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A bstract

This paper presents a new method for computing 
a thesaurus from a text corpus. Each word is rep­
resented as a vector in a multi-dimensional space 
that captures cooccurrence information. Words are 
defined to be similar if they have similar cooccur­
rence patterns. Two different methods for using 
these thesaurus vectors in information retrieval are 
shown to significantly improve performance over the 
ARPA Tipster evaluation corpus as compared to a 
tf.idf baseline.

1 Introduction

Information retrieval systems typically define sim­
ilarity between queries and documents in terms of 
a weighted sum of matching words (e.g. the vector 
model, ¿is in Salton and McGill 1983). If a doc­
ument is relevant but uses words synonymous to 
words in the query, it cannot be found. This is a 
particular problem if the query is short. One solu­
tion is to lengthen the query through relevance feed­
back (Salton and Buckley 1990). Another approach 
is to expand the query through synonym relations 
as found in a thesaurus. Here “synonym” is used 
loosely to mean “closely related word” , as opposed 
to “syntactically and semantically interchangeable 
word” . We define a thesaurus as simply a mapping 
from words to other closely related words.

For a thesaurus to be useful in information re­
trieval it must be specific enough to offer synonyms 
for words as used in the corpus of interest. For ex­
ample, in a corpus of computer science documents 
the word “interpreter” would have meanings quite 
different from everyday language. It must also cover 
all or most of the words found in queries, includ­

ing the potentially unbounded set of proper nouns. 
These two considerations suggest that generic the­
sauri (such as Roget’s) that restrict themselves to 
common usage are unlikely to be helpful. Instead 
one must rely on thesauri tuned to the corpus of 
interest. These might be hand-built for a restricted 
domain or computed from the text of the corpus 
itself.

This paper presents a new corpus-based method 
for constructing a thesaurus based on lexical cooc­
currence. The computation proceeds in two phases. 
First, the lexical cooccurrence pattern of each word 
is represented as a multi-dimensional vector, the 
thesaurus vector. Second, a similarity measure is in­
duced on words by comparing these vectors. Given 
a particular word its synonyms are then defined to 
be its nearest neighbors with respect to this simi­
larity me¿wu^e.

In the following we discuss previous approaches 
to thesaurus construction, describe the new cooc­
currence- based thesaurus, and demonstrate two ap­
plications of the thesaurus to information retrieval 
that improve performance as compared to a stan­
dard vector-space similarity search baseline over 
the ARPA Tipster text retrieval evaluation corpus 
(Harman 1993b). The first application defines the 
context vector of a document to be the weighted 
sum of the thesaurus vectors of its contained words. 
These context vectors then induce a similarity mea­
sure on documents and queries which can be di­
rectly compared to standard vector-space meth­
ods. The second application analyzes a query into 
subtopics. Documents are then scored and ranked 
by the degree to which they simultaneously match 
the subtopics of a query.
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2 R elated  Work

A thesaurus is a data structure that defines seman­
tic relatedness between words. It is typically used in 
information retrieval to expand search terms with 
other closely related words. Even if a thesaurus 
is not explicitly computed, the mapping performed 
by query expansion implicitly defines a thesaurus. 
Therefore, we will first discuss previous approaches 
to thesaurus construction and then comment on 
query expansion work proper.

The simplest, and perhaps most conventional, 
approach to thesaurus construction is to manually 
build an explicit semantic mapping table. This is 
clearly labor-intensive, and hence only possible in 
specialized domains where repeated use may justify  
the cost. For example, the RUBRIC and TOPIC  
text retrieval systems (McCune et al. 1985) require 
a domain expert to prepare a hierarchical structure 
of “topics” (each topic is a boolean combination of 
other topics and search terms) germane to a par­
ticular subject area. Searchers then employ terms 
from this hierarchy to form queries that autom ati­
cally expand to complex boolean expressions.

Another approach is to reuse existing online lex­
icographic databases, such as WordNet (Voorhees 
and Hou 1992) or Longman’s subject codes (Liddy 
and Paik 1992). However, generic thesauri of this 
sort will often not be specific enough for the text 
collection at hand. For example, in (Voorhees and 
Hou 1992), “acts” is expanded with the meaning 
“acts o f the apostles” in a corpus of legal docu­
ments. In addition, they frequently do not record 
information about proper nouns, yet proper nouns 
are often excellent retrieval cues.

Corpus-based methods perform a computation on 
the text of the documents in the corpus to induce a 
thesaurus. For example, Evans et al. (1991) con­
struct a hierarchical thesaurus from a computed 
list of complex noun phrases where subsumption 
roughly corresponds to the subset relation defined 
on terms (e.g. “intelligence” subsumes “artificial 
intelligence”). While this method is superior to 
approaches that treat phrase terms as unanalyzed 
atoms, there is no notion of semantic similarity of 
basic terms. For example, the semantic similarity 
of “astronaut” and “cosmonaut” is not represented 
in the hierarchy.

Grefenstette (1992) and Ruge (1992) use head- 
modifier relationships to determine semantic close­
ness. This solution is costly since parsing tech­
nology is req u ired  to determine head-modifier re­
lations in sentences. It is also unclear to what 
extent words with similar heads or modifiers are

good candidates for expansion. For example, adjec­
tives referring to countries have similar heads (“the 
Japanese/Chilean capital” , “the Japanese/Chilean  
government”), but adding “Japanese” to a query 
that contains “Chilean” will rarely produce good  
results. Note that there are many words that distin­
guish “Japanese” and “Chilean” in terms of coocur- 
rence in a sentence: “Tokyo” , “Andes” , “Samu­
rai” , etc. Grefenstette (1992) demonstrates that 
head-modifier-based term expansion can improve 
retrieval performance. Our goal in this paper is 
to show that cooccurrence-based similarity, which 
is conceptually simpler than similarity with respect 
to heads or modifiers, is an equally powerful source 
of information for information retrieval.

Crouch (1990) approaches semantic relatedness 
by considering the occurrence of terms in docu­
ments. Documents are clustered into small groups 
based on a similarity measure that considers two 
documents similar if they share a significant num­
ber of terms, with medium frequency terms pref­
erentially weighted. Terms are then grouped by 
their occurrence in these document clusters. Since a 
complete-link document clustering is performed the 
procedure is very compute intensive; it would not 
scale to the Tipster reference collection. Further, 
the central assumption that terms are related if they 
often occur in the same documents seems problem­
atic for corpora with long documents. It also does 
not capture the intuitive notion that synonyms do 
not cooccur, but rather have similar cooccurrence 
patterns. In contrast the procedure proposed in 
this paper makes use of lexical cooccurrence, which 
is more informative both qualitatively and quanti­
tatively (cf. Schutze 1992).

Two terms lexically cooccur if they appear in text 
within some distance of each other (typically a win­
dow of k words). Qualitatively, the fact that two 
words often occur close to each other is more likely 
to be significant than the fact that they occur in 
the same documents. Quantitatively, there are on 
an order of magnitude more cooccurrence events 
than occurrence-in-document events in a given doc­
ument collection. For a word occurring n times in 
the document collection and for a definition of cooc­
currence as occurring in a window of k words, there 
are nk cooccurrence events, but only n occurrence- 
in-document events. If the goal is to capture in­
formation about specific words, we believe that lex­
ical cooccurrence is the preferred basis for statistical 
thesaurus construction.

Crouch (1990) constructs thesaurus classes; 
words are binned into groups of related words. This 
is problematic since the boundaries between classes
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will be inevitably somewhat artificial. If classes are 
made too small, some words will be cut off from 
part of their topical neighborhood. If they are too 
large, words will be forced into classes with words 
from different topics. Any particular class size will 
either separate some words from close neighbors or 
lump together some words with distant terms.

In contrast, we propose to construct a multi­
dimensional continuous space in which each word’s 
thesaurus vector represents its individual position. 
A continuous space does not force a classification 
choice, and hence avoids some of the ensuing prob­
lems.

Qiu and Frei (1993) present an elegant and effec­
tive thesaurus construction by inverting the stan­
dard vector-space document similarity function to 
define a similarity measure on terms. Terms are 
represented as high-dimensional vectors with a com­
ponent for each document in the corpus. The 
value of each component is a function of the fre­
quency the term has in that document. They show 
that query expansion using the cosine similarity 
measure on these vectors improves retrieval perfor­
mance. However, because the term vectors are high­
dimensional, the time com plexity for computing the 
similarity between terms is related to the size o f the 
corpus (in the same way that the cost of document 
similarity search is related to the size of the cor­
pus). This prevents its use on a large scale, as will 
be proposed in the discussion on context vectors be­
low. Further, as argued above lexical cooccurrence 
offers a richer basis for determining word similarity 
than document occurrence.

Peat and W illett (1991) argue against the utility  
of cooccurrence-based expansion in principle. They 
observe that because synonyms often do not occur 
together a cooccurrence-based approach may have 
difficulty identifying synonymy relations. However, 
although synonyms frequently don’t cooccur, they 
tend to share neighbors that occur with both. For 
example, “litigation” and “lawsuit” share neighbors 
such as “court”, “judge” , and “proceedings” . Our 
thesaurus represents lexical cooccurrence patterns 
and hence defines semantic closeness in terms of 
common neighbors. This implies we do not require 
synonyms to cooccur, but rather require them to 
have similar cooccurrence patterns.

A second problem pointed out by Peat and W il­
lett is that many researchers use measures for defin­
ing closeness that will group words according to fre­
quency: it is impossible for a frequent word to have 
an infrequent neighbor according to these measures. 
We avoid this difficulty by reducing the dimension­
ality of the thesaurus space using a singular value

decomposition (cf. Deerwester et al. 1990). The rea­
son for the closeness o f terms with equal frequency 
is, roughly, that they have about the same number 
of zero entries in their term vectors. For a given 
term, SVD assigns values to all dimensions of the 
space, so that frequent and infrequent terms can be 
close in the reduced space if they occur with simi­
lar terms. For example, “accident” (frequency 2590 
in our corpus) and “mishaps” (frequency 129) will 
come out as similar in the experiment described be­
low despite the frequency difference between them.

3 C ooccurrence Thesaurus

The goal of the lexical-cooccurrence-based the­
saurus is to associate with each term a vector that 
represents its pattern of local cooccurrences. This 
vector can then be compared with others to mea­
sure the cooccurrence similarity, and hence seman­
tic similarity of terms.

The starting point of the computation is to collect 
a (symmetric) term-by-term matrix C, such that el­
ement Cij records the number of times that words i 
and j  cooccur in a window of size k (k is forty words 
in our experiments). Topical or semantic similarity 
between two words can then be defined as the co­
sine between the corresponding columns of C. The 
assumption is that words with similar meanings will 
occur with similar neighbors if enough text mate­
rial is available. Qiu and Frei (1993) use a similar 
scheme, although the matrix in their case is docu­
ments vs. terms.

However, simple resource calculations suggest 
that this direct approach is not workable. The ma­
trix C  has v2/2 distinct entries where v is the size 
of the vocabulary. Although this matrix is sparse, 
we can expect v to be very large, and hence the 
overall storage requirement to be unworkable. For 
example, the Tipster category B corpus (Harman 
1993b), which is the subject of our experiments, has 
over 450,000 unique terms.

Even if enough memory were found to represent 
C  directly, the thesaurus vectors associated with 
each word (columns of C)  would be v-dimensional. 
Although these vectors are somewhat sparse, this 
implies that word comparisons are an order v op­
eration, which is prohibitively expensive for large 
scale application.

We address these issues by reducing the dimen­
sionality of the problem to a workable size. The key 
dimensionality reduction tool is a singular value de­
composition (Golub and van Loan 1989) of a matrix 
of cooccurrence counts. However, this matrix must
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be constructed in a series of steps to keep the com­
putations tractable at each stage.

3.1 Practical Im plem entation

The thesaurus is constructed in three steps as shown 
in Figure 1. The goal is to apply a singular value 
decomposition to reduce the dimensionality of the 
problem in a disciplined fashion and in the process 
produce more compact representations. However, 
since SVD is expensive, (tim e proportional to n 2, 
where n is the dimensionality of the m atrix), the 
dimensionality of the matrix fed into SVD cannot 
be too high. In particular, we cannot use the orig­
inal m atrix C. Instead we approximate it in a two 
stage computation that derives two sets of topical 
word classes from the corpus (the A-classes and B- 
classes in the figure) which we use to contain the 
dimensionality of the problem without sacrificing 
too much information.

The topical word classes allow us to agglomerate 
information over similar words. We begin by con­
structing the full cooccurrence matrix for a subset 
of terms in the corpus (see “Matrix A” in Figure 1). 
In our experiment we chose 3,000 medium frequency 
words (frequency ranks 2,000 through 5,000) for 
this subset. Element Oij of the matrix records the 
number of times that words Wi and Wj cooccurred 
in a window of 40 words in the text collection. 
We then form the first set of topical word classes 
by clustering this A-subset into a groups based on 
the cosine sim ilarity between the columns of ma­
trix A. In our experiment we found 200 A-classes 

9a u  9 a 2 , • • •, 9 A200 using group average agglomera- 
tive clustering (Gnanadesikan 1977).

We now consider a larger vocabulary subset 
and collect a second matrix B which records for 
each word in this larger B-subset the number of 
times words in each A-class occur in neighborhoods 
around that word (see “Matrix B” in Figure 1). 
Each element bij  records the number of times that 
word Wj cooccurs with any of the medium-frequency 
words from class g^i- This is similar to the usual 
cooccurrence m atrix construction except that the 
matrix is no longer symmetric: rows correspond to 
A-classes, columns to words. In our experiment the 
B-subset contained the 20,000 most frequent words, 
excluding stop words. This B-subset is again parti­
tioned into b word classes by clustering the columns 
of matrix B. The purpose of this second iteration 
is to ensure that each word in the corpus has suffi­
ciently many neighbors from at least one word class. 
If we use only A-classes then many words would 
have no cooccurrence events. In contrast every

word cooccurs with several words in the B-subset 
and hence will have many cooccurrence events with 
respect to B-classes. However, we could not com­
pute the b-classes directly because a 6 x 6 matrix 
is com putationally intractable. In our experiment 
the 20,000 columns of matrix B were clustered into 
200 B-classes gBu9B2, • ■ • , 9 B200 using the Buck­
shot fast clustering algorithm (Cutting et al. 1992).1

Finally, a third cooccurrence matrix C* is col­
lected for the full corpus vocabulary vs. the B- 
classes (see “Matrix C” in Figure 1). Element Cij 
contains the number of times that term j  cooccurs 
in a window of k words with any word in class gsi> 
Matrix C ' has b rows and v columns. In our ex­
periment we used all 176,116 words that occurred 
at least twice in the collection and all 272,914 pairs 
of adjacent words that occurred at least 5 times, 
for a total of 449,030 unique terms. At this stage 
an SVD dimensionality reduction to p  (p < b) is 
performed so that each of the v terms can be repre­
sented as a compact p  dimensional vector and also 
to improve generalization (Deerwester et al. 1990, 
Berry 1992). In our experiment to reduce compute 
time only a subset of the matrix, corresponding to 
the 1000 th through 6000th most frequent word, was 
decomposed. This decomposition defined a map­
ping from the 200-dimensional B-class space to a 20- 
dimensional reduced space. By applying the map­
ping to each of the 449,030 200-component B-class 
vectors, a smaller 20 -dimensional vector was com­
puted for each word and pair.

One might ask why we do not employ clustering 
for the final reduction in dimensionality. The an­
swer lies in the smoothing and improved generality 
resulting from an SVD reduction. Similarity be­
tween b-component vectors can be an errorful mea­
sure of semantic similarity since there may be sev­
eral word classes with similar topics. In our exper­
iment, for example, class g s4 contains words like 
“navy” , “radar” , and “missile” , while some of the 
members of class g s 47 are “tanks”, “missiles” , and 
“helicopters” . If one of two words has many neigh­
bors in gsA and the other has many in gB47 then 
they would not be similar in the 200 -dimensional 
space, but they are similar in the reduced space. 
This is because the SVD algorithm recognizes and 
eliminates such redundancies.

As described above this com putation requires 
four passes through the corpus. The first pass com­
putes word and word pair frequencies. The sec-

1A random  sam ple of 2,000 of th e  20,000 words was clus­
te red  f irs t, an d  th is  clustering  was th en  extended  to  all 20,000 
words by assigning every word to  th e  cluster whose centro id  
it was closest to .
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M atrix B M atrix C

Figure 1: Iterative thesaurus construction.

ond pass computes Matrix A and the A-classes, the 
third pass Matrix B and the B-classes, the fourth 
pass Matrix C. In addition, Matrix C is SVD de­
composed and thesaurus vectors computed. In our 
experiment, each pass through the Tipster Category 
B corpus took roughly six hours (includes CPU and 
10 time). Note that these computations could have 
been accelerated by using loosely coupled coarse­
grained parallelism to effect a linear reduction in 
compute time. The SVD decomposition required 
roughly 30 minutes to compute (using SVDPACK, 
Berry 1992).

3.2 Sam ple Synonym s

The net effect o f this computation is to produce 
for each unique term a dense p-dimensional vector 
that characterizes its cooccurrence neighborhoods. 
These vectors then define a thesaurus by associating 
each word with its nearest neighbors with respect to  
a similarity measure on vectors, in our experiments 
the cosine. The following table displays some of the 
associations found in our experiment over the Tip­
ster category B corpus. Each row displays a word 
and its nine nearest neighbors. For example, “re­
pair” is the nearest neighbor of “accident” . Word 
pairs used as terms are displayed as couples sepa­
rated by semicolon. Words in upper case are hand- 
selected synonyms as might be found in a manually 
constructed thesaurus. They are particularly in­
teresting because they are unlikely to cooccur with 
their mates and hence illustrate that this thesaurus 
construction effectively uses second-order cooccur­
rence (sharing neighbors in the corpus) rather than 
simple first-order coocurrence (occurring next to 
each other) to find synonyms.

4 C ontext Vectors

The thesaurus vectors computed above represent 
for each word its cooccurrence signature. To use 
this information directly in search, one needs a sim­
ilar representation for documents. The simplest ap­
proach is to represent each document by the vector 
which is the sum of the thesaurus vectors for the 
words in its text. Formally,

<5 =

where dj is the vector for document j , Wij is the 
weight for word i in document and Vi is the the­
saurus vector for word i. Queries may be repre­
sented as vectors in the same way.

In our experiments, we use augmented tf.idf 
weighting when summing thesaurus vectors:
(Salton and Buckley 1990)

Vij =  (0.5 +  0.5 *
tfjj \ » / N \

maxi(tfij) * °9 ri*

where tfij  is the frequency of word i in document 
j , AT is the total number of documents, rii is the 
document frequency of word i.

Recall that document vectors that are com­
puted according to this scheme are called “con­
text vectors” . Context vectors were first proposed 
by Gallant (1991) as an encoding based on hand- 
assigned microfeatures. In contrast, our approach is 
completely automatic since it depends only on the 
underlying thesaurus vectors. Hand-encoded fea­
tures may also vary in how appropriate they are 
for different text collections. A derivation from the 
corpus of the application increases the chances that 
the representations are tuned to the relevant topics.

The work on Latent Semantic Indexing (Deer- 
wester et al. 1990) also bears close resemblance to
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