr (26. Si bis Sp) versehen lst, dib mit den Analyesnfitermittein gehoppelt sind, asL die Signalkombiniermittal dazu aingerichtet sind, beim Fehlen dea Steueralgnale das (Hiliesignal nath Wurech (uber 60) ainem ader mehreron der Toilbendzigriala tvirzuaufägen zur Bildung von P zusarnmangesatzten Tailbandsgnieion und zum Zuföhran diezur Pzugarnmangeaetzlan Tellbandsignalezu P Ausgangen, diemil den A entsprecheoden Elngângan dar Aulzeichnungseinitiail (47') gikoppel sind (Fg. 7)
13. Aporbluing mash Arsposich is onter 15, dadurct
 Signalkombiniermitbin (28) vursehen ist die mit den Analysenflitarmitteso (22) gekoppesi sinct, dail dis Signalkombintermitial daza eingenchter. sind, beim Fotilen des Blauerstgnata das Hilfssignal sinem oder mehreren der Teilbendilignale Iticcurutügen xur Bildung voir R zusamnvarigesetzton Tallbondalgnalen wnd zam Zufuhrem dleser P zusammengasatzten Teflbandsignele zu P Ausgangen, die mit den Pentaprechenden Eingängen der Aulzeichmurtizinhalt geloppelt sind (Fig-B).
14. Anordinung nech Sumpruch M4. didturch gokenis zelchnel, daß der Kod/erer ainen Teil des Kadlarers nach sinam der Arsprilche 1 b/e $\frac{5}{2}$ bildeL
15. Aulzaichmungstrangen. Buf dem miltels dei Anord-

Tuing nach einum der Ansproche 13, 16. 17 oder 1B pin aigitafes Mudioalgnal aufgozeichnetilit, fadurch gekenmzeichnet, daB das Audiosignial inf Teilbandaignale aufgatall ist und daB zumt Exhaiten vor P zusammengosetzaton Toltbemaiknslen, die auf dem Aufzolchnungstraiger (4d) nulgezoichnet sind, dom Audiosignal if einum odet mehraron dor Tollbonder elf HGFsilgnal zugufoyl worden ist und cals dus Hillssignal derartyewallf worden igi dsis dleses Hifferignal bai Wiedergebe des aufdam Aufzelchnuingsträger sufgessoichnefen zusaumnengsgetzten Audiasignals Dtim die Lautsprecheranordnung for winen Zuhares im wesentlichiun nichl wahrnenonbar iat:

Revondications

1. Codaur pour incorporer den informations nupplementalres sousla forma d'un signiel auxillaire y (h) dans un zonal avdionuménique u(a) ayani un formai prodotorminó, carrcterisé an ce que le cir dour (7) cpmprend des inoyens (22,28) pour anglyene lérigral mumétiques, des moyens (24), pous quanulifer le signal numbrique analysé de maniera nén équivique al des moyens (28') pour ablerminer, sur la base deta propribtés acoustiques oud byatoms andaif hamain, is puantite d'informar (lonas supplémemarres qual'on pout ajouwer au at gnsi numénque quantitios sane que ces informations numénques supp/6mentaires solent sudf bles ayoc unt detection non modifleg, dea troyans (20) diant prdyus pour bomblizet ien in: formations supplomartalion et le signui numiert que quantilte on un sgrie ocmposite.
2. Chdeur selon ta revendisaliac I, cerantorisu an [9 ru'll comprend des moyens (29) pour ricanvertir le sigral camposile en un signal numaigue ayant te format prèdetermine.
3. Codeur seian la revendicalion 1 ou 2 caractertse en ce que les moyms d'unalyse du signal nuinkc rique comprennent des nocyens de fittrage analytlque (22) pour génarer un nombre de Psizinaux -desoul-bandes en reaction au signainumdeloue. oestrayens de filtrage analytiquo divisanti(6) lentde de fréquences du signal numeriquo er dos sous-bandes conseacutlves oyant des numbies do bandea $p(i \leq p \leq P)$, tandia quo. pour chacu. ne des pous-bandos rospecilvas (p), des mayens (24(p)) sont provus pour quantilier le signal numérique de menibro non équlvoque el des moyens (26) acnt orbvus pout cambiner les sfgruur de aque-liardes quantifies respectifset fu tigrol andifitr pour consituer P algmax de 50ua-banatis camposites.
4. Codeur sedon ia rovendication 3, découlant de fa revenoination 2. carsaterise en ce quie doa moyena de flitrage synthetique (27) sont pidvir pour construire une repilque du sjonet composite on ndaciton aux sighnux de sous-bandes compoilite cos moynns de filtrage zynthotique combinaniles acus tandes aelan un pacêde do flitrage zvec augmentailion da la Iróquence d'échatiVillannage comespandant id la subdlvision dans les moyens de llitrage analylitque (22).
5. Codens betun le reyendiration 4, carecteries an cas quele aignal aunliaive v(k) est un aignal aulior mimánquan at déa moyents de filtrage analytlque (23) sont právuc pour gèndrer un ncmbre Pide algnaux de sous-bandae en razation sul signal suxilinjrev(k), ces moyeris de flitrage amalytique Givifant la bande do próauence dúsignal auxillai. Tr and dar soue-bandes consecullyes ayant des oombras de bandes p $\{=\alpha \leq P y$ solon un proabde de piltrage avac reduction do la frequenco d'dehaniulornage,
6. Codour solan le revendication 4 bu 5 , caractaras an ba fue les largeurs das sciu-bandes canenpaindentapproximativement auk largeurs de barda criluguea chu systeme audutit humair dars les puingea de trequances respecives.
7. Godeur salonla revonoloation 4.500 b , caracte rist an ce que las moysne (S4) pour quantitior lo zignal numérique de munlbronon equlvocuo sont. conçus pour quantifier ce asignal de maniero Rotaptalive ei ques, pour chaque sous-bynde. is grandeur du pas de quanilicalion dépend de l'ampillude de léchantillan de signal numérigus, une relation aspanunilitile avec un nombre de these prêregile a existant netre les pas succassifs prassllien
E. Codeur zelor te revendication 7, cramafifise en ca puas la grandeur du pas de quantification dom echantillon il quantifiar dêpend egaiement de la grandeur ơ su moins ur échantllon precédent.
8. Godeur selon in rovensication 7 ou 8 , carachètrise en co que les moyons (25) sont prévis pour atthmuer chaque slgral de geus-bandie do algnal suxplibing drun friteur G, gul répand die relation $\mathrm{G}=\mathrm{za} /(\mathrm{a} \cdot 1)$
9. Décoceur 色utiliner en cantibinalaon avec un cor diout (7) aelon ted revend eationa 5 a 9, caract cihè an ca gue le décodaur (10) comprond dBs moyens de thitrege amaiytigue (3T) pour ginderas un certaln numbre de signaus de soun-bendes campouiles ant (eaction au signal campasita, sess moyene de flltrage analytique subdivisant te hern-
de de tribonnoks tuu sugmal compoaite en dies. sout-bandes connacutives ayant dea nomtres de bandea $\mu(1 \leq p \leq P)$ selon uri procedoe de tiftrage avec réduction de la fréquence d'áchentilorinige, tandic quo les largeurs des sousbandes correspondent a celles des moyms do filtrago anulytique (22) dars in ocodeur. das moyens (53) pourquantilior de manitranno druib voque lms signoux de soup-bandes composites, des moyens (34) pour soustraina les signaur die soustandes quanulien respecilía des slanaus de sous-liandes cartespandanta des stgraux campoailiss pour former des signauk de difierentces de soua-bandes, al des mojers de filtrage synthêlque (36) pour construlio une répiligue diu mignal auxiltaite $v^{-}(\mathrm{K})$ en reaction auxs \log naux de différence de sous-bandes, leadits moyens de yltrage aynthétlques comoinerit les sousbandes galon ur proosdé de fittrage zvec zugmentution dela fréquonce d'échantillonrago correapontiant al a oubdivision danslea moyens de filtrage anaIytioue
10. Uécodaui aslon le reventication 10 r caractariné en co que (es moyene (33) pout quantifier le signel rumérique de manisre notr equivoque sont egenceds pour quanhifier de maniére adaptaive ra signal al quat, par cotia bande, ia grandeur du pas de quantification dapend de limplitude de l'echantilon dualgnal numérique,tandia qu'entre late pas succassib possibies. 1 y a uno rolation exponentifle avecuir nomben do basen predétermind a
11. Dbcodeur selon la rsverctlealion 9, caractirise nt ta que des moyens (35) sant pisives pour aupllfler chfaqua signiel pe ditterence de movidiande d'un factaur G quil répond á la formule $\mathbf{G}=$ Zal(a $-1)$
12. Disposilif poun emegitrer un signal audionumeioque suir un aupport d'enfegistiamunt (AB), comprenanimucodeur (7) selon fune queloonqus des rovendications (as.
13. Dinpostif d'enrogistrement d'un signal audionumetalque sar un support d'encegistrembert (40). compramant un codium pout le cadays de soulbandes du signal audionumerriaus de fróquence d'bchanillion bonnee 1/T, ce codeur comprenant:

- doe moyens de rlutrage andiylque (zz) resglanaint av signal autila pour généras une pluralle die Psignaiso de sous-bandes, cas noyana da filtrage anibytique alvaant la bande de fróquences du sigral audio. solon un procédé de filizage aves niduction de la frequence ábehantilionnage en dear roche-
bandes consécutives ayant des nombres de bandesp $p(\{\leqslant p=P)$, ceas moyene do $111-$ trage analytioue âtant en outre. $\hat{4}$ môma d'appliquar las Pigneur de sous-bundes a P soriles. landiles sorties álani couplèes a Pontrbes correspondentes
- d'une unltá suenraglabrement (47') qui est conçus pour enreghatrer lies R signamz a_{e} sous-bandes aur la support d'anregistrement.
caractêtsás en ce que le dispositif comprend, en oulre, une unith de detaction (50) relié ath mayens de tilirage analytique (22) , que finite th ablection as a mime de detectar la presence doun signal awillaine dans un ou plusieurs af graux de sous-bandes, oe genérar un signal de pornmanda lors de fa détection du signal auxiliaire et deppiliquer le signei de commando a une sortie (54), que ladite sortie eat rellae a une antrée de slgnel de commando (55) del'urite d'anregistrement (47) atque l'unités d'enregistrement est i mime d'empecher l'erregistrement viu stgnal audio en prdsance du signel de commande bt dernegiatres lo signal audjo en l'absence dursk gnal de cormmande.

45. Disposilfi d'enregitifrement ofun signal sudiontmàrique suir un suppart d'entegisirement $\left(4 \mathrm{I}^{\prime}\right)$) comprenant un codeir pout le codege on scusbandes du sigral audionameŕque de frequence d'óchantilonnege donnêe $7 / \mathrm{T}$, dans lequal le codour comprend:

- des moyens de filtrage analytique (22) réar glssant au algnal audlo pour générer ur pluriilté de P signeux de sous-bandes, ces moyene de riltrage enalytique divisant fo bonde de fréguance du signal audio en des sous-0manes ganndeutives ayshi des nom.
 védé de litrage avec réduction de la Vequenes d'échantillonomge, lesdils moyens da 10 trage analylique êtrat, en voire, ab meme d'appliquer les P a agosiod de zousbandes a R soriles; lecqualles aort noit pláas \& P entrhér comespondantes
- d'une unlté d'anveglstrament $\left\langle\sigma^{\circ}\right.$) quil est nengue pour envegistrer lan P sigimux de soun-bandes aur le aypport granngisirement
caractarise ef ce goe lo diaposilif comprend, an obiré, unis wniti do ditection (50) rellese aux. moyens defitrage analytiquen (22), que l'unate de defection est a mams de detecter ia présences d'un aigral auxilialice dena un on plustauna des ulgraox de soub-Dandes, da gbnerer unisignal do commande par datection du algnsl auxiltaire of d'applaquar to aganui de commande a une sortio (54), qua tadite sortis est resibe a une unite de a)-

FIG. 1

17

FIG. 2

FIG. 3

FIG. 4

FIG. 7

FIG. 8

Enimiticen! butrena
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(5i) Intermational Pateri Claselficatina ${ }^{6}$: G06K 19008, 19/10, H04L 9/00	(ii) International Fublicatian Number: WO 98/37513 (43) International Publication Date: 27 August 1999 (27.08.98)
(31) Inlecrational Application Number: PCTV/LU9HCOMO6 (22) International Fwing Dated 20 Fehasry 1098 (20.02.98) (30) Priarity Data; PO 5218 20 February 1997 (20.02.97) D MAEAAGEMENT PTY, LTD. [AU/AU]; 262 Exhiblion Gutet, Mollsums, VIC (AU). (72) Inveniors; and (75) Invertors/Applicants (for US anly); JOHNSON, Anitrew [AUAUV; 21 Sunbury Crescent, Simey Hilt, VIC 3127 (AG). BIGGAR, Michacl (AU/AUK 24 Kaltar Road, Reseuch, YTC 3095 (AU). (74) Agenta: LESLIE, Keith et ale, Davies Collison Cave, (Litule Collins Strees, Melboume; VIC 3000 (AU).	(9i) Desiganted States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, $\mathrm{BY}, \mathrm{CA}, \mathrm{CH}, \mathrm{CN}, \mathrm{CU}, \mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{EE}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GE}$, GH, GM, GW, HU, ID, II, IS, SP, KP, KG, KP, KR, KZ UC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MMV, MW, MX, NO, NZ, PL, PT, RO, RL, SD, SE, SO, SI, SK, SL, Th, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, NHPO $\mathrm{T}^{\text {matent (} \mathrm{GH}, \mathrm{GM}, \mathrm{KE}, \mathrm{LS}, \mathrm{MW}, \mathrm{SD}, \mathrm{SZ} \text { UG, ZWO. Euratian }}$ paent ($A M, A Z, B Y, K G, K Z, M D, \mathrm{KU}, \mathrm{TJ}, \mathrm{TM}$), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT LU, MC, NL, PT, SE), DAPI patert (BE, BI, CE, CG, CI CM, GA, GN, ML, MR, NE, SN, TD, TG) Pohtictied Withi inlenurianal search reporn:
(54) Tithe HVVISIBLE DIGITAL WATERMARKS (57) Abstraci A method und system of insertion and extruction of identific (watermark) dita in digital media data sués as video. The vídeo cast ind a pseudo-ranéon function, such r\& a permatation, is applied data block is then pransformed using an ortbogonal transform such Trinsform or a Discrete Cosina Transform. One or more of the ac by the mensfom are seiected and the waterrark data is insertad An inveran permotation and inverse transform cesn then be nsed to unencodesl sputisl domain. The insorted watcomark dan is subses reconstructed video since it is spread aver the pixals in the black by and (trančarm.	ication or sumbentication suste timided into blocke 1 thereto. The penmized ch 98 if Walsh Hadamend ac coefficiens generates or sexmened therefront o repump the video to the asntially invisible ba the by viftue of the permuse

FOR THE PURPOSES OF INFORMATION ONLX

Codes used to identify States party to ine PCI on the frotit pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain
AM	Armenia	HT	Finland
AT	Austria	FR	Prance
Atid	Australia	GA	Gabon
AZ	Azerbaijan	GB	United Kingdam
BA	Besnia and Herzegovins	GE	Georgia
BB	Barbadas	GH	Ghama
Eg	Belgium	GN	Guinea
BF	Burkine Pass	GR	Gresce
BC	Bulgaria	HU	Eungary
BJ	Benin	IE	treland
BR	Brazil	IL	Esuc!
BY	Bolarus	IS	Iocland
CA	Careda	IT	Haly
CE	Central Africen Republic	JP	Jnpan
CG	Congo	KE	Kenya
CR	Switzarland	K6	Kiyrgyestan
CI	core d'fyoire	KP	Democratic People's
CM	Cameroon		Republic of Kores
CN	Chuta	KR	Republic of Korea
CU	Cuba	KZ	Kazshatan
CZ	Cusch Requblic	L	Saint Lacia
DE	Gemmeny	L	Liectrenstein
DE	Denmark	LK	Sri Lanka
EE	Estonia	LR	Liberia

INYISIBLE DIGITAL WATERMARKS

This iovention relares io the provision of identification or muthentication data, sometimes referred to as a watermark or signature, in digital media data such as digital image or audio 5 tata. In particular, the present invention relates to a method and apparatus for incorporating. a waternark in digitai media data, and a method and apparatus for retrieving or extracting a Watermark from digital media data in which a waternark has been previously incorporated.

In this specification the term "waternark" is used to refer to any distinctive or distinguishing
10 data which may be used for idenification or authenitcation of the digital media dita associated therewith, or of some attribute of the media data such as the source thereof. A watermark may comprise image datat such as pixel data forming a logo or the like, or may be in the forn of coded text and/or binary numbers, for example, which represent a message. In some applications the waurmark data may include error correction coding rechniques to improve 15 the robustress of the watemark to image manipulation. The format of the signal that is to be waternarked is not restricted to a multi dimensional representation. It is also possible for audio informaion to be watermarked. This method of encoding data is not restricted to information associated with copyright and could be used to convey any suitable information in a hidden manner.

20
Watermarks are utilised in media dani for a number of reasons, one being to prevens or disoourage copying of the media data if it is subject to copyright, or to ar least allow for identificaiton of the media data even if it is copied. Visible watermarks have been employed for many years in varying applications including banknotes and photographs, but have 25. significant disadivanages because of their visible nature. Aithough a visible watemark may be quite effective in discouraging copying of an associated image, in general it is considered disadvantageous for a watermark to be obtrusive upon the original image.

Besides the issue of whectice or not the watermark is visible in an associated image (or audible 30 in the case of watermarked audio media), several other factors are also considered importan.

For one, the watermark should be robust to manipolation of the watermarked media, and should be secure so as to not be easily removable by a malicious user. Before the advent of digital media processing and manipulation, a degree of robustmess and security was inherent in a visible watermark; because a copy of the watermarked brage would generally bring with 5 It the visible watermark itself which woold be difficult to remove. However, digital processing makes it possible to perform many sophisticated manipulative operations on waternarked media, which may degrade the visible watermark or be utilised to alter an image to ar least substantially remove the watermark. In this case, therefore, the properties of a visible watermark count against the security thereof since it is clearly visible what must be
10 removed or altered in the watermanked irmage. A paper entided "Protecting publicly-available Images with a visible image watermark* (Gordon Braudaway, Karen Magertein \& Fred Mintzer; SPIE Vol. 2659, pp 126-133) discusses robustness and security in visible image watermarks.

15 Visible watermarks are considered unsuitable for many modern applications because of the intrusive effect of the watermark on the original media. Watermarking schemes have been developed in which the watermark is substantially invisible on an original image but readily visible on a copy thereof. However, such schemes generally rely upon characteristics of photocopying or electrotic scanting apparans, and 50 are only anitable for a limited range 20 of applications, such as in images or text ou paper documents. In any eyent, these waternarking schemes are also subject to security difficulues arising from digital processing and manipulation.

In media invoiving a sequence of inages, such as yideo media, it is particularly indesirable the image data to the user in a form which is as visually clear as possible, and a visible Watermark may significantly detract from the original image. Visible watermarks are presently used in some video applications, particularly television coverage of live sporting events where a relatively small and faint logo or the like is superimposed on the television 30 pieture. typically near one corner thereof. This is not completely satisfactory, besides the
yisual inumsiont because the logo can be easily cropped from the picure in a copy thereol. or could be relatively easily removed, at least substantially with digitai processing techniques. To make the visible watermark more secure it should be placed over the visually most important part of the image, which also makes the watermark more intnusive and thus 5 less desitable.

Invisible watermarking techniques, particularly for digital media data, have been developed, and one is described in an article entitled "Watermarking Digital Images for Copyright Protection" (J.J.K. O'Ruanaidh, F.M. Boland \& O. Simen). This article discloses a method 10 of embedding a watermark in a digital image which is said to be invisible and quire cobust, The image data is divided into rectangular blocks, and each block is then transformed using either a Walsh transform, discrete cosine transform (DCT) or wavelet transform- The bits defining the watemark graptic are inserted in the digital image by incrementing of decrementing a selected coefficient in the transform domain of the data block. Coefficients 15 are selected according to a criterion based on energy conrent. Another algorithm described in the arricle relates to insertion of watermark data based on the use of the discrete Fourier transform (DFT). This method differs fundamentally from the transform domain rechrique outined above. The DFT is a complex transform that generates complex transtorn domain coefficients given a real valued inpus. The watermark is placed in the phase component of generated transform coefficients when using this transform.

Another article which addresses the difficult issues of digital watermarking is "Secure Spread Specrum Watermarking for Multimedia" (Ingemar I Cox, Joe Kilian, Tom Leighton \& Talal Shamoon; NEC Research Institute, Technical Report 95-10). This article describes an invisible digital warermarking method for use in audio, image, video and mulomedia data The method deseribed in this article also involves a frequency domain transform of the image data and insertion of the watermark data whilst in the transform domain. In practice, in order $t 0$ place a length n waternark into an Nx N image, the discrete cosine transform of the image is computed, and the wartrmark data encoded into the a highest magnimde coefficients of the 30 trasform matrix, excluding the de component. In other words, the watermark data is placed
in transform domain components of greatest perceptaal significance, which enables the watermark to be robust to image distortion and unauthorised removal without serious degradaion of the image itself. This watermarking algorithm employs an energy compacting transform, which makes the selection of transform coefficients for encoding of the watermark 5 data very important. For most images the coefficients selected will be the ones corresponding to the low spatial frequencies, with the resuit that significant tampering of the image at those frequencies would destroy the image fidelity before the encoded watermark The watermarking techniques of J.J.K O'Ruanaidh et al and Ingemar J. Cox et al require the original image when performing the watermark extraction operation. As a consequence, proof of ownerstup is accomplished ondy if the ongiral image is certified as being the original by a trusted third party, and the particular segment of the originat image must be first identified and found before ownership is verified.

The present invention addresses some ot the difficulties identitied in the prior art, and Is embodiments of the invention aim to provide a digital watermarking process in which

1. the presence of the watermark is invisible [i.e the watermarked visual or audio marerial is visually or auditorially substantially indistinguishable from the original):

202 the watermark is robust to signal manipulation and distortion:

3 The watermark is secure,
4. the original media data is not required in order to extract the watermark: and
5. the watermark can be inserted and/or extracted by a simple computational procedure which can be done in real time.

In accordance with the present invenfion, there is provided a method for inserting 30 Identification or authentication daca into digital media data, including the steps of:
segmenting the digital media data into data blocks;
applying a pseudo-random reversible function to a block of the digital media data to obtain a modified data block;
applying an orthogonal transform on the modified data block to obtain transform 5 domain data,
modifying ai least one selected transform domain data coefficient in accordance with identification or authentication data;
inverse transforming the transform domain data having the ar least one modified coeffictent; and
applying an inverse pseudo-random function to obtain watermarked digital media datü-

The present invention also provides a method for extracting identification or authentication data from watermarked digital media data, including the steps of
segmenting the digital media data into datia blocks:
15
applying a pseudo-random reversible function to a block of the digital media data to obtain a modified dana block;
applying an orthogonal transform to the modified data block to obtain transform domain data: and
extracting identification or authenticanion data from at least one coetficient of the transform dornain data.

Preferably, the pseudo-random reversible function has the property of flattening the power spectral density of the data block (i.e. the function performs a spectral whitening operation), such that each coefficient then generated by the transform contributes substantially equally
25 to the total energy of the block. This allows the watermarking process to be less sensitive, with regard to the introduced distorion, to the selection of the transform coefficient which is modified in the watermark insertion operation.

The insertion and/or extraction method can be performed in real time, which is particularly 30 advanrageous when the digital media data has presentation uming restricdions, such as in the
yase of real cime yideo and/or audio data.

It is prefered for optimal performance that the average (dc) component of the ranstormed media data be restricted to a single known tansform coefficient and that this transform preferred that the pseudo-random reversible function be tolerant to the incroduction of noise resuiting from signal processing that could subsequently be performed on the watermarked media data Many different pseudo-random functions could be used for this application. One pseudo-random function that offers good performance in terms of its noise rejection
10 capability, spectral flattening petformance wid simplicity of impiemenration is a permutation of the data block based upon a keyed random number generator. In that case, the user should ensure that a permutation is selected that exhibis the desired spectral whitening characteristics as this is not goaranteed by ali permutations.
is A number of different transforms exist that could be used as the orthogonal transform operation in the preferred method. These include the Walsh Hadamard Transform (WHT). Discrete Cosine Transform (DCT), Discrete Sine Transform (DST) and Fast Fourier Transform (FFI). The Walsh Hadamard Transform is the preferred choice due in part to is low implementation complexity. The AC transiorm coefficients generated with such a 20 transform in conjunction with an appropriate pseudo-randorn function, using real image data as input, are characterised by all possessing approximately equal energy. The setection of transform coefficient(3) for modification can thus be based on a random keyed operation to further entiance the security of the waternark.
25. For functions and uransforms that do not restrict the average value of the data block to a single transform coefficient, it is preferred (to minimise watermark visibility) that the average (dc) value for the data block is calculated, stored, and subtracted from each data value in the dara block prior to the application of the of the pseudo-random function. The averate vaiue is subsequendy rerieved and added to each data value making up the watermarked data block 30 immediately after the application of the inverse pseudo-random function.

The application of the pseudo-random funcoion and the application of the onthogonal transform can be combined into a single operation. Similarly with respect to the inverse psevdo-random function and inyerse transform. A combined data permutation and transform operation can be considered equivalent to, in the one dimensional case, performing a 5 pemptation upon the columns making up the basis marrix of the transform in question. Each permutation will yieid an orthogonal transform, bence the mumber of transforms contained in the sec is equal to the number of available permutations. Using this interpretation, the security of the wutermark relies not just on which transform coeificient has been modified to sontain the watermark data, but also on which member of the set of ayailable transforme has 10 been used.

The present invention further provides apparatus for inserting or extracting watermark data in digital media data, comprising;
segmenting means for segmenting the digital media dara into data blocks;
processing means for applying a pseudo-random reversible function to a block of the digital media data to obtain a modified data block and performing a transform on the modified data block to obtain transform domain data; and
means for inserting of extracting watermark dars in at least one coefficient of the trarsform domain data.

Preferably, in the case where watermark data is to be inserted in the digital media data the processing means is also adapted to periorm an inverse transformation and inverse pseudorandom fumction on the transform domain data containing the watermark data so as to obtain watermarked digital media data.

25
In practice, the segmenting of the digital media data into data blocks might comprise forming. blocks of 64×64 pixels of image luminance pixel data, where the waternark is to be inserted into a still image or image sequence. The block size need tot be restricted to being square and of dimension 64×64 pixcis, both smaller and larger block sizes are possible depending upon appication requirements. In practice, the identification/authentication data which is
insented into a data block of digital media data might comprise a pixel from a binary graphic. or data in the form of bits used to represent text and birary numbers, for example. The waternark data is insented into the data block that has undergone a block transform operation. The distortion introduced due to the insertion of watermark data is dependent upon the block size, the number of transform coefficients modified by the insertion operation and the magnutude of the modification. The watermark data density per block is arbirtary depending upon applicafion requirements. In genernl, however, the higher the density the more visually noticeable is the inserted watermark in the image. A series of data blocks may be contained in a single image frame or spread over a number of image frames.

The Invention is desctibed in greater detail hereinafter, by way of example only, with reference to the accompanying drawings, wherein:

Figure 1 is a flowchart ilfusuating operations for inserting watermark data into digitai media data:

Figure 2 is a flowchart illustrating operations for extracting watermark data from digital media data;

Figure 3 is a diagram of the waternark insertion process of a preferred embodiment of the present invention:

Figure 4 is a flowehart illustrating the operations for a particular inmplementation of 20 the watermarking insertion procedure;

Figure 5 is a block diagram of watermarking apparaus for real-time video; and
Figure 6 is a block diagram of a media monitoring system.

This invention relates to the insertion and extraction of identification or authentication data 25 for use 35 a watermark in digital media data, such as digital image data, still or sequentual. digital audio data or the like. A watermark provided in digital media data may provide a means for identification of the source or some other atrribute of the media data as may be required to prove copyright ownership, for example. As mentioned above, embodiments of the present invention are designed to have a pumber of advanageous properties, including: the watermark presence being at least subsuantially invisible (ie the watermarked visual
or andio material is visually or auditorially subsuantally indistinguishable from the original):
the watermask can be inserted and/or extracted by a simple computational procedure which can be done in real time for audio and/or video media data; and
the onginal media data not being required in order we extract the watermark from the 5 watermarked media dara.

Additionally, as also discussed above, is is desirable for watermarks in digital media data to also be both secure in that a malicious user cannot easily remove or disguise the watermark so as to prevent extraction, and robust to conable the inserted watermark to survive example, are seldom stored or transported over a communications link in their raw format. Frequently some form of compression may be applied to the media data, and it is therefore important that the signal processing associated with the compression aigorithm does noi remove or wash out the associated watermark inserted in the media data.

15
Although the following description of embodiments of the present invention refer primarily to still or sequential image data, it is to be understood that the invention is equally applicable to other forms of digital media data, such as digitised audio data.

20 in an embodiment of the invention, image pixel data is subdivided into 64×64 pixel spatial domain blocks in order to provide a manageable data segment in which to insert watermark data. For example, a digital image comprising $1,024 \times 768$ pixels may be nominally divided into blocks of 64×64 pisels so that the entire image is contained in an array of 16×12 image data blocks (a total of 192 data blocks). Different watermark data may then be inserted into each data block, so that the watermark data is spread over the entire image. For example, the watemark might comprise a 16×12 pixel logo or the like, 50 that a value representing each pixel of the logo is tiserted in a respective data block of the digital image. Alternatively, the watermark may comprise a text message formed in ASCII code and/or binary numbers. A message comprising of 192 bits could be inserted in the digital image if a watermark densiry of $1 / 4096$ (one bit per 64×64 block) was employed.

The invisibility and robustness of the watermark are aided by dividing the image into blocks and distributing the watermark data throughout the data blocks, and are further facilitated by the insertion procedure urilised to inserf the watermark data into each data block. The
5 following steps are used to insert a watermark data bit or binary pixel graphic into a 64×64 spatial domain luminance data block.
(i) Permute the 64×54 data block using a predetermined random permutation. There exist 4096 factorial different ways in which this permuracion can be performed. To minimise the distortion introduced by the watermark modification. a pernutation should be selected dhat performs a spectral whitening operation on a signal that has a predominatt low pass power spectral density, "The permutation is generated fiom a keyed pseudo-random operation.
15. (il) Transform the permuted data using a Walsh Hadamard Transform. This tansform can be implemented as a 4096 -point one dimensional fast transform operation.
(iii) Waternark data is inserted into the data block by modification of selected transform coefficient(s). Tho coefficient selection process is based on a keyed-pseudo random coefficient. A transform coefficient walue greater than or equal to zero could represent logic zero and the negarive values logic one. Transform coefficient(s) need only be modified if necessary, to ensure that the sign $(+\gamma \rightarrow$ corresponds the digital bit to be embedded $(1 / 0)$.

30 (iv) An inverse transtorm is then applied to reconstruct an approximation of the original

64x64 spatal tomain daaa block. In the transform domain, the watermark daua is completely contained by one transform coefficient when using a watermark data density 1/4096. In the spatial domain, however, the warermark data is distributed over each of the pixels making up the 64×64 data block.

The watermary read operation is accomplished by repeating steps (i) and (ii) above. The original image or image sequence is not required for the reading operation. The watermark data can be extracted with the knowledge of the permutation applied to the data block, the IFanstorm operation, and which of the transtorn coefficient(s) modified to contain the 10 warermark data. The permutation employed is preferably kept secret by the owner of the image or image sequence. The parmuration could be represented by a secret seed number to a well defiried pseudo random number generator.

Block cransfomm such as the classio Walsh Hadamard Transform (WHT), Discrete Cosine 15 Transform (DCT), Discrete Sine Transform (DST) and the Haar Transform (HT) can be employed in the watermarking process in embodiments of the invention. For transforms that isolate the average block yalue or dic value into one coefficient, that coefficient should not be used to contain watermark date. The WHT is the preferted choice for the transform operanon due to its low implementation complexity. Fast transform implementations of the WHT exist
20. that require only summing and one scaling operation, and the transform basis vector contains only +1 and -1 elements. The analysis and synthesis transforms are identical.

Figure 1 illustrates a flow charn of operation involved in insertion of watermark data into digital media data, according to an embodiment of the invention. Beginning at step 12 , the digital media data is fitst segmented into manageable data blocks such as blocks of 64×64 pixels or equivalent data elements. Step 13 calculates the average pixel vaiue for the block which is then subtracted from eanh pixel. Step 13 is unnecessary when using a transform that conrains the block average in a single transform coefficient. This is the case with the WHT and the DCT, for example. The resulting de transform coefficient should not, however, be 30 used to contam watermark data. The media data biock or segment is then subjected to a
permite operation (step 14) in which the dara elements of the block or segment are rearranged in a pseudo random, but repeatable and reversible manner. Nexs, at srep 16, the permuted spatial domain media dati segment is subjected to the transform operation. In this embodiment one of the cransform coefficients is selected and modified to inchude watermark data. When watermarking images or image sequences a watermark data bit could be represented by the sign of the selected transform coefticient. A transform coefficient value greater than or equal to zero could represent logic zero and the negative values logic one,

The wastmark daa density per block in this case is 1/4096. In some applications, densities 10 greater than I/4096 may be required.

Following insertion of the warermark dara into the cransform domain of the media data, the spatial domain media data is then reconstheted through steps 20,22 and 23 by perfoming an inverse transformation followed by an inverse permute operation and then the previously not necessary when u sing a transform that contains the block average in a single transform coefficient. The resulting digital media data segment contains watermark data which is robust to manipulation thereof, secure from unauthorised remoyil, and yet the reconstructed, Watermarked media data is substantially indistinguishable from the original spatial domain
media data when compared in subjective quality cesting.

In order to extract the watermark data form digital media data in which watermark data has been previously insented, the procedare outlined in the flow chert of Figure 2 may be employed. Essentially this involves steps mirroring the first half of the procedure illustrated 5 in Figure 1. The digital media data is first segmented as diseussed previously (step 32), the average pixel value for that block is determined and subuacted from each pixel (step 33) if necessary. The resulting data block is then subjected to a permute operation as shown at step 34. The permute operation must be the same as that performed during insertion of the watemark data, and thus if different permute operations are variously employed, some record muse be mainmined of which of the particular 4096 factorial permutations applies to
the parricular media dara segment in question. This could be in the form of a secret seed to a well defingd pseludo randorn number generator. The permuted media data segment is then transformed with the same transform used by the insertion operation (step 36). Then it is a simple matter to extract the particular coeffictent for the transform domain media data and 5 then recover from this the waternark information-

Figure 3 illustrates a block diagram of the wasermark insertion process described in comection with the flow charr of Figure I. As discussed above, in this embodiment only a single watermark dala conponent, eg a data bit or binary graphic pixel, is insented into each
10 selecred digital media data segment or block, and the information required to reconstruct in enure watermiark requires the examination of a number of digital media data segments.

Figue 4 is a flow charn llustraung the insertion process of watermark data into digital media data, which has been segmented into data blocks, over a series of data blocks. Where the 15 digital media data comprises a sequence of images, such as in the case of digita video or the fike, a complese waternark (eg the total of the identification data) may in fact be distributed over more than one image or image frame. At step 42 the first data block in the image or sequence of images is selected and, if necessary, the average of that block iz then calculated and subtracted from each pixel element in step 43. The resulting data block forming ithe permuted image data is then transformed using a block transform. At step 47 a particular transform coefficient is selected for possible modification. The selection process is performed in a pseudo tandom deremministic manmer. Transforms that contain the block average (dc) in one transform coefficient, or set of coefficients, must eliminate this coefficient from the selection process. Step 48 performs the modification operation to incorporate the watermark data into the selected transtorm coefficient(s). The irverse of the transformation and permute operations are then applied at steps 50 and 52 and step 53 adds to each pixel value the average as determined in step 43 , if necessary. A test is then applied at step 54 to determine whether the media data has finished, and if so the watermarking procedure ends. Otherwise. the nest
incremented, meaning the next component of the waternark data, such as the next data bit or binary pixel element, is selected at step 58 . Of course, it will be recognised that it is unnecessary for every data blook of a particular digital media data source to be encoded with watermark data, and only a certain selection of data blocks may in fact be encoded with 5 watermark data in pracice. To provide copyright protection for the complete irnge sequence, de watermark can be repeatedly inserted, with the watermark begining at different ftame locations withint the sequence and ensuring that warermarks do not overiap. Of course, acquisition of the signal is important. This can be accomplished, by incorporating in the watermark data, synchronisation information that, once acquired informs the watermark reader the location of the beginning of the watermark messege data or binary graphic

To increase robustness and ensure readability even in the case where the original video signal is significanily changed, such as through reduced spatial resolution or the case where watermarked interlaced material is later converted to non-interlaced format, the watermark read from either or boith fields and/or restriced to the low ipatial frequencies. The latter may be accomplisted by the application of a 2×2 WHT on each row of the image to produce low and tiigh sparial frequency components. The waternark is then insered in only the half horizontal resolution frame corresponding to the low spatial frequencies. The full resolution Watermarked frame is produced by performing an inverse 2×2 WHT on the rows making up the low spaaal frequency watermarked half horizontal resolution frame and the original high spatial frequency half horizontal resolution frame.

In order to further improve security of the waternarking procedure, it is possible to alter the 25 permute operation periodically (siep 60 in Figure 4). As mentioned above, it is nevertheless necessary that the paricular permute operation performed on each data block be repeatable at a furure time to enable extraction of the watermark:

Figure 5 tllostrates a block diagrann of watermarking appararus for encoding real tirne video 30 with watennark dala according to an erobodiment of the present invention. Real time video
feed is provided to the apparanis at a buffer 80 or the like, which provides an input to real time processing circuiry 82 . The circuirry 82 may comprise digital processing circuitry in the fom of high speed programmable conyuter circuitry, For example, which carries out the algorithmic steps described in comection with Figure 4 , for example. The watermark data 5 is provided from a buffer 84 which may be in the form, for exarmple, of a ring buffer which cyclically feeds watermark data being a component of watermark text or graphic material to the processing circuitry 82. The reconstructed video data containing the watermark data is then passed to an oupput buffer 86 which provides the video data for transmission, recording or whatever function the video data is required for.

Embodiments of the invention, operating in real time, can be utilised to add watermark data to media such as video and/or audio during live broadcast or other transmission, whilst recording to storage such as tape or dise, during broadcass or other transmission trom storage, und during transferral from one storage device to another, for example. Furthermore, is embodiments of the invention operating in real time can be used to monitor media such as television transmissions to detect the presence of watermark data incorporated in the media data. A block diagram of such a system is illustrated in Figure 6. Video data is provided to a buffer 90 from a source such as a broadcast receiver or the like. Real time processing circuitry 93 is coupled to receive the media data from the buffer 90 and perform the 20 algorithmic steps described in counection with Figure 2, for example. This results in the exraction of any watennarking data contsined in the media data which was inserted according to a process known to the monitoring apparatus (i.e watermark data which has been aided with a known perrutation and transform in transform coefficients selected acconding to a known scheme). A companison processor 94 can then be used to compare any watermark data 25 which is rerrieved with stored watermark data to determine if the retrieved watermark data cortesponds to a known watermark indicating the source of the media data.

It will be appreciated from the foregoing description that the original media data is not required by the saternark extraction process in order to extract the watermark data, and 30 therefore it is not required that the original image be certified by a trusted third party or held
in escrow in order to prove the presence of a watermark in the media dara. Random accesstbility of 3 watermark within an image sequence is easily acbieved, as all that is required to extract the watermark is the image or sequence of images that contains sufficient watemark dara to reconstruct the entire watermark or a substantial portion thereof, and the 5 secret keys used to ssed the random pernutation and the random coefficient selection process.

The watermarking process according to an embodiment of the tnvention has been tested on still images and image sequences, and has been demonstrated to be near invisible to the naked eye in a comparison between the reconstructed, watermarked media data and the original 10 media data. It has also be found to be secure and robust to compression such as 4 Mbps MPEG coding of image sequences and 20% quality setting for JPEG compressed still images. The described watermarking procedure is also robust to digital-to-analogue and analogue-todigital conversions. Accordingly, emboduments of the invention can be utilised to insert and extraot waiermark data in analogue media as well as digital media. For example, watermark
15 dara can be inserted and extracted from broadcast or home quality analogue or digital video. Tests have been performed demonstrating a successful read operation for watermarked digital video originally of broadcast studio quality which has been temporarily recorded on an analogue consumer VHS tape. In the case where the media is generated, stored anid/or transmited in an analogue form, an analogue-to-digital conversion using known rechniques 20 is used to obtain digital medta data before inserting or extracting the watemark data (see 92 in Figure 6). The medin data may be retumed to analogue form, if desired, using known digital-to-anitogue techniques:

It will also be appreciated that the simple nature of the computational processes involved in the warermarking process of the present invention allow it to be applied quite readily to real time video data, tor example. This is because the only two oomputationally complex steps in the watermarking procedure, namely the permute and transformation are still relatively simple. This makes for a waternarking process that is very low in complexity, is easily automared, and requires no human intervention in its applioation.

The foregoing detailed description of the present invention has been presented by way of example only, and is not intended to be considered limiting to the invention as detined in the claims appended hereto.

5

Claims:

1. A method for inserting identification or zuthentication data into digital media data, including the steps of:
segmentung the digital media data into data blocks;
applying a pseudo-random reversible function to a block of the digital media dana to obtain a modified data block;
applying an orthogonal transform on the modified daa block to obtain transform domain data:
modifying at least one selected transform domain dara coefficient in accordnced with identification or authentication data;
inverse transforming the transform dormain data having the at least one modified coefficienr, and
applying an inverse pseude-random furction to obtain warermarked digital media data.
2. A method as claimed in claim 1, wherein the pseudo-random function appiled to the data block is'i keyed function controlled by a oryptographic key.
3. A method as ㅁalamed in claim 1 or 2 , wherein the pseudo-random funcrion applied to 20 the data block has a property of flattening the power spectral demsity of the data block.
4. A method as claimed in elaim 1, wherein application of the pseado-random function and application of the orthogonal transform are carried out in the same operation.

25 5. A method as claimed in claim 1, wherein the at least one transform domain data coefficient setected for modification is selected according to a keyed pseudo-random operation.
6. A method as clamed in claim L, wherein a plurality of data blocks of the digitat media 30 data gre modified according to the identification or anthentication data
7. A method as clamed to any one of clams I to 6 , wherein the digital media data is yided data.
8. A method as claimed in any one of claims 1 to 6 , wherein the digital media data is 5 audio data
9. A method as claimed in claim 7 or 8 , wherein the identification or authentication data is insented into the digital media data in real time.

10 10. A method as claimed in ciaim 1, wherein at least ont coefficient in the transform domain data which represents the average (dc) of the data block is restricted from selection for modification with the identification or authentication data.
11. A method as claimed in claim 1 or 10 , wherein the orthogonal transform is a Walsh 15 Hadamard transform.
12. A method as claimed in claim \mathcal{L} or 10 , wherein the orthogonal transform is selected from a discrete cosine transform, a discrete sine transform and a fast Fourner cransform.

20 13. A method as claimed in claim 1, wherein the pseudo-random reversible function is a permutation of the data block based on a keyed pseudn-random number generator.
14. A method as claimed in claim I, including determining an average of data values in the data block, subtracting the ayerage value from the data values in the data block before 15 applying the pseudo-random finction, and adding the average value back to the data values In the data block after applying the inverse pseudo-random function.
15. A method for extracting identification or authentication data from watermarked digital media data. including the steps of:
segmenting the digital media data into data blocks:
applying a pseudo-randorn reversible function to a block of the digital media data to obtain a modified data block;
applying an orthogonal transform to the modified data block to obtain transform domain data; and

5 transform domain data.
16. A method as clamed in claim 15 , wherein the pseudo-random function applied to the data block is a keyed function controlled by a cryptographic key.

10
17. A method as clamed in claim 15 or 16 , wherein the pseudo-random function applied to the data block has a property of flattening the power spectral density of the data block.
18. A method as claimed in claim I5, wherein application of the pseudo-random function 15 and application of the orthogonal transform are carried out in the same operation.
19. A method as claimed in claim 15, wherein the extracting step includes selecting at least one transform domain data coefticient from which to extract identification or authentication data according to a keyed pseudo-random operation.

20
20. A method as claimed in any one of claims 15 to 19 , wherein the digital media data compriser video data.
21. A method as claimed in any one of claims 15 to 19 , wherein the digital media data 25 comprises audio data.
22. A method as claimed in claim 20 or 21, wherein the identification or authentication data is extracted from the digital media data in real time.
30. 23. A medhod as claimed in elaim 15, wherein the orthogonal transtiorm is a Walsh

Hadamard transform
24. A method as clamed in claim 15, wherein the orthogonal transform is selected from a discrete cosine transtorm, a discrete sine uraniform and a fast Fourier transform.

5
25. A method as claimed in claim 15, wherein the pseado-random reversible finction is a permutation of the data block based on a keyed pseudo-random number generator.
26. A mehod as claimed in claim 15, including determining an average of data values in 10 the data block, and mbibracting the average value from the daan values in the data block before applying the pseudo-random function.
27. An apparatus for inserting or extracting waternark data in digital media data. comprising:
segmenting means for segmening the digital media data into data blocks;
processing means for applying a pseudo-random reversible function to a block of the digital media data to obtain a modified data block and performing a transform on the modified data block to obtain transform domain data; and
means for inserting or extracting waternark data in at least one coefficient of the 20 transform domain data.
28. An apparatus as claimed in clum 27, wherein the processing means is also adapted to apply an inverse transformation and inverse pseudo-random function of the transform domain dala containing the watermark data so as to generate watermarked digital media data-
29. An apparatus as clamed in claim 27 or 28 , wherein the apparatus inserts or extracts watermark data in digital media data in real time
30. An apparaus as claimed in claim 29, wherein the digital media data comprises video 30 data
31. An apparatus as claimed in claim 29, wherein the digital media data comprises andio data
32. An apparatus as clamed in clam 27, including means ton selecting at least ont 5 transform domain data coefficient for the insertion of extraction of identification or authentication data according to a keyed pseudo-random operation.
33. A media data montarng system comprising; a media data buffer for temporarily storing media data received from a data source:
a real time processor coupled to receive media data from the media data buffer and adapted to extract identification or authentication data according to the method defined in ciaim 15: and
a comparison processor coupled to the real time processor for comparing extracered identification or authentication data with known identification or autbentication data.
34. A media monitoring system as claimed in claim 33, including an analogue-to-digital converter for converting media data into a digital form before processing by the real time processor.

2035 . A media montoring system as clamed in claim 33 or 34 , wherein the media data comprises video data.
36. A media monitoring system as clamed in claim 35, wherein the data source of the media data is a receiver of viden transmissions.
37. A media data montoring method comprising:
receiving media data from a data source;
extracting identification or authentication data according to the method defined in
elaim 15; and
companing extracted identification or authentication dama with krown identification or
authentication data.
38. A media monitoring method as claimed in claim 37, including converting the media data into a digital form before processing by the real time processor.

5
39. A media monitoring method as claimed in claim 37 or 38 , wherein the media data comprises video data.
40. A media monitoring method as claimed in claim 39, wherein the media data is 10 received from a video transmission.

Figure 2.

Figure 1.

Figure 3.

DISH - Blue Spike-408

Figure 6.

LNTERNATIONAL SEABCH REPORT				Intemational Applicauion No PCT/AU 98/00106
A. CLASSIEICATIO OF SUBJECT MATTER				
Int C1 $6^{5 \%} \quad 606 \mathrm{~K}$ 19/08, 19/10, H04L/9/00 Accordine to Intentational Patent Classification (IPC) or to buth astiunal classification and IPC				
B. HIELDS SEARCHED				
Minimum Ancumentmion searched (eizasiflation ayatern followed by classification symbals) IPC.as above				
AU:IPC as above				
Electrain dana base canmiltod diring the lofermivional search (name of data base and, whiefe presticable, search terms lased) IBM Patemt Datahnse: Digital, Waterneark, Transform Durwert WPATiDigital, Watermark				
C. DOcumants Considzred to her reliviat				
Category*	Citation of document, with fidication, whert uppropuiate, of the relivant prapages			Relevant to ctaim No.
$\begin{gathered} \mathrm{x} \cdot \mathrm{p} \\ \mathrm{~A} \\ \mathrm{x} \\ \mathrm{X} \cdot \mathrm{~T} \end{gathered}$	EP 766468 (NEC CORPORATION) 2 April 1997 BYIE Mayazine, Jamarry 1907, 'Look, It's Not There', Zhav, J, (INTERNATIONAL FEATURE) page 40iz 7-12 AU 45073/96 (INTEL CORPORATION) 5 Junc 1996 AU 26083/97 (V-CAST DNC.) 4 Decembar 1997			1 10 40
				1 ta 40
				33
				33
Further documents are listed in the X] See patent farrily amex contimation of Box C				
Date of be accual ceappletion of the international serch 17 March 1998 Date of mailimiz of the Eitermational asarth recpor 08 APR 1998				
		Autherized olifiect DW.THOMSON Teíahone $\mathrm{Nat}:(\mathrm{OL}) 62832214$		

INTERNATIONAL SEARCH REPORT
Information on patent family members

International Application No.
PCT/AU 98/00106

This Annex lists the known " A " publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Europālsches Patentamt
European Patant Office
Office ouropaser des bravets

EUROPEAN PATENT APPLICATION

Application number: 94420203.6
(22) Date of filing $=\mathbf{2 5}, \mathbf{1 0 . 9 4}$
(21) Int. Cl. ${ }^{\text {² }}: H 04 \mathrm{~N} \mathrm{1/21}, \mathrm{G06F} 1 / 00$

Prionily: 29.10 .93 US 146371
Daln of pubication of application:
03.05 .95 Bullotin 95/18
(a4) Deskinatad Contracting Staves: DE GB
(71) Appicant: EASTMAN KODAK COMPANY 345 Stata Stroet
Rochestor, Now Vork 14650-2201 (US)
(19) Inventor; Rabtsani, Majld, Ensiman Kodak

Corrpany
Patant Lognal Staif,
345 Stata Strees
Rochonthr, New York 14650-2201 (US)

Inventor: Molnychuck, Paul W, Eastman
Kodak Company
Patant Legal Staff,
345 State Etrset
Rochester, Now York 14650-2201 (US)
Invarior: Axman, Michaof Gtuart, Eastman
Kodak Company
Patrint Legal Strif,
345 Stata Strinel
Rochasier, Now York 14650-2201 (US)
Inventbr: Baradar, All R., Eastman Kodak
Company
Patant Lugal Itaff,
343 State Streot
Rocfioster, New York 14650-2201 (U\$)Representative: Boulard, Denis at al Kodak-Pathó
Dapartamont Brovets
CRT-Zone industualle
F-71102 Chalon-sar-Saôna Cb́des (FR)

Mothod and apparatus fer the adelition and removal of digital watermarks its a hierarchiceas image storage and rattieval syslam.
(57) An image processing bechnique le described in the context of a hierarchical image slorage and retriovil system. The method sllows for the controlled addition and removal of digital waternarke from aelected linage camponants in the hierarchy. The method adda a digital watermark in a selactad Imege resolition component and the mbana to remove If in an additional image component termed the watemark removel component. The method envploys the encryption of the Wetermark removal component, and decription with a speclal key, of password during suthorized retritival. This technique allows users of a distrybufed zystem the convenience of providing the entire image hiarachy on a single storago medlum parmitting images containing watormarks to be accessed without restriction for browsing and procfing. while the watermark removal requites knowiedge and us of a coptrolled code.

F16.2

[^4]
Grase-raforance to Ralatod Aypilcation:

The prestent application is related to U.E, Fatent Appikcation Serial No. 08i026,726, entitied "Mothod and Apparatus for Capiruiling Access in Sefected Im: ago Components in An Image Siprage and Reiriuval System" Mind March S, 1993, by P. W. Melnychuch, sod askigned lo Kudaly. the assignes of the preseni topilicalton:

Technical fietd of The invemiton

The present invention ly yetatedna the fleld of digItal imuge frocossing and more particularly to methuds and atsiochated spparstuses for adding and romoving ädigitel Watermark to and from a selected image resolution and the proyenting of unauthorized use of associatud highor fesclution бigitul Imego contponents,

Bachground Of The Invention

A rumber of hierarchicat techniltyues for Imojgo eoding have bomi described in the open tectmicak isspature and in various patents. of particidac refevence to the present invention ate the loltowing pubficalionts.
P.J. Eurt and E. H. Adulaon. The Laplaclan Pyramid Is A. Compect Code.: IEEE Trone, Comm.. COM-31, 532.540 (1885)-

1. Gobarry and J/ Ploprzyk. "CRYPPOGRAPHY: An introducten to Cuppuler Sucurty Prentisa Hall. 1988 and the follawing patents
U.S. Pai No, 4, U6, $2\left(24\right.$ enlllien ${ }^{2}$ Hytald ResidualBased Herarthiczl Storage Arid Dieplay Mattiod For High Rescrlution Digitar tinages in AMultiuse Environment," by Paw Wi Melnychuck and Paud Wi Jonea; 1980.
U.S. Pat No, 5,048, 111 antiled "Hybrid GuboandEataed Hiemrohical Storage And Display Marhod For Hign Resolition Digitad images in A Multiueo Environment, ${ }^{4}$ by Paul W. Jones and Paud W. Moinychuck. 1991.

The publication by Buft, whi, Leaches an apcpdlog muthod for inages iermed the Laplacian pyramid, the Burt pyramid, or the residuel pyramiad In ithls tachnique, ith aploinel imenge ts lowprass imierad, and titis towpess imego le pulossempled to take a ovantage of ifs reduced bandwidth to provile an imagn of reducad dimenshon. This procass of lowpass fithoing and subsampling is repcaled three limes to genemale a hier archical atructure, or pyramid of images of micoessively amalter dimenisions, The catal number of rinclution levels are crealad depenaing on the apptication. Each lowpass imege in this pyramid is then expanded to the almensions of the next nigher leved by upampling (insurting zertios) and fitering to form 3prodiction image for that ievel. This prediction imaga
iu aubtracted tram lta corrisponiding lowpass image in a suburactar la generute differencs, or residual, imb agen. The residvial images corresponding to the lave els of the lowpess pyramid form micther pyramid ch ki urmec ine Lapracian, burh or lesioud pyismid. Thia technique to morivated by the fact that the residuol images have a reduced veriancesind entropy compared to the original or lowpase Imagos and may be quantized and entropy ancoded to proylde nift cient atorage of the dath. Roconsifuction ie parformad by imempolaing the decoded lowpaes image at the bottom of the lowpass pyramid and sutding in the correspondiog decoded resldusl to generate the next lovel if the lowieses pyramid. This process is iterated until the original image alze 5 peschud; A prouressive lroprovernant in raconisivicied imege guility and yesolution can litus be obtainind by displaying the reconctructod towipass ficurea image at each level of the pyramifd. Note that errors introducad bt the encodIng poorssa are propagated from one level to the nexi nigher leval in the decoding process.

The patent to Melnychuck and Jones (U. S. Pekk No. $4,969,200$) seaches a modification of the Burt pyrsmld echeme by axsending the lowpass pyromid structure to indude one or moro lowpesse filtared itr sges of ruccessivaly smalier dimefsians bayond the set toscribed by Burt, of sh The advancament in the method of Meliyctuck and Jones la thal the reatidual pyramid is nol selepded ta incluile theset correipanitIng artended smalter ilmenslans. Nenco, the Meinychuct and Jones pyramid contains the Burt pynamid plea additianal lawpats intered images of limailer dimersions. If a hierarchical image storage and ratrievat syatem, the additionad lowpass filtered imagess of mailar dimension can be ratrleved directly. Whout intarpoiation and addition of rosidual comportente in the context of the presant invention, the Mulbychuct and jones pyramid provides for low restiutlons in ayyes that car be used for browsing of prooting, The use of Na. these addilonal low resolution images for broweing and procilng means thit the cusinnes may use a simpla ratrieval inechanismund naed nol possess a mam complax and herrea, more arpentive Faldevas device that would be used en decode the higher veskuation companants of tie pyranid, Dr coarse, higher reeolutkon intages retpufring interpolation and residual eddlltign may be vaied for browaing and proofing $3 s$ wall.

A hererchieal imang processing mathod will be described far the addition and remokal of digitel wa. termarks in selectad image coinponents, and for the restnction of selected high resolution image components itrim unauthorizes ues. An imaga hlerotchy is corstructad in the context of a mult-rosolution anvin oningnt whonoby the uner has the option of setfecting
and ather types are aiso of interass. In Fig. 1 a pror art technlque for decompoalng, storing. rocompgsing and displaying, a digitul image using a hiersten/eal procest is shown, An original digital imige is tesurlr posed 10 prowioe imago varejone at variour febolefiont to silow for the dlaplay of an HDTV qually imsige onivideo, an NTSC quality image with PAL/SECAM compatibaity on vidgo, one or more sub-NTSC quality images on vldec for overviewe and browsing, and in vary high quaily image on cator hard copy, intamedate to the decompasilion and recumpcoilian ateps, generolly are insartadi an enooding step, 10 compress the dala for storaga which in Itirn requires a decoding stop whent the data is read from storage.

Summary DC TheJnvention

The present livemtion places a digitai waiermark If a salactied irmige vesolutlon component and the means io remove it in an atditional imagocombonen! temmed a wnternark removel comportith Enciyplion of the watemiark removal corroonent le used to prevent wee of the Image for the gerveralion of unsulher need high quality color herd cogy. A walermerts to a form of graphic ovorlay thet inay candein a caplayight natice or informatlon regardine the reatrictud cse of the image in s diatibulad image systamitia common to dollver inf image of correromised image gunhty for purposes of brawaing of proofinit. A compromised cervolian of tha image ia commanly diathbuted to prevanifuil ullity ar fulliliment of thas image without propat payment for the survics that generated the Image. The larm ureweing retere to the procees of image aslection from a phumailty of imeges besed on sarve ugen-defined aritenon. Such is the cose when ou ugr miay safect animege from actaiog of images depictIng a partieder object. The term proofing refars to the procens of image seloction beaed on the degrea of desirability of a given image frami a plurally of images. Suct is the case when a profensionel portrail photogragher alstibuiter a plurality of innages in a customar for belaction and spproval. The litms wetermerk, browing and proofing desarihed herein are not ilmited to the ereraples describad abovn.

Upon selechion of the desired image ty the chasfomer, the orotessional defivers a high quailty rendiHon of the imepe mast offen in the form of ehigh qualify color tuard anpy Al all timuss the protessioinal pas segses the sole means of gemerating the high quality hard copy, In a cunventionai photograpnic system the means would the the original negatives of the images; in a iligitat hierachical system secording to the press ent invepilon, the majans are higher resolation rebidutid zamponents.

In odiglat irreging syatem; and in parthuiar one Uial meludes a hierarohiteal form af digites storage and retrieval, the professional may uas as witabse digimi storage medfum nuth as a CD for the gistribution of
pronfe. In an unrestrictod anvicantwenf, the cuictomen may chooce a dásivad imngo canolution hoin tha hierarciny for the purposes of browining. prooling as Hard cupy furminent. if those instances whare if is s sfesiribie for the profassianal lo deilver the digits storage medium coninining the enilse image nieraishy to the cuatomer; l is also mosl eoconomical to record the entire inage lijerarchy once onth the digital ztorage medium and avaid having to makn a 3econti copy containing ajuy low resolution componense for datribution. Howsver, it is also dealrable to restriat the use of eslecsed bigh reschution componanta for ths eurpose of full mage quasity fufliment unill peyment tus been received. The profersioms may ohooge in provide fow rasolution imago componente for browsing ar proofing, whie matintaioing resticition of the higher cenolutian comporents. Alernalkuely he mry be required to dellyer a proof of high resoluten. Euctris lhe casi when the imago content conteing infornation al smail detail and the rendition of this detail Is subject to approval via the proot. Wibs Iratilisn. al photogragate pints, the proteastonal may place a stamp, of watermark on s strategic |ocallon on the pant, 30 as to ronder the orint usebees fram a fuliilment point of view. Noto wilt digital lmages itail fulfimment may mean nigh qually videa at NTSC/PAL/GECAM, HLTV, of hard copy, In ine pies ent invention, the professional places a digitai mandition of the wetermarh on a severted image acinponent. The removal of the walemmerk is done muough an additionel lenege component contsining the reverse of the waliertearik The customer, having cos3essien of the digital storage medium CD would possass Wie meania for generating his own thgh quality fand copy wiven astherized by the profesaionali Upon paymant to the protessional, the professionsi or fity agent prowdes to the cuatomer the information noeassary to remove tha watarmark for ful imege uuallly futilimen. in the present invention, thet inforrealion woild be ensauthentzadan cods, key. or password thel woild be inputied to the inige procesting systemacceasing the atorage mediuny, to uniock the resincled nign resoluton comporenis. An advantage of this téchnique le that the oustonmer may poesess all information partinent to genarnileg high quallfy hard copy Without the need to physically return th the professioniai for addilonal image corepanents.

Itmay nodilionaly be cleskable th uae some form of fierorchical ingge representalion for the purpose of browsing or mooling In a distributed aystam because the herearchy inaturally provides a plurality of resolutlons, and hence levele of image quaitity, from which to choose the proof imoge. No acoltional operstlon of corverumising the imege is necessary; the prolessional efmply chaoses at what resolution leyel (9) he wants (o resirict acceses

Sydums lind use a blerachical atructuring of the Image data hove nol traen empioyed in the past for
diatribution purposas becsuse of tha lack of means io simultanoovaly pppyide lowe resalution camponents for browsing and proation while affering restricted scevas io the remalning hierarchical companente for rull qually lmape copy. Additionaify, the meane to geperala and remove a nigital watemark in a hierarchicni imege strochure had not bearrprevionsiy considerad.

The preant livention permits the adyanteges of hiorarchical insage decomposition to create as sertes of resdaul components, direct ratrieyal of the soddFHiomil Jow resolution imsgos according to the Melnycluck and Jontes pyramid. the addition mor nunoval of a dialtal watemberk in es selacted image resotulian component, and prifer art encryption methods applied to the waremsathemoval pomponent and the residMales io proulde for a sysiam of browsing, prooling ano restriction of tie high rescolution image compónents suffable In a distribufed Image system. It is essumad that the residual commponents and the wasemmerk removal componant are symbol encoded uaing tho encodar box 20 in Figures 2 and 4 into a binary string of $T^{\prime} \mathrm{E}$ and 0 'e sither via flixed-longth coding tachnt. quas (whera a binary code word of a Fixed-lengith le aesigned to ench rymbol) or variable-lancilyencod ligg techniques such as fuffmmin cading or atlibmelic coding. The residuel data may alan be quantized priar 10 anooding, or il may be encuded in a lassless mant ner, ke, without guantizalion, Data anaryption box 26 is appiled ta the watemmaid ramoval component and II destred, elso to the encoded quantized (or nonquanfizsd) residuai deta. it is aseumed that the enaryplion procesa ia raveraible. Hence, the decryption box 28 providas the exact date prior to dete morypthon.
inope embodiment of the invention a storagemedium is called for having storad thersio be teast one low resolution dighat limage und at leasi ane highresolution digital invage, wilh sald high resolullon digital image encoded with a watermark thel raquirns an avthorization code fer removal.

From Die bregaing, it can be meen tral it is a polmary object of the pressant invention to provide a method and Esscuciated apparatus for storing andi contrulably relideving digkal imagea stored in a hlorarchical format on a sultable digital storage distribution medium that ailows ithe originator of the disitribution mediam tor catroute the niedum containing the antire image hierarohy and a controllably remnevebla wasermark for the purpose of ratrioving low rosolution Imagen for broweing or proofing without oempromising the onginator's need to withhold the means for creating hard coples of the imuges whinout the watermark.

It is another object of the present invention lo rerevide the mesens for eontrollably lngerting and removing a witernark for a digital linage.

It iswnother object of the present invenllonifa jro-
vile the meanil for compromising s adeclad /mage comgonent of a hlerarchical formalted digital image by adding a dighal watermerth to the selectod image componant. shd recording the selecied image coin-
5 poneni containing the walermerk 38 part of tie image hlararchy on a digital storege distrithation needium.

In lessoctaifor with a digital image, it is anotner object of the present invention to provide a means for crmating a walermark remideal component, and for cunimallably matriesing access to the watormark removal componimet.

11 is aninfier object of the presant/ivertion io previde a means for affixing a watermerk to a digilai ternage and for controllably femoving the wulerenark.

The above and othar objocts ot the preaenlinvention wil become inore apparant when laken in donjunction with the fallowing description and dravinga Wheroin IIke cherecters indicales like parts and which drawings form a parl of the prebara description:

Brief Deseription Of The Drowinga

Fig. Iis a block diagram Bustrating the prior art Melnychuck and donas fierarchical storage ond dite play mathitd.

Fig. 2 is a functions) hock diagram Nustrating is hiemarchieal image deoomporition technique igcarporating a watermark incertion into an irvage campoñent.

Fig. 3 is a functionel bock dapem miastraling a reconstruction technique for reconstructing ther ïm nges decampooed by the sysiem or Fig. 2.

Fig. 4 is a luncilonal block diambem of anather hiterarchlical image decomposillan technique incorporaling a walerniark insertion fito an image coinpoment.

Fig, 5 is a funcilonal block diagram ilitastating a reconstruction technique for raconatrucuing the im--gies decomponed by the "ystem of Fig. 4.

Detalled Doucrigtion of the Invention

In the following description of the pueferned eirbodiments. Il will be seamed that tire Ilghoni ranorug herartly jo dornacd al 2042 plates and thatizle resplulian $i s$ adequite to jocduce phaliggraphe qually y apiginals on an appropriate diglal guipuldevicos. It is algo assumed that a mogeralely high resolulion level of the fileraschy componed of 153π e 1024 piaels ta adequeto lo generate a high qually HDTV dlapksy, of a small-stzed photographic quality printon an appropriale digital atiput davices. It Ia also biscimed that the lowest resolution levale of 1928128 plxila, 384×256 pixels, and 768×512 plsbla are genented and atored onto a digital storage medium auch as a CD. These resolution toyels are provided to give the reader an innight as to the pperation of ane or mare embodimentes of the Invenlian
wilt the understanding that other resofutione or arrengemerils may be chosen to suil specill: neectr willooul detracting tram the feachings of the pinsent inventiont

Relerting naw to Fig. 2, a lianaithical reaidual cecompoollion lechrique, for decampusing à 1 EEASE anginal image ta form a 18BASE residual, a 48AsE residual, a BASE, a BASE $/ 4$, and a BASE/t 1 image, Incorporation the leactrings Jound eubstannaliy in Fig. 7 of the patiom to Melinychuck and Jones (U. S. Pat. N(r. $4,969,204$), in combination with the present itvention is anow. The BASE image $\$$ proceased in box 34 to inconporate a watermark and to provides watermurked BASE image.

An axample of a watarnark ineertion box 34 is giver by the watermark insertion viri 22 whemby s Watemark lmage Wa comblned with the inputinige Ito craate a watarmarked imgege in in thes axample. It is aseumod that the inputinage fand the walamerh image Waro of the same sixa and live sante bildepth For axamoing if the inputimage is an 8 -bt imeine ropresending $\mathrm{L}=$ furnkance component of a color image, the walsimaikimnige W woudd also be an 8 -bitimage Similarty, the watermarksd tmigge IWwould have the same stzas and eacti pixai value woula be represunted with B blis. An example of a watermark incertion unht 22 is one where the input imegel and the watermark inuge W are combined according to the roliowing equation lo create the watemerked Imigo iw

$$
L_{4}(1 / \lambda)=n((\|)+a w(0)
$$

Whers (/) de denotes the two-Gimensional location of the pixeta in the imegy and the operaton is parformed for alf the pluels in the linut ingen The wie termark image W is pretared by the origingtor af fite storege meeium and suay contalin the logo of the origInator or any othar pallarn thal the originslar mey wlyh lo use as e waternerk. The parameler x_{i} wioch can be elher positive at negatives controles the watier. merk contrast and to blso sweltad by the originator and can vary from onef imape io anmilier. Larger itiag: natuiles of a would, in general, oreate a higher coanIfast waternerk: Also, to guarames that the wallermarked Ianage $l_{\text {w }}$ hies tha sumen bil-depth ast lhe ingol image $f_{\text {, the }}$ wetarmarked image h_{W} a chipped to the same tenge as the inputimage. For example, for an 8-bit mage witf plxel values in the range of 010285 ; Sor every pixes iocation ($/ \sqrt{ }$, the vesue or ineth) is clippedio 255 if the result of the above equation exceade 255 and in set to zero if that result a lass than zero. It stould bo noted that this oxample loustrates only one method of implementing the wotermark insertion box 34 and the orginator of the storage inedlum may Incorporate any other method to gunorate a wavermark that creates the desired pffices of inhiblting the use of the image.

The BASE/16, BASE/4, and watomarked BASE: Images are stored on tho digital storage medium 10 in difect (unencrypted) form. The BASE Imaga, which

Ifthis case serves as the watermark romoval yecord, ts encrypted in the data ancryptior unil 20. The date mineyption unia 28 conalath of elther a privote-key aste encryption digositim (adao rofarrad to as bymp5 metne aata emaryphon algontimm or a public-key diata ancryphion algorithim (aliso relamed to as mymmetric: data ancrypation algorithm) both of which hova been exptained in the prior art and in the relerenca book by Seberty and Pleprayk cited bofom Examples of pith yato-kay encryption agoriltme that can be used in the data encryption unit 26 ste silher block ciphars such is the Dista Encryotion Slapidard (DES) which uses 356 -bit kyy and operafere uri blocks of dater of tengith 64 blts at is ime, of a stream cipher Ngorithm
15 such as हC-4, a cumunarcially aveiliable ancryption sofiwure that uses a 40 -bil Key camponant: The 5 . erypten SASE Image is also stored on the stomige madurr 10, The 4BASE and MEBASE residuail compoirents are also aibred on the digith stonge medium 10 eilhen in duecs (unencrypted) form or in encrypted form depoinding an the tevel of secanty desalred by the uppilication. In the casie that the encryption of any of al af the nesiduai data me neeaded, aither the same key used ia encrypting the BASEImago if used or a separate key is used. The use of multiplo encryption kays providas the origfoator of the atorege midum with more fiexibility in controlling the aceass th the various resolutions of the imago hieratchy.

For browning or prooting. a procadure illustrated by Fig. δ is amployod. A user retrieves the aASEn6, BASE/4, or watermirked BASE iomage diectly willout decryption from the digital storage meafum 10 ; Upeit authorization the user inpuls a decyyplart Key(s) io the dela decryplion unil 2 b lo alow the doeryplton of the original BASE innage (and the residuals) In be performad An example of a data dicciypflon unt 29 ka a Hon ilgarithm earrespanding to tha reverse operalion of Hite maryption aigonthmemployed in the data en= cryplam (ait 25 . One exampte of a set of encryotion/dearyption mgonithms is the Data Encryption Stundaind (DES) which has peen axplinined in full desall in the roforsince hook by Seberry st al montloned Defaye. Note that the decryption key(e) muat 0e pros vilied by the originator of the atorage medtum. Upon the decryption of the BABE inuge and the realdual componenta. these components can be vaed fo aritve at fuet image quality folfilment.

In a second smbodiment. leestrited in Fig: 4, the T6BASE Image la decomposed ty decompanilan apparatug 401 into a residubl pyramid consisting of the IGBASE, $4 B A D E$, and BASE The BASE Inrage is further daconppaed to create the BASE/A and BASEIC 1 magos, Through fow pass illering and subbeempling. as olita or a monitot.

A wntormark, as described in the previayic erpr

Inloppolator
Deis ericryption unit:
Dale decryption unil
bodimwntin Fig. 2, is insarted in the BASE image in box 94 to arme at a watomerkod BASE image. Thle watermiorked EASE Imoge is they Interpolelad ta the size of the ABASE fmage using inasf interpolation as indicated by the interpolator bon 24. A difference is formed in subtractor 32 between the arlginal ABASE imnge and the inferpolated watermarhed BASE Image to form a modilled ABASE residual thal sarves as the wat-mints rimaval record. The differencef en this ennbodiment version the firat embodiment sthat the watermark removal record is me modifled 4BASEVE sidual [nstami of the EASE limage. This modified ABASE residital is encryphed taing the diat enctyo: Ifan $\operatorname{lme} 2$ as deacibed balore and bs then stormd on IThe storage medie 10 3iong with the BASE/16. BASE/4, and watermurked BASE imugs in diraci (u)k encrypted) form. Finally, the 16BASEresidual data is stored on the digital stargge medyum elther in direxi or encrypiod form denending ous the applicafion.

For browsing of proolligg, the system of Figi 5 is onviloyed. The $45 e r$ felrieves the RASEI $16 ; 8 A S E / 4$ or watermafthad BASE image difectly without dacrypHan tropn the digatal storage medism 10 . Upon author|ealian; the user liputa the dearyption kay to the data decyption unit 28 to allow the decryption to be perfarmad togonerate themodifled $4 \mathrm{~B}, \mathrm{~A} 3$ Eresidual. The watermarked BASE irniggo is interpolaled using Insear Interpolation and is inddod to the decrypted modifled 4BASE rosidual in the reconsiruction appamius 210 to recover the origitus) 4BAEE image, If tha residuals haye not been quantized; the ABASE image can be bxactly recovered. In the case whare the residuals trave been quantized, some discrepency between the original ABASE image and the 4BASE image recon ered acounding to the above scheme would exiat The Gegree of this discrepancy would depend on the coarmennss of tie quantiser emplayed in the quantization of the residuay components. Note that the deeryption key muat be provided by the originator of the stonage madium.

If es to be undontood that in same limannea il may bo dosinabio io olaos ewalemeark upon tha low resolution imeges to control their accene

While thers hus been shawn what are consinterna! to be the preferied embedimenta of the invention, it win bermanfest thal many changes and madificatione may be maite Iferein wiltoul deperungfrom the essential epifit of the invantion If ts intanded, therefore, In the anneaed claims, to cover ail such changes and modificalions as may fall wanin the noope of the in. vention.

Parta List:

10

Digital atorage medfum (CD-Dinc)

Encodet
Walemmark insertion onit

15

5

10

Dicoder
Subtractor
Watemank insertion box

Decompopion opparaive
Recorsitruction suparalus

Cislime

1. A starige menahm having itored tharoint at leest ane iow resolukan digits Impge and at loem ane high resolution digitaf jinage, whit sald high resolution digital image encoded with a walsmark thal requires an authorization code for remoyel.
2. The storage madlum hocording to cfaim t and further hoving stored themen at feast one additional high reaolution digital image that is nol encoded will a watarmark and ia nocossed with the aulharizalion cods in plece of the ligh resolution digital imaige en: coded with the walermark
3. A utorege medium having stored therein at least ane low resolution dyital inage and at loest one high resolution cligital image in the form of BASE Im age, resiciun image components and a watermark component, with said low resolution digital image, sald BASE Image or said high resolution lmags formed by the combination of the BASE lmage walh sald cesidual imnge comporente and a walermerk componem boing gecossible wilhoul an aulforiabilan codo
4. The zforage medurn of daim 3 b) combinalion with an aulthorizslion code to remove the watemmath. commonen tram an accesshd bigh resolution image.
5. A gystem for conirimnil the uncompromised use of a high resolallan digital image stared ons storage medimm as BASE and reskial componenis, comprising:
means for encryping the residual componente stoned on satd stomge medfum using a walernawk code:
mesne for accossing the BASE and endypled resídual componenes:;
ingans for combining the accessed AASE and rosidual component: to reconstruct the high resoleflon digitas Imege with the wotarnark cadel and
meare for muthorizing the rerneval of the welermark ouda.
6. A syztem for controting the uncampromised use of a blah remoluitan digitai image comprising:
meane for foming a hiorarohy of lowar renoluHar digitai imagea from the ingti fesolution digitai insge:
means for forming residual images that are a function of differences between adjacent images in the bierarctiy of lower resolution digital images;
means for encrypting al least one of the formed residual images with a watermark code:
storage means for storing the formed hieranchy of tower resolution images and the at least one encrypted residusl image;
means for recanatructing high resolution images by accessing and combining a lower resolution Image with a residual image:
maans for displaying of the at least one eftcrypted residual imege with the watermark; and
means for controllably removing the watermark cade to permit an uncompromised use of the high resolution digital image.
7. A recarding medium having stored thereón as pierality of digital images with each of the digital 3 m ages heing comprised of a low resolution digital finage component and al least one residual digital image component which is combinable with the low resolution digital tmage component to form a higher rasolution digital image incorporating a watermark which is removable with an authorization code.
8. A mathod for controlling the use of a digitas imt age stored on a storage madium in a hierarchical formi cumprised of a BASE image and at least one residual image component, comprising the sleps of:
a) Bssociating a watermark with said at least orte residual image oomponent,
b) permitting access to the BASE image for low resolution viewing of the digital image:
c) combining the BASE Image with the at least one realdual image component and an associated watermark to form the digital image for viewing. printing and/or storing; and
d) contrallably providing a waiermurk removai sode in remove the watemark from the formed Sigital Imege of step c.
D) A storage medium heving stored therean at Jeasl one digital image encoded with a watermark thai requires an authorization code for removal.

FIG. I
(prior art)

FIG. 2

10

DISH - Blue Spike-408
Exhibit 1010, Page 2221

FIG 4

ENTERNATIONAL APPLICATION PUBLISHED UNDER TBE PATENT COOPERATION TREATY (PCT)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphiets publishing intemational applications under the PCT.

AL.	Alhania
AM	Amenia
AT	Ausuris
AU	Australia
AX	Azerbaijan
园	Bosniz and Herzegovina
B18	Barbedas
BE	Belgium
8 F	Burkina Feso
80	Bulgaria
BJ	Benin
BR	Brazil
BY	Bclarus
CA	Canada
CF	Central Afticas Republic
CG	Congo
CH	Switzeriand
CI	Core d'Tvoirs
CM	Cmmeroon
CN	Chins
CU	Cuba
Cz	Cuech Requskic
DE	Germany
DK	Denmert
ER	Estonia

ES	Spain	LS	Lesotho
EI	Finland	LT	Lithuania
ER	France	LU	Luxembourg
6A	Gabon	2.1	Lervia
G8	United Kingdom	MC	Manaco
GE	Georgis	MD	Republic of Moldova
GH	Ghana	MG	Madngascer
GN	Guinoa	MK	The former Yagoslay
GR	Greece		Republic of Mucedonia
EU	Humgay	ML	Mali
IE	Ireland	MN	Mongolia
IL	Israel	MR2	Mauritanis
is	Yeziand	4WW	Malawi
IT	ftaly	MX	Mexios
IP	Japan	NE	Niger
KE	Kenya	NL.	Netherlands
KG	Kyrgyzstan	NO	Norway
KP	Democratic People's	NZ	New Zealand
	Republic of Korea	PL	Potand
KR	Republic of Korea	PT	Porrugal
KZ	Razalstar	RO	Romania
LC	Sting Lrin	RU	Russian Federation
4	Liechenstein	SD	Sudan
LK	Srilanta	SE	Sweden
LR	Liberia	SG	Singapore

ST	Slovenia
SK	Slovakia
SN	Sentgai
SZ	Swaziland
TD	Clad
TG	Togo
TJ	Tajikistan
TM	Trimenistan
TR	Turkey
TT	Trinidad und Tobago
UA	Ukraine
UG	Uganda
US	United Stases of America
UZ	Uzbekistan
UN	Viea Nam
YU	Yugoslavia
UW	Zimbabwe

REFERENCE PALETTE EMBEDDING

GIELD OF THE INVENTION

The present invention generally relates to digital mampulation of pumerical data. More specifically, the invention relates to the embedding of large amounts of external data into the numerical values used to represent a publication quality digital image without altering the appearance of the digital image. This invention was made with Government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.

Many digital representations of image data have resolutions in intensity and color range qreater than is required to represent the meaningful content of the information. Digital representations of publication quality images are ordinarily in Truecolor format using eight or more binary bits of information, for each of the three primary colors (red, green, and blue), for a total of at least 24 bit resolation. An alternative publication quality format for digital images uses primary color complements (cyan, yellow, and magenta), and black to represent the image information. The publication quality of Truecolor digital images insures that the all the information necessary to reproduce the original image in print is present in the alternative electronic form. Truecolor digital images are most often the first-generation image data produced by sensors in acanners or slectronic cameras capable of recording the highest quality images,

In many situations, fewer than 24 bits resolve an image adequately to convey its meaning and content. Color reduction methods analyze a Truecolor image to determine a smaller number of colors that can be used to reproduce an approximation to the original publication quality image. Color reductions to 256 or fewer colore are used commonly for digital images intended for display is electronic documents or via the Internet worldwide web (www). Images stored in
the Compuserve ${ }^{\text {th }}$ Graphics Interchange Format (GIF), the MIOROSOFT(B) Windowa Bitmap ${ }^{\text {M }}$ (BMP), and tagged-image file format (TIFF) formats often use a 256 -color palette. The color-reduced palette requires B-bits per picture element (pisel) to approximate the original 24 -bits per pixel Truecolor values.

Reference palette embedding is a new steganographic method for manipulating the information in a 24 -bits per pixel Truecolor host image, in order to insert euxiliary data with less error than is caused by methods that replace directly some of the 24 -bits with the auxiliary data. Reference palette embedding as taught here provides invisibility of the auxiliary information. in comparison with the method disclosed in U.S. Patent number 5,686,782 issued August 19, 1996 for DATA EMBEDDING, which is included herein by reference for all purposes.

The reference palette embedding invention guarantees that the auxiliary information placed into the image affects only the parts of the Truecolor image thet are redundant, and therefore umnecessary for representing tho image content. Methods that manipulate the picture element (pixal) values directly by either the methods taught in the aforementioned DATA EMBEDDING patent, or
by the methods taught in U.S. Patent Application Serial No. 08/646,837 filed May 8, 1996, for MODULAR ERROR EMBEDDING, also included herein by reference for all purposes, modify significantly the bit values within the image pixel. Hereinafter, the teachings of the above-described U.S. Patent and the above-described U.S. Patent Application will be referred to as DATA EMBEDDING process and MODULAR ERROR EMBEDDING process, respectively. These alternative staganographic methods necessarily affect the image content to some degree. The present invention, reference palette embedding, atilizes a color-reduced version of the Truecolor image as a template to ensure that the embedding process affects the image quality as little as is possible.

Reference palette embedding uses and extends the DATA EMBEDDING process as taught in the aboye-mentioned US patent, As disclosed in the DATA EMBEDDLNG patent, the euxiliary data are embedded in a manner that manipulates the noise component of the host data, and that does not modify directly any host data values. In reference palette embedding, as taught herem, the auxiliary data are embedded into the difference between the original Truecolor image, and a color-reduced version of the original image.

The color-reduced image and the digital key taught in the DATA EMBEDDING patent combine to permit the construction of the auxiliary data from the modified Truecolor image.

Data embedded into the host image with the present reference palette embedding invention are recovered by proeessing the digital image in machine readable, digital form. Human readable versions of images containing auxiliary data, for example images displayed on a screen or printed from the digital data, cannot be processed to recover the embedded information. In a preferred embodiment of the subject invention, the auxiliary data are compressed and encrypted before beginning the reference palette embedding process, in order to randomize the auxiliary bits, and to minimize the effect of the auxiliary data on the difference between the Truecolor and color-palette images.

It is therefore an object of the present invention to provide apparatus and method for embedding data into a digital information stream so that the meaning and content of the digital information stream is not changed significantly,

It is another object of the present invention to provide apparatus and method for concealing auxiliary data within a digital information atream so that the presence of the auxiliary data is not discerrible in the digital information stream.

It is yet another object of the present invention to provide apparatue and method for reducing the error caused by the added information, and for thwarting unauthorized access to the auxiliary data embedded into digital information stream.

It is atill another object of the present invention to provide apparatus amil method for allowing authorized construction of embedded auxiliary data from a digital information stream.

Additional objects, advantages, and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or learned by practice of the invention. The objects and advantages of the following, or learned by practice of the invention.

The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

SUMMARY OF THE INVENTION

In accordance with the purposes of the present invention there is provided a method of embedding auxifiary data into publication quality digital image data represented by a quantity of color-component values for each picture element comprising the steps of reducing the quantity of oolor-component values of the pubhication quality digital image data to create a digital reference palette, wherein the digital color palette represents the quantity of color-component values of the publication quality digital image data; creating a digital representation of the auxiliary data as a sequence of individual bit values; creating o color-component digital difference image by numerically combining the publication quality digital image with the digital reference palette image: modifying the color-component digital difference image by combining the anxiliary data and the color-component digital difference jmage through use of a
data embedding method; creating a modified publication quality digital image indiscernibly containing the aukiliary data by combining the modified colorcomponent digital difference image and the digital reference palette image; and outputting the modified publication quality digital image into a file format specified for the modified publication quality digital image.

In a still further aspect of the present invention, and in accordance with its objecto and purposes, a method of constructing indiscernible auxiliary data from a machine readable publication quality digital image representation of unrelated and uncorrelated data comprising the steps of generating a digital reference palette image from values and properties contained within the publication quality digital image; creating a color-component digital difference image by numerically combining the digital reference palette image and the publication quality digital image; constructing the auxiliary data by processing the color-component digital difference image with a data embedding construction method; interpreting the auxiliary data in order to obtain or remove content, validation or
authentication, or otherwise process the publication quality digital image in order to modify its quality

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:

FIGURE 1 is a diagram illustrating the reference palatte sequence of calculations.

FIGURE 2 is a partial listing of computer code used for calculating the biased difference inage color-component values,

FIGURE 3 is a partial listing of computer code used for calculating modified Truecolor inage pixel color-component values.

FIGURE s is a diagram illustrating the sequence of calculation for constructing anxiliary data from a modified Truecolor image.

FIGURE 5 is a partial listing of computer code used for constructing modified difference color-component values.

DETAILED DESCRIPTION

The present invention allows a uxiliary data to be embedded into e digital Truecolor host image with less error than is caused by modifying the pixel eolorcomponenta directly. The reduction in error follows from the technique of of the present invention of embedding auxiliary data into the pixel color-component values constructed from the difference between the Truecolor host image and a reference palette image, which has been constructed from the Truecolor host image. The invention can be understood most easily through reference to the drawings.

Refer to Figure 1 for an illustration of the process of the present invention. The images in Figure 1 are printed digital images, and are not copies of photographs. Publication quality digital image data 10 , such as a Truecolor-format image is approximated or reduced by one of saveral commonly known color-reduction methods 11 to produce a palette-format image 12. The palette-format image 12 is denoted hereinafter as reference palette image 12. The palette colors of reference palette image 12 are subtracted from the Truecolor pixel color values of publication quality digital image 10 to create a difference image 18. The difference-image 13 pixel valué measure direotly the accuracy of the color-reduction method. Auxiliary data 14 are talren as bite from a data source and input to data embedding processor 15, which may contain the DATA EMBEDDING process, the MODULAR ERROR EMBEDDING
process, or any other effective steganographic method for combining anxiliary data 14 with difference inage 13. A new difference inago $18 a$ is created by data embedding processor 15. The color values of the pixels in the new difference image 13a are added to reference palette image 12, and prodace a new, modified publication quality digital image 10a, contaning auxiliary data 14 .

Examples of appropriate publication quality Truecolor format publication quality digital image data 10 include, but are not limited tos publication quality television or motion picture images, X -ray or Magnetic Resonance Imaging data، digital camera images, and personal security and identification data. Othor examples of publication quality digital image data 10 melude black and white images containung a range of digital levels of brightzess, and digitized analog audio signals. For digitized audio signals, a reduced-quality version of the digitized analog audio signals serves as the relerence palatte 12 .

If the ateganographic method used in data embedding processor 15 is bitalifing or the above-mentioned MODULAR ERROR EMBEDDING process, the first embodiment of the present invention is implemented. If the steganographic method used in DATA EMBEDDING processor 15 is the abave-mentioned DATA EMBEDDING process, the second embodiment of the presentinvention is implemented.

The difference image 13 is a Truecolor image, and negative pixel walues are not permitted. Heace, the difference D between the Truecolor and pallet-color pixel colors is biased in the positive direction, in order to represent the difference as a positive number within the runge 0-255 parmitted for an 8 -bit Truecolor-format innge. The difference value is restricted to the zange ± 127, in order that the biased value reman within the 8 -bit range. Pixels that are found to contain differences larger in absolute value chan 127 are flagged, in order that the invention can place the original Truecolor
value in modified image 10a. Flagged pixela are not uned by the invention. Figure 2 is a partial listing of computer code in the $\mathrm{C}+-$ language that is used for calculating the biased difference image color-component values. Figure 2 contains two nested loops starting at line 5 , over the number of rows in the image, and at line 13 , over the number of columns in a row.

The blased color differences are placed into a memory buffer named buffer. Data from a row of Truecolor image pixels are placed into a memory buffer named buffte in line 7. The TCFile object is an instance of the MICROSOFT® MFC CFile:; class that accesses the bitmap-format Truecolor image. Data from the picture row in the palette-format image is read into a mamory bufter named buffpal, from the CFile:: object named tape 7 at line 10, in Figure 2 .

The loop over the columns in the image row that hegins at line 18 in Figure 2 processes the buffered pixel data. The three color-components in the Truecolor image pixel are processed sequentially within this loop. The index k containe the paletteformat pizel value. The palatte-format, pixel colors are accessed by k , into the colormap \array. The Truecolor pixel colors are acceased directly with offsets into the buffte memory buffer. Color differences having a the value 255 are not used in data embedding processor 15 . The biased color differences are b_diff, g_diff, and r_diff calculated at lines 17, 21, and 25. The differences are set to a limiting value (255) if the palette color values are greater than the arbitrary value of 250 , i.e. the colors are near the top of their color ranges. The biased color differences are tested for range at lines 35, 41, and 47 in Figure 2. If the biased difference does not fit into the range 0-255 that is allowed by an 8-bit unsigned character, the difference buffer is set to a flag value (0x01). Color differences that were set to the limiting value are flagged in this process. The color difference buffer becomes the outpat row in the Truecolor difference image.

Returning to Figure I, the completed color difference image 13 is combined with auxiliary data 14 by means of data embedding processor 15. In data embedding processor 15 this combination can be accomplished through use of bitalicing techmiques. the above-mentioned MODULAR ERROR EMBEDDING process, the above-mentioned DATA EMBEDDING process, or any other effective steganographic algoritbm. The color difference image 13 is combined with reference palette image 12 to produce a new. modified Truecolor image 10a.

Figure 3 is a partial listing of computer code used for calculating biased difference Truecolor-image-pixol color-component values. Two nested loops begin at line 5 and line 12 in Figure 3. The output buffer for the new, modified Truecolor image pixel row is named buffer. The difference image pixels are read into a memory buffer named buffte at line 7 . from the CFile: object named tape6. The palette-format pixel values are read into a buffer named buffpal, from the GFile:: object named tape7, at lina 10.

Construction of the new Truecolor image pixel row proceeds in the loop over image columns that starts at line 12. The output buffer is filled with the new colorvalue data. The statements contained in lines 14 through 16 of Figure 3 process the first row of pixels differently, because the first image row is used to hold the key for the DATA EMBEDDING process. Processing the first row of pixels differently than the rest of the image is not part of the present reference palette embedding invention.

The new Truecolor color-component values are calculated in lines 19, 20, and 21. in Figure 3. Pixels in the difference image that contained flagged values are calculated incorrectly in this loop. The output buffer offsets are set directly to the new color difference values, and the row of pixels is written to the new Truecolor image using the tapes file object.

The tape8 image fle object is post-processed to replace the flagged pisels with the original Truecolor color-data pixel values. The flageed pixels, i.e. pixels that were not used to contain auxiliary data 14 (Figure 1), therefore appear without modification in the new Truecolor image 10a (Figure 1).

Constructing (recovering) auviliary data 14 from new Truecolor image 10 a requires the exact reference palette image 12 format version of original Truecolor image 10, and the information necessary to construct auxiliary data 14 from new difference image 139. Figure 4 is a diagram illustrating the sequence of calculation for constructing auxiliary data 14 from a modified Truecolor image 10a. As in Figure 1, the images in Figure 4 are printed digital images, and are not copies of photographes.

The coding to construct auxiliary data 14, according to the process illustrated in Figure 4, is shown in Figure 5. The color difference image 13a is calculated from modified Truecolor image 102 and the reference palette image 12. The digital key is used with the data construction processor 15 a to construct auxiliary data 14 . The method named MakeDifferenceFile() is executed at line 1 in Figure 5. The MakeDifferenceFile() method implements the calculation shown in Figure 2. The OpenBitmapFile() method executed at line 3 prepares the difference image 13 a for processing by sither the above-mentioned MODULAR ERROR EMBEDDING data construction process or the above-mentioned DATA EMBEDDING data construction process. The ExtractData(0) method executed at line 4 in Figure 5 constructa the auxiliary data 14 from the appropriate digital key and the difference image 13 a

As with the DATA EMBEDDING process as taught in the above-mentioned US patent, another way of protecting the pair table key taught in that patent is to remove and encrypt it using public-Eey or another encryption process. The present invention
requirss the reference palette image 12 , as well as the DATA EMBEDDING process key in order to construct auxiliary data 14. The necessary keys for DATA
EMBEDDING process or codes for the steganography used to insert auxiliary dats 14 into the difference image can be combined with the reference palette image 12 using.
known and readily available file formats. The COMPUSERVEQ Graphic Interchange Format ${ }^{T M}$, the Tagged Image File Format, and the MICROSOFTO bitmap format enable the addition of additional binary information within the file header fields. Thus, the reference palette image 12 serves as the key to construct auxiliary data 14 from a publication quality Truecolor version of the identical picture indiscernibly containing auxiliary data 14 .

The foregoing description of the embodiments of the invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.

WHAT IS CLATMED IS:

1. A method of embedding auxiliary data into publication quality digital image data represented by a quantity of color-component values for each picture elemont comprising the steps of:
reducing said quantity of color-component values of said publication quailty digital image data, to create a digital reference palette, wherein said digital color palette represents said quantity of color-component values of said publication quality digital image data;
creating a digital representation of said auxiliary data as a sequence of individual bit values:
creating a color-component digital differeace image by numerically combining said publication quality digital image with said digital reference palette image;
modifying said color-component digital difference image by combining said auxiliary data and aaid color-component digital difference image through use of a data embedding method;
creating a modified publication quahty digital image indiscarnibly containing said auxiliary data by combining said modified color-component digital difference image and said digital relerence palette image; and
outputting said modified publication quality digital image into a file format specified for said modified publication quality digital image.
2. The method as described in Claim 1 further comprising the step of combining said auxiliary data with predetermined information indicative of the presence of said auriliary data, its file name, and file size, said atep to be performed after the step of digitizing said auxiliary data.
3. The method as desmibed in Claim I further comprising the step of including an algorithm for removing or hiding a digital watermark signature into said modified publication quality digital image.
4 The method as described in Claim 1, wherein said data ambedding method comprises a bitslice process.
4. The method as described in Claim 1, wherein ssid data embedding method compriges a MODULAR ERROR EMBEDDING process.
5. The method as described in Claim 1, wherein said data embedding method comprises a DATA EMBEDDING process
6. The method as described in Claim 1, wherein said publication quality digital image originates from a publication quality black and white inage containing a range of digital levels of brightness.
8 The method as described in Claim L, wherein said publication quality digital umage originates from a digitized anslog audio aignal and said reference palette image originates from a reduced-quality version of said digitized audio analog signal
7. The method as described in Claim 1, wherein said publication quality digital image originates from a television signal or motion picture image.
8. The method as described in Claim 1, wherein said publication quality digital image originates from X-ray or Magnetic Resonance Imaging data.
9. The method as described in Claim 1, wherein said publication quality digital image originates from digifized personal security and identification information.
10. The method as described in Claim 1, wherein said publication quality digital image originates from images made with a camera producing digital images.
11. A method of reconstructing indiscernible auxiliary data from a machine readable publication quality digital imsge representation of unrelated and uncorrelated data comprising the steps of:
generating a digital reference palette image from values and properties contained within said publication quality digital image;
creating a color-component digital difference image by numerically combining said digital reference palette image and said publication quality digital image;
constructing said auxiliary data by processing said color-component digital difference image with a data embedding construction method;
interpreting said auxiliary data in order to obtain or remove content, validate or authenticate, or otherwise process said publication quality digital image in order to modify auxiliary data quality.

WO 99/62044 PCT/US99/09417
$1 / 6$

Figure 1

I/ loop to calculate and store the blased-difference of the Truecolor image
// difference $=128+$ (Truecolor - palette)
u create the Truecolor difference file
pixelcount $=0$ L;
for $(i=0 ; 1<$ (short) bh.rows; $i+t)$ (
memset(buffer, 0, BYTES_IN_ROW):
$\mathrm{j}=$ TCFile->Read(butitc, BYTES_IN_ROW):// Truecolor image row.
ASSERT() $=($ short $)$ BYTES_IN_ROW):
bytesread $+=\mathrm{j}_{\text {; }}$
$\mathrm{j}=$ tape7. Read(buffal, bytesinrow); I/ palette-format image roy
ASSERT($\mathrm{f}=$ bytesinrow):
for $(0=0 ; j<$ (short)bh.cols; j $+\rightarrow$) $\$
short b_diff, g_diff, r_diff;
char pixval[3];
$\left.\mathrm{k}={ }^{(\text {buffifal }}+\mathrm{j}\right)$;
b_diff $=128+(\text { short })^{*}($ buiftc $+1 * 3)-($ short $)$ colormap $[k]$.b;
If (colormap $(k) . b>250)$ \{ b_diff = 265; :/Idon't use maximum palette values
)
g_diff $=128+(\text { short })^{*}$ (buffte $\left.+j^{*} 3+1\right)$-(short)colornap $(k] \cdot g$:
If (colormap[k].g > 250) $\{$
g_diff $=255$; $\quad \|$ don't use maximum palatte values
)
$r_{\text {diff }}=128+(\text { short })^{*}$ (buffte $\left.+j * 3+2\right)$ - (short)colormapikj.r;
if (colormap $[k] . r>250$) (
t_difi=255; $/ /$ don't use maximum palette values
)
FIGURE 2A
// set pixel to difference only if it is in range of unsigned char // otherwise flag with a value that is later removed from the pairkey

```
pixval[0] = pixval[1] = pixval[2] = '10';
if (b_diff < 255 && b_diff > 0) {
    *(buffer + j* 3) = (unsigned char)b_diff;
} else {
    *(buffer + j * 3) =0x01; // flag to mark out-of-range pixel
    pixval[[0] = 'b';
}
if(g_diff < 255 && g_diff > 0) {
    *(buffer + j * 3 + 1) = (unsigned char)g_diff;
} else {
    *(buffer + ; * 3 + 1) = 0x01; // flag to mark out-of-range pixel
    pixval[1]= 'g';
}
if (r_diff < 255 && r_diff > 0) {
    *(buffer + j * 3 + 2) = (unsigned char)r_diff;
} else{
    *(buffer + j* 3 + 2)=0\times01; // flag to mark out-of-range pixel
    pixval[2] = 'r';
}
```

FIGURE 2B

```
II loop to calculate and store the output version of the Truecolor image
    I/ note: difference \(=128 *\) (Truecolor - palette)
    // hence: Truecolor \(=(\) difference -128\()+\) palette
```

for ($\mathrm{i}=0 ; \mathrm{i}$ < (short) bh rows; $i++$) \{ memset(buffer, 0, BYTES_IN_ROW):
$j=$ tape6.Read(buftc, BYTES_IN_ROW); // difference image row ASSERT $(\mathrm{j}==$ (short)BYTES_IN_ROW);
bytesread $+=$ j
i = tape7.Read(buffipal, bytesinrow); " palette-format image row ASSERT $(\mathrm{j}==$ bytesinrow):
for $(j=0, j<$ (short) $\mathrm{bh} . \mathrm{cols} ; \mathrm{j}++$) $\{$
unsigned char b_diff, g_diff, r_diff:
if $(\mathrm{i}=0)_{\mathrm{i}} \mathrm{i}$
memopy(buffer,buftc,BYTES_IN_ROW):
break; II difference embedding key in 1st row
\}
$\mathrm{k}={ }^{7}$ (buffipal +j$)$;
b_diff $=$ *(buffte $+1 * 3)-128+$ colormap $[k] . b$;
$g_{\text {_diff }}={ }^{*}($ bufftc $+j \cdot 3+1)-128+$ colormap[k].gi
r_diff $=$ *(bufftc $+[$ * $3+2$) $-128+$ colormapik] ;
${ }^{\prime}$ (buffer $+\mathrm{j}^{*} 3$) $=$ b_diff;
${ }^{*}$ (buffer + j* $3+1$) $=$ g_diff;

* (buffer $+1 * 3+2$) $=$ r_diff:
)
tape8.Write(buffer, BYTES_IN_ROW): /l output one Truecolor image row
)

FIGURE 3

Figure 4

MakeDifferencelmage();
// open the difference file and extract the pixel_table information
CImageBitmapFile::OpenBitmapFile(tempstr);
ExtractBitmap();

FIGURE 5

C. DOCVMENTS CONSIDERED TO GE RELEVANT				
Category*	Ciation of docymeat, with indication, where approprintr, of the mevant passuges		Relevant to elam Now	
A	US 5,659,726 A (SANDFORD, 11 et al.) 19 AUGUST 1997, see column columin 2, lines 40-56.		1-13	
A, P	US $5,819,289$ A (SANFORD. II et al.) 06 OCTOBER 1998, col. 4, line 50 thru col. 5 , line 16 .		1-13	
λ	US 5,636,292 A (RHDADS) 03 JUNE 1997, see col, 5, lines 46-59.		$1-13$	
A	US 5,652,626 A (KAWAKAMI et al.) 29 JULY 1997, see col. 4, lines 8-64.		1-13	
A, E	US 5,930,369 A (COX er al.) 27 IULY 1999, see col. 9, Jinies 6-44.		1-13	
A	US 5,530,759 A (BRAUDAWAY et al.) 25 JUNE 1996, see col. 4, line 52 thri col. 5 , line 15 .		1-13	
X] Further documents are listed in the continsation of Box C. $\square^{\text {C. }}$ Ser patent farnily uanex.				
	 -be of protionder Maraias			
'A'		the prisuiple or thonay uoderying ite	invimiona	
- H $^{+}$		 -rian tis decument à takes eloux		
H.	 	$\text { - } \mathrm{F} \text { Thor the document à taken elout }$	disemed inveation soant in siep witho and duwares la	
	mess	Eembith vish onk of roope other sant leine sher kuy to a parsan akilled ion		
+	Sta primity dave tletand	-20. docuzine member of the tame pment lasiiby		
Date of lin actual coropletion of the interantiond fearch		Dath of mailing of the intemational search report$09 \text { SEP } 1999$		
Fume asod mailing sddress of the ISNOSS Cocrainiener ni' Titwhe sud Tredernarka for RCT Wehinguas D.C 2021 Facsimila No. (703) $305-3230$		Authonized nflicer GILBRATO BARRON JR. Tolophone No (703) $305-1830$		

Firm PCT/ASA/210 (seand sheei)(Jely 1992)*

INTERNATIONAL SEARCH REPORT	International application No. PCT/US99/09417
A. CLASSIFICATION OF SUBIECT MATTER IPC(6) :G00C 5/00; H04L 9/00 US CL 380/4, 54; 382/232 According to International Petent Classification (IPC) or to both ne	nd IPC
B, FIELDS SEARCHED	
Minimum dommentation searched (classification system followed U.S. : $380 / 4,54 ; 382 / 232$	bols)
Documentation searched other than minimum documentation to the	ments are included in the fields searched
Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

Intemadionsi priread
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Interasthonal Patent Clusalification ${ }^{6}$; H04L 9/30	(II) Internationat Publleation Number: (43) Internaboeal Puhlication Date: 26 September 1996 ($26,09,96$)
(2i) Interrathoal Appilestien Number: PCTIUS96/03192 (22) Intermational Filiog Date: 21 March 1996 (21.03.96)	(81) Designated Stales: CA, JP, Eurepean patzal (AT, BE, CH, DE, DK, ES, F, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priarty Deta: $08 / 408551$ 21 Merch 1995 (21.03.95) (71) (72) Appllesat and Taventor MQCALI, Mgyio [US/US]; 45 Chestnet Bill Avenus. Brooklint, MA 02146 (USS). (74) Agent JUDSON, Dovid, F; Haghes A Lace, LiLP., Suit 2500, 1717 Main Street, Dilles, TK 75201 (US).	Fubiltared Wish internasional search report. Before the expiration of the time tinit for anarnding the ctains and to be republished in ite avent of the receipt of amendments.

(S4) Tille: SDMULTANEOUS ELECTRONIC TRANSACIIONS

(57) Abstrset

A communication method between a fint and second pary, in the preseoce of a musted party, that enables a trapsaction in which the secund panty receives is firn velue producod by the firsi party and unpredictable to the socood party if and ouly if the lirst party receives a encond yalas produced by the second paty end ungndictable to the first party. The method inclodes rwo basic stepas exchanging a fins est of commuricstions terween the first and tecond parties without perticipation of the trustrd parry to atampt completion of the transection, and if the transection is not completed laing the firat ef of communications tetwoen the firt and second parties, having the truseal party the antion to coumplete the transaction.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphiets publishing intemational applications under the PCT.

AM	Arramia
AT	Austria
A0	Asmanlin
88	Berbedor
888	Belgiam
BE	Butins Favo
BG	Bulgaria
边	Bexin
ER	Brazil
WY	Belaras
CA	Craida
CF	Cestral Africm liepoblic
CG	Coogo
CH	Swiznertad
CI	Coue d'tvoire
CM	Cameroce
CN	Chins
Cs	Crecharamitia
C2	Cruch Reproblie
DE	Cermay
DK	Dermink
EE	Estorit
E8	Spuis
F1.	Fruland
FR	Prace
6A	Gitura

GB	United Kingdoem
GE	Georgin
GN	Guinea
GR	Grecee
HU	Hungery
IE	breland
IT	traly
JF	Japan
KE	Kenya
KG	Kyrgyitan
KP	Democraic People's Repoblic of Karea
KR	Republic of ICorea
EZ	Kazahatas
U	Lioctiventeip
LX	Srit Leikr
LR	Liberla
LT	Liftumia
$\mathbf{L T}$	Luctentowrs
LV	Larvia
MC	Monstos
MD	Repreblic of Moldove
MG	Madegricy
ML	Mali
MNN	Mcepolia
MR	Marriturial

MW	Malmwi
MX	Mestico
NE	Niger
NL.	Nutherfenda
NO	Norwny
NZ	Nerr Zealend
PL	Polned
PT	Pormagal
80	Rommia
RU	Rusaisc Foderation
SD	5 man
SE	Sueden
SG	Simgapore
SI	Slavenia
8K	Slovalis
SN	Senegal
82	Swazilod
TD	Clad
TG	Togo
TJ	Tajkistam
TT	Trinidad mad Tobego
UA	Uraine
UG	Ugrode
US	United Suass of America
UZ	Uiselistum
VN	Viet Nem

SIMULTANEOUS ELECTRONIC TRANSACTIONS

TECHNICAL FIELD

The present invention relates generally to electronic commerce and transactions and more particularly to techniques for enabling Users to effect certified mail, contract signing and other electronic notarization functions.

BACKGROUND OF THE INVENTION

The value of many transactions depends crucially on their simuttaneity. Indeed, simultanaity may be so important to certain financial transactions that entities often are willing to incur great inconvenience and expense to achieve it. For example, consider the situation where two parties have negotiated an important contract that they now intend to "close." Often, the parties find it necessary to sign the document simultaneously, and thus they mest in the same place to watch each other's actions. Another example is the process of certified mail, where ideally the sender of a message desires that the recipient get the message simultaneously with the sender's obtaining a "receipt". A common certified mail procedure requires a person who delivers the mail to personally reach the recipient and obtain a signed acknowledgement when the message is delivered. This acknowledgement is then shipped to the sender. Again, this practice is costly and time consuming. Moreover, such acknowledgements do not indicate the content of the message.

In recent years, the cost, efficiency and convenience of many transactions have been improved tremendously by the availability of electronic networks. such as computer, telephone, fax, broadcasting and others. Yet more recently, digital signatures and public-key encryption have added much needed security to these electronic natworks, making such communication channels particularly suitable
for Financial transections. Nevertheless, while electronic communications provide speed, they do not address simultaneity.

The absence of simultaneity from electronic transactions severally limits electronic commerce. In particular, hererofore there has been no effective way of building so-called simuftaneous electronic transactions ("SET's"). As used herein, a SET is an electronic transaction that is simultaneous at least in a ${ }^{\%}$ logically equivalent" way, namely it is guaranteed that certain actions will take place if and only if certain other actions take place. One desirable SET would be certified mail. however, the prior art has not addressed this problem effectively. This can be seen by the following consideration of a hypothetical example, called extended centified mail or "ECM".

In an ECM transaction, there is a sender, Alice, who wishes to deliver a givan message to an intended recipient, Bob. This delivery should satisfy three main properties. First, if Bob refuses to receive the messege (preferably before learning it), then Alice should not get any receipt. Second, if Bob wishes to receive the message, then he will receive it and Alice will got a receipt for the message. Third, Alice's receipt should not be "generic," but closely related to the message itself. Simultaneity is important in this transaction. For instance, Alice's message could be an electronic payment to Bob, and it is desired that she obtains a simultaneous receipt if possible.

Alice could try to get a rocaipt from Bob of a message m in the following way. Clearly, sending m to Bob in the clear as her first communication does not work. Should this message be her digital signature of an electronic payment, a malicious Bob may loose any interest in continuing the conversation so as to deprive Alice of her
receipt. On the other hand, asking Bob to send first a "blind" receipl may not be acceptable to him.

Another alternative is that Alice first sends Bob an encryption of m. Second, Bob sends Alice his digital signature of this ciphertext as an "intermediate" receipt. Third, Alice sends him the decryption key. Fourth, Bob sends Alice a receipt for this key. Uniortunately, even this transaction is not secure, because Bob, after learning the message when recsiving Alice's key, may refuse to send her any recaipt. (On the other hand, one cannot consider Bob's signature of the encrypted message as a valid receipt, because Alice may never send him the decryption key.)

These problems do not disappear by simply adding a few more rounds of communication, typically consisting of "acknowiedgements". Usually, such additional rounds make it more difficulf to see where the lack of simultaneity lies. but they do not solve the problems.

Various eryptographic approaches exist in the literature that attempt to solve similar problems, but they are not satisfactory in many respects. Some of these methods applicable to multi-party scenarios propose use oi verifiable secret sharing (see, for example, Chor et al), or multi-party protocols (as envisioned by Goldreich et al) for making simultaneous some specific transactions between parties. Unfortunately, these methods require a plurality of parties, the majority of which are honest. Thus, they do not envision simultaneous transactions involving only two parties. indeed, if the majority of two parties are honest then both parties are honest, and thus simultaneity would not be a problem. Moreover, even in a multi-party situation, the complexity of these prior art methods and
their amount and type of communication (typically, they use several rounds of broadcasting), make them generally impractical.

Sophisticated cryptographic transactions between just two parties have been developed but these also are not simultaneous. indeed, if just two people send each other strings back and forth, and each one of thern expects to compute his own result from this conversation, the first to obtain the desired result may stop all communications, thereby depriving the other of his or her result. Nonetheless, attempts at providing simultaneity for two-party transactions have bean made, but by using assumptions or methods that are unsatisfactory in various ways.

For example, Blum describes transactions that Include contract signing and extended certified mail and that relies on the iwo parties having roughly equal computing power or knowledge of algorithms. These assumptions, however, do not always hold and are hard to check or enforce anyway. In addition, others have discovered ways to attack this rather complex method. A similar approach to simultaneity has also been proposed by Even Goldraich and Lempel. In another Blum method for achiaving simultaneous certified mail, Alice does not know whather she got a valid receipt. She must ga to court to determine this, and this is undesirable as well.

A method of Luby et al allows two parties to axchange the decryption of two given ciphertexts in a special way, namely, for both parties the probability that one has to guess correctly the cleartext of the other is slowly increased towards 100\%. This method, howaver, does not enable the partias to achieve guaranteed simultaneity if one party learns the cleartext of the other's ciphertaxt with absolute probability (e.g., by obtaining the decryption kay); then the can deny the other a similer success.

> For this reasons several researchers have tried to make simultaneous two-party transections via the help of one or more external entities, often referred to as "centers", "servers" or "trustees", a notion that appears in a variety of cryptographic contexts (see, for instance, Needham and Sehroder and Shamir). A mathod for simultaneous contract signing and ather transactions involving one trustee (called a "judge") has been proposed by Ben-Or et al. Their method relies on an external entity only if one party acts dishonestly, but it does not provide guaranteed simultaneity. In that technique, an honest party is not guaranteed to have a signed contract, even with the help of the external entity. Ben-Or et al only guarantee that the probability that one party gets a signed contract while the other does not is smail. The smaller this probability, the more the parties must exchange messages back and forth. In still another method, Rabin envisions transactions with the help of external party that is active at all times (even when no transaction is going on), but also this method does not provide guaranteed simuitaneity.

The prior art also suggests abstractly that if one could construct a true simultaneous transaction (e.g., axtended certified mail. then the solution thereto might also be useful for constructing other types of electronic transactions (e.g., contract signing). As noted above, however, the art lacks an adequate teaching of how to construct an adequate simultaneous transaction

There hes thus been a long-feit need in the art to overcome these and other problems associated with slectronic transactions. BRIEF SUMMMARY OF THE INVENTION

It is an object of the invention to provida true simultaneous electronic transactions.

It is a further object of the invention to provide an electronic transaction having guaranteed simuttaneity in a two-party scenario and with minimal reliance and support of a third party.

It is another more specific object of the invention to provide simultaneous electronic transactions between two parties that rely on third parties in e minimal and convenient manner. In particular, it is desired to provide electronic transactions between two parties that guarantee simultaneity via the help of an invisib/e third party. A thite party is said to be "invisible" because it does not need not to take any action if the transaction occurs with the parties following certain prescribed instructions. Only if one of the original parties deviates from these instructions may the other invoke the intervention of the up-to-then invisible third party, who then can still guarantee the simultaneity of the transaction even though it has not participated from its inception.

These and other objacts are provided in a communication method between a first and second party, in the presence of a trusted party, that enables a transaction in which the second party receives a first value produced by the first party and unpredictable to the second party if and onfy If the first party receives a second value produced by the second party and unpredictable to the first party. The method includes two basic steps: axchanging a first set of communications between the first and second parties without participation of the trusted party to attempt completion of the rransection, and if the transaction is not completed using the first set of communications between the first and second parties, having the trusted party take action to complete the transaction.

Where the first party's value is a message and the second party's value is a receipt, the transaction is a certified transmission oi
the first party's massage. Alternativelv, the first party's value represents a commitment to a contract and the second party's value represents a commitment to the contract, such that the transaction is a contract closing.

Praferably, according to the method the first party can prove that some information it receives is the second value, and the second party can prove that some information it recelves is the first value.

According to the more specific aspects of the method, at least one of the first and second parties and the rrusted party can encrypt messages, and at least one of the first and second parties and the trusted party can decrypt messages. The first set of communications includes at least one communication of the first party to the second party of a data string generated by a process including encrypting a second data string with an encryption key of the trusted party. The second data string includes a ciphertext generated with an encryption key of one of the parties, as well es information specifying or identifying at least one of the parties. The first set of communications also includes at least one communication of the second party of a data string generated by a process that includes having the second party digitally sign a data string computed from information received from the first party in a prior communication, Wherein the data string genorated by the second party is the second party's value.

According to further espects of the method, if the second party does not get the first value in the first set of communications, the second party sands the trusted party, for further processing, a data string that includes at least part of the data received from the first party. The further processing by the trusted party includes deerypting e ciphertext with a secret decryption key. The trusted
party then sends the first party information that enables the first party to compute the second value, and the trusted party sends the second party information that enables the second party to compute the first value. In either case, the trusted party also verifies identity information of at least one of the parties but preferably does not learn the first value.

DETAILED DESCRIPTION

In each of the schemes described below, there is a user Alice and a user Bob. The "invisible" third party may be a financial center that facilitates SETs among its customers, including Alice and Bob. For convenience, the following description shows how to make extended certified mail "simultaneous", although the invention is not so limited. In the context of an ECM system, the third party is called the Post Office. As will be seen, however, contrary to ordinary certified mail, the Post Office here is invisible. The inventive schema is also preferable to ordinary certified mail because the message receipt also guarantees the content of the message. Atso, the electronic transaction is faster, more informative and more convenient than traditional certified mail, and its cost should be substantially lowor.

In the preferred embodiment, an extended certified mail system is provided using a single "invisible" trustee or "trusted" party. The systern is implemented in a computer network, although it should be raalized that telephone, fax, broadcast of other communication networks may be used. Thus, without limitation, it is assumed that each user in the system has a computer capable of sending and receiving messages to and irom other computers via proper commurication channels.

Each user in the system has a unique identifier. Alice's identifier is denoted by A , and Bob's identifiar is B . The identifier of the Post Office is denoted by PO. Users and the Post Office can digitally sign messages. Thus, each has a secret signing key and a matching public verification keV . If m is a message (string), then $S / G_{A}(m)$ indicates Alice's signature of m. (it is assumed, for convenience, that m is always retrievable from its signature. This is the case for most signature schemes, and it is otherwise possible to consider a signed message as the pair consisting of the message and its signature.)

Users and the Post Office can encrypt messages by means of a public-key encryption algorithm (e.g., RSA). Thus, each has a public encryption key and a corresponding secret decryption key. $E_{A}(m), E_{B}(m)_{r}$ and $E_{P O}(m)$ denote, respectively, the encryption of a message m with the public key of Alice, Bob, and the Post Office. For simplicity, it is assumed that these gehemes are secure in the sense that each of E_{A}, E_{B} and $E_{P O}$ appear to behave as a random function. The systam can be suitably modified if these functions aro much less secure.

Again, for simplicity these encryption algorithms are deterministic and uniquely decodable. Thus, given a value y and a message m. all can verify whether y is the encryption of m with, fon example, the Post Office's key, by checking whether Epof(m) equals y . (If the encryption scheme is probabilistic, then one may convince another that a string y is an encryption of a message m by providing m together with the random bits that were used to encrypt m. If y is a ciphertext generated by means of the encryption algorithm $E_{\text {, }}$ $E^{\prime}(y)$ denotes the corresponding cleartext, whether or not E defines a permutation. Ilt may siso be possible to use eneryption algorithms
that are not uniqualy decodable, for instance, if it is hard to decrypt a given ciphertext in two different ways.) For simplicity, messages are encrypted directly with a public-key algorithm, however, one could first encrypt a message conventionally with some key k, and then encrypt k with a public-key algorithm. (Thus, to decrypt m, one need only just decrypt k).

In one preferred embodimant outlined below. the ECM method requires 5 possible steps of communication: A1 and A2 for user Alice, B1 and B2 for user Bob, and PO for the Post Office, However, at most 3 steps should have to be executed. If Alice and Bob are both honest, only steps A1, B1, and A2 will be executed, and in this order. Step B2 will be executed only if Alice fails to execute Step A2 properly. The execution of Step B2 causes the Post Office to axecute its only step, PO. The protocol is as follows?

A1. Given her message m, Alice computes $z=E_{A O}\left(\left(A, B, E_{B} / m\right) /\right)_{y}$ the encryption in the Post Office public kay of a triplet consisting of identifiers A, B and the message m encrypted in Bob's key, and then sands z to Bob.
81. Upon receiving 2 from Alice, Bob digitally signs it and sends it to Alice as the receipt.

A2. If Alice receives the properly signed receipt from Bob, she sends m to Bob.

B2. If, within e given interval of time after having executed Step $B 1$, Bob receives a string m such that $E_{P o}\left(\left(A, B, E_{B}(m)\right]\right)=z$. the value originally received from Alice, then he outputs m as the message and halts. Otherwise, Bob sends the value 2
signed by him to the Post Office indicating that Alice is the sender and he is the recipient.

PO. If Bob's signature relative to z is correct, the Post Office decrypts z with its secrer key. If the result is a triplet consisting of A, B and a string x, the Post Office (a) sends Alice the value z signed by Bob as the receipt, and (b) sends x to Bob.

Preferably, Alice sends z to Bob digitally signed by her. In addition, Alice may sign z in a standard format that indicates z is part of an extended certified mail sent from Alioe to Bob, E.g., she may sign the tuple (ECM) A, B, 2). In this way, Bob is certain that z comes from Alice and that, when Alice holds a receipt for m signed by Bob, he will have a certified version of m. Further, if z is digitally signed by Alice, Bob first checks Alice's signature, and then countersign z himselt. The adoption of a standard format also insures that, by signing z as part of an ECM system, Bob does not sign accidently a message that has been prepared by Alice maliciously. Also, the Post Office may also check Allice's signature or any additional formats if these are used.

In analyzing the protocol. It should be noted that Allice, given Bob's signature of z as receipt, can prove the content of the message by releasing m. indeed, all can compute: $x=E_{y}(m)$ and then verify that $E_{P O}((A, B, x))=2$.

Notice also that the Post Office does not understand the message sent via the ECM protocol, whether or not it is callad into action. Rather, the Post Office can only obtain $E_{B}(m)$, but never m in the clear (in this ambodiment).

Third, notice that m is, by definition, equal to $E_{B}^{\prime}(x)$, where $(A, B, X)=E_{P O}^{-1}(z)$, and may be non-sensical. Indeed, nothing prevents Alice from sending Bob a garbled message, However, she can only get a receipt for this same garbled message. It is also noted that, if not every string is an encryption of some message. Allce may choose z so that it is not the encryption of anything. In such case, however, she cannot ever ciaim to have a receipt for any message. Alternatively, it may be desirable to use cryptosystems for which either every string is an encryption of some other string or such that It can be easily detected whether y encrypts something.

The protocel works for the following reasons. When receiving the value $z=E_{\rho 0}\left(/ A, B, E_{p} / m /\right) /$ from Alice, Bob will have difficulty in computing $E_{g}(m)$, and thus m, from z without the Post Office's secret key. Thus, if he halts. Alice would not get her receipt, but Bob would not get m either.

Assume now that Bob signs z and sends it to Alice. Because this gives Alice a valid receipt from Bob for her message m, for the simultaneity constraint to hold, it must be shown that Bob easily obtains m. This is certainly true if Alice sends m to Bob in Step A1. Assume therefore that Alice does not send him m. Then, Bab presents z signed by him to the Post Office, essentially asking the Post Office to retriave (for him) $E_{6}(\mathrm{~m})$ from z. The Post Office complies with this request. In doing so, however, the Post Office also sends Alice z signed by Bob as the receipt. It does so to prevent one last possibility; that Bob, upon receiving z from Alice in Step A 1 . rather than sending her the recaipt in Step B1, goes directly to the Post Office in order to have $E_{g}(m)$ extracted from z.

Surnmarizing, If Alice sends a message encrypted with the Post Office key to Bob, and Bob does not sand Alice a receipt, or if
he does not access the Post Office, Bob will never learn m. Otherwise. Alice is guaranteed to ger her receipt for m either from Bob or from the Post Oifice. On the other hand, upon receiving an encrypted message, Bob is guaranteed that he will understand it, either halped by Alice or helped by the Post Office.

In the preferred embodiment above, the triplet (which includas the ciphertext $E_{B}(m /)$ also includes A and B. The ciphertext is customized in this way so that it can be used by the system only for the purpose of Alice sending a message to Bob. Whether or not this customization is performed, the system is very convenient to use because everyone knows the public key of the Post Office, because everyone can encrypt a value with that key, and because the Post Office can remove this encryption leyer for those recipients who claim to have been betrayed by their senders. However, without the above (or an equivalent) customization, this same convenience could be exploited by a malicious recipient, who could learn his messages while denying the senders their legitimate receipts.

In particular, assume that this customization is removed altogether. Then, a malicious Bob, upon receiving $z^{r}=E_{P O}\left(E_{B}(m)\right)$ rathar than $z=E_{p o}\left(\left(A, B_{x}, E_{g}(m) /\right)\right.$ - from Alice in Step A1, may behave as follows. First, he does not send Alica any receipt. Second, he signs 2^{\prime}. Third, he gives this signed value to the Post Office complaining that a sender Chris (an accomplice of his) is refusing to send him the message in the clear. At this point, the Post Office, after verifying Bob's signature and not having any way of checking whether Chris is the real gender, retrieves $E_{B}(m)$ from z^{\prime} and sends $E_{B}(m)$ to Bob, while simultaneously cending the signed z° to Chris as his receipt, Of course, Chris may destray or hide this receipt. Meanwhile Alice, who does not get any receipt after Step

A1. may think that Bob is away or does not want to receive her message. But she believes that Bob will never be able to read her message in any case.

This violation of the simultaneity constraint (i.e., Bob receiving m while Alice having no recejpt) may still occur if, without any customization. Alice signs z when sending it to Bob in Step A1. Indeed. Bob would have no trouble in cemoving Alice's signature, asking Chris to sign $z^{\prime \prime}$ and them presenting to the Post Office $z^{\prime \prime}$ signed by Chris and countersigned by himself. The Post Office, after verifying Bob's and Chris's signatures, would still lafter removing its encryption layer) send $E_{B}(m)$ to Bob and the recelpt to Chris. This violation of simultarteity, however, does not occur with the customization of the triplet to includa A and B. Indeed, assume that Bob gives the Post Office the value $z=E_{p o}\left(\left(A, B, E_{Q}(m)\right) /\right.$ originally received by Alica and signed by him and Chris, claiming that it was sent to him by Chris. Then, the Post Office, after verifying Bob's (and Chrig's) signature and after computing the value $E_{P D}^{-1}(z)$, will notice that this value -i.e. $\left(A, B, E_{\theta}(m)\right)$-does not specify Chris to be the sender and Bob the receiver.

The benefits of this customization may be implemented in varying ways. For instance, Alica's signature of $\left(B, E_{B}(m)\right)$ may be sufficient to Indicate that the sender is Alice and the receiver is Bob. More ganerally, any customization that prevents Bob from obtaining $E_{A}(m)$ from the Past Office while convincing the Post Office not to send Allce the raceipt is within the scope of the invention.

It should be realized that any customization for the purpose of simultaneous electronic transactions is itself within the scope of the present invention, whether or not implemented with an invisible third party. For instanco, Alice may send $E_{P 0}\left(A, B, E_{G}(m)\right)$ direcdy to the

Post Office, which gives $E_{\theta}(m)$ to Bob (if Bob signs the receipt for Alice) after checking that Alice and Bob are, respectively, the sender and the receiver. Alternatively, Alice may send the Post Office $E_{P 0}\left(S / G_{A}\left(B, E_{D} / m\right) /\right)$ for identifying the sender and the recipient in a way that caninot be decoupled from the transaction. Such approaches may be especially useful with a plurality of trustees as described balow. Such an approach, which calls into action the trusted party directly with a proper customization step as described. is also useful for hiding the identity of the sender from the racipient Indeed, the Post Office may solicit a proper recaipt from Bob without disclosing Alice's identity (even if the receipt indicates the content of Alice's message).

Although not specified above explicitly, it should be appreciated that all or part of the actions required by the Post Office, Alice or Bob can be realized in software. Some of these actions can also be performed by hardware, or physically secure devices (i.e. devices such as secure chips having at least some portion of which is tamper-proof).

Many variations of the disclosed protocol can be anvisioned and are within the scope of the present invention. For instance, while the "receipt" described above witnesses the content of the message sent, the receipt can be made generic, e.g., by having Bou sign a "declaration" (instead of a string including an encrypted version of the message) that he has received an encrypted message from Alice at a given time. Also, if desired, the customization step (i,e. the inclusion of the identifiers A and B in the triplet) can be omitted. This might be advantageous, for example, when no other user may collude with either Alice or Bob to disrupt simultaneity. This may occur whers there is no third user, as in the case when
certified mail occurs between two predetermined people. In the disclosed system, the Post Office cannot learn the content of the message, but such a restriction can be removed also (e.g., by heving Alice compute $z=E_{\text {Po }}(A, B, m i)$. it may also be convenient to one.way hash strings prior to signing them.

Still another Varlation would be to impose some temporal element on the transaction. For instance, when Alice sends Bob $z=$ $E_{p o}\left(A, B, E_{B}(m)\right.$, she may $\operatorname{sign} z$ together with some additional information that specifies a certain time (either absolute or relative to the sending time) after which the Post Office will not help Bob obtain the message. Preferably, Alice specifies this time in a signed manner both ourside the Post Office encryption layer as well as within the triplet. In such case, the Post Office must obtain from Bob all necessary information to verify that the time specified putside the PO encryption layer checks with the time spacified within the triplet. If It does not, then several possibilities may occur. For example, the Post Office will not help Bob recover the message, or the message is considered unsent (even if Allice obtains a receipt),

Other variations are also possible. Some variations may be used in conjunction or in alternative to the techniques described above. One group of such variants concerns the encryption method used.

For instance, E_{B} doos not need to be interpreted as an encryption algorithm for which Bob has the decryption key. It may just be an encryption algorithm for which Bob can have the message docrypted. For example, and without limitation, the decryption keV of E_{G} may lie with a group of people, each having a piece of the key. These same alternative interpretations apply also to E_{A} or $E_{M O}$.

Also, white public-key cryptosystems are quite convenient, it should be realized that conventional cryptosystems could be used for the ECM protocol. For example, x may be the conventional encryption of $\left(A, B, E_{B}(m)\right)$ with a secret key k shared between Alioe and the Post Office. This key k may be released if it is desired that Bob verify m to be the genuine message. If, however, is is feared that release of a different key may change the content of the messeges, special redundancies could be used. For instanoe, conventionally a message M is encrypted by actually encrypting (M_{2} $H(M)$), where H is a one-way function. Thus, if e is an encryption al (M. HiM) with a key k, it is hard to find a second key K such that e also is an encryption with that key of ($M^{\prime} H\left(M^{\prime}\right)$). It is preferoble that $k_{\text {, }}$ rather than being a secret key shared by Alice and the Post Office, is a temporary key that Alice may transfer to the Post Office separately by means of a different shared key K. This way, divuiging k se.g., for the purpose of convincing Bot of the value of $E_{\theta} / m / /$ does not force the Post Office and Alice to agree on another conventional key k.

It should also be appreciated that the digital signatures of the ECM system reed not be public key signatures. For instance, there may be private key digital signatures or signatures verifiable with the heip of other parties, or other suitable forms of message authentication: Thus, 88 used herein, "digital signatures" and "digital signing" should be broadly construed. Similarly, the notion of encryption with a key of some party should be broadly construed to include encrypting with a public key of that party or encrypting with a secrer key shared with that party or known to that party.

There mav also be concern that the Post Office will collude with one of the parties. For instance, the Post Office may collude
with Boh who, rather then sending the receipt to Alice; goes directly to Post Office, and this enables Bob to understand his message but without giving Alice any receipt. This may occur in ordinary certified mail. Indeed, one who delivers the post may leave a letter with his intended recipient without asking him or her to sign a receipt.
Nonetheless, this potential problem may be deatt with effectively and efficiently. For instance, the Post Office may be (or make use of) a physically secure device. Assuming that the Post Office uses such a device in the preferred embodiment, then it will be hard for user Bob to have the Post Office decrypt ($A, B, E_{Q}(m)$) for him without sending Alice her receipt. Indeed, the chip can be programmed to perform both operations or none. Although use of physically secure devices might increase the cost of a system, this need not be the case. Indeed, while they may be millions of users, there may be one or much lewer Post Oifices. (Each user, of course, may benefit also from being or relying upon physically secure devices.)

While the inventive ECM system is very economical as it requires at mast three communication steps, the goals can be accomplished also by more steps. In particular, although the trusted party, upon receiving Bob's communication, can enable Bob to get his message and Alice to get her receipt, without sending messages back and forth, this goal can be accomplished by means of a more complex dialogue. Indeed, more slaborate dialogues, and in particular zero knowledge proofs (see, e.g., Goldwasser et al or Goldreich et al) could be usoful (also as an alternative to physically secure devices) to give Bob the message or Alice the receipt so that they learn their respective values, but are not able to "prove" these values to third parties.

A further alternative method anvisions a Post Office with a plurality of trustees. A multiplicity of trustees can be beneficial for various aspects, particularly, if the system is set up so that more than one of the trustees must collude for cheating to occur. Presumbily, however, each trustee is selected with trustworthiness (or, if it is a device, proper functioning) as a criterioo، and thus the possibility that more than one of them is malicious or defective is very small.

A simultaneous ECM system with a multiplicity of trustees may make noval use of prior techniques such as fair cryptography, or sucret shäring, verifiable secret sharing or threshold cryptosystems.

In a construction based on fair public eryptosystems, the triplets (A, B, $E_{a}(m)$) are not encrypted with the Post Office's public key, but rather with a user public key; In this embodiment, user Alice computes a pair of public and secret key of a tair public-key cryptosystem, properly shares her secret key with the trustees of the Post Office (e.g., receiving from said trustees a certification that they got legitimate shares of this user key) in some initial phase, and thon performs Step A1 of the above ECM protocol. If needed, Bob may turn to the Post Office and instructs the trustees to reconstruct Alice's user key. By doing so, the trustees cannot monitor or cause the Post Office to monitor the messago addressed by Alice to Bob, but can reconstruct the triplet ($A, B, E(m)$). To insure that the Post Office trustees da not collude with Bob in depriving Alice of her receipt, it can be arranged that each trustee, when contributing its own piece of a user secret key, also gives a proper acknowledgement to that user. Thus, unless all n trustees do not behave properly, Alice would receive at least one receipt.

A possible drawback of this fair-cryptography based system is that Alice must interact with the trustees in order to give tham shares of her user key. Thus, the trustees are not fully invisible. This interaction may not oven be confined to a single initial phase.

This is because Alice may not be able to reuse her key after Bob accesses the Post Office and causes its reconstruction. To alleviate this problem, it might be desirable to use physically secure devices and having the trustees reveal their own pleces to such a device, which would then be able to announce $\left(A, B, E_{B}(m)\right)$ without proot.

A better approach uses the ECM protocol, but involves splitting the secret key of the Post Office rather than the secret user keys. Thus, Alice would continue to enerypt $\left(A, B, E_{B}(m) /\right.$ with the help of tha Post Office public key, whose corresponding secret key is shared among the n trustees but is not known to any single entity (nor has it been prepared by any single entity). Thus, the n trusteas must cooperate, under Bob's proper request, in removing the Post Office's encryption layer. However, they do so without reconstructing the Post Office secret key, not even internally to the Post Office. To this end, a threshold cryprosystem may be used). This solution is now illustrated using the weil-known Diffie-Hellman publlc-key cryprosystem.

In the Diffie-Hellman system, there is \bar{z} prime p and a generator g common to all users. A user X chooses his own secret key x at random between 1 and $\rho-1$, and sets his public key to be $g^{x} \bmod \rho$. Let y and $g^{y} \bmod p$, respectively, be the secret and public keys of user Y. Then X and Y essentially share the secret pair key $g^{\prime \prime} \bmod p$. indeed, each of X and Y can compute this pair-key by raising the other's public key to his own secret key mod ρ. On the other hand, without knowledge of x or y, no other user, given the
public kays $g^{x} \bmod p$ and $g^{y} \bmod p$ and besed on any known method, can compute the pair-key $g^{x y}$. Thus X and y can use this key to secure communications between aach other (e.g., by using it as the key of a symmetric cipher).

Let now $T_{t_{1}} T_{n}$ be the trustees of the Post Office. Then, each T_{r} chooses a secret key $x \dot{f}$ and a matching public key $g^{\kappa}, \bmod p$. Then the public key of the Post Offica is set to be the product of these public keys $\bmod p, g^{2} \bmod p$ (i.e.. $g^{2}=g^{x 1+\ldots+x n} \bmod p$). Thus, each trustee has a share of the corresponding sacrat key, z. Indeed. the Post Office's secret key would be $z=x 1+\ldots+x n \bmod p-1$, Assume now that Alice wishes to encrypt ($A, B_{,}, E_{g}(m)$) with the Post Office's key. She selects a (preferably) temporary secret key a and its corresponding public key g^{a} mod p. She then computes the public pair-key $g^{a z} \bmod p$, encrypts $\left(A, B, E_{B}(m)\right)$ conventionally with the secret pair-key $g^{a z}$, and then sends Bob this ciphertext together with the temporary public-key $g^{a} \bmod p($ all in Step A1). If in Step 81 Bob sends Alice back a receipt, namely, his signature of the received message, then Alice, in Step A2, sends him the secret key a. This enables Bob to compute the pair-key $g^{2 z} \bmod p$ (from a and The Post Office's public key), and thus decrypt the conventional ciphertext to obtain ($A, B_{r} E_{B}$ (m)). Thus, if both users behave properly, the Post Office is not involvad in the transaction. Assume now that Bob properly asks the Post Office to decrypt Alice's ciphertext. To do this, the trustees cooperate (preferably, with proper notice to Alice and to each other) in computing $9^{A z} \bmod \rho$. To this end, each trustee T_{i} raises Alice's public key g^{2} mod ρ to its own secret key. That is, T_{i} computes $g^{e x i} \bmod \rho$. Then these shares of the pair-key are multiplied together mod ρ to obtain the desired private pair-key. In iact, $g^{a x t_{n}} g^{\text {axn }} \bmod \rho=g^{n x t+\ldots+20 n} \bmod p=g^{a t x t+\rightarrow+m n t} \bmod \rho=g^{a z}$
mod p. This key mey be given to Bob, who can thus obtain $E_{d} / m /$. In this method, it may be useful to have a Post Office representative handle the communications with Bob, while the individual frustees handle directly their sending Alice receipts.

This method can be adjusted so that sufficiently few (aiternatively, certain groups of) trustees cannot remove the Post Office's encryption layer, while sufficiently many fatternatively, certain other groups of) trustees can. For instance, there can be kn trustees, and each of the n trustees acting as above can give his own secret key to each of a group of $k-1$ other rustees. Thus, each distinct group of k trustees has knowledge of a secret key as above. Further, the above-described modifications to the single invisible-trustee ECM protocal can be applied to embodiments involving multiple trustees.

In the ECM systern involving fair cryptography, even a user might be or rely upon a multiplicity of entities. Indeed, in the invention, "user" or "party" or "trusted party" thus should be construed broadly to include this possibility.

It should be appreciated that the inventive ECM systems enable Alice and Bob to exchange simultaneously two special values, the first, produced by Allce, which is tat least reasonably) unpredictable to Bob, and the second, produced by Bob, which is unpredictable to Alice. Indeed, the value produced by Bob and unpredictable to Alice may be Bob's signature of step B1. If the message is not known precisely by Bob, then the message itself may be the value produced by Alice and unpredictable to Bob.
Alternatively, if Bob knows the message precisely (but it is desired that he receive it from Alice in an official and certified manner), then the parties may use a customization step so that, for example
$S / G_{A}\left(m, E_{B}(m)\right)$ is the value produced by Allice and unpredictable to Bot.

The inventive system is useful to facilitate other electronic transactions that require the simultaneous exchange of unpredictable values. One such exampla, not meant to be limiting, involves a contrant "closing" wherein a pair of users desive to sign a contract at a particular time and place. The invention thus allows Alice and Bob to sign a contract simultaneously with an invisible third party. Indeed, the first value may be Alice's signature of the contract C and the second value Bob's receipt for a message consisting of Alica's signature of C .

In particular, assume that Alice and Bob have aiready negotiated a contract C. Then. Alice and Bob agree (in a preliminary agreement) (a) that Alice is committed to C if Bob gets the message consisting of Alice's signature to C_{i} and (b) that Bob is committed to C if Alice gets Bob's receipt of that message. This preliminary agreement can be "sealed" in many ways, for instance by signing. preferably standardized, statements to this effect conventionally or digitally. It does not matter who signs this preliminary agreement first because Bob does not have Alice's message and Alice does nat have Bob's receipt. However, aiter both parties are committed to the preliminary agreement, the inventive ECM system allows the message and the recaipt to be exchanged simultaneausly, and thus C is signed simultaneously. Those skilled in the art also may realize it may be more convenient to first one-way hash C prior to signing it.

This mathod may be much more practical than accessing a commonly trusted lawyer particularly, when the contract in question may be very elementary or arises in an "automatic context".
Generalizing, one may view a contract C as any arbitrary signal or
string of symbols to which the parties wish to commit in a simuttaneous way. The inventive solution is very attractive because it can be implemented in software in many contexts, and because the trustee is invisible and need not be called into use if the signatories behave properly. This minimizes cost and time, among other resources. In this application, the trustee, rather than a post office. may be a "financial service center" that facilitates the transactions of its own customers.

Yet another application of the invention is to make simuftaneous the result of applying a given function to one or more secret values, some belonging to Alice and some belonging to Bob. For example, the inventive method allows implementation of "blind" negotiations. In this embodiment, assume a seller Alice and a buyer Bob desire to determine whether Alice's (secret) minimum selling price is lower thàn Bob's' (secret) maximum selling price (in a way that both parties will leam the result simultaneously). If the answer is no, then the parties may either try again or terminate the negotiation. Alternatively, if the answer is ves, then preferably the parties also will be committed to the transaction at some value. (For example, the average of the two secret values).

Another useful application of the invention is during a bid process, such as in an auction. For instance, assume that multiple bidders wish that their secret bids be revealed simultaneously. One bidder may also wish that his or her bid be indopendent of the other bids.

CLAIMS:

What is claimed is:

1. A communication method between a first and second party, in the presence of a trusted party, enabling a transaction in which the second party receives a first value produced by the first party and unpredictable to the second party if and only if the first party receives a second value produced by the second party and unpredictable to the first party, comprising the steps of:
exchanging a first set of communications between the first and second parties without participation of the trusted party to attempt completion of the transaction; and

If the transaction is not completed using the first set of communications between the first and second parties, having the trusted party take action to complete the transaction.
2. The communication method as described in Claim 1 wherein the first party's value is a message and the second party's value is a receipt, such that the transaction is a certified transmission of the first party's message.
3. The communication method as dascribed in Claim 1 wherein the first party can prove that some information it receives is the second value.
4. The communication method as described in Claim 1 wherein the second party can prove that some information it receives is the first value.
5. The communication method as described in Claim 1 wherein the first party can prove that some information it receives is the second value and the second party can prove that some information it receives is the first value.
6. The communicatian method as described in Claim 1 wherein the first party's value represents a commitment to a contract and the second party's value represents a commitment to the contract, such that the transaction is a contract closing.
7. The communication method as described in Claim 6 wherein the first party can prove that some information it receives is the second value and the second party can prove that some information it receives is the first value.
8. The communication method as described in Claim 1 wherein at least one of the first and second parties and the trusted party can encrypt messages, and at last one of the first and second parties and the trusted party can decrypt messages.
9. The communication method as described in Claim 8 wherein at least one communication of the first party is a data string generated by a process including encrypting a second data string with an eneryption key of the trusted party.
10. The communication method as described in Claim 9 Wherein the second data string includes a ciphertext generated with an ancryption key of one of the parties.
11. The communication method as described in Claim 9 wherein the second data string contains information identifying at least one of the parties.
12. The communication method as described in Claim 8 wherein at least one communication of the second party is a data string generated by a process that includes having the second party digitally sign a data string computed from jnformation received from the first party in a prior communication, wherein the data string generated by the second party is the second party's value.
13. The communication method as described in Claim 8 wherein if the second party does nov get the first value in the first set of communications, the second party sends the trusted party for further processing a data string that 5 includes at least part of the data received from the first party.
14. The communication method as described in Claim 13 wherein the further processing by the trusted party includes decrypting a ciphertext with a secret decryption key,
15. The communication method as described in Claim 14 wherein the trusted party sends the first party information that enables the first party to compute the second value, and the trusted party sends the second party information that enables the second party to compute the first value.
16. The communication method as described in Claim 15 wherein the rusted party also verifies identity information of at least one of the parties and does not learn the first value.
17. The communication method as described in Claim I wherein the trusted party takes no action to complete the transaction after a specified time.
18. The communication method as described in Claim 17 wherein the speciffed time is included within the first set of communications.
19. The communication method as described in Clsim 17 wherein the specified time is determined by the time at which certalin communications oceur,
20. A method by which first and second parties and a trusted party effect a certified mail transaction, each of the parties having matching public and secret keys of a public key encryption scheme, and wherein the first party desires to send a message to the second party and obtain a message receipt indicating the content of the message to thereby complete the certified mail transaction, comprising the steps of:
(a) having the first party generate and send to the second party a data string including an encryption, with the trusted party's public key, of information that prevents the trusted party for enabling the second party to obtain the first party's message without the first party obtaining the message receipt:
(b) upon receipt by the second party of the data string, having the second party generate and send to the first party the message receipt;
(c) upon recaipt by the first party of the message receipt, having the first party send to the second party information that enablas the second party to retrieve the 20message:
(d) upon receipt by the second party of the information, having the second party attempt to verify whather the message was received: and
(e) it the message was not received, having the second party send information to the trusted party for further processing, wherein the information includes a ciphertext encrypted with a public key of the trusted party.
21. The method as described in Claim 20 further including the step of:
(f) having the trusted party, using the information received from the second party, (i) decrypt some information it receives from the second party using the secret key of its public key encryption scherne to thereby generate an encryption of the first party's message using the second party's public key, and (ii) obtain information that identifies at least the first party.
22. The method as described in Claim 21 turther including the unordered steps of:
(g) having the trusted party send the first party, as the message recelpt, soma of the information the trusted party recaived from the second party; and
(h) having the 1rusted party sand the second party information from which the second party can retrieve the message.
23. The method as described in Claim 20 wherein at least one of the first and second parties and the trusted party includes a physically secure device.
24. The communication method as described in Claim 20 wherein further processing by the trusted party does not occur after a specified time.
25. The communication method as described in Claim 24 wherein the specified time is included within at least communication berween the first and second parties.
26. The communication method as described in Claim 24 wherein the specified time is determined by the time at which certain corrmunications occur.
27. A communication method between a first and second party, in the presence of a plurality of trustees, enabling a transaction in which the second party receives a first value produced by the first party and unpredictable to the second party if and only if the first party receives a second value produced by the eecond party and unpredictable to the first party, comprising the steps of:
exchanging a first set of communications between the first and second parties without participation of any of the trustees to attempt completion of the transaction; and if the transaction is not completed using the first set of communications between the first
and second parties, having a given number of the trustees take action to complete the transaction.
28. The communication method as described in Claim 27 wherein the plurality of trustees hold shares of a given secret key.
29. The communication method as described in Claim 27 wherain at least one of the first and second parties and the trusted party can ancrypt messages, and at least one of the first and second parties and the trusted party can decrypt messages.
30. The communication method as described in Claim 27 wherein at least one communication of the second party is a data string generated by a process that includes having the second party digitally sign a data string computed fram information received from the first party in a prior communication, wherein the data string generated by the second party is the second party's value.
31. The communication method as described in Claim 30 wherein if the second party does not get the first value in the first sat of communications, the second party sends the trusted party for further processing B data string that includes at least part of the data received from the first party.
32. The communication method as described in Claim 27 wherein the trusted party takes no action to complete the transaction after a specified time.
33. The communication method as described in Claim 32 wherein the specified time is included within the first set of communications.
34. Tha communication method as described in Claim 32 wherein the spacified time is determined by the time at which certain communications occur.
35. In a communications network wherein first and second parties desire to effect a transaction overseen by a trusted party of the network, each of the first and second parties having a value that cannot be predicted by the other of the first and second parties, and wherein the predetermined transaction is complete when the first party receives the value generated by the second party and the second party receives the value generated by the first party, a communication method comprising the steps of:
oxchanging a first set of communications between the first and second parkies without participation of the trusted party to attempt completion of the transaction; and
if the transaction is not completed using the first set of communications between the first and second parties, having the trusted party take action to complete the transaction.
36. In the communications network as described in Claim 35 wherein at lesst one of the first and second parties is a computer,
37. In the communications network as described in Claim 35 wherein the trusted party is a computer.
38. In the communications network as described in Clsim 35 wherein at least one of the first and second parties is a secure device.
39. A communication method between a first and second party enabling a transaction in which the second party receives a first value produced by the first party and unpredictable to the second party if and only if the first party receives a second value produced by the second party and unpredictable to the first party, comprising the steps of:
having the first party use a key of a third party to encrypt a string from which the second party can compute the first value: and having the first, second and third parties exchange a set of communications that inolude the string.
40. The method as described in Claim 39 wherein the string also inoludes information that is selected from the group consisting of information specifying the first party, information specifying the second party, and information specifying the first and second parties.
41. The method as described in Claim 39 wherein the key of the third party is held by a plurality of trustees.
42. The method as described in Claim 39 wherein the first party comprises a plurality of entities.
43. The mathod as described in Clairn 39 wherein the second party comprises a plurality of entitios.
44. The communication method as described in Claim 39 wherein at least one of the parties takes no action to complete the transaction after a specified time. $4-2 \rightarrow$ -
wherein the specified time is specified by at least one of the parties.
46. The communication method as described in Claim 44 wherein the specified time is determined by the time at which certain communications are received.

Form PCT/ISA/210 (soenod wheen)(July 1997)*

Intemational epplication No. PCT/US96123920

Bos 1 Obervationa wher certuia claima were fosod unsearchable (Contiountion of heen 1 of firsk thent)

This internetinal report has not boen emblithad in ropeot of outwin clainu under Ariele 17 (2)(a) fot the fotowing reasera:

1. X Claims Nor. с: If, $17-19,27-29,32 \cdot 35,35-65$
because they relasie ti mulfject mater nok required to be searched by this Authority, nemelyr:
They diwalome a mathod of dolige businear which is not embodied in any upocific meina.
2.Claima Nos::
because they relate ta pariu of the international applicution that do cot oamaly with the proseribed raquiperventa io ituch an extent thes no meaningful intronational scarih can be earriod nut, specificully:
2.

Creins Nos.s

Box if Obscrvations where unity of inventioa it Lacking (Coatinuation of tem 2 of Girst ebert)
This Ifitemationar Searching Authority found munipla inventiont in this international epplicatien, as follown:

IrAs all requirod additimal search tro were timely paid by the applieans, this intarnalional searth roport eoven all searchable claims.
2.As oll searehable claina could be stardol whout effort jutifyiag an additineal foe, this Autharity did not invice payment of any addtional fise.
3.As onily some of the manirad additimal seaveh foes were tinely paid by the appleant, this buemabional search repori ouvers only thane claims for which (ese were paid, specifically elaims Noc:
4.No required additional sessth fees were timely paid thy the spplicant. Consequeady, this international sarch raport is

Recarts oo Protest $\quad \square$ The additionsl search foed were accompanical by the applieant's prolest.
Na groven asumpunied the payment of edfitional search feen.
Form PCT/RSA/210 (comtinuntion of firs shoor (1))(fuly 1w2)e

(51) Enternabimal Paiumi Cluselticuian 6 :HOAL 9/32	

(II) Intemailinal Pobthation Number:
(43) Inerrathaial Publikntinn Dulen

(71)(72) Applleant and inventor: MICALL sifyld (US/U5); 459 Appilisas Hill AVenve, Brookline. MA (V2) 46 (US).
(74) Agrata MUTRHEXD, Dastaid, W. at si:: Faloy, Fing A Eliou
 TUSI.
 CA, CH, CN, C工, DE, DK ER, ES, Fl, GU, GE, MU, IIIE, JD, KE, KG, KP, XR, XC, LK. LR, LS, LT, LU, LDV, MD, MG, MK, MM, MW, MK, NO, NZ, PL, FT, KO, RU, SD, SE, $90, S L, S K, ~ T D, ~ T M A, ~ T R, ~ T T, ~ U A, ~ U G ; ~ U Z, ~ V N, ~$ ARIPO patent (KE, LS, MW, SD, SZ, UG), Earesias peent (AM, AZ, BY, KO, KX MD, RU, T), TM), Enopien patent (AT, BE, CH, DE DK, ES, FL FR, GB, GR, EE, II, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CL, CM. GA, GIV, ML, MR, NE, SN, TD, TG),

Fubtldied

Whant iuzernetional sewith rapori and to be nopubithind upon receiph of thall reporz
(SA) TUE: IDENL EECTRONIC NEGOTIATIONS

(57) Absumch

Thore is dexribod an elocrooic comunnicalion method berween a firsi praity mois it roond pany, widh issiaterice from at lasst a. pluraility of crutces, enilifing an eloctronic tranuaction in which die first pary baviog a sulliad rearvation phos (SRP) and the secoul pany thyibs a taying rearvivaion prise (BRP) msy be zesmize to s mensection if : prusdeteminod relutioeshit benvaen
 not otherwise The milthod begios by having each of the parties traumit flares of thele repoctive rearve prites to the trastes. Thez theres are sach that lese then ? given mumter of them does nim provide rnough useful onfornstian for toasastricting ue reserve prioses white a sufficieally bigh number of them atown woch poomstraction Thic hutioes then tate kmes atien in determine whefine Hit prodelemined relatinsilip exhats widhout reconstmustipg SRP and GRP, if the preletermined retuionsilip exiss. dien the thistees

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Amenia
AT	Austria
$A \cup$	Australis
88	Burbados
BE	Belgium
BF	Butcina Feso
BG	Butgaria
W	Benin
ER	Brazil
BY	Belerus
CA	Canads
CF	Cearal Africes Repoblic
CG	Coogo
CH	Swizerland
CI	Cote d'lvoire
CM	Cimerocn
CN	Crina
CS	Crectostovatia
C2	Crech Repobtic
DE	Germany
DK	Dearnesk
EE	Emonia
ES	Spaia
F1	Finlend
SR	Freace
GA	Gabon

GB	United Kingdam
GB	Gecrgis
GN	Ovinea
GR	Grecet
HU	Hungery
[8]	Ireland
IT	taly
IP	Japan
K8	Kenya
KG	Kyrgyitin
KP	Democratic Feople's Reqpablic of Korea
KR	Reprablic of Korea
K2	Karaihsten
1	Liechtenstein
LK	Stil Lata
LR	Liberia
LT	Lithumis
L4	Lenerabourg
LV	Lasvia
MC	Monuto
MD	Republic of Moldova
MG	Madegicer
ML	Mall
MN	Mongolia
MR	Mexritanin

MW	Matawi
MX	Matio
NE	Niger
NL.	Necherianda
NO	Norway
NZ	New Zeaknd
PL	polmad
PT	Pormgal
RO	Romania
R0	Rusian Fexteration
S0	Sudan
SE	Swoden
SG	Singapore
S 8	Slovenia
SK	Sliovakia
SN	Senegal
S2	Severitand
TD	Chad
TG	Togo
T1	Tajilizisp
TT	Trivided and Tobego
UA	Ulusing
UG	Dganda
US	Unitoy States of Amrica
UZ	Uitelatea
VN	Viet Nam

meal electronic negotiations

TECENICAL FIELD

The present invention relates generally to secure electronic communications systems and more particularly to cryptographic methods that enable participants in a negotiation to agree on a common price for a given trancaction without requiring either participant to reveal certion information about its bargaining position uniess a suitable agreement can in fact be reached.

BACKGROUND OF THE INVENTION

In the past two decades, many securc mansactions have been devised that compute quantities from certain hidden data without revealing all such data. For instance. Yao (in the Proceedings of Foundations of Computer Science Conference, 1982) presented a solution to the so-called Two-Millionaire problem that involved this approach. In this problem, two millionaires wish to know who is richer without revealing their respective monctary worth. In Yao's solution, the parties engage in cryptographic exchange, each encoding in a special mamer the amount of money he/she owns. At the end of the exchange, one of the millionaires is in possession of information indicating which of the two is the richer one and can then, without proof, announce the result to the other.

In another example, Goldreich, Micali, and Widgerson presented the firit of a series of cryptographic protocols for secure multi-party computation. This protocol enabled n parties (whose majority is honest), where party I has a socret input x_{i}, to evaluate f on their private impusts, without revealing these inputs more than absolutely necessary. At the simplest level, the parties compute $y=$ $f\left(x_{1}, \ldots, x_{2}\right)$ without revealing more about the $x_{i}^{\prime} s$ that is implicitly revealed by the value y itself. More suphtisticated and precise definitions of this protocol were later described, for instance in the work Micali und Rogaway.

In the past, traditional physical proximity has encouraged sellers and buyers to negotiate in good faith. Physical proximity creates enough circumstantiol evidence of an enforceable agreement, and also requires a considerable investment of time and effort on both sides, thus reducing the buyer's temptation of negotiating just for "curiosity" without any serious intentions of buying. Such goals, however, are more difficult to achieve where business transactions are carried out more and more at a distance (e.g., over an electronic network), Consider the example of purchasing a house over the Internel. Photographic
tinformation of a piecz of property is readily available over the Internet, and digital signatures may help in signing a contrach. However, in this new setting, it is possible for a seller to negotiate with many potential buyers simultaneously and at a distance 50 that the various buyers may not be aware of each other. The seller can then use one buyer's offer for obtaining better offers from others, eveo with stringent time constraints. At the same time, the new setting makes it very convenient for uncommitted buyers just to shop around for a seller's "true" price, and then possibly sell this information to others.

There remains a need in the art to provide cryptographic protocols that enable parties to negotiate and consummate business and other transactions electronically.

BRIEF SUMMARY OF TEE INVENTION

It is the primary object of the present invention to describe an entirely new class of electronic cryptographic-based transactions, referred to herein as "blind negotiations. ${ }^{\text {a }}$

A "blind negotiation" (sometimes referred to as an "ideal negotiation") according to the present invention is a new electronic transaction wherein a seller S and a buyer B wish to see whether they can agree on a price for a given good or service. It is assumed that the seller has a "reservation" prices, SRP, at which she is willing to sell now (not necessarily the minimum of such prices). Similarly, the buyer has a reservation price, BRP, at which he is ready to buy now (not necessarily the maximum of such price). In a blind negotiation, the current reservation price of each party is a seeret of thas party.

A blind negotiation is a cryptographic system that guarantees the following two properties (wisch are NOT readily obtainable even in a physical or face-toface transsction):

1. Enforceable Agreement. Both parties reach an agreement on a price P (between SRP and GRP) whenever SRP < (or equal to) BRP, or else;
2. Proved Privacy. Each party is provided a proof that SRP $>$ BRP that does not reveal the other's reservation price.
In a blind negotiation, if seller and buyer leam that no deal is possible (i.e., that SRP $>$ BRP), then they may decide to try another round of negotiating,
presumably after changing their reservation prices, or they may decide to quit negotiating. In the latter case, the celler knows that no one bas learned her reservation price, and thus that she can participate in future negotiations with her "bargaining power" intact. If, instead, a deal is possible, a olind negotiation may reveal the two reservation prices. Indeed, for instance, assume that the two parties agree to "split in the middle" when a deal is possible (i.e., they adopt $\mathrm{P}=$ SRP+BRP/2 as the actual sale price). Then, after reaching agreement on a prict P by means of a blind negotiation, each party can, knowing his own reservation price and the average of the two, easily compute the other's reservation price. Indeed, when a blind negotiation system realizes that SRP $<$ (or equal to) BRP, then the system can just reveal SRP and BRP , so that $\mathrm{P}=\mathrm{SRP}+\mathrm{BRP} / 2$ can be easily computed.

It should be noted that in real-life, blind negotiations are not easily obtainable. In fact, if one of the parties (e.g., the seller) makes an offer to rell at

Thus, in one embodiment, there is described an electronic communications method between a first party and a second party, with assistance from at least a plurality of trustees, enabling an electronic transaction in which the first party having a selling reservation price (SRP) and the second party having a buying reservation price (BRP) may be committed to a transaction if a prodetermined relationship between SRP and BRP is established, but not otherwise. The method begins by having each of the parties transmit shares of their respective reserve prices to the tustees. These shares are such that less than a giver number of them does not prowide enough useful information for reconstructing the reserve prices while a sufficiently high number of them allows such reconstruction. The urustes then take some action to determine whether the predetermined relationship exisis without reconstructing SRP and BRP. If the predeternined relationship exists; then the trustees provide information that allows a deternination of the sale price according to a given formula. Otherwise, the trustees determine that no deal is possible. As used herein, "sale" is merely representative as the transaction may be of any type including, without limitation, a sale, lease, license, financing transaction, or other known or hercinafter created financial commercial or legal instrument.

In a modification to this embodiment, the actions are taken not only by the trustees alone, but also in conjunction with the first party and the second panty.

In an alternate embodiment, the seller and buyer communicate with a single trustee, who can determine whether a deal is possible without leaming SRP or BRP. In a still further embodiment, the trusted party may be a secure piese of hardware that receives an encrypted version of SRP and an encrypted version of BRP and determines whether a deal is possible and at what prict.

Yet in another embodiment, the blind negotiation is achieved with "invisible" trustes. In such a case, the seller and buyer do not collaborate with any trustee initially and implement a blind negotiation system if they continue collaborating properly. However, if one of the parties atops collaborating, the other party can access one or more trustees who are capable of completing the interrupted blind negotiation.

Of course, in a blind negotiation according to the invention, the parties need not agree on a final price merely by splitting the difference between their
respective reserve prices. Indeed, in a blind negotiation the two parties may agree on the actual sale price by any strategy they want. For instance, if a deal occurs in the first blind negotiation, then the parties may agree $t o$ split in the middle, but if a deal becomes possible in the next round of blind negotiation, then they may agree on the actial sale price by means of a formula that favors the party who has made the biggest "concession" in the second round. Atternatively, they may decide to favor the party who has varied his reservation price by a smailer degree in the second round, or by some suct other approach.

gRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages thereof, reference should now be made to the following Detailed Description taken in conjunction with the drawings in which:

EIGURE I illustrates a preferred enbodiment of the invention wherein an electronic process having three concoptual steps (as numbered) is effected by first and second parties, with the assistance of a plunlity of custees, in order to achieve an ideal electronic negotiation,

FIGURE 2 illustrates a preferred embodiment of the invention wherein an electronic process having three conceptual steps is effected by first and second parties, with the assistance of a tustee comprising secure hardware, in orden to achieve an ideal electronic negotiation.

FIGURE 3 illustrates an embodiment of the invention wherein an electronic process is effected by having first and second parties exchange messages to attempt to complete an ideal negotiation, and the use of the trusted party to complete the action if needed.

FIGURE 4 illustrates a share method embodiment of the invention, involving three numbered steps, wherrin seller and buyer are players who, logether with at least one other truste-player(s), take action in determining whether a given relationship exists berween SRP and BRP in order to effoct the ideal negotiation.

DETALEED DESCRIPTION

Several different types of blind negotiation systems are described below. For each one of these systems there is also presented several variations and modifications. Such variations and modifications also apply to the other blind
negotiation systems and not just the particular schemes with which they are described.

Bifin Negotiations With Multiple Trustees/Players

In a first embodiment, an n-party secure computation (e.g., the protocol of Goldreich, Micalt and Widgerson, or that of Ben-Or, Goldwasser and Widgerson, or that of Rabin and Ben-Or, or that of Chaum, Crippeau and Darngard) or a "suitable" simplification thereof is used to facilitate a blind negotiation application.

By way of brief background, it is known in the art that secure protocols enable n players (a suitable majority of which is honest) to evaluate a given function f on their priyate inputs, without revealing these inputs more than absolutely necessary. At the simplest level, the parties compute $y=f\left(x_{1}, \ldots, x_{2}\right)$ without revealing more about the x_{i} 's that is implicitly revealed by the value y itself: Of course, if each player keeps his own input for himself, the privacy of the inputs x_{i} is perfectly maintained, but no joint computation of f can occur. Of course too, if a player reveals his input to some other player, this may facilitate some joint computation, but it may not keep the player's input as secret as it should be. Rather, in most secure computation protocols, a player I takes his own secret input x_{i} and constructs a secret random polynomial $P(x)$-modulo a prime p, $p>n_{\text {, }}$, and of degree $t_{1} 1<r<n \rightarrow$ such that $P(O)=x_{i}$, his own input. (In other words, the player chooses the last cocfficient of the polynomial to be his own imput, and all other coefficients at random. If the input of a player is a binary string of at most, say, k bits, then p can be chosen not only $>n$, but also having $k+1$ bits.)

Then, the player privately gives player a the value $P(a)$, player b the value $P(b)$ and so on. Thus, no single player (other than i), nor any colloction of players with less than I members, may know the polynominal $P(x)$, nor the input $x_{\text {f }}$. However, collectively, the players (indeed any $t+1$ of the players) know $P(x)$. Indeed a i-degree polynomial may be easily obtained by interpolation from its value at $r+1$ different points. Thus, sufficiently many players can easily reconstruct $P(x)$, and thus $P(O)=x_{i}$, while sufficiently fewer players cannot even guess x; better than at random.

Each player a fius (1) possesses a share, $P(a)$, of any other player's isput, and (2) if the majority of the pliyers want, the input of every player can be
revealed, but (3) without the oooperation of the majority of the players, each input remains unpredictable. After sharing each imput among all piayers in such a fashion, a typical secure computation protocol then proceeds to evaluate the given function on the player's inputs, but working on their shares, rather than on the inputs directly. For instance, if the function dictates that the imputs x_{1} of player 1 . encoded by a polynomial P (i.e., $P(O)=x_{j}$), should be added (mod p) to the input x_{1} of player j, encoded by a polynomial Q (i.e., $O(O)=x_{j}$), then each player k_{1} whose share of x_{1} is $i_{i}=P(k)$ and whose share of x_{j} is $j_{k}=Q(j)$, adds i_{k} and j_{k} $\bmod p$, thereby computing $(P+Q)(k)$, that is, a share of $\left(x_{i}+x_{1} \bmod p\right)$, the sum of the two inputs mod p.

As for another example, if the function dictaies that the input x_{i} of player I (encoded by a polynomini F) should be mulaplied modulo p with the input x_{j} of player j (encoded by polynomial Q), then each player k, whose share of x_{1} is $i_{k}=$ $P(k)$ and whose share of x_{1} is $j_{k}=Q(j)$, multiplies \dot{i}_{k} and j_{k} modulo p, thereby computing ($\mathrm{PQ} Q(k)$, that is, a share of $x_{5} x_{j}$ (mod p), the product of the two imputs modulo p :

Though nat all operations on the inputs translate into operations on the shares in a way that is as simple as in the case of the "addition mod p° operation or of a (single) multiplication modulo p, at the end of the secure computation the players have each his own share of $y=f\left(x_{1}, \ldots, X_{n}\right)$, that is, each player k has the value $F(k)$, where F is a t-degree polynomial such that $F(O)=y$. Thus all players may release their shares, so as to allow the reconstruction of F by polynomial interpolation, and thus the reconstruction of y without releasing any unwanced information about the inputs x_{1} 's. This reconstruction also works in a simple way (provided that there are sufficiently many honest players) even though some players may be bad and release incorrect shares. This is just the basic background

[^5]on multi-party secure computations. The reader is directed to the ant references for further details.

With this background, it can now be described how one such secure computation protocol is used to facilitate a blind negotiation.

Δ Firt Share Method

As noted above, as indicated in FIGURE 1, a secure-computation protocol assumes that there are n parcies, the majority of which are honest. In in blind negotiation there are two parties, the seller and the buyer. It cannot be assumed that both parties are honest, however. Thas, in this embodiment seller and buyer cooperate with one or more trustees. These are additional parties that are assumed to be trustworthy (in particular, trusted to follow the prescribed instructions of a secure computation protocol). By means of a system such as described below, the trustees enable seller and buyer to complete their negotiation in a blind way. It is desired, liowever, that the trustees should not receive much information, nor should they be able to misuse whatever information they do receive.

The following blind negotiation system further malees use of digital signanures. In a digital nignature scheme, each party X has a secret signing key S_{γ} and a matching public verification key P_{x}. Party X may obtain its digital signature of a message (string) $m, S I G_{x}(m)$, by running an algorithm SIG on inputs S_{x} and m (thus, $\operatorname{SIG}_{2}(m)=\operatorname{SIG}\left(\mathrm{S}_{2}, m\right)$). The signature of party X on a message m is verified by runuing a verifying algorithm VER on the signature and X's public key.

The following now describes how to use a multi-party secure computation protocols for building a blind negotiation systems with trustees and digital signatures. For instance, a secure computation with $n=3$ exists by asking one irustee to join the computation. Thus, if cither the seller or the buyer is honest, since a trustee is presumably selected with trustworchiness as a prerequisite, ant honest majority exists. If desired, larger values of n may be chosen in a secure computation protocol, with the cooperation of more trustees. This way, even if one or more tristees tum out to be malicious, the majority of all players are honest.

Assume now that there are sufficiently many trustees, 30 that there is a total number of $n>2$ players, a suitable majonity of which are honest. Without loss of geaerality, the seller is player 1 , the buyer player 2 , and the trustees
players $3, \ldots, n$. Then, n players are used to perform a particular n-party secure computation, for an especially selected function f, and for especially selected inpats.

Let $\left(S_{1}, S R P\right)$ be the input of player $1,\left(S_{2}, B R P\right)$ be the input of player 2 and ε the input for any other player, where $S i$ is the secret signing key of the seller, SRP the reserve price of the seller, S2 the secret signing key of the buyer, BRP the reserve prioe of the buyer, and E; the empty string. Further, let f be the function such that $f\left(\left(S_{3}, S R P\right),\left(S_{2}, B R P\right), \varepsilon_{3}, \ldots, \epsilon\right)=$

$$
\left(S I G\left(S_{1},(T, S R P+B R P / 2)\right) \text {, SIG }\left(S_{3},(T, S R P+B R P / 2)\right)\right) \text { if }
$$

$S R P \leq B R P$,
and "NO DEAL" otherwise. Here T is any string describing the transaction in any sufficient way.. For instance, T may consist of identifying the seller and the buyer, the negotiated commodity, and/or additional data, such is sime data, or an indieation of the trustees.

Trus, function f outputs a certified commitment for the seller and buyer to unde, at a meet-in-the-middle price, whenever the deal is possible, i.e., whenever $S R P<$ (or equal to) $B R P$. (Of course, within f, one could replace $S R P+B R P / 2$ with any strategy, $g(S R P, B R P)$, to determine the actual trade price.)
Therefors, the function fonly depends on the inguts of seller and buyer, and noi on the inputs of the trustees (these could be any value rather than g, because f may ignore them anyway).

The above is a "blind negotation" system because both seller and buyer end up with a signed contract with the right price whenever a deal is possible between them; otherwise they end up with a proof that no deal is possible, but which does not reveal what the two revervation prices may be. In case a deal wers possible, preterably the contract is signed by both of them digitally. Indeed, in this case the ouput of the secure computation is the signalure of the buycr and the seller that the transaction T has resulted in a sale at a given Price. Thus, the above system satisfies the Enforceable Agreement property. Indeed, whenever SRP is greater to or equal to BRP, seller and buyer end up with a binding contract at an agreed price determined by a given formula.

In ease a deal were not possible, then the result of the secure computation is NO DEAL, and this is a proof that SRP $>$ BRP (because of the way the
-9.
function f is defined, because an honest majority exists among the selected players so that f is correctly computed, and because the result of the computation has been produced by the trustees and can be thus "witnessed by them" if necessary). An alternative proof that no deal is possible can be obtained by modifying the function
 DEAL (where the subscripl S stands for seller and B for buyct). Either way, the reconstruction of NO DEAL does not reveal what the spocific values of SRP and BRP may be, save for the fact that SRP $>$ BRP. Indeed, in a secure computation of a function, only the result of the function evaluation is made known, but not the function's imputs. Thus, if a given coraputation of f results in outputting NO DEAL, then this output reveals that SRP is greater than BRP but not the specific values thereof. Thus, any other information about SRP, BRP and the seller's and buyer's secret signing key is kept totally secret. The above system thus also satisfies the Proved Privacy property.
A Second Share-Melhod
The above method, howeyer, may be enhanoed by having seller's and buyer's signatures computed outside the share computation phase. Before engaging in any secure cornputation, buyer and seller sign (preferably digitally) an initial agreement of the kind "in this transaction T, with trustees T_{1}, T_{2}, \ldots, seller S and buyer \mathbf{B} agree to trade commodity \mathbf{C} at the average of their reserve prices, if their secure computation of function f is YES." Then, seller, buyer and trustees securely evaluate f on inputs (SRP,BRP, ϵ, \ldots, e), malang sure that this computation it bound to identifier T. Here, f is the function such that $f(S R P, B R P, t, \ldots, k)=$ YES if $S R P \leq B R P$, and NO otherwise. Thus, if the result is YES, the players retrieve SRP and BRP from their shares (altematively, f may output (SRP,BRP) ruther than YES), and seller and buyer can then easily both sign ($T, S R P+B R P / 2$). If one of them refuses to do so despite the result of the computation, then the: honest trustees may sign in his or her place, and the signatures of a suitable majority of the trustes may be considered equally binding. If the share computation phase indicates that no deal is possible, then seller and buyer will each sign (T,NO), or the trustees will do it on their bethalf. (Notice that it is not important who signs an initial agreement first. Indoed, only after both sellet and buyer have signed it will a secure computation of follow or be completed.)

Of course, miny variants of this basic method can be implemented. For instance, different types of initial agreements may be stipulated. Also, in any of the blind negotiation systems, seller and buyer may not participate in as players in the secure computation phase. The players of this phase can just be trustees (so that it is easier to have a suitable honest majority). Thus, each of seller or buyer may just give each trustee his or her proper share of the input, and then the entire computation will be carried over the shares by the trustees, until the final result is produced and handed out to both seller and bryer. Also, the trustees (or seller and buyer) may just sign NO or nothing at all, mather than signing ($T, N O$). As for T, it is preferable that it provides a unique identifier of the current negotiation. For instance, T may include some of S, B, the current date and time, a description of the commodity on sale, as well as encryptions of SRP or BRP, or an indication of the trustees, or a random identifier.

A Third Share-Method

The firsi altemative embodiment, wherein digital siguahures are carried out outside the share computation phase, may also be enhanced. Indeed, a typical secure cormputation protocol succeeds in securely evaluating a given function by means of securely computing some primitive functions, for instance, modulas addition and modular multiplication.

Accordingly, rather than directly applying some ready-made secure computation protocols in the secure computation phase of the inventive blind negotiation protocols, it may preferable to write a new ad hoc protocol for this pupgose that uses the above primitives in an elementary way. One such protocol is now diescribed.

The new protocol uses as a primitive the share computation of $(a-b) r$ mod p, where a, b, and r are secret values in the multiplicative group mod p, and p is preferably a prime (in which case $a_{i} b$, and r are between 1 and $p-1$). In this applieation, a and b may be specific values (e.g., the private inputs of specific players), while \bar{r} is a random vaiue, possibly chosen during the computation itself. and it may not belong to any particular player. For instance, r may be chosen
as the sum mod p of several random socret values r_{i} 's belonging to different players. ${ }^{1}$

One advantage of the ($a-\bar{b}$) r primitive is that its share computation is readily implemented. Indeed, the share computation of a single addition/subtraction and a single multiplication modulo p of secret vahues (such as a, b and r) is particularly easy to obtain.

A second advantage of the $(a-b) r$ primitive is that it can be used to test whether two given secret inputs a and b are equal without releasing any additional information. In fact, if $a=b$, then (ab) $r=0$ no matuer what the actual value of a, b and r may be. Afternatively, if $a<b,(a-b)$ is a fized non-zero number. Thus, multiplying modulo p this fixed number by a number r between I and p - 1 , yields a number modulo p different from zero. Moreover, because r is random, this product modulo p is a random number between 1 and $p-1$, and thus cannot betray what the precise values are of a and b.

These advantages make the (a-b)r primitive especially saitable for constructing a practical and general type of blind negotiation. In particulat, assume that the seller's and buyer's reserve prices are in the interval $[M, N]$. That is, M and N are, respectively, agreed (or obvious) lower- and upper-bounds to both SRP and BRP in some given currency. That is, each value between M and N is interpreted as a possible price in dollars, or tens of dollars, or thousands of dollars, (Such M and N can be easily made part of the description, T, of a given) negotiation.)

In a particular example, the seller is a car dealer. Buyer and seller are "blindly" negotiating over a new compact car (of a given brand, type, and color) over the Internet. Although dealers should welcome offers from customers outside their swon trade area, traditionally they do not like negotiations at a distance because they reveal their reserve prices to someone who may not be serious about any offer discussed (and who may just live a few blocks away). In such a serting,

[^6]If the players choose thousands of dollars as their cumency; they may set $M=4$ and $N=40$. (That is, if it is assumed that the car is going to be sold the price will be between $\$ 4,000$ and $\$ 40,000$). Altematively, they may choose $\$ 500$ or $\$ 250$ as their basic curroncy, in which case they may ser, respectively, $M=8$ and $N N=80$, or $M=16$ and $N=160$.

For each price i between M and N , the seller chooses a value S_{l} as follows. If $i<S R P$, then the seller chooses S_{i} at random between 1 and $p-1$ (each such random value is chosen independentiy from all other such values); else, she sets $S_{1}=0$. (Thus, $S_{i}=0$ only if price i is acceptable to her.) Symmetrically, for each $1 \leq B R P$, tie buyer sets $B_{i}=0$, and for each $i>B R P$, he chooses B_{1} at random between 1 and $p-1$. (Thus, $B_{i}=0$ only if price i is acceptable to him). Then in the presence of trustees a secure computation of the new primitive is executed for each $i=[M, N]$. That is, for each $i=[M, N]$ the value $\left(S_{-} B_{i}\right) R_{i}$ is computed (without revealing any additional information about S_{6} and B_{j}), where each R_{i} is independently and randomly selected between 1 and $p-1$. If one of these computations retums a 0 , then the deal is possible and agreement if forced. However, if no 0 is obtained, then no agreement is possible and seller and buyer may decide to negotrate again or quit. (Preferably, they had signed an initial agreement prior 10 executing this procedure indicating their intentions, currency, names, time, elc., and what happens in case of a positive outcome, i.e., in case for some price I the computation of $\left(S_{r}-B_{j}\right) R_{i}$ yields zero. This initial agreement can be prodoced in a standardized manner so as to be more convenient and quite compact.)

How this scheme works ean now be explained. Assume first that $S R P \leq B R P$. Then, secure computation of $\left(S_{i}-B_{i}\right) R_{i}$ is analyzed in three cases: (1) when $i<S R P \leq B R P$, (2) when $S R P \leq i \leq A R P$, and (3) when $S R P \leq B R P<i$, Is Case 1, the secure computation of ($S_{i}-B_{j} R_{i}$, will retum a non-zero random number. Indeed, for each such value of $i, B_{i}=0$, thus $\left(S_{i}-B_{j}\right) R_{\mathrm{f}}$ equals just the product mod p of S_{i} and R_{i}. Since esch of these numbers is different than 0 , so will be their product mod p. (Moreover, this product will be a random number between 1 and $P \cdot 1$ because R_{1} is random.) In Case $2, S_{1}=B_{1}=0$. Thus $\left(S_{T}-B_{l}\right) R_{1}=0$ for any possible value of R_{b}. In Case 3, $S_{i}=0$. Thus, the secure computation returns the produce mod p of B_{i} and R_{i}. Since each of these values is different than 0,50 is
their product mod ρ. (Moreover their product will be a randon value between I and $p-1$ because so is R_{r}.).

Assume now that $-\boldsymbol{R R P}<S R P$. Again, there are three cases to analyze in the secure computation of $\left(S_{c} B\right) R$; (1) $i<B R P<S R P$. (2) $B R P \leq i \leq S R P$, and (3) $B R P \leq S R P<i$. In all three cases, however, what is returned is a random number between I and p-1, independent of what specific values SRP and BRP may have. Thus, such a result, while proving that no deal is possible (i.e., that $S R P>B R P$), does not reveal any other detail about the specific values of $S R P$ and $A R P$.

Therefore, the new primitive shows only the prices i for which both the seller and buyer entered 0 (i.e., all and only those prices at which they are both willing to trade), and thus a sale is possible. Thus, if even a single 0 occurs as the result of the share computation relative to some price i, thanks to their initial agrement, seller and buyer end up with an enforceable agreement to made at a given price P.

There are several ways to compute price p. For instance if min is the minimum value of i for which 0 was retumed and max the roaximum value of i for which a 0 was relumed, the initial agreement and the result of the secure computation (as property witnessed or signed by a suitable number of the players) may be taken to constinute a signed contract to trade the given commodity at price $\min +\max / 2$.

Notice that either the seller or the buyer may enter 0 for some values of i without entering 0 from that point on (i.e., for all values higher than it in the seller's case, and for all values lower than i in the buyer's cass). ${ }^{3}$ This may indicate that the seller (buyer) is willing to sell (buy) at certain prices only, and not, for whatever reason, at all prices higher (lesser) than a given one. The system may recognize this behavior as legitimate (e.g., the final price may be chosen to coincide with a value i, min $\leq i \leq m a x$, properly selocted among those for which 0 was retumed -e.g., $i=$ min, or $i=m a x$, or, preferably as equidistant as possible from min and $m a x$, with a way to break ties). If it is desired to disincentivize this behavior, however, whenever two or more 0 's are retumed but

[^7]the returied 0 's do not constitute a contiguous sub-segment of $[M, N]$, all values $S_{\text {, }}$ and B_{i} telative to any position between the first 0 and the lass 0 are recovered (e.g., from the shares in possession of sufficiently many trustees for secure computation purposes), and if the buyer has pot 0 consistently in these positions, then some proper action may be taken. For instance, the seller is obliged to sell at a punishingly cheap price (and a punishingly high price for the buyer). If both the seller and buyer have not put their own 0 's in a consistent way, then some proper action may be taken. For instance, the trade price will be docided in some other way, or both will be fined.

Although not meant to be limiting, many of the above computations can be effected in secure handware by persons using such hardware or other known machines including computers. In addition, although the various methods described are converiendy implemented in a general purpose computer selectively activated or reconfigured by software, one of ordinary skill in the art would aiso recognize that all methods of the present invention may be carried out in hurdware, in software, or in more specialized apparatus constructed to perform the requited method steps.

Share-Methods with Players

In a modification of the above embodiment, any of our share-
methods for blind negotiations can be implemented so that computing actions ase taken by the trustee together with players one and two. This yields a share-based blind negotiation system with a plurality of players, where a player may be the first party, a second party or a trustes. In such modifications, one of the two parties may give a share of his reservation price to Whe other party. Of course, the two parties have enough information to reconstruct both their own rescrvation prices but, like in the above share-method, any suitably-small subset that does not inclode both parties does not posseas enough information to constrict the reservation price of the (missing) party.

Single-Trastee Bfind-Negotiation Systers

It may be preferred that a blind negotiation system use only a single trustex in that it be further simplified. One way of achieving this would be to have the seiler tell the trustee her own secret value SRP, and have the buyer tell the trustoe his own secret BRP, so that the trustee can announce whether a deal is possible,
and at what price, without revealing additional information about SRP and BRP. The trustee, however, then leams both SRP and BRP. Even if he may be trusted to keep the received SRP and BRP confidential, he will nonetheless have leamed these values, and this may not be acceptable.4

It is therefore preferred to implement a blind-negotiation system with just one trustee possessing the following attractive properties: (1) seller and buyer perform their own computations and then they transmit to the trustee some proper piece of information, which the trustee then further processes to conciude the negotiation; and (2) the trustee does not leam any thing about SRP and BRP (except for learning whether a deal has occurred). Thus, such a system has an elementary and convenient interaction among all parties, and yet does not give the trustee the values of SRP and BRP.

To illustrate this system, it is useful to provide a brief background abour the known cryptographic notion of a trap-door permutation. This is a function that is computationally easy to evaluate but overwhelmingly hard to invert unless a special secret is known about the function. Thus, any one can, given x in the range of f, compute $f(x)$. However, only he who knows f 's secret can feasibly retrieve x from $f(x)$.

The best known (and essentially the only known) examples of trap-door permutations are based on factoring and modular exponentiation. For instance, consider the RSA function. Let n be the product of two large (e.g., 500 -bits), secret, and random primes p and $q, n=p q$. Because selecting such primes p and q is easy, and so is multiplying them, one can easily construct such an n. However, since no fast algorithm for factoring is known, finding the prime factorization of such an n will be hard for everyone else. Thus, the prime factorization of n is a secret relative to n. Let us now see how this secret can be used to invert easily the RSA function.

[^8]The RSA is a permutation over $\mathcal{Z}_{\text {os }}$ the maliplicative group mod n obtained as follows. Let e (for exponent) be relatively prime with $(p-1)(q-1)$, and sel $f(x)=\mathrm{N}^{c}$ mod n. Then, $f(x)$ is feasibly evaluated. Indeed, if x, the modulus, and the exponent all are at most k-bit long (e.g., 1,000 -bit long), then a modular exponentiation can be computed (by the repeated squaring method) with roughly 1,500 modular multiplications without any need to know n^{\prime} 's factorization. Moreover, such a $f(x)$ is a permutation. Indeed, it can be inverted as follows, let d be the multiplicative inverse of $e \bmod (p-1)(q-I)$ t that is, $e d \bmod (p-1)(q-1)=1$. Then, (always operating mod n, and trus mod $(p-1)(q-1)$ at the exponent) we have $\left(X^{c}\right)^{d}=e^{d i}=x$; that is, the function $X^{d /}$ mod n is the inverse RSA function (with exponent e), $x^{2} \bmod n=s^{-1}(x)$.

This proof not oniy shows that $x^{x} \bmod n$ is an invertible function (independently of how much time inverting it may take), but also that it is a rapdoor function. Indeod, he who knows p and q, and thus $(p-1)(q-1)$, can easily compute d and thus essily invert the RSA function.s

The inventive system makes use of such a trap-door function $f^{\prime}(\alpha)=x^{2}$ mod n. While the buyer knows n and e (c.g., because the seller gives them to him, or because they are publicly known), preferably only the seller knows $n^{\prime} s$ factorization, (p, q), or, equivalently, d, the multiplicative inverse of $e \bmod (p-1)(q-1)$.

The system also makes use of preferably a one-way (passibly collision-free hashing) function H. Thus, while it is easy, given x, to compute $y=H(x)$, it is practically impossible, given y, to compute an x such that $H(x)=y$. (In this secting it is not necessary that H be a trip-door permutation. Indeed, it is preferable that 8 is not trap-door, and that it is a totally different function all together, and not a RSA-like).

Let now M and N, respectively, be lower- and upper-bounds

[^9]for the reserye prices of seller and buyer, and let $;$ be the actual SRP and j the actual BRP (thus, $M \leq i, j \leq N$). The new blind-negotiation system is preferably implemented by means of three steps: a buyer's step, a seller's step, and a trustee's step. Ench transmission in the system preferably occurs in a private manner; for instance by encrypting it with a key shared with or owned by the recipient to ensure that no clear text message falls in the wrong hands.

In the buyer's step, the buyer B selects, preferably at random, secret x mad n. Then, he evaluates $f_{\text {; }}$, on input x. N-M times, so as to obtain the following sequence of valucs (presented in reverse order):

$$
z_{v}=f^{m}(x), Z_{t}=f^{m-1}(x), \ldots, z_{+\infty}=\rho(x)=x .
$$ (1. .e, Z_{1} is the first f-inverse of $Z_{0,} Z_{7}$ is the second f-inverse of $Z_{0,}$, and 30 on.) Because his BRP is j, the buyer then computes $H\left(z_{j}\right)$, and sends this value to the trustee, preferably (digitally) signed together with additional information. ${ }^{\text {s }}$. To the seller, the buyer instead gives $Z_{\text {or }}$ preferably signed together with additional information.

In the seller's step, the seiler given her knowledge of f 's secret information - e.g., n^{\prime} 's factorization) may easily compute all the first $N-M$ inverses of Z_{0}. However, because her SRP is i, she evaluates the one-way function B on the first i such inverses, and then evaluates H on another $N-M-i$ vahues V_{b}, each preferably distinct from any of the first NMM finverses of Z_{v}. Thus, she gives the trustec the tesulting sequence of $N-M$ values, preferably in random order:

$$
H\left(Z_{1}\right), H\left(Z_{2}\right), \ldots, H\left(Z_{j}\right), H\left(V_{1}\right), \ldots, H\left(V_{N u v i l}\right)^{7}
$$

In the trustee step, the trustee preferably makes sure (e.g., by osing the additional information), that the seller's list and the buyer's value relate to the

[^10]same negotiation. The trustee checks whether one of the N-M values received from the seller equals the value roceived from the buyer. If 50 , it announces that a deal is possible; otherwise, it announces that no deal is possible. This announcement is preferably signed by the trustee together with additional information, and sent to both seller and buyer. In case the deal is possible, the dealer preferably includes in his announcement the value of the buyer, $H(Z)$, together with the buyer's signature of it, and the seller's list, together with the seller's signature of it.

This scheme works for the following reasons. First, it should be noticed that the trustee does not learn j (i.e., the BRP) from the information it receives from the buyer. Indeed, although given Z_{0} (i. e_{1+} within the additional information) the trustee does not know how to invert the RSA function f, and thus does not know any of the $N-M$ inverses of Z_{g}. Of course, the trustee could, given Z_{g}, easily verify that this is the j th inverse of Z_{σ}. Indeed, the trustee could evaluate f on input Z_{j} by the buyer, but $H\left(Z_{j}\right)$ should, from a practical point of view, be equivalent to baving nothing at all about Z_{i}. Thus, the tnistec has a very hard time determining j may be from the buyer's information.

Similarly, the trustee cannot easily leam the value of ifrom the information obtained from the seller. Indeed, the trustee receives from the seller N-M items alcogether, l flems obtained by evaluating H at inputs that are the first f-inverses of Z_{p} and $N-M$ iterns obtained by evaluating H at inputs that are not such f-inyerses, However, the ane-way function H makes it difficult for the trustee to decide whether an individual item is of the first of second type; thus, the trustee cannot count how many type-1 items are there. Indeed, \boldsymbol{H} is chosen so that the trustec cannot practically distinguish between a value obtained by evaluating H at a f inverse, and one obtained by evaluating H at some different input."

[^11]Finally, it should be appreciated that, except for the fact of whedier or not $i>f$, the trustoc may not practirally learn anything more about / and / from nking into consideration both the information recaived from the seller and that received from the buyer.
indeed, assume firat that thent is no possible deal (i.ch, that i>j). Tien, the only additional information that the frustee gets from the seller's list and buyer's value taken together is that the buyer's value does not occur in the seller's List. But this does not heip the irusec reuieve the grecise values of i and i at all.

Assume now that a deal is possible (i.e., Ulat I $\leqslant j$). Then, the truttoe seen that the buyer's value, $H\left(Z_{3}\right)$, is an inem in that seller's list, and therefore learns that $H\left(z_{y}\right)$ has been obtained by evaluating R at one of the first $N-M f$ inverses of Z. However, if the selle's list is presented in random order, the trustee still canmol figure out what the value of j may be, nor the value of l.

In sum, therefore, the single truster, doing onfy local and trivial compuation, learns whether a deal is possible, but never the values of the teierve

[^12]prices." The trustes, however, enables the seller and buyer to leam each other's reserve prices - 50 that they can both, for instance, compute $i+j / 2$.

Consider firsi the sellet's situation. Indead, if the trustea gives the seller the buyer's value $\boldsymbol{B}(4)$, she easily leams j, because she knows the value of every single finverse of \mathcal{Z}_{0}, and thus can check which inverse, after evaluating A on it, yields the buyer's value. Further, if the buyer's value is given by the trustec to the seller with the buyer's signature, then the seller receives a proof of what j is, and thus a proof that he was willing to buy at price j. Similarly, by receiving the seller-signed seller's list, the buyer receives a proof that she was willing to sell at prise I. (in facr, the buyer knows at least the first $/ f$ finverses of Z_{s}, and thus (because $j>i$ when the deal is possible), he can chock and prove that the seller's Hist contains the first f-inverses of Z_{o}.). These proofs, preferably together with other evidence (c.g., a proper initial agreement berween soller and buyer preferably including Z_{e} together and wilh other additional information), can be used to prove in court that $i+j / 2$ is the agreed trade price resulting from the negotiation.

The above blind-negotiation system is quite convenient from an interaction point of view (because the parties perform mostly local computations and do not ralk back and forth too much). It is also computationally atractive.
Bunning Time Analysis
The sbove blind-negotiation system raquires fitle computation because the trustec essentially just checks equality (between the buyer's value and the items of the seller's list). The buyer at most evaluates the trap-door function f and the oneway function H in the forwand direction $N-M$ times. This is purticularly easy to do. First, \boldsymbol{H} is preferably a non-number theoretic function and plenty of very fast

* In case a deal is possible, however, and the actual trade price is chosen to be $i+j / 2$, protscting the secrecy of i and j from the trustee may be deemed to be less crucial. (Indeed, in this case each of the seller and buyer may, from knowledge of his own reserve price and knowledge of the average of theis reserve prices, leam readily the other's reserve price.) If this is case, the seller may actually send her list to the trusiee in order rather than randomly permuted. This still does not enable the trustec to learn anything additional if no deal is possible, but lets the trustee learn the value of j if the deal is possible. He can in fact easily see that the buyer's value is the jth item in the seller's list.
non-number theoretic functions are known. Second, the exponent e of the RSA function f can be chosen quite small (e,g., equal to 3 , if 3 is relatively prime with $p-1$ and $q-1$-and indeed, p and q can be chosen so that this is the case). Thus, rather than requiring a full modular exponentiation, (and thus 1.5 k modular' multiplications when $n_{k} \in$ and π are k-bit long), an RSA evaluation (e.g., a computation of $f(x)=x^{c}$ mod n) may require as Litte as two modular multiplications, and the buyer makes at most $N-M$ such evaluations, and thus at most $2(N-M)$ modular multiplications overall. Moreover, the seller appears instead to perform $N-M$ finversions, and thus $N-M$ modular exponentations, each requiring roughly 1.5 k modular maltiplications. (Indeed, each such invernion consists of a computation of the type x^{d} mod n, where d is the multiplicative inverse of e mod $(p-1)(q-1)$; thus, even if e is chosen to be quite short, a may not be short af all.) However, the seller's computation of all required inverses may be accomplished by means of just one modular exponentiation and $N-M$-evaluations (each involving two modular multiplications if $e=3$). Indead, cornputing $Z_{N / s}$ requires that the sefler inverts f, on imput $Z_{o}, N-M$ times. Bur this means to compute $\left(Z_{0}\right)_{N U}=Z_{a}^{\alpha}$ (NAB) mod n. But because in such a computation the exponents work modulo $(p-1)(q-1)$, in effect the seller must compute x^{n} mod n, where $d^{i}=d(N-M) \bmod (p-1)(q-1)$. Thus the seller may compute d (which is thus less than $(p-1)(q-1)$, and thus less than n, and thus at most k-bit long) with a single modular multiplication, and then $x^{d^{r}}$ mod n with just a single modular exponentiation: After she has computed $Z_{\text {now }}$ the seller computes all other $N=M-1$ finverses of Z_{0} by simply evaluating f, on $Z_{m, 0} N-M$ times, and each evaluation requires at most two modular multiplications if e is chosen equal to 3.

It should be noticed also that the value N-M may be quite small. Indeed, in the above blind-negotiations for sale of an automobile, the envisaged values of N - M were, respectively, 36, 72 and $144.0 f$ course, if 144 is an upperbound to the possible reserve prices, so is 1,000. But, independent of other considerations, seller and buyer may have a valid incentive in ensuring that $N-M$ is small. In particular, the trustee of a blind-negotiation (whether of this or another type with lower-and upper-boundsi may actually require payment for his services according to the monetary value of the transaction. Now this value may become clear when
a deal occurs, but, because of the very nature of a blind negotiation it will not be revealed otherwise. It is itus desirable that the trustee be paid as a percentage of N or $N-M$, whether or not a deal occurs. It is thus in the interest of seiler and buyer that N and $N-M$ be small.

Enhancing Security

The above-described system has been described in the context of a single given blind negotiation. It should be realized, however, that an enemy may also consider attacks that ooctr outside a single negotiation, possibly setting up a new blind negotiation in order to discover something about an old one. It is thas recommended, in this and other blind negotiation systems as well, that each portion of a negotiation cannot be used in any other negotiation. Thus, if each individual negotation is secure, all possible negotiations taken together will be socure as well. For instance, it is quite beneficial that the additional inforrnation be used so that il fully specifies the negotiation in question, and, if something wrong appears in such specification, then proper security measures can be taken.

For example, it is desirable that messages exchanged within a blind negotiation be customized. For instance, the seller first signs the value she sends to the trustee, and then encrypts this signed message with the trustee's key fand not the other way around - though still in the scope of the invention). This way, after the trustee decrypts, he can check that the cleartext message came from the seller (and it is to her - and to the buyer - that he will send his announcement of the outcome of the negotiation, preferably encrypted with her key). This is a practical way to customize messages; that is, to tie messages to their senders so that, in particular, no one else can take the same message and (possibly without understanding it) yend it as his.

The value of customization can be seen by analyzing what may happen if it is not used. For instance (ignoring additional information and most other details), assume that 2 salier S gives her list I to the trustee after encrypting it with the trustex's key, and then signing the so obtained ciphertext. That is, assume that she sends $y=S I G_{3}\left(E_{\pi}(L)\right)$, her own signature of the piece of data $x=E_{T}(L)$, Assume now that a malicions buyer B has blindly negotiated with S, and that the result announced by the trustec was that no deal was possible. Then, B should lean no more than the fact that the seller's reserve price was bigger than his own
one. However, by means of some "outside attacks" he can exactly reconstruct the seller's reserve price as follows.

When S sends y to the trustee, B makes a copy of it (without preventing it from reacking the trustec, and without understanding what he is copying). Then, he strips out S^{\prime} 's signature (hus obtaining an unsigned string $x=E_{7}(\mathcal{L})$ which he cannot undersiand) and substifutes it with the signature of an accomplice of his, C , thus obtaining the string $Y^{x}=S I G_{c}\left(E_{T}(L)\right)$. Then, he pretends that he is blindly negotiating with C several times. Each time he uses the same Z_{a} and has C end the trustee the string y^{\prime} - As for his own messages, the first time he pretends that his reserve price is M (thus he sends the trustee a properly signed and encrypted $H\left(Z_{i}\right)$; the scoond time he pretends that his reserve price is $M+1$ (thus he sends the trustee $H\left(Z_{2}\right)$; and so on, until, the lath time, the trustee reports that there is z deal. Thus, B learns that the seller's reserve price was $M+k$.

Notice that each time the trustee notifies B and his accomplice C of the outcome of the negotiation, since, without a proper customization of the messages, he betieves that B and C are the parties of these negotiations. (Of course, even if the k th time, the commodity is declared as been sold by C to B, C will ignore such sale. Indeed, C does not own the commodity at hand.) In the mean time. poor S is not even aware that this is going on.

Customizing messages neutralizes this attack. For instance, assume that even a mild form of customization is used, where the seller sends the trustec $y=$ $S I G_{s}\left(E_{\gamma}\left(L_{3} A I\right)\right)$, where the additional information $A I$ specifies that the seller is $\mathbf{S}_{\text {, }}$, the buyer \mathbf{B}, and the tristee 'T. Then, copying y, stripping S 's signature, and substituring it with that of accomplice C, and having C send T the string $S I G_{C}\left(E_{r}(L, A I)\right.$ does not help much. In fisct, after verifying the signature of C and removing this own encryption layer, the trustee will realize that the additional information identifies S to be the seller and not C . Thus he can take proper measures, for instance, stop the negotiation and alent S of what is going on.

Notice that if $\$$ adopts the above customization and the encryption system E_{T} is properly designed, il would be essentially impossible for B to take the data x $=E_{T}(L, A l)$ and somehow transform it into another piece of datai $x=E_{r}\left(L_{2}, A I\right)$ that happens to be the encryption, with the trustee's key, of the same list L plus additional information $A I^{\prime}$ Indicating that C, rather than S, is the veller. Similar
difficulties would be encountered by the above atrack if the customization is a bil different; for instance, if the sender communicates her list to the trustee by sending $E_{T}\left(S I G_{5}(L, A I)\right)$, or $\operatorname{SIG}_{5}\left(E_{T}\left(S I G_{9}(L, A I)\right)\right)$.

A malicious buyer may steal, however, use the same customized message M_{3} (whether $M_{3}=E_{\mathrm{T}}\left(L_{2} A I\right)$, or $E_{T} S I G_{5}\left(L_{2} A I\right)$), or $S I G_{5}\left(E_{7}\left(S I G_{8}(Z, A D)\right)\right.$, or another value), and mount the above attack by kecping on sending M_{s} to the trustee as if coming from the seller, each time pretending that there is a blind negotiation going. on. At each such negotiation, he sends a different buyer's value, and possibly tries to prevent that the trustee's announcement reach the genoine seller, 90 an to keep her in the dark about the attack.

These types of attack can be prevented by inserting in the additional information some time information. For instance, the seller may specify whit is the current date and time, in her communication to the trustee. If the trusteo when receiving the information notices that the time is sufficiently old may take some proper actions (inciuding, possibly, stop the negotiation and alerting its parties that something is wrong).

A resourceful malicious buyer, however, may do the following. When the seller in a negotiation with him sends the trustee a customized message M, (e.g., $M_{z}=S I G_{S}\left(E_{T}\left(S I G_{s}(L, A I) \not\right)\right)$ that indicates who are seller and buyer as well as what is the time of the transmission, he may copy M_{2}, and then send it to many differerit trustees: T_{i}, T_{2}, etc. He then behaves as if Trustee T_{i} is the single trustee of a blind negotiation between Seller S and the buyer B, and his price is i. Thos the first trustees will inform him that no deal is possible, but if $i=S R P_{z}$, then trustee T_{i} will inform him that a deal exists. At the same time the buyer may try to prevent that these announcement reach S . But even if this does not sucooed, he will end up with a legitimate purchase at price $f=S R P$, and thus at the minimum possible price at which the seller was ready to sell.

This artack may be prevented if the additional information $A I$ specifies who the trustee of the current blind negotiation is, and thus oniy his announcement will be regarded as binding, and other trustees receiving a message of a blind negotiation that does not concem them should take proper actions in response. Another way to prevent this attack and other possible attacks consists in adding one or more rounds of communication (in fact, though the fewer these rounds are
the more convenient the system is, more interactive systems are within the scope of the invention). Such additional rounds may in particular be used by having the trustee send a randomly selected value so that only responses properly including such values are considered legitimate. This makes if even harder to use portions of a blind negotiation into another blind negotiation.
Blind Negotiations witi Invisible Trustees
A blind negotiation system can be implemented with trustees that are invisible. This means that an hooest seller and buyer can exchange messages so that (for example, and without limitation) the buyer learns whether a deal is possible (e.g., whethet SRP \leq BRP) withcot leaning the seller's reserve price, and then proves to the seller whether a deal is possible (and at what price). However, if the buyer refuses to "sharr" with the seller what he has learned, then the seller can go to a trustee, which up to now has been in the background, and have the trustee take action to prove to her the result of the blind negotiation (and/or any other proper action).

Thus, in such a blind negotiation system seller and buyer exchange a first set of messages in an attempl to complete their transaction, and, if the transaction is not completed, a trustee intervenes so as to complete it.

By way of background, cryptographic protocols have been described in the literature that enable two mutually suspicious players, Alice and Bob, the first having a secret input a and the second a secret input b, to evaluate a given function f on their secret inputs so as to compute the value $f(a, b)$ without divulging more information about a and b than is already implicit in the value $f(a$, b) itself, A variant of such a method due to Yao was discuseed in the paper of Goldreich, Micali, and Wigderson. A particular simple cases anises when the function f is the AND function, Alice has a secret bit a, Bob has a secret bit b. and the two parties want to compute the AND of a and b, i.e., $a \wedge b$, without disclosing their bits more than $a \wedge b$ arready does. Recall that $a \Lambda b=1$ if and only if both bits are 1 . Thus, if the secret bit of one party is 1 , then, after leaming the value $a \wedge \bar{b}$, that party will immediately also learn the other party's bit; indoed, that will coincide with $a \wedge b$. For the AND function, therefore, compuing it on secret inputs without revealing more about these inputs than already implicit in the result means to meet the following two conditions:

1. (Bob's privacy:) If Alice has 0 as her secret bit, then, after leaming that $a \wedge b=0$, she should not learn whether Bob's bit is 1 or 0 . Symmerrically,
2. (Alice's privacy:) If Bob has 0 as her secret bit, then, after learning that $a \Lambda b=0$, be should not leam whether Alice's bit is I or 0 . In the above Yao method, one of the parties (e.g., without limitation Bob) furnishes the other party (e.g., without limitation Alice) with various encrypted data having a special structure, in particular, with two ciphertexts (relative to the output bit): EO and Ei. Ciphertext EO (encrypting a secret value VO is opealy labeled 0 and Cipertext EI (encrypting a different secret value VI) is openly labeled I_{τ}

Having prepared both ciphertexts, Bob knows their decryptions $V O$ and $V I$, but Alice does not, she only knows E0 and E1. If a $\wedge b=0$, then the special structure of the data given from Bob to Alice guarantees that Alice will be able to retrieve $V O$, (but not VI); elsc, if $a \Lambda b=1$, Alice will be able to retrieve VI (but not VO). Since the labels of these ciphertexts are known. Alice can thus determine whether $a \lambda b=0$ or $a \Lambda b=1$.

After learning one of the swo secrets relative to the output bit, and thus the value of the bit $a \wedge b$. Alice can tell Bob what the output bit was. If Bob does nol wust her, she can prove to him what the reauit of $a \Delta b$ is by releasing the secret she actually learned (i.e., either VO or VI).

Besides enabling the computation of $a \Delta \dot{d}$, the method also guarantets Bob's and Alice's privacy conditions. Note, however, that Alice, after leaming the actual value of $a d b$, can deprive Bob of this information by simply telling him nothing, not the result $a \wedge \vec{b}$, not any proof that this is indeed the AND of their secret input bits. It is thus a goal to rectify this wealness as well as derive from any such special computation of the AND function a new blind-negotiation system, one that works with invisible trustees.

A New Blind Negotiation System

In particular, assume that M and N are, respectively, lower-and upperbounds to the reserve prices of a given commodity, and that Alice is the seller and Bob the buyer. Then, for each possible price i between M and N, let the bit a_{i} be
I if $S R P>i$, and O otherwise; simiariy, let the bit b_{r} be 1 if i $<\mathrm{BRP}$, and 0 otherwise.

Since SRP is Alice's secret and BRP Bob's secret, each a_{p} is a secret bit of Alice, and each b_{i} a secret bit of Bob. Notice that price i is acceptable to both Alice and Bob if and only if $a_{1} \Lambda b_{i}=1$. Thus a deal between Alice and Bob is possible (i.e., SRP < BRP) if and only if there exist a value $\&$ such that $a_{1} \wedge b_{4}=$ 1. If this is the case, the actual trade price maybe chosen in various ways, for instance, as the average of I and h, where l is the lowest value of f such that $\sigma_{2} A$ $b_{i}=1$, and h is the highest value of i such that $a_{i} \Lambda b_{i}=1$.

Thus, Alice and Bob can conduct a blind negotiation by simply computing, for all i between M and $N_{1} a_{t} \Lambda b_{j v}$ by means of a special AND method such as above. (Since we are using such a special AND computation for each value of I berween M and N , we may use the r to identify the quantities EO, E1, V0 and V1 relative to the Th computation of the special AND, that is, $\mathrm{EO}_{6}, \mathrm{E1}_{\mathrm{i}}$ VO, and $\mathrm{V1}$.

If no deal is possible, then the result will be $a_{i} \lambda b_{1}=0$ for all i. In this ease, Alice cannot leam BRP beyond the fact that it must be lower than her own SRP. Indeed, for each $i<\operatorname{SRP}, a_{i}=0$ and thus $a_{i} \wedge b_{i}=0$, but, because the special AND computation does not release any other knowledge, she will never leam whether $b_{i}=1$ or $b_{i}=0$ for any $i<$ SRP; thus, she cannot leam which the value of BRP may be beyond knowing that if is less than her own SRP.

If a deal is possible, then $a_{i} \wedge b_{j}=1$ for some i. In this case, the acrual trade price can be computed - for instance, by computing I and h and setting the trade price to be $(I+h) / 2 .^{10}$

Of course, like in all blind negotiations explained so far, Alice and Bob preferably make use of digital signarures during the process of evaluating each AND in the special way, so, that each can prove who said what to whom when,

[^13]and relative to which negotiation. Indeed, they may preferably sign an initiai agreement, preferably specifying proper additional data for the special AND computation relative to each price i. In particular, the additional data for the th spociai $A N D$ may inciude the ciphertext $E O$, and $E I_{i}$ (which respectively enerypd the secret values $v O_{i}$ and V_{1}, which are not part of such additional data). Thus, the refease of $V 0$, or V_{1}, relative to the AND computation of price i. does not jusi prove wo Alice or Bob whether i is a mutually agreeable price, but, logether with other signatures ailready exchanged, can be part of a provably signed contract of rade between the two parties.

We should now point out that it is (for instance) Alice who finds out the values $a_{1} \hat{\lambda} b_{\text {}}$ first, and she may or may not reveal or prove what these values art to Bob. This is indeed a feature of the above mentioned special AND computation. In our context, this may result in Alice withholding from Bob the result of the negotiation;

To avoid this, the following additional modifications are proposed. Firss, for each special AND computation, rather than having the encryption of VO (denoted by EO) be openly labeled with O and the encryption of V1 (denoted by E1) be openly tabeled with 1 , the labels of $E O$ and $E 1$ may be concrypled, preferably with a key of a rustee. For instance, Bob (who prepares these two babeled ciphertexts) may label $E O$ with $E_{r}(Q)$ and $E I$ with $E_{r}(I)$ (where $E(x)$ is an encryption scheme of which a trusted party, has the decryption key), and make sure that these two cipertext-label pairs are presented in random order. For instance, he may provide Alice with the lahel-ciphertest pairs ($E_{7}(I)$, El) and $\left(E_{T}(O), E O\right.$). (The encryptions of the labels O and I are preferably probabilitic. For instance, $E_{T}(O)$ may the the encryption, with a toustec's key, of a random even number, and $E_{r}(I)$ thic encryption (with a trustee's key) or a random odd number. ${ }^{11}$)

This way, after Alice computes the decryption of $E O$ (i.e., WD) or the decryption of $E 1$ (i.e., VI), she does not understand whether the result signifies a

[^14]0 or a 3. (In fact, she can see that $E O$ is labeled with $E_{T i p}$ in that $E T$ is labeled with $E_{\text {Thp }}$, but she does not know which of $E_{T o}$ and E_{n} is an encryption of 0 and which is an encryption of 1.) She thus gives VO (respectively VI) to Bob, and Bob proves to her whether obtaining this decryption means that the AND computation resulted in a O or a I by decrypting $E_{7}(O)$ or $E_{T}(I)$ (or both), that is, Bob may give Alice the very even number used in generating $E_{q} O(0)$ and/or the very odd number used in generating $E_{T} l$ (0).

So far, this additional step does not appear to have accomplished much. Indeed, if before in was Alice who could withhold from Bob the result of their bind negotiation, it now appears that it is Bob who could withhold the result from Alice. Indeed, Bob may refuse to provide Alice with the decryption of Enoy or $E_{\text {sap }}$. However, Alice may go to the trusted party (preferably with data signed by Bob and data signed by herself, so as to prove that this is part of a blind negotiation). The insted party will then provide her with the decryption of the desired $E_{\mathrm{T}}(O)$ or $E_{T}(I)$ value.

Thus, the trustee is not needed and is totally in the background if Bob and Alice are honest fbecanse Bob can decrypt himself what he had previously himself encrypled with the trustee's key). However, if this is not the case (like discussed above), the truster may intervene to complete the negotiation by decrypting what is neoensary for completing the transaction.

It is actually preferable that if Alice asks the trustee to decrypt for example) an "output ciphertext label* $E_{T}(O)$ after presenting signed data that include her signature of WO, that is, her signature of the leamed decryption of EO, the ciphertent labeled $E(O)$. This reassures the trustee that indeed the negotiation properly started and that Alice is entilled to learning what the learned VO means. In informing or proving to Alice that $E_{F}(O)$ actually means 0 , it is also preferable that the trustee also informs Bob of the result of negotiation, preferably by providing him with at least Alice's signature of Vo. This way Bob has a proof of what the output of the corresponding AND gate was. Thus, if the trustee provides Alice with such a proof (or result) it also provides Bob with a corresponding proof (or result).

This "joint-notification" is imporiant because otherwise Alice could withhold the result of the negotiation (or its proof) from Bob as follows. She
participates to the negotiation honestly until she computes the decryption of the output-cipheriext of each special AND gate (i.e., either VO_{1} or VI_{1}, for each gate i). Then, she does not tell these learned decryptions to Bob, 30 as to learn what they mean and inform Bob of the same. Rather, she bypasses Bob altogether, goes to the trustee, and has it tell her whether the labels of the outpu-ciphettexts mean. This way, she leams the result of the negotiation, while keeping Bob in the dark. Howeves, if the trustee also informs Bob whenever it informs Alice, then both Alice and Bob will learn the result. Moreover, If the trustee gives Alice the decryption of each label (e.g, the even number whose encryption was the given $E_{7}(O)$, or the odd number whose encryption equaled $E_{7}(I)$), and gives Bob the particular decryption learned by Alice aigned by her, then not only will both parties learn the result of their negotiation, but they will both have a proof of what their results are.

Prefarably, the labels 0 and 1 are not encrypted in a key bown to just one trustee, but with a key that is split among a plurality of trustees (e.g., bike in the systems suggested by Micali), so thal the cooperation of sufficiently many of them is required for each $E_{T}(0)$ or $E_{T}(I)$ value to be decrypted. This way, one or sufficiently few trustees may not comspire with (e.g.) Afice in ordet to let just her know the resull of the negotiation. The idea of replacing a single trustee with a muliplicity of toustees possibly holding shares of a given secret key, also applies to other blind regotiation systems of this invention.

It is preferable that Seller and Buyer exchange messages by means of a method that gives certified retum receipts. For instance, when Alice gives the learned $V 0$ secret of a given AND gate, it is recommended that she sends such a Vo to Bob by means of a certified mail return receipt method that enabies her to prove that indeed that particular value VO was sent to Bob. Electronic, secure and practical such methods are presented in a copending patent application.

Actually, the use of return-receipt exchanges between Seller and Verifier also enables one to dismiss invisible trustees in the blind-negotiation systems. For instance, if in the above system with a proper initial agreement Alice leams a value V_{i} relative to the ith AND computation of a price (i.e., V equals eivier $V O_{\text {, }}$ or $V /$), and sends it to Bob by a certified retum-receipt method (which preferably shows what the sent value actually was), if Bob does not respond with a proof of
the result of the computation, she has enough information to receive justice in some form of court. Such courts, however, could be interpreted as invisible trustees too, though not even their keys have been used in the negotiation.

Making Bind Neratintions Tranprangt

In practice, a single-trustee blind negotiation system may be quite attractive (given that the trustee does not learn the reserve pricen anyway). However, one may still fear that the trustee is not tustworthy. For instance, though a blind negotiation indicates that a deal is possible, the trustee may announce that it is not possible and let the buyer know the items appeating in the seller's list. (Note that these iterns will reveal the seller's reserve price if the buyer knows $Z_{\text {pus }}$.

Thus, although the sellex may not mind if the buyer leams her reserve price when a deal occurs, the trustee might enable the buyer to learn the SRP when there is no deal at all.

Some of this cheating may be prevented or dissmaded is follows. When the trustee declares that there is no deal, rather than just saying so, he also signs an encryption of the information he receives from the seller and the buyer. This signed encryption of the seller's list and the buyer's value may consist of the very encryptions that seller and buyer gave the trustee in their respective steps. Indeed, in order to give the trustee her list in a private way, the seller preferably encrypls it with the trustee's key. Similarly the trustec might enable the buyer to learn the SRP when there is no deal at all.

Similarly, the buyer preferably sends the trustee his own value after encrypting it with a trustec's key. Moreover, each of the seller and buyer signs his own data (preferably together with additional data) prior to encrypting it with the trustee's key. Thus the trustee may release these two encrypted signatures when saying that no deal is possible, preferably signing the whole thing himself also.

The reason for announcing such signed encryption when the deal is not possible is to enable either the seller or the buyer to request that the blind negotiation be made "transparent. In this case, the trustee must remove his own encryption layer, thus revealing in an authenticated way the seller's list and the buyer's value.

If, after decrypting the seller's list and the buyer's value, it appears that indeed there was no deal possible focause the buyer's value does not appear in the seller's list), then proper measures can be taken. For instance, assume that the negofiated commodity is yet unsold and that it is the buyer who called for the blind negotiation to become transparent. Then, after leaming the values SRP and $B R P$, and realizing the $S R P>B R P$, the buyer may be forced to purchase the commodity at price $S R P$ (or N, or $S R P+N / 2$, or $S R P+$ a given amount - either fixed or dependent on N, M etc, \rightarrow) or at any other price deemed proper,

Thus, the seller may not mind that her SRP value was made known because she will be able to sell at that price or better. (Altematively, the buyer may be properly fined - e.g., by a fixed amount, or as a percentage of SRP, N, etc. a.g., by a fixed amount, or as a percentage of $S R P, N$, etc. - without forcing a sale of the commodity.)

Assume now that, after the blind negotiation was made transparent at the buyer's request, it appears that indeed no deal was possible, and that the seller has already sold her commodity to someone else. Then, other proper measures may be taken. For instance, the buyer may be obliged to pay the amount of SRP to the seller without receiving the commodity in exchange, or he may be fined according to a proper formula, etc. (Alternatively, it may be agreed that after the result of a blind negotiation is negative - i.e., the outcome is "no deal"- one has only a prescribed window of time to request to make it transparent, and that the seller should not sell the commodity during that time.)

Aasume now that, after the negotiation has been made transparent, it appears that the trustee announced the wrong result Then, other proper measures can be taken. For instance, not only the trustee can be made financially responsible for paying what it is deemed proper, but he can be also criminally prosecuied. Thas, the possibility of having the blind negotiation transparent will sadd a great incentive for the trustee to remain honest.

Of course; a trustee who has lied within a blind negotiation may not wish to decrypt at all. Thus, measunes should be taken that dissuade him from taking this course of action. Allematively, it may be required that the trustee's key may be shared among miny other trustees (c.g+s by one of the methods of Micali) so
that if the trustee refuse to decrypt, the other trustees may interyene and remove his encryption layer anyone.

Forcing Good Falth in Blind Negotiations

It is desired to ensure that the participants of a blind negotiation act in good faith. By this we mean that, no matter what the reserve price of ones participant, there is at least one choice of reserve value for the other perticipants so that the deal is possible.

For instance, we want to disallow that a malicious buyer may waste the seller's time and resources by negotiating (without being detected) in a way that guarantees that no deal can be reached. For instance, such a buyer may give the trustee a random number R or $B(R)$ as the buyer's value (rather than the image, under function H, of one of the first $N-M f$-inverses of Z_{0}). Hercfore, with overwhelming probability, this number will not appear in the seller's list. Accordingly, the trustee will report that no deal is possible.

Engaging in such negotiations with the seller, the buyer may, at least temporarily, prevent that the seller negotiates profitably with others, and in general damage her. Such betavior should thus be made impossible, or easily stetected.

Of course, the seller may set $i=M$ in a blind negotiation (i.e., have her SRP to be the minimum possible value). If in these conditions the outcome of the blind negotiation still is that no deal is possible, then clearly the buyer or the trostee are cheating. Thus, appropriate measures can be taken if the seller detects and proves that this is the case. (Some of these measured are discussed in the previous section. For instance, the buyer may be obliged to buy at maximum price, or, if he can prove that his value was properly set, the trustee may be fined or proseculed.)

However, choosing a minimum SRP may be a too expensive way for the seller to check that the buyer is negotiating in good faith. Indeed, if the buyer happens to act in good faith, the seller will essentially "give away" her commodity. Therefore, better strategies to ensure good faith participation in a blind aegotiation should be sought. One of them is described below. Of course, after presenting one such strategy, many others can be easily devised.

In her step, the aeller gives the trustee, together with her usual list consisting of $N=M$ items (f of which consist of H evaluated at the first f-inverses of Z_{0}, and $N-M-i$ of which consist of different values) gives an additional cheok list. The latter consists of another $N-M$ items, preferably in random order: $H\left(\mathrm{Z}_{i+1}\right), \ldots \in, H\left(Z_{N-w}\right)$-i.e., H evaluated at the remaining $N-M-i f$-inverses and $H\left(V_{N H A+1}\right), z, \ldots, H\left(V_{N H}\right)$-i.e, H evaluated at i values, preferably different both among themselves and from the first f-inverses of Z_{0} as well as from all other V values.

Notioe that the trustee, hough receiving the seller's list and chock list, sbill does not understand what the value of i may be. Indeed, if B is good, any ftem in each list may appear as a random number to him. Notice too, however, that the buyer's value H ($Z /$) should, if the buyer is honest, appear in one of the two lists. Thus, if this is not the case, the trustee may announce so, preferably in a signed manner. Af this point steps can be taken to decide who is right and proper measures can be adopted.

The trustee, rather than just announcing that the buyer's value does not appear to either the primary list nor the check list of the seller, may accually release both the seller's lists and the buyer's value, and since these have been signed by their owners, he will release these signatures too. Thus one can verify in authenticated manner what are the items in the seller's list, the items in the seller's chock list, and the buyer's value. If she is right, the seller may further reveal every value Z_{k} and every vaiue V_{6}, so that one can verify that her lists were both well constructed (by checking where $H\left(Z_{2}\right)$ and $H\left(V_{2}\right)$ appear), and become convinced that the buyer participated to the bind negotiation in bad faith. At this point, though the seller's reserve price may be compromised, proper measures can be adopted, such as those discussed in the previous section. For instance, the commodity may be assigned to the buyer at the maximum possible price, or at price i plus a suitabie additionsl amount.

Blind Negotistions with Duplicate Trustees

As we have seen, blind negotiations with a single trustee who does not leann the SRP nor the BRP are most convenient. However, if the trustee is not trustworthy after all, he may declare that no deal is possible (while instead i < f) and give, for instance, the buyer the seller's information (i.e., her list).

This event should be rather improbable if the trustee is property chosen. In any case, the possibility of making negotiations transparent may be quite effective in deterring even this small chance.

There is, however, another way to prevent his cheating: duplicate rrustees. That is, we envisage running the above single-trustee system with two or more trustees, treating each trustec essentially as if he were the only one. Thus, while in a general blind-negotiation system with multiple trustees, the trustes may engage in non-trivial message exchanges and computations, these duplicate trustes do not. Indeed, to make life for sellers and buyers easier, duplieate trustees may use the same encryption/decryption keys, and sellers and buyers may use these common truste-keys when talling privatcly to the duplicate trusteef(s). This way each message needs to be encrypled only once (with the common key of the duplicate trustees) ratber than many times (with the key of each of the duplicale trustees). If they wish to use different encryptions with each of the different duplicate trustees, however, a proper encryption scheme should be used. ${ }^{12}$

The main advantage of having two or more duplicate trustees is the following: if a deal is posxible, then every bonest trustee will say 50 and preferably prove that this is 30 , thus enabling the deal to go through at the right price. Therefore, for a deal to be illegitimately declared impossible when it is indeed possible, ALL duplicate trustees must be dishonest. And the possibility of this event is even more remote.

Blind-Negotiation Systens with Secure Hardware

In a single-trustee blind pegotiation-system, the problem still exists that the trostec, when the deal really is impossible, may give to one participant information relative to the other participant. For instance, he may give the buyer the seller's list(s), Of course, the trustee does not understand the SRP from this information, but the buyer will. This problem does not go away with duplicate trustes. Indeed, the

[^15]other duplicate trustees may just confirm that no deal is possible, but may not be aware that one trustee is tipping off the buyer.

One effective avenue to tale care of this problem and others as well is having a trustee consist of or include a secure device, for concreteness purposes only but without loss of generality, a secure chip; that is, a chip a portion of which cannot be read or tampered with from the outside. For instance, because trying to tamper with the chip or trying to read part of its protected areas causes all information in the chip to be destroyed.

One advantage of using secure hardware this way is tbat once such a chip has been properly manufactured, its input-output behavior cannot be changed. Thus, there is no way to "corrupt" such a trustee an convince him to behave dishonestly.

For instance, the secure chip may be manufactured to correctiy perform the following operations. The secure chip receives an input i from the seller and an input j from the buyer (prefembly with proper additional information, and having each party properly sign his data and encrypt it with a key known to the chip). The chip then verifies the additional information and compares the values i and j. If the information looks fine and $i>j$, then the chip produces an outpul indicating that no deal is possible. Else, the chip outputs $g(i, j)$. where g is a finction chosen to establish the actual trade price:

In either case, the chip preferably digitally signs its output together with proper additional information. (Again, other features of the above blind negotiation systems can be incomporated here - such as, initial agreement, message customization, time stamping, or having the chip give seller or buyer a random number and demanding that that number be part of future messages in the negotiation.)

Bandem Chesking for Proper Special Structures

As we have mentionod, in the method for computing the AND function so as to satisfy Bob's and Alice's privacy conditions, one of the parties (e.g., Bob) sends Alice various encrypted dats having a special structure. If this special structure is different from what it should be, then, rather than computing a $/ \lambda b$, one may comprute a different function (with a one-bit output), or always discoyer the other party's secrel bit.

In the conteat of the above blind negotiation, it would be in Bob's interest to change the special structure so that the function $f(a, b)=a$ would be computed instead. This way, in a blind negotiation, Bob would never offer more than Nlice's SRP, though be would not know the value of SRP before hand.

It is thus important that the parties are convinced that each piese of encrypted data possesses the righl special structure that makes it a special AND. In the mentioned paper of Goldreich, Micali, and Wigderson, it is suggested that (as part of the method) Bob proves to Alice that the provided cryptographic data possesses the desired special structure by means of a zero-kaowledge proof. We note, however, that octher well-known simpler methods can be used within our applicarion.

For instance, assume that $\mathbf{N}-\mathrm{M}=k$ is the number of possible priess for the negotiated commodity. Then, Bob may present Alice with $2 k$ (rather than k) pieces of encrypled data, claiming that all of them possess the special structure for implementing an AND with our privacy constraints. Alice may then choose k of them, and ask Bob to decrypt them, so that she can see that they possess the right structure. If this check is passed, then the remaining k pieces of encrypted are believed to implement correctly our AND, and they are used as in the above blind negotiation system.

This way, Bob may chear with probability at most one half, Indeed, even if he inserts a single incorrect piece of encrypted cata, with probability $1 / 2$ Alice will choose it among the k piese she asks Bob to docrypt. Further, the probability may be decreased ($10 \mathrm{I} / 3,1 / 4$, etc.) by having Bob present Alice more "trial" pieces of encrypted data (e.g., $3 k, 4 k$, etc.), and then have Alice choose all of them except k for decryption. Alternatively, not to increase the amount of compuration and transmission too much, we may continue to use a small amount of pieces of encrypted datia (e.g., $2 k$), but make it counterproductive for Bob to cheat. For instance, relying on a proper initial agreement, it can be arranged that, if Bob is caught cheating or refuses to decrypt the "trial pieces of encrypted data chosen by Alice, then is obliged to buy the given commodity at price 4 N , or is fined for an amount 4 N . Therefore, by cheating he expects to lose moneyIndera, if he cheats, he has probability $\leq 1 / 2$ of gaining something (e.g., discovering Alice's SRP, or buying al a price that is garanteed to be equal to
-38 -

SRP) whose worth is at most SN , but also bas probability $1 / 2$ of loosing $\$ 4 \mathrm{~N}$, (Of course, the probability of $I / 2$ of being caught in the amount 4 N penalty are purely exemplary in that other values could be chosen in their place).

GENERAL PRIVATEFUNCTION EVALUATIONS WTHH INVISTBLE TRUSTEES

It should also be noted that, as we have already mentioned, the above AMD method generalizes so as to enable Alice and Bob to compute any function $f(a, b)$ of swo secret inputs a and b so as to satisfy both Alice's and Bob's privacy constmints. Again, this more general method involves Bob sending Alice encrypted data with a special structure, and having every possible output-bit variable correspond to two encryptions, E0 and E1, one labeled 0 and the other 1 . The actial value of a given output-bit variable (in a given execution of a special circuitry for Π is 0 if Alice computes the decryption of the corresponding E0 value, and I if she computes the decryption of the corresponding El value.

Again, therefore, one of the parties may withhold from the other the result of a given privale-computation of f. However, we can again apply the same systern developed above. That is, rather than openly labeling EO with O and EI with 1, we can label $E O$ with $\mathrm{E}_{1}(\mathrm{O})$ and $E I$ with $\mathrm{E}_{\mathrm{r}}(1)_{7}$ where $\mathrm{E}_{7}(\mathrm{x})$ is an encryption function for which in invisible trustee has the decryption hey. The trustee, the first party and the second party act therefore, very much tike in the case of the AND function, so as to yield a method where two parties A and B, each possessing a secret input, respectively, a and b, can, with the help of an invisible trustee and without revealing these inputs, privately evaluate any given function f on their inputs so that, if one party leams $y=f(a, b)$, then so does the other. Again, by invisible trustee we mean the following: if both parties are honest, both will learn without involving the trustec at all, hut if one of the parties dishonestly thes to keep for him/herself the leamed value y, then the trustes intervenes so as we ensure that both learn y fout not the other's secret input, unless that is implicit in y).

While this invisible-trustec method for privately evaluating a two-input function f is useful in general, it is particularly useful in blind negotiations. Indeed, Alice may be a seller and Bob a buycr, a may be the SRP and b the BRP, and with a proper initial agreement and use of digital signatures, they may profitably achieve a blind negotiation with an invisible trustee by privately
evaluating the following (comparison) function $f: f(a, b)=1$ if $\mathrm{a} \leq \mathrm{b}$, and 0 otherwise.

Again, they may use the decryption-penalty method for "checking" that the special structures involved are present in the pieces of encrypted data used.

It is now possible to summarize the important advantages of the disclosed blind negotiations systems and methods.

IN THE CLAIMS

What is claimed is:

1. An electronic process executed by a first party and a second party, with assistance from at least a plunlity of tustees, wherein the first party has a selling reseryation price (SRP) and the second party has a buying reservation price (BRP) and the parties are committed to a cransaction if a predeternined relationship between the reservation prices is established, but not otherwise, comprising the steps of:
initiating the electronic process by having the first and second parties compute dana strings encoding their respective reservation prices, wherein al least one of said parties ases an electronic device for such computation;
having each of the first and second parties transmit to the trustees the data strings that encode their respective reservation prices, wherein at least one of thesc transmissions is carried out electronically, and wherein a subset of trustees containing less than a given number of tuistees does not posess any useful information sufficient for reconstructing the reservation prices; and
having the plurality of trustes participate in the electronic process by Ialaing action to thereby determine whether the predetermined relationship exists, whercin the determination is made without reconstructing the reservation prices.
2. The electronic process as described in Claim I further including the step of:

If the predecernined relationship exists, having the trustees continue the electronic process by providing information that commits the parties to the transaction at a price according to a given formula.
3. The electronic process as described in Claim I further including the step of:
if the predetermined relationship does not exist, having the trustees continue the electronic process by providing information that indicates that the transaction is not possible without indicating a party's respective reservation price to the other party.
4. The electronic process as described in Claim 3 wherein the information does not reveal a party's revervalion price to the other party.
5. The electronic process as described in Claim 2 wherein the predetermined redrtionship is SRP < or equal to BRP.
6. The electronic process as described in Claim 5 wherein the given formula is $S R P+B R P / 2$
7. The electronic process as described in Claim I wherein at least one of the trustees continues the electronic process by taking action with at least one of the parties to thereby determine whether the predetermined relationship exists.
8. The electronic process as described in Claim 1 wherein at least one of the trustees makes use of secure hardware.
9. An eloctronic process executed by a first party and a second party, with assistance from at lesst one or more trustees, wherein the firsl party has a selling reservation price (SRP) and the second party has a buying reservation price (BRP) and the parries are committed to the transaction if a predetermined relationsthip between the reservation prices is established, but not otherwise, comprising the steps of:
initiating the electronic process by having the first and second parties compute shares of their respective reservation prices, wherein at least one of said parties uses an electronic device for such computation;
having each of the first and second parties transmit shares of their

20 respective reservation prices to a set of players selected from a set comprising the first and second parties and at least one trustee, wherein a subset of players, containing less than a given number of players and not one of the parties, does not possess any useful information for reconstructing the reservation price of that party, and wherein at least one of the tranamissions is carried out electronically; and
having the players participate in the eloctronic process by taking action to thereby determine whether the predetermined relationship exists, wherein the determination is made without reconstructing the reservation prices.
10. The electronic process as described in Claim 9 further including the step of:

If the predetermined relationship exists, having at leart some of the players continue the electronic process by providing information that commits the parties to the transaction ac a price ๗ccording to a given formula.
11. The electronic process as described in Claim 9 further including the step
of:
if the predetermined relationship does not exist, having at least some of the players continue the electronic process by providing information that indicates that the transection is not possible, wherein the information does not reveal a party's reservation price to the other party.
12. The electronic process as described in Claim 9 wherein at least one player uses secure hardware.
13. An electronic process executed by a first party and a second party, with assistance from at least one trustee, wherein the first party has a selling reservation price (SRP) and the second party has a buying reservation price (BRP) and the parties are committed to a transaction if a predetermined relationship between the reservation prices is established, but not otherwise, comprising the steps of:
having each of the first and second parties transmit to the at least one trustee data that does not possess any useful information for enabling the trustee to reconstruct the reservation prices, whercin at least one of the transmissions is carried out electronically;
having al least one trustee participate in the electronic process by taking action to determine whether the predetermined relationship exists; and
if the predetermined relationship exists, having at least one trustee continue the electronic process by providing information that commits the parties to the transaction at it price according to a given formula; and
if the predetermined relationship does not exist, having at least one trastee continue the electronic process by providing information that indicates that the transaction is not possible without revealing the reservation prices.
14. The electronic process as deseribed in Claim 13 wherein, if the prodetermined relationship does not exist, the information provided by the trustee does not reveal a party's reservation price to the other party.
15. The electronic process as described in Claim 13 wherein the prodeternined relationship is SRP < or equal to BRP.
16. The electronic process as described in Claim 15 wherein the given formula is $S R P+B R P / 2$.
17. The electronic process 35 described in Claim 13 wherein the trustee comprises a secure piece of tiardware.
18. The electronic process as deseribed in Claim 13 wherein the trustee comprises a plurality of agents.
19. The electronic process as described in Clium 18 wherein the plurality of agents hold shares of a common secrex key.
20. An electronic process executed by a first party and a second party, with assistance from at least one trusted party comprising secure hardware, wherein the first party has a selling reservation price (SRP) and second party has a buying reservation price (BRP) and the parties are committed to a transaction if a predetermined relationship between the reservation prices is established to exist, but not otherwise, comprising the steps of:
generating an encrypled version of each party's reservation price, wherein at least one of the encrypted versions is generated using an electronic device:
having the first party cransmit to the trusted party the encrypted version of SRP and having the second party transmit to the trusted party the encrypted version of BRP; wherein at least one of the transmissions is carried out electronically:
having at least one rusted perty participate in the electronic process oy taking action to determine whether the predetermined relationship exists between the reservation prices without revealing SRP and BRP outside the secure hardware; and
having at least one trusted party continue the electronic process by transmitting result-infomation to each of the first and second parties, wherein the reservation prices are not revealed if the predetermined relationship does not exist.
21. The electronic process as described in Claim 20 wherein the predetermined relationship is SRP < or equal to BRP, and whercin if the trusted party determines that $\operatorname{SRP}<$ or equal to BRP, the result-information commits the parties to the transaction at a price determined at a given formula.
22. The electronic process as described in Claim 20 wherein the predeternined relationship is SRP < or equal to RRP, and wherein if the trusted party determines that SRP $>$ BRP, the result-information indicates that the transection is not possible at that time without revealing the reservation price of one party to the other party.
23. The electronic process as described in Claim 20 wherein in addition to the encrypled version of the SRP, the first party also transmits to the trusted party additional information, whercin the additional infomation includes information selected from the following: a description of the transaction, a proof of the first party's willingness to enter into the transaction, an agreed transaction price if the predetermined relationstip exists, date and time, and other transaction information. 24. The electronic process as described in Claim 23 wherein the encrypted version of the SRP and the additional information are digitally signed prior to transmission by the first party to the trusted party.
25. The electronic process as described in Claim 20 wherein in addition to the encrypted version of the GRP, the second party also transmits to the trusted party additional information, wherein the additional information includes information selected from the following: a description of the tratsaction, a proof of the
sceond party's willingness to enter into the transaction, an agreed transaction price if the predetermined relationship exists, date and time, and other transaction information.
26. The eloctronic process as described in Clain 25 wherein the encrypted version of the BRP and the additional information are digitally signed prior to mansmission by the second party to the trusted party.
27. The electronic process as described in Claim 20 wherein at least one of the first and second parues use secure hardware to encrypt their respective reservation price.
28. An electronic process executed by a first party and a second party, with assistance from an invisible trusted party if needed, whercin the first party has a selling reservation price (SRP) and the second party has a buying reservation price (BRP) Comprising the steps of:
(1) having the first and second party agree to execute an ideal negotiation that tesults in (a) a commitrnent to a transaction if a predeternined relationship exists between the reservation prices or (b) no commitnent and the deternination that the prodetermined relationship does not exist without revealing the reservation prices;
(2) having the first party and the second party exchange measages to attempt completion of the ideal negotiation, wherein at least one of the messinges is exchanged eiectronically and wherein either party can deternine whether the predetermined relationship exists; and
(3) If the ideal negotiation is not completed in step (2), having the invisible truster take action to complete the ideal negotiation.
29. An electronic process executed by a first party and a socond party, with assistance from an invisible trusted party if needed, wherein the first party has in selling reservation price (SRP) and the second party has a buying reservation price (BRP), wherein the first and second parties have agreed to an ideal negotiation that results in (a) a commitment to a transsction if a predetermined relationship exists berween the reservation prices or (b) no commitment and the deterxination utat the predetermined relationship does not exist without rovealing the reservations prices, comprising the steps of:
(1) having the first party and the second party exchange messages to atternpt completion of the ideal negotiation, whercin at least one of the messuge is exchanged etoctronically; and
(2) if one party does not complete certain actions required in step (1), having the invisible trustee take action to complete the ideal negotiation; and whesein the trusted party comprises seoure hardware.
30. The electronic process as described in Claims 1,9 or 13 wherein the transaction is selected from at least one of the following types of transactions: sale, a lease, a license and a financing transaction.
31. The electronic process as described in Claim 30 wherein the transaction involves a commodity having a value within a predetermined upper and lower range, and whercin the trustee is provided a fee according to the value.
32. An electrontic process executed by a first party and a second party, with assistance from an invisible trusted party if needed, wherein the first party has a private value " a " and the second party has a private value " b " and the first and second parties bave agreed to compute a given function "f" on their inputs " 3 " and " $\mathrm{b}^{\text {" }}$, comprising the steps of: having the first parry and the second party exchange messages to enable each of the parties to obtain $f(a, b)$ without revealing "a" and " b ", wherein at least one of the messages is exchanged electronically and wherein either party can determine whether the obtained value $f(a, b)$ is correct; and
(2) if one party has not obtained $f(a, b)$ in step (1), having the invisible Iruslee take action so that both parties can obtrin $f(a, b)$.

33: An electronic process executed by a first party and a second party, with assistance from af least one trustee, wherein the first party has a private first value and the second party has a private second value and the parties are committed to a transaction if a predetermined relationship between the first and second values is established, but not otherwise, and wherein each party's respective value is unkriown to the other party, comprising the steps of:
initiating the electronic process by having the first and second parties compute data strings encoding their respective values, wherein at least one of said parties uses an electronic device for such computation;
having each of the first and second parties transmit to at least one musteo the data strings that encode their respective values, wherein at least one of these transmissions is carried out electronically, and wherein at least one trustee does not possess any useful information sufficient for reconstructing the first and second values; and
having at least one truster participate in the electronic process by taking action to help determine whether the predetermined relationship exists, wherein the determination is miade without reconstrueting the private values.
34. The electronic process as desaribed in Claim 33 further including the step of:

If the predeternined relationship exists, having at least one trustee continue the electronic process by contributing information that helps commit the parties to the transaction according to a given formula.
35. The electronic process as described in Claim 33 further including the step of:
if the predetermined relationship does not exist, having at least one truster continue the electronic process by providing information that contributes to indicating that the tranmaction is not possible without thereby indicating the first and second private values.
36. An electrontic process executed by a first party and a second party, with assistance from at least one or more trustees, wherein the first party has a secret first value and the second party has a secret second value and the parties are committed to the transaction if a predetermined relationship between the first and second values is established, but not otherwise, wherein each party's respective private value is unknown to the other party, comprising the steps of:
initiating the electronic process by having the first and second partics compute shares of their respective values, wherein at least one of said parties ues an electronic device for such computation;
having each of the first and second parties transmit shares of their respective values to a set of players selected from a set comprising the first and second parties and at least one trustee, wherein a subset of players, containing lest than a given number of players and not one of the parties, does not possess any
useful information for reconstructing the value of that party, and wherein at least one of the transmissions is carried out electronically; and
having the players participate in the electronic process by taling action to thereby determine whether the predetermined relationship exists, wherein the determination is made without reconstructing the first and second values.
37. The electronic process as described in Claim 36 further including the step of:

If the predetermined relationship exosts, having at least some of the pluyers continue the electronic process by providing information that commits the parties to the transaction according to a given formula.
38. The electronic process as described in Claim 36 further including the step of:

If the predetermined relationship does not exist, having at least some of the players continue the electronic process by providing information that indicares that the rransaction is not possible, wherein the information does not reveal a party's private value to the other party.
39. An electronic process executed by a first party and a second party, with assistance from at least one trustee, wherein the first party has a private first value and the second party has a private second value and the parties are committed to a transaction if a prederermined relationstip between the first and second values is established, but not otherwise, wherein each party's respective value is unknown to the other party, comprising the steps of:
having each of the first and second parties transmit to at least one truster data that does not possess any useful information for enabling the trustee to reconstruct the first and second values;
having at least one trustee participate in the electronic process by talang action to determine whether the predetermined relationship exist; and

If the predeterminod relationship exists, having at least one trustee contunue the electronic process by providing information that commits the parties to the transaction according to a given formula;
if the prodetermined relationship does not exist, having at least one truster continue the electronic prosess by providing information that indicates that the transaction is not possible without revealing the first and second private values. 40. An electronic process executed by a first party and a second party, with assistance from at least one trusted party comprising secure hardware, wherein the first party has a private first value and second party has a private second value and the parties are committed to a transaction if a predetermined relationship between the first and second values is established to exist, but not otherwise, wherein each party's respective value is unknown to the other party, comprising the steps of;
generating an encrypted version of each party's private value, wherein al least one of the encrypted versions is generated using an electronic device;
having the first party transmit to the trusted party the encrypted version of the private fitst value and having the second party transmit to the trusted party the encrypted version of the private second valte, wherein at least one of the transmissions is carried out electronically;
having the trusted party participate in the electronic process by taking action to deternine whether the predetermined relationship exists without revealing the first and second private values outside the secure hardware; and
-52.
having the trusted party continue the electronic process by transmitting result-information to each of the first and second parties, wherein the private first and socond values are not revealed if the predetermined relationship does not exist.
41. An electronic process execuled by a first party and a second party, with assistance from an invisible tuusted party if needed, wherein the first party has a private first value and the second party has a private second value, comprising the steps of:
(1) having the first and second party agree to execute and electronic negotiation that results in (a) a commitment to a transaction if a predeternined relationship exists between the private first and second values or (b) no commitment and the determination that the predetermined relationship does not exist without revealing the first and second values, and whertin each party's respestive private value is unknown to the other party;
(2) having the first party and the second party exchange messages to atteropt completion of the electronic negotiation, wherein at least one of the. messages is exchanged eleotronically and wherein either party can determine whether the electronic negotiation is cormplete; and
(3) if the electronic negotiation cannot be completed in step (2), having the invisible trusice tabe action wo complete the electronic negotiation.
42. An electronic process executed by a first party and a socond party, using secure hardware, wherein the first party has a private first value and the second party has a private second value and the parties are committed to a unsaction if a predetermined relationship between the first and second values is established to exist, but not otherwise, wherein each party's respective value is unknown to the other party, comprising the steps off
providing the secure hardware the private first and second valises, whertin at least one of the values is provided electronically;
having the secure hardware determine whether the predetermined relationship exists without revealing the first and second private values outside the secure hardware; and
having the secure hardware provido result-information to at least one of the first and second parties, wherein at least one of the private first and second values is not revealed outside the secure hardware if the predetermined relationship does not exist.
43. The electronic process as described in Claim 42 whercin if the predetermined relationship exists, the resalt-information provided by the secure hardware indicates a transaction price by evaluating a predetermined function of the first and second private values,
44. The electronic process as described in Claim $\mathbf{4 2}$ wherein the resultinformation is digitally signed.
45. The electronic process as described in Claim 42 wherein the resuitinformation is digitally signed with other information.
46. The electronic process as described in Claim 42 wherein an initial agreement occurs between the first and second parties prior to the secure hardware providing the result-information.
47. The electronic process as described in Claim 42 wherein at least one of the first and second private values is provided to the secure hardware unenerypted.
48. The electronic process as described in Claim 41 wherein the first and second parties further agree that a given penalty is imposed on a party that has been found to have deviated from prescribed steps of the electronic negotiation.

2/3

DISH - Blue Spike-408
Exhibit 1010, Page 2349

(12)
(45) Date of publication and mention of the grant of the patent:
23,01.2002 Bulletin 2002/04
(21) Application number, 94307609.1
(22) Date af filing: 17.10.1994
(54) Image data processing and encrypting apparatus

Vorrichtung zur Verarbeitung und Verschlüsselurig von Bilddaten
Apparail pour le traitement et le chiffrage de donniées d'images
(84) Designoled Contracting Stater:

DE ESFR GE IT NL.
(3D) Priority: 18.10.1993 JP 25977093
(43) Date of poblication of application:
19.04.7995 Butlotin 1995/16
(73) Proprimor CANON KABUSHIKI KAISHA Takyo (de)
(72) Inverior. Enari, Masahiko, e/o Carion Kabushijki Kelaha Ohta-ku, Tokyo (JP)
74) Representabve:

Beresford, Keith Denis Lewis ef al BERESFORD \& Co. 2.5 Warwick Court. High Holborn
London WGTR 5DH (GB)
(SG) Feferences citect EP-A- 0364295
EP-A-0. 542251
EP-A- 0614308
A-A-0485 230
EP-A-0. 582122
WO-A-94/15437

Note- Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of oppasition to the European paient granted. Notice of opposition shall be liled in a wntter reasoned statemant. It shall nat be deemed to have been filed until the opposition fee has been paid. (An. 98(1) European Patent Corvention).

Description

[0001] The present invertion relates io an imaye crocessing apparahes and mare periculariy to the ancryption of iminge dàta.
[0008) Fig (shows-a blook oliagramiof aconfiguration of a prlor ath image ercoding opparatus having an enवyypilion lunction
[0003] Fig z shows a block aimgran of an image docoding epparatus lor de coding the image tala encoded by the appratite of Fig :
[0004] In the encoaingappothtere stown in Eig, 7, numeral tio denotes a high resoltaion anatog wdooalghall (noroinatter reforred to as an HD signal), whier, in the presuni example, hus the number of scan lines of 1.050 and a frame irequency al 30 Hz Relalbve to He HD so nal, a videa signal of an ordinary resolution having the number of sean lirnes of 505, a frame Irequency मf 30 Az and the number of pixele of 858 is referred to ate an SO signal.
[0005] Ant HD ADO conversion dircuit 112 samples the video signal TiU at a sempling trequency ol $54,054 \mathrm{M} H \mathrm{~Hz}$ to convert it to a digital signal. Ey wrtue at the samplieg requancy the number of pixels per ine of the digital $H D$
 flor (SD) conversion drouit 114 reduces the number of plyela to one hall in both vortical direction and horizontal dirention lo culpul a viden sanal ol the orbinery rovoluliun having the number at acan lines of $\mathbf{2 s} 5$, He fiame trequency of 30 Ka arid the number at pisples per line of 858
[00061 An ancooing cicail 116 efliciently encodes the digital SD signal outiputfed forn the convareion citount I's by an encoding acteme which ts a combination of molion campensated adaplive prectiction End DCT A decoding circuil 118 decodes the eneaded signal outputved from the decoded circuit 116 w repraduce m SD. signal. An SDAHD conversion signal 120 interpolates pixies ia the ouput vidoo data frorn the decooing circuit 116 by a lacior of fwa in both vertical direction and horizontal diradion lo oonvert it la an H0 signal Namely. The SDN-D conversion pircull 120 oufpuls a signal eairespanding to the ingh lesolution videosignal faving the number of scan lines of 1,050 , the number of pirest pes line of 1.716 and the trame frocivency of 30 Hz
[0007] A subiraclot 122 suburacta the output of the SDMD conversion draual 180 hrom the oufpul of the Al D canversinn circat 112 iof each pixel. The oulput of the subtractor 122 is reterred io as an auxiliary veden signal AN Encoding cirian 124 enoodes the autput of the sulbtractor 122 in the same encoding schemb as that lor the mocoding oircuit 116 .
[0000] A muitiplexing circuif 126 multiplexae the ericoded data (the encoded ED signal) outputted from the encoeing riciult 16 is and the encoded dnta ther encoded aumery vidoo sgrvil) ouiputied from the encoding orouit 124 and quipuls it to enencryplian circuil 128 The encryption circull 128 encrypis the aufpul of the mull-
ploxing arcult 180 in accordunioe with an encryption Key sigmal of an ertiavplen iny outout dircuit is 0 , and an oulkol unil 182 zulpuls the ensypled data oumutred Iram the encryallan ciccuil 128 to a (fanymitezion line, As diascribed above, the transmsstion line may be a carnmunication line of a recording meditam
[0009) The encryption is briefly explained witr reteronce to Fige 3 and 4 . Following enoryption iechniques are avalable.
[0010] Fig 3 shows a flow chart of the enoyp inn by the US Dain Encryption Standard (DES) publiened in the FIPS Publication 45 clated danuary 15, 1977 , and Fig, 4 ahowa a function of the encryption of Fig. 3 The data encryption agorithm of the DES has been published as the "Date Encrypion Standara" as described above, Hetering to Figs and A the DES wirl be ex. plained
[0011] The DES handles blook encryption lo binary date compraing ots and 1 's in the DES, the dinary qata 15 grouped into 64-bit olocks and the transocsilion and the replecoment are rapeated for anch block to encrypt 1. An encryption hey is $36 \leqslant$-bil signal, of which 8 bite are check bifit lor tietecijog an etrot Thus a SB-bil anoryplion hey is achually effactive Thereplecement of the digit in Dontroled by the encryption key in each cyote EIG: 3 showa an encryption proceso of the DES. Fig, 4 shows a function 板(R) whichis a heart of the encryption 10012) As shown in Fig. 3, a 64 -bit plain text íc firsi tfanspereiconed Thas sa fixed ramspositon independenilram the encyplicuiley, Then. The sa bits arewyided into s lett hall G_{1} and a right hall R_{0}. Than the folowing openationa are repeated civer the 16 stager.

$$
\begin{gather*}
L_{n}=F_{n-1} \\
A_{n}=L_{n n}+F_{n}\left(R_{n s}\right) \tag{1}
\end{gather*}
$$

where + represents is wum of mode 2 for each Bif, Land R_{n} mpresent the lefl hall 32 bies and the righinall 32 bif Kiapectively, the the end of the qperation for the n-th athige and K_{n} is generaied from the encryption key as shown in the right site of $\mathrm{F}_{\mathrm{G}} 3 \cdot \operatorname{in} 5 \mathrm{gig} 35_{2}-3_{76}$ are 7 or 8.
[0013] Condenred rampostion is dafined es the transposition exclubing scono of the input In Fig. 3, 3 bits out 허 the 56 inpul bits are exeluded 90 that an aufpuit oumpriges 48 bile. The condensed tranescstian is itrelocable canversion sa thal the inpul cannat be perfecily reprodiced from the outpul Thia serves la make the estimation of the encryption key dificult.
[0014] Reterring to Fg. 4, the function fl((F) in in ig. 3 is specificaliy expiainod in Fig. i, to genprete the tumeün MK (F) , sugnented fransposition is minde to R. The augmenifed tyampositico is delibed as the overitppear Transpastion si sene inpuis: In the illustrated exnample 16 bits out at the 32 impur bits appear in overiap at the
bulpul K compased by the key ta mode 2 added to the oulput The retailing 4月 bits are awided invo eigm B-bit blocke and the respective 6 bits aro converredt to 4 bits.
 conatiute one characuer, it may be considered as a Wind a) replacement Howaver, s'nes Ite quilpul ia call. pressed to 4 bity , The corrversion to itrivicabile: Acoordingly, the flk (R) ageneruly anirrevocabsefunction: This, however, does ool mean that tre conversion of the formula (I) is frevocable, 'The formula (1) may ber convort. od as follows:

$$
\begin{gather*}
B_{n-1}=L_{n} \\
S_{n-1}=G_{n}+1 K_{n}\left(A_{s+1}\right) \\
=F_{n}+1 K\left(L_{n}\right) \tag{2}
\end{gather*}
$$

His thus noon that L_{n-1} and $\mathrm{F}_{\mathrm{n} \text {, }}$ can be calculated fom L_{p} and A_{c}
[001S]. The calculation of the formula (1) is teppeiled 16 times and whem Lifind $^{2} \mathrm{R}_{\text {is }}$ are determined, they are finally trinspositionod again apo the onoryption is terminated
[0016] In a decooing apperatus shown in (fig. 2, a fransmisaion data inpal unit 140 nbosivers the rialn from The transmission line and auppiles it to a decryption cir. out 142. The decfyption arcuit ide decrypts it by utilzing tho encryption *ey signal oultuuted form he oncrypForl key culput cirauit 1a4, in arder for the dearyption io be cumectly done, the gkacily same encryptian key as that outputted from the encryption key output circult 130 used in the arrooding apparatus (sse Fig. II ahould be used.
[00571 The decrypition is tubstantially a ravorsa operalent the the encryption. Elielly, the procass proceerls Fiam the botiom to the top in Fig. I Fitst, a revilse trantposilion th the last Trarsposition in the encryption is rades, and F_{r+1} and $L_{r \rightarrow-}$ are determined from the iormula (2), and wherr F_{0} and $\mathrm{L}_{\boldsymbol{s}}$ are devermined, a reverge transposition ia the firsi transposillon in tho oncrypliat is maide. in this manner, The apginel 64 bite are teproduced In order to dearypt the DES encrypted lent, there has beeri no known method other tian examining the keys one by ond. Assuming that one mincresecond is needed to examine if one keyla correct one or not, z,2bs years will be needed to axartine al of o5k keye ,
[00181 The llanemissian deta tieqypted by the decryplion corevilt 742 ke separtaind by a seperalion brail 146 to enooded data of the SD sighal and encoded dala of the awxiliary videa sgnal, which are auppiled to decoding circule 148 and 960 , respoctivefy. The decoding circuif i \& 8 s bipuis the reprodicod $\$ 0$ sianal end the deocoing giauliso ouloul the reproduopdauxiliary videa atgnisl
[0019] AnSD ANO conversion circall 152 coloverts the
digilal SO signal gulputred fram the decoding circuet 14 日 to an aralogsgrul The outgut of the SD AD conversion cirout 152 is air ansiog woco signal havieg he nurniber of 3can lines of 5 . 25 end the frame frequency pl 30 Hz
invension will become appatent fram the following do－ tailed descriplion taken in conjunotion with the accorm－ panying drawings

BRIEF DESORIPTION OF THE DRAWINGS

［0031］

F0 I ：thows a block Alugidem of a priat art Image encoding apparatus，
Fig．R shawt a block diagram of a prior ant image tiecudiog apputatus，
Figi a shows a How of prion arl encryplion，
Fig．A shows a llow ol priot art enicryption
Fig， 5 afows a block diagiam of a configuralion of one embodiment of an urage encoding apparabis of the present invention．
Fig：日 shown a block dixuram of a coneguration of an umbodiment of as image decoding epparaine of the present invention，
Fig： 7 shows x biock alaggam of a modikind portion ol a configuration of a modified embooiment of Fig 6.

Fig．B shaws a blocl ciagram ol a modilied porifor－ of a moclified enibodiment of Fig． 6 ，
Fig． 9 zhows a bock diagram of a contiguation of a secound ambsoiment of the image encoding appa－ ratue of the present invention．
Fig： 10 showa a block diegram af a conigurnion of a seporid ambodment of theimuge decoding appa－ matuk of the presert invention，
Feg： 11 iliustrates band divieion of a space tiequen－ cy．
Fi．$\{2$ showe a bloch diagram of a configuration of a modlifed portion of a modified embodmentot fig 10
Fig．ta ahowa a block diagrain of a confguraion of armodified portion of a nodified embodiment of lig． 10.

Fig：14 shown a black diagram of a apecilie encot－ ing aircuil al the embodiment，and
Fig． 15 sfows a bfock diagram of a apecific decod－ lng sifcult of the emborment．

DETAILED DESORIRTION OF THE EMBODIMEN＇TS

［0032］Fig 5 ehows a Ulock diagram of a conifiguration al ane embodiment of the encoding apparalte of the present invemion，and Fig，is stiows a block diegaam of a coniliguration of the decoding apparatus
（0093）The encooing apparatus shown in Ag .5 is lirst explained．Numeral 10 denates a high resolution vidoo signal favine the number of sisan lines of 1,050 and the frame fequency of 30 Hz as the HD signel 110 does Nurnural ie denotas ant + O AD conversion circuil far ©onverling the videastgnal 10 to a dipital signail rimerral It denotes a high resolution（HO）Kordinary resolution （GD）convergion circuit for converling the digital $-D$ sig－
nal outputsed from the HD A D convension circult fic to a wideossinna）of the urdinatyreanation，numeral 16 as－ noles an encording circull lor ellicieritlyencoiding tis out－ put of the conversian cirail 14，numelai 18 ditnotes a
5 Ufocoding ciftul lor spooding the output of the encooling circut 16，numeral 20 denotes an SD／AD converaboncir cult or intercolating the SD signsl ouput of the docoding Elrcabl 18 fo converf it to an HD signal mumeral 22 de－ noles a sublraciur toe subtracing the outpul of the SD／ HD conversian orcuis 20 from the outplt of the HD ND converson cirouit 12 ）or aach pixol，and numeral 24 as－ notes an encoding circuit for encoding the outavit of the pubtacto 22 ．The circuifa v2－8．4 have the same func－ llany is thogs of the circuls 112－124 of Fig． 1 and op－ wate on the same manner
［0034］Numeral 26 denotes an encryption eircuit ion sticrypting the output of the encoding circuis 2a it ac－ cordance with ant encryption signal outputied from an enaypion key oulput circuil 28 Art the encryallan lach－ nique，the gne which comgiles wilh the DES slandand a used
［0035］Numenal 3x denotes a mulifplexing circuit for multf phexing the output of the encoding circull 16 and the encryption circuil 26 ，and mumeral 32 devoles an tuipul uitil lar buiputting tranumission dala multiplesen by the mullipigaing circuil 30 to a tantamission line sueh sa a commmacilon fine or é recorting medium．
［0036］］The encoding apparatus ahown in Fig， 5 is exc plained．The operavone of the ciccuits ie－24 aro same wis thope of Bre prior art epperaius Namply，the mncod－ ing citrail is oulpuls the encoded data of tha videusig－ nal deivend by convering the HD agral 15 to the pidi－ naty resolution，and the encoding circuif 24 outpuss the encoded data of the suxitary video signal to reproadce the bigh resoluton video signst from the transmisaion viden diata ol the drdingry reanluifon，ith the prosartitem． bodiment priar to the misilplesirig of the bolh uncodad cath the cuiput encadid data of the enooding oranil： 24 is encrypted by the encryption citcuit 26 by using the ertayption key signal ouidutted from the encryption key oulput circult 25 and in Is opplied to the multiplaking cir： call 30
［0037］Accordingly，in the presend eintiotimeni，the muitighexing circult 30 mulfiplexes the encoted ctala of the video signal of the ordinary resolution the oulput it the oncoding circult：（6）and the encooded date of the en－ acypred auxillaty video signal and the output unit a8 out－ prits the oulpul at the mulliplesting Drcuif 30 io the rane－ mission line．Acsordingly，the videa nignal of the ordi－ nary reablution is tranamilted witheut ericryplion hut the informstion for teproducing the high resolution vided signel（acollinry video signal）is encrypled so that；in the receiving stalions the hightestulion video oigral cennas be cerroduced without the errctyption toy but the vidan
a signal of the ordinery resokilian can berspraducad will－ but the encryplion ksy
［003ii）The desoding apparatus shown in Fig．日id ex－ plaigen．Numeraf 40 denotes a transmission data ioput

Unitfor receving data from the transmispion line numeral 49 donok a separation arcuit for moparating a set etream form the bansriestan deta liput unil 40 lo a porfiari reloled to the uncoded dela of the SD eignal and a portion ralated fo the encodid diata ol the ausiliary vilien signal and numerat a4 deroses a dearyption circuit fon deoypting the encodad dista of the auxiliary video algral fiom the separalon cicull 48 by releranoing the ancryp. bov key signal oulpulted/rom the encyplion key oulput Gucail 48.
[an3s] Numeral 48 denotes a decoding circuit for necoding the encoded gata of the SD signaiftoin the sepEration orcuit i2, numaral 50 denotes e decoding corcuit for decoding the oncodad date of the suxiliary videongnafferm the decryphlan circurf Aid, numeral 52 denolen an SGI D/A convarsion circial for comverting the digilat SD Hghal aotpulted from teve steooding circuil $4 g$ ia an arialog signat, rumeral 54 denotes an 3D/H0\% conversion circulf for convering the digital 3 D signol outputted. fram the decoding creull 45 td a digitar $H D$ spanal in the same prossss as thay al the SDNAD conversion clecull 20, numeral 56 denoles an adder toe adding Ule bulpuil of the decoding circuit 50 to the butput of the SDFiD conversion orcult 54, and numeral Si denotes an HD D/A conversion growit for converting the digltai output of the adder 56 lo an anolog signal.
〔00saj An qparation at the decading circul atiown in Fig 6 la explained. The thanamision data input unil 40 raceivers the data from the fransmission line and supplias il to the agparation circult 42 , and the separation ercail 42 separales il to a porliontatand to the moodad tala of the SO pignal and a portion related is the uncod. sd ctath of the encrypted aukifary Wdeo sigrmal arto supplies the former to the decoding olfowt 48 and the laiter to the decryption circuit 44. The decryption circuit 44 depypts the ancypton apelied io the encoded data of tho ausiliary videc signal by issig the same encymitonkey zigral outpultiod fram the encryption Key autpul ejecull AS is the enerypion key signal outputited from the encryption key outputcircuit 28 of the encoding oircul (F99 1) The ancoded data of the suxiliary video aignal derypiad by the decryption circuit 44 is applied to the depoding circuil 50 and decoded thereby.
[pon1] This, the decoding circuit 48 dutpuls the reproduced oigital SD signal and the decoding circun 50 oulputs the roproduced digital auxilary video sigmal.
[0042] ThesDD D/A conversion arcuil 5E Converts the digital SD aignal oupuled from the decoding circult i8 fo an analog signal. The SD D/A conversiaf circult 58 may bean analogsignal having the rumber of sommlinea of 525 and the frame trequency of 35 Hz and the viden aignal is appled to a monitor deviot of the ordinary resolution to deplay the image.
[0043] The 5DADD convernion circuit 54 ponverts the digital SD vignal oulpuftod from the decoding circuit 48 to a digital signal io the same process an that of the SDI HD conversioh circuil 120. The adder 56 adds the gufpuf of the decoring cirait 5% to the dulpuf al the SD/HD
convesion circul 54 tor each pixel. The ouput of the adder 56 ls a vidoo nignal corresponding to the mphresslution video signal the HD D/A conversion circuit 50 converts the digital uatpul of the adder 56 iq an analug
 IE 4 high resolution video signar having the numwet al scari lines of 4,050 and the frame frequency of 30 Hz andil may be applied lo a bigh resolution monitor to $9 \mathrm{~m}-$ g) ay the imuce willaul the eniriyption correct (heeinafter coniectively referred to as withoun key or no key ssate). the decryption circuit 44 oumputs quite an unstable data pattern so that the output of the unstable pattien such as a notge imege is dispayed an the sateen of the display device such as a CAT
[0045] Alternatively a lixectimsige may be ctapiayed on the highresolution monitar screen in the no keyptato. Fige 7 and 8 show sorfions of black diagrams of such modiffed encoding apperatus. The like elements in Figs. $\%$ and \bar{u} are designaled by Ne humerals.
[0046] In Fig 7 7 a switan 60 s proviaed bewien the decoding arciult 50 and the adder 55 , and when the no key state (no nnput of tho ericryption kuy signal) is do. keoked by the decryption circult 44, the switch 60 is sef io '0' by the delection cuipul en that' σ ' is appilied io the astder 5 . When the surrect apcryplion hey is inputiod 10 the diecryption clicait 44^{\prime} the decryption aroult 49^{\prime} connecis the switch 60 to the output of the decoding dircuit 50.
[0047] In Fig 8, a swatel E2 it provided betwern the actder SE. and the HD D/A convereion circuil 58 do Diak at the no key state a predetemmined leve er inputiedito He HEDD/A convirgion citculs 5 . The switch e2 momialsy solegts the output of the adder 50 , and when the decryption orcult 44 the no koy atato (no input of the ancryplian ifey signal), the switch (s bal to the predelermined level inpit in thig munfel, whien the corcen inpul if pressent, the high reasfolian victeo signal is oulpotied bin in the no key state, the predetermined levelsignal 3 outputted und ant image colresponding to the predeformned level is draplayed on the monitor scraen.
[00AB] In Figas 7 and 8, the swithess 60 and 62 are apparent that the function of such ewitches 60 - int 62 may be incorporated in the decoding circogt 50 and/ar HD MD convesion droult 58. Altatnatively, the output of tho decoding circuit 50 or the HD D/A conversion cir: cuit moy be toreed ke er predereirnomed lovel (for example, zero oulpul) in response (a the delecilion ol the no Sey stale by the decryplion clecull A4.
[0049] In Figis 7 and 8 the no ley state is delected Dy the decryption drevit 44 although it may De detecred by error code datection ar arror cotrection processs.
10050] Asacond ambocimunt of the present musbilon which iv appliet fo a systemi io whits the image inlarmalan is transmitfed by the band divialoh by the spact

Arequency is now skplairued Eig 星 anown a block dat gram of a contiguration of an encoding apparatup theroof, and Fig 10 thowe a blook diagrum ol \geq conisguration of a decoding appuraius. Fig. II (instales the band division of the sppost fequency
10051) Numaral 210 denales an armalag HD stgnal fo be encoded. In the present embodiment, if s a video sigraifhaving the number of scan lires of 1,050 and the trame frequency of 30 Hz : An HD AD ponverzion chrcuit 212 samoles the analog H0 signal ai a sarruing fie quency of $54,054 \mathrm{MH} / \mathrm{z}$ in conven il lod a digital sigrai The mumber of piests per inm of the sampiea HD silgnal (s) 1,716
[DD52] The output of the HDD ADO conversion circuit 212 is appilad to band division tilters 214 and 216 and sividod by the filkers 214 und zl 6 lo a low liequency cortuonent and a figh liequency cantponenl af a foonzorfal Irequency and the nurriber of pisele a tecuied to one failf, respectively
[0053] The output of the band diviekon fiker 2/4 is a low reaciution component of the frorizonal frecuancy, Which is furthar separsiedinta a kow trequency compunent and a high frequency coimponenl at a verfical tre: quancy by band divizion lifters 218 and 220 to reduce the number of pisels to one hati. Similarfy, the oand df vasion iliters 222 and 224 separates the ouput of the bana divsion hlier 216 (the high Iegolaliar compenent af the horizontal temuency) info a faw trequency comporient and a high tregushoy component al the yertical frequienty to reatice the numbar of pixels to one fieft.
[0054] inthis-manner the high resolution video bigosi having 1,7 76 pixess in the noniznital direction and $1,(924$ poxels in Bie vertical direction te separated into an LL signul < (i)e aulput of Ulie band divition fier 218), an (H) signal (the bufput of the band divison hiter 220), an FiL sigrma (the output of the band divaion filtor zae) ard an Hit signal (the output of the band divison Silier 224) hav. ingone half of tho foisl number al givelsin the horizanfal direction and the vertical unection, as ahown in F_{0} it. Since only the LL aigmal has vie low-pass data in both the horizantal direction and the vertical direction. If is the video information which can be roproducod tor display as the image and corresponds to the video signal ut the ondinary resolution having the number of scan linea af 525 , the Irame frequency of 30 Hz and the rumber of piater per line of 858 On the other hand, since the LH signal, the HE. signal and the HAH rignal are tigh-cess datg, thay cannot be displayed ats the imago ars they arn and they are the auxiliary video signals which form the hign resolution video signal if cooperaliou wilh the LL signal.
[0055] The encoding oircuin 295 efficlemty encoctes the output al the band division fileer 210 (CL signall by an encoding scheme which is a combination of the motion compensaved adaplive prediction hnown as the COIA Recommandatian 7a3 End the DCT Enzooing citcuil 220,230 and 232 efficiently encode the outputs of the tand divion filera229, 222 and 224 (LHsignal HL
aignal and HH agnall, reapectively, by a $\quad=$ mbinglun af theDFCK and a zera mun length encoded and variabla lergtiv code, The quipuls of the encending circults 2282eare mwiliolesed by 4 (nullolexing circuit 234. An ening oicait 234 by vaing the encryption key oulpurtad from the encryption key onaput circull P36in acooidance witir the encrypition tecbonque of the DES slanimad osructibed above
[0056] The inulliplowing circult 240 multiplexes the output of the encoxing cicuit 226 and the output of the encryplion circuit 286 and the outpul therect is oufputted to the transmiesion line by the culput unit 242
[0057] in the decoding apperalus shown in Fay 10, 5. The furamiarion data inpuf urill zo recelves the transmission data from the lransinision line and applissit to fie seperation curcull 252 . Tho separafion orbull $25{ }^{2}$ separates it into a portion rolated fo the enended date of the it signel and a portion ielatiad to the cther LIf 0. HL and HH slgoels, and applies The tormer to vie xie. ooding circul 254 and the lalter to the decryption circuit 256. The decrypion creat 256 decrypes the encoded aata of the th, Hi and HiH egnatia by using the encryption key signal outpuntod from ihe encryglian Key rulpul dircult 258 in arder to carresly decrypt it the encryption key should be earn as that usod for encoding the enDyption Key aignal.
 put of this decryption arcuit 256 to the ancoded daia of the LH signal, the sncoded data of the thl aignal and ine encoded data of the $\mathrm{H} H$ aignal, which bre applled to the dscoding circtils 262; 264 and 256, respectivaly.
[D059] The decoding oircuite 254, 262, 264 and 256 dewode the encoded data inputted thereto, rerpectively कr The outpur of the decoding circuat 254 is the Lh signol. Tho SD O/A carversion circult 268 panverts the oulpul of the decading cicuitersat to an analogngnal. The outooll of the SO DIA conversion ciccult 260 is ani analog vidno signal naving the number of scen lines of 5P5 and The frame froovercy of 30 Fzand if can be diaplayed as animage by animuge oipiay dsyce of the ordinaryresolgtery
[0060] The reprodiced LL signal and Lil signas are combined ar the verical Nequency by the band synthestzation fifers 270 ana 272 and the number of pirefs in the verticai purection s intorpolated io iwa unes. Sitnilatly the roproducad HiLsigral and H Hegignal are syntheized ef the verival lrequancy by the band synthear zitun filters 'chal and 276 and the rumber of pixeld in 00 The vertical direction is inferpotated to two tumes. Die bynthesized signele are comskned at the horizontal trequency by the band ayntriesization filtare 276 and 286 and tho numbor of saxole io the lyrizontat difection is intamolated to wo femes:
is [0061] By Mose symberizalion processea, the digtal nigh resalution videa signal having the number of scat! ine of 1 , cso and the frame trequoncy of 30 Hz is raproducen. The HD D/A zonwerrion gucuit 282 converts
the reproducad oigitas HD signai io an anaiog signal （0002）In ins docoding epparafus shown in Fig． 10 ．in the तe hey state，The decrypion sipull 256 outpuite a gutb unslabte data pattem ato that the putpot of the HD D／A ocrivarsan circuit 2 PR is aisa unstahe ànd an un－ studle gattern mich as a nolse imagets oisplayed on the screen of the display davice such Es CRT
［0053］Allarnatively the inrage of the iow rosolution or a sall imuge may be etspilaynd on the high yegclution menitor scroen in the no koystate．Fge 12 and 13 show portione of btock diegrams of such modified desoding apparatus The fe elements to those of fig． 10 erectes： ignated by the like numarele
 converting the mulpul of the decoding cireu） 254 la the HD signal and a selection switoh for solecting the oulgul of the SD／AC ponveraton alcoun 284 or the symthesized oumput by the band symbesizetion fifers 278 and g80 and supplying it to the jeD D／A conversion Groult 282 are pravided The SDHD maversibn circuil 2SS Eiden－ lical to the SOAHD canverrion circuht 54 of Fig， 6 ．The switch 296 is normially connncted ta syntivezied dutput of the band syothesizaton fifters atits and 200，and wien no liey state is dovecied by the doctyotion sitealt．it is switched to the oujput of the SDAD converston olfouit 28d by the delection putpol．Thus，in the na key tlate， the image can bu displayed by tha high resalation mon－ ifor attroughtrie quafity of the image is not anffiotent for the high readution monitoe
［0065］When the anctypion koy bianal may not be in－ putied to the decryption circuil 256^{2} ， 4 may be pogsible that the culpal of the encryplion key outpul circuat－25 in forcibly stopped of the encryption key ousput direat 258 inselt ts not preasent．
［0066］For the contigurationshownin Figi i2；ithenigh trequency dala of the bond syofifescration liltors 27C－2eB may be veset by the detactan aulpul ot the de－ cryption circuit $256{ }^{2}$ to atulif the same effect
［0057］in Fig．43，a switch 282 is provigea berween the symibesized oulput by the band bynthesitation filters 278 and 280 and the $40 \mathrm{D} / \mathrm{A}$ conyerkion slecull 26230 That in the no Nay stale，a predelernsined level is inpulted io the HD D／A canversion crail 282 The switch 28 a nommally selecta the syntressized oulpaft by the band symhesization fiteri 278 and 280 ，and when the no key state in devecsed by the decryption elrcun 256 ，it is switched to the predetermined level input oy the desec－ lion outpul ti this matries，when the correat encryplion Key is present，the high resclutian viden signal is put－ putted Bul in the nc key stala，the predeterminerd level signal is outputted and the mage porresponding to the predetarmined level te diaplayed on tie monitor screen． ［006日］When the encryption key signal in nem inputied （o the decryption orcuit 256 ，it may be poeziole that tho oulput of the encryption key output eiteuit le forcibly stopped of the enoryplion key output gircuit 25 E ltselt in not present．
［0089］For the canfiguration shown in Fig．13，the
ewiton 268 may not be provided and lies outent of the HD D／A conversiof brcull 282 miry be lorosed to a corr－ stant level（lorenemple，zzia oulpul）in acpordance with The detection authul ot theno Rey state by the derayplon orenif 44
［0070］In Figs 12 and Fr，the nolvaystate is datectiod by the decryption circult 25／6 alhougtili may be detected
by an error defenon code or error cartectlart process
［0071］Embptiments of the ancoding dimail and the decooing cirbilt lisnd in the rearpective embadiments are now explained．
［0072］P9．idstiowe 3 block diagram of a spocilio om－ bodiment of the encoding circult．
［0073）The encoding oircult shown in Fig 14 camphis－ 6 es a blocking circali 301，a DCT sirallaOE，a quantín． Hon circul 303，a Variable lenglh encoding ciroull（VLC） 304，a molian compensation írcuit 305 ，I motion vecior detertion circuit 306，a rate control olrcait 307，a local deccoing circuil 300 and a buifer memory 309
［0074］in Fib．14，mege Uate in tee encoded i\＆ groyped inte \＆e a pisel blacks by the thock loming eir－ cuit 301 and they are supplied to the DCT（discrole pe－ sine tranaiorm）circult 302 through the switoh 310.
［0075］The wintetizios patiodically（for example，for warh irams or every voversl liedds）switched io s trani－ nal a lo prayent erraneous propagation
［0076］Samaly when ll is cunnecied lo the terminal es antinta－trame of intra－led enconang（inter mode）es con－ iducted．
－［0077］In the inika mode，if if DCT－stansformod by the DGT dicull 302 and the realing DCT quelfcient is quarilized by the quanlizatan circuit 303 and forth $=$ en－ coded by the varmble ingith encolling cirtitt． 904 and temporanty swred in the butfer 309.
$2[0078]$ Onthe otha hand．in other than the intramode． tho switah 310 is connected to a vorminal b io conduct the mation csinpentented predediow enesoing．
100791 Numerals 311 and 312 denote a de－quantiza－ son ctrcull and a de－DCT picut whioh oonslitute the lo－ cal decooing circuit 308 ．The date quantized by the quanization clrcuit 309 is restored to the original image data by the local deocding circuit 306 ，
［0000］Numeral 313 demotes an adder，numeral 35π derieles a swilin which la clowed in other than the inura modes，and numeral 316 denotes a subtracior．
［000t］The locally tecoded image cata retersthemo． Sion vector detected by the mation vector defection oif－ cuit $\$ 00$ so ouiput the corresponding block of the prode－ fermined Irume（preceding Irame suceaeding frame of 0 inferpolaled lfame）．
［OOR2］The outpul al the mallan comperisation dircuil 305 is sublracted by the impul image data by the sub－ lractor 316 tó produce a olfterence
［0083］The difterence in ancoded by the DGT Eicull 5392 the quantization sircuit 200 and tho vartable lengit ancarding circult 304 and it is stored in the bulfer 309. ［00184］The molion vector detecilon circiat 306 com pares the llame diata to be ancoded with the predeter：
mined relerence lisme dala la produce the molian vector, and the oufpul at the motlon vector detsatish circill 301 is supplied to the molion coimpenention cifuil 305 to specify the block 10 be outpitted by the motion comp. pensation circult 505.
[0085] The fate contral circul 307 eqmrois the quan. Uy of encoding by swnfching the quantization step et the quenilizalion Dircuit 303 in accordanoe with an nceupalion rate of the encoded data in the buther 309
[00ad] Finaity, the malion vector data detecled by the motion vector detection circuit 306, an encading identification code for identifying the intes mode and quanile zation stop data indicating the quantization stop aro added by un adding crcuit 3it and it is outputisd as the encoded data
[0087] Fin 15 showe a उpocufic block deagram of the decoding previt.
[DOSGI] The decooing circuil basically operztes in the reverse manner to the encoding circuit showo in Fig. 14, [0089] The decodiog sfraut ghown in Fig 15 cemprites urijopul buller memary 401 , a variable length decoding circuil a02, a de-quantizalion circuift 423, a de-LCTT cirail 424, a motion compensation circult 405 and an Qutput butter inemory 406,
[0090] The encoded dafe sequentially read from the input buffer mempry 401 is processed by the vatiable lengtil decoding cicuit 40a, the de-quantization circull 403 and the de-DGT circant 404 and converled ta the sprice areal data.
L00911 The quamization step of the dequantization circult 403 le determined by the quantization step dave Wheh is transmitted along with bie errcoded taia
[0092] Numeral 407 denoten an adder tor adding the oufpul of the de-DCT sircuil 404 to the difierence bulputted from the mobion compensation circuil 4,35 bind mameral 40 D denotes a switch for selecting ine outpur of the do-DCT circuit 404 or the ouiput of tha addar 407 .
(00013) The swith 403 e connected ta the tarminal a In the intra mode by ine encoding idenblicaliay oode delecled by the data deteciion cirovit nal shown, and connecead lo the tominal is in othe made.
[D094] The decoded data is lemporarlly stared in the output buffer mernary 406 and restored to the onginal space arrangemant and outputed as one-frame or oneloold imago dista.
[0095] As will be readily undersiond flom the stove diseerpifion, in acoordaricu wilh the present errbadfment/ Hie high regoibilan videc signal is nol repraduced tor thone who do not nave the encryption key and Ce reproductian of only the sow resolution video signal is perminted. The charges to the users may be discriminatad between the diapiny device of the low reacluthon and Hiedisplay device of the tigh resalullon of he same corl. lent.
[0096] The preaentinventian may be implemented it ather yurious lartem
[0097] Fon exempits, whele the image sygnal ia divited Inta taur fraquency bands in the second umbociment

The present invenfion ia nol limited thereto.
[D098] In athe word the foregoing description or the embodiments has been given for itbustrative purpopconilyand not to be conssrued as imposing limitation fir every
(0099) The scope et the invertion in, theietore to his determined solely by the tallawirg daims and not imited by the loal at the sipectication and afterations mada within the scope equivalent to tio scope of the cinims fall wamin we scope of the invantion.

Claima

1. An image processing appratu $\%$ comprising
a) input means lor inputing an Image signal (210);
b) separation mears (2140 0 224) tor sepshating said image signal into a low frequency compo. nent and a righ trikuency component in wach of honzontal and vertical directione and for producing apatial tequenoy binds (LL. LH, ItL. HH) from ssid imuge signal.
e) encoding means (226 to '232) for hightelldency encoding Uhe spattal tiequency banith (UH, HL, HH) inclading a highest frequericy cumponeit and far figte-eficiency encoding tre spatal frequency band (LL) includingis. low. est trequancy component: and
d) enorypion means (236) for encryping anly The encoded spalial frequency hands incliding the highest trequency componint ising an en myption key in accordance with a predesarmined ancryption algorithm.
2. An spbiratus acozodirg lo claifr l. whersin said separalion means is cperable ta produce a firaispatralfrequency band (LL) including the low freruency component of the horizental direction and the Now Ifequenty ommponent of the vertical direction a sscond spatial fraquency band (UH) Including the low trequancy component of the honzontal drection and the high frequency compenent of the waruical tilerilon, a third epatialfrequency band (H) incurdIng the high ltequency component of the homantal difaction and the law fremuenty oomponent of the vertical direction, and a fourth spattal frequervcy Dand (H H) sricluding the high frequancy commonent of the horizontal drection and the high trequency componant of the wertical direction:
3. An apparalus accarding ia dairn I os 2, wherein seid eriooding means is operabis to encode the qipallal freabency fanda using variable lenglth ensadera
4. An ipparatusnccording to any of daima 1 ios, fun-
ther compraing
mulliplesing meang (234) for multiplowing the scatíl frequenicy bands la be encrypled, and whereln soidt encryption means is aparable to sncrypt an oulputol said mutiplexingmeans.
5. An apparalus according io any ol ofasne 1 fo4, lurther compriting 3econd mulliplexing meane (2A0) for multsplexing the encoded spitial frequency trands encrypted by said erteryplian mests and the encoded spatial trequency bend not encrypted by said encryption means.
6. Ser image proceating agparalus comprisen:
a) input means (250) for inoutting apaftal trequency bands ($\mathrm{LH}, \mathrm{HL}, \mathrm{HH}$) including a highes trequency component and spatial frequency band (LLA) including a lowest frequency component, the spabal frequency bands incloding the higheat trequeroy componeri are enerypted,
b) decryplon moane (256 or 256) Ibr decrypting the spatial frequency banda inctuing the highest requency component using a decryp. sor key in accordance with a predetermined decryption akporithm, and
d) tecoding meang (254 to 266) for decoulng the decrypted spatial inaquency bands including the highest trequency oomponent and for devoding the spatial frequency band incluong the towest frequency component
7. An apparatus according io claime $\overline{6}$, wherein sard in. pul means imputs a first spalial Irequericy band (LL) inciuding the lav trequency component al the trail zontal direction and the low frequency component: of the vertical direction. a second spatial frequency band ($L H$) induoing the law frequancy comoonent it The hotizontai direation and the high lrequency coroponent in the vertipal direction, a third spatial trequency band (HL) including the figh fraquency pormpanent of the horizontal direction and the low ifequency cormponers of the vertical direction and a fourth spatial frequency band (HH) inclooing the isigh frequency component of the horizontal dreclion and the high frequerscy component in the verical direction.
B. An apparatus accorming to any of claine \& and 7. furduen comprisingi
ayntresizngmeans (270 to 280) for aynthesizing the decrypted spatial frequancy bands with - other spatial frequency tands
 Iher dofnarising demuitipiexing mearts (260) tor de-
mojtelaning the dexryptedspatial Jrequancy bandh, and seid decoding means s operable to decade an oulpul of sald demuluplexing mears.
8. A mwthod as claimed in any of diams is and 14 wherein aaid errooding step encode the spatial freguency bands using variable longth encodars
(6. A rnathod as claimed if any of otumg 15io 15, forthef cumarizing
a nuatiplexing step of imultiplaxing vie spatial frequency bands to be encrypted, and wharein sajd emcryplon step everyplh an quioul of said inutfipleving step:
9. A methad su phifrued in any of sfalms 13 to 16 , turIhet oomprising a second mulfiplaxong step of mulfiplexing the ancoded apatat frequency bands enerypted by suid enorptian step and the encoded phabial lrequency band for enerypled by said encryption step.
10. An image processing method compriaing:
a) an input siep inpuiting spatial theguenay burds (LH , HL +H) Inclusing a bighest frequency component and spatisl frequency bandt (LL) including a lowest frequency component. the spatial frequerncy bancas including evs tout. est (requonoy component are ancrypigd;
b) a decryption sttp of decrypting the opalial irequancy bandis inoludingthe highees frequency component using a dectyption key in accordance with a predetermined decryption algofithm: and
c) a deciding step of decoding the decrypled spallal Jrequency bands including the habest bequency component and of desoding the spi Mis Frequency band including the lowest trequency component.
11. A Prothed as elalmen in bian is, whereinsaid inpul step inputs a first spattal frequency band (1.) insuding the low frequency camporent of the horizontal direcifon and the low frequency pomponent of the vertical direction. E second spatal Irequanicy bend (LH) including tha low frequency corpononi of the hotizontal difeetion and the high frequancy component of the verifal devection, a third spetial Itequency band ($H \in$) including the high Iresulency component of the frorizontal direction and the low frequency componant of the vertical direction and al fourth spitial frequency bind (HH) incluaing the Wigh Irequency component of the horizanital direetion and the ifigl frequency component of the verfímil dinoction
12. A metriod as claimed in any of olains 16 and 19. further comonaing:

A syntheazing siap of gynikerizing the docrypt-

Id peatisil froquency tand with other spalisi frequency tands:
21. A mathod as risimed ift any of claima id to 20 , further compriting a demultiplexing step of demwillplexing the decrypted spabal froquency bande, and said decoding means is operable to decode an autPuit of said demultiplering means
22. A mathod áa claimad in any of claime 18 to $\% 1$, wheren said deconingmearnsig aperable to decode the spatial frequancy bands using variable lengis dycoders
23. A msinod as ctaimed in any ol chams is to za, 位e then compiaing an intibiting steo of inhibiting an putpui of lava decryption steo when saud dect yplian step cannot decrypt the enorypied spelal fiequency band
24. A method as claimed in any of cialims $\overline{f 8}$ to 23 , torthar compitire a steg of produoing a prodetotminea signailn liev ol the encryptedspuifal frequency oand wher sald decryplion step cambial recrypl the encryted apalial trequency band.

Patentanapruche

1. Vorrichtong rur Eldveratbeliung: mil
a) ainem Eingnbemitiol 201 Eingeber तines Bictaignals (210);
b) ainen Tranmitret (214 bia 324) zum Trannen des Blojaignals in obne niederficquente Komponembe und tet eine buchiraquente Kornpoctenve zowbht in Harizontai- ale such in Ven: TiKaifichturig, um aus gem Eilosignal ain Ortsirequenzband (LL $(\mathrm{H}, \mathrm{HL}, \mathrm{HH})$ zu etzeugen.: c) Einem Codierniftel (226 bis 232) zum hods efiiziantan Codieren der eine Hachatirequantzkemuonente arthaltenden Ditstrequenzbändon ($\mathrm{LH}, \mathrm{HL}, \mathrm{HH}$) und das eine Niedilgstiequanzhomponerte entnallenden Ortsfrequertabandes (LL); und mit
d) einem Verschiussefurigsrnittel (236) дum VerschiÜspeln nur der dia Höchstrequermhamponerte entitsitanden codienien Ortsifegianzbinder unter. Verwentung eines Schibsaels gemaid einem vorbastimimten Verschiüseelunger algorithrmuz
2. Vorrichtung nach Anspruch 1, beider das Tenmmiltel betriobrbereil ist zum Ereugen eines ersten Onsícquenzkandes ($L L$) mill der Niederfrequen2kormonente der Harizontatrichtung unter der Niedefrequerrizhamponunte dax Verilkafichtung, ofress zweiton Ortatrequenamandes ($(-M)$ milt dat Nis-
dertrequanzkomponanto fier Harzontaifichtung und der Hachtrequerizhumponerde der Vernialichling, enes driten Citsitequenzbandea (H L) mit der Ilochtrequenzkomponante der Horizontairichsuing und des Niederfrequenzkompanente det Vertikatfiomung. und zumt Erzeuger eines vierten Greflequilisboundes (HH) mit der Hochfrequenzkomponerile der Horizentalichtuing unid de Poctirequanzkopmamic der Vertikatiohtuing.
3. Vornchuing nach Anspruch i oder 2 oen der das Coapormittel betriabsbereit ist, vie Ortalraquenxbänder unter Verwendisigeines lingenvariabelcodiemenden Codierers zu cudieren:
4. Vorientung nach einam dar Änsprivene ; ble 3, die des wefleren auggestattet ist mif:
 dar zu-verschlússeinden Ortsfrequenzbainder,
wober clas Veruchifisaelungsmmel beskebs: beren tst ain Ausgangrsipnal des Multiptaxmittaid su vorschlomaln.
5. Vorrichlarig nach einem det Arrprüche of bis x, die ded weinmon Ober ein zweltes Multplexminel (240) vertogn. um die wom Verachibssejungsmutel yacBohlOntelten goosstar Orisfequergbandon und das niait vam Mersctlyusselungernithal serschilossello codierie Ortstrequamathand zu mathiplesienern
6. Vorrichturig zur Eldverarbaitung: mit:
v) Sinum Engabenittel (25) sur Eingabe von OAdsfrequenzbandem ($L H, H L, H H$) mil ainer Rächsitrequentkamponente und simum Drte tregienzband (LL) mit einer Niledrigatreguenz. Komponente: wobai die die Höonstliequanzkomponente artheffenden Orisfequencban. (de versohloagelf sind
b) annem Verschlüstelongarmittel /256 oder 2s') zum Verschlikselh tier Coftirequanatin! ter, die die Hōchstrequanzkomponente ent: hailen, unter Verwandung aines Schiorsels gemâß cinem vorbestimmien Verschauseungz afgorthmus; and mil
c) Elnern Sudiarmittal (25A big 268) 2um Decpdieren der verschlussedert Ortifreguenzbâ̈. der; die die Hochstriequenazomponente ent, ILatten, und zum Decodieren des Ortatrequenzbandes, das dia Niearigstrocuertilampunente enthail:
7. Vorflcblung nach Anspruch E, bel der das Elngabemillel sin ermes Ortstequenzhand $x[4$) des die Niederfrequenzwomporieve der Horizontalrishtung Ind tie Niedertequenzkomporiente der Vor0kal-
richtung apthalt, an zweites Ortshtequeriztand ($\mathrm{L}-1)_{\text {) }}$, tas die Niedertroquenzkomporiertle in Horizomblichling und die Hochffequenzkompontente in Vertikaitichturg enthäl, ein dittes Ortstequanzf band (HL), deq wle Hachfraquenzkanmenanie de! Horizontaicichlung una die Viederirsquerzhampeosnte der Verilkalrichtuing milhair, und ein vientes Orisfequenzband ($\mathrm{H} \mathrm{f}-\mathrm{H}$) eingibt: dae oe Hocnflequenakomponente der Honzonialrichtung und dee Hochirequenzizomponente der Vortikaltichturig ontnalt.
B. Vaprichtung néch einem der der Mnapructe 60 ote B $_{1}$ difo des wailern aurgestallet lat mit:
8. Vorrichtung rach बinem der Ansprühe G bles 9; bal der das Decodernitfel' 'betrietbatureit ist, die CirlsIrequerzbander unter Narwandung vor langenvarinbel dicodierenden Decodierern züdecoderen.
9. Vorriohtung nach einam der Angriuthe 5 bjet 10 , die des weitwan über an Spermititel (286) verfugt, das betriebsterail ist zurn Sperres eines Ausgungasfgnals yom Entachlüesalungumithel, wenn das Entgohfusbelhinguritiel das verschlosselfe ortalfequenzoand nicht entschtozseln kann
10. Vorfichtryg nacin anern do Anspruche 8 b/s 11 ,mil \#inem welisren Miftel (280) zum Erzeugan eines voibettimmien Bithits ansteile des verachluzatl ien Ortafterumzbandes, wurin das Verschasseiungemitts das verschlueselte Ortsirequenzband richt entachlussain kann.
11. Verfahreti zur Bildverarbetiung| mit den Veriahvantsobvithent
a) Eligeben etrea Brasignats (210):
b) Trennen des Eidsignals in eine Niededre. quensompormento und eine Hochltequenzhorqnonente jeweils in Horizontar-und Vorikal richtong und Erzmugen van Orssirbqiemzpan $\operatorname{sim}(\mathrm{LL}, \mathrm{H}, \mathrm{H}, \mathrm{L}, \mathrm{HH})$ aus dem Bldaighat!
a) hocneffizientes. Codieren der Ortsfrequenz. bander ($\mathrm{H}, \mathrm{HL}, \mathrm{HH}$), die eine Höchstirequenzkomponente erthalten. unt des Orkshequent-

Gandes（LL），das eine kliedrigiffequenkom－ ponenté enthàlt，und
d）Verachfisaeln nit der codiertian Oftite－ quenzbander，die die Hochsttrequenzsompo－ nente enthaiten，unter Verwenduing elres． Schlussais gamair cinem voroestimmiven Yor－ schlugselungealgorit／imus．

14．Vertahran nach Anspruch 13，bei dem der Vurfah－ rensschritt des Trennens ein erstes Ortsifequenz－ band（LL），das die Niederfrequenzkamponeme dor Warizantaltichtung und die Niederfrequenzivampo－ nenle der Verikatichtung enthult sin zwelles Orks－ Trequanzand（ LH ），das dies Nienderfequenzkampo－ nente ger Horizontaifichtung und die Hochffe－ quenzkomponante der Vartxalrichtung enthait，eni drimes Ortsfrequenzband（ H ），das die Hochlie－ quasnzikomponento dor Horizontalrichtung und dte N｜aderfrequenzV／omponiente set Vertikalrichlung entrill，und ein vierfes Ortsfroquenzbind (HH) er－ zeigl das al Hochitrequenzsomponeate der Horl zontalfichtung und die Hoonfrequenzkomponente der Verikairichtung enthält

15．Verfahren nach ginem der Anipristve is und 1A， Ve dem des Vertahrensschyit des Codlerenis diw Ortatequenzbander unter Verwendung elives Lin－ genvariabel codiarpnden Godiargre codient．

15．Verfabren nach enern dar Arspriche ia bis is；mit deri westeren Vorfiahrentaschritten

Mulfickiaren der au verschlanselinden Orte－ fraquensbënder und
wobel dif Verfalrensochrith des Verochlue－ 6etras em beim Mulfiplexieren abgegebenes Signal yerschlusselt

17，Verfalven tach einam der frispuoche 13 bis 16 ，Till dem weiferen Verfarmenssichith elnes zwelen MUI－ lipleniergns dierim Verfahrenesctint den Versalflie－ itins verachitusseiten codierten Ortafrèquanzban－ －der uno dem im Vertahrenesconat des Versichla－ tains nioht verezhlussalten codiotten Oraitrequenz－ tant．

18．Verfahren zut Eildyerarbetuing，mit don Vedahvens． sefitten：
a）Eingaben vor cina Höchstiraquenzkompo－ nante erthaltende Ortsfequenzbandern（ LH ， HL，F（H）und van einemeine Njedrigettrequans－ homponente entralienden Crisfeguenzband （LL），wabe die zile Hochstrequienzkamponen－ te enthattence Ortstrequenzbander veruchioss－ sulf sind：
b）Entschlusseln der Ortsirequenzhander，die
die tedchstitequanzkomponente enthallen，un－ ler Verwercluing aines Schilaeasts gemas el－ nem vorbesfimmen Entichiusselingmalgorith－ mus：and
c）Decodieran dar diб Höchsifequinzhompo－ nente anthaliondent verselvuagelien Oiteste quantbinder und tes dia Niadrigsifrequent： Kamponente enthatlencten Oratrequenzban：－ des

19．Variahran nach Anspuch IB，bel den der Verlah－ rensphvit des Engeberv folgande Engiben lim－ laßll ellersies Ortsfrequenzband（LL），das dle Nio－ derfequenziompanente der Horizontalinctitiong und die Niledertiequenzkomponante der Yartikal－ richtuing anthatt，ein zwoitas Ortsfequenzband （LH），das die Niedarfequenzhomponerfe der Hev－ zontalichtung und die Hochifequerizhemponenie det Verihatrichtung emtitil，ein dnttes Ortaine queriztrand（HL），das die Hochtrequenzkompomen－ te der Vartiailichtung und die Niederfrequenzkom： ponente der Vertikalrichturgg enthält，und ain viertes Orsstrequmpashd $X H H Y$ ，das de Hoclifrequanz－ Kapmponente der Horizontaltichfing und dis Hoch－ IVeqvenalamponente der Vertiksifichtung enthatf．

20．Veitanven riach Enem der Ansprobohe 18 und 19， mit dem Weitaran Varfahrensschritt：

> Synlyetipieren der antachlüssellan Ortstre－ quanabander mit anderan Ortirisquentiank－ dern：

21．Vortahren rach einem des Anspruche 18 big 20，mu den wsileren Verlahrensschnti des Dernulipexie－ rena der untichlüsalien Ortafrequanzbärider wo－ ben das Décodiermittel betriebebereil ist，das Mas－ gangssignal yorn Demultiplexer zu decodiaren．

22．Verlalitinn nach einerf det Araproche 18 big 27，bel derf dus Decodjermittel beiriehsbereit ist，die Orte－ frequenzbänder mif längenvariabol dncodierenden Cudiererh EL decadisen．

23．Vorfahron rach einern der Antprocho 18 bie ≥ 2 ，mit dorn weieien Verfahrensachnit des Sperters eines beim Enlschlusseln ausgegebenen Signala，wern der Verfahrensschritt des Entachiünselns das ver－ kchituseste Ortatrequenzand nicht entocritueselr kaグก．

24．Vertahren nach ofiven dor Ansprocho 18 bar 2S，mit dert weileren Verfahrenachritt dis Erztugent et－ nes yorbestímimen Signails anstalle des vereanilas sallen Oifstrequenzbancies，wenn dier Verfahrons schritt des Entschlussetns das Vienthinsselfe Orts． fresuenzbana ficht entechiossein kannr．

Revendicatione

1. Appatel da fraithment dimage, comprenum:
a) in moyen dantroe pour introdution d'un sigrat (210) dimage ;
D) un moyen (214 2 224) de sepaislian pour soparer ledjt signal dilmage an une composanfe based fiequencs st ume composumte raute Irépuerce dans chacune devirections honizonifle ef vertíale el poul produire des bances (U2, $\mathrm{HH}, \mathrm{Hi}, \mathrm{HH})$ de tréqiaence spalale á partir thidit signal drimage
d) un moyen (226 a 23z) der coidage poir un ooderes de grande etficache des bandes (Lht f(L.H(H) de feequence soatalo comportant une campoaanile de tréquence supétieure el pour un codegie de grande efficarite de la bande (LL) de fréquence spatiale comporiant unn pemposante de frhquance inférieure; el
d) an moyan (236) de cryptage pour cryptes uniquement les bander codées de fréquence spaFiale camporlant la campossante de inforvonce superisure en utilisant une dé de uryplage en thatcion doun algonttime prédétermind de pyptoge
2. Aoparail selon ha reveropication 1. dans lequel ledit mayan de aéperation pant Janationner pour produl. re une premiere bende (LL) de tréquenco spatibia oomporant la composante basse tréquence de la direction horizontale et le composante basse fisquenca de la direction vertica/e, una deukieme bando (LII) de Féquence spatiele comportant la composante basop teéquenoe dela direcsloo herizontio et la composame haule trequence de u dirncilon verticate, unie truislemia bande (H H) de fréquence spatiale campartant is cormposante haule frequense defla tirestion honzontale el la composante basse itéquence de la direction venticale, et une quatheme banda (BH) do fréquences spatile comportant la comocasitte hauto frequence de la difection hotizentale atla composante haute fiéquence do fa direction vartíaile.
3. Appareil setion la revandication 1 ou 2 , chans lequel lesit moyen de codgge peut fonctionner pour coder les bandes de trequenco spatiale er ulifant dos cedepurs de longueut vatiable.
4. Appareilselan runa zueleonque destevendicaitops tis3, compenant en butre:
un moyen (334) de maltiplexage pour muitsBlexaries bandes de fráquence spatiale e rrypler,
el dans lequel letill moyen de cryptage pous lanctionner peur arypior une sotee duditmoyen
5. Aopareilseton iune queitonavo des revendicalians
6. Apparailselorl'utie quefcontque des rivendeations Y í A, pamprensul sil aulre ul deudeme moyen (240) de mulliplesage pour mullipleyar les bandes sodetes ae trequence spatale crypleter per ferdil moyen de cryplage ef ia beride codée de réquence copatiaio nor cryptes par ledit moyen de cryptage.
7. Abparail de traiternent dinage, compradant:
a) ami moyen (250) a'entrée pour intraductian de bandes. $(\mathrm{CH} ; \mathrm{H}, \mathrm{L}, \mathrm{Hi} \mathrm{i})$ de fréquenice spaliale comportant une campotante de frequence supeneure at una bande (LL) de frequence apa: tiala comportant une composartie detrequanca Intérisures les bandes de ltéquence pqaitule compariant la compiosanle de téquence supelieure htant cryplees,
b) un moyen (256 ou 256) de décryptage poul decrypter les bandes de fiequenca spatiale comportant ific composante defréquence sups fíure on Mulieant une cld de dicryptage on fonction d'un algoditme predafarmine de decryplage, et
c) urmayer (254 a 266) de déojdage pourdeooder les bandes dikrigpiees de trequence spatiale comportant la composante de fréquen. ce supérieure et pour décoder la bande de tré quence spatiale comportant la cormposanto to féquence inténeure
8. Appareil jelón la revendicalion B. dana leaued ladil moyen d'entrese introduit une premiere bande (ct.) do fréquences spatiale comportant la composante basse froquende de la direction horizontale et in pomposante basse frequence de la direction votlelle, une deusieme bande (LH) de froquence spaNiale bompenant iq carsposante basse tréquertea tans le diretilon horizontale et la camposante naute lisqueme dans ia detetion verlicale, une rooisie me Dande ($\mathrm{H} L \mathrm{~L}$) de féquence spatiale comportant la composante hause tréquence do la diromion rio: tuzamale at la composanto biese liequeros der la areation serticale al une quatrieme bande (MH) de Ifequences to tiequence de la uirection farizontate et ta compoamito haute fieguence dars ia direction vervaales
9. Apparell selon Yune quekconqua dag revondicalions 6 at 7 , comprenant an outro:

In inayen (270 a 200) de synthese pow $3 y 7-$ Thetiser les bandes deoryplees de trequence spatiale avec d'aulnes bandes de trequence spaliale

Sä, comprenant en outre un moyen (260) de demulifiplexage pout devmatiploxer los bandes desrypldes de frequence spalsie, ef ladit moyon de décodage houvari forictionner pous deooder une soitie dodit moyen de defriulliplexage.
10. Apparal seion rune queiconquedes revencications © as 9, dans lequel ledir:moyen da décodege peut torgnonnier pour dácoder los bandes de tréquence spatísferen vilisant des decodours de longueur vamable
11. Xppareiselon Iune quetionque des reyenificalions B a 10 ,comprenant en outre un moyen (288) alinvalidation pouvant forvctonnar poun invaltder une artio dudit moyen de decryptaga forzuue ledit moyon de décryptage ne peta pas décryper in bande cryples de frequance spastule:
12. Apparcil selan liane quelconque des raverialcations E a 11 , comprenant en outre un mayen (2pg) pour produlire un algnal predeterminé aulieu de la bande Eyptio de trequence sphbale larique lediempyen de décryptage ne peut pas decrypler la bande crvpthe de fréquanca spallalit
12. Procedde de waltemant dimage, comprenant:
a) une etape U'antrés, d'istroductiond'unsignal (210) d̛image ;
b) une étape de séparatior, de séparation dual zgrai ditnage en une comporinte baeso itequence al une composante halute frequence dans chacuna de directions horizontole et verticale es de productlon de bandes (LL, UH, HL, (H7) de tréquence soeitale a partir dudil sgral dimane:
c) the etape de codinge, de codage de grandt efficacté dee bandes (나. HL. HH) de frequence apatiala comportanilune composanto de irequence auptrieure et de codage de grendo otWcacite ge ta bunde (LL) de tréquence spatale compurtant une camposante de lrequence interieure; et
d) Une etape de cryptage, de cryptage uniquament des bandes codtes de frequence spatate comportant la composante de frequenca supetleure en ubliant une de de cyptage en fonclion dưn algarithme prédéterminè de crypuge.
14. Prooddé selan la tevendodian 13, dans lequel tadite atape de sepagration produh une gremiere bans de (LL) de frequance spatiale oomportant le com. posame besse frequence de la direction bonizontale af la composante basso fráquence de itw direction vorticale. urre deuxierne boode (LH) de trosuence spatiale comportantia composante opsae frequen: pe de la diractian horizontale et la corrnocsanto heu-
te fréquances de lé direction venticale, une fraisieme bands (HL) de frdquence apottale camporiant ta composarte haute lréquenca de la firection harizumbere et il campisante basse féquenoe do in alrictian wericale, et une quatliame bande (till) de Etequence epraliale compormint a composante helit ifequerioe de fa direction honzontale at la com. posanta haute írquartos de la direcian verilicale.
15. Procid) getorl'unte quécanque des reyenticalionis 15 $\equiv 1$ 14, dans laquat ladite etape do podage cocte les bandes de tróquence spatiale en utilisant des. cocculs de fongueur variable
17. Proobdbwaion Jumsquelonnque des revend critians 13.4 16, comprenant en oitre uhe decritme etape ot mailiplexage de maltiplexage des bandes dodóes de fruquencé spatiala crypites pár lacile elepe de cryptage et de la barndo codée de frópuence gpatlaie nor crypté par cadje elape de cryplage:
16. Prooedé de traitemerit d'iriage, momprenart
a) une etapa clentree introduisant des bandes $(\mathrm{H}, \mathrm{HL}, \mathrm{HH})$ de fréquerice spatiale comporiant une composanto de fréquance superieuro et une oande (LL) deftbquence spatiale cormerlanila composanjle de ffequence intétrieure, les bandes de féqueroa spatiale comportant la composante de trequence superieune stant cryptes:
b) une d́tape de décryptage, de décryplage des bande de ltéquencer spatialo corpponant la composante de iréquence supérieure eff ulilisant unte dé de deoryptage en fonction diun algorithrre prêdútermine de décryplage; et e) une dtape de decadage, de debodage des bandex décryptées de fréquence spablale comportanitia composante de frequence superieu. re al de décodage de la bando de fíbquences spaliale comportant la compospania de frequerrce infétieure
19. Procede seion in revendication 18 , dars ieque liv(dite atape dentree intioduit une premlere bande (LS) de tróquanco ipatiale comportant la composartse besse frbquence de is direction horizontalo Et la compesanto basse fébquence do la dimotion verticale, une deuyiepre bande (H) de lréquence spaliale comporfantla campozarté basse frequent
ce de la dírection borizontale et la composante fravte tréquence de la direction verficale, une trotsiemie bande (H L) de fréquence spatiale comportent la composante haule fréquence de la direction horizontale et la composante basse ftéquence da la drection verticale et une quatrieme bande (HH) de ftéquence spatiale comportant la composantee haute fitupuence de la direction horizomale el ia somposanta halte frequence de la difection verticale.
20. Procedéselon/une quelonque des revendications 16 et 19 , comprenant en oulte:
une ėtape de synthèse, de synthése des bandes decryptees de frequence spatiale avec d'eutres bandes de fréquence spatiale.
21. Frocédé selon lune quelconque des revendications 18 à 29, comprenanl en outre une étape de démultiplexage, de demultiplexage dés bandes décryptetes de trequenca spatiale, et ledit moyen de decodage peut fonctionner pour décoder une sortie dudit moyen de démultiplexage-
22. Prockdéselon Pune queiconque des revendinations 1\& à21. dans lequel ladit moyen de decodage peut fonctionner pour décoder les bandes de fréquences spatiale en util)sant des decodeurs de longueur yaniable.
22. Procédéselan l'une quelconque desrevendications 18 à 22 . comprenant on outre une étape dinvalidation, dinvalidation dunes sortie de ladite étape de décryptage lorsque ladite êtape de décryptage ne peut pas décrypier la bande cryptée de fréquanca spatiale.
24. Procédéselon pune quelconque des revendications 18 à 23 , comprenant an gutre une étape de produc. tion d'un signal prédéterminé au lieu de la bande eryplêe de fréquence spatiale brsque ladite gtapet de detcryptage ne peut pas decrypler la bande cryp: tee de fréquence spatiale.

Exhibit 1010, Page 2365

DISH - Blue Spike-408
Exhibit 1010, Page 2366

FIG. 3

FIG. 4

FIG. 11

DISH - Blue Spike-408
Exhibit 1010, Page 2376

Buroau voor de
(II) 1005523
Industrilife Elgendom
Nedortana

$$
\text { (12) C OCTROOI }{ }^{20}
$$

(21) Aanvrage om octroal 1005523
(22) Ingediand: 13,03.97
(41) Ingaschreven:
15.09 .98
(47) Dagtekening:
15.09 .98
(45) Utyegeqven:
02.11-98 I.E. 9a/11
(51) In.Cl

H04K1/00, H04L9/00, H04B1/69, H04N7/167
(3) Oetrooihouder(5):

Technleche Universitelt Eindhoven to Elnathoven.
(22) Uitvinder(3):

Glak-Djan Khoo to Eindhoven
Robert Peter Christira Woltors to Monttort
Altons Willy Loo Janssen te Utrecht
(74) Gemachtigde:

Ir. Jul.H. Ven kan c.s. to $\$ 600$ AP Eindhoven.

Werkwize en communitatiesyaieem voor het in gedeeltellik gecodeondo vorm overdragen van informatiesignaien.
(57) Wenkwize en middeler voor her in sen communicatiesysteem overdragen van intormatiesignaten oncer toepassing van veilige coderingstechnieken, waartii een informatiesignaal wordt gespithst in een voor verwerking van hel signaat ralevant deet en een rastreet. Met releyante deel word in een veilig gecodeerde vorm en hat resiteet word in ongecodeerde vorm vía hel communicaviesysleem overgedragen. Na het decoderen daarvan wordl sen overgedragen relevant deel van een intomabeesigneal met esn bijbehorend overgedragen restdeel tot het oorsprankeljike intormatiesignaal gereconstrueard. Het te coderan reteyante deel van net informatiesignaal woral bij voonkeur onder toepassing van 'Code Division Multiple Access' (CDMA)-techniek gecodeerd overgedragen. Het communicatiesysteem kan een 'point-10-multipoint's signaaldistrbutienet omvatten, waarb $\overline{7}$ verschillende gabruikers golijktidig informatiesignaien kunnen antvangen on/ol verzenden, waaronder begre. pen Ben 'Community Antenna TeleVision' (CaTV)-nel en distributienettian voot elekinsche energie.

Korte anduiding: Werkwijze en communicatiesysteen voor het in gedeeltelijk gecodeerde vorm overdragen van informatiesignalen.

De uitvinding heeft betrekking op een werkwijze voor het in een communteatiesysteen overdragen van informatiesignalen onder toepassing van veilige coderingstechnieken.

Veilige overdracht van data is een belangrijk aspect bij comminicatie via een "point-to-multipoint"-signaaldjstributienet, waarbij verschillende gebruikers gelijktijdig informatiesignalen kunnen ontvangen en/of verzenden, zoals een "Community Antenna TeleVision" (CATV)net of distributienetten yoor elektrische energie, waaronder begrepen distributienetten voor elektrische tractie.

Een netwerkbeheerder dient in staat te zijn de toegang tot het net te controleven en dient verder te kunnen verzekeren dat overgedragen informatiesignalen alleen kunnen worden ontvangen door de geadresseerde. Met ontyangen wordt in dit verband bedoeld dat de geadresseerde de inhoud van de betreffende informatiesignalen tot zich kan nemen.

Voor het in een signaaldistributienet veilig overdragen van informatiesignalen zijn ten groot aantal coderingstechnieken bekend zoals bijvourbeeld de "Rivest, Shamir. Aldehman" (RSA) en "Data encryption Standard" (DES) encryptie-algoritmes waarbij met codeersleutels wordt gewerkt. Het over te dragen informatiesignaal wordt dan in zijn geheel gecodeerd en via het signaaldistributienet avergedragen, waarbij alleen de antvanger welke de voor het decoderen van het bericht benadigde sieutel kent, in staat is om de inhoud van het informatiesignaal tot z tch te nemen.

De mate van beveiliging hangt naast het gekozen codeeralgoritime aok af van de langte van de codeersleutel. In het bijzonder geldt dat bij relatief breedbandige informatiesignalen en bij relatief lange sodeer- en decodeersleutels, er een aanzienlijke hoeveeiheid tijd gamoeid kan zijn met bet overdragen van informatiesignalen. in veel praktische toepassingen is een extra vertragang bij de overdracht van signalen echter niet gewenst,

Aan de uitvinding ligt daarom in eerste instantie de opgave ten grondsTag een werkwijze aan te geven voor het in een
communicatiesysteem overdragen van Informatiesignalen onder toepassing van veilige coderingstechnieken met een gareduceerde invloed op de overdrachtssnelheid van informatiesignalen.

Volgens de uityinding wordt dit daardoor bereikt dat
een informatiesignaal wordt gesplitst in een voor verwerking van het signaal relevant deel en een restdeel, warbij het relevante deel in een veilig gecodeerde vorm en het restdeel in ongecodearde varm via het conmunicat iesysteem worden overgedragen en dat een overgedragen relevant deel van een-informatiesignaal wordt gedecodeerd en met een bijbehorend overgedragen restdeel tot het oorspronkelijke infarmatiesignaal wordt gereconstrueerd.

Aan de dityinding ligt het inzicht ten grondslag dat, door het van een over te dragen informatiesignaal afsplitsen van een voor de verwerking van het signaal relevant deel, het resterende gedeelte onbruikbaar is geworden. Onder een 'voor verwerking relevant deel' van het signaal worden in dit verband eén of meer delen van een signaal begrepen waarmee, bij het ontbreken hiervan, de informatie in het restdeel niet meer kan worden herkend dan wel dat door het ontbreken van het betreffende relevante deel of de relevante delen het signaal niot moer kan worden gereconstrueerd. Overeenkamstig de oplossing valgens de uityinding kan voor het veilig gecodeerd averdragen van informatiesignalen worden valstaan met het coderen van het betreffende relevante deel van het informatiesignad, waarbij het resterende gedeelte ongecodeerd kan worden overgedragen.

Door hat volgens een verdere uitvoeringsvorm van de sitvinding zodanig selecteren van het te coderen ralevante deel van een infornatiesignaal dat dit deel een relatief gering, bij voorkeur een zo gering mogel ijk deel van de bandbreedte van het informatiesignal in besiag neemt, kan ar voor worden gezorgd dat de door het codeer- en decodeerproces veroorzaakte vertragingen in de signaaloverdracht ainimaal 21 jn .

In bijyoorbeeld een gecodeerd digitaal videosignaal kunnen verschillende valden worden onderscheiden, bijvoorbeeld specifiek op de signaaloverdracht betrekkende hebbende velden waarmee, wanneer zij niet in het signaal aanwezig zijn; het onmogelijk is om de informatieinhoud van het digitale videosignaal tot zich te nemen. Voorbeelden van dergelijke velden zijn bijvoorbeeld synchronisatievelden of het FEL-veld
in een "Digital Video Broadcasting" (DVB)-videosignaal. Deze velden bestaan slechts een relatief gering aantal bits van het totale videosignaal. De werkwijze volgens de uitufiding is in wezen bij alle digitale dataoverdracht toepasbaar, ondat vrijwel elk data-overdrachtsprotocal bepaalde stuur-, controle- of anders gegevensvelden beztt welke ooodzakelijk zijn om het betreffende signaal te kunnen reconstrueren. De werkwijze volgens de uftvinding is ook toepasbaar bij de overdracht van analoge signalen, Waarbij in het algemeen ook door het afsplitsen van een relevant deel van het signaal het resterende deel onbruikbaar wordt.

In een commicatiesysteem dat yerschillende transmissiekanalen oevat worden in een voorkeursuitvoeringsvorm van de uitvinding de gecodeerde relevanta delen van informatiesignalen via een ander transmissiekanaal overgedragen dan de ongecodeerde restdeten. Hierdoor is het mogetijk om, in plaats van het afzonderlijk veilig coderen van de relevante delen, deze ook via een betreffend beveiligd transmissiekanaal over te dragen, zosls een transmissiekanaal waarop data middels de zogeheten "Code Division Multiple Access" (CDMA)-techniek gecodeerd worden overgedragen.

Het gebruik van COMA-technieken garandeert een lage kans op onderschepping, zonder dat de betraffende relevante delen van informatiesignalen afzonderlijk moeten worden gecodeerd.

Een derde welke een betreffend informatiesignaal wil onderscheppen, dient derhalve in staat tez zijn om het gecodeerde relevante deel te onderscheppen en het bijbehorende restdeel. Zelfs wanneer dit tot een resuitaat zou 11 jden, dient er ook nog kennis te bestaan oatrent de wijze warop de betreffende delen tot het ourspronkelijke informat iestgnaal moeten worden gecombineerd. Derhalve geniet het de voorkeur ou niet steeds eenzelfde relevant deel van een informatiesignaal of te splitsen en gecodeerd over te dragen maar, voor zover mogelijk, verschillende relevante signaaldelen te onderscheiden en van de over te dragen informatiesignalen afwisselend verschillende relevante delen te selectereni-

De uitvinding heeft tevens betrekking op een communicat iesysteem, omvattende codeermiddelen voor het in gecodeerde vorm veilig overdragen van informatiesignalen en decodeermiddelen voor het decoderen van overgedragen informatiesignalen, verder gekenmerkt door middelen voor het spititgen van een over te dragen informatiesignaal in

1005523

DISH - Blue Spike-408
Exhibit 1010, Page 2383
een voor venverking yan bet signaal relevant deel en een restdee), welke middelen werkzaam zijn gekoppeld mat de codeermiddelen voor het in veilig gecodeerde vorm overdragen van het relevante deel van een informatiesignaa) en met middelen voor het in ongecodeerde vorm overdragen van het restdeel. van een inforsatiesignaal, waarbijd de decodeermiddelen zijn inger icht voor het decoderen van een overgedragen releyant deel van een informatiesignaal en werizaam zijn gekoppeld met middelen voor het tot sen oorspronkelijk informatiesignal reconstrueren van een gedecodeerd relevant deel en een overgedragen bijbeborend restdeel.

In de voorkeursuitvoeringsvom van het communicatiesysteem volgens de uitvinding zi,jn de codeermiddelen ingericht voor het çDMAgecodeerd overdragen van de relevante delen van een informatiesignalen, De ultvinding heeft tevens betrakking op signaalspitsmiddelen en signalcombinatiemiddelen voor het respectievelijk splitsen en combineren van relevante delen en restdelen van een informatiesignaal, zoals boven beschreven.

De uftvinding wordt in het navolgende meer gedetailleerd beschreven en getoond in de bijgevoegde tekeningen, waarint
fig. 1 schematisch de werkwijze voigens de uitvinding illustreert;
fig. 2 een vereenvoudigd blakschema van een "Direct Sequencen CDMA (DS-COMA)-5ysteem toont;
fig. 3 een voorbeeldschena van een CATV-net toant, waarin de werkwijze volgens de uitvinding kan worden toegepast,
fig. 4 een vereenvoudigd blokschema van een eerste uitvoeringsyorm yan een communicat iesysteem volgens de uitvinding toont. en
fig. 5 gen vereenvoudigd bTokschema van een voorkeursuitvoeringsvorm van een communicatiesysteem volgens de uitvinding toont.

Fig. 1 illustreert, in de vorm van een stroamdiagram, de werkwijze volgens de uitvinding, waarbij door middel van pijlen de bewerkingsvolgorde is geillustreerd. Een informatiesignaal I wordt als eerste aan een splitsingsoperatie 2 onderworpen. Het informatlesignaal wordt hier gesplitst in een voor de signaalverwerking relevant deel 3 en een restdeel 4.

1005523

Het relevante deel kan uit èen of meer delen van het thformatiesignaal zijn opgebouwd, welke afzonderijijk of in conbinatie noodzakelijk zijn voor de verdere verwerking van het informatiesignaal, dat wil zeggen zodanig dat samen met het restdeel een brulkbaar
gedecodeerde relevante deel gecombineerd 9 , zodanig dat het aldus verkregen informatiesignaal 10 overeenkont met het oorspronkelijk overgedragen informatiesignaal 1.

Overeenkomstig de uitvinding kan het restdeel 4 in ongecodeerde vora Worden overgedragen ondat het informatiesignaal 1 zodanig is gesplitst, dat het restdeel 4 op zichzelf onbruikbaar is. Onder ongecodeerde overdracht 8 wordt bedoeld dat het restdeel 4 niet wordt begrepen aan een vorm van encryptie of codering van de informatie waarbij het betreffende restdeel zonder kennis omtrent codeer - en/of decodeersleutels niet kan worden verwerkt. Uiteraard kan het restdeel 4 wel volgens een bekend protocol of bekende modulatietechntek worden overgedragen.

In plaats van het-afzonderlijk coderen van releyante delen 3, kunnen de codeer-, overdracht- en decodeeroperaties 5,6 en 7 Worden uitgevoerd door het transmissiemedium waanover het relevante deel 3 wordt overgedragen. Dit is in het bijzonder van voordeal in een communicatiesysteem met verschillende transmissiakanalen, waarbij het relevante deel 3 van een informatiesignaal via een Veilig gecodeerd transmissiekanal wordt overgedragen en het restdeel 4 via een nietbeveiligd kanaal kan worden verzonden. In een voorkeursuitvoeringsvorm van de uftvinding wordt het relevante deel a overgedragen onder toepassing van de zogeheten "Code Qivision Multiple Access" (CDMA)-techniek.

CDMA of "Spread Spectrum" (SS) is een transmisstetechniek waarbij de databits van een over to dragen digitad signaal in een aantal elementen of chtps worden gecodeerd, zodanig das elk databit als een reeks van symbolen wordt overgedragen. Deze symbolen kunnen op zichzelf de logische waarde " 1 " of " 0 " aannemen of in het ritme van de betreffende reeks overgedragen frequentievariaties. In het eerste geval spreakt van "Direct Sequence CDMA" (DS-CDMA) en in het tweede geval van "Frequency Hopping CDMAn (FH-COMA). In beide gevallen kan het overgedragen signaal weer warden gereconstrueerd indien de volgorde van de overgedragen chips of de frequenties bij de ontvanger bekend zijn. Afhankelijk van de omvang vafi de reeks, dat wil zeggen het aantal symbolen warin het overgedragen bit wordt gecodeerd, $21, j n$ een veelvoud van onafhankelijke codes beschikbaar waardoor gelijktijdig yerschillende gebruikers van eenzel fde transmissiekanaal gebruik kunnen maken. Alleen de gebruiker ret de juiste code is in staat on de met deze code overgedragen databits te ontvangen-

1005523

Bnscera em -incerchil.

Figuur 2 toont een vereenvoudigd blokschema van een DS-COMA systeem met een transmissiekanaal 11 , een zender 12 en een ontvanger 13. Ket kanaal 11 kan een draadgebonden, optisch of draadloos communicatiekanaal zijn waaronder begrepen gen radfokanal, een infrarood- Kanaal en een ultrasoon-transmissiekanaal. In een CDMA-transmissiesysteem wordt door verschillende gebruikers j tegelijkertijd informatie over het transmissiekanaal 11 overgedragen, zoals gerepresenteerd middels een 50 muatieblok 16 waarbij een aantal van $\mathrm{j}=1$ tot en met N gebruikers 15 is verondersteld. Het totale signaal op het transmissiekanaal il wordt dan theoretisch gevornd door de som van een ruisbron 14 en de signalen van de gebruikers 15, zoals schematisch aangeduid door een somnator 17.

De zender 12 bestat in wezen uit een modulatar 18 met een ingang 19 waaraan ovar te dragen databits worden toegevoerd. De modulator 18 verwerkt de databits 19 tot geschikte signalen voor overdracht via het transmissiekanaal 11 . $0 e$ ontranger 13 bezit een demodulator 20 met een kitgang 21 voor het afgeven van de overgedragen gedenoduleerde databits.

Voor transmissie volgens het DS-COMA principe worden de van een zender 12 naar een ontvanger 13 door een gebruiker j over te dragen databits elk met een, door een codegenerator 22 apgevekte code $C_{j}^{\prime \prime}(t)$ en een mengschakeling 23 in eet aantal symbolen (chips) gecodeerd. Een logische "1" wordt bijvoorbeeld door de betreffende code zelf en een logische " 0 " wordt bijvoorbeeld door de inverse van de code gerepresenteerd. Naarsate de code langer is zal het over te dragen signaal meer en meer een ruissignaal benaderen, wardoor detectie zonder kennis van de betreffende code nagenoeg onmagelijk is.

Het op deze wijze in de frequentie gespreide DS-CDHA signaal van de gebruiker j kan na een transmissievertragingstijd T, bij de ontvanger 13 via eenzelfde codegenerator 22 echter net de code C_{j} ((t) en mengschakel ing 24 worden gereconstrueerd, mits de code bekend is warmee de databtts voor de J-de gebruiker zijn gecodeerd.

Yoor een meer gedetailleerde uitleg van COMA- en Spread Spectrum-technieken wordt verwezen naar op dit vakgebied bekende Itteratuur, waaronder de boeken "Spread Spectrum Systems with Applications", door R.C, Dizon, John Wiley \& Sons, Inc,, 1994 en "CDMA, Principles
of Spread Spectrum Communications*, door A.J. Viterbi, Addisan-Wesley Publishing Company. In de werkwijze volgens de voorkeursuitvoeringsyorm van de uitvinding wordt derhalve de vereiste veilige codering van het relevante deel van een informatiesignaal door het betreffende transmissie- kanaal verzorgt waarover de overdracht plaatsvindt. Het gebruik van COMAtechnjeken garandeert een lage kans op onderschepping.

Ondat ook het restdeel via een geneenschappelijk of een veetheid van gemeenschappelijke transmissiekanalen van een communicatiesysteen wordt overgedragen, zal het zelfs bij onderscheppen van een gecodeerd relevant deel 3 nog bijzonder moeilijk zijn om het bijbehorende restdeel 4 te selecteren en wanneer het relevante deel 3 afwisselend uit een veelvoud van relevante signaaldelen wordt geselecteerd, $2 a l$ het eveneens problematisch zijn om de beide delen tot het oorspronkelijke informatiesignaal te combineren.

Het relevante deel 3 wordt, in het geval van een relatief breedbandig signaal, zoals een videosignaal, zodanig gekozen, dat het slechts een relatief gering gedeelte van de totale signaalbandbreedte in beslag neent. In een praktische situatie wordt het relevante deel 3 bif voorkeur zodanig gekozen, dat het vfa een $64 \mathrm{~kb} / \mathrm{s}$ transmissiekanaal kan worden overgedragen, terwijl het restdeel 4, bijvoorbeeid in het gevai van een videosignaal, via een breedbandig transmissiekanaal in de ordegrootte van $2 \mathrm{Mb} / \mathrm{s}$ of hoger wordt overgedragen. Het zal duidelijk zijn dat bij een overdrachtstechniek warbij meerdere gebruikers tegelijkertijd op eenzelfde kanaal actief kunnen zijn, zoals COMA, maar ook volgons de zogeheten "Time Division Nultiple Access" (TDMA)-techniek werkende transmissiekanalen, met de werkwijze volgens de uitvinding op veilige wijze informatie in een djstributienet kan worden overgedragen.

Een voorbeeld van een point-to-multipoint datadistributienet is het reeds eerder genoende CATV-net, warvan fig. 3 een voorbeeldsuitvoeringsvorm toont. In de getoande netstructuur 25 wordt informatie vanaf een hoofdstation 26 naar eindaansluitpunten 27 overgedragen. Tussen het hoofdstation 26 en de eindaansluitpunten 2721 jn diverse bi-directionele versterkers $2 \mathrm{~B}_{,}, 29,30$ geschakeid, voon het opheffen van transmissieverliezen in het net 25, dat gebruikelidy uit coaxiale kabel 32 is opgebound.

In de getoande uitvoeringsvarmzijn de versterkers 28 in de vorm van een zogeheten ringnet op het hoofdstation 26 aangesloten, waarbij de van een versterker 29 ontvangen signalen in een districtstation 31 verder via een groepsversterker 29 worden gedistribueerd. De gebruikers of eindaansluitpunten 27 zijn stervormig op een eindversterker 30 aangesloten die signalen van een groepsversterker 29 ontvangt.

In Nederlands CATV-netten zijn de versterkers 28, 29 en 30 in het algemeen zodanig ingericht, dat zij signalen vanaf het hoofdstation 26 naar de eindaansluitpunten 27 in een brede frequent leband van circa 50 MHz tot boven 750 MHz doorlaten. De transmissierichting vanaf het hoofdstation 26 naar de eindaansluitpunten 27 wordt ook wel met "stroomafwaarts" aangeduid. In de andere richting, dat wil zeggen vanaf de eindaansiuitpunten 27 naar het hoofdstation 26 , ook wel "stroomopwararts" genoemd, is een transmissiefrequentieband van 5 MHz tot circa 50 MHz beschikbaar. Gestreefd wordt naar een volledig passieve transmissiefrequentieband in het frequentiegebied tot ca. 70 MHz dat wil zeggen zonder versterkers.

Onder meer afhankelijk van de lengte van de code waarmee databits in COMA worden gecodeerd. kunnen meer dan 100 gebruikers gelijktijdig op eenzelfde transmissiekanaal informatie ovendragen.

Fig. 4 toont een vereenvoudigd blokschema van een oerste uitvoeringsvorm van een comunicatiesysteem voor het gedeeltelijk gecodeerd overdragen van informat fesignalen volgens de uitvinding. Een over tedragen inforatiesignal wordt an een ingang 33 van signalsplitsmiddelen 34 toegevoerd, welke aan een eerste ditgang 35 de relevante signaaldelen en aan een uitgang 36 het restdeel van het over te dragen informatiesignal afgeven.

Het reTevante deel 35 wordt in codeermiddelen' 97 veilig gecodeerd volgens een op zichzelf bekende coderingstechniek en aan een uitgang 38 afgegeven. De signalen aan de uitgangen 36 en 38 worden in cen multiplexer 39 tot een voor overdracht via een zender 48 en transmissiekanaal 40 geschikt 5 ignaal gecombineerd. Het door een ontvanger 49 ontvangen overgedragen signaal wordt in een demiltiplexer 41 weer gescheiden in een restdeel en hat gecodeerde relevante dee 1, respectievelijk afgegeven aan uitgangen 42 en 43 . Het gecodeerde signaal op de uitgang 43 wordt an decodermfddelen 44 toegevoerd en het aan een uitgang 45 van de
decodeeraiddelen 44 afgegeven gedecodeerde signaal wordt 5 amen met het op de uitgang 42 van de demultiplexer 41 beschikbare restdeel in signaalconbinatiemiddelen 46 tot een informatiesignaal gecombineerd, dat vervolgens op een uitgang 47 van de signalcombinatiemiddejen 46 beschikbaar 15 .

Fig. 5 toont een voorkeursuityoeringsvorm van een comunicatiesysteen volgens de uitvinding, Waarbif de signalen op de uitgangen 35 en 36 van de signaalsplitsmiddelen 34 via afzonderlijke transmissiekanalen 50,51 worden overgedragen.

Het kanaal 51, warover het restdeel van een informatiesignal 33 wordt overgedragen, kan van het type zijn warover informatie op ongecodeerde, dat wil zeggen niet versleutelde of anderszins beveiligde wijze, wordt overgedragen via zend- an ontvangmiddelen 52; 53. Uiteraard kan het restdeel wel voigens een qeschikt of voongeschreven transmissieprotocol tot een voor overdracht via het transmissiekanaal 51 geschikt format zijn verwerkt.

Overeenkomstig de in fig. 3 geillustreerde vitvoeringsvorm, kan het relevante deel van het inforatiesignaal 33 aan de uttgang 35 van de signalsplitsmiddelen 34 op geschikte wijze gecodeerd 54 , verzonden 55 , ontvangen 56 en gedecodeerd 57 worden, onder toepassing van een daartoe geschikt transmissieprotocol en codeeralgoritme,

In de voorkeursuitvoeringsvora van de uitvinding wordt het relevante deel van een informatiesignal 33 via een veilig transmissiekanaal overgedragen, in het bijzonder een CDMA-gecodeerd transmissiakanal, zoals aangegeven met de anderbroken lijnen 58 in fig. 5. De codeer- on zendaiddelen 54, 55 en de ontvang- en decodeermiddelen 56,57 zi3n ingertcht voar COMA-overdracht zoals besproken aan de hand van fig. 2.

De transmissiekanalen 50 en 51 kunnen deel uitmaken van een meer omvangrijke communicatiesysteem zoals een CATV-net waarbij neerdere gebruikers gelijktijdig over een informatiekanaal informatle overdragen. In het bijzonder bij CoMA-data-overdracht kunnen de relevante delen van verschillende gebruikers gelijktijdig over het transmissiekanaal 50 op een veilige wijze warden overgedragen zodanig, dat alleen de eindgebruiker welke beschikt over de juiste sleutel waarege een betreffend relevant deel is gecodeerd de infonmatie uit de veelheid van relevante delen van verschillende gebruikers kan terugminien.

Voor het combineren yan een bijbehorend relevant deel en een restdeel kan tan elk van de delen een specifieker kenmerk worden toegevoegd, zoals een bestemmingsnummer of gebruikersnumer en een Volgnummer, zodanig dat de signaalcommunicatiemiddelen 46 de betreffende signaaldelen tot een uiteindelijk compleet informatiesignalalan de uitgang 47 kunnen combineren.

In plaats van COMA-transmissio kan ook elke andere vorm van veilige transmissie voor het doel van de uitvinding worden toegepast, zoals bijvoorbeeld transmissie in versleutelde vorm middels een "Time Division Multiple Access" (TDMA)-transmissieprotacol overeenkomstig het "Global Systems voor Mobile Communications" (GSM) of de "Digital Enhanced Cordless Telecommunications" (DECT)-standaard warbij de informatie standaard in gecodeerde of versleutelde varm wordt overgedragen.

Hoewel in de figuren 4 en 5 een communicatiesysteem voor simplex-overdracht (d.w.z. éenrichtingsverkeer) is getoond, zal het voor een deskundige geen toelichting behoeven dat de de uitvinding ook voor duplex-oyerdracht (d.w.Z. voor tweerichtingsverkeer) geschikt is.

Conclusies

1.

Werkwijze voor het in een communicatiesysteem overdragen van informatiesignalen onder toepassing van veilige coderingstechnieken, met het kenmerk, dat een informatiesignal wordt gesplitst in een voor verwerking van het signaal relevant deel en een restdeel, waarbij het relevante deel in een veilig gecodeerde vorm an het restdeel in angecodeerde varm via het communicatiesysteem worden overgedragen en dat een overgedragen relevant deel van een informatiesignaal wordt gedecodeerd en met een bijbehorend overgedragen restdeel tot het oorspronkelijke inforsatiesignal wordt gereconstrueerd.
2. Werkwijze yolgens conclusie 1, met het kenmerk, dat het te coderen relevante deel van het informatiesignaal zodanig wordt. gaselecteerd dat dit een relatief gering deel van de bandbreedte van het informatiesignaal in beslag neent.
3. Werkwtjze volgens conclusie 1 of 2, 典解 het kenmerk, dat het communicatiesysteem verschillende transmissiekanalen omvat, waarbij het gecodearde relevante deet en het angecodeerde restdeel van het informatiesignaal elk via verschillende transmissiekanalen worden overgedragen.
4.

Werkwijze volgens conclusie 1; 2 of 3 , get het kenmerk, dat het te coderen relevante deel van het infonmatiesignal under toepassing van "Code Division MuTtipie Access" (CDMA)-techniek gecodeerd wordt overgedragen.
 kenmerk, dst het communicatiesysteem een "point-to-multipoint" signaaldistributtenet oarvat, waarbij verschillende gebruikers gelijktijdig informatiesignalen kunnen ontvangen en/of verzenden, waaronder begrepen "Comunity Antenna Telelfision" (CATV)-netten en distributienetten voor elektrische znergie.
6. Communicatiesysteem, onvattende codeermiddelen voor het in gecodeerde vorm veilig overdragen van infonatiesignaten en decodeermiddelen voor het decoderen van overgedragen informatiesignalen, verder qakennerkt doar niddelen voor het splitsen van een over te dragen informatiesignal in een voor verwerking van het signaal relevant deel en een restdeel, welke middelen werkzaam zijn gekoppeld met de codeermid-
delen voor het in veilig gecodeerde vorm overdragen van het relevante deel van een informatiesignaal. en met middelen voor het in ongecodeerde varm averdragen van het restdeel van een informatiesignaal, warblj de decodeermiddelen zfjn ingericht voor het decoderen van een overgedragen relevant deel van een informatiesignaal en werkzaam zijn gekoppeld met middelen voor het tot een oorspronkelijk informatiesignad reconstrueren van een gedecodeerd relevant deel en een overgedragen bijbehorend restdeel. 7.

Communicatiesystem volgens canclusie $\overline{5}$, met het kenmerk, dat de middelen voor het splitsen van het informatiesignaal zijn ingericht voor het selecteren van een relevant deel van het informatiesignaal met een relatief geringe bandbreedte ten opzichte van de bandbreedte van het totale informatiesignaal.

Communicat iesysteen volgens conclusie 6 of 7 , met het kenmerk, dat het communicatiesysteem verschillende transmissiekanalen oevat vour het vaa een verschillend transmissiekanal overdragen van het relevante deel en het restdeel van een informatiesignaal. 9.

Communicatiesysteem volgens conclusie 6, 7 of 6 , met het kenmerk, dat de codeermiddelen zijn ingericht voor het in "Code Diviston Multiple Access" (CDMA)-gecodeerd overdragen van het releyante deel van een informatiestgnaal.
10.

Signaalsplitsmiddelen voor gebruik in een comnunicatiesysteem volgens conclusíe $6,7,8$ of 9 , voor het splitsen van een over te dragen informatiesignaal, met het kenmerk, dat de signaalsplitsmiddelen zijn ingericht voor het, van het informatiesignaal afsplitsen van een voor de verwerking vain het signaal relevant deel. 11. 5ignaalcombinatiemiddelen voor gebruik in een communicatiesysteem volgens canclusle 6,7, a of 9 , met het kenmerk, dat de signaalcombinatiemiddelen zijn ingericht voor het tot een totaal informatiesignaal combineren van een gedecodeerd overgedragen relevant deet en een overgedragen bijbehorend restdeet van een informatiesignaal.

1005523

1005523

FIG. 2

FIG. 3

1005523

FIG. 5

1005523

NIEUWHEIDSONDERZOEK VAN INTERNATIONAAL TYPE

II. ONDERZQCMTE GEBIEDEN VAN DE TECHNIEK

	Doderiochte minimum oacumentrie
Ciastificotionpsesm	Claztifiestianmbolper
Int. Cl. 6	H 04 차

 NL 1005523

IPC 6

IPC 6 HOAN
 ithbethen fip ippendonen
 Titruilite telaroviden)

C. VAN DELANG GEACHTE DOCLMEATEN

Cabrame:		Vebrbitegreor
A	TIHAO CHIANG ET AL: *HIERARCHICAL CODING OF DIGITAL TELEVISION*	$\begin{aligned} & 1,2,5-7, \\ & 10,11 \end{aligned}$

IEEE COMKUNICATIONS MAGAZINE,
10,11
deel $32, \mathrm{nr}$. S, 1 Hei 1994.
bladzijden 38-45, XPO00451094
zie bladzijde 41, rechter kolom, reget 40

- bladzijde 43, linker kalom, regel 23
zie figur 3
A DE 4425 197 A (DEUTSCHE BUNDESPOST
1-11
TELEKOM) 25 Januari 1996
zie kolom 1 , reget 7 -kolom 4, regel 42
zie figuren 1,2

DISH - Blue Spike-408
Exhibit 1010, Page 2398

1. Thas international Soarching Authority
 by the claing indicaterisabrifon the astra sheer:
ard it ransiders that the international application doen not ormply with the requinementes of unity of iovention (Rudes 13.1. 13.3 and 73.3) itr the reasons indicatedtW6tw/on the extre sheat:
(0) X has caried ouf a partial intemational seach (see Arnex) will establith the intarfazanoal sesery tepon

$$
1-5, \quad 26-29
$$

(ii) will egtablith the intemetions eearch repor on the other parts of the intenntional applicenitn only il-arti to tha extent to which. 己edifional fees-are paid

\qquad
$-$ \qquad 1 $=$ EUR 945,00 Fee per aditionad invantion number al addifioned fivennǜns Intaj amount of additimed daes On, \qquad $-\pi$ \qquad .
The applcart is intormed that, acoording to File $40.2(\mathrm{ch}$). the payment of any additionat tee may oe masas unam protest.
 or that the amount of the fequired additional lee is excessiva.
1.Ciam(s) Nos

Warne and malling aduthess of the losemational Searching Authoriy

- European Parent Olicoa, P:8, 591 I Patentlian 2

Iel $(+31-70) 340-2040$,
Fsx: $1+31-70) 340-3016$
Fore PCTVSAR206 (July 1992)

"ent Family Annex information on patent family members				$\begin{aligned} & \text { Inte onal Applicalion No } \\ & \text { PCT/US } 00 / 18411 \end{aligned}$
Patent document cited in search report	Publication date		ent family	Publication date
NL 1005523	15-09-1998	NONE		
WO 9744736	27-11-1997	AU	3206397 A	09-12-1997
EP 0649261	19-04-1995	$\begin{aligned} & \text { JP } \\ & \text { US } \end{aligned}$	$\begin{aligned} & 7115638 \mathrm{~A} \\ & 5933499 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 02-05-1995 \\ & 03-08-1999 \end{aligned}$
US 5974141	26-10-1999	US US US	6076077 A 6002772 A 6097818 A	$\begin{aligned} & 13-06-2000 \\ & 14-12-1999 \\ & 01-08-2000 \end{aligned}$

This International Searching Authority found multiole (groups of) iniventions in this international application, as follows:

1. Clatas: $1-5,26-29$

Protecting the distribution of algital data to be used Witin a digital player charachterized by encrypting format information and allowing low quality play back fo case of lack of decrypting key.

2. Clámis: $6-25$

Digital signal encrypting technigue combining transfep functions with oredeterimined key creation.

This finding is based on the following reasons.
The pritor ant has deen (dentified as NLI005523 (D1), This docuesant shows a mathod for protsecting the distribution of digital information, the digital Information including two subparts, a digital sample and format: information, comprising the steps of: ddentifying and separating the two subparts; encoding the format information subpart using a key: recombining the encoded firat subpart with the un-encoded second subpart, generating in this way an encoded version of the digitai information. A predetermined key corresponding to the encoding key is then required for the decryption of the fortat inforimation. All the featuras which form the subject matter of claims 1 and 2 are then disclosed by of (see following pasaages: abstract; page 1. 11ne 35 page 3 , 1 ne $9 ;$ page 9,11 ne 21 -page 10 . Ine $5 ; 19$ 4)

From the compartson Detween DL and the lst invention (see clavm 3) the following technical featurae can be seen to make a contribution over this prior art (1n the sense of PCT ruie 13.2):

- the digital inforantion is conflgured to be used with a digital player and the information sutput from gaid digital piagar has a degraded quality unless it is provided with a pradetermined key (Specis) Technical Features 1 , STF1).
From these STFI the objective probjem to be solved can be sumerized as:
- permizting preview of distributed digital Information

From the comparison between OI and the 2nd invention (see clatim 6) the follawing feature can be seen to make a contribution over the same prior art:

- using a transfer function-based mask set for creating a key to
ganipulate data at the Inherent granularity of the f1Te format of a digital sample (STF2).
from this STF2 the objective problem ta be solved can be summarized is:
- Tmproving the security of techniques for data protection

The above analysis shows that inventions I and 2 do not have same or similar Special Technical Features- Furthermiore, a comparison of the objective problem I with the objective problem 2, both seen in the 7 ight, of the description dio the drawings of the present application, indicates that there is no technical correspondence between these problems nor do they ahow any corresponding technical effect,

inventainusi tharesu
INTERNATIONAL APPLICATION PUBLISHED UNDER TTE PATENT COOPVERATTON TREATY (PCT)

(S4) Tite: METHOD AND APPARATV/S ECW TWO-LEVEL COPY PROTECTION

(57) Alstruct

 copy protaxion of e primary shata stresm, then tar use the sscond protection setieme to socirely trasfer the fiss level hey fromp profectiod storage location to a decoding locrifan. Encoded primary data can be atored an a romurvible modia fogether with the ilogyption key storod
 the key zocurely to k descrambling unit: The first trval eopy proveotion can involve selecrive roortieing of daia suburrits within a dpas unit
 the corroponding dita imit:

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify Stares party to the PCT on the front pages of pamphlets publishing international applications under the PCT,

AL	Albanis
AM	Armenis
AT	Astria
AU	Australis
$A Z$	Azeribsijan
BA	Bosnia and fierzegoyina
BE	Barbados
BE	Belgium
BF	Burkian Fisso
BG	Bulgeria
8 J	Benin
8R	Brasil
BY	Belarus
CA	Cenadn
CF	Central African Republic
CG	Congo
CH	Swizeriand
CI	Coxe d'Ivaire
CM	Camerioon
CN	Chima
CU	Cuba
CZ.	Crech Republie
DE	Germany
DK	Demmark
EE	Estonia

ES	Spein
FI	Fintand
FR.	France
GA	Gabon
GB	United Kingdont
G8	Georgia
GH	Ghass
GN	Guinea
GR	Gruect
HU	Bungary
$1 \mathbf{E}$	treind
IL	luriel
15	Sceland
IT	Duly
JP	Japar
KE	Kenya
KG	Kyrgyzats
KP	Democratic People's Republic of Kores
KR	Republic of Kores
KZ	Kapatstan
1.6	Saint Lucia
4	Lischenstein
LK	Sti Lank
LR	Liberia

LS	Lespho
LT	Lithusnia
LU	Laxembourg
LV	Lesvia
MC	Monaco
M	Repubtic of Maldoya
MG	Madagasca
MK	The former Yugoslay Republic of Macedonia
ML	Malf
MN	Mongolia
MR	Mauritunin
MW	Malawi
MX	Mexico
NE	Niger
NL	Netheriands
NO	Norway
NZ	New Zealund
PL	Poland
PT	Porrugat
RO	Romania
RU	Russiar Federation
SD	Suden
SE	Sweden
SG	Singapore

SI	Slovenia
SK	Slovakia
SN	Senegal
SZ	Swaziland
TD	Chad
TG	Togo
TI	Tajikistas
TM	Tarkmenistan
TR	Trikey
TT	Trinidad and Tobogo
UA	Ukreine
UG	Uganda
US	United Stateo of America
UZ	Usbelisisn
VN	Viet Nam
YU	Yogoslavia
ZW	Zimbabwe

METHOD AND APPARATUS FOR TWO-LEVEL COPY PROTECTION

Field of the Invention

This invention relates to data encryption and decryption, and more particularly to an improved method and apparatus for using one level of encryption to establish a secure communication channel, then passing a decryption key over that channel for subsequent decryption. This invention includes a new method of scrambling buik data. This invention is particularly useful for protecting bulk information intended for widespread distribution such as movies or music in CD or DVD formats.

Background of the Invention

The field of data encryption has been the subject of extensive scholarly investigation and has been the topic of many patents in the United States and other countries. For general reference, the background description in each of United States Patent Nos, 5,497,422 (Tysen et al, 5 March 1996) and 5,438,622 (Normile et al., 1 August 1995) discuss representative encryption schemes known in the art. Each of these patent applications are assigned to Apple Computer, Inc. These patents are incorporated herein by reference in their entirety.

A wide variety of information is sold to consumers in various forms. Ore major category of information is computer software. Another major category of information is music, often in the form of CDs or tape. Still another major category of information is movies, usually over cable or satellite television links but often in the form of analog tape or LaserDisc. There is a tension in distribution of any form of information because if consumers will buy it from a rightful owner, other consumers are likely to buy illegal copies made from legitimate originals.

Various copy protection schemes have been considered for use with various media. Scrambling of cable or satellite channels is common. A vaniety of ant-copying schemes are used in analog video tape. CDs or digital tape can be encoded with anti-copying codes.

Distribution of various information in digital form has troubled many content providers because making the information available potentially makes it quite simple for a user to make one or many illegal copies of that content. Forms of such content include movies, music, and data such as encyclopedic
compilafions. This issue has been widely discuased in refation to audio $C D S$, LaserDiscs and other formats.
in the personal computer environment, the prolection of intellectual property has been of interest since the beginning of the industry. In computer software, a variety of special encoding of encryption achemes have been used Some sofiware requires a hardware key to be cormected in some way to the computet system, Use of such systems frustrates casuat copiers but often hads some negative impact on legitmate users.

Due to the rapid growth of the industry and the tectinical difficulties associated with controlling information flow in an intinsically open architecture, the industry players have more often than not writen the problem ofi as intractable, at least in relevant time and cost frames. However. the problem remiains. And as the convergence between enteriaiment and computing moves forward, driven by the evolution of hardware and soltware technologies, industry participarits with different attitudes and requirements enter the discussion.

The problem is particularly acute with the adyent of the DVD technology as a mass storage device in computers. DVD is a new, high density storage medium capable of.storing about 4.5 thrming 18 gigabytes of information or a single 12 centimeter disc, Commercial products have already been announced before May 1996 for availability before December 1996.

The movie industry, with its high degree of sensitivity to intellectual property protection, is concerned that none of the new rransmission modalities, including personal computers, enable free copying of their material. Other coutent providers have siowilar concerns, Some sort of copy protection scheme would encourage content providers, such as the movie industry, to distribute information such as movies in digital format:

The proposed pretection scheme is intended to fall between a "screen door latch" (too weak) and a "Fort Knox" approach foo clumsy and expensive for mass-marker products), Although it will be discussed fere in the contexnof DVD. one skilled in the att will appreciale that this copy protection scheme can be used in many other situations or collections of elements.

Summary of the Invanition

The invention pravides a two-stage copy protection scheme. This is particularly useful where large quantities of data are to be encrypted and decrypted using an encryption key but that encryption key is to be carefully protected until the data is to be decrypted using an authorized rettieval system.

One stage of the retitival system incluctes ane encryption scheme to assure that the relrieval is made in in authorized system, ard another stage of the retrieval system uses a stored encryption key to decode the data of interest. In one preferred topplementation, the encryption key is lised as in descrambling code.

To minimize the performance lmpact on the apparatus and not constrain use of systern resources by low priority or low value data strearns, the information flow can be broken mio elements with a distinct hierarchy of bandwidth. For example, an MPEG stream (high bandwidtr) may be merely scrambled. the scrambling control bits (much lower bandwidth) may be encoded, and only the MPEG-decode key information necessary to decode the seraubling control bits (very low bandwidth) is key encrypted.

The scrambling can be done in any of many ways, some of which are difacussed in detall below. For example, the order of the data within a unit of data cart be reordered itr a controlled way to give a scrambled signal Each unil of data, such as a 64 KB block, can be scrambled in a defuried way, then a descriptor which chäracterizes that scrambiligg can be encrypted using a key anid the encoded descriptor car be stored with the relevant block of data A gingle hey can be used to decrypt any surambling descriptor and the descriptor can be changed for each urit of data, that ig, each unit of data can be independentify scrambled. With a key available, it is relatively straightforwurd to correctly reorder the scrambled data into the original, "clear text" formal. With no key, if a sufficiently complex scrambling method has been chosen, it san be challenging to identify the correct key by trial and errof, particularly since each data mit is scrambled in a different patterm. With the key, a moderately complex scrambling method will not have a significant effect on data recoristruction mite and thus becomes transparent to the uret-

This copy protection becomes much more powerful if the key can be changed for different units of primary information, fot exarmple fot each movie title

Storage and access to this key raises an interesting challenge, but this on be managed very convervenily by using a separate encryption mode to secure the key and provide it in a coordinated fashion with the grogram of interest. One way to do this is to store the Vey in a secure manner on the same storage medium as the scrambled information. The mechanism of this separate storage mode can be set at a desired level of complexity. Ore preferped mode is to make this key inaccessible by typical access sperations, but reandly accessible through special operations: Specifteally, in just one preferred embodiment: the
key may be stored al a location which is inaccessible to a host cormputer which can only acoess a logical block address, but readily accessible to a deive control unit, which may be designed to access a specific physical address, preferably not a logical block address. This access capability san be designed into the drive control unit, and the relevant hey can be stored at the corresponding location When the media is prepared.

Subsequent manipulation of the key can be under close security. Since the key need be extracted only orice, taking even several seconds to extract and/or transfer the key will not have a sjgnificart umpact on the user.

In one preferred embodiment, a public/private key pait is stored in a disk Irive mechanism and a second public/private key pair is stored in a decryption/decode unit such as an MPEG2 decoder. The key pairs are used to estabish a secure channel of communication between the disk drive and the decoder and, once the channel is secure a message can be read safely from the storage medium inko the decoder even if the data path for the channel between these elements is unsecire This message is the information content or message prorected using the high-level security scheme, but is itself the key for the low-level security scherne, Passing this encrypted bey over a secure chanriel makes it extremely difficult to intercept the key and use it for improper purposes.

This inhibits casuai copying by setting up the system so that the data How path between a source, such as a DVD-ROM drive, and a destination, such is an MPEG decoder carties only scrambled information and dectyption to clear lext occurs only in an isolated portion of the system, preferably within o special descrambler/decoder unit. The scheme camot be defeated except by system patches, and a new patch is requifed for each tifle defeated, that is for each new titie encryption key.

Scrambling and encrypting the primary intormation means that a read of the media by a bystem that does not fomplement correct decoding will give unintelligible reaulta. Only the application software, with a little help from the operating system, can allow correct decoding of the primary information, as in correct decoding and display of a movie.

Distributing the copy prolection elements balances the economic and processing power burden so that ne single part of the overall system bears all the cost and effort of protecting the valuable information. Modifying the media format to carry scrambled data and modifying the deive to take adyantage of if closed sub-system status balances these costs.

Moving the implementation burden on the computer system toward the peripheries, i.e, the media, the mass storage device, and the application software minimizes the impact on the operating system software and motherboard hardware. This method and apparatus avoids the need to create new high bandwidth information flow paths and new file systems while providing useful protection for the valuable source information.

One object of this invention is to provide reasonably effective prevention of casual copying by a user.

Another object of this invention is to provide a copy protection scheme

Brief Description of the Drawings

Figure 1 illustrates an apparatus useful in practicing this invention. Figures 2A, 2B and 2C illustrate a source data structure in its original form (2A), then formatted and addressed after scrambling (2B) and then formatted and addressed after encrypting the scrambling vector (2C).

Figure 3 illustrates encryption of a 32 element scrambling vector.
Figure 4 illustrates descrambling inside an MPEG2 decoder.

Description of the Preferred Embodiments

Representative elements and the process of a preferred implementation of the copy protection scheme are described below. A preferred embodiment will be described by way of example. Figure 1 gives a schematic of the complete system. Note that the MPEG decoder is depicted as a hardware element, but the copy protection method can be used, perhaps with a lesser degree of protection, when the MPEG decoder is a software process A more generic systern includes only a medium, a reader for that medium, a destination for information from that medium, and a channel between the reader and the destination.

The medium does not need to be physically close to the destination. For example, the source information might be stored on a server such as a video-
un-demand server, and the destimanon might be located many miles away, as is al set top box, cable decoder, or other interface. For example, the server mught foclide a reader which securely tranisfers a decryption key to the destination in a user's home, then comortunicates a scrambled data flream over some channel to the destination where it is descrambled according to the dectyption key,

The channel for communucating the decryption key need not be the same as the channel for communicating the encoded, bulk information, but a single channel might be used for both purposes. A channel might be a data path through a computer bul might also be a telephoric, television cable or satellite link or even a combination of two of more such links. The decoding can be done after any number of intervening transfers of the encoded digital information. One useful example would be a decoder compled directly to a televtion set for direel and secure transmission of an encoded movie trom a source to an end usec,

The channel can include several connected data paths and still safely tronsfer encoded information. For example, the primary information may be stored in encoded form on a عerver. That server might be connectable through several separate links, perhaps telephone or cable awitching boves, intil final delfvery to a decoder.

One encoding scheme is used to encode the primary data. A key for this seheme is maintained according to one or more of a variety of methods. A second encoding scheme if heed to transfer the key irom a secure location to a Jocation for use in decoding the primary datai. In a preferred embodiment, the key for the primary data is stored with the dato in a generally inaccessible location. This might be in a special track or location on a disk containing the primary information. Alternatively, this might be maintained on a server as in, for example, a videc-on-demand bystem, or in a selected-access system as if for example, a pay per-view system.

The specilic encoding scheme for the primary information may take any of a variety of formis-Some encoding schemes are known is the art but there are other, new schemes that are particularly useful. One particularly uselel scheme is a simple scrambling scheme where the scrambling Key is sufficiently complex to make brute-force decoding difficult, but simple enough to allow for rapid decryption when the correct key is available. The encoding scheme for The secondary information, here the scrambling or primary information key itself, also may take any of a variety of forms. In one preferred form, this secondary encoding uses twa pairs of privale and public leys to establish a
secure channel between the reader, for example the device where the primary key is maintained, and the destination, for example the device where the primary key is to be used.

As illustrated in Figure 1, there are five keys invotued in one preterred implementation of the copy protection apparatus of this invention, one for the primary information and foun tor segure transfer of that key.

Secrice Itansfer of the Primaony Information Key

In one preferred embodiment. the primary inlormation key is placed on the media during mantifacture, It may be stored in a Jocation or sub channel that is readily accessible to the drive controller but difficult or impossible to access otherwise. In a preferred embodiment, is not in an area that is addressable by logical block address (LBA) and thus is not accessible by devices olher than the drive controller itself. This primary information key is transferred as the message for a publlic key/private key ransaction through the open compater syslem tox a descrambler where it is used to descramble the primary irformation.

The drive controller is possessed of a public key and a private key, and has the capability of teceiving another entity's public key. The drive cat then encrypt a message using its private key and the received public key. This encrypled message can be reguested by the operating system and passed to the nwner of the non-drive public key, the destination.

The non-drive entity can then use its own private key and the drive's public key to decrypt the received message. Ass noted above, the key on the media is the message for the second encoding system. Thus the key for the primary encoding ts itself encoded using the second encoding system and transterred through the open computer system to the non-drive entity, where it is clecoded according to the second enooding scheme, This key can then be loaded into the primary decoding system and used directly.

The key encoding transaction described above uses yery robust encryption which may be computatiorally intensive. However the size of the message is small and the transaction is a one time thing which is done at startup. The coriplexity of this encryption allows for a very high leved af security. Since this encryption ard decryption fake place infrequently, preferably only at starmp, there is very little penalty to taking sorne time A fypical user will not mind and may nol even notice a delay of up to even a lew
seconds during the intiation or loading of a media fitle. One preferred sequence of everus in just one preferred embodiment is as follows.

The primary information is MPEG encoded data. The man channel (ouat shown-part of information stream 12) fom the DVD media 11 contains opporturities for scrambling. Scrambling bits are defined and/or reserved biss exist in Video, Audio, Sub-picture, Data Search Information, and Video Blanking Information packs.

The copy protection method described here scrambles the video and/or audio and/or sub pictures, An encoded yersion of the scrambling control bits ore then inserted into the MPEG stream. Direct descrambling based on the inserted scrambling control bits will not give the correct fesults. To obtain cortect de-scrambling, the scrambling control bil stream must be processed ffrough a decoder, such as a rapped shift register.

The primaty information key includes information on the correat setup of the decoder, such as position of the taps for correct scrambling control bit decoding. This primary information key is put on the media in a sub channel or an area that is addressable by physical address, bul not by logical block address.

This last requirement means the drive controller can access the information needed tor decoding scrambling control, but the host system 16 caruot obtain lt by a read cormmand to a logical block address. The drive contcoller 13 is designed to pass this information over to the host system 18 only in encrypted form using the controller's private key and the public key of the intended recipient. In Figure I the intended reciplent is the MPEG decoder d0, particularly the descrambling unitillustrated by its buffer area 41 .

The recipient. MPEG decoder 40, uses its private key and the controller's public key to decrypt the information that originated in the media sub channel or logically unaddressable regions.

If the scrambled MPEG data stream 12 is directed to a recording device. the copy protection scheme is not deteated because the intormation to property decode the scrambling control bits is not present in any form. The required information passes through the host in encrypted form only and is therefore useless even if trapped and recorded.

The operating system brokers the exchange of public keys between the controller and the MPEG decoder at startup

At startup, the DVD-ROM device driver not shown, part of system soff(ware) requests the operating system to provide the public keys of any
insialled MPEG2 decoders. The operating system obtains public keys from drive 10 and MPEG2 decoder 40 (if present). The operating system provides the public key of the decoder 40 to the drive 10 and public key of the drive 10 to the decoder 40. The DVD-ROM device driver refuses to accept any MPEG decoder public key except during the otattup sequence. This give some extra security against impersonation.

Lise of the Primaty Information Key

During primary data transfer operation, the primary information key is used by the recipient, e.g, the MPEG decoder, to correctly reorder the scrambled logical blocks received by streaming off of the storage device, e.g. a DVD disk. The specific function of the primary information key depends on the specific scrambling scheme. One preferred scrambling scheme is described below. Once transferred to the recipient, the primary information key is inserted into an appropriate decoder, then used to unscramble the primary data stream. In a preferred embodiment, the primary data stream is scrambled MPEG data which is descrambled to give a traditional MPEG data stream which then is decoded to give a video image, for example, an NTSC standard image or an RGB image, which can be displayed on an appropriate monitor.

Scrambling Scheme

The preferred scrambling scheme is designed to be computationally intensive to break if attacked as a iig saw puzzle, but easy to reorder if the key is available. A data unit is divided into smaller units, which are then rearranged according to a selected scheme. Information for reordering that data unit is stored for retrieval in conjunction with that data unit. This might take the form of a scrambling vector, which might be stored in a subheader or perhaps embedded in the scrambled data unit. The information can be further protected by encoding the scrambling vector according to an encryption scheme, using a selected primary information key. The same process can be repeated for subsequent data units, but each data unit can be rearranged in a different order. In each instance, the scrambling vector is retrievable and can be reassociated with its corresponding data unit. The same primary information key can be used to encode a series of scrambling vectors. The primary information key, along with each particular instance of the encoded
scramising vector, is used to decode the scrambling vector which in furn th used to correctly reorder the data unit,

In one particularly preferred embodiment; a solecled program, such as a movie title, is dividect into dala units, each of which is scrambled individually, and each scrambling vector is encoded using a single key. That primary information key can be stored with the prinary program, and each program can use a different primary infurmation key. The specific scrambling and descrambling schemes can be implemented in spectalized hariwate for rapld and convenienil playback of the primary program.

Figures $2 A, 2 B, 2 C, 3$ and 4 describe one scarnbling embodiment thal uses a scrambling vector subhedder on 2 kB data blocks. If the user data streant (information or primary data stream) has places to put this scrambling vector deta, fl could be placed inside the user data and no aublieader would be necessary,

Referfing to Figures $2 \mathrm{~A}, 2 \mathrm{~B}$ and 2 C . Figure 2A illustrates representative, primary data as formatted and addtessed before scrambling. The data to scramble in segmented into groups of 32 sequential blocks, also reterred to as sectors, each haying a logical block address (LBA), each containing 2 KB for a tofal of 64 KB . Data in this form is considered clear text. For example, if it were MTEG2 movie data, it would be directly decodable by an MPEG2 decoder conforming to the published standards.

Changing: the order of the sequential blocks scrambles the primary information. Figure 28 illostrates diate as formatted and addressed atter scrambling of LBAs and user data blocks in the 64 KB sequence. There are 32! distmet ways to randomly assign the data blocks to the 32 LBAs in pach 64 KB sequence. The illustrated order, $5,31,17, \ldots, 22$, is merely illustrative Each group of 32 sectors can be scrambled independently and the correct position within the group given by the value of the Scrambling Vector Element (SVE) placed iry a subheader.

Fugure 2C illustrates data as formatted and adoressed after scrambling of LBAs and user data blocks in the 64 KB segment. The scrambled form. SV"; of the scrambiling vector, 5 V , is now placed in the subheaders of the group of 32 sectors. The SV*E user data are mastered onto the media, such as a DVD disc, in the sequence shown in Figure 2C. If the data stream is a scrambled MPEG2 movie, a standard MPEG2 decoder will not be able to make any sense out of it in the scrambled form.

Referring to Figure 3 , this figure shows encryption of a 32 ejement scrambing vector. The elements of the scrambling vector are encrypted using a
reversible dlgorithm whose parameters are defined by the media key. KMedia. Recall this la the key that is only readable by the drive 10, and this key is never passed as clear text tforough the open system There are a number of simple approaches a vallable for encrypting the scrambling vector, Fuch as tappest shin registers, pseudo random sequence generators, etc

Referring to Figure 4, descrambling is done inside MPEG2 decoder 40 . The descranibling buffer area 41 is equal to or greater than the 64 KB of usex data plas the 32 byte overhead of the SV*. Typical memory allocation might be done on I KB boundanes, so handling the Sy* and converting It back to SV ringht riecessitate 65 KB for the descrambling buffer area. The internal output is a clear text MPEG data stream which is then decoded to give firtal output 19 as uncompressed video.

Other data streams can be processed in an analogous manner
Another preferred scrambling scheme reorders only part of the user data block. An MPEG data stregm includes high order bits that define information about the sequence of the user data blocks. If data blocks including this information were simply reordered, it would be possible to ube those specific bits to reassemble the data to the correct arder. However, if only part of the user block is reordered and the expected sequence information is left untouched, the user blocks will be corrupted because the first part of the user block will be matched with the second part of a different user block in a preferred implementation. the first half of each block is untouched while the second half of each hlock is reordered as described above in connection with Figures 2A, $2 B$ and $2 C$. The scrambling vector is prepared, encoded and stored as described above This schume still has 321 possible combinations. Since each data unit can be reordered using a different scrambling vector, descrambling will be difficult without the key, but simple with the correct primary informalion key.

The size of the data unit attects the complexity of encoding and decoding. The example above describes a dota unit subdivided into 32 blocks. This allows reordering in 32 ! possible combjnations which gives a fairly complex, and thus secure, encoding scheme. In the DVD specification, a standara data unit ta 32 KB of 2 KB subunits. This provides 16 blocks which can be reondered as decribed above, to give 16 ! possible combinations of scrambled data.

A media drive controller cari be designed to support this scheme at minitnal cost impact. As far as the transferring a sctambled primary data stream, a traditional dave controller need not be modified at all Ta support
the secondary encoding, the drive controller needs to maintain a public and a private key had be able to support the selected enctyption scheme. To support the preferred embodiment of storing the primary information key in a special location on the media, the drive controller needs to be designed to achieve the needed access and transfer the key appropriately:

The recipient similarly may need only minor modification. If the data stream decoder is a separate unit, there may be no need to modify the decoder. In a preferred embodiment, the recipient is or is coupled to a descrambler unit which in turn is tightily coupled to a decoder such as an MPEG decoder. The descrambler unit should support the selected scrambling scheme and should manage the primary information key as needed. In a preferred embodiment, the descrambler manages a public and a private key, interfacing with the secure data charnel, receiving and decrypting the primary information key, and using the primary information key to descramble the primary information. invention as well as a preferred embodiment of the present invention has been set forth above. One skilled in the art will recognize and be able to practice many changes in many aspects of the device and method described above, including variations which fall within the teachings of this invention.
20 The spirit and scope of the invention should be limited only as set forth in the claims which follow.

Claims

What is claimed is:

1. An apparatus for providing two levels of copy protection, said apparatus comprising
first means for copy protecting information, said first means including a key, and second means for copy protecting information, said second means applied to said key for said first means.
2. The apparatus of claim 1 wherein said first means for copy protecting information is a selective disordering of an information data stream and said key can be used to correctly reorder the disordered information data stream.
3. The apparatus of claim 1 further comprising two devices connected by a communication channel and wherein said second means for copy protecting information is a means to provide a secure communication channel between two devices.
4. The apparatus of claim 3 wherein said second means for copy protecting information includes use of a public and private key by at least one of said two devices.
5. The apparatus of claim 3 wherein said key for said first means for copy protecting information is encoded for transmission over said communication channel between said two devices.
6. The apparatus of claim 1 further comprising
a source of information encoded according to a first means for copy protection.
a decoder for said information according to said first means for copy protection, using said key, a storage location for said key.
a means for communicating between said storage location and said decoder. wherein said second means for copy protecting information comprises means for encoding said key for secure communication between said storage location and said decoder:

$2 / 4$

FIGURE 2A

LBA n	SVE 0 (5)	2 KB User Data (block $n+5$)
LEA $n+1$	SVE1 (31)	2 KSE User Data (block $\mathrm{n}+\mathbf{3 1}$)
LBA $n+2$	SVE 2 (17)	2 KB Usor Data (block $\mathrm{n}+17$)
LBA $\mathrm{n}+3$	SVE 3 (4)	2 KB User Data (block $n+4$)
$L B A n+4$	SVE 4 (24)	2 KB User Data (block $n+24$)
LBA $n+5$	SVE 5 (0)	2 KB User Data (block n)
4ntme.ar	.nomoth.........................
.........	+1...................trmon
LEA $n+37$	SVE 31 (22)	2 KB User Data (block $\mathrm{n}+22$)

FIGURE 2B

$3 / 4$

LBA n	SV*EO	2 KB User Data (block $\mathbf{n + 5}$)
LBA $n+1$	SV*E1	2 KB User Data (block $\mathbf{n}+31$)
LBA $\mathrm{n}+2$	SV*E2	2 KB User Data (block n +17)
LBA n+3	SV*E3	2 KB User Data (block $\mathrm{n}+4$)
LBA $n+4$	SV* E 4	2 KB User Data (block $\mathrm{n} \mathbf{+ 2 4}$)
LBA $n+5$	SV*E5	2 KB User Data (block n)
........	+.........	.0..................................
..........
LBA n^{+31}	SV*E31	2 KB User Data (block $\mathbf{n}+\mathbf{2 2}$)

FIGURE 2C

32 elements		32 elements
SV Scrambling Vector in plain text form	Encryption defined by $K_{\text {Media }}$	SV* Scrambling vector in encrypted form

FIGURE 3

MPEG 2
Decompressor.

FIGURE 4

INIERNATTIONAL SEARCH REPORT

page 1 of 2
DISH - Blue Spike-408
Exhibit 1010, Page 2424

PCT
WOKLD FTHLLDCTUAL PROPERTY ORGANLIATION Intimational Barreno
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

FOR THE PURPOSES OF INFORMATION ONL.Y							
	Codes used to identify States party to the PCT on the front pages of pamphlets putlishing international applications under the PCT.						
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	F1	Finland	LT	Lithuanis	SK	Slovasia
AT	Austria	FR	France	LU	Lusembourg	SN	Senegal
AU	Ausualin	GA	Gabon	LV	Latvia	SZ	Swaziland
Az	Azerbaijen	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Busata and Herregovina	G8	Oeorgis	MD	Republic of Moldova	TG	Togo
BB	Barpados	GR	Ghama	MG	Madagascar	TI	Tajikistan
88	Belglum	GN	Guinea	MK	The fommer Yugoslav	TM	Turkamistan
8 F	Burkina Faso	GR	Greece		Republic of Mactitonia	TK	Turkey
BG	Bnlgarie	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BI	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL.	Israsi	MR	Mamritania	UG	Ugandm
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA	Canads	17	Italy	MX	Merico	UZ	Uzbekistan
CF	Ceutral African Republic	JP	Japan	NE	Nigtr	VN	Viet Nam
CG	Congo	KE	Kenya	NL.	Neeherlands	YU	Yugoslavia
CH	Swizzerland	KG	Kyrgyzstan	NO	Norway	2W	Zimbabwe
CI	Cote d'Tvoice	KP	Democratic People'a	NZ	New Zealard		
CM	Camerdon		Republic of Kores	PL	Poland		
CN	China	KR	Reppublic of Korea	PT	Pormgal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lutie	R0	Russimm Foderation		
DE	Gammany	L	Leckuenstein	5 D	Sudan		
DK	Deamrark	$L K$	Srí Lanka	$\mathbf{S E}$	Swiden		
ER	Estoniè	LR.	Liberia	SG	Singapore		

MULTIPLE TRANSFORM UTILIZATION AND APPLICATIONS GOR SECURE DIGITAL WATERMARKING

BACKGROUND

 $08 / 587,943$, filed January 17. 1996, entitled "Method for Stega-Cipher Protection of Computer Code," the entire disclosure of which is hereby incorporated by reference. Description of the BackgroundIncreasingly, commercially valuable information is being created and stored in "digital" Form. For example, music, pholographs and video can all be stored and transmitted as a series of numbers, such as I's and 0's. Digital techniques let the original information be recreated in a very accurate mannec. Unfortunntely, digital techniques also let the information be easily copied without the owner's permissiont.

Digital watermarks exist at a convergence point where creators and publishers of digitized multimedin content demand local, secure identification and authentication of content. Because piracy discourages the distribution of valuable digital information. establishing responsibility for copies and derivative copies of such works is important. The goal of a digital watermark system is to insert a given information signal or signals in such a manner as to leave little or no artifacts, with ove standard being perceptibility, in the underlying content signal, while maximizing its encoding level and "location sensitivity" in the signal to force damage to the content signal when removal is attempted. In considering the various forms of multimedia content, whether "master," stereo, National Television Standards Commiuee (NTSC) video, andio tupe or compact disc, tolerance of quality will vary with individuals and affect the underlying commercial and aesthetio value of the content. It is desirable to tie copyrights. ownership rights, purchaser information or some combination of these and related data into the content in such a manner that the content undergoes damage, and therefore
reduction of its value, with subsequent unauthorized distribution, commercial or otherwise. Digital watermarks address many of these concerns and research in the field has provided a rich basis for extremely robust and secure implementations.

Of particular concern is the balance between the value of a digitized "piece" of content and the coss of providing worthwhile "protection" of that content. In a parallel to real world economic behavior, the perceived security of a commercial bank does bol cause peopie to immediately deposit cash because of the expense and time required to perform a bank deposit. For most individuals, possession of a US $\$ 100$ bill does not require any protection beyond putting it into a wallet. The existence of the World Wids Web, or "Web," does not implicilly indicate that value has been created for media which can be digitized, such as audio, still images and other media. The Web is simply A medium for information exchange, not a determinant for the commercial value of content. The Web's use to exchange medis does, however, provide information that helps determine this value, which is why responsibility over digitized content is desirable. Note that digital watermarks are a tool in this process, but they no not replace other mechanisms for establishing more public issues of ownership, such as copyrights. Digital watermarks, for example, do not replace the "historical average" approach to value content. That is, a market of individuals willing to make a purchase based solely on the perceived value of the content. By way of example, a picture distributed over the Internet, or any other electronic exchange, does not necessarily increase the underlying value of the picture, but the opportunity to reach a greater audience by this form of "broadeast" may be a desinable mechanism to create "potentially" greater market-based valuntions. That decision rests solely with the rights holder in question.

Indeed, in many cases, depending on the time value of the content, value may actually be reduced if access is not properly controlled. With a magazine sold on a monthly basis, it is difficult to assess the value of pictures in the magazine beyond the fime the magazine is sold. Compact dise valuations similarly have time-based variables, as well as tangible variables such as packaging versus the package-less electronic exchange of the digitized audio signals. The Internet only provides a means to more quickly reach consumers and does not replace the otherwise ${ }^{-1}$ market-based"
value. Digital watermarks, properly implemented, add a necessary layer of ownership determination which will greatly assist in detemining and assessing value when they are "provably secure." The present invention improves digital watermarking technology while offering a means to properly "tamper proof" digitized content in a manner analogous to methods for establishing authenticity of real world goods.

A general weakness in digital watermark technology relates directly 10 the way waternarks are implemented. Too many approaches icave detection and decode control with the implementing party of the digital watermark, not the creator of the work to be protecled. This fundamental aspect of various watermark iechnologies removes proper economic incentives for improvenent of the technology when third parties successfully exploit the implementation. One specific form of exploitation obscures subsequent watermark detection. Others regard successfiul over encoding using the same watermarking process at a subsequent time.

A set of secure digital watermark implementations address this fundamental control issue, forming the basis of "key-based" approaches. These are covered by the following patents and pending applications, the entire disclosures of which are hereby incorporated by reference: US Patent No. $5,613,004$ entitled "Steganographic Method and Device" and jits derivative US patent application Serial No. 08/775,216, US patest application Serial No. 081587,944 entitled "Human Assisted Random Key Geocration and Application for Digital Waterniark System," US Patent Application Serial No. 08/587,943 entived "Method for Stega-Cipher Protection of Computer Code," US patent application Serial No. 08/677.435 entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data," and uS Patent Application Serial No, 08/772,222 entutled "Z-Transform Implementation of Digital Watermarks." Public key crypto-systems are described in US Palents No. $4,200,770,4,218,582,4,405,829$ and $4,424,414$, the entire disclosures of which are also hereby incorporated by reference,

By way of improving these digital watermark security methods, utilization of multiple transforms, manipulation of signal characteristics and the requisite relationship to the mask set or "key" used for encoding and decoding operations are envisioned, as
are optimized combinations of these methods. While encoding a watermerk may uttimately differ only alightly in terms of the transforms used in the encoding algorithm, the greater issues of an open, distributed architecture requires more robust approaches to survive attempts at erasure, or even means for maling detection of the watermark impossible. These "attacks" when computationally compared, may be diametrically related. For instance, cropping and scaling differ in signal processing orientation, and can result in the weakesing of a particular watermarking approach but not all watermarking approaches.

Currently available approaches that encode using either a block-based or entire data set transform necessarily encode data in either the spatial or frequency domeins, but never both domains. A simultaneous crop and scale affects the spatial and frequency domains enough to obscure most available watermark systems. The abilly to survive multiple manipulations is an obvious berefit to those seeking to ensure the security of their watermarked media. The present invention seeks to improve on keybased approaches to watermarking previously disclosed, while offering greater control of the subsequently watermarked content to rights owners and content creators.

Many currently available still image watermarking applications are fundamentally different from the key-based implementations. Such products include products offered by Digimare and Signum, which seek to provide a robust watermark by encoding watermark messages that rely entirely on comparisons with the original image for decode operations. The subsequent result of the transform, a discrete cosine transform performed in blocks, is digital signed. The embedded watermarks lack any relationship to the perceptual qualities of the image, making inverse application of the publicly available decoders a very good first line of attack. Similarly, the encoding process may be applied by third parties, as demonsurated by some robustness tests, using one process to encode over the result of an image watermarked with another processNonrepudiation of the watermark is not possible, because Digimare and Signum acl as the repository of all registrations of the image's ownership.

Another line of attack is a low pass filter that removes some of the high Frequency noise that has been added, making error-free detection difficult or impossible.

Finally, many tests of a simple JPEG transform indicate the watermarks may nol survive as JPEG is based on the same transforms as the enooding transforms used by the watermarking process. Other notable implementations, such as that offered by Signafy (developed by NEC researchers), appear to encode watermark messages by performing a transform of the entire image. The goal of this process is to more consistently identify "candidate" watermark bits or regions of the image to encode in perceptually significant regions of the signal. Even so, Signafy relies on the original unwatermarked image to accomplish decoding.

All of these methods still rely on the original unwatermarked image to ensure relatively error-free detection of the watermarks. The steganographic method seeks to provide watermark security without an original unwatermarked copy of the media for decode operations, as well as providing users cryptographio security with ciphered symmetric Reys. That is, the same key is used for encode and decode operations Public key pairs, where each user has a publie/private key pair to perform asymmetric encode and decode operations, can also be used. Discussions of public key encryption and the bencfits related to encryption are well documented. The growing avaitability of a public key infrastructure also indicates recognifion of provable security, With such Hey-based implementations of watermarking, security can be off-loaded to the key, providing for a layered approach to security and authentication of the watermark message as well as the watermarked content.

It is known that atucks on the survivability of other implementations are readily available Interesting network-based attacks on the watermark message are also known which fool the central registration server into assuming an image is owned by someone other than the registered owner. This aiso substantiates the concern that centralized watermarking technologies are not robust enough to provide proper assurances as to the ownership of a given digitized copy of an multimedia work.

Because the computational requirements of performing multiple transforms may not be prohibitive for certain media types, such as still images and audio, the presert invention secks to provide a means to securely watermark media without the need for an original unwatermarked copy to perform decoding. These transforms may be
performed in a mariner not plainfy evident to observers or the owner of the content, who may assume the watermark is sfill detectable. Additionally, wbere a particular media type is commonly compressed (JPEG, MPEG, etc.), moltiple transforms may be used to properly set the mask sets, prior to the watermarking process, to alert a user to survivability prior to the release of a watermarked, and thus perceived, "safe" copy to unknown parties. The result of the present invention is a more realistic approach to watermarking taking the media type, as well as the provable security of the keys into consideration. A more trusted model for electronic commerce is therefore possible.

The creation of an optimized "envelope" for insertion of watermarks to establish secured responsibility for digitally-sampled content provides the basis of much watermark security but is also a complementary goal of the present invention. The predetermined or random key that is generated is not only an essential map to access the hidden information signal, but is also the a subset of the original signal making direet comparisons with the original signal unnecessary. This increases the overall security of the digital waternark.

Survival of simultaneous cropping and scaling is a difficult task with image and audio waternarking, where such transformations are common with the inadvertent use of images and audio, and with intentional attacks on the watermark. The comresponding effects in audio are far more obvious, abthough watermarks which aro strictly "frequency-based," such as variations of spread spectrum, suffer from aligument issues in audio samples which have been "cropped," or clipped from the original length of the piece. Sealing is far more noticeable to the human anditory system, though slight changes may affect frequency-only-type watermarks while not being apparent to a consumer. The far greater threat to available audio watermark applications, most of which are variations of frequency-based embedded signaling, are generally time-based transformations, including time-based compression and expansion of the apdio signal. Signafy is an example of spread spectrum-based watermarking, as are applications by Solana Technology, CRL, BBN, MIT, etc. "Spatial domain" approaches are more appropriate designations for the technologies deployed by Digimarc, Signum, ARIS, Arbitron, etc, Interestingly, a time-based approached when considered for images is
basically a "spatial-based" approach. The pixels are "convolutional." The difference being that the "spread spectrum-ed" area of the frequencies is "too" well-defined and thus susceptible to over-encoding of random noise at the same sub-bands as that of the embedded signal.

Giovanni uses a block-based approach for the actual watermark. However, il is accompanied by image-recognition capable of restoring a scaled image to its origitral sceale. This "de-sealing" is applied before the image is decoded. Other systems used a "differencing" of the original image with the walermarked image to "de-scale." It is elear that descaling is inherently important to the survival of any image, audio or video watermark. What is not clear is that the differencing operation is acceptable from a security standpoint. Moreover, differencing that must be carried out by the waternarking "authority," instead of the user or creator of the image, causes the rights owner to lose control over the original unwatermarked content. Aside from utilizing the mask set within the encoding/decoding key/key pair, the original signal musi be used. The original is necessary to perform detection and decoding, although with the attacks described above it is not possible to clearly establish ownership over the watermarked content.

In view of the foregoing, it can be appreciated that a substantial need exists. For multiple transform utilization and applications for secure digital watermarking that solve the problems discussed above.

Summary of the Invention

The disadvantages of the art are alleviated to a great extent by multiple transform utilization and applications for secure digital' watermarking. In one embodiment of the present invention, digital blocks in digital information to be protected are transformed into the frequency domain using a fast Fourier transform. A plurality of frequencies and associated amplitudes are identified for each of the transformed digital blocks and a subset of the identified amplitudes is selected for zach of the digital blocks using a primary mask from a key. Message information is selected from a message using a transformation table generated with a convolution mask. The
chosen roessage information is encoded into each of the transformed digital blocks by altering the selected amplitudes based on the selected message information.

With these and other advantages and features of the invention that will become hercinaffer apparent, the nafure of the invention may be more clearly understood by reference to the following detailed description of the finvention, the appended claims and to the several draypings attached herein.

Brief Description of the Drawings

FIG. $\mathbf{1}$ is a block flow diagram of a method for encoding digital information according to an embodiment of the present invention.

FIG. 2 is a block flow diagram of a method for descaling digital information according to an emibodiment of the present invention.

FIG. 3 is a block flow diagram of a method for decoding digital information according to an embodiment of the present invention.

Detriiled Description

In accordance with an embodiment of the present invention, multiple transforms are used with respect to secure digital watermarking Thete are two approaches to waternarking using frequency-domain or spatial domain transformations: using small blocks or using the enlire data-sel. For time-based media, such as audio or video, it is only practical to work in small pieces, since the eatire file can be many megabytes in size. For still images, however, the files are usually much smaller and can he transformed in a single operation. The two approaches each have their own strengths. Block-based methods are resistant to cropping. Cropping is the cutting out of remoyal of portions of the signal. Since the data is stored in small pieces, a crop merely meuns the loss of a few pieces. As long as enough blocks remain to decode a single, complete watermark, the crop does not remove the mark. Block-based systems, however, are susceptible to scaling. Scaling, such as affine scaling or "shrinking," leads to a loss of the high frequencies of the signal. If the block size is 32 samples and the data is scaled by $\mathbf{2 0 0 \%}$, the relevant data now covers 64 samples. However, the decoder still thinks that the data is in 32 samples, and therefore only uses half the space necessary to properly read the watermark. Whole-sel approaches have the opposite behuvior. They
are very good at surviving sealing, since they approach the data as a whote, and generally scale the data to a particular size before encoding. Even a small crop, bowever, ean throw off the alignment of the transform and obscure the waternark.

With the preserit invention, and by incorporation of previously disclosed material, it is now possible to authenticate an image or song of video with the encoding key/key pair, eliminating false positive matches with cryptography and providing for the communication of a copyright through registration with third party authorities, instead of the original unwatermarked copy.

The present invention provides an obvious improvernent over the prior art while improving on previous disclestures by offsetting coordinate values of the original signal onto the key, which are then subsequently used to perform decode or detection operations by the user or euthorized "key-bolder." This offsetting is necessary with content which may have a watermark "payload," the amount of data that may successfully be encoded, based on Shannon's noisy channel coding theorem, thal prevents enough invisible "saturation" of the signal with watermark messages to afford the owner the ability to detect a single message. An example, it is entirely possible that some images may only have enough of a payload to carry a single 100 bit message or 12 ASCII characters. In audio implementations tested by the present inventor, 1000 bits per second are inaudibly encoded in a 16 bit 44.1 kHz audio signal, Most electronically available images do not have enough data to afford similar "payload" rates. Thus the premise that simultaneous cropping and scaling survival is more difficult for images than a comparable commercially available avdio or video track. The added security benefit is that the more limited randomizer of a watermarking system based on spread spectrum or frequency-only applications, the random value of the watermark data "hopping "over a limited signaling band, is that the key is also an independent sourse of ciphered or random data used to more effectively encode in a random manner. The key may actually have randorn values larger than the watermark message itself, measured in bits. The watermark decoder is assured that the image is in its original scale, and can decide whether it has been cropped based on its "de-scaled" dimensions.

The benefits of a system requiring keys for watermarking content and validating the distribution of safd content is obvious. Different keys may be used to encode different information while secure one way hash functions, digital signatures, or even one-time pads may be incorporated in the key to sectire the embedded signal and afford nonrepurliation and validation of the watermarked image and "its" koy/key pairSubsequently, these same keys may be used to later validate the embedded digital signature only, or fuily decode the digital watermark message. Publishers can casily stipulate that content not only be digitally watermarked, but that distributors must check the validity of the waternarks by performing digital signature checks with keys that lack any other functionality.

Some discussion of secure digital watermarking has begun to appear. Leighton describes a means to prevent collusion attacks in digital watermarks in US Patent No. $5,664,018$. Leighton, bowever, may not actually provide the security desoribed. For example, in particularly instances where the watornarking technique is linear, the "insertion errvelope" or "watermarking space" is well-defined and thus susceptible to attackz less sophisticated than collusion by unauthorized parties. Over encoding at the watermarking encoding level is but one simple attack in such linear implementations. Another consideration ignored by Leighton is that commercially-valuable content in many cases may already exist in a unwatermarked form somewhere, easily accessiblc to potential pirates, gutting the need for any type of collusive activity. Such examples as compact disc or digitally broadeast video abound. Digitally signing the embedded signal with preprocessing of watermark data is more likely to prevent successful collusion. Depending on the modia to be watermarked, highly granular watermarking algorithms are far more likely to sucesssfully encode at a level below anything observable given quantization artifacts, common in all digitally-sampled media, than expectations that a baseline watermark has any functionality.

Furthermore, a "baseline" watermark as disclosed is quite subjective. If is simply described elsewhere in the art as the "perceptually significant" regions of a signal: so making a watermarking function less linear or inverting the insertion of watermarks would seem to provide the same benefit without the additional work
required to create a "baseline" watermark Indeed, watermarking algorithms should already be capable of defining a target insertion envelope or region without additional steps. Further, earlier disclosed applications by the present invention's inventor describe watermarking techniques that can be set to encode fewer bits than the available watermarking region's "bit-space" or encoding unrelated random noise in addition to watermark data to confuse possible oollusive or other attempts at erasure. The region of "candidate bits" can be defined by any number of compression schemes or transformations, and the need to encode all of the bits is simply unnecessary. What is evident is that Leighton does not allow for initial prevention of attacks on an embedded watermark as the content is visibly or audibly unchanged. Moreover, encoding all of the bits may actually act as a security weakness to those who can replicate the regions with a knowledge of the encoding scheme. Again, security must also be offset outsida of the actual watermark message to provide a truly robust and secure waternark implementation.

In contrast, the present ifivention may be implemented with a varicty of cryptographic protocols to increase both confidence and security in the underlying system. A predeternined key is described as a set of masks. These masks may include primary, convolution and message delimiters but may extend into additional domains such as digital signatures of the message. In previous disclosures, the functionality of these masks is defined solety for mapping. Public and private keys may be used as key pairs to further increase the unlikeliness that a key may be compromised. Prior to encoding, the masks described above are generated by a cryptographically secure random generation process. A block cipher, such as DES, in combination with a sufficiently random seed value emulates a cryptographically secure random fil generator. These keys will be saved along with information matching them to tho sample stream in question in a database for use in deserambling and subsequent detection or decode operation.

These same cryptographic protocols can be combined with embodiments of the present invention in administering streamed content that requires authorized keys to correctly display or play said streamed content in an unscrambled manner. As with
digital watermarking, symmetric or asymmetric public key pairs may be used in a variety of implementations. Additionally, the nesd for certification authorities io maintann uuthenlie key-pairs becomes a consideration for greater security beyond symmetric key implementations, where transmission security is a concern. informstion according to the present invention. Referring now in detail to the drawings wherein like parts are designated by like reference oumerals throughout, there is illustrated in FIG. I a block flow diagram of a method for encoding digital information according to an embodiment of the present invention. Ar image is processed by "blocks," each block being, for example, a 32×32 pixel region in a singie color channel. At step 110, each block is transformed into the frequency domain using a spectral transfom or a Fast Fourier Transform (FFJ). The largest 32 amplitudes are identified and a subset of these 32 are selected using the primary mask from the key at steps 120 and 130. One message bit is then encoded into each block at steps 140 and 150. The bit is chosen from the message usiog a transformation table generated using the convolution mask. If the bit is true, the selected amplitudes are reduced by a uset defined strength fraction. If the bit is false, the amplitudes are unchanged,

Each of the selected amplitudes and frequencies are stored in the key. After all of the image has been processed, a diagonal stripe of pixels iss saved in the key. This stripe can, for exumple, start in the upper leff comer and proceed at a 45 degree angle through the image. The original dimensions of the image are also stored in the key.

FIG. 2 is a block flow diagram of a method for descaling digital information according to an embodiment of the present invention. When an image is chosen to be decoded, it first is checked to determine if th has been cropped and/or scaled, If so, the image is scaled to the original dimensions at step 210. The resulting "stripe", or diagonal line of pixels, is fit against the stripe stored in the key at step 220. If the fit is beter thian the previous best fit, the scalc is sayed at steps 230 and 240 . If desired, the irmage can be padded with, for example, a single row or column of zeso pixels at step 260 and the process can be repeated to see if the fit improves.

If a perfect frit is found at step 250, the process concludes. If no perfect fil is found, the process continues up to a crop "radius" set by the user. For example, if the crop radius is 4 the image can be padded up to 4 rows and/or 4 columins. The best fit is chosen and the image is restored to its original dimension, with any cropped area replaced by zeroes.

Once the in formation has been descaled, it can be decoded according to an embodiment of the present invention shown in FiG. 3. Decoding is the inverse process of encoding. The decoded amplitudes are compared with the ones stored in the key in order to determine the position of the encoded bit at steps 310 and 320. The message is assembled using the reverse transformation table at step 330. At step 340, the message is then bashed and the hash is compared with the hash of the original message. The original hash had been stored in the key during encoding. If the hashes match, the message is declared valid and presented to the user at step 350.

Although various embodiments are specifically illustrated and described berein, it will be appreciated that modifications and variations of the present invention are covered by the above leachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention. Moreover, similar operations have been applied to audio and video content for timebased manipulations of the signal as well as amplitude and pitch operations. The ability to descale or otherwise quickly determine differencing without use of the unwatemrarked original is inherently important for secure digital watermarking. It is also necessary to ensure nonrepudiation and third part authentication as digitized content is exchanged over networks.

What is claimed is:

1. A method for encoding a message into digital infornation, the digital information including a pluraiity of digital blocks, comprising the steps of:
transforming each of the digital blocks into the frequency domain using a spectral transform;
identifying a plurality of frequencies and associated amplitudes for each of the transformed digital bloeks;
selecting a subset of the identified amplitudes for each of the digital blocks using a primary mask from a key;
choosing message information from the messsge using a transformation table generated with a convolution mask; and
encoding the chosen message information into each of said transformed digital blocks by altering the selected amplitudes based on the chosen message information.
2. The method of clam 1 wherein the transforming step comprises:
transforming each of the digital blocks into the frequency domain using a fasi Fourier transform.
3. The method of claim 2, wherein the digital information contains pixels in a plurality of color chamels forming an image, and ench of the digital blocks represents a pixel region in one of the color channels.
4. The method of claim 1, wherein the digital information contains audio information.
5. The method of ciaim 2, wherein said step of identifying comprises:
identifying a predetermined number of amplitudes having the latgest values for each of the transformed digital blocks.
6. The method of claim 2, wherein the chosen message information is it message bit and wherein said step of encoding comprises the step of:
encoding the chosen message bit into each of said transformed digital blocks by reducing the selected amplitudes using a strength fraction if the message bit is true, and not reducing the selected amplitudes if the message bit is false.
7. The method of claim 6; wherein the strength fraction is user defined.
8. The method of claim 2 , further comprising the step of storing each of tie selected amplitudes and associated frequencies in the key.
9. The method of claim 2, further comprising the step of storing a reference subset of the digital information into the key
10. The method of claim 2, wherein the digital infomation contains pixels Forming an image, further comprising the steps of;
saving a reference subset of the pixels in the key; and
storing original dimensions of the image in the key.
11. The method of claim 1 , wherein the digital information contains audia information, further comprising the steps of
saving a reference subset of audio information in the key: and
storing original dimensions of the audio signal in the key.
12. The method of elaim 10, wherein the reference subset of pixels form a line of pixels in the image.
13. The method of claim 11 , wherein the reference subset of audio information includes an amplitude setting.
14. The method of claim 8, wherein the image is a rectangle and the reference subsct of pixels form a diagonal of the rectangle.
15. The method of claim 2, further comprising the step of: requiring a predetermined key to decode the encoded message information.
16. The method of claim 2 , further comprising the step of:
requiring a public key pair to decode the encoded message information.
17. The method of claim 2, further comprising the steps of:
calculating an original hash value for the message; and
storing the original hash value in the key.
18. A method for descaling digital information using a key, comprising the steps of:
determining original dimensions of the digital information from the key; scaling the digital information to the original dimensions;
obtaining a reference subset of information from the key; and comparing the reference subset with corresponding information in the scaled digital information.
19. The method of claim 18 wherein the digital information being descaled it is digital image and the step of obtaining a reference subset of information from the key comprises obtaining a reference subset of pixels from the key.
20. The method of claim 18 wherein the digital information being descaled is audio digital information and the step of obtaining a reference subset of information from the key comprises obtaining a reference sabset of audio information from the key.
21. The method of claim 19 , wherein ssid step of comparing determines a first fit value based on the comparison, and wherein the method further comprises the steps of:
padding the scaled digital image with an area of pad pixels, and
re-comparing the reference subset of pizels with conesponding pixels in the padded image to determine a second fit value.
22. The method of claim 20 , wherein the area of pad pixels is a sow of single pixels
23. The method of claim 20 , wherein the area of pad pixels is a column of single pixels.
24. The method of claim 20 , wherein said steps of padding and re-comparing are performed a plurality of times.
25. The mettod of claim 20 , fur her comprising the step of choosing a best fit value among the determined fit values and restoring the digital image to the original size, including any pad pixels associated with the best fit value.
26. A method of extracting a message from encoded digital information using a predetermined key, comprising the steps of:
decoding the encoded digital information into digital information, inciuding a plurality of digital blocks, using the predetermined key;
transforming each of the digital blocks into the frequency domain using a spectral transform;
identifying a plurality of frequencies and associated amplitudes for each of the transformed digital blocks,
selecting a subset of the identified amplitudes for each of the transformed digital blocks using a primary mask from the key;
comparing the selected amplitudes with original amplitudes stored in the predetermined key to determine the position of encoded message information; and assembling the message using the encoded message information and a reverse transformation table.
27. The method of claim 26 wherein the stop of transforming comprises: transforming each of the digital blocks into the frequency domain using a fast Fourier transform.
28. The method of claim 27 , further comprising the steps of:
calculating a hash value for the assembled message; and
comparing the calculated hash value with an original hash value in the predetermined key.
29. A method for descaling a digital signal using a key, comprising the steps
of:
determining original dimerisions of the digital signal from the key;
scaling the digital signal to the original dimensions;
obtaining a reference signal portion from the key; and
comparing the reference signal portion with a corresponding signal portion in the scaled signai.
30. A method for protecting a digital signal comprising the step of: creating a predetermined key comprised of a transfer function-based mask sef and offet coordinate values of the original digital signal; and
encoding the digital signal using the predetermined key.
31. The method of claim 30 , whercin the digital signal represents a continuous analog waveform.
32. The method of claim 30, wherein the predetermined key comprises a plurality of mask sets.
33. The method of claim 30 , wherein the mask set is ciphered by a key pait comprising a publie key and a private key.
34. The method of olaim 30 , further comprising the step off
using a digital watermsrking technique to encode information that identifies ownership, use, or other information about the digital signal, into the digital signal
35. The method of claim 30 , wherein the digital signal represents a still image, audio or videa.
36. The method of claim 30, further comprising the steps of:
selecting the mask set, freluding one or more masks having random or pseudo-random series of bits; and
validating the mask set at the stars of the transfer function-based mask set.
37. The method of claim 36 , wherein said step of validating comprises the step of:
comparing a hash value computed at the start of the transfer function-based mask set with a determined transfer function of the hash value.
38. The method of claim 36, wherein said step of validating comprises the step of:
comparing a digital signature at the start of the transfer function-based mask set with a determined transfer function of the digital signature.
39. The method of claim 36 , further comprising the step of:
using a digital watermarking techrique to embed information that identifies ownership, use, or other information about the digital signal, into the digital signal; and
wherein ssid step of validating is dependent on validation of the embedded information:
40. The method of claim 30 , further comprising the step of:
compuing a secure one way hash function of carrier signal data in the digital signal, wherein the hash function is insensitive to changes introduced into the carfice signal for the purpose of carrying the transfer function-based mask set.
41. A method for protecting a digital signal, comprising the steps of: creating a predetermined key comprised of a transier function-based mask sel and offsel coordinate values of the original digital signal;
authenticating the predetermined key containing the correct transfer function-based mask set during playback of the data; and
metering the playback of the data to monitor content to determine if the digital signal has been altered.
42. The method of claim 30, wherein the digital signal is a bit stream and further comprising the steps of:
generating a plurality of masks to be used for encoding, including a random primary mask, a random convolution mask and a random stant of message delimiter:
generating a message bit stream to be encoded;
loading the message bit stream, a stega-cipher map truth table, the primary mask, the convolution mask and the start of message delimiter into memory,
initializing the stafe of a primary mask index, a convolution mask index, and a message bit index; and
setting a message size equal to the total number of bits in the message bit stream.
43. The method of claim 42 wherein the digital information has a plurality of windows, further comprising the steps of:
calculating oyer which windows in the sample stream the message will be encoded
computing a secure one way hash finction of the information in the calculated windows, the hash function generating hash values insensitive to changes in the samples induced by a stega-cipher; and
encoding the computed hash values in an encoded stream of data.
44. The method of claim 40 , wherein said step of selecting comprises the steps of: collecting a series of random bits derived from keyboard latency intervals in random typing;

10
processing the initial series of random bits through an MD5 algorithm; using the results of the MD5 processing to seed a triple-DES encryption loop; cycling through the triple-DES encryption loop, extracting the least significant bit of each result after each cycle; and
concatenating the triple-DES output bits into the random series of bits.

FIG. 1

FIG. 2

FIG. 3

DISH - Blue Spike-408
Exhibit 1010, Page 2455

INTERNATIONAL SEARCH REPORT

.nformation on patent famifly mambers

Inte onal Application No PCT/US 99/07262	
$m_{\text {mily }}^{2(s)}$	Publication date
72073 A	21-10-1998
42151 A	27-12-1996
37236 A	11-11-1997

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5613004	A	18-03-1997	$\begin{aligned} & \text { EP } \\ & \text { WO } \\ & \text { US } \end{aligned}$	$\begin{aligned} & 0872073 \mathrm{~A} \\ & 9642151 \mathrm{~A} \\ & 5687236 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 21-10-1998 \\ & 27-12-1996 \\ & 11-11-1997 \end{aligned}$

PCT

WORLO INTEL ECCUAL PROFEQTY OROATIZATION Intmutiocal Burcal
-INTERNATIONAL APPLICATION PUELISHED UNDER TAE PATENT COOPERATION TREATY (PCT)

FOR THE PURPOSES OF INFORMATIQN ONLY							
Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT							
AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lihuanis	SK	Slovakia
AT	Austria	ER	France	LV	Luxembourg	SN	Senegal
AJ	Ausmalia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbsijan	GB	United Kingdom	MC	Морасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Geargia	MD	Repubiic of Moldova	TG	最口
B6	Barbados	GH	Ghana	MG	Madagascar	TM	Tarkmenistan
BE	Belgium	GN	Gumes	MK	The former Yugosila	TR	Turkey
By	Burkina Faso	GR	Greect		Republic of Macedonis	IR	Turkey
BG	Bulgarin	HU	Hungary	ML	Mall	\%	Trinidad and Tobago
B1	Beain	18	Ireland	MN	Mongolia	UG	Urands
BR	Brazil	IL	Ismel	MR	Musuramia	U	United States of America
BY	Belares	IS	Tecland	MW	Malawi	uz	Uzbekisum
CA	Canada	IT	traly	MX	Niger	VN	Viet Nam
C8	Cenmel Africsi Reprablic	JP	Japar	NL	Nethertands	YU	Yugoslavia
CG	Congo	KE	Kenya	+6	Nurway	zW	Zimbabore
CH	Switzertand	K\%	Democratic People'a	NZ	New Zealand		
CM	Cote d'lvoire Cameroon	K	Republic of Korea	FL	Poland		
CN	Chima	KR	Republic of Korea	PT	Portugal		
CU	Cuba	kz	Kazalatan	RO	Romania		
CZ	Crech Republic	LC	Saint Lucia	RU1	Rusxian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Deammat	LK	Sti Larka	SE	Sweden		
EE	Estonis	Ln	Libería	SG	Singaport		

Methods for Embedding Imuge, Audio and Video Watermarks in Digital Data

TRELD OF THE INVENTION

This invention retales generally to the digital commurications and mulimedia fields and in partioular the fivention provides a method for the emberiding and crotrieval of digital image, audio or vides watermarks in the transform dominin for digital multernedia data, arith applications in copypight protection and security data mansmission and reception
BACKGROUND OF TBE INVENTION
The tremendous growth in multimedia prodicts and services through the Internei has led to the need for copyright profection, aumentication and integrity of dati. In thid past few years, a number of digital waternarking techniques have been developel and patents gramted, for the purpose of resolving the legal use or misuse of copyright information on the Intermst. Unlike data encryption that transforms the orginal data to another form for security trmsmission, digital watermarking anbeds amr invisible or inaiudible watemark directly into tho original data.

Typical examples of recent work in the field of digital waternarking or date embedding are described in U.S. Patent 5636292 to Rhoads (1997) and ti. 8 . Patent 5659726 to Sandford and Hmedel (1997). Rhoads discloses methods for embedding an identification code on a carrer signal, such as att electronic datu signal or a physical medium. Sandford and Handel disoloso a method of embodding aboxilary mformation into a set of host data, such as a photograph, of a television signol

Prior art publications in the field of digital warermarking tectinology, imeluding the two aforementioned granted U.S. Patents, generally envisage onfy the embedding of a very limited number of bits of information (in the form of binary digits ${ }^{\prime} 1^{4}$ and ${ }^{\circ} 0$) or a few sharacters (such as 'A12') into the cartier signal More detailed ownership information requires a toigher level of embedded waternark information either in the form of longer alphanwneric character strings or, if possible, undemarks/logo images, or speech of the original ownet, which is embedded into and retriceved from the cartien sigual. However, this has previously been considered to be very difficult to achieve. without significant comption of the data being labelled es the amount of data to be Inserted is increased. The present invention describes such a method for embeiding. digital audio or image watermarks directly into targeted audio or image data, substantially inaudibly or invisibly, respeetively.

There are many other potentiat consumer, cormercial and service applications that can benefit from the use of digital watemarkang technology in copyright protection
and security transnission. These applications include the embedding of owner identification, such as the trademaths or logos of an owner into digital still and video cameras, or copyright protection and royulty tracking monitoring of sound recordings in the music industry with digital audio watermarks of the artists' voice embedded into the zound tracks.

Furthermore, commercial and service sectora are also interested in the secure transmission and reception of sensitive messages, data, and even images that could be camonflaged into normal datn streams transmitted over an open chaninel.

SUMMARY OF THE INVENTION

In this specification and claims the term "unlabelled data" is to be given the meaning of target data to which a new label is to be added by the method of the present invention, whether or not that target data is carrying a previously applied label. Similarly the term "Jabelled data" is to be given the meaning of target data to which the new label has been added by the method of the present invention.

According to a first aspect, the present inyention provides a method for applying digital watermarking image data or digital watermarking audio data to an wolabelled digital imsge, audio, or video data sample, said method including the steps of :
a) inputting a set of unlabelled digital data and a set of digital watermark
data;
b) formatting the unlabelled digital data into a format suitable for orthogonal transformation;
c) performing an orthogonal transformation on the formatted unlabelled data to produce a set of unlabelied data transform coefficients;
d) formatting the digital watermark data into a format suitable for orthogonal transformation;
c) performing an orthogonal transformation on the formatted watermark data to produce a set of watermark data transform coofficients:
f) for each watermark data transfomm coefficient, allocating an uplabelled data transform coefficient to be replaced and replacing the respective unlabelled data transform coeflicients to produce a labelled set of data transform coefficients:
g) storing the locations into which watermark data transform coefficients were encoded in the set of labelled data transform coefficients fo generate a unique key for future decoding of the watermark data;
b) performing an inversc orthogonal transformation on the inbelled data transformi coelficients to convert them into a set of labelled digital data having a torm resernbling the original malabelled digital data-

Preferably, the steps of formating the unlabeiled and walemmarlied data include the stops of mapping tha set of uniabelled data and the set of watermark data foto two-dimensional matrices prior to perforsing the orthogonil transformations.

Proferably also the matrices of unlibelled mid waternark data are divided into smaller sub-bloaks prior to orthogonal transformation.

The preferred method furtier includes the siep of ordering the orthogonal transformation coefficients in each sub-block of the waternark data into one-dimensional arrays in approximately increasing frequency order (throughout the specification and elaims, the term "approximately increasing frequency order" is used iti respect of one-divencional arrays of orthogonal transform coefficients lo indieaite thut the coefficients of the array are ordercd in generally increasing ferequency oriet, from the first to die last postion in the amray, with only occasional localised deviations from the gerierally increasing trend) by petforming a zig-zag scan of eech sub-block of urthogonialiy frensformed watermark data. The reordered orthogonal transformation coefficients are then divided into segneats for subsequenir replicement into the set of Gansformation coefficients of the unlaberled date.

The preferred method further includes the step of ordering the orthogonal transformation coefricients of the Unlabelled data into one-dimensional arrays in approximately increasing frequenoy order by performing a zig-2ag scan of each sub-block of orthogonally transformed unlabelled data prior to replacement of the waternurk data coefficientr and perionning an inverbe zig-zag scan on the labelled data coefficients priar to the inverso orthogonal transformation In the step of allocating a segment of the orthogonally-transformed watermark data that will be encoded is each sulb-block of the unlabelled data; the allocation may be performed in a stractured or random mamer.

Attematively, the zig-zag and inverse zig-zag scans of each data type can be replaced with a radial and inverse radial scans reppectively.
th is ilso preferable to calculate the mean and variance of the ac enurgies from the orthogonal transformation coefficients ior each sub-block of the unlabelled data in order to allocate the locations of the transforms coefficients of the umabelled data which will be replaced by the transform coefficients of the segment of watermark data. Preferably the tranaform coofticients to be replaced in the transionned unlabelled data will be those in which the an encergies fall below a predetermined threshold value.

The transform coefficients of the watermark data embedded in the labelled digital data are also preferably compressed prior to embedding, using a scaling, function. Preferably the compression fimction has an exponential characteristic, bowever in other embodiments. scaling functions having another characteristic similar to ar exponential function may be used to similar effect

According to a second aspect, the present invention provides a method for extracting digital waternarking image data or digital waternarking audio data from a digital image, audio, or video data sample, said method including the steps of:
a) inputting a set of labelled digital data and unique key dats containimg information of locations of waternark data imposed as a label on the labelled digital data;
b) mapping the set of labelled digital data into a format suitable for orthogonal transformation;
c) performing an orthogonal transformation on the formatted labelled data to produce a set of labelled data transform coefficients;
d) using the unique key to extract a segment of transform coefficients of orthogonally transformed watermark data from the locations in the set of labelled data transform coefficients specified in the key;
c) using an inverse orthogonal transformation on the transformed watermark data to retrieve the embedded watennark data.

Preferably, the formatting step of the watermark extraction method includes the step of mapping the set of labetled data into a two-dimensional matriz prior to performing the orthogonal transform.

Preferably also, prior to orthogonal transformation, the matrix of labelled data is divided into the same number of smaller sub-blocks as that used in the encoding process.

It is also preferable to order the orthogonal transfomation coefficients of the labelled data in each sub-block into a one-dimensional array in approximately increasing frequency order by performing a zig-zag sean of each sub-block of orthogonally transformed labelled data prior to extraction of the watermark data coefficients and performing an inverse zig-zag scan on the extracted waternark dati coefficients to build a matrix of sub-blocks of waternark data prior to the ijverse orthogonal transformation. In some embodiments of the invention a radial scan is used in the ericoding process of the unlabelled data to order the wollabelled data prior to replacement with watermark data in which case a radial scan and inverse radfal scan
sthould also be used in the decoding process instead of tespectively a aig-zag scan and inverse zig-zag scan.

The transform coefficients of the watermark data embedded in the tabelled digital data are also preferably compressed prior to embedding and the extraction method includes the step of expanding the compressed watermark data prior to the inyerse orthogonal transfomation, the compression and expansion steps using gealing functions each having a characteristic which is the inverse of the other. Proferably the compression function has an exponential characteristic and the expansion function has an inverse exponential characteriatic. In other embodiments scaling functions having characteristics similar to an exponential and inverse exponential function respectively may be used to similar effect.

In embodiments of the invention, the retrieved watermark data samples may either be displayed as a visual or audio outpul of the encoding process for Immediate examination or authentication, or may be stored as a digital file for future visual or aural examination or authentication or for digital comparison with a master reference file.

Preferably, the orthogonal transform is a Discrete Cosine Transform (DCT) and the inverse transforn is an inverse DCT, however, other orthogonal transforms such as Fourier, Walsh-Hhdamard, Haar, Sine, and Wavelet transforms can also be used.

The unlabelled digital data samples may be obtained from a sample stream representing a digitised grayscale or colour image, for example, as provided by a digital still camera. Alternatively, the unlabelled digital data may be obtained from a sample stream representing digitised video in which case the source may be a video camera or a master tape of video program material.

In the second aspect of the invention, the labelled data prior to decoding, will in most cases be obtained from some form of recording such as a recording on a Video CD (VCD), a Laser Disc (LD) or a Digital Versatile Dise (DVD) carrying a recording of the labelled data as the digitised video in a digitised movie or still image contained within a video game or other software. The labelled data may also be obtained from a broadcast transmission.

The unlabelled and labelied digital data may also be a part of an audio signal in which case it may be a digitised sample strearn representing digitised sound or music and may include two sample streams representing channel A and channei B of digitised stereo sound, each of which or either will be encoded with watermark datz

In the case of audio data, the tramamsion step raight isvolve recording The labelled dale of a Compact Disc (CD), Digital Audia Tupe (DAT), a Laser Disc (LD), a Video CD (VCD), live digital broadcast, or five digital music or conyersation down a communication chanmel such as a telephone line or phone through internet.

The labelled digital data may also bo a part of an mage or a video signal that contains a digitised audio segmem as watermark data. In this case; the uansmission step might involve recording the labelled data on a video CD, a digital versatile diso (DVD), a laser disk or live transmission of images or video signals dowd a commumication chamel nuch us a telephoue lime or through the imiemet.

Preferably, the waternark digital data will molude one or more of an owne's. logo, an awner's tradernark, a personal identification, an artist's recorded voice of, general terms for publisher distribution.

Embodimenis of the prescnt invention provide a digital Watermarking method: that umbeds and retrievea sither digital andio or image watermarks in the temporsi (one-dimensionil) and spatial (two-dimensional) domain of digitat data. Compared with existing toethods, which target mainly the embedding of alphanumeric character codes as watermaits, embodiments of the present invention have the distinct adyantage ofembedding and retrieving an entfre andio or image watermark into various digital data formats, inaudibly or invisibly, respectively.

Digital watermarking methods according to the preferred embodiment of the invention are muly generic in the sense that thoy can be applied to mony different formats of digital mediu. The method operates on orthogonal transfomm coefficients of the data source. The adyantages of using orthogonal transforms in the field of digital image processing such es data eompression, restoration, enfiancement and pattern recognition have been well documented in the literature. The main advantage of usting orthogomal transforms instead of a temporal or spatial domain is the de-correlation processes that result in fower coefficients with significant energies of interest. Subsequenily, à number of data processing tecliniques auch as filtering and threstolding can be dhectly spplied to the transform coelticients.

Using embodimants of the present invention, a digital image of a trademark or logo can be emhedited fnto and ratrieved from a grayscale or colour image stored is Ether BMP, GIF, TWF, JPEG or MPEG formal. In audio waternarking, the sume method can be used to embed a signabure nudio sequence into typical andio formats such as WAV and AIFF or into images or video signals. This metbod can also be extended io embedding audio watermurks in digital image or video data, such as DVD and VCD formate, or liye gignals through the internet or down a telephone line.

Cortelation studies performed on many experimental tests of the present havention have revealed that the labelled (embedded or watermarked) data and the original uniabelled data can result in high correlation coefficient value in the range of approximately 0.91 to 0.99 (When there are absolutely no differences between two images, the correlation value would equal to 1.). The present method exploits the decorrelation property of coefficients in the transform domain for watermark embedding. In the transform domain, most of transform coefficient energies are associated with unly a fow low frequency coefficients thus the watermark daty can be embedded is the high frequency region.

With the tremendous growth in products and services provided through the Internet, the need for copyright protection, authentication and integrity of digital data is rapidly increasing in importance, With the present method, a company's logo or tradernark can be embedded entirely into a digital image invizibly or into a sound urack maudibly. The hidden data or waternark can then be subsequently used in resolving copyright protection issues.

Consumer products, such as digital still and video cameras, can also exploit the benefits of this invention as a built-in feature of their integrated technology, for example in copyright protection and product identification. Digital watermarking cau also be very useful in commercial and personal communications. For example, classified or sensitive information can be embedded within an audio, digital still/video data for secure transmission and reception.

Preferably, embodiments of the invention provide the same generic functional capability of a digital watermarking method whether the digital audio, or image watermark is embedded into any one of various data Formats, such as grayscale and colour images, or audio or video data.

According to a third aspect, the present invention provides apparatus for applying digital watermarling image data or digital waternarhing audio data to an uniabelled digital image, audio, or video data sample, said apparatus including:
a) unput means arranged to input a set of unlabelled digital data;
b) processing means arranged to process the unlabelled digital data to encode watermark data into the unlabelled data to form a set of labelled digital dats; and
c) output means arranged to output the labelled digital data to a conmunication or storage medium,
wherein the processing means is arranged to perform the method as hetein described.

According to a fourth aspect, the present invention provides an apparatus fon extracting digital watermarking image data or digital watermarking audio data from labelled digital image, audio, or video data sample said apparatus including:
a) imput means arranged to input a set of labelled digital data;
b) processing means artanged to process the labelled digital data to extract watermark data encoded into the labelled digital data; and
c) output means arranged to output the extracted watermark digital data to a display or storage means,
wherein the processing means is amanged to perform the method as hercin deseribed.
According to a fifth aspect, the present invention provides a digital recording, reconded on any recording medium, the recording being encoded with watermark data in accordance with the methods described.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings in which:

Figure 1 illustrates a step of sub-blocking a matrix for orthogonal transformation used in embodiments of the invention;

Figure 2 illustrates a zig-zag scanning technique used in an embodiment of the invention, as compared to conventional line-by-line or raster scanning,

Figure 3 illustrates an image a) before and b) after a step of perionning a Discrete Cosine Transform (DCT) on the sub-blocks of the image used in an embodiment of the invention;

Figure 4 illustrates an exponential curve used in a step of re-scaling the transform coefficients used in embodiments of the invention;

Figure 5 illustrates a step of embed ding the watermark coefficients in a structured mamer in accordance with an embodiment of the invention;

Figure 6 illustrates a step of embedding the watermark coefficients in a random manner in accordance with another embodiment of the invention;

Figure 7 illustrates a schematic block diagram of an embodiment of the present invention for embedding and retrieval of digital watermarks through orthogonal transformation;

Figure 8 illustrates a pseudocode listing of the embodiment of figure 7 providing a digital watermarking system that can apply to audio, image or video data.

Figure 9 illnstrates an example of digital image watemarking of a company's logo, of size 128×128, into a real image, of size 512×512, of a woman's face, createl using an embodiment of the present invention;

Figure 10 iflustrates another example of digital image watermarking of a company's logo, of size 128×128, into a real image, of size 512×512, of a satellite image, created using an embodiment of the present invention;

Figure 11 illustrates a block diagram of a communications encoder/decoder for hidden data encoded on a conmunications channels

Figure 12 illustrates a block diagram of a multimedia encodet/decoder for waternark data; and

Figure 13 illustrates a block diagram of a personal identification card encoder/decoder.

Detailed description of embiodiments of the invention

Embodiments of a digital watermarking method will now be described in which the coefficients of a Discrete Cosine Transform (DCT) are employed. Howoyer, implementations of the invention are not limited solely to the use of DCT, and other orthogonal transforms such as discrete Fourier, Walsh-Hadamard, Haar, Sine and Wavolet transforms can also be used to good effect. In the preferred embodiment, both uniabelied đata and watermarki image data are first converted into two-dimensional matrices and then divided into sub-blocks, prior to orthogonal transformstion. The present invention requires that the dimension size of the unlabelled data set must bo at least twice the dimension size of the watermark data in each dimension, to fulfil a requirement that is closely related to the concept of the Shannon's sampling theorem. For example, for a 512×512 unlabelled image, the watermark image should be typically 256×256 or smaller.

Preferably each sub-block of the matrices is 8×8 pixels, which is typically considered to be a good size for data compression applications in terms of speed and minimum blocking edge offects, introdueed by the sub-blocking process. For example, 8×8 and 16×16 are commonly used in JPEG and MPEG formats, however other subblock dimensions may also usefully be employed. After sub-blocking, the individual sub-block daaa are then mupped into the transform domain through a DCT operation. The respective transform coefficients are then operated on by a number of processing steps necessary for digital watermarking. Figure 1 illustrates the 8×8 sub-blocking blocking process in which a matrix 12 is divided into a plurality of 8×8 sub-blocks 10 for orthogonal transformation.

Referring to Figure 2, the first procesaing step io the cransform doman is io roarrange the transform coefficients of the uniabelied and Waternarls data by performing a zig-zag scan of each sub-block. The zig-zag scansing lechnique has beer used extensively in dala compression. This fechnique essentially fr-arders the transform cooffigients foom low frequency to high frequency in an approximately ascending, manner. For etample, fof a two-dimensional sub-block of size, Mx N, the de transipro coefficient or zero frequency component, is located at $(1,1)$, and the other ace mansform coofficients are at the following locations, $(1,2),(1,3), \ldots,(1, N),=u(2,1)$, $(2,2),(2,3), \ldots,(2, \mathrm{~N}) \ldots,(\mathrm{M}, 1),(\mathrm{M}, 2),(\mathrm{M}, 3), \ldots(\mathrm{M}, \mathrm{N})$. The zigezag stanning lechnique will fe-order the coefficient locations as follows: $(1,1),(1,2),(2,1),(3,1)$, $(2,2),(1,3)_{,}(1,4), \ldots$, (M,N). In this manner, for each sub-block, the elements in the (M2N) matrix will be mapped into a one-dimensional array of size MN. Eigure 2 Illustrates the zig-xag semming technique applied to the first 8×8 sub-hlock 10 of Figure 1.

After zig-zag scanning, the transform coemcients are sabjected to stalistical anafysis. In this operation, the ac irmsform encrges of the tulabeiled data are firat calculated from the hansform coefficients and then compared with a threshold value derived from the mean and standard deviation of the ac transform energies. The use of an adaptuve energy threstold atlows optimum offset positions in each onc-dimensionan! array to be determined. The offser position is each one-dimensional array corresponds clósely with the mininum ac energies within that anay. Beyond this position, the yansform coufficients do not play a vital pole even if they are reglected. This is similar To conventiomal transform coding where data compression is achieved by coding only those franatorn coefficients with sufficient energies, which generally fall into the low frequency sange. Figure 7 illustrates the DCT domain of sub-blocks of an imge.

It should be noted that the statistical method described in this embodiment is not. the only possible method that can be used to set the location for replicement of the watermark data. Other adaptive filtering techniques include the choice of a fixed locution for each watermark block, or alternutively the flexible use of statistical datif such as the mean, standard deviation, and higher-order moments.

The embedding process of watermark coefficients must avoid overwriting any relevimut traneform coefficients of the unlabelled data wift significant ac energies, as this would introduce ungecessary errorn in the unlabelled data. Locating the optimum locations is therefore not oniy important in reducing the enrors but the locations also generate a unique key dtat will be used later for decoding. Through the process of embedding the unlabelled data with an imvisible or inaudible watennark, the combined
data set will nuw become lubelled data. Integrity of hig labelled data depends entively on how the actansform coefficienis of the unlabelled date are overwritten or replaced by the watermark transform coefficients, 山lurigg the embedding process.

The walemark data is also grouped into a two-dimensional matrix. The deta is thun divided into sab-blocks. Each sub-block is subjected 16 DCT or other orthogonal transformation in the same way as the urlabelled data has been treated. Again, zig-zag scaming is applied to arrange the trinsformation coefficients in an approximately increasing feequency order. The transformation coofficients for the watermark data are then blocked into segments for structured or rancom mmbedding in the trunsformation coefficients of the unfabelled data. Each segment of transformation coefficients to be smbedded may be subjected to an optional scaling opeation. This will help to tuinimûe the overall effect of the transformation coefficients on the unlabelled data. In pop prefered embediment, tha scaling finction is un oxponential function, although pther similar mathematical functions may nilso be used.

Figure 4 illustrates the adaptive filcering for re-aciling of transform coeffieients that follows an exponemial curve. An inverse curve to the exponentint curve of Figure 4 will be used in the decoding process Other scaling tectniques such as the reciprocal function, normal, log-normal, hyper-exponential, or other appropriato probability density funtetiors can also be used.

As the dimensional size of the unfabelled data 12 is at least twice the dimensional size of the watermark data 13 , the embedding or ancoding process of watermark coefficients is can exploit the additional sub-blocks 10 pvailable in the undabolled data 12 . The encoding process can be periormed either in a structured or fandom manner For example; in a structured menner, the waternark ooeffigients 15 car be embedied in every odid or even column or row of the unlabelled ransform coctficient locations. While in a random manner, the walermark coefficients can be tocated in differcent columns or rows, depending on à specificd randorn sequence. Figures 5 and 6 tilostrate the patertank coefficients 15 embedded it a structured 20 and random 22 mamer, respectively.

One dmportant feaure of the prosent invention is that tho sizes of both unlabelled and labelled data are compatible. For example, a 512×512 grayscale unage, tmbedded with a 128×128 watermark grayscale image corresponds to exuctly the samt data size of the unlabelled image, approximately 262 kBytes. A unique key for the lobelled image is generited and the size of the key is much less than the watermark grayscale image of sizc of 16.4 kBytes of data. The sizz of the key for a 512 $\times 512$ mage is only approximatoly 4 kBytes .

The unique key and the labelled date generated will be transmitted to the decoder for extraction of tho digital watermerk. For added security, the unique key cant be firther encrypted tirough some randorn sequence. From the umique key, the spatial locations of the embedded watermant transform coefficients are extracted for eact sub- block. The extracted transform coefficients are then expanded through the application of an inverge optional exponential or other appropriate compression curve. Thest expanded coefficients are subsequently converted back to follow à normal scanning. pattern in a two-dimensloual matrix before being operated on by an inverse DCT.

Figure 7 Illusmates a schematic process flow diagram of the present inventton for embedding and retrieval of digital watermarks though orthogonal transformation. Referring to Figure 7, the unlabelled raw data 12 and the watermark raw data 13 ure firbt divided into sub-blocks 10,28. Both data sub-blocks are Individually transformed through it DCT 30. The transform coefficiments of the sub-blocks are then re-vrdered to follow a zig-zag patiern 14. Spatial locations for embedding are denved from the ac: transform energies 32 of the unlabelled data 12. A unique key 34 for decoding is generated from thess apatial locations. Prior to embedding the watermark coefticients onto the umlabelled spatint locations, the watermath coefifcients are first compressed by an exponential fiter 18. The compressed watermark coefficients are embedded 36 structurally or randomfy into the unlabelled sub-block DCT cocificients. The lahilled coeiticients me then to-ordered from a zig-zag zean pattern back lo a nommal scan pattern, before an inverse DCT iransformation 38 is performed on lthe coefficients to oblain the labelled date 39,

At the decoding end, the labeiled dala 38 and the unique bey 34 are both read 40) The same process of forward DCT transformition 130 and eig-zag scanning 114 are also performed on the labelled data, us in the case during the embodding stage, From the habelled transform coefficients, the watemnarl coefficients are decoded 46 from the labelled coefficients bused on the spalial locations extracted 44 from the unigue key. The watermark coefticients are expanded througlt an inverse exponential Filler 48 and re-mranged to follow a nomal scan pattern. Thes is then followed by an inverse transformation by DCT 138 to obtain the decoded watermark datia

Figure Bu and 8b illustrate psendocode listings of indigital watermarking coder and decoder system that can be applied to mage, audic and video data. Figures 9 and 10 illustrate examples of digital image watermarking in the form of a company logo or size 128×128 into tworaal images of size $512 \approx 512$ of a women's face and a sutellite image, respectively. Correlation analysis performed on these examples botweern the uniabelfed and labelled images and onginal and decoded watennarks have yielded
correfation cocficients of 0.9932 and 0.9975 for the face and watermark, respectively Whie for the satellite image and is logo, the correlation coefficients for uriabelios and tabelled images and original and deooded watermarks are 0,9979 and 0,9994, respeotively.

The proposed method of digital watermarking of an audio Bequence innudibly or imgge sequence invisibly inta digital data has many potential applications for resofvinge copyrighl protection issues in the consumer sector or for security transmission in the commercial and service sectors. This principle applies to personal voice communication though open-channel comnunication systems. For cxampley duta watermarking of a company's logo/trademark or a person's identification can be incorporated into consumer eiectronio products, such pa digital still/video camera and more recently, VCD and DVD players, to awhenticate the trae ownership of intellectual property right and constumer identification. Another major consumer area for digital watermerking is in the pomtection of illegal copying and downloading of mumic CDs and lapes. For example, the voice of the artist can be inaudibly embedded into a sound track through the ufe of the present invention.

In the commercial sector, the copyright protection of multimedia data on the Internet needs also to be monitored closely, as there are tremendoug anoumt of origual data in the form of music, image and video, illegally downaloded and redistributed without the consent of the true owners. The present invention can be used to address this problem, as well as providing the security transmission of embedded data in some commercial bankang operationa, Sixailarly in the service sector, sensitive uidio or image dála can be embedded inno an ordinary speech or image for secure transmission; respectively:

Referring to Figure 11, an application of the metbod of the present invention if Busuated, in which input digital facsimile or telephone andio data 200, is encoded with lildden digital data 201 in a communicstion cncoder 202 cmbodying an encoding method necording to the invention.

The encoder 202 outputs a set of labelled digital facsimile or telephone date 203 and a unique key 204 as aresult of the encoding process and these are tranmitted via a comrnumications chantrel 208 to a communication deonder 205 embodying a decoding metbod uecording to the urvention. The decoder outpuis labelled (i.e. ungitered) digital facsimile or tetephone data 206 and extracted hideden data, 207 which may represents hidden message, or may be used to validate the source of the telephone facsimile data.

Turning to the embodiment of Figure 12, a furthet upplication of the method of the present inverition is illustrated, in which input digital audio, image or video dath

210 is cnooded with digesi watermatk dama 21 i in a multimedia enpoder 212 embodying an encoding method according to the invention. The encoder 212 ouppus a set of labelled digital audio, video or mage data 213 and unique key datn 214 as a result of the encoding process und is carried as a recording on any suitable digital recarding media or is a cransmission over a conmunications or broadcast channel 218 , In tim, the labelled data 213 and key data 214 are fed to a multamedia decoder 215 which excracts the wetermork data and oupputs the waternark data 217 and the labelled data 215. The estracted tabel or watermark 217 may be displayed to indicato the origin or ownenslip of the recording or transmission wo the user of the dara.

In Figure 13, yet anotber application of the invention is illasirated in which fdentification information: 220 atch as personal identification information from an identification (ID) card is cncoded with watermark data $22!$ in an identification (ID) card ancoder 222 such that output labelled ID data 223 may be validated at a later date. The ID card encoder 222 outputs labelled ID data 223 and a unique key 224 produced by the encoding proness For transmiesion 228 as part of a transaction such as a credit card tarsaction which requires secure transmission of the card holder's identity,

A vard decoder 225 which receives the transmission 228 includes a walemafl: decoder acoording to the present invention which toputs the transmitted labelled iD data 228 and the unique key 224 and outpuits ID dita 226 andi watermark data 227, The walemmark data 227 may then be used to indicate validity or otherwise of the labelled ID data 226 in in authentication process associated with the transaction.

The proposed method of data watermarking can embed andio or image data, ineudibly or invisibly, respectively, into various digitai multimedfa dam formats, such as audio, image and video. Frovided the ulabelted data dimension size is at feast twice The dimension size of the watermark data, an artist's recorded voice or an catire umage of a company's fogo or tridemark, for example, can be embedded into audio aud image and yideo data, without any serious degradation to the data quality. The proposed method Exploits the de-correlation property of orthogonal innnsforms for embedding and retrieving digital watermarks.

Although the proposed method describes mainly the use of a discrote cosine tratisform as the domain for wutermartiog, howevet, orthogonal transforms such as Fourier, Walsh-Hadamerd, Harar, Sine and Wavelet can also be upplied. Instead of the corrent waternatking lechnology of embedding rext stringe into digital data, the proposed inethod would provide additional complementary proof as to the true ownetship of the digital data, by the use of a company's loge or a recording of the
artist's voice, making a copyright infringement claim easier to substantiate than when fust a text string is applied as the watermark.

The ability of the proposed method to embed and retricve an entire audio or image watermark is a significant advantage over current prior art techniques that could only embed very simple and limited number of bits or characters into the data. Correlation performed on digital data before and after digital watermarking using the proposed method has shown the data to be very close to one, indicating that there is minimum loss in data integrity. A significant advantage of the preferred embodiment is that the labelled and uniabelled data have the same data size. A unique key generated during the embedding process that is necessary for decoding the watermark is only fractionsl of the watermark data size.

Digital still and video cameras can also benefit from the proposed method as a built-in feature of their integrated technology. Moreover, digital waternarking can be useful in commercial and personal communications. For example, a classified audio or image can be embedded into digital multimedia data for secure transmission.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive,

CLAIMS:

1. A method for applying digital watermarking umage data or digital watermarking audio data to an unlabelied digital image, audio, or video data sample, said method including the steps of:
3) inputting a set of unlabciled digital data and a set of digital watermark data;
b) formatting the unlabelled digital data into a format suitable for orthogonal transformation;
c) performing an orthogonal transformation on the formatied unlabelled data to prodace a sot of unlabelled data transform coefficients;
d) formarting the digital watermark data into a format suitable for orthogonal transformation;
e) performing an orthogonal transformation on the formatted watermark data to produce a set of watermark data transform coefficients;
f) for each waternark data transform coefficient, allocatiog an unlabelled data transform coefficient to be replaced and replacing the respective unlabelled data transforn coefficients to produce a labelled set of data transform coctifients;
g) storing the locations into which watermark data transform coefficients were encoded in the set of labelled data transform coefficients to generate a unique key for future decoding of the watermark data;
h) performing an inverse orthogonal transformation on the labelled data transform coeffiejents to convert them into a set of labelled digital data having a form resembling the original unlabelled digital data.
2. The method of claim 1 wherein the step of formatting the watermark data includes the step of mapping the set of watermarly data into a rwo-dimensional matrix.
3. The method of claim 2 wherein the step of formatting the watermark data includes the step of dividing the two-dimensional marrix of watenmark data into smaller sub-blocks and the step of perforsing the orthogonal transformation on the watermark data involves porforming the orthogonal transform on each sub-block of the waternark data, such that the watermark data transform coefficients are organised in sub-blocks.
4. The method as claimed in claim 3 , including an ordering step in which each sub-block of the watermark data transform coefficients are reordered into a onedimensional anray in approximately increasing frequency order, as hereinbefore
defined, ptior to replacement of the allotted uniabelled data transform coefficients with the watermark data transform coefficients.
5. The method of claim 4 , in which the step of reordering the watermark data transform coefficients of each sub-block is achieved by performing a zig-zag scan of the watermark data transform coefficjents in the respective sub-block.
6. The method of claim 4 , in which the step of reordering the watermark data transform coefficients of each sub-block is achioyed by performing a radial scan of the watermark data transform coefficients in the respective sub-block.
7. The method as claimed in clain 4,5 or 6, wherein after the watermark data transform coefficients of each sub-block are reordered into a one-dimensional array and before the replacement of unlabelled data transforn coefficients with the watermark data the watermark data transform coefficients of each one-dimensional array are rescaled.
8. The method as claimed in claim 7, wherein the rescaling is performed using a scaling function that reduces the magnitude of lower frequency coefficients of the one-dimensiomal array by a greater amount than higher frequency coefficients of the respective array.
9. The method of claim δ, wherein the scaling function has an exponential characteriatic.
10. The method of any one of claims 4 to 9 , including the step of dividing the reordered watermark data transform coefficients of each sub-block into segments for subsequent replacement into the set of transformation coefficients of the unlabelled data
11. The method as claimed in any one of claims 1 to 10 , wherein the step of formatting the uriabelled data includes the step of mapping the set of unlabelled dala into a two-dimensional matrix.
12. The method of claim 11 wherein the step of formatting the unlabelled data includes the step of dividing the two-dimensional matrix of unlabelled data into smaller sub-blocks and the step of performing the orthogonal transformation on the unlabelled data involves performing the orthogonal transform on each sub-block of the unlabelled data, such that the uniabelled data transform coefficients are organised in sub-blocks.
13. The method of claim 12, including a first ordering sfep in which each sub-block of the unlabelled data transform coefficients are reordered into a onedimensional array in approximately increasing frequency order, as hercinbefore
defined, prior to replacement of allocated unlabelled data framsform coefficients with waromark data transform coefficients, and a second ordering siep in which bach of the one-dimensional arrays of the labelled duta fransform coefficients are reordered inio sub-blocks usigg an inverse roordering to that of the first ordering step.
14. The method of elatm 13, whorein the firsi ordering step is achveved by performing a zig-zag scan of each sub-block of the unlabelled data transforms coefficients and the second ordering step is achieved by perforning an inverse zig-2ags scan of each onc-utmonsional array of the labelled date transfonm coefficionts. 15. The method of claim 13, wharein first ondering step is achieved by performing a radtal scan of each sub-block of the unfabelled data transform coefficients and the secona ordering step is achieved by performing an inverse radial scan of each: one-dimensional array of the labolled data tramsform coefficients.
15. The method of claim 13, 14 or 15 , including the step of, for sach onedimensional array of unlabelled data, determinugg a location beyond which the ao onergies will fall below a certain threshold value and selecting transform coefficients beyond that location for replacernent by uransform coefficients of the watermark data 17. The method of claim 16 , including the step of calculating the mean and veriance values of the ac energies from the orthogonal transformation coefficients for Fach one-dimensional array of unlabelled dara aud calculating the threshold vulue as it Wunction of the mean and variance yalues.
16. The method as claimed in myy one of clairns 12 to 17, treluding the step of, for cach one-dimensional array of the unlabelled data, allocating a segment of the orthogonally-transformed watermark data that will bo encoded in that sub-block, if any. 19. The method as ciaimed in any one of ciamen it to 18 , wherein the orthogonal transform periormed on the unlabelled data is one ofs a Discrete Coaine Transiorm (DCT); a Fourier tansform; a Walsb-Hadamand transfonm; a Haur transform; a sine transform; and a Wavelet transform, and the inverse transform is respectively, an inverse DCT; an inverbe Fourier transform; an inversa WalshHadamand transform; an inyerse Haar transform; an inverse sine transform; and an inverse Wavelet transform.
20
The mothod as claimed in claim 19, wharein the orthogonal transform. performed on the unfabefled data is a Diserete Cosine Transform (DCT) and the inverse transform is an inverse DCI;
17. The method as claimed in any one of claims 1 to 20 , wherein the orthogonal transform performed on the watermurk data is onv of: a Discrete Cosine

Transform (DCT); a Fourier transform; \& Walsh-Hadamard transform; a Haar transform; a sine transform; and a Wavelet transform.
22. The method as claimed in claim 21, wherein the orthogonal transform performed on the watermark data is a Discrete Cosine Ttansform (DCT).
23. The method as claimed in any one of claims 1 to 22 , including the further step of allocating in a structured manner a segment of the orthogonollytransformed uriabelled data that will be replaced by each segment of orthogonally transformed watermark data,

$$
24 .
$$

The method as olaimed in any one of claims 1 to 22, including the further step of allocating in a random manner a segment of the orthogonallytransfomed unlabelled data that will be replaced by each segment of orthogonally transformed watermark data.
25. The method as claimed in any one of the preceding claims whercin the set of unlabelled digital data is obtained from a sumple stream representing a digitised grayacale or colour image.
26.

The method os claimed in claim 25 , wherein the digitised grayscale or colour image is obtained from a digital still camera or a digital image scanner. 27. The method as claimed in any one of claims 1 to 24 , wherein the set of unlabelled digital data is obtained from a sample stream representing digitised video.
28. The method of claim 27, wherein the unlabelled digitised video is obtained from a Data Storage Medium (DSM), or a real time digital data source. 29. The method as claimed in claims 1 to 28 , wherein the labelled digitised video is subsequently transmitted over a digital communications channel.
30. The method as claimed in any one of claims 1 to 28 , whercin the labeiled
digitised video is subsequently recorded orl a digital recording medium.
31. The method as claimed in clain 30 , wherein the digital recording mediam is one of: a Video Compact Dise (VCD); a Laser Disc (LD); a Digital Versatile Disc (DVD)t a digitised movie and a still image contained within a video game, video-on-demand or other software.
32. The method as claimed in any one of claims 1 to 24 , wherein the unlabelled digital data is obtained from a sample stream representing one or more channels of digitised sound or music.
33. The method of claim 32, wherein the unlabelled digitised sound or masic is obtained from one of: a matter recording on digital andio tape played on a digital tape recorder; and a master recording on an analog audio tape played on an analog tape recorder and digitised via a digitising interface.
34.

The method as claimed in any one of claims 32 to 33 , wherein the labelled digitised sound or music is subsequently recorded on a digital recording medium.
35. The method as claimed in claim 34, wherein the digital recording medium is one of: a compact Dise (CD); a Digital Audio Tape (DAT); a Laser Disc (LD); a Video Compact Disc (VCD).
36. The method as claimed in any one of the preceding olaims wherein the waternark digital data includes one or more of the following data itemss an owner's logo; an owner's rrademark; a personal identification; an artist's recorded voice; or general terms for publisher distribution.
37. A method for extracting digital watertiarking image data or digital watermarking andio data from a digital image, audio, or videa data sample, said metbod including the steps of:
a) inputting a set of labelled digital data and unique key data containing iuformation of locations of watermark data imposed as a label on the labefled digital data;
b) mapping the set of labelled digital data into a format suitable for orthogonal transformation;
c) performing an orthogonal transformation on the formatted labelled data to produce a set of labelled data transform coefficients;
d) using the unique key to extract transform coafficients of orthogonaliy transformed watermark data from the locations in the set of labelled data transform coefficients specified in the key;
c) using an inverse orthogonal transformation on the transformed watermark data to retrieve the embedded watemark data
38. The method of claim 37 wherein the step of formatting the labelled data includes the step of mapping the set of labelled data into a two-dimensional matrix.
39. The method of claim 38 wherein the step of formatting the labelled data includes the step of dividing the two-dimensional matrix of labelled data into smaller sub-blocks and the step of performing the orthogonal transformation on the labelled data involves performing the orthogonal transform on each sub-block of the labelled data, such that the labelbed data transform coefficients are organised in sub-blocks40. The method as claimed in claim 39, including the step of ordering the orthogonal transformation coefficients of the labelled dats in each sub-block into a onedimensional array in approximately increating frequency order, as hereinbefore defined, prior to extraction of the watermark data coefficients.
41. The method as claimed in claim 40 , wherein the ordering step is achieved by performing a zig-zag scan of each sub-block of orthogonally transformed. lahelled data.
42. The method as claimed in claim 40, wherein the ordering step is achieved by performing a radial scan of each sub-block of orthogonally fransformed labelled data.
43.

The method of any one of claims 37 to 42 , wherein after extraction of the watermark transform coefficients from the orthogonally transformed labelled data, the cxtracted watermark dara transform coefficients are arranged into a number of onedimensional arrays corresponding to the number of sub-biocks used in the process of encoding the watermark data into the labelled data and each one-dimensional array is then reordered into a fwo-dimensional sub-block prior to performing the inverse orthogonal transform on the watermark data transform coefficients in each sub-block.
44. The method of clam 43, wheroin the reordering of each one-dimensional array of watermark data transform coefficients into a respective sub-block is achueved by performing an inverse zig-zag scan.
45. The method of claim 43, wherein the reordering of each one-dimensioneal array of watermark data transform coefficients into a respective sub-block is achieved by performing an inverse radial scan.
46. The method as claimed in any one of claims 37 to 45 , wherein the Iransform coefficients of the watermark data embedded in the labelled digital data ara compressed using a first scaling function and the method includes the step of expanding the compressed watermark data prior to the iaverse orthogonal transformation using a second scaling function which is an inverse of the first scaling function.
25 47. The method of claim 46, wherein the inverse scaling function increases the magritude of lower frequency coefficients of each one-dimensional array of watermark data to a greater extent than it increases the magnitude of the bigher frequency coefficients of the respective one dimensional amay.
48. The method of claim 46 , wherein the first scaling function has an exponential characteristic and the second scaling function has an inverse exponential charaoteristic.
49. The method as claimed in any one of claims 37 to 48 , wherein the orthogonal transiorm performed on the labelled data is one of: a Discrete Cosine Transform (DCT); a Fourier transform; a Walsh-Hadamard transfonm; a Haar transform; a sine transform; and a Wavelet transform.
50. The method as claimed in claim 49, wherein the orthogonal transform performed on the labeiled data is a DCI.
51. The method as claimed in any one of claims 37 to 50 , whercin the inverse orthogonal transform performed on the watermark data is one of, an inverse

Discrete Cosine Transform (DCT); an inverse Fourier transform; in inverst WalshHadamard transform; an inverse Haar transform; an inverse sine transform; and an friverse Wavelet tramsorm.
52. The method as claimed in claim 51, wherein the inverse orthogonal transform performed on the watermark data is an inverse DCT.
53. The method as claimed in any one of claims 37 to 52 , including the further step of displaying the watermark data samples for inmediate examination or authentication.
54. Themethod as claimed in any one of claims 37 to 52 , including the further step of storing the watermark data samples for future examination on authentication.

$$
55
$$

The method as claimed in any one of clams 37 to 54, whercin the labelled digital data is obtained from a sample stream representing a digitised greyscale or colour image.
56. The method us claimed in claim 55, whercin the labelled digitised grayscale or colour image is obtained from a digital still canera or a digital image scanner.
57. The method as claimed in any one of claims 37 to 54 , wherein the labelled digital data is obtained from a sample stream representing digitised video. 58. The method of claim 57 , wherein the labelied digitised video is obtained from one of, a Video Compact Disc (VCD) played on a VCD player; a Laser Disc (LD) played ou a LD player, a Digital Versatile Disc (DVD) played on a DVD player, a digitised movie or still image contained within a video game or other software or a digital signal manaitted over a communications channel.
59. The method as claimed in any one of claims 37 to 54 , wherein the labelled digital data is obtained from a sumple stream representing one or more channels of digitised sound or music.
60. The method of claim 59, whercin the labelled digitised sound or music is obtained from one of: a Compact Dise (CD) played on a CD player; a Digital Audio Tape (DAT) played on a DAT player, a Laser Dise (LD) played on a ID player; from a Video Compact Disc (VCD) played on a VCD player.
61. The method as claimed in any one of claims 37 to 60 , wherein the watemark digital data includes one or more of the following data items: an owner's logo; an owner's trademark; a personal identification; an artist's recorded voice; and general terms for puhlisher distribution.
62. An apparatus for applying digital watermarking image data or digital watermarking aidio data to an unlabelled digital image, audio, or video data sample, said apparatus including:
a) input means arranged to input a set of urlabelled digital data;
b) processing means arranged to process the umlabelled digital data to encode watermark data into the unlabelled data to form a set of labelled digital data; mad
c) output means arranged to output the labelled digital data to a communication or storage medium,
wherein the processing means is amanged to perform the method as slaimed in any one of claims I to 36 .
63. An apparatus for extracting digital watermarking image data or digital watermarking audio data from a labelled digital image, audio, or video data sample said apparatus including:
a) input means arranged to input a set of labelled digital data;
b) processing means arranged to process the labelled digital data to extract watermark data encoded into the labelled digital data; and
c) output means arranged to output the extracted watermark digital data to a display or storage means, wherein the processing means is arranged to perform the method as claimed in any one of claims 37 to 61.
64. A digital recording atored on any digital reconding medium, the recording comprising a set of digital image, andio, or video data labelled with a watermark comprising a set of digital watermark image data or a set of digital watermark andio data, the set of labelled digital data being created by encoding a set of unlabelled digital data with the set of digital watermark data using the method as elaimed in ary one of claims 1 to 36 .

$$
1 / 10
$$

FIGURE 1

FIGURE 2

SUBSTITUE SHEET (RUEE 26)

DISH - Blue Spike-408
Exhibit 1010, Page 2482

FIGURE 3
WO 99/63443 PCT/SG98/00039

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

FIGURE 5

FIGURE 6

FIGURE 7

SUBSTIUTE SHEET (BULE 26)

DISH - Blue Spike-408
Exhibit 1010, Page 2486

PSEUDOCODE

PROCEDURE WATERMARK CODER
BEGIN
READ UNLABELLED DATA,
CONVERT UNLABELLED DATA TO MATRIX (M,N);
PERFORM SUB-BLOCKING of UNLABELLED DATA;
PERFORM DCT ON UNLABELLED DATA SUB-BLOCKS;
RE-ORDER DCT COEFFICIENTS TO FOLLOW ZIG-ZAG PATTERN;
DETERMINE AC ENERGIES OF DCT COEFFICIENTS;
SET THRESHOLD BASED ON AC ENERGY MEAN AND STANDARD
DEVIATION;
COMPARE SUB-BLOCK AC ENERGIES WITH THRESHOLD;
IF AC ENERGIES LESS THAN THRESHOLD THEN
STORE SPATIAL LOCATIONS;
ELSE
SET TO OFFSET SPATIAL LOCATIONS;
END
GENERATE UNIQUE KEY FROM STRUCTURED/RANDOM SPATLAL
LOCATIONS;
STORE UNIQUE KEY FOR DECODING;
READ WATERMARK DATA;
CONVERT WATERMARK DATA TO MATRXX (J,K),
PERFORM SUB-BLOCKING of WATERMARK DATA,
PERFORM DCT ON UNLABELLED DATA SUB-BLOCKS;
RE-ORDER DCT COEFFICIENTS TO FOLLOW ZIG-ZAG PATTERN:
RE-SCALE DCT COEFFICIENTS USING EXPONENTIAL FILTER;
EMBED RE-SCALED WATERMARK DCT COEFFICIENTS INTO UNLABELLED DCT SUB-BLOCKS;
CONVERT ZIG-ZAG SCAN BACK TO NORMAL SCAN;
INVERSE DCT SUB-BLOCKS TO OBTAIN LABELED DATA;
END

FIGURE 8a

```
*PSEUDOCODE*
PROCEDURE WATERMARK DECODER
BEGIN
READ LABELED DATA;
CONVERT LABELED DATA TO MATRIX (M,N);
PERFORM SUB-BLOCKING of LABELED DATA;
PERFORM DCT ON LABELED DATA SUB-BLOCKS;
RE-ORDER DCT COEFFICIENTS TO FOLLOW ZIG-ZAG PATTERN;
EXTRACT SPATIAL LOCATIONS FROM UNIQUE KEY; DECODE WATERMARK DCT COEFFICIENTS FROM SPATIAL LOCATIONS
SCALE WATERMARK DCT COEFFICIENTS USING INVERSE EXPONENTIAL FILTER; CONVERT ZIG-ZAG SCAN BACK TO NORMAL SCAN; INVERSE DCT SUB-BLOCKS TO OBTAIN WATERMARK DATA;

\section*{FIGURE 8b}



gagure 11


EIGURE 12


FIGURE 13

\section*{SUBSTTIUE SHEET (RULE 26)}

DISH - Blue Spike-408
Exhibit 1010, Page 2491


Form POTMBA/219 (second wheet) (July 1998)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
INTERNATIONAL SEARCH REPORT \\
informution on patent family mamberi
\end{tabular}} & \multicolumn{2}{|l|}{Intemational applicalion No. PCT/SG 98/00039} \\
\hline & richt denhagnt cited ctite recherche & Datuar der Vargifionticturn Puilicetion Datede publication &  & erl des asille factly de Ja tirevets & \begin{tabular}{l}
Qatua der \\
Veriffortictimin Ralication gate Date da publication
\end{tabular} \\
\hline EP & 840513 & & \begin{tabular}{l}
AU A1 \\
\(C A A A\) \\
\(\begin{array}{ll}\mathrm{EP} & \mathrm{A} 2 \\ \mathrm{AP} \\ \mathrm{AD}\end{array}\)
\end{tabular} & \[
\begin{array}{r}
44340197 \\
2219205 \\
1040515 \\
10145757 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 07-05 \\
& 05-05 \\
& 06-05 \\
& 29-05 \\
& \hline
\end{aligned}
\] \\
\hline EF & 855681 & &  & \[
\begin{aligned}
& 1855681 \\
& 1021046 \\
& 10257300 \\
& 10304323 \\
& 11918064 \\
& 11041573
\end{aligned}
\] & \[
\begin{aligned}
& 29-07 \\
& 27-08 \\
& 25-11 \\
& 22-01 \\
& 12-02
\end{aligned}
\] \\
\hline \(\overline{E P}\) & 766468 & &  & \[
\begin{array}{r}
35040196 \\
701659 \\
3184946 \\
9191394
\end{array}
\] & \[
\begin{aligned}
& 10-04 \\
& 04-02 \\
& 20-03 \\
& 02-04 \\
& 22-07
\end{aligned}
\] \\
\hline
\end{tabular}









\title{
NOTICE OF ALLOWANCE AND FEE(S) DUE
}

\begin{tabular}{|c|c|c|c|c|}
\hline  & FITAGGDOME & MRELSNMEI) EVENROA & UTCSOCSY DOCKIEN \$0. & (30) \({ }_{\text {cos }}\) \\
\hline 10/009 101 & \(07 / 23 / 2902\) & Sera A Monkowily & 804060015 & 8024 \\
\hline
\end{tabular}

THLEOTNVEKTIOS SECTIRE PRRSOWML CONIEVTSERYTER
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  &  & \(\cdots\)-160 \(30 \times 5\) &  &  &  & CXETESIIS \\
\hline samprovibimil & VRS & 8720. & 50 & 501 & 5748 &  \\
\hline
\end{tabular}
 EROSECLTION ON THE DERUS IS CLOSED. THIS NOTICE OF ALLOW ANCE IS NOT A GRANE OF PATENT RIGITS. TIIS APPLICATION IS SLBJECT TO WITHDRAWAL FROM ISSLE AT TIE INITLATIVE OF TIIE OFFIEE OR IPGF PEITTION BY THE APPLIC INT. SEE 37 CER 1.313 AND MIPE 1308.

TIE 15SUE HEL AND P(BLICATION FEE (IF REQUIRED) MUSL BE PAID WIMIIN THKEE MONAEG FROM TIE MNILING DATE OF TIIS NOHICE OR THIS APDLICATMN SHALL BE KLGADDED AS ABANDONED. TULS STATETORY PERKIOD CANNOT BE ENTENDED, SER 35 U.S.C. 151. THE TSUE FEE DUE INDICATED AFOVE DOES NOT REFLECT A CREDIT TOR ANY PREVIOISLY PNIIY ISSUE FEE TN TIIS APHTJCATION. IF AN ISSYIF VEE TIAS PREVIOLISLY REEN PNID IN TESS SPPLICATION (AS SHOWN ABOVE), TGE RETURN OF PAKT II OT TINS IORM WILL BE CONSDDERED A REQEEST TO REAPPLY THE PREVIOUSLY PAID ISSTLEFEE TOWARD THE ESLUE FEE NOW DIE

\section*{HOW TO REPLY TO THS NOTICE:}
L. Review hic SMML ENTTE'Y sturns skown ibtove.

If the SMAE IISNTII'Y is shown as VES, verily your cumanf SMAI L ENTTTY Harus:
A. If the saltof is fie same fuy the IGPAL ITEBS) DUE shown aboye.
P. If the stams aboyo is to he remaved. checs box 56 on Part \(B\) fixds) Transmulal and pay the PUALKCTION EEE (if roquined) and twice lhe amomi of lie ISSI fe FIIE Chawn Dhave; or

If He SMALL INGTITY is shown as NO:

A Hoy IOTAI CRE(S) DUE Shawn ithave of
B. If ipplicant clained SMCDL ENDTY Matus bofoce or is now claming SMALL ENITJY satus check bex Sa oin Piat N- Fwe(6)
 the TSSUT. FES sbowtathove



 the porjar as at entivaluat of piat ff.
 Mail Siop ISSUL E'LL manndyised me the commery.




\section*{PAKT B- FEEASITRANSMIFTAL}

\section*{ \\ Commistioner fir tratents \\ PO. Box 1450 \\ Ale candria, Virninia 22313-1451 \\ or Fize (571).273.2885}




CAYKAMF COI ASSMONT:


\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
49. Ifo follomine feery gro mberester: \\
\(\square\) Iname \\
 \\
 \(\qquad\)
\end{tabular} & \begin{tabular}{l}
 \\
D A Chosh irandoned \\
 \\
 ovepparment, fo Ta miss Accome vomber \(\qquad\) \\

\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline Suturimen Almaume & \\
\hline Lyas in pinsod nume & Regestarion \%o, \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 \\
 Alesamina Vigmaczali fltion \\

\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

Uniten States Patent and Trademark Ofmet



Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29. 2000)
The Ratent Term Adjustment to date is 683 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 683 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application. the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair, uspto,goy).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702: Questions relating to issue and publication fee payments shoutd be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.


\section*{Examiner's Statement of Reasons for Allowance}
1. Claims 1-31 are allowed over the prior art.
2. This action is in reply to the Applicant's correspondence on 02/29/08.
3. The following is an Examiner's statement of reasons for the indication of allowable claimed subject matter.
4. As per claims 1, 3, 16, 17, 20, 24 and 31, generally, the prior art of record, United States Patent No, 5,341,429 to Stringer et al. and United States Patent No, 6,148,333 to Guedalia et al, fails to teach alone, or in combination, other than via hindsigitt, at the Lime of the invention, the features as discussed and remarked upon in the response of 02/29/08.
5. Nowhere in the prior art is found, collectively, the italicized claim elements (1.e., "and if the digital content is not authorized for use by the LCS, accepting the digital content at a predetermined quality level, said predetermined quality level having been set for legacy content"), at the time of the invention; serving to patently distinguish the invention from said prior art:
"1. A local content server (LCS) for creating a secure environment for digital content, comprising:
a) a communications port for connecting the system via a network to at least one Secure Electronic Content Distributor (SECD), said SECD storing a plurality of data sets, receiving a request to transfer at least one content data set, and transmitting the at least one content data set in a secured transmission;
b) a rewritable slorage medium whereby content recelved from outside the LGS Is stored and retrieved;
c) a domain processor that imposes rules and procedures for content being transferred between the LCS and devices outside the LCS;
d) a programmable address module programmed with an identification code uniquely associated with the LCS;
said domain processor permitting the LCS to receive digital content from outside the LCS provided the LCS first determines that the digital content being delivered to the LCS is authorized for use by the LCS and If the digital content is not authorized for use by the LGS, accepting the digital content at a predetermined quality level, said predetermined quality level having been set for legacy contert." 6. Futther, the previous 35 U.S.C. 112, \(2^{\text {nd }}\) paragraph rejection of olains 1,3 and 16 has been withdrawn.
7. Any inquiry conceming this communication or earlier communications from the examiner should be directed to JEREMIAH AVERY whose telephone number is (571)272-8627. The examiner can normalfy be reached on Monday thru Friday 8:30am5 pm .
8. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ayaz Sheikh can be reached on (571) 272-3795. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300,
9. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.
|Jeremiah Avery/
Examiner, Art Unit 2131
/Ayaz R. Sheikh/
Supervisory Patent Examiner, Art Unit 2131
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Notice of References Cited} & Application/Control No.
\[
10 / 049,101
\] & \multicolumn{2}{|l|}{Applicant(s)/Patent Linder Reexaminalien MOSKOWITZ SCOTT A.} \\
\hline & Examiner JEREMIAH AVERY & \begin{tabular}{l}
Art Unit \\
2131
\end{tabular} & Page 1061 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline * & & Documens Fombtion Sountry Cade Nimber-NKinf Godés & \[
\begin{aligned}
& \text { Date } \\
& \text { MM-YYYy }
\end{aligned}
\] & Name & Classincanon \\
\hline * & A & US-6,587,837 & 97-2008 & Spagna et al. & 705/26 \\
\hline * & B & US-6,268,313 & 07-2001 & Milsted et al. & 705/1 \\
\hline * & C & US-6,931,534 & 08-2005 & Jandel et al. & 713476 \\
\hline * & D & US-7,093.295 & 08-2006 & Saito, Makoto & 725125 \\
\hline * & E & US-6,966,002 & 11/2005 & Torrubla-Saez, Andres & 726/29 \\
\hline * & F & US-5,541,429 & 08-7994 & Stringer et al. & 705150 \\
\hline * & G & US-6.389.538 & 05-2002 & Gruse et al. & 713/494 \\
\hline * & H & U5-5,518,126 & 044-1996 & Harkins et al. & 7091288 \\
\hline \% & 1 & U5-5,657,467 & 08-1997 & Harkins et al & \(7157 / 93\) \\
\hline * & 1 & US-6,148,333 & 11-2000 & Guedalia ef al. & 709(218) \\
\hline & K & US- & & & \\
\hline & L & US: & & & \\
\hline & M & 115- & & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline * & & Ducumeni Namber County Dode-Number-Kind Cods & - Date MM- CYYY & Gounify & Name & Glassilicainan \\
\hline & N & & & & & \\
\hline & 0 & & & & & \\
\hline & P & & & & & \\
\hline & 0 & & & & & \\
\hline & R & & & & & \\
\hline & \(s\) & & & & & \\
\hline & \(T\) & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS


Dather in MM-VYYY formal afo pubterilon drites. Elassifications may be Us of formign.

FTO-592 (Rex Ol- 2001 )
\begin{tabular}{|c|c|c|}
\hline Search Notes & Application/Control No.
\[
10049101
\] & Applicant(s)/Patent Under Reexamination MOSKOWITZ SCOTT A. \\
\hline  & \begin{tabular}{l}
Examiner \\
Avery, Jeremiah
\end{tabular} & \begin{tabular}{l}
Art Unit \\
2131
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ SEARCHED } \\
\hline Class & Subclass & Date & Examiner \\
\hline nome & none & & \(7 / 2 / 2008\) & JLA \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ SEARCH NOTES } \\
\hline \multicolumn{1}{|c|}{ Search Notes } & Date & Examiner \\
\hline Updated EAST Search & \(7 / 2 / 2008\) & JLA \\
\hline Updated Inventor Search & \(7 / 2 / 2008\) & JLA \\
\hline IEEE Search & \(7 / 2 / 2008\) & JLA \\
\hline Discussed with Christan LaForgia regarding search strategy & \(7 / 2 / 2008\) & JLA \\
\hline \begin{tabular}{l} 
Keyword search within Class 380, subclasses 236, 237 and 238, Class \\
713, subclass 169, Class 455, subclass 3.06 and Class 726, subclass 26
\end{tabular} & 7/2/2008 & JLA \\
\hline
\end{tabular}

\section*{INTERFERENCE SEARCH}
\begin{tabular}{|l|l|c|c|}
\hline Class & \multicolumn{1}{c|}{ Subclass } & Date & Examiner \\
\hline none & \begin{tabular}{l} 
((legacy or early ar earlier or earliest or previous\$) near \\
(content or data) ) and server and (ransmis or send\$) and \\
(data or information ar info) and (authoris or \\
authentioS)) clm:
\end{tabular} & T/2/2008 & JLA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Application/Control No. & Applicant(s)/Patent Under Reexamination \\
\hline Index of Claims & 10049101 & MOSKOWITZ, פGOTT A. \\
\hline  & \begin{tabular}{l}
Examiner \\
Avery, Jeremiah
\end{tabular} & Art Unit
\[
2131
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(\sim\) & Rejected \\
\hline\(=\) & Allowed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline- & Cancelled \\
\hline\(\div\) & Restricted \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline\(N\) & Non-Elected \\
\hline 1 & Interference \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline A & Appeal \\
\hline O & Objected \\
\hline
\end{tabular}




OS- Paimin and Tradernu EMiliee
Fatt ei Raprat No 20080702

EAST Search History
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ret \#t & Alits & Search Query & (DBS & \begin{tabular}{l}
Detault \\
Opelistor
\end{tabular} & Plujals & Tite Stigne \\
\hline L-1 & 1382 & \begin{tabular}{l}
[(qualicy near resolution) or (hier arch\$ neai quality)) and (autica or videcn on stigital of multismedia or data) and (@ade"19990804" \\
(mptad<" 9 9990804")
\end{tabular} & USFGPUE: LISPAT & Of & DN & \[
\begin{aligned}
& 200816702 \\
& 14: 37
\end{aligned}
\] \\
\hline 12 & 703 & 41 and TMer \% & US FGPUE: UISPAT & 0 O & IDN & \[
\begin{aligned}
& 200816700 \mathrm{E} \\
& 14: 37
\end{aligned}
\] \\
\hline 48 & 18 & 12 Bno stoie of stom \#otage of database) and server and authoris & \[
\begin{aligned}
& \text { US-AGPUB: } \\
& \text { LSPAT }
\end{aligned}
\] & OR & ONI & \[
\begin{aligned}
& 1008107 n 02 \\
& 14: 37
\end{aligned}
\] \\
\hline LA & (32 & \[
\begin{aligned}
& \text { (scalible neer bistrean) and } \\
& \text { (@ade"19990804* } \\
& \text { (@pran < " } 1989080 \phi^{\circ} \text { ) }
\end{aligned}
\] & US.PGFUB: LISPAT & IPA & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 1498
\end{aligned}
\] \\
\hline L5 & II & 14 and lsgacy & \[
\begin{aligned}
& \text { USPGPUB } \\
& \text { ISSAT }
\end{aligned}
\] & 08 & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 14: 39
\end{aligned}
\] \\
\hline Lf & 601 & waternark \(\mathbb{C}\) and (second neal (water maik) & \[
\begin{aligned}
& \text { USFGPUB: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& +4 ; 46
\end{aligned}
\] \\
\hline 17 & 36 & \begin{tabular}{l}
La and (Eeate"19990e04 \\

\end{tabular} & USFPGPUB; USPAT & 10R & ON & \[
\begin{aligned}
& 2008 / 07702 \\
& 10: 46
\end{aligned}
\] \\
\hline 48 & 29 & \(\square 7\) and server & LSFGPUB; USCAT & . 0 R & CNI & \[
\begin{aligned}
& 2008 / 0702 \\
& 7448
\end{aligned}
\] \\
\hline 4 & 28 & L8, and qually & USFGPUB: USPAT & OR & ON & \[
\begin{aligned}
& 2008 / 0702 \\
& 14: 46
\end{aligned}
\] \\
\hline Lio & 28 & 19 and (lowS5 on degrads) & \[
\begin{aligned}
& \text { US PGPIE: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 200810702 \\
& 1446
\end{aligned}
\] \\
\hline LII & 21 & LVa and combte & USPGPIE:
USRAT & 108 & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 14.46
\end{aligned}
\] \\
\hline L2 & 21 & \(\mathrm{L}+1\) and gokiresst & \[
\begin{aligned}
& \text { USPGPUE: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2008107 / 02 \\
& 74.46
\end{aligned}
\] \\
\hline L13 & 21 &  & \[
\begin{aligned}
& \text { US RGPIE } \\
& \text { USAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 200840702 \\
& 14: 46
\end{aligned}
\] \\
\hline LH & 21 & L18 and domair & USFGPUE: USPAT & OR & ON & \[
\begin{aligned}
& 2008 / 47 / 02 \\
& 74: 46
\end{aligned}
\] \\
\hline L-1. & 110 & L14 and authanilias: & \[
\begin{aligned}
& \text { US-PGPUB: } \\
& \text { USPAT }
\end{aligned}
\] & QR & SN & \[
\begin{aligned}
& 2008 / 0702 \\
& 14: 46
\end{aligned}
\] \\
\hline LIS & 86 & \begin{tabular}{l}
(386)286.cats ot \(380 / 237\) nals or 380 238, code of \(713+369\) cols or 45513.06.ccis.) and \\
 (@)prad<"19990804)
\end{tabular} & \[
\begin{aligned}
& \text { US-FGPUE, } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 74: 47
\end{aligned}
\] \\
\hline L17 & 0 & 116 and (legacy and (sudio or jvideo or digitil or mullimedia or (multiontidia) or catal) and (qualify negn ) (degrae be levelx) & USPGPUB; USPAT & OR & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 14: 49
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline L18 & a & 116 and (legacy and faudio or victeo or digital ar muftimedia or (multi?media) or data)) & USPGPUB; USPAT & OR & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 14: 49
\end{aligned}
\] \\
\hline L19 & 1 & moshowitz-scaty-lo. & \[
\begin{aligned}
& \text { US-PGPUE: } \\
& \text { LSPAT } \\
& \text { ERO }
\end{aligned}
\] & 08 & DN & \[
\begin{aligned}
& 2008107762 \\
& 14.59
\end{aligned}
\] \\
\hline 220 & 6 & mostiowitzin and legacy & \[
\begin{aligned}
& \text { LS PGPUB; } \\
& \text { USFAT } \\
& \text { EPO }
\end{aligned}
\] & TOP & ON & \[
\begin{aligned}
& 2008 / 07102 \\
& 14: 59
\end{aligned}
\] \\
\hline L21 & 1567 & (380/236.x) 5. or 3801257 cels. or \(380 / 238\) col or 719/69. cods or 726/26.cols or \(455 / 3,06\),cels,) and (10ade' T9990804 (apian< \(7989080 y^{5}\) ) & UFPGEUB: USEAT & OF & ON & \[
\begin{aligned}
& 2008 \% 07 / 02 \\
& 15: 02
\end{aligned}
\] \\
\hline 122 & 105 & (()legacy or early or earlier or ealliest of Dreviousi) near (oontient or data) and server atid (tansmis.ot sendsis) and (data or intormation or info) and (autmanis of atctent (os). dim & USPGPUB: USPAT; ERO & OR & ON & \[
\begin{aligned}
& 2008 / 07 / 02 \\
& 15.00 .
\end{aligned}
\] \\
\hline Si & 66 & Weter mains and ((second neen watermanks) and (thicd near watermatks) & \[
\begin{aligned}
& \text { USPGGPUE: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2006 / 10 / 03 \\
& 08: 14
\end{aligned}
\] \\
\hline Se & 11 & 81 and (@ack < 19990804* @prad<"199908(4") & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USFAT }
\end{aligned}
\] & DOA & ON & \[
\begin{aligned}
& 2007 / 03 / 28 \\
& 12.18
\end{aligned}
\] \\
\hline 53 & 0 & 82 and server & \[
\begin{aligned}
& \text { US PGPUB; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2006 / 10 \gamma 03 \\
& 09 \cdot 15
\end{aligned}
\] \\
\hline 34 & 7 & 82 and quality & US PGPUB: USPAT & DPA & ONX & \[
\begin{aligned}
& 2006 / 10703 \\
& 09: 17
\end{aligned}
\] \\
\hline 55 & a & S4 and legacy & US PGPUB: USPAT & OR & ON & \[
\begin{aligned}
& 2006 / 10703 \\
& 09: 18
\end{aligned}
\] \\
\hline 56 & 478 & watermathe and (sacond nioat walermark) & \[
\begin{aligned}
& \text { US PGPUB: } \\
& \text { LSFAT }
\end{aligned}
\] & QA & ON: & \[
\begin{aligned}
& 2006 / 10703 \\
& 09: 17
\end{aligned}
\] \\
\hline 57 & 180 &  & USPRFNE: USPAT & OR & ON & \[
\begin{aligned}
& 2006,1000: 1 \\
& 09: 18
\end{aligned}
\] \\
\hline 68 & 25 & S7 andiselver & \[
\begin{aligned}
& \text { USPGFUB: } \\
& \text { ISPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2006 / 10704 \\
& 09+18
\end{aligned}
\] \\
\hline 8 & 24 & 53 cict quality & USPEFVUE: USPAT & OF & ON & \[
\begin{aligned}
& 2006 / 1070: 1 \\
& 09: 18
\end{aligned}
\] \\
\hline 540 & 22 & 39 and (lewns5 or xhagrad\$) & \[
\begin{aligned}
& \text { US FGFUB; } \\
& \text { USPAT }
\end{aligned}
\] & OF & ION & \[
\begin{aligned}
& 2006 / 10703 \\
& 08-19
\end{aligned}
\] \\
\hline 591 & \(\sigma\) & Fic and /addom & US-PGFUE: USEAT & UR & ON & \[
\begin{aligned}
& 2006010 \times 0: 5 \\
& 08: 19
\end{aligned}
\] \\
\hline 52 & 19 & Fin aid remore & \[
\begin{aligned}
& \text { LISFGPUB: } \\
& \text { USPAT }
\end{aligned}
\] & \[
\mathrm{OF}
\] & ON & \[
\begin{aligned}
& 2006110703 \\
& 08 \cdot 19
\end{aligned}
\] \\
\hline 518 & 19 & 512 and axdress & \[
\begin{aligned}
& \text { IIE-PGPUB: } \\
& \text { LSPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2006 / 10 \% 0 z \\
& 08 \cdot 19
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 514 & 19 & 512 and atireses & UFPGEUB; USPAT & OR & ON & \[
\begin{aligned}
& 2006410 \times 03 \\
& 08: 20
\end{aligned}
\] \\
\hline 545 & 19 & 34 and skors4 & USFGGPUE; USEAT & 10F & ON & \[
\begin{aligned}
& \begin{array}{l}
2007164 / 26 \\
1+9,215
\end{array}
\end{aligned}
\] \\
\hline 816 & 19 & Sis and domain & USRGPUB: USPAT & OR & ON & \[
\begin{aligned}
& 2006110709 \\
& 09222
\end{aligned}
\] \\
\hline 517 & a & 316 and tegacy & USFPGPUB; USPAT & OF & ON & \[
\begin{aligned}
& 200610 / 03 \\
& 09,20
\end{aligned}
\] \\
\hline S18 & 17 & Sif and authenticat\$ & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007 / 04 / 20 \\
& 19,21
\end{aligned}
\] \\
\hline 519 & 17 & 516 and authentics & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { ISSPAT }
\end{aligned}
\] & 10 F & ON & \[
\begin{aligned}
& 200610109 \\
& 09,34
\end{aligned}
\] \\
\hline 580 & 153 & Caum-ka & USPGPUB; USPAT & OR & ON & \[
\begin{aligned}
& 200610708 \\
& 09,34 .
\end{aligned}
\] \\
\hline (3) & 61 & \$20 and quality & \[
\begin{aligned}
& \text { LSFPGPUB: } \\
& \text { USEAT }
\end{aligned}
\] & 108 & ON & \[
\begin{aligned}
& 2006 / 10 / 08 \\
& 08435
\end{aligned}
\] \\
\hline 82 & 12 & \[
\begin{aligned}
& 521 \text { and (@ack } 19990804 " \\
& \text { (20) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { US PGPUB', } \\
& \text { USPAT }
\end{aligned}
\] & OR & CN & \[
\begin{aligned}
& 2007001 / 20 \\
& 79.20
\end{aligned}
\] \\
\hline \(\underline{83}\) & 10 &  & USPGPUE USPAT, LISOCR & 08 & \%F & \[
\begin{aligned}
& 2006 / 10 / 03 \\
& 00435
\end{aligned}
\] \\
\hline 524 & 74 & Watermerks and ((second nean Watermerk \(\$\) ) and (lfiud neip Watermiar(a)) & UE-RGPUE; USPAT & OR & ON & \[
\begin{aligned}
& 2007 / 07 / 02 \\
& 08: 29
\end{aligned}
\] \\
\hline S25 & 0 & \$24 and (ity riear buy) & \[
\begin{aligned}
& \text { USFGPIE, } \\
& \text { USPAT }
\end{aligned}
\] & OR & 0 N & \[
\begin{aligned}
& 2007 / 01 / 03 \\
& 0937
\end{aligned}
\] \\
\hline 828 & 162 & (Ify near buy) & US-PGPUB: USPAT & \(\overline{Q R}\) & DN & \[
\begin{aligned}
& 2007 / \mathrm{av} 03 \\
& 0931
\end{aligned}
\] \\
\hline 827 & 50 & \$26 and (@acke "19990804" (aprad<"tg990804") & \[
\begin{aligned}
& \text { USFFGPUE, } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 200 / 104 / 26 \\
& 79,20
\end{aligned}
\] \\
\hline \$28 & 28 & \$27 and authoris & \[
\begin{aligned}
& \text { US-FGPIE, } \\
& \text { USPAT }
\end{aligned}
\] & QR & ON & \[
\begin{aligned}
& 2007101 / 03 \\
& 10933
\end{aligned}
\] \\
\hline S29 & 8 & S28 and watentigrk & USFPGPUB: USPAT & OR & ON & \[
\begin{aligned}
& 2007101 / 03 \\
& 09: 46
\end{aligned}
\] \\
\hline S30 & 710 & oolvinia- & US-PGPUE: LISPAT & OR & ON & \[
\begin{aligned}
& 2607401.03 \\
& 09: 46
\end{aligned}
\] \\
\hline \$31 & 13 & \$30 and revak.xa. & US-FGPUB: LISPAT & Of & \[
\mathrm{ON}
\] & \[
\begin{aligned}
& 2007101 / 03 \\
& 09.47
\end{aligned}
\] \\
\hline S32 & 170 & (fiy near buy) & US-FGPUE: ULSEAT & OR & DN & \[
\begin{aligned}
& 2007 / 04 / 26 \\
& 1.9 .20
\end{aligned}
\] \\
\hline S33 & 50 & S32 and (鱼和 \(19990804^{\prime \prime}\) (3praid<" 1 병0804") & US-PGPUB: LISPAT & OR & ON & \[
\begin{aligned}
& 2007104 / 26 \\
& 19.20 \\
& \hline
\end{aligned}
\] \\
\hline \$34 & 171 & buumixa. & US-PGPUE: USPAT & 106 & DN & \[
\begin{aligned}
& 2007104 / 26 \\
& 19: 20
\end{aligned}
\] \\
\hline 535 & 64 & 534 and quality & US-PGPUE: USEAT & Pr & ON & \[
\begin{aligned}
& 2007 / 04 / 26 \\
& 19: 20
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline （536） & 12 & S35 and 〈ほad＜＂19990 0 人＂ ©prade＂19990674＂） & US PGFISE： LISPAT & OF & QN & \[
\begin{aligned}
& 2007 / 04 / 26 \\
& 9: 20
\end{aligned}
\] \\
\hline 537 & 524 & Whatermatks arkt（socona teest Watermalk） & USFFFUIE； LIFPAT & OR & ON & \[
\begin{aligned}
& 2007104 \times 26 \\
& 19: 20
\end{aligned}
\] \\
\hline 538 & 184 & \[
\begin{aligned}
& 337 \text { and (@19d } 19990804^{\prime \prime} \\
& \text { (ᄌ队) }
\end{aligned}
\] & IISPGPUB： USPAT & OF & 1 ON & \[
\begin{aligned}
& 2007 / 84 / 26 \\
& 19200
\end{aligned}
\] \\
\hline 539 & 27 & 368 and server & \[
\begin{aligned}
& \text { US-PGPUB; } \\
& \text { USPAT }
\end{aligned}
\] & OF & ON & \[
\begin{aligned}
& 2007164 / 26 \\
& 10 \times 20
\end{aligned}
\] \\
\hline 1540 & 25 & 369 and quality & USPGPUB： USPAT & OF & ON & \[
\begin{aligned}
& 2007 / 84 / 26 \\
& 19290
\end{aligned}
\] \\
\hline 541 & 24 & S40 and \lowS5 Ef degreds） & US－FGFUE； USPAT & OR & ON & \[
\begin{aligned}
& 2007164 / 26 \\
& 19: 20
\end{aligned}
\] \\
\hline 542 & 20 & 341 and remots & USFGFUE： USPAT & OF & ON & \[
\begin{aligned}
& 2007 / 84 / 86 \\
& -19.20
\end{aligned}
\] \\
\hline 849 & 20 & S42 and addresss & USFGPUB； USPAT & 10 R & ON & \[
\begin{aligned}
& 2007 / 04 / 26 \\
& 19,20
\end{aligned}
\] \\
\hline 544 & 20 & S49 and stor\＄4 & USPGPUB； USPAT & OR & ON & \[
\begin{aligned}
& 2007 / 04126 \\
& +9,20
\end{aligned}
\] \\
\hline & 20 & S4a and stor\＄4 & USFGPPB： USSPAT & OR & ON & \[
\begin{aligned}
& 2007104 / 26 \\
& 1921
\end{aligned}
\] \\
\hline S46 & 20 & S45 and domain & US PGPUB； USPAT & OR & ON & \[
\begin{aligned}
& 2007 / 04726 \\
& 19121
\end{aligned}
\] \\
\hline 847 & 1 E & S46 arid aithentlcat5 & US－PGPUE； USPAT & 105 & ON & \[
\begin{aligned}
& 2007104 / 20 \\
& 18,22
\end{aligned}
\] \\
\hline \＄48 & a & S47 and（＂Yy near buy） & \[
\begin{aligned}
& \text { US PGPUE: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007104 / 28 \\
& 18: 22
\end{aligned}
\] \\
\hline S49 & \(\square\) & S47 and（0ty near buy）or （demo） & USFGPUE USPAT & OR & 10 N & \[
\begin{aligned}
& 2007804 / 26 \\
& 18: 23
\end{aligned}
\] \\
\hline SS0 & 16 & S47 and temp\＄5 & \[
\begin{aligned}
& \text { US PGPUE: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007 / 04 / 26 \\
& 19: 23
\end{aligned}
\] \\
\hline 852 & 2083 & \begin{tabular}{l}
flegucy an gally or warlier or creviouss）nesi（conterit or diala）and（Gaids＂49400804＂ \\
 seivel
\end{tabular} & USPGPUE； USAAT： ERO & 108 & QN & \[
\begin{aligned}
& 2007108 / 28 \\
& 18.57
\end{aligned}
\] \\
\hline 558 & 1518 & SS2 and（secars or satespe） & USFGAMB； USPAT： EPO & 108 & OW & \[
\begin{aligned}
& 2007 \text { ( } 69) 28 \\
& 1245
\end{aligned}
\] \\
\hline S50 & 1788 & Sis and（secur 8 ro sales2 or proteat \(\$\) & \[
\begin{aligned}
& \text { US-RGPIE, } \\
& \text { USPATi } \\
& \text { EPO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 200708188 \\
& 12+16
\end{aligned}
\] \\
\hline 355 & 429 & SS4 and（authorisor authenifeat\＄） & \[
\begin{aligned}
& \text { US-PGPUS: } \\
& \text { USPAT } \\
& \text { ERO }
\end{aligned}
\] & DR & ON & \[
\begin{aligned}
& 200708 / 28 \\
& 12: 17
\end{aligned}
\] \\
\hline SS6 & 28 & 355 and squality near lavel） & LSPRFUE； USPAT ERO & Of & ON & \[
\begin{aligned}
& 200709128 \\
& 1217 .
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 957 & 31 & \begin{tabular}{l}
S55 and（亻quality or condifion \\
इ）newr（evel）
\end{tabular} & USFAGPUB： USPAT； EPD & OR & ON & \[
\begin{aligned}
& 2007 / 09128 \\
& 1822
\end{aligned}
\] \\
\hline 558 & \％ & 537 and watermerik and lomentis & \[
\begin{aligned}
& \text { US.RGPUE: } \\
& \text { LSPAT } \\
& \text { ERO }
\end{aligned}
\] & 08 & DN & \[
\begin{aligned}
& 2(07708) 28 \\
& 12: 18
\end{aligned}
\] \\
\hline 5s9 & 5 & （（liegasy ar eqaity or earlian or previouss）neal（conterl of datal）and moskowitzin． & \[
\begin{aligned}
& \text { LS PGPUB: } \\
& \text { USPAT } \\
& \text { EPO }
\end{aligned}
\] & OPI & ON & \[
\begin{aligned}
& 2007 / 09 / 28 \\
& 12.24
\end{aligned}
\] \\
\hline 500 & \(\pi\) & ssotr－moskawitaili． & \[
\begin{aligned}
& \text { USFGFUB; } \\
& \text { USPAT; } \\
& \text { ERO }
\end{aligned}
\] & OF & ON & \[
\begin{aligned}
& 2007 / 09128 \\
& 12.24
\end{aligned}
\] \\
\hline 531 & 616 & moskosuizio． & \[
\begin{aligned}
& \text { USFAPUUB: } \\
& \text { USPAT: } \\
& \text { EFG }
\end{aligned}
\] & 0 O & DN & \[
\begin{aligned}
& 2007 / 08 / 28 \\
& 12,25
\end{aligned}
\] \\
\hline 582 & T & moshowita－scottin． & \[
\begin{aligned}
& \text { US-PGPUB: } \\
& \text { USPAT } \\
& \text { ERD }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007 / 08 / 28 \\
& 13225
\end{aligned}
\] \\
\hline 363 & 576 & 534 and domain & \[
\begin{aligned}
& \text { US-PGFUB; } \\
& \text { LISPAT; } \\
& \text { EPO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 20007 / 09 / 28 \\
& 12: 26
\end{aligned}
\] \\
\hline 864 & 26 & \＄58，ard watermarks & \[
\begin{aligned}
& \text { USFGPUE: } \\
& \text { USPAT: } \\
& \text { ERO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007108 / 29 \\
& 12 ; 26
\end{aligned}
\] \\
\hline S65 & 88 & So4 and lautholsion authentio क） & \[
\begin{aligned}
& \text { US-PGPUS: } \\
& \text { LSPATi } \\
& \text { ERO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007108 / 28 \\
& 12.26
\end{aligned}
\] \\
\hline 886 & 88 & （ulegecy or early or marliar or crevious\＄）hea（cmitent or data）and zerver and fransol S．at seros）ard（date op intor mition or mio）and （an）hois or authentics）． dm & \[
\begin{aligned}
& \text { LIS PGPUB; } \\
& \text { USFAT } \\
& \text { EPO }
\end{aligned}
\] & OP & ON & \[
\begin{aligned}
& 2007 / 08 / 28 \\
& 12: 38
\end{aligned}
\] \\
\hline 387 & 7 & \＄66 and watermanki & \[
\begin{aligned}
& \text { LIS.PGPUB; } \\
& \text { LSPAT } \\
& \text { EPO }
\end{aligned}
\] & OF & CN & \[
\begin{aligned}
& 2007108 / 288 \\
& 12.38
\end{aligned}
\] \\
\hline 868 & 2972 & （保gacy or eally or aarlien or plevious\％）neai（content or deta is mullimedia））and （何ad－79890804＂ （9）prade \(19990804^{\prime \prime}\) ）anc servel & \[
\begin{aligned}
& \text { USFGPUB; } \\
& \text { USPAT } \\
& \text { ERO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007209 / 28 \\
& 12,40
\end{aligned}
\] \\
\hline \＄69 & 1251 & 568 and（quality or degradSE） & \[
\begin{aligned}
& \text { USPGPUB: } \\
& \text { USPAT: } \\
& \text { EPO }
\end{aligned}
\] & OF & 10 N & \[
\begin{aligned}
& 2007 / 09 / 28 \\
& +2.41
\end{aligned}
\] \\
\hline 870 & 31 & 569 and watemmarks． & \[
\begin{aligned}
& \text { US-PGPUS: } \\
& \text { LSPATi } \\
& \text { ERO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2000108188 \\
& 1241
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 571 & 195840 & （qualisy）and（audio or viden or muitimedia di medial and （伸配 \({ }^{\prime} 79990804^{*}\) （2prad＜＂19990809＂） & \[
\begin{aligned}
& \text { USFGGUB; } \\
& \text { USPAT; } \\
& \text { ERO }
\end{aligned}
\] & OF & ON & \[
\begin{aligned}
& 2007 / 09128 \\
& 15: 10
\end{aligned}
\] \\
\hline 578 & 4057 & \(\$ 71\) and 〈qos or（quality near servine） & \[
\begin{aligned}
& \text { USPGPUE; } \\
& \text { USPATi } \\
& E R O
\end{aligned}
\] & 108 & ON & \[
\begin{aligned}
& 2007108 / 28 \\
& 15: 01
\end{aligned}
\] \\
\hline 573 & 46 & S\％\％and watermatksi & \[
\begin{aligned}
& \text { US.PGFUB; } \\
& \text { USPAT: } \\
& \text { EPO }
\end{aligned}
\] & Off & ON & \[
\begin{aligned}
& \text { 2000710 } 2728 \\
& 15: 01
\end{aligned}
\] \\
\hline 874 & 1181 & 571 and watermark\％ & USPGPUB； USPAT； ERO & OR & CN & \[
\begin{aligned}
& 2007 / 09 / 28 \\
& 15 ; 09
\end{aligned}
\] \\
\hline S75 & 17 & \＄74 and legacy & \[
\begin{aligned}
& \text { US-PGPUE: } \\
& \text { LSPAT } \\
& \text { ERD }
\end{aligned}
\] & 08 & DN & \[
\begin{aligned}
& 2007108198 \\
& 15,04
\end{aligned}
\] \\
\hline 576 & 37328 & \begin{tabular}{l}
（quality）and（geographtio or map or maps of mapping）and． （＠） \\
（这品ad＜＂19990804＂）
\end{tabular} & \[
\begin{aligned}
& \text { US-PGPUE; } \\
& \text { USPAT; } \\
& \text { ERO }
\end{aligned}
\] & OF & ON & \[
\begin{aligned}
& 2007 / 01 / 28 \\
& 15: 10
\end{aligned}
\] \\
\hline S77 & 645 & S7E and watermayk\＄ & \[
\begin{aligned}
& \text { USFGPUE; } \\
& \text { USPATi } \\
& \text { EPD }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007108 / 29 \\
& 75: 11
\end{aligned}
\] \\
\hline S78 & 76 & 577 and legacy & \[
\begin{aligned}
& \text { US-PGPUE: } \\
& \text { USPAT } \\
& \text { ERO }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007108128 \\
& 15: 12
\end{aligned}
\] \\
\hline 579 & 16 & 97\％And sex ver & US．PGFUE： USPATI EFP & CF & ON & \[
\begin{aligned}
& 2 \times 07108 \times 98 \\
& 15: 12
\end{aligned}
\] \\
\hline 580 & 149 & legazy and（audio or video or digital or mullimedia ó dara） and（＠ande＂19990804＂ （ほprats＜＂ 19990804 ＂）atod （qualify mean layel） & \[
\begin{aligned}
& \text { USPGRUB; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007670 \% 23 \\
& 14: 19
\end{aligned}
\] \\
\hline \＄89 & 127 & ssu and＜saten or sucuri or protests & US．PGFUE： USEAT & Off & ON & \[
\begin{aligned}
& 20071 \text { 1ys:3 } \\
& 10: 28
\end{aligned}
\] \\
\hline 582 & 35 & 581 and pstore bl storage ar 3／oring or ăatabase） & UE－PGPUB； LSPAT & \(\overline{O F}\) & ON & \[
\begin{aligned}
& 200719722 \\
& 14: 15
\end{aligned}
\] \\
\hline \＄883 & 34 & 382 and server & \[
\begin{aligned}
& \text { USFFGFUB; } \\
& \text { USPAT }
\end{aligned}
\] & OF & ON & \[
\begin{aligned}
& 2007101833 \\
& 10: 29
\end{aligned}
\] \\
\hline 584 & 26 & \＄88 and alithers & \[
\begin{aligned}
& \text { US-FGFUE; } \\
& \text { USPAT }
\end{aligned}
\] & Of & \[
O N
\] & \[
\begin{aligned}
& 2007410122 \\
& 40.30
\end{aligned}
\] \\
\hline 585 & 2 & isgaty ant（andik or viffev or digital or multianedia or ctata） ank（10ade＂19990804＂ （aipiad＜＂19990804＂）ank （guality mean zdegrge pulevels） & TISFBEUE： USPAT & OFI & ONT & \[
\begin{aligned}
& 2007 / 10 / 81 \\
& 10: 30
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S8\% & 49 & segrey and laudic or videno or digital or multiniefola or data) and (iands 19990804 (appade "19970804") дMa (quality тean (degrae pr levert) & \[
\begin{aligned}
& \text { USPGFUB: } \\
& \text { LSPAT }
\end{aligned}
\] & Of & 10 N & \[
\begin{aligned}
& 2007112923 \\
& 14: 16
\end{aligned}
\] \\
\hline S37 & 41 & S3ta and server & US PGPUB; USPAT & DP & ON & \[
\begin{aligned}
& 200710123 \\
& 10: 34
\end{aligned}
\] \\
\hline S38 & 41 & 387 and sauthoris of allow sor permita) & US PGPUB: USRAT & OR & ON & \[
\begin{aligned}
& 2007190 / 28 \\
& 10: 51
\end{aligned}
\] \\
\hline S39 & 37 & \$35 and (store or staring or storaje or Jatabase) & \[
\begin{aligned}
& \text { US PGPUB; } \\
& \text { USPAT }
\end{aligned}
\] & OA & QN & \[
\begin{aligned}
& 2007 / 10723 \\
& 10: 35
\end{aligned}
\] \\
\hline 890 & 6 & (legery and llagacy with cortentll and (audio ot video or alglial or mult? ? media ef data) तnd (@ade" 9990804 " (9) (quality mear lavel) & US PGPUB: USFAT & IOR & ON & \[
\begin{aligned}
& 2007110 r 23 \\
& 10: 39
\end{aligned}
\] \\
\hline Sal & 6 & negecy with conteny) and (avalo on vigeo or olgilal on multibmedia on cata) anci (@ade" 99900804 @prad< "199908(y4) ant (Guality near layel) & USFERUE: USPAT & OH & ON & \[
\begin{aligned}
& 2007110 \times 23 \\
& 1039
\end{aligned}
\] \\
\hline 392 & 10 & \begin{tabular}{l}
[legacy with contemb) anct (audic on VIoeco or otigilal on mulifmedia on (oata) anul \\
 @prate" \(19980864^{\circ}\) ) दारा (quality ada) level)
\end{tabular} & US RGPUE: USPAT & OFA & CN & \[
\begin{aligned}
& 2007110 \times 23 \\
& 10: 40
\end{aligned}
\] \\
\hline 593 & 7 & (legacy witt centent) anct (filutio on videc or digltal on mullifmedia on (ata) añl (G1ade"19990804* @prade "199808(54) दnct (quality with level) & \[
\begin{aligned}
& \text { ISF-PGPUE; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 20071472.87 \\
& 10: 41
\end{aligned}
\] \\
\hline 584 & 33 & \begin{tabular}{l}
(legacy with pontent) and (atudic or videc or digilal or multi?media on datal and \\
 (eprade " \(199808\left(4^{\prime \prime}\right)\) and quality
\end{tabular} & US-FGFUE: USPAT & OF & ON & \[
\begin{aligned}
& 2007190129 \\
& 10.42
\end{aligned}
\] \\
\hline 995 & 26 & 594 and server & \[
\begin{aligned}
& \text { USFGGUE; } \\
& \text { IISPAT }
\end{aligned}
\] & 108 & ON & \[
\begin{aligned}
& 200790129 \\
& 10.42
\end{aligned}
\] \\
\hline 896 & 26 & 595 and (authoris or allows or permis) & \[
\begin{aligned}
& \text { USPGPUB: } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 200719029 \\
& 10,51
\end{aligned}
\] \\
\hline 597 & 23 & \[
\begin{aligned}
& \left(\begin{array}{l}
\text { (Egacy with content) and } \\
\left(\text { (agad } 1998080 d^{\prime \prime}\right. \\
\text { (I2prade } \left.19980804^{\prime \prime}\right)
\end{array}\right.
\end{aligned}
\] & USPGPUB: IUSPAT & 105 & ON & \[
\begin{aligned}
& 2007 / 10 / 23 \\
& 1491
\end{aligned}
\] \\
\hline S98 & 14 & S97 and selver & USPRIPUES LISPAT & OR & ON & \[
\begin{aligned}
& 20007 / 10128 \\
& 94,04
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S99 & I & \[
\begin{aligned}
& \text { (iegacy nisar content) and } \\
& \text { (@gde } 19980804^{\prime \prime} \\
& \text { (Gprad<" "99880804") }
\end{aligned}
\] & US FGPUE： USPAT & OR & OM & \[
\begin{aligned}
& 2007 / 90123 \\
& 14 \times 15
\end{aligned}
\] \\
\hline 8100 & 1600 & \[
\begin{aligned}
& \text { ((legacy or old of older) near } \\
& \text { (varsion or content)) and } \\
& \text { (@ads '19980804" } \\
& \text { (eprad < } 19880804^{\prime \prime} \text { ) }
\end{aligned}
\] & （USPGPUE： LISPAT & 08 & DN & \[
\begin{aligned}
& 2007 / 10128 \\
& 14: 15
\end{aligned}
\] \\
\hline 5501 & 513 & ST00 and server & UE－PGPUB； USPAT & OR & ON & \[
\begin{aligned}
& 2007190182 \\
& 44: 55
\end{aligned}
\] \\
\hline 5102 & 510 & Sot ans（stors on storage or ziving or database） & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007190193 \\
& 14.5
\end{aligned}
\] \\
\hline 5109 & 13 & \begin{tabular}{l}
St02 and（audio or yideo or （algual or multirmecta or data） and（＠ad＝＂19990804＂ \\
 （quality mean（degree or teveth）
\end{tabular} & LIFFGPUG； USPAT & OR & ON & \[
\begin{aligned}
& 2007 \text { त1 } 29 \\
& 14.17
\end{aligned}
\] \\
\hline FICM & 6 & Stolamed authonis & LIS－RGFUE； LUSPA＇ & OH & ON & \[
\begin{aligned}
& 2007110: 23 \\
& 14: 18
\end{aligned}
\] \\
\hline 5405 & 1 & 1egecsy at）＜content on version））द्वात्（audlo or video or digital or muti？media or data）and（＠ade 79490804 ＂ （ल）prade＂ \(19990804^{\prime \prime}\) ）anc （qualify moan loyel） & US PGFUE： USEAT & Of & ON & \[
\begin{aligned}
& 2007+111233 \\
& 14: 21
\end{aligned}
\] \\
\hline \(81 \%\) & 26 & \begin{tabular}{l}
（legasy at）（content or versions）and（audio or video or Digitan on inulliomedia of （土厶⺝⿱十口𧘇⿸厂 \\
 quality
\end{tabular} & \[
\begin{aligned}
& \text { IISPGPUE; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 200710 / 8.1 \\
& +5.01
\end{aligned}
\] \\
\hline 8107 & 1．367 & \begin{tabular}{l}
（cqualliy mean resolition）an （bierarch 4 near truality），and （audio ar yideo of olytial on 17nutiforalia or dsta）－ina （保ade 19990804． \\

\end{tabular} & \[
\begin{aligned}
& \text { ISPGPUE: } \\
& \text { USPAT }
\end{aligned}
\] & OR & 0 N & \[
\begin{aligned}
& 2[077102831 \\
& +5.08
\end{aligned}
\] \\
\hline S108 & 580 & S107 and fiters & \[
\begin{aligned}
& \text { USPGPUB; } \\
& \text { USPAT }
\end{aligned}
\] & OR & ON & \[
\begin{aligned}
& 2007 / 10129 \\
& 15 ; 02
\end{aligned}
\] \\
\hline 5109 & 1 E & S108 and（store on Btoiling or Sórage of uatabasg ）ant server and authoris & USFGFUB； USPAT & OR & ON & \[
\begin{aligned}
& 200719129 \\
& 15: 08
\end{aligned}
\] \\
\hline
\end{tabular}

で \(2 /\) TODA -2831 PM







 Tanchaten as zfrened








\section*{INFORMATION DISCLOSURE STATEMENT BY APPLICANT}
(Use is mort shopte es reousary)
\begin{tabular}{|l|l|l}
\hline sheel 2 & of 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Application Numiber & 10/asa kel \\
\hline  & बoly \(\mathrm{sa}^{\text {a }}\) Spm \\
\hline Frist Namentimeniet & Motpopite \\
\hline कतt & \(2(3)\) \\
\hline Eaminar Name & AVEEY \\
\hline Buamay Dociel Number & EvVag.eoll \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Examine Whinas:} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Wita } \\
& \text { Not }
\end{aligned}
\]} & \multicolumn{4}{|c|}{HeS. PATENT DOCUMENTS} \\
\hline & & & Smody y y &  & Fana, Caumm, linurivhere \\
\hline & & tumbersind Codenemer & & & Figiomader \\
\hline & & U8.7,096,806 & 05/42/2006 & Manes ai ai. & \\
\hline & & U5.6.430,301 & 08106/2002 & Prepovic & \\
\hline & & us 2004/0059918 & 03/25/2004 & Su & \\
\hline & & \({ }^{48} 6.345,100\) & 02/05/2002 & Levite & \\
\hline & & \({ }^{145}\)-2004/0093521 & 05/43/2004 & Hemaditholal. & \\
\hline & & \(155-2007 / 0083467\) & 04/12/2007 & IJraniotal & \\
\hline & & 146-7,231,524 & 06/12/2007 & Bionts & \\
\hline & & 105-2005/0246554 & 17/03/2005 & Bauson & \\
\hline & & \({ }^{\text {us }}\) 6,668,325 & 02123/2003 & Fatreary etal. & \\
\hline & & \({ }^{115}\) 7,050,396 & 05/23/2006 & Cothen elal. & \\
\hline & & \({ }^{118} 6,842,862\) & 01/71/2005 & Chawal \({ }^{\text {a }}\) & \\
\hline & & \({ }^{1 / 88} 7,051,208\) & 05/29/2006 & Yemuritsion al al & \\
\hline & & U6, 7,240,210 & 07/03/2007 & Mictrakal ax & \\
\hline & & [15.7,150,003 & 12/12/2006 &  & \\
\hline & & us. \(6,389,538\) & 05/14/2002 & GTomotal. & \\
\hline & & \({ }^{165} 5,513,126\) & 04/30/1996 & tration er al. & \\
\hline & & [195,5,657,461 & 0812/1997 & Hartint in ini: & \\
\hline & & \({ }^{15} 5\)-4,390,898 & 06/28/1985 & Btond el al & \\
\hline & & \({ }^{\text {U5 } 5,471,533}\) & 11/28/1.995 & Wanget al. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Criminer } \\
& \text { inventio" }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Cilte } \\
& \text { No. }
\end{aligned}
\]} & Forega Patent Document & \multirow[t]{2}{*}{Paination Oata MM-OD-YNY} & \multirow[t]{2}{*}{Thene of Fatenter DC Aocicactidi Cilea Document} & \multirow[t]{2}{*}{Pagis, Coidmns Lives Whena Pelsvani Prisegas On Ribevarif Figurs Apigear} & \multirow[b]{2}{*}{T} \\
\hline & &  & & & & \\
\hline & & & & & & 51 \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & - \\
\hline \[
\begin{aligned}
& \text { Exeminer } \\
& \text { Sgnalure }
\end{aligned}
\] & & h/bielmiah Avelis & & Date Einsisaren & 07/02/2008 & \\
\hline
\end{tabular}



 Transoanh is aruoruat







ALL TEFERENGES CONSIDERED EXGERT WHERE LINEDTIIROUGH . .A.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT ITEERATURE DOCUMENTS} \\
\hline Examinet
Tnitals & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Include name of the author (in CAPITAL LETTERS), tifie of the anticfe (Wingn appcapriata), Uifte of \\
 numbentey, pobsshen aly andior countsy where published.
\end{tabular} & \(\mathrm{T}^{2}\) \\
\hline & & Rivest,et al., PayWord and MictoMint: Two simple micropayment schernes, MIT Laboralory Ior Compuler Sclence, Cambridge, MA 02139, Abril 27,2001, on, 1-18. & \\
\hline & & Horowitz, et al., The Arf of Electronics, 2nd Ed, 1989, pp 7. & \\
\hline & & Delaigle, J. F, et al "Digital Watermarking," Proceedings of the SPIE, vol. 2659, Feb 1, 1996, pp. 99-110 (Abstract) & \\
\hline & & Schnelder, M. et al "Robust Content Based Digital Signature for Image Authentication," Proceedings of the International Conference on Image Processino (IC Lausannel Sent if-19 199fic on 227-230. IEEF ISBNL & \\
\hline & & Cox, I. J, et al "Secure Spread Spectrum Watermarking for Multimedia," IEEE Transactions on lmage Processing, Vol, 6 No. 12, Dec. 1, 1997, ppi 1к7: - 16月6. & \\
\hline & & Wong. Ping Wah "A Publlo Key Watermark for tmage Venfication and Authentication," IEEE International Conforence on Image Processing, Vot 1 Onf 4-7. 1998 nn 455-459 & \\
\hline & & Fabien A.P. Petitcolas. Ross J. Anderson and Markkus G. Kuhn, "Attacks on Copyright Marking Systems," LNCS, Vol. 1525, April 14-17, 1998, RP. \(218-239\) ISAN-3-54n-65386-4 & \\
\hline & & Ross Anderson, "Stretching the Limits ol Steganography," LNGS; Vol. 1174, May/June 1996, 10 pages, ISBN: 3-540-61996-8. & \\
\hline & & Josejph J.K. D'Ruamaidh and Thierry Purr, "Rotation, Scale and Translation Invariant Digilal Image Watemiarking", pre-publication, Summer 19974 nacies & \\
\hline & & Joseph J.K. O'Ruanildh and Thierry Pin, "Fotation, Scale and Translation Invarlant Digital Image Watermarking", Subinitted to Signal Pmosesing Alloulst 21199719 nanes & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examiner Signature & I. Jeiemalr Aveiy) & Dote Consifiered & 07/02/3008 \\
\hline
\end{tabular}

\footnotetext{







 Comminioner for Patonts P.Q. Bus 1450, Alazaredrin. VA xa3v3-1450
}

ALL AEFEREMGES GONSIOENED EXCERT WHERE LNET THROLUOH. I A.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Complate if Known} \\
\hline Application Number & 1010y910) \\
\hline Fring Date & July 293002 \\
\hline First Wamad Inventor & Moskowite \\
\hline Artunit & 2131 \\
\hline Examiner Name & AVENY \\
\hline Attomey Docket Number & 80408. Doll \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMRNTS} \\
\hline Examiner Intlisis" & Cilt
No. & Inclode name of the wuthor in CAPITAL LETTERS). Itte of thearticte'(when apprapidate), tille of The lem (book-magazine, joumal, senal, symposami, catalog, etc,1; date page(s), volume-ssue number(s), pablishen, city and/or country where published. & \(T^{2}\) \\
\hline & & PCT International Search Report, completed Sept. 13, 1995; authorized pfficer Huy D. Vu (PCT/US95/08159) (2 pages) & \\
\hline & & PGT International Search Report, oompleted June 11, 1996; authorized officer Salvatore Cangialosi (PCT/US96/10257) (4 pages) & \\
\hline & & Supplementary European Search Report, completed Mar. 5, 2004; authorized oificer J. Hazel (EP 9691 9405) (1 page) & \\
\hline & & PCT International Search Report, completed April 4, 1997; authorlzed officer Bernarr Earl Gregory (PCT/US97/00651) (I page) & \\
\hline & & PCT International Search Report, completed May 6, 1997: authorized officer Salvatore Cangialosi (PCT/US日7/00652) (3 pages) & \\
\hline & & PCT International Search Report, completed Oct. 23, 1997; authorized officer David Gain (PCT/US97/11455) (1 page) & \\
\hline & & PGT Internafional Search Feport, completed July 12, 1999; authorized ptficer R. Hubeau (FCT/US99/07262) (3 pages) & \\
\hline & & PCT international Search Report, completed June 30, 2000; authorized ofticer Paul E, Caliahan (PCT/US00/06522) (7 pages) & \\
\hline & & Supplementary European Search Report, completed June 27, 2002; authorized officer M. Schoeyer (EP 00919398 (1 page) & \\
\hline & & PGT International Search Report, date of mailling Mar. 15, 2091: authonzed officer Marja Brouwers (PCT/US00/18471) (5 pages) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & Jareiniaif Ayeryi & \begin{tabular}{l} 
Dale \\
Considerod
\end{tabular} & 07/02/2008 \\
\hline
\end{tabular}








Conmmasionar for Patonta, P,O. Box 1450, Alexandria VA zaris 1450

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Examiner Inilials* & Cife & \begin{tabular}{l}
Inclute name of the aolticr (in CAPITAL LETTERS), (itte nf the arliols (when approprinte), fibe of \\
 oumbeifs) [ahlisiter city and/or country where publishad
\end{tabular} & \(T^{2}\) \\
\hline & & PCT International Search Report, coropleted July 20, 2001; authorized öficer A. Sigolo (PCT/USOK/18411) (5 pages) & \\
\hline & & PCT International Search Report, completed March 20, 2001; authorized ofticer P. Corcoran (PCT/US00/33126) (6 pages) & \\
\hline & & PCT Intemational Searoh Report, completed January 26, 2001; authorized officer A. Sigolo (PCT/US00/21189) (3 pages) & \\
\hline & & European Search Report, completed October 15, 2007; authorized officer James. Hazel (EP 07112420 ) ( 9 pages) & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & Jeremian Avery & \begin{tabular}{l} 
Dase \\
Considered
\end{tabular} & 07028008 \\
\hline
\end{tabular}
 onnsiderent. Iretiste cupy of tifin fom whi nait coumuinication fo appicani.





 Gomrnissioner for Patents P;D. Bor 1450, Almraniwia, VA 20113-1450.



\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Examiner \\
Signature
\end{tabular} & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \(07 / 02 / 2008\) \\
\hline
\end{tabular}
 cresiderent anduife woy of The form with nexd commuinication to applitant.






Cormmissianer for Patents, P.O. Boz 1450, Alexandria, VA 23313-1450.

ALLREFEBENCES CONSIDERED EXCEP WREBE LINEDTHROUGM S.A.

DISH - Blue Spike-408
Exhibit 1010, Page 2519

\title{
An Integrated Approach to Legacy Data for Multimedia Applications
}

\author{
Han Namgoong \\ Distributed Processing Section \\ ETRI \\ Yusong P.OBox 106 \\ Thejon 305-600, KOREA \\ nghan(wetri,re.kr
}

\author{
Ki-Young Moon \\ Distributed Processing Section \\ ETRI \\ Tusong P.O.Box 106 \\ Trejon 305-600, KOREA \\ kymoon@etri.re.kr
}

\author{
in-Won Yoo \\ Distributed Processing Section \\ ETRI \\ Yusong P.O.Bos 7106 \\ Tacjon 305-600. KOREA \\ yooiw @etri.re. ks
}

\begin{abstract}
In thus pupper ive liesortbe suat experimemal supproan va legwe slona for muftemedia uppfieatinns in WIN amiromment. There huve been many propasah for tho symuccion io legacy dafa and goi consuderible rinilta. Nuforranately Thesse dow's cover une af mal
 remer to exivine datalecample paymuem uf purchasel Our apgrovich shops an may access on the leyuey divia via Web and out nem WWW interfaces make usen do
 We also expenc missinn critical jobs auch ar foxnking und frimancial operatian kan be senved thmolig WWW seffectued.
\end{abstract}

\section*{1. Introduction}

User of mulimedia applicaliges take throc ditheren sepss 1) -onncotioas to multumedia дpqifations, 2) Uoing some busines logic, 3) disconncetion from multimedia applications. If user wants to tuy i book from bookstore in Internes then he auniests to the bookstore via Webstatep f) and select a booldand fill up necessary information like puytame method, shipping address elce. step 2) Finally fe disconnects(atep, 3y from the bookstore. The final operation of the second stepein the ahove examplo. payment) usuafly needs an acoess: fo the legary data in Irausaction mode, which provides antamatic failure recovery in a fastion of all of nothing, Many Jegacy data still act as vece of inportant fespurces in Inreene Fir oxamplo persobal bank wecount is expected to be under burreal legacy applications quite a long lime of courge
user imerfure may be chanved in a shew beme huil its cgernional same wall nor be changed. For mulimedla applichions we farce to provide an effivent way of interommeation wh legacy data in mansicion mode. This paper is arganged as follown. Section 2 fibst descitites approch to legacy data and in section I we present extended Weh stricture of nur appronch. Section 4 athoys one of the wass io comnest Weh and non-tVab wolld fionegh Joidge Finaliy, section 5 offen conctusion of our approich.

\section*{2. Approach}

\subsection*{2.1. Current Status}

WWUV is a Hyperiext Iffosmation Retrieval Syam which rome in clemi/server mode. Wet client part is ommposed of Web browser and kever part coniains fwo modula: ono for Hypertexl infornation remeval engene and Hypariext Transfer Proweol DuempnoitTw Dacmon, Currently Wcb is used mainly es informauish reificval services stich as an adyertisement of products and companiest public relations. Butr userd in business sectors wart fo gei moee traditional basiness services such as binking and reseryation operations, which wo ran ander transaction mode, via Web. To provide thase Icaditional fusiness services lhrough Web we need a way 10 somsed legacy application which ruas undes transaction processime monito(TP monime) which provides transiction service, where many distribaled transactions can be troned is u single itanspenion. In carrent Web convironmant, shown in Dgure 1, slieouserver uses Iwo differmit protocolo. 1) HTTP for Web browser
and Web server, 2) environment specific protwol auch as SQUJRPCSSA for the onnnection to information rexadres(DE, tile sysiem etc). When client/berver is in the same system then CGI is used between client and seryet.

\subsection*{2.2. Model}

To make an aceess to iegacy data in sansaction mode Firs: we need a connection hetween DIP and WWWV server, Generally Web und DBMS, which is an application program of Web, is connected via CGL in one system(means WWW secver system) but in that case we have an ovecloading problem bocause usualfy DTP needs many resources.

reb site Daynaic
Figure 1. Web Environment[13].


W; WebServat E-Cloent 7 DTP Senter I Wes Inerfoce

Figure 2. Connection via Web Interfaces.
We propose a new comnection, where DTP and Web serves run of different sybtems. The new connoction provides essy CGI programming and conyenient DTP service. Weh server can connect arbitrary DTP server in netwoek ffrough our new Web interlaces and gives good load falaneing. If any Web server wanls to grovide DTP service and at least one DTP server is in notwork then orly Web interface is needed. We Jan't need to implement the whole DTP module on every Web server, Figure 2 and 3 show a new connection enviranment using Web interfaces and eqvirommenL


Figure 3. Broker and DTP server.
For DTP service we add a Broker, which receives DTP seguest trom Wob setver writeey CGl form and sende if DTP sorver. Upon receiving DTP serviee request from Weh client Web server changes it mito CGI progrüm and calls the Broker. The Broker is actually DTP client, which sends its request to DTP server and relurns the resalt to CGl program.

\section*{3. Extended Web Structure}

Corrent HTTP is not suitable for the handling of legacy data in transaction mode and ussally DIP ases trancactional communicaton(Transactional RPC elc.) for the guarantee of consistent data, To send users date From Web to DTP server we needs two wrapping layers: 1) client transaction wrapper layer(CTWL) for the conversion from Web data to DTP clicnt program, 2) server transaction whapper layer(SIWL) for D1P sefver. The extended Web siructure for Iransaction mode is

\section*{shown in figure 4,}

\subsection*{3.1. Transaction Wrapper Layer}

CTWL converts dient dala from Web into transaction dila and send them to DTP server. To sened user data to DTP server CTWL uses aray type and example of array type is shown below.

> wrayl0l : name of application
arrayll : service name \(1=\) value 1
aray[2I: service name \(2=\) value 2
\(\operatorname{artay|g|}:\) sctvice дame \(\mathrm{N}=\) value N
CTWL dees the following tasks.
- User uuthentication and authorization
- Converts data in HTML into predefmed STWL's slata format
- Kecp operation stalus and user data for recovery
- Preparation of HIML documents as oufpui for the returned resuli of DTP server
Lifon receiving the result from STWL. CTWL. doen conversion into \(H T M L\) format and display on Weh.
STWL ronverts client data from Wely into transaction data and send them to DTP setver. STWL does the following tasks,
- Converts client data into predefined DTP server \(\stackrel{\text { chata }}{ }\) format
- Inyoka nécessaty applicatións
- Refirm the result of DTP server to CTIVL


Figure 4. Extended Web Structure.

\subsection*{3.2. Functions for Transaction Data}

For send the transaction data to serveriex. Bank account eamber, amount from web client) we make lour Tunctions which are inyoked from client stub and server sub.
- rpe_cstub_prologuce)

Transaction RPC elient stub calls this Junction and requests to create transaction beanch. Clieat stub sends transaction data as piggybacked on the normal RPC request. Transaction Monitor returns assigned transaction identifier for the later use like eancel and rolback.
- rpe cstub_cpilogue()

Upon receiving resill from scrver the client dtub alls lits functions und pass the returned data io tocal Lransaction manager.
- rpe_sslub_prolague()

Whan user program wants tor send a message to ranole server trinsactional RPC calls this function and manager function in the server side invokes actual setvioes operation depending on passed dall.
- Tpe_sstub_epilogue0 Mannger function salls this function and send resull on the RPPC reply.
For user programas the following interface aro provided.
\begin{tabular}{|c|c|}
\hline Imerrace Name & Fenction \\
\hline 17TP.Canose & Ftequest Crunect for Service \\
\hline LTP-Close & Requast Service Termuntion \\
\hline DTP Call & Call Seryey \\
\hline DSE Keam & Wail for tesuli/Clesk dimasnt \\
\hline OTE bollibeck & Transaction Ptolthatk Ropuce \\
\hline ITP CodsCuns & Change data fomblurPC) \\
\hline DIP Aosesiconinil & Auchenícatiom/Authurization \\
\hline DTP Set Transaction Thaneour & Solitimerui value \\
\hline
\end{tabular}

\section*{4. Integrating CORBA and DCE}

\subsection*{4.1. COREA and Web}

Many benctits of object can be used in Web envirchmeril through a guteway between COREA and Weh We design a gateway, shown in figure 5, whish acceptod wer isput and changes into CORBA cliem program. User in web browser can call CORBA object(service) directly using HTTP protucol, Upon reociving the reguest and gateway passes the data to CORBA client The CORBA chient salts CORBA server through H10P protocol and then relions the result io Web cliend via gatewiny.

\section*{4,2, CORBA and DCE Gateway[1]}

There also exists some services which are umiquely in only DOREA or DCE For exumple spplizations on CORBA do not-iupport strong seatrity, whlle DCE users cais get the lienolits of object. Die Isterface Definition Langunges(0DLs) used by CORBA and DCE are not companibe. and there is no computiolig in the geperated sub or skeleton cesle cach IDL sompller geacrate. To cower this problons we can think four cass in bridging berwon DCE and COREA is followm.


Figures. CORBA and Web Environment.
sare 1: CORBA-client-u-DCE-server bridge
There she many exlsing DCE-tained teryets. New CORBX-faseal ppplications need to tase the DCE gervers that not vice versil If this is the case; then the bridgefunding process is to lake the DCE [DL and convert it iq CORBA thL and boild a bridge to couven feiwass Nhem care 2: DCE-client-a-CORBA-server bridge
If this the the casie, then the bridec-building procoss in to rake the CORBA IDL und ranslane it to DCE IIIL and haild a tridge to convert berween them.
case i: (MEE-based servers and CORBA-based netyers.
there are boit seryers in DCE and CORBE, (lyul govidiny differentureas of functionality) and we bive to do both of the tibover (ouse \(f\) and case 2).
case d: DCE-Lased servers nud CORBA-bund yervere
This is the saine case except both serval have rume lunctiontality's. Clients might nead to use both DCE-bunod
veryers and COREA-fased secvers fo noblain this functionality If this is the case, then this is very ifftereat to the previous casef. In the previous casescous 3) one sel of IDL was given, the other IDL can fe qenerated with a view to making it easy to rransiate betwsen them Ease of thansiation means that structurally the generued IDL Is sfrilat to the ofiginal IDL (eg. sume mumber of ogermisus with the same paranclers) This kreu if approach is suitable for aumorionkor, at Tcas. aspisiced with loots).
In case \(f\). there are (wo sels of IDL given The hifege buildug process has to unkershand how fle lwe IDLs relaie to one anothar. Eg-raking one operatum call al one interface might cquate io two operutior callo un another interfice. This would generally require semantic ivisomtiafion beyoud that containod in IDL

We decide to buila out bridge; a litwied gatewuy foe CORBA cliont und DCE based servar, as follows
Dhes use specific tool(program) to gencater two àpedifc CORBN/DCE imertues bpes. This fritge in proibation vecy fach al rum-time as all lhe transtation, gencribions. compitation ere- was dane in advanee and lhe resill is a heidege iendy-io-rum. The disadvantage is Usi you have io know af development time which incerfaces roxuire hridges. Flowever. for many standard applications. thas informainai is kitiwn. There is no need to use dynamic Jnvecuion methods for thits kind of beldee, Depending on the approach taken, it mighe mi might not be necesary to ake dyamic tonyoation. Obvimuily CORBA bas dymumic inveation कó mating dynamic calle to CORBA secrers is casy in theolry. Foweyer in practice aol all ORBs implomeni dybimic inyonalian and some ORBs implemeni in that ithe implemenialuat tias buge DCE does mal provide any dynamic invecalion crpatinity, although we haye done some prelimitary work in (his area. Imp/ukenting dynamic invocutions for DC'E in an interesting prohlem io fis owy right. Howeves is \(\$ 5 \mathrm{tan}\) I small ywoblem nud dechle to do next trie Figure 5 Hows overall cuvitenmont of CORBA/DCE oporatior


Figure 6. COABA and DOE Environment.
5. Example

As an example if ner apigrouch we build expenmental multmedia application, \(\mathrm{VoDH}_{3}\) based on cuir extension model: Dser cain select movies in Weh browser, watch at und males a payment throgigh the inferconnestion with remoie bink wervet/iedil card server. The curreni set of WWW prococols ure nee suitable for real-cime delivery of multimedia smeam. Tr oversome this on CORBA/WWW fivirniment we separaife control commands and mailemodia tata by different putis. We use DAVICLIZI stylo approuch. where strearn control commands like bendraccive lae CORBA tayer and multimedia streamó go differeni MPEG2 layer. We provides lhree modules tre thix Javi/ORB Cnteway. Applet cluss for user inierlaus amb OoS megration.


Figure 7. VOD on COREA[10].
The internet has in impact on the Cos level in two ways. One is ICP/IP, which prolocol shares avaifable recources evenly amongst all compeling connectionx. The characieristics of end-systems give andied imipact on QoS. level. The QaS negotiation proticol ums foe the hest between capabilities and constraints of multitnedia zerver, the petwork and clieut We currently design QoS management scheme based on CORBA stream standardiation.

\section*{6. Conclusion}

Our upproadh solves two probiemst i) sybtem overloading which caused by the co-residence of DTP and WWW server in tho samie system and 2) CORBA/WWW/DCE integration, Furtberugre our new WWW interfaces(DIP sorvice via WWW) make users do

Ensily CGI prograuming: The interfoces if Dive same format of XJOpen DTE interfuce, no users wha iv tumiliar with taditional taunaction processing cair oavily we tho same functionality in IWWW envignneet We eflow etepst mission critionl jobs such is bankmg and linumial operations gan be serived through 'WWW miterfacer tefealyall

\section*{Refercaces}

IIf Oper Sofware Fomindaion, DCE Adumimatraliong Guide. Cembridge Open Suftware Foundaumai 1992
[2] X/Open Cumpany Limiked. Disribued Tranwetfen Processing Rafererice Model, Berkxhirc ULK.. X/Open Cumpany Limied, 1907
(3) Supan Ine et al, "Datanase Servar Cfient Trail in Client-Server Mosel. Kónea Dalabase Journal, MOBS, Vol, 1, No 1, 0g- 107-121, August 1994
(4) Taligent. Buildiog Dbject-Qrienfed Fenmmwnhs, Tallgent. CA 1943
[sf Object Management Groop. The Comman Obyect Requast Broket Acchütecture ame Spuidfavilon. Obyset Mumyemen Oroup, 1992
(6) Richard Ader, "Diswbuted Coordinatien Modets for Clieni/Server Cxmputions," Computer. Vol:28. No.4. Agyil, 1995 pp.T4-23.
(7) Dimitions Geargalirpoulos et ai.. "An Extended Transaciein Envircument for Workflawe in Distibutal Object Computing, LEEE Bulecin of the Tochtical Cormnitioe on Data Enginecong. Voliti, No. 2, Jund, 1993
181 Jim Gray und Andreas Renter. Thanxuctions Proceniag: Concent and Terfiniques. Misgan Kaufmann. Sun Mateo, CA. 1993
[9] Karry Raymond. e-mail to Han Namgoarg, April 24. 1906
 Nedia rand the Wmill Whe Weh, IFII Workabsypon OHS, 1096
1111 Digital Avalu-VIsuil Councif, DAVIC 1.0, 1995, Gonewn, Swiseriand
[12] Han Niangoong, Dukjoo Sisn, Myung-Joent Kimi A Imumework lasyed om Mybred Bonker Meviel Ioe Mullimedia Applicutions. Prorceding of The (001) TCOIN, January, 1996
113) Vllay Treham CORBA mit the World Wede Web. Procealing of Objar Wistd West, Auguss. 1996






 ADCRE 5 S. SEND TO: Commissianer for Patents, P Q AOx 1450, Alexandria, VA 22313-1450.

If you veed oesurance in completing the form, uall 7 -finh-Pra-g199 and aciect opalion z
ALL. REFERENCES CONSIDERED EXCERT WHERE LINED THROUGH. I.A./

DISH - Blue Spike-408
Exhibit 1010, Page 2526

\begin{tabular}{lll} 
Appl. No. & 10/049, 101 & Confirmation No 8028 \\
Aplicant & Scot A MOSKOWITZ et al. & \\
Filed & July 23,2002 & \\
TClA.U. & 2131 & \\
Examiner & Jeremiah AVERY & \\
& & \\
Docket No & 80408.0011 &
\end{tabular}

MAIL STOP AMENDMENT
Comimissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{INFORMATION DISCLOSURE STATEMENT}

Dear Sir:
Applicants submit copies of the references listed on the attached SB08 Form for consideration and request that the U.S. Patent and Trademark Office make them of record in this application.

Applicants state the following.
\(\square\) Each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the Information Disclosure Statement; or
\(\square\) No item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application, and to the knowledge of Applicant(s) no item of information contained in this Information Disclosure Statement was known to any individual designated in \(\S 1.56(\mathrm{c})\) more than three months prior to the filing of this Information Disclosure Statement.


Appl No. 10/049,201
Information Disclosure Statement dated April 17, 2007
\(\square\) in accordance with 37 C.F.R. \(\S 1.97\) (b), this Information Diselosure Statement is believed to be submitted prior to issuance of a first Office Action and/or within three months of the filing date of the application. It is respectfully submilted that no fee is required for consideration of this information.
© This Information Disclosure Statement is being subimitted after the malling of a non-final Office Action, but is believed to be prior to a final Office Action or a Notice of Allowance. Pursuant to 37 C.F.R. § 1.97 (c), payment in the amount of \(\$ 180.00\) as sel forth in 37 C.F.R. § 1.17(p) is enclosed.

While the information and references disclosed in this Information Disclosure Statement are submitted pursuant to 37 C.F.R. \$1.56, this submission is not intended to constitute an admission that any patent, publication or other information referred to is "prior art" to this invention. Applicants reserve the right to contest the "prior art" stalus of any information submitted or asserted against the application.

Additionally, Applicant wishes to inform the Examiner of the existence of the following co-pending U.S. patents and patent applications that share a common inventor with the present application:

EXAMINERS INITIALS:
__ U.S. Patent Application No. 08/999,766, filed July 23, 1997, entited "Steganographic Method and Device";
_ EPO Application No. 96919405.9 , entitled "Steganographic Method and Device";
_- U.S. Patent Application No, 11/050,779, filed February 7, 2005, entitled "Steganographic Method and Device";
___US Patent Application No. 08/674,726, filed July 2, 1996, entitled \({ }^{\text {EExchange Mechanisms for Digital Information Packages with }}\) Bandwidth Securitization, Multichannel Digital Watermarks, and Key Management";
ALL REFERENGES CONSIDERED EXBEFT WHERE LINEDTHROUGH. M.A.
ALL REFERENCES CONSIDERRO \(Z\) EXCEPT WHERE LINED THROUGH. IJ.A.I
\(\qquad\) U. S Patent Appileation No 09/545,589, filed April 7, 2000, entilled "Method and System for Digital Watermarking":
U.S. Patent Application No 14/244,2i3, fited October 5, 2005 antited "Method and System for Digital Watertrarking":
\(\qquad\) U.S. Patent Application No 11/649,026, filed January 3, 2007 entitied "Methot and System for Digital Walermarking":
U. S Patent Application No. 09/046,627. Iiled March 24, 1998, entited "Method for Combining Transfer Function with Predetermined Key Creation",
- U.S. Pateni Application 10/602,777, filed June 25, 20033, entitlea "Niethod for Combining Transfer Function with Predelermined Kag Creation":
_ U.S. Patent Application No 09/053.628, filed April 2, 1998, entited "Multiple Transform Utilization and Application for Secure Digital Watermarking".
U. S Patent Application No: 09/644,098, Filed August 23, 2000 entitled "Multiple Transform Utilization and Application for Secure Digital Walermarking";
\(\qquad\) dap App No 2000-542807, entitied 'Mutiple Transform Unimzation and Application for Secure Digital Walermarking",
US Patent Appllcation No 09/767,753, filed January 24, 2001. entited "Mustiple Transiorm Utilization and Application for Secure Digital Watermarking";
_U.S. Patent Application No, 11/358;874, filed February 21, 2006, entitled "Muitiple Translorm Ulilization and Application for Seodre Digital Watermarking":
U.S. Patent Application No. 10/417,239, filed April 17 2003, entitted "Methods, Systems And Devices For Packet Wetermarking And Efricient Provisionilg of Bandwidth",
__ U.S. Patent Application No. 09/789,711, filed February 22, 2001, entitled Optimization Methods for the Insertion, Protection, and Defection of Digital Watermarks in Digital Dala";
US Patent Application No, \(41 / 497,822\), filed August 2, 2005, entitled "Optimitation Mehods for the Insertion, Protection, and Detection of Digilal Watermarks in Digital Data":
U.S. Patant Application No. 11/599,964, filed November 15, 2006, enttled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Dista":
_ U.S. Patent Application No. 11/599,838, filed November 15, 2006. entitiad "Optimization Methods for the Insertion, Protection, and Delection oi Digital Watermarks in Digital Data":
ALL REFERENGES CONSIDERED EXCERT WMERE LINED THROU(G) S.A.
ALL REFERENCES CONSIDE既ED EXCEPT WHERE LINED THROUGH. IA.A.

DISH - Blue Spike-408
Exhibit 1010, Page 2529
\(\qquad\) US Patent Application No 10/369,344, fled February 18, 2003, entitlect 'Optimization Methods for the Insertion, Protection, and Delection of Digital Watermarks in Digitized Data";
\(\qquad\) U.S: Patent Application No. 11/482,654, Filed July 7, 2006, entifled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data";
U. 6 Patent Application No 09/594,719, filed dine 16,2000, entited "Utilizing Data Reduction in Steganographic and Cryplographic Systerms";
\(\qquad\) U.S. Patent Application No 11/519,467, Filed September 12, 2005, entitled "Utiizing Dala Reduction it Steganographic and Cryplographic Systems":
\(\qquad\) U.S. Patent Applicatiọn Nó 09/731,040, Filed December 7, 2000 , entitled "Systems, Methods And Devices For Trusted Transactions";
\(\qquad\) US Patent Application No 11/512,701, Filed August 29, 2006, entitied "Systems, Methods And Devices. For Trustod Transactions,
\(\qquad\) U.S. Patent Application No 10/049,101, filed February 8, 2002 entited "A Secure Personal Content Server" (which claims priorily to International Applieation No. PCTUUS00/27189, Filed Augusi A 2000, which claims priority to U. 8 Patent Appliestion No 60(147. 134, filed August A, 1999, and to L.S Patent Application No. 60/213,489, filed June 23, 2000)
PCT Application No RGT/USOO/2118日, filed August 4, 2000, entitled, 'A Secure Personal Content Server'.
__ U,S. Patent Applicetion No 09657, 181, Iled September 7. 2000 entitled "Method And Device For Monitoring And Analyzing Signals"
U.S. Patent Application No \(10 / 805, \mathrm{~d} 84\), filed March 22, 2004, entilled "Mathod And Device For Moniloring And Analyzing Signale" (which claims prority to U.S. Patenh Application No 09/671,739 Filed September 29, 2000, which is a GIF of U,S Patent Application No 09/657.181):
\(\qquad\) U.S. Patent Application No 09/956,262 hled September 20, 2001, entitled "Improved Seourity Based on Subliminal and Supraliminal Channels For Data Objects*;
U.S. Patent Application No 11/518,806, filed September 11, 2006, entitled improved Security Based on Subliminal and Supraliminal Channels For Data Objects'
_ U.S. Patent: Application No \(11 / 026,234\), Filed December 30, 2004. entitled 'Z-Transform Implementation of Digital Watermarks'.
ALL REFERENCES CONSIBETED EXEEPT WHEFIE LINED THROBGA. ILA.A

\section*{ALL REFERENGES CONSIDEAGED EXCEPT WHERE LINED THROUGAH. ILA.}
\(\qquad\) U.§ Patent Application No. 11/592,079, fled November 2, 2006, entitled Linear Predictive Coding Implementation of Digital Watermarks",
\(\qquad\) U.S. Palent Application No 09/731,039, filed December 7, 2000, enttiled 'System and Methods for Permitting Open Access lo Data Objects and for Seouring Data within the Data Objects:
\(\qquad\) U.S. Patent Application No 11/647,861, filed December 29, 2006, entitied "System and Methods for Permitting Open Access to Data Objects and for Securing Data within the Data Objects*
U.S. Patent No. 5,428,606, issued June 27, 1995, enttled "Digital Commodities Exchange";
\(\qquad\) US Palent No, 5,539,735, 15sued July 23, 1996, entitled "Digital Information Commodities Exchange":
\(\qquad\) US. Patent No 5,613,004, issued March 18, 1997, Entitled
"Steganographic Method and Device",
\(\qquad\) U.S Patent No. 5,687, 236, issued November 11, 1997, entified "Steganographic Method and Device",
\(\qquad\) U.S Patent No. 5,745,589, Issued April 28, 1998, entitled "Method for Stega-Protection of Computer Code";
\(\qquad\) U.S. Patent Na 5,822,432, issued October 13, 1998, enitited "Method for Human Assisted Random Key Generation and Application for Digital Watermark System \({ }^{2}\)
\(\qquad\) US. Patent No. 5,889,868, issued July 2, 1996, entited "Optimization Metriods for the Insertion, Protection, and Delection of Digital Walermiarks in Digitized Deta',
U.S. Palent No \(5.905,800\), issued May 18,1989 , entitled "Kiethod \& System for Digital Watermarking";
\(\qquad\) U.S. Patent No, 6,078,864, issued June 20, 2000, entitied Z-Transform Implementation of Digital Watermarks":
\(\qquad\) US Patent No: 6,205,249, issued March 20, 2001, enlifled "Mulfiple Transform Utilization and Application for Secure Digital Watermarking"
_ U.S. Palent No 6,522,767, Issued February 18, 2003, entitled "Optimization Methods for the Insection, Protection, and Detection of Digital Watermarks in Digitized Data",

\footnotetext{
U.S. Patent No. 6,598,162, issued July 22, 2003, entitled "Method tor Combining Transier Function with Predetermined Key Creation":
NLL REFEFIENOES GONSIDEIFED EXCEIPT WHEFE LINED THROUGH. / IAN
ALL REFERENGES CONSIDÉREE EXCEPT WHERE LINED THROUGA. ILA.A
}
\(\qquad\) U S Patent No. 6, 853,726, issued February 8, 2005, entitled Z-Transform Implementation of Digital Watermarks*:
U.S Patent No, 7,007,166, issued February 28, 2006, entitled 'Method \& System for Digital Watermarking"
U.S. Patent No. 7,035,049, issued April 25, 2006, entitled "Multiple Transiorm Utilization and Application for Secure Digital Watermarking";
\(\qquad\) U.S Patent No. 7,095,874, issued August 22, 2006, entitted "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data" \({ }^{\prime \prime}\)
\(\qquad\) U.S. Patent No. 7,107,451, issued September 12, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data";
U.S. Patent No. 7,123,718, issued October 17, 2006, entitled, "Utilizing Data Reduction in Steganographic and Cryptographic Systems".
\(\qquad\) U.S. Patent No. 7,127,615, issued October 24, 2006, Improved Security Based on Subliminal and Supraliminal Chaninals for Data Objects"
__U,S Patent No, 7,152,162, isswed December 19, 2006, entitled "ZTransform Implementation of Digital Watermarks";
\(\qquad\) U.S. Patent No. 7,159,116, issued January 2, 2007, entitled "Systems, Methods and Devices for Trusted Transactions";
\(\qquad\) U.S. Patent No. 7, 177,429, issued February 13, 2007, entitled "Systern and Methods for Permitting Open Access to Data Objects and for Securing Data within the Data Objects"
ALL RETERENGES CONSIDEAED EXCEPT WHERE LINED TIROUGH. J.A.

In accordance with 37 C.F.R. \& \(1.97(\mathrm{~g})\) the filing of this information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 CFR § 156 (a) exists. This Information Disclosure Statement is in compliance with 37 C.F.R. § 198 and the Examiner is respectfully requested to consider the listed documents and information,

Respectfully submitted,

Date: April 17, 2007

ALL REFERENCES CONSIDEPEO EXCEPT WHERE LINED THROUGH. IJ.A./


For Blue Spike, Inc.


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NONPATENT LITERATLIRE HOCUAIENTS} \\
\hline Examiner Initials' & \[
\begin{aligned}
& \text { Cite } \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Incide name of the author(IIN CAPITAL EETIERS), tite of ihe artitie, (when apprapriate), rilie of \\
 number(s), publisher, olyy andor country where pubifshed.
\end{tabular} & \(T^{2}\) \\
\hline & & Schneier, Bruee, Applied Cryptography, 2nd Ed, John Wiley \& Sons, pp 9-10, 1996 & \\
\hline & & Menezes, Altred J, Handbook ol Applied Crypography, CRC Press, p. 46, 1997 & \\
\hline & & Merriam-Websrer's Collegiate Dictionary: 10th Ed Merriam Webstar Ina; p 207 & \\
\hline & & Brealy st al. Principles of Corporate Finance, "Appendix A-Using Option Valuation Models", 1984. pp. 448-449 & \\
\hline & & Copeland, et al., Real Options:A Praotioner's Guide, 2001 po. 105-107, 201-202, 204-208. & \\
\hline & & Sarkar, M. "An Assessment of Pricing Mechianisms ton the Internet-A Regulatory Imperative", presented MIT Workshop on Internet Economics, Mar 1995 atto /hworw oress vmich adthlienhworks/SarkAsses hima on & \\
\hline & & Crawford, D W. "Prioing Network Usage:A Markel for Bandwith of Markel Communication?" presented MIT Workshop on internet Economics, Mar 1095 btto chown bress umirh erd/fien/uprks/Crawharket himl on-March & \\
\hline & & LOW, S.H. "Equilibrium Allocation and Pricing of Variable Resources Among User-Suppliers", 1988 httpi//www.citesearn/ nec.00m/366503.ntmil & \\
\hline & & Caronn, Germano, "Assuring Ownership Fights for Digital images" oublished proceeds of rellable IT systems, v15'95, H.H Bruggemann and SV Gerhardt-Hackel (Ft) Vievuing Pukitstuing Company Germany 1995 & \\
\hline & & Zhao, Jlan "A WWW Service to Embéd and Prove Digital Copynght Watermarks*, Proc. ol the european conf. on Mulitmedia Applications. Servicas 8 Techinoulas I numaintla-Mema Relmum Mav 1906 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Examiner \\
Signature & doremals Avary/ & \begin{tabular}{l} 
Date \\
Considered
\end{tabular} & \(0822 / 2008\) \\
\hline
\end{tabular}

\footnotetext{








Commisslonner for Patonts, P,O. Bere 1450, Alarandita, VA 22913-1450.
}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sutsitole for tomeranyipta}} & \multicolumn{2}{|r|}{Complere /f Krown} \\
\hline & & & & Appilcanor Number & 10/049,101 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{INFORMATION DISCLOSURE STATEMENT BY APPLICANT}} & Fifing Date & July 23, 2002 \\
\hline & & & & First Named Inventor & SOOTt A MOSKOMTZel al. \\
\hline \multicolumn{4}{|r|}{\multirow[b]{2}{*}{(Ust at many Sheves as neoncaury)}} & Art Unit & \multirow[t]{2}{*}{Jeremiah AVERY 80408.0011} \\
\hline & & & & Examiner Name & \\
\hline Shaet & 2 & Of & 6 & Atormey Dacket Number & \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
Examinar \\
Sgnalure
\end{tabular} & cesramiah Avery & \begin{tabular}{l} 
Dakc \\
Cosarderad
\end{tabular} & 08/27/2008 \\
\hline
\end{tabular}

\footnotetext{








Commissioner tor Patents, P O Bax 1450 , Alsxamdria; VA 2231 -34 450 .
}

ALATR

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NONPATENT LITHAATURE DOCUMENTS} \\
\hline \[
\begin{aligned}
& \text { Exaniner } \\
& \text { luificlat }
\end{aligned}
\]
Intials & \[
\begin{aligned}
& \text { cite } \\
& \mathrm{NaO}^{\prime}
\end{aligned}
\] & Include name of the quthor (in CAPITAL L.ETJERS), Hla of the zillete (when appropriste) Itile of The tem (tiodk magazins, joumes, sena) sympeslum, catalog, atc, ) date, page(S) volumotigsive cumbon( \(\xi\) ) publisher city andiar conumly where putieshert & \(\mathrm{T}^{2}\) \\
\hline & & Ien Kate, W. et al. "Digital Audio Carrying Extra Intormation", IEEE, CH 2847-2/90/0000-7097, (1990) & \\
\hline & & Van Schyndel, el al A digital Watermark, IEEE int' Computer Processing Conlerence, Austin, TX, Nov 13-16. 1994, pp. 86.90 & \\
\hline & & Smith, et al. Modulation and Information Hialing in images, Springer Verlag, ist intl Workshop, Cambrioge, UK, May 30-June 1, 1996; pp 207-227 & \\
\hline & & Kutter, Martin et al Digital Signature of Color Images Using Amplitude Modulatior. SPIE E 197 . vol 3022, pP 518-527 & \\
\hline & & Puate Joant ed al Using Fractal Compression Scheme to Ernbed a Digital Signature into an lmage, SPIE-96 Proceedings, vol 2915, Mar 1997, pp. 108-118 & \\
\hline & & Swanson, Mitthell D, et al Transparent Foboust Image Watermarking, Proc. of the 1996 (EEE Int'। Cont on image Processing. Vol. 111. 1996, nn 211.214 & \\
\hline & & Swanson, Mitohell D. et al Robust Data Hiding lor Images, 7 Ih IEEE Digital Signal Processing Workshop, Leop, Norway Sept 1.4,1996, pp. \(37.4 n\) & \\
\hline & & Zhao dian et al, Embedding Robust Labels into Images for Copyright Protection, Proceeding of the Know Right '95 Conterence, pp. 242-251: & \\
\hline & & Koch, E, et al. Towards Robust and Hidderimage Copynght Labeling. 1995 IEEE Workshop on Nonlinear Signal and Image Processing, Jun. 1995 Nenc Marmaras till 4 & \\
\hline & & Van Schyandel., et al, Towards a Fobust Digital Watermark, Second Asain mage Processing Conterence, Dea 6-8,1985, Singapore, Vol. 2,pp. 504:508 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Examiner \\
Signature
\end{tabular} & Ideremmall Avery & \begin{tabular}{l}
Date \\
Considered
\end{tabular} & 08/27/2008 \\
\hline
\end{tabular}







 Comimissinner For Palents, P,O, Boe 1450, Alesandria, VA 22213-1450,



\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LSTERATURE DOCCUMENTS} \\
\hline Examber (nilfals? & Cite
No. & \begin{tabular}{l}
Tictode name or the aullior Iin CAPITAL LETTERS), wille or the article (Vinen approprizte), thlieof \\
 number(s) publsher, pity andoor countitiy where pubtished.
\end{tabular} & \(T^{2}\) \\
\hline & & Tifsel,A.Z. A Two-Dimensional Digital Watermark, DICTA '95, Univ of CuEensland, Brisbane, Dec 5-8,7995, pp. 7 & \\
\hline & & Firkel,A.Z. liriage Watermarking-A Spread Spectrum Application. ISSSTA 96. Sept.96, Mainz, German pp 6 & \\
\hline & & O'Ruanaidh; el ai Watermarking Digital images for Copyright Protection, IEEE Proceedings, Vol 143, No. 4, Aug. 96, pp 250-256 & \\
\hline & & Cox el al, Secure Spread Spectrum Watermarking for Muitimedia NEC Research Institude, Techinal fieport 55-10, pp 33 & \\
\hline & & Kann D. The Code Breakers, The MacMMllan Company; 1969, pp xill, \(81-83,513,515,522-526,863\) & \\
\hline & & Bioney at al., Digital Walermarks for Audio Signals, EVSIPCO, 96. pp 473-480 & \\
\hline & & Dept. of Electrical Engineering, Del Fi. University of Technology Del it The
Nethertands,Cr.C. Langelaar Et al. Gopy Protection lor Mulimedia Data
hased nnlahelinn. Technhues. لuly 1996 ann & \\
\hline & & F. Hartung, et al.. Digital Watermarking of Raw and Compressed Video SPIE Vol. 2952, pp. 205-213. & \\
\hline & & Craver, et al Can Invisible Watermarks Fesolve Rightful Ownerships? IBM Research Report, FC 20509 (July 25;1996) 21 pp & \\
\hline & & Eress, el al., Numerical Recipes in C, Cambrioge Univ Press, 1988., pp. 398-417 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|l|}
\hline Examiser & Jeremiah Avery & \begin{tabular}{l} 
Dhte \\
Considcred
\end{tabular} & \(08127 / 200015\) \\
\hline
\end{tabular}

\footnotetext{








Commissionser for Patents, P.Q, Box 1450 . Alexandina. VA 22313-1450.
}

NLL REFERENCES CONSIDERED EXCEPT WHERE LINED THFOOUGH. U.A.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline examiner lantials \({ }^{\circ}\) & \[
\begin{aligned}
& \text { Cite } \\
& \text { No }
\end{aligned}
\] & \begin{tabular}{l}
include name of the author (in CAFTTAL LETIERS), tifle of the article (wher appropriates, titfe of \\
 number(s), publisher, city ana/or country vimere publishec.
\end{tabular} & T \\
\hline & & Pohimann. Ken C., Principles of Digital Audio, 3rd Ed. 1995, pp. 32-37, \(40-48,138,147-149,332,333,364,499-501,508-509,564-571\). & \\
\hline & & Pohilmann, Ken C, Principles of Digital Audio, and Ed, 1991, pp \(1-9,19-25,30-33,41-48,54-57,86-107,375-387\) & \\
\hline & & Schneier, Bruce, Applied Cryptography, John Wiley \& Sons, inc, New York, 1994, pp. 68,69,387-392,1-57,273-275,321-324. & \\
\hline & & Boney, et al., Digital Watermapks for Audio Signals, Proceedings of the international Coni, nin Moltimedia Computing and Systems, June 17.23 1996 Hirdstuma Janan 0-8186-7436-9196 on 473-480 & \\
\hline & & Johnson, et al., Transiorm Permuted Watermarking for Copyright Protection of Digital Vided, IEEE Globecorn 1998, Nov B-12,1998, Ney York New York Vol 21998 no 6R4-589 (ISBN \(0-7803-4985-71\) & \\
\hline & & Rivest, et al. "Pay Word and Micromint: Two Simple Micropayment Schemes, "MT Laboralory for Computer Science Cambridge, MA, May 71996 on 1.18 & \\
\hline & & Bender, el al. Techniques for Data Hiding. IEM Systems Journal. Vol. 35. Nos 3 \& 4.1986.pp 313-336. & \\
\hline & & Moskowitz, Bandwith as Currenoy, IEEE Muitimedia, Jan-Mar 2003, pp. 14-21 & \\
\hline & & Moskowitz, Multimedia Security Technologles for Digital Rights Management, 2005, Academic Press, "Introduction-Digital Rights Mananement" nin 3-22 & \\
\hline & & \begin{tabular}{l}
 \\

\end{tabular} & \\
\hline
\end{tabular}


\footnotetext{








Commissioner for Patent5, P.O. BoX 1450, Aluxandria, VA 22313-1450.
}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NON PATENT LITERATURE DOCUMENTS} \\
\hline Examiner trilià \({ }^{\text {a }}\) & \[
\begin{aligned}
& \text { Cite } \\
& \mathrm{Na} .
\end{aligned}
\] & \begin{tabular}{l}
 \\
 number( 5 ), pobisher cily and/ar countly where pubiahed
\end{tabular} & \(T^{3}\) \\
\hline & & Tomsich, et al. "Towards a secure and de-centralized digital watermarking intrastructure for the protection of Intellectual Property", in Electronic Commerce and Web Techoolosies. Proceedinds ECWEB & \\
\hline & & Moskowitz, "What is Acceptable Quality in the Appilication of Digital Watermarking. Tradeofts of Security, Hobustness and Quality". IEEE Commitet Sociaty Proceadincis of iTCS 20012 Anril in 2002 nn 80-84 & \\
\hline & & Lemma, el al. "Secure Watermark Embedding through Partial Encryption", Intenational Workshop on Digital Watermarking ("IWDV" 2006). Springer Legtue Notas in Comouter 8 cience. 2006. (12 apnean) 13 & \\
\hline & & Kocher, et al. "Self Protecting Digital Content". Technical Feport from the GRI Content Security Research Initiative, Orytography zesearoh, Inc. 2002-2003. 14 paoes. & \\
\hline & & Sirbu, M, ot al, "Net Bill: An Interriet Commeroe System Optimized for Network Delivered Serviees", Digest of Papers of the Computer Society Commufer Conterence (Snunil 5 Marmh 1995 nn \(20-25\) yoil CONF4O & \\
\hline & & Schunter, M. et al. "A Status Feport on the SEMPER tramework lor Secure Electronic Commerce". Computer Networks and ISDN Systems, 30 Sent 1998 on \(1501.1510 \mathrm{Val} 30 \mathrm{NO} 1 \mathrm{~F}-18 \mathrm{Nl}\) Nouthtulland & \\
\hline & & Konrad, K et al. "Trust and Elesronic Commerce-more than a techinal problem:" Proceedings of the tBth SEEE Symposium on तellable Distrilhitet Svetems 19.32 Dothher 1999 in \(360-365\) Lallsanne & \\
\hline & & Kin, a. Et al. "Trust in Electronic Commerce: Definition and Theoretical Bonsiderations". Proceedings of the 31st. Hawail Intl Cont on System sclences (Cat No 987 B100216) 6.9 January 1998 on 51-61 Los & \\
\hline & & Steinsurer D) D, et al "Trust and Traceability in Electronic Commerce" Slandard View Sept 1957 pp \(118-124\) vol 5 No S. ACM, USA & \\
\hline & & Hattung al al "Multimedia Watermarking Techniques" Proceedings of the EEE, Special Issue, Identification \& Profection of Multimedia Intormation. on \(1079 .-1107\) ulv 1909 Vol 87 Nn 7 IEEF & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examiner Sigriatura & Neremiall Avery & Date Considerad & \(08 / 27 / 2008\) \\
\hline
\end{tabular}








Commessloner for Patents, PD, Box 1450. Atexandria, VA 22372 1450

NLLREFERENCES SONSIDERLD EXCEPT WHERE LINEDTHFOUGH. N.A..


Apcovet ior ubs moonn Inasyquin CMB 005,0051
Complete If Known

\(10 / 049,101\)
July 23, 2002
Soott A MOSKOWIZ el al 2131
deremiah AVERY B0408.001.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Examinar Fatialg*} & \multirow[t]{3}{*}{Cine} & Fwojn Pame Dowitni FOREIG & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{1-a al Palemien in Ayolicet of Conl Docunam} & \multirow[b]{3}{*}{Page, Cohemins Lans Whers Rnveyant fassages ORanywe Figuras Appea} & \\
\hline & & & & & & \multirow[b]{2}{*}{\(\dagger^{*}\)} \\
\hline & &  & & & & \\
\hline & & European Palant No. EP0565947A1 & 10/20/1993 & Kussama dura & & \\
\hline & & WO 95/14289 & 05/26/1995 & Ahoaca, Seoticey & & \\
\hline & & European Patent No. 0581317 A 2 & 02/02/1994 & Powel, Fober et.al. & & \\
\hline & & Europeart Patent No 0372601At & 06/13/1990 & bricyesseym Wm atal. & & \\
\hline & & W098/37513 & OB/27/1998 & Elgat. Michas el.al & & \\
\hline & & European Patent No. 0651559 A & 05/03/1995 & Easmiari Kodak \(\mathrm{CO}^{\text {a }}\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Examoner } \\
& \text { Spaliuie }
\end{aligned}
\] & 2emiah Avery & \[
\begin{aligned}
& \text { Duim } \\
& \text { Elnageren }
\end{aligned}
\] & 08/272008 \\
\hline  & \begin{tabular}{l}
11 refermact camdanaz wh
opey of the lom wel vest coumbit al wewhantiamy lofl peincibived an The 30 ed \\
an ane sirgpuned by ir oreoeva, and autmilinga ith ne you ruyuin to conmples
De, P.O Bes 1450 A Masand Ioi Paturita PC. Bra 145
\end{tabular} & \begin{tabular}{l}
Tan trrmigh goaigo Mu The NNoto his place: \\
0 a bengril cubcivo It AD and 10 the FIEMS 10
\end{tabular} & \begin{tabular}{l}
un If na! in con Icelion= 7: \({ }^{2}\) Sen rode (WMPG Stan docomnati Kin a fran hare if \\
publk = = cici \\
alod fo lake Z tro \\
Incivilual taks \\
5 ADORESS
\end{tabular} \\
\hline
\end{tabular}

ALL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGH. I.A.A.

DISH - Blue Spike-408
Exhibit 1010, Page 2540

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Examiter Inilials"} & \multicolumn{4}{|r|}{U.8. PATENT OOCUMENTE} & \multirow[t]{3}{*}{Pates, Coiamns, Linas, whene Relevari PamagesmReheranil Figuros Appar} \\
\hline & S00 & Docáment Tunnber & FUSEaton Din: & Namis of Patanjee of & \\
\hline & & Numiterikha Codarineal & & & \\
\hline & & US-1,748,666 & 05/31H998 & Phamit, olial & \\
\hline & & Y5. \(4,789,928\) & 12/06/1988 & Fupas) & \\
\hline & & US-4.908,813 & 03/13/4950 & Frimiort, बत, & \\
\hline & & W5-4,980,782 & 12/25/1990 & 3nkel & \\
\hline & & U5.5,073, 925 & 12/17/1999 & Negree ar.3) & \\
\hline & & US 5,243,515 & 091071993 & Lee & \\
\hline & & (15,5,247,407 & 02/15/1994 & Famies & \\
\hline & & U5,5,428,606 & 06/271995 & Moshowlt & \\
\hline & & 45,5,365,586 & 11/15/7984 & indech, el al & \\
\hline & & 12-5,394,324 & 02/28/9995 & Elearwater & \\
\hline & & 45-5,408,505 & 06/18/1995 & noces, stial & \\
\hline & & 6.5,012,718 & 105/02/1995 & Narasimbalv, et al & \\
\hline & & 45-5,487,168 & 104/23/996 & GEinut, \(=\) asif & \\
\hline & & 45.5,493,677 & 02/2011996 & Pringor at at & \\
\hline & & प56,530,759 & \(08 / 25 / 1996\) & Erautaway, el \(=\) & \\
\hline & & 105-5,606,609 & 02/25/1997 & Housat, 9t, \({ }^{\text {a }}\), & \\
\hline & & प515,613,004 & 08/18/1997 & Dcoperman, el a & \\
\hline & & U5.5,617,119 & \(0401 / 1997\) & Frions, et.id & \\
\hline & & 05 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ezanlinu Ihalats} & \multirow[t]{2}{*}{} & Firejof Patent Cobusant & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Poblialion } \\
& \text { Oale } \\
& \text { MM-OD-rym }
\end{aligned}
\]} & \multirow[t]{2}{*}{Harne of Peontun or Audikani nf Giled Dnaumem} & \multirow[t]{2}{*}{Payus, Columms |knes Where Rniwaul Passages Diricionen Fipmes A/ptas} & \multirow[b]{2}{*}{T} \\
\hline & &  & & & & \\
\hline & & WO \(99 / 162044\) & 12/02/1999 & Hancec. Theogore el.ail & & \\
\hline & & WIPO 96/29795 & 09/26/1996 & Mional & & \\
\hline & & WIPO \(97 / 24833\) & 07/10/1987 & Mionis & & \\
\hline & & EPDE49261 & 04/19/1995 & Eram & & \\
\hline & & NL 100523 & 09/1988 & & & \\
\hline & & & & & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Eglumar & & Dommend & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 Tramingose indfoe \\
 \\
 \\
 \\
 \\
 \\

\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

NLL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGH. A.A./

Aoprowid toc us incough 03/21/2007 OME OESt-0037




100948,101
July 23,2002
Scoll A. MOSkOWIZ et al 2131
Jeremiat AVEFTY
80408.0011
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Examinar imkat} & \multirow[t]{2}{*}{\[
\mathrm{CNa}_{\mathrm{Na}}
\]} & \multicolumn{3}{|r|}{U.S. PATENT DOCUMENTS} & Prages Coionns Lime Whate \\
\hline & &  & & clizan of Cies Decum & hiplavani Dgssapes of Reavani
Fipures Appesi \\
\hline & & \({ }^{1515} 4.5288 .588\) & 07/09/1986 & -nimerg & \\
\hline & & \({ }^{118} 5,832,149\) & 11/03/1998 & Ahoeds & \\
\hline & & (05.5,859,420 & 011201999 & Daly \({ }^{\text {a }}\) al & \\
\hline & & 15.4,979,210 & 12/18/1990 & Jungrietal & \\
\hline & & \({ }^{15153,774,452}\) & 06/30/1998 & Wabsewica & \\
\hline & & \({ }^{15} 54,405,829\) & 09/20/1989 & Finest it.al & \\
\hline & & L5.6,330, 335 & 124112004 & Phonds & \\
\hline & & 15-3,586,624 & \(70 / 19 / 1976\) & Cales de ai al & \\
\hline & & \({ }^{05} 5.363,448\) & \(111088 / 7984\) & Koopmino et.ar & \\
\hline & & U85,588,570 & 10122/1996 & Foticaril & \\
\hline & & U/5-5,636,292 & \(06 / 09 / 1997\) & Nocs & \\
\hline & & \({ }^{115-4,972.471}\) & 11/20/1990 & Gossel El & \\
\hline & & प5,5,893,067 & 04/06/1999 & Bencor दt 3i: & \\
\hline & & \({ }^{15} 5.599 .587\) & 11/18//987 & Pencer et at & \\
\hline & & L5-3,984, 62.4 & 10/05/1976 & Whagane & \\
\hline & & प5-4,038.596 & 07126/1977 & foe & \\
\hline & & 05,4,200,770 & 04/29/9880 & Fuilimany 31.al & \\
\hline & & 05-4,218,582 & 08/19/1980 & Hulinner, etal & \\
\hline & & U5-4,424,414 & 01/03/1984 & Froimmen, eial & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Exantiaer Iminia'} & \multirow[t]{3}{*}{Nowi} & Fonean Fimu proumee & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{Iame ni Paienise \(O\) -pptan of DJed Dociuman} & \multirow[t]{3}{*}{Pages Convine Lules, Whew Fewh ini Rneag Urk vini Figuna Aupuze} & \multirow[b]{3}{*}{\({ }^{4}\)} \\
\hline & & & & & & \\
\hline & &  & & & & \\
\hline & & WO 9744736 & 11/27/1997 & \multicolumn{2}{|l|}{Watrenterg} & \\
\hline & & WO 9952271 & 10/14/1989 & \multicolumn{2}{|l|}{Mogkowiz} & \\
\hline & & WO 9963443 & 12/09/1999 & \multicolumn{2}{|l|}{Ho,Anitany Tulg Stuan} & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Eysimine } \\
& \text { Bumalove }
\end{aligned}
\] & eramiah Avely! & \[
\begin{aligned}
& \text { Calc } \\
& \text { Ccrasdenal: }
\end{aligned}
\] & 08/27re004 \\
\hline
\end{tabular}



 7 rombliofion exadied.







NLL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. IL.A./

DISH - Blue Spike-408
Exhibit 1010, Page 2542


100249,107
July 23, 2002
Scott A. MO8אOWITZ etal
2131
Jeremiah AVEFAY
8 80408.0071
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Examin「ntials} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\text { Sit } \\
\mathrm{NoO}
\end{array}
\]} & Docuiment Mumber & \multirow[t]{2}{*}{Publiaraion Dute NWHEO-FIVY} & \multirow[t]{2}{*}{Thane ar Fateniee or Applare a ciaed Documen!} & \multirow[t]{2}{*}{ Eitiveshura:} \\
\hline & & NumbentKad Code \({ }^{\text {P }}\) Hese & & & \\
\hline & & \({ }^{15} 5,540,569\) & 06/5711997 & \multirow[t]{2}{*}{Mies etal: Sandarid. \(\mathrm{ll}_{\text {, vi al }}\)} & \\
\hline & & \({ }^{15} 5.5,659,726\) & 08/19/1997 & & \\
\hline & & U5 5, 864,018 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 09 / 02 / 1997 \\
& 14 / 1 / 9997
\end{aligned}
\]} & Lexpman & \\
\hline & & 15,5,687,236 & & Mosinowiz. 6 cial & \\
\hline & & 159.5,734,752 & 03/31/1998 & Knoy & \\
\hline & & \({ }^{01} 5.8 .745,569\) & 04/28/7988 & Mooshomil2, erab & \\
\hline & & U5 5,506,795 & 0409/1998 & tanemawa & \\
\hline & & U5-5,880,462 & 10/21/199? & Mrilice.stal & \\
\hline & & \({ }^{48} \cdot 5,696,828\) & 12099/1997 & sropman dr & \\
\hline & & Y/ \(5,740,244\) & 04/4/4/1998 & तुech हn.al. & \\
\hline & & U5-5,751,811 & 05/12/1998 & recpmain \(x\) & \\
\hline & & U55,757,923 & 05/26/1998 & Kocpman of & \\
\hline & & U5.5,888,868 & 103/30/7999 & Mosiowiz elal & \\
\hline & & \({ }^{45} 6.608 .745\) & 0312712001 & \multirow[t]{5}{*}{\begin{tabular}{l}
Porapio/at at \\
Wu Ebal \\
Bhenventa \\
Epetolo, 01.ail \\
Juamua
\end{tabular}} & \\
\hline & & 156.6.285,775 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 09 / 04 / 2001 \\
& 05 / 07 / 2002
\end{aligned}
\]} & & \\
\hline & & V5.6,385,329 & & & \\
\hline & & \({ }^{40} 6.580 .021\) & ,03/04/2008 & & \\
\hline & & \({ }^{\text {U }} 6.6 .425 .081\) & 07/23/20092 & & \\
\hline & & US & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Examinsi intial:} & \multirow[t]{3}{*}{\[
\mathrm{Cin}_{1}^{2}
\]} & Foreen Paiant focument & \multirow[t]{3}{*}{Publicolion
Dala
MM-DD-ym} & \multirow[t]{3}{*}{arovel Paleniee or Apilmall at Ched Dicammen} & \multirow[t]{3}{*}{सugur, Columns, Lites Whin, Ruinest Pasegis Or Rewrani Fichres Appear} & \multirow[b]{3}{*}{T} \\
\hline & & & & & & \\
\hline & &  & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Stana & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 \\
 Transillomes atheheo. \\
 \\
 \\
 \\
 \\
 TD: Dommafioner tor Patenti. PO, Box 1460, Abokandria VA \(2212 \cdot 1450\). \\

\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

MLL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH. N.A./

DISH - Blue Spike-408
Exhibit 1010, Page 2543


\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} & \multicolumn{2}{|r|}{Compleie if ínown} \\
\hline & & Appligation Nismonr & \multirow[t]{6}{*}{\begin{tabular}{l}
101049,101 \\
Juy 23, 2002 \\
Scott.A. MOSKOWITZ el al.
\[
2131
\] \\
deremiah AVERY \\
80408.0017
\end{tabular}} \\
\hline & & Fining Eatr & \\
\hline & &  & \\
\hline & & Ar Unit & \\
\hline & & Examiner Meme & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
IMFORTATIOM DISCLOSURE STATEMENT BY APPLICANT \\
Heo es maty shopet iav macussivey)
\end{tabular}} & Allommy Oocket Numban & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multirow{3}{*}{\[
\begin{aligned}
& \text { Qief } \\
& \mathrm{Har}^{2 \pi}
\end{aligned}
\]} & \multicolumn{4}{|c|}{USS. PATENT DOCUMENTS} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Famine } \\
& \text { Fintitsor }
\end{aligned}
\]} & & Documan Nomber & Pointincily & Tamin of Patertae at & Paom ootumbs bines, where \\
\hline & & Punile Kimicooseilan & & & Foimer Acpeoti \\
\hline & & \({ }^{155} 6.522,769\) & 02/18/2003 & Pltrade el al & \\
\hline & & \(15.5005 / 0760271\) & 07/21/2005 & Brumatar el al & \\
\hline & & 115-6.685,489 & 12/1812003 & Cxiat & \\
\hline & & 45.2004/0128514 & 07/01/2004 & finazas & \\
\hline & & \({ }^{4} 5.2004 / 0037449\) & 02/28/2004 & Qavis, et, at & \\
\hline & & 15-6,823,455 & 11/23/2004 & Macy, -7tat & \\
\hline & & 152003/0133702 & 07472003 & Ooilart & \\
\hline & & 43.6,668,246 & 12/E3/2003 & Veung at as & \\
\hline & & \({ }^{159.6,405,203}\) & 06/11/2002 & Canlert & \\
\hline & & W-6,141,754 & 10/81/2000 & Finoy & \\
\hline & & ए5-6,493,457 & 12/1012002 & quachmbity & \\
\hline & & U5.5.629,880 & 05113/1997 & Stalih, real & \\
\hline & & N55,913,422 & 08/24/1999 & Yan Wö, 5 all & \\
\hline & & U55,636.276 & 06/09/1997 & Brugge & \\
\hline & & U55, 341.429 & 08/23/1994 & Stringec etal & \\
\hline & & पउ.6,754,822 & 08122/2004 & pras & \\
\hline & & \({ }^{45} 6,131,162\) & 10/10/2000 & vosmurs el al & \\
\hline & & 057,058,570 & 06,06/2006 & No, et.al. & \\
\hline & & U5- & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Examiner
Fsitias"} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 16 \% \\
& 16 \%
\end{aligned}
\]} & Fonsge Paten Dumamile & \multirow[t]{2}{*}{P-hecsion Dele MM-DO- VYCYY} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Naries of Prlentee of } \\
& \text { Applimmt of Cad Document }
\end{aligned}
\]} & \multirow[t]{2}{*}{Pages Oalemith Lines Whime Rlitivanl Presogen Or Fintavard Figuna Kujeal} & \multirow[b]{2}{*}{\(T^{\frac{8}{3}}\)} \\
\hline & &  & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & - \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline Examinet
S/analion & & JUEmaly Avery? & & Dain Conmued & 08i27/2009 & \\
\hline
\end{tabular}




 Travedunn Es ettacired




 Ta: comin wonet for P9tems, PO. BoK 1460, Alecendria, VA 2015-1480,

ALL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGAH. A.A.
 Us, Remp and Trajewn crice, US DEPRFTMEIT OF COMMERCE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|c|}{Complete if Mnown} \\
\hline & & & & Appricalian Numban & \multirow[t]{2}{*}{10/049,101} \\
\hline \multicolumn{4}{|r|}{\multirow[t]{4}{*}{\begin{tabular}{l}
INFORMATTION DISCLOSURE STATEMENT BY APPLICANT \\
pL20 as meny strwite as nocobsimy
\end{tabular}}} & Filing Datol & \\
\hline & & & & Fws thmed Inverdor & July 23,2002 \\
\hline & & & & ARALIV & \multirow[t]{3}{*}{SCOTL A MOSKOV 21,31 Jeromiah AVERY} \\
\hline & & & & Examinur Name & \\
\hline Shat & & \(G \longrightarrow\) Enf & 12 & Aliomey Dockat Wurbier I & \\
\hline \multicolumn{5}{|r|}{U.S. PATENT DOCUMENTS} & \\
\hline \multirow[t]{2}{*}{Examion milis.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CPB } \\
& \text { Tal }
\end{aligned}
\]} & Docimivel Mamider & \multirow[t]{2}{*}{Pu, zaion Oide} & \multirow[t]{2}{*}{ Bupymat of Chod Oinumeni} & \multirow[t]{2}{*}{Prgey, Colinitis, Lines phare Fiblevant Passages or Relapani Figulfs Appea!} \\
\hline & & numbarkind code \({ }^{\text {fin }}\) \%en & & & \\
\hline & & 05-5,930,869 & 07/2711999 & \multirow[t]{2}{*}{\begin{tabular}{l}
Eob gtal \\
Onm, eal
\end{tabular}} & \\
\hline & & \({ }^{15} 6,415,041\) & \(07 / 02 / 2002\) & & \\
\hline & & U3,6,141,753 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 10 / 318000 \\
& 07 / 25 / 2002
\end{aligned}
\]} & Zrao, el.al. & \\
\hline & & Hs-2002/0097873 & & Petravic & \\
\hline & & \({ }^{155} 6.785 .815\) & \multicolumn{2}{|l|}{08/31/2004 Selret-Avia et,ail} & \\
\hline & & \(45.6,523,113\) & 02/18/2003 & Wenienterg & \\
\hline & & 45-6,233,247 & 05/15/2001 & Chen elial & \\
\hline & & U5-6,293,684 & 05/45/2001 & Stotic, ol al & \\
\hline & & \(15-200500013995\) & 01/75/2006 & Bruncrage st \({ }^{\text {a }}\) & \\
\hline & & 45-7,043,050 & 05709/2006 & Mivel & \\
\hline & & UF5,8,809,160 & 09/15/1998 & Paxtell atas & \\
\hline & & \({ }^{01} 6,272.634\) & 108/07/2001 & Tawalk, of al & \\
\hline & & U8-6,282,650 & OB/28/2001 & Dave & \\
\hline & & \({ }^{\text {L5 }}\) 6, \(6,557,103\) & \(04 / 29 / 2003\) & Eoncelor, Jr, el al & \\
\hline & & \(115-2003 / 0126445\) & \(07 / 03 / 2003\) & Wentoribeta & \\
\hline & & 1586,978,370 & \(72 / 2012005\) & cocher & \\
\hline & & U82006/0005029 & 01/05/2006 & Ratrovice 6i.al, & \\
\hline & & \(\mathrm{LS}^{1 / 6,278,791}\) & 08/21/2001 & Honsingery al al. & \\
\hline & & \multicolumn{2}{|l|}{159-} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Exami= Inilié} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{Cl}, \\
& \mathrm{Na}
\end{aligned}
\]} & Forign Paleni Ouaiment & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{Hume d Putenlew or
Aypliciel al Gied Documani} & \multirow[t]{3}{*}{\begin{tabular}{l}
Pigow, Colutirs Linem: Whure Finlernif) Passaggs \\

\end{tabular}} & \multirow[b]{3}{*}{\(\mathrm{F}^{4}\)} \\
\hline & & & & & & \\
\hline & & Summesory & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & - & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examioar & Aaremiall Ayeyy & Coin Oonswared & 08/27/2008 \\
\hline
\end{tabular}



 Trimetunion il altactiod.







ALL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGAH. IJ.A./


\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Sutsindalor fom labemTt} & \multicolumn{2}{|r|}{Comploft HEAncown} \\
\hline & Apriulailion Number & 10/049, 107 \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
LAFORMARTION DISCLOSURE STATEMEMT BY APPLICANT \\
(Tise as manel sfeurs ad mefestang
\end{tabular}} & Fining Cale & July 23. 2002 \\
\hline & Fwst Named liwertar & Scotl A MOSKOWITZel al. \\
\hline & Art Jit & ScorA Moskowitelal. \\
\hline & Examiner Manue & EY \\
\hline 7 - 1 pil 12 & Allommy Dockat Numibes & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Examina} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{NONO}_{1} \\
& \hline 10 .
\end{aligned}
\]} & \multicolumn{4}{|l|}{L. . . PATENT DOCUMENTS} \\
\hline & & & mat-coyry &  & Proisi:Toles, Linim Where \\
\hline & &  & & & Cgnae Appeat \\
\hline & & 13.6,061,793 & 05109/2000 & Tawfin eral & \\
\hline & & U5.5.809,139 & 091151/998 & Griod, enala & \\
\hline & & U5 5,848,155 & 12/08/1258 & Cis & \\
\hline & & 15.5,815,027 & 06/22/9998 & -mind & \\
\hline & & \({ }^{45} 5.940,134\) & 08/1712999 & Wits & \\
\hline & & 155.5,891,428 & 11183/4999 & Coicelelat & \\
\hline & & U5.8,069,914 & 105/20/2000 & Cox & \\
\hline & & 1185, 943,422 & 08/24/1999 & Nan Wio, elial & \\
\hline & & \({ }^{148} 6,539,475\) & 03/25/2005 & Cox, etal. & \\
\hline & & U5-6,810, 962 & 10/30/2001 & F(x)nn, weal & \\
\hline & & Us,6,154,571 & 11/28/2000 & cesol. & \\
\hline & & \({ }^{115} \cdot 4,969,204\) & \(11 / 061999\) & Vones 01.ai & \\
\hline & & \({ }^{15} \cdot 6,687,683\) & 02/03/2004 & Haradz elal & \\
\hline & & U5.8,378,892 & 04/16/2002 & Enien, et.al & \\
\hline & & U5 5,870,474 & 02/097099 & Wasllewabi, et al. & \\
\hline & & प5-5,418,710 & 05/23/1995 & Plens & \\
\hline & & \({ }^{155} 6.078,864\) & 06/20/2000 & Maskowiti el al & \\
\hline & & (15.6,009,176 & 12/28/1999 & Pamisro, elal & - \\
\hline & & 45,6,081,587 & 08/27/2000 & Hotfiolo, gt.as. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Examimer intiala} & \multirow{3}{*}{\[
\overline{\mathrm{Cme}} \mathrm{Cl}
\]} & & IE & NT9 & & \\
\hline & & Forein Pacser Oncomant & \multirow[t]{2}{*}{FuETRIITO
Dale
MM-DD-YYY} & \multirow[t]{2}{*}{FVane tr Faluniter nc Appicat al Gied Dodiment} & \multirow[t]{2}{*}{Fagss Columns Ines. Whore Fielrvent Paecajan Dr Ratayanl Fipues appeas} & \multirow[b]{2}{*}{\(\rightarrow\)} \\
\hline & & CritioyCde Murseri" \%eicoed filumbl & & & & \\
\hline & & & & & & \\
\hline & & & & & \(\cdots\) & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \[
\begin{aligned}
& \text { Examinar } \\
& \text { Eignature }
\end{aligned}
\] & & Deremiali Averv/ & & \[
\begin{aligned}
& \text { Dale } \\
& \text { Cन्ना0tron }
\end{aligned}
\] & 08/27/2008 & \\
\hline
\end{tabular}




 Traminein on wictim.







ALL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGAH. IU.A./





 Tarcolian is affuchent.




 TO: Cogmestioner for Palents, F,O, Sex 1*50, Alvornwia, V/ 22919-1450

ALL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGAH. IA.A.

DISH - Blue Spike-408
Exhibit 1010, Page 2547

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Examinel 'nilite'} & \multirow[t]{2}{*}{} & Doceuren M Mumber & \multirow[t]{2}{*}{placilan Daw mMroorvyy} & \multirow[t]{2}{*}{Yatmin ù Patertion or \({ }^{4}\) aphiaton or case Documant} & \multirow[t]{2}{*}{Paynarcoimw bine Whar Relavgit Pasiggo ar Hedevanf Figned Avpear} \\
\hline & & Wurbar-kis couterer & & & \\
\hline & & 15.5.548,579 & 0812011996 & -abrimi el al. & \\
\hline & & W5.5,805,975 & 05/12/1999 & Ausilbei & \\
\hline & & U5.6.457.058 & (09/2412008 & Glumaral & \\
\hline & & 05-6,381,618 & 04/80/2002 & bonesal & \\
\hline & & 1582002/0026943 & [02/28/2002 & Tuanse & \\
\hline & & \({ }^{115} 5,230,268\) & 05/08/2001 & Mive et all & \\
\hline & & 15,6,199,058 & 03/08/2001 & Whoriget ai & \\
\hline & & 15-5,920,900 & 07106/1999 & Poola of al & \\
\hline & & 109.5,884,033 & 031161999 & Duvie al \({ }^{\text {a }}\) & \\
\hline & &  & 12/26/1995 & Montanarlel al & \\
\hline & & 45.6,430,302 & 08/06/200? & Thouers & \\
\hline & & \({ }^{115} 5,725,372\) & 04/20/2004 & Lawisela & \\
\hline & & 156,606,399 & \(08 / 1212003\) & \(x_{\text {iel }}\) el al & \\
\hline & & 65-6.584,125 & 06/24/2003 & Yaito & \\
\hline & & L5.6.442,283 & 08/2712002 & Towble Ex & \\
\hline & & U5.6,377,825 & 04/23/2002 & fom & \\
\hline & & \({ }^{15} 66,282,300\) & 08/28/2001 & Foom neta & \\
\hline & & 45.6,205,249 & 03/20/2001 & Noskovix & \\
\hline & & 以56,029, 126 & \(02122 / 2000\) & Nalve & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{EQREIGN PATENT DOCUMENIS} \\
\hline \multirow[t]{2}{*}{Examing} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{Cing} \\
& \mathrm{Nof}
\end{aligned}
\]} &  & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{गama ci Patrange Applantit of Cleal Docaran!} & \multirow[t]{2}{*}{\begin{tabular}{l}
Papen Pumms thes, Vowern Fietevaril Passages \\

\end{tabular}} & \\
\hline & &  & & & & \\
\hline & & & & - & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examume
Signalue & Tderamall Avers! & Caner & 08/27 3008 \\
\hline
\end{tabular}

\footnotetext{




 nenciation e altncherd

 bolud




}

NLL REFERENCES CONSIDERED EXCEPT WHERE LINED THFOUGH. I.A./

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { sint } \\
& \text { non }
\end{aligned}
\]} & \multicolumn{4}{|r|}{U．S．PATENT DOCUMENTS} \\
\hline & & & Murab．hn & Appliam ef Cilidi Dosursan & Relay am Passyis inf felevant \\
\hline & & Muinbokinit Code \({ }^{\text {Inem }}\) & & & Figures appear \\
\hline & & \({ }^{155} 5.5754,697\) & 05／19／4898 & O \(0^{\text {el }}\) & \\
\hline & & \({ }^{4} 5\) 5，479，210 & 12126／1995 & Cawley ot al & \\
\hline & & 05－3，947，825 & 03／30／1976 & Cascadi & \\
\hline & & ［55， \(5,903,721\) & 05／711989 & Firues & \\
\hline & & प4－5，790，677 & 08／04／1998 & Fonelal： & \\
\hline & & \({ }^{15} 5,243.515\) & 109／07／1993 & Clearwatar & \\
\hline & & 165－4，339，134 & 07／13／1982 & Macheel & \\
\hline & & V54，827，508 & 05／veliges & Shear & \\
\hline & & 45－4，896，275 & 01／23／1990 & Jadisen & \\
\hline & & \(\sqrt{3} \cdot 4,977,594\) & 12／71／4990 & Fiber & \\
\hline & & \({ }^{113} 5,050,213\) & 09／17／19991 & Smean & \\
\hline & & Lब 5 ， 369.707 & －1129／1994 & Forenome，it & \\
\hline & & 45－5，406．627 & \(104 / 11 / 1995\) & Themipzon alai & \\
\hline & & －05 5， \(5,40,598\) & 04／25／1895 & B7ens & \\
\hline & & U5 5，489，53 & 11／21／1985 & Earik & \\
\hline & & सउ－5，427，419 & 03，0511996 & fill & \\
\hline & & \({ }^{45} 55,573,261\) & 04／90／1996 & Mahe & \\
\hline & & 115．5．630，739 & 06／25／1996 & Phada & \\
\hline & & \({ }^{45} 5,598,470\) & 01／28／1997 & Pocoper eral． & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Elam衵枟合•} & \multirow[t]{2}{*}{Cl} & Equegn Pariell Cocment & \multirow[t]{2}{*}{Publowien Dule MM－DO－YYYY} & \multirow[t]{2}{*}{Wante wil Paienies or A0plranf of Cilied Decumen} & \multirow[t]{2}{*}{Prgas，Columurs，Lines Wheu Releyant Pascaues Or fohvainl Figuies Appeaf} & \multirow[b]{2}{*}{\(\pi\)} \\
\hline & & Countre Cesel \({ }^{1 / l}\) & & & & \\
\hline & & & & & & \(\square\) \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Exuminar
Dala
Slimiliono
Deviorrad




 fravinotas antutred







}

NLL REFERENCES CONSIDERED EXCEPT WHERE LINED THROUGH．N．A．

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Examing เดทเงต"} & \multirow{3}{*}{\[
\mathrm{mim}_{\mathrm{Nom}}
\]} & \multicolumn{3}{|r|}{11. \% PATENT DOCUMENTS} & \multirow[b]{3}{*}{Paper Colimis, Lies Whara Rusuanl Prosages os Relerall Eiguies Auprea)} \\
\hline & & Documeril Numioer & PotFanmano MADB-FVYM & tmarsent patemint is foktaman Ced Decumart & \\
\hline & & Numbar-KiatCulu \({ }^{\text {iln }}\) & & & \\
\hline & & 45.5,625,690 & 04/29/7997 & \multirow[t]{2}{*}{Mchel का al Daviat \(\geq\)} & \\
\hline & & 435,633,932 & 05/27/1997 & & \\
\hline & & U5.5,719,937 & 02/17/1998 & Warmenal. & \\
\hline & & \(\mathrm{U}_{5}^{5} \mathrm{5}, 737.416\) & 040071998 & Poonerstal & \\
\hline & & \({ }^{05} 5,765,152\) & 10800917988 & Erckson: & \\
\hline & & \(055,799,083\) & 08/25/1998 & Bromerselal & \\
\hline & & उ5 5,973,731 & 10/26/1999 & Sotwab & \\
\hline & & UE5,894,521 & 0a/33/1999 & Coonley & \\
\hline & & \({ }^{45} 5,906,800\) & 05/19/1999 & Woskowit er al & \\
\hline & & 1/85,5,963,809 & 10105/1988 & Vermestal. & \\
\hline & & L6.5,974,741 & 10/26/1999 & Sata & \\
\hline & & \({ }^{165} 5,998.217\) & 12/67/1999 & Bemersclees & \\
\hline & & Ve6,041,216 & 03/21/2000 & Flien & \\
\hline & & \({ }^{105} \cdot 0.081 .251\) & 06/27/2000 & \multirow[t]{5}{*}{\begin{tabular}{l}
PSKe गlal \\
shimata \\
cato जle \\
Senoh
\end{tabular}} & \\
\hline & & 4568,278,730 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 08 / 21 / 2001 \\
& 10 / 09 / 2001
\end{aligned}
\]} & & \\
\hline & & U5.6,301, B83 & & & \\
\hline & & \({ }^{45} 6,240,121\) & 05/29/2001 & & \\
\hline & & WS. & & & \\
\hline & & W5: & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Etamener } \\
& \text { Indial }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline \sin \\
\mathrm{No}_{0}
\end{array}
\]} & Fomign Painl Decumear - FO & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Eublikatioe } \\
& \text { Oe } \\
& \text { MM-DOThirt }
\end{aligned}
\]} & \multirow[t]{3}{*}{fy me of Palficipe a Appleal bi cilen O onem} & \multirow[t]{3}{*}{Paties, Majums Libes Mhan Retowany Passajes Or Rumemi Foraes fiplata} & \multirow{3}{*}{\(\mathrm{T}^{3}\)} \\
\hline & & & & & & \\
\hline & &  & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & \(\underline{\square}\) & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examion
STomine & Taevemiah Avery & Cele Comidars & 08/278000 \\
\hline
\end{tabular}



 Trusian es intactied.



 and Tradionot Cifion, P.O, HoK 1950, Noxund


If vou nagd arsisfance it dompleling the farm call t-900-97c-9198 ()-8000-706-9199) and select opico ?
ALL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGAH. M.A.I

DISH - Blue Spike-408
Exhibit 1010, Page 2550




\section*{Camplete if Knawn}
\begin{tabular}{|c|}
\hline ADPIOEON Mumbe \\
\hline Foling Date \\
\hline Fial Namind mumnior \\
\hline Art Une \\
\hline Examiner Name \\
\hline Atentney Domainumb \\
\hline
\end{tabular}

10/049 101
July 23, 2002
Scott A. MOSKOWITZ el al.
2131
Jeremiath AVERY
80408.0011
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Eamimer Chilias} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Eire } \\
& \text { 'Ma' }
\end{aligned}
\]} & \multicolumn{4}{|c|}{L E PATENT DOCUMENTS} \\
\hline & & Document Mumber & Pubication Cate & Lfamedfaresor & Requs/Coiurms. Lone thoum \\
\hline & & Wenter Kind Codeidem & & & Fuhruan Passages of Fwhyan Figumen Apsest \\
\hline & & 1/5 6,088,455 & 07/11/2000 & Logayel \({ }^{\text {a }}\) & \\
\hline & & \({ }^{1 / 3} 5,534,040\) & 05/27/1997 & Hivr et as & \\
\hline & & US-6,381,747 & 0479012002 & Wontor et al. & \\
\hline & & US 4,969,204 & 11/06(1990 & Meinycruck el al & \\
\hline & & us. & & & \\
\hline & & 15 & - & & \\
\hline & & UE & & & \\
\hline & & US & & & \\
\hline & & 45 & & & \\
\hline & & Tis- & & & \\
\hline & & IS. & & & \\
\hline & & NS & & & \\
\hline & & WS & & & \\
\hline & & U5 & - & & \\
\hline & & UE & & & \\
\hline & & US. & & & \\
\hline & & H5\%- & & & \\
\hline & & US & & & \\
\hline \(\square\) & H2 & प5. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{FOREIGN PATENT OOCMMEVTS} \\
\hline \multirow[t]{2}{*}{Eramine fruiels} & \multirow[t]{2}{*}{Site H6:} & Foregn Patinl Dincument & \multirow[t]{2}{*}{Publicziom Gate M, MODGYY} & \multirow[t]{2}{*}{ILETR of Patenlee on Abplicuind of Oiod Decumari} & \multirow[t]{2}{*}{Pages, Colimne, Limes; Whem Helevani Fasatas Qiffolevank Finurea Appoar} & \\
\hline & &  & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & - & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & - & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Examine,
Sipuatare & Adaramah Avery & Dale
Consideter & \(08 / 27 / 2008\) \\
\hline
\end{tabular}




 Tranalation is attactice.








\section*{ALL REFERENCES CONSIDERED EXCERT WHERE LINED THROUGA. M.A./}

10/049,101
Scott MOSKOWITZ
July 23, 2002
2131
Jeremiah L AVERY
80408.0011

Confirmátion No. 8028
日1 FG:186\%

ร09.c. OF

\section*{INFORMATION DISCLOSURE STATEMENT}

Dear Sir.
Applicant(s) submit copies of the references listed on the attached SB08 Form(s) for consideration and request that the U.S. Patent and Trademark Office make them of record in this application

Applicant(s) state the following:
\(\square\) Each item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of the information Disclosure Statementi or

No item of information contained in this Information Disclosure Statement was cited in a communication from a foreign patent office in a counterpart foreign application. and to the knowledge of Applicant(s) no item of information contained in this
- Appl. No. 10/049,101

Information Disclosure Stalement dated February. 29, 2008
Information Disclosure Statement was known to any individual designated in \& 1.56(c) more than three months prior to the filing of this Information Disclosure Statement.
\(\square\) In accordance with 37 C.F.R. § 1.97 (b), this Information Disclosure Statement is believed to be submitted prior to issuance of a first Office Action and/or within three months of the filing date of the application. It is respectfully submitted that no lee is required for consideration of this information.

区 This Information Disclosure Statement is being submitted after the mailing of a non-final Office Action, but is belleved to be prior to a final Office Action or a Notice of Allowance. Pursuant to 37 C.F.R. § 1.97 (c), payment in the amount of \(\$ 180,00\) as sel forth in 37 C.F.R. § \(1.17(\rho)\) is enclosed

While the information and references disclosed in this Information Disclosure Statement are submifted pursuant to 37 C.F.R. \& 1.56 , this submission is not intended to constifute an admission that any patent, publication or other information referred to is "prior art" to this invention. Applicant(s) reserve the right to contest the "prior art" status of any information submitted or asserted against the application:

Additionally, pursuant to C.F.R. § 1.78, Applicant(s) wish to inform the Examiner of the existence of the following co-pending U.S. patents and patent applications that share a common inventor with the present application. Under 37 C.F.R, § \(198(\mathrm{a})(1)\). Applicant(s) also wish to inform the Examiner of the existence of the following copending foreign patents and patent applications that share a common inventor with the present application in the "section separate from the citations of other documents" entited "Foreign Patent Documents", below:

Appl No. 10/049,101
Information Disclosure Statement dated February 29, 2008

\section*{U.S. PATENT DOCUMENTS}

\section*{EXAMINER'S}

\section*{INITIALS}
- U.S. Patent Application No. 08/999,766, filed July 23, 1997, entitled "Steganographic Method and Device";
\(\qquad\) U.S. Patent Application No. 11/894,443, filed August 21, 2007, entitled "Steganographic Method and Device" - Projected Publication Date March 27, 2008;
\(\qquad\) U.S. Patent Application No. 11/894.476, filed August 21, 2007, entitled "Steganographic Method and Device" - Publication No. 20070294536 December 20, 2007:
\(\qquad\) U.S Patent Application No. 11/050.779, fled February 7. 2005, entitled "Steganographic Method and Device" - Publication No. 20050177727 August 11, 2005:
\(\qquad\) U.S. Patent Application No. 08/674,726, filed Jüly 2, 1996, entitled "Exchange Mechanisms for Digital Information Packages with Bandwidth Securitization, Multichannel Digital Watermarks, and Key Management" (unpublished - issue fee paid - January 23,2008 );
\(\qquad\) U.S. Patent Application No. 12/009,814, fited January 23, 2008, entitled "Exchange Mechanisms for Digital Information Packages with Bandwidth Securitization, Multichannel Digital Watermarks, and Key Management",
\(\qquad\) U.S Patent Application No. 09/545,589, filed April 7, 2000, entitled "Method and System for Digital Watermarking" (issued as U.S. Patent No \(7,007,166)\);
\(\qquad\) U.S. Patent Application No. 11/244,213, filed October 5, 2005, entitled "Method and System for Digital Watermarking" - Publication No 20080101269 - May 11, 2006 (issue fee paid - December 26. 2007):
\(\qquad\) U.S. Patent Application No. 11/649,026, filed January 3, 2007, entitled "Method and System for Digital Watermarking" - Publication No 20070113094-May 17, 2007;
EXAMINER: Please initial in reference is considered, whether or not the ctation is in conformance with MPEP \& B09. Draw line througn citation if not in conformance and not considered. Please include copy of this form with next communicalion to the applicant.

Appl. No. 10/049,101
Information Disclosure Stalemen (dated February 29, 2008
\(\qquad\) U.S. Patent Application No. 12/005,230, filed December 26, 2007, entitled "Method and System for Digital Watermarking"
\(\qquad\) U.S. Patent Application No, 09/046,627, filed March 24, 1998, entitled "Method for Combining Transfer Function with Predelermined Key Creation" (issued as U.S. Patent No. \(6,598,162\) ),
\(\qquad\) U.S. Patent Application 10/602,777, filed June 25, 2003, entitled "Method for Combining Transfer Function with Predetermined Key Creation Publication No 20040086119 - May 6, 2004;
\(\qquad\) U.S. Patent Application 11/895,388, med August 24, 2007. entited "Data Protection Method and Device" - Publication No, 20080016365 - January 17.2008:
\(\qquad\) U.S. Patent Application No. 09/053,628, filed April 2, 1988, entitled \({ }^{4}\) Multiple Transform Utilization and Application for Secure Digital Watermarking" (issued as U.S. Patent No. 6,205,249);
\(\qquad\) U.S. Patent Application No. 09/644,098, filed August 23, 2000, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking" (issued as U.S. Patent No. 7,035,409):
\(\qquad\) US. Patent Application No, 09/767.733, filed January 24, 2001, entitled "Muitiple Transform Utilization and Application for Secure Digital Watermarking" - Publication No 20010010078 - July 26, 2001;
\(\qquad\) U.S. Patent Application No. 11/358, 874 , filed February 21, 2006, entitled Multiple Transform Ufilization and Application for Secure Digital Watermarking" - Publication No. 20060140403 - June 29 2006;
\(\qquad\) U.S. Patent Application No. 10/417,231, filed April 17, 2003, entitled "Methods, Systems And Devices For Packet Watermarking And Efficient Provisioning Of Bandwidth \({ }^{n}\) - Publication No, 20030200439 - October 23. 2003 (issued as U.S. Paterit No. 7,287,275);
U.S. Patent Application No. 11/900,065, filed September 10, 2007. entitled "Methods, Systems And Devices For Packet Watermarking And

EXAMINER Pltase initial if reference is considered, whether or not the chtation is in conformance with MPEP हु809, Draw line through cliation if not in confomance and not considered. Please include copy of this form with nest communication to the applicant.

\section*{4 of 13}

Appl. No. 10/049,101
Information Disclosure Statement dated February 29, 2008
Efficient Provisioning Of Bandwidth - Publication No. 20080005571 January 3, 2008;
\(\qquad\) U.S. Patent Application No. 11/900,066, filed September 10, 2007 entitied "Methods, Systertis And Devices For Packet Watermarking And Efficient Provisioning Of Bandwidth \({ }^{*}\) - Publication No. 20080005572 ~ January 3,2008 ;
\(\qquad\) U.S. Patent Application No. 09/789,711, filed February 22, 2001, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data \({ }^{*}\) - Publication No. 20010010078 October 11, 2001 (issued as U.S. Patent No, 7,107, 451);
\(\qquad\) U.S. Patent Application No. 11/497.822, filed August 2, 2006, entitled "Optimization Methods for the Insertion. Protection, and Detection of Digital Watermarks in Digital Data" ~ Publication No. 20070011458 January 11, 2007;
\(\qquad\) U.S. Patent Application No. 11/599,964, filed November 15, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data \({ }^{n}\) - Publication No. 20080046742 February 21, 2008:
\(\qquad\) U.S. Patent Application No. 11/599,838, filed November 15, 2006, entitled 'Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data* - Publication No. 20070226506 September 27, 2007;
\(\qquad\) U.S. Patent Application No. 11/897,790, filed August 31, 2007, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Vatermarks in Digital Data' - Publication No. 20070300072 December 27, 2007;
\(\qquad\) U.S. Patent Application No 11/897.791. filed August 31. 2007, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data - Publication No. 20080022113 January 24, 2008;

EXAMINER: Please initial if reference is considered, whether or not the citation is in conformance with MPEP 5609 Draw line through citation it not in confomance and not cansidered. Please inciude copy of this form with next communication to the applicant.

5 of 13

Appl No. 10/049,101
Information Disclosure Statement dated February 29, 2008
U.S. Patent Application No 11/899,661, filed September 7, 2007, entitied "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data" - Publication No. 20070300073 December 27, 2007,
\(\qquad\) U.S. Patent Application No. 11/899,662, filed September 7, 2007, entilled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data' - Publication No. 20080022114 January 24, 2008;
\(\qquad\) U.S. Patent Application No. 10/369,344, filed February 18, 2003, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Dala" - Publication No. 20030219143 November 27, 2003 (issued as U.S. Palent No. 7.095.874);
- U.S. Patent Application No. 11/482.654, filed July 7. 2006, entitled "Optimization Methods for the Insertion. Protection, and Detection of Digital Watermarks in Digitized Data" - Publication No 20060285722 December 21, 2006;
\(\qquad\) U.S. Patent Application No. 09/594,719, filed June 16, 2000, entitled *Utilizing Data Reduction in Steganographic and Cryptographic Systems* (issued as U.S. Patent 7,123.718):

LU.S. Patent Application No. 11/519,467, filed September 12, 2006, entitled "Utilizing Data Reduction in Steganographic and Cyptographic Systems" - Publication No. 20070064940 - March 22, 2007;
\(\qquad\) U.S. Patent Application No 09/731,040, filed December 7, 2000, entitied "Systems, Methods And Devices For Trusted Transactions" - Publication No, 20020010684-January 24, 2002 (issued as U.S. Patent 7,159,116),
- U.S. Patent Application No 11/512,701, Filed August 29, 2006, entitied "Systems, Methods And Devices For Trusted Transactions" - Publication No. 20070025113 - February 1, 2007;
- U.S. Patent Application No: 10/049,101, filed February B, 2002, entitied "A Secure Personal Content Server" (which claims prionty to Intemational

\footnotetext{
EXAMINER Please initual if refterence is considered, whether or nol the citation is in conformance with MPEP 5609. Draw line through cltation if not in conformance and not considered. Plesse include copy of this form with next communication to the applicant.
}

\section*{6 of 13}

\footnotetext{
All Reherencess Are Considered, Except Where Lirred Through - J, A
}

> Application No. PCT/USO0/21189, filed Augusi 4, 2000, which claime prionity to U.S. Patent Application No. 60/147.134, filed August 4, 1999, and to U.S. Patent Application No. 60/213.489, filed June 23, 2000);
> U.S. Patent Application No. 09/657,181, filed September 7, 2000, entitted "Method And Device For Monitoring And Analyzing Signals" (paid issue fee January 23, 2008);
> U.S. Patent Application No, 12/005,229, filed December 26, 2007, entilled "Method And Device For Monitoring And Analyzing Signals" - Publication No. NA -;
> U.S. Patent Application No. 10/B05,484, Filed March 22, 2004, entitled "Method And Device For Monitoring And Analyzing Signals"(which claims priority to US. Patent Application No. 09/671,739, filed September 29, 2000, which is a CIP of U.S. Patent Application No. 09/657,181) = Publication No. 20040243540 - December 2, 2004 - abandoned;
> U.5. Patent Application No 09/956,262, filed September 20, 2001. entitled "Improved Security Based on Subliminal and Supraliminal Channels For Data Objects" - Publication No. 20020056041 - May \(9_{1}\) 2002 (issued as U.S. Patent No. 7, 127,615);
> U.S. Patent Application No. 11/518,806, filed September 11, 2006, entitled "Improved Secunty Based on Subliminal and Supraliminal Channels For Data Objects" - Publication No. 20080028222 - January 31, 2008;
> U.S. Patent Application No, 11/026,294, filed December 30, 2004, entifled "Z-Transform Implementation of Digital Watermarks" - Publication No. 20050135615 - June 23, 2005 (issued as U.S. Patent No. 7, 152, 162);
> U.S. Patent Application No. 11/592,079, filed November 2, 2006, entitied "Linear Predictive Coding Implementation of Digital Watermarks" Publication No. 20070079131 - April 5, 2007 .
> U.S. Patent Application No, 09/731,039, filed December 7, 2000, entitled "System and Methods for Permitting Open Access to Data Objects and

EXAMINER: Please initial it reference is considered, whother or not the citation is in conformance with MPEP \& EMg, Draw line through citation il not in conformance and not considered. Please include copy of this form with next comenunication to the applicant.

7 of 13

Appl. No. 10/049,101
Information Disclosure Statement dated February 29;2008
for Securing Data within the Data Objects \({ }^{*}\) - Publication No, 20020071556 -June 13, 2002 (issued as U.S. Patent No. 7, 177, 429);
\(\qquad\) U.S. Patent Application No. 11/647,861, filed December 29, 2006, entitled "System and Methods for Permitting Open Access to Data Objects and For Securing Data within the Data Objects \({ }^{\circ}\) - Publication No. 20070110240 -April 5, 2007;
\(\qquad\) U.S. Patent No. 5,428,606, issued June 27, 1995, entited "Digital Commodities Exchange*:
U.S. Patent No. \(5.539,735\), issued July 23, 1996, entitied \({ }^{4}\) Digifal Information Commodities Exchange*;
U.S. Patent No 5,613,004, issued March 18, 1997, entitled "Steganographic Method and Device":
\(\qquad\) U.S. Patent No. 5,687,236, issued November 11, 1997, entitled "Steganographic Method and Device":
\(\qquad\) US Patent No, 5,745,569, issued April 28, 1998, entitled Method for Stega-Protection of Computer Code";
\(\qquad\) U.S Patent No. 5, B22,432, issued October 13, 1998, entitled "Method for Human Assisted Random Key Generation and Application for Digital Watermark System",
\(\qquad\) U.S. Patent No. 5.889.868, issued July 2. 1996, entitled "Optimization Methods for the Insertion. Protection, and Detection of Digital Watermarks in Digitized Data":
\(\qquad\) U.S. Patent No. \(5,905,800\), issued May 18, 1999, entitled "Method \& System for Digital Watermarking;
U.S. Patent No, 6,078,664, issued June 20, 2000, entitled "Z-Transform Implementation of Digital Watermarks":
U.S. Patent No, 6,205,249, issued March 20, 2001, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking".

EXAMINER: Please inital if reference is considered, whather or not the citation is in conformance with MPEP \& E09. Draw line through citation if not in conformance and nol considered. Flease include copy of this form with neat communication to the applicant.
\[
8 \text { of } 13
\]

All Refarences Ane Considered, Except Whers Lined Through - D.A.AI
DISH - Blue Spike-408
Exhibit 1010, Page 2559

Appl. No 10/049,101
Information Disclosure Staternent dated Fobnuary 29, 2008
U.5. Patent No. 6,522,767, issued February 18, 2003, entitled "Oplimization Methods for the Insertion, Protection, and Detection of Digital Watermarks ir Digitized Data";
U.S. Patent No. 6,598,162, Issued July 22, 2003, entitled "Method for Combining Transfer Function with Predelermined Key Creation",
\(\qquad\) U.S. Patent No. 6.853.726. issued February 8, 2005, entitied \({ }^{2}\) ZTransform Implementation of Digital Watermarks*.
U.S. Patent No. 7,007,166, issued February 28, 2006, entitled "Method \& System for Digital Watermarking";
U.S. Patent No. 7,035,049, issued April 25, 2006, entitled "Multiple Transform Utilization and Application for Secure Digital Watermarking":
\(\qquad\) U.5. Patent No. 7,095,874, issued August 22, 2006, entitled "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digitized Data":
\(\qquad\) U.S. Patent No 7,107,451, issued September 12, 2006, entitied "Optimization Methods for the Insertion, Protection, and Detection of Digital Watermarks in Digital Data:
\(\qquad\) U.S. Patent No. 7,123.718, issued October 17, 2006, entitled, "Utilizing Data Reduction in Steganographic and Cryptographic Systems*;
\(\qquad\) U.S. Patent No. 7,127,615, issued October 24, 2006, 'Improved Security Based on Subliminal and Supraliminal Channels for Data Objects":
\(\qquad\) U.S. Patent No, 7,152,162, issued December 19, 2006, entitied '2. Transform Implementation of Digital Watermarks*;
\(\qquad\) U.S. Patent No. 7.159.116, issued January 2, 2007, entitfed "Systems. Methods and Devices for Trusted Transactions";
\(\qquad\) U.S. Patent No. 7,177,429, issued February 13, 2007, entitled "System and Melhods for Permitting Open Access to Data Objects and for Securing Data within the Data Objects";

EXAMINER; Please initial if reference is considered, whether or not the citation is in conformance with MPEP \(\$ 609\) Draw line through cilation it not in conformance and not considered. Please include copy of this form with next corrmininication to the applicant

9 of 13
All Feferences Are Considerad. Etcept Whare Lined Through. /J.A./

Appl. No. 10/049,101
Information Disclosure Statement dated February 29, 2008
\(\qquad\) U.S. Patent No. \(7,287,275\), issued October 23, 2007, entitled "Methods,

Systems And Devices For Packet Watermarking And Efficient Provisioning Of Bandwidth"

All References Are Considered, Except Where Lined Through. IJ.A./

EXAMINER: Please initial if reference is considered, whether or not the citation is in conformance with MPEP § 609 , Draw line through citation if not in conformance and not considered. Please include copy of this form with next communication to the applicant.

Appl. No 10/049,10.
information Disctosure Siatement dated February 29, 2008

\section*{FOREIGN PATENT DOCUMENTS}

EXAMINER'S
INITIALS
\(\qquad\) PCT Application No PCT/US95/08159, filed June 26, 1995, entitled, "Digital Information Cornmodities Exchange with Virtual Menuing";
\(\qquad\) PCT Application No PCT/US96/10257, filed June 7, 1996, entitled, 'Steganographic Method and Device' - corresponding to - EPO Application No. 969194059 , entitled "Steganographic Method and Device".
\(\qquad\) PCT Application No, PCT/USST/00651, filed January 16. 1897, entitled, "Method for Stega-Cipher Protection of Computer Code" - corresponding to Aü 199718284 A (not available):
\(\qquad\) PCT Application No. PCT/US97/00652, filed January 17, 1997, entitied, "Method for an Encrypted Digital Watermark" - corresponding to AU199718295A (notavailable):
\(\qquad\) PCT Application No. PCT/US97/11455, filed July 2, 1997, entitled, "Optimization Methods for the Insertion. Protection and Detection of Digital Watermarks in Digitized Data" - corresponding to AU199735881A (not available);

PCT Application No PCT/US99/07262, filed April 2, 1999, entitled, "Multiple Transform Utilization and Applications for Secure Digital Watermarking - corresponding to - Japan App. No. 2000-542907, entitled "Multiple Transform Uitilization and Application for Secure Digital Watermarking":
\(\qquad\) PCT Application No. PCT/US00/06522, filed March 14, 2000, entitled, "Utilizing Data Reduction in Steganographic and Cryptographic Systerms*;

EXAMINER Please initial if relerence is considered, whether or not the citalion is in conformance with MPEP § 609 Braw line through oftation if not in contormance and not considered. Please include copy of this form with next commurication to the applican:

11 of 13
All Relerances Ace Considered, Except Where Lined Through, MA.A.?
- Appl. No. 10/049,101

Information Disclosure Statement dated February 29, 2008
PCT Application No. PGT/US00/18411, filed July 5, 2000, entitled, "Copy Protection of Digital Data Combining Steganographic and Cryptographic Techniques" - corresponding to AL200060709A5 (not available);
- PCT Application No. PCT/US00/21189, Filed August 4, 2000, entited, "A Secure Personal Content Server,
- PCT Application No. PCT/USO0/33126, filed December 7, 2000, entitied. "Systems, Methods and Devices for Trusted Transactions" corresponding to AU200120659A5 (not available):

EPO Divisional Patent Application No \(07112420, \mathrm{D}\), entitled "Steganographic Method and Device" (corresponding to PCT Application No. PCT/US96/10257, filed June 7, 1996, entitled, 'Steganographic. Method and Devicen - cited above - previously provided)

> All References Are Considered, Except Where Lined Through. IJ.A.I

EXAMINER: Please initial if reference is considered, whether or not the citation is in conformance with MPEP \(\$ 609\). Draw line through citation 14 not in contormance and not considered. Please include copy of this form with next communication to the applicant.
\[
12 \text { of } 13
\]
- Appl. No. 10/049,101

Information Disclosure Statement dated February 29, 2008

In accordance with 37 C.F.R. \(\S 1.97(\mathrm{~g})\), the filing of this Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 C.F.R. § 1.56(a) exists. This Information Disclosure Statement is in compliance with 37 C.F.R. § 1.98 and the Examiner is respectfully requested to consider the listed documents and information.

Respectfully submitted,

Date: February 29, 2008


For Blue Spike, Inc.


EXAMINER: Please initial if reference is considered, whether or not the citation is in conformance with MPEP \$ 609 . Draw line through citation if not in conformance and not considered. Please include copy of this form with next communication to the applicant.
    PO Bar 1450

    WWW Dsptogov


Please find below and/or attached an Office communication concerning this application or proceeding, The time period for reply, if any, is set in the attached communication.

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO.I CONTROL NO. & FILING DATE & FIRST NAMED INVENTOR / PATENT IN REEXAMINATION & & ATTORNEY DOGKET NO. \\
\hline \multirow[t]{2}{*}{10049101} & \multirow[t]{5}{*}{7/23/2002} & \multirow[t]{5}{*}{MOSKOWITZ, SCOTT A.} & & 80408.0011 \\
\hline & & & & EXAMINER \\
\hline Scolt A. Moskowitz \#2505 & & & & REMIAH AVERY \\
\hline \begin{tabular}{l}
16711 Collins Avenue \\
Miami, FL 33160
\end{tabular} & & & ART UNIT & PAPER \\
\hline & & & 2131 & 20080827 \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.

\section*{Commissioner for Patents}

The IDS receryed on 4/17/07 and the IDS Letter received on 2/29/08 have been considered.
/Ayaz R. Sheikh/
Supervisory Patent Examiner. Art Unit 2131

RTO.90G (Rev 04-03)




Typed oc pausd oume \(\qquad\) Suex Moskultz

\section*{Das Dutsitert \(9,200 \pi\)}

Repistration Mo









Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Parent Term Adjustment to date is 683 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 683 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustrgent is the bling date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retricval (PAIR) WEB site (htp;//pair. uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment detemmimation should be directed to the Office of Patent Legal Administration at (571)-272-7702, Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication al 1-(888) \(786-0101\) of (571)-272-4200.


\section*{NOTICE OF ALLOWANCE AND FEE(S) DUE}

\author{
15201 \\ Scot A, Moskowlis: H2505 \\ 16711 Collins Avenu Miant, FL 73160
}


THE APPLICATION IDENTTFIED ABOVE HAS IEEV EXAMINED XND TS MLIOWED FOR ISSUANCE AS A PATENT, PROSECUTION DN THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. FUIS AITLICATION IS SUBJECT TO WITHDRAWML FROM ISSUE AT THE INITMATIVE OF THE OFFICE OR UPON W'TTTION BX THE APHLICANT SEE 37 CFH I-313 AND MPEP 1308.
THE ISSUE. FEE AND PUBLICATION GEE (IF REQUIRED) MUST EE FAID WITIIN THREE MONTHS ERON THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. TIIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 US.C. 151. THE ISSUE FEIC DUE INDICNTED AISOVE DOES NOT REFLECT A CREDIT FOR ANV PREVIOUSLY PAID ISSUE FEE IN TIIS APPLICATION. IF AN ISSUK FEE HAS HILEVIOUSLX BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF TJIS FORM WII.L BE CONSIDERED A REQUEST TO REABHLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW MUE,

\section*{HOW TO REPLY TO THIS NOTICE:}

1 Revesw the SMALL ENTTTY stane-shown ahove

Ifthe SMALL ENTITY is shown as YES, verify your cumont
SMALL ENTITY suatis:
A. to the ataus is tho same, pRy the TOLAL. FEESS DUE khawn ubove.
B. If the status above is to be romoved. cheok box 36 on Mart 8 Fees) Trinsmittal and pay the PUELICATION FEE (If required) and lwice the smmint of the ISSUE REE shown above, or

If the SMALL ENTITY Ss hown us NO:
A. F'ay TOENL FEE(S) DUE Shown above; or
B. If applesant claimei SMALL ENTITY stans befure at 15 nuw claiming SMALL ENTITY status, chwek box 55 on Part Q - Fco(s) Trannmital und pay the PUBLICATION FEE (if required) and \(1 / 2\) the ISSUB FEE Shown Above.
11. PART B - FEE(S) TRANSMITIAL, of is equivalens; must be comploted and rewmed to the Unired Stucy Patentand Thidemork Office (USPTO) with your ISSUE FEE and PUBLICATION PEE (if required). If you are tharetag the Fee(g) to your deposit aecount, section "4b"
 regiest lo reapply a previously poid ussue fee must be clearly made, inil delays in processing may occur due to the difficuiry in recognizing the paper as an equivatont of Pan B.
 Mail Stop ISSUE FEF untess advised to the contory.
IMPORTANT REMINDER: UHuty pacents is5uing on wpplications. filed on or after Dee 11, 1080 may require payment of mantenance fees. It is patentee's responsifility to ensure timety payment of maintenance fees when dae.


\section*{Notice of Fee Due}

Datel \(\qquad\)
Application Number: \(\square\)
A fee is due for the attached document for the reason indicated below. Please check the application for the appropriate authorization to charge a deposit account. If an authorization is present, please charge the appropriate fee*. If an authorization is not present, notify the application of the fee deficiency.
\({ }^{\text {tI }}\) If the fee due is for any of the filing fees, check for authorization to clearge the filing fees as wêll.
\(\square\) Insufficient payment by check or money order
\(\square\) Insufficient funds in deposit account \(\qquad\) at \(\qquad\)
\(\qquad\) (time)
\(\not \boxed{7}\) Insufficient payment by credit card.
\(\square\) Declined oredit card.No authorization to charge a deposil account.

Fee code(s) to be applied:


Anlount in holding fee code:
\(\qquad\)
\(\qquad\)
\(\frac{1506}{\frac{1622 / 2622}{1999}} \quad \square\)

Total remaining due from applicant:


RAM Operator \(\qquad\)

Rev. 12/27/07

UNITED STATES DEPARTMENT OF COMMERCE ark Office Addres: COMMISSIONER FOR PATENTS
P.O. Box 1450
Nexandria, Virginia 23313-1450 www.uspoogoy


Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Scott A. Moskowitz
\#2505
16711 Collins Averue

\section*{NOTICE TO PAY BALANCE OF ISSUE FEE}

The sssue fee paymenl filed on 10/09/08 has been received. Although the fee paid in the Natice of Allowance was paid, new patent fees went into effect on October 2,2008 after the mailing date of the Notice. In accordance with Sections 801 and 803 of the Consolidated Appropriations Act, 2005 (H.R. 4818) "the provisions of this title shall take effect on the date of enactmeat of this Act. . the provisions of section 801 shall apply to all patents, whenever granted, and to all patent applications pending on or filed after the effective date," See also, Revision of Patent Fees for Fiscal Year 2009-Final Rule, 73 Fed, Reg. 47534 (Aug. 14, 2008) and Consolidated Security, Disaster Astistance and Continuing Appropriations Act, 2009 (II.R. 2638). Because the issue fee was paid on or after October 2, 2008, the new issue fee was due instead of the amount specified in the Notice of Allowance,'

In accordance with 37 CFR 1.18, applicant is given a time period of THREE (3) MONTHS from the mailing date of this notice during which to pay the BALANCE DUE indicated below. The balance due is the difference between the issue fee required on the date that the correct issue fee is paid and the amount that was previously paid. This three-month time period may not be extended. If the balance due is not paid before the expiration of the three-month period, the application will become abandoned (if not issued) or the patent will lapse (if issued) at the termination of the three-manth period.


CERTIFICATE OF MAILING

\footnotetext{
\(\left.\right|^{1}\) Applicanes should check the current fee schedule posted on the UEPTO Inemet web site al
 applicable, fees may also be paid by EFS. Welh, Credit Card or Deprasil Accolinh.
}

I hereby certify that this notice and the required additional fee are being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to Mail Stop Issue Fee, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date indicated below.
Printed Name: \(\quad\) Signature:

scott A. Moskowitz
+2505
1671 I Collins Avenue

Mail Date: \(10 / 31 / 08\)

Application Number: 10/049101

\section*{NOTICE TO PAY BALANCE OF ISSUE FEE.}

The issue fee payment filed on \(10 / 09 / 08\) has been received. Although the fee paid in the Notice of Allowance was paid, new patent fees went into effect on October 2, 2008 after the mailing date of the Notice In accordance with Sections 801 and 803 of the Consolidated Appropriations Act, 2005 (HT 4818) "the provisions of this title shall take effect on the date of enactment of this Act. . the provisions of section 801 shall apply to all patents, whenever granted, and to all patent applications pending on or filed after the effective date." See also, Royision of Patent Fees for Fiscal Year 2009-Final Rule, 73 Fed, Reg 47534 (Aug, 14, 2008) and Consolidated Security, Disaster Assistance and Continuing Appropriations Act, 2009 (H.R, 2638). Because the issue fee was paid on or after October 2, 2008, the new issue fee was due instead of the amount specified in the Notice of Allowance.'

In accordance with 37 CFR 1.18, applicant is given a time period of THREE (3) MONFHS from the mailing date of this notice during which to pay the BALANCE DUE indicated below. The balance due is the difference between the issue fee required on the date that the correct issue foe is paid and the amount that was previously paid. This three-month time period may not be extended. If the balance due is not paid before the expiration of the three-month period, the application will become abandoned (if not issued) or the patent will lapse (if issued) at the termination of the three-month period.

/Berry Powell/
Office of Data Management
Office 703-308-9250×160
Fax: 571-270-9937

A copy of ibis notice MUST be returned with payment. certificate of mailing

I hereby certify that this notice and the required additional fee are being deposited with the United States Postal Service with sufficient postage for first class mait inän envelope addressed to Mail Stop Issue Fee, Commissioner for Patents, P.O. Box 1450, Alexandria, VA \(22313-1450\) on the date jndicated below. Printed Name: Saod Moskowitz Signature:



\section*{CERTIFICATE OF TRANSNISSION/MAILING}

 the thep atiom builow:
Bijpronura





 ACDEEBS GEND T0: Comimiseianer Ior Patents, P.O. HoE 1450, Nenundrta, YA 21315-1450:



METHOU OF PAYMENT (Chech all that apiny)

FEE CALCULATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4. BAEIC FILING, SE & CH, AND & EXAMINATH
FEES
smill Entisy & FES SEARC & FEES moall Ensity & ExAMiN & TIONFEES 5mill Entily & \\
\hline Aonliatlian Tres & Eeats) & Etits) & Exal & Eeth1 & Eeala) & Ein 12 & Eesespaldit \\
\hline Untility & 330 & 165 & 540 & 370 & 220 & 180 & \\
\hline Dealgn & 220 & 110 & 100 & 315 & 140 & 70 & \(\underline{\square}\) \\
\hline Plam & 220 & 110 & 340 & 165 & 170 & 85 & \\
\hline Retsuie & 390 & (65) & 540 & 270 & A50 & 325 & \\
\hline Provicional & 320 & 110 & 0 & u & 0 & \(u\) & \\
\hline \multicolumn{7}{|l|}{2. Excess CLAMM FEES} & Smati Enaty \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Eec. Donacription Evch claim over 20 (inoluding Reinues)}} & Eats) & \(\frac{\text { Feater }}{16}\) \\
\hline & & & & & & 52 & 26 \\
\hline \multicolumn{6}{|l|}{Esch inilcpendeal claim aver 3 (inelating Rélsues)} & 220 & 110 \\
\hline \multicolumn{6}{|l|}{Mutiple dependom claima} & 390 & 195 \\
\hline \multicolumn{2}{|l|}{} & ar fas & Eme & adix & & Muaispen D & pouseuti Clatms \\
\hline - & & & & & & Eselit & Eepalach \\
\hline indige CIIalm & Etracla &  & Feas & det (1) & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Siprature & 20, & Regstation lio (AntmidAges) & Telephone 305956 5041. \\
\hline Name (Erinfyye) & STOII A MOSNOWITR & & Dato November 13,2006 \\
\hline
\end{tabular}




 anupess, SEND TO: Commiasionee for Patents, PD, Box 1450, AJexandria, VA 22313-1450.



\section*{ISSUE NOTIFICATION}

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)
(application filed on or after May 29, 2000)
The Patent Tem Adjostment is 683 day(s). Any patent to issue from the above-idebtified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Applicution Infomation Rerieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment detemination should be directect fo the Office of Patent Legal Administration at ( \(\mathbf{2 7 1} 1\)-272-7702. Questions relating to issue and publieation fee payments should be directed to the Customer Sergice Center of the Office of Patent Publication at (571)-272-4200.

APPLICANT(s) (Please sec PATR WITB sie tirpe:/pair usptagov for additional appleants)
Scou A. Moskawite. Miumi, FL:
Michuel Berry, Alonquerque, NM:

Case 6:17-cV-00063-RWS-KNM Document 3 Filed 01/31/17 Page 1 of 1 PagelD \#: 325
3(2120) Rev.08/10)
\begin{tabular}{|c|c|}
\hline H0: & \begin{tabular}{l}
Mail Stop 8 \\
Directur of the U.S. Patent and Trademark OHice \\
P. 0. Box 1450 \\
Alexandria, VA 22313.1450
\end{tabular} \\
\hline
\end{tabular}

\section*{REPORT ONTHE \\ FILING OR DETERMINATION OF AN \(\triangle C T I O N\) REGARDINGA PATENT OR TRADEMARK}


In the above entiled case: the following decision has been rendered or judigement issued:




Case 6:17-Cv-00060-RWS-KNM Document 2 Filed 01/30/17 Page 1 of 1 PageID \#: 351
HCa120(Rev.0840)
\begin{tabular}{|c|c|}
\hline 10: & \begin{tabular}{l}
Mail Stop 8 \\
Direcier of the U.S. Patent and Trademark Ofice \\
P.O. Box 1450 \\
Alexandria, VA 22313-1450
\end{tabular} \\
\hline
\end{tabular}

\section*{REPORT ONTHE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}


In the above entiled case: the following decision has been rendered or jugnement issurd:




Case 6:17-cy-00096 Document 2 Filed 02/17/17 Page 1 of 1 PageID \# 156

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \[
\begin{aligned}
& \text { DOCKETNG, } \\
& 6: 17-\mathrm{CV}-96
\end{aligned}
\] & DATE FILED
\(2 / 15 / 2017\) & 11. S DISTRICT CDURT Eastern District of Texas \\
\hline \multicolumn{2}{|l|}{Plaintife} & DEPENDANT \\
\hline \multicolumn{2}{|l|}{Blue Spike, LLC} & NVIDIA CORPORATION \\
\hline PATENT OIE TRADEMARKNO & DATE OF PATENT OR TRADEMARK & ICOLDER OF PATENT OR TRADEMARK \\
\hline 15745569 & 4/2B/4998 & Blue Spike, LLC \\
\hline 28930719 & 1/6/2015 & Blue Spike, Lle \\
\hline 37475246 & 1/6/2009 & Blue Spika, LLC \\
\hline 4.8171561 & 5/1/2012 & Blue Spike, LLC \\
\hline 1 8739195 & 5/27/2014 & Blue Spike, LLC \\
\hline \multicolumn{3}{|l|}{} \\
\hline DATK INCIUDSD & \multicolumn{2}{|l|}{INCLuDER BY} \\
\hline & \(\square\) Amendment & \(\square\) Answer \(\square\) Eross Bill \(\square\) Oher Pleadiug \\
\hline BATENTOR IRADEMARK NO & DATE OF PATENT OR TRADEMARK & HOLDER OF PATENT OR TRADEMARK \\
\hline \multicolumn{3}{|l|}{1} \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In fie above entiled casse the followiog decision has been rendered or judigement issued:




Case 6:17-CV-00097 Document 2 Filed 02/17/17 Page 1 of 1 PageID \# 148 GCa120)Rev.0840
\begin{tabular}{|c|c|}
\hline Mail Stop 8 & REPORT ONTHE \\
Disecier of the U.S. Patent and Trademark OrGice \\
P.O. Box 1450 & FILING OR DETERMINATION OF AN \\
Alexandria. VA 22313-1450 & ACTION REGARDINGA PATENT OR \\
& TRADEMARK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Filestin the U.S. Disitial Cuart} &  \\
\hline \multicolumn{3}{|l|}{} \\
\hline \begin{tabular}{l} 
DOCKETNO, \\
\(6: 17-\mathrm{cv}-97\) \\
\hline
\end{tabular} & DATE FILED
\(2 / 15 / 2017\) & \begin{tabular}{l}
1.8 DISTRICT COURT \\
Eastern Distriot of Texas
\end{tabular} \\
\hline \multicolumn{3}{|l|}{PLAINTIFF \({ }^{\text {a }}\) / DEPENDANT} \\
\hline \multicolumn{2}{|l|}{Blue Spike, LLC} & ELEMENT TECHNOLOGIES CORPORATION \\
\hline PATENT OR TRADEMARKNO. & DATEQFPATENT OR TRADEMARK & IHLDER OF PATENT OR TRADEMARK \\
\hline 15745569 & 4/2B/9998 & Blue Spike, LLC \\
\hline 28930719 & 1/6/2015 & Blue Spike, Lle \\
\hline 37475246 & 1/6/2009 & Blue Spika, LLC \\
\hline 48171561 & 5/1/2012 & Blue Spike, LLC \\
\hline \% 8739195 & 5/27/2014 & Blue Spika, LLC \\
\hline \multicolumn{3}{|l|}{} \\
\hline DATK INCIUTSED & INCLUDER BY & \(\square\) Answer \(\square\) Enss Bill \(\square\) Other Pleadiug \\
\hline PATENTOR TRADEMARK NO. & DATE QF PATENT OR TRADEMMARK & HOLDER OF PATENT OR TRADEMARK \\
\hline \multicolumn{3}{|l|}{1} \\
\hline \multicolumn{3}{|l|}{2} \\
\hline \multicolumn{3}{|l|}{3} \\
\hline \multicolumn{3}{|l|}{4} \\
\hline 5 & & \\
\hline
\end{tabular}

In the above- entiled cases the following decision has been rendered or juanement issued:




Case 6:17-cv-00175-JRG Document 3 Filed 03/23/17 Page 1 of 3 PagelD \#: 635

\begin{tabular}{|c|}
\hline Mail Stop 8 \\
Director of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
Alexandria, VA \(22.3 / 3-1450\) \\
\hline
\end{tabular}

\section*{REPORT ON TIIE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATEMT OR TRADEMARK}





 Copy 2-1pan fing document adding patentis), maik (fis copy to Director Capy 4-Caw गile crpy

Case 6:17-cv-00175-JRG Document 3 Filed 03/23/17 Page 2 of 3 PagelD \#: 636

\begin{tabular}{|c|}
\hline Mail Stop 8 \\
Director of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
Alexandria, VA \(22.3 / 3-1450\) \\
\hline
\end{tabular}

\section*{REPORT ON TIIE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}





 Capy 2-Upan fing document adating patentis), maik (friscopy to Director Capy 4-Caw गile crpy

Case 6:17-cv-00175-JRG Document 3 Filed 03/23/17 Page 3 of 3 PagelD \#: 637

\begin{tabular}{|c|}
\hline Mail Stop 8 \\
(3). \\
Drector of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
Alexandria, VA 22.33 -1450 \\
\hline
\end{tabular}

\section*{REPORT ON TIIE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}




In the above-entillaticoso, the foliowang docision has becn andewd or fudgement issuat:

 Capy 2-Upan fing document adating patentis), maik (friscopy to Director Capy 4 -Caw गile crpy

Case 6:17-CV-00099 Document 2 Filed 02/17/17 Page 1 of 1 PageID \# 164
GCOL20 (Rev.0840
\begin{tabular}{|c|}
\hline Mail Stop S \\
TO: Direclue of the U.S. Patent and Trademark Oftice \\
P.O. Box 1450 \\
Alexandria. VA \(22313-1450\) \\
\hline
\end{tabular}

\section*{REPORT ONTHE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}


In the above- entiled cases the following decision has been rendered or juanement issued:

 Copy 2-1 pan filing docmment arding pateatsit mail this cilpy to Director Eapy 4-Eabe file copy

Case 6:17-CV-00100 Document 2 Filed 02/17/17 Page 1 of 1 Pageld \#: 161
GCOL20 (Rev.0840
\begin{tabular}{|c|}
\hline Mail Stop S \\
TO: \\
Direciur of the U.S. Patent and Trademark Oitice \\
P.O. Box 1450 \\
Alexandria. VA \(22313-1450\) \\
\hline
\end{tabular}

\section*{REPORT ON THE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMAKK}


In the above- entiled cases the following decision has been rendered or jugnement issued:

 Copy 2-1 pan filing decmenent adoling patentisionail this copy to Director Copy 4-Gise filecopy

Case 6:17-CV-00098 Document 2 Filed 02/17/17 Page 1 of 1 PagelD \# 163
GCOI20)(Rev.0840)
\begin{tabular}{|c|c|}
\hline Mail Stop 8 & REPORT ON THE \\
Diseclue of the U.s. Patent and Trademark OrGice & P.O. Box 1450 \\
Alexandria. VA \(22313-1450\) & FILING OR DETERMINATION OF AN \\
ACTION REGARDINGA PATENT OR
\end{tabular}


In the above entiled cases the following decision has been rendered or juanement issued:




Case 6:17-cV-00101 Document 2 Filed 02/17/17 Page 1 of 1 Pageld \# 143
GCOL20 (Rev.0840)
\begin{tabular}{|c|}
\hline Mail Stop S \\
TO: \\
Direciur of the U.S. Patent and Trademark Oitice \\
P.O. Box 1450 \\
Alexandria. VA \(22313-1450\) \\
\hline
\end{tabular}

\section*{REPORT ON THE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMAKK}


In the above- entiled cases the following decision has been rendered or jugnement issued:





In the above= entition caste, the following patontig) madematkie) the been included:




Cupy 2-Upon Fling docament adding pateatis), mail this copy to Director Copy 4-Cuse ilie cupy

DOCKETKRPTRENCE: SCOTROG-I

 2041.
 Jane 23,2 (0)


\section*{Power of Attorney and Correspondence Address Change}
 [T].


\section*{Customer Number 31518}
as athonevs of recora in tion patent.
 the foreguitg 21518 (ustomer numbers.


Smsi Maskessilz
feremphent


DOCKTVRFERFNCN: SEOTOO16.1

 2001
 Jun 28, 2000


37 (EfR1.7ucal2)

... (2) An application data sheat prabiding sortectod or andatod









\title{

}

Socrob 5-Moskorvits
42505

*
Custome Number 31518

Cusemoct Namber: \(3 / 518\)


WISTARE RRADEGG
Metchandectielt:

AKTORNEYFOR APPLIEANT


\section*{Payment information:}
\begin{tabular}{|l|l}
\hline Submitted with Payment & no
\end{tabular}

\section*{File Listing:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Document Number & Document Description & File Name & File Size(Byte5)) Message Digest & Multi
Part/zip & \[
\begin{array}{c|}
\hline \text { Pages } \\
\text { (ifappl. }
\end{array}
\] \\
\hline \multirow[b]{2}{*}{1} & & \multirow[b]{2}{*}{POA_CorrAddress_ADS_5CQTO \(016-1\) Executed.pdF} & -95\%305 & \multirow[b]{2}{*}{yes} & \multirow[b]{2}{*}{3} \\
\hline & & & - & & \\
\hline \multicolumn{6}{|c|}{Multipart Description/PDF files in sip description} \\
\hline & \multicolumn{2}{|c|}{Document Description} & Start & \multicolumn{2}{|c|}{End} \\
\hline & \multicolumn{2}{|c|}{Power of Athomey} & 7 & \multicolumn{2}{|r|}{1.} \\
\hline & \multicolumn{2}{|c|}{Application Data Sheer} & 2 & \multicolumn{2}{|c|}{3} \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in hytes):} & \multicolumn{3}{|c|}{952305} \\
\hline
\end{tabular}

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents. characterized by the applicant, and including page counts, where applicable. It serves as evidence of recelpt similar to a Post Card, as described in MPEP 503.

\section*{New Applications Under 35 U.S.C, 111}

If a new application is being filed and the application includes the necessary components for a filling date (see 37 CFR 1.53 (6)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will he issued io due course and the date sbown on this Aclmowiedgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requitements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Fling Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Applitation Number and of the International Filing Date [Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

\section*{STATEMENT UNDER 37 CFR \(3.73(\mathrm{c})\)}
 a CORPDAATION.
intanis of Assgnec

States that, for the parent application/patent identified abova in is (choose one of options \(1,2,3\) or 4 below):
7. V. The essignet ot tho omife right wita, and interest:

2
An absigne of less ltan the entire right filla and intarest (checik applicatre bon)
\(\square\) The extent \(\langle\) by parcentanel of its ownership interesy is \(\qquad\) \%, Addifional Statementis) by the ownars
Thore are ununuctiled parcentages of awnership. The diber pacties inoluding inventors who logetherowa the entle pight ilfo and intorest anec

 right Mle and interest
\(3 \square\) The asslgnee of an individed interest in the entrety (a complete assignment focm ore of the jolint invantors was made)


 right, tithe wint intorest

4 The redipient. Via a bourt proceeding onthe like (eg., banknptcy, probate), of In undivided interest in the antirey (a)


 fion Uriatd States Palent and Tradomark Oincosat Real \(\qquad\) Frame \(\qquad\) de for which ic cond Thierand is altugelied.

日 1 A chain of tite from tha inventorf(e), of the patantapplicatian/patant ldantified above, to the curtent assignae as followe;


To: BLUE SPIKE INC

The dociment wars recorded in the United States Fatent and Tratemark Office it Reel 028482 Frame 0720 , or for which a copy therept is atachied.
Q Fiom: BLUE SPIRE, INC. To. WISTARIA TRADINGLTO
The document was recorded in the United States Parent and Tractemam Office at ABei 036388 Frame 0248 ar for which a copy thereol is atterched.

\section*{[Page t of 2]}




 TO: Oomomesionor for Patents, P O Box 1450, Alexatidria. VA 82312.1450


\section*{STATEMENT UNDER 37 CFR \(3.73(\mathrm{c})\)}
3. From; \(\qquad\) Tou \(\qquad\) The document was recorded in the United Stares Palent and Trademark Office at Aeal \(\qquad\) Frame \(\qquad\) or for which a copy thereof is ettached.
4. From: \(\qquad\) To: \(\qquad\)
The document was recorded in the Unifed Stafes Patritt and Trademark Office at Fieel \(\qquad\) Fame \(\qquad\) or for which a copy thersof is attached.
5. Ftom: \(\qquad\) To: \(\qquad\) The document was regarded in the Lnifed States Palent and Trademark Dtfige at Feel \(\qquad\) .Frama \(\qquad\) or for which a capy thersol is attached.
E. From: \(\qquad\) To: \(\qquad\) The dacument was recharded in the United States Prifent and Thademark Otfice at Firel \(\qquad\) Frame \(\qquad\) . or for which a copy thereof is attached.

Additional documents in the chain of title are listed on a supplemental sheel(s);
\(\square\) As required by 37 GFR 3.73 (c)(1) (i). the documentaty evidence of ithe chain of tille trom the origitial ownor to the assignen was, ar concurnently is being, submitted tar recordation pursuant to 37 GFR 3.11
[NOTE: A separave copy (Le, a true copy of the original assignment document(s)) must be subroitted to Assignment Division in accordanice with 97 CFA Part 3 to record the assignment in the records of the USPTO. See MPEP 302.08 J

The undersigned (Whose tite is supplied below) is authorized to act on behall of the assignce.
/Scott Moskowitz/
Sgnalute
SCOTT MOSKOWITZ
Frinted on Typed Wame

July 18, 2017
Date
DIRECTOR
Tulle or Registration Number
[Page 2 of 2]

\section*{Privacy Act Staternent}

The Privacy Act of 1974 (P.L 93-579) requires that you be given ceilain information in commection withyour submission of the atteched form related to a patent application orpatemt. Accordingly, pursuant to the requirements of the Ach, pleage be advised That: (1) the general autharily for the collection of this information is 35 USE E(b) (2). (2) furnishing of the information solidiled is voluntary: and (3) the pitncipal purpose for waid the information is used by the U.S., Patent and Trademark Othioe is to process andor examine your submisiem ibladed Io a patent application or patent. II you do not fumish the requested information, The UJ.S. Patent and Tradematk Ottice may pol be able to process and/ar beamine you submission, which may resulf im lemination of proceedinusis or abandonment of the applicotion or expiration of the patent.

The information providad by you in this form will be subjech to the following rowina uses
4. The information on mg form will be treated comfidentially to the untent allowed under the Freedoim of Intormation Act (S LiS.C. 552 ) and the Privacy Act (5 U.S.S 559a). Fecords trom this system of tecords may be disclosed to the Deparimiant of dustioe to delermine whethet disolosure of these recoids is iequited by the Freedom of Entormatioin Act.
2. A record foom this systam of records may be disclosed, ats a routine use in the course of preseming oyidonco to a court, magistrato, or adininistrativa tnoumal, Ineluding dizclosures to opposing counsal in the Etourse of sellement negoliations.
3. A record in this system of records may be disciosed. as a routine use, to a Member of Congress submittmg a request involving an individual, to whom the record pertaints, when the individual has (equested assislance )romi the Mernber with respect to the subject maller of the recard
4. A recond inghes system of reconts may be disclosed, as a routinn ute. to a contractor of she Agency having nead for the information in order lo parform a contract. Reciplente of ifformation shall be raquicad (o comply with the requirements of the Privacy Act of 1974, as amended. pursuant to 5 US S C E5Ra(mil
5. A recond eblatid to en International Application tiled unger the Patent Gooperation Treaty in this system of records may ne disclosed, as a routing use to the Intemational Buraau of the Worid Intellectual Propariy Coganizations, pursuant to the Folent Cooperation Treaty.
E. A recula in this system of fecunde may de disclosed, as a routine ise, to anothar fedeial agensy for porposes of Mational Secunity feViaw (35 U.S.G. 1日1) and for Teview porsuant to the Atomic Birergy Act (42USC, 218(0))
7 A recond toin this system of recurds may he disclosed, as a routine use to the Adminisfator, Eemera) Services, or lis/her designee, durng an inspection of records conducted by OSA as part of tist agancy's. iesponsibifity to recommend improvermunts in recurds managument practicas and prograins, under autharity ol A4 LI S.C. 2904 and 2906 Such disclosure shall be made in accoidanoe with the GSA regulations goveroing inspection of records for this purpose, and any other relevant g.E, QSA ar Commarce) directive. Such disclosure ahall not be used to make delerminations about individiala
B. A revord from this system of records may be disclosed, as a routhe tise to the nublio allel ellier publication at the application pursuant 1035 (U.S.C. 122 (D) or iscuance of a patent pusuant to 35 U.S.C. 151. Further, a recond may be dieslosed, subject ta the limilationis of 37 CFR 4. 14, as a rouline ves, io the publicill the record was biled in an applicalion whiolt Ueorama abendourd or in which the proceadinge ware terminated and which agolication io reforencod by ofther a pubished application, an application voen to public inspection or an lasued patent.
 entarcement agency, if the USPTO becomes awars of an vibation ur fotential vinalion in law or regualiofi


\section*{Payment information:}
\begin{tabular}{|l|l}
\hline Submitted with Payment & no
\end{tabular}

\section*{File Listing:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Document Number & Document Descriptian & File Name & File Size(Bytes)] Message Digest & Multi Part/.zip & Pages (if appl) \\
\hline & & & 120067 & & \\
\hline 1 & Assignee showing of ownership per 37 CFR 3.73 & 373_aia0096_5COT0016-1.pdf & \begin{tabular}{l}
aान \\
MEV
\end{tabular} & no & 3 \\
\hline \multicolumn{6}{|l|}{Warnings} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Tolal Files Size (in bytes)} & \multicolumn{3}{|c|}{120067} \\
\hline
\end{tabular}

This Acknowledgement Receipt exidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of recelpt similar to a Post Card, as described in MPEP 503.

\section*{New. Applications Unider 35 U.S.C. 111}

If a new application is being filed and the application includes the necessary components for a filing date fsee 37 CFR 1.53 (b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will he issued in dae course and the dale shown on this Acisnowiedgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U,S,C, 371
If a timely submission to enter the national stage of an international application is compliant with the conditlons of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addilion to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office
If a new internationalapplication is being filed and the international application includes the necessary components for an international filing date (see PCT Articie 11 and MPEP 1810), a Notification of the International Appication Number and of the International Filing Date [Form PCT/RO/105] will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the applicatlon.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PETITION TO ACCEPT UNINTENTIONALLY DELAYED PAYMENT OF MAINTENANCE FEE IN AN EXPIRED PATENT (37 CFR 1.378(b))} \\
\hline Patent Number & Issue Date & Application Number & Filing Date & Docket Number (if applicable) \\
\hline 7475246 & 06-Jan-2009 & 10049101 & 23-Jul-2002 & \\
\hline \multicolumn{5}{|l|}{CAUTION: Maintenance fee (and surcharge, if any) payment must correctly identify: (1) the patent number and (2) the application number of the actual U.S. application leading to issuance of that patent to ensure the fee(s) is/are associated with the correct patent. 37 (FFR 1,366 (c) and (d).} \\
\hline \multicolumn{5}{|l|}{Applicants claims the following fee status:} \\
\hline \multicolumn{5}{|l|}{\(\bigcirc\) Small Entity} \\
\hline \multicolumn{5}{|l|}{\(\bigcirc\) Micro Entity} \\
\hline \multicolumn{5}{|l|}{(e) Regular Undiscounted} \\
\hline \multicolumn{5}{|l|}{Applicants selects the following:} \\
\hline (-) \(31 / 2\) & & (-) 71/2 & & O 111/2 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
PEIITION FEE \\
The petition fee required by 37 CFR \(1.17(\mathrm{~m})\) (Fee Code \(1558 / 2558\) ) must be paid as a condition of accepting unintentionatly delayed payment of the maintenance fee.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
MAINTENANCE FEE (37 CFR \(1.20(\mathrm{e})\)-(g)) \\
The appropriate maintenance fee must be submitted with this petition.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
STATEMENT \\
THE UNDERSIGNED CERTIFIES THAT THE DELAY IN PAYMENT OF THE MAINTENANCE FEE TO THIS PATENT WAS UNINTENTIONAL
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{PETITIONER(S) REQUEST THAT THE DELAYED PAYMENT OF THE MAINTENANCE FEE BE ACCEPTED AND THE PATENT REINSTATED} \\
\hline \multicolumn{5}{|l|}{THIS PORTION MUST BE COMPLETED BY THE SIGNATORY OR SIGNATORIES} \\
\hline \multicolumn{5}{|l|}{I certify, in accordance with 37 CFR 1.4(d) (4) that ( am} \\
\hline
\end{tabular}An attorney or agent registefed to practice before the Patent and Trademark Office who has been given power of attorney in this application.An attorney or agent registered to practice before the Patent and Trademark OfficeA sole patentee
A joint patentee; I certify that I am authorized ta sign this subimission on behalf of all the other patentees as evidenced by the power ofattorney in the applicationA joint patentee, all of whom are signing this e-petition
(b)

The assignee of record of the entire interest that qualifies as an authorized party under 37 CFR 1.33 (b)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{The Assignee of record of the entire interest} \\
\hline \multicolumn{4}{|l|}{Under 37 CFR 3.71 an assignee becomes of record by filing a statement in compliance with 37 CFR 3.73(b). Signature requirements are set forth in 37 CFR 1.4(d), and the undersigned certifies that he/she is empowered to act on behalf of the assignee of the entire interest} \\
\hline Signature & /Scott Moskowitz/ & & \\
\hline Name & SCOTT MOSKOWITZ & & \\
\hline \multicolumn{2}{|l|}{Enter Reel and Frame Number} & & Remove \\
\hline Reel Number & 013126 & Frame Number & 0959 \\
\hline \multicolumn{2}{|l|}{Enter Reel and Frame Number} & & Remove \\
\hline Reel Number & 036388 & Frame Number & 0248 \\
\hline \multicolumn{2}{|l|}{Click ADD for additional Reel Number and Frame Number} & & Add \\
\hline
\end{tabular}

\begin{tabular}{|l|r|l|l|}
\hline \multicolumn{1}{|c|}{ Description } & Fee Code & Quantity & Amount
\end{tabular} \(\left.\begin{array}{c}\text { Sub-Total in } \\
\text { USD(\$) }\end{array}\right]\)

Commissioner for Patents
\begin{tabular}{ll} 
In rePatent No. & 7475246 \\
Issue Date: & January 6,2009 \\
Application No. & 10049101 \\
Filed: & July 23,2002 \\
Attorney Dacket No. 80408.0011
\end{tabular}
```

}
:DECISION GRANTING PETITION
ONNDER 37 CFR 1.378(b)

```

Attorney Dacket No. 80408.0011

Thisis a decision on the electronic perition, filed July 18,2017 under 37 CFR 1,378(b) to accept the unintentionally delayed payment of the 7.5 year maintenance fee for the above-identified patent.

The petition is GRANTED.

The maintenance fee is accepted, and the above-identified patent reinstated as of July 18,2017
This decision also constitutes notice that the fee has been accepted. An electronic copy of the petition and this decision has been created as an entry in the Image File Wrapper. Nevertheless, petitioner should print and retain an independent copy.

Telephone inquiries related to this electronic decision should be directed to the Electronic Business Center at 1-866-217-9197,


\section*{Payment information:}
\begin{tabular}{|l|l|}
\hline Submitted with Payment & yes
\end{tabular}
\begin{tabular}{|l|l|}
\hline Payment Type & CARD \\
\hline Payment was successfully recelved in RAM & \(\$ 5300\) \\
\hline RAM confirmation Number & 071917 INTEFSWTB091900 \\
\hline Deposit Account & \\
\hline Autharized User & \\
\hline This & \\
\hline
\end{tabular}

The Director of the (1SPTO is hereby authorized to charge indicated fees and credit anyoverpavenent as follows:

\section*{File Listing:}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Document Numiber & Dacument Description & File Name & File Size(Bytes)/ Message Digest & Mulii Part/.xip & Pages (if appl), \\
\hline & & & 35284 & & \\
\hline f & Petitionautomatically granted toy EfS & petition-request.paf & Camsurumbumbiamelas & ne & 2 \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{information:} \\
\hline \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{Fee Wharkstieer (SEO6)} & \multirow[b]{2}{*}{fee-infopdf} & 31372 & \multirow[b]{2}{*}{no} & \multirow[b]{2}{*}{2} \\
\hline & & &  & & \\
\hline \multicolumn{6}{|l|}{Warnings:} \\
\hline \multicolumn{6}{|l|}{Information:} \\
\hline \multicolumn{3}{|r|}{Total Files Size (in bytes):} & \multicolumn{3}{|c|}{67156} \\
\hline \multicolumn{6}{|l|}{This Acknowledgement Recpipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.} \\
\hline
\end{tabular}

\section*{New Applications Under 35 U.S.C. 111}

If a new application is being filed and the application includes the necessary components for a filing date lsee 37 CFR 1.53 (b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.
National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with she conditions of 35 U.S.C, 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. New International Application Filed with the USPTO as a Receiving Office
If a now international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing dale of the application.

Case 2:16-cV-00329-RWS Document 136 Filed 03/31/17 Page 1 of 4 PagelD \#: 1302
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{16.} & Mullistup 8 \\
\hline & Directur at the U.S. Patent and Tradematk Office \\
\hline & P,O. Bas \(1+50\) \\
\hline & Alexamaria, V \\
\hline
\end{tabular}

\section*{REPORT ON TILE \\ FILING OR DETERMINATION OF AN AC'TION REGARDING A PATENT OR TRADEMARK}
\begin{tabular}{|c|c|c|}
\hline Inciaronila Thestrither \&5
Tadematko ar & \begin{tabular}{l}
 \\
rictiatal \\
(зiem= the prieroli
\end{tabular} & \begin{tabular}{l}
 \\
Eastem Distict of Texas \(\qquad\) in the (POlioway \\

\end{tabular} \\
\hline  & DATETIIITI
\(4 / 1 / 2016\) &  \\
\hline Nuatsfiti- & &  \\
\hline Blue Spike, PLLC & & Verimatrix lac, el al \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline 1) 5,889868 & 3/30/1999 & Blue Spilin ULC \\
\hline - 7,4/5,24日 & 1/318009 & Blue Spike LLC. \\
\hline 1 7.7700077 & 8/3/2010 & Blue Spike LLC \\
\hline \(47.813,506\) & 10/32/2010 & Blue Spike LLC \\
\hline \(57.817,609\) & 1/25/2011 & Blue Spika LLC \\
\hline
\end{tabular}




 Lapy :- Upin filing socument ndding patvat(th mail tha copy in Dirvchir capy 4 care Die topy

United States Patent and Trademark Office
UATFD STATIS DEP MTMEXT CT FOMMKIECK
Onited Stotes Patent and Trademark Offies
Wides COMMISSIONFK FOF PATZMTS
Aleanditai V Vemia 22315-1450
\begin{tabular}{|c|c|c|c|}
\hline APPLICATIONNUMBER &  & FIRSI MAMMED APPLICAST & ATTY, DOCKET NO.TITITE \\
\hline 10/049,101 & 07/23/2002 & Scott A. Moskowit\%. & \\
\hline & & \multicolumn{2}{|r|}{CONFIRMATION NO. 8028} \\
\hline 31518 & & \multicolumn{2}{|r|}{POA ACCEPTANCE LETTER} \\
\hline NEIFELD IP LAW, PG 5400 Shawnee Road Suite 310 & & \multicolumn{2}{|r|}{} \\
\hline
\end{tabular}

Suite 310
ALEXANDRIA, VA 22312-2300
Date Mailed: 07/24/2017

\section*{NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 07/18/2017.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33 .

Queshons abont the conients of this notiee and the requiremens it seis forth should be directed whe orfiee of Data Management, Application Assistance Unit, at (571) 272-4000 or (571) 272-4200 or 1-888.786-0101.
/jefitangith st/

United Sitajes Paiznt and Trademark Offige


Miami. FL 33160
Date Mailed: 07/24/2017

\section*{NOTICE REGARDING CHANGE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 07/18/2017.
- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the naw address of record(37 CFA 1.33)

Questons afout the conlents of lins nolice and the sequacmems it sets forib should be directed to ife Orfies of 1 wib Musagechen, Application Assigunco Unit, m (571) 272-4000 or (571) 272-4200 or 1-888.788-0101.
sutnthughtial



In life above entiled lase: the following deciston has been rendered or judgement issued
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{DECISICNNTIDGEMENT} \\
\hline \multicolumn{3}{|l|}{ORDE DISMISSING CASE, Ptaintiff Blue Spike, LLC's ctaims against Defendant Giada Technology, Int- are dismissod without prejudice. Each party will bear all its own attomeys' fees and costs in this case.} \\
\hline CLERK & (BY) DEPUTYCIERK & DATE \\
\hline David A O'Toole & Michael Lantz & 5/30/2017 \\
\hline
\end{tabular}



Case 6:17-Cv-00060-RWS-KNM Document 2 Filed 01/30/17 Page 1 of 1 PageID \#: 351

\begin{tabular}{|c|c|}
\hline 10: & \begin{tabular}{l}
Mail Stop 8 \\
Direcier of the U.S. Patent and Trademark Ofice \\
P.O. Box 1450 \\
Alexandria, VA 22313-1450
\end{tabular} \\
\hline
\end{tabular}

\section*{REPORT ONTHE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}


In the above entiled case: the following decision has been rendered or jugnement issurd:



\begin{tabular}{|c|c|}
\hline HO & \begin{tabular}{l}
Mail Stop 8 \\
Diseclur of the U.S. Patent and Trademark Ofice \\
P.O. Box 1450 \\
Alexundria, VA \(22313 \cdot 1450\)
\end{tabular} \\
\hline
\end{tabular}

\section*{REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDINGA PATENT OR TRADEMARK}


Io the above- ontilucd come the following patent(s)/ trademark(s) have been included:
\begin{tabular}{|c|c|c|}
\hline DATE INCLUDED & \multicolumn{2}{|l|}{Inc.lumed WY} \\
\hline & \(\square \square\) Amendment & \(\square\) Answer \(\square\) Emss Bill \(\square\) Odher Pleading \\
\hline PATENT OR TRADEMARK NO. & DATE OF BATENT UR TRADEMARK & IOLDER OF PATENT OR TRADEMARK \\
\hline 17.159 .116 & & \\
\hline \(28,538,011\) & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In ine abover entiled case the followiog decision has been rendered or judigement issurai-




Case 6:17-cv-00101-RWS Document 2. Filed 02/17/17 Page 1 of 1 PagelD.\#t 143

\begin{tabular}{|c|c|c|}
\hline 10: & \begin{tabular}{l}
Mail Stop S \\
Disecter of the U.S. Fatent and Trademark OrGice \\
P.O. Box 1450 \\
Alexanitria, VA 22313-1450
\end{tabular} & \begin{tabular}{l}
REPORT ONTHE \\
FILING OR DETERMINATION OF AN \(\triangle C T I O N\) REGARDING A PATENT OR TRADEMARK
\end{tabular} \\
\hline
\end{tabular}


In the above entiled tases the following decision has been rendered or jughement issurd:




Case 6:17-cv-00175-JRG Document 3 Filed 03/23/17 Page 1 of 3 PagelD \#: 635

\begin{tabular}{|c|}
\hline Mail Stop 8 \\
Director of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
Alexandria, VA \(22.3 / 3-1450\) \\
\hline
\end{tabular}

\section*{REPORT ON TIIE \\ FLLING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}




In the above-entillaticoso, the foliowang docision has becn andewd or fudgument issuat

 Capy 2-Upan fing document adating patentis), maik (friscopy to Director Capy 4-Caw गile crpy

Case 6:17-cv-00175-JRG Document 3 Filed 03/23/17 Page 2 of 3 PagelD \#: 636

\begin{tabular}{|c|}
\hline Mail Stop 8 \\
Director of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
Alexandria, VA \(22.3 / 3-1450\) \\
\hline
\end{tabular}

\section*{REPORT ON TIIE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}





 Capy 2-Upan fing document adating patentis), maik (friscopy to Director Capy 4-Caw गile crpy

Case 6:17-cv-00175-JRG Document 3 Filed 03/23/17 Page 3 of 3 PagelD \#: 637

\begin{tabular}{|c|}
\hline Mail Stop 8 \\
(3). \\
Drector of the U.S. Patent and Trademark Office \\
P.O. Box 1450 \\
Alexandria, VA 22.33 -1450 \\
\hline
\end{tabular}

\section*{REPORT ON TIIE \\ FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK}




In the above-entillaticoso, the foliowang docision has becn andewd or fudgement issuat:

 Capy 2-Upan fing document adating patentis), maik (friscopy to Director Capy 4 -Caw गile crpy

Case 6:17-cv-00099-RWS Document 2. Filed 02/17/17 Page 1 of 1 Pageld.\#: 164 GCKI20) Rev.0840
\begin{tabular}{|c|c|c|}
\hline 10: & \begin{tabular}{l}
Mail Stop S \\
Diseclue of the U.S. Patent and Trademark Ofice \\
P.O. Box 1450 \\
Alexundria, VA \(22313-1450\)
\end{tabular} & \begin{tabular}{l}
REPORT ONTHE \\
FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \[
\begin{gathered}
\text { DOCKET'NO } \\
\text { 6:17- } \mathrm{CV}-099 \\
\hline
\end{gathered}
\] & DATE FLED
\(2 / 15 / 2017\) & 1.8 DISTRICT COURT Eastern District of Texas \\
\hline \multicolumn{2}{|l|}{PLAINTIFF} & DEPENDANT \\
\hline PATENTOR TRADEMARKNO & DATEQFPATENT OR TRADEMARK & IOLDER OF PATENT OR TRADEMARK \\
\hline 15745569 & 4/28/1998 & Blue Spike, LLC \\
\hline 28930719 & 1/6/2015 & Blue Spike, LLC \\
\hline 37475246 & 1/6/2009 & Blue Spika, LLC \\
\hline + 8171569 & 5/1/2012 & Blue Spike, LLC \\
\hline + 8739125 & 5/27/2014 & Blue Spike, LLC \\
\hline \multicolumn{3}{|l|}{} \\
\hline DATE INCIUDED & \multicolumn{2}{|l|}{INCLUDED BY} \\
\hline PATENTOR TRADEMARK NO. & DATE OF PATENT OR TRADEMARK & HOLDER OF PATENT OR TRADEMARK \\
\hline 1 & & \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In lie ahove entiled case: the following decision has been rendered or juanement issued:



\begin{tabular}{|c|c|c|}
\hline IT: &  & REPORT ONTHE filing or determination of an action regarding a patent or trademark \\
\hline
\end{tabular}


DRCIRICNJJUDGEMEMT
FINAL JUDGMENT that ill chaims, counterclaims, and thicd-party chiimis in the instant suit be DISMISSED
WITE PRETODJCE in their entirety, with costs to be bornc by the puty that moutred them. Signied by Distriat
pudge Robert W. Schroeder, Ill on \(1 / 3 / 18\).
 Copy2-1 poin filing tecmmentadding patentsi, niail this wpy to Director Eopy 4-Gabe filecopy
\begin{tabular}{|c|c|c|}
\hline IT: & \begin{tabular}{l}
Mail Stop S \\
Disecior of the U.S. Paient and Trademark Difice \\
P.O. Box 1450 \\
Alexundra. VA \(22313 \cdot 1450\)
\end{tabular} & \begin{tabular}{l}
REPORT ONTHE \\
FIEING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK
\end{tabular} \\
\hline
\end{tabular}


It is ORDERED that the claims asserted foeven by Vhaintiff Bluc Spike Li.C against Defendants be and fiercby are, DISMISSED WITHOUT PRE)UDICE ORDERED that any defenses asserted herein by Defendaris ngaist Blue Spike LLC be, and hercby arc. DISMISSED WITHOLT PRE)UDICE; and ORDERED ihat the Parties shall bea theo own artornuys fecs, espenses und costs; and ORDERED that all molions not prevousty raled on are

\section*{DAENEA AS MOOT}
\begin{tabular}{|c|c|c|}
\hline CEERR TCuan \& \(4 \frac{1}{15}=1\) &  & \[
\begin{array}{r}
\text { DASE } \\
1 / 22 / 18
\end{array}
\] \\
\hline
\end{tabular}
 Copy2-1 pan filing decmmentadding patentsi, niail this mpy to Direcior capy 4-Eabe fitecopy
") whow

Case 5:17-cv-00138-RWS Document 3 Filed 03/04/17 Page 1 ot 3 PagelD \#: 74
Gex i20)(Rev. 08410)



In the above- entiled case: the following decision has been rendered or jugnement issued:

 Capy 2-1 pan filing decrment adding patent(s), niail this cilpy to Director Eapy 4-Eabe fitle cipy

Case 5:17-cv-00138-RWS Document a Filed 03/04/17 Page 2 of 3 PagelD \#: 75

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Mail Stop S
TO: Direder of the U.S. Patent and Trademark Ofice
P.O. Box 1450
Alexandria. VA \(22313-1450\)} & \begin{tabular}{l}
FILING \\
\(\triangle \mathrm{CTION}\)
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 Filest in the U.S. Distrial Cuari \\
Eastern District of Texas \\
ofin the forl
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \[
\begin{aligned}
& \text { DOCKET'NG } \\
& 6.17-\mathrm{eV}-0136 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { DATE FLLED } \\
03 / 02 / 2017
\end{gathered}
\] & \multicolumn{2}{|l|}{IIS DISTRICT CDURT Eastern District of Texas} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { PLAINTIFF } \\
& \text { Blue Spike, PLLG }
\end{aligned}
\]}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DEPENDANT } \\
& \text { AryMark, Inc:. }
\end{aligned}
\]} \\
\hline & & & \\
\hline PATENT OR TRADEMARKNCK & DATEOFPATFNT OR TRADEMIARK & & HOLDER OF \\
\hline 18161286 & Apt 17, 2012 & B1u & Ee ILC \\
\hline 28171561 & May 1, 2012 & Blu & ce ILC \\
\hline 3 8175330 & May 8, 2012 & Blu & E LLC \\
\hline \(+8265278\) & Sep 11. 2012 & BIU & Le ILCC \\
\hline 18307213 & Nove 6, 2012 & 日 11 & E LLC \\
\hline
\end{tabular}


In the above- entiled case: the followiog decision has been rendered or judgement issurd:

 Coipy 2-1 pan filing decrment adding patent(s), miail this cipy to Director Eopy 4-Cabe fite cipy


In the above-enfiled cone lhe following patent(z)/ trademark(s) have been iochuded:
\begin{tabular}{|c|c|c|}
\hline DATK INCLUDED & \(\square\) Ammament & \begin{tabular}{l}
Answer \\
Cruss Bill \\
Other Pleading
\end{tabular} \\
\hline BATENTOR TRADEMARK NO. & DATE QF PATENT
OR TRADEMARK & HOL DER OF PATENT OR TRADEMARX \\
\hline 1 & - & \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline
\end{tabular}

In the above- entiled cases the following decision has been rendered or jugnement issued:

 Capy 2-1/pon filing deccment adding patent(s), niail this cilpy to Director Eopy 4-Gase file copy

Case 6:18-cy-00242-RWS-KNM Document 2 Filed 05/31/18 Page 2 of 3 Pagell \#7. 474 AO (20) (Ro CON10)
\begin{tabular}{|c|c|}
\hline Mail Stop B & REPORTON THE \\
TO: & Director of the US. Patent and Tratemark Office \\
P.O. Bos 1450 & FILING OR DETBRMINATION OF AY \\
Alexandria, YA \(22313-1450\) & ACTION REGARDNG A PATENT OR \\
TRADEMARK \\
\hline
\end{tabular}
 find in the U.S. Distict Coms Eastern Disirict of Texas on foe following \(\square\) Trademarks or \(\square\) Patente ( \(\square\) the phene acquon jpvalves 35 USC. 5 292),
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { DOCKELND } \\
& 6: 16-\mathrm{CV}-0242
\end{aligned}
\] & \[
\begin{array}{|l|}
\text { DNTENIED } \\
5 / 31 / 2018
\end{array}
\] & \begin{tabular}{l}
US DISTEICT COURT \\
Eastern District of Texas
\end{tabular} \\
\hline \begin{tabular}{l}
PLAIIVTIFE \\
Blue Spikg, PLLG
\end{tabular} & & \[
\begin{aligned}
& \text { DFFESDANT } \\
& \text { Frontier Communicationa Corp. }
\end{aligned}
\] \\
\hline EATENTOR TRADEMARK NO & DATEOFPNTENT O\& TRADEMARK & MOLDEREIF MTENT OR TRADIEMABK \\
\hline 1 7,475.246 & 1/6/2009 & Blue Spike, LLC \\
\hline Q 9,779,295 & 5/27/2014 & Blue Splke, LLC \\
\hline 3 9,021,602 & 4/28/2015 & Blue Spike, LLC \\
\hline 4 9,104,842 & 8/17/2015 & Btue Spike. LLC \\
\hline 59.984 .408 & 4/3/2016 & Blue Spikes, LLC \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline DATEISCLUDED & \multicolumn{2}{|l|}{FACHUEDAY} \\
\hline & \(\square \square\) Amendmeai & \(\square\) Answer \(\square\) Cross mill \(\square\) Ofker Pleadme \\
\hline PATENTOR TYRADEMAIKKNQ & DATE OR PATENT OHPREADPMARK & HOLDER ORFATENT OK THADEMARK \\
\hline 1 & & \\
\hline \(\underline{2}\) & & \\
\hline 2 & & \\
\hline 4 & & \\
\hline 3 & & \\
\hline
\end{tabular}



Eopy 1 -Upon buttation oraction, mail this copy to Director Copy 3 -Upon iermitation of action, mail this xupy ta Dirazim
```


[^0]: Form PCT/ISA/210 (extra sheet)(July 1992)

[^1]: Form PCTASA/210 (continuation of second sheet) (July 1998)*

[^2]: EXAMINER: Plesse hittal it relerence is considered, whether or not the cilation is in canformance with MRER g 609. Draw the through cilation of not is conformance and not considered. Please include copy of this form with nent communication to the applicant.

[^3]: Note: Within mine monthe from the publication of the mention of the grant of the European patert, any person may give notice to the Europein Patent Office of opposition to the European patent granted. Notica of opposition shall be fled to a written masoned stalement. It strall not be deamed to have been fried until the opposition fae has been paid (Art. 99(1) Europsan patent comvention).

[^4]:

[^5]: I Note that the product polynomial $P Q$ has degree 2 t , and thue one nesds $2 t$ points for interpolating it. Therefore, there must by sufficiently many honest players. If one had to execute a chain of several multiplications - c.g., $((P+Q) Q Q+Q) P$-by means of the above method, then the number of honest players needed would become totally impractical. Thus, different (degreereduction) methods have been devised in the fiterature. The above method, however, is quite practical if one only needs to compute a single product mod ρ.

[^6]: 2 If r is chosen this way, while each r_{i} may be between 1 and $p-1$, their sum mod p may be 0 . However, if p is suitably large (e.g., 50 -or 100 -bit long) the probability that the resulting r is 0 when at least one r_{i} is secretly and randomly chosen, is quite negligible. Thus, from a practical point of view r can be chosen in this matter if desired.

[^7]: ${ }^{3}$ For instance, the seller may just enter 0 for the single value of i, strictly less than N and strictly greater than M .

[^8]: 4 For instance, assume that, after trusting the trustee to this exireme extent, it tumed out thai no deal was possible between seller and buyer because SRP>BRP. Then the seller should be able to negotiate with others the sale of the same commodity, keeping intact her bargaining power. However, the trustee himself would not be able to negotiate blindly with the setler!

[^9]: 5 The RSA function can be defined more gencrally - e.,g., for any composite number n and any exponent erelatively prime with $\phi(n)$, where ϕ is Euler's totient function. This more gencral functions may too be used within out inventive blind-negotiation system. Similarly, one could use Rabin-Fike trap-door functions, or other function, if 30 wanted.

[^10]: ${ }^{*}$ Such additional information preferably describes the transaction and is taken to be a proof of the buyer's willingness of entering it. For instance, the additional information may include any of the following data: seller's information, buyer's. information, transaction information, good-on-sile information, time information, Z_{α} any other information, or no information.
 ${ }^{7}$ The seller may just compute the first i inverses of Z_{0}, AND choose the V_{k} VALUES at random, if the probability that one of these values V_{k} EQUALS ONE OF THE FIRST $N-M$ INVERSES OF Z, IS SMALL. Computing all such inverses is desirable, as will be seen.

[^11]: ${ }^{2}$ Rother than obtaining type-2 values by evaluating H at inputs V_{i} that are not the first finverses of Z_{e}, the seller could choose her type- 2 values in some other manner (e.g., by choosing $N-M-i$ values U_{z} - of the proper length - at random, because the probability that these chose values happen to be of type 1 is negligible), provided that such values are not easily distinguishable from type-1 values.

[^12]: Notce also, that one can, wilhin the spope of the invention, use functiona H that aro not one-way, but more care is needed. For ingtance, one can choose $H(x)$ to consist of the lest - say - 50 bits of x. Now 50 bits of z, may not be enough for reconsmucting z_{*}. This is not so because taking the last 50 bits is a one-way function, but bocause 50 bits of crisply-clear information about x are just too few to reconstruct a secret long value $x_{,}$even if $f\left(Z_{2}\right)$, where f is a trap-door or one-way function, is known. Also, the last 50 -bits of the RSA inverses (as evidenced by the resulis of Alexi et al.) may be unpredictable and thus quite random looking. Thus, it would still be hard to distinguish between the last 50 bits of the RSA inverses (the type-1 values) and 50-bit random values (the type-2 values). However, one has to be careful in constructing the blind-negotiation system so that the buyer cannot misuse the system to invert the 8SA. Indeod, it is also shown by Goldwaseer et al. and Alexi el al. that given an oracle for guessing the last 50 bits of several ISSA inverses, one may discover the full RSA inverse on an input of interest. Now, while in general no such oracle is available, the sellet herself may, through the mechanism of the blind-negotiation system, provide such an oracle. Indeed, she is called by the system to provide the last 50 bits of several RSA inverses. However, if H is a proper one-way function, zuch cryptanalitic atracks will become essentially impossible, and the seller may release H evaluated at any RSA inverse without fear.

[^13]: 10. Note that also this method allows to avoid certain prices if so wanted. E.g., Bob may choose $b_{i}=1$ and $b_{1+3}=1$, but chose $b_{i+3}=0$. Again, as in one of our prior blind negotiations, this behavior of Bob may be permitted, and interpreted as his wish not to trade at price $1+3$, no matler what his reasons may be. Altenatively, as indicated above, it may be agreed that setting $b_{1}=1$ and $b_{f+s}=7$ is tantamount to setting $b_{j}=1$ for all f between i and $i+5$, independeni of the actual value of b_{1}, actually entered by BOD in a special gate.
[^14]: ${ }^{11}$ Of course, one may use the same encryption scheme to encrypt 0 and 1 , or different scheme, such a scheme can be public key, or private key, in which case the orlinary encryption/decryption key can be known to both Bob and the trusted party.

[^15]: ${ }^{12}$ Indeed, some encryption algorithms (like RSA with small exponents) may be secure if each message is encrypted only with one key. However, if the same message is encrypted with a first key, a second key, a third key and so on, then an enemy who gets hold of these ciphentexts can easily rernieve the mesrage.

