
Ever discovered after weeks of working on a software problem
that your colleague down the hall solved it months ago?

What you probably needed was a system like this.

A Browsing Approach

to Documentation

Yvan Leclerc, Steven W. Zucker, and Denis Leclerc, McGill University

There are those who would argue that the OS/360 six-foot
shelf of manuals represents verbal diarrhea, that the very
voluminosity of manuals represents a new kind of incompre-
hensibility. And there is some truth in that.

Frederick P. Brooks, Jr.l

As Brooks implies above, the sheer volume of informa-
tion required for research facilities to function makes that
self-same information both difficult to retrieve and dif-
ficult to comprehend. His response to this Catch-22 situa-
tion (in the case of the IBM 360) was to compile a carefully
organized set of manuals through which specific informa-
tion such as the details of a programming language or the
parameters of a subroutine could be easily found.

While the time-honored technique of manually search-
ing through extensive indexes does adequately allow for
the retrieval of such information, it does not lend itself to
the simple and leisurely discovery of that information. In
other words, it is difficult to browse through the informa-
tion in order to discover just what is or is not available.
Computerized documentation systems such as the VAX/
VMS HELP facility2 offer more flexibility in their infor-
mation retrieval capabilities than hard-copy manuals, but
they are not particularly well-suited to browsing either.
The purpose of this article is to describe one experiment in
the design of a documentation system that provides mech-
anisms for both needs-retrieval and comprehension.

The decision to design and implement a documentation
system with browsing capabilities was made when we
noticed that many members of our laboratory* tended to
"reinvent the wheel" by needlessly duplicating the efforts
of others in the laboratory. Even though these previous
efforts were documented in various ways, most people
were unaware that a particular topic (e.g., fast Fourier
transforms or pseudocoloring of images) had even been
explored by another member of the laboratory. Even

*The McGill University Computer Vision and Graphics Laboratory.

fewer knew precisely what that other member had done.
Also, whenever it was known that a particular topic had
been investigated by a particular person, the original in-
vestigator spent considerable time explaining exactly
where the documentation for the topic was to be found
and in furnishing general information about the topic.
We hoped that providing a documentation system that

allowed people to both discover and quickly retrieve in-
formation about the resources of the laboratory (re-
sources such as software and hardware documentation,
technical reports, etc.) would alleviate the above prob-
lems. (It is also our experience that these information dis-
semination problems are not unique to our laboratory. In
fact, they are more often the rule than the exception.)

System design
As stated above, the primary goal of our browsing

system was to provide a means for browsing through
and/or quickly retrieving inf6rmation about the labor-
atory's resources. Our needs, however, dictated that the
implementation, and especially the maintenance, of the
system require a minimum of manpower and on-line
storage.

Accessibility. Since executable programs are an impor-
tant part of the resources of the laboratory, we felt that,
ideally, the documentation system should be accessible
from within other programs and that other programs
should be accessible from within the documentation
system. For example, the former might be useful when
editing a program (e.g., to find the parameters of an ex-
ternal subroutine) and the latter would allow a person to
discover what programs are available without leaving the
environment of the documentation system. Both capabil-
ities are provided in our current implementation.

0018-9162/82/0600-0046$00.75 c' 1982 IEEE COMPUTER
46

IPR2019-01304
BloomReach, Inc. EX1012 Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Information organization. A capability for browsing
requires both an appropriate presentation of individual
items of information and an organizational context to
facilitate the browsing. The first need was met by naming
each item of information explicitly so that it could be
retrieved immediately once its name was located. In other
words, each item of information, be it an executable pro-
gram or some form of text, was assigned one or more
keywords. The second need was met by making each entry
short-short enough to allow a large number of them to
fit on one page of a normal display terminal-and these
keywords were then embedded in a structure whose cate-
gory names were also keywords.
We chose a multiple-parent hierarchy (that is, a

directed acyclic graph with a single root node) as the
structural organization of the keywords. We did this
because of the simplicity and flexibility of this type of
organization. A strict hierarchy was considered too in-
flexible because it forces each keyword entry to be placed
in a specific category. This often leads to difficulties both
in searching and in categorizing information. At the same
time, an arbitrary network of keywords, although quite
flexible, is difficult for a person to grasp and follow. The
compromise of a hierarchy with multiple parents allows
items of information to be found through multiple paths,
yet it is simple enough that traversal of the graph is
natural.

Thus, for example, a general-purpose image-displaying
program can be categorized under both IMAGE PRO-
CESSING and GRAPHICS using a multiple-parent
hierarchy, rather than under just one or the other as
would be necessary with a strict hierarchy. As a result, the
program can be found more easily, especially if the person
searching for the program is not really sure where it
belongs.

Separation of organization and information. The
hierarchy of keywords described above is kept in a
separate network file, with the information associated
with each keyword pointed to by file names. The network
file basically contains a doubly linked list of variable
length records containing the keyword name, the associ-
ated file name, and pointers to the fathers and sons of the
keyword. The simplicity of this structure is possible
primarily because the text information is kept separate
from the organization.

There are other important advantages in storing the in-
formation separately from the hierarchy:

(1) Once a keyword has been entered for a particular
item of information, the information can be updated by
the person responsible without the intervention of a

"librarian."
(2) Information need not be modified in any way to be

incorporated into the browsing system.
(3) The information can be created independently of

the system without the need for special editors, thereby
reducing the implementation cost.

(4) Since information is not stored explicitly, the struc-

ture is relatively small and can be quickly and efficiently
traversed by the system, allowing quick traversal of the
graph by the user.

Human interface. One constraint on our design of the
human interface to the browsing system was the require-
ment that it be usable from a standard video terminal with
minimal graphic capabilities. Inspired by the standard
Lisp pretty-printed form of displaying lists, we chose the
indented form of displaying a hierarchy illustrated in
Figure 1. The desire for quick traversal of the graph led to
single keystroke commands, which are listed at the bot-
tom of the screen as a reminder to the user.

Figure 2 illustrates the initial display of the browsing
system. The design of the human interface was also in-
spired, in part, by an application of the Zog system3'4 to
browsing through books and technical reports.5 In fact, a
version of the browsing system could have been im-
plemented in Zog, but this conflicted with our re-
quirements for simplicity of implementation and efficien-
cy of computation. Interested readers can find further
details of the issues of a document retrieval language in
Gebhart and Stellmacher.6 Note that only one level of the
hierarchy is initially visible in Figure 2, although ellipses
indicate that further levels exist. This is to simplify the
user's initial view of the system, but the display can be
changed to view up to four levels of the hierarchy
simultaneously. If the displayed hierarchy does not fit

Si Si
l ~~~~~~~S1.1

S1.1.1
S1.1.2

S1.1 S1.2 S1.2
14 g l l S1.2.1

F-i-i S1.2.2
S1.1.1 S1.1.2 S1.2.1 S1.2.2 S1.2.3 S1.2.3

(a) (b)

Figure 1. (a) A small hierarchy. (b) The same hierarchy
displayed in the indented form used In the browsing
system.

Press "i'' for information. n=
t

LATEST ENTRIES...
AREAS OF RESEARCH...
SUPPORTED SOFTWARE...
AVAILABLE HARDWARE...
REPORTS & THESES...
DEMONSTRATION PROGRAMS...
PEOPLE POINTERS...
SUGGESTION BOX...

back exit father generations help information
locate next page run sons top

Figure 2. The initial display of the browsing system. The
ellipses following the keywords indicate that the keyword
has sons. Attached to each of these keywords is an ar-

bitrary text file, which can be retrieved by moving the
pointer (currently pointing to the topmost keyword) to the
appropriate keyword and then pressing "i." The set of
available commands are listed at the bottom of the
screen.

June 1982 47

IPR2019-01304
BloomReach, Inc. EX1012 Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 3. Two levels of the keyword "SUPPORTED SOFT-
WARE." The "MORE.. ." indicates that the two levels
could not fit completely on the screen. This display was
obtained by using the "generations" command preceded
by the number "2." (Optional numeric arguments, as for
the "generations" command, appear after the "n =" of
the top line of the display.)

completely on the screen, the user can scroll the display up
or down.

Figure 3 illustrates a case in which two levels of a hier-
archy are displayed simultaneously, while Figure 4 shows
the displayed hierarchy scrolled down several lines.
(Figure 4 also illustrates the multiple-parent hierarchy

Figure 5. A summary of the commands available in the browsing editor.
Note that all of the commands of the browsing system are also com-
mands of the browsing editor.

Figure 4. Two levels of the keyword "SUPPORTED SOFT-
WARE" scrolled down several lines. Notice that the arrow
now points to the keyword "PRINT HELP" and that the
system is indicating that more of the hierarchy can be
displayed by the two symbols "MORE... ."

concept; the keyword "VIDEO TERMINAL
OUTPUT" is a son of both "SUPPORTED SOFT-
WARE" and "HUMAN ENGINEERING AIDS.")
The user moves down the hierarchy by moving the

pointer (in the top left-hand corner of Figure 2) up or
down on the screen to the desired keyword, typing "s" to
view its sons. The user can move up the hierarchy one level
at a time (retracing his or her steps down the hierarchy), or
can move directly back to the top. The user can also locate
a specific keyword by entering either a full keyword or its
abbreviation. The browsing system then searches for the
first matching keyword from the top of the hierarchy (us-
ing a depth-first search). If the matched keyword is not
the one the user wanted, he or she can force the system to
go on to the next match.
Once the user has placed the pointer at an appropriate

keyword, the associated information can be displayed on
the screen or the associated program run. The user can
always return to the browsing system via a control
character, giving him or her the freedom to experiment.

Creating and modifying a network. Any user can create
and modify a personal browsing network, although a
password is required to modify the (default) system net-
work. A different program is used for this, one that is a
superset of the normal browsing system. In other words,
every command in the browsing system is also available in
the browsing editor, along with extra commands to
create, insert, delete, and modify keyword entries.

There are two required steps for creating a new entry.
First, a new node is created, specifying the keyword name
and the associated text and/or executable file name(s).

48
COMPUTER

SUPPORTED SOFTWARE n =
I CHARACTER STRING MANIPULATION

DISCARDING TRAILING BLANKS ..

FILE NAME MANIPULATION ..
FREE FORMAT DECODING ..

KEYWORD MATCHING ..

TRANSLATING CASES ..

CVAGL UTILITY PROGRAMS
DISPLAY
PRETTY-PRINT
SCANNER
TEST PATTERN GENERATOR
TYPE VIDEO ...

GRAPHICS
PROGRAMS ...

SUBROUTINES ...

HUMAN ENGINEERING AIDS
KEYWORD MATCHING INPUT STREAM ..

VIDEO TERMINAL OUTPUT ..

IMAGE PROCESSING
PROGRAMS ...
SUBROUTINES ...

SYSTEM UTILITIES MORE.
back exit father generations help information
locate next page run sons top

SUPPORTED SOFTWARE n
TRANSLATING CASES MORE...

CVAGL UTILITY PROGRAMS
DISPLAY
PRETTY PRINT
SCANNER
TEST PATTERN GENERATOR
TYPE-VIDEO ...

GRAPHICS
PROGRAMS.
SUBROUTINES ...

HUMAN ENGINEERING AIDS
KEYWORD MATCHING INPUT STREAM ..

VIDEO TERMINAL OUTPUT.
IMAGE PROCESSING

PROGRAMS ...

SUBROUTINES ...

SYSTEM UTILITIES
COMMAND LANGUAGE INTERPRETER

VIDEO TERMINAL OUTPUT
MCG TERM_TYPE
NEW PAGE

-. PRINT-HELP ... MORE
back exit father generations help information
locate next page run sons top

Add Add the Input node to the network as the son of the - node.
Back Move the ''-'' back one page (22 lines) when possible.
Create Create a new node (call this the Input node).
Delete - Delete the -'' node and all nodes isolated by this deletion.
downarrow'' Move the -'' downwards (when not available, use linefeed).

Exit - Exit from the program, saving all modifications in a new file.
Father Go to the father (super-category) of the current node.
Generations Specifies depth of subcategories seen simultaneously. Max (4).
Help Print this message.
Information Print the information associated with the ''-" node.
Kill link Kill (delete) the link from the Input node to the ''-"'' node.
Locate - Search for the first match of the specified string in the net.
Modify Modify the -' node and make it the new Input node.
Next - Search for the next match of the string in the net.
Page - Move the -'' forward one page (22 lines) when possible.
Qiiit -Exit from the program without creating a new file.
Run - Run the program associated with the -'' node.
Sons - List the sons (subcategories) of the -' node.
Top - Go to the top of the tree.
uparrow' * Move the -'' upwards (when not available, use backspace).

Update Update the network file.
- Print the names of the files associated with the -'' node.

*These commands have an optional numeric argument entered prior to the command.

IPR2019-01304
BloomReach, Inc. EX1012 Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Second, the new node is added to the network as the son
of one or more other nodes. Once a node has been entered,
its keyword name and/or file name can be modified and it
can be moved about the network at will by removing and
adding links from it to other nodes. Figure 5 lists the com-
mands available for doing this in the browsing editor.
The approach we used in building the system network

was to proceed from the abstract to the concrete. The top
level of the hierarchy is the most abstract, representing
various points of view that a user might have when enter-
ing the system. For example, a person interested in seeing
the type of research carried on in the laboratory might
start searching through the "AREAS OF RESEARCH"
keyword; a visitor to the laboratory might first search
through the "DEMONSTRATION PROGRAMS"
keyword to get a glimpse of the current work; while a
veteran user might be more inclined to start with the
"LATEST ENTRIES" keyword to see what has recently
been added to the network.
As a user moves down the hierarchy, the keywords

become increasingly more specific, with the lowest-level
keywords typically pointing to programs, subroutine
sources, technical reports, etc. The multiple-parent
feature of the system was used extensively to allow
keywords to be found through a variety of paths, easing
the discovery of information by the user.

Conclusions

The browsing system has been implemented as de-
scribed in this article. To date, it has been used primarily,
though not exclusively, to document software developed
in our laboratory. This has been done in conjunction with
a prior commitment to the use of a standard header page
preceding every piece of software created in our labratory.
Thus, for the most part, the browsing system is pointing to
files starting with a standard header page, which makes for
a consistent view of the available software.
The system has been very helpful in alleviating needless

duplication of effort by providing a means for discover-
ing, in a simple manner, what other people have done.
And, perhaps more importantly, the development and
maintenance costs were quite reasonable (two to three
man-months for designing and implementing the system,
with another man-month for organizing the information
in the network), demonstrating the feasibility of im-
plementing useful documentation systems at a reasonable
cost. When these costs are compared with the time that
our expert users no longer have to expend to simply
disseminate information, the investment seems eminently
worthwhile. In short, the system is working as planned.

Acknowledgments

The authors are grateful to John Mohammed, David
Kashtan, Harold Hubschman, and Peter Sander for their
help in designing the browsing system, and for their
critical comments and helpful suggestions concerning this
article.

This research was supported in part by NSERC grant
number A4470 and in part by the Quebec Department of
Education.

References

1. F. P. Brooks, Jr., TheMythicalMan-Month-Essayson
Software Engineering, Addison-Wesley, Reading, Mass.,
1975, p. 134.

2. "VAX/VMS Command Language User's Guide,"
AA - D023B-TE, Digital Equipment Corporation,
Maynard, Mass., 1980.

3. G. Robertson, A. Newell, and K. Ramakrishna, "ZOG: A
Man-Machine Communication Philosophy," Carnegie-
Mellon University TechnicaL Report, Carnegie-Mellon
University, Pittsburgh, Pa., Aug. 5, 1977.

4. G. Robertson, D. McCracken, and A. Newell, "The ZOG
Approach to Man-Machine Communication," Carnegie-
Mellon University Technical Report, Carnegie-Mellon
University, Pittsburgh, Pa., Oct. 23, 1979.

5. M. S. Fox and A. J. Palay, "TheBROWSE System, Part 1:
An Introduction," Computer Science Department,
Carnegie-Mellon University Technical Report, Carnegie-
Mellon University, Pittsburgh, Pa., 1979.

6. F. Gebhart and 1. Stellmacher, "Design Criteria for
Documentation Retrieval Languages," J. Am. Soc. Infor-
mation Science, Vol. 29, No. 4, July 1978, pp. 191-199.

Yvan G. Leclerc is currently working
toward a PhD in the field of computer vi-
sion at McGill University. His research in-
terests include computer vision, the char-
acterization of local vs. global computa-

tions, and cooperative processing. Other
academic interests include the general
study of human intelligence (from both the
psychological and artificial intelligence
points of view), and the human engineer-

ing of computer systems.
Leclerc received the M. Eng. and B. Eng. degrees in electrical

engineering from McGill University in 1980 and 1977, respec-
tively. He is currently a student member of the IEEE and ACM.

Steven W. Zucker is currently an associate

professor in the Department of Electrical

Engineering, McGill University, Mon-
treal, P.Q., Canada and is codirector of

the Computer Vision and Graphics Lab-
oratory there. His research interests in-
clude computer vision, human perception,
and artificial intelligence. He received the

BS degree in electrical engineering from

Carnegie-Mellon University in 1969, and

the MS and PhD degrees in biomedical engineering from Drexel
University, Philadelphia, in 1972 and 1975, respectively.
From 1974 to 1976 he was a research associate at the Picture

Processing Laboratory, Computer Science Center, University of
Maryland, College Park.
Zucker is a member of Sigma Xi, ACM, and the IEEE.

Denis Leclerc is currently in the master's
degree program in computer science at
McGill University, working in the program-
ming languages area. He is also working
part-time at Bell Northern Research on a

text-to-speech conversion system. His re-

search interests are programming lan-
, guages, compiler optimization, and natural
language understanding. He received the
BSc degree in mathematics and computer

science from McGill University in 1980.

June1982 49

IPR2019-01304
BloomReach, Inc. EX1012 Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

