
A Cooccurrence-Based Thesaurus and

Two Applications to Information Retrieval

Hinrich Schutze and Jan O. Pedersen

Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304, USA

{schuetze,pedersen}@parc.xerox.com

A bstract

This paper presents a new method for computing
a thesaurus from a text corpus. Each word is rep­
resented as a vector in a multi-dimensional space
that captures cooccurrence information. Words are
defined to be similar if they have similar cooccur­
rence patterns. Two different methods for using
these thesaurus vectors in information retrieval are
shown to significantly improve performance over the
ARPA Tipster evaluation corpus as compared to a
tf.idf baseline.

1 Introduction

Information retrieval systems typically define sim­
ilarity between queries and documents in terms of
a weighted sum of matching words (e.g. the vector
model, ¿is in Salton and McGill 1983). If a doc­
ument is relevant but uses words synonymous to
words in the query, it cannot be found. This is a
particular problem if the query is short. One solu­
tion is to lengthen the query through relevance feed­
back (Salton and Buckley 1990). Another approach
is to expand the query through synonym relations
as found in a thesaurus. Here “synonym” is used
loosely to mean “closely related word” , as opposed
to “syntactically and semantically interchangeable
word” . We define a thesaurus as simply a mapping
from words to other closely related words.

For a thesaurus to be useful in information re­
trieval it must be specific enough to offer synonyms
for words as used in the corpus of interest. For ex­
ample, in a corpus of computer science documents
the word “interpreter” would have meanings quite
different from everyday language. It must also cover
all or most of the words found in queries, includ­

ing the potentially unbounded set of proper nouns.
These two considerations suggest that generic the­
sauri (such as Roget’s) that restrict themselves to
common usage are unlikely to be helpful. Instead
one must rely on thesauri tuned to the corpus of
interest. These might be hand-built for a restricted
domain or computed from the text of the corpus
itself.

This paper presents a new corpus-based method
for constructing a thesaurus based on lexical cooc­
currence. The computation proceeds in two phases.
First, the lexical cooccurrence pattern of each word
is represented as a multi-dimensional vector, the
thesaurus vector. Second, a similarity measure is in­
duced on words by comparing these vectors. Given
a particular word its synonyms are then defined to
be its nearest neighbors with respect to this simi­
larity me¿wu^e.

In the following we discuss previous approaches
to thesaurus construction, describe the new cooc­
currence- based thesaurus, and demonstrate two ap­
plications of the thesaurus to information retrieval
that improve performance as compared to a stan­
dard vector-space similarity search baseline over
the ARPA Tipster text retrieval evaluation corpus
(Harman 1993b). The first application defines the
context vector of a document to be the weighted
sum of the thesaurus vectors of its contained words.
These context vectors then induce a similarity mea­
sure on documents and queries which can be di­
rectly compared to standard vector-space meth­
ods. The second application analyzes a query into
subtopics. Documents are then scored and ranked
by the degree to which they simultaneously match
the subtopics of a query.

IPR2019-01304
BloomReach, Inc. EX1023 Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 R elated Work

A thesaurus is a data structure that defines seman­
tic relatedness between words. It is typically used in
information retrieval to expand search terms with
other closely related words. Even if a thesaurus
is not explicitly computed, the mapping performed
by query expansion implicitly defines a thesaurus.
Therefore, we will first discuss previous approaches
to thesaurus construction and then comment on
query expansion work proper.

The simplest, and perhaps most conventional,
approach to thesaurus construction is to manually
build an explicit semantic mapping table. This is
clearly labor-intensive, and hence only possible in
specialized domains where repeated use may justify
the cost. For example, the RUBRIC and TOPIC
text retrieval systems (McCune et al. 1985) require
a domain expert to prepare a hierarchical structure
of “topics” (each topic is a boolean combination of
other topics and search terms) germane to a par­
ticular subject area. Searchers then employ terms
from this hierarchy to form queries that autom ati­
cally expand to complex boolean expressions.

Another approach is to reuse existing online lex­
icographic databases, such as WordNet (Voorhees
and Hou 1992) or Longman’s subject codes (Liddy
and Paik 1992). However, generic thesauri of this
sort will often not be specific enough for the text
collection at hand. For example, in (Voorhees and
Hou 1992), “acts” is expanded with the meaning
“acts o f the apostles” in a corpus of legal docu­
ments. In addition, they frequently do not record
information about proper nouns, yet proper nouns
are often excellent retrieval cues.

Corpus-based methods perform a computation on
the text of the documents in the corpus to induce a
thesaurus. For example, Evans et al. (1991) con­
struct a hierarchical thesaurus from a computed
list of complex noun phrases where subsumption
roughly corresponds to the subset relation defined
on terms (e.g. “intelligence” subsumes “artificial
intelligence”). While this method is superior to
approaches that treat phrase terms as unanalyzed
atoms, there is no notion of semantic similarity of
basic terms. For example, the semantic similarity
of “astronaut” and “cosmonaut” is not represented
in the hierarchy.

Grefenstette (1992) and Ruge (1992) use head-
modifier relationships to determine semantic close­
ness. This solution is costly since parsing tech­
nology is req u ired to determine head-modifier re­
lations in sentences. It is also unclear to what
extent words with similar heads or modifiers are

good candidates for expansion. For example, adjec­
tives referring to countries have similar heads (“the
Japanese/Chilean capital” , “the Japanese/Chilean
government”), but adding “Japanese” to a query
that contains “Chilean” will rarely produce good
results. Note that there are many words that distin­
guish “Japanese” and “Chilean” in terms of coocur-
rence in a sentence: “Tokyo” , “Andes” , “Samu­
rai” , etc. Grefenstette (1992) demonstrates that
head-modifier-based term expansion can improve
retrieval performance. Our goal in this paper is
to show that cooccurrence-based similarity, which
is conceptually simpler than similarity with respect
to heads or modifiers, is an equally powerful source
of information for information retrieval.

Crouch (1990) approaches semantic relatedness
by considering the occurrence of terms in docu­
ments. Documents are clustered into small groups
based on a similarity measure that considers two
documents similar if they share a significant num­
ber of terms, with medium frequency terms pref­
erentially weighted. Terms are then grouped by
their occurrence in these document clusters. Since a
complete-link document clustering is performed the
procedure is very compute intensive; it would not
scale to the Tipster reference collection. Further,
the central assumption that terms are related if they
often occur in the same documents seems problem­
atic for corpora with long documents. It also does
not capture the intuitive notion that synonyms do
not cooccur, but rather have similar cooccurrence
patterns. In contrast the procedure proposed in
this paper makes use of lexical cooccurrence, which
is more informative both qualitatively and quanti­
tatively (cf. Schutze 1992).

Two terms lexically cooccur if they appear in text
within some distance of each other (typically a win­
dow of k words). Qualitatively, the fact that two
words often occur close to each other is more likely
to be significant than the fact that they occur in
the same documents. Quantitatively, there are on
an order of magnitude more cooccurrence events
than occurrence-in-document events in a given doc­
ument collection. For a word occurring n times in
the document collection and for a definition of cooc­
currence as occurring in a window of k words, there
are nk cooccurrence events, but only n occurrence-
in-document events. If the goal is to capture in­
formation about specific words, we believe that lex­
ical cooccurrence is the preferred basis for statistical
thesaurus construction.

Crouch (1990) constructs thesaurus classes;
words are binned into groups of related words. This
is problematic since the boundaries between classes

IPR2019-01304
BloomReach, Inc. EX1023 Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

will be inevitably somewhat artificial. If classes are
made too small, some words will be cut off from
part of their topical neighborhood. If they are too
large, words will be forced into classes with words
from different topics. Any particular class size will
either separate some words from close neighbors or
lump together some words with distant terms.

In contrast, we propose to construct a multi­
dimensional continuous space in which each word’s
thesaurus vector represents its individual position.
A continuous space does not force a classification
choice, and hence avoids some of the ensuing prob­
lems.

Qiu and Frei (1993) present an elegant and effec­
tive thesaurus construction by inverting the stan­
dard vector-space document similarity function to
define a similarity measure on terms. Terms are
represented as high-dimensional vectors with a com­
ponent for each document in the corpus. The
value of each component is a function of the fre­
quency the term has in that document. They show
that query expansion using the cosine similarity
measure on these vectors improves retrieval perfor­
mance. However, because the term vectors are high­
dimensional, the time com plexity for computing the
similarity between terms is related to the size o f the
corpus (in the same way that the cost of document
similarity search is related to the size of the cor­
pus). This prevents its use on a large scale, as will
be proposed in the discussion on context vectors be­
low. Further, as argued above lexical cooccurrence
offers a richer basis for determining word similarity
than document occurrence.

Peat and W illett (1991) argue against the utility
of cooccurrence-based expansion in principle. They
observe that because synonyms often do not occur
together a cooccurrence-based approach may have
difficulty identifying synonymy relations. However,
although synonyms frequently don’t cooccur, they
tend to share neighbors that occur with both. For
example, “litigation” and “lawsuit” share neighbors
such as “court”, “judge” , and “proceedings” . Our
thesaurus represents lexical cooccurrence patterns
and hence defines semantic closeness in terms of
common neighbors. This implies we do not require
synonyms to cooccur, but rather require them to
have similar cooccurrence patterns.

A second problem pointed out by Peat and W il­
lett is that many researchers use measures for defin­
ing closeness that will group words according to fre­
quency: it is impossible for a frequent word to have
an infrequent neighbor according to these measures.
We avoid this difficulty by reducing the dimension­
ality of the thesaurus space using a singular value

decomposition (cf. Deerwester et al. 1990). The rea­
son for the closeness o f terms with equal frequency
is, roughly, that they have about the same number
of zero entries in their term vectors. For a given
term, SVD assigns values to all dimensions of the
space, so that frequent and infrequent terms can be
close in the reduced space if they occur with simi­
lar terms. For example, “accident” (frequency 2590
in our corpus) and “mishaps” (frequency 129) will
come out as similar in the experiment described be­
low despite the frequency difference between them.

3 C ooccurrence Thesaurus

The goal of the lexical-cooccurrence-based the­
saurus is to associate with each term a vector that
represents its pattern of local cooccurrences. This
vector can then be compared with others to mea­
sure the cooccurrence similarity, and hence seman­
tic similarity of terms.

The starting point of the computation is to collect
a (symmetric) term-by-term matrix C, such that el­
ement Cij records the number of times that words i
and j cooccur in a window of size k (k is forty words
in our experiments). Topical or semantic similarity
between two words can then be defined as the co­
sine between the corresponding columns of C. The
assumption is that words with similar meanings will
occur with similar neighbors if enough text mate­
rial is available. Qiu and Frei (1993) use a similar
scheme, although the matrix in their case is docu­
ments vs. terms.

However, simple resource calculations suggest
that this direct approach is not workable. The ma­
trix C has v2/2 distinct entries where v is the size
of the vocabulary. Although this matrix is sparse,
we can expect v to be very large, and hence the
overall storage requirement to be unworkable. For
example, the Tipster category B corpus (Harman
1993b), which is the subject of our experiments, has
over 450,000 unique terms.

Even if enough memory were found to represent
C directly, the thesaurus vectors associated with
each word (columns of C) would be v-dimensional.
Although these vectors are somewhat sparse, this
implies that word comparisons are an order v op­
eration, which is prohibitively expensive for large
scale application.

We address these issues by reducing the dimen­
sionality of the problem to a workable size. The key
dimensionality reduction tool is a singular value de­
composition (Golub and van Loan 1989) of a matrix
of cooccurrence counts. However, this matrix must

IPR2019-01304
BloomReach, Inc. EX1023 Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

be constructed in a series of steps to keep the com­
putations tractable at each stage.

3.1 Practical Im plem entation

The thesaurus is constructed in three steps as shown
in Figure 1. The goal is to apply a singular value
decomposition to reduce the dimensionality of the
problem in a disciplined fashion and in the process
produce more compact representations. However,
since SVD is expensive, (tim e proportional to n 2,
where n is the dimensionality of the m atrix), the
dimensionality of the matrix fed into SVD cannot
be too high. In particular, we cannot use the orig­
inal m atrix C. Instead we approximate it in a two
stage computation that derives two sets of topical
word classes from the corpus (the A-classes and B-
classes in the figure) which we use to contain the
dimensionality of the problem without sacrificing
too much information.

The topical word classes allow us to agglomerate
information over similar words. We begin by con­
structing the full cooccurrence matrix for a subset
of terms in the corpus (see “Matrix A” in Figure 1).
In our experiment we chose 3,000 medium frequency
words (frequency ranks 2,000 through 5,000) for
this subset. Element Oij of the matrix records the
number of times that words Wi and Wj cooccurred
in a window of 40 words in the text collection.
We then form the first set of topical word classes
by clustering this A-subset into a groups based on
the cosine sim ilarity between the columns of ma­
trix A. In our experiment we found 200 A-classes

9a u 9 a 2 , • • •, 9 A200 using group average agglomera-
tive clustering (Gnanadesikan 1977).

We now consider a larger vocabulary subset
and collect a second matrix B which records for
each word in this larger B-subset the number of
times words in each A-class occur in neighborhoods
around that word (see “Matrix B” in Figure 1).
Each element bij records the number of times that
word Wj cooccurs with any of the medium-frequency
words from class g^i- This is similar to the usual
cooccurrence m atrix construction except that the
matrix is no longer symmetric: rows correspond to
A-classes, columns to words. In our experiment the
B-subset contained the 20,000 most frequent words,
excluding stop words. This B-subset is again parti­
tioned into b word classes by clustering the columns
of matrix B. The purpose of this second iteration
is to ensure that each word in the corpus has suffi­
ciently many neighbors from at least one word class.
If we use only A-classes then many words would
have no cooccurrence events. In contrast every

word cooccurs with several words in the B-subset
and hence will have many cooccurrence events with
respect to B-classes. However, we could not com­
pute the b-classes directly because a 6 x 6 matrix
is com putationally intractable. In our experiment
the 20,000 columns of matrix B were clustered into
200 B-classes gBu9B2, • ■ • , 9 B200 using the Buck­
shot fast clustering algorithm (Cutting et al. 1992).1

Finally, a third cooccurrence matrix C* is col­
lected for the full corpus vocabulary vs. the B-
classes (see “Matrix C” in Figure 1). Element Cij
contains the number of times that term j cooccurs
in a window of k words with any word in class gsi>
Matrix C ' has b rows and v columns. In our ex­
periment we used all 176,116 words that occurred
at least twice in the collection and all 272,914 pairs
of adjacent words that occurred at least 5 times,
for a total of 449,030 unique terms. At this stage
an SVD dimensionality reduction to p (p < b) is
performed so that each of the v terms can be repre­
sented as a compact p dimensional vector and also
to improve generalization (Deerwester et al. 1990,
Berry 1992). In our experiment to reduce compute
time only a subset of the matrix, corresponding to
the 1000 th through 6000th most frequent word, was
decomposed. This decomposition defined a map­
ping from the 200-dimensional B-class space to a 20-
dimensional reduced space. By applying the map­
ping to each of the 449,030 200-component B-class
vectors, a smaller 20 -dimensional vector was com­
puted for each word and pair.

One might ask why we do not employ clustering
for the final reduction in dimensionality. The an­
swer lies in the smoothing and improved generality
resulting from an SVD reduction. Similarity be­
tween b-component vectors can be an errorful mea­
sure of semantic similarity since there may be sev­
eral word classes with similar topics. In our exper­
iment, for example, class g s4 contains words like
“navy” , “radar” , and “missile” , while some of the
members of class g s 47 are “tanks”, “missiles” , and
“helicopters” . If one of two words has many neigh­
bors in gsA and the other has many in gB47 then
they would not be similar in the 200 -dimensional
space, but they are similar in the reduced space.
This is because the SVD algorithm recognizes and
eliminates such redundancies.

As described above this com putation requires
four passes through the corpus. The first pass com­
putes word and word pair frequencies. The sec-

1A random sam ple of 2,000 of th e 20,000 words was clus­
te red f irs t, an d th is clustering was th en extended to all 20,000
words by assigning every word to th e cluster whose centro id
it was closest to .

IPR2019-01304
BloomReach, Inc. EX1023 Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

M atrix B M atrix C

Figure 1: Iterative thesaurus construction.

ond pass computes Matrix A and the A-classes, the
third pass Matrix B and the B-classes, the fourth
pass Matrix C. In addition, Matrix C is SVD de­
composed and thesaurus vectors computed. In our
experiment, each pass through the Tipster Category
B corpus took roughly six hours (includes CPU and
10 time). Note that these computations could have
been accelerated by using loosely coupled coarse­
grained parallelism to effect a linear reduction in
compute time. The SVD decomposition required
roughly 30 minutes to compute (using SVDPACK,
Berry 1992).

3.2 Sam ple Synonym s

The net effect o f this computation is to produce
for each unique term a dense p-dimensional vector
that characterizes its cooccurrence neighborhoods.
These vectors then define a thesaurus by associating
each word with its nearest neighbors with respect to
a similarity measure on vectors, in our experiments
the cosine. The following table displays some of the
associations found in our experiment over the Tip­
ster category B corpus. Each row displays a word
and its nine nearest neighbors. For example, “re­
pair” is the nearest neighbor of “accident” . Word
pairs used as terms are displayed as couples sepa­
rated by semicolon. Words in upper case are hand-
selected synonyms as might be found in a manually
constructed thesaurus. They are particularly in­
teresting because they are unlikely to cooccur with
their mates and hence illustrate that this thesaurus
construction effectively uses second-order cooccur­
rence (sharing neighbors in the corpus) rather than
simple first-order coocurrence (occurring next to
each other) to find synonyms.

4 C ontext Vectors

The thesaurus vectors computed above represent
for each word its cooccurrence signature. To use
this information directly in search, one needs a sim­
ilar representation for documents. The simplest ap­
proach is to represent each document by the vector
which is the sum of the thesaurus vectors for the
words in its text. Formally,

<5 =

where dj is the vector for document j , Wij is the
weight for word i in document and Vi is the the­
saurus vector for word i. Queries may be repre­
sented as vectors in the same way.

In our experiments, we use augmented tf.idf
weighting when summing thesaurus vectors:
(Salton and Buckley 1990)

Vij = (0.5 + 0.5 *
tfjj \ » / N \

maxi(tfij) * °9 ri*

where tfij is the frequency of word i in document
j , AT is the total number of documents, rii is the
document frequency of word i.

Recall that document vectors that are com­
puted according to this scheme are called “con­
text vectors” . Context vectors were first proposed
by Gallant (1991) as an encoding based on hand-
assigned microfeatures. In contrast, our approach is
completely automatic since it depends only on the
underlying thesaurus vectors. Hand-encoded fea­
tures may also vary in how appropriate they are
for different text collections. A derivation from the
corpus of the application increases the chances that
the representations are tuned to the relevant topics.

The work on Latent Semantic Indexing (Deer-
wester et al. 1990) also bears close resemblance to

IPR2019-01304
BloomReach, Inc. EX1023 Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

