
NOAC Ex. 1017 Page 1

IW 7696177

1©ALL,TOWHOMTHESE; PRESENTS) SHAWL:COME!

I

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and TrademarkOffice

a
oe

October 16, 2018 Ge*
s teh

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE Ne

EELS

RECORDSOF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

CELLEELELELEREEaeeae
APPLICATION NUMBER: 09/608,266

FILING DATE: June 30, 2000

PATENT NUMBER: 6,771,646

ISSUE DATE: August 03, 2004

Phihidchbabhitl By Authority of the

UnderSecretary of Commercefor Intellectual Property
and Director of the United StatesPatent and Trademark Office

 FistELLbbehabhi!

NOAC Ex. 1017 Page 2

PATENT NUMBER

|e771648
. menmun

771646

a ee ,|US. UTILITY Patent Application

i wr ai >TPATENTDATE.N a c : o 99g4y scannen AW an. Ke aye Oe m
t a

—

WeeteSS

APPLICATION NO, CONT/PRIOR|CLASS SUBCLASS ART UNIT EXAMINER —

t oarcnecse . a . wet -| Oo /SI8556 o 370 a) 2e64 ~ cars avn

ve 1 . ' Mh . . ‘: | 3 4 + r / at Mea (| ?} oe A ‘
a ° \
& Certificate gsayy g20b Certificate
F of Correction SEP 21 2004 pro-z040

< CERRIFICATE of Correct a

 Continued on Issue Slip Inside File Jacket

CLAIMS-ACLOWED
Total Cjairis Print Claim for O.G.al

Seo 7
“ NOTICE OF ALLOWANCE MAILED

TERMINAL
DISCLAIMER

 C1 theterm ofthis patent

 “A lan V. Nauyer

subsequent to (date)-

, has been disclaimed. (Assistant Examine)
‘ zs C1 The term ofthis patentshall

y not extend beyond the expiration date
‘ of U.S Patent. No. a

RICKYNGO
PRIMARY EXAMINER y | ioog:

! {Primary Examiner) (Date)
{
‘ C] The terminal months of

this patent have been disclaimed.

WARNING:
The infosmation disclosed herein may be restncted Unauthorized disclosure may be prohibited the United States Code Title 35, Sections 122, 181 and 368
Possession outside the U.S. Patent & Trademark Office ts restncted to authonzed employees and contractors-only.

Coe ye,AeA FILED WITH: [_| Disk (cRF) []rtcHe [_] cp-Rom(Rev. 6/99)
~ _ ont (Attached in pocket on right inside flap)

IGSUE Fre IN FILE

Temene

wyeet$nagreementY ae
~~ 1

& “

ee&al B

4

v

¢
(FACE)

NOACEx. 1017 Page 2

NOAC Ex. 1017 Page 3

~,

Page | of |

UNITED STATES PATENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STaTES PATENT ANO TRADEMARK OFFICE
WASHINGTON, DC, 20231

www uspio gov

‘NERC

Bib Data Sheet

FILING DATE ATTORNEY
SERIAL NUMBER 06/30/2000 CLASS GROUP ART UNIT|Docket NO.

09/608, 266 RULE | 370 2731 APPT-001-4
APPLICANTS

Haig A. Sarkissian, San Antonio; TX 1”
Russeil S. Dietz, San Josey’CA;

ae L ®* CONTINUING DATA,prtornnassr]Brareatees
THIS APPLN,etaims BENEFIT OF 60/141 ,903 06/30/1999

wy* FOREIGN APPLICATIONS vveelleearanenne

IF REQUIRED, FOREIGN FILING LICENSE
GRANTED * 09/01/2000 . -

Foreign Priority claimed CJ yes ano,onQ STATEOR| SHEETS|TOTAL |INDEPENDENT86 USC 119 (a-d) conditionsLYyes Jano a Metafter COUNTRY|DRAWING|CLAIMS CLAIMS
. Allewtes ; TX 21 20 3

Examprier'sSs* Sig nature (nitiats

ADDRESS °

Dov Rosenfel

5507 College’ Avenue
Suite 2

Oakland ,CA 94618

TLE

Associative cache structure for lookups and updatesofflow records in a network monitor

[a All Fees
Cl 1.16 Fees(Filing) FILING FEE |FEES:Authority has been given in Paper Q 1 17 Fees (Processing Ext. of

RECEIVED }No. to charge/credit DEPOSIT ACCOUNT jitime)

for following: Cl] 1.18 Fees(Issue)
[Dotter
Q Credit _

file://C:\APPS\PreExam\correspondence\l_A.xml Li.

NOACEx.1017 Page 3

NOAC Ex. 1017 Page 4

myo

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET
oa

PTO-1556

(5/87)

“U.S. GPO: 1999-459-682/19144

NOACEx. 1017 Page 4

NOAC Ex. 1017 Page 5

ety

ieWeelShae
wallth

hacibs.

 "S'96LEF
Ss07 -03-¢°

IN THE U.S. PATENT AND TRADEMARK OFFICE

Application Transmittal Sheet

Our Ref./Docket No.:_APPT-001-4

-PTO6
826 UNBox Patent Application

ASSISTANT COMMISSIONER FOR PATENTS

Washington, D.C. 20231 a
5m

. Oo
Dear Assistant Commissioner: SS

om =
Transmitted herewith is the patent application of L =

INVENTOR(s)/APPLICANT(s)

Last Name First Name, MI Residence (City and State or Country)

Sarkissian Haig A. San Antonio, Texas
Dietz Russell S. San Jose, CA

TITLE OF THE INVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDSIN A
NETWORK MONITOR

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387
5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS(checkall that apply)

Included are:

x 65___ sheet(s) of specification, claims, and abstract
x 21___sheet(s) of forma! Drawing(s) with a submissionletter to the Official Draftsperson

Information Disclosure Statement.

Form PTO-1449: INFORMATION DISCLOSURE CITATIONIN ANAPPLICATION,together with a
copyof each references included in PTO-1449.
Declaration and Power of Attorney
An assignmentof the invention to_Apptitude, Inc.
A letter requesting recordation of the assignment.
Anassignment Cover Sheet.
Additional inventors are being named on separately numbered sheets attached hereto.

Xx Return postcard.
This application has:

a smallentity status. A verified statement:
is enclosed

wasalready filed.

The fee has been calculated as shownin the following page.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application andall attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895USin an envelope addressed to Box Patent
Application, Assistant Commissioner for Patents, Washington, D.C. 20231 on.

Signed?

Name: Dov Rosenfeld, Reg. No. 38687

NOACEx. 1017 Page 5

NOAC Ex. 1017 Page 6

itedtMaatHt
fllan

ill

a

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. _APPT-001-4

NO. OF EXTRA RATE
TOTAL CLAIMS CLAIMS

EXTRA CLAIM
FEE

TOTAL 20 $18
CLAIMS

ee|fm

INDEP.

CLAIMS

BASIC APPLICATION FEE: $ 690.00

” TOTAL FEES PAYABLE: $ 690.00

METHOD OF PAYMENT

A checkin the amount of is attached for application fee and presentation of claims.
A check in the amountof $ 40.00 is attached for recordation of the Assignment.
The Commissioneris hereby authorized to charge paymentofthe any missingfiling or other fees

required forthis filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

tae 30 2@20O0
Date Dov Rosenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

NOACEx. 1017 Page 6

NOAC Ex. 1017 Page 7

HeMellcdlMeltatt
ted)IIMA

ee

Our Ref./Docket No: APPT-001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian,et al. Group Art Unit: unassigned
Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDSIN A NETWORK MONITOR

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissionerfor Patents

Washington, DC 20231
ATTN:Official Draftsperson

Dear Sir or Madam:

Attached please find 21 sheets of formal drawings to be madeofrecord for the above
identified patent application submitted herewith.

Respectfully Submitted,

2EP 20280 ZB ——
Date ov Rosenfeld, Reg. No. 38687

Address for correspondence andattorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue,Suite 2
Oakland, CA 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

 Certificate of Mailing under 37 CFR 1.10
I herebycertify that this application andall attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895USin an envelope addressed to Box Patent
Applicatign, Assistant Commissioner for Patents, Washington, D.C. 202

Date: ese. 32) LOCO Signed;
N “Dov Rosenfeld, Reg. No. 38687

NOACEx.1017 Page 7

NOAC Ex. 1017 Page 8

Ams

MealHeftWaalHasseaeaedtneers

Our Ref./Docket No.: _APPT-001-4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN,Haig A.
San Antonio, Texas

DIETZ,Russell S.

San Jose, CA

Certificate of Mailing under 37 CFR 1.10

Thereby certify that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: E1417961895US in an envelope addressed to Box Patent Application, Assistant Commissionerfor Patents,

Washington, D.C. 20231 on. E ZADate: ZO A960. Signed:

NOACEx. 1017 Page 8

NOAC Ex. 1017 Page 9

5

>aa
aly ley

10

C

te. 15

CL 20

io
25

oa 2)

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDSIN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:

60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORKtoinventors Dietz,et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. WS Ps tents ime
This application is related to the followingJ.S. patent applications, eachfiled
concurrently with the present application, and each assigned to Apptitude,Inc., the

assignee of the present invention:

No. b,'05 I yt
US. Patent, ApplicationSertatNemnahnfor METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK,to inventors Dietz,et al., fledFane30,

-2000,Atterney/AgentReferenceNumberAPPF-00144, and incorporated herein by

reference.

No. (,l65,725
U.S. Patent AppheationSerratNe~henen.for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE,to inventors Koppenhaver,etal., filed June30-2000,

Attorney/Agent-ReferenceNumberAPPFO01-2, and incorporated herein by

reference.

oy/ bee, re

U.S. Patent Application Serial No,t+for RE-USING INFORMATION FROM
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MONITORING,to inventors Dietz,et al., filedKine30,2060)Attorney/Acent

ReferenceNumberAPPT-96+-3, and incorporated herein by reference.

oft CORE?
U.S. Patent Application Serial No,wetzee,for STATE PROCESSOR FOR

PATTERN MATCHINGIN A NETWORK MONITOR DEVICE,to inventors

Sarkissian, et al., filedJune-30-20

3, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

NOACEx. 1017 Page 9

NOAC Ex. 1017 Page 10

—™

20

25

30

O)
2

elucidation of packets communicated within a data network,includingclassification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks.In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and captureofall

information passing through any point on the network (i.e., of all packets and packet

streams passing through any location in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determinethe protocol (e.g., http, ftp, H.323, VPN,etc.), the application/use within the

protocol(e.g., voice, video, data, real-time data,etc.), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information suchaslog files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the meansto

measure and analyze networkactivity objectively; to customize the type of data thatis

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No, 6,051, 079

Related and incorporated by reference U.S. Patentyeppltcation7/14,for
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK,to

inventors Dietz, et al, Atterney/+AsentDecketAPPT-O01-1,describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from headerfields in the packetto use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includes a parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized,a slicer extracts important packet elements from the packet. These

form a signature (i.e., key) for the packet. Theslicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of knownflows.

NOACEx.1017 Page 10

NOAC Ex. 1017 Page 11

(™

20

25

30

0)
2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks,In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture ofall

information passing through any point on the network(i.e., of all packets and packet

streams passing through anylocation in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol(e.g., http, ftp, H.323, VPN,etc.), the application/use within the

protocol(e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context(e.g., options selected, service

delivered, duration, time of day, data requested,etc.). Also, the network monitor should

not be reliant upon server resident information suchaslog files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the meansto

measure and analyze network activity objectively; to customize the type of data thatis

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No, blot, 079
Related and incorporated by reference U.S. Patentpappheaten7,/for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK,to

inventors Dietz,et al, Atterney/AgentDecketAPPT-O004-4,describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from headerfields in the packetto use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includesa parser for

recognizing different patterns in the packet that identify the protocols used. For each

protocol recognized,a slicer extracts important packet elements from the packet. These

form a signature(i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may havethis signature from a database of knownflows.

NOACEx. 1017 Page 11

NOAC Ex. 1017 Page 12

™

10

20

25

30

0)
2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other

interconnected networks.In particular, there is a need for a real-time network monitor

that can provide details as to the application programs being used. Such a monitor should

enable non-intrusive, remote detection, characterization, analysis, and capture ofall

information passing through any point on the network (i.e., of all packets and packet

streams passing through anylocation in the network). Not only should all the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol(e.g., http, ftp, H.323, VPN,etc.), the application/use within the

protocol(e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context(e.g., options selected, service

delivered, duration, time of day, data requested,etc.). Also, the network monitor should

not be reliant upon serverresident information suchaslog files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze network activity objectively; to customize the type of data thatis

collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.

No, 6/651, 079
Related and incorporated by reference U.S. Patentappleation7/asfor

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK,to

inventors Dietz,et al, Atterney/AgentDecketAPPT-OO014, describes a network monitor

that includes carrying out protocol specific operations on individual packets including

extracting information from headerfields in the packet to use for building a signature for

identifying the conversational flow of the packet and for recognizing future packets as

belonging to a previously encountered flow. A parser subsystem includesa parser for

recognizing different patterns in the packetthat identify the protocols used. For each

protocol recognized,a slicer extracts important packet elements from the packet. These

form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may havethis signature from a database of knownflows.

NOACEx. 1017 Page 12

NOAC Ex. 1017 Page 13

15

20

25

0 3

4

likely that a packetassociated with the least recently used flow-entry will soon arrive.

A hashis often used to facilitate lookups. Such a hash mayspreadentries

randomly in a database. In such a case, a associative cache is desirable.

There thusis a need for a associative cache subsystem that also includes a LRU

replacementpolicy.

SUMMARY

Described herein is an associative cache system for looking up one or more

elements of an external memory. The cache system comprises a set of cache memory

elements coupled to the external memory,a set of content addressable memory cells

(CAMs)containing an address and a pointer to one of the cache memory elements, and

including. a matching circuit having an input such that the CAM asserts a match output

whenthe inputis the sameas the address in the CAM cell,Whieh cache memory
clement particular CAM points to changesovertime. In the preferred implementation,
the CAMsare connected in an order from top to bottom, and the bottom CAM points to

the least recently used cache memory element.

BRIEF DESCRIPTION OF THE DRAWINGS

Althoughthe present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments,in turn, are explained with the aid of the following

figures.

FIG.1 is a functional block diagram of a network embodimentof the present

inventionin which a monitor is connected to analyze packets passing at a connection

point.

FIG.2 is a diagram representing an example of someof the packets and their

formats that might be exchangedinstarting,as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodimentsofthe present inventionis

also illustrated. This represents some of the possible flow signatures that can be

NOACEx. 1017 Page 13

NOAC Ex. 1017 Page 14

15

20

25

3 5

generated and usedin the process of analyzing packets and of recognizing the particular

server applications that produce the discrete application packet exchanges.

FIG. 3is a functional block diagram of a process embodimentofthe present
invention that can operate as the packet monitor shownin FIG. 1. This process may bef

implémented in software or hardware.

FIG.4 is a flowchart of a high-level protocol language compiling and

optimization process, which in one embodiment may be used to generate data for

monitoring packets accordingto versions of the present invention.

FIG.5 is a flowchart of a packet parsing process used as part of the parser in an

embodimentof the inventive packet monitor.

FIG.6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodimentof the inventive packet monitor.

FIG.7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG.8 is a flowchart of a monitor lookup and update processthat is used as part

of the analyzer in an embodimentofthe inventive packet monitor.

. FIG. 9 isa flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodimentof the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer includinga state

processorthat can form part of an embodimentof the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

process that can form part of the analyzer in an embodimentof the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodimentof the inventive packet monitor.

NOAC Ex. 1017 Page 14

NOAC Ex. 1017 Page 15

15

20

Q)

6

FIG. 14 is a simple functional block diagram of a process embodimentofthe

present invention that can operate as the packet monitor shownin FIG. |. This process
may be implemented in software.

FIG.15 is a functional block diagram of how the packet monitorof FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC)layer of an Ethernet packet and some of

the elements that may be extracted to form a signature according to one aspectof the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and someof the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shownin FIGs. 16 and 17A, and someofthe elements that may be extracted to form a

signature according to one aspect of the invention.

FIG. 18A is a three dimensionalstructure that can be used to store elements of

the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodimentofthe invention.

FIG. 18B is-an alternate form of storing elements of the pattern, parse and
extraction database used by the parser subsystem in accordance to another embodiment

of the invention.

 FIG. 19 is a block diagram of the cache memory part of the cache subsystem fo
1115 of the analyzer subsystem of FIG.11. <rrenepeetralia —

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache

subsystem 1115.

NOACEx.1017 Page 15

NOAC Ex. 1017 Page 16

5 5

7

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this documentincludes hardware diagrams and descriptions that may

include signal names. In mostcases, the namesare sufficiently descriptive, in other cases

howeverthe signal namesare not needed to understand the operation and practice of the

5 invention.

Operation in a Network

FIG. 1 represents a system embodimentof the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network

102 that communicates packets (e.g., IP datagrams) between various computers, for

10 example between the clients 104-107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shown in the interior of

the cloud. A monitor 108 examines the packets passing in either direction pastits

connection point 121 and, according to one aspect of the invention, can elucidate what

application programsare associated with each packet. The monitor 108 is shown

15 examining packets(i.e., datagrams) between the networkinterface 116 of the server 110

and the network. The monitor can also be placed at other points in the network, such as

connection point 123 between the network 102 and the interface 118 of the client 104, or

someother location, as indicated schematically by connection point 125 somewhere in

network 102. Not shownis a network packet acquisition device at the location 123 on

20 ‘the network for converting the physical information on the network into packets for input

into monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication,e.g., TCP/IP, etc. Any network activity—for example an

application program run by the client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)—will produce an exchange of a sequence of

packets over network 102 that is characteristic of the respective programsandofthe

network protocols. Such characteristics may not be completely revealing at the

individual packetlevel. It may require the analyzing of many packets by the monitor 108

to have enough information needed to recognize particular application programs. The

Packets may need to be parsed then analyzedin the contextof various protocols, for
NOACEx. 1017 Page 16

NOAC Ex. 1017 Page 17

10

15

O D

8

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, whichis also referred to as a protocol

stack. The ISO (International Standardization Organization) has defined a general model

that provides a framework for design of communication protocol layers. This model,iitannnennenaaleniinn

shownin table form below,serves as a basic reference for understanding the

functionality of existing communication protocols.ne

ISO MODEL

Application Telnet, NFS, Novell NCP, HTTP,

H.323

P=eeefee
sfoe
[efron

aa
Physical

Different communication protocols employ different levels of the ISO model or

Network Interface Card (Hardware

Interface). MAClayer

 Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)

may use a layered model that is similar to but which does not exactly conform to the ISO
model. A protocolin a certain layer may notbe visible to protocols employedat other

layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

In some communicationarts, the term “frame” generally refers to encapsulated

data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC(cyclic redundancy check) data for error checking. The term

NOACEx. 1017 Page 17

NOAC Ex. 1017 Page 18

5
i

i

15

20

25

30

o)

9

“packet”generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

term “datagram”is also used.In this specification, the term “‘packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for

transmission across a network. For example,a data packet typically includes an address

destination field, a length field, an error correcting code (ECC)field, or cyclic

redundancy check (CRC)field, as well as headers and footers to identify the beginning

and end ofthe packet. The terms “packet format” and “frame format,”also referred to as

“cell format,” are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizingall levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another.If, though, the particular application program always follows a type-A packet

with the sending of a type-B packet, and the other application program doesnot, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type-B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchangesthat are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication ofall

previous events in the flow that lead to recognition of the contentof all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be usedto rapidly

identify packets belonging to the sameflow.

In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

NOACEx.1017 Page 18

NOAC Ex. 1017 Page 19

20

25

q

+)\

10

and identify and maintainthestate of the flows passing through the connection point.

The monitor 108 therefore masksout all the unimportant parts of each packet that will

not contributeto its classification. However, the parts to mask-out will change with each

packet depending on whichflow it belongs to and dependingonthestate of the flow.

The recognition of the packet type, and ultimately of the associated application

programsaccording to the packets that their executions produce,is a multi-step process

within the monitor 108. At a first level, for example, several application programswill

all producea first kind of packet. A first “signature” is produced from selected parts of a

packet that will allow monitor 108 to identify efficiently any packets that belong to the

same flow. In somecases, that packet type maybe sufficiently unique to enable the

monitor to identify the application that generated such a packet in the conversational

flow. The signature can then be usedto efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated

application program. In such a case, a subsequent packet of a second type—butthat

potentially belongs to the same conversational flow—is recognized by using the

signature. At such a secondlevel, then, only a few of those application programswill

have conversational flows that can produce such a second packettype. Atthis level in

the processof classification,all application programsthat are notin the set of those that

lead to such a sequence of packet types may be excludedin the processofclassifying the

conversational flow that includes these two packets. Based on the knownpatterns for the

protocol and for the possible applications,a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to

proceedto a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signature to determineif this

signature identified a previously encountered flow,or shall be used to recognize future

packets belonging to the same conversational flow. In real time, the packetis further

analyzedin the context of the sequence of previously encountered packets(the state), and

of the possible future sequences such a past sequence may generate in conversational

NOACEx.1017 Page 19

NOAC Ex. 1017 Page 20

Wiece.

20

25

30

11

flows associated with different applications. A new signature for recognizing future

packets may also be generated. This process of analysis continues until the applications

are identified. The last generated signature may then be usedto efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Anotheraspect of the invention is adding Eavesdropping.In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through somepointin the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

network that can input the same packets from the same location on the network, and the

processorthen loads its own executable copy of the application program andusesit to

read the content being exchanged overthe network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodimentofthe present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined,e.g., from a packet

acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol

information in a multilevel model, including what server application produced the

packet.

The packetacquisition device is a commoninterface that converts the physical

signals and then decodes them into bits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM,etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packetor packets.

Aspects shown here include:(1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301,

NOACEx.1017 Page 20

NOAC Ex. 1017 Page 21

20

25

30

5 5

12

and (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. Theinitialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addressesin the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and otherfields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums,andthoseparts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocol layerthat exists in the packet 302. An extraction process 306 in parser

subsystem 301 extracts characteristic portions (signature information) from the packet

302. Both the pattern information for parsing and the related extraction operations, é.g.,

extraction masks, are supplied from a parsing-pattern-structures and extraction-

operations database (parsing/extractions database) 308filled by the compiler and

optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and

states of all protocols that an occurat any layer, including how to interpret header

information, how to determine from the packet header information the protocolsat the

next layer, and what information to extract for the purpose ofidentifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would

decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates twosets of internal data

structures. Thefirst is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elementsof a packetare to be extracted from

NOACEx. 1017 Page 21

NOAC Ex. 1017 Page 22

20

25

30

O »

13

the packets basedonthepatterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determinea set of

one or more protocol dependentextraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states andstate transitions that occur

in different conversational flows, and the state operations that need to be performed(e.g.,

patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversationalflow.

Thus, compiling the PDLfiles and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the

contents of one or more of databases 308 and 326 may be manually or otherwise

generated. Note that in some embodiments the layering selections information is inherent

rather than explicitly described. For example, since a PDLfile for a protocol includes the

child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizes patterns in the

packets. In particular, the PAR locates the next protoco] field in the header and

determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An exampleof this is type and length comparisonto distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel-Xerox (DIX) packet. The PARalso uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

associated with that protocol that enables analysis of the next protocol] layer. Once a

pattern ora set of patterns has been identified, it/they will be associated with a set of

none or more extraction operations. These extraction operations (in the form of

commandsandassociated parameters) are passed to the extraction process 306

implemented by an extracting and information identifying (EID) engine that extracts

selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted informationis put in

NOACEx. 1017 Page 22

NOAC Ex. 1017 Page 23

20

25

30

0 D

14

sequence and then processed in block 312 to build a unique flow signature (also called a

“key”) for this flow. A flow signature depends on the protocols used in the packet. For

some protocols, the extracted components may include source and destination addresses.

For example, Ethernet frames have end-point addresses that are useful in building a

better flow signature. Thus, the signature typically includes the client and server address

pairs. The signature is used to recognize further packets that are or may bepart ofthis

flow.

In the preferred embodiment, the building of the flow key includes generating a

hash of the signature using a hash function. The purposeif using such a hashis

conventional—to spread flow-entriesidentified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is knownto thosein theart.

In one embodiment, the parser passes data from the packet—a parser record—

that includes the signature (i.e., selected portions of the packet), the hash, and the packet

itself to allow for any state processing that requires further data from the packet. An

improved embodimentof the parser subsystem might generate a parser record that has

some predefined structure and that includes the signature, the hash, someflags related to

someof the fields in the parser record, and parts of the packet’s payload that the parser

subsystem has determined might be required for further processing,e.g., for state

processing.

Note that alternate embodiments may use somefunction other than concatenation

of the selected portions of the packet to makethe identifying signature. For example,

some“digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looksin an internal

data store of records of knownflowsthat the system has already encountered, and

decides (in 316) whether or not this particular packet belongs to a knownflow as

indicated by the presenceof a flow-entry matching this flow in a database of known

flows 324. A record in database 324 is associated with each encounteredflow.

The parserrecord enters a buffer called the unified flow key buffer (OFKB). The

UFKB stores the data on flowsin a datastructure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB recordfields

NOACEx. 1017 Page 23

NOAC Ex. 1017 Page 24

10

15

20

25

30

O 5

15

stores the packet sequence number, and anotheris filled with state information in the

form of a program counterfor a state processor that implementsstate processing 328.

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE)that obtains new UFKB recordsand uses

the hash in the UFKB record to lookupif there is a matching knownflow.In the

particular embodiment, the database of known flows 324 is in an external memory. A

cache is associated with the database 324. A lookup by the LUE for a knownrecordis

carried out by accessing the cache using the hash,andifthe entry is not already present

in the cache,the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-

signature, state information, and extracted information from the packet for updating

flows, and one or morestatistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N, of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets(i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flowsacross the

database to allow for fast lookupsof entries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the numberofbits of the hash data value used. For example, in one embodiment, each

flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shownto be

more than adequate for the vast majority of cases. Note that another embodimentuses

flow-entries that are 256 byteslong.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature,1.e., the signature is for a

new flow,then a protocol andstate identification process 318 further determines the

State and protocol. That is, process 318 determines the protocols and whereinthestate

Sequencefor a flow for this protocol’s this packet belongs. Identification process 318

uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

NOAC Ex. 1017 Page 24

NOAC Ex. 1017 Page 25

15

20

25

=

30

O J

16

executed on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324(e.g., in

the cache), then a process 320 determines, from the looked-up flow-entry, if more

classification by state processing of the flow signature is necessary. If not, a process 322

updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating

includes updating one or morestatistical measures stored in the flow-entry. In our

embodiment,the statistical measures are stored in counters in the flow-entry.

If state processing is required,state process 328 is commenced.State processor

328 carries out any state operations specified for the state of the flow and updates the

state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new andexisting flows in order to analyze

all levels of the protocol stack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state-to-state based on predefined state

transition rules and state operations as specified in state processorinstruction database

326. A state transition rule is a rule typically containing a test followed by the next-state

to proceedto if the test result is true. An operation is an operation to be performed while

the state processoris in a particular state—for example, in order to evaluate a quantity

needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no moretests to perform.

In general, the set of state operations may be none or more operations on a

packet, and carrying out the operation or operations mayleave oneinastate that causes

exiting the system prior to completing the identification, but possibly knowing more

about whatstate and state processes are needed to execute next, i.e., when a next packet

of this flow is encountered. As an example, a state process(set of state operations) at a

particular state may build a new signature for future recognition packets of the nextstate.

By maintaining the state of the flows and knowing that new flows maybeset up

using the information from previously encountered flows, the network traffic monitor

300 provides for (a) single-packetprotocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or moredisjointed sub-flowsthat occur in server announcementtype flows.

NOACEx.1017 Page 25

NOAC Ex. 1017 Page 26

20

25

5 >

17

What mayseemtoprior art monitors to be some unassociated flow, may be recognized

by the inventive monitorusing the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packetfor this

particular flow-entry. A process 330 decides if more operations need to be performed for

this state. If so, the analyzer continues looping between block 330 and 328 applying

additional state operationsto this particular packetuntil all those operations are

completed—thatis, there are no more operationsfor this packet in this state. A process

332 decidesif there are further states to be analyzed for this type of flow accordingto the

state of the flow andthe protocol, in orderto fully characterize the flow.If not, the

conversational flow has now beenfully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment,the state processor 328 starts the state processing

by using the last protocol recognized by the parser as an offset into a jump table Gump

vector). The jumptable finds the state processorinstructions to use for that protocol in

the state patterns and processes database 326. Mostinstructions test something in the

unified flow key buffer, or the flow-entry in the database of knownflows 324,if the

entry exists. The state processor may haveto test bits, do comparisons, add, or subtract

to perform the test. For example, a commonoperation carried out by the state processor

is searching for one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an

endstate. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is knownandif in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process

322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

NOACEx. 1017 Page 26

NOAC Ex. 1017 Page 27

10

15

20

25

5)

18

After updating, database 324 therefore includesthesetofall the conversational

flows that have occurred.

Thus, the embodimentof present invention shown in FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of

FIG. 3 also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

Oncea packetis identified to be from a knownflow,the state of the flow is known and

this knowledge enablesstate transition analysis to be performed in real time for each

different protocol and application. In a complex analysis, state transitions are traversed

as more and more packets are examined. Future packets that are part of the same

conversational flow havetheir state analysis continued from a previously achievedstate.

Whenenoughpacketsrelated to an application of interest have been processed, a final

recognition state is ultimately reached,i.e., a set of states has been traversed bystate

analysis to completely characterize the conversational flow. The signature forthat final

state enables each new incoming packetof the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present inventionis realized.

Oncea particular set of state transitions has been traversed for the first time and ends in a

final state, a short-cut recognition pattern—a signature—can be generatedthat will key

on every new incoming packet that relates to the conversational flow. Checking a

signature involves a simple operation, allowing high packetrates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a

large numberof protocols and applications may be checked for. Every known protocol

and application will have at least one unique setof state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated andthestates of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

NOACEx. 1017 Page 27

NOAC Ex. 1017 Page 28

20

25

30

5)

19

or more potential applications—are addedto the records of previously encounteredstates

for easy recognition and retrieval when a new packetin the flow is encountered.

Detailed operation

FIG.4 diagramsan initialization system 400 that includes the compilation

process. Thatis, part of the initialization generates the pattern structures and extraction

operations database 308 andthestate instruction database 328. Such initialization can

occuroff-line or from a central location.

The different protocols that can exist in different layers may be thoughtofas

nodes of one or moretrees of linked nodes. The packettype is the root of a tree (called

level 0). Each protocolis either a parent node or a terminal node. A parent node links a

protocol to other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each havinga basic format that remains substantially the same. An Ethernet

packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and oneof the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame(i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shownin FIG. 16 is some (but notall) of the information specified in the PDLfiles

for extraction the signature.

FIG. 17A now showsthe header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packetthatindicates the next layer level is a two-byte type field 1702 containing the

child recognition pattern for the next level. The remaining information 1704 is shown

hatched becauseit not relevant for this level. The list 1712 shows the possible children

for an Ethertype packet as indicated by what child recognition pattern is found offset 12.

FIG. 17B showsthe structure of the headerof one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shownin table 1752.

NOACEx.1017 Page 28

NOAC Ex. 1017 Page 29

20

25

30

Oo Jd

20

The pattern, parse, and extraction database (pattern recognition database, or

PRD) 308 generated by compilation process 310, in one embodiment,is in the form of a

three dimensional structure that provides for rapidly searching packet headers for the

next protocol. FIG. 18A shows such a 3-D representation 1800 (which may be

considered as an indexedset of 2-D representations). A compressed form of the 3-D

structure is preferred.

Analternate embodimentofthe data structure used in database 308 is illustrated

in FIG. 18B. Thus, like the 3-D structure of FIG. 18A,the data structure permits rapid

searches to be performed bythe pattern recognition process 304 by indexing locationsin

a memory rather than performing address link computations. In this alternate

embodiment, the PRD 308 includes twoparts, a single protocol table 1850 (PT) which

has an entry for each protocol knownfor the monitor, and a series of Look Up Tables

1870 (LUT’s) that are used to identify knownprotocols and their children. The protocol

table includes the parameters needed bythe pattern analysis and recognition process 304

(implemented by PRE 1006) to evaluate the header informationin the packet thatis

associated with that protocol, and parameters needed by extraction process 306

(implemented by slicer 1007) to process the packet header. Whenthere are children, the

PT describes which bytes in the header to evaluate to determine the child protocol. In

particular, each PT entry contains the headerlength, an offset to the child, a slicer

command,and someflags.

The pattern matchingis carried out by finding particular “child recognition

codes”in the headerfields, and using these codes to index one or more of the LUT’s.

Each LUTentry has a node code that can have one offour values, indicating the protocol

that has been recognized, a codeto indicate that the protocol has beenpartially

recognized (more LUT lookupsare needed), a code to indicate thatthis is a terminal

node, and a null node to indicate a null entry. The next LUT to lookupis also returned

from a LUT lookup.

Compilation process is described in FIG. 4. The source-code informationin the

form of protocol description files is shown as 402. In the particular embodiment, the

high level decoding descriptions includesa set of protocol description files 336, one for

each protocol, anda set of packet layer selections 338, which describes the particular

NOACEx.1017 Page 29

NOAC Ex. 1017 Page 30

Peers

15

20

25

30

OO J

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract

operations 406 is generated (404), andaset of packet state instructions and operations

407 is generated (405)in the form of instructions for the state processor that implements

state processing process 328. Datafiles for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systemsofthe parser and extraction engines. (See the

parsing process 500 description and FIG.5; the extraction process 600 description and

FIG. 6; and the parsing subsystem hardware description and FIG. 10). Datafiles for each

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processorinstruction database 407 into the state processor. (see the state

processor 1108 description and FIG.11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensionalstructure (one embodiment) orthe orall thelookuptables for the

Becauseof the large numberof possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share commonparents. When implementedin the form of the LUT’s, this

process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction processthat reduces the space neededto store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be

thought ofas a set of 2-D structures each representing a protocol. To enable saving space

by using only one array per protocol which may haveseveral parents, in one

embodiment, the pattern analysis subprocess keeps a “current header’ pointer. Each

location (offset) index for each protocol 2-D array in the 3-D structure is a relative

location starting with the start of header for the particular protocol. Furthermore, each of

the two-dimensional arrays is sparse. The next step of the optimization, is checkingall

the 2-D arrays againstall the other 2-D arrays to find out which ones can share memory.

Manyof these 2-D arrays are often sparsely populated in that they each have only a small

numberofvalid entries. So, a process of "folding" is next used to combine two or more

NOACEx. 1017 Page 30

NOAC Ex. 1017 Page 31

20

25

30

O >

22

2-D arrays together into one physical 2-D array without losing the identity of any of the

original 2-Darrays(i.¢., all the 2-D arrays continueto exist logically). Folding can occur

between any 2-D arrays irrespective oftheir location in the tree as longas certain

conditions are met. Multiple arrays may be combinedinto a single array as long as the

individual entries do not conflict with each other. A fold numberis then used to associate

each elementwith its original array. A similar folding process is used for the set of LUTs

1850 in the alternate embodimentof FIG. |8B.

In 410, the analyzer has beeninitialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting

at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet componentsare

extracted from each packet 302 one elementat a time. A check is made (504) to

determineif the load-packet-componentoperation 503 succeeded,indicating that there

was morein the packetto process. If not, indicating all components have been loaded,

the parser subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a componentis successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to provide a set of patterns and

processesfor that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determineif the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505.If not, step 511

movesto the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the componentextracted in 503. A pattern match obtained in 507

(as indicated by test 508) meansthe parser subsystem 301 has found a nodein the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the componentdoesnot produce a match(test

508), the parser subsystem 301 moves (510)to the next pattern node from the pattern

database 308 and to step 505to fetch the next node and process. Thus, there is an

“applying patterns” loop between 508 and 505. Once the parser subsystem 301

completes all the patterns and has either matchedornot, the parser subsystem 301 moves

to the next packet component(511).

Onceall the packet components have been the loaded and processed from the

NOACEx.1017 Page 31

NOAC Ex. 1017 Page 32

15

20

25

30

7D

23

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 movesto build a packet signature which is described in FIG. 6aimse

FIG.6 is a flow chart for extracting the information from which to build the

packetsignature. The flow starts at 601, whichis the exit point 513 of FIG. 5. At this

pointparser subsystem 301 has a completed packet componentanda pattern node

available in a buffer (602). Step 603 loads the packet componentavailable from the

pattern analysis process of FIG. 5S. If the load completed (test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node componentin 602.If the

fetch was successful(test 606), indicating that there are extraction elementsto apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checksif there is more to extract from this

component,and if not, the parser subsystem 301 moves back to 603 to load the next

packet componentat hand andrepeats the process.If the answeris yes, then the parser

subsystem 301 movesto the next packet componentratchet. That new packet component

is then loadedin step 603. Asthe parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet component

if there is more to extract, or to a different packet componentif there is no more to

extract.

The extraction processthus builds the signature, extracting more and more

components accordingto the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet componentoperation 603 fails (test

604), all the components have been extracted. The built signature is loadedinto the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

Signature generation process.

Referring now to FIG.7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301] loads the next

pattern node element. If the load was successful(test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashesthe signature buffer element based on the

NOACEx. 1017 Page 32

‘

NOAC Ex. 1017 Page 33

20

25

30

24

hash elements that are found in the pattern nodethatis in the element database. In 706

the resulting signature and the hash are packed. In 707 the parser subsystem 301 moves

on to the next packet component whichis loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elementsleft

(test 704). Onceall the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parserrecordis loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record whichis similar to a parser record, but with one or more

different fields.

FIG.8 is a flow diagram describing the operation of the lookup/update engine

(LUE)that implements lookup operation 314. The processstarts at 801 from FIG. 7 with

the parser record that includesa signature, the hash andatleast parts of the payload. In

802 those elements are shownin the form of a UFKB-entry in the buffer. The LUE,the

lookup engine 314 computes a “record bin number’from the hash for a flow-entry. A

bin herein may have one or more “buckets” each containing a flow-entry. The preferred

embodimenthas four buckets per bin.

Since preferred hardware embodiment includes the cache,all data accesses to

records in the flowchart of FIG.8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. [f the cache successfully returns with a bucket from the bin number,indicating

there are more buckets in the bin, the lookup/update engine compares (807) the current

signature (the UFKB-entry’s signature) from that in the bucket(i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is markedin step

810 as “in process” and a timestamp added. Step 811 indicates to the UFKB thatthe

UFKB-entry in 802 hasastatus of “found.” The “found”indication allowsthestate

processing 328 to begin processing this UFKB element. The preferred hardware

embodimentincludes one or morestate processors, and these can operate in parallel with

the lookup/updateengine.

In the preferred embodiment,a set of statistical operations is performed by a

NOACEx. 1017 Page 33

NOAC Ex. 1017 Page 34

eeeseemtimeneene

;

t

i

15

20

25

9)

25

calculator for every packet analyzed. Thestatistical operations may include one or more

of counting the packets associated with the flow; determiningstatistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determining statistical relationships of

timestampsof packets in the same direction. Thestatistical measures are kept in the

flow-entries. Otherstatistical measures also may be compiled. Thesestatistics may be

used singly or in combination bya statistical processor componentto analyze many

different aspects of the flow. This may include determining network usage metrics from

the statistical measures, for example to ascertain the network’s ability to transfer

information for this application. Such analysis provides for measuring the quality of

service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumedby an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The processexits at

813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestampto the present timestamp.

It may be that the bucketof the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 movesto the next bucketfor this bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

continues lookup up buckets of the bin until there ts either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the recordin the unified flow key buffer for this

packet is new,and in 812, anystatistical updating operations are performedforthis

packet by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE)creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new”status or a “found”status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash maybe used that correspondsto a single flow-entry. In such an

NOACEx.1017 Page 34

NOAC Ex. 1017 Page 35

20

» J

embodiment, the flow chart of FIG.8 is simplified as would be clear to those in the art.

The hardware system

Eachofthe individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodimentof FIG.3,

it would be clear to one skilled in the art that the flow of FIG. 3 mayalternatively be

implemented in software running on one or more general-purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shownin FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. To oneskilled in the art it would be clear that more and

more of the system may be implemented in software as processors becomefaster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is

the extraction-operation database memory, in which the extraction instructions are

stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.

Typically, the system is initialized from a microprocessor (not shown)at which time

these memories are loaded through a host interface multiplexor and control register 1005

via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are

preferably obtained by compiling process 310 of FIG.3.

A packetenters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which contro] an input buffer interface

controller 1022. The buffer 1008 and interface control 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packetstart

signal 1021 and the interface control 1022 generates a next packet(i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packetstarts loadinginto the buffer memory 1008, pattern recognition engine (PRE)

1006 carries out the operations on the input buffer memory describedin block 304 of

FIG. 3. That is, protocol types and associated headers for each protocollayer that exist in

the packet are determined.

NOACEx.1017 Page 35

NOAC Ex. 1017 Page 36

PREOALepeecmnnan 15

20

25

30

0 J

27

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.

The first lookup table is always at address zero. The Pattern Recognition Engine uses a

base packet offset from a controlregister to start the comparison.It loads this value into

a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an addressintothefirst lookuptable.

Each lookuptable returns a wordthatlinks to another lookuptable or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a

commandfor the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a

first stage that checks the protocol type field to determine if it is an 802.3 packet and the

field should be treated as a length. If it is not a length, the protocol is checked ina

secondstage. Thefirst stage is the only protocol level that is not programmable. The

second stage has twofull sixteen bit content addressable memories (CAMs) defined for

future protocol additions.

Thus, whenever the PRE recognizesa pattern, it also generates a command for

the extraction engine(also called a “slicer”) 1007. The recognized patterns and the

commandsare sent to the extraction engine 1007 that extracts information from the

packet to build the parser record. Thus, the operationsof the extraction engine are those

carried out in blocks 306 and 312 of FIG. 3. The commandsare sent from PRE 1006 to

slicer 1007 in the form of extraction instruction pointers which tell the extraction engine

1007 whereto a find the instructions in the extraction operations database memory (Le.,

slicer instruction database) 1002.

Thus, when the PRE 1006 recognizesa protocolit outputs both the protocol

identifier and a process codeto the extractor. The protocolidentifier is added to the flow

signature and the process codeis used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

NOACEx. 1017 Page 36

NOAC Ex. 1017 Page 37

Aneanitmenenee

RFLRRete

10

20

25

J)

28

a byte-wise barrel shifter so that the bytes moved can be packedinto the flow signature.

The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the

input buffer memory andtransferring the data to a parser output buffer memory 1010.

Someinstructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already

processed by PRE 1006 while more(i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Onceall the selected parts of the packet used to form the signature are extracted,

the hash is loaded into parser output buffer memory 1010. Any additional payload from

the packetthat is required for further analysis is also included. The parser output memory

1010is interfaced with the analyzer subsystem by analyzer interface control 1011. Once

all the information of a packet is in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is movedto the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzeris

initialized prior to operation, and initialization includes loading the state processing

information generated by the compilation process 310 into a database memory for the

state processing, called state processorinstruction database (SPID) memory 1109.

The analyzer subsystem | 100 includes a host bus interface 1122 using an

analyzer hostinterface controller 1118, which in turn has access to a cache system 1115.

The cache system hasbi-directional access to and from the state processor of the system

1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

NOACEx. 1017 Page 37

NOAC Ex. 1017 Page 38

more©

20

J J

29

comprising packetsignatures and payloads that come from the parser into the unified

flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB recordis essentially a parser record; the UFKB holdsrecords of

packets that are to be processed orthatare in process. Furthermore, the UFKB provides

for one or morefields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi-directional access between each ofthe finite

state machines and the unified flow key buffer 1103. The UFKB record includesa field

that stores the packet sequence number,and anotherthatis filled with state information

in the form of a program counterfor the state processor 1108 that implementsstate

processing 328. The status flags of the UPKB foranyentry includes that the LUE is done

and that the LUEis transferring processing of the entry to the state processor. The LUE

done indicator is also used to indicate what the next entry is for the LUE. Therealso is

provided a flag to indicate that the state processor is done with the current flow and to

indicate whatthe nextentry is for the state processor. There also is provided a flag to

indicate the state processoris transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB recordis first processed by the LUE 1107. A record that has been

processed by the LUE 1107 maybeprocessed bythe state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed bythe state processor 1108 or only by the LUE. Whetherornot a particular

engine has been applied to any unified flow key buffer entry is determined by status

fields set by the engines upon completion. In one embodiment, a status flag in the

UFKB-entry indicates whether an entry is new or found. In other embodiments, the LUE

issues a flag to pass the entry to the state processor for processing, and the required

operations for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed byall three engines.

Furthermore, some UFKB entries may needto be processed morethan once by a

NOACEx. 1017 Page 38

NOAC Ex. 1017 Page 39

Cheatveohoe

STeeeett

PPETeen
20

25

30

5 5

particular engine.

Eachofthese three enginesalso has bi-directional access to a cache subsystem

{115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and out ofit from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface {123, and

a microprocessorvia analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMsare arranged as a stack ordered from a top CAM to a bottom CAM.The

bottom CAM’s pointer points to the least recently used (LRU) cache memoryentry.

Wheneverthere is a cache miss, the contents of cache memory pointed to by the bottom

CAMarereplaced by the flow-entry from the flow-entry database 324. This now

becomesthe mostrecently used entry, so the contents of the bottom CAM are movedto

the top CAM andall CAM contentsare shifted down. Thus, the cacheis an associative

cache with a true LRU replacementpolicy.

The LUE 1107first processes a UFKB-entry, and basically performs the

operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUEto indicate

that a “new” UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read

a matching bin of up to four buckets from the cache. The cache system attempts to obtain

the matching bin. If a matching binis not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

Whena flow-entry is found using the hash, the LUE 1107 looksat each bucket

and comparesit using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match,orif the cache failed to provide a bin of flow-entries from

the cache, a time stampinset in the flow key of the UFKB record, a protocol

identification and state determination is made using a table that was loaded by

compilation process 310 during initialization, the status for the recordis set to indicate

NOACEx. 1017 Page 39

NOAC Ex. 1017 Page 40

APEeiMaePineresee
20

25

30

J J

31

the LUE hasprocessed the record, and an indication is made that the UFKB-entry is

ready to start state processing. The identification and state determination generates a

protocol identifier which in the preferred embodimentis a “jump vector” for the state

processor which is kept by the UFKB for this UFKB-entry and used by thestate

processorto start state processing for the particular protoco]. For example, the jump

vector jumps to the subroutine for processing thestate.

If there was a match,indicating that the packet of the UFKB-entry is fora

previously encountered flow, then a calculator componententers one or morestatistical

measures stored in the flow-entry, including the timestamp.In addition, a time difference

from the last stored timestamp maybe stored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by lookingat the protocol

identifier stored in the flow-entry of database 324.If that value indicates that no more

classification is required, then the status for the record is set to indicate the LUE has

processed the record. In the preferred embodiment, the protocolidentifier is a jump

vector for the state processor to a subroutine to state processing the protocol, and no

more classification is indicated in the preferred embodiment by the jump vector being

zero. If the protocol!identifier indicates more processing, then an indication is madethat

the UFKB-entry is readyto start state processing and the status for the record is set to

indicate the LUE hasprocessed the record.

The state processor 1108 processes information in the cache system according to

a UFKB-entry after the LUE has completed. State processor 1108 includesastate

processor program counter SPPCthat generates the address in the state processor

instruction database 1109 loaded by compiler process 310 during initialization.It

contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction

pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates

conditional branching. The SPIP can be loaded from oneofthree sources: (1) A protocol

identifier from the UFKB, (2) an immediate jump vector form the currently decoded

instruction, or (3) a value provided by the arithmetic logic unit (SPALU)included in the

state processor.

Thus, after a Flow Keyis placed in the UFKB by the LUE with a knownprotocol

identifier, the Program Counteris initialized with the last protocol recognized by the

NOACEx. 1017 Page 40

NOAC Ex. 1017 Page 41

20

25

30

5 5

32

Parser. Thisfirst instruction is a jumpto the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU)containsall the Arithmetic, Logical and

String Compare functions necessary to implement the State Processorinstructions. The

main blocks of the SPALUare: The A and B Registers, the Instruction Decode & State

Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operandsby exclusive-

or-ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or morestate

operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processoris

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is

new or correspondingto a found flow-entry. This UFKB-entry is retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the

process by using the last protocol recognized by the parser subsystem 301 as an offset

into a jump table. The jumptable takesus to the instructionsto use for that protocol.

Mostinstructions test something in the unified flow key buffer or the flow-entry if it

exists. The state processor 1108 may havetotest bits, do comparisons, add or subtractto

perform thetest.

Thefirst state processorinstruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performsthe one or more fetched

operations (1304). In our implementation, each single state processorinstruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be

performed oneach unified flow key buffer entry. One aspectof the state processorisits

ability to search for one or more (up to four) reference strings in the payload part of the

UFKB entry. This is implemented by a search engine componentof the state processor

responsive to special searching instructions.

NOACEx.1017 Page 41

NOAC Ex. 1017 Page 42

STHSSETRSoeotaan
PYROcaraito

10

20

25

30

0 J)

33

In 1307, a check is made to determineif there are any more instructions to be

performedfor the packet.If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP maybeset by an

immediate jump vectorin the currently decoded instruction, or by a value provided by

the SPALUduring processing.

The next instruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309if the processing on this particular packet

has resulted in a final state. Thatis, is the analyzer is done processing not only forthis

particular packet, but for the whole flow to which the packet belongs, andthe flow is

fully determined. If indeed there are no morestates to processforthis flow, then in 1311

the processorfinalizes the processing. Somefinal states may need to put a state in place

that tells the system to remove a flow—for example, if a connection disappears from a

lowerlevel connection identifier. In that case, in 1311, a flow removalstate is set and

saved in the flow-entry. The flow removal state may be a NOP (no-op) instruction which

meansthere are no removalinstructions.

Once the appropriate flow removalinstruction as specified for this flow (a NOP

or otherwise) is set and saved, the processis exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in

1310 the system saves the state processor instruction pointer in the current flow-entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matchesthis flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer

1103 and the flow-entry in the cache. Oncethe state processoris done, a flag is set in the

UFKB forthe entry that the state processor is done. Purthermore, If the flow needs to be

inserted or deleted from the database of flows, control is then passed onto the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processorsetting another flag in the UFKB for this UFKB-entry indicating that

NOAC Ex. 1017 Page 42

NOAC Ex. 1017 Page 43

ClesMtete
ie

ORaoe
20

25

30

2)

34

the state processor is passing processing ofthis entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The processofflow insertion is now described with the aid of FIG. 12. Flowsare

groupedinto bins of buckets by the hash value. The engine processes a UFKB-entry that

may be neworthat the state processor otherwise has indicated needs to be created.

FIG. 12 showsthe case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB,so this bin may already have been sought for the UFKB-

entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. [fin 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked “used”in the cache engine of cache 1115 using a timestamp

that is maintained throughoutthe process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packet to verify that all the elements are in place to

complete the record. In 1211 the system marks the record bin and bucketas “in process”

and as “‘new”in the cache system (and hence in the external memory). In 1212, the initial

Statistical measures for the flow-record are set in the cache system. This in the preferred

embodimentclears the set of counters used to maintain statistics, and may perform other

proceduresforstatistical operations requires by the analyzerfor the first packet seen for a

particular flow.

Backin step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucket for this particular bin in the cache system.If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid

bucket, the unified flow key buffer entry for the packet is set as “drop,” indicating that

the system cannotprocess the particular packet because there are no bucketsleft in the

system. The process exits at 1213. The FIDE 1110 indicates to the UFKB that the flow

insertion and deletion operations are completed for this UFKB-entry. This also lets the

UFKB provide the FIDE with the next UFKB record.

NOACEx. 1017 Page 43

NOAC Ex. 1017 Page 44

PPIee

eieieiinitePsaeote

20

25

30

J J

35

Oncea set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and managea particular packetandits flow signature, the

unified flow key buffer entry is marked as “completed.” That elementwill then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained

in the cache 1115. The cache system 1115 is intelligent enoughto access the flow

database andto understand the datastructures that exists on the other side of memory

interface 1123. The lookup/update engine 1107is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system onceit is looked up by meansof the

lookup/update engine request, and the flow insertion/deletion engine 1110 can create

new entries in the cache system if required based on information in the unified flow key

buffer 1103. The cacheretrieves information as required from the memory throughthe

memory interface 1123 and the unified memory controller 1119, and updates information

as required in the memory through the memorycontroller 1119.

There are several interfaces to components of the system external to the module

of FIG. 11 for the particular hardware implementation. These include host businterface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessoror a multiplexor (MUX) system.

Consequently, one can connectthe overall traffic classification system of FIGS. 11 and

12 into someother processing system to managethe classification system and to extract

data gathered by the system.

The memory interface 1123 is designedto interface to any of a variety of memory

systems that one may wantto use tostore the flow-entries. One can use different types of

memory systemslike regular dynamic random access memory (DRAM), synchronous

DRAM,synchronous graphic memory (SGRAM),static random access memory

(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packetinputinterface

1012—a general interface that works in tandem withthe signals of the input buffer

NOACEx. 1017 Page 44

NOAC Ex. 1017 Page 45

omeeee

pertet
ii2
4
ii
t
i
i

i

20

25

Oo J

36

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host

interface multiplexor and control registers 1005. This enables the parsing system to be

managedby an external system, for example a microprocessor or another kind of

external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodimentofthis aspect of the invention is described in a

hardware description language (HDL) such as VHDLor Verilog. It is designed and

created in an HDLsothatit may be used as a single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposes

related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method ofdescribing the hardware.

In accordance with one hardware implementation, the elements shown in

FIGS. 10 and 11 are implementedinaset of six field programmable logic arrays

(FPGA’s). The boundaries of these FPGA’s are as follows. The parsing subsystem of

FIG. 10 is implemented as two FPGAS; one FPGA,andincludes blocks 1006, 1008 and

1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,

1011 parts of 1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented

as a single FPGA.State processor 1108 and part of state processor instruction database

memory 1109 is another FPGA.Portionsof the state processorinstruction database

memory 1109 are maintained in external SRAM’s. The lookup/update engine 1107 and

the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGAincludes

the cache system 1115, the unified memory control 1119, and the analyzer hostinterface

and control 1118.

Note that one can implementthe system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s.It is

anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

NOACEx.1017 Page 45

NOAC Ex. 1017 Page 46

TtAN9oe
DCNrw

wn

15

20

25

30

O)

37

Operation of the Invention

Fig. 15 shows how an embodimentof the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 so that all packets passing point 121 in

either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-

system 301, which determines flow signatures, and analyzer sub-system 303 that

analyzes the flow signature of each packet. A memory 324 is used to store the database

of flows that are determined and updated by monitor 300. A host computer 1504, which

might be any processor, for example, a general-purpose computer,is used to analyze the

flows in memory 324. As is conventional, host computer 1504 includes a memory, say

RAM,shownas host memory 1506.In addition, the host might contain a disk. In one

application, the system can operate as an RMONprobe,in which case the host computer

is coupled to a networkinterface card 1510 that is connected to the network 102.

The preferred embodimentof the invention is supported by an optional Simple

Network ManagementProtocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMONprobe, where a network interface card is used

to send RMONinformation to the network. Commercial SNMP implementationsalso

are available, and using such an implementation can simplify the process of porting the

preferred embodimentof the invention to any platform.

In addition, MJB Compilers are available. An MIB Compileris a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying outstate

analysis for packet exchanges that are commonlyreferred to as “server announcement”

type exchanges. Server announcementis a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcementprocess as a means of

multiplexing a single port or socket into many applicationsand services. With this type

of exchange, messagesare sent on the network,in either a broadcast or multicast

approach, to announcea server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

NOACEx. 1017 Page 46

NOAC Ex. 1017 Page 47

Aagate

mirpeeneMintySk2aRemIRRee
!

¢

10

20

25

30

))

38

appropriate connection point for communicating that particular application with the

particular server. Using the server announcement method,a particular application

communicates using a service channel, in the form of a TCP or UDPsocketor port as in

the IP protocol suite, or using a SAPas in the Novell IPX protocolsuite.

The analyzer 303 is also capable of carrying out “in-stream analysis” of packet

exchanges. The “in-stream analysis” methodis used either as a primary or secondary

recognition process. As a primary process, in-stream analysis assists in extracting

detailed information which will be used to further recognize both the specific application

and application component. A good example ofin-stream analysis is any Web-based

application. For example, the commonly used PointCast Web information application

can be recognized using this process; during the initial connection between a PointCast

server and client, specific key tokens exist in the data exchangethat will result in a

signature being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

announcementprocess. In manycases in-stream analysis will augment other recognition

processes. An example of combining in-stream analysis with server announcementcan

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one ofthe primary processesfor tracking

applicationsin client/server packet exchanges. The processof tracking sessions requires

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDPtransport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

port to exchange the remainderof the data between the client and the server. The server

then replies to the request ofthe client using this newly created port. The original port

used by the client to connectto the server will never be used again during this data

exchange.

One example ofsession tracking is TFIP (Trivial File Transfer Protocol), a

version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP,a specific port (port number 69)is always

NOACEx. 1017 Page 47

NOAC Ex. 1017 Page 48

eee

ttAeRunettneent
ae

ALEnePe

Poor

10

15

20

25

30

O JD

39

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDP port 69. Oncethe serverreceives this request,

a new port numberis created on the server. The server thenreplies to the client using the

new port. In this example,it is clear that in order to recognize TFTP; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the currentstate of particular

connectionsin the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCPtransport

protocol that providesa reliable means of sending information between a client and a

server. When a data exchangeisinitiated, a TCP request for synchronization messageis

sent. This message contains a specific sequence numberthat is used to track an

acknowledgementfrom the server. Once the server has acknowledged the

synchronization request, data may be exchanged betweenthe client and the server. When

communication is no longer required, the client sends a finish or complete message to

the server, and the server acknowledgesthis finish request with a reply containing the

sequence numbers from the request. The states of such a connection-oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcementprotocols vary. However, the

basic underlying process remains similar. A typical server announcement messageis sent

to one or more clients in a network. This type of announcement messagehasspecific

content, which, in another aspect of the invention, is salvaged and maintainedin the

database of flow-entries in the system. Because the announcementis sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announcedis known,and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPCis the implementation by Sun Microsystems,Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programminginterface that allows

NOACEx. 1017 Page 48

NOAC Ex. 1017 Page 49

9 >

40

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program orclient that wishes to use a server or procedure must

establish a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database

called the port Mapper. The port Mappercreates a direct association between a Sun-RPC

program or application and a TCP or UDPsocketor port (for TCP or UDP

implementations). An application or program numberis a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge numberof parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RPC servercan present the mappings between a unique program number and a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN,port number 111 is associated with Sun RPC.

As an example, considera client (e.g., CLIENT 3 shown as 106 in FIG. 1)

making a specific request to the server(e.g., SERVER 2 of FIG. 1, shown as 110) ona

predefined UDP or TCP socket. Once the port Mapperprocess on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to theclient.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet camein using the TCP transport and that no protocol wasspecified,

and thus will use the TCP protocolforits reply.

NOACEx. 1017 Page 49

NOAC Ex. 1017 Page 50

arOTELONRENAEERCRNINNaIeSeRtee?wane
|

20

25

OS 2

4]

3. The server 110 sends a TCP packetto port number 111, with an RPC

Bind Lookup Reply. The reply contains the specific port number(e.g., port

number‘port’) on which future transactions will be accepted for the specific

RPCprogram identifier (e.g., Program ‘program’) and the protocol (UDP or

TCP)foruse.

It is desired that from now onevery time that port number‘port’ is used, the

packet is associated with the application program ‘program’until the number‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 bycreating

a flow-entry and a signature includes a mechanism for remembering the exchange so that

future packets that use the port number‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup requestand reply, there are other ways

that a particular program—say ‘program’—might be associated with a particular port

number, for example number‘port’. One is by a broadcast announcementof a particular

association between an application service and a port number,called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2—

replies to some client—say CLIENT 1—requesting some portMapperassignment with a

RPC portMapper Reply. Some other client—say CLIENT 2—-mightinadvertently see

this request, and thus know that for this particular server, SERVER 2, port number‘port’

is associated with the application service ‘program’. It is desirable for the network

monitor 300 to be able to associate any packets to SERVER 2 using port number‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG. 1) via the server’s interface to the network | 16. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow

900 starts with a step 910 that a Remote Procedure Call bind lookup requestis issued by

client 106 and ends with the serverstate creation step 904. Such RPC bind lookup

request includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or

NOACEx. 1017 Page 50

NOAC Ex. 1017 Page 51

eeetmaeteeer

:
i

20

25

30

) J

42

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects.:

e Process 909; Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP). Extract

the TCP or UDPport (process 909) which is 111 indicating Sun RPC.

e Process 908: Decode the Sun RPC packet. Check RPCtypefield for ID. If value is

portMapper, save paired socket (i.e., dest for destination address, src for source

address). Decode ports and mapping, save ports with socket/addr key. There may be

more than one pairing per mapperpacket. Form a signature (e.g., a key). A flow-

entry is created in database 324. The saving of the request is now complete.

At somelater time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognizeit from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature(i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now may be usedto identify packets associated with the

server.

The serverstate creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an

RPC Announcement portMapper shownas 902. The Remote Procedure Call protocol

can announcethatit is able to provide a particular application service. Embodiments of

the present invention preferably can analyze when an exchange occurs betweena client

and a server, and also can track those stations that have received the announcementof a

service in the network.

The RPC Announcement portMapper announcement902is a broadcast. Such

Causes variousclients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapperstep 901

could be in reply to a portMapperrequest, and is also broadcast.It includes all the

service parameters.

Thus monitor 300 creates and savesall such states for later classification of flows

that relate to the particular service ‘program’.

NOACEx.1017 Page 51

NOAC Ex. 1017 Page 52

SFRSESHEn
Tra
weOrea, prydiaay,

20

25

30

i, S

43

FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged,e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodimentofthe present

invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2”

212, from information found in the packets 206 and 207 which,in the example,

correspond to a Sun RPC Bind Lookuprequest and reply, respectively.

Considerfirst the Sun RPC Bind Lookup request. Suppose packet 206

corresponds to such a request sent from CLIENT 3 to SERVER2. This packet contains

important information that is used in building a signature according to an aspectof the

invention. A source and destination network address occupythefirst two fields of each

packet, and accordingto the patterns in pattern database 308, the flow signature (shown

as KEYI 230 in FIG. 2) will! also contain these two fields, so the parser subsystem 301

will include these twofields in signature KEY | (230). Note that in FIG.2, if an address

identifies the client 106 (shownalso as 202), the label used in the drawing is “C,”. If

such address identifies the server 110 (shown also as server 204), the label used in the

drawing is “S,”. Thefirst two fields 214 and 215 in packet 206 are “S,” and C,” because

packet 206 is provided from the server 110 and is destined for the client 106. Suppose

for this example, “S,”is an address numerically less than address “C,”. A third field

“‘p!” 216 identifies the particular protocol being used,e.g., TCP, UDP,etc.

In packet 206, a fourth field 217 anda fifth field 218 are used to communicate

port numbersthat are used. The conversation direction determines wherethe port

numberfield is. The diagonal pattern in field 217 is used to identify a source-port

pattern, and the hashpattern in field 218 is used to identify the destination-port pattern.

The order indicates the client-server message direction. A sixth field denoted “iy 219is
an element that is being requested by the client from the server. A seventhfield denoted
“s,a” 220 is the service requested bythe client from server 110. The following eighth

field “QA” 221 (for question mark)indicates that the client 106 wants to know whatto

use to access application “s,a”. A tenth field “QP” 223 is used to indicate that the client

wants the serverto indicate what protocolto use for the particular application.

Packet 206 initiates the sequence of packet exchanges, é.g., a

RPC Bind Lookup Request to SERVER2.It follows a well-defined format, as doall the

NOACEx. 1017 Page 52

NOAC Ex. 1017 Page 53

PORTEtnesreemy

SSeteeosoo
{*

15

20

25

30

OO) >

44

packets, andis transmitted to the server 110 on a well-knownservice connection

identifier (port 111 indicating Sun RPC).

Packet 207is the first sent in reply to the client 106 from the server.It is the

RPC Bind Lookup Reply asaresult of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated “C,” and “S,”, respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to

the client 106. The protocol “‘p!”is used as indicated in field 226. The request “i!”is in

field 229. Values have beenfilled in for the application port number,e.g., in field 233

and protocol ““‘p2’”in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includes a destination and a

source address 240 and 241. One aspect of the invention is that the flow keys are built

consistently in a particular order no matter what the direction of conversation. Several

mechanisms may be used to achieve this. In the particular embodiment, the numerically

lower addressis always placed before the numerically higher address. Suchleast to

highest order is used to get the best spread of signatures and hashes for the lookup

operations.In this case, therefore, since we assume “S,”<“C,”, the order is address “S,”

followed byclient address “C,”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p!”. The next

field used for the signature is field 243, which contains the destination source port

number shownas a crosshatched pattern from the field 218 of the packet 206. This

pattern will be recognized in the payload of packets to derive how this packet or

sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a

combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDSfor p! that will be used to recognizethis flow

(e.g., port 111). Port 111 indicates this is Sun RPC. Someapplications, such as the Sun

RPC Bind Lookups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY-1 points to a knownapplication denoted“a!” (Sun RPC Bind

NOACEx. 1017 Page 53

c

“oO

NOAC Ex. 1017 Page 54

EERCHSRth9
TRETPRRENGSALSRa4aSRW

wartt

epeemererrenimrerretinserenepntne

15

20

25

Vf A

45

Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted asstate “stp” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookupreply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature

enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow-

entry is obtained, andin this flow-entry indicates state “stp”. The operations for state

“Stp” in the state processor instruction database 326 instructs the state processorto build

and store a new flow signature, shown as KEY-2 (212) in FIG.2. This flow signature

built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server “S,” followed by (the numerically higher address) client

“C,”. A protocolfield 252 defines the protocolto be used, e.g., “~p2” which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the

reply packet. In this case, the application is Sun RPC,and field 254 indicates this

application “a2”. A next-state field 255 defines the next state that the state processor

should proceed to for more complex recognition jobs, e.g., a state “st!”. In this particular

example, this is a final state. Thus, KEY-2 may now be used to recognize packets that

are in any way associated with the application “a2”. Two such packets 208 and 209 are

shown, one in each direction. They use the particular application service requested in the

original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

addressfields with server “S,” followed byclient “C,”. Such values are automatically

filled in when the addressesare first created in a particular flow signature. Preferably,

large collections of flow signatures are kept in a lookuptable in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a numberofpackets,e.g., represented

by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S, and Cy, in a pair of fields 260 and 261. A field vme —

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

NOACEx.1017 Page 54

NOAC Ex. 1017 Page 55

EEa

ne

mEay

weboo honbtiat
wu

20

25

30

J >

46

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the

packet. Others require a sequenceofstate transitions to occur in order to match a known

and predefined climb from state-to-state.

Thusthe flow signature for the recognition of application “a2” is automatically

set up by predefining what packet-exchange sequences occur for this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their correspondingstates. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final” resting state such as

“st,” in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

The Cache Subsystem

Referring again to FIG. 11, the cache subsystem 1115 is connected to the lookup

update engine (LUE) 1107, the state processor the state processor (SP) [108 and the flow

insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the

flow-entry database stored in memory 1123, so is coupled to memory 1123 via the

unified memory controller 1119. According to one aspectof the invention,these entries

in the cache are those likely-to-be-accessed next.

It is desirable to maximize the hit rate in a cache system. Typical prior-art cache

systems are used to expedite memory accesses to and from microprocessor systems.

Various mechanismsare available in such prior art systems to predict the lookup such

that the hit rate can be maximized. Priorart caches, for example, can use a lookahead

mechanism to predict both instruction cache lookups and data cache lookups. Such

lookahead mechanismsare not available for the packet monitoring application of cache

subsystem 1115. When a new packetenters the monitor 300, the next cache access, for

example from the LUE 1107, maybefor a totally different flow thanthe last cache

lookup, and there is no way aheadof time of knowing whatflow the next packet will

belongto.

Oneaspectof the present invention is a cache system that replaces a least recently

NOACEx.1017 Page 55

NOAC Ex. 1017 Page 56

aa

C
‘
c
C
i
f.
7
F
a

pelotaneeopececeenetie
aealWrHPTat

15

20

25

30

C) +)

47

used (LRU) flow-entry when a cache replacementis needed. Replacing least recently

used flow-entries is preferred becauseit is likely that a packet following a recent packet

will belong to the same flow. Thus, the signature of a new packetwill likely match a

recently used flow record. Conversely, it is not highly likely that a packet associated with

the least recently used flow-entry will soon arrive.

Furthermore,after one of the engines that operate on flow-entries, for example

the LUE 1107, completes an operation on a flow-entry,it is likely that the same or

another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

A feature of the cache system of the present invention is that most recently used

(MRU)flow-entries are kept in cache wheneverpossible. Since typically packets of the

sameflow arrive in bursts, and since MRUflow-entries are likely to be required by

another engine in the analysis subsystem, maximizing likelihood of MRUflow-entries

remaining in cache increasesthe likelihood of finding flow records in the cache, thus

increasing the cachehitrate.

Yet another aspect of the present cache inventionis that it includes an associative

memory using a set of content addressable memory cells (CAMs). The CAM contains an

address that in our implementation is the hash value associated with the corresponding

flow-entry in a cache memory (e.g., a data RAM) comprising memory cells. In one

embodiment, each memory cell is a page. Each CAM also includesa pointer to a cache

memory page. Thus, the CAM contents include the address and the pointer to cache

memory. As is conventional, each CAM cell includes a matching circuit having an input.

The hash is presented to the CAM’s matching circuit input, and if the hash matches the

hash in the CAM,the a match output is asserted indicating there is a hit. The CAM

pointer points to the page number(i.e., the address) in the cache memory ofthe flow-

entry.

Each CAM alsoincludes a cache address input, a cache pointer input, and a cache

contents output for inputting and outputting the address part and pointer part of the

CAM.

The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flow-entry. Thus, the pointer is the page numberin the

NOACEx. 1017 Page 56

NOAC Ex. 1017 Page 57

 20

25

30

2 >

48

cache memory. In one version, each hash value correspondsto a bin of N flow-entries

(e.g., 4 buckets in the preferred embodimentofthis version). In another implementation,

each hash value points to a single flow record,i.e., the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache 1115.

Furthermore, as is conventional, the match output signal is provided to a

corresponding location in the cache memory sothat a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

Oneaspectof the present invention achieves a combination of associatively and

true LRU replacementpolicy. For this, the CAMsof cache system 1115 are organized in

what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a

bottom CAM.The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to

the CAM array, and any CAM that has an address that matches the input hashasserts its

match output indicating a hit. When there is a cachehit, the contents of the CAM that

produced the hit (including the address and pointer to cache memory) are put in the top

CAM ofthe stack. The CAM contents (cache address, and cache memory pointer) of the

CAMsabove the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow recordis put in the cache memory element

pointed to by the bottom CAM. All CAM contents above the bottom are shifted down

one, and then the new hash value andthe pointer to cache memory of the new flow-entry

are put in the top-most CAM of the CAM stack.

In this manner, the CAMsare ordered according to recentness of use, with the

least recently used cache contents pointed to by the bottom CAM andthe most recently

used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-basedcache,there is no fixed

relationship between the address in the CAM and whatelement of cache memory it

points to. CAM’s relationship to a page of cache memory changes over time. For

example, at oneinstant, the fifth CAM in the stack can include a pointer to one particular

page of cache memory, and sometimelater, that same fifth CAM can pointto a different

NOACEx. 1017 Page 57

NOAC Ex. 1017 Page 58

49

cache memory page.

In one embodiment, the CAM array includes 32 CAMsand the cache memory

includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM

contents. Suppose the CAMsare numbered CAMg, CAM}, ..., CAM3,, respectively,

with CAMthe top CAM in the array and CAM3, the bottom CAM.

The CAM arrayis controlled by a CAM controller implementedas a state

machine, and the cache memory is controlled by a cache memory controller which also is

implemented as a state machine. The need for such controllers and how to implement

them as state machines or otherwise would be clear to one skilled in the art from this

description of operation. In order not to confuse these controllers with other controllers,

for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine,respectively.

Consider as an example, that the state of the cacheis that it is full. Suppose

furthermore that the contents of the CAM stack (the address and the pointer to the cache

memory) and of the cache memory at each page number address of cache memory are as

shownin the following table.

Pua

CAMs|hashay|pages||_Pazeso
pases:Dpasenn|

This says that CAM,contains andwill match with the hash value hashy, and a lookup

with hashy will produce a match and the address page, in cache memory. Furthermore,

NOACEx. 1017 Page 58

NOAC Ex. 1017 Page 59

» »: J) —

50

page, in cache memory containsthe flow-entry, entry,, that in this notation is the flow-

entry matching hashvalue hashg. This table also indicates that hashg was more recently

used than hash,, hashs more recently than hash), and so forth, with hash3, the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from

5 unified flow key buffer 1103 with a hash value hash3,. The LUE looks up the cache

subsystem via the CAM array. CAM3, gets a hit and returns the page numberofthe hit,

i.e., pagez,. The cache subsystem now indicates to the LUE 1007that the supplied hash

value produceda hit and provides a pointer to page3, of the cache memory which

contains the flow-entry corresponding to hashg), Le., flow3,. The LUE nowretrieve the

10 flow-entry flow3, from the cache memory at address page3,. In the preferred

embodiment, the lookup of the cache takes only one clock cycle.

The value hash, is the most recently used hash value. Therefore, in accordance

with an aspectof the inventive cache system, the most recently used entry is put on top

of the CAM stack. Thus hashg, is put into CAMg(pointing to page3,). Furthermore,

15 hash3g is now the LRU hash value, so is moved to CAM3,. The nextleast recently used

hash value, hashy9 is now moved to CAM3,, and so forth. Thus, all CAM contents are

shifted one down after the MSU entry is put in the top CAM.In the preferred

embodimentthe shifting down on CAM entries takes one clock cycle. Thus, the lookup

and the rearranging of the CAM array to maintain the ordering according to usage

20 recentness. The following table showsthe new contents of the CAM array and the

(unchanged) contents of the cache memory.
NOACEx. 1017 Page 59

NOAC Ex. 1017 Page 60

 ‘piow

aweow

i

51

CAMy|bashyr[pane||pase|entry|
CAN, [hash|page|pegey[ety|

CAN;|hash,|pager} [pase [ent
[se

pagerg pagery entry29

pagerg pagesg entry39

pagesg page3, entry3

To continue with the example, suppose that some timelater, the LUE 1007 looks

up hash value hashs. This producesa hit in CAMg pointing to pages of the cache

memory. Thus, in one clock cycle, the cache subsystem 1115 provides LUE 1007 with an

indication of a hit and the pointer to the flow-entry in the cache memory. The most

recent entry is hashs, so hash, and cache memory address pageg are entered into CAMy.

The contents of the remaining CAMsare all shifted down one upto andincluding the

entry that contained hashs. That is, CAM7, CAMg, ..., CAM3, remain unchanged. The

CAM array contents and unchanged cache memory contents are now as shownin the

followingtable.

NOACEx. 1017 Page 60

NOAC Ex. 1017 Page 61

emae .

t

|
L.

10

15
o S

52

pages|| _pageg entryy
CAM, pages) page; entry,

entry

AM,

CAM,

CAMs

O N

OQ

Thusin the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem whenthereis a cachehit will be described

by continuing the example. Supposethere is a lookup(e.g., from LUE 1107) for hash

value hashy3. The CAM array produces a missthat causes in a lookup using the hash in

the external memory. The specific operation of our specific implementation is that the

CAM state machine sends a GET message to the memory state machine that results in a

memory lookup using the hash via the unified memory controller (UMC) 1119.

However, other means of achieving a memory lookup when there is a miss in the CAM

array would be clear to thosein theart.

The lookupin the flow-entry database 324 (i.e., external memory)results in a hit

or a miss. Supposethat the database 324 of flow-entries does not have an entry matching

hash value hashy3. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE 1007. Suppose, on the other hand that

there is a flow-entry—entry43;— in database 324 matching hash value hashy3. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with anotheraspect of the invention, the bottom CAM entry

CAMs, always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includesflushing out the LRU cache memory entry and

NOACEx.1017 Page 61

NOAC Ex. 1017 Page 62

J J

53

inserting a new entry into that LRU cache memory location pointed to by the bottom

CAM.The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hash43 is put in CAM3, and flow-

entry entry43 is placed in the cache page pointed to by CAM 31. The CAM array and

5 now changed cache memory contents are now

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM3, are now moved to CAMgand the entries previously in the top 30 CAMs moved

downsothat once again, the bottom CAM points to the LRU cache memory page.
NOACEx. 1017 Page 62

NOAC Ex. 1017 Page 63

2aLpdmRSFTNNT
’

+1ctREOIRANHREETRamtwnt aon4

7

wey:athownhan

aoob

DT)

54

CANT|Ws[CachePot[| Gace Aa

pageg | entryo
page; entry)

page? entry?

pages entry3

page entry4

pages entrys

pages entry¢CAM, page, page7 entry7 4
+

hash pages

entryz9

Note that the inserted entry is now the MRUflow-entry. So, the contents of

CAMs, are now moved to CAMpandthe entries previously in the top 30 CAMs moved

In addition to looking up entries of database 324 via the cache subsystem 1115

for retrieval of an existing flow-entry, the LUE, SP, or FIDE engines also may update the

flow-entries via the cache. As such, there may be entries in the cache that are updated

flow-entries. Until such updated entries have been written into the flow-entry database

324 in external memory,the flow-entries are called “dirty.” As is commonin cache

systems, a mechanism is providedto indicate dirty entries in the cache. A dirty entry

cannot, for example, be flushed out until the corresponding entry in the database 324 has

been updated.

Supposein the last example,that the entry in the cache was modified by the

operation. Thatis, hashg3 is in MRU CAMo, CAMpcorrectly points to page3q, but the

information in page3q ofthe cache, entry,3, does not correspondto entry43 in database

324. Thatis, the contents of cache page page3g is dirty. There is now a needto update the

database 324. This is called backing up or cleaning the dirty entry.

As is commonin cache systems,there is an indication provided that a cache

memory entry is dirty using a dirty flag. In the preferred embodiment,thereis a dirty flag

for each word in cache memory.

NOACEx. 1017 Page 63

NOAC Ex. 1017 Page 64

1
’
it

‘3 »: Xu

55

Anotheraspect of the inventive cache system is cleaning cache memory contents

LRUcache embodiment, the cleaning of the cache memory entries proceedsin the

inverse order of recentness of use. Thus, LRU pagesare cleaned first consistent with the

5 least likelihood that these are the entrieslikely to be flushedfirst.

'

|

{

i

according to the entry most likely to be first flushed out of the cache memory.In our

| In our embodiment, the memory state machine, wheneveritis idle,is
programmed to scan the CAM array in reverse order of recentness, i.e., starting from the

bottom of the CAM array, and look for dirty flags. Whenevera dirty flag is found, the

cache memory contents are backed upto the database 324 in external memory.

10 Note that once a page of cache memory is cleaned,it is kept in the cache in case

: itis still needed. The page is only flushed when more cache memory pagesare needed.

The corresponding CAM alsois not changed until a new cache memory page is needed.

In this way,efficient lookups ofall cache memory contents, including clean entries are

still possible. Furthermore, whenever a cache memory entry is flushed, a check isfirst

15 madeto ensurethe entry is clean.[f the entry is dirty, it is backed up priorto flushing the

entry.

The cache subsystem [115 can service two read transfers at one time. [f there are

more than two read requests active at one time the Cache services them in a particular

order as follows:

20 (1) LRU dirty write back. The cache writes back the least recently used cache

memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.

(2) Lookup and update engine 1107.

(3) State processor 1108.

25 (4) Flow insertion and deletion engine 1110.

(5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU ~1 to MRU;whenthere is nothing else pending,

the cache engine writes dirty entries back to external memory.

2 FIG. 19 shows the cache memory component 1900 of the cache subsystem 1115.

NOACEx. 1017 Page 64

NOAC Ex. 1017 Page 65

J DS

56

Cache memory subsystem 1900 includes a bank 1903 of dual ported memoriesfor the

pages of cache memory. In our preferred embodimentthere are 32 pages. Each page of

memory is dual ported. Thatis, it includes twosets of input ports each having address

and data inputs, and twosets of outputports, one set of input and output ports are

coupled to the unified memory controller (UMC) 1119 for writing to and reading from

the cache memory from andinto the external memoryused for the flow-entry database

324. Whichofthe outputlines 1909 is coupled to UMC 1119is selected by a

multiplexor 19{1 using a cache pageselect signal 1913 from CAM memory subsystem

part of cache system1115. Updating cache memory from the database 324 uses a cache

data signal 1917 from the UMC and a cache addresssignal 1915.

Looking up and updating data from and to the cache memory from the

lookup/update engine (LUE) 1107, state processor (SP) 1108 or flow insertion/deletion

engine (FIDE) 1110 uses the other input and outputports of the cache memory pages

1903. A bank of input selection multiplexors 1905 and a set of output selector

multiplexors 1907 respectively select the input and output engine usinga set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 2001 coupled to the CAM array

2005 and to the memory state machine 2003, together with someofthe signals that pass

between these elements. The signal namesare self-explanatory, and how to implement

these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM arrayis sufficient for one

skilled in the art to design such a CAM array, and many such designsare possible, FIG.

21 showsone such design. Referringto that figure, the CAM array 2005 comprises one

CAM,e.g., CAM[7] (2107), per page of CAM memory. The lookup port or update port

depend which of the LUE, SP or FIDEare accessing the cache subsystem. The input data

for a lookupis typically the hash, and shown as REF-DATA 2103. Loading, updating or

evicting the cache is achieved using the signal 2105 that both selects the CAM input data

using a select multiplexor 2109, such data being the hit page or the LRU page(the

bottom CAM in accordingto an aspect of the invention). Any loading is done via a 5 to

32 decoder 2111. The results of the CAM lookup forall the CAMsin the arrayis

NOACEx. 1017 Page 65

NOAC Ex. 1017 Page 66

|

tein”

aDdRBROH.

+
eo

' J\
Ko :

57

providedto a 32-5 low to high 32 to 5 encoder 2113 that outputs the hit 2115, and which

CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX

2121 that has the CAM data of each CAM asinputand an outputselected by the signal

2117 of the CAM that producedthe hit. Maintenanceofdirty entries is carried out

similarly from the update port that coupled to the CAM state machine 2001. A MUX

2123 has all CAMs’data input and a scan input 2127. The MUX 2123 producesthe dirty

data 2125.

Althoughthe present invention has been described in termsof the presently

preferred embodiments,it is to be understood that the disclosure is not to be interpreted

as limiting. Variousalterations and modifications will no doubt become apparentto

those of ordinary skill in the art after having read the above disclosure. Accordingly,it is

intended thatthe claimsbe interpreted as coveringall alterations and modifications as

fall within the true spirit and scopeof the present invention.

NOACEx. 1017 Page 66

NOAC Ex. 1017 Page 67

58
CLAIMS

Whatis claimedis:
{

—_
f . . . f . .ni hfA / . A packet monitor for examining packets passing through a connection point ona

computer network, each packets conforming to one or more protocols, the monitor
wa comprising: /

|

(a) a packet acquisition device coupled to the connection point and

configured to receive packets passing through/the connection point;

(b) a memory for storing a database comprising none or more flow-entries for

previously encountered conversational flows to which a received packet mayanon
10 belong;

ae

(c) a cache subsystem coupledto the flowfentry database memory providingwee
7

: for fast access of flow-entries from the flow-entry database; and

(d) a lookup engine coupled to the packet acquisition device and to the cache aoo
subsystem and configured to lookup whether a received packet belongs to a

15 flow-entry in the flow-entry database, the looking up being in the cacheaPWBBA,
subsystem.

2. A packet monitor according to claim /l, further comprising:

a parser subsystem coupled fo the packet acquisition device and to the

lookup engine suchthat the agquisition device is coupled to the lookup

20 engine via the parser subsysfem, the parser subsystem configured to extract

identifying information frgm a received packet,

wherein each flow-entry is identified by identifying information stored in the flow-

entry, and wherein the cache lgokup uses a function of the extracted identifying

information.

25 3. A packet monitor according to claim 2, wherein the cache subsystem is an

associative cache subsyste,

cells (CAMs).

including one or more content addressable memory

gS 4, A packet monitor acdording to claim 2, wherein the cache subsystem includes:

NOACEx. 1017 Page 67

NOAC Ex. 1017 Page 68

=

whibaiede.

20

OO)wf

59

(i) a set of cache memory elements coupled|o the flow-entry database
memory, each cache memory element including an input port to input an

flow-entry and configured to store a flow-entry of the flow-entry database;

(ii) a set of content addressable nemonfel (CAMs) connected according to
an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer to one of the cache memory elements,

and including:

a matching circuit having an input such that the CAM asserts a

match output whenthe inpiit is the same as the address in the CAM

cell, an asserted match oytput indicating a hit,

a CAM input configured to accept an address and a pointer, and

a CAM address output and a CAM pointer output;

(iii)©aCAM controller coupled to the CAM set; and

(iv) amemory controller coupled to the CAM controller, to the cache memory

set, and to the flow-entry

wherein the matchingcircuit inppts of the CAM cells are coupled to the lookup

engine such that that an input to/the matching circuit inputs produces a match output

in any CAM cell that contains An address equalto the input, and

wherein the CAM controller js configured such that which cache memory element a

particular CAM points to changes overtime.

A packet monitor according to claim 4, wherein the CAM controlleris

configured such that the hottom CAM points to the least recently used cache

memory element.

NOACEx. 1017 Page 68

NOAC Ex. 1017 Page 69

6.

5

10

7.

15

20

25

3 5
60

3a

A packet monitor according to claim 5, wherein the address and pointer output of

each CAM starting from the top CAM is coupled to the address and pointer input of
the next CAM,the final next CAM being fle bottom CAM,and wherein the CAM

controller is configured such than whefi there is a cache hit, the address and pointer

contents of the CAM that produced the hit are put in the top CAM ofthestack, the

address and pointer contents of the CAMsabove the CAM that producedthe

asserted match output shifted down, such that the CAMsare ordered according

to recentness of use,Awith the least recently used cache memory elementpointed to

by the bottom CAM and the mostrecently used cache memory elementpointed to
by the top CAM.

A cache system for looking up one or more elements of dn external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each

cache memory elementincluding an input porg to input an elementof the

external memory and configured to store the input external memory element;

(b) a set of content addressable memory c¢lls (CAMs) connected according to

an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer tefone of the cache memory elements,

and including

. . /
(i) a matching circuit having utsuch that the CAM asserts a match

output whenthe input is the/same as the address in the CAM cell, an

asserted match output indicating a hit,

(ii) a CAM input confjgured to accept an address and a pointer, and

(ii1) a CAM address putput and a CAM pointer output, and

(c) a CAM controller coupled to the CAM set;

(d) a memory controllef coupled to the CAM controller, to the cache memory

set, and to the external memory,

NOACEx. 1017 Page 69

NOAC Ex. 1017 Page 70

15

20

25

10.

II.

O 2

61

wherein the matching circuit inputs of the CAM cells/are coupled such that that an

input to the matching circuit inputs produces a matcH output in any CAM cell that

contains an address equal to the input, and

wherein the CAM controller is configured such that which cache memory element a

particular CAM points to changes overtime.

A cache system according to claim 7, wherein/ the CAM controller is configured

such that the bottom CAM points to the least re¢ently used cache memory element,

and wherein the CAM controller is configured fo implementa least recently used

replacement policy such that least recently usefl cache memory elementisthe first

memory elementflushed.

A cache system according to claim 8, wherein the address and pointer output of

each CAM starting from the top CAM is coyvipled to the address and pointer input of

the next CAM,the final next CAM being the bottom CAM,and wherein the CAM

controller is configured such than when thefe is a cache hit, the address and pointer

contents of the CAM that produced thehiare puf in the top CAM ofthe stack, the

address and pointer contents of the CAMs\above the CAM that produced the

asserted match output are shifted down/ such that the CAMsare ordered according

to recentness of use, with the least rec¢ntly used cache memory element pointed to

by the bottom CAM andthe mostrecgntly used cache memory element pointed to

by the top CAM.

A cache system according to claim 9, wherein the CAM controller is configured

such that replacing any cache memory elements occurs according to the inverse

order of recentness of use, with the least recently used entry being the first flushed

cache memory entry.

A cache system accordingt6claim 7, wherein each memory elementis a page of

memory.

A cache system according to claim 7, wherein each cache memory elementis

provided with an indication of whetheror notit is dirty, and wherein the CAM

controller is configured tf clean any dirty cache memory elements by backing up the

dirty contents into the external memory.

NOACEx. 1017 Page 70

NOAC Ex. 1017 Page 71

komthamat
15

20

25

13.

15.

16.

17.

18.

19.

62

A cache system according to claim 12, wherein the contents of any cache

memory element are maintained after cleaning unti} such cache contents need to be

replaced according to the LRU replacementpolicy.

A cache system according to claim 8, wherein each cache memory elementis

provided with an indication of whetheror notit/is dirty, and wherein the CAM

controller is configured to clean any dirty cach¢ memory elements by backing up the

dirty contents into the external memory.

A cache system according to claim 14, wherein the CAM controller is further

configured to clean any dirty cache memory plements prior to replacing the cache

memory element contents.

A cache system according to claim 15, wherein the CAM controller is further

configured to clean any dirty cache memory elementsprior to replacing the cache

memory element contents.

A cache system according to claim 9/ wherein each cache memory elementis

provided with an indication of whet notitis dirty, and wherein the CAM
controller is configured to clean dirty dache memory elements by backing up the

dirty contents into the external memofy in reverse order of recentnessofuse.

A cache system according to claim 17, wherein said cleaning in reverse order of

recentness of use automatically progeeds whenever the cache controlleris idle.

A cache system for looking up gne or more elements of an external memory,

comprising:

(a) a set of cache memory/elements coupled to the external memory, each

cache memory elementifcluding an input port to input an elementof the

external memory and cgnfigured to store the input external memory element;

and

(b) a set of content addressable memory cells (CAMs) containing an address

and a pointer to one of the cache memory elements, and including a

matching circuit having an input such that the CAM asserts a match output

whenthe inputis the same as the address in the CAM cell,

NOACEx.1017 Page 71

NOAC Ex. 1017 Page 72

J)
63

wherein which cache memory element a articular CAM points to changes over

time.
 20. A cache system according tetclaim 19, wherein the CAMsare connected in an

order from top to bottom, arid wherein the bottom CAM pointsto the least recently
5 used cache memory element.

ihe
/

/

a
hho

CHwa

Note%
cdpe
=:wv
=

NOACEx. 1017 Page 72

NOAC Ex. 1017 Page 73

mdetdalibat
Vatilah

“hotLal

HHikiadths.,

64

ABSTRACT
includes

A cache system for looking up one or more elements of an external MeMOTy,comprising
a set of cache memory elements coupled to the external memory, a set of content

addressable memory cells (CAMs) containing an address anda pointerto oneofthe

cache memory elements, andincluding a matching circuit having an input such that the
CAM asserts a match output when the input is the same as the address in the CAM cell.
whithcache memory clementa particular CAM points to changes overtime.In the
preferred implementation, the CAMsare connected in an order from top to bottom, and

the bottom CAM pointsto the least recently used cache memory element.

\ . NOACEx. 1017 Page 73

NOAC Ex. 1017 Page 74

i al ot PRINT OF DRAWINGS
AS ORIGINALLY ~D

on 1/21, \(\ 100 +] 108
aT,

116

ara; SERVER 2[CUENT 3}-~ “M40
106 12

 DATA COMMUNICATIONS

NETWORK

 mag

 Aoie“tkaaond
2 102

{ = 125

123

SERVER 2 —————— «105 >?

—~\ CLIENT 2 CLIENT 1 rn
112 104

FIG. 1

NOACEx.1017 Page 74

NOAC Ex. 1017 Page 75

S0€HAZATIVNY

 PNO(LWHad0DNSS390Wd

OlldlIoSs3aaTO90LOWd

nm~voEy)afa~===4fa)O<©Z,

ON

HAZINILdOQNYV

asvaviva°NOILONYLSNIY>AIIdWOdYOSS300uWd

OLE

NOLWZITVNIs.NIVOIsISSV19ooo~ —_—_—=—
A)—om

QuOosYNMON»wMO71dnaivadn

NOILWOlsILNAGIALVLS8JO90LO”’d

NOLLOVYLXA

]

|3svaviva
|

GNV

|{

2D

‘Az=~

2zSMO14JOAaywMO14(12)NOUNOAOg)asvaviva""NOLWWHOSNIwOlLWSHBANOOHaaayNYSLd°Z|3NOINNatingLOVELYAZINDOOSY||zo,ONYAZATWNV]|ZOE2OeiadmhtmeaPoeeedah

VR,eeenaeeetntinlinetenaiminiahnlitntdienemtintieamMiRhee|

NOAC Ex. 1017 Page 76

E0€YAZAIVNV

aivddn

|

||||BNOLLWHadO||YSAVTOlLdiosaaI|WVHOVILVGJOOOLOHd|||ON|||\|YH3ZINILdO|asvavivaON|VeNOLLONYLSNIHAMdINOS;HOSS3O9OUd
ole

|_|NOLWZINVNI[14!){|NivolsIssv10|~|roN|i
N

2||3SvavivdQuOosHYNOLLWOISILNAGI|NOILOVHLXSINMONFIvis8nv|wMO7dJOD0LOWd||L|
2D

(1a)NOLWAHOANIONIASLLNAGILOVHLX3

SMO1ddOASvavivd

AAwMO1laA»OLLVWSYSANODSNdINNainda

AZINDOO3YGNV3SZAIVNV

Taneeeey

PRINT OF DRAWINGS
AS ORIGINALLY

fceeHid4dnee

NOACEx. 1017 Page 76

NOAC Ex. 1017 Page 77

PRINT OF DRAWINGS
AS ORIGINALLY =D+ ee meee 8 Le =

 HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

i{
}
{
!|

GENERATE

NERA

PACKET
 wunde

PACKET
COMPILE STATE

PARSE AND DESCRIPTIONS INSTRUCTION
= EXTRACT AND
= OPERATIONS OPERATIONS

Beloteal

406 “DRATTERN, PARSE STATE
AND PROCESSOR

EXTRACTION INSTRUCTION
DATABASE DATABASE
 Paeddae

 LOAD STATE
NSTRUCTION
DATABASE
MEMORY

 MEMORY

400

410

FIG. 4
NOACEx. 1017 Page 77

|

NOAC Ex. 1017 Page 78

Sarkia |
PRINT OF DRAWINGS

ASORIGINALLY==D

[wourevcnes{™
LOAD PACKET
COMPONENT

ORE IN PACKEL?

503

atha oO oO>
yoy
wat FETCH NODE ANO

PROCESS FROM
PATTERNS

513

no

mht

APPLY NOD AND

PROCESS TO
COMPONENT

510 50°N VY

PATTERN
NODE

509

NOACEx. 1017 Page 78

NOAC Ex. 1017 Page 79

- + PRINT OF DRAWINGS
ASORIGINALLY tp

6/21

wre

PACKET 602COMPONENT AND
PATTERN NODE

i
603

LOAD PACKET

" COMPONENT 610
: ‘ 604

: LOAD KEY
= BUFFER

FETCH EXTRACTION (F7)AND PROCESS FROM
PATTERNS 605

NO 611

607~|APPLY EXTRACTION

606 NEXT
NO PACKET 609

COMPONEN

PROCESSTO

COMPONENT x

hodhas
hhi

JHee

ORE EXTRACTION
ELEMENTS?

YES

600

 MORE TO
EXTRACT?

608

YE

FIG. 6

NOACEx. 1017 Page 79

NOAC Ex. 1017 Page 80

Once.

PRINT OF DRAWINGS
ASORIGINALLY ep

7/21

C) 701

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

OUTPUT To
ANALYZER

YES

HASH KEY BUFFER(F8
ELEMENT FROM 705
PATTERN NODE

haatke

704 MORE PATTERN

NODES?

aad
 u

no

709

Warpay

PACK KEY & HAS
706

700

NEXT PACKET
COMPONENT

fr

707

FIG. 7

NOACEx. 1017 Page 80

NOAC Ex. 1017 Page 81

Qaeli-

PRINT OF DRAWINGS

ASORIGINALLY =D

8/21

Our

UFKB ENTRY FOR 802
PACKET

800\
COMPUTE CONVERSATION|—g93
RECORDBIN FROM HASH

04
REQUEST RECORDBIN/
BUCKET FROM CACHEwy 806

NO|SET UFKB FOR
PACKET AS 'NEW'

= COMPARE CURRENTBIN 807
AND BUCKET RECORD KEY

TO PACKET

: NEXT BUCKET }e-NO<KEYMarctt?e808
YES

 Qauiupe
ORE BUCKET.
IN THE BIN?

YES

80g

MARK RECORD BIN AND]945
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORDIN CACHE

"=~UC) FIG.8

NOACEx. 1017 Page 81

$$a

NOAC Ex. 1017 Page 82

 maand

vigniag
HHwa
oh

Sark

PRINT OF DRAW:

ASORIGINALLYF_:p

901

PORTMAPPEA

909

EXTRACT PROGRAM

GET ‘PROGRAM’,
‘VERSION’, ‘PORT' AND
‘PROTOCOL (TCP OR

UDP)

EXTRACT PORT

GET ‘PROGRAM’,
'VERSION' AND

‘PROTOCOL(TCP OR
UDP)!

SAVE ‘PROGRAM ;,

'VERSION' AND

SAVE ‘PROGRAM’,

904 ‘VERSION’, ‘PORT! AND ‘PROTOCOL (TCP OR
‘PROTOCOL(TCP OR UDP)' WITH

UDP)' WITH NETWORK DESTINATION
ADDRESSIN SERVER NETWORK ADDRESS. STATE DATABASE. KEY

ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKEA KEY,

 EXTRACT
PROGRAM FIND ‘PROGRAM'

AND ‘VERSION'
WITH LOOKUP OF

SOURCE NETWORK
ADDRESS.

GET ‘PORT’ AND

‘PROTOCOL (TCP
OR UDP)’.

FIG. 9

NOACEx. 1017 Page 82

NOAC Ex. 1017 Page 83

Garlian.

PRINT OF DRAWINGS
ASORIGINALLY =p

1000 —, 10/21

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY 1001 MEMORY

100 1031
100 1004

INFO|OQUT,

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRLIN

: . 1031

. 1006 PATTERN 1007
. RECOGNITN EXTRACTION ENGINE
: ENGINE (SLICER). (PRE)

= 1008 1013

: . PARSER
PACKET PARSERINPUT BUFFER OUTPUT PACKET KEYINPUT MEMORY BUFFER AND PAYLOAD

MEMORY
1012

1021

PACKET INPUT BUFFER ANALYZER DATA READ
INTERFACE INTERFACE

PAG CONTROL CONTROL ANALYZER
READY

102

1023 FIG. 10 1027

NOACEx. 1017 Page 83

NOAC Ex. 1017 Page 84

Qaclia-

PRINT OF DRAWINGS
ASORIGINALLY” <p

11/21

1100 —,

1101 1103 4115 112
1107

 LOOKUP/

woapay

oidya PARSER
INTER- (vB
FACE

‘tlhoat

1119 112Wakiepa

UNIFIED|memory
MEMORYJLINTER.
CONTROL FACE

(UMC)

NOACEx. 1017 Page 84

NOAC Ex. 1017 Page 85

vhpebavip
|

Mottat
yoy

PRINT OF DRAWINGS

ASORIGINALLY <D

12/21

 UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

12004

REQUEST RECORD BIN/| 1094
BUCKET FROM CACHE

REQUEST NEXT

BUCKET FROM <BIN/BUCKET EMPTY2>—1205

CACHE

INSERT KEY AND HASH

WITH TIMESTAMP

YES OMPARE CURRENTBIN 1209
1210 AND BUCKET RECORD

SET UFKB FOR
PACKET AS KEY TO PACKET

‘DROP'

 MARK RECORDBIN AND
BUCKET'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORDIN CACHE

NOAC Ex. 1017 Page 86

ane

PRINT OF DRAWINGS
ASORIGINALLY aeeP VO

13/21

Qu
1300 —y UFKB ENTRY FOR

PACKET WITH STATUS
‘NEW! OR 'FOUND' 1302

SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1904
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED|—4395
ON THE STATE INSTRUCTION

htt

 hhatena
‘‘i,“huh

SET STATE

a PROCESSOR
= INSTRUCTION NO DONE PROCESSING 1307

i POINTES TO STATES FOR THIS
= VALUE FOUNDIN PACKET?
= CURRENT STATE

| 1308 YES1310
SAVE STATE
PROCESSOR
INSTRUCTION NO DONE PROCESSING 1309

POINTERIN
CURRENT FLOW

RECORD

TATES FOR THIS FLOW2

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

| INSTRUCTION IN CURRENT
FLOW RECORD

L NOACEx. 1017 Page 86

NOAC Ex. 1017 Page 87

Hee he Chih Ok iag Re

LOOKUP
KNOWN

RECORDS

(DB 1424)

 EXTRACT
IDENTIFYING

INFO & PROCL
ISTATE

RECOGNIZE
PATTERN

INFORMATION

DATABASE
OF FLOWS

UPDATE
"FLOW"
KNOWN
RECORD

 EXTRACTION
OPERATIONS

PARSER
SUBSYSEM

STATE

MACHINE

SELECTOR

CLASSIFICATN
FINALIZATION

ANALYSIS

DPERATIONS
ANALYZER

SUBSYSTEM

NOACEx. 1017 Page 87

Lo/vk

Bx
sf
ag

IZ 2
ES
Se
©

qa.

NOAC Ex. 1017 Page 88

27h NALLY”3pAS ORIGIN
> PRINT OF DRAWINGS

15/21

AYOWAWLSOH90SL

vost

ISVaEVLVavee

QyuvoSOVAYSLNIMYOMLAN

ay

hi,dtea

00€HOLINOWwate,ofa,
LOEFHii YASYVd

hey

 SOIAAdNOILISINDOYLayoVvd

23voEy)afa~===4fa)O<©Z,

NOAC Ex. 1017 Page 89

baad

PRINT OF DRAWL\

ASORIGINALLY.£0 LY

16/21

1606

1610

Dst Hash (2

1614 Src Hash(2

[2OFpet = 12

FIG. 16

1612

NOAC Ex. 1017 Page 90

Wohpe

ey

PRINT OF DRAWINGS

ASORIGINALLY(5

17/21
1702

1704

offset
12 to 131 Hf

1708 Type (2)
Hash {11710) KK 4700
\[5Offfet = 14

iDP = Gx060G~
iP = 0x0800*

VECHO
NETBIOS-3COM = 0x3C00 -

Ox3COD#
DEC-MOP= 0x6001

DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

FIG.17A | SRB
1712

eeSesaa

uso|1////aee711/TNFTAAY Frou
3| UZMTUProtocolHERena
"

 LILOAAAIL/LLILL

[Protoqol (1) FIG. 17B

[L4Offfet = 13 + (IHL/4)

 ATALKARP = 0x80F3
IPX = 0x8137*

IPv6 = 0x86
LOOPBACK= 0x9000

Apple = 0x080007
*L3 Decoding
L5 Decoding

UDP = 17"i IDP = 22
¥— 1750 ISO-TP4 = 29

1752

OSPF = 89

* L4 Decoding
#L3 Re-Decoding

NOACEx. 1017 Page 90

NOAC Ex. 1017 Page 91

=D
PRINT OF DRAWINGS
AS ORIGINALLYcated —— Se

18/21

PROTOCOL

HLONA?O7a3ld

FIG. 18A

1870

aLUT NUMUTNUM,

aq7ald4030093LA8
A1850

jOo010Nd

FIG. 18B

NOACEx.1017 Page 91

NOAC Ex. 1017 Page 92

=DNALLY
PRINT OF DRAWINGS
ASORIGINaf

19/21

616}

=n
viva>|5

—TassaisD—rasasSAXNWLOFISSLNdLNOvivar{gob6L—asamvivo{E
qaS8aIOVvdvO

_ss—sd

€

LNO-1€-39vd1NO-0-39vedSSBOULSSLIMSHOWS(Z€)S39vdWVLuOdIwnaNI-Le-39vd

SL6L€061_\-sesuaav-vo

7VIVG-¥9-O-OIWN\~
gay2

het:vivdwaaviva—|©

—1Asadla—ASdS(7—TasamO06L_/6L6L

SAXNWLOATASLNdNI

SO6L

NOACEx. 1017 Page 92

NOAC Ex. 1017 Page 93

| PRINT OF DRAWINGS
ASORIGINALLY =D

20/21

fF

& |__LUEMEMREQ SEL_LUE_FIDE>
0.1—SETLUEREADY CAM HIT
3+—SETLUESEL - >

| CAM_HITPAGE—|©
| CACHE_CAM_SM <
} PAi|-FIDEMEMREQ CAM_LRUPAGE =

G& }-SETFIDEREADY LOAD_CAM °= Ww
- SETFIDESEL/ ri REFRESH_CAMx

GET BACKUP GOT

{

: la2003

|{
t

=
UMC-O-CA-NEXTA i)

CACHEPORT
UMC-O-CA-REA

FIG. 20

NOACEx. 1017 Page 93

NOAC Ex. 1017 Page 94

PRINT OF DRAWI

AS ORIGINALLY, 7pSea

21/21

CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA aLOAD, REFRESH, EVICT |

2103

2113

MATCHO

MATCH1

MATCH2

MATCH3

MATCH4

MATCHS5UPDATEPORT
MATCH6 =)<= QO>= LOOKUPPORT
MATCH7

Wede

iitVil

MATCH30

MATCH31

CAM| NUMBER

| |
DATAQ e ¢ © DATA31

CAM_NUMBER
|

CURRENT ENTRY \DIRTY ENTRY
2117

DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE
: Y Y

2119

| FIG. 21
i

i
ii

NOACEx. 1017 Page 94

NOAC Ex. 1017 Page 95

Wo)upb

PRINT OF DRAWINGSpe

AS.ORGINALLY(yp _Lo

1/21

100 FociENT4108CLIENT 4IENT4] ANALYZER
107

116

SERVER 2

CLIENT3410
106 121

 DATA COMMUNICATIONS

NETWORK

 102

125

123
Td 118
SERVER 2 c—————_105 Co}

—\ CLIENT 2 |” CLIENT 1
Ve oa

FIG. 1

NOACEx. 1017 Page 95

NOAC Ex. 1017 Page 96

Popa haohne hhBopdt wea ded wi |

214 215 216 217,218 219 220,221 222 223

, 260 (261 S (263 (264

(270orarteteTdame”272 273 274

209

 Lo/¢
—l———]

APPLICATION SERVER 2

 FIG. 2

woal Ex. 1017 Page 96

ATTVNIOTAOSV SUIMVNGJOLATYd
a

q,
ory

NOAC Ex. 1017 Page 97

\@
PRINT OF DRAWD~
AS ORIGINALLY

?

20€YHaZATWNV

 SNOILWHAdOENSSA90”"d

ON

t
2

NOUWVZITIVNIdNIVOISISSVT9

Pom nmr er rrr crs rosa as asc cs el

A|
~

oOJGYOO3SYNOILVOISILNAG!|NMONALVLS8|«MO1d.TOQOLOYddaivddn|coc|
r-n-mK

SBNOILOATSSYaAVTWVYoVLVa

Y3AZIWILdOONYYATIDWOO
Ole

NOACEx. 1017 Page 97

asvaevivdNOILOVHLXAaNv

|‘|SGHOOSH|(Hd)SMO1440LGHODSHNMONM||AS.MOTs.NOInee4}|,[NOLWAHOSNIasvevivaMOT.MANWOUSPNOLWSYSANOO4aNGINYSELddnyoo1|||lsnoinnatingLOVELY3ZINDOOSY||||505 GNVSZATWNV]|Z0€rZeIPeeLn14(OeHasuvaPOEKe|meeeeeeLLLLL_
lata

wetoWs

NOAC Ex. 1017 Page 98

Oautinn!

PRINT OF DRAWINGS

ASORIGMALLY 7

 HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

NERA

PACKET
 wile COMPILE

ab

PATTERN, PARS|
AND

EXTRACTION
DATABASE

STATE
PROCESSOR
INSTRUCTION

DATABASE

406 DA

LOAD LOAD STATE
PARSING NSTRUCTION

SUBSYSTEM DATABASE
MEMORY MEMORY

400

410

FIG. 4

NOACEx. 1017 Page 98

NOAC Ex. 1017 Page 99

{{

|
i
{
}

i

Sarkie

PRINT OF DRAWINGS

ASORIGINALLY :NY \)

504 ORE IN PACKEL>

 FETCH NODE ANO
PROCESS FROM

PATTERN

513

 APPLY NODE AND
PROCESS TO
COMPONENT

510 500N 7

PATTERN
NODE

509

NOACEx. 1017 Page 99

NOAC Ex. 1017 Page 100

t
'
I
{

ewigpa

oo _

PRINT OF DRAWi so,
ASORIGINALLYFx \

6/21

Owe

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET
COMPONENT

604

FETCH EXTRACTION
AND PROCESS FROM

PATTERNS 605

NO

606 NEXT
ORE EXTRACTIONSS__NOp! PACKET 609

ELEMENTS? COMPONEN

YES

607 APPLY EXTRACTION
PROCESS TO

COMPONENT i
600

 MORE TO 608
EXTRACT?

YES

FIG. 6

NOACEx. 1017 Page 100

NOAC Ex. 1017 Page 101

DOanalian

PRINT OF DRAWINGS -.
ASORIGINALLY/ = ,set Vs

702

LOAD PATTERN
NODE ELEMENT

MORE PATTERN
NODES?

703

Piaal
qt

hdr
704 OUTPUT TO

ANALYZER

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

PACK KEY & HAS

NEXT PACKET
COMPONENT

FIG. 7

|

 c 709

706

700

707

NOACEx. 1017 Page 101

NOAC Ex. 1017 Page 102

Caneli-e _

PRINT OF DRAW | ~)
ASORIGINALLYPx 2D aa

8/24

8U1

UFKB ENTRY FOR 802
PACKET

‘\ COMPUTE CONVERSATION|—93
RECORD BIN FROM HASH

04

800

REQUEST RECORDBIN/

= BUCKET FROM CACHE 806

NO|SET UFKB FOR
PACKET AS ‘NEW’

YES

= COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET }«-NOKEYMato? 808
YES

Phapit,

 ORE BUCKET805 IN THE BIN?

yory

hehtt

08 MARK RECORD BINAND|919
BUCKET'IN PROCESS’IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

UC) FIG. 8

NOACEx. 1017 Page 102

NOAC Ex. 1017 Page 103

Cark

PRINT OF DRAWINGS
AS IN *

S ORIGINALLY "DWY UU

nietinsistentteneterent

wpte

“hopa
hid

Hudpug

900

 GET ‘PROGRAM,
‘VERSION’, 'PORT' AND
‘PROTOCOL(TCP OR

UDP)

SAVE 'PROGRAM',
‘VERSION’, ‘PORT’ AND
‘PROTOCOL (TCP OR

UDP)' WITH NETWORK
ADORESSIN SERVER

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

EXTRACT PROGRAM

CREATE SERVER STATE

FIND 'PROGRAM’
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

909

 EXTRACT PORT

GET 'PROGRAM',
‘VERSION AND

‘PROTOCOL(TCP OR
UDP)

SAVE REQUEST

SAVE ‘PROGRAM’,
‘VERSION' AND

‘PROTOCOL (TCP OR
UDP)' WITH

DESTINATION
NETWORK ADDRESS.

BOTH MAKE A KEY.

EXTRACT
PROGRAM

GET 'PORT' AND

‘PROTOCOL(TCP
OR UDPY.

FIG. 9

NOACEx.1017 Page 103

NOAC Ex. 1017 Page 104

Carlini.

PRINT OF DRAW

ASORIGINALLY \.£D \/

1000 —»4 10/21

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY
100

100

 HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS §GonTREIN

“tea

1031

¥ 1006 PATTERN 1007
: RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
. (PRE)

: 1008

PARSER
PACKET\|PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

1012

1021

 INPUT BUFFER

INTERFACE
CONTROL

PACKET
START ANALYZER DATA REAQ

INTERFACE
CONTROL

oO

ANALYZER
READY

102

1023 FIG. 10 1027
NOACEx. 1017 Page 104

NOAC Ex. 1017 Page 105

4hSadiaedaeaat
il

dt

beeidda

Cnrtrics

PRINT OF DRAWINGS is
ASORIGINALLY("Dp CO)

11/21

1100 —4

1101 1103 1415 1118 112
1107

 LOOKUP/
UPDATE
ENGINE

PARSER|
INTER- ky

1119 112

MEMORYJLINTERINTER-
1 CONTROLI-Y_ FACE

(UMC)

NOACEx. 1017 Page 105

NOAC Ex. 1017 Page 106

nentvnnnlelenlithetlsesitneiennalhetinetttnllinennarntrtcecannerthetnletmunaentaat
anensrnntaitiattecetaninttueininisntititniiatnetnnstenislaihnsiietentnitinetttinntsilitrntananniesAisinmee

vobbaahaan
alWy
teefide
ran

PRINT OF DRAWINGS

ASORIGINALLY FILED

12/21

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW!

1200
aM ACCESS

CONVERSATION 1203
RECORDBIN

REQUEST RECORDBIN/ 1204
BUCKET FROM CACHE

REQUEST NEXT
BUCKET FROM <BIN/BUCKET EMPTY 1205

CACHE

 NO INSERT KEY AND HASH
IN BUCKET, MARK ‘USED

WITH TIMESTAMP

 OMPARE CURRENTBI
AND BUCKET RECORD

KEY TO PACKET

SET UFKB FOR
PACKET AS

‘DROP

MARK RECORDBIN AND
BUCKET‘IN PROCESS'
AND 'NEW' IN CACHE

NOACEx.1017 Page 106

NOAC Ex. 1017 Page 107

Cael

PRINT OF DRAWINGSVe
ASORIGINALLY/ cee O

)

eeetatetsinhimirtneaaartienetemninneeetmeseaaahnansnttneateina

hidhide
wea

hhabai

13/21

Our130
1300 —4UFKB ENTRY FOR

PACKET WITH STATUS
‘NEW! OR 'FOUND' 1302

SET STATE PROCESSOR
INSTRUCTION POINTER TO 1303

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 41305
ON THE STATE INSTRUCTION

SET STATE
PROCESSOR
INSTRUCTION NO_—DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUNDIN PACKET?
CURRENT STATE

1308 VES
1310

SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309

TATES FOR THIS FLOW2POINTER IN

CURRENT FLOW
RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

At
FIG. 13

 1311

NOACEx.1017 Page 107

NOAC Ex. 1017 Page 108

eeenen tsalinnentd to cae seentinen nin mvtA! meiAlbctee O eneMiNEiN be Homme a eee ee

Hiabnk

EXTRACT LOOKUP

RECOGNIZE|}IDENTIFYING |], KNOWN
PATTERN INFO & PROCL|"|"FLOW" KEY"|RECORDS DATABASE

INFORMATION STATE (DB 1424)
|

|

|

|

|

|

PATTERN
| STRUCTURES
| AND

| EXTRACTION
OPERATIONS

|

|
PARSER

SUBSYSEM

STATE

MACHINE

SELECTOR

CLASSIFICATN

FIG. 14 ! ik FINALIZATION

ANALYZER
SUBSYSTEM

|

|

I

|

|

|

|

|

|

|

|

|

|

I

I

|

|

|

|

i

|

|

{

|

|

|

|

{

|

HaNOAE Ex-1017 Page168

Lo/vb

—

°?

' TATIVNIDRIOSv SINAVGJOLNT

NOAC Ex. 1017 Page 109

\
5ORIGINALLY

PRINT OF DRAWINGS
AS ORIGIN

=aot

15/21

aq

xaguvoSICAOVAYSLNIaMHOMLAN

00eHOLINOW

AHOWSWLSOH

AVIAAGNOILISINDDYLAWOVd

LOEY3aSYVd

asvavivda

BAeIOIheMSUSWed
bob

NOACEx. 1017 Page 109

NOAC Ex. 1017 Page 110

“——

ASORIGINAL * CASORIGINALLYA.dp ?
16/21

t

1602 0 - 3 Bytes

&— 1600

Dst MAC

Dst MAC Src MAC

Src MAC

1604

1606

aHCittkatat
4It

Wobids

NOACEx. 1017 Page 110

NOAC Ex. 1017 Page 111

Caclic

PRINT OF DRAWINGS

ASORGALLY(pCy

17/21
1702

spe B= gaaoffset = 0x .

12 to 13) Ti CHAOSNET = 0x0804
VIP = 0xOBAD*

VLOOP= 0x0BAE
1706 VECHO = Ox0BAF

NETBIOS-3COM = pxsc00 |x

o\ ay BERee = Beebe,ash {1 “RG = OX!1710) 1700 DEC-DRP = 0x6003*
_ DEC-LAT= 0x6004

L3 Offpet = 14 DEG-DIAG = 0x6005
DEC-LAVG = 0x6007

RARP = 0x8035
ATALK = 0x809B*

FIG 1 TA VECHO = 0x80C5. _Y SNA-TH = 0x80D5*ATALKARP = 0x80F3
1712 IPX = 0x8137*

SNMP = 0x814C#
IPv6 = 0x86DD *

LOOPBACK = 0x9000

Apple = 0x080007
*L3 Decoding
#L5 Decoding

haeity

herderiain
“lasdt

wenitaae 1752

 L3 to d Ag Ag y

GL 4) LLLTHLProtocolEASEBheGiUny
4] Src Address

 RRESEIIOOIITI

*— 1750 ISO-TP4 = 29
DDP = 37#

ISO-IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

Dst Address

Dst Hash (2)
Src Address

Sre Hash (2)

[Protodot (1) FIG. 17B #13 Re-Deosding
[L4Offfet = 3 + (IHL/4)

NOACEx. 1017 Page 111

NOAC Ex. 1017 Page 112

NALLYASORIGINALLY

PRINT OF

18/21

PROTOCOL

—_—__—_»HLONSTG13

 FIG. 18A

1870
a

LUT NUM
ay

caqala4030093LAg
A-—1850

LUTTETTODOLONd

FIG. 18B

NOACEx. 1017 Page 112

NOAC Ex. 1017 Page 113

weeat i eae dnd ea aie a

INPUT SELECT MUXES

1917

ADDR DATA (
UMC-O0-CA-DATA ——

OADDRESS
1903 1915

+

CACHE WRITE STROBES+

 PAGE-31-IN PAGE-O-IN

 DUAL PORT RAM PAGES(32) PAGE-0-OUT PAGE-31-OUT

1909

 OUTPUT SELECT MUXES

FIDESEL—

se
NOACEx. 1017 Page 113FIG. 19

Lo/61

a

ATIVNIDIUOSY SNIMVY43OLXTYa
XQ

t

NOAC Ex. 1017 Page 114

ace
bra

Lhona

haba
Wada

of
PRINT OF DRAWINGS

ASORIGINALLYT

20/21

2001

‘a

cc}—LUEMEMREQ
G }<—SETLUEREADY
3 }«—SETLUESEL

CACHE_CAM_SM

FIDEMEMREQ

SETFIDEREADY

SETFIDESEL
a

FIDEPORT

 CAM_ARRAY
REFRESH_CAM

GET BACKUP ee

 SIGNALS :

(——_— CACHE_MEM_SMCACHEPORT

FIG. 20

CA-MEM-RE

CA-MEM-WRIT

=
UMC-O-CA-NEXTA 2

UMC-O-CA-REA

NOACEx. 1017 Page 114

NOAC Ex. 1017 Page 115

~'< PRINT OF DRAWINGS

ASORIGINALLY==D

21/21

 CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA

2109

LOAD, REFRESH, EVICT REE-DATA
2103

CAM_INPUTDATA 2113

LOADO CAM[O} MATCHO

paTatdd &
LOAD1 CAM(1] MATCHi

DATA2!
CAM[2] MATCH2

MATCH3

= = MATCH4
= 6 2115
- fr
z af MATCHS5 O= kK
= <x a
= QO CAM|5

6

_ MATCH7 4

MATCH30

MATCH31

: CAM] NUMBER

|
DATAG||= © © DATA31

2123 NMOSZ

2121 \
DIRTY ENTRY CURRENT ENTRY oT

DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET|CAM_HITPAGE
Y Y

FIG. 21 ™

NOACEx. 1017 Page 115

NOAC Ex. 1017 Page 116

APPT-001-4

Q LA
6771646

1/21

100 108
CLIENT 4[CUENT4] ANALYZER

107
116

CLIENT 3 SERVER
My 10

N
106 121

 DATA COMMUNICATIONS

NETWORK 102

125

123
Ts 118
SERVER 2 ——__>7_—«*2105 oS

—\ CLIENT 2 |” CLIENT 1}-~
112 104

FIG.1

NOACEx. 1017 Page 116

NOAC Ex. 1017 Page 117

i ye12ueissPies
v-LOO-LddVC)z

 Lo/e

: CLIENT 3

on oma,

< 260 (261 «262 263 264 (268 APPLICATION SERVER2 (a

NOACEx. 1017 Page 117

NOAC Ex. 1017 Page 118

310

PROTOCOL
DESCIPTIO
LANGUAGE

ANALYZE AND

RECOGNIZE

PATTERN

AND
EXTRACTION

DATABASE

COMPILER

AND

OPTIMIZER

DATAGRAM
LAYER

EXTRACT
IDENTIFYING

BUILD UNIQUE], |

CONVERSATIO
"“ELOW" KEY |!

PROCESSOR

INSTRUCTION
DATABASE

PROCESSNG

OPERATIONS

eben nue ha

 LOOKUP

FROM NEW "FLOW
KNOWN RECORD?

RECORDS

NO

DATABASE

OF FLOWS

UPDATE
"FLOW"

KNOWN
RECORD

Lo/€
CLASSIFICATN
FINALIZATION

ANALYZER

303

NOAC Ex-101Phage 118

©

ye38ueisspyes
v-LOO-LddV

me

NOAC Ex. 1017 Page 119

rT

garkissian et al.

¥houAdeTeWakeat
“hap

QouwgaMar,

APPT-001-4

HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

404

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

EXTRACTION
DATABASE 408

PARSING
SUBSYSTEM

MEMORY

COMPILE

DESCRIPTIONS

405

NERA

PACKET
STATE

403

STATE
PROCESSOR
INSTRUCTION

409 DATABASE

LOAD STATE
NSTRUCTION
DATABASE
MEMORY

400

410

FIG. 4

NOACEx. 1017 Page 119

NOAC Ex. 1017 Page 120

secenrincnemity

4H

youwea

sarki

gsian et al. APPT-001-4

503

504

5/21

C) 501

LOAD PACKET
COMPONENT

512

ORE IN PACKEJ?

FETCH NODE AND
PROCESS FROM

PATTERNS

513

511

ADPLY NODE AND

PROCESS TO
COMPONENT

\00

509|ELEMENTS

FIG. 5

NOACEx. 1017 Page 120

NOAC Ex. 1017 Page 121

garkissian et al. era 0 J

PACKET 602
COMPONENT AND

PATTERN NODE

603

LOAD PACKET
COMPONENT 610

LOAD KEY
BUFFER

604

YES

: FETCH EXTRACTION (7)
° AND PROCESS FROM

PATTERNS 605

NO 611
606

toewa,tha

NEXT

NO PACKET 609
COMPONEN

ORE EXTRACTION
ELEMENTS?

YES

607>|APPLY EXTRACTION

PROCESS TOCOMPONEN rm
600

MORETO 608
EXTRACT?

YE

FIG. 6

NOACEx. 1017 Page 121

NOAC Ex. 1017 Page 122

garkissian et al.

Wohot

nueeu

APPT-001-4

G) L)

7/21

Our

EY BUFFER AND, 702
PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 508

704 MORE PATTERN OUTPUT TO
NODES? ANALYZER

x «8
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

709

PACK KEY & HAS

706 x

NEXT PACKET
COMPONENT

700

707

FIG. 7

NOACEx. 1017 Page 122

NOAC Ex. 1017 Page 123

dbhWHwD
4

he

wowa

garkissian etal. APPT-001-4
O 0

8/21

ure

UFKB ENTRY FOR
PACKET

802

800\ COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

804
REQUEST RECORDBIN/
BUCKET FROM CACHE

806

NO|seTUFKB FOR
PACKET AS 'NEW'

COMPARE CURRENTBIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET }¢-NO<KEYMATCH? 808
YES

 ORE BUCKET
805 IN THE BIN?

YES

808 MARK RECORD BIN AND|319
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
811 AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORDIN CACHE

BC) FIG. 8

NOACEx. 1017 Page 123

NOAC Ex. 1017 Page 124

rT

wbaWh
Hat

AE

Wotdadeted

Sarkissian et al. APPT-001-4

0 O

901 902

PORTMAPPEA

909

EXTRACT PROGRAM

GET ‘PROGRAM,
‘VERSION’, ‘PORT! AND
‘PROTOCOL(TCP OR

UDP)

EXTRACT PORT

GET ‘PROGRAM,
‘VERSION! AND

‘PROTOCOL(TCP OR
UDP)'

SAVE REQUEST

SAVE 'PROGRAM|,
‘VERSION’ AND

CREATE SERVERSTATE

SAVE 'PROGRAM',

904 ‘VERSION’, ‘PORT AND ‘PROTOCOL(TCP OR
‘PROTOCOL(TCP OR UDP)’ WITH

UDP)' WITH NETWORK DESTINATION
ADDRESSIN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY

ON SERVER ADDRESS
AND TCP OR UDP PORT.

BOTH MAKEA KEY.

 EXTRACT

PROGRAM

FIND ‘PROGRAM’
AND ‘VERSION’

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

co GET 'PORT' AND

‘PROTOCOL (TCP
OR UDPY.

FIG. 9

NOACEx. 1017 Page 124

NOAC Ex. 1017 Page 125

vv

carkissian etal. APPT-001-4

Q 2

1000 —,4 10/21

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE
MEMORY 1001 MEMORY

100
100

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRLIN

1031

1006

PATTERN
RECOGNITN

ENGINE

(PRE)

1007

 EXTRACTION ENGINE
(SLICER)

1008

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOAD
MEMORY

 PACKET PARSER INPUT BUFFER

INPUT MEMORY

1012

1021

PACKET
START

INPUT BUFFER
INTERFACE
CONTROL

ANALYZER DATA READ
INTERFACE

CONTROL WaANALYZER
READY

1023 FIG. 10 1027

NOACEx. 1017 Page 125

NOAC Ex. 1017 Page 126

Y

rkissian etal. APPT-001-4
5a a |a, 5

11/21

1100 —»

1101 1103 45 sate
1107

LOOKUP/
UPDATE
ENGINE

ANALYZER!|HOST

INEESAEAC BUSINTER-AND. \| RACE
(HIB)

1119 112

MEMORY ve— INTER-CONTROL} FACE

(UMC) INSERTION
DELETION }—7

)

NOAC Ex. 1017 Page 127

vy

sarkissian et al. APPT-001-4

5 5

UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

1200

ak ACCESS
CONVERSATION

RECORDBIN

1203

REQUEST NEXT
BUCKET FROM

CACHE

NO INSERT KEY AND HASH
R N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

 <BIN/BUCKET EMPTY

EYES OMPARE CURRENTBIN|~1209
1210 AND BUCKET RECORD

SET UFKB FOR KEY TO PACKET
PACKET AS

‘DROP'

MARK RECORDBIN AND
BUCKET ‘IN PROCESS'
AND 'NEW'!IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

NOACEx. 1017 Page 127

NOAC Ex. 1017 Page 128

—~

garkissian et al. APPT-001-4

7» J)

13/21

1300 —~4 UFKB ENTRY FOR
PACKET WITH STATUS

'NEW' OR ‘FOUND! 1302

y
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

1305PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

SET STATE

PROCESSOR
INSTRUCTION DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUNDIN PACKET?
CURRENTSTATE

SAVE STATE
PROCESSOR
INSTRUCTION DONE PROCESSING 1309
POINTER IN TATES FOR THIS FLOW2

CURRENT FLOW
RECORD

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 8h

INSTRUCTION IN CURRENT
FLOW RECORD

1313

FIG. 13

NOACEx. 1017 Page 128

NOAC Ex. 1017 Page 129

PTPI1

a f& — oO

 EXTRACT LOOKUP

RECOGNIZE IDENTIFYING : n KNOWN NEW "FLOW"
PATTERN INFO & PROCL||FLOW" KEY/"*| RECORDS RECORD? DATABASE

INFORMATION /STATE (DB 1424) OF FLOWS

UPDATE

PATTERN

MO it uN

STRUCTURES CLASSIFICATION MNOWN
EXTRACTION RECORD
OPERATIONS

Lo/Vb
PARSER

SUBSYSEM STATE
MACHINE

SELECTOR

CLASSIFICATN
FINALIZATION

ANALYZER
SUBSYSTEM

NOACEx. 1017 Page 129

\

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

{

|

|

|

|

|

|

Cc '7

‘jeyouelssDveS
b-LOO0-LddvV

NOAC Ex. 1017 Page 130

v

APPT-001-4sarkissian et al.

quvOFOVAYALNI

5

OOYHOLINOW

AYOWAWLSOH

15/21

 ADIASGNOILISINDOVLAMOVd

dOAsvavivd

LOEHASHVd

NOACEx. 1017 Page 130-

NOAC Ex. 1017 Page 131

~

garkissian etal. APPT-001-4

16/21

0 - 3 Bytesee

 Dst MAC

Dst MAC|Src MAC

Src MAC

x 1606
Dst Hash (2 4610

Src Hash (2

L2Offset = 12

FIG. 16

1608
 1612

 1614

NOAC Ex. 1017 Page 132

P~

APPT-001-4

-Ww

garkissian at al.

17/21

1702
1704

ffsetfeetgeTE
¥ 1706

h (171g sy) KH 1700
\EBOfffet = 14

FIG. 17A
1712

IDP = 0x0600*

IP = 0x0800*
CHAOSNET = 0x0804

ARP = 0x0806
VIP = OxOBAD*

VLOOP = 0x0BAE
VECHO = Ox0BAF

NETBIOS-3COM = 0x3C00-
Ox3COD#

DEC-MOP= 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = 0x809B*

Apple = 0x080007
*L3 Decoding

#L5 Decoding

1752

VeSIATeeaoa71)
isto|(7/7 /idédind?//// Nelda FAd/Ottss ICMP = 1
3|[TELProtocolHenannae Me =2
(nr se=.4 Dst Address EGP = 8

WMSscsitakesi oppue = 12
UDP = 17*

*¥— 1750 SO-1P4 = oa"
pa

ai eich =
[SecHash2)*L4 Decoding

[Protool (1) F | G . 1 7B #3 Re-Decoding
[L4Offfet = L3 + (IHL/4)

fo

NOAC Ex. 1017 Page 133

garkissian et al. APPT-001-4
an

)

18/21

PROTOCOL

 HLONSTC7314

FIG. 18A

1870
a

LUT NUM
—_——)»

Giaiddo”4009SLAG
A—1850

OD010Oud

FIG. 18B

NOACEx.1017 Page 133

NOAC Ex. 1017 Page 134

1900

= LUESEL— 2?
ADDR INPUT SELECT MUXES SPSEL—

FIDESEL—

LW |—DATA 1917
= K-ADDR UMC-O-CA-DATA ——

ADDR

CA-ADDRESS

4915
<<

CACHE WRITE STROBES
¢<————

PAGE-O-IN

PAGE-31-IN

DUAL PORT RAM PAGES(82)
PAGE-0-OUT PAGE-31-OUT

1909

CAPAGESEL

OUTPUT SELECT MUXES SPSEL—

FIDESEL—

Na
FIG. 19

NOACEx. 1017 Page 134

Lc/61L

C

-yeyoueisspHeS
v-LO0-LddV

NOAC Ex. 1017 Page 135

~~

garkissian et al. APPT-001-4

>

20/21

2001 2005

kK

& |_—LUEMEMREQ SELLUEFIDE»
GL ¢—SETLUEREADY
ul CAM_HIT
5 SETLUESEL >

CAM _HITPAGE|&
CACHE_CAM_SM <

CAM_LRUPAGE

ic FIDEMEMREQ 2
& \-SETFIDEREADY LOAD_CAM 0
LL]

ETFIDESELans REFRESH_CAM

SEL_CACHE—>

CA-MEM-RE

CA-MEM-WRIT

SIGNALS

(— CACHE_MEM_SM
UMC-O-CA-NEXTACACHEPORT

UMC-O-CA-REA

FIG. 20

NOACEx. 1017 Page 135

UMC

NOAC Ex. 1017 Page 136

sarkissian etal. APPT-001-4
5

21/21

CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA

2109

LOAD, REFRESH, EVICT ST _REF-DATA
2105 2111 2103

CAM_INPUTDATA 2113

LOADO CAMO] MATCHO

paTaddLb
LOAD1 CAM(1] MATCH1

DATA2SLF
LOAD2 CAM[2] MATCH2

LOAD3 CAM[3] MATCH3

IE LOAD4 CAM4] MATCH4
O JIL 2115
iT 5 TO 32F-LOADS CAM{[5] MATCHS5

a es CAM
Oo DECOD!—LOAD6 CAM[6] MATCH6
D HIT

LOAD7 CAM{7] MATCH7

2107

LOAD30

LOAD31

CAM_NUMBER CAM! NUMBER
| |

2127 DATAO DATAO}|+ * » DATA31

cat 2123 _NMUXSEZ

mat IU C
DIRTY ENTRY CURRENT ENTRY a7

DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET|CAM_HITPAGE
Y Y

FIG. 21 _

NOACEx.1017 Page 136

LOOKUPPORT

NOAC Ex. 1017 Page 137

‘\ Page | of 1
4

UNITED STATES PaTENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, DC 20231

www Uspto gov
APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,266 06/30/2000 Haig A. Sarkissian APPT-00 1-4

FORMALITIES LETTER

DovReset CUE
Oakland CA 94618

Date Mailed: 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application numberandfiling date have been accordedto this application The item(s) indicated below,
however, are missing. Applicant is given TWO MONTHSfrom the date of this Notice within whichto file ail
required items and pay any fees required below to avoid abandonment Extensions of time may be obtained by
filing a petition accompanied by the extension fee underthe provisions of 37 CFR 1.136(a).

e The statutory basic filing fee is missing.
Applicant must submit $ 690 to complete the basic filing fee and/or file a small entity statement claiming
such status (37 CFR 1 27).

e The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application NumberandFiling Date, is required.

e To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-small entity, must be submitted with the missing items identified in this letter

e The balance dueby applicantis $ 820.

A copy of this noticeMUSTbereturned with the reply.

Vy
AC IS ,

pt

CustomerService Ceriter
Initial Patent Examination Division (703) 308-1202

PART3 - OFFICE COPY

file://C:\APPS\PreExam\correspondence\2_C.xml 9/1/00
NOACEx.1017 Page 137

NOAC Ex. 1017 Page 138

PE | D |
iy Qeeer{Docket No: APPT-oot Patent | \re) (ws ye, y |i g as gS IN THE UNITED STATES PATENT AND TRADEMARK OFFICE : S

i &

\erssiticant Sarkissian, et al.
Application No.: 09/608266

Filed:

Title: ASSOCIATIVE CACHE STRUCTURE FOR

Group Art Unit: 2731

Examiner: (Unassigned)

June 30, 2000

LOOKUPS AND UPDATES OF FLOW

RECORDSIN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosedis a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

x

X

x

Executed Declaration and Powerof Attorney. The above-identified applicationis the
same application which the inventor executed by signing the enclosed declaration;

Executed Assignment with assignment coversheet.

A credit card payment form in the amount of $___ 860.00 is attached, being for:
_X__Statutory basic filing fee: $690
X Additional claim fee of $0
X Assignmentrecordation fee of $40
X Missing Parts Surcharge $130

Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being made to provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a)of:

one months ($1 10) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressed to the Assistant Commussioner for Patents, Washington, D 31o0n

Date: CO-€ 26 2866 Sips
Name. Dov Rosenfeld, Reg. No 38687

NOACEx.1017 Page 138

NOAC Ex. 1017 Page 139

-) >Seer” \

Application 09/608266, Page 2

X__The Commissioneris hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

ep
&eC 20) Dawe “ ZEZZ
Date DBewrRosenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

NOACEx. 1017 Page 139

NOAC Ex. 1017 Page 140

 PATENT APPLICATION
ATTORNEY DOCKET NO._APPT-001-4

As a below named inventor, I hereby declare that:

Myresidence/postoffice address and citizenship are as stated below next to my name;

I believe I am theoriginal, first and sole inventor(if only one name1s listed below) or an onginal, first and joint inventor(if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought onthe invention entitled:

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

the specification of which is attached hereto unlessthe following box is checked:
(X) wasfiled on June 30, 2000 as US Application Serial No 09/608266 or PCT International Application Number and

was amended on (f applicable).

[hereby state that I have reviewed and understoodthe contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all formation which is material to patentability as defined in 37 CFR 1 56.

Foreign Application(s) and/or Claim of Foreign Priority

{ hereby claim foreign priority benefits under Title 35, United States Code Sectton 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate havinga filing date before that of
the application on which pnority 1s claimed:

PRIORITY CLAIMED UNDER35COUNTRY APPLICATION NUMBER DATE FILED

NO:

Provisional Application

Ihcreby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed bclow:

APPLICATION SERIAL NUMBER FILING DATE

U.S. Priority Claim

[hereby claim the benefit under Titie 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claimsofthis application 1s not disclosed in the prior United States application in the manner provided by the first
paragraphofTitle 35, United States Code Section 112, [acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1 56(a) which occurred between the filing date ofthe prior application and the national or PCTinternational filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS (patented/pending/abandoned

POWER OF ATTORNEY:

As a namedinventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transactall business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg No 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tek: (510) 547-3378
Oakland, CA 94618

I hereby declare thatall statements made herein of my own knowledgeare true andthatall statements made on information andbelief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

Nameof First Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Lata, As Aoolldta Suh vt, Joo
First Inve#tor’s Signature Date

NOACEx. 1017 Page 140

NOAC Ex. 1017 Page 141

1 ‘ f wa
Declaration and Powerof Attorney (Continued)
Case No; «Case __CaseNumberm

Page 2

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

 [of YOO
Date

entor’s SigHature

NOACEx. 1017 Page 141

NOAC Ex. 1017 Page 142

pantie —™,
\ PE ~ . \ ~)

0 Our Bel/Docket No: APPY=001-4 set Patent \ 2Ow ee
[. g au & IN THE UNITED STATES PATENT AND TRADEMARKOFFICE)

&; &esTHAWBplicant(s): Sarkissian, et al.
Application No.: 09/608266

Group Art Unit: 2731

Examiner: (Unassigned)

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDSIN A NETWORK MONITOR

REQUEST FOR RECORDATIONOF ASSIGNMENT

Assistant Commissioner for Patents

Washington, D.C. 20231
Attn: Box Assignment

Dear Assistant Commissioner:

Enclosed herewith for recordation in the records of the U.S. Patent and Trademark Office is an

original Assignment, an Assignment Cover Sheet, and $40.00. Please record and return the
Assignment.

Respectfully Submitted,

Ot 28, 288 _
Dov Rosenfeld, Reg. No. 38687Date

Address for correspondence:

Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378, Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.8

Thereby certify that this responseis being deposited with the United States Postal Service asfirst class mail in an
envelope addressedto the Assistant Commussioner for Patents, Washingto D.C 0231 on.

) oe

Date: ve fi LO LE! Signed:
Name: Dov Rosenfeld, Reg. No. 38687

NOACEx. 1017 Page 142

NOAC Ex. 1017 Page 143

fore ~wa) Page | of |
ocr 2 4 2009 S —

&
g~~

b. &
<¢ pp ow

UNITED STATES PATENT AND TRADEMMRK OFFICE

)
VC

a8 ao Cy
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICE
WaSHINGTON, DC 20231

www uspto gov

09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4

FORMALITIES LETTER

$007GoleseAvenue NAWA
Oaklend. CA 94618

Date Mailed: 09/05/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER37 CFR 1.53(b)

Filing Date Granted

An application numberandfiling date have been accordedto this application. The item(s) indicated below,
however, are missing. Applicant ts given TWO MONTHSfrom the date of this Notice within whichtofile all
required items and pay any fees required below to avoid abandonment. Extensionsof time may be obtained by
filing a petition accompanied by the extension fee under the provisions of 37 CFR 1 136(a).

e The statutory basic filing fee is missing.
Applicant must submit $ 690 fo complete the basicfiling fee and/orfile a small entity statement claiming
such status (37 CFR 1.27).

e The oath or declaration is missing
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Numberand Filing Date, is required.

e To avoid abandonment, a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1 16(e)
of $130 for a non-smail entity, must be submitted with the missing itemsidentified in this letter.

e The balance due by applicantis $ 820.

Initial Patent Examination Division (703) 308-1202

Customer Service Center

PART 2 - COPY TO BE RETURNED WITH RESPONSE {
“3 aeiaa-Z Than ltTalay ae teed Te LS

\
aT a :

file://C:\APPS\PreExam\correspondence\2_B.xml . 5 9/1/00
NOACEx. 1017 Page 143

NOAC Ex. 1017 Page 144

rus4
A2,

 CP FostRetDocket No: appr)wAN\.

ah(9%) IN THE UNITED STATES PATENT AND TRADEMARKOFFICE=
a

©
& .

errsheats): Sarkissian, et al.
Application No.: 09/608266

Filed: June 30, 2000

Group Art Unit: 2731

Examiner: (Unassigned)

Title: ASSOCIATIVE CACHE STRUCTURE FOR

LOOKUPS AND UPDATES OF FLOW

RECORDSIN A NETWORK MONITOR

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosedis a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X_ Executed Declaration and Powerof Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration;

X_ Executed Assignment with assignmentcover sheet.

X_ A credit card payment form in the amount of $___ 860.00 is attached, being for:
X__ Statutory basic filing fee: $ 690
X_ Additional claim fee of $0
X_ Assignment recordation fee of $40
X_ Missing Parts Surcharge $130

X__Applicant(s) believe(s) that no Extension of Time is required. However, this conditional
petition is being madeto provide for the possibility that applicant has inadvertently
overlooked the need for a petition for an extension of time.

Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

Certificate of Mailing under 37 CFR 1.8
I hereby certify that this response is being deposited with the United States Postal Serviceasfirstclass mail in an
envelope addressed to the Assistant Commissioner for Patents, Washington, D.C on.

Date: Q CT 20 200 Signed; :
Nate: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1017 Page 144

NOAC Ex. 1017 Page 145

_- Application 09/608266, Page 2

X__The Commissioneris hereby authorized to charge payment of any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

OE 20, 2.980 \——
Date osenfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

NOACEx. 1017 Page 145

NOAC Ex. 1017 Page 146

EDIE4oe

ACiPerts
Siee

ears

RCRAREESE:

mreitopyoeDee=
fh

a.:>»

Our Docket/Ref. No.: appre. t) Patent 2bZ/

gtELEOTL,gorheat

PSM©:ATELY"

—

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

RS

Applicant(s): Sarkissian et al. dE
Serial No.: 09/608266 Group Art Unit: 2731 4

Examiner: Yw-J]2 ~o/
Filed: June 30, 2000

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDSIN

A NETWORKMONITOR OOUTIVH0092OL 100221ud¥ QSAl303d
Commissionerfor Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

_X An Information Disclosure Statementfor the above referenced patent application,
together with PTO form 1449 and a copy ofeach reference cited in form 1449.

x Return postcard.

x The commissioneris hereby authorized to charge payment of any missing fee associated
with this communication orcredit any overpayment to Deposit Account 50-0292.

A DUPLICATEOF THIS TRANSMITTALIS ATTACHED

Date: Dec A 2090]
Respectfully submitted,

Hov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service asfirst
class mail in an envelope addressed to: Commissionerfor Patents, Washington, D.C. 20231.

Date of Deposit:

Signature.

NOACEx. 1017 Page 146

NOAC Ex. 1017 Page 147

: () ©
Our Docket/Ref. No.: APPT-001 -A Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian etal.

Serial No.: 09/608266 Group Art Unit: 2731

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDSIN

A NETWORK MONITOR

Examiner: WOOUTIYHCO92a [002ZIUdy QSAIS03¢

Commissioner for Patents

Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X_ under 37 CFR 1.97(b), or
(Within three monthsoffiling national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurslast)

under 37 CFR 1.97(c) together with eithera:
__ Certification under 37 CFR 1.97(e), or
_. a$180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action or notice of
allowance, whicheveroccursfirst)

under 37 CFR 1.97(d) together with a:
___ Certification under 37 CFR 1.97(e), and
___ apetition under 37 CFR 1.97(d)(2)(i1), and
___ a $130.00 petition fee set forth in 37 CFR 1.17@)(1).
(Filed after final action or notice of allowance, whicheveroccursfirst, but before
paymentof the issue fee)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for whichthere
maybe a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service asfirst
class mai} in an envelope addressedto: Commissionerfor Patents, Washington, D.C. 20231.

Date of Deposit:fprAa-@o'
ZZ

NOACEx. 1017 Page 147

NOAC Ex. 1017 Page 148

O °

S/N: 09/608266 Page 2 IDS

X_ Someofthe references were cited in a search report from a foreign patentoffice in a
counterpart foreign application.In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
werecited in a search report from a foreign patent office in a counterpart foreign application.

It is expressly requested that the cited information be madeof record in the application and
appear amongthe “references cited” on any patent to issue therefrom.

Asprovided for by 37 CFR 1.97(g) and (h), no inference should be madethat the information and
referencescited are prior art merely because they are in this statement and norepresentationis
being madethat a search has been conductedorthatthis statement encompassesall the possible
relevant information.

Respectfully submitted,
Date: Aor G_ Pel

Bov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

NOACEx. 1017 Page 148

NOAC Ex. 1017 Page 149

. gt al. FORM- 1449 O C) SHEET 1 OF 5.

rage
ATTY. DOCKET NO. : SERIAL NO.
APPT-001-4 09/608266

 INFORMATION DISCLOSURE STATEMENT APPLICANT

Sarkissian et al.

REYNESsAUCWTOR7
pesaet

ise several sheets if necessary) FILING DATE
6/30/2000

U.S. PATENT DOCUMENTS . TRADEN FILING DATE
‘ "EX DOCUMENT DATE NAME CLASS|SUB-CLASS| iF APPROPRIATE
, INITIAL NUMBER

i aa (4736320 Apr. 5, (Bristol ~ 364 [300 Oct. 8,
; Aw 1988 1985
‘ AB 4891639 an. 2, (Nakamura 340 {825.500 jJun. 23,

Ar’ 1990 1988
; Ac 101402 Mar. 31, |Chui et al. -o- May 24,i Aw 1992 1988
f ap p247517 Sep. 21, [Ross et al. B70 [85.5 |Sep. 2,

he 1993 1992

4" A AE 247693 Sep. 21, [Bristol 395 {800 Nov. 17,
: “ 1993 1992

315580 May 24, |Phaal +e- Aug. 26,

; 339268 Aug. 16, Machida 365 INov. 24,aee eeBess
{ 5351243 Sep. 27, (Kalkunte et. al. Q 39 Dec. 27,Po bafePPRBe27|bes
‘ 4, 6365514 Nov. 15, Hershey et al. e- lee Mar. 1,
; pe 1994 1993&

: 375070 Dec. 20, [Hershey at al. 364 {550 Mar. i,

394394 Feb. 28, |Crowther et al. 6— 460 un. 24,toaphies“PrmmerePs
FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY CLASS|SUB-CLASS
NUMBER

OTHER DISCLOSURES(including Author,Title, Date, Pertinent Pages, Place of Publication, Etc.)

"Technical Note: the Narus System," Downloaded April 29, 1999 from
Aw AR .mnarus.com, Narus Corporation, Redwood City California. oO

DATE CONSIDERED =D
apres S

TRANS-
LATION

YES | NO commecemaesen
>> 2S

2Sprengeyeme
ay

and not considered Include a copy ofthis form with next communication to Applicant.

NOACEx. 1017 Page 149

NOAC Ex. 1017 Page 150

1

- Etal.FORM - 1449 C) () SHEET 2 OF 5.
ATTY. DOCKET NO.

APPT-001-4

SERIAL NO

09/608266

 APPLICANT

Sarkissian et al.

FILING DATE

6/30/2000

FILING DATE

abreeMAPS

1995 1993

peePROsssforePP1995 1992

aaa1995 1993

5493689 Feb. 20, Waclawsky et al. 395 |821 Mar. 1,jwPer[Sse0fisteweivseks
1996 1994

ee1996 1995

1996 1993

17, :

25,

4,

Q

0

O

9

ray

1996 1993

1997 1993

jayponsce2 ar. Large et al. 64 [724.011997 1995

1997 1995

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS|SUB-CLASS LATION
NUMBER

WwW

Wa

o

ele

o=

DATE CONSIDERED~~

LL. 7/e(oz
V : : :

*EXAMINER: initalif citation considered, whetherornotcitationIs In conformance with MPEP 609. Draw line throughcitationif not in conformance
and not considered. Include a copy of this form with next communication to Applicant

EXAMINER

NOACEx. 1017 Page 150

NOAC Ex. 1017 Page 151

SHEET 3 OF 5,

ATTY. DOCKET NO.

APPT-001-4
SERIAL NO.

09/608266

 APPLICANT

Sarkissian et al.

 (Use several sheetsif necessary) FILING DATE
6/30/2000

 “ ao

FP fin

U.S. PATENT DOCUMENTS

FILING DATE

DOCUMENT DATE NAME CLASS|SUB-CLASS| /F BPPROPRIBTE
NUMBER

5651002 Jul. 22, /Van Seters et all. 370 6B ul. 12,
1997 1995

4 ’

“EXAMINER
INITIAL

rac
Cm [=
Ce [=

G

'H

\o i]

Tv 5684954 INov. 4 Kaiserswerth et al. 395 . Mar. 20,pentEarffeisersvershesxs
732213 Mar. 2 essel et al. 395 {200.11 Mar. 22,

5740355 Apr. 14, Watanabe et al. 395 183.21 un. 4,peesfSag2Afearsse
5761424 un. 2, |Adams et al. 395 |200.47 Dec. 29,reeioePE
5764638 un. 9, |Ketchum 370 4401 Sep. 14,restosfee

1998 1997

784298 Jul. 21, jHershey et al. 36 Jul. 11,peefisggferme
1. 28,

8,

ac ele[ais|aleialeis|¥wm fe
ye fe

E

F

1

J

eI
wBS OoOQ oOoO nmN

Ry

Far |e
Cc.

Cc.

> tC Ry Ut uo ~]

>+ 787253 u IMcCreery et al. 395 1200.61
1998 . 1996

5805808 Sep. ansani et al. 395 1200.2
1998 " 1997

1998 1996

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS|SUB-CLASS LATION

NUMBER

OTHER DISCLOSURES(Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

q

 cR

cs

fe|8|
nN

wt0092D4 4Udy DAY

p an

EXAMINER DATE CONSIDERED _
“ mnLhe U2(03 >» Ss

oo ~~ ~
“EXAMINER initial if citation considered, whether or not citationIs in conformance with MPEP 609 Drawline through citation if not in confofgRdnce<

and not considered. include a copy of this form with next communication to Applicant. —

NOAC Ex. 1017 Page 151

NOAC Ex. 1017 Page 152

- et alFORM - 1449 (CySHEET 4 OF 5.

ATTY. DOCKET NO.

APPT-001-4

SERIAL NO

09/608266

 INFORMATION DISCLOSURE STATEMENT APPLICANT

Sarkissian et al.

ecessary) FILING DATE
6/30/2000

N ‘\!ao.ZS

eTt

‘

efets{eisisiatslsisls|ag
9& \o Oo oO ~ “A,

FILING DATE

U.S. PATENT DOCUMENTS

“EXAMINER IF BPPROPRIBTEDOCUMENT DATE NAME CLASS|SUB-CLASSINITIAL NUMBER|one ess
5819028 Oct. 6, Manghirmalani et al. B95 . Apr. 16,ox [epeese

825774 Oct. 20, jReady et al. ul. 12,peersfea
1998 1996

1998 : 1996

1998 : 1996

5850386 Dec. 15, |Anderson et al. 241 INov. 1,

. 15,

19,

rR a wi r

S9

i ~~] So oy So br

la ao boWusWwW ~JWwwo Oownuw
5850388 Dec. 1 Anderson et al. 252 Oct. 31,

862335 an. elch, Jr. et al. 395 [200.54
1999 . 1993

1999 1997

893155 Apr. 6, (Cheriton

May 11, Pearson Nov. 14,
i999

9

Sie

Wa ~] QO

~] p ay
a>+ 3 wsa oe° ula co}os oO]of

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY CLASS|SUB-CLASS
NUMBER 9re]|

W092DL sJOsd
22

OTHER DISCLOSURES(Including Author,Title, Date, Pertinent Pages, Place of Publication, Etc.)

fats Ly 1002Ztyay JAIzDOUTY
EXAMINER We
‘EXAMINER’ initial if citation considered, whetheror notcitation is in conformance with MPEP 609. Drawline through citation tf not in conformance

and not considered. Include a copy of this form with next communication to Applicant.

DATE CONSIDERED b{

NOAC Ex. 1017 Page 152

NOAC Ex. 1017 Page 153

- EtalFORM - 1449 C) CQ SHEET 5 OF 5,
ATTY. DOCKETNO. SERIAL NO.

APPT-001-4 09/608266

APPLICANT

Sarkissian et al.

FILING DATE

’ 6/30/2000
U.S. PATENT DOCUMENTS

DOCUMENT DATE NAME CLASS|SUB-CLASS
NUMBEReleAl?

a

FILING DATE
*EXAMINER

INITIAL

5917821 Jun. 29, Gobuyan et al.

3,

iF BPPROPRIBTE

1996

1994

30,

6,

370 iat \o bo

414704 May 9 Spinnekr | ‘

go 0014380panitBendel et al.2000

5511215 erasaka et al.
1996

Us ~J oO ww wo bo un.

1997

Oct. 2
1993

WwW wo wn wo Oo oOEiD

EE

~

m

Q

LLL|Rs
FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY CLASS|SUB-CLASS
NUMBER

OTHER DISCLOSURES(Including Author,Title, Date, Pertinent Pages, Place of Publication, Etc.)

Qo2

9S

EXAMINER DATE CONSIDERED

= 7 (los
‘EXAMINER: initialif citation considered, whether ornotcitation is in conformance with MPEP 609. Draw line throughcitation if not in conformance

and not considered. Inciude a copy ofthis form with next communication to Applicant.

 f

NOACEx.1017 Page 153

NOAC Ex. 1017 Page 154

py
te 7 OOOO

US005917821A

 ., United States Patent 119 (11) Patent Number: 5,917,821
Gobuyan etal. [45] Date of Patent: Jun. 29, 1999

[54] LOOK-UP ENGINE FOR PACKET-BASED [56} References Cited
NETWORK

[75] Inventors: Jerome Gobuyan, Kanata; Wayne U.S. PATENT DOC NTS
Burwell, Ottawa, Nutan Behki, 5,095,480 3/1992 Femmer -....sccsccccsses 370/238
Nepean,all of Canada 5,463,777 10/1995 Bialkowski etal........ 370/256

[73] Assignee: Newbridge Networks Corporation,
Kanata, Canada Primary Examiner—Chau Nguyen

[21] Appl. No.: 08/663,263 Attorney, Agent, or Firm—Marks & Clerk
[22] PCT Filed: Dec. 21, 1994 [57] ABSTRACT
[86} PCT No.: PCT/CA94/00695 An arrangementis disclosed for parsing packets in a packet-

. based data transmission network. The packets include
$371 Date: Aug. 16, 1996 packet headers divided into fields having values representing
§ 102(c) Date: Aug. 16, 1996 information pertaining to the packet. The arrangement

[87] PCT Pub. No. WO95/18497 includes an inputreceiving fields from the packet headers of
incomingpackets, a-:memory for storing information related

‘ PCT Pub. Date: Jul. 6, 1995 to possible values of said fields, and a device for retrieving
the stored information appropriate to a received field value.

| [30] Foreign Application Priority Data 0 t 1 '
Theretrieving device comprises a look-up engine-including

Dec. 24, 1993 [GB] United Kingdom seevanccneceerevees 9326476 at least one. memory organized in a hierarchical tree

[SV] Tint, C15 oceeeeeeeeceenceeereerenneenseneenseeee HOS 12/46 Structure, and a controller for controlling the operationofthe
[52] WS. CM. cecesnsseecsneesecreerereerereeeeee 370/392; 370/401 Memory. The arrangement is capable of performing fast
[58] Field of Searchcccccsnturenneinee 370/392, 395, 0ok-up operations at a low cost of implementation.

370/400, 401-405, 465, 466, 351, 389,
396, 397, 474; 395/200.68 29 Claims, 11 Drawing Sheets

DESTINATION ADDRESS LOOKUP ENGINE - -

 atn Re LOOKUP E
CONTROLLER

CODE
| "RAM "4

NGINE

Reassembler ———

LOOKUP CONTROLLER

SOURCE ADDRESS LOOKUP ENGINE -- ---

NOACEx. 1017 Page 154

NOAC Ex. 1017 Page 155

U.S. Patent Jun. 29, 1999 Sheet 1 of 11 5,917,821

103

NL Dest
Address

100 101 102 404

Dest|Source NL SourceNet Layer Protocol Type
Tree Tree Microcode Tree Tree

Search Search Comparisons Search Search
FIG. 1

To ATM

Output to AXE

Output to
Reassembiler

LOOKUP ENGINE
CONTROLLER

Reassembler

Input

FIG. 3
SOURCE ADDRESS LOOKUP ENGINE

NOACEx. 1017 Page 155

NOAC Ex. 1017 Page 156

U.S. Patent Jun. 29, 1999 Sheet 2 of 11 5,917,821

20

SIB RAM

SIBDATABUS OUT SIBDATABUSIN _SIB ADDRESS BUS

INTERFACE RAM

INTERFACE DATA BUS IN INTERFACE ADDRESS BUS

21

NIBBLE INDEX

 DATA REGISTER | INDEX POINTERS 26

CANADIAN CODE

25

TO/FROM :
SALE, DALE uCODE ADDRESS BUS ~=CODEDATABUSIN CODE DATABUS OUT

MICROCODE RAM

FIG. 4

{
5{&i

NOACEx.1017 Page 156

NOAC Ex. 1017 Page 157

!
t
i

U.S. Patent Jun. 29, 1999 Sheet 3 of 11 5,917,821

AXE

Input 4A DESTINATION ADDRESS LOOKUP ENGINE
DESTINATION ADDRESS DALE 6

LOOKUP CONTROLLER RAM32BITLATCH|aria “ft
42

FIFO Nx 18 ah 4
FIFO NX 18 64x16

LOOKUP ENGINE FIFO Nx 18F=Output to AXE
4 43 CONTROLLER

a FIFONx18}-=Outputto
32 BIT LATCH uCODE RAM Reassembler8K x 32 ["_} diel5“dex16

Reassembler 10
Input

2
LOOKUP CONTROLLER” ° 512K x 16

SOURCE ADDRESS S| SALE | 8
a RAM ;

SOURCE ADDRESS LOOKUP ENGINE

FIG. 5

NOACEx. 1017 Page 157

NOAC Ex. 1017 Page 158

U.S. Patent Jun. 29, 1999 Sheet 4 of 11 5,917,821

20_ 8 6 42, 43
SIB RAM SALE RAM DALE RAM

AND RESULT FIFOS SALE SALE1]DALE DALE SNOOP FOS
SIB D(15:0) SIBA(30} SIBACIS4)}|AD(I9:4) (30)||DCIS) AGO) MF D(16.

 =|Lhe
DALE|INTERFACE RAM|EFDRb|

NIBBLE RAM

SALE
NIBBLE RAM

RAMD(15:0) RAM A(4:0)

Al
INDEX POINTER

+; 1
LOOKUP POINTERS

50
ALE RESULT BUS

INSTRUCTION
REGISTER

+ STATUS
——————— BIS|pCODEA(11:0)—pCODE D(31:0)

ane MICROCODE RAM .
FIG. 6

NOACEx. 1017 Page 158

NOAC Ex. 1017 Page 159

U.S. Patent Jun.29, 1999 Sheet 5 of 11 5,917,821

SALE/DALE

POINTER NIBBLE INDEX (n)

 DALE RAM
512K x 16 DALE RAM

512K x 16

 8000 n-FFFF n bili uTFTn

FIG. 7
POINTER ARRAY (MSB=1) NEXT POINTER ARRAY POINTER(19-0)

16x16 16x16

NOACEx. 1017 Page 159

NOAC Ex. 1017 Page 160

Jun. 29, 1999 Sheet 6 of 11 5,917,821

MAC ADDRESS TREE - EXAMPLE $008F02869739

ROOT POINTER —_________»

NIBBLE1 = $0 ésSSS
NIBBLE2 = $0 AA A,(iILDODULLIOD Doo 4thZN
NIBBLE 3 = $8 .ks dl SSS. fio fe iN ih. Ay A
NIBBLE 4 = $F4, 77] Sshe es a,bSSS Ul Li\\ iN
NIBBLES =$C JN AN, AM, AISSe on ce
NIBBLE6 =$2 AN NNT7)
NIBBLE 7 - $8 i KEG / ASS a a fay
NBBLE 8 = $6 MyZt
NIBBLE 9 = $5 esSS
NIBBLE 10 = $7 AA]
NBRE-3 7A, FIG. 9th MOnnDODDOonoOCO

NBBLE 12-897X SSSNCo
SIB

ROOT POINTER

NOACEx. 1017 Page 160

NOAC Ex. 1017 Page 161

ae

SiltAOR.iteeageesginhteR
oiaatiaeeeedois mainteiiDecatOais

aryApeeanitconta
BegsORAeaOe
wreeoywaisello’

wa7scctueatMeiliMesee Balefe:silacsatSoiantadTes(ih:iORS»iEGRAeCORO:CraRITESr .eyeo
Ces -“ioes

U.S. Patent Jun.29, 1999 Sheet 7 of 11 5,917,821

SOURCE ADDRESS LOOKUP ENGINE

Address Match SIB Pointer

Address Match Fail Null Pointer

FIG. 11

DESTINATION ADDRESS LOOKUP ENGINE

Address Match S1B Pointer

Address Match Fail
Null Pointer

NOACEx. 1017 Page 161

NOAC Ex. 1017 Page 162

U.S. Patent Jun.29, 1999 Sheet 8 of 11 5,917,821

 ee : SBI1- 425 PS ee7_ BIT3-0|wCODE WORD

BIT 15-0 | LP
S18 ADDRESS

FIG. 13

LEPggttk

SiausFags]ch] Satusags[tearx[AP]|]|
a za

MAC Index .
MAC Fags RP-ROUTED PDU

Proto 1 Area

Hags|Proto 2 Area Encap lags|0|FUEN
|Hags|Proto 3 Area FU-FUTUREUSE

20rFlags|Proto 4 Area EN-MAC ENCAP FORMAT
|Flags|Proto 5 Area

Other Area Pointer Photo Flags|PA|PV|mi|MH|
Proto 1 Dest Area PA-PROTOCOL ACTIVE

Proto 2 Dest Area MARRaeaae
Proto 3 Dest Area MH-MULTI-HOMED

FIG. 14

Proto 4 Dest Area

Proto 5 Dest Area
Other Dest Area Pointer

STATION INFORMATION BLOCK

NOACEx. 1017 Page 162

NOAC Ex. 1017 Page 163

|

spreemneyive

U.S. Patent Jun. 29, 1999 Sheet 9 of 11 5,917,821

Photo Flags} PA]PY|1[1|
PortSet PA-PROTOCOL ACTIVE

PV-PROTOCOL VALID

|Hags|IPX 802.2 Area
|Hags|IPX SNAP Area
|lags|(PX Raw Area

Flags IPX Ether Area

IPX 802.2 Dest Area

IPX SNAP Dest Area

[PX Raw Dest Area

IPX Ether Dest Area

PORT INFORMATION BLOCK

Dest Area nibble 1 FIG. 15
Dest Area nibble 2

Dest Area nibble 3

beeen! 3 nibble destination area

SourceAreaointer —
Yd

Fofanifancjarsiaraans|0}0}olololofololofol
ARx-ALLOW ROUTING PROTOCOLx

FIG. 16

Filtering Rule

NOACEx.1017 Page 163

NOAC Ex. 1017 Page 164

|

|

|

U.S. Patent Jun. 29, 1999 Sheet 10 of 11 5,917,821

eReset

eFIFO empty

snoop done

 estop AND snoop done

stop AND snoop
not done

eFIFO not empty
AND (Group=7)

FIFO not empty FO empty
AND (Group<4)

eFIFO not empty
AND (Group=/)
OR (Group=6)

eFIFO not empty
AND (Group=5)

eS|BTA true

FIG. 17

NOACEx. 1017 Page 164

NOAC Ex. 1017 Page 165

U.S. Patent Jun.29, 1999 Sheet 11 of 11 5,917,821

Increment BranchInstructions (Group 2, no wait states)

pttAAASWTy| IncrementX—_ No Increment

 I/F Data XOXaInst Addt |

Inst Reg

Condition

EXEC_CYCLE
PC_ADD

FIG. 18 Increment/Branchinstruction

(Condition=FALSE)
Increment/Branch instruction

(Condition=TRUE)

SIB RAM AccessInstructions (Group 5)
PCLK i [_/\ | fSIB_RQ

SBeeeneSIB_TA
SIB_Addr po

 SIB_WEb(Write

SIB_Data(Write AAA,ValidSIBDataXXX
SIB_OEb(Read)TULtC(‘CSCOC*Wd
SIB_Data (Read) RRXX ValidSIBDataXXX)XX
Inst Addr KoPGXPTInst Reg ROXIXValidOpcodeYOOaa

State K$2XS31XSOXSiX$2X$52X$3

SIB RAM Access

(No wait states)

| FIG. 19

NOACEx. 1017 Page 165

NOAC Ex. 1017 Page 166

|

5,917,821
1

LOOK-UP ENGINE FOR PACKET-BASED
NETWORK

BACKGROUND OF THE INVENTION

FLELD OF THE INVENTION

This invention relates to the field of data communications,
and more particularly to packet-based digital communica-
tions networks.

There are two broad classes of network:circuit-based and
packet-based. Conventional telephone networks are circuit
based. Whena call is established in a circuit-based network,
a hard-wired connectionis set up betweenthe calling parties
and remains in place for the duration of the call. Circuit-
based networks are wasteful of available bandwidth and lack
flexibility.

Packet-based networks overcome many of the disadvan-
tages of circuit-based networks. In a packet-based network,
the data are assembled into packets containing one or more
address fields which define the context of a packet, such as
protocol type and relative positions ofother fields embedded
in the packet. LAN bridges and routers use the information
in the packet to forward it to the destination.

In a packet-based network, a packet must be parsedas it
flows through the network. Parsing is the process of extract-
ing and analyzing the information, such as source and
destination address andnet layer protocol, contained in the
packets.

In known networks,packet parsingis generally performed
with a microprocessor, which provides flexibility in ban-
dling different packet types and can be upgraded to handle
new packet types as they are defined. Content Addressable
Memory (CAM) is commonly used for hardware assistance
to speed up searchesthroughalist ofknown addresses. This
is a tedious task. CAMs are also relatively expensive and
limited in size and availability.

General purpose processorarchitectures are not specifi-
cally directed toward the types of operations required in
packet parsing and so they tend to be inefficient. To mect
performance requirements, a fast but expensive processor
based solution can be implemented. In the highest perfor-
mance systems, hardware solutions are implemented to
increase speed, but at the cost of flexibility.

SUMMARY OF THE INVENTION

An object of the invention is to provide a fast, but
inexpensive solution to the problem of packet-parsing in
packet-based networks.

According to the present invention there is provided an
arrangement for parsing packets in a packet-based digital
communications network, said packets including packet
headers divided intofields having values representing infor-
mation pertaining to the packet, said arrangement compris-
ing an input memory for receiving fields from said packet
headers of incoming packets; and a look-up engine for
retrieving stored information appropriate to a received field
value. The look-up engine includes at least one memory
storing information related to possible values ofsaid fields
in a hierarchical tree structure and associated with a respec-
tive field of packet headers; a memory controller associated
with each said memory storing information related to pos-
sible values of said fields for controlling the operation
thereofto retrieve said stored information therefrom; and a
microcode controller for parsing a remaining portion of the
packet header while said stored information is retrieved and
controlling the overall operation of said look-up cngine.

The memory and retrieving means constitute a look-up
engine, which is the central resource containing all infor-

25

30

45

55

65

2

mation necessary for forwarding decisions. In a preferred
embodiment the look-up engine includes a source address
look-up engine and a destination address look-up engine.

Ima packetized data transmission conforming to IEEE802
standards, the packets have a MAC (medium access control)
header containing information about the destination and
source addresses and the net Jayer protocol]. The invention
pennits packet switching to be achieved in a bridge-router,
for example an Ethernet to ATM bridge-router, at a rate of
about 178,000 packets per second using 64 byte minimum
Ethemet packets. This means that the MAC headers are
interpreted once every 5.6 micro seconds.

The look-up engine preferably employs table look-ups
using nibble indexing on variable portions of the packet,
such as MAC and network layer addresses, and bit pattem
recognition on fixed portions for network layer protocol
determination.

Each look-up table is organized into a hexadecimal search
tree. Bach search tree begins with a 16 word root table. The
search key (c.g. MAC address) is divided into nibbles which
are used as indices to subsequenttables. The 16 bit entry in
the table is concatenated with the next 4 bit nibble to form
the 20 bit address of the next 16 word table. The final leaf
entries point to the desired information.

Bit pattem recognition is achieved by a microcode
instruction set. The microcode engine has the ability to
compare fields in a packet to preprogrammedconstants and
perform branches and index increments in a single instruc-
tion cycle typically. The microcode engine has complete
control over the search procedure, so it can be tailored to
specific look-up functions. New microcode is downloaded
as new functions are required.

The look-up engine can perform up to two tree searches
in parallel with microcode execution. Look-up time is quick
because the microcode determines the packet’s network
layer format while the source and destination addressesare
being searched in parallel. The results of the source and
destination look-ups andthe protocol determination arrive at
roughly the same time, at which point the next level of
decisions is made.

The look-up engine also performs protocol filtering
between areas. The system allows devices to be grouped
arbitrarily into areas on a per protocol basis and defines
filtering, rules among these areas. The look-up engine keeps
track of cach station’s area for each of its protocols. The
source and destination areas are cross-indexed in a search
tree, which is usedtofind the filtering rule between the two
areas. Separate filtering rules are defined for bridging and
network layer forwarding; bridging is normally allowed
within an area while network layer forwardingis selectively
allowed between areas.

The parsing controller typically has a pointer to the
current field in the packet being examined. The controller
movesthis pointer to the next field in the packet after all
decisions based on the current field are made.

At each decision point on a tree, the current field is
compared to a known value or range. If the comparison
yields a true condition, the controller moves to the next
decision point by moving the current field pointer. Other-
wise thefield pointer is left alone and controller branches to
new code to compare the currentfield to a different value or
range. This process is repeated until a final decision is made.

Moving to the next decision point requires several dis-
crete steps in a general purpose processor. Unlike a general
purpose processor, which has the disadvantage that it only
has a single memory bus for both instruction and data
fetches, the Look-up engine controller has separate buses for
instruction and data and typically performs one decision per
Step. Fast decisions are made possible by a special set of

NOACEx.1017 Page 166

NOAC Ex. 1017 Page 167

|

i‘

|

5,917,821
3

instructions which both conditionally move the pointer and
conditionally branch to new code in a single step. The
comparisons and pointer movements can be byte or word
wide, according to the currentfield’s size.

The look-up engine implements other optimized instruc-
tions which perform bit level logical comparisons and
conditional branches within the same cycle as well as other
instructions tailored to retrieving data from nibble-indexed
data structures.

The look-up engineis preferably divided into the follow-
ing sections:
a) one or more nibble tree address look-up engines (ALE)
b) one microcode engine

Each ALE is used to search for addresses in a tree

structure in its own large bank of memory. The result of a
search is a pointer to pertinent information about the
address. An ALE is assigned to destination addresses
(DALE) and source addresses (SALE). The ALEs operate
independently of each other.

The microcode engine is used to coordinate the search.It
invokes the SALE and DALE to search for the source and

destination addresses respectively and continues on to parse
the remainder of the packet using an application-specific
instruction set to determine the protocol.

The SALE, DALE and microcode engine can execute in
parallel and arrive at their corresponding results at roughly
the same time. The microcode engine then uses the SALE
and DALE results along with its own to arrive at the
forwarding decision.

¢ advantage of using RAM over a CAM is expand-
ability and cost. Increasing RAM isatrivial and inexpensive
task compared to increasing CAM size.

¢ advantage of the microcode engine over a general
purpose processor is that an ASIC implementation of the
function is much less expensive and less complex than a
processor-based design with all the overhead (RAM, ROM)
associated with it.

The invention also related to a method of parsing packets
in a packet-based data transmission network, said packets
including packet headers divided into fields having values
representing information pertaining to the packet, compris-
ing storing information related to possible values of said
fields, receivingfields from said packet headers of incoming
packets, andretrieving said stored information appropriate
to a received field value, characterized in that said informa-
tion is stored in a memory organized in a hierarchical treestructure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in more detail, by
way of example only, with reference to the accompanying
drawings, in which:

FIG.1 is an example of a MAClayer header ofa typical
packet;

FIG. 2 shows the data paths in a typical bridge-router
between Ethernet LAN and ATM networks;

FIG. 3 is a block diagram of a first embodiment of a
look-up engine in accordance with the invention;

FIG.4 is a block diagram of a look-up engine controller
for the look-up engine shown in FIG.3;

FIG. 5 is a block diagram of a second embodimentof a
look-up engine in accordance with the invention;

FIG.6 is a block diagram of a look-up engine controller
for the look-up engine shown in FIG. 5;

FIG. 7 is a map of look-up engine Address Look-up
engine (ALE) memories; .

FIG.8 is a diagram illustrating search tree operation in an
ALE;

30

35

45

50

55

4

FIG. 9 shows one example of a MAC search tree;

FIG. 10 shows the effect of the organizationally unique
identifier of the MAC addresses on the size of the search
tree;

FIG. 11 shows the source address look-up engine table;
FIG. 12 shows the destination address look-uptable;
FIG.13 illustrates the look-up engine addressing modes;
FIG. 14 showsastation information block;

FIG. 15 shows a port information block;
FIG. 16 shows an example of protocolfiltering;
FIG. 17 shows a look-up engine controller Instruction

State Machine;

FIG. 18 shows a typical fast timing diagram; and
FIG. 19 shows a typical SIB RAM access instruction

timing diagram.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A typical look-up engine (LUE) in accordance with the
invention is designed to be used in a twelve-port wire speed
Ethemet to ATM bridge-router capable of switching about
178,000 packets per second using 64 byte minimum Ether-
net packets. This packet rate corresponds to a look-up
request occurring every 5.6 ysecs. The LUE is used each
time a packet is received off the Ethemet or the ATM
network. The type of information that the engine provides
depends on the direction of packet flow and the type of
packet.

The look-up engine provides all the information needed to
find the path to each known destination, as well as default
information in the case of unknown destinations.

FIG. 1 shows a typical MAClayer header format for a
packet that can be parsed with the aid of the look-up engine
in accordance with the invention. The header comprises
destination and source address fields 100, 101, a network
layer protocol type field 102, and network layer destination
and source address fields 103, 104. FIG. 1 also illustrates
how the header is parsed in accordance with the invention.
All fields except 102 are parsed using a tree search. The Net
Layer Protocol Type field 102 is parsed by using microcode
comparisons in the microcode engine to be described.

On a bridge-router, each port is represented by a corre-
sponding bit in a PortSet (Ports 0-11), whichis a 16 bit value
that has local significance only. The Control Processor and
AIM are each assigned a port.

The following definitions are special cases of a PortSet:

SinglePortSet
a PortSet with a single bit set.HostPortSet
a SinglePortSet corresponding to the Control Processor
MyPortSet
a SinglePortSet corresponding to the source port of this packet.NullPortSet
a PortSet of no parts.

A Connection Identifier (C1), which is a 16 bit value with
local significance only, is used to map connections into
VPI/VCI values.

The following definitions are special cases of CI:

Mesh_ClI
a CI corresponding to a path towards the destination endstation’s
Bridge-router. ,

NOACEx. 1017 Page 167

NOAC Ex. 1017 Page 168

irsewaLthcps
|
|
faces \

5,917,821
5

-continued

Null_Ct
2 Cl connected to nothing.It is returned when the destination is
attached to the local Bridge-routeror if the connection is not
allowed.
RS_CI
a CI correspondingto a path to the Route Server.ABS_CI
a CI corresponding to a path to the Address/Broadcast Server.

MAClayer addresses are globally unique 48 bit values,
except in some protocols such as DECNet, where they may
not be globally unique.

Unicast_DA
a MAClayer destination address of an end-station.
Router_DA
a MAClayer destination address of the Route Server. An end-
station sends packets to the Route Server when it cannot send to
the destination directly at the MAC layer.
Broadcast_DA
the broadcast MAClayer address (all ones) which is received byall end-stations. It cannot be a source address.
Multicast_DA
a multicast MAC Jayer address (group bit set) whichis received by
end-stations that recognize that multicast address.

Network layer (NL) addresses are network protocol
dependent. They are generally divided into Network,
Subnet, and Node portions, although not all protocols have
all three present. The Network LayerAddress Field Sizes (in
bits) are summarized in the table below.

 Protocol Total Size=Network Subnet Node

IP 32 8/16/24 variable variable
IPx 80 D/a 32 48

(MACaddress)
AppleTalk 24 n/a 16 8
DECNet 64 16 38 10

(reserved) (32 =
'HIORD')
(6 = subnet)

The look-up engine handles unicast network layer
addresses.

‘When the look-up engine is used in a bridge-router
providing an interface between an Ethernet and ATM
network, packets coming from the Ethemetside are fed into
the Look-up Engine. The result of the look-up has the form:

Input —> Command, Cl, PortSet

where Inputis derived from the first few bytes of the packet
and Command is an opcode to the AXE (Transfer engine).

The Quad MACstatus word distinguishes between router
MAC, broadcast and multicast MACs.

Bridging occurs whenthe destination address is a unicast
address other than the Route Server address. Bridging is
allowed between two endstations in the same area for a
given protocol.

Both source and destination MAC addresses must be
known before automatic bridging/filtering is performed;
otherwise, the packet is sent to the Route Serverfor:

SA (Source Address) validation if the SA bas never been
seen speaking a given protocol

DA (Destination Address) resolution if the DA was not
found in the local MAC cache.

10

15

20

35

45

50

5S

60

65

6

The Bridge command instructs the AXE (Transfer
Engine) to use RFC-1483 bridge encapsulation. BndgeProp
commandinstructs the AXE to use bridge-router encapsu-
lation (include source PortSet in encapsulation)

Unknown_SA -> BridgeProp, Null_Cl, HostPortSet, MyPortSet
= Unknown SA - send to HP for Spanning Tree processing
* HP will decide whether to forward it to ABS for lcaming,
depending on Spanning Tree state
Unicast_DA -> Bridge, Mesh_Cl, NullPortSet
* DA in the samearea on a different Bridge-router
Unicast_DA -> Bridge, Null_Cl, NullPortSet
* DA notin the same area (reject)
* Protocol not allowed to bridge-router
* DA on the sameport
Unicast_DA -> Bridge, Null_Cl, SinglePortSet
* DAin the same area on the same Bridge-router but on a different
port
Unknown_DA -> BridgeProp, ABS__CI, NullPortSet, MyPortSet
* DA not fonndin the table - send to ABS for flood processing
Broadcast_DA -> BridgeProp, ABS_CI, NullPortSet, MyPortSet
* Broadcast DA - Send to Control Processorfor broadcast
processing
Multicast_DA -> BridgeProp, ABS_CI, NullPortSet, MyPortSet
* Malticast DA - Send to ABS for multicast processing
MulticastDA -> Bridgeprop, Null_Cl, HostPortSet, MyPortSet
* Multicast DA is ofinterest to HP (eg Spanning Tree)* HP will decide whether to forward it to ABS for multicast
processing

Routing occurs whenthe destination address is the unicast
Route Server address. Filtering miles between areas are
explicitly defined per protocol The per protocol source area
is an attribute of the source MAC address and the per
protocol destinationareais an attribute of the destination NL
address.

Both source MACanddestination NL addresses must be

known before network layer forwarding can occur.
The packet will be bridged to the Route Server if any of

the following are true:
IP options are present
Protocol is unknown

The packet will be dropped if any of the following aretrue:

Source areais not allowed to send to Destination area for

this protocol

Source NL address is invalid (¢.g. any IP broadcast
address)

Checksum is invalid

Time-To-Live field expires

Unicast_NLDA -> Route, Mesh_CI, NullPortSet
* NL node on a different bridge-router
Unicas._NLDA ~> Route, Null_CI, SinglePortSet
* NL node on the samebridge-router (could be same port)
Unknown_NLDA -> Bridge, RS_CI, NullPortSet
* unknown NL node - send to Route Server
Unknown_Protocol -> Bridge, RS_CI, NullPortSet
* protocol unknown, or packet with options

FIG. 2 shows the data paths in a typical bridge-router.
Control processor 16 has control over the formatting of
packets it sends and receives. If the control processor 16
wants look-up engine 17 to perform a look-up,it formats the
packet in the same way as Quad Mac 15; otherwise it sends
It as a raw packet, which doesnotrequire a lengthy look-up.
The control processor predetermines the destination by
providing a CI (Connection Identifier) and an output Portset
as part of the data stream. A bit in the Quad MACstatus
word indicates a raw packet and the look-up engine simply
retrieves the CI and Portset as part of the data stream. A bit

NOACEx. 1017 Page 168

NOAC Ex. 1017 Page 169

5,917,821

7

in the Quad MACstatus word indicates a raw packet and the
look-up engine simply retrieves the CI and Portset from the
data stream and feeds it to the AXE (Transfer Engine)
through the result FIFO. The Control processor is respon-
sible for correctly formatting the required encapsulation.

As shownin FIG. 2, packets coming from the ATM side
are fed into the look-up engine. The look-up engine accepts
an RFC-1483 encapsulated packet and determines whether
to look at a MACor NL address. Theresult of the look-up
will have the form:

Input > PortSet

Filtering is not performed in this direction. It is assumed
that the all filtering is done at the ingress side. It is also
assumed that the destination endstation is known to be

attached to the receiving Bridge-router, so unicast packets
with unknown destination addresses are dropped.

Flood and broadcast packets are encapsulated in a special
format which includes an explicit output PortSet.

Unicast_DA —-> SinglePortSet
“ DA on this Bridge-router
Unknown_DA -> NollPortSet
* DA notin the table (drop) - this situation should not occur.
Unicast_NLDA -> SinglePortSet
* NLDA onthis Bridgr-router
Unknown_NLDA -> NullPortSet
* NLDAnotin the table (drop) - this situation should not occur.
Broadcast_DA,PortSet -> PortSet
* Proprietary Broadcast request received from RS
Multicast_DA,PortSct -> PortSet
* Proprietary Multicast request received from RS
Unknown_DA,PortSet -> PortSet
* Proprietary Flood request received from RS

Turning now to FIG. 3, the look-up engine consists of
three functional blocks, namely a destination address look-
up engine (DALE) 1, a source address look-up engine
(SALE) 2, and a look-up engine controller (LEC) 3, which
includes a microcode ram 4. DALE 1 includes a destination

address look-up controller 5 and DALE RAM 6. SALE 2
includes a source address look-up controller 7 and SALE
RAM 8.The input to the look-up engine is through a fast
16-bit wide I/F RAM 9 receiving input from the AXE
(Transfer Engine) and reassembler. The output from the
look-up engine is through word-wide FIFOs 11, 12.

One embodiment of look-up engine controller (LEC) 3 is
shown in more detail in FIG. 4. This comprises (Station
Information Block) SIB ram 20, interface ram 21, and
microcode ram 22. The SIB ram 20is connected to look-up
pointers 23. Interface ram 21 is connectedto data register 25
and index pointers 26 connected to ALU (Arithmetic Logic
Unit) 27. Microcode ram 22 is connected to instruction
register 28.

The look-up Engine controler3 is a microcoded engine
tailored for efficient bit pattem comparisons through a
packet. It communicates with the Source Address Look-up
Engine 2 and the Destination Address Look-up Engine 1,
which both act as co-processors to the LEC 3.

The look-up engine snoops on the receive and transmit
data buses and deposits the headerportion of the packet into
the I/F RAM 9. The look-up respouse is sent to the appro-
priate FIFO 11, 12.

FIGS. 5 show an altemative embodimentof the loop-up
engine and controller. In FIG. 5, the LEC 3 includes a 64x16
I/F (Interface) ram 41 connected to FIFO’s 42, 43 (First-in,
First-out memories) respectively connected to latches 44, 45
receiving AXE (Transfer Engine) and reassembler input.

Referring now to FIG.6, the LEC 3 also contains several
registers, which will now be described. Register select
instructions are provided for the register banks (XPO~7,
LP0-7).

10

40

50

55

65

8

Index Pointer register (IP) 50 is a byte index into the I/F
RAM 21. Under normal operation, the index pointer register
50 points to the current packetfield being examined in the
I/F RAM 21butit can be used whenever random access to
the I/F RAM 21is required.
The IP 50 can be modified in one of the following ways:
1) loaded by the LOADIPinstruction (e.g. to point to the

beginning of the packet)
2) incremented by 1 (byte compare) or 2 (word compare) if

a branch condition is not met.

3) incremented by 2 by a MOVE (IP)+ type instruction.
Data Register 51 contains the 16 bit value read from I/F

RAM 21using the current IP. The DR 51 acts like a one
word cache; the LEC keeps its contents valid at all times.

Program Counter 52 points to the current microcode
instruction.It is incremented by one if a branch conditionis
truc, otherwise the displacementfield is added toit.

The Lookup Pointers (LPO-7) 23 are 16 bit registers
which contain pointers to the SIB RAM 20. The LPs are
used to store pointers whenever milestonesare reached in a
search. One LP will typically point to a source SIB and
another will point to a destination SIB. The LP provides the
upper 16 bits of the pointer; the lower 4 bits are provided by
the microcode word for indexing into a given SIB.

The LPs are also used to prime the SALE and DALEwith
their respective root pointers.

X.Y Registers 53, 54 are general purpose registers where
logic manipulations can be made (AND, OR, XOR). They
are used for setting and clearingbits in certain words in the
SIB RAM (e.g. Agebit) andto test for certain bits (e.g. status
bits). The X Register 53 can be selected as OperandAto the
Logic Unit while the Y Register can be selected as Operand
B.

The BYZ and BYNZ instructions conditionally branch on
Y=0 and Y<0 respectively.

The Y Register 54 is the only register source for moves to
the result FIFOs.

The X Register 53 can be saved to or restored from X'
Registers (X'0-X'7) 55. The mnemonic symbol for the
currently selected X' register is XP.

The S Register56 is a pipelining stage between SIB RAM
20 and the Logic Unit. It simplifies read access from SIB
RAM 20 by relaxing propagation delay requirements from
SIB RAM 20 valid to register setup. It provides the added
advantage of essentially caching the most recent SIB RAM
access for repeated use.It is loaded by the GET Index(LP)
instruction.

As in FIG. 3, the LEC 3 controls the operation of the
look-up engine. All look-up requests pass through the LEC
3, which in turn activates the SALE 2 and the DALE 5 as
required. The LEC 3 is microcode based, numing from a
32-bit wide microcode RAM.Theinstruction set consists
mainly of compare-and-branch instructions, which can be
used to find specific bit patterns or to check for valid ranges
in packet fields. Special I/O instructions give the LEC
random read access to the interface RAM.

The LEC has access to 3 memory systems: the interface
RAM 9,the SIBRAM 20 and the Microcode RAM 22.

TheMeaRAM9WBusedtsfeedPacket dataintsthe
LEC 3. The look-up engine hosts dump packet headers into
this RAM through snoop FIFOs 42, 43. This RAM is only
accessible through the snooped buses.

The SIB RAM 20is used to hold information for each

known end-station. The LEC 3 can arbitrarily retrieve data
from this RAM andtransfer it to one of the response FIFOs
11, 12 or to internal registers for manipulation and checking.
High speed RAM is also used to minimize the data retrieval
time. The size of the SIB RAM 20 is dependent on the
maximum number ofreachable end-stations. For a limit of

8,000 end-stations, the SIB RAM size is 256K bytes. This
RAM is accessible directly to the Control Processor for
updates. .

/ cache

NOACEx. 1017 Page 169

NOAC Ex. 1017 Page 170

5,917,821

9
Fhe Microcode ‘RAM 22is dedicated to the LEC 3. It

contains the 32 bit microcode instructions. The LEC 3 has
read-only accessto this high speed RAM nommnally, butit is
mapped directly to the Control Processor’s memory space at
startup for microcode downloading.

Variablefields of a packet, such as addresses, are searched
in one of many searchtrees in the ALEs 1, 2, (FIG. 5), which
are nibble index machines. Each ALE 1,2 has its own search
tree RAM 6, 8 (FIG.7), whichis typically high density but
low speed. This RAM is divided into 32 byte blocks which
can either be Index Arrays or Information Blocks.

The searches in the ALEs 1,2 are basedstrictly on the root
pointer, the search key and search keylength it is given. A
lookat the look-up engine memory map(FIG. 7) as viewed
from the ALEs shows how the mechanism works.

All search trees in a given ALE 6, 8 reside in the upper
half of its memory. The 16-bit root pointer given to the ALE
will have the most significantbit set. The search key (e.g.
MACaddress) is divided into nibbles. Thefirst nibble is
concatenated with the root pointer to get an index into the
root pointer array. The wordat this location is retrieved.If
the MSB (MostSignificantBit) (P Bit)is set, the next nibble
is concatenated with the retrieved word to form the next

pointer. If the P Bit is clear, the searchis finished. The final
result is given to the LEC, whichuses it either as a pointer
into the SIB RAM,or as data, depending on the context of
the search. A zero value is reserved as a null pointer value.
FIG.8 illustrates search tree operation.

The search key length limits the numberofiterations to a
known maximum. The control processor manipulating the
search tree structure may choose to shorten the search by
putting data with a zero P bit at any point in the tree.

“Don’t Care” fields are also achievable by duplicating
appropriate pointers within the same pointer array. Search
trees are maintained by the Control Processor, which has
direct access to the SALE and DALE RAMs 6,8.

FIG. 9 is a diagram illustrating a MACsearch tree
example. The main purpose of the ALE RAMs 6,8 is to hold
MAClayer addresses. The size of the RAM required for a
MACaddress tree depends onthe statistical distribution of
the addresses. The absolute worst case is given by the
following formula:

wa Si minis, xBL

where
X is the numberof addresses
Lis the numberof nibbles in the address

N is the number of pointer arrays
The amount of memory required, given 32-byte pointer

arrays, is 32N. The numberobtained from this formula can
be quite huge, especially for MAC addresses, but some
rationalizations can be made.

In the case of MAC addresses, the first 6 nibbles of the
address is the Organizationally Unique Identifier (OUI),
which is commonto Ethemet cards from the same manu-

facturer. It can be assumed that a particular system will only
have a small numberof different OUIs.

The formula for MACs then becomes:
6 M L2

N=)minis,+)Y) mine, X;a Fil

where
M is the numberof different OUIs

X; is the numberofstations in OUI,
Assuming that the addresses are distributed evenly over

ali OUIs,

5

10

30

45

50

55

60

65

10
6 12. x

N= » min(16!, B+ My) min(i6~”, aisl 7

The effect of OUI on Search Tree Size is shown in FIG.

Similar rationalizations can be made witb IP and other
network layer protocol addresses. An IP network will not
have very many subnets and even fewer network numbers.

Although the SALE 2 typically bolds locally attached
source MAC addresses and the DALE 1 typically holds
destination MAC addresses, either ALE 1, 2 is capable of
holding any arbitrary search tree. Network layer addresses,
intra-areafilters, and user-defined MACprotocol types can
all be stored in search trees. The decision to put a searchtree
in either SALE or DALEis implementation dependent; it
relies on what searches can be donein parallel for maximum

The principal function of the SALE 2 is to keep track of
the MACaddresses ofall stations that are locally attached to
the bridge-router. Typically one station will be attached to a
bridge-router port, but connections to traditional hubs,
repeaters and bridge-routers are allowed, so more source
addresses will be encountered.

Using the formula for RAM size above, typical RAM
calculations for the source address trees are as follows:

Number of

Number of OUIs Stations Total Bytes

20 400 65,440
2 500 65,184

20 500 T1984
20 800 116,284

5 1,000 131,552

The numberof source stations is limited to some fraction
of the total allowable stations. The limit is imposed here
because the SALE will mostlikely hold many of the other
search trees (e.g. per protocol NL address search trees,
intra-areafilters).

Wheneveranew source address is encountered, the SALE
1 will notfind it in the MAC source address search tree. The
LEC 3 realizes the fact and sends it to the Control Processor.
The new source address is inserted into the search tree once
validation is received from the Route Server.

Wheneverapreviously learned address is re-encountered,
the Age entry in the SIB 20 is refreshed by the LEC 3. The
control processorclears the Age entry ofall source addresses
every aging period. The entry is removed when the age limit
is exceeded.

The source address look-up enginetable is shown in FIG.
11.

The DALE 1 keepstrack of all stations that are directly
reachable from the bridge-router, including those that are
locally attached. The DALE search trees are considerably
larger because they contain MACaddresses of up to 8,000
stations.

Typical memory sizes for MAC destination address
search trees would be:

Number of Number of

OUI Stations Total Bytes

10 8,000 856,992
20 8,000 945,824
30 8,000 1,034,464

A station’s MACaddress will appear in the MAC search
tree if the station is reachable through MAC bridging. A

NOACEx. 1017 Page 170

NOAC Ex. 1017 Page 171

VetteRAGATAteBERE|+ 5,917,821

it

station’s network layer address will appear in the corre-
sponding networklayer searchtreeif it 1s reachable through
routing.

The destination address look-up engine MACtable is
shown in FIG. 12.

IP masking may be required if a particular port is known
to have a router attached to it. Masking is achieved by
configuring the IP network layer search tree in such a way
that the node portion of the address is treated as Don’t Care
bits and the corresponding pointers point to the same Next
Index Array.

The SALE and DALE RAMs8,6 are divided up into 16
word blocks. These RAMsare accessible only to the corre-
sponding ALE and the Control Processor. These RAMs
contain mostly pointer arrays organized in several searchtrees.

The SIB RAM 20is divided into 16 word blocks which

can betreated as records with 16 fields. Each block typically
contains information about an endstation. This RAM is

accessible only to the LEC and the CP.
The LEC3 uses the lookuppointer (LP) as a base pointer

into a SIB 20. The contents of the LP is obtained either from
the result of a SALE 2 or DALE1search to access

end-station information, or from a constant loaded in by the
microcode to access miscellaneous information (e.g. port
information). The LP provides the upper sixteen bits and the
microcode word provides the lowest four bits of the SIB
RAM address.

The lookup Engine addressing schemeis shown in FIG.

The SIB RAM 20 (FIG. 14) generally contains informa-
tion about the location of an endstation and howto reachit.

For example,the PortSetfield may keep track of the port that
the endstationis attachedto (if it is locally attached) and the
connection index refers to a VPI/VCI pipe to the endstation
Cif it is remotely attached). Otherfields are freely definable
for other things such as protocolfilters, source and destina-
tion encapsulation types and quality-of-service parameters,
as the need arises.

A variantof the SIB is the Port Information Block (PIB)
(FIG.15). PIBs contain information abouta particular port.
Certain protocols have attributes attached to the port itself,
rather than the endstations. An endstation inherits the char-

acteristics assigned to the port to which it is attached.
Thedefinition of the SIB is flexible; the only requirement

is that the data beeasily digestible by the LUE instruction
set. The field type can be a single bit, a nibble, a byte, or a
whole word.

In FIG. 14, the Cl (Connection Identifier) field is a
reference to an ATM connection to the endstation if it is

remotely attached. This field is zero for a locally attached
endstation.

The PortSet field is used both for determining the desti-
nation port of a locally attached endstation, and for deter-
mining whether a source endstation has moved. In one
Newbridge-router Networks system, a moved endstation
must go through a readmission procedure to preserve the
integrity of the network. This field is zero for a remotely
attached endstation.

The MACIndexis a reference to the 6-byte MAClayer
address of the endstation. This field is used for network layer
forwarded packets, which have the MAClayer encapsula-
tion removed. The MAClayer address is re-attached when
a packet is re-encapsulated before retransmission out an
Ethemetport. The encapsulation flags determine the MAC
re-encapsulation format.

The Proto Area and Proto Dest Areaficlds are used for
filtering operations. Because the Newbridge-router system
essentially removes the traditional physical constraints on a
network topology,the area conceptlogically re-imposes the
constraints to allow existing protocols to function properly.

10

15

30

45

55

65

12

Filtering rules defined between areas determine whether two
endstations are logically allowed to communicate with each
other using a specific protocol.

The Proto Areafield is a pointer to a filtering ruletree,
which is similar in structure to the address trees. The Dest

Area field is a search key into the tree. The result of the
searchis a bitfield in which each protocolis assigned onebit.
Communications is allowed if the corresponding bit is set.

FIG. 16 showsafiltering mule tree.
The microcode for the LEC 3 will now be described. The

LEC microcodeis divided into four main fields as shown in

the table below. The usage of eachfield is dependent on the
instruction group.

31-29 28-24 23-16 15-0

Inst Instruction Displacement Parameter
Group

The instruction group field consists of instructions
grouped according to similarity of function. A maximum of
eight instruction groups can be defined.

The Instruction field definition is dependent on Instruc-
tion Group.

In branch instructions, the Displacementfield is added to
the PC if the branch condition is true. This field is used by
non-branch instructions for other purposes.

The Parameterfield is a 16 bit value used for comparison,
as an operand,or as an index, dependentonthe instruction.

The functions of the groups are set out in the following
table.

Index Pointer/Bank Select
Instructions
These instructions manipulate the
TP and the register bank sclect
register.
Fast Move Instructions
These instructions move data
between I/F RAM andinternal
registers.
Conditional Branch Instructions
These instructions branch when a
given condition is met. They can
optionally increment the IP.
X Register Branch Instructions
These instructions branch on an X
Register logic comparison.
Not Used
Slow Move Instructions
These instructions generally
involve the SIB RAM bus. The
access time to the SIB RAM is
longer because of address setup
time considerations and because
the CP may be accessing it at the
same time. Access to the Result
FIFOs are included here.
Not Used
Misc Instructions

These instructions invoke spectal
functions.

Group 2

Group 4
Group 5

Group 6
Group 7

Thefollowingtable describes the use of eachofthefields.

NOAC Ex. 1017 Page 171

NOAC Ex. 1017 Page 172

et

Mgt>

sateSte?
takAee

“x

>ytetpeacer

5,917,821

17-16

Grp 31-29 2826 25-24 23-21 20-18 18-16" 15-0

0 000 000 Oper 111 110 BSel Immediate Value (15-0)or

Register Select (15-4)
1 001 Dest Size LSel ASel BSel=‘Immediate Value (15-0)

Register Select (15-4)
or Index (3—0)

2 010 Cond. Size Disp. (8) Comparand
3 011 Cond. 00 LSel_—Disp. (5) Comparand4 100
5 101 Dest Size LSci ASel BScl=Immediate Value (15-0)

Register Select (15-4)
or Index (3—0)6 110

7 111 000 Size 000 000 a0 codes

"when LSel = 110

20 continued

Condition Condition

100 - Extended Condition = True
101 - Extended Condition = False

111 - Lookup Pointer
Operation ~ IP/Register Select operation
00 - Register Select10 - Load
Size - IP increment size
00 ~ no increment
01 - byte (+1)
10 - word (+2)
Displacement (8 bits)00000001 - next instruction
00000000 - same instruction

001-AORB
010 - AAND NOT B
011 - AOR NOT B
100 - AXOR B
101 - Reserved
010-B
111-A
AScl - Operand A Select
000 - (IP), (P+ Indirect I/F Data
001 -X X Register
010-S S Register
011 - XP X’ Register
100 - XP X' Register
101 -
110 -
111 -

BSel - Operand B Select
00-Y Y Register
Q1 - #Valuc Immediate Value
11- Special FunctionWhen LSel = 110:

60

65

010 - DALE Lookup Result
110 - SALE Lookup Result
Immediate Valuc
Word values fill the whole ficid

Byte values omst be repeated twice to fill the field
When BSel = 11 (Special Functions):

Value Function Mnemonic

$0000 X rotate left 4 LA(X),R12(K)
$1000 X rotate 8 (byte swap) SWAP(X),L8(X),R8(X)
$2000 X rotate right 4 RA4(X),L12(X)
$3000 portset(X) PSET(X)
$4000 X rotate left 1 Li)
$5000 X rotate right,1 R1(X)
$6000 Hip X FLIP(X)
$7000 LUE Version number VER

When Value = $3000 (Portset Function):
(11:8) £(15:0)
0 0000000000000001
1 0000000000000010
2 0000000000000100
3 0000000000001000
4 0000000000010000
5 0000000000100000
6 0000000001000000
7 0000000010000000
8 0000000100000000
9 0000001000000000
10 0000010000000000
it 0000100000000000
12 0001000000000000
13 0010000000000000
14 0100000000000000
15 1000000000000000

FIFO Write Instructions

31-29 28-26 25-24 2321 20-18 17-16 15-0

101 000 00 110 Extra BSel Immediate
Value (15-0)

NOACEx. 1017 Page 172

NOAC Ex. 1017 Page 173

:
|

 5,917,821

15 16

Oce 01 MOVEF #Value,Extra
Move Immediate Value to FIFO with Extra bits

Qee 00 MOVEF Y,Extra
Move Y Register to FIFO with Extra bits

Jee 00 MOVEF Index(LP),Extra
Move Indexed Lockup Data to FIFO with Extra bits

The FIFO write instructions are used to write data into the 10 -continued

currently active result FIFO. The Extra field controlbits 16
and 17 in the FIFO data bus.

The third instruction in the List is a direct memory access
from SIB RAM to the active FIFO. SIB RAM is enabled

while the active FIFO is sent a write pulse. Doing so avoids
having SIB data propagate through the LUE.Bit 20 differ-
entiates between a DMA and a non-DMA instruction.

The X register cannot be used as a MOVEF source
because what would normally be the ASel field conflicts
with the Extra field.

Usage:

MOVEF #1PSnap,0 ; Packet is IP over SNAP
Interface RAM Data Read Instructions

w1-29 28-26 25-24 2321 20-18 17-16 15-0

001 Dest Size 111 000 00 Unused

 Dest/Size

001 00 MOVE (IP),x
MoveIP indirect to X Register

001 10 MOVE (IP),
MoveIp indirect autoinc to X Register

100 00 MOVE (IP),
MoveIP indirect to Y Register

100 10 MOVE (IP}+.Y
MoveIP indirect autoinc to Y Register

111 00 MOVE (IP),LP
MoveIP indirect to LP Register

111 10 MOVE (IP},LP
MoveIP indirect autoinc to LP Register

Interface RAM Data Read instructions are used to read

data from the Interface RAM 41into the X, Y or LP Register.
The LP used is preselected using the RSEL instruction.
Lookup Pointer Instructions

31-29 28-26 425-24 23-21 2-18 17-16 15-0

Group Dest 00 LSel ASel BSel immediate
or Value (15-0)
Extra Reg Sel

(15-4)or Index
(3-0)

|
Group/Dest/LScl/ASel/BSel - Instruction Type

101 101 11100100 MOVE X,Index(LP)
Move X Register to Indexed Lookup Data

60

65

Group/Dest/LSel/ASel/BSel- Instruction Type

101 101 11000000 MOVE Y,Index(LP)
Move X Register to Indexed Lookup Data

101 01100000000 GET Index(LP)
Load S Register with Indexed Lookup Data

001 111 11000000 MOVE Y,LP
Move X Register to Lookup Pointer

001 111 11000001 MOVE #Valuc,LP
Move Immediate Value to Lookup Pointer

001 111 11100100 MOVE X,LP
Move X Register to Lookup Pointer

Lookup Pointer instructions are used to load the Lookup
Pointers or to store and retrieve values in Lookup RAM.

Usage:

MOVE Age(LP),X ; Get Age field
eee ; check age
wee 3 teset age
MOVE X,Age(LP) ; put it back in

Logic Instructions

31-29 28-26 25-24 23-21 20-18 17-16 15-0
001 Dest 00 LSel AScel BSel

tions on the X and Y Registers. Combinations of the
selections above yield the following (useful) instructions:

 Dest/LSel/ASel/BSel

001 110 000 00 MOVE Y,X
Y->X

100 111 001 00 MOVE X,Y
x—->¥

001 111 010 00 MOVE Sx
S->X

100 111 010 00 MOVE S,Y
S->Y

001 110 000 01 MOVE #Value,X
Immediate Value -> XK

100 110 000 01 MOVE #Valuc,Y
Immediate Value —> Y

001 000 001 00 AND X,Y,X
X AND Y -> X

001 000 010 00 AND S,Y,X
S AND Y-> X

001 000 001 01 AND X,#Value,X
X AND Value -> X
AND S,#Value,X
S AND Value -> X
AND X,Y,Y
X AND Y -> Y

001 000 010 01

100 000 001 00

NOACEx. 1017 Page 173

NOAC Ex. 1017 Page 174

ABeeaeee:s
Bieeeee

<a

SYAETTRN,
TYACT
wey°

i

OTSEpe

yon

Seeies

28aSAEESS«4555
aineWA

5,91
17

-continuedCS

Dest/LSel/ASel/BSelel
100 000 010 00 AND S,Y,Y

SAND Y-> Y
AND X,#Valuc,Y
X AND Value -> Y
AND S/*Value,Y
S AND Value -> Y

OR, ANDN, ORN and XORare similar to AND:

100 000 001 01

100 000 010 01

dst 001 aaa bb OR aaabbdst
aaa OR bb ~> dst

dst 010 aaa bb ANDN aaa,bb,dst
aaa OR bb —> dst

dst 011 aaa bb ORN aaa,bb,dst
aaa OR bb —> dst

dst 100 aaa bb XOR_ aaa,bb,dst
aaa OR bb—> dst

Conditional Branch Instructions

reLT

31-29 28-26 25-24 23-16 15-0

010 Cond. Size Displacement Comparand———

Cond/Sizeae

000 01 ESCNE.b #Comparand,Label
Escape if Byte Not Equal

000 10 ESCNE.w #Comparand,Label
Escape if Word Not Equal

001 01 ESCGEb #Comparand,Label
Escape if Byte Greater or Equal

001 10 ESCGEw #Comparand,Label
Escape if Word Greater or Equal

010 01 ESCLE.b #Comparand,Label
Escape if Byte Leas or Equal

010 10 ESCLE.w #Comparand,Label
Escape if Word Less or Equal

1140 00 BYZ Label
Branch if Y Register is zero

111 00 BYNZ Label
Branch if Y Register is not zero

Increment Branch instructions are used to compare the
current packet field with an immediate value.If the condi-
tion is met, the branch is taken; otherwise IP is incremented
by the Increment Size.
Usage:

Labell ; check if SNAP header
ESCNE.w #$AAAA,Labe12 ; compare to SNAP value
ESCNE.w #§0003,OtherLabel

X Register Branch Instructions

31-29 28-26 25-24 23-21 20-16 15-0
Value011 Cond 00 LSel Disp

|
Cond/LSel

7,821
18

continued

Cond/LSel

5 111 100 BXNE #Valuc,LabelBranchif X is not equal to valuc
110 000 ANDBZ #Value,Label

Branch if X AND Value is equal to zero
111 000 ANDBNZ #Value,Label

Branch if X AND Valueis not equal to zero
10 110 010 ANDNBZ #Valuc,Label

Branch if X AND NOT Value is equal to zero
111 010 ANDNBNZ #Value,Label

Branch if X AND NOT Valucis not equal to zero

X Register Branch instructions are derived from the X
Register Logic instructions with OperandA always setto the
X Register and Operand B always set to the Immediate
value. The X Register is not affected by any of these

20 instructions. The displacementfield is reduced to 5 bits
(+/-32 instructions)
Usage:

25 See Destination Lookup Instruction example
SKIP.w ; ignore the next word field

Other Branch Instructions

30

31-29 28-26 25-24 23-16 154 3-0

010 Cond Size Disp ExtCond ExtDisp

35

Cond/Size/Disp/ExtCond/ExtDisp.

100 GO $00 $000 0 DWAIT
Wait for DALE

40 100 00 $00 $800 0 SWAIT
Wait for SALE

101 00 $00 $00 0 FWAIT
Wait for Snoop FIFO done

101 GO ddd $400 0 BCSERR ddd
Branch on checksum error

45 011 01 $01 $000 0 SKIP.b
Skip Byte (same as IBRA.b +1)

011 10 $01 $000 0 SKIP.w
Skip Word (same as IBRA.w +1)

011 01 ddd $000 0 IBRAb Label
Increment Byte and Branch Always

50 011 10 ddd $000 d IBRA.w Label
Increment Word and Branch Always

011 00 000 $800 0 SWITCH
Switch on X (add X to PC)

011 00 ddd $000 d BRA.u Label
Branch Always

55

These instructions are derived from the conditional

branchinstructions. Wait instructions loop until the extended
condition is false. Skip instructions moveto the next instruc-

60 tion and incrementthe IP appropriately.

Morebranch instructions can be defined easily by using
Cond=100 or 101 and picking an unused ExtCond pattem.

When Cond=011 (True), the displacement field is
—_——< ts extended to 12 bits.BXEQ #Value,Label

Branch if X is equal to valuc
110 100

The SWITCH instruction addsthe least significant nibble
of X to the PC. If X(B:0)=0, 16 is added to the PC.-

NOACEx. 1017 Page 174

NOAC Ex. 1017 Page 175

19

Usage:

SKIP.w 5 ignore the next word field
Index Pointer/Register Select Instructions

Index Pointer/Register Select Instructions

31-29 28-26 25-24 2321 1716 «615-0

20-18

Group Dest Oper LSel ASel=BSell Immediate
Value (15-0)or

Register Select
(as)

Group/Dest./Oper/LSel/ASel/BSel

001 110 00 111 00000 ST XLXPa,LPa]
X ~> XP, optionally switch to XP2,1Pn

00100100 11110000 LD X{,XPn,LPn]
XP -> X, optionally switch to XPn,LPno

001 011 00 11100000 RSEL XPn,LPn
switch to XPo,LPn

000 011 10 111 00001 LOADIP # Valoc
LoadIP immediate

000 011 10 111 00100 LOADIP x
Load IP with X

15-12 n 10-8 7 64 30
KXXX XEn XSel LPEn LPSel XXXX

The En bits determine whether the corresponding select
bits are valid. If En is zero, the corresponding register
selection remains unchanged.IfEn is one, the corresponding
select bits are used. This mechanism allows register selec-
tions to be made independent of each other.

Destination Lookup Instructions

31-29 28-26 25-24 23-21 20-18 17-16 15-0

001 010 Size 111 ASel 00 Command/
Address

Size/ASel

00 001 DLOAD X,Address [,Command]
Load X into DALE

00 000 DLOAD (IP),Address [,Command]
Load IPindirect into DALE / load Command Reg

10 000 DLOAD (IP)}+,Address [,Command]
LoadIP indirect autoinc into DALE / load Command Reg

10

15

20

35

50

55

60

65

5,917,821

31-29 28-26 25-24 23-21 20-18 17-16 15-0

001 Dest 00 110 ooo 10 not used

Dest

111 DMOVE LP
Move DALE result pointer into Lookup Pointer001 DMOVE X
Move DALE result pointer into X Register100 DMOVE Y
Move DALE result pointer into Y Register

The destination lookup instructions set up the DALE and
read results from it. The currently selected lookup pointeris
used as the root pointer.

The DLOAD instruction loads words into the 16 by 16 bit
DALE Nibble RAM and loads the Command Register. The
DMOVE instruction returns the DALEresult.

Command Register

 15 14 13-12 1-4 30

Start 0 Nibble 00000000 Address
Offset

The Start bit signals the DALE to start the lookup.

pointer. DMOVE should be preceded by DWAIT,otherwise
the result may be invalid.

Usage:

LOADIP #StartOfPacket 5 pointto start of packet
DLOAD (P)+, Word 3 load DA word 1
DLOAD (P)+,Word2, 3 load DA word 2
DLOAD (IP)+,Word3,Start =; load DA word 3 and start lookup
aes : do other stuff
DMOVE x 3 get result
BXNE #Null,.DAFound 3 address found in table

Source Lookup Instructions

3129 28-26) 25-24 23-21 218 «17-16 =—«15-0

001 010 Size 111 ASel o1 Command/
Address

Size/ASel

00 001 SLOAD X,Address [,Command]Load X into SALE

00 000 SLOAD (IP),Address [,Command}
Load IP indirect into SALE / load Command Word10 000
SLOAD (iP)}+,Address [Command]Load IP indirect autoinc into SALE / load Command Word

NOACEx. 1017 Page 175

NOAC Ex. 1017 Page 176

 woreOS

syMybepn !etthws
pnMeas)haleat

Roo
DeRR

*SaartnsONERig£0)setsMRRetOdES 5,917,821
21

w1-29 28-26 «25-24 23-21 2-18 17-16 15-0

oo1 Dest ao 110 oo1 10 Immediate
Valne (15-0)

Dest

111 SMOVE LP
Move SALE result pointer into Lookup Pointer001 SMOVE X
Move SALE result pointer into X Register100 SMOVE Y
Move SALE result pointer into Y Register

The destination lookup instructions set up the SALE and
read results from it. The currently selected lookup pointeris
used as the root pointer.

The SLOAD instruction loads words into the 16 by 16 bit
SALE Nibble RAM andloads the Command Word. The
SMOVE instruction returns the SALE result.
Command Word

 15 14 13-12 11-4 30

Start 0 Nibble 00000000 Address
Offset

The Start bit signals the SALE to start the lookup.
The Nibble Offset field points to the first valid nibble in

the first word loaded into the Address RAM.

Usage:

SLOAD (IP)+,Word1 ; load DA word 1
SLOAD (IP)}+,Word2 3 load DA word 2
SLOAD (IP)+,Word3,Start

5 load DA word 3 and start lookup
aoe ; do other atoff
SWAIT ; wait for SALE to finish
SMOVE X 3 get result
BXNE #Null,SAFound ; address found in table

Checksum Enpine Instructions

31-29 28-26 25-24 «23-21 20-18 17-16 15-0

001 010 Size 111 ASel 10 $8000

Size/ASel

00 001 CLOAD X
Load X into Checksum Engine and start

00 000 CLOAD (IP)
LoadIP indirect into Checksum Engine and start

10 000 CLOAD (IP)}+
Load IP indirect autoine into Checksum Engine andstart

The CLOAD instruction loads a word count into the

10

15

20

30

45

55

60

22

the checksum eachtime the IP crosses a word boundary until
the count is exhausted.

Miscellaneous Instructions

31-29 28-16 15-0
111 00000000 Code (2-0)

These instructions invoke special functions

Code
001 STOP

Stop execution until next lookup request

The lookup engine operation will now be described in more
detail. The instruction State Machine (ISM) is shown in FIG.
17.

A lookup engine microcode will typically take four clock
cycles. At 50 MHz,the instruction cycle takes 80 ns to
execute. Instructions that require access to SIB RAM,which
require arbitration with the Control Processor, and any
future extensions that require more time to execute will
require one or more additional cycles to complete.

After reset, the 3 LECis in the idle state. As soon as one
of the snoop FIFOs 42, 43 is non-empty, the ISM enters the
main instruction cycle loop.

A microcode instruction cycle is typically divided into
four main states. State 3 and State 0 allow the microcode

contents to propagate through the LEC. The instruction
groupis determined in State 1. If a fast instruction is being
executed (Groups 0-3), State 2 is entered immediately.
Otherwise the appropriate next state is entered according to
the Groupfield.

FIG. 18 shows a typical fast instruction.
Bythe time State 2 is reached,all signals will have settled.

New values for the PC and if necessary, the IP and/or the
selected destination, are loaded at the end ofthis state.

State 42 is a dummystate for currently undefined groups.
State 52 is a wait state for external accesses to SIB RAM.

The ISM exits this state when the SIB RAM has been

granted to the LEC long enough for an access to complete.
FIG. 19 shows a typical SIB RAM access instruction.
States 72 and 73 are executed during the STOP instruc-

tion. State 73 flushes the snoop FIFOs in case.
The LECcycles through States 0 to 3 indefinitely until a

STOP instruction is encountered, which brings the LEC
back to the idle state.

The lookup request mechanism for a MAClayer lookup
is as follows:

The requester (e.g. the AXE) places information, gener-
ally a packet header, into the snoop FIFO.

The empty flag of the FIFO kickstarts the LEC.

The LEC instructs the DALE to look up the destinationaddress.

The LEC instructs the SALE to look up the source
address.

The LEC looks into the packet io determine the network
layer protocol in case it needs to be forwarded.

The LEC waits for the SALE and reads the Source
Address SIB pointer.

The source port is compared against the previously stored
portset to see if the source endstation has moved.

The LEC waits for the DALE andreads the Destination
Address SIB pointer.

2

proces

NOACEx.1017 Page 176

NOAC Ex. 1017 Page 177

ae aepeeq

cetaet, oaEEte

"

e a

niga:

RS
9

ee

enORS

Weekne
cree

enwtpwaeBtn

ebenayeA“Sil

23

The destination area is comparedto the source area to see
if the endstations are in the same area.

The source port is compared agains! the destination port
to sec if the endstations are on the same port.

5,917,821
24

Packets are discarded if they serve no other useful pur-
pose (e.g. SA and DA on the sameport orin different areas,
errored packets). Otherwise they are sent to the Control
Processor for further processing,
Sample Program

; File: BDG.a
; Unicast Bridging Case
3 Release 1.1 Functionaiityi
BDG_Start:
>XO = Packet Status Word
3LP = Points to 2nd byte of PSW
;DR = Contains Packet Status Word
;XO, LPO are default XP, LP

MOVE $8000,LP ;Look up Destination MAC
DLOAD (IP)+,0 ;Load Dst Addr bits 0-15
DLOAD (IP)+,1 ;Load Dst Addr bits 16-31

sLoad Dst Addr bits 32-47
DLOAD=(IP)+,2,$8000—;and start lockup
MOVE $8000,LP ;Look up Source MAC
SLOAD (IP)+,0 Load Sre Addr bits 0-15
SLOAD (IP)+,1 Load Src Addr bits 16-31

jLoad Sre Addr bits 32-47
SLOAD (IP)+,2,$8000 —_;and start lookup

; determine protocol here
ESCGE.w 1500, scheck if 802.3 format

CheckEne!
ESCNE.w $AAAA, scheck DSAP/SSAP

Unknown’
ESCNE.w $0300, scheck CTL field

SNAPUnknown-
ic

ESCNE.w sooo,SNAPUnknown-
rc

ESCNE.w 3th00, ;check protocol type fieldSNAPUnknown-
Protocol

; It’s IP over SNAP
BdgSNAPP:

CLOAD 5 assume JP
headerlength is5

ESCNE.w $4500, check IP header
BdgSNAPIP__
withOpts

SKIRw yakip length
SKIP-w pakip identifica-tion
SKIE-w skip offset
ESCLE.b $01, check TTL

BdgSNAPIP__
TTLExpired

SKIPb wkip protocol
SKIP.w yakip checksum
MOVE (IP)+,X_ ;read NLSA
MOVE R12(X),X ;shift first nibbleto bottom
SWITCH check IP Class
BRAU BdgSNAPIP-=;Oxxx = Class A addressClassA
BRAu BdgSNAPIP-ClassA.
BRAU BdgSNAPIP-

ClassA
BRAu BdgSNAPIP-

ClassA
BRAu BdgSNAPIP-

ClassA
BRAu BdgSNAPIP-

ClassA
BRA BdgSNAPIP-ClassA
BRAu BdgSNAPIP- —_;10xx = Class B addressClassB
BRAu BdgSNAPIP-

ClassB
BRAuU BdgSNAPIP-

ClassB
BRAu BdgSNAPIP-

ClassB

NOACEx. 1017 Page 177

NOAC Ex. 1017 Page 178

 taSlyog

kee

‘ 5,917,821
25 26

continuednr

BRAu BdgSNAPIP- —_;110x = Class C addressClassC
BRAu BdgSNAPIP-

ClassC
BRAu BdgSNAPIP- 1110 = Class D addressClassD

BRA BdgSNAPIP- —;1111 = Class E addres (future)ClassE
BRAu BdgSNAPIP-—;Qxocx = Class A AddressClassA

BdgSNAPIPClassA:
OR X,$FFO0,X ;check if broadcast
BXNE SFFFF,

BdgSNAPIP_
NLSARealign

MOVE (P)y,X check lower address word
BXEQ SFFFE, jall ones host address

BdgSNAPIP_
NLSAlnvalid

BRA BdgSNAPIP___ ;broadcast SAis notallowedNLSAValid.
BdgSNAPIP__

SKIP.w
BRA BdgSNAPIP_NLSAValid

BdgSNAPIPClassB:
MOVE PX check lower address word
BXNE SEFFF,

BdgSNAPIP__
NLSAValid

BRAu BdgSNAPIP__NLSAValid
BdgSNAPIPClassC:

MOVE (P)}+,.X ycheck lower address byte
OR X,S$FFUO,X ycheck if broadcast
BXEQ SFFFE,

BdgSNAPIP__
NLSAlnvalid

BRAu BdgSNAPIP_NLSAValid.
BdgSNAPIPClassD:SKIP.w

BRA. BdgSNAPIP__NLSAValid
BdgSNAPIP_NLSAInvalid

SWAIT sclean up afterSALE and
DALE

DWAIT
OR XP,CMD__ ;Load command Word

DISCARD |CMD__
UNICAST,Y

MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_cCI ;Send Cl Index
MOVEF PORT__CP ;Dest Port is CP
MOVEF RSN_FRC__;Send Reason

MAC_SRC_
INVALID

STOP
BdgSNAPIP_
NLSAValid:

SKIP-w jskip NLDASKIP.w
BCSERR BDG_

SNAPIP_(CSEror
RSEL LP1 ;Store source SIB pointer in LP1SWAIT

SMOVE Y 7Y¥ contains SALE result
MOVE Y,LP,.LP2 ;LF1 points to Source Addr SIB

;Store dest SIB pointer in LP2
BYNZ BDG_SrcHit

BDG_SrcMiss: 3*** Source
Cache Miss ***

OR XP,CMD__ jLoad command Word
Fwocr |
CMD_
UNICAST,Y

;Default MAC Ethernet Type
;Detault Low priority

MOVEF Y, FIRST ;Send Command Word

NOACEx. 1017 Page 178

NOAC Ex. 1017 Page 179

‘ 5,917,821 27 28
8 -continued:SSUESnenaeee

y MOVEF NULL_CI jSend Cf Index
MOVEF PORT_CP ;Dest Port is CP

4 MOVEF RSN_FRC_ss;Send Reason» MAC_SRC_
2 MISS
q STOP sDonel!!
x BDG_SNAPIP__u CSError:

. OR XP,CMD_ ;Load command Word
2 DISCARD |a CMD_
‘ UNICAST,Y

MOVEF Y, FIRST ;Send Command Word
“ MOVEF NULL_CI ;Send Cl Index
. MOVEF PORT_CP ;Dest Port is CP
. MOVEF RSN_FRC_ _—;Send Reason. MAC_CSERR

STOP
, BDG__SrcHit:

: DWAIT
: DMOVE Y ;Get DALE result

MOVE Y,LP,LP1 jpoint to source SIB
BYNZ BDG_ yand check source portCheckSrcPort

BDG_DestMiss: 3*"" Destination
i Cache Miss ***
i OR XPCMD_—;Load command Word

‘ CMD...
. UNICAST,Y

;Default MAC Ethernet Type
Default Low priority

MOVEF Y, FIRST ;Send Command Word
. MOVEF NULL_CI 3Send CI Index
. MOVEF PORT.__CP ;Dest Port is CP
: MOVEF RSN_FRC_. ;Send Reason
‘ MAC_DST__
* MISS
“ STOP sDone!!!
z BDG_CheckSrcPort:
el GET SIB_MAC____ Compare portsets in LP => Src SIB
} PORTSET(LP) . .* AND S,PSET@Q,Y=;Y = src addr bit AND arc port bit
: BYNZ BDG_ ;source moved if bits don’t match
: CheckDestArea

BDG_SrcMove: 3°** Source
Moved ***

OR XP,CMD_ ;Load command Word
: FWDcp [
; CMD_
. UNICAST,Y
é ;Default MAC Ethernet Type
. ;Default Low priority
i MOVEF Y, FIRST ;Send Command Word

3 MOVEF NULL_CI Send CI Index
4 MOVEF PORT_CP Dest Port is CP

< MOVEF RSN_FRC__;Send Reason
SRC_MOVED

STOP ;Donel!!
BDG__CheckDestArea:

RSEL LP2 pointto dest SIB
GET SIB_PROTO_ ;get IP Dest Area

AREA_1(LP)
AND S,MASK__

AREA,Y;Mask
off top 4 bits

BYNZ BDG_
CheckSrcArea

BDG_DestArealnvalid: ;*** Destination
Area Invalid ***

LD x
OR X,CMD__ jLoad command Word

DISCARD |CMD_
UNICAST,Y

;Default MAC Ethernet
Type
;Default Low priority
;Default Multicast

MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_Ct ;Send CI Index
MOVEF PORT_CP Dest Port is CP

NOACEx. 1017 Page 179

NOAC Ex. 1017 Page 180

; ‘ 5,917,821

29 30
~continued

MOVEF RSN_DRC____ ;Send Reason
DST_AREA_
INV

STOP ;Done!!!
BDG__CheckSrcArea:

3 RSEL LP1 sget ready for Source Addr check
4 GET SIB_PROTO__
£ AREA_1(LP) 7
£ OR S,SIB_AREA__ ;set PA bit in SIB_JPAREA
z PROTO_S ACTIVEX
$ MOVE Xx,SB_ modify
‘ PROTO_
. AREA_1(LP) .
x AND X,MASK_ Mask off top 4 bits
a AREA, X
gy XOR X,Y,Y,LP2 jcheck against Dest Area
3 witch to LP2 (Dest
1 SIB)
af BYZ BDG_
2 __ CheckDestPorta BDG_SrcArealnvalid: ;*** Source
q Area Invalid ***
iG OR XP,CMD__ ;Loed command Word.
« DISCARD |CMD_

UNICAST,Y
;Default MAC Ethernetic

Peet Low priority
;Default Multicast

MOVEF YY, FIRST ;Send. Command Word
MOVEFP NULL_CI Send CI Index
MOVEF PORT_CP Dest Port is CP
MOVEF RSN_DRC_____;Send Reason

SRC_AREA_
INV

STOP sDone!!!
BDG_CheckDestPort:

;X0, LP2 are
default XP, LP

LD x ;restore PSW
GET SIB_MAC_ _;S = dest address portset

AND S, PS) , ;compare against source port portsct
BYZ BDG_OK

BDG_SamePort: 3*"* Src Port =
Dest Port ***

OR XP,CMD__ ;Load command Word
DISCARD
CMD_
UNICAST,Y

;Default MAC Ethemet

Peete Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF NULL_CI Send CI Index
MOVEF PORT_NULL ;Dest Port is NULL
MOVEF RSN_DRC__—;Send Reason

DST_SAME
STOP sDone Il!

BDG_OK: ;"*" Bridge-router ***
OR XP,CMD_ Load command Word

BRIDGE-
ROUTER|
CMD_
UNICAST,Y

;Default MAC Ethernetce

Peete Low priority
MOVEF Y, FIRST ;Send Command Word
MOVEF SIB_MAC_CI ;Send CI Index from dst SIB

MOVEF GeMAC Dest Port is determined from dst SIB
PORTSET(LP)

MOVEF SIB_MAC__ Get MACIndex from dst SIB
MACINDEX

sToer etn

NOACEx. 1017 Page 180

NOAC Ex. 1017 Page 181

31

The described look-up engine is capable of performing
bridge-router and most network layer look-ups in less than
5.6 #s (1/178,000) with to minimum RAM requirements and
cost and maximizes flexibility for future additions/
corrections without hardware changes.

The intended application of the look-up engine is high
performance LAN systems and other packet-based devices.

GLOSSARY

BRIDGE-ROUTER ALAN bridging-ronting device, with 12 ethernet
ports and 1 ATM port.
Asynchronots Transfer Mode. A cell relaystandard.
Address/Broadcast Server A component of a RouteServer that handles address resolution and
broadcasttraffic.
A Tranafer Engine
Destination Address. The MACaddress ofthe
intended destination of a MAC frame.
Destination Address Look-up Engine. The LUE
component that genesally searches through a table
of MAClayer destination addresses.
Connection Identifier. A number intemally used
to indicate a particular connection.
Internet Protocol A popular network layer
protocol used by the Internet community.
Internet Packet Exchange A Novell developed
network layer protocol.
Look-up Engine Controller. The LUE component
that executes microcode.
Look-up Engine.
Medium Access Control A term commonly
encountered in [EEE 802 standards generally
teferring to how a particalar medium (ic.
Ethernet) is used. “MAC address” is commonly
used to refer to the globally unique 48 bit address
given to all interface cards adhering somewhat to
the IFFE 802 standards.
Route Server.
Source Address. The MACaddress ofthe originatorof a MAC frame.
Source Address Look-up Engine. The LUE
component that generally searches through a table of
MAClayer source addresses.
Station Information Block. The data structure in
the LUE that holds relevant information about an
endstation.
Content Addressable Memory.
Virtual Path Identifier
Virtual Channel Identifier
The processor in the Bridge-router that handles
management functions

SIB

CAM
VPI
vcr
Control Processor

We claim:

1. An arrangementfor parsing packets in a packet-based
digital communications network, said packets including
packet headers dividedinto fields having values representing
information pertaining to the packet, said arrangement com-
prising:

a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

@) at least one memory storing information related to
possible values of said fields in a hierarchical tree
structure and associated with a respective field of
packet headers;

Gi) a memory controller associated with each said
memory storing information related to possible values
of said fields for controlling the operation thereof to
retrieve said stored information therefrom; and

ii) a microcode controller for parsing a remaining por-
tion of the packet header while said stored information

10

15

20

35

40

4s

50

5,917,821
32

is retrieved and controlling the overall operation ofsaid
look-up engine.

2. An arrangement as claimed in claim 1, wherein said
memory controller associated with each said memory
compares, at each decision point on the tree structure, the
currentfield with a stored value or range, and movesto the
next decision point by moving a pointer for the currentfield
and branching to new codeif said comparisonresults in a
first logical condition, and if said comparison results in a
second logical condition the current field is compared to a
different value or range, and so on until said comparison
results in said first logical condition.

3. An arrangement as claimed in claim 1, wherein said
controller associated with each said memory compares val-
ues based on successive nibbles of a field value in said

memory with stored values to locate the related information.
4. An arrangementas claimed in claim 3, wherein said

memory controller associated with each said memory con-
catenates a first nibble of an incoming field value with a root
pointer to obtain an index to a root pointerarray, retrieves a
word at a location identified by said index, concatenates the
next nibble with the retrieved word to form the next pointer
and so on until said related information is retrieved.

5. An arrangementas claimed in claim 1, wherein said at
least one memory is a random access memory (RAM).

6. An arrangementas claimedin claim 1, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
respective destination addresses.

7. An arrangement as claimed in claim 1, wherein a
plurality of said memories storing information related to
possible values ofsaid fields in a hierarchical tree structure
operate in parallel and are associated with respective fields
of said packet headers.

8. An arrangementas claimed in claim 7, wherein each
said memory is a random access memory (RAM).

9. An arrangementas claimedin claim 7, wherein one of
said fields comprises a destination address and said related
information comprises the path data associated with said
destination address, and anotherof said fields comprises a
source address, and said look-up engine also locates path
data associated with the source in parallel with the location
of the path data associated with the destination address.

10. An arrangement for parsing packets in a packet-based
digital communications network, said packets including
packet headers divided intofields having values representing
information pertaining to the packet, said arrangement com-
pusing:

(a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(® a plurality of memories storing information relatedto
possible values of said fields in a hierarchical tree
structure and operating in parallel, said memoriesbeing
associated with respective fields ofsaid packet headers;

(ii) a main controller controlling overall operation of the
look-up engine; and

(iii) a memory controller associated with each said respec-
tive memory for controlling the operation thereof to
retrieve said stored information therefrom.

14. An arrangementas claimed in claim 10, wherein said
main controller is a microcode.

12. An arrangementas claimed in claim 11, wherein said
microcode controller comprises an interface memory for

NOACEx. 1017 Page 181

NOAC Ex. 1017 Page 182

33

receiving headers of incomingpackets, a station information
block memory for storing information pertaining to
endstations, a microcode memory storing microcode
instructions, and logic circuitry for implementing said
microcodeinstructions.

13. An arrangement as claimed in claim 11, wherein said
microcode controller parses the remainder of the packet
header using a specific instruction set while said information
is retrieved from said plurality of memories.

14. An arrangementas claimedin claim 13, wherein said
microcode controller comprises separate buses for instruc-
tions and data.

15. An arrangementas claimedin claim 14, wherein said
microcode controller is arranged to implement optimized
instructions that perform bit level logical comparisons and
conditional branches within the same cycle and other
instructions tailored to retrieving date from nibble-indexed
data structures.

16. An arrangementas claimedin claim 15, wherein said
microcode controller is implemented as an ASIC processor.

17. An arrangementfor parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
fields, said arrangement comprising:

(a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received field value, said look-up
engine including:

(i) a source address look-up engine including a memory
storing information related to possible values of said
source address field in a hierarchical tree structure;

(ii) a memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(iii) a destination address look-up engine including a
memory storing information related to possible values
of said destination address field in a hierarchical tree
structure;

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(v) a processor controlling overall operation of said
source and destination address look-up engines, said
source and destination address look-up engines and
said processor operating in parallel.

18. An arrangementas claimed in claim 17, wherein said
processoris a microcode controller.

19. An arrangementas claimed in claim 18, wherein said
memory controllers compare, at each decision point on the
tree structure, the currentfield with a stored value or range,
and moveto the next decision point by moving a pointer for
the currentfield and branching to new code if said compari-
son results in a first logical condition, and if said comparison
results in a second logical condition, the current field is
comparedto a different value or range, and so on until said
comparison results in said first logical condition.

20. An arrangementfor parsing packets in a packet-based
digital communications network, said packets including
packet headers including destination and source address
fields, said arrangement comprising:

(a) an input memory for receiving fields from said packet
headers of incoming packets; and

(b) a look-up engine for retrieving stored information
appropriate to a received ficld value, said look-up
engine including:

20

35

50

5S

60

65

5,917,821
34

(id) a source address look-up engine including a memory
Storing information related to possible values of said
source field in a hierarchical tree structure;

(ii) a memory controller associated with said source
look-up engine for controlling the operation thereof to
retrieve stored information therefrom;

(iii) a destination address look-up engine including a
memory storing information related to possible values
of said destination field in a hierarchical tree structure
and an associated memory controller;

(iv) a memory controller associated with said destination
look-up engine for controlling the operation thereof to
retrieve stored information therefrom; and

iii) a microcode processorcontrolling overall operation of
said source and destination address look-up engine,
said source and destination address look-up engines
and said processor operating in parallel, and said
microcode processor being arranged to parse additional
fields in said packet header while said source and
destination address look-up engines retrieve said
related information.

21. An arrangementas claimed in claim 20 wherein said
microcode processor comprises an interface memory for
receiving said incoming packets, a station information block
memory for storing informationpertaining to endstations,a
Microcode memory storing microcode instructions, and
logic circuitry for implementing said instructions.

22. A method ofparsing packets in a packet-based digital
communications network, said packets including packet
headers divided into fields having values representing infor-
mation pertaining to the packet, comprising the steps of:

(a) receiving fields of packet headers from incoming
packets in an input memory;

(b) retrieving stored information appropriate to a received
field value by performing a tree search in a look-up
engine having at least one memory storing information
related to possible values ofsaid fields in a hierarchical
tree structure and associated with a respective field of
packet headers, said at least one memory being con-
trolled by a memory controller associated therewith to
Tetrieve said stored information therefrom; and

(©) parsing a remainingportion of the packet header while
said stored information is being retrieved from said at
least one memory with a main controller, which main
controller also controls the overall operation of said
look-up engine.

23. A method as claimed in claim 22, wherein at each
decision point in the tree search, in retrieving said informa-
tion the current field is compared with a stored value or
range, a pointer for the currentfield is moved and branched
to new code if said comparison results in a first logical
condition, and if said comparisonresults in a second logical
condition, the current field is compared to a different value
or range, and so on until said comparisonresults in said first
logical condition.

24. A method as claimed in claim 22, wherein values
based on successive nibbles of a field value are compared
with stored values to locate the related information.

25. A method as claimed in claim 24, wherein a first
nibble of an incomingfield value is concatenated with a root
pointer to obtain an index to a rootpointer array, a word at
a location identified by said index is retrieved, the next
nibble is concatenated with the retrieved word to form the
next pointer and so on until said related information is
retrieved.

26. Amethod as claimed in claim 22, wherein information
related to a plurality offields is retrieved in parallel.

NOACEx. 1017 Page 182

NOAC Ex. 1017 Page 183

35

27. Amethodas claimed in claim 26, wherein one of said
fields comprises a destination address and said related
information comprises the path data associated with said
respective destination address, and another of said fields
comprises a source address and said related information
comprises the path data associated with said source address.

28. A method ofparsing packets in a packet-based digital
communications network, said packets including packet
headers divided into fields having values representing infor-
mation pertaining to a packet, comprising the steps of:

(a) storing in memory information related to possible
values of said fields in a hierarchical tree structure;

(b) receiving a plurality fields from said packet headers of
incoming packets, oneofsaidfields being a destination
address and said related information therefor compris-
ing path data associated with said respective destination
address, and another of said fields being a source

5

10

15

5,917,821
36

address andsaid related information therefor compris-
ing path data associated with said source address;

(c) retrieving in parallel said stored information appro-
priate to received field values by performing a tree
search underthe control of a microcode controller; and

(d) parsing a remaining portion ofthe packet header using
a specific instruction set while said related information
is retrieved.

29. An arrangementas claimedin claim 1, wherein said at
least one memory provides table look-ups using nibble
indexing for variable portions of the packet header and said
microcode controller employs bit pattern recognition on
fixed portions of the packet header for network layer pro-
tocol determination.

NOACEx.1017 Page 183

NOAC Ex. 1017 Page 184

Our Docket/Ref. No.: appr.\4) Patent

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE

Applicant(s): Sarkissianetal.

Serial No.: 09/608266 Group Art Unit: 2731

(SAI303¢
“4

Examiner: .Filed: June 30, 2000 amine gi PE no
¢ Oe

Title: ASSOCIATIVE CACHE Qo a
STRUCTURE FOR LOOKUPS AND APR 11 2001 x= Pn
UPDATES OF FLOW RECORDSIN 4 =
A NETWORK MONITOR PR > =NT k tase OQ

. oO

Commissioner for Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X_ An Information Disclosure Statementfor the above referenced patent application,
together with PTO form 1449 and a copyofeach reference cited in form 1449.

X_ Return postcard.

X_ The commissioneris hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Dé Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: ra 2ee|

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissionerfor Patents, Washington, D.C. 20231.

Date of Deposit:

Signature:
NOACEx. 1017 Page 184

NOAC Ex. 1017 Page 185

Ci O)<a

_ -Our Docket/Ref. No.: APPT-001-4 Patent

IN THE UNITED STATES PATENT AND TRADEMARKOFFICE oex

Applicant(s): Sarkissian et al.
“he cf _Serial No.: 09/608266 Group Art Unit:
 Filed: June 30, 2000 Examiner:

cyA

©,

Title: ASSOCIATIVE CACHE 3 APR 1 7 20902STRUCTURE FOR LOOKUPS AND APR 1 2 2002

UPDATES OF FLOW RECORDSIN Technology Center 2600
A NETWORK MONITOR

Commissioner for Patents

Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X_ under 37 CFR 1.97(b), or

(Within three monthsoffiling national application; or date of entry of international
application; or before mailing date offirst office action on the merits; whichever
occurslast)

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
maybe a duty to disclose in accordance with 37 CFR 1.56.

X (Certification) Each item of information contained in this information disclosure

statement wasfirst cited in a formal communication from a foreign patent office in a counterpart
foreign application not more than three monthspriorto thefiling of this information disclosure
statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be made ofrecordin the application and
appear amongthe “references cited” on any patent to issue therefrom.

Asprovided for by 37 CFR 1.97(g) and (h), no inference should be madethat the information and

references cited are prior art merely because they are in this statement and no representation is
Certificate of Mailing under 37 CFR 1.18

I herebycertify that this correspondenceis being deposited with the United States Postal Serviceas first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit:20Mr2802 Sintgl
osenfeld, Reg. No. 38,687

NOACEx. 1017 Page 185

NOAC Ex. 1017 Page 186

C} O7

. «S/N: 09/608266 ~ Page 2 IDS

being madethata search has been conductedorthat this statement encompassesall the possible
relevant information.

Date: 49 Nas 20902. Respectfully submitted,

BAaa
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

NOACEx.1017 Page 186

NOAC Ex. 1017 Page 187

Et al.FORM - 1449 () () SHEET 1 OF 1.
ATTY. DOCKET NO.

APPT-001-4

SERIAL NO.

09/608266

 ED
(Use several sheets if necessa ILING DATE GROUP APR 1 7Fer s05000 be che

S| Echnology rarad 5 yo
rr eptad.n 60LU.S. PATENT DOCUMENTS

FILING DATE

*EXAMINER DOCUMENT DATE NAME CLASS|SUB-CLASS|IF APPROPRIATE
INITIAL NUMBER

|aa[9,703,877 Dec. 30, |Nuber et al. 370 (395 Nov. 22,1997 1995
| NN 835,963 Nov. 10, Yoshioka et al. 711 |207 Sep. 7,

1998 1995
,860,114 Jan. 12, \|Sell 711 |146 Oct. 1,

1999 1997
wrAC

[|
a

m>»b>
hbg

»

x[2=
>=|

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-
DOCUMENT DATE COUNTRY CLASS|SUB-CLASS LATION

NUMBER YES 1 NO

OTHER DISCLOSURES(Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

>Pat|

DATE CONSIDERED

7 4/elo3
“EXAMINER: initialif citation sidered, whetherornotcitation is in conformance with MPEP 609. Draw line throughcitationif not in conformance

and not considered. include a copyofthis form with next communication to Applicant.

NOACEx.1017 Page 187

NOAC Ex. 1017 Page 188

Oar Docket/Ref. No.: apth-bor-4 Patent aLe if

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE P.
 Applicant(s): Sarkissianet al.

Serial No.: 09/608266

Group Art Unit: aT 5 |

Filed: June 30, 2000 RECEIVED

Title: ASSOCIATIVE CACHE APR 1 7 2002
STRUCTURE FOR LOOKUPS AND

UPDATES OF FLOW RECORDSIN Technology Center 2600
A NETWORK MONITOR

Commissioner for Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

x An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 anda copyof each referencecited in form 1449.

A checkfor petition fees.

Return postcard.

The commissioner is hereby authorized to charge paymentof any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

ARosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Date) Hor 2002

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

 I herebycertify that this correspondence is being deposited with the United States Postal Service asfirst

class mail in an envelope addressed to: CommissionerforPatents, Washington, D.C. 20231.

Date of Deposit: 20 Mar 2607. Siete
ov Rosenfeld, Reg. No. 38,687

NOAC Ex. 1017 Page 189

Our Docket/Ref. No.: apt.do 1-4) Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian et al.

Serial No.: 09/608266

Group Art Unit: 973 |\

Filed: June 30, 2000 Examiner: RECE| VED
Title: ASSOCIATIVE CACHE APR 1 7 2002

STRUCTURE FOR LOOKUPS AND Tech
UPDATES OF FLOW RECORDSIN nology Center 2609
A NETWORK MONITOR

Commissioner for Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X_ An Information Disclosure Statementfor the above referenced patent application,
together with PTO form 1449 and a copyofeach referencecited in form 1449.

A check for petition fees.

Return postcard.

The commissioner is hereby authorized to charge paymentof any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Dov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: 30 Mar ZBOV_

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

 Certificate of Mailing under 37 CFR 1.18

 I hereby certify that this correspondenceis being deposited with the United States Postal Service asfirst

class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit:2War2082Seite
V Rosenfeld, Reg. No. 38,687

NOACEx. 1017 Page 189

NOAC Ex. 1017 Page 190

Oo ()bat

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTSP.O Box 1450

AJevandna, Vuiginia 22313-1450www.aspto gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO CONFIRMATION NO.

09/608,266 06/30/2000 Haig A. Sarkissian APPT-001-4 9867

7590 09/10/2003 .

Dov Rosenfeld

§507 College Avenue
Suite 2 NGUYEN, ALAN V
Oakland, CA 94618 ART UNIT PAPER NUMBER

2662

DATE MAILED: 09/10/2003 ©

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01)

NOACEx. 1017 Page 190

NOAC Ex. 1017 Page 191

Application No. ;\pplicant(s)

09/608,266 SARKISSIAN ET AL.

Office Action Summary Examiner Art Unit

Alan Nguyen 2662 |
-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address--

Period for Reply

A SHORTENED STATUTORYPERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply betimelyfiled

after SIX (6) MONTHSfrom the maiting date of this communication.
if the period for reply specified aboveis less than thirty (30) days, a reply within the statutory minimum ofthirty (30) days will be considered timely.
tf NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHSfrom the mailing date of this communication
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C.§ 133).
Anyreply received by the Office later than three monthsafter the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1).] Responsive to communication(s) filed on

2a)L] This action is FINAL. 2b) This action is non-final.

3)L]__ Sincethis applicationis in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordancewith the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)b4 Claim(s) 1-20 is/are pending in the application.

4a) Of the aboveclaim(s) is/are withdrawn from consideration.

5)L] Claim(s) is/are allowed.

6)X] Claim(s) 1-20 is/are rejected.

7)L) Claim(s)____ is/are objected to.

8)L] Claim(s) are subject to restriction and/or election requirement.
Application Papers

9)_] The specification is objected to by the Examiner.

10)(] The drawing(s)filed on 06/30/2000 is/are: a)L] accepted or b)_] objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)L] The proposed drawing correctionfiled on is: a)_) approved b)_] disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)L] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)L] Acknowledgmentis madeofa claim for foreign priority under 35 U.S.C. § 119(a)-(d) or(f).

a)_] All b)L] Some * c)LJ Noneof:

1{01 Certified copies of the priority documents have beenreceived.

DateHet»UNISapieceetl
oe

2.1 Certified copies of the priority documents have been received in Application No.

3.1.) Copies of the certified copies of the priority documents have been receivedin this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)] Acknowledgmentis madeof a claim for domesticpriority under 35 U.S.C. § 119(e) (to a provisional application).

a) (J Thetranslation of the foreign languageprovisional application has been received.
15)_] Acknowledgmentis madeof a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s) /

1) XI} Notice of References Cited (PTO-892) 4) C] interview Summary (PTO-413) Paper No(s).
2) Xi Notice of Draftsperson's Patent Drawing Review (PTO-948) 5) C] Notice of Informal Patent Application (PTO-152)
3) & Information Disclosure Statement(s) (PTO-1449) Paper No(s) 445. 6) CJ Other:

US Patent and Trademark Office

PTOL-326 (Rev. 04-01) Office Action Summary NOACEx.1017 PatgerhSino. 6

NOAC Ex. 1017 Page 192

a 0)

. Application/Control Number: 09/608,266 Page 2
Art Unit: 2662

DETAILED ACTION

Specification

1. The disclosure is objected to because ofthe following informalities: The serial

numbers of related applications are missing on pages 1 and 2 of the specifications.

Appropriate correction is required.

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphsof 35 U.S.C. 102 that

form the basis for the rejections underthis section madein this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or describedin a printed publication in this or a foreign countryor in public
use or on sale in this country, more than one yearprior to the date of application for patent in the United
States.

(e) the invention was described in a patent granted on an application for patent by anotherfiled in the United
States before the invention thereof by the applicantfor patent, or on an international application by another
whohasfulfilled the requirements of paragraphs(1), (2), and (4) of section 371(c)ofthis title before the
invention thereof by the applicant for patent.

The changes madeto 35 U.S.C. 102(e) by the American Inventors Protection Act of

1999 (AIPA)andthe Intellectual Property and High Technology Technical Amendments

Act of 2002 do not apply when the reference is a U.S. patent resulting directly or

indirectly from an international application filed before November 29, 2000. Therefore,

the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the

amendmentby the AIPA (pre-AIPA 35 U.S.C. 102(e)).

3. Claims 7-11, 19, and 20 rejected under 35 U.S.C. 102(b) as being anticipated by

Chang (US 4,458,310).

NOACEx. 1017 Page 192

NOAC Ex. 1017 Page 193

O ©
Application/Control Number: 09/608,266 Page 3
Art Unit: 2662

Regarding claims 7 and 19, Chang clearly describes a cache memory system

shownin figure 1 element 100 that utilizes a number of content addressable memory

(CAMs). The cache system is coupled to a processor and main memory as,clearly

shownin Figure 1 elements 101 and 102 of Chang. Figure 1 further shows the use of

LRU (least recently used) circuits (elements 104-106), each coupled to cache data

memory (elements 107-109). Figure 2 shows the use of a CAM in each LRUcircuit (a

CAM controller coupled to the CAM set). Reverting to figure 1, elements 104-106 clearly

show a top LRUcircuit connected to a middle LRUcircuit, which is connected to a

bottom LRU circuit. Chang showsin figure 1 a contro! and sequencer device (element

103) that is coupled to the LRU circuit controlling the CAM, main memory, and the

cache data memory. Changfurther explains the function of the LRU circuit/CAM andits

corresponding cache data memoryin column 4 lines 13-20 and column5lines 26-33.

The CAM respondsto the input of the address being received and comparesthat

addressto the contents stored in the CAM. If there is a match, indicating a hit, the LRU

circuit uses that address to point to the cache data memory for accessing. In addition to

checkingif the associated cache data has the desired word, the LRU circuit maintains

the priority of each word in the associated cache data memory,this priority information

is automatically updated by the LRUcircuit for each access to the associated cache

data memory and defines which word in the cache memoryis the least recently used

word. Chang also discloses repeatedly how the address of each new,least recently

used wordis written into the CAM. Since each CAM will contain addressesthat are

NOACEx. 1017 Page 193

NOAC Ex. 1017 Page 194

O O
Application/Control Number: 09/608,266 Page 4
Art Unit: 2662

constantly changing being written into it, the CAM will therefore point to a different

addressin the cache memory element.

In regards to claim 8, with the features in parent claim 7 addressed above,

Changfurther discloses a deletion of the least recently used word in column4 lines 48-

51. It is stated that the least recently used word of cache data memory 109 no longer

exists in cache memory 100 at the completion of the previous operation after the values

have been shifted down from data memory 107.

In regards to claim 9, with the features in parent claim 7 addressed above,

Changfurther discloses an example of a hit, shown in column 9 lines 50-62 andfigure

1. LRU circuit 104 and data memory 107 are the priority CAM and cache memory,

respectively. LRU circuit 105 and memory 108 are the next highestpriority. The

contents of the match/hit are transmitted and stored within LRUcircuit 104 and data

memory 107. The least recently used words from LRU circuit 104 and memory 107 are

transmitted to LRU circuit 105 and data memory 108. The steps above explain the

shifting-down processof the least recently used value. The bottom CAM (LRU circuit

106)will always point to the least recently used value in the device.

In regards to claim 10, with the features in parent claim 7 addressed above,

Changdiscloses a deletion of the least recently used word in column 4 lines 48-51. It is

stated that the least recently used word of cache data memory 109 no longerexists in

cache memory 100 at the completion of the previous operation after the values have

been shifted down from data memory 107. As the replacement process keeps going,

NOACEx. 1017 Page 194

NOAC Ex. 1017 Page 195

e ©

Application/Control Number: 09/608,266 Page 5
Art Unit: 2662

shifting of values also continues. This deducts to the replacing of values at the bottom of

the list, which is according to an inverse order of recentnessof use.

In regards to claim 11, with the features in parent claim 7 addressed above,itis

understood that cache data memory (figure 1 elements 107-109) contains cells of words

and can be a page of memory.

In regards to claim 20, with the features in parent claim 19 addressed above,

Changfurther discloses the use of least recently used (LRU) cache memory element.

Chang discloses in column 4 lines 42-48 an example of a new word placed in cache

data memory (element 107). The LRU word of memory 107 is then shifted downto

cache memory (element 108) and the LRU word of memory 108 is written to cache

memory 109. The addressof that LRU word is then written to the CAM (element 106)

associated with memory 109, as described in column 5 lines 49-51, and shownin

Figure 1. Therefore LRUcircuit 106 is understood to be the bottom CAMoffigure 1 and

points to the least recently used value stored in cache memory 109.

4, Claims 1 and 2 rejected under 35 U.S.C. 102(e) as being anticipated by Gobuyan

et al (US 5,917,821), herein Gobuyan.

Regarding claim 1, Gobuyan discloses an apparatus that examines packets

through a connection point on a network. This indicates that the apparatus has a device

for acquiring packets. Gobuyan showsin figure 3 a device with a lookup engine

(element 3), memory for storage of the entries (elements 6, 8), and a subsystem

accessing the memory (elements 5 and 7). In column 7 lines 41-43 and 56-59, Gobuyan

NOACEx. 1017 Page 195

NOAC Ex. 1017 Page 196

C) ©)
Application/Control Number: 09/608,266 Page 6
Art Unit: 2662

discloses that the lookup enginereceives portions of packets containing identifying

information through a 16-bit I/F RAM (element 9). Regarding claim 2, the apparatus of

Gobuyan inherently includesa parser that extracts packets identifying information

becausethis operation is necessary for the lookup engine to operate.

Claim Rejections - 35 USC § 103

3. "The following is a quotation of 35 U.S.C. 103(a) which forms the basis forall

obviousnessrejections set forth in this Office action:

(a) A patent maynot be obtained thoughthe invention is notidentically disclosed or described as setforth in
section 102 ofthistitle, if the differences between the subject matter sought to be patented and the prior art
are suchthat the subject matter as a whole would have been obviousat the time the invention was madeto
a person havingordinary skill in the art to which said subject matter pertains. Patentability shall not be
negatived by the mannerin which the invention was made.

4, Claim 3-6 are rejected under 35 U.S.C. 103(a) as being unpatentable over

Gobuyanin view of Chang (US 4,458,310).

(a) Regarding claims 3 and 4, Gobuyan discloses the use of a subsystem that

accesses the database memory to searchfor the stored information. The

lookup engine invokes the address lookup engines (ALE) to search for the

specified addressin its bank of memory.

(b) Gobuyanfails to teach the use and function of content addressable memory

(CAM) as a method to search for specified data fields.

(c) Chang teaches the use of a cache memory system thatutilizes a set of

CAMs. The cache system is coupled to a processor and main memory as,

clearly shown in Figure 1 of Chang. Figure 1 further shows the use of LRU

(least recently used) circuits (elements 104-106), each coupled to cache data

NOACEx.1017 Page 196

RC“ARsoHPhHOACRDiertieshac0+mbesmlsFe

NOAC Ex. 1017 Page 197

CO @
Application/Control Number: 09/608,266 Page 7
Art Unit: 2662

memory (elements 107-109). Figure 1 further shows a control and sequencer

device (element 103) that is coupled to the LRU circuits. Figure 2 shows the

use of a CAM in each LRUcircuit (a CAM controller coupled to the CAMset).

Claim 3 is therefore rejected since Chang indicates the use of CAMsfor the

cache subsystem. Reverting to figure 1, elements 104-106 clearly show a top

LRU circuit connected to:a middle LRU circuit, which is connected to a bottom

LRU circuit. Chang showsin figure 1 a control and sequencerdevice

(element 103) that is coupled to the LRUcircuit controlling the CAM, main

memory, and the cache data memory. Chang further explains the function of

the LRUcircuit/CAM and its corresponding cache data memory in column 4

lines 13-20 and column 5 lines 26-33. The CAM respondsto the input of the

address being received and comparesthat addressto the contents stored in

the CAM. If there is a match, indicating a hit, the LRU circuit uses that

address to point to the cache data memory for accessing. In addition to

checking if the associated cache data has the desired word, the LRU circuit

maintains the priority of each word in the associated cache data memory,this

priority information is automatically updated by the LRUcircuit for each

accessto the associated cache data memory and defines which wordin the

cache memory is the least recently used word. Changalso discloses

repeatedly how the address of each new,least recently used wordis written

into the CAM. Since each CAM will contain addresses that are constantly

NOACEx.1017 Page 197

NOAC Ex. 1017 Page 198

O ©

Application/Control Number: 09/608,266 Page 8
Art Unit: 2662

changing being written into it, the CAM will therefore point to a different

address in the cache memory element.

(d) It would have been obvious to one having ordinary skill in the art at the time

the invention was made for Gobuyan’s arrangement to have a cache memory

subsystem utilizing a stack of CAMs for looking up addressfields, the

motivation being improved performance through quicker execution and

accessing, as taught by Chang.

In regards to claim 5, with the features in parent claim 4 addressed above,

Gobuyanfails to disclose the use of CAMsutilizing a least recently used scheme.

Chang teachesthe useof least recently used (LRU) cache memory element. Chang

discloses in column 4 lines 42-48 an example of a new word placed in cache data

memory (element 107). The LRU word of memory 107is then shifted down to cache

memory (element 108) and the LRU word of memory 108 is written to cache memory

109. The address of that LRU word is then written to the CAM (element 106) associated

with memory 109, as described in column 5 lines 49-51, and shownin Figure 1.

Therefore LRU circuit 106 is understood to be the bottom CAMoffigure 1 and points to

the least recently used value stored in cache memory 109. It would have been obvious

to one having ordinary skill in the art at the time the invention was made for Gobuyan to

use a cache subsystem having CAMsto utilize a lowest priority word scheme, the

motivation being a much faster lookuptime of data fields, as taught by Chang.

In regards to claims 6, with the features in parent claim 4 addressed above,

Gobuyanfails to disclose a CAM schemethat shifts down content due to a more

NOACEx. 1017 Page 198

NOAC Ex. 1017 Page 199

O O)

Application/Control Number: 09/608,266 Page 9
Art Unit: 2662

recently used value. Chang teaches an example of a cache hit, shown in column 9 lines

50-62 and figure 1. LRU circuit 104 and data memory 107 are the priority CAM and

cache memory, respectively. LRU circuit 105 and memory 108 are the next highest

priority. The contents of the match/hit are transmitted and stored within LRU circuit 104

and data memory 107. The least recently used words from LRUcircuit 104 and memory

107 are transmitted to LRU circuit 105 and data memory 108. The steps above explain

the shifting-down processof the least recently used value. The bottom CAM (LRU

circuit 106) will always point to the least recently used value in the device.

It would have been obvious to one having ordinary skill in the art at the time the

invention was made for Gobuyan to use a cache subsystem having CAMsutilizing a

LRU element pointed to by the bottom CAM forfaster accessing of data fields, as taught

by Chang

5. Claims 12-18 rejected under 35 U.S.C. 103(a) as being unpatentable over Chang

in view of Carter et al (US 6,003,123), herein Carter.

(a) Regarding claims 12, 13, 14, 15, 16, and 17, Chang discloses the use of a

cache system having content addressable memory as a wayof looking up

specified addressesquickly.

(b) Changfails to disclose a method to indicate dirty entries in the cache.A dirty

entry is one that has not been updated by an external memory.

(c) Carter teaches the use of labeling elements as being dirty or not dirty. Carter

discloses in column 15 lines 12-17 the use setting bits as “dirty” to allow

NOACEx. 1017 Page 199

NOAC Ex. 1017 Page 200

Application/Control Number: 09/608,266 Page 10
Art Unit: 2662

hardware to determineif the block has been modified. Carter further explains

that the dirty bit of a block status in the cacheis always set to zero whenthe

block is brought into the cacheto reflect the fact that the block has not been

modified since it was brought into the cache. Carter also discloses that if the

block is cleaned, the status remains at zero. When a blockis evicted from the

cache,its dirty bit is examined, and the status of the block changedto dirtyif

the cachedirty bit is set to one. When an entry is evicted, its block status bits

are copied to the local page table. This is analogous to the address being

written to the main memory in Chang’s apparatus.

(d) It would have been obviousto one having ordinary skill in the art at the time

the invention was made for Chang to modify the arrangement such that the

use of setting dirty flags to determineif the cache has been modified or not,

the motivation being the prevention of contamination of data. Each cache

memory element would have an indication of whetheror notit is dirty. If the

cache element is cleaned the status remainsat zero.

In regards to claims 18, with the features in parent claim 17 addressed above,

For Chang’s apparatus,it inherently cleans the least recently used cachedatafirst

because the apparatus does use the LRU scheme. The concept of lowest word priority

is to flush out the least used word.

Conclusion

NOACEx. 1017 Page 200

NOAC Ex. 1017 Page 201

6 ©)

Application/Control Number: 09/608,266 Page 11
Art Unit: 2662

6. Theprior art made of record and notrelied upon is considered pertinent to

applicant's disclosure.

The following patents are cited to further show the state of the art with respectto

associative cache memory and content addressable memory:

Colloff et al (US 5,530,834)

Hooveret al (US 5,749,087)

Churchill (US 3,949,369)

Housemanet al (US 4,559,618)

Okamoto et al (US 4,910,668)

Agarwalet al (US 5,530,958)

Inoshita et al (JP 2003044510A)

7. Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Alan Nguyen whose telephone numberis 703-305-0369.

The examiner can normally be reached on 8am-5pm ET.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Hassan Kizou can be reached on 703-305-4744. The fax phone numbers

for the organization wherethis application or proceeding is assigned are 703-872-9314

for regular communications and 703-872-9314 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone numberis 703-305-

4700.

NOACEx. 1017 Page 201

NOAC Ex. 1017 Page 202

(> ©)

Application/Control Number: 09/608,266 Page 12

Art Unit: 2662

an

September 3, 2003

Lf
HASSAN X50

SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2600

NOACEx. 1017 Page 202

NOAC Ex. 1017 Page 203

Application/Control No. Applicant(s/Patent Under

Reexamination

09/608,266 SARKISSIANET AL.

Examiner Art Unit

Alan Nguyen 2662 Page 1 of 1
U.S. PATENT DOCUMENTS

[a[ussmooe[oso[aemaeaCd
ix]2 [vssasese

|[ussmoen[cere[outta«Ye
¥|e[ussronr[osteo[Heowreteoo|

rel=[usassoaie__[raieos[voisonanetame

 Notice of References Cited

‘ Document Number DateCountry Code-Number-Kind Code MM-YYYY

ae

3RL*

se

FOREIGN PATENT DOCUMENTS

 G06F017/30

NON-PATENT DOCUMENTS

Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)

5
2

A Copyofthis reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
ates in MM-YYYY format are publication dates. Classifications may be US orforeign.

*

US Patent and Trademark Office
TO-892 (Rev. 01-2001) . Notice of References Cited Part of Paper No. 6

NOACEx.1017 Page 203

NOAC Ex. 1017 Page 204

United States Patent 11
Agarwal et al.

00000
[11] Patent Number:

[45] Date of Patent:

5,530,958

Jun. 25, 1996

[54] CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS
AND HASH CONTROL STORAGE

(75] Inventors: Anant Agarwal, Framingham, Mass.;
Steven D. Pudar, Rancho Cordova,
Calif.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

{21] Appl. No.: 363,842

(22] Filed: Dec. 23, 1994

Related U.S. Application Data

{63] Continuation of Ser. No. 926,613, Aug. 7, 1992, abandoned.

[51] Went. Cd oaeeesesssnesssectnecees GO6F 12/10; GO6F 12/08
[52] U.S. Ch... 395/403; 395/421.06; 395/435;

395/460; 364/DIG. 1, 364/243.41; 364/244.7;
364/255.8; 364/259.8

[58] Field of Searchc.ccsscsscsesne 395/421.06, 403,
395/435, 460

[56] References Cited

U.S. PATENT DOCUMENTS

5,235,697 8/1993 Steely, Jr. et ab. wneesssseeeeeee 395/425

FOREIGN PATENT DOCUMENTS

2154106 5/1972 Germany .

OTHER PUBLICATIONS

Agarwal, “Analysis of Cache Performance for Operating
Systems and Multiprogramming,” Technical Report No.
CSL-TR-87-332, Computer Systems Laboratory, Stanford
University (May 1987).
Jouppi, “Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully—Associative Cache and
Prefetch Buffers,” Proc. of the TEEE (1990).
Agarwal, Anant, “Analysis of Cache Performance for Oper-
ating Systems and Multiprogramming, ” Kluwer Academic
Publishers, Boston, MA, Title page, Contents pp. vi-ix, pp.
120-124, see p. 122, line 14—p. 124, line 2.

09/01/2003, EAST Version:

Kessler, et al., “Inexpensive Implementations of Set~Asso-
ciativity,” Computer Architecture News 17(3): 131-139
(Jun. 1989).

da Silva, et al., “Pseudo—associative Store with Hardware
Hashing,” JEE Proceedings E. Computers & Digital Tech-
niques 130(1): 19-24 (Jan. 1983).

Anant Agarwal and Steven D. Pudar, “Column-Associative
Caches: A Technique for Reducing the Miss Rate of Direct-
~Mapped Caches.” In Proceeding ISCA 1993 (Abstract).

Anant Agarwal et al., “Cache Performance of Operating
System and Multiprogramming Workloads,” ACM Transac-
tions on Computer Systems, 6(4): 393-431, Nov., 1988.

Anant Agarwal et al., “An Analytical Cache Model,” ACM
Transactions on Computer Systems, 7(2): 184-215, May,
1989,

Kimming So and Rudolph N. Rechtschaffen, “Cache Opera-
tions by MRU Change,” (Research Report #RC11613
(#51667) Computer Science, pp. 1-19, (Nov. 13, 1985).
Yorktown Heights, NY: IBM T. J. Watson Research Center.

“A High Performance Memory Management Scheme”;
Thakkar, Shreekant 5S. and Knowles, Alan E.,; Computer;
May 1986; IEEE Computer Society; pp. 8-20.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Reginald G. Bragdon
Attorney, Agent, or Firm—Hamilton, Brook, Smith & Rey-
nolds

[57] ABSTRACT

A column-associative cache that reduces conflict misses,
increases the hit rate and maintains a minimum hit access
time. The column-associative cache indexes data from a

main memory into a plurality of cachelines according to a
tag and index field through hash and rehash functions. The
cache lines represent a column of sets. Each cache line
containsa rehash block indicating whetherthesetis a rehash
location. To increase the performance of the columm-asso-
ciative cache, a content addressable memory (CAM)is used
to predict future conflict misses.

25 Claims, 7 Drawing Sheets

TAG DATA FLAG /-|8

1. ONOPE Ex. 1017 Page 204

NOAC Ex. 1017 Page 205

U.S. Patent Jun. 25, 1996 Sheet1 of 7 5,530,958

 address

ranane|Taoe[| terocessor data Memory

Cache

Controller

TAG DATA FLAG _-1!8

17

Addressgj él
INDEX

19 2 | I6

09/01/2003, EAST Version: 1. O4nNQ9R® Ex. 1017 Page 205

NOAC Ex. 1017 Page 206

spetneenenneerearnenanereneeemeee

U.S. Patent Jun. 25, 1996 Sheet 2 of 7 5,530,958

Column-Associative Two-Way Set- Associative
NT

Ag. 2B

done Rbit=1?

1 yes Ne
clobbert ho [a]

l wa res
done swap clobber2

M41 | |done

3 swap
|

done

Ky. 3 Mt3

09/01/2003, EAST Version: 1.04864 Fx 1017 Page 206

NOAC Ex. 1017 Page 207

U.S. Patent Jun. 25, 1996 Sheet 3 of 7 5,530,958

09/01/2003, EAST Version: 1.04 -RUAC Ex. 1017 Page 207

NOAC Ex. 1017 Page 208

U.S. Patent Jun. 25, 1996 Sheet 4 of 7 5,530,958

inCAM?

a oS
hit hy [a] ; hit hala]ya tis i oNriss

done Rbit=1? done clobber2
1 ee GN i

; ho [a] he [a] done
we Nass we NaS M+

putinCAM clobber! putinCAM* clobber2
swap

done done

3 M+2 done swap
3

done

M+3

Kg 6

TAG INDEX

Controller

' : ~000009/01/2003, EAST Version: 1 04 OAC Ex. 1017 Page 208

NOAC Ex. 1017 Page 209

U.S. Patent Jun. 25, 1996 Sheet 5 of 7 5,530,958

hit hy [a] miss

done inCAM?

1 no Ne
clobber! hi raeputinCAM wal miss

| swap clobber2
done | |M+1 done

3 swap
done

Ay 8 M+3
address

bus

 ‘ RAM Array +

rehashbit

HIT

RD/ WT

 Control Logic

OP, MACK

STALL, MEM

data bus

 LS Swap Buffer 32

Fg. 9

09/01/2003, EAST Version: 1.04.0000/or/ NOACEx. 1017 Page 209

NOAC Ex. 1017 Page 210

5,530,958Sheet 6 of 7Jun. 25, 1996US. Patent

W3W'TIVLS|ogMOV‘dO91607]104yuod |

_'Jajjng0}0g=o¢tigyspyes+AdaiyWY

oe

snqD}Dp14

G2ss3.ppp
09/01/2003, EAST Version: 1.04G9(° ry. 1017 Page 210

NOAC Ex. 1017 Page 211

==Neo=

imeu=ofd==Jayjngdomg=$7]=:[synedons$1naw“WS=insngDJDp\eSHOVWdOoObl91607104ju09ospaiJayjngoipgad)NIgteca3oe<fC38au
oO>

.use;5fx}--4358
caoOa

AouayWYO
—S2

3snqeeSSa4ppD
Nn—

SaptarihssodsapyergavisaWRB

NOAC Ex. 1017 Page 212

5,530,958

1

CACHE MEMORY SYSTEM AND METHOD
WITH MULTIPLE HASHING FUNCTIONS

AND HASH CONTROL STORAGE

This application is a continuation of No. 07/926,613 filed
Aug. 7, 1992, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates generally to the field of high
performance processors that require a large bandwidth to
communicate with a main memory system. To effectively
increase the memory bandwidth, a cache memory system is
typically placed between the processor and the main
memory. The cache memory system stores frequently used
instructions anddata in order to provide fast access from the
main memory.

In order for a processor to access memory,it checks the
cache first. If the desired data is in the cache, a cache hit
occurs, and the processor receives the data without further
delay. If the data is not in the cache, a cache miss occurs, and
the data must be retrieved from the main memory to be
stored in the cache for future use. Main memory accesses
take longer than cache accesses, 50 the processoris stalled
in a cache miss, wasting a numberof cycles. Thus, the goal
for nearly all modem computer systems is to service all
memory references from the cache and to minimize refer-
ences which require accesses from the main memory.

In a typical cache system, a portion of a main memory
address is used to index a location or a set of locations in

cache memory. In additionto storing a block (or line) of data
at that indexed location, cache memory stores one or more
tags, taken from another portion of the main memory
address, which identify the location in main memory from
which the block of data held in cache was taken.

Caches are typically characterized by their size {i.e.,
amount of memory available for storage), their replacement
algorithm (ie., method of inserting and discarding blocks of
data into a set), their degree of associativity or set size (i.e.,
numberof tags associated with an index and thus the number
of cache locations where data may be located), and their
blockor line size (i.¢., number ofdata wordsassociated with
a tag). These characteristics influence many performance
parameters such as the amountofsilicon required to imple-
ment the cache, the cache access time, and the cache miss
rate.

Onetype of a cache that is frequently used with modern
processors is a direct-mapped cache. In a direct-mapped
cache, eachset contains only one data block and tag. Thus,
only one address comparisonis needed to determine whether
the requested data is in the cache. The direct-mapped cache
is simple, easy to design, and requires less chip area.
However, the direct-mapped cache is not without draw-
backs, Because the direct-mapped cache allows only one
data block to reside in the cacheset, its miss rate tends to be
very high. However, the higher miss rate of the direct-
mapped cacheis mitigated by a small hit access time,

Anothertype of a cachethatis frequently used is a d-way,
set associative cache. A d-way, set associative cache con-
tains S sets of d distinct blocks of data that are accessed by
addresses with common index fields that have different tag
fields. For each cache index, there are several block loca-
tions allowed, one in each set. Thus, a block of data arriving
from the main memory can go into a particular block
location of any set. The d-way set associative cache has a
higher hit rate than the direct-mapped cache. However,its

09/01/2003, EAST Version: 1.04089 Ex. 1017 Page 212

J 0

25

35

45

65

2

hit access time is also higher because an associative search
is required during each reference, followed by a multiplex-
ing of the data block to the processor.

Currently, the trend among computer designers is to use
direct-mapped caches rather than d-way set associative
caches. However, as mentioned previously, a major problem
associated with direct-mapped cachesis the large number of
misses that occur. One particular type of miss that occurs is
a conflict miss. A conflict miss occurs when two addresses

map into the same cache set. This situation occurs when the
addresses have identical index fields but different tags.
Therefore, the addresses reference the same set. A d-way set
associative cache typically does not suffer from conflict
misses because the data can co-reside in a set. Although
other types of misses, such as compulsory (misses that occur
when loading a working set into a cache) and capacity
(misses that occur when the cache is full and when the
working set is larger than the cache size) do occur, they tend
to be minimal as compared to conflict misses.

The problem of conflict misses has caused designers to
reconsider using a direct-mapped cache and to begin design-
ing cache memory systems that can incorporate the advan-
tages of both the direct-mapped cache and the d-way asso-
ciative cache. One approach has been to use a victim cache.
A victim cache is a small, fully associative cache that
provides some extra cacbelines for data removed from the
direct-mapped cache due to misses. Thus, for a reference
stream of conflicting addressesa,, a, a;, aj, .. . , the second
reference a, misses and forces the data i indexedbya, out of
the set. The data i that is forced out is placed in the victim
cache. Thus, the third reference address,a,, does not require
accessing main memory because the data is in the victim
cache and can be accessed therefrom.

However, there are several drawbacks to the victim cache.
For example, the victim cache must be very large to attain
adequate performance because it muststore all conflicting
data blocks. Another problem with the victim cacheis that
it requires at least two access times to fetch a conflicting
datum (i.¢., one to check the primary cache, the second to
check the victim cache, and maybe a possible third to store
the datum in the primary cache). Still another drawback to
the victim cacheis that performanceis degradedas the size
of the cache memory is increased because the victim cache
becomes smaller relative to the cache memory, thereby
reducing the probability of resolving conflicts.

Consequently, there is a need for an improved cache
memory system that incorporates the low conflict miss rate
of the d-way set-associative cache, maintains the critical
access path of the direct-mapped cache, and has better
performance than the victim cache.

SUMMARY OF THE INVENTION

To provide a cache memory system with a high hit rate
and a lowhit access time, the present invention has set forth
a column associative cache that uses an area-efficient cache

control algorithm. A column associative cache removes
substantially more conflict misses introduced by a direct-
mapped access for small caches and virtually all of those
misses for large caches. Also, there is a substantial improve-
ment in the hit access time.

In accordance with the present invention, there is a cache
memory having a plurality of cache sets representing a
colurnn ofsets for storing data. Each cacheset is indexed by
memory addresses having a tag field and an index field. A
controller indexes memory addresses ta the cache data

NOAC Ex. 1017 Page 213

5,930,958

3

memory by applying at least one hashing function. A hash-
ing function is an operation that maps the addressesof the
data from a main memory to the cachesetsofthe cache data
memory. A rehashed location stores data that is referenced
by an alternate hashing function. Theuse of alternative hash
functions (i.c., hash and rehash) allows cachesets associated
with a common index to be stored within the single cache
column rather than in separate columns, each of which
requires its own memory space. For example, in a direct-
mapped cache, the two hash functionsallow two blocks with
the same index to reside in different cache locations. In
accordance with the present invention, hash control data is
stored in the cache memory to direct the cache system to a
hashed location or a rehashed location based on past cache
operations. The hash control data may be a hash/rehash
block associated with each cache location which indicates
whether the hash or rehash function was used to store the

data in that location. Alternatively, or in combination with
the hash/rehash block, a memory mayidentify recent cache
indexes or groups of indexes which have required rehash.

The cache memory system of the present invention
resolves conflict misses that arise in direct-mapped cache
access by allowing conflicting addresses to dynamically
choose alternate hashing functions, so that most conflicting
data can reside in the cache.In the cache memory system of
the present invention, data is accessed from the cache by
applying a first hashing function to the indexed memory
address. If the data is valid, it is a hit and is subsequently
retrieved. For a miss at a rehashed location, as indicated by
a tehashblock, the controller removes that data and replaces
it with new data from the main memory. [f the cache location
is not a rehashed location, then a second hashing function is
applied in order to place or locate the data in a different
location. With a second miss, valid data is accessed and the
controller swaps the data in the cache locations indexed by
the first and second hashing functions.

The preferred first type of hashing function used by the
presentinvention is a bit selection operation. Thebit selec-
tion operation indexes the data in the cachelines according
to the index field. If there is a conflict miss, then the second
hashing function is applied. The preferred second hashing
function of the present invention is a bit flipping operation.
The bit flipping operation inverts the highest orderbit of the
index field of the address and accesses the data in that

particular location. The present invention is not limited to
two hashing functions and may use more.

In another preferred embodimentofthe presentinvention,
there is provided a content addressable memory (CAM)
coupled to the cache memory system for storing portions of
addressesthat are expected to indicate future conflict misses
in the cache. The CAM,preferably a tag memory, improves
the efficiency of the cache by increasing the first time hit
rate. The CAM stores the indexes of cache blocksthat are
present in rehashed locations. If the index of an address
matches an index stored in the CAM, then the cache
controller uses the rehash function (instead of the hash
function) for the first time access. Thus, second time
accesses are reduced.

While the present invention will hereinafter be described
in connection with a preferred embodiment and method of
use, it will be understood that it is not intended to limit the
invention to this embodiment. Instead,it is intended to cover
all alternatives, modifications, and equivalents as may be
included in the spirit and scope of the present invention as
defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a cache memory system
of the present invention.

09/01/2003, EAST Version: 1.04N@~R& Ex. 1017 Page 213

~ 5

35

40

50

65

4
FIG. 2A illustrates a column associative cache with

rehash blocks.

FIG,28 illustrates a comparison of a column associated
cache and two-way set associative cache.

FIG. 3 shows a decision tree for the column associative
cache with rehash blocks.

FIG. 4 shows a comparison between a single column
associative cache and the column associative cache with
rehash blocks.

FIG. 5 shows a column associative cache with a content

addressable memory (CAM) and rehash blocks.
FIG. 6 shows a decision tree for a column associative

cache with rehash blocks and a CAM.
FIG. 7 shows a column associative cache with a CAM.

FIG. 8 shows a decision tree for a column associative
cache with a CAM.

FIG. 9 showsthe circuitry for a column associative cache
with rehash blocks.

FIG, 10 shows the circuitry for a column associative
cache with rehash blocks and a CAM.

FIG.11 showsthe circuitry for a column associative cache
with a CAM.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1 of the present invention, there is
shown a cache memory system 10 placed between a pro-
cessor 12 and a main memory 14. The speed of the cacheis
compatible with the processor, whereas the main memory is
lower in speed, The cache anticipates the processor's likely
use of data in the main memory based on previously used
instructions and data in the cache. Based on an assumption
that a program will sequence through successiveinstructions
or data addresses, a block or line of several words from the
main memory is transferred to the cache even though only
one word is needed. When the processor needs to read from
main memory the cache is checked first. If the data is in the
cache, there is a hit and retrieval from cache. If the data is
not in the cache, there is a miss and retrieval is from main
memory.

To provide a cache memory system with a high hit rate
and a low access time, the present invention has set forth a
cache that incorporates the characteristics of a direct-
mapped cache and a d-wayset associative cache. The cache
of the present inventionis a column associative cache 16 and
is shown in FIG, 2A. The column associative cache contains

a plurality of cache lines that represent a column ofsets each
of one line, In FIG. 2A,eight sets, S0-S7 of the cache are
shown.It is noted that the column associative cache would
likely have hundreds or thousandsof sets.

To access the cache 16, a memory address 17 is divided
into at least twofields, a tag field 19 (typically the high-order
bits) and an index field 21. As in a conventional direct
mapped cache, the index field is used through a hash
function h, to reference one of the cache sets SO0-S7 andthe
tag field is compared to the tag of the data within that set. A
tag memory is coupled to the plurality of cache sets for
storing the tags of the data blocks. If the tag field of the
address matchesthe tagfield of the referenced set, then there
is a hit and the data can be obtained from the block that
exhibited the hit. If the tag field of the address does not
match the tag field of the referenced set, there is a miss.

Data addresses are indexed from the main memory 14to
the column associative cache 16 according’ to two hashing

NOAC Ex. 1017 Page 214

5,530,958

5

functions, h, and h,, which are applied by controller 15. The
hashing functionsare operations that map the data addresses
from the main memory to the cachesets based on spatial and
temporal locality. Spatial locality suggests that future
addresses are likely to be near the locations of current
addresses. Temporal locality indicates that future addresses
are more likely to reference the most recently accessed
locations again.

Thefirst hashing function, h,, is preferably a bit selection
operation.In a bit selection operation, data is indexed to the
sets of the column associative cache according to its index
field. Since some data may contain the same index field,
there is high probability that there will be conflict miss
between the data. The column associative cache of the

present invention resolves the conflict by then applying a
second hashing function, hj. The second hashing function
dynamically chooses a different location in which the con-
flicting data can reside. The second hashingfunction, h,, is
preferably a bit flipping operation that flips the highest
ordered bit of the referenced by the index address and
accesses the conflicting data at the set indexed by the
inverted address. As shown in FIG. 2A,the first hashing
function, h,, indexes address a, 17 to set S1. Address 11 then
attempts to access $1 but there is a miss because address 17
is already there. To resolve the conflict, the second hashing,
h,, function is applied to address 11. This hashing function
flips the highest orderedbit of the indexfield so that address
11 can be indexed to S5. Thus, Si and S5 share locations
through h, and h,sothat conflicts are resolved not within a
set but within the column ofsets of the entire cache.

A comparison of a column associative cache with a
conventional two way set associative cache is illustrated in
FIG. 2B. In the conventional cache, a set, such as set 2,
stores two lines of data. Thus, if the requested datais stored
in either line of a set, there is a hit. Drawbacks of such a
cache are the high hit access time and hardware complexity.
The column associate cache performs as a direct mapped
cache unless there is a miss. With a miss it accesses another

location within the same memory column. Thus, two sets
share two locations,

Also, shown in FIG. 2A is a rebash block 18 coupled to
each cache set for indicating whether the set has been
rehashed. A rehashed location is a set that has already been
indexed through the second hashing function to store data.
The purpose of the rehash block is to indicate whether a
location stores data through a rehashed index so the data
should be replaced in preference for a non-rehashed index.
Temporal locality suggests that rehashed locations should be
preferentially replaced.

FIG.3 discloses a controller decision tree for indexing the
cache. Table 1 provides the decision tree mnemonics and
cycle times for each cycle. First, the first hashing function,
h,, is applied to the memory address a. If the first-time
access is a hit, then the data is accessed to the processor.
However,if the first-time access is a miss, then the rehashed
location block ofthat set is checked (Rbit=17). If the rehash
block has been set to one, then the data is removed from that
cache set indexed by h,{a] and data from the main memory
is retrieved and substituted therefor (Clobber 1). Next, the
rehash blockis reset to zero to indicate that the data in this

set is to be indexed bythefirst hashing function h, for future
indexes,

On the other hand,if the rehash block is set to zero, then
upona first-time miss, the second hashing function h, access
is attempted,If the second hashing function indexes to valid
data, then there is a secondtime hit. For a second time hit,

09/01/2003, EAST

25

30

45

30

55

65

Version: 1.04.2°82 Ex. 1017 Page 214

6
the data is retrieved from that cache set and the data in the

cache sets indexedby thefirst and second hashing functions,
h,[a] and h,{a], are swapped (SWAP)sothatthe next access
will likely result in a first time hit (temporal locality).
However, if the second hashing function provides a second
time miss, then the data in that set is replaced (Clobber2).
Data from the main memory is retrieved and placed in the
cache set indexed by the second hashing function,h,[a}.
Then the data in the cache sets indexed by the first and
second hashing function, h, and h, are swapped with each
other (SWAP).

TABLE |

Mnemonic Action Cycles

h,(al Dit-selection access 1
h,{a] dit-flipping access 1
swap swap data in seis accessed by h,[a] 2

and hy[a]
clobber] get data from memory, place in set M

accessed by h,[a]
clobber2 get data from memory, place in set M

accessed by b2[al]
Rbit=1? check if set accessed by hyfal is a 9rehashed location
inCAM? checkif a (or its index) matches 0

a CAM eory
putinCAM place a (orits index} in the CAM

putinCAM* place the index of a and the tag 1
present in the cache location

accessed with h,{a] into the CAM

At startup, all of the empty cache sets have their rehash
blocks set to one so that compulsory misses are handled
immediately.

The rehash block 18 increasesthe hit rate and decreases
the access time for the column associative cache. The

increase in performanceis dueto the fact that the data in the
non-rehashedlocation are the most recent accessed data and,
according to temporal locality, this data is more likely to be
needed again. The removal of older data which will probably
not be referenced again whenever a conflict miss occurs
reduces the amount of clobbering.In addition, the ability to
immediately replace a rehashed location on the first access
reduces the number of cycles consumed by rehash accesses.

In addition to limiting rehash accesses and clobbering, the
column-associative cache with rehash blockcorrects a prob-
lem associated with indexing a reference pattern a, a, a, a, a,
a, &,... where the addresses a, and a, map into the same
cache location with bit selection, h,, and a, is an address
which mapsinto the same location with bit flipping, h.. FIG.
4 shows how a single column associative cache and a
column associative cache with a rehash block will index the

above reference pattern. The figure shows at each location,
the data stored in that location after the data request indi-
cated by the input sequence. In the column associative
cache, address a, is shown indexed into set S1 by the first
hashing function, h,. Address a, attempts to index S1 by the
first hashing function, but there is a miss because address i
is there, Then using the second hashing function,h,, address
a, is indexed to SS and with a miss that data is retrieved and
stored in S5. The data in $1 and S5 is then swapped. Thus,
j is now in S1 and i is now in S5. The next address, an
attempts to access S5 but will miss because i is there. Then
the second hashing function is applied to a, and it attempts
to access S1, but there is a miss because j is there. Since this
is a second time miss, the addressa, is removed from S1 and
replaced by a,. Then a, and ai, are swapped so that iis in S1
and x is in 85. This pattern continues as long as a, and a,
alternate. Thus, the data referenced by one Of a, and a, is

NOAC Ex. 1017 Page 215

5,530,958

7

clobbered as the data i is swapped back and forth but never
teplaced.

This detrimental effect is known as thrashing, but as
shown in FIG. 4, it does not occur in a column-associative
cache with a rehash block. In the column associative cache

with a rehash block, a, is indexed to S1 by thefirst hashing
function h,. Address a, attempts to index SI but misses
becausei is there, Since there is a miss, the rehash block for
S1 is checked to see if that set has been already indexed by
the second hashing function h,. Since S1 has not been
indexed by hy, its rehash block is 0, Then, the second
hashing function indexes a, to SS and the rehash blockis set
to 1. Then the data in S1 and S5 are swapped sothat j is now
in S1 and i is now in $5, Address a, attempts to access S5
but misses because i is there. However, because the rehash
block of S5 is set to 1, j is removed andreplaced by x. Thus
S1 contains j and $5 containsx, eliminating the thrashing of
j. Of course, this column-associative cache suffers thrashing
if three or more conflicting addresses alternate, as in a, a, a,
a, a; a, a,..., but this case is muchless probable than in the
case of two alternating addresses. Thus, the rehash block
alleviates thrashing, reduces the numberof rehash accesses
and nearly eliminates clobbering.

To further reduce the access time of the column associa-

tive cache, a content addressable memory (CAM) 20 is
added thereto. The purpose of the CAM is to reduce the
number of unnecessary rehash accesses and swaps in the
column associative cache. FIG. 5 shows the CAM 20

coupled to the column associative cache 16. The CAM
stores addresses that potentially cause conflict misses, such
as addresses that have been swapped with the rehashed
location in a second-time hit. If the address in the CAM

matches requested data address, then the controller attempts
to index the referenced data using another hashing function,
such as h,, as thefirst hash,

FIG, 6 showsa decision tree for indexing an address a to
the column associative cache with the CAM. Table | pro-
vides the decision tree mnemonics and cycle times for each
cycle. First, the CAM is checked to determine whether the
index of a matches the address entry within the CAM
(inCAM7?). If there is a match, then h, is used to index a. If
h,[a] indexes valid data, then there is a hit and the data is
retrieved. However, if there is a miss, then the data is
clobbered and data from the main memory is retrieved and
placed in the cache set accessed by h, (Clobber2).

Onthe other hand, if there is no match in the CAM,then
h, is applied to a for indexing. If h,[a} indexes valid data,
then there is a hit. However, if there is a miss, the rehash
block is checked to determine whether the cache set

accessed by h,[a] is a rehashed location (Rbit=1?). If the
cacheset is a rehashed location (=1), then h, is applied to a.
A hit results in a or its index being retrieved and placed in
the CAM (putinCAM)asa potential conflict. A miss causes
the data in the set indexed by h,[a] to be clobbered and
replaced with data retrieved from the main memory (Clob-
ber 1). If the rehash block is not set to 1, then h, is applied
to a for indexing. A hit results in an address from the index
of h,[a} being placed into the CAM (putinCAM"*). The
address is reconstructed from the index of a and the tag at
h,[a]. Then data in cache sets accessed by h,[a] and h,[a] are
swapped with each other. A miss causes the data to be
clobbered and replaced with data retrieved from the main
Memory and placed in the set indexed by h,[a] (Clobber2)
Then data in cache sets accessed by h,[a) and h,[a] are
swapped with each other (SWAP).

An example of how the CAM provides better perfor-
mance to the column associative cache is evident for the

09/01/2003, EAST Version: 1.04NQ9Q@ Ex. 1017 Page 215

35

45

50

55

65

8

following reference pattem: a,, a, 4, a)... . To access the
above reference pattern, the column associative cache 18
wastes many cycles swapping a, and a,, repeatedly whereas
the CAM 20stores the address that referenced the data into
the rehashedlocation on a second-time hit. For instance, the
third reference, i, results in a second-time hit because the
data j is indexed into the rehashed location as expected, but
its address (i.e., tag and index) is stored in the CAM. The
CAM is then checked in parallel with every first-time access,
and if a match is found, the controllogic will find the data
directly by rehashing instead. The benefit of adding a CAM
to the column-associative cache is that a swap is no longer
necessary between the conflicting data because the CAM
quickly points out those addresses which provide second-
time hits. Thus, in the above example, a, remains in the
non-rehashedlocation and is accessed in one cycle by h,[a,].
The conflicting data a, remains in the rehashed location and
is accessed by ha[a,] after a, is matched with its entry in the
CAM.

An important feature ofthis design is that the search of the
CAM doesnot impose a one cycle penalty. This feature is
accomplished by optimizing the CAM so that a search is
completed quickly enough to precedethefirst-time access in
the cycle. This feature can also be implemented by perform-
ing the CAM access in a previouspipeline stage. However
accomplished, eliminating the penalty of searching the
CAM is crucial because a significant reduction in execution
time is possible only if mostof the data in rehashed locations
can be retrieved as quickly as those in non-rehashed loca-
tion.

Anotherbenefit in using a CAM is evidentin a first-time
rehash h,[a] (due to a being in the CAM) that misses. The
decision tree shows that in this case, no swap is needed
because data is retrieved from the main memory andleft in
the set indexed by h,[a]. This is done because that address
is in the CAM duetoafirst-time rehash. Therefore, leaving
the data in the rehashed location leads to future first-time
rehash hits in only one cycle.

One of the drawbacks of using a CAM with a column
associative cache is evidentin situations when a set accessed

by h,[s] is found to be a rehashed location. Instead of
immediately replacing this data, a rehash access must be
performed to ensure that the desired data is not located in the
rehashedlocation. This is impossible for the single column-
associative cache with rehash block, however,it is feasible
when a CAM is included. For example, suppose an address
exists in the CAM which causesa first-time rehash hit at

ha[a]. The CAM isafinite resource, so this address may be
removed from the CAM after it becomes full. Now,if this

address appears again in the reference stream, there is no
CAM match,so a normal access is attempted whenthe data
is in the set indexed by h,[a]. Thus, replacing the non-
rehashed location immediately would result in data being
stored in two separate locations. The extra attempted rehash
guards against this wasteful situation, but it adds a one cycle
penalty.

Another embodimentof the present invention is to have
the CAM coupledto the column associative cache without
having a rehash block(see FIG.7). As in the above embodi-
ment, the CAM 20 improvesthe efficiency of the column
associative cache by storing portions of addresses that are
expected to indicate future conflict misses. This reducesthe
number of unnecessary rehash accesses and swaps in the
column associative cache. For example, after first time
misses, a rehash access is only attempted whenthe control
logic identifies this miss as a conflict. A conflict is identified
by finding a match in the CAM. This Conflict may be

NOAC Ex. 1017 Page 216

5,530,958

9

resolved by rehashing. Thus, fewer rehashes are attempted
which improves the second time hit rate and decreases the
extent of data being clobbered.

FIG.8 discloses a controller decision tree for indexing an
address to the column associative cache with CAM.Table 1

provides the decision tree mnemonics and cycle times for
eachcycle.First, the first hashing function,h,, is applied to
a memory addressa.If the first time access is a hit, then the
data is accessed. However,if the first time access is a miss,
the CAM is checkedto see if address a matches a CAM entry
(inCAM?).

If address a does not match a CAM entry, the data in
address a is removed (clobber1) and data is retrieved from
the main memory andplaced in the cacheset accessed by the
first hashing function h,{a]. Then the data from addressa is
placed in the CAM (putinCAM).

However,if there is a match in the CAM,then the second
hashing function h.[a] is applied. A hit causes the data to be
accessed and then the data in the cache sets accessed by
h,(a] and h,[a] are swapped (SWAP). A miss causes that the
data to be removed from the cache set and replaced by data
from main memory (clobber2). Then the data in the cache
sets accessed by h,[a] and h.[a] are swapped (SWAP).

For a general understanding of how to implement the
column associative cache with rehash block, the column
associative cache with the rehash block and CAM,and the
single column associative cache with CAM, reference is
made to FIGS. 9-11 and Tables 2-4. The cache implemen-
tation for both FIGS. 9-11 are discussed at the register
transfer level without the disclosure of the detailed gate and
transistor designs since the actual contro! logic can beeasily
synthesized from the state flow tables set forth in Tables 2-4.

Furthermore, in order to provide brief yet descriptive
details about the various embodiments, several simplifica-
tions and assumptions have been made. For example, a
discussion regarding the clocking and timing issues is left
out. Instead, it is assumed that the controller 15 receives
input signals at the start of a cycle and issues output signals
at the endof the cycle. Also, for simplicity, the bus interface
aud driver circuits have been left out.

FIG. 9 shows a hardware implementation of the column
associative cache with rehash block for the present inven-
tion. The primary element of the column associative cache
memory system is a RAM array 23 having a rehash block 25.
The RAM,preferably a tag memory,has a plurality of cache
sets to store memory addresses. The processor sends a data
address via an n-bit multiplexor 22 to a memory address
register (MAR) 24. Connected in between the output of the
MAR and one ofthe inputs of the multiplexor 22 is an
inverter 26. The multiplexor 22, the MAR 24, and the
inverter 26 interact to index the data address from the

processor to the RAM. More specifically, the multiplexor
and the inverter apply the first hashing function h, and the
second hashing function h, to the data address.

The RAM 23 communicates with the data bus via a data
buffer 28. In between the data buffer and the RAM is a

second n-bit multiplexor 30. A swap buffer 32 communicates
with both the multiplexor 30 and the data buffer 28 so that
current data can be placed in the cache set mostlikely to be
accessed.

The controller 15 provides the necessary control logic to
each of the above components so that the algorithm of the
decision tree in FIG. 3 is followed. The control signals for
FIG. 9 are summarized in Table 2 as well as the actions taken

for a given state, input, output, and next state. A discussion
of the components and Table 2 is set forth below and can be
followed in FIG. 3.

09/01/2003 , EAST Version: 1. 04OPE: Ex. 1017 Page 216

10

20

25

30

35

45

50

55

noO

65

10

TABLE 2

State Input Output Next state

IDLE oP LM,RD bla]
bla} HIT IDLE

tHIT,!HB STALL,MSEL,LM,RD,LS fl[al
{HIT,HB MEM,STALL XWAIT

fifa] HIT MSEL,LM,WT f2[a)
{HOT MEM WAIT)

f2{al DSEL,LD 3a]
3a) MSEL,LM,WT IDLE

WAITL MACK MSEL,LM,WT WAIT2
WAIT2 DSEL,LD WAITS
WAIT3 MSEL,LM,WT IDLE
XWAIT MACK LD,WT IDLE

Upon receiving an opcode signal (OP), the controller
loads (LM) the MAR with an memory address a from the
address bus. Thenthe controller issues a read or write signal
(RD/WT)to the RAM sothatthe first hashing function h,is
be applied to address a. If the RAM returmsa hit signal
(HIT), then the data is automatically loaded (LD) into the
data buffer 32 to be retrieved and the controller goes to an
IDLE state. ,

If the h,[a] access misses (! HIT) and the rehash block has
not been rehashed (!HB), then the controller stalls the
processor (STALL), copies (LS) the data from the h,{a]
access into the swap buffer, loads the MAR with the second
hashing function h, (MSEL and LM),issues a read (RD)
signal to the RAM and movesto the fl{a] state. If the access
misses (!HIT) and the rehash block is set to one (HB), then
the data is removed andthe controller makes a request to the
main memory (MEM),stalls the processor (STALL), and
moves to the XWAITstate.

Im the fl{a] state, a hit causes the controller to laad the
MAR with that index (MSEL, LM), issue a write signal
(WT) to the RAM and moveto the f2[a] state. For a miss
(!HIT), the controller makes a request to the main memory
(MEM) to retrieve data and moves to the WAIT‘ state.

In the f2{a] state, the controller swaps the data in the data
buffer and the swap buffer (DSEL, LD) and moves to the
f3[a] state. .

In the £3[a] state, the controller loads the MAR (MSEL,
LM), issues a write (WT) signal to the RAM, and movesto
the IDLEstate.

In the WAIT] state, the memory acknowledges comple-
tion (MACK), the data is taken from the data bus and loaded
in the MAR (MSEL, LM), a write signal is issued to the
RAM (WT), and the controller moves to the WAIT2 state.

In the WAIT2 state, the controller swaps the data in the
data buffer (DSEL, LD) and moves to the WAITS state.

In the WAITS state, the controller loads (MSEL, LM) the
MAR,issues a write signal (WT) to the RAM and movesto
the IDLEstate.

In the XWAIT state, the controller receives a signal that
the access is complete (MACK),loads the data into the data
buffer (LD), issues a write command (WT), and movesto the
IDLE state.

The circuitry of the column associative cache with CAM
and rehash block is more complex than the cache byitself
(see FIG. 10). For example, there is aCAM 20,a first in first
out (FIFO) counter 36, a CAM buffer 38, and another n-bit
multiplexor 40. The FIFO counter points to the next location
in the CAM thatis to be replaced and the CAM buffer holds
indexes while they are being compared or before they are
written into the CAM. Even thoughthis hardware consumes
a great deal of area, the critical access pathof the column
associative cache is not affected. Besides the above addi-

NOAC Ex. 1017 Page 217

5,530,958

ll

tions, the MAR 24 andthe swap buffer 32 are shown to have
capability for storing partial addresses such as the index and
tag fields, respectively.

The state flow table in Table 3 reveals that the control
logic for the column associate cache with the CAM and
rehash block is more complex. For example, the variables
for each state have changed and arereferenceddifferently
than the column associative cache. Furthermore, upon
receiving an opcode (OP), the controller searches the CAM
to determineif there is a match for the address a If there is
no initial match (! MATCH) in the CAM,the controller
loads the MAR (LM),issues a read signal (RD) to the RAM,
and movesto the b[a] state. A match (MATCH)in the CAM
enables the controller to load the MAR (MSEL, LM),issues
a read signal (RD) to the RAM;.and movesto thefifa] state.

A hit (HIT) in the ff[a] state enables the controller to place
the index field of the data within the MAR into the CAM
buffer (LDCAM)and then moveto the IDLEstate. On the
other hand, a miss (! HIT) enables the controllerto stall the
processor (STALL), make a request to the main memory
(MEM), and then moveto the WAITstate.

A hit (HIT) in state b[a] causes the controller to place the
indexfield of the data within the MAR into the CAM buffer

38 (LDCAM)and moves to the IDLE state. A miss (!HIT)
with a zero rehash block (! HB) or a one rehash block (HB)
causesthe controllerto stall the processor (STALL), load the
MAR (MSEL, LM),issue a read signal (RD) to the RAM,
load the swap buffer (LS) with the data from b[a] and move
to the fl[a} and fc[a] state, respectively.

TABLE 3

Next
State Input Output State

IDLE OP,!MATCH LM,RD bia]
OP,MATCH MSEL,LM,RD fal

fila} HIT LDCAM IDLE
WHIT STALL,MEM WAIT

bfa] HIT LDCAM IDLE
!AIT,!HB STALL,MSEL,LM,RD,LS fia)
‘HTT,HB STALL,MSEL,LM,RD,LS fe[a]

fl{a] HIT MSEL,LM,WT,CSEL, fa]
LDCAM,WTCAM

HIT MEM WAITL
f2{a] DSEL.LDINC f3{a]
£3{al MSEL,LM,WT,LDCAM IDLE
fcfa] HIT _ LDCAM,WICAM fc2{a]

HIT MEM WAIT
fc2[a] INCLDCAM IDLE
WAIT MACK LD,WT,LDCAM IDLE
WAITI MACK MSEL,LM,WT WAIT2
WAIT2 DSEL,LD WAITS
WAITS MSEL,LM,WT,LDCAM IDLE

A hit in the fl[a] causes the controller to load the MAR
(MSEL,LM), issue a write signal (WT) to the RAM,place
the address from the MAR in the CAM (CSEL, LDCAM,
WTCAM), and moveto the £2[a] state. A miss (!HIT) causes
the controller to make a request to the memory (MEM) and
go to the WAITIstate.

In the f2[a] state, the controller points to the next location
in the CAM (INC), swapsthedata in the data buffer with the
data in the swap buffer (DSEL, LD), and moves tothef3[a]
state.

In the f3{a] state, the controller places an index within the
MAR andthe CAM buffer (MSEL, LM, WT, LDCAM)and
movesto the IDLEstate.

In thefc[a] state, the data is indexed. A hit (HIT) causes
the controller to place the index within the MAR into the
CAM buffer (LDCAM), place the current index into the
CAM (WTCAM), and move to the fc2[a] state. A miss

_ 5

30

35

40

45

50

55

60

65

12

(‘HIT) causes the controller to make a request to the memory
to retrieve data (MEM), and moveto the WAIT state.

In the fc2[a)state, the controller issues an INC command
to the FIFO counter in order to point to the next location in
the CAM,places an index within the MAR into the CAM
buffer (LDCAM), and movesto the IDLE state.

In the WAIT state, the controller receives a signal indi-
cating that the access is complete (MACK), loads the MAR
with the next access (LD), issues a write signal to the RAM
(WT),places an index within the MAR into the CAM buffer
(LDCAM)and then moves to the IDLE state.

In the WAIT1 state, the controller receives a signal
indicating that the access is complete (MACK), loads the
MAR (MSEL, LM),issues a write signal (WT), and moves
to the WAITZ2 state.

In the WAIT2 state, the controller swaps data between the
data buffer 28 and the swap buffer 32, loads the data buffer
with the data (DSEL,LD), and moves to the WAITS state.

In the WAITS state, the controller loads the MAR (MSEL,
LM), issues a write signal to the RAM (WT), places the
index within the MAR into the CAM buffer (LDCAM), and
movesto the IDLE state.

Note that all states whose next state is IDLE assert the
LDCAM line. This serves as a reminderthatin order for the

CAM search and the setting of MATCH to precede the
first-time cache access, the search must be cither extremely
fast or part of a previouspipeline stage. LDCAM islisted as
an output of the stages executed before the IDLEstate as a
reminderof these potential solutions. In these cases, actu-
ally, the CAM buffer would need to find the next address on
the address bus, because the MAR hasnotyet latched the
next reference. Also, note that the state flow Table 3 pro-
ceedssimilarly to the state flow Table2 far first-time hits and
first-time misses when the rehash block is zero. The only
exception is for a second-time hit, when the original non-
rehashed address must be placed in the CAM in addition to
the swap. This is accomplished by asserting CSEL, LDCAM
and WTCAM during state f1[a]. Also, INC is asserted during
f2{a] to increment the FIFO counter, which points to the
location of the next write to the CAM but doesnotaffect the
next CAM search. ,

The new entries in the state table involve the paths if an
initial CAM match occurs orif a first-time miss reveals a

rehashed location. If the MATCHline is asserted initially,
then the controller moves to set fi[a) and attempts a standard
rehash access. If successful, nothing remainsto be done. If
it misses, then this rehashed location is simply replaced by
data from the memory during the WAIT state, Note that
MSEL and LM are not to be used to change the MAR
contents. Since the address that accesses this locationisstil]
in the CAM,a future reference will be successful in one
cycle. In the case thata first-time miss reveals a rehashed
location, state fcl[a] is entered and, unlike the column-
associative cache with rehash block, a rehash is performed
to assure that the data does not exist in the rehashed location.

If this access does indeedhit, the address is simply placed
in the CAM.Thus, a feature reference immediately finds a
match in the CAM and completes a rehash access in one
cycle. If there is a miss, then the algorithm proceeds as in the
column-associative cache with rehash block and replaces the
non-rehashed location.

Thecircuitry of the column associative cache with a CAM
is shown in FIG. 11. The control signals for FIG. 11 are
summarized in state flow Table 4. A discussion of the

components and Table 4 are set forth below and correspond
to the decision tree of FIG. 8. ’

09/01/2003, EAST Version: 1. 04PPPE: Ex. 1017 Page 217

NOAC Ex. 1017 Page 218

5,530,958

13

TABLE 4re

state input output next state

IDLE OP LM,RD,LDCAM bla]
bla] HIT IDLE

!HTT,MATCH STALL,MSEL,LM,RD, fifa]LS
'HITIMATCH MSEL,STALL,WTCAM XWAIT

fl[al HIT MSEL,LM,WT,DSEL,LD Aja)
!HIT MEM WAIT)

P{al MSEL.LM,WT IDLE
WAITL MACK MSEL,LM,WT,DSEL,LD WAIT2
WAIT2 MSEL,LM,WT IDLE
XWAIT MACK INC,LD,WT TDLE

Uponreceiving an opcode (OP), the controller loads the
MAR (LM),issues a read signal (RD) to the RAM,places
the index within the MAR into the CAM buffer (LDCAM)
and movesto the b[a] state.

A hitin the b[a] state (HIT) causes the data to be accessed
and then the controller moves to the IDLE state. A miss

(!HIT) with a match (MATCH) in the CAM causes the
controller to stall the processor (STALL), load the MAR
(MSEL,LM),issue a read signal (RD) to the RAM, load the
swap buffer (LS) with the data from h,{a] and moveto the
fila] state. A miss (!HIT) without a match (! MATCH) in the
CAM causes the controller to make a request to memory
(MEM), stall the processor (STALL), write into the CAM
(WTCAM) and moveto the XWAIT state.

A hit (HIT) in the flf{a] state causes the controller to load
the MAR (MSEL,LM), write the RAM (WT), load the data
buffer with the data (DSEL,LD) and moveto the f2{a] state.
A miss (!HIT) causes the controller to make a request to
memory (MEM)and moveto the WAIT!state.

In the f2[a] state, the controller loads the MAR (MSEL,
LM) andissuesawrite signal (WT), and moves to the IDLE
state.

In the WAIT1state, the controller receives an input signal
indicating that the access is complete (MACK), then loads
the MAR (MSEL, LM), issues a write signal (WT), swaps
data between the data buffer and the swap buffer, loads the
data buffer with the data (DSEL, LD), and moves to the
WAIT2 state.

In the WAIT2 state, the controller loads the MAR (MSEL,
LM),issues a write signal to the RAM (WT), and movesto
the IDLEstate.

In the XWAIT statethe controller receives an input signal
indicating that the access is complete (MACK), then the
controller issues an INC commandto the FIFO counter in

orderto point to the next location the CAM,places an index
into the MAR (LD), writes the RAM (WT), and movesto the
IDLEstate.

An important parameter for the CAM disclosed in FIGS.
10 and 11 is its size parameter. Like the victim cache, the
percentage of conflicts removed increases as its size
increases, because there are more locations to store conflict-
ing data removed from the cache. However, this improve-
ment eventually saturates to a constantlevel, because there
exists only so many conflicting data bits which need to
reside therein at one time. However, the CAM can perform
without saturation for up to 128 entries, whereas the victim
cache can perform only up to 16 entries before saturation
occurs.

The column associative cache with a CAM can use the
full index field or omit some of the low order bits from the
index fields that are to be placed in the CAM. For example,
if two bits are trapped from the index, then four different
addresses could cause a CAM match with the sameentry.

09/01/2003, EAST Version: 1.0NQQ@ Rx, 1017 Page 218

5

10

20

35

40

50

55

60

65

14

These addresses may be consecutive numbers, since the low
order bits have been dropped. The use of partial index fields
increase the number of rehashes attempted, because a ref-
erence is predicted to be a conflict if it indexes one of four
consecutive locations. As seen previously, an increase in the
number of rehashes attempted often decreases the second
timehit rate and likely degrades performance. However, this
modification may prove useful in applications where data or
instructions are often known to be stored sequentially or in
consecutivebits.

Also, note that the present invention is not limited to the
two hashing functions, h, and hg, bit selection operatian and
bit flipping operation. Other hashing functions may be used
in addition to bit flipping in order to improve the randomness
of accesses and to decrease the amountof clobbering.

While the invention has been particularly described in
conjunction with a preferred embodimentthereof,it will be
understood that many alternatives, modifications and varia-
tions will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
defined by the appended claims.

Weclaim:

1. A cache memory system comprising:
a cache memory having a plurality of cache locations,

each for storing a cache line of data, separately
accessed from a main memory, and havingafirst tag
memory, each cachelocation being indexed by indexes,
taken fram memory addresses, throughfirst and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions throughthefirst and second hashing functions and
different indexes access common memory locations
through thefirst and second hashing functions;

hash control storage storing contro! data comprising hash
data associated with each cache location which indi-

cates the hashing function used to store data in the
cache location; and

a controller coupled to the cache memory responsive to
memory addresses in accesses to the main memory for
accessing data in the cache memory throughthe first
and second hashing functions and for replacing data in
the cache memory from the main memory responsive to
the control data and to comparisons betweentags ofthe
memory addresses and tags stored in the first tag
memory.

2. Acache memory system as claimed in claim 1 wherein
the controller checks the hash data of the cache location

indexed bythefirst hashing function when there is a miss at
that cache location and applies the second hashing function
only when said hash data indicates data stored in the cache
location was not stored using the second hashing function.

3. Acache memory system as claimed in claim 1 wherein
the controller responds to the hash data to determine whether
to replace datastored inafirst location indexed through the
first cache hashing function or a second cache location
indexed through the second hashing function.

4. Acache memory system as claimed in claim 3 wherein
the controller swaps data replaced in a cache location with
data in another cachelocation indexed by a commonindex.

5. A cache memory system as claimed in claim 1 further
comprising a second tag memory coupledto the controller
for storing as control data at least portions of memory
addressesthat indicate that data stored in a cachelocationis
likely indexed through one of the hashing functions.

6. A cache memory system as claimed in claim 5 wherein
the controller accesses cache memory locations through the
first hashing function or the second hashing function depen-

NOAC Ex. 1017 Page 219

5,530,958
15

dent on whether at least a portion of a memory address is
stored in the second tag memory and, where a miss results
at a cache memory location with access through the first
hashing function and the second hashing function, the con-
troller replaces the data stored through the first hashing
functionif said hash data indicates the data accessed through
the first hashing function had beenstored using the second
hashing function, or through the second hashing function if
said hash data indicates the data accessed through the first
hashing function had been stored using the first hashing
function.

7. Acache memory system as claimed in claim 1 wherein
the hash control storage comprises a second tag memory
coupled to the controller for storing as control data at least
portions of memory addressesthat indicate a likely hashing
function through which data stored in cache is indexed,

8. A cache memory system as claimed in claim 7 wherein
the second tag memory is a content addressable memory.

9. Acache memory system comprising:
a cache memory having a plurality of cache locations,

each for storing a cache line of data, separately
accessed from a main memory, and havinga first tag
memory, each cachelocation being indexed by indexes,
taken from memory addresses, through first and second
hashing functions such that plural memory addresses
having a common index access plural memory loca-
tions through the first and second hashing functions and
such that different indexes access common memory
locations through the first and second hashing func-
tions;

hash data associated with each of the plurality of cache
locations for indicating the hashing function used to
store data therein; and

a controller coupled to the cache memory for accessing
data in the cache locations through the first and second
hashing functions and for replacing data in the cache
locations from main memory, the controller being
responsive to the hash data and a comparison oftags of
the memory address and stored tags in cache memory
in determining whetherto replace data in a first location
accessed through the first hashing function or in a
second Jocation accessed through the second hashing
function.

10. A cache memory system according to claim 9, wherein
the first hashing function is a bit selection operation.

11. Acache memory system according to claim 9, wherein
the controller checks the hash data of a cache location

indexed bythefirst hashing function whenthere is a miss to
determine whether to apply the second hashing function.

12. Acache memory system accordingto claim 9, wherein
the second hashing function is a bit selection and flipping
Operation.

13. Acache memory system according to claim 9, wherein
the controller removes the data from the cache location
indexed by the second hashing function after a miss and
retrieves new data from the main memory in placetherefor.

14. A cache memory system according to claim 13,
wherein the controller swaps the new data in the cache
location indexed by the second hashing function with the
data in the cache location indexed by the first hashing
function.

15. Acache memory system accordingto claim 9, wherein
the controller respondsto a miss at a cache location through
the first hashing function, and to hash data indicating data is
stored at that cache location through the second hashing
function, to remove data from that cache location and
retrieve data from main memory in place therefor.

09/01/2003, EAST Version: 1.0N@AQ@ Ex. 1017 Page 219

15

b0

30

40

55

60

65

16

16. A cache memory system as claimed in claim 15
wherein the controller swaps data replaced in a cache
location with data in another cache location indexed by a
common index.

17. Acache memory system according to claim 9, further
comprising a second tag memory coupled to the controller
for storing at least portions of addresses that indicate that
data stored in a cache locationis likely to be indexed through
the second hashing function, the controller using the second
hashing function in the initial cache indexing where an
address is found in the second tag memory.

18. A cache memory system comprising:
acache data memory havinga plurality of cache locations

for storing plural cache lines of data, cach cache
location being referenced by a memory address having
an index field and a tag field, and each cachelocation
being indexed by indexes, taken from memory
addresses, through first and second hashing functions
such that plural memory addresses having a common
index access plural memory locations through thefirst
and second hashing functions and such that different
indexes access common memory locations through the
first and second hashing functions;

a first tag memory coupled to the cache data memory for
storing the tag fields of the data stored in the plurality
of cache locations;

hash data coupledto the cache data memory for indicating
hashing functions used to index data in the cache
locations;

a second tag memory coupled to the cache data memory
for storing at least portions of memory addresses that
indicate that data stored in a cache location is likely
indexed through one ofthe hashing functions; and

a controller responsive to the hash data, the first tag
memory and the second tag memory for indexing
memory addresses according to at least one of the
plural hashing functions.

19, A cache memory system according to claim 18,
wherein the controller applies first and second hashing
functions to a memory address, the second hashing function
being a bit selection and bit flipping operation.

20. A method for accessing data from a cache data
memory,baving a plurality of cache locations andafirst tag
memory, comprising the steps of:

indexing a memory address having an index field and a
tag field into an indexed cache location according to a
hashing function;

comparinga tag field of the memory addresstoatag field
in the first tag memory for the indexed cache location;
and

generating a hit when the tag field of the memory address
matches thetag field of the indexed cachelocation, and
generating a miss when the tag field of the memory
address does not match the tag field of the indexed
cache location, and in generating a miss, choosing
between the step of indexing another cache location
through another hashing function and the step of
replacing data, the step of replacing data in the cache
location being chosen if hash data indicates data
located in the cache location was indexed through
another hashing function,

21. A method according to claim 20, further comprising
the steps of connecting a content addressable memory to the
cache data memory for storing portions of memory
addresses, each portion indicating that data stored in a cache
location is likely indexed through one of plural hashing

NOAC Ex. 1017 Page 220

5,530,958
17

functions, and checking the content addressable memory for
a match with a portion of the memory address.

22, A method as claimed in claim 20 further comprising
swapping the replaced data in a cache location with data in
another cache location indexed by a common index.

23. A method ofaccessing data from a cache data memory
having a plurality of cache locations andfirst tag memory
comprising the steps of:

indexing a memory address having an index field and a
tag field into an indexed cache location according to a
hashing function applied to the index field; and

comparing a tag field of the memory addressto a tag field
in the first tag memory for the indexed cache location;
and

storing contro] data which identifies the hashing function
used to store data in each cachelocation;

09/01/2003, EAST Version: 1.0W@QAQ Kx. 1017 Page 220

15

18

wherein data is accessed in the cache locations through
first and second hashing functions and data is replaced
in the cache locations from main memory responsive to
the control data which is stored according to past cache
operations and comparisons between tags of memory
addresses and tags stored in the first tag memory.

24. A method as claimed in claim 23 further comprising
determining from a second tag memory a hashing function
through which data stored in a cache location is likely
indexed and selects that hashing function for indexing the
cache location.

25. A method as claimed in claim 23 further comprising
swapping data in the cache location indexed by the second
hashing function with the data in the cache location indexed
by the first hashing function when replacing data.

+ *¢ * * *

NOAC Ex. 1017 Page 221

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,530,958

DATED : June 25, 1996

INVENTOR(S) > Anant Agarwal and Steven D. Pudar

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

At column 1, line 4, insert the following paragraph:

---GOVERNMENT SUPPORT

This invention was made with government support under
Grant Number 9012773-MIP awarded by the National Science
Foundation. The government has certain rights in the
invention.---

Signed and Sealed this

Eighth Day of October, 1996

- Wnce Chom
BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

09/01/2003, EAST Version: 1. O4NCPOE Ex. 1017 Page 221

NOAC Ex. 1017 Page 222

United States Patent 15;
g

(54) CACHE MEMORYUSING A LOWEST
PRIORITY REPLACEMENT CIRCUIT

[75] Inventor: Shi-Jeh Chang, Naperville, Il.

{73] Assignee: AT&T Bell Laboratories, Murray
Hill, NJ.

[21] Appl. No.: 307,857

Oct. 2, 1981[22) Filed:

(51)
[52]
(58) Fleld of Search 364/200 MS FILE, 900 MS
FILE

[56] References Cited
U.S. PATENT DOCUMENTS

3,588,829 6/1971
3,840,862 10/1974
3,949,368 4/1976
4,084,230 4/1978
4,128,832 12/1978
4,322,795 3/1982

Primary Examiner—Eddie P. Chan
Assistant Examiner—O. Schatoff
Attorney, Agent, or Firm—P. Visserman

CONTROL
SEQUENCER

pad

4,458,310
Jul. 3, 1984

[11] Patent Number:

(45} Date of Patent:

[57] ABSTRACT

A data processing system having a ‘processor, main
memory, and a cache memory system which imple-
ments the least recently used replacement ulgorithm in
replacing cache memory words with main memory
words. The cache memory system is comprised of a
cache control circuit and a plurality of cache memorics.
Each cache memory stores cache memory words hav-
ing a similar time usage history. The first cache mem-
mory stores cache memory words which are more re-
cently used than the cache memory words in the second
cache memory, and the second cache memory stores
cache memory words which are more recently used
than the cache metnory words in the third cache mem-
ory. When a main memory word must be transferred to
the cache memory, the main memory word is stored in
the first memory; and the first cache memory’s least
recently used cache memory word is stored in the sec-
ond cache memory.The least recently used cache mem-
ory word from the second cache memory is stored in
the third cache memory. These operations maintain the
proper time usage history of the cache memorics.

17 Claims, 5 Drawing Figures

5

CACHE DATA
GATING
CIRCUIT

NOACEx. 1017 Page 222

NOAC Ex. 1017 Page 223

deHiddenmteresyw

aoshabeetennanewetatinalianatititsmalntntatelnentteitetthasitlineaMNttinndmaanpmunkn

U.S. Patent Jul. 3, 1984 Sheet 1 of 5 4,458,310

FIG. {

fal 102.

 MAIN
MEMORY

PROCESSOR

CONTROL BUS //?
ADDRESS BUS 4/7

DATA BUS ///

100,

MAIN MEMORY READ

MAIN MEMORY READY

|6LR
| CIRCUIT

CACHE DATA

SELECT

CACHE DATA

GATING
CIRCUIT

NOACEx. 1017 Page 223

NOAC Ex. 1017 Page 224

oo

4,458,310Jul. 3, 1984 Sheet 2 of 5U.S. Patent

NOACEx.1017 Page 224

NOAC Ex. 1017 Page 225

°=mnoOoWw~,—=+WYCome°oa32

=10
(}

Srapf
===33AxYa)

tta5i venerentNNRpensttreeth b_8b_oo_od_ayayaya(|}(ic(
'

oH

NOACEx. 1017 Page 225

NOAC Ex. 1017 Page 226

U.S. Patent su. 3, 1984 Sheet 4 of 5 4,458,310

FIC.4 197RPL}

ADDRESS OUT

NOACEx. 1017 Page 226

NOAC Ex. 1017 Page 227

4,458,310Jul. 3, 1984 Sheet 5 of 5U.S. Patent

NOACEx. 1017 Page 227

NOAC Ex. 1017 Page 228

1

CACHE MEMORY USING A LOWEST PRIORITY
REPLACEMENT CIRCUIT

TECHNICAL FIELD

Myinvention relates to computer systems, and, par-
ticularly, to a system using a cache memory in which
the cache storage location for storing new information
is the location of the lowest priority word in the cache
memory.

BACKGROUND OF THE INVENTION

Modern computer systems employ processors which
are capable of operating at much higher rates of execu-
tion than large capacity main memories can support,
and a low capacity, high-speed cache memory is com-
monly used in addition to a large capacity main memory
to improve program execution speed. The cache mem-
ory stores a limited number of instruction or data
words; and for each memory read operation, the cache
memory is checked to determineif the information is
available in the cache memory. If the information is
there, it will be read from the cache memory; otherwise,
it will be read from the main memory.Ifthe information
must be read from the main memory, the new informa-
tion most replace existing information in the cache
memory at some cache storage location. A satisfactory
cache storage Jocation for storing new information is
identified by one ofthe several commonly used replace-
ment algorithms, e.g., random replacement, least re-
cently used, etc. In general, the least recently used re-
placement algorithm is considered to be the most effi-
cient algorithm; however, implementation of this algo-
rithm in a cost-effective manner without incurring large
time delays in maintaining a priority of cache memory
locations, with respect to which is the least recently
used memory location, has proven difficult to achieve.
In perticular, it bas proven difficult to design a cache
memory which was capable of expansion in the field.

SUMMARYOF THE INVENTION

Advantageously, in a computer system in accordance
with the present invention, the cache memory system is
divided into sections with cach section containing cache
data words which have a similar priority. Each section
has a priority circuit associated with it which maintains
the relative priority of the cache data words. Further-
more, the time required to update the cache memory
upon receipt of a main memory word which must be
inserted into the cache memory is reduced, since the
main memory data word is written into one section
simultaneous with the transfer of lowest priority cache
data words from sections having higher priority cache
data words to sections having lower priority cache data
words. .

In one embodimentofthe invention, the data process-
ing system consists of a processor, which requests data
words by generating main memory address signals, a
main memory and a cache memory system. The cache
memory system is comprised of a cache control circuit
and a first and a second cache memory. The advantage
ofconfiguring the cache memory system into more than
one cache memory is that the system is modular and can
be expanded in the field. Also, each cache memory can
be implemented as one large scale integrated circuit.
Each cache memory stores cache data words which are
duplicates of words stored in the main memory. Each
cache memory also stores the main memory addresses

4,458,310

10

2

where the associated cache data words are duplicated in
main memory. When the processor requests a data
word bytransmitting main memory address signals, the
first and second cache memory compare the stored
memory addresses with these memory signals to deter-
mine if the requested memory word is stored within
cither the first or second cache memory. If a cache
memory finds a match, it transmits to the cache control
circuit a match signal; otherwise, the cache memory
transmits a mismatch. If the cache contro} circuit re-
ceives mismatch signals from both cache memories, it
generates and transmits the necessary signals to cause
two operations to take place. During the firat operation,
the main memory to the main memory address

15 signals to access and transmit the desired main memory

20

30

45

&

65

word to the processor and to the first cache memory.
Also, during this first operation, the first cache memory
accesses its lowest priority cache data word with the
associated stored main memory address and transmits
these to the second cache memory. During the second
operation, the firat cache memory stores the accessed
main memory word and main memory address signals in
the previously accessed first cache memory locations
and the second cache memory stores the lowest priority
cache data word and stored main memory address from
the first cache memory in second cache memory loca-
tions.

Further, the cache control means is responsive to a
mismatch signal from the first cache memory and a
match signal from the second cache memory to cause
two operations to be performed within the cache mem-
ories. During the first operation, the first cache memory
accesses and transmits the lowest priority cache data
word and the associated main memory address to the
second cache memory and the second cache memory
tranamits the cache data word associated with the
matched stored memory address to the first cache mem-
ory and to the processor. During the second operation,
the first cache memory stores the cache data word and
address from the second cache memory in the memory
Jocation formerly used by the lowest priority cache data
word and memory address. Alo, during the second
operation, the second cache memory will store the
transmitted cache dsta word and associated address
from the first cache memory.

Additionally, each cache memory will be comprised
of a match and a data memory. The match memory will
be used to store the stored main memory addresses and
the data memory will be used to store the cache data
words. The match memory will perform a comparison
for each set of main memory address signals which the
processor sends out and this memory will indicate a
match or a mismatch. When a match is found, the match
memory transmits an address to the data memory so
that it can access and transmit the designated cache data
word. A content addressable memory can be used to
implement the match memory.

Further, each cache memory has a priority circuit
which maintains the priority of each cache data word
with respect to when it was accessed within the first
cache memory. Thepriority maintained by the priority
circuit is the time usage history of the cache data words.
The lowest priority cache data word is the least re-
cently used cache data word.

In a data processing system comprising a processor,
main memory and cache memory system having two
sections, one illustrative method accesses and updates2

NOACEx. 1017 Page 228

NOAC Ex. 1017 Page 229

- wre. we

4,458,310
3

the cache memory system by storing the cache data
words into the cache memory system with the first
section containing words which have a higher priority
than the words stored in the second section. When the

processor accesses a data word, eachsectionis checked
to detect whether or not the desired word is contained
in that section. If the desired word is not contained in
any section, then the main memory will be accessed and
the desired word transmitted to the processor and the
first section. The accessed main memory word will be
used to replace the lowest priority cache data word of
thefirst section and this word will be designated as the
highest priority cache data word and the word which
had the second lowest priority will be designated as the
lowest priority cache data word. The former lowest
priority cache data word will be transmitted to the
second section where it will replace the lowestpriority
word of the second section and will becomethe highest
ptiority word of that section. The word which had the
second lowest priority in the second section wil] then be
designated as the lowest priority word.

If the requested word is detected as being in the sec-
ondsection, then the word from the second section will
be transmitted to the processor and will be stored in the
first section as the highest priority word of the first
section. The lowest priority word of the first section
will be transferred to the second section where it will
becomethe highest priority word of the second section.
The lowest priority word can be the least recently used
word, and the highest priority word can be the most
recently used word.

BRIEF DESCRIPTION OF THE DRAWING

The invention may be better understood from the
following detailed description when read with refer-
ence to the drawing in which:

FIG. 1 is a block diagram representation of a data
processing system embodying the presentinvention,

FIGS.2 and 3 show in greater detail LRU circuit 105
of FIG.1;

FIG.4 shows in greater detail the content address-
able memory of LRU circuit 104 of FIG. 1; and

FIG. § shows a table giving an example of the opera-
tion of the priority circuit of FIG. 3.

DETAILED DESCRIPTION

In a data processing system as illustrated in FIG.1,
data and instruction words are stored in memory loca-
tions of main memory 102 and cache system 100. Pro-
cessor 101 reads these memory ‘locations by transmit-

_ ting an address via address bus 112 and control‘signals
via control bus 113. The cache system 100 is comprised
of control sequencer 103, LRU circuits 104, 105 and
106, cache data memories 107, 106 and 109, and cache
data gating circuit 110. The LRU circuits and cache
data memories are grouped into pairs, and each pair
represents a cache memory unit. For example, LRU
circuit 104 and cache data memory 107 comprise one
cache memory unit.

The cache data wordsstored in the cache data memo-
ries are organized into groups with each group contain-
ing cache data words which werelast read by processor
101 at a similar point in time. Each group 1s stored in
oneof the cache data memories. For example, the most
recently: used ‘group: of .words-is stored in cache data
memory 107, and theleast recently used group ofwordsis stored in cache data memory 109. As processor 10
performs read operations, cache data words may have

20

45

55

cu

65

4
to be transferred between cache data memories to main-

tain the time usage history of the memories. For exam-
ple, if it is necessary to read a word from main memory
102, this main memory word will replace the least re-
cently used cache data word ofcache data memory 104;
and the replaced cache data word will be transferred to
cache data memory 108.

During a read operation, the address transmitted by
processor 101 is checked by LRUcircuits 104, 105, and
106 to determine if the addressed word is contained

within cache data memories 107, 108, or 109, respec-
tively.

For example, if LRU circit 104 determines that the
addressed word is contained withincache data memory
107, it transmits the address of this word to cache data

"memory 107 via cable 131. Cache data memory 107
responds to this address by accessing and transmitting
the desired word to cache data gating circuit 110. From
cache data gating circuit 110, the desired data word is
transmitted to processor 101 via data bus 111. If LRU
circuit 104 does not match the address being transmitted
by processor 10] via address bus 112, it transmits to
control sequencer 103 a “1” signal via conductor 114
which indicates a mismatch. The other LRU circuits
function in a similar manner.

In addition to checking if the associated cache data
memory has the desired memory word, the LRUcir-
cuits maintain the priority of each word in the sssoci-
ated cache data memory. This priority information
automatically updated by the LRU circuit for cach
access to the associated cache data memory and defines
which word in the cache memory is the least recently
used word.

The system’s operation is further illustrated by the
three following examples. In the first example, it is
assumed that the desired word is not present in the
cache system 100 and must be read from main memory
102. If the desired word is not im the cache system 100,
then all the LRU circuits will be transmitting “1” sig-
nals via the match lines 114, 115 and 116. In response to
these signals, contro] sequencer 103 will access main
memory 162 to obtain the desired word. Since the word
read from main memory 102 is the most recently used
word, it must be placed in cache data memory 107, the
least recently used word from cache dats memory 107
must be written into cache data memory 108, and the
least recently used word of cache data memory 108
must be written into cache data memory 109. Theleast
recently used word of cache data memory 109 no
longer exists in cache memory 100 at the completion of
the previous operations.

In the second example of the operation of cache sys-
tem 100,it is assumed that the desired word is in cache
data memory 107. Since the desired word is in cache
data memory 107,it is not necessary to access a word in
main memory 102 orto transfer a memory word from
cache data memory 107 to cache data memory 108.
Rather, LRU circuit 104 will simply update the priority
information stored internally to circuit 104 to properly
reflect the usage order of memory words in data mem-
ory 107.

In the third example, the desired memory word is
assumed to be in data memory 108. In this case, LRU
circuit 105 would match the address being transmitted
by processor 101 via address bus 112 and cause data
memory108 to access and transmit the desired word to
data gating circuit 110. Control Sequencer 103 would
then cause this desired data word to be transmitted by

cle WS“

NOACEx. 1017 Page 229

NOAC Ex. 1017 Page 230

rc]

 i3
4

h

4,458,310
5

data gating circuit 110 via data bus 111 to processor101.
Since this desired word is the most recently used word,
it must be written into data memory 107. The least
recently used word ofdata memory 107 must be written
into the memory location which had previously held 5
the desired memory word in data memory 108.

LRUcircuit 105 is illustrated in FIGS. 2 and 3, and
LRUcircuit 106 is similar in design. LRU circuit 104 is
illustrated in FIG. 4. FIG. 2 shows the circuit whichis

used to check the address transmitted by processor 101 10
via address bus 112 to determine whether the desired

word is in cache data memory 108, and FIG.3 gives the
details of the priority circuit which is used to keep track
of the least recently used word in cache data memory
108. When processor 101 reads a word,it first transmits 15
the CAGO signal and the clock signal via control bus
113 to the control sequencer 103 and processor 101
transmits the address via address bus 112. Control se-

quencer 103 responds to these signals and generates the
C signal and S signal which are transmitted via conduc- 20
tors 122 and 123 to the LRUcircuits. Data selector 202

responds to the C signal on conductor 122 by selecting
the address bits being transmitted via address bus 112
and transmits these address bits vis conductors 216

through 223 to the data-in inputs ofcontent addressable 25
memory (CAM) 201. The CAM contains four words,
each word having cight bits. The CAM responds to the
S input transmitted via conductor 123, and the addreas
bits being received on the data-in inputs to compare
these addreas bits with the contents of cach of the four 30
‘words stored internally. If one of the four words
matches the address bits, then a “1” will be transmitted
via the associated coductor 212, 213, 214 or 215. If no
match is found, then a “1” is transmitted via conductor
236 and stored in flip-flop 206 at T1 time. If a match is 35
found, the state of the conductors 212 through 215 will
be stored in latches 204 by the fallmg edge of the S
signal which is transmitted via conductor 123. Data
selector. 205 will sclect the contents of latches 204
which are being transmitted via conductors 224 through 40
227 to be transmitted via conductors 228 through 231
over cable 132 to cache data memory 108. Cache data
memory.108 will respond to the address being transmit-

_ ted via .cable 132 by accessing the desired word and
transmitting this word to data gating circuit 110, as 45
previously described. Assuming that the desired word
was stored in data memory 108, this word now is the
most recently used word and must be transferred to data
memory 107 and the least recently used word of data
memory 107-must-be-transferred.todata -memory 108 50
andtheaddress of this word written into CAM201.

FIG. 4 shows the circuit which is used-to.check the
address transmitted by processor 10 via address bus 112
to determine whetherthe desired word is in cache data
memory 107, and FIG.3 gives the details of the priority 55
circuit which is vsed to keep track ofthe least recently
used word in cache data memory 108. Thecircuit of
FIG.4 is identical in operation to FIG.2 with the ex-
ception that FIG. 4 does not have 8 data sclector similar
to data selector 202 of FIG. 2, and includes priority 60
circuit 444. Priority circuit 444 is identical in design °
the priority circuit described with reference to FIG. if
The reason why no data selectorts needed is that the
circuit of FIG. 4 always uses the address being transmit-
ted via address bus 112. The circuit of FIG. 4 does not 65
need a data selector because this circuit1s sssocinted
with the most recently used words in cache memoly
100, hence, does not have to decide whether to use the

6
address from address bus 112 or from an LRUcircuit
having higher priority, as does the circuit. shown in
FIG.2. This distinction will be illustrated more clearly
in the following example.

To illustrate the operations of the circuits shown in
FIG.2 and FIG.4, the previously described example 3
is used. Example 3 described the operations which must
take place when the desired word is in data memory

pttevada of this example willnow’be gi
view of LRU circuit 105, and then describing the corre-
spondingactions in LRU circuit 104. It is presumed that
the word 1 in data memory 108 and word 3 in data
memory 107 are the least recently used words. To per-
form these different operations, the controller se-
quencer 103 generates a variety of timing signals, the
most important of which are TO through T4. During
TO, the address bits on address bus 112 are selected
through data selector 202 and used to search CAM 201
for a match. Assuming that these address bits match the
contents of word 2 in CAM 201, a “1” will be transmit-
ted on condactor 213; conductors 212, 214, and 215 will
be conducting “Os”. This operation is done under con-
trol of the S signal transmitted via conductor 123 and
the C signal transmitted via conductor 122 to data selec-
tor 202. The information on conductors 212 through
215 is stored in latches 204 at the end of the S signal. In

- addition, the S signal also clocks the match outputter-
minal of CAM 201 into flip-flop 206. The output of
flip-flop 206 is the M2 signal which is transmitted to
contro! sequencer 103 via conductor 115.

During T1, data selector 203 responds to the M2
signal by selecting the output of latches 204 as an ad-
dress which is transmitted to CAM 201 via conductors

208 through 211, and data selector 205 responds to the
M2 signal by sclecting the output of latches 204 as an
address which is transmitted to data memory 108 via
cable 132. In response to the address on conductors 208
through 211, CAM 201 reads the contents ofthe second
word and transmits these contents to latches 207 in
which these contents are stored at the end of T1. Data
memory 108 reads the contents of its second word in
response to the address transmitted via cable 132. These
contents are stored internal to data memory 108 and
transmitted to data gating circuit 110. During T1, LRU
Circuit 104 accesses theaddress of the least recently
used word and transmits this via cable 117 to LRU
circuit 105, and data memory 107 accesses the Icast
recently used word and transmits this via cable 140 to
data memory 108, as will be described later. The ad-
dress from LRUcircuit 104 must be written into CAM
201 and the corresponding data word written into data
memory 108. During T2, data selector 203 will again
select the output of latches 204 which contain the ad-
dress for word 2 to be used as an address for CAM 201.
The least recently used address word from LRU circuit
204 will be stored in word 2. During T2, control se-
quencer 103 will transmit the W signal via conductor
124 and the RPL2 signal via conductor 120 which
causes CAM 201 to write the information present at the
ae input rminals into word 2. At the same time, theicast recently word of data memory 107 is written
into word 2 of data memory 108 with the address being
supplied by the output of latches 204 via data selector
205 and cable 132. As will be described later, the prior-
ity circuit shown in FIG. 3 must be updated during T3to reflect thef; i‘act that word 2 is now the most recently

’

NOACEx. 1017 Page 230

Wenbyfirstdescribingfffromthepointof “~~

NOAC Ex. 1017 Page 231

7 4,458,310
usedword in LRUcircuit 105. During T4, flip-flop 206

Example 3 is now described with respeccircuit 104 with reference to FIG. 4, Duringa
search is performed of CAM 401; however, since no
match is found, the match output terminal is a “0”
which is stored in flip-flop 406, and no M1 signal is
traasmitted to control sequencer 103.

During T1, since there is no M1 signal, CAM 401is
addressed by the address from the priority circuit 444
with an address whichis transmitted to the ADDRESS
IN terminals of CAM 401 via conductors 432 through
435, data selector 403 and conductors 408 through 411.
This address bit is theaddress:ofthe-least recentlyused
word of CAM 401 and data memory107. Also, during
T1, data memory 107isaddressed by the outputs of the
priority circuit 444 via data selector405 and cable 131.
At the end of T1, the output data of CAM 401 is
clocked into latches 407. The contents oflatches 407 are
transmitted via cable 117 to LRU circuit 105.

During T2 control sequencer 103 transmits the PRL1
and W signals to LRUcircuit 104 and data memory 107
via. conductors 119 and 124, respectively. In response to
these signals, the contents ofaddress bus 112 are written
into the location of the least recently used word as
determined by the bits on conductors 432 through 435
in CAM 401. At the same time, the word present on
data bus 111 is written into data memory 107 at the
address transmitted via cable 131. ©

During T3, the priority circuit 444 must be updated.
Note, that during this example, it was not necessary to
change any information connected with LRU circuit
106 or data memory 109.

Another previous example to be considered is exam-
ple 1 where the desired word is not contained within
data memories 107 through 109 and must be read from
main memory 102. For this example, none of the LRU
circuits will find a match during time TO, and at the end
of time TO, control sequencer 103 will access main
memory 102 to obtain the desired word. Control se-
quencer 103 accesses main memory 102 by transmitting
the main memory read signal via conductor 125. When
main memory 102 has accessed the desired word, it
responds by transmitting the main memory readysignal
via conductor 126 and placing the desired memory
word on data bus 111. Contral sequencer 103 is respon-
sive to the main memory ready signal to generate the
cache data ready signal which informs processor 101
that the data is available on data bus 111 and to execute

the following steps to update the LRU circuits and the
data memories.

After receipt of the main memory ready signal, the
control sequencer 103 transmits the T1 signal. The re-
sults of the transmission of the T1 signal are first de-
scribed with reference to FIG. 2, since no match was
found, the M2 signal is not being transmitted via con-
ductor 115, data selector 203 selects the addressof the
least recently used word which is transmitted via con-
ductors 232 through 235 from the priority circuit of
FIG.3 to perform a read on CAM 201.Dhe:word,read
out of CAM 201s the address of the least recently used
data word which is stored in data memory 108. At the
same time, a read is performed on data memory 108
based on the address being transmitted. via cable 132,
which, again, is the address of the least recently used
word. Atthe end of T1, the address ofthe least recently
used wordis clocked into latches 207 and the data being
accessed from data memory 106 is similarly clocked

8

into a similar set of latches in data memory 108. The
same type of operation is being performed in LRU
Circuits 104 and 106 and data memory 107 and data
memory 109. . .

During T2, the addresses being transmitted via cable
117 from LRU circuit 104 is written into CAM 201 at

. “the address oftheleast recently used word as defined by

25

w»”

35

40

45

0

ou)

65

the address transmitted via conductors 232 through 235
from the priority circuit of FIG. 3. Similarly, the data
which had been accessed from data memory 107 is
written into data memory 108.

With respect to LRU circuit 104, the address on ad-
dress bus 112 is written into the location in CAM 401
which is addressed by information transmitted via con-
ductors 432 through 435 from priority circuit 444 which
designates the least recently used word address. The
data which is present on data bus 111 is written into the
least recently used word of data memory 107 at the
address of the least recently used word. Similar opera-
tions take place in LRU circuit 106 and data memory
109. During T3, the priority circuits of LRU circuits
104, 105, and 106 must be updated to reflect the fact that
the previously Icast recently used words are now the
most recently used words.

To illustrate the operation of the priority circuit
shown in FIG.3, reference is made to example 3 which
described the operations when the desired word is con-
tained in data memory 108. The operation of the prior-
ity circuit of FIG, 3 is similar in operation to priority
circuit 444 of FIG. 4 and the priority circuit of LRU
circuit 106. In the previous example, the least recently
used word was word 1 in data memory 108 and the
corresponding address in CAM location 1 of LRUcir-
cuit 105. During the match operation which took place
during time T0, word 2 of CAM 201 was found to con-
tain the address which processor 101 was attempting to
read. During time T3, the priority circuit shown in
FIG.5 must be updated to reflect the fact that word 2
is now the most recently used word. However, word 1
still remains the least recently used word. Flip-flops 322
through 327 are used to maintain the priority of the
words contained in CAM 201 and data memory 108
with respect to the usage order. NOR gates 328 through
331 decodethe information contained in flip-flops 322
through 327 so as to indicate which word is the least
recently used word. For example, if NOR gate 328 is
transmitting a “1” via conductor 232,this indicates that
word 0 is the least recently used word. OR gates 309
through 315 and AND gates 316 through 321 are used
to determine which flip-flops 322 through 327 should be
modified during an update operation on the priority
circuit. Table | defines the significance of one of these
flip-flops being set. For example,if flip-flop 322 is set,
then flip-flop 322 will transmit the M01 signal as a “1”
to NORgate 328 via conductor 301. Thesignificance of
the flip-flop 322 being set is that word 0 has been used
more recently than word 1.

TABLE ft
Defines

Signal Word
Flip-flop Transmitted used more

Set by Flip-flop recently than Word
322 Mol oO 1
323 M02 0 3
324 Mo3 0 3
325 M12 1 2
326 M13 ! 3

NOAC Ex. 1017 Page 231
saneoot

NOAC Ex. 1017 Page 232

4,458,310

9

TABLE I-continued
Defines

Signal Word
Fiip-flop Transmitted wed more

Set by Flip-flop recently than«=Word
327 M23 2 3

The functions performed by NOR gates 328 through
331 are defined by Table 2.

TABLE 2

SO = MO? - Ma? - M03
S1 = MOl -MI2-MI3
S2 a MOQ - M12. M23
S3 = M03 - M13. M23

Table 2 for MO1 is a “1”, and the value for MO1 is a “0”;
and if flip-flop 322 is reset, then the value for M01 is a
“0” and the value for MO1 is a “1”. For example, if
flip-flops 322, 323 and 324 are reset, then the SO signal is
transmitted via conductor 232.

The operations of OR gates 309 through 315 and
ANDgates 316 through 321 at update time is defined by
Table 3.

TABLE 3

“1” tranemitied Flip-flops Flip-flops
vin conductor which which
at update time are set ere react

228 322, 323, 324
229° 325, 326 322
730 327 323, 325
231 324, 326, 327

word 2, then word 2 is the most recently used word and
flip-flops 322 through 327 must be updated accordingly.
Since word 2 was the selected word, data selector 205
of FIG.2 is transmitting « “1” via conductor 230. OR
gates 309 through 315 and AND gates316 through 321
respond to the “1” being transmitted via conductor 230

10

15

2

25

it 30

5S

10

to set flip-flops 327 and reset flip-flops 323 and 325. This
is shown on line 502 of FIG. 5. Note, that the least
recently used word is still word 1 in line 502. If, in the
next search operation, the desired word is word 3, the
flip-flops 322 through 327 will be updated during time
T3 to reflect the states shown in line 503. If, on the next

search operation, word 1 is found to contain the desired
information, then the flip-flops 322 through 327 will be
updated to reflect the state shown in line 504. Note, that
the least recently used word is now word 0 which has
not been accessed in the last three operations during
which words 2, 3 and 1 were both accessed.

It is to be understood that the above-described em-

bodiment is merely illustrative of the principles of the
invention and that other arrangements may be devised
by those skilled in the art without departing from the
spirit and scope of the invention.

What is claimed is:

1. A data processing system comprising:
& processor means for gencrating main memory ad-

dress signals;
a main memory having a plurality of memory loca-

tions for storing main memory words;
a cache contro] means;
first and second cache memories each having a plu-

rality of memory locations for storing main mem-
ory addresses and corresponding cache data words
in a priority order, and each responsive to main
memory address signals which mismatch all of the
main memory addresses stored therein to generate
and transmit a mismatch signal to said cache con-
trol means;

said cache control means responsive to concurrent
generation ofsaid mismatch signals by said first and
second cache memories to generate and transmit a
first control signal to said main memory and said
first and second cache memories;

said main memory responsive to said first control
signal and said mismatched main memory address
signals to access and transmit a main memory word
to said first cache memory;

said first cache memory responsive to said first con-
tro} signal to transmit the lowest priority cache

~ data word and its corresponding stored main mem-
ory address to said second cache memory, and to
store said transmitted main memory word and said
main memory address signals; and

said second cache memory responsive to said first
control] signal to store the transmitted lowest prior-
ity cache data word and its corresponding main

address.memory

2. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-
sive to main memory address signals which match a
main memory address stored therein to generate and
transmit a match signal to said cache control means;

said cache control means is further responsive to a
mismatch signal from said first cache memory and
said match signal from said second cache memory
to generate and transmit a second controlsignal to
said first and second cache memories;

said first cache memory responsive to said second
control signal to transmit the lowest priority cache
data word andits corresponding stored main mem-
ory address to said second cache memory; and

said second cache memory responsiveto said second
control signal to store said lowest priority cache2

NOAC Ex.1017 Page 232

at

NOAC Ex. 1017 Page 233

4,458,310
11

data word and said corresponding stored main
memory address transmitted in response to said
second control signal from said first cache memory
in the cache memory locations associated with the

* stored main memory address which matched said
main memory address signals.

3. A data processing system in accordance with claim
2 wherein said second cache memory is further respon-
sive to said second control signal to transmit said
matched main memory address and its corresponding
cache data word to said first cache memory; and

said first cache memory further comprises means
responsive to said second control signal to store
said matched stored main memory address and said
corresponding cache data word in the cache mem-
ory locations of said transmitted corresponding
main memory address and said transmitted lowest
priority cache data word ofsaid first cache mem-
ory, respectively.

4. A data processing system in accordance with claim
1 wherein said first cache memory is further responsive
to said first control signal to store said main memory
word and said mismatched main memory address sig-
nals in the cache memory locations of said transmitted
lowest priority cache data word and said transmitted
corresponding stored main memory sddreas in said first
cache memory.

5. A data processing system in accordance with claim
1 wherein said second cache memory is further respon-
sive to said first control signal to store said transmitted
lowest priority cache data word and said transmitted
corresponding stored main memory address from said
first cache memory in the cache memory locations of
the lowest priority cache data word and corresponding
stored main memory address of said second cache mem-
ory, respectively.

6. A data processing system in accordance with claim
2 wherein said second cache memory further comprises
a match memory having a plurality of memory loca-
tions for storing said stored main addresses and a data
memory having a plurality of memory locations for
Storing said cache data words;

said match memory is responsive to said matched
main memory address signals to transmit said
match signal and to generate and transmit a cache
memory address of the memory location whose
contents matched said matched main memory ad-
dress signals to said data memory, and responsive
to said mismatched main memory address signals to
generate and transmit said mismatch signal; and

said data memory is responsive to said cache memory
address to access and transmit said corresponding
cache data word.

7. A data processing system in accordance with claim
6 wherein said match memory is comprised ofa content
addressable memory.

8. A data processing system in accordance with claim
6 wherein each ofsaid first and second cache memories
further comprises a priority means for determining the
least recently used cache data word whichis the lowest
Priority cache data word.

9. A data processing system in accordance with claim
8 wherein each ofsaid priority meansis further adapted
for generating the address of the least recently used data
word.

10. A data processing system in accordance with
claim 9 wherein said priority meansofsaid first cache

25

35

45

3»

55

60

65

12
memory further comprises a storage means and a logic
means; and

said logic means responsive to contents of said stor-
age means and said cache memory address to gen-
erate and store information defining the accessed
order of said cache data words of said first cache

memory in said storage means.
11. In a data processing system having a processor for

generating main memory address signals, a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching a
stored main memory address word with the main mem-
ory address signals, and a cache control for controlling
said first and second cache memories, a method of ac-
cessing said cache memories and said main memory;

comprising the steps of: :
storing a set of said cache data words and corre-

sponding main memory address words having a
higherpriority than ancther set of said cache data
words and corresponding main memory address
words in said first cache memory; .

storing said other set of said cache data words and
corresponding main memory address words im said
second cache memory;

detecting main memory address signals which mis-
match all of main memory address words stored in
said first and second cache memories;

reading from said main memory, the main memory
word addressed by the mismatched main memory
address signals; :

transferring said main memory word to said proces-
sor and said first cache memory;

storing said main memory word and said mismatched
main memory address signals in said first cache
memory;

transmitting the lowest priority cache data word of
said first cache memory to said second cache mem-
ory;

replacing said lowest priority cache data word ofsaid
first cache memory with said main memory data
word;

memory data word as the highest priority cache
date word and another cache data word as the

lowest priority cache data word; and
storing said transmitted cache data word from said

first cache memory in szid second cache memory.
12. The invention of claim 11 wherein said transmit-

ting step comprises the steps of:
replacing the lowest priority cache data word of said

second cache memory with said transmitted cache
data word; and

identifying within said second cache memory said
transmitted cache data word as the highest priority
and another cache data word as the lowest priority
cache data word.

13. In a data processing system having a processor for
generating main memory address signals, a main mem-
ory for storing main memory words, first and second
cache memories for storing main memory addresses and
corresponding cache data words and for matching the
stored main memory addresses with the main memory
address signals, and a cache control for controlling said
first and second cache memories, a method of accessing
said cache memoriesand said main memory;

comprising the steps of:

NOACEx.1017 Page 233

NOAC Ex. 1017 Page 234

4,458,310
13

storing a set of said cache data words and corre-
sponding main memory addresses having a higher
priority than another sct of said cache data words
and corresponding main memory addresses in said
first cache memory;

storing said other set of said cache data words and
corresponding main memory words in said second
cache memory;

detecting main memory address signals which match
one of the stored main memory addresses in said
second cache memory;

transferring the cache data word corresponding to
the matched one ofsaid stored main memory ad-
dresses from said second cache memory to said
processor and said first cache memory; and

storing said transferred cache data word from said
second cache memory in said first cache memory.

14. The invention of claim 13 wherein said storing of
said transferred cache data word step comprises the
steps of:

transmitting the lowest priority cache data word of
said first cache memory to said second cache mem-
ory;

replacing said lowest priority cache data word of said
first cache memory with said transferred cache
data word from said second cache memory; and

identifying within said first cache memory said trans-
ferred cache data word from ssid second cache

memory as the highest priority cache data word

15

20

25

30

35

45

55

65

14
and another cache data word as the lowest priority
cache data word.

15. The invention of claim 14 wherein said transmit-

ting step comprises the steps of:
replacing the lowest priority cache data word of said

second cache memory with said transmitted cache
data word from said first cache memory; and

identifying within said second cache memory said
transmitted cache data word from said first cache

memory as the highest priority cache data word
and another cache data word as the lowest priority
cache data word.

16. The invention of claims 11 or 14 wherein said

lowest priority cache dats word of said first cache
memory comprises a least recently used cache data
word of said first cache memory and said transmitting
step comprises the step of transmitting said least re-
cently used cache data word ofsaid first cache memory;
and

said replacing step comprises the step of replacing
said least recently used cache data word of said
first cache memory.

17. The invention of claim 14 wherein said highest
priority cache data word from said cache memory com-
prises a most recently used cache data word and said
step of transferring comprises the step of transferring
said most recently used cache data word; and

said step of replacing comprises the step of replacing
with said most recently used cache data word.s**t #2 @ # .

NOACEx. 1017 Page 234

NOAC Ex. 1017 Page 235

IW 7696177

S) SHALE,ENDRESiEOMTHES

UNITED STATES DEPARTMENT OF COMMERCE

QL®ALE,TOWH ”aIeSOREPEaeene

United States Patent and Trademark Office

October 16, 2018

THIS IS TO CERTIFY THAT ANNEXEDIS A TRUE COPY FROM THE

RECORDSOF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

tnRca3AorSOereeee

09/608,266

June 30, 2000

APPLICATION NUMBER:

FILING DATE “eeeSeeereeeeeeeTeeNeePYERTSSSEETSYEETUPETSINTEENTTTTTS6,771,646PATENT NUMBER:

ISSUE DATEnhUGRuEREURSEAwoeeveueUNNeeNaenesee=SerresPoirierBeegeeeeeoaPereeee and Director of the United States Patent and TrademarkOffice

P. SWAI

Under Secretary of Commercefor Intellectual Property

By Authority of the

August 03, 2004

SSEReeeeeeeeeeSereeeToreOrenSreeTex<<Peraeaeay CITTBaaaecs—SxSeaeg OfficerCertifyi

aaor

- SSPOee,PeeTeeeteker

PART GA.OF (FPART(S)

NOAC Ex. 1017 Page 236

United States Patent 119
Carter et al.

US006003123A

(1) Patent Number: 6,003,123

[45] Date of Patent: Dec. 14, 1999

[54] MEMORY SYSTEM WITH GLOBAL
ADDRESS TRANSLATION

[75] Inventors: Nicholas P. Carter, Somerville;
Stephen W. Keckler, Cambridge;
William J. Dally, Framingham,all of
Mass.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No,: 09/021,658

[22] Filed: Feb. 10, 1998

Related U.S. Application Data

[62] Division of application No. 08/314,013, Sep. 28, 1994,Pat.

No. 5,845,331.

[SU] Unt. C1 cecccsessssssncesstcnesnsnsnsnenee GO6F 12/10
[52] US. Cl. 711/207; 711/207
[58] Fleld of Search on... essssseeeeseceone 711/147, 202,

/203, 206, 207, 209

[56] References Cited
U.S. PATENT DOCUMENTS

4,241,396 12/1980 Mitchell et al.
4,408,274 10/1983 Wheatley etal.
5,075,842 12/1991 Lai...............
5,251,308 10/1993 Frank et al.
5,404,478 4/1995 Arai etal. .
5,465,337 11/1995 Kong...........

OTHER PUBLICATIONS

Carter, Nicholas P., et al., “Hardware Support For Fast
Capability—based Addressing,” Proceedings of the 6th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS VI) ,
Oct. 5-7, 1994, pp. 1~9.

i305/417

Tyner, Paul, “APX 432 General Data ProcessorArchitecture
Reference Manual, Chapter 3, Objects for Program Envi-
ronments,” Intel Corporation, Jan. 1981, pp. 3-1 to 3-37.
Fabry, R.S., “Capability-Based Addressing,” Fourth ACM
Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, October
15-17, 1973, pp. 413-412.
Dally, William J. et al., “An Object Oriented Architecture,
»TEEE, 0149—7111/85/0000/0154, 1985, pp. 154-161.
Goodman, James R.et al., “The Wisconsin Multicube: A
New Large Scale Cache—Coberent Multiprocessor,” DEEE,
CH2545--2/88/0000/0422, 1988, pp. 422-431.
Dally, William J, et al., “M—Machine Architecture v1.0 MIT
Concurrent VLSI Architecture Memo 58,” Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,
Aug. 24, 1994, pp. 1-50.

Primary Examiner—Eddie P. Chan
Assistant Examiner—Kevin Verbrugge
Altorney, Agent, or Firm—Hamilton, Brook, Smith &
Reynolds, P.C.

[57] ABSTRACT

A oultiprocessor system having shared memory uses
guarded pointers to identify protected segments of memory
and permitted access to a location specified by the guarded
pointer. Modification of pointers is restricted by the hard-
ware system to limit access to memory segments and to limit
operations which can be performed within the memory
segments. Global address translation is based on grouping of
pages which maybe stored across multiple nodes. The page
groups are identified in the global translation of each node
and, with the virtual address, identify a node in which data
is stored. Pages are subdivided into blocks and block status
flags are stored for each page. Theblock status flags indicate
whether a memory location may be read or written into at a
particular node and indicate to a home node whether a
remote node has written new data into a location.

12 Claims, 17 Drawing Sheets

Valid
Bit Virtual Page

ey6L_Lsbits|a2bits|t6bits_
Wor Unused Starting Node

Pages
Per

Second Unused Nodeeon ts] obits|[Z[¥[Xecon’ [_asbits_ [obits[ebits[z]¥[x)
Page Extent

Length (3 bits/
Dimension)

NOACEx.1017 Page 236

MeesamaSirensmeatneeSeseennbasterstnontstheSeamstrde

NOAC Ex. 1017 Page 237

.U.S. Patent Dec.14, 1999 Sheet 1 of 17

Pointer _ Segment —
Tag Length(L) Address

 Permission
Bits '

54-Lbits' L bits

segment offset

FIG. 1A

0000
ooo}
0010
OOo!
0100
O1ol
OulO
oll

1000
1001
1OlO
10H
1100
i10l
IIo
ttl

6,003,123

{0000

NOACEx.1017 Page 237

NOAC Ex. 1017 Page 238

.U.S. Patent Dec. 14, 1999 Sheet 2 of 17

Begin Memory
Reference

 PointerBit
Set on Input

Address ?

Raise

Exception

Compare Opcode
and

Permission Bits

Operation
Allowed ?

Raise

Exception

Perform Address!
Computationif

Needed

Check for

Segmentation
Violation

 Segmentation
Violation ?

Raise

Exception

NOACEx. 1017 Page 238

6,003,123

NOAC Ex. 1017 Page 239

.U.S. Patent Dec. 14, 1999 Sheet 3 of 17

Permission Segment
Bits

Allowed

Length

Segment

Check

S40

New
Pointer 54

FIG. 2B

Address Offset

6,003,123

NOACEx. 1017 Page 239

a

NOAC Ex. 1017 Page 240

.U.S. Patent

Guarded
Pointer

Dec. 14, 1999

Lengt

Masked Comparator
Bit Cells (54)

Sheet 4 of 17

Mask

h Field Generator

6,003,123

NOACEx. 1017 Page 240

titealtimaetenrtmttennneesnersHieteanentyimsuiteittaeot
ottnearerwnwettSoeanneSienaae

NOAC Ex. 1017 Page 241

.U.S. Patent Dec.14, 1999 Sheet 5 of 17 6,003,123

62

Bit Mask a
Adder Result

Original Address

 Program

Hiegally Changed Bit ?

66

Protected

Subsystem

NOACEx. 1017 Page 241

shvdrchheAXaalbeitMecnannneoe

NOAC Ex. 1017 Page 242

U.S. Patent Dec.14, 1999 Sheet 6 of 17 6,003,123

Program

Protected

Subsystem

Return

Segment

ES_>
DATA2

RETIP

NOACEx. 1017 Page 242

NOAC Ex. 1017 Page 243

U.S. Patent Dec. 14, 1999 Sheet 7 of 17 6,003,123

7

{|||||| |||||||| i|

Cache Cache

Bank O Bank 1

[|| cSwitch

ba emermeeeeeeeemeeeeaeeeteeenseteeeceieeee
Network

FIG. 8

Aran2attendamesraabeteAMNtAANN|AabO

NOACEx. 1017 Page 243

NOAC Ex. 1017 Page 244

U.S. Patent Dec. 14, 1999 Sheet 8 of 17 6,003,123

Valid

. Bit Virtual Page
isl [abit|aabits|20bits

Lock Physical Page

Second
Word 64 bits

Status Bits

(Bit /block)

Word
Status Bits

(Bit /block)

sncneetanISesoeihenAte

NOACEx. 1017 Page 244
- |

NOAC Ex. 1017 Page 245

+Neo=Au

en™~aSSOl‘9142CSsigUdlLD|ISUDILg|ebdd9SNIDISjooisAudJONLAlAO
Z.

~StigUuolsO|SuDI,Gg]a60dSNLOLS.SMDIS—IDD!SAU_IONHIAajningaauyjuaym=|2400BOLUOIOIASAajua@717
guope!dooaS}1qSN}D}S

ws

“D¢D9siayuaet3aayoo|qUBUM
snioysAdo

ssiWw]Ql
. uopeidooFBS}IGSN}DIS

=

aidaiqo|860d|p907
wi—

eaaaeSeeOe2SRROARSLSLAa.ud

NOAC Ex. 1017 Page 246

U.S. Patent Dec. 14, 1999 Sheet 10 of 17 6,003,123

LTLB

Physical|Block Status Block Status
Translation] bit Word 0/64 647 bit Word |

AD .

Virtual Address

Block Status Bits
FIG. | | for Translated Address

NOACEx. 1017 Page 246

NOAC Ex. 1017 Page 247

U.S. Patent Dec. 14, 1999 Sheet 12 of 17 6,003,123

Valid

Bit Virtual Page
Word
Word LLobits|42 bits

Unused Starting Node

: Pages
: Per
; Second Unused Node
: Word

Page Extent
‘ Length (3 bits/

Dimension)

: FIG. 13

NOACEx. 1017 Page 247rm

NOAC Ex. 1017 Page 248

ShTWoeSato
SAATee

EEABESte

KSRTAU,OEOENMGAEETTEEEEREEY

U.S. Patent Dec. 14, 1999 Sheet 13 of 17 6,003,123

102
Start

Translation

Mask off

Pages/Nodein
Virtual Address

Extract HO
X-Offset from

Virtual Address

Extract

Y-Offset from
Virtual Address

4

Extract

Z-Offset from
Virtual Address

Add Offsets to
Start Node to get
Node Containing
Virtual Address

116

FIG. 14A

NOACEx. 1017 Page 248

NOAC Ex. 1017 Page 249

: U.S. Patent Dec. 14, 1999 Sheet 14 of 17 6,003,123

Page Identifier Offset

Virtual AddressCette

 Page Identifier Page Length

|a2bits[6bits |JeTLEntry

124 Hit

Bit Mask Generator Masked Comparator

FIG. l4B

NOACEx. 1017 Page 249

NOAC Ex. 1017 Page 250

NrERERALfoPBR
SRS,2SERRE

2eeete&e

LSReetia,
+RBSoe

<8RakesFewTEER
MeEAPSOy

U.S. Patent Dec. 14, 1999 Sheet 15 of 17

log log sub-cube
pages dimensions

base node pernode Z Y xX

6,003,123

DESTINATION NODE

FIG. ISA

ADDRESS

(54 bits)

z

ea
xX

<3,2,0>

FIG. ISB

<6,4,1>

NOACEx. 1017 Page 250

NOAC Ex. 1017 Page 251

SELMEEMENNOLETENA,EMEAREDS:eoOOOMMARecAiA0EeFLIR
LeeRer,oo,
aiEOFF

U.S. Patent Dec. 14, 1999 Sheet 16 of 17 6,003,123

-Input Address Fully - Associative
SRAM Array

 PagesPer Node

Bit-Field
Extractor

X-Dest Y-Dest Z-Dest
7-Offset

FIG. 16

NOAC Ex. 1017 Page 251

NOAC Ex. 1017 Page 252

U.S. Patent Dec. 14, 1999 Sheet 17 of 17 6,003,123

128

Start
Reference

132

130

xceptionChecks ? P
y 140es 134 136

Yes Pass“ Yes| Complete
Block Statu

150 NO 142
it in Bl aStatuioc S

Loca)pose Exception
Yes 144No Yes 152

Pas No Raise 146
Update Block Statug>—= Block Status

LTLB Check .? Exception

Yes

‘ 154
a yes

 AMOR.ToSea

BFLeeee8OR

146

Reference

daesanteeeeet 156
. Hit in Compiete 158

Global Page Reference
Table ? Remotely

160
Raise

Exception

FIG. 17 |

NOACEx. 1017 Page 252 !
r

NOAC Ex. 1017 Page 253

oeangemeWg

trRAEDa>
tee

ARESHEpubea28ETott

:

|

x

DTAy+
asd.

SeTade

6,003,123
1

MEMORYSYSTEM WITH GLOBAL
ADDRESS TRANSLATION

RELATED APPLICATION

This application is a divisional of Ser. No. 08/314,013,
filed Sep. 28, 1994, now US. Pat. No. 5,845,331, Dec. 1,
1998 the entire teachings of which are incorporated herein
byreference.

GOVERNMENT SUPPORT

The invention was supported, in whole or in part, by a
grant Contract No. F19628-92-C-0045 from the Air Force
Electronic Systems Division. The Government has certain
rights in the invention.

BACKGROUND OF THE INVENTION

In most computer systems, individual programs access
code and data by addressing memory through a virtual
address space. That virtual address space for each program
must then be translated into the physical address space in
which the code and data is actually stored in memory. Thus,
distinct programs may use identical virtual addresses which
translate to different locations in physical memory. The
physical address space utilized by several programs may be
completely distinct or they may overlap. Some level of
security must be provided in order to permit common access
to certain memory locations while protecting against unau-
thorized access to other locations.

Memory system designers must provide security without
sacrificing efficiency and flexibility. One process’ objects
must be protected from modification by other, unauthorized
processes, and user programs must not be allowed to affect
the execution of trusted system programs. It must be pos-
sible to share data between processes in a manner that
restricts data access to authorized processes; merely provid-
ing the ability to have data be private to a process or
accessible to all processes is insufficient. An efficient mecha-~
nism must also be provided to change protection domains
(the set of objects that can be referenced) when entering a
subsystem.

The current trend towards the use of multithreading as a
method ofincreasing the utilization of execution units make
traditional security schemes undesirable,particularly if con-
text switches may occur on a cycle-by-cycle basis. Tradi-
tional security systems have a non-zero context switch time
as loading the protection domain for the new context may
require installing new address translations or protection
table entries.

A number of multithreaded systems such as Alewife
(Agarwal, A., et al., “The MIT Alewife machine: A large-
scale distributed-memory mutiprocessor,” Scalable Shared
Memory Multiprocessors, Kluwer Academic Publishers,
1991.), and Tera (Alverson, R., et al., “The tera computer
system,” Proceedings of the 1990 International Conference
on Supercomputing, September, 1990, ACM SIGPLAN
Computer Architecture News, pp 1—6) have avoided this
problem by requiring that all threads which are simulta-
neously loaded share the same address space and protection
domain. This may be sufficient for execution of threads from
a single user program, but disallows interleaving threads
from different protection domains, which mayrestrict the
performance of the machine.

SUMMARYOF THE INVENTION

The present invention relates to several aspects of a
Memory system which may be used independently or

10

15

45

50

5S

60

65

2

together. The inventionis particularly applicable in a virtual
addressing, multiprocessor environment which requires
sharing of data among multiple tasks across multiple nodes.

In accordance with one aspect of the invention, a data
processing system comprises shared memory for storing
instructions and data for plural programs, the shared
memory being accessed in response to pointers. Guarded
pointers address memory locations to which access is
restricted. Each guarded pointer is a processor word which
fully identifies a protected segment in memory and an
address within the protected segment. Processor hardware
distinguishes guarded pointers from other words and is
operable under program control to modify guarded pointers.
Modification of guarded pointers is restricted so that only
addresses within the identified segment can be created.
Thus, access outside of a protected segment is prevented. A
permissionfield in the guarded pointer indicates permissible
access to the identified memory segment such as read only
orread/write. By providingthe full virtual address, segment
information, and a permission field, segment checks and
permission checks can be performed during a memory
access without requiring additional machine cycles.

Preferably, each guarded pointer comprisesa length field
and an address field. The value in the Iength field indicates
a division of the address field into a segment subfield which
identifies a segment location and an offset subfield which
identifies an offset within an identified segment. The value
in the length field is preferably logarithmically encoded
using a base 2 logarithm. A tag field may be provided to
identify the word as a guarded pointer, and the pointer must
be so identified if it is to be used to access a memory
location. By limiting the ability to set the flag bit and to
freely modify addresses in pointers to the operating system,
the creation of forged pointers by application programs to
gain access to protected segments is avoided.

The processor hardware may be operable to generate a
second guarded pointer fromafirst guarded pointer, the
second guarded pointer identifying a subsegment within the
segment identified by the first guarded pointer. To that end,
the processor changes a value in the length field to decrease
the numberof bits in the offset subfield and to increase the

number of bits in the segment subfield. The result is
decreasedoffset range and finer segmentJocation resolution
within the original segment. However, the segment can not
be enlarged by an application program.

The processor hardware may also be operable to generate
a second guarded pointer from a first guarded pointer by
performing an arithmetic operation on the offset. The pro-
cessor hardware checks the second guarded pointer for over
or underflow by detecting a change in value in the segment
subfield. The hardware may also modify the permissionfield
of a guarded pointerto generate a pointer having only more
restricted access to the indicated segment. For example, a
program having pennission to read/write may create a
pointer to the same memory segment with permission only
to read.

ENTERguarded pointers maybe restricted for processing
by the processor hardware to only jump to the identified
address within the protected segment and to execute. Such
pointers allow access to code beginning at the pointer
address but prevent bypass of portions of the code and
prevent changing or copying of the code. Other preferred
pointer types are read-only pointers, read/write pointers,
execute pointers and key pointers. Key pointers may not be
modified or used for data access.

In accordance with another aspect of the invention, a
method is provided for global addressing acros§ plural

NOACEx.1017 Page 253

NOAC Ex. 1017 Page 254

SEBO,AeMAMMASREYAMineSAAMATIBEELRTys5522,SAOMANEMeAAAS
win

PE,OeRMCRABNfapNEFMRileiOae 6,003,123
3

processor nodes. A virtual address is applied to a global
translation buffer to identify a mapping of a page group to
a set of nodes in a system. From the virtual address and the
identified mapping, the system determines a destination
node at which a page containing the virtual address resides.
Amessage including the address, which may be in a guarded
pointer, may be forwarded to the destination node, and
translation of the virtual address to a physical address may
be performedatthat node. Bytranslating to groups of nodes,
rather than an individual node for each virtual address, the
size of the global translation buffer can be substantially
reduced.

Preferably, the global translation buffer identifies cach
page group by a group size which is logarithmically
encoded. It also specifics, in each group eniry, a start node
and the physical range of nodes within the group. Preferably,
the range is specified in plural dimensions, specifically in the
X, ¥ and Z dimensions of an array. That range is preferably
also logarithmically encoded. Finally, the translation buffer
mayspecify the numberofpagesof the page group per node.

In accordance with another aspect of the invention, virtual
page addresses are translated to physical page addresses at
each processor node and each virtual page is subdividedinto
blocks. At cach processor node on which data from a virtual
pageis stored, a block status flag is provided for each block
of the virtual page. Blocks of data may be copied between
nodes and, based on the block status flags, access to indi-
vidual blocks on a node is restricted. The use of the blocks

allows for finer granularity in data transfers. The status flags
are preferably stored in a virtual to physical translation
buffer. Block status flags may also be stored with the data in
cache memory, and the block status flags in the translation
buffer may be updated from cache memory.

The preferred states of the status flags include invalid,
read only, readAvrite and read/write but dirty. The dirty
designation is provided m orderto indicate to the home node
that the data has been changed since being loaded from the
homenode.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and otherobjects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec-
essarily to scale, emphasis instead being place upon illus-
trating the principles of the invention.

FIG. 1A illustrates the format of a guarded pointer
embodying the present invention.

FIG. 1B illustrates a simple application of a guarded
pointer having only a four bit address field.

FIG.2A is a flow chart of a memory request in a system
that includes guarded pointers.

FIG. 2B illustrates the hardware utilized in an LEA

operation in which an offset is added to an existing pointer.
FIG. 3 illustrates the adder and segmentcheck of FIG. 2B.
FIG.4 illustrates the masked comparator of FIG.3.
FIG. 5 illustrates a masked comparatorbit cell in FIG.4.
FIG. 6 illustrates register states when a program enters a

protected subsystem by jumping to an enter pointer.
HIG.7 illustrates register states when two way protection

is provided by creating a return segment.
FIG. 8 is a block diagram of a processor chip used in an

M-Machine embodying the present invention.

20

50

55

65

4

FIG.9 illustrates an LTLB entry having block status bits
in accordance with the present invention.

FIG. 10 illustrates status bit caching in a system using
block status bits.

FIG. 11 is a block diagram of hardware utilized in
determining status bits for a block in the LTLB.

FIG. 12 is a flow chart of a memory request in a system
that includes blockstatus bits.

FIG. 13 is an illustration of a GTLB entry in a system
using global translation in accordance with the present
invention.

FIG. 144Ais a flow chart of a GTLB translation process.
FIG. 14B illustrates a masked comparator used in the

GTLB.

FIG. 15Aillustrates an example GTLB translation of an
address, and FIG. 15B illustrates the node within a group
identified by the translation of FIG. 15A.

FIG. 16 is a block diagram of a GTLB.
FIG.17is a flow chart of a memory request in a system

that includes guarded pointers, block status bits, and a
GTLB.

DETAILED DESCRIPTION OF THE
INVENTION

Guarded Pointers

Guarded pointers are provided as a solution to the prob-
lem of providing efficient protection and sharing of data.
Guarded pointers encode pennission and segmentation
information within tagged pointer objects to implement
capability requirements of the type presented in Fabry, R.,
“Capability-based addressing,” Communications of the
ACM 17,7 July 1974), 403-412. A guarded pointer may be
stored in a general purpose register or in memory, eliminat-
ing the need for special storage. Because memory may be
accessed directly using guarded pointers, higher perfor-
mance may be achieved than with traditional implementa-
tions ofcapabilities, as table lookupsto translate capabilities
to virtual addresses are not required.

FIG. 1A shows the format of a guarded pointer. A single
pointer bit is added to each 64-bit memory word. Fifty-four
bits contain an address, while the remaining ten bits specify
the set ofoperations that may be performedusing the pointer
(4 bits) and the length of the segment containing the pointer
(6 bits). Segments are required to be a power of two words
long, and to be aligned on their length. Thus, a guarded
pointer specifies an address, the operations that can be
performed using that address, and the segment containing
the address. No segment or capability tables are required.
Since protection information is encoded in pointers, it is
possible for all processes to share the same virtual address
space safely, eliminating the need to changethe translation
scheme on context switches and facilitating the use of
virtually-addressed caches.

All memory operations in a system that use guarded
pointers require that one of their operands be a guarded
pointer and that the permission field of the pointer allow the
operation being attempted. Users are notallowed to set the
pointerbit of a word,although they may manipulate pointers
with instructions that maintain the protection scheme. This
prevents users from creating arbitrary pointers, while allow-
ing address arithmetic within the segments that have been
allocated to a user program. Privileged programsare allowed
to set the pointer bit of a word and thus can create arbitrary
pointers.

Memory systems that use guarded pointers provide a
single virtual address space shared by all processes. Each

NOACEx. 1017 Page 254

RAalee

NOAC Ex. 1017 Page 255

espebee,

eragiEARESayncPRAilet)bieaalitnll
heHRes

Mawek
sig

2nthRirteteaoe
erece

common address 1011 may indicate that the address is
within a segment ranging in length from one byte to 16
bytes. Since the base address is determined bysetting the
offset to zero, segments must be a powerof two words long
and mustbe aligned on their length. As discussed below,the
segmentdefinition is important to define the segmentof ,.
addresses within which a particular program may operate by
modifying a given pointer. Generally, permissionis granted
to modify addresses only within a segment.

mayaccess the data within the segment. Pointer pennissions
may specify data access, code access, protected entry points,
and protected identifiers (keys). The permissions granted are
with respect to use of the pointers. All pointers may them-
selves be stored in memory and loaded from memory.It is
use of the pointers to access data at the indicated addresses
whichis restricted’ The following is a representative set of
permissions:

6,003,123
5

guarded pointer identifies a segmentof this address space
that may be any powerof two bytes in length, and must be
aligned on its size. These restrictions allow six bits of
segmentlength information and 54bits of virtual address to
completely specify a segment. Thelength field of a guarded 5
pointer encodes the base-two logarithm of the segment
length. This allows segments rangingin length from a single
byte up to the entire 2°* byte address space in powerof two
increments. As shown in FIG.1 the length field also divides
the address into segment identifier and offset fields. A
four-bit permission field completes the capability by iden-
tifying the set of operations permitted on the segment.

10

FIG. 1B presents a simple illustration of the segment
length and address fields of the guarded pointer assuming an
address field of only 4 bits and a length field of 3 bits. With
the length L equal to zero, cach segmentis of length 2°=1
word in length.As illustrated by the vertical broken line, the
segment length L positions the division between offset and
segmentto the far right of the address, so there would be no
offset. Each segment base address would also be the address 20
of the addressed word. With L equal one, each segmentis of
2)=2 words long. The broken line indicates a one bit offset.
Where the full address is 1011, the base address 1010 ofthe
segment is defined by setting the offset to zero.

Similarly, with increasing values of L the number of
words in the segment defined by the guarded pointer
increases exponentially, and the base address for the seg-
ment is defined bysetting all offset bits to zero.

It can be seen from FIG. 1B that two pointers having a

aA

The permissionfield of a pointer indicates how a process

45

A Read Only pointer may be used to load data and the
pointer may be altered within segment bounds. Store
and jump operations using the pointer are not permit- <5

A Read/Write pointer may be used by load and store
operations, but not jump operations. It may be altered
within its segment bounds.

Execute pointers may be used by jump and load opera- 55
tions and may be modified within segment bounds.
Thus, holding an execute pointer to a code segment
enables a program to jump to any location within the
segmentand to read the segment. Execute pointers may
be either execute-user or execute-privileged, which 60
encodes the supervisor mode bit explicitly within the
instruction pointer. Privileged instructions, such as
SETPTR, may only be executed with an execute-
privileged instruction pointer.

Enter pointers may be used only by jump operations. They 65
cannotbe used for loads and cannot be modified in any
way. Thus, holding an enter pointer enables a program

6

to enter a code segmentat a single location. Jumping to
an enter pointer converts it to an execute pointer which
is then loaded into the instruction pointer. There are two
types of enter pointers: enter-user and enter-privileged,
which are converted to the corresponding type of
execute pointer by a jump.

A Key pointer may not be modified or referenced in any
way. It may be used as an unforgeable, unalterable
identifier.

Physical: The pointer references data in physical memory
on the local node. This bypasses the virtual memory
system ignoring the LTLB on cache misses. If the
address exceeds the size of local physical memory, the
top bits are ignored.

Since the set of pointer states does not require all of the
possible four bit values, architects may implement pointer
types to support particular features of their architecture, such
as the following pointer types, which are implemented on
the M-Machine.

Execute Physical: Data may be read or executed as code,
but not written. On cache misses, the TLB is not
accessed. The thread is in privileged mode.

Enter Message: Code at this address may be executed in
a message handler. A send operation faults if the
designated IP is not in this state.

Configuration Space: Indicates that the address refers to
an internal register in the processor.

Errval: The pointer has been generated by a deferred
exception. Any attempt to use an Errval pointer as an
operand will cause an exception.

As noted, each pointer contains a six bit segmentlength
field that holds the log base 2 of the size of the segment in
which the address resides. Thus, segments may be of any
power of 2 size between 1 and 2™ bytes. This encoding
allows the base address andthe extentofa pointer’s segment
to be determined without accessing any additional informa-
tion. User-level instructions that manipulate pointers (LEA,
LOAD, STORE)have the lower and upper bounds of their
segment checked automatically to ensure that the operation
does not access memory outside of the allowed segment.

This segmentation and access control system provides
flexibility to the user, while still permitting strictly enforced
security. Segments can be overlapped and shared as long as
each segmentis aligned to an address that is a multiple ofits
size. Since all of the necessary segmentation information is
contained within each pointer, a separate table of segment
descriptors is unnecessary. More importantly, instructions
need not access sucha table to check segmentation restric-
tions on memory accesses. Also, access to system functions
and other routines can be given to non-trusted programs, as
the enter-privileged and enter-nser permission states ensure
that a user may only execute codestarting at the specified
entry point. A MEMBAR (memory barrier) instruction is
used to block further instructions from executing until all
outstanding memory references have completed.
Pointer Operations

Guarded pointers may be implemented by adding a few
pointer manipulation instructions to the architecture of a
conventional machine and adding checking hardware to
verify that each instruction operates only on legal pointer
types and that address calculations remain within pointer
bounds.

FIG. 2A shows a flow chart of the steps involved in
performing a memory reference beginning at 20 in a system
that incorporates Guarded Pointers. First, the pointer bit of
the operand containing the address being referenced is

NOACEx. 1017 Page 255

+ceatdnnentemienecteneetenhier

NOAC Ex. 1017 Page 256

WStao
7

pitaitpeas

“t

od

6,003,123

7

checked at 22 to determine if the address operand is a
guarded pointer. If the pointer bit is not set, an exception
occurs at 24. Second, the permission field of the pointer is
checked at 26 and 28 to verify that it allows the operation
being attempted, and an exception raised at 30 if it does not.
If the operation involves address computation, an integer
offset is then addedto the address field of the pointerat 32.
Segmentation violation is checked at 34 and 36. An excep-
tion 38 is raised if the result of this add overflows or
underflows into the fixed segment portion of the address,
whicb would create a pointer outside the original segment.
Lf all of these checks pass, the operation is submitted to the
memory system at 40 to be resolved.

Load/Store: Every load or store operation requires a
guarded pointer of an appropriate type as its address argu-
ment. Protection violations are detected by checking the
permissionfield of the pointer. If the address is modified by
an indexed or displacement addressing mode, bounds vio-
lations are checked by examining the length field as
described below. Theprotection provided by guarded point-
ers does not slow load or store operations. All checks are
madebefore the operation is issued withoutreference to any
permission tables. Once these initial checks are performed,
the access is guaranteed not to cause a protection violation,
although events in the memory system, such as TLB misses,
maystill occur.

Pointer Arithmetic: An LEA (load effective address)
instruction may be used to calculate new pointers from
existing pointers. This instruction adds an integeroffset to a
data (read or read/write) or execute pointer to produce a new
pointer. An exception is raised if the new pointer would lie
outside the segment defined by the original pointer. For
efficiency, a LEAB operation, which adds an offset to the
base of the segment contained in a pointer may be
implemented, as well. ff a guarded pointeris used as an input
to a non-pointer operation, the pointer bit of the guarded
pointeris cleared, which converts the pointer into an integer
with the samebit fields as the original pointer.

FIG.2B details the protection check hardware used on a
pointer calculation. The pemnissionfield of the pointer 42 is
checked at 44 against the opcode 46 to verify that the
Tequested operation using the pointer is permissible. In that
Tespect, the permission check hardware need only decode
the opcode to identify permission bits which are appropriate
for that opcode and compare those bits to the permission bits
ofthe pointer 42 in combinational logic. An integeroffset 48
may be added to the address field of the pointer at 50 to
generate the new pointer 54. An exceptionis raised if the
result of this add over or underflows into the fixed segment
portion of the address, which would create a pointer outside
the original segment. This may be detected in the segment
check 52 by comparing the fixed portion of the address
before the add to the samefield of the resulting pointer.

FIGS.3, 4 and 5 show in greater detail the hardware of
FIG. 2B used in performing an address calculation on a
guarded pointer. The 54-bit address field of the pointeris
added in adder 56 to a 54-bit offset to get the result address.
The 6-bit length field of the pointer is fed to a mask
generator 58, which generates a 54-bit output applied as a
mask to masked comparator 60. Each bit in this outputis set
to oneif the correspondingbit in the address represents a bit
in the segmentidentifier and to zeroif the bit represents a bit
in the offset portion of the address. Bits in the offset portion
of the address are allowed to change during address
calculation, while bits in the segment identifier are not.

FIG.4 illustrates the masked comparator 60. Each bit of
the original address, the corresponding bit of the result

20

30

40

65

8

address, and the corresponding bit of the mask are fed into
a comparatorcell 62, as shown in FIG. 5. The output of XOR
gate 64 is oneif the bit from the original address and thebit
from the result address differ. This output is then ANDed at
66 with the bit from the bit mask, which is one if the bit
being examinedispart of the segmentportion of the address,
and therefore not allowed to change. The outputs of all the
comparator cells are ORed together at 68 to determine if any
of the segmentbits changed duringthe addition of theoffset,
which indicates that a segmentation violation bas occurred.

Guarded pointers expose to the compiler address calcu-
lations that are performed implicitly by bardware in con-
ventional implementations of segmentation or capabilities.
With the conventional approach, the segmentation hardware
performs many redundantadds to relocate a series of related
addresses. Consider, for example, the following loop:

forI-0;i<Nit+) sastafi];

In a conventional system, eacb reference to array a would
require the segmentation hardware to automatically add the
segment offset for each afi] to the segment base. With
guarded pointers, the add can be performed once in
software, and then the resulting pointer can be incrementally
stepped through the array, avoiding the additional level of
indirection.

Languagesthat permit arbitrary pointer arithmetic or type
casts between pointers and integers, such as C, are handled
by defining code sequences to convert between pointer and
integer types. The pointer-to-integer cast operation takes a
guarded pointer as its input and retums an integer containing
the offset field of the guarded pointer. This can be performed
by subtracting the segment base, determined using the
LEAB instruction, from the pointer:

LEAB Ptr, 0, Base SUB Ptr, Base, Int
The integer-to-pointer case operation uses the LEAB

instruction to take an integer and create a pointer into the
data segmentof the process with the integer as its offset, as
long as the integer fits into the offset field of the data
segment. Note that neither of these case operations requires
any privileged operations, which allows them to be inlined
into user code and exposed to the compilerfor optimization.

Pointer Creation: Aprocess executing in privileged mode,
with an execute-privileged IP, has the ability to create
arbitrary pointers and hence access the entire address space.
Privileged modeis entered by jumping to an enter-privileged
pointer. It is exited by jumping to a user pointer (enter or
execute). While in privilege mode, a process may execute a
SETPTR instruction to convert an integer into a pointer by
setting the guarded pointer bit. Thus, a privileged process
may amplify pointer permissions and increase segment
lengths while a user process can only restrict access. No
other operations need beprivileged, as guarded pointers can
be usedto control access to protected objects such as system
tables and I/O devices.

Restricting Access: A process may create pointers with
restricted permissions from those pointers thatit holds. This
allows a process to share part of its address space with
anotherprocess or to grant another process read-only access
to a segment to whichit holds read/write permission.

ARESTRICT instruction takes a pointer, P, and an integer
permission type, T, and creates a new pointer by substituting
T for the protection field of P. The substitution is performed
only if T represents a strict subset of the permissions of P so
that the new pointer has only a more restricted access. For
example, a read pointer may be created from a read/write
pointer, but notvice versa. Otherwise, an exception is raised.

Similarly the SUBSEGinstruction takes an integer length,
L, and a pointer, P, and substitutes L intoPifLis léss than

aanmmnthehyeneeNemethta

NOACEx. 1017 Page 256 |
 ne

NOAC Ex. 1017 Page 257

9

the original length field of P, so that the created segment is
a subset of the original. Changing to a lesser length
decreases the length of the offset subfield for decreased
offset range and increasesthe length of the segmentfield for
finer segmentlocation resolution.

The RESTRICT and SUBSEGinstructions allow a user

process to control access to its memory space efficiently,
without system software interaction. The RESTRICT and
SUBSEGinstructions are not completely necessary, as they
can be emulated by providing user processes with enter-
privileged pointers to routines that use the SETPTR instruc-
tion to create new pointers that have restricted access rights
or segment boundaries. The M-Machine, which will be
described in the next section, takes this approach.

Pointer Identification: The ISPOINTER instruction is

provided to determine whether a given word is a guarded
pointer. This instruction checks the pointerbit and returns its
state as an integer. Quick pointer determinationis useful for
programming systems that provide automatic storage
reclamation, such as LISP, which need to find pointers in
order to garbage collect physical space (Moon, D. A. Sym-
bolics Architecture, IEEE Computer (1987) , 43-52).
Protected Subsystems

ENTER pointers facilitate the implementation of pro-
tected subsystems without keme] intervention. A protected
subsystem can be entered only at specific places and may
execute in a different protection domain than its caller. Entry
into a protected subsystem,suchasafile system manager, is
illustrated in FIG. 6. Aprogram enters a protected subsystem
by jumping to an enter pointer. After entry the subsystem
code loads pointers to its data structures from the code
segment. A represents the register state of the machine
before the protected subsystem call, B the registerstate just
after the call, C the register state during the execution of the
protected subsystem, .and D the register state immediately
after the return to the’ caller.

Before the call, the calling program (segment 1) holds an
enter pointer to the subsystem’s code segment (segment 2)
which contains the subsystem code as well as pointers to the
subsystem’s data segments, such as the file system tables. To
enter the subsystem, the caller jumps to ENTER2,causing
the hardware to transfer control to the entry point and
convert the enter pointer to the execute pointer IP2 in
register state B. The return instruction pointer (RETIP) is
passed as an argumentto the subsystem. The subsystem then
uses the execute pointer to load GP1 and GP2, the pointers
to its data structures (state C). The subsystem retums to the
calling program by overwriting any registers containing
private pointers and jumping to RETIP (state D).

The sequence described above provides one-way
protection, protecting the subsystem’s data structures from
the caller. To provide two-way protection, the caller
(segment 1) encapsulates its protection domain in a retum
segment (segment 3) as shown in FIG. 7. Before the call
(state A), the caller holds both enter and read/write pointers
to a return segment. The caller writes all the live pointers in
its registers into the return segmentto protect them from the
subsystem (segment2). It then overwrites all of the pointers
in its register file except the enter pointer to the retum
segment (ENTER3), the subsystem enter pointer
(ENTER2), and any arguments for the call (state B). The
subsystem call then proceeds as described above. After
entry, the subsystem holds only an enter pointerto the return
segment and thus cannot directly access any of the data
segments in the caller’s protection domain (state C). The
subsystem returns by jumping to the return segment(state
D), which reloads the caller’s saved pointers and returns to
the calling program.

20

30

35

45

6,003,123
10

ENTERpointers allow efficient realization of protected
system services and modular user programs that enforce
access methods to data structures. Modules of an operating
system,¢.g., the file-system, can be implemented as unprivi-
leged protected subsystems that contain pointers to appro-
priate data structures. Since these data structures cannot be
accessed from outside the protected subsystem, the file-
system’s data structures are protected from unauthorized
use. Even an I/O driver can be implemented as an unprivi-
leged protected subsystem by protecting access to the read/
write pointer of a memory-mapped 1/0 device. With pro-
tected entry to user-level subsystems, very few services
actually need to be privileged.
Implementation Costs

Hardware: Guarded pointers have two hardware costs: an
increase in the amount of memory required by a system and
the hardware required to perform permission checking. To
prevent unauthorized creation or alteration of a guarded
pointer, a single tag bit is required on all memory words,
which results in a 1.5% increase in the amount of memory
required by the system.

The hardware required to perform permission checking on
memory access, and segment bounds checking on pointer
Manipulation, is minimal. One decoder for the permission
field of the pointer, one decoder for the opcode of the
instruction being executed, and a small amount of random
logic are required to determine if the operation is allowed.
The pointer bit of an operand can be checked at the same
time, to determine if it is a legal pointer. To check for
segment bounds violations whenaltering apointer, a masked
comparator is needed. It compares the address before and
after alteration and signals a fault if any of the segmentbits
of the address field change.

Memory systems based on guarded pointers do not
require any segmentation tables or protection lookaside
buffers in hardware, nor is it necessary to annotate cached
virtual-physical translations with a process or address space
identifier. As with other single address space systems, the
cache maybe virtually addressed, requiringtranslation only
on cache misses.

Address Space: Since 6 to 10 bits are required to encode
the permission and segmentlength field ofa guardedpointer,
the virtual address space is reduced. On a 64-bit machine, 2
guarded pointer virtual address is 54 bits, which provides 16
petabytes of virtual address space, enough for the immediate
future. Several current processors support 64-bit addresses,
but only translate some of the bits in each address. For
example, the DEC Alpha 21064 only translates 43 bits of
each 64-bit address (Digital Equipment Corporation, Alpha

50 Architecture Handbook. Maynard, Mass., 1992).

55

60

There is an opportunity cost associated with reducing the
virtual address space, however. Some system designers take
advantage of large virtual address spacesto provide a level
of security through sparse placement of objects. For
example, the Amoeba distributed operating system
(Mullender, S. J., Van Rossum, G., Tanenbaum, A. S., Van
Renesse, R. and Van Staveren, H., “Amoeba: A distributed
operating system for the 1990s” IEEE Computer 23 (May
1990), 44-53) protects objects using a software capability
scheme. These capabilities are kept secret by embedding
them in a huge virtual address space. This becomesless
attractive if the virtual address space is 1000 times smaller.
Of course, this particular use of a sparse virtual address
space can be replaced by the capability mechanism provided
by guarded pointers.

Virtual address space fragmentation is another potential
problem with guarded pointers, as segments must bé powers

NOACEx. 1017 Page 257

fataeeFesetbl95

arantcamiiinctewteZaae

woheawe

NOAC Ex. 1017 Page 258

heree

teBERROEBinAPRILESAMIRiedRARECtah

 6,003,123
11

of two words in length andaligned. Internal fragmentation
may result when the space needed by an object must be
rounded up to the next power of two words. However, this
does not result in much wasted physical memory, since
physical space is allocate on a page-by-page basis, indepen-
dent of segmentation. External fragmentation of the virtual
address space may occur when recycled segments cannot be
coalesced into contiguous sections ofusable sizes. A buddy
memory allocation scheme, which combines adjacent free
segments into larger segments, can be used to reduce this
fragmentation problem.
Software Implementations

While guarded pointers enable efficient implementation
of many desirable operating system features, some short-
comings inherent in single-address-space and capability-
based architectures can be addressed by the software system
designer using guarded pointers.

The efficiency of guarded pointers is largely due to
eliminating indirection through protected segment tables.
With guarded pointers there is no needto store these tables
or to access them on each memory reference. Without
protected indirection, modifying a capability requires scan-
ning the entire virtual address space to update all copies of
the capability. This is needed, for example, when relocating
a segment or revoking access rights to a segment. In some
cases this expepsive operation can be avoided by exploiting
the paging translation, user-level indirection or protected
subsystems.

All guarded pointers to a segment can be simultaneously
invalidated by unmapping the segment’s address space in
the page table. All subsequentaccesses using pointers to this
segment will raise exceptions. This directly revokes all
capabilities to a segment. Segments can be relocated by
updating the pointer causing the exception on each reference
to the relocated segment. Onelimitation of this approach is
that it operates on a page granularity while segments may be
any size, down to a single byte in length. Thus relocating or
revoking access to a segment may affect the performance of
references to several unrelated bystander segments.

Indirection can be performed explicitly in software where
it is required. If a segment’s location is unknown or is
expected to move frequently, a program can make all
segment references to offsets from a single segment base
pointer. Only this single pointer needs to be updated when
the segment is moved. With explicit indirection, overhead is
incurred only when indirection is needed, and then it is
exposed to the compiler for optimization. Since no hardware
Prevents user code from copying the segment base pointer,
relocation or revocation through explicit indirection requires
adherence to software conventions.

It is impossible in any capability-based system to directly
revoke a single process’ rights to access a segment without
potentially affecting other processes. Since possession of a
Capability confers access rights, the only way to remove
access rights from a single process is to remove all capa-
bilities containing those access rights from the memory
addressable by the process. This can be accomplished by
Sweeping the memory that the process can address, and
overwniting the correct capabilities, so long as none of the
Inemory containing those capabilities is shared. If the point-
ers that need to be overwritten are contained within a shared

segment, all processes which rely on the pointer will lose
access privileges. This is due to the lack of a protected table
that stores permission information on a per-process basis.

Protected indirection can be implemented by requiring
that all accesses to an object be made through a protected
subsystem. In addition to restricting the access methods for

i

25

40

50

55

60

12

the object, the subsystem can relocate the object at will and
can implement arbitrary protection mechanisms. For
example, the subsystem could implement a per-process
access control list. Revoking a single process’ access rights
can be performed by updating the access controllist. Access-
ing an object through a protected subsystem is advisable if
the object must be relocated or have its access rights
changed frequently and if the object is referenced infre-
quently or only via the subsystem access methods.

Without indirection, address space is allocated “for all
time,” requiring the system software to periodically garbage
collect the virtual address space, so that addresses no longer
in service can be reused. This is simplified with guarded
pointers, as pointers are self identifying via the tag bit. Thus,
the live segments can be found by recursively scanning the
teachable segments from all live processes and persistent
objects.
The M-Machine

The M-Machine memory system provides an example of
how guarded pointers may be used. The M-Machine is a
multicomputer with a 3-dimensional mesh interconnect and
multithreaded processing nodes(Dally, W.J., Keckler, S. W.,
Carter, N., Chang,A., Fillo, M., and Lee, W. S. “M-Machine
architecture v1.0,” Concurrent VLSI Architecture Memo 58,
Massachusetts Institute of Technology, Artificial Intelli-
gence Laboratory, January 1994 and Keckler, 5S. W., and
Dally, W. J., “Processor coupling: Integrating compile time
and runtime scheduling for parallelism”, Proceedings ofthe
19th International Symposium on Computer Architecture
(Queensland, Australia, May 1992), ACM,pp 202-213, and
US. application Ser. No. 08/062,388). One of the major
Tesearch goals of the M-Machineis to explore the best use
of the increasing numberoftransistors that can be placed on
a single chip.

The processing nodes of the M-Machine (known as
multi-alu processors, or MAPs) operate on 64-bit integer
and floating-point data types and use 64-bit guarded pointers
(plus a tag bit) to access a 54-bit, byte-addressable, global
address space, which is shared byall processes and nodes of
the machine. FIG. 8 shows a block diagram of a MAP chip.
Each MAPchip contains twelve execution units: four integer
units, four floating-point, and four memory units. These
execution units are grouped into four clusters 69, each
containing one execution unit of cach type.

To increase the utilization of these hardware resources

when executing programs that have insufficient instruction-
level parallelism, the M-Machine implements multithread-
ing. Four user threads share the processing resources ofcach
cluster, for a total of sixteen userthreads in execution at any
time. Each cycle, the hardware on each cluster examinesthe
threads in execution on it and selects one thread to execute
on the hardware resources. The three execution units in a

cluster are allocated and statically scheduled as a long
instruction word processor.

Each M-Machine node contains an on-chip 4-bank cache
70 and 1MWord (8MBytes) of off-chip memory 71. The
cache is virtually addressed, and addresses are interleaved
across the banks. This allows the memory system to accept
up to four memory requests during each cycle, matching the
peak rate at which the processor clusters can generate
requests. Requests that miss in the cache arbitrate for the
extemal memory interface 72, which can only handle one
request at a time. The interface 72 also holds the LTLB.
Request to memory are made by cluster 69 through an
M-switch 73, and responses are passed back through a
C-switch 75. Transfers between clusters are also made
through the C-switch. °

NOACEx. 1017 Page 258

repaceicaineetwnabanHeoeCNNCMEBohnmenatent

NOAC Ex. 1017 Page 259

tare

:

SeEMERCLT
penepaOg
peomOR
7TORS?

when

Notegeeteprmeterpae+ 6,003,123
13

Messages are routed through the network by an output
interface 77 using the GTLB 79. Incoming messages are
queued in an input interface 81.

The M-Machine presents two challenges to a protection
system. Thefirst is cycle-by-cycle interleaving of instruc-
tions and memory references from different protection
domains, while still allowing efficient sharing among them.
Because guarded pointers provide memory protection with-
out requiring each thread to have its own virtual to physical
translations, memory references from different threads may
bein flight simultaneously without comprising security. This
enables zero cost context switching as no work must be
performed to switch between protection domains.

The other challenge forboth the protection and translation
systems is the interleaved cache of the M-Machine, which
mayservice up to four references simultancously. The single
address space implemented with guarded pointers allows the
cache to be virtually addressed and tagged so that transla-
tions need only to be performed on cache misses. In
addition, encoding all protection information in a guarded
pointereliminates any needfor table lookup prior or during,
cache access. These two features eliminate the need to

replicate or quad-port the TLB or otherprotection tables.
Guarded Pointer Conclusions

We have introduced guarded pointers as a hardware
mechanism to implement capability-based protection and
allow fast multithreading among threads from different
protection domains, including concurrent execution of user
programs and the operating system. We have described the
M-Machine as an example of an architecture which imple-
ments guarded pointers.

A guarded pointer is an uoforgeable handle to a segment
of memory. Each pointer is comprised of segment
permission, length, base, and offset fields. The advent of
64-bit machines allows this information to be encoded

directly in a single word, without unduly limiting the
memory address space. An additional tag bit is provided to
prevent a user from illicitly creating a guarded pointer.
Guarded pointers are an efficient implementation of capa-
bilities without capability tables and mandatory indirection
on memory access.

Guarded pointers can be used to implementa variety of
software systems. Threads in different protection domains
can share data merely by owning copies of a pointer into that
segment. A thread can grant another thread access to private
data by passing a guarded pointer to it. Protected entry
points and cross-domain calls can be efficiently imple-
mented using an entry type guarded pointer.

The costs of implementing guarded pointers are minimal.
Ao additional tag bit is required to identify pointers, and the
virtual address space is reduced by the number of bits
required to encode segment penmissions andlengths. In a 64
bit machine, 54 virtual address bits are left, which is ample
space for the foreseeable future. Asmall amountofhardware
is also required to perform permission checking on memory
operations.

Like all single global virtual address space systems,
guarded pointers permit processes from different protection
domains to share the cache and paging systems without
comprising security. Also like these systems, guarded point-
ers eliminate multiple translations and permit processes to
access an interleaved virtual cache without requiring mul-
tiple TLBs. Guarded pointers do share someof the deficien-
cies of single address space memory systems (garbage
collecting virtual address space), and capability systems
(relocating and revoking access to segments).

By encoding a segmentdescriptor in the pointeritself and
checking access permissions in the execution unit, guarded

10

20

40

45

50

55

65

14

Pointers obviate the need to check protection data in the
cache bank. This permits in-cache sharing, which is not
possible with methods that append the PID to the cachetag,
without the expense of providing protection tables in hard-ware.

Consequently, guarded pointers concentrate process state
in general purpose registers instead of auxiliary or special
memory. Threads become more agile as less processor
resident state is needed. This will enable better resource

utilization in parallel systems as threads may begin
execution, migrate and communicate with other threads with
lowerlatency.
Block Status Bits

The addition of block status bits to a memory system
allows relocation of data objects that are smaller than
individual pages, without requiring a lookuptable entry for
each object. Each page of memory (4 KB)is divided into
64-byte (8 word) blocks. Two blockstatus bits are assigned
to each of the 64 blocks in a page. The status bits are used
to encode the followingstates:

INVALID: Anyattempt to reference the block raises an
exception.

READ ONLY: The block may be read, but an exception
occurs if a write is attempted.

READ/WRITE:Reads and writes to the block are per-
mitted.

DIRTY:Reads and writes to the block are permitted. The
line has been written at least once since the page table
entry was created.

One method in which block status bits may be used to
control the relocation of data is to assign each block in the
memory a homenode, which is responsible for managing the
relocation of the blocks assigned to it. Amechanism such as
the GTLB maybe used to provide fast location of the home
node of a block, but this is not necessary.

The home node maintains a software record of which

other nodes have copies of a block, and the status of those
copies. Only one node is allowed to have a copy of a block
that is in the read-write state, but many nodes may have
read-only copies of a block if no node has a read-write copy.
This prevents different nodes from having different versions
of the data in a block.

When a node requests a read-only copy of a block, the
home node examines its records of which nodes have copies
of the block. If no node has a read-write copy of the block,
the home node issues a read-only copy of the block to the
requesting node, and adds the requesting node to the list of
nodes that have a copy of the block. If another node has a
read-write copy of the block, the home node sends an
invalidate message to the node, telling it to give up its copy
of the block, and to inform the home node of the new
contents of the block if the block has changed. When the
home node receives notification that the read-write copy of
the block has been invalidated,it issues the read-only copy
of the block to the requesting node and records that the
requesting node has a copy ofthe block.

Requests for read-write copies of a block are handled in
the same manner, except that any node that has a copyof the
block must invalidate its copy before the read-write copy
can be given out, to prevent data inconsistency problems.

Whena nodereceives a messagetellingit to invalidate its
copy of a block, it examines the block status bits of that
block. If the block is in a read-only or read-write state, then
the node has not changed the contents of the block, and the
block can be discarded and the home node informedthat this
has been done. If the block is in the dirty state, then its
contents have been changed since the node received its copy

NOACEx. 1017 Page 259

j

NOAC Ex. 1017 Page 260

SORRlCURTARIgegia

15

ofthe block, and the node mustsend the changed copyof the
block back to the home node before its discards the block.

When a data word is accessed in the memory, the block
status bits corresponding to that word are retrieved as well
as the word being accessed. The block status bits are
compared to the operation being attempted; and an excep-
tion is raised if any operation is attempted on a word whose
block status bits are in the invalid state, or if an operation
that modifies memory is attempted on a word whose block
status bits are in the read-only state. [f an operation is not
allowed, the operation is cancelled before it modifies the
state of the memory. If the operation modifies the location
being referenced, the block status bits correspondingto that
location are set to “dirty” if the operation is allowed. This
allows the hardware to quickly determine if a block has been
modified, as any modifications to a block will cause its status
bits to enter the dirty state.

The block status bits for each mapped page on a node are
contained in the local page table of that node. When the
translation for a page is broughtinto the local translation
lookaside buffer (LTLB), the status bits for the blocks
contained in that page are copied into the LTLB as well.
When a block of datais broughtinto the cache from the main
memory,the block status bits for that block are examined in
the LTLB. The cachestatus of the block is set to read-only
if the block status in the LTLB entry is read-only. If the
LTLB block status is read/write or dirty, then the cache
status is set to read/write. Attempts to bring a block in the
invalid state into the cache causes an exception. The dirty bit
of a block’sstatus in the cacheis alwaysset to zero when the
block is brought into the cache to reflect the fact that the
block has not been modified since it was brought into the
cache. This does not change the status of the block in the
LILB. When a block is evicted from the cache,its dirty bit
is examined, and the status of the block in the LTLB changed
to dirty if the cache dirty bit is set to one. When an LTLB
entry is evicted, its block status bits are simply copied out to
the local page table, as the LTLB entry contains the mast
Tecent copy of the status bits.

FIG.9 shows the format of an LTLB entry, while FIG. 10
shows the transfers of status bits between storage locations,
FIG. 11 shows the hardware that extracts the status bits for
a block from the LTLB, and FIG.12 is a flow chart of a
memory request using the block status bits.

As shown in FIG. 9, an entry for each virtual page in the
local page table and local table lookup buffer comprises
three words. The first word includes the translation from

virtual page to physical page. The virtual page is identified
by the first 42 bits of the 54-bit virtual address. Since the
translation to physical address is only for the physical space
On a particular node, 20 bits are sufficient to identify the
physical page location. The second and third words each
include a single bit for each of 64 blocks of the virtual page.

As shown in FIG. 11,the first 42 bits of the virtual address
are used to locate the page table entry n the LTLB 71 and
three words for that entry are output as shown.To select the
appropriate block status bits, the next 6 bits of the virtual
address, which are the first 6 bits of the page offset, are
appliedto the select inputs of multiplexers 73 and 75, each
selecting one of the two block space bits for that virtual
address.

Cachingthe block status bits in the LTLB and in the cache
allows the memory system to examine a word’s block status
bits when that word is referenced without requiring a page
table access on each memory reference. FIG. 12 shows the
Sequence of events involved in performing a memory access
in a system that implements block status bits. First (not

20

25

30

40

45

50

55

60

65

6,003,123
16

sbown on the flow chart) any permission checks thal are
necessary to determine whetheror not the user is allowed to
access the address in question are performed. This includes
all of the procedures of FIG. 2Aif the system incorporates
Guarded Pointers.

Once that has been done, the request is submitted at 74 to
the cache memory 77 (FIG.10).If the address is foundin the
cache at 76, the block status bits corresponding to the
address are examined and compared to the operation being
performed at 78 and 80. If the operation is allowed, the
cache memory completes the operation at 82 andis ready for
the next request. If the operation is not allowed, an exception
is raised at 84.

If the address is not in the cache 76, the local translation
lookaside buffer (LTLB) 79 is probed at 86 to determine if
it containsa translation for the address. If the LTLB does not

contain a translation, an exception occurs at 88 to check the
local page table 81, and software is invoked at 90 to load a
translation into the LTLB from the local page table. As
shown in FIG. 10, the LTLB entry which is evicted caries
with it status bits for updating those bits in the local page
table. Similarly, the new entry carries the status bits from the
local page table. When the data is read into the cache
memory 77, the status bits for the cache line are copied from
the associated entry of the LTLB, with the exception that a
dirty entry is entered in the cache as a read/write. The dirty
designation is retained in the LTLB for purposes of.provid-
ing the dirty flag to a home node when requested. However,
the operating program whichloads from the cache need only
determine whetherit is authorized to read or write. Within

the cache, the status bit will be converted to dirty with.a
write to cache in order to-facilitate updating the status bits
in the LTLB and the data in memory with later eviction of
the cache line.

Oncea translation has been found, citherin the page table
or the LTLB, the block status bits corresponding to the
address are compared at 92 and 94 to the operation being
perfonned.If the block status bits allow the operation being
attempted, the operation is completed from the main
memory at 96. If the block status bits do not allow the
operation, an exception is raised at 98.

If no translation for the address can be foundin either the

LTLB orthe local pagetable, the software attempts at 100
to locate the data on another node, possibly using a GTLB
as described below.

The operating system must have the ability to change the
status bits of a memory block. This can be provided either
through privileged operations that probe the cache to change
the status bits in the cache as well as in the LTLB entry, or
by requiring the system to remove the appropriate block
from the cache before altering its status bits, and to ensure
that the block is not returned to the cache before the status
bits have been updated.

These states allow a variety of relocation and replication
(cache coherence) schemes to be implemented efficiently, by
handling the commoncase (the user attempting an access
whichis allowed) in hardware while giving the software the
ability to determine how illegal accesses are handled. For
example, block status bits allow the efficient implementation
of a system in which small data objects are relocated from
node to node. Whena data object is brought onto a node, a
page table entry is created for the page containing that object
if one docs not already exist. The status bits for the memory
blocks containing the object beingrelocated are set to one of
the three valid states, while the status bits for each memory
block that does not contain valid data on the local node are
set to INVALID. Users can thenaccess the object in any way

NOACEx. 1017 Page 260

NOAC Ex. 1017 Page 261

TeeNSMREYacethoraaRSEa?lrrheinple4natanta5emg

tinAntonAEE»AieaaNRRSSNAitallerSeBAYRORNI

3
c4
t}éi

‘
‘

6,003,123
17

that is consistent with the status bits associated with it. If a

user attempts to reference a block that has not been brought
on to the local node,its status bits will be in the INVALID
state, and any attemptto reference it will cause an exception,
invoking an exception handler to resolve the situation.
Moving an object off of a node can be accomplished by
copying it to another node, and changing the status bits
associated with it to INVALID, prohibiting access to the
object. This allows small data objects to be relocated
throughout a multicomputer efficiently without requiring
overly large tables to contain information about which
objects are located on a given node. The system will have to
maintain a table in software which contains information on

where each objectis in the system, but the space constraints
on software tables are not nearly as great as on hardware
tables.

Block status bits can also be used to implement cache
coherence schemes. Many cache-coherence schemesassign
states to data which are very similar to the block status
states: INVALID, READ-ONLY, READ-WRITE, and
DIRTY. The differences between these schemes lie in their

handling of cases where data is referenced in a manner
whichis inconsistent with its state. Block status bits allow

the hardware to handle the (common) case where data is
accessed in an allowed manner, with software being invoked
to handle the uncommon case where an illegal access is
attempted. Since system software can manipulate the status
bits of a block, operations such as system-wide invalidation
of a block so that one node can gain an exclusive copy of the
block, can be efficiently implemented.
Global Translation Lookaside Buffer

A Global Translation Lookaside Buffer (GTLB)isused tocache translations between virtual addresses and the nodes

containing those addresses. Translation of virtual addresses
to physical addresses is handled by a Local Translation
Lookaside Buffer (LTLB) which mayessentially be the same
as a conventional translation lookaside buffer. The intended
use of the GTLB is to allow hardware and software to

quickly determine witch node of a multicomputer contains
a given datum. A message can then be sent to that node to
access the datum. On the node that contains the datum, the
LTLB can be used to translate the virtual address into a

physical address in order to reference the datum.
In order to allow large blocks of virtual address space to

be mapped by a small number of GTLB entries without
increasing the size of the smallest block of data that can be
mapped, each GTLB entry maps a variable-sized page-
group of virtual address space across a numberof nodes. In
orderto simplify the interaction between the local and global
translation mechanisms, and to reduce the numberofbits
required to encode the length of a page-group, each page
group must be a power of two local pages in length.

The address space contained in 2 page-group may be
mapped across a 3-D sub-cube of nodes, with the following
restrictions: each side of the sub-cube must be a power of
two nodes long, and the amountof address space allocated
to each node must be a power of two local pages. While
these restrictions constrain the mapping of address space to
nodes somewhat, they greatly reduce the size of the GTLB
entry and the complexity of the hardware needed to perform
the translation.

FIG.13 shows the format of a GTLB entry. 42 bits encode
the virtual page identifier, which is obtained by truncating
the low 12 bits off a 54-bit virtual address, since these bits
represent the offset within a local page. Sixteen bits encode
the start node of the sub-cube of nodes that the page-group
Maps across. This node ID is divided into a six-bit

25

30

40

50

awn

65

18

Z-Coordinate, and 5-bit X- and Y-coordinates to give the
positionof the start node within the machine.Six bits encode
the base-2 logarithm of the length of the page-groupin local
pages. Six bits encode the base-2 logarithm of the numberof
local pages of address space to be placed on cach node.
Three bits encode the base-2 logarithm of the length of the
prism of nodes that the page-group maps across in each of
the X-, Y-, and Z-dimensions.

FIGS.14A, 14B, 15A and 15B show the manner in which
the GTLB translates a virtual address. The virtual address is

submitted to the GTLB at 102.If a hit is not located at 104,
a miss is signalled at 106 to call an exception which reads
the global pagetable. FIG. 15Aillustrates an example GTLB
entry located with a hit.

Since the GTLB is fully associative, the page identifier
portion of each virtual address, that is, the first 42 bits of
each virtual address, must be compared to the virmal page
identifier of cach entry in the GTLB. Further, since the
grouping of pages allows for a single GTLB entry for each
page group, the least significant bits of the page identifier
corresponding to the number of pages in the group need not
be considered in the comparison. Thus,as illustrated in FIG.
14B, the six bits of each GTLB entry which indicate the
numberofpages per group can be decodedto create a mask
in bit mask generator 124. Using the bit mask generator 124,
only the more significantbits of the page identifiers required
to identify a group are compared in the mask comparator
426. On the other hand, the full 42 bits of both the virtual
address and the GTLB entry are applied to the comparator
since groups can be of different lengths and thus require
masking of different sets of bits. Applying the full 42 bit
identifiers to the comparator allows for a group of only one
page.

From the entry illustrated in FIG. LSA, it is determined
that the start node of the sub-cube is node [3,2,0] and that 2*
pages of address space are mapped to each node within the
sub-cube. The page-group is mapped across a sub-cuhe of
nodes that extends 22 nodes in the Z-direction, 22 nodes in
the Y-direction, and 2 nodes in the X-direction. The start
node[3,2,0] and the full cubic group of nodes is illustrated
in FIG. 15B.

To determine the node containing the address being
translated, the GTLB masks off at 108 the pageoffset bits of
the address which contain the offset from the start of the

local page to the address being translated. The next four bits
of address 0101 are discarded, as they all map to the same
node, as shown bythe value 4 in the “log pages per node”
filed. The next bit of the address contains the X-offset from

the start node to the node containing the address, as shown
by the value of 1 in the X subfield of the “log sub-cube
dimensions” field, and that bit is extracted at 110. Similarly,
twobits contain the Y-offset and two bits contain the Z-offset

from the start node to the node containing the address being,
translated, and those are extracted at 112 and 114. Examin-
ing the selected bit fields reveals that the node containing the
address lies at offset X=1, Y=2, Z=3 from the start node.
Adding these values to the coordinates ofthe start node at
116 in the address 118 gives the coordinates of the node
containing the address X=1, Y=4, Z~6, shown in FIG. 15B.

FIG. 16 shows a block diagram of the GTLB hardware.
The GTLB comprisesa content addressable memory CAM
420 which contains the GTLB entries, a bit-field extractor
122 to extract the X-, Y-, and Z-Offset fields from the source
address, and three adders 118 to add the offsets to the
appropriate portions ofthe start node. The SRAM array must
be fully-associative, as the variable size of page-groups
makes it impossible to use a fixed numberof bits to select

NOACEx. 1017 Page 261

eRRhettornateom

aNNOAteRnteeentmtaastamanetintntttnN‘Mesiting370kneEWESentSak6Henan!meneweNee
“ eaeAgeeantaeanaacecateninsnamamneceEYeyWeeteEMERAN>Sart

NOAC Ex. 1017 Page 262

1AOSeBeSENETasalgI
noradNeaiWTAeSol
tapbec’

6,003,123
19

a set within the array to be searched. When an address is
submitted to the GTLB for translation, it is passed to the
CAM array. If the address is found in the array, the Hit
outputis asserted, and the start node, the page-group length,
the pages-per-node information, and the X-, Y-, and
Z-lengths of the sub-cube of nodes containing the address
being translated are outputted. The bit-field extractor takes
the dimension of the prism, and the page-length and pages-
per-node information, and extracts from the virtual
addresses the bit fields containing the X-, Y-, and Z-offsets
from the start node of the page-groupto the node containing
the address being translated. The offsets are then added to
the appropriate field within the address of the start node to
get the address of the node containing the address.
Integration of all Three Systems

FIG.17 shows a flow chart of the execution of a memory
reference from 128 in a system that combines Guarded
Pointers, Block Status Bits, and a Global Translation Looka-
side Buffer. The first step in performing a memory operation
is to perform at 130 the pointer permission checks described
in the section on Guarded Pointers. If those checks pass, the
memory request is sentto the memory system. Otherwise, an
exception is raised at 132.

If the data is located in the cache at 134,its block status
bits are examined at 136, and an exception is raised at 138
it they do not allow the operation being attempted.
Otherwise, the operation is completed in the cache at 140.If
the data is not located in the cache, the LTLB is probed at
142 for a translation for the address.If a translation is found,
the block status bit of the address are examined at 144, and
the operation completed from the main memory at 146if the
Status bits allow it, or an exception raised at 148 if they donot.

If a translation for the address is not found in the LTLB

at 142, software searches the local page for a translation at
150. If a translation is found, the LTLB is updated at 152 to
contain the translation, and the reference proceeds at 144 as
if an LTLB hit occurred.

If no translation is found in the local page table at 150, the
software probes the GTLB at 154 to sce if the node con-
taining the address can he determined. If a GTLB miss
occurs,the global page table is searched at 156 for an entry
Corresponding to the address. If the node containing the
address can be located either through the GTLB orthe global
page table, the software can send a message to that node to
complete the request at 158. Otherwise, an erroris signalled
at 160, as the reference can not be completed.

While each of these mechanisms is useful separately, they
complement each other to form the basis for the memory
system of a multicomputer. Guarded Pointers provide a
protection mechanism that allows a number of independent
processes to share the resources of the multicomputer with-
out compromising the security of those processes. The
Global Translation Lookaside Buffer provides an effective
mechanism for distributing data objects across the multi-
computer by mapping virtual addresses to nodes within the
multicomputer. The block Status Bits make the process of
Movingor copying data from node to node more efficient by
reducing the size of the smallest datum that can be relocated,
without increasing the numberoftranslation table entries
required if no remote data is accessed.

Arelated paper has been submitted for presentationat the
6th International Conference on Architectural Support for

15

20

25

30

40

45

50

35

60

20

Programming Languages and Operating Systems (ASPLOS
VI), Oct. 5-6, 1994.
EQUIVALENTS

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims. Those skilled in the art will
recognize orbe able to ascertain using no more than routine
experimentation, many equivalents to the specific embodi-
ments of the invention described specifically herein. Such
equivalents are intended to be encompassed in the scope of
the claims.

Whatis claimedis:

1. Ina parallel processing system, a method of addressing
data across plural processor nodes comprising:

applying a virtual address to a giobal translation buffer to
identify a mapping of a page group of plural pages
across a set of plural but less than all processor nodes
in the system, the page group containing the physical
page to which the virtual address corresponds; and

from the virtual address and mapping, determining a
destination node as a node within the set of processor
nodes which contains the physical page to which the
virtual address corresponds.

2. A method as claimed in claim 1 further comprising
forwarding a message to the destination node.

3. A method as claimed in claim 2 further comprising,at
the destination node, translating the virtual address to a
physical address.

4. A method as claimed in claim 1 wherein each page
group is specified by a group size.

5. Amethod as claimed in claim 4 wherein the group size
is logarithmically encoded.

6. Amethod as claimed in claim 1 wherein the translation

buffer specifies a start node andthe range ofthe set of nodes.
7. Amethod as claimed in claim 6 wherein the range is

specified in plural dimensions.
8. A method as claimed in claim 7 wherein the range is

logarithmically encoded in cach of the plural dimensions.
9. Amethod as claimed in claim 8 wherein the translation

buffer specifies the number of pages of the page group pernode of the set of nodes.
10. A method as claimed in claim 6 wherein the transla-

tion buffer specifies the number of pages of the page group
per node of the set of nodes.

11. Amethod as claimed in claim 1 wherein the translation

buffer specifies the number of pages of the page group per
node of the set of nodes.

12. A data processing system comprising a plurality of
processor nodes, each processor node comprising:

a global translation buffer for identifying relative to a
virtual address a mapping of a page group of plural
pages to a set of plural processor node s in the system,
the page group containing the physical page to which
the virtual address corresponds;

electronics which determines, from the virtual address
and the identified mapping, a destination node as a node
within the set of processor nodes having the physical
address corresponding to the virtual address.

* 2 *& & «

NOACEx. 1017 Page 262

NOAC Ex. 1017 Page 263

>rt

¥

beear1VMSeMSenge0seghainapenas

LLryeaneckyh

y:

United States Patent 15)
Colloff et al.

{54} SET-ASSOCIATIVE CACHE MEMORY
HAVING AN ENHANCED LRU
REPLACEMENT STRATEGY

{75] Inventors: Ian G. Colloff, Ascot; Albert S.
Hilditch, Wokingham, both of England

(73} Assignee: International Computers Limited,
Putney, United Kingdom

(21] Appl. No.: 206,001

(22] Filed: Mar. 3, 1994

{30} Foreign Application Priority Data

Mar. 30, 1993 [GB] United Kingdom 9306647

(SUZ Tints Cae ooncssssasceneesnessnssssnsssseesanerecers GO06F 12/12
{52} U.S. Ch. wu... . 395/463; 395/421.06; 395/487
[58] Field of Searcha onssscssssssccessnsseenseees ~ 395/200, 400,

395/425, 421.06, 463, 445, 486, 487

[56] References Cited

U.S. PATENT DOCUMENTS

3,949,369 4/1976 Churchill, Jr. wnessconsee 340/172.5

ADDRESS REGISTER

08/28/2003, EAST version: 1.04.00)AC Ex. 1017 Page 263

ac

<2
Lhfo

AAAAA
(111 Patent Number: §,530,834

(45) Date of Patent: Jun. 25, 1996

4,511,994 9/1982 Webb etab. .W...esccsssesccesseveee 395/487

FOREIGN PATENT DOCUMENTS

1087189 10/1967 United Kingdom .
1475785 6/1977 United Kingdom .

Primary Examiner—Jack A. Lane
Assistant Examiner—Fadi A. Stephan
Attorney, Agent, or Firm—Lee, Mann, Smith, McWilliams,
Sweeney & Ohlson

[57] ABSTRACT

Acache memory contains a number of RAMs. The RAMs
ate addressed by independent hashing functions, so as to
access a set of locations, one in each RAM.[fthe required
data item is resident in the addressed set, it is accessed.
Otherwise, the least-recently used location in the set is
selected for overwriting with data from main memory. The
contents of the RAM locationthat is about to be overwritten

are saved, and then used to access the memory again in order
to address a further set of locations. If any of this further set
of locations is less recently used than the saved contents, the
saved contents are loaded back into that location.

3 Claims, 3 Drawing Sheets

 COMPARATOR

RAM 1

COMPARATOR

 RAM 3

COMPARATOR

NOAC Ex. 1017 Page 264

jratanealoy

io%
i

U.S. Patent

DATA
PROCESSING

UNIT

Jun. 25, 1996 Sheet 1 of 3

 CONTENTS

ADDRESSABLE
MEMORY

TRANSLATION
LOOKASIDE

BUFFER

HASH 3

COMPARATOR

08/28/2003, EAST Version: 1.04.0000

5,530,834

MAIN

MEMORY

NOAC Ex. 1017 Page 264

NOAC Ex. 1017 Page 265

U.S. Patent Jun. 25, 1996 Sheet 2 of 3 5,530,834

Fig. 3.
CACHE REQUEST MISS

DATA NOT IN CACHE

DATA IN CACHE

MOVE REQUIRED DATA TO CHOSEN LOCATION

INSERT DATA IN CACHE

UPDATE CAM ENTRY FOR REQUIRED DATA

CREATE NEW CAM ENTRY

08/28/2003, EAST version: 1.04.0000
NOACEx. 1017 Page 265

teeheeitessinetierridtesthinimanndeinenesieetcwvominentinnesnnbninntmete”meeneewebmeenms.
~BecreemeewaanaeetSheateakMRSellARoe

NOAC Ex. 1017 Page 266

U.S. Patent Jun. 25, 1996 Sheet3 of 3 5,530,834

Fig. 4.
CACHE SHUNT

LOAD SHUNT REGISTER

ACCESS SET ASSOCIATIVE MEMORY

SHUNT DATA=LEAST RECENTLY USED?

NO

YES

REPLACE LRU LOCATION

; YES
NUMBER OF SHUNTS =MAXIMUM? EXIT

NO

EXIT

Fig. 5.
NEW CAM ENTRY

08/28/2003, T version: 1.04.0000| (28720034 EAST vers NOACEx.1017 Page 266

NOAC Ex. 1017 Page 267

RR

PRIOO

5,530,834
1

SET-ASSOCIATIVE CACHE MEMORY
HAVING AN ENHANCED LRU
REPLACEMENT STRATEGY

BACKGROUND OF THE INVENTION

This invention relates to set-associative memories.

One conventional form of set-associative memory com-
prises a plurality of random access memories (RAMs), each
RAM location holding a data item and a tag value identi-
fying the data, An input address is hashed (i.e. transformed
by a many-to-one mapping function) to produce a hash
address, which is applied in parallel to all the RAMs, so as
to select one location in each RAM. Thetag values in the
addressed locations are then examinedto see if the desired
data is resident in one of them and,ifso, the data is accessed.

If there are n RAMs,so that no locations at a time are
examined, the memory is referred to as an n-way set-
associative memory and is said 10 have an associativity ofn.
The usual choice for the value of n is 2 or4.

Such a set-associative memory may be used, for example,
as a cache memory for a computer system. The aim of a
cache is to keep the most useful data of a large amount of
data in a small, fast memory in order to avoid having to
retrieve the data from the larger, slower main memory.If the
required data is in the cache, it is said that a “hit” has
occurred; otherwise a “miss” has occurred. The percentage
of misses is called the “miss rate”. A common engineering
problem in designing a cacheis to minimize the miss rate
while keeping the cache size, the access speed, the power
consumption and the amount of implementation logic fixed.

In general, the miss rate of such a cache decreases as its
set associativity increases. On the other hand, the cost of
implementation increases as set associativity increases.
Thus, in general, known cachesthat deliver minimum miss
rates demand large amounts of logic and space to imple-
ment, while known caches that are the cheapest to imple-
ment deliver higher miss rates.

Another use of set-associative memory is to form a
content addressable memory (CAM). The aim of a CAM is
to store and reference data according to its contents. For
instance, performing a join of two relations within a rela-
tional database query can be implementedbyfirst storing the
contents of one relation in the CAM,indexed by the join
attribute, and then secondly by comparing the rowsof the
second relation to the CAM using the join attribute again.
Content addressable memories can be implemented by fully
associative memories buttheir size is limited by the space
demanded by fully associative logic.

One object of the present invention is to provide an
improved set-associative memory which is capable of per-
forming as well as conventional set-associative memories of
higher set associativity, or better than conventional set-
associative memories of the same set associativity. For
example, when the set-associative memory is used as a
cache, this means thatit is able to deliver the same missrate
as conventional cachesof larger size and cost, or lower miss
rates than conventional caches of the same size and cost.

A second object of the present invention is to provide a
CAM using a modified set-associative memory. This allows
both much larger CAMsto be constructed and an improved
read performance over present CAMs.

SUMMARYOF THE INVENTION

According to one aspect of the invention, there is pro-
vided an n-way set-associative memory (where n is an

08/28/2003, EAST

25

45

50

55

65

version: 1.04.00%AC Ex, 1017 Page 267

2

integer greater than 1), comprising a plurality of n RAMs,
each RAM location holding a data item and a tag value
identifying the data, addressing means for addressing the
RAMsto accessa set of locations, one in each RAM, and
means for examining said set of locations to detect whether
a required data item is resident in any of those locations,
wherein the addressing means comprises meansfor perform-
ing n independent hashing functions to hash an input
memory address into n separate addresses for respectively
addressing said RAMs,characterised by means for saving
the contents of a RAM location that is about to be over-

written, means for using the saved contents to access the
memory again to address a further set of locations, and a
meansfor loading the saved contents into one of said further
set of locations.

Aswill be shown,this “shunting” operation can improve
the performance of the set-associative memory, by effec-
tively increasing its set associativity.

According to a second aspect of the invention there is
provided a contents addressable memory comprising a plu-
rality of n RAMs(wheren is an integer greater than 1), each
RAM location holding a data item and a tag value identi-
fying the data, means for performing n independenthashing
functions to hash an input memory address into n separate
addresses, means for addressing the RAMs with said n
separate addresses to access a set of locations, one in each
RAM,a meansfor examining said set of locations to detect ;
whether any of said addressedsetof locations is empty and,°
if so, loading an input data item into that location and a
means operative if none of said addressedset of locations is
empty, for selecting oneof said addressed set of locations for
replacement, saving the tag value and data item of the
selected location, loading the input data item into the
selected location, using the saved contents to access the
memory again to addressa furthersetof locationsand,if any
of the addressed set of locations is empty, loading the saved
data item into that location.

Aswill be shown, a set-associative memory with repeated
shunting can deliver a content addressable memory without
the need for full associativity thus reducing the logic needed
and greatly increasing the size of CAM possible. Further, the
read performance of such a “repeated shunting CAM”will
be faster than an equivalent fully-associative CAM.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system
including a cache comprising a set-associative memory in
accordance with the invention.

FIG.2 showsa set-associative memory with the enhance-
ment of “shunting”.

FIG. 3 is a flow chart showing the operation of the cache.
FIG.4 is a flow chart showing the way that shuntingis

used in operation of the cache.

FIG. 5 is a flow chart showing the operation of a contents
addressable memory using the set-associative memory ofFIG. 2.

DESCRIPTION OF EMBODIMENTS OF THE
INVENTION

A data processing system embodyingthe invention will
now be described by way of example with referenceto the
accompanying drawings.

i
i
’

NOAC Ex. 1017 Page 268

ve5Oe

ootmerayemceescecgeretaeKpEN=omeatkeRese.opm
a

5,530,834
3

Referring to FIG. 1, the dataProcessing system comprises
adata processing 1unit 10, amain memory 11,andavirtuallySs
addressedciithie’Controle?12Cotinectedbetweenthe pro- -
cessing unit and main memory. The cache within the cache
controller is smaller and faster than the main memory, and
holds copies of the most recently used data items, allowing
these items to be accessed by the processing unit without
having to retrieve them from the slower main memory.

The cache controller 12 comprises a 4-way set-associative
cache 13, a translation look-aside buffer (TLB) 14, a con-
tents addressable memory (CAM) 35,and a least-recently-
used replacement mechanism (LRU) 16. Theset-associative
cache holds the cache data, indexed by the virtual address of
the data. The TLB contains a virtual address to real address

mapping,indexed by the virtual address, for allowing virtual
addresses to be translated into real addresses. The CAM
contains a real.address to cache location number mapping,
indexed by the real address, the purpose of. which will be
described later. The LRU contains recency-of-usage infor-
mation for the data itemsheld in the set-associative memory.

SET-ASSOCIATIVE MEMORY WITH
SHUNTING

FIG. 2 shows the 4-way set-associative memory in more
detail. The memory comprises four RAMs 40-43,each of
which contains a plurality of addressable locations. Each
RAM location holds a data item and a virtual addresstag,
identifying the data item.

An inputvirtual memory addressis received in an address
register 44, This input address is hashed in four different
ways byfour different efficient hashing functions 45-48 to
produce four separate hash addresses. The hashing is done
concurrently. A good implementation of the hashing func-
tions can be achieved by using the random matrix hashing
algorithm as described in British patent specification GB
2240413. This algorithm generates an arbitrary number of
independent hashing functions which can be implemented
easily and whichallow hashing to be completed within a few
simple gate delays.

The four hash addresses are used to address the four
RAMs,so as to address four locations, one in cach RAM.
Because the hashing functions are independent, these four
hash addresses will, in general, be different. The virtual
address tags in the four addressed locations are compared
with the input virmal address by means of comparators
49-52, to see whether any of these locations contains the
desired data.

The set-associative memory also includes a register 53,
referred to herein as the shunt register, the purpose of which
will be described.

OPERATION

ea sor igt

processor requires toaccess adata|item.it’sends a request to
the cache, specifying the virtual address of the required data.
The virtual address is loaded into the address register 44, so
as to address four locations in the RAMs. If any of the
addressed locations contains the required data, a hit has
occurred, and the required data can be accessed immediately
from that location. The LRUis updated to reflect the usage
of this data.

If on the other hand none of the addressed locations

contains the required data, a miss has occurred. The opera-
tion of the cache in the event of a miss is shown in FIG, 3.

08/28/2003, EAST version: 1.04 .00MOAC Ex. 1017 Page 268

— 0

_ 5

20

25

35

55

The operation of the cache is as follows._Wheg,thedata ..

6. wm

4
The LRU is accessed to decide which of the four

addressed RAM locations is least recently used, and this
location is selected for replacement with the desired data.
-The TLB is then consulted to calculatethe real address of the
required data, The entry in the CAM for thedata to be
replaced is deleted.

The CAM is then consulted, using the real address, to
determine whether the required data is already resident in
the virtual cache, in another cache location undera different
virtual address. If the data is present in a different cache
location, under a different virtual alias, it is moved to the
required cache location, and the entry for that data in the
CAM is updated to the new cache location number. If on the
other hand the data is not present in the virtual cache under
a different virtual alias, it is requested from the main
memory using the real address obtained from the TLB.

Whenthe required data has been fetched from the main
memory it is stored in the replacement location of the
set-associative memory, and a new entry is added to the
CAM forthe new data.

In the case of a cache miss, after the required data has
been requested from the main memory,a shunting procedure
is performed, as will be described with reference to FIG.4.
This shunting is performed while the required data is being
retrieved from main memory.

Referring to FIG. 4, the first step of the shunting proce-
dure is to load the existing contents of the least-recently used
one of the four addressedlocations(i.e. the location that will
be overwritten by the requested data) into the shunt register
§3.

The virtual address tag in the shuntregister is then used
to address the set-associative memory, in place of the input
virtual memory address. Four RAM locations will therefore
be accessed, one in each of the four RAMs. Oneof these
locations is where the data was shunted from. However, in
general, the other three locations will be different from those
accessed by the inputvirtual memory address, because of the
different hashing functions used to access the four RAMs.

The recency of usage of the data in these other three
addressed RAM locations is then compared with that of the
data in the shuntregister. If the data in the shunt register is
more recently used than any of those three RAM locations,
the RAM location with the oldest access time is replaced
with the contents of the shuntregister. The existing contents
of the RAM location are loaded into the shunt register.

The shunting procedure is repeated, using the new con-
tents of the shuntregister, up to a fixed numberof times or
until it is found that the shunted data is less recently used
than the data in any of the addressed RAM locations.

It can be seen that, after shunting is completed, the cache
location lost is the least recently used cache location ofall
those examined. This implies that with a 4-way set-associa-
tive cache, shunting once on each miss provides the equiva-
Jent of a 7-way set-associative cache, Repeating the shunt
each time adds 3 to the effective set associativity.

CONTENTS ADDRESSABLE MEMORY

Theset-associative memory shown in FIG. 2 may also be
used as a contents-addressable memory (CAM)suchas, for
example, the CAM 15 of FIG. 1.

Since a CAM is only used to storeafinite amountof data,
we assume that the number of locations in the RAMsis
enoughto hold all needed data. This means that we never
discard any data in the CAM. However, for the set-associa-

i}
{é
5

LasttheteatteaNematethaheenemeitesttteNestim,

NOAC Ex. 1017 Page 269

5

tive memory to be used efficiently as a CAM between 20 and
30% of the total locations in the CAM should be surplus to
requirement. This means that the expected number ofshunts
is not greater than 1 and optimum efficiency is ensured.

Referring to FIG. 5, this showsthe operation of the CAM
whenit is required to load a new data entry into the CAM.

The address of the data is hashed by the four hashing
functions to access four RAM locations, one in each RAM.
The four addressed locations are then examinedto see if any
of them is empty.If so, the new data entry is loadedinto that
location, and the process is complete.

If, on the other hand, none of the four addressed RAM
locations is empty, one of these four locations is selected at
random, and its contents are loaded into the shunt register
53. The address tag in the shunt register is then used to
address the set-associative memory, in place of the original
input address. A further three RAM locations will therefore
be accessed together with the location from which the data
was shunted. This shunting process is repeated until, even-
tually, an empty RAM location is found, and the new data
entry is loaded into that location.

When the CAM is searchedfor data, the data will always
be foundin one of the four cache locationsinitially searched.
When adding data to the CAM it may take one or more
shunts in orderto find an empty cachelocation, but an empty
location will always be found eventually. Deletion of data
can be achieved without the need of shunting. A special
command is provided for clearing the CAM for reuse.

The CAM described above has a number of advantages
over CAMsimplementedusing a fully associative memory:
less logic, less power consumption and faster access times.
This will allow much larger CAMsto be constructed than
normally possible. The CAM described above has two
advantages over CAMsimplemented using standard hashing
techniques that mustresort to inefficient meansfor resolving
hashingcollisions: better space utilisation and faster access
times.

We claim:

1, A memory system including a main memory and a
faster, smaller cache memory, wherein said cache memory
comprises:

a) a plurality of n RAMs (where n is an integer greater
than 1), each RAM comprising a plurality of address-
able locations;

b) hashing means for performing n independent hashing
functions, to hash an input address into n separate

_ addresses for addressing said RAMs;
c) LRU meansfor storing recency-of-use information for

each location in said RAMs;

d) means for applying a memory address as an input to
said hashing means, to accessafirst set of locations in
said RAMs,one location in each RAM;

e) means for using said LRU means to select a least
recently used oneofsaid first set of locations;

f) means for applying data from said least recently used
oneofsaid first set of locations as a further inputto said

10

20

5,530,834

6
hashing means, to access a further set of locations in
said RAMs, onelocation in each RAM; and

g) meansfor using said LRU meansto select one of said
further set of locations that is less recently used than
said least recently used oneofsaid first set of locations
and for loading said data from said least recently used
one ofsaid first set of locations into said one of said
furtherset of locations.

2. A data processing system including a data processing
unit, a main memory, and a faster, smaller cache memory,
wherein said cache memory comprises:

a) a plurality of n RAMs(where n is an integer greater
than 1), each RAM comprisinga plurality of address-
able locations;

b) hashing means for performing n independent hashing
functions, to hash an input address into n separate
addresses for addressing said RAMs;

c) LRU meansfor storing recency-of-use information for
each location in said RAMs;

d) means for applying a memory address as an input to
said hashing means,to accessafirst set of locations in
said RAMs,one location in each RAM;

e) means for using said LRU means to select a least
recently used oneofsaid first set of locations;

f) meansfor applying data from said least recently used
oneofsaid first set of locations as a further input to said
hashing means, to access a further set of locations in
said RAMs, onelocation in each RAM; and

g) meansfor using said LRU meansto select one of said
further set of locations that is less recently used than
said least recently used oneof said first set of locations
and for loading said data from said least recently used
oneof said first set of locations into said one of said
further set of locations.

3. A method of operating a memory system including a
main memory andafaster, smaller cache memory,the cache
memory comprising a plurality of n RAMs (where n is an
integer greater than 1), and hashing means for performing n
independent hashing functions to hash an input memory
address into n separate addresses for addressing said RAMs,
said method comprisingthe steps:,

a) applying a memory address as an inputto said hashing
means, to accessafirst set of locations in said RAMs,
onelocation in each RAM;

b) selecting a least recently used one of said first set of
locations;

c) applying data from said least recently used one of said
first set of locations as a further input to said hashing
means, to access a further set of locations in said
RAMs,one location in each RAM;and

d) selecting oneof said furtherset of locationsthatis less
recently used than said least recently used one of said
first set of locations and loading said data from said
least recently used one ofsaid first set of locations into
said one of said further set of locations.

x * & k *

08/28/2003, EAST version: 1.04.0000
NOACEx. 1017 Page 269

Anetteetteroemenececal§te

NOAC Ex. 1017 Page 270

Silkevieei

; ; HlLEENA
US005749087A

United States Patent 1
Hooveret al.

[54] METHOD AND APPARATUS FOR
MAINTAINING N-WAY ASSOCIATIVE
DIRECTORIES UTILIZING A CONTENT
ADDRESSABLE MEMORY

{75] Inventors: Russell D. Hoover, Rochester, George
W. Nation, Eyota; Kenneth M. Valk,
Rochester, all of Minn.

[73] Assignee: International Business Machines
Corporation, Armonk, N.Y.

[21] Appl. No.: 688,313

[22] Filed: Jul. 30, 1996

[51] Int. CL® ... snasnsseuacssesoneensrssonnseee GOOF 13/00
[52] TS. CL. vaserorssssscccssseneseenr 711/108; T1LA2B; 711/133;

TLV/141; 711/146; 364/DIG. 1

[58] Field of Searclacsssseseaenmeee 395/435, 449,
395/455, 457, 460, 468, 473

[56] References Cited
U.S. PATENT DOCUMENTS

4,587,610 S/E986 Rodman .recseonnse . 395/417
4.914.577 4/1990 Stewart et al,snore . 395/417
4,972,338 11/1990 Crawford et al. csneeensseenee 395/416
5,249:282 9/1993 Segers cesrsecsoseeres wwe 395/440
5,261,106 11/1993 Lentz et al. .. 395/726
5,329,405 7/1994 Hou etd. . .
5,383,146 1/1995 Threewitt wae 365/49
5,404,482 4/1995 Stamm ctal. ... Cs
5,404,483 4/1995 Stamm et al. .
5,414,704 5/1995 Spinney ssesneeesnnsererreeseeeeeee 370/60

SNOOPED
ADDRESS

L|

rasfaasaREA
i= 420

(11) Patent Number: 5,749,087

(45] Date of Patent: May 5, 1998

SAST,T88 10/1995 Machida «sccscmnesseseenssn 395/435
5,504,874 4/1996 Galles et al. .. . 395/435
5,530,958 1996 Agarwal ct al... . 395/435
5,537,623 7/1996 Chamberiain et ab. accuse 395/435

Primary Examiner—Frank J. Asta
Attomey, Agent, or Firm—Joan Pennington

[57] ABSTRACT

A method and apparatus are provided for maintaining a
N-way associative directory utilizing a content addressable

memory (CAM). A congruence class from the N-way asso--
ciative directory includinga directory entry identified for a
data operation is read into the CAM for the data operation.
The directory entry for the data operation in the CAM is
locked while the data operation is pending. Other entries in
the congmenceclass are available. When the data operation

- is completed, checking for a state change is performed.
Responsive to an identified state change, the directory entry
for the data operation in the CAM is updated or marked as
changed. The congruence class including the updated direc-
tory entry is‘marked asdirty.In accordance with features of
the invention, the changed congruence class directory
entries in the CAM are accumulated and scheduled to be
written back to the N-way associative directory. The con-
gruence classes including the changed directory cutries in
the CAM are written backto the N-way associative directary
when the N-way associative directory is idle. After the
congmuence classes including the changed directory entries
in the CAM are written back to the N-way associative
directocy,these CAM entries are marked'as not busy and not
dirty and:can-be.reused.

16 Claims, 5 Drawing Sheets

WRITE BACK

HITMISS

SOIR
CAM
104

|tt
Pep

GDIR CAM ROW
STATE 123

09/02/2003, EAST version: 1.04.0000
NOACEx. 1017 Page 270

NOAC Ex. 1017 Page 271

U.S. Patent May 5,1998 Sheet1 of 5 5,749,087

FIGURE 1A
SNOOPED

WRITEBACKADDRESS WRITE BACK

ADDRESS

G

ow||_||||
BUSY|BUSY

0
 GDIR CAM ROW

STATE 123

STATE 0,
STATE 4,

ROWA(M),
COLHKN)

feeeseyeealee
09/02/2003, EAST Version: 1.04.0000

NOACEx. 1017 Page 271

NOAC Ex. 1017 Page 272

U.S. Patent May5, 1998 Sheet 2 of 5 5,749,087

PRIOR ART

Linpex|tac|BYTE]
MEMORY
ADDRESS
FORMAT

SELECT A DIRTY

AND NOT BUSY
WRITE

BACK, INDEX (A) FIGURE 1B

600

 WRITE GDIR CAM

CONGRUENCE CLASS
TO GDIR ADDRESSED

BY INDEX(A)
602

GLOBAL DIRECTORY 102

TAGO STATE] TAG1 STATE

108 110 108 110

ne
ASSOCIATIVITY CLASS

STATE= INVALID (COLUMN)
SHARED ——s 114

FIGURE 6 EXCLUSIVE |
FIGURE 1C

CONGRUENCE

CLASS (ROW)
112

SET NOT DIRTY

FOR INDEX(A)
604

09/02/2003, EAST version: 1-04.00RQ4c Ey. 1017 Page 272

samoe

NOAC Ex. 1017 Page 273

SeOeaEIRNIIOSIENa

U.S. Patent May5, 1998 Sheet 3 of5 5,749,087

ARBITRATION (ARB) FOR GDIR/GDIR CAM ACCESS

[(ALL GDIR
CAM ROWS BUSY OR

DIRTY) AND >1 GDIR CAM
ROW DIRTY AND NOT BUSY] OR(>3

GDIR CAM ROWS DIRTY AND
NOT BUSY)

202

HIGH
PRIORITY

YES—_wRITEBACK

SNOOP
OPERATION TO

PROCESS
204

>1 GDIR
CAM ROW DIRTY

AND NOT BUSY
206

 YES LOWPRIORITY WRITEBACK

FIGURE 2

09/02/2003, EAST version: 1.04.0000
NOACEx. 1017 Page 273

NOAC Ex. 1017 Page 274

' US. Patent May 5, 1998 Sheet 4 of 5 5,749,087

GDIR
CAM INDEX (M)

TAG (N) HIT
300

 GDIR CAM

INDEX (M) HIT
302

 GDIR TAG (N)

HIT
306

FIND GDIR
CAM ROW WITH

ALL TAGS NOT BUSY
AND NOT DIRTY

320

NOT
FOUND

GDIR CAM
ROW (M) BUSY

304

FIND
NOT BUSY

COPY GDIR

(N) WITH INVALID CONGRUENCE
STATE CLASS TO

312 GDIR CAM
322

CASTOUT TAG

(N) THAT iS NOT
BUSY AND NOT
INVALID STATE

314

RETRY
SNOOPED

OPERATION
324

WRITE SNOOPED
OPERATIONS' TAG
TO GDIR CAM ROW

(M) TAG (N)
316

 SET BUSY(N)

318

cnrdiagtials
FIGURE 3#z

09/02/2003, EAST version: 1-04-0001)4Fy 1017 Page 274

NOAC Ex. 1017 Page 275

U.S. Patent May5, 1998

FIND GDIR
CAM ROW WITH

ALL TAGS NOT BUSY AND
NOT DIRTY

400

RETRY
SNOOPED

OPERATION
404

COPY GDIR
CONGRUENCE
CLASS TO GDIR

CAM
402 -

FIGURE 4

Sheet 5 of 5 5,749,087

SNOOPED
OPERATION
COMPLETES

500

 1S A STATE
CHANGE NEEDED

502

NO

UPDATE GDIR
CAM WITH

NEW STATE
504

SET INDEX

(M) DIRTY
506

RESET TAG

(N) BUSY
508

FIGURE 5

| 09/02/2003, EAST version: 1-04-00814c Ex. 1017 Page 275

NOAC Ex. 1017 Page 276

5,749,087

1

METHOD AND APPARATUS FOR
MAINTAINING N-WAY ASSOCIATIVE

DIRECTORIES UTILIZING A CONTENT
ADDRESSABLE MEMORY

FIELD OF THE INVENTION

The present invention relates to a N-way associative
directory, and more particularly to an improved method and
apparatus for maintaining a N-way associative directory
utilizing a content addressable memory (CAM).

DESCRIPTION OF THE PRIOR ART

Acontentaddressable memory (CAM) is knownfor many
diverse uses. For example, known system have used a
content addressable memory (CAM)for addresstranslation,
for example, as described in U.S. Pat. Nos. 4,972,282 and
5,457,788.

U.S. Pat. No. 5,249,282 discloses a cache memory for
interfacing between a central processing unit and a main
system memory. The cache memory includes a primary
cache comprised of SRAMS and a secondary cache com-
prised of DRAM.A respective tag directory is associated
with each of a plurality of secondary data cache memories.
A respective content addressable memory (CAM) is asso-
ciated with each ofa plurality of primary data cache memo-
ties. Each of the CAMsstores data consisting of a tag and
a value.

In cases where an N-way associative directory is used and.
operations on multiple lines (including when those lines
belong to the sameset) need to be performed inparallel, then
when updating the directory a read modify write must be
performed. For synchronous SRAMs,the performance deg-
radation for changing from a write to a read, or from a read
to a write can be significant. A need exists for a directory
arrangementthat provides improved efficient performance.

. SUMMARY OF THE INVENTION

Important objects of the present invention are to provide
an improved method and apparatus for maintaining a N-way
associative directory utilizing a content addressable memory
(CAM),to provide such apparatus and method substantially
without negative effects and that overcome many disadyan-
tages of prior art arrangements.

In brief, 2 method and apparatus are provided for main-
taining a N-way associative directory utilizing a content
addressable memory (CAM). A congruence class from the
N-way associative directory including a directory entry
identified for a data operation is read into the CAM for the
data operation. The directory entry for the data operation in
the CAM is locked while the data operation is pending.
Other entrics in the congruence class are available. Whenthe
data operation is completed, checking for a state change is
performed. Responsive to an identified state change, the
directory entry for the data operation in the CAM is updated
or marked as changed or dirty.

In accordance with features of the invention, the changed
directary entries inthe CAM are accumulated and scheduled
to be written back to the N-way associative directory. The
changed directory entries in the CAM can be used again
before being written back to the N-way associative directory.
A congmenceclass including the changeddirectory entry in
the CAM is written back to the N-wayassociative directory
when the N-way associative directory is idle, After the
directory entries in the CAM are written back to the N-way
associative directory, these CAM entries are marked not
busy and notdirty and can be reused.

09/02/2003, EAST Version: 1.04. 000*VOAC Ex. 1017 Page 276

10

35

40

45

63

2
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above and other
objects and advantages may best be understood from the
following detailed description ofthe prefeared embodiments
of the invention illustrated in the drawings, wherein:

FIG. 1A is a functional data flow block diagram of a
directory system including a global or N-way associative
directory with a content addressable memory (CAM) in
accordance with the present invention;

FIG. 1B is a block diagram illustrating a conventional
memory address format;

FIG.1C is a block diagram illustrating a global directory
of the present invention; and

FIGS. 2-6 are fiow charts illustrating directory mainte-
nance methods in accordance with the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention provides an improved directory
arrangement and method for maintaining a global or N-way
associative directory utilizing a contentaddressable memory
(CAM) that can be used in supporting many processor
caches, each with many outstanding operations; large num-
bers of line fill buffers in a processor (not shown); and in
caches with many outstanding transactions, such as, shared-
caches and lock-up free caches. ,

Having reference now to FIGS. 1A and 1C, in FIG. 1A
there is shown a directory arrangementin accordance with
the invention generally designated 100 including an N-way
associative or global, coherence directory generally desig-
nated GDIR 102 with « content addressable memory (CAM)
generally designated GDIR CAM 104. GDIR CAM 104 is
used in accordance with the invention to improve the
performance of the N-way associative directory GDIR 102.
In accordance with features of the invention, a full congru-
ence class orrow 112,the entry from cach associativity class
or column 114,as illustrated in FIG. 1C including the entries
TAG 0 108, STATE 0 110, TAG 1, STATE 1 110,is the unit
of data moyed between the coherence directory GDIR 102
and the GDIR CAM 104. In FIGS. 1A and 1C, a two-way
associtive directory GDIR 102 and GDIR CAM 104 are
shown; however, it should be understood that the present
invention can be used generally with an N-way associative
directory. In FIG. 1B, a prior art memory address format
including an index, tag, and byte is shown. In the preferred
embodiment, the lower order address bits or byte of the prior
art memory address format is not used.

In the GDIR CAM 104, cach GDIR CAM row 117
includes a single index 118, multiple keys or tags 120 and
associated states 122 together with BDIR CAM row state
information 123 including respective BUSY0, BUSY1, and
DIRTY bits. Each key 120 and associated state 122, such as
TAG 0, STATE 0, and TAG 1, STATE 1, corresponds to a
respective associtiviy class 114, CLASS 0, CLASS1 of the
N-way associtive directory GDIR 102. Moving the full
congruenceclass 112 avoids having to do read modify write
when data is moved between GDIR CAM 104 and coher-
ence directory GDIR 102. The GDIR CAM 104 contains
GDIR entries that are in transition from one state to another

state. The associated state 110, 122 with a respective direc-
tory tag 108, 120 include exclusive, shared, and invalid. Au
exclusive state indicates that one and only one cache in the
system of the GDIR 102 has this block of data, where a
shared. state indicates that the block of data is shared. An
invalid state indicates that the block of data is not cached.

t

‘|
43

waneOENhkegnae

Nesleenenem

NOAC Ex. 1017 Page 277

at hen

5,749,087

3

GDIR CAM 104 serves as a CAM for directory entries.
When an entry in the GDIR CAM 104 is updated and the
operation using that entry is completed, that GDIR CAM
row 117is marked as dirty. Dirty GDIR CAM 104 catries are
accumulated and scheduled for writing back to the global
coherence directory GDIR 102. The accumulation of write-
backs is more efficient because there is a number of cycles
penalty for switching from read to write and vise-versa. The
scheduling of these accumulated writebacks are more effi-
cicnt because the writes are done when the global coherence
directory GDIR 102 is idle. After the write-backs to the
global coherence directory GDIR 102 are completed the
entries of the GDIR CAM 104 are markedas not dirty and
can be reused.

GDIR CAM 104 is a small CAM that duplicates some
number of the directary rows 112 of GDIR 102. Global
coherence directory GDIR 102 can be implemented with
external SRAM off-chip because a large on-chip array may
not be feasible to implement the total size needed for the
global coherence directory GDIR 102. An arbitration (ARB)
functional block 106 arbitrates access to GDIR 102 and

GDIR CAM 104, ARB functional block 106is implemented
with logic arranged for directory access control of the
invention as illustrated and described with respect to FIGS.
2-6. When an address is presented to the GDIR CAM 104,
the address associated with the tag that matchesthis address
is accessed. A Hit/Miss indication is provided by compares
116 and possibly, the location within the GDIR CAM 104
that address matched.

Whena data line is accessed, the directory set or congru-
ence class 112 of GDIR 102 that contains theline is read into

the GDIR CAM 104. While an operation is pending the
GDIR CAM row 117 including the particular congruence
class entry 120, 122, TAG 0, STATE 0, or TAG 1, STATE 1
that contains the line is locked in place and released when
the operationis finished. For an N-way associative directory
GDIR 102, cach of the N entries in a directory row may be
locked by a different operation. When an operation modifies
aa entry in a GDIR CAM row 117 held in the GDIR CAM
104, that GDIR CAM row 117 is marked dirty to be written
back to the directory when ail entries are non-busy. The
number of GDIR CAM rows117 that the GDIR CAM 104

can hold advantageously can be provided to be greater than
a maximum number of outstanding possible operations. The
writing back dirty GDIR CAM rows 117 in the GDIR CAM
104 can be delayed until a number of GDIR CAM rows 117
are ready to be written back Thus providing improved
performance, for example, in synchronous SRAMs, group-
ing writes into adjacent cycles reduces the bandwidth taken
up by writes to the SRAM.Also, a dirty GDIR CAM row
117 can be used by another data operation before being
written back to the global coherence directory GDIR 102.

FIGS. 2-6 are flow charts illustrating directory mainte-
nance methods in accordance with the present invention.
Referring now to FIG. 2, arbitration (ARB) for access to
GDIR 102 and GDIR CAM 104 start at a block 200.

Checking whether all GDIR CAM rows 117 orall indexes
in the GDIR CAM 104 are busy or dirty and more than onc
GDIR CAM row 117is dirty and not busy; or more than a
sclected number of, for example, three GDIR CAM rows
117 in the GDIR CAM 104 are dirty and not busy is
performed as indicated at a decision block 202. When
determined at decision block 202 that ali GDIR CAM rows

117 or all indexes in the GDIR CAM 104 arebusy or dirty
and more than one GDIR CAM row 117 or index is dirty and
not busy; or more thanthe selected number of GDIR CAM
rows 117 or indexes are dirty and not busy, then a high

09/02/2003, EAST version: 1.04.000QYOQAC Ex. 1017 Page 277

30

40

45

5 wv

60

65

4

priority writeback is performed with the scquential opera-
tions continuing following entry point W in FIG. 6.

Otherwise when determinedthat it is not true at decision
block 202 that all indexes in the GDIR CAM 104 are busy
or dirty and more than one index is dirty and not busy; or
more than the selected number of indexes are dirty and not
busy, then checking for a snoop data operation to process is
performed as indicated at a decision block 204. When a
snoop data operation to process is identified at decision
block 204,then the sequential operations continue following
entry point S in FIG. 3. Otherwise when a snoop data
operation to process is not identified at decision block 204
so that the global coherence directory GDIR 102is idle, then
checking whether the GDIR CAM 104 has more than one
GDR CAM row or index that are dirty and not busy is
performed as indicated at a decision block 206. When
determined at block 206 thatthe GDIR CAM 104 has more
than one GDIR CAM rowor index dirty and not busy, then
a low priority writeback is performed with the sequential
operations continuing following entry point W in FIG. 6.
When determined at block 206 that the GDIR CAM 104

does not have more than onc GDIR CAM row or index dirty
and not busy, then the sequential steps return to start block
200 with no operation as indicated at a block 208.

Referring to FIG. 3, when a snoop data operation to
process is identified at decision block 204, then the sequen-
tial operations continue following entry point S. Checking
for a GDIR CAM row ar index (M) and tag (N) hit is
provided as indicated at a decision block 300. When a GDIR
CAM row (M) and tag (N) hit is not identified at block 300,
then checking for a GDIR CAM row or index (M) hit is
performed as indicated at a decision block 302. When a
GDIR CAM row or index (M) hit is identified at block 302,
then checking whether all tags are busy at GDIR CAM row
(M) in the GDIR CAM is performed as indicated at a
decision block 304. When a GDIR CAM row (M)hit is not
identified at block 302, then checking for a global directory
tag (N) hit is provided as indicated at a decision block 306.
When a global directory tag (N) hit is not identified at
decision block 306, then the sequential steps continue fol-
lowing entry point I in FIG. 4.

Referring to FIG.4, following entry point 1 checking for
a GDIR CAM row with all tags not busy and not dirty is
Provided as indicated at a decision block 400. When a GDIR
CAM row with all tags not busy and not dirty is found at
decision block 400, then the congruenceclass is copied to
the identified GDIR CAM row as indicated at a block 402.

Then the sequential operations return following entry point
2 in FIG. 3. Otherwise when a GDIR CAM rowwith all tags
not busy and not dirty is not found at decision block 400,
then the snooped data operation is retried as indicated at a
biock404. Then the sequential steps return to start block200
in FIG. 2 as indicated at a block 406.

Referring again to FIG. 3, when determined at block 304
that all tags are basy at index (M)in the GDIR CAM,then
the snooped data operation retried as indicated at a block
308, Then the sequential steps return to start block 200 in
FIG,2 as indicated ata block 310, When determinedatblock
304 that all tags are not busy at index (M) in the GDIR CAM
and following an entry point 2 in FIG. 4, then checking for
a not busy tag (N) with an invalid state is performed as
indicated at a decision block 312. When a not busy (N) with
tag (N) having an invalid state is not found at decision block.
312, then tag (N) that is not busy and not invalid state is
castout as indicated at a block 314. Then the snooped data
operations’ tag is written to the GDIR CAM (M)andtag (N)
as indicated at a block 316. After the snooped data opera-

ii$

NOAC Ex. 1017 Page 278

=wwe

ectsSith

a

BoiEsasaggi
ataasas

5,749,087
5

tions’ tag is written at block 316 and when a GDIR CAM
index (M) andtag (N) hit is identified at block 300, the busy
(N) is set as indicated at a block 318. Then the scquential
operations continue following entry point 3 in FIG.5.

When a global directory tag (N) hit is identified at 5
decision block 306, then checking for a GDIR CAM row not
busy and not dirty is provided as indicated at a decision
block 320. When a GDIR CAM row notbusy and notdirty
is found at decision block 320, then the congruence class is

6

accumulating a predefined number of said congruence
classes including said updated directory entry in CAM;
and

wilting one of said congruence classes including said
updated directory entry in CAM back to the N-way
associative directary responsive to said accumulated
predefined number of said congruence classes includ-
ing said updated directory entry.

3. A method for maintaining a N-way associative direc-
copied to the identified GDIR CAM row as indicated at a 10 tory utilizing a content addressable memory (CAM) as
block 322. Then the steps continue at block 318 where the
tag busy (N) is set. When a GDIR CAM row with all tags not
busy and not dirty is not found at decision block 320, then
the snooped data operationis retried as indicated at a block
324. Then the sequential steps return to start block 200 in 15
FIG. 2 as indicated at a block 326.

Referring now to FIG. 5, following entry point 3, the
snooped data operation completes as indicated at a block
500. Thenit is determined whether a state change is needed
as indicated at a decision block 502. When determinedthat
a state change is nceded at block 502, then the GDIR CAM
is updated with the new state as indicated at a block 504.
Next the index (M) is set dirty as indicated at a block 506.
‘When determinedthat a state change is not needed at block
502 andafter the index is setdirty at block 506, then the tag 2°
(N) busy is reset as indicated at a block 508. Then the
sequential steps return to start block 200 in FIG. 2 as
indicated at a block 519,

FIG.6 illustrates writeback control flow for writing dirty ,
catries of GDIR CAM 104 back to GDIR 102. The write-
back steps begin following cntry point W in FIG. 6 with
sclecting a dirty and not busy index to write back, index (A)
as indicated at a block 60@. The congruence class addressed.
by index (A) is written to the GDIR 102 as indicated ata ,
block 602, Then the GDIR CAM 104 is set to not ditty for
Index (A) as indicated at a block 606, Then the sequential
steps retum to start block 200 in FIG. 2 as indicated at a
block 606.

While the present invention has been described with 49
reference to the details of the embodiments of the invention
shown in the drawing, these details are not intended to limit
the scope of the invention as claimed in the appended
claims.

Whatis claimed is:
1. A method for maintaining a N-way associative dircc-

tory utilizing a content addressable memory (CAM) com-
prising the steps of:

identifying a data operation to process;
identifying a congruence class from the N-way associa- So

tive directory including a directory entry for said data
operation; said congruence class directory entry includ~
ing multiple (N) directory entries for each associativity
class;

treading sald congruence class from the N-way associative 5
directory and writing said read congruence class into
the CAM;

locking said directory entry for said data operation in

recited in claim 2 further includes the step of responsive to
writing said congruenceclass including said updated direc-
tory entry in CAM back to the N-way associative directory,
smarking said congruence class directory entries in CAM as
not busy and not dirty, whereby said CAM entry can be
reused.

4. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 2 wherein said step of writing said apdated

20 congruence class directory entry in CAM back to the N-way
associative directory includes the steps of:

selecting an index in CAM to write back; said selected
index being an index set dirty and not busy;

writing said congmicnce class in CAM back to the N-way
associative directory addressed by said selected index;
and

resetting said dirty indication for said selected index in
CAM.

5. A method for maintaining a N-way associative direc-
0 tory utilizing a content addressable memory (CAM) as

recited in claim 1 wherein said step of locking said directory
entry for said data operation in CAM while said data
operation is pending includes the step of sctting a busy
indication for a tag associated with said data operation and

5 resetting said busy indication for said tag associated with
said data operation when said data operation is completed.

6. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 2 further includes the step of:

identifying an idle state for the N-way associative direc-
tory,

identifying a second predefined number of said congru-
ence classes including said updated directory entry in
CAM;and

writing a selectedone of said congruence classes includ-
ing said updated directory entry in CAM back to the
N-way associative directory responsive to said identi-
fied second predefined number of said congmence
classes including said updated directory entry in CAM.

7. A method for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 6 whercin said step of identifying said idle
state for the N-way associative directory includes the step of

., identifying no data operations to process.
8. Apparatus for maintaining a N-way associative direc-

tory utilizing a content addressable memory (CAM) com-
prising:

means for identifying a data operation to process;
CAM whilesaid data operation is pending; 60 meansfor identifying a congruence class from the N-way

checking for a state change when said data operation is
completed; and

updating said directory entry for said data operation in
CAM responsive to said identified state change.

associative directory including a directory entry for
said data operation; said congruence class directory
entry including multiple (N) directory entries for each
associativity class;

2. A method for maintaining a N-way associative direc- 65|means for reading said congruence class from the N-way
tory utilizing a content addressable memory (CAM) as
recited in claim 1 further includes the steps of:

09/02/2003, EasT version: 1-04-00044c Fx, 1017 Page 278

associative directory and for writing said read congru-
ence class into the CAM;

NOAC Ex. 1017 Page 279

beby

oe

aSoe74
Peltsrwfat

LiMaa99045,WIA
brares

ae*aoerae

5,749,087
7

means for locking said directory entry for said data
operation in CAM while said data operation is pending;

means for identifying a state change when said data
operation is completed; and

means for updating said directory entry for said data
operation in CAM responsive to said state change
identifying means.

9. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 8 wherein said congruence class in CAM
includes a single index.

10. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 9 wherein cach said multiple (N) directory
entries for each associativity class includes a tag and an
associated state.

1L Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
tecited in claim 10 wherein said means for updating said
directory entry for said data operation in CAM responsive to
said state change identifying means includes means for
updating an associated state with a tag of one of said
multiple (N) directory entries for said identified data opera-tion.

12, Apparatus for maintaining a N-wayassociative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 11 farther includes meansresponsiveto said
state change identifying means for setting a changed indi-
cation for said index for said congruence class in CAM.

13. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 11 futher includes means for accumulating
a predefined number of said congruence classes including
said updated directory entry in CAM;and means for writing
back at least one of said congruence classes including said
updated directory entry in CAM to the N-wayassociative

8

directory responsive to said accumulatedpredefined number
of said congruence classes including said updated directory
entry in CAM.

14. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 13 further includes means responsive to said
congruence class writing back means for marking said
multiple directory entries (N) in said at least one congruence
class in CAM as not busy andsaid at least one congmence
class as not dirty, whereby satd CAM index can be reused.

15. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 12 wherein said means for writing back at
least one of said congruence classes including said updated
directory entry in CAM to the N-way associative directory
include means fer selecting an index in CAM to write back;
said selected index being an index set changed and said
multiple directory entries (N) in said congruence class in
CAM set as not busy; means for writing said congruence
class directory entry in CAM back to the N-way associative
directory addressed by said selected index; and means for
resetting said changedindication for said selected index in
CAM.

16. Apparatus for maintaining a N-way associative direc-
tory utilizing a content addressable memory (CAM) as
recited in claim 15 further include means for identifying an
idle state of the N-way associative directory; means for.
identifying a second predefined number of said congruence
classes including said updated directory entry in CAM;said
second predefined number being less than said first pre-
defined number; and meansforwriting a selectedone of said
congruence classes including said updated directory entry in
CAM back to the N-way associative directory responsive to
said identified second predefined number of said congruence

5 classes including said updated directory entry in CAM.
ee ee?

NOAC Ex. 1017 Page 280

United States Patent 1:91

i] 3,949,369

Churchill, Jr. [45] Apr. 6, 1976

{54] MEMORY ACCESS TECHNIQUE Primary Examiner—Gareth D. Shaw
hil Assistant Examiner—James D. Thomas[75] Inventor: Cutie, rid ch 5 I» Attorney, Agent, or Firm—Jacob Frank

{73} Assignee: Data General Corporation, :
Southboro, Mass. {57} ABSTRACT

[22] Filed: Jan. 23, 1974 in a digital computer system having a main memory
. operable at a first speed, a high speed buffer operating

{21} Appl. No.: 436,023 at a second speed for temporarily storing selected por-
tions of the main memory, an associative memory for

[52] UG. Ch oeecsenetesencsneceensanennenetene 340/172.5 temporarily storing selected main memory addresses
[51] Ent. CL... .. GO6F 13/00=and comparing the stored addresses with a newly re-
[58] Fleld of Search...eee 340/172.5 ceived address in a read/write operation to generate

comparison data, a read only memory a bit configura-
[56] References Cited tion reflecting an algorithm, connected to the associa-

3,275,991 9/1966
3,292,153 12/1966
3,333,252 7/1967
3,339,183 8/1967
3,344,405 9/1967
3,693,165

UNITED STATES PATENTS

FAST MEM

ict“cor4>0EME

Rasy
Resy

QINGT2=—-Reiley0...esseeeeeeceeee

ae 340/172.5
340/172.5

wee. 340/172.5
sees 340/172.5

-- 340/172.5
340/172.5

tive memory for gencrating a new order of priority for
the memory address stored in the associative memory,
and a storage unit connected from the read only mem-
ory for storing that order of priority for subsequent
feedback to the read only memory in a subsequent
cycle as a previous orderofpriority.

7 Claims, 6 Drawing Figures

CONTENT ADDRESSABLE
MEMORY rena

429 428 CWS
saad hee

(cam) 4

BLOCK ADR &
VALIDITY BIT

(41 BITS + ¢ OT WALID)

MEM ADR REG
33

NOACEx. 1017 Page 280

BETRenetreeveettener

NOAC Ex. 1017 Page 281

. 2amoe

FIG. 1

RASV
RBSV

ncopapsZM=s
FAST MEM.

(CACHE)
32

RA, RB

READ MEM ADR.

MATCH

4 WORDS
MEM OATA

CONTENT ADDRESSABLE
MEMORY

4x4 4x9 4x?
(CAM) 34

LOAD CACHE ADR

BLOCK ADR &
VALIDITY BIT

PRIORITY (It BITS + | BIT VALID)
REGISTER MEM

38 . MEM ADR REG CONTROL
33 | LOGIC 5)

MEM ADR BUS

9L61‘9TUdy§=yuayed“SN-
¢Jo|19945

69€616'E

NOACEx. 1017 Page 281

NOAC Ex. 1017 Page 282

3,949,369Sheet 2 of 51976U.S. Patent April 6,

tientseeeermetannerygoreisonetenerenrmernnsnmteettininermsinnmnrancistininnnnninesninshiniiiiiitaAONSY

snawavWaW

 wav»BBinm3HOv9moOZg=avon=|id|w
22GialraTST

Beo3yALivoidds1¢1e1e7r2z10n

a
cat
Cal

cael
NIVWOL

=ul
=

a
=

iriyOov3HOVDavor

vyavoni)
4

W3WLia2l-AvayyLIG-¥Nnddaleeeet—
Asvu

a2&SHOWSafSvuHOLYabl~~|2‘Oy

‘dYOM-"NOd

FoayFoayoH]
AS8Y

NOACEx. 1017 Page 282

NOAC Ex. 1017 Page 283

FIG. 3

READ

FROM MEM ADR BUS

U.S. Patent Apri6,1976 Sheet3o0f5 3,949,369

BUMP LR

MATCH LRU ADR
ADR

CAM
EQUALITY

READ

LOAD CACHE
LRU WITH

NEW ADR

LOAD
CACHE

FR. MAIN
MEM AT

LRU ADR

PUT ON MEM DATA BUS

NOACEx.1017 Page 283

NOAC Ex. 1017 Page 284

pS -U.S. Patent April 6, 1976—Sheet 4 of 5 3,949,369

FIG. 4

WRITE

FROM MEM ADR BUS

MEM SELECT BUMP LR

LRU ADR

CAM
EQUALITY

SEARCH

 CACHE
FR. MAIN
MEM AT

LRU ADR
fe MEM DATA BUS

NOACEx. 1017 Page 284

<8pretypn9pmaanetemneeeRtetmleRRETETRTTAEERnAATORtterfaeNtrrRPSehimnntmninnyRttyenHENUHH
Lanmismeemetenteernomrirenyrmari

NOAC Ex. 1017 Page 285

SEieaths
Poe PhtPi:mS

-U.S. Patent April 6, 1976 Sheet 5 of 5 3,949,369

FIG. 5

READ NEXT
ADR. ADR.

READ LOAD READ‘ t

MEM SELECTJLtLs
i |

'

BUMP LR 1sa

FIG. 6

WRITE NEXT
ADR. WRITE ADR.

WRITE LOAD COMMAND LOAD5
I

! FROM PREVIOUS READ iMEM SELECT fo
J RA SAVED FROM CAM LOCATIONTO BE REMOVED

LOAD RA
NO LOAD RA
OR BUMP LR

 BUMP LR NS i
' UPDATES PRIORITY REG.

REMOVE(INVALID)at RESET AT
NEXT READ

REMOVE SV i DATA _BUS~GENERATES NEW, LRU
LOAD CACHE ADReele!

Cc UPDATES CAM WITH LRU
$

1

MATCH SV | I*Ninoieares MATCH
I

NOACEx. 1017 Page 285

AENDieahAMpane9eataeanneeeeththeteee

NOAC Ex. 1017 Page 286

3,949,369
1

MEMORYACCESS TECHNIQUE

CROSS REFERENCE TO RELATED
APPLICATIONS

Filed simultancously with this application is a patent
application assigned to the same assigneeas this appli-
cation andis identified as Ser. No. 436,022 filed Jan.
23, 1974 for Automatic Data Priority Technique and,
entitled Automatic Data Priority Technique by Joseph
Thomas West. .

1. Field of the Invention
The field of art to which the present invention per-

tains is to memory systemsin general and,in particular,
to the improvement of memory systems utilizing high
speed buffers for establishing a storage hierarchy.

2. Description of the Prior Art
Access to memories of high speeds is of utmost con-

cer in order to provide for the rapid processing ofdata
and to take advantage of the highspeed CPU systems
available today. One manner of achieving increased
memory speed iz providing for a-memory hierarchy
scheme where a large slow memory and a small fast
memory are connected to a central processing unit
(CPU). The fast memory, commonly known as a cache,
serves as a window for the CPU to look at slow mem-
ory. Data from slow memory iz loaded in the cache in
quantities of usually several words (or bytes) at once in
anticipation that subsequent memory request will be
for that data, ff 20, then memory speed is increased by
serving the CPU from the cache.

A memory system of this type requires management
which has to determine: first, whether a CPU request
for memory is in cache andif 10, where; second, if not
in cache, at what location in cache is the data from the
slow memory to be loaded; third, how does the CPU
modify fast and slow memory, and; fourth, how is the
system to be initialized on power-up.

Inherentin the cache scheme is an associative mem-
ory which contains the address of data in the cache as
related to the slow memory. This associative memory is
effectively implemented as a contentaddressable mem-
ory (CAM) which provides for a simultaneous search
of all its locations to determine if the data desired by
the CPUis in the cache, and if so, where.

Amongtheseveral items governing the performance
of a memory system of the type being discussed, ia the
ratio ofspeed between the slow memory and the cache.
This also may te determined by the relative size of the
cache and slow memory. Once 2 cache size and speed
is selected that provides the desirable performance,the
problem arises as to how to derive an efficient method
of replacement of old words in cache with new ones.

If the system is to operate efficiently, replacement of
data in the cache must be carefully accomplished. Al-
though a complete knowledge of program behavior
would produce the ideal replacement, this may be im-
practical because of the economics involved. A good
approximation is to replace ‘the least recently used
entry. This will require maintaining a priority which is
updated at each memory actvess. Efficiency can be
further improved if invalidated addresses can be placed
at the bottom ofthe schedule so they can be replaced
first without destroying the valid entries.

SUMMARYOF THE INVENTION

Accordingly, an object of the present inventionis to
provide an improved high speed memory system by

0

25

30

35

40

45

implementationofa least recently used technique hav-
ing a bit configuration representing an algorithm, with
an associative memory to keep track not only of the
least recently used word, butin addition,to establish an
order of word state priority for manipulating cache
stored data, allowing a data priority locating scheme to
be dynamically updated as new usage information be-
comes available.

Another object of this invention is to provide a pro-
grammed word state priority order based on usage that

normally not affected by effecting storage operations
in main memory.

A further objectofthe present inventionis to provide
a programmed word state priority based on usage,
which when containing an address location in an asso-
ciative memory that is subsequently written into in
main memory, invalidates the associative memory.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is an overall block diagram of the preferred
embodiment of the invention.

FIG. 2 is a circuit diagram of the CAM 34, program
logic array 35 and priority register 36, and portions of
memory control logic 37, shown in FIG. 1.

FIG. 3 is a flow diagram depicting the sequence of
events in the present invention in a read cycle.

FIG. 4 is a flow diagram depicting the sequence of
events in the present invention in a write cycle.

FIG. 5 is a series of time based waveforms illustrat-

ing, with certain signals, the manner ofoperation of the
invention during a read cycle.

FIG.6 is a sericea of time based waveforms illustrat-

ing, with certain signals, the manner ofoperation ofthe
invention during a write cycle.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference to the drawings, a block diagram
generally describing the present invention is illustrated
at FIG. 1, wherein there is shown a main semi-conduc-
tor memory 31 having a cycle time, for example, of600
ns and a smaller fast semi-conductor memory 32, gen-
erally referred to as a cache, having a cycle time, for
example, of 100 ns to 200 ns. Main memory 31 is con-
nected from the memory data bus and, in addition,
from a memory address register 33, the latter in tum
connected from the memory bus.

Connected from the memory address on register 33 is
an associative memory in the form of a content ad-

SO dressable ‘memory (CAM) 34, which is designed to

55

compare data onits inputs with data already stored in
its memory and indicates a match when these data are
identical. This equality search is performed on all bits
in parallel. The stored data is four 12-bit words and the
signal input is one eleven-bit word from the memory
address register 33 and a validity bit 33. The outputs of
CAM 34 include a match signal to a cache memory 32
and the main memory 31 and, in addition, an address
denoted as RA and RB, designating a fast memory

© location in cache 32.
The main memory 31 is also connected for loading

the cache 32 with four words or one block of memory
data when instructed to do so. The WA and WB signals
which are supplied to the cache 32 will always denote

65 the cache address where the data from main memory is
to be written, whichis to be described in greater detail.
This signal might also be called the LRU,as it identifies
the location ofthe least recently used data in the cache

NOACEx.1017 Page 286

g
t

}
|

I
i

NOAC Ex. 1017 Page 287

“ a situ!

_ 3
mand then the cache address to be loaded, should

tation call for loading of the cache. The LRU sig-
js also supplied to an input of the CAM to update

the least recently used data location of the CAM with
the main me
 nthe cache. .

The LRU is derived from a program logic array 35
’ which might comprise of a selected combination of

gates or a read only memory (ROM). The

algorithm is such that not only will the least recently
used word be known, butalso the next to least recently

word and so forth. This allows the LRU algorithm

mory address of the new data that is loaded 5

3,949,369
4

formation, enabling it to be re-circulated during the
next cycle back into the program logic array 35.

The memory control logic 37 is connected to each,
cache 32, main memory 31, CAM 34, program logic
array 35, and priority register 36, to ensure that the
proper sequence of information handlingis maintained,
as will become evident hereinafter.

A more detailed description of CAM 3, priority
register 36, and program logic array 35, may be seen

logic array defines an LRU algorithm for the !® with reference to FIG. 2, wherein there is shown 2 four
four word associative memory or CAM 34. The LRU word, four-bit array and 12 bit CAM 34 comprising

units 41, 42 and 43. Four input LRU Icads to each of
these units contain LRU information and four other

leads to these respective units comprise three sets of
see dynamically updated in terms of a time and usage !5 four bit inputs mutually denoted as M,, M, and My. The

= basis us newly used information becomesavailable. In
the present embodiment, since four words of data are
to be used with the CAM 34 and cache 32, these might
be defined as the MRU (most recently used), NMRU

outputs of the memory address register 33 comprise | 1
bits, representmg the signal received from the memory
address bus, identifying the location in main memory
31 at which data is to be read in or written out. The

(next most recently used), NLRU (next least recently 20 twelfth bitis a validity bit to denote a validity condition
used) and LRU (least recently used).It is evident, that

” for these four words there are 24 possible states of the
> algorithm defining 24 distinct combinations of four

word arrangements, depending upon the order ofprior-

of the signal written in and therefore if written invalid,
the other 11 bits will be ignored. Each of the three units
41, 42 and 43 are also fed with a LOAD CACHE ADR
signal which, when enabled, allows the LRU identified

ities ascertained. 25 address in CAM 34 to receive the newly entered main
In order to dynamically update the algorithm, it is

necessary to know the state or order of priority of the
immediately previous combination of four words, as
well as the address in CAM 34 of the new information

memory address from memory address register to up-
date the units 41, 42 and 43,

The program logic array 35 is shown in the form of
two read only memories, ROM 44 and ROM 45, each

loaded from the memory address register 33. The WA 30 having common inputs including: L, through L, from
and WB signals on the LRU lead denote the address
location in the CAM 34 of the newly entered main
memory address and the corresponding location in
cache 52 of that address data for the newly entered

the priority register, T, + CT, RASV and RBSV, and;
REMSYV.The signal REMSV to be discussed hereinaf-
ter will indicate whether a CAM stored main memory
address is to be invalidated or not. One possible pro-

information. The RASV and RBSV tignals are delayed 35 gram logic array table for the ROM's is shown on the
versions of the RA and RB signals, as will be discussed
hereinafter, to identify the locations in the CAM,if
any, which the new information matches. The informa-
tion as to the absence of a match or if a match was

following page, where given each of the 24 different
word state orders ofpriority is a binary output on leads
L, through L,. An octal output is provided for the cight
binary output values on the leads of the combined

matched,all contribute to re-establish the new order of 40 ROM’s 44 and 45.

Actual Word
States.

1230
1320
2130
2310
3120
3210
0231
0321
203!
2301
3021
3201
0132
0312
1032
1302
3032
3102
0213
0283
1023
1203
2013
2103

PROGRAM LOGIC ARRAY WORD STATE TABLE
Output Output

L, Octal Codeia 7” f 7 £

eeememOOOOOOmammaGOOCOS =——=§BOOBHKOSO==KHOOOR=awOOS° HOOKORGORKOKOOKKOKCoenOlfF OemOwOeOwOwOwGHOnO=-O~"0-6— eeeeeoeOOOOLO aeraeeOOCOSCSameem aaeemeOOOoOcoz=aeeamaeeeeeamm COSCCCOKBsmeeeweeaameeee= a

Priority for determining the new LRU data. As may be
Seen, the priority register is utilized for temporarily
Storing the immediately previous order of priority in-

iu

In addition, there is a portion of one possible ROM
truth table on the following page showing previous
priority state possibilities and the variations of the in-
puts RASV, RBSV AND REMSValong with the octal

NOAC Ex.1017 Page 287

AOMeenatn

WaraAtt.mmenrciteentnntntin,tmtorntentsnnaeetehtetilledeePhas8ialdmishdievoresneonsgvwsweue
neemerrants

NOAC Ex. 1017 Page 288

3,949,369

§
output code for each output state depending on the
variation of the input signals. The octal input on the
following page is based upon the following put signals
in a left to right order: LR1; LR2; LR3; LR4; LRS +
LR6; RB; RA; REM.For example, in word order 0132, 5
the Octal Input for Octal Output 047 wouldread left to
right 000 10 000.

ROM TRUTH TABLE
Word Octal Octal Word Octal Octal
Order Input Output Order Input=Output
0132 020 047 1032 060 047

021 035 . 1 035
022 253 062 353
023 O75 063 075
024 035 064 a7s
023 336 065 356
026 236 066 276
027 135 067 155

1230 030 027 2130 070 067
031 236 o71 256
032 313 072 343
033 027 . 073 027
034 iis O74 115
035 067 a7s 067
036 36 . O76 356
037 127 O77 147

0312 040 127 1302 100 047
o4l 055 iol 035
042 253 102 333
043 o7s (03 1s
044 055 104 its
G4s 273 105 067
046 236 106 276
047 135 107 155

1320 0s0 047 2310 110 107
os! 035 a 233
052 353 112 313
033 047 113 027
054 ins 114 155
055 067 us 107
056 36 16 356
0s7 7 7 147

When REMSV is true, it indicates a write instruction
had occurred and address was matched at the zero
location in the CAM 34 so that the zero location had to
be invalidated and made the LRU as new information is

to be written into that main memory address.
With reference to the above table, it will be seen that

given an order of priority of 0132 for locations in the
CAM 34 and cache 32, a different order or priority
output (octal code) will result for different RASV,
RBSV and REMSV signals. If RASV and RBSV are
both zeros and REMSV is true, the new order of prior-
ity is changed to 1320 represented by octal code 047.

If this were not done,it can be readily observed that .
confusion might occur during the reading of subse-
quentinformation. When REMSY is false, information
is not to be invalidated. However, since the zero loca-
tion is the one that is matched and active, the same
order of priority 0132 is maintained 2s is represented
by the octal output 035 which can be verified by look-
ing at the illustrated program logic array word state
table above.

The four outputs from ROM 44 and the two outputs
L, and L, from ROM 45, are connected back into the
priority register 26 L, to L, to the inputs of ROM’s 44 60
and 45, for allowing this information to be used during
a subsequentcycle to establish a new set order priority
should the signals RASV, RBSV and REMSVrequire
such.

As will be noted, the signals L, and L, in being re-
tumed to ROM's 44 and 45 are returned via a NOR

gate 46. Furthermore, the REMSVsignal from a regis-
ter 47 is entered into ROM’s 44 and 45 only uponthe

presence of a change in the orderof priority, as when
the address of information to be written in main mem-

ory matches a CAM address that CAM address is to be
invalidated and made the LRU. The DATA TO BUS

signal is used to clear the REMSVonthe next cacheaccess.

It is also noted,signal BUMP LRtriggers the priority
register to enter into the ROM’sthe old priority order
and then receive the new priority order for the next
cycle in a mannerto be hereinafter discussed.

The output of the CAM 34, including units 41, 42
and 43 provide, via an inverter coupling OR gate 50and inverter 49, 2 MATCH AND MATCH indication
respectively denoting whether or notthe 11-bit address
received from the memory address register is common
to any oneofthe four word, |2 bit arrays stored in the
CAM.Signals RA, RB denote the CAM location of the
address of the data as to which a match has been de-

tected. The signals RA and RB which are respectively
derived from NAND gates 49 and 51 are mutually
routed to registers $2 and 53, so that the signals RA
and RB can be stored and supplied as RASV and RBSV
during a successive cycle depending on whether the
conditions entered into C input of the registers 52 and
§3 are met.

As will be seen, memory control logic 37, upon the
presence of a read and match false signal, will enable
an AND gate 59 connected to one input of a NOR gate
$1, the second input of NOR gate 61 supplied from an
AND gate 62 having write and match inputs. These two
inputs to NORgate 61 generate a LOAD CACHE ADR
signal. The output of AND gate 62 also provides a
signal which may be denoted as BUMP LR. The write
signal supplied to an input ofan AND gate 63 is a write
signal and MATCH signal to generate an output RE-
MOVE. Other signals that are conventional put out bythe memory control logic include aDATATOBUS
signal denoting that data has been put on the memory
data bus. A reset signal for a resetting condition is also

and a MEM SEL signal is generated denoting
the loading ofan address from the memory address bus
into the m address register 33. A RESET SV
signal is also delayed for a subsequent cycle.

The BUMP LR signal from AND gate 62 occurs
when the CAM has indicated a match in a WRITE

condition. BUMP LR will also occur from the memory
address register 33 in the form of a delayed load RA,
whereby load RA denotes a previous READ operation
with data loaded into the memory address register from
the memory address bus. Thus, BUMP LR always en-
ables the priority register to load the ROM's each time
an operation has been effected in CAM 34 in a READ
condition and a match occurs in a WRITE condition.
No BUMPLR signal occurs when in a WRITE opera-
tion and match is false.

The various signals fed into the NORgates 55 to 58
which are connected to AND gate 54, establish the
condition LOAD RA which is generated immediately
following the MEM SEL signal that occurs with a
READor WRITE signal at the loading of the memory
address register.

OPERATION

The operation of the present invention will now be
discussed in connection with the flow diagrams for
READ and WRITE conditions respectively depicted in
FIGS. 3 and 4 and the waveform diagrams for the
READ and WRITE conditionsrespectively depicted in

, NOACEx. 1017 Page 288

NOAC Ex. 1017 Page 289

re . 3,949,369
7 7 8

5.5 and 6. address from the memory address register, but the
‘ AG an assumption will be made that aREAD con-_priority register is not changed atall.

Fs anton exists where the computer is reading the address This, however, will not be the case when a MATCH
eT Giata word thatis stored in the cache. The memory_occurs in the CAM during a WRITE operation. Again,

ofa of the data is read into the memory address 5 a loading of the main memory 31 at the memory ad-
are 33 from the memory address bus and then fed=dress from the memory ‘address register. As may be

the CAM 34 on level line M1, MZ and M3. The seen with reference to FIGS. 4 and 6 at the MEM SEL
has already been updated at the leading edge of signal, the memoryaddress register is loaded. If a

RA with the previous LRU address information match occurs, the signals RASV and RBSV denoting :
- from ROM 45.In the CAM,an equality search is made 10 the CAM location of the match cause that location to

address and the four memory addresses stored be made the LRU location upon thepresence of a
= in the CAM to ascertain whetheror not a match exists. REMSVsignal.At the same time, the REMOVE signal :

Acsuming a match is detected, this indicates that the _t the twelfth bit of the memory address register causes
, address is already in the CAM and therefore the address loaded into the CAM at thatlocation where i

the corresponding memory data is stored within the 15 2 match occurred to be invalidated, as the same mem- '
cache. Upon occurrence of a match,a match signal is ory address has now been used for a write entry.

tout of Inverter 48 and signals RA An interesting aspect of the machine. may be seengenerated at the output of hate with reference to when the computer would say“write
ass RB are also generated toidentify at which one of veren nom *Le four locations in the CAM a match occurred. The ,. Something in a location” and then “readfrom that
Batch location in terms of RA and RB is set into regis- 7° Same location.” What happens to the priority table in
°°, ters 52 and 53 to be saved for updating the priority this case is thatit never changes. For example,if one
12yepister after this read cycle. At the same time, signals WOuld consider the©case whecomputerow

> RA and RB identify the location of the data in the location,itPuts addressread i praniters
cache 32 which is to be read out onto the memory data 5, The ie it the most recently m termsOfpriority.- immediately next period when it goes to write in

Bx: . bus. The BUMP LR signal, as may be seen from FIG.5, that i ion, it ines that“** which is LOAD RA delayed, enables the priority regi- = same mani adresslocainthedemi vali.
"ter 36 to store the order of priority generated during 430°thatIacation 1o makeit theleast recently used in .

the present cycle. At the beginning of the next cycle, oOaext occasion ie to '
‘the RA and RB CAM location match saved from the 39 rsdthat kame location,it will now read fromthesame ;

Za... previous cycle is generated and together with the sig ain memory addressand load that CAM location
<<." nals L, through L, from priority register 36 are fed (which is now the least recently used) and makeit the |: % i

\

|

into

along with REMSV to ROM’s 44 and 45. The informa- locatio is eviden‘7 tion at the output LRU leads of ROM 45 is represented seoneegovs back and forth Tatviet ie Inport
Eiy, by WA and WB and is available for inputto the CAM 35 that the other entries in the other three addresses in theV2" 34 allowing the CAM 34 location of the LRU informa- a :
eS ig the ath CAM are undisturbed so that once a program stream is

Gi__tion to be identified for loading in a memory addressof finished with this sort of re-cycling operation, it can
3... ew information upon the presence of a LOAD proceed with previously stored information occurring
we’3 CACHE ADRsignal. The LRU information i ; '; ‘ signal n repre- before the re-cycling already in the cache.

a sented by the WA and WB signals also is available for 49 it should be noted, that in a “power-up” condition,
Se, input to thecache 32 to identify the location im the ait’ the data in the cache is automaticallyinvalidated by

cache at which data is to be read into fromthe main automatically setting all valid bits to false. This is ef-
bade memory 31, ina manner hereinafter to be discussed. fected for the reason that when power-up condition

Next, assuming that the computer reads a word—occurs, because of the fact that the cache and CAM
which is not in cache, instead of having a MATCH 45 used are semi-conductor memories and therefore will
output, a MATCH outputis generated at the output of=nower up in a random state.It should be evident from
CAM 34. This output enables main memory to load the the occurrence ofpower-up, that although the CAM is

2, data at the address specified at the memory address completely invalidated,it is forced to a pscudo-priority
Mss‘ Tegister into the cache 32. The cache location in which —_—_g that one can never have the same two words in cache
ZS=the dat is loaded is indicated by WA and WB which 50 simultaneously.

‘¥"—Tepresentthe location of the LRU information from the This occurs as a consequence of the proper use of the$B. ast cycle. This data is then read out of the cache onto determinations MATCH and MATCH, whereby in a
date the memory data bus. The MATCH signal also intums ==©CAM match, the order of priority of the addresses
ques=BeNerates the signal LOAD CACHE ADRto load the already within the priority register is properly updated

» CAM with the new memory address information in the 55 by the ROM’s 44 and 45 which consider the new loca-
LRU/CAM location. This, of course, occurs before the tion of the newly entered memory address which
BUMP LR signal causes the priority register to store—_caused the MATCH signal to occur.

“#7: the new order of priority. As may be observed from the above, the two bits
a If REMSVis false, no invalidity of the address occurs RASVand RBSV comprise information for causing the
am...: and then the priority of the signals is changed so that 60 ROM’s 44 and 45 to the arrangement of the order of

the previousleast recently used location in the CAM is—word state priority stored in the priority register,
_ Provided with the new memory address and made the—whereas the last bit or REMSV is used to invalidate,if

‘/ Most recently used location and the previous next to —nnecessary, information stored in a specific location of
recently used location is now denoted as the LRU the CAM.

it- _—tecation. 65 Whatisclaimed is:
7 Next, assuming that a WRITE condition exists, if the 1. In a digital computer system having 2 main mem-
es Memory address information is not matched in the ory means operable at a first speed, a high speed buffer

CAM 34, the data is written into the main memory _ Means operating at a second and higher speed for tem-

in INOAC Ex. 1017 Page 289

NOAC Ex. 1017 Page 290

h

3,949,369

invalidating means for invalidating the address stored
in the associative memory means and identified as
the least recently used in response to an output
generated by said logical circuit means output.

4. In a digital computer system according to claim I
wherein said means for generating comparison data
includes logic means for identifying for a matched ad-
dress, both its presence and the associative memory

porarily storing selected portions of the main memory
means, and associative memory means for temporarily
storing selected main memory addresses and compar-
ing the stored addresses with a newly received address
in a read/write operation to generate comparison data,
the improvement comprising

read only memory means having a bit configuration
representing an algorithm and connected to said
associative memory means and responsivein a read
operation to both said comparison data and data
representative of a previous order of priority for
said stored address, to provide an output represent-
ing a new order of priority for the memory ad-
dresses stored in the associative memory means,
and;

storage means connected from said read only mem-
ory means for storing said output and connected
for subsequent feed back to said read only memory
means as the previous order of priority.

2. In a digital computer system according to claim 1
including

logical circuit means responsive to a write operation
in main memory and a comparison output indica-
tive of an associative memory matched address
comparison for generating an output, and;

said read only memory means responsive to said
logical circuit means output, for defining the
matched address location in the associative mem-
ory means as the least recently used location during
a successive read operation.

3. In a digital computer system according to claim 2
including

5

30

35

40

45

50

55

65

means location.

10

5. In a digital computer system according to claim 4
where the logic means includes

register means connected to said read only memory
means for storing the location identified in the
associative memory means of a matched address
fromafirst read/write cycle for a subsequent read/-
write cycle.

6. In a digital computer system according to claim 1
wherein the output representing the new orderofprior-
ity provided by said read only memory means is defined

a first set of signals onafirst set of leads connected to
said storage means, denoting an order ofpriority of
the memory addresses in the associative memory
means,and;

a second set of signals on a second set of leads con-
nected to said storage means and associative mem-
ory means, denoting the least recently used loca-
tion of the associative memory means.

7. In a digital computer system according to claim 6
wherein said first set of leads is connected to said stor-

age meansand said second sect of Jeads & connected to
said associative memory means.= s. *¢ ©

NOACEx. 1017 Page 290

é

BeenealRinnciinhienLaMontNenaAaLeaaIHIRAMnerYeNelda:atheetonattainsoutBinMtingTonniesmeeeae

NOAC Ex. 1017 Page 291

isataal

pease?teey,9

ai
seasve:tte

sy

United States Patent 1»
Houseman etal.

4,559,618
Dec. 17, 1985

{11) Patent Number:

45) Date of Patent:

[54] CONTENT-ADDRESSABLE MEMORYMODULE WITH ASSOCIATIVE CLEAR

David L. Hovseman, West Chester,[75] Inventors:
Pa. Paul Bowden, Raleigh, N.C.

[73] Assignee: Data General Corp., Westborough,Mass.

[21] Appl No.: 417,801

[22] Filed: Sep. 13, 1982

[SU] Tint, Ct oneeeeeeencescnerctantnnensnansne GNC 13/00-
[52] U.S. CL. 365/49; 365/230
[58] Field of Seared--.---sesssrcssssoes 365/49, 230

[56] References Cited
U.S. PATENT DOCUMENTS

3,997,882 12/1976 Goyal-.srscssscsnsncsnsessssrerene 365/49
. 4,296,475 10/1981 Nederlof et al.wn 365/49 X

Primary Examiner—Joseph A. Popek
- Attorney, Agent, or Firm—Gerald Cechony; Joe} Wall

[57] ABSTRACT
A content-addressable memory module which performs
an associative clear operation in response to a clear
signal provided on a clear line. The associative clear
operation simultaneously clears all registers in the con-
tent-addressable memory module whose contents
match bits in a pattern input to the content-addressable

INTERNALADDRESS.LINES 115

EXTERNALADDRESS
LINES 113 (od

 OE WE aroo $35
CONTROL
LINES i29

memory module. A mask input along with the pattern
determines which bits of the pattern are significant for
the match. Each cegister in the content-addressable
memory module has a bidirectiona! match line associ-
ated with it. A register’s bidirectional matchline carries
a matchsignal onlyif that register contains data match- - -
ing the pattern bits specified by the mask and the bidi- *
rectional matchline is receiving a match signal from an
external source. Clearing logic associated with each
register clears the register when a clear signal appears
onthe clear line while the register's bidirectional match~.
line is carrying a match signal. In content-addressable |
memories constructed of such content-addressable ©
memory modules, memory match lines connect match
lines associated with a number ofregisters. The memory
match line and all cf the match lines connectedtoit ©
carry matcli signals only if each of the registers associ-
ated with the match lines contains data matching the
pattern and mask jnput to the content-addressable mem- -
ory module containing the register. The content-
addressable memory module further contains logic al-.
lowing the use of encoded addresses to address individ-
ual registers in the content-addressable memory mod- |’
ule. .

38 Claims, 14 Drawing Figures

INTERNALMATCHLINES 121

ha
iar

NOACEx. 1017 Page 291

NOAC Ex. 1017 Page 292

.

U.S. Patent Dec. 17,1985 Sheetlof14 4,559,618 .

MASK LINES E127eae

DATA

¥(8) OUTPUT

DATA LINES Y-
INPUT ‘m) iSLINES D y 119

117

. INTERNAL

INTERNAL CLEARLINES
ADDRESS 123 .
LINES II5 .

INTERNAL
MATCH

LINES 121
EXTERNAL | A(g)
ADDRESS
LINES It3 CAMM

101 ,

OE WE CLR
131 133 135

CONTROL wt

LINES 129 EXTERNAL MATCH.
LINES MagMAy |

FIG.|

NOACEx. 1017 Page 292

NOAC Ex. 1017 Page 293

4,559,618Sheet 2 of 14U.S. Patent Dec. 17, 1985

 els|102WY:“—Liz
(WWI)ad.HOLVW(f)VND_ WYD

SZl(NVW:-9GVW“#95wvSEl”u3steeelIMWY)S3NInTelmts122OULNOD€0!13S30WD
YaLSIO3u()4Gol

yaLsSlo3yY¥31S1934ueeLPODo
ani

aoeSj(s)fo!MAikessauaayWWD~AViteyvo|
(MA-(P)AvieSANITindinovivaWD(4)3+-(9)3gleS3NMYSVWWYOdq:-(#)0EleSANNLOdNIVivaWvo

 SlatencececerececennnnnnnnnneenemaTanTunaTTntannntennnarnnennnwnnmnr
NOACEx.1017 Page 293

NOAC Ex. 1017 Page 294

NOACEx. 1017 Page 294

2e|'Ol4

o

oN

Wa+YV3I1IDYSL4VBivIsLoeBAILOVG2ZYIDWVYDN3HMB1V1SSoeE0€Z20€cO€e
leetPee+Pitt1too11oolte1ooooot0001!Ol9en000000001totls300000000O10th&000!10001ooole0000oo!]00!lz00000000rootlttn11ot1too1100fo&LOS+0

-—

=102WD<3OLSLNANIl0€e
Q—_3—_3avy

BEaRE,SeanTHesegideeacybaRenatee-Renee.mengoosSeerssa ii

7pen

weer_ee

NOAC Ex. 1017 Page 295

WipeoeRR,=ARE
‘ -: "U.S, Patent Decl17,1985 Sheet4of14 4,559,618

=F
pan

soa

3

aaS

Neo
405 DATA REGISTERS 417

CAM WITH STATUS REGISTERS 40!

FIG. 4

viemae,Belgeet Boe a.

SREoaBmomFPAER
eeee

NOACEx. 1017 Page 295

NOAC Ex. 1017 Page 296

ROee6551sMeResetyrtai

“3
3
3
x
.‘_

2

aCNBedaleieaaaiahes | U.S. Patent Dec.17,1985 SheetSof14 4,559,618 .

50 e({3) e(l) 505
SBb 30 en

1
'
f
'
i
'
t
‘

Cell 565 (i,0) 50
alo—~— — Th

eet

 “¥GT33HSOL”
a“J ——|_

dBloszg
| mt
| ti

dl3)°ggy i.
LodLd

oA cE
. CLRo ESTTTT gee TTT~a

BIZ watidin Oooo a $96! MA(Cidin “EMA i) 63ESMa Cilout

FIG. 5

NOACEx.1017 Page 296

i

NOAC Ex. 1017 Page 297

AasERNe.”ssomehyeeodSHonieREMIENEIS:35

nadake.a05AEROESMORE,
ot

4

- U.S. Patent Dec.17,1985 Sheet6of 14 4,559,618

[rteterrecscetmeme

LeCELL 565 (i,2)

-— e-ceLt 565 (i,3)

FIG. 5A

NOACEx.1017 Page 297

PteteteveecaementemechatSSilent

ANNENONEOHNEeetrennincnt:nAANANSAONLONRAASCO.
ikeastpensepclaetetSANEARRONJBSEMELNOMENsSENeycanntnntnanemnen

NOAC Ex. 1017 Page 298

i
z U.S. Patent Dec.17,1985 Sheet7of14 4,559,618 |

|

=

F
an
'W

ra

ie

aa NOACEx. 1017 Page 298

NOAC Ex. 1017 Page 299

4,559,618Sheet 8 of 14U.S. Patent Dec. 17, 1985

roceen

DECODER 6067

|

|__appress

eeeeaene

OeeeemTeeemewwmeee2eeewemeeeecmememeee
ayeR!.mettekBteeait3GeateDeeROetyos.3Rept>maeveeSwe| “7

.on

a94334sOL
AorNeatotesnonpeeINhetttntee9=ud

6©°©
J

9L33HSWOUwe

»antyTOERRooBEEDSgtabeatoeSegfoeSeeeeaseeoseeCarnetBaisecoeTS. eeewepmweeeeeeeeeegeeeeeeeeee
reGq

af

FIG. 6A

NOACEx. 1017 Page 299

NOAC Ex. 1017 Page 300

alignSer U.S. Patent Dec. 17, 1985 Sheet9of14 4,559,618

REGISTER 6187CELL 6185(9,0)[
HES 81

'

Ct ' :

ys6105 . “th' :t

° SleezesiisPass

6024

 EFFieeA5:tersARNRa

:
UJ

!

-t
' wee ee ew ee ee eee a+ wy 1' cose '
‘ ‘

a ' H 1?s: t ! '

3 ” ' \-z 1+ : :

a: 6067 rf
% < ; ,| Lod

EI ceLe

tw! 6185 ' bio3!
a (6,1) 6 tg -' 1

O:

-e--rTOSHEET
re

“CELL —— |0.2)TeSpeQiwsee — ass83|abiohL
oo l¥3 61.

NOACEx. 1017 Page 300

AikSturtwaecehneenAelahnatneannemtrmniteSetMomentsMEEewe

2raAMLATIMLRMNEatthteRAAAettAEMncniorcmenwomensceswomensculenewewee

NOAC Ex. 1017 Page 301

3Sheet 10 of 14 4U.S. Patent Dee. 17, 1985 559,618

“eereesemeSomancergaSoeng»stn9A4ag133HSOL|
r:

wee me eee ee ee ee ee eee eee.
1

EET GEHeTO Sri

Le

——11weecalceceeeeweeweeeeeeeereeened
ccttmeereetereeSpeeeee@9LS3SHSWOU

omareeat

|

2

FIG.6C °

,M6
soa>s194

M57
6190

mi2Q Maem4
6186’ 6I8s

MIS M
184o'

Mo
6182

—- EMETIONGTSSHEEwerweyerstagesapesameSEESerte
t

NOACEx.1017 Page 301

NOAC Ex. 1017 Page 302

oremers
eee

Sheet 11 of 14 4,559,618U.S. Patent Dec.17, 1985

aSscr)voonx

oex.ee~.a|"—ac9a=.~~1>Orp*Qs2&|,Q=OD—4r(8¥7-&H5|=-FilIgibez==Peis03——+7
'

weeaecnneeOypenenenesQ-----hooeetn'roO~ Oif©~4hi—9-0a”teocuwG>'m||1ory—Wwitgo'©}-1Vv‘0_1NA'aa~lea1;,2Oa=&16ES!IIsNfe=w1,|)hiJ‘{o=laoft“3iafg=G00'wuL=@re---To-=-G-!LO&-2+O----O/7IzIP;=!proneneBOrnoaOar-—aaeOD--=Qnennnt:°§&Bi&B&'!UheoO=|1aa='!iS@28lig82bw!u!ilaaxzi!10as>O©!L-@76--4-0--7OILTOO--7-@----FoOoOte-Ww!.uw!0aPeOnnmrponTOBnL.'C}Ww)tyicuwi)Oi1iauw7Juv)1OYvnM2x;tOYo=Sws°isNLwi11{Qa)ww~|ilaOo320]!ao|<=!©!LT@=—0.~-~-Te--TOILTO=¢--50-----~a!
i

Le

1

tedeewoeeneeenabbeneeeeee!39L33HSWOUeweeteewr- :=ePayOSirrasaemEheeaes

NOAC Ex. 1017 Page 303

Sheet 12 of 14 4,559,618 |U.S. Patent Dee. 17, 1985

REGISTER

enoSMnvoEySS

.Pua~49LSAHSOL=pececbeeeeneeeneeeedoneeneneeweeneeeny=me1-:aiataneiaietanenetaieedFOS-4PormrregORennnnong,|Q
:t

4at''cown“¢OoOB+|5%=<Vv=‘wo!iBPRtLViweeestwoaOl23)1|j0oO3)16SLeneORO-=LOFTON------oO!'6
'’

(i

weeweweeeeeeseepeeeeeweeeO------(OGoO1rryO'mtaaytawosft|I(a@|MortUleti|f&@MVLyia@aMYisBii(Oo87szs!ilaaos=!LUL---=-O7O-"O-----G&t=OO%G-------oO'.
1ie

6ae*yrooeeeng“eee47)[;O|fia1sS|:g@eaEhimeareog1gtli6ao|g=‘6a|S=|a=L---9=-OF0-"-O----GLTOF-G-g--------oi
'

eeeeeTT~__._...~—_tarBoOe8©—all=BeilBESATP!Blane<9BollegPeweife!1G)©8<2m'16&=2!5.tSI1iO>¢|xol—_\[>[OROO-BLT.G=-G-G--------Q-©~mz'|;
'

|od
neiLBSStekotal:

NOAC Ex. 1017 Page 304

Sheet 13 of 14 4,559,618.U.S. Patent Dec. 17, 1985

8—SQds~*)<—QWw)*:(3SLe46719ro] ~--------ERI9165-5procananeagegenaaxlMTon|J(at|diils'@BnLmtag,2'Fg!I®|BelgFeieskuiS)b---=OOO-----GLTOTO%G---------OoGoonergOBogprosessononsooo4ieSwo:'coIODBeant|rome1Bayojeulage”2b|Big-Se63=!ba~-225-OO-----Ofb-T+OF-G--O---------oOPrcsrstrcrecsesenweOtoeoewoewh,amowiisWY'ajyi!ont{oOVvUOMoy|=\ifeBW=wi|YiS!{aAO{|<2>!5oO<bd‘—_—Ie3{jdoObh3)bemmOROrreneOtbEOF=G-O--+--+Comtmmnnnmanweeeenrereenweeed.39L33HSWOU8

a

i

aA

ra
egEm

¥“A

NOACEx. 1017 Page 304

FIG. 6FFROM SHEET 6D

NOAC Ex. 1017 Page 305

emmaabaaes,AtomabDoFeeHaERNESOTEONORAeRGexecLO .:Soy-| !| ;3J18VLHLNYL9909¥300D30ssauaav
Sheet 14 of 14 4,559,618

oO

oO 0°90

ootn

ootr |—

ootwn

oomr

oote

ootw

ooran

oonmn]—_ —

woortw

oorce |— —

oonm
oomr

ootre j— —

oonnm

wooMmM{[— oO

a
<<

<

°o
<

Z€09

womn

oorw

ooToa

oorta

wom Mm

S3NI1SSSYqaqv
1sO9€S09SSO9LS09|6509|1909|€909909NOSANIVAS3NI1LAdNIGNVS3LV9ONVN

U.S. Patent Dee. 17, 1985

:

-%

.

“*beltesgh4So‘SptaleORotekehBEYokoengMege:*ratmae;1GMEESEBRchBtualMENterttessaspeanaoeaaSusspare.tae-apaiiaivens aaBEalleRakes8WnSegiSone:rews“fa=Wewn -Ree‘oseepanesisieineiltiahineaalitaiabiansnarand""Crwe"awrq 7Pesce*".Ree“asapsgatuent!aneseaoea;
 wS“voEy)afa~===4fa)O<©Z,

NOAC Ex. 1017 Page 306

weohnton10THs
Fg

epithe,featpete
ationsaiitot3

iteSANSS:
Shaeetopty

BeneoRR:re2

oirchteinaah-PiiciaaEhEEEROE

4,559,618
1 2

. into a CAM register and the memory address into the
CONTENT-ADDRESSABLE MEMORY MODULE corresponding register of the fast-access memory.

WITH ASSOCIATIVE CLEAR The use of prior-art CAMsin applications such as
that just described has been hindered by the amount of ©

BACKGROUND OF THE INVENTION 5 time required to clear the registers of prior-art CAMs.

1. Field of the Invention Such clearing is often necessary when a call or return
operation is performed or when one process is removed.

The present invention relates to memory circuits for from a pro r and another loaded ontoa pr .:
use in digital computer systems and more specifically to Such operations occur frequently in modern digital data ~

10 processing systems, and the amountof time required to -
content-addressable memory circuits.

2. Description of Prior Art perform them has an important impact on overall sys-
In the prior art, content-addressable memory mod- tem performance. In CAMsofthe prior art, a register ,CAMMs) have been develo hich orm 5 . .

ato cnerations inaddition tothePeviecateeopen the, beearedonly by performing awrite operation to: ae ¢ register to be cleared. Thus,clearing an entire CAM
ations performed by standard memory circuits. In read 15 requires separate write operations to each register in the
and write operations, memory modules respond to ad- CAM and clearing a CAM entry for a given o 4dresses. In the read operation, an address is presented to cans tine th dtoth CAM Petal
the memory module and the memory module returns the add pr Fth B ist oewituinin ih CAMe ° then
the data stored at that address; in the write operation, an perf rss : teen siont thee e and 4 byaddress and data are presented to the memory module 20 the oddres. write operationtotheregister specified by
and the data is stored at the address. The foregoi :: : : going problem of the prior art and other

In the match operation, on the other hand, an item of problems as well are solved by the the invention de-
data is input toa CAMM, andifa matching itemofdata cited below. 2
is contained in the CAMM, the CAMM indicates its
location by activating a match line correspondingto the ,, SUMMARYOF THE INVENTION—-:
register containing the matching item of data. The de- The t invention provides a CAMM in which all
gree of match required to activate the match fine may registers which contain atana hing a pa input 2s

. be controlled by presenting a CAMM with mask bits as=modified by a mask input are simultaneously cleared . —
well as with the input data. Each mask bit corresponds=when a clear signal is received in the CAMM.The mask
to an inputdata bit; ifthe mask bit is set, the correspond- 30 input modifies the pattern input by ifying that cer-
ing inputdata bit is ignored when data in the registersis tain bits ofthe pattern input be ignored when testing for.
compared with the item of data presented to the—y match between thepattern input and data stored.inthe
CAMM.Examples of such prior art CAMMs are the registers. If the mask input specifies that all bits of the
Intel(R) 3104, the Signetics 10155, and the Fairchild pattern input are to be ignored, all data contained in the ~~
F100142. Such CAMMs are generally designed so that 35 registers matches the pattern mput andall registers of
they maybe easily combined together to form content- "the CAMM are simultaneouslycleared on receiptofthe-: ---
addressable memories (CAMs). A CAM has the same —cjear signal. :
properties as a CAMM, exceptthat a single CAM regis- The CAMM includes inputlines for receiving data to
ter is made up of 4 corresponding register from each of _be stored in the registers and the pattern input, mask
the CAMMs making up the CAM.

senting the values. For example, an operand in an im—match lines carry a match signal only when the register
struction stream may contain information from which a 45 associated with the match line contains stored data . ~
memory address may be calculated. Once the memory_—matching the pattern input and the matchline is simulta-
address has been calculated, the memory address may=neously receiving a match signal from an external
be loaded into a cache and the operand may be used as_—_— source. .
a key to access the memory address in the cache. Such The registers have three principal components: logic
2 cache maybe constructed by combining a CAM with so forming flip-flops for storing individual bits of data,
a fast-access memory. In the combination, each register©match detection logic responsive to the data stored in’
ofthe fast-access memory may correspondto a register the register, the data input lines, and the mask input
ofa CAM,and a match line from the CAM register may _lines for detecting a matching data item and providing a |
serve to address the corresponding register of the fast- match signal to the bidirectional match line associated
access memory. The CAM registers contain operands, 55 with the register, and clearmg logic responsive to the -
and the corresponding registers of the fast-access mem- _clear line and thebidirectional match line for clearing
ory contain the memory addresses corresponding tothe _the register in response to the simultaneous occurrence
operands. When an operand appears in the instruction—of a match signal on the bidirectonal match line and a
stream,it is presented to the CAM. Ifthe CAM contains clear signal on theclear line. :
the operand, the match line for the CAM register con- 60 CAMMs ofthe present invention may be combined
taining the operand becomes active and thereby ad- to form CAMs with the properties of the CAMM.In
dresses the corresponding register of the fast-access such CAMs, clear lines from the CAMMs making up
memory. The fast-access memory then respouds by =the CAM are connected to a memory clear line and
providing the memory address contained in the corre-_match lines from registers in the CAMMs are connected
sponding register. If the CAM does not contain the 65 to memory match lines. A memory matchline carries a
operand, a fault occurs to which the digital computer match signal only if all match lines connected to the
system responds by calculating the memory address memory matchline are providing match signals. Conse- _
represented by the operand and loading the operand _—_quently, the match lines connected to a memory match

NOACEx.1017 Page 306

__.. ...40 inputlines for receiving a mask, a clear line for receiv- -
CAMs as described above may be used in digital ing a clear signal, registers for storing data, and bidirec-.

computer systems to construct caches allowing fast tional match lines associated with each register for pro- -
access to frequently-used values by means ofkeysrepre-=yjding and receiving a match signal. Thebidirectional °

ta8eeNINNormtecteRhettHattie6eetGaniemwereae

NOAC Ex. 1017 Page 307

a 4,559,618
ve . 3 4

; line provide a matchsignal to the clearing logic only if|memories arefirst described in general. Next functional
the match detection logic of each register in the CAM descriptions of a content-addressable memory module
register detects a match. CAMM registers whose match of the present invention and of content-addressable
lines are connected to a common memory match line memories formed from content-addressable memory
are therefore cleared only if each of the registers con- 5 modules of the present invention are presented. Finally,
nected to the memory matchline contain data matching=a detailed implementation of a content-addressable
the pattern input to the CAMM containingthat register. memory module of the present invention is disclosed.

It is thus an objectofthe present invention to provide

¥ ’ an improved digital computer system. 1.1 General Description of Content Addressable .
a It is a further object of the present invention to pro- 10 Memories
ty vide an improved CAMM foruse in digital computer A content-addressable memory (CAM) is a memory

systems. . . . which not only stores data, but also performs a match
- It is another object of the present invention to pro- ——gperation. In this operation, the CAM is given an item

vide a CAMM having an associative clear operation. of data as input and if the CAM contains a matching
It is a still further object of the present invention to 15 item ofdata, Le, one in which the values of certain bits ;

provide a A 1whe all registers may be are the sameas that of correspondingbits of the item of
simultancousty ¢ : ae data provided as input, the CAM indicates which regis-

it is yet another object of thePTCAMMsavist to ter of the CAM contains the matching data. In many
providecimitancouclycleared of TeBSIEIS~~CAMs, a mask inputselects the bits ofthe input data
m : . ° ae 20 which are compared with the correspondingbits of thet is a yet further object of the presewt invention to data contained in the register. A data item stored
Patiil atheobitofthepreseat invention to inaCAMTegistermas aterean data rine bitsinprovide an improved CAM. . n item m CAM Tregister corresponding to the

It is a yet further object of the present invention to 5 bitsofineapadbutsofthedeteape jhemaskinput
provide a CAM havingan associative clear operation. i I

It is a final object of the present invention to provide _—in the data item stored in the CAM do not affect the
a CAM whereimsets ofregisters or the entire CAM may match.

-beSimultaneously cleared. .
Other objects, advantages, and features of the present 35 1.2 CAMs of the Present Invention

- invention will be understood by those of ordinary skill Besides performing match operations with or without
~-in the art after referring to the following detailed de-§masking, CAMs of the present invention perform an
~.scription of the preferred embodiment and drawings, associative clear operation. In a clear operation, all bits

wherein: in a register of a CAM are set to 0; in an associative
clear operation, all bits in a given register of a CAM are

BRIEF DESCRIPTION OF THE DRAWINGS *° set to 0 if there is a match between the data input to a
FIG.1 is a block diagram showing an illustrative CAM as masked by the mask input and the contents of

>embodimentof a content-addressable memory module a given CAM register. Finally, CAMs of the present
: having the properties of the present: invention; invention perform read and write operations like those
~ FIG. 2 is a block diagram showing an illustrative 49 of standard memories. .
‘embodiment of a content-addressable memory module .
‘employing content-addressable memory modules hav- - 2 Content-Addressable Memory Modules ofthe Present
ing the properties of the present invention; Invention—FIG.1

By

ihaetaeinsetoeaedoyalatetahtbe.SleeaD
bitaisforai:

ied eek8nateokSanh
pagerernlaan

sia
|

a j FIG.3 is a representation of the contents of'a content A CAM ofthe present invention may include one or
- addressable memory employing content-addressable ,. more CAM modules (CAMMs). Referring to FIG. 1,
3 memory modules having the properties of the present there is disclosed a block diagram of a single CAMM
i invention before and after a clear operation; 101 of the present invention. CAMM 101contains a
 _ FIG.4 is a block diagram showing a secondillustra-_plurality of registers 105 for storing data. CAMM 101
= tive embodiment of 2 content-addressable memory em- further receives inputs of data to be stored in registers
a Ploying content-addressable memory modules having sp 105 from data input lines 117, masking mputs from mask
a the properties of the present invention; lines 127, addresses of registers 105 from external ad-
a _ FIG. 5 and 5A are a simplified logic diagram of a dregs lines 113, and control signals from controllines

4 single register of a preferred embodiment of the con-—429, Control lines 129 include output enable (OE) line
a tent-addressable memory module of the present inven- 131 for enabling output of data fom CAMM 101, write
: Hon; 55 enable (WE) line 133 for enabling the storage ofdata on

3 FIGS.6 and 6A through 6F together make upacom- data input lines 117 in CAMM 101, and clear (CLR)line
3 Plete logic diagram ofaTTL gate array implementation —435 for enabling the associative clearing ofregisters 105.
a. of a preferred embodiment ofa content-addressable=CAMM 101 provides outputs ofdata stored in registers
i memory module of the presentinvention; and 105 on data output lines 119. Finally, CAMM 101 both

FIG,7 is a truth table showing the decoding of the ¢ receives inputs and provides outputs on bidirectional
encoded addresses used in the TTL gate array imple- external match lines 125. Each external match line 125
mentation of FIG.6. corresponds to a register 105 in CAMM 101 and a exter-

DESCRIPTION OF THE PREFERRED nal matchline 125.may be connected to external match
EMBODIMENTS lines 125 of other CAMMs 101. The input received on

“ . 65 a external match line 125 for a given register 105 indi-
ss 1 Introduction cates whether the contents of registers 105 of other

In the following description ofthe preferred embodi- CAMMs 101 whose external match lines 125 are con-
Ments of the present invention, content-addressable nectedto the external matchline 125 of a given CAMM

NOACEx.1017 Page 307

NOAC Ex. 1017 Page 308

sl

4
4

CoMESci$EMUZeseanRl«eS
wtSay. ae
es

a,

BRee
bsrents

4,559,618

5
register 105 match the data inputs to those CAMMS101
as masked by the mask inputs. The output ofan external
match line 125 for a given register 105 indicates
whether the contents of that register matches the data
and mask inputs received by its CAMM 101. 5

3 Internal Structure of CAMM 101

Internally, CAMM 101 is made up ofregister set 103
consisting of registers 105, address decoder 109 for
decoding addresses ofregisters 105 received on external 10
address lines 113,internal address lines 115 for transmit-
ting decoded addresses from address decoder 109 to
registers 105, clear logic 111 for performing the associa-
tive clear operation, internal match lines 121 for trans-
mitting match signals between registers 105, clear logic 15
111, and external match lines 125, and internal clear
lines 123 for transmitting clear signals between clear ~
logic 111 and registers 105.

Each register 105 consists of a plurality of cells 107
for storing a single bit of data. Each cell 107 in a given
register 105 corresponds to a single data inputline 117,
a single data outputline 119, and a single mask line 127.
Thus, ifeach register 105 has 0. . . m cells 107, there are
0... m data inputlines 117, data output lines 119, and
mask lines ‘125. In FIG. 1, the plurality of data input
lines 117 is indicated by d(Q) . . . d(m), the plurality of
mask lines by e(0) . . . e(m), and the plurality of data
output lines by y(0) . . . y(m). Data input line d(0) carries
data to cell 107 (0) of a register 105 specified by an ,,
address on external address lines 113, data output line
y(0) carries data from cell 107 (0) ofa register 105 speci-
fied by an address, and mask line ¢(0) masks data input
line d(0).

Each register 105 corresponds to a single internal ,address line 115, a single internal match line 121, and a >
single internal clear line 123. In FIG.1, the plurality of
registers 105 is indicated by 1(0) . . . r(4), the plurality of
internal address lines 115 by a(0) . . . a(1), the plurality
ofmternal match lines 121 by m(0).. . m(1), the plural-
ity of internal clear limes 123 by c(0) . . . c{1), and the
plurality of external match lines 125 by MA(o) -..
MA()). Ifi is in 0 . . . 1, then internal address line 145
a(i), internal match line 121 m(j), internal clear line 123
c(i), and external match line 125 MA(j) all correspond 45
to register r(i) 105. Further, a given cell 107 in registers
105 is indicated by q(i,j), where i specifies register 105 to
which cell 107 q belongs and j specifies a single cell of
107 of cells 107 0 . . . m in register i. Thus, cell 107 (0)
ofregister 105 r(1) is specified by q(1,0).

Internal match line 121 m(j) and external match line
125 MAG) are related as follows:ifcither is inactive, the
other is also inactive. Internal match le 121 m() is
inactive if its corresponding register 105 r{i) does not
match the data on data mputlines 117 as masked by the 55
inputs on mask lines 125. The electrical properties of
external match lines 125 are such that corresponding
external match lines from a piurality of CAMMs 101
may be connected together; since each such connected
external match line 125 MA() is inactive if its corre- 60
sponding internal match line 121 m(j) is inactive, all
such connected external match lines 125 MA(j) are
inactive ifany of the corresponding internal match lines
121 m{)is inactive, and if an external match lines 125
MA()is inactive, all internal match lines 125 m()) con- 65
nected thereto are also inactive. In logical terms, there-
fore, the state ofan external match line 125 MA(i)is the
logical product of the states of all mternal match lines

25 register 105 specified on external address lines 113. For

40 OF 131is active, external address lines 113 specify a

6
121 m(i) in the CAMMs 101 whose external match lines : -
125 are connected. io

Clear logic 111 determines the state of an individual _.
clear line 123 c(i) in response to external match line.125 ‘|
MA() and CLR line 125. If external match line 125
MA(i) and CLR 135 are simultaneously active, clear :
logic 111 actives clear line 123 c(i), thereby setting cells. ::
107 q(i,0 . . . m) of register 105 r(i) to 1 value indicating
a binary 0. As mentioned above, external match-line “.-

MA(\)is active onlyif its corresponding internal match ., , :
line m()) is active. Where external match lines (125 («=
MAQ@)of a plurality of CAMMs 101 are connected -- .-
together, therefore, no register 105 r(i) in any of the’ -
plurality of CAMMs 101 is cleared: unless internal :
match lines m(i) 121 in all of the pluralityof CAMMs -” ~
101 are active, thatis, unless the contents of each regis- < <-
ter 105 r(i) in the plurality of CAMMs 101matches the.“ “ |
inputs on data inputlines 117 as masked by mask lines -'125 in that CAMM 101. :

External address lines 113 consist of a plurality-of°-
address lmes A(O) ... A(k) which transmit a binary . ~
encoded address specifying a register 105 to address *.
decoder 109. Address decoder 109 decodes the address™ ..:"
and activates internal address line 115 corresponding to . ~

example, in a CAMM 101 with 8 registers 105, the ex-
ternal address lines 113 may consist of lines A(Q) ..:.:.
A(2) and internal address lines 115 may consist oflines
a(0) .. . a(7). The three external address fines 113allow’
a binary representation ofthe integers 0 through7 and
address decoder 109 decodes this binary representation.
and activates internal address line 115 for register 105
specified by the integer represented by external address

; lines 113. .
4 Operations Performed by CAMM 101.

As mentioned above, CAMM 101 performs four op-.
erations: a read operation, a write.operation, a match
operation, and a clear operation. In a read operation,-

register 105 r(i), and data output lines 119 y(0) : . . y(m).
are set to the values of cells 105 9(i,0) . . . q@m)..In a
write operation, WE 133 is active; address lines.
113 specify a register 105 r()), and cells 105 (,0). - 4
a(bm) are set to the values on data input lines 137 (0) weet. d(m).

"In a matchoperation, WE 133 and CLR 135 are both--, ;
inactive. The inputs are data on data lines 117-d(0) -.
d(m) and mask enable signals on mask lines 127 e(0)..' |

50 | e(m). If a mask line 127 e(§) is active, then the value of

data line 117 d(j) is disregarded when testing for a ._
match. If the contents of cells 107 qG,0)...q(G,m) fora’...
given register 105 r(i) match all values on data lines 117 =.
d(0) ...d(m) which are not masked by active mask lines * |.
127, then internal matchline 124 m(i) becomes active. In =
logical terms, this may be defined as follows:

md = FWD AD) + a
whereP is the logical product.

In the associative clear operation, finally, WE 133 is
inactive and CLR 135 is active. As previously men- ~
tioned, ifCLR 135 c(i), internal match line 121 m(@i), and :
external match line 125 MA() are all active, match and
clear logic 111 clears register r(i). Since external match -
line 125 MAQ)is active onlyif internal match lines 121

NOACEx. 1017 Page 308

NOAC Ex. 1017 Page 309

4,559,618
7

‘m(i) fos all CAMMs 101 whose external match lines 125
MAG) are connected together are active, a clear takes
place only if there are matches for all CAMMs101
whose extemal match lines 125 MA(@) are connected.

3 CAMs Composed of CAMMS 101-—FIG.2
In most applications, an individual CAMM 101 like

the one just described is combined with other CAMMs
101 to make a CAM.FIG.2 is a block diagram repre-
senting a CAM 201 made upofa plurality of CAMMs
101. Inputs to CAM 201 include data on CAM data
input lines 213, masks on CAM mask lines 215, control
signals on CAM control lines 211, and encoded ad-
dresses on CAM address lines 211. Outputs include data
on CAM dataoutput lines 214 and CAM matchsignals
on CAM matchlines 217.

4.3.1 Behavior of CAM 201

The behavior of CAM 201 is determined by the man-
ner in which CAMMs 101 making up CAM 201 are
connected by CAM address lines 211, CAM control
lines 212, and CAM match lines 217. CAM address lines
211 CA(O) .. . CA(k) are connected to external address
lines 113 A(O). .. A(k) of all CAMMs 101 in CAM 201,
and consequently, an address i on CAM address lines
211 specifies register 105 r(i) in all CAMMs 101 making
up CAM 201. CAM control lines 212 consist of CAM
OF line 221, connected to OEline 131 of all CAMMs

»- 101 making up CAM 201, CAM WE line 223, con-
1: nected to WE line 133 of all CAMMs 101 in CAM 201,
s and CAM CLR line 225, connected to CLR line 135 of
- gil CAMMs101 in CAM 201. As a consequence of these
-- connections, when a CAM controlline in CAM control

lines 212 becomes active, its corresponding controlline
in control lines 129 in all CAMMs 101 making up CAM

- 201 becomes active. CAM matchlines 217 CMA(0).. -
+ CMA(D),finally, are connnected to external match lines
22125 MA(0) . .. MA(1) in-all CAMMs 101 making up
~CAM 201 As previously explained, when external
sematch lines 125 corresponding to a register 105 r(i) in a
2.plurality of CAMMs 101 are connected together, a
: failure of the contents of a register 105 r(i) to match the

values ofregister 205 r(i)’s data inputs 117 as masked by
its mask inputs 125 deactivates its external match line
125 MA(i), and this in turn deactivates all external
match lines 125 MA(i) connected to it. Consequently,
CAM matchline 217 CMA()) is active only if for each
register 105 r(i) in the group of CAMMs 101 forming
CAM 201, the value of data inputs 117 as masked by
mask inputs 127 of each register 105 r(i) matches the 50
contents of that register 105 r(i).

As a result of these connections between CAMMs
101 making up CAM 201, corresponding registers 105
r@) in CAMMs 101 making up CAM 201 behave as a
single logical register 219 RG), indicated by dashed lines 55
in FIG. 2. if CAM 201 contains s CAMMs 101 and each
Tegister r(i) contains n cells 107, then logical register 219
R@) contains sn cells 107. In FIG.2 these cells are speci-
fied as cells 107 qG,0) . . . qG,p), where p=sn— 1. Just as
all registers 105 r(i) in CAMMs 101 making up CAM 60
201 form alogical register R(i) 219, so do all data input
lines 117 in these CAMMs 101 form CAM data input
lines 213, all data output lines 119 form CAM data out-
put lines 214, and all mask lines 127 form CAM mask
lines 215. There are as many CAM data inputlines 213, 65
CAM data outputlines 214, and CAM mask lines 215 as
there are cells 107 q in a logical register 219. In FIG.2,
the lines comprising CAM data input lines 213 are speci-

25

40

8
fied by D(O) . . . D(p), those comprising CAM data
output lines 214 by Y(0) . . . Y(p), and those comprisin9
CAM masklines 215 by E(0). . . E(p), where p=sn—1
as before. 7 a

4.3.2 Operations Performed by CAM 201
As a consegence of the manner in which CAMMs101

are connected to form CAM 201, all of the reading,
writing, matching, and clearing functions performed by
a CAMM 101 can be performed by CAM 201.

In a read operation, CAM OEline221 is active and
CAM address lines 211 specify an address. Conse-
quently, contro! line OE 131 of each CAMM 101 is
active, external address lines 113 of each CAMM 101
specify a corresponding register 105 r(i), and data out-
putlines 119 are set to the values ofthe cells 105 making
up register 105 r(i). Since all the registers 105 r{i) to-
gether make up logical register 219 R(i), and all of the
data output lines together make up CAM data output
lines 214, the result is to set CAM data output lines 214
Y¥(O) .. . ¥(p) to the values ofcells 105 q(i,0) . . . q(i,p)
in logical register 219 RG). Similarly, in the write opera-
tion, CAM WE line 223 is active, CAM address lines
211 specify an address, and cells 105 q(i,0) . . . q(i,p) in
logical register 219 R(i) indicated by the address are set
to the values of CAM data inputlines 213 D0) . .. D(p).

In a match operation, CAM data input lines213 D(0)
. .. D(p) specify the data to be matched with the con-
tents of logical registers 219 and CAM mask lines .215
EQ) .. . E{p) specify which bits of the data are to be-
ignored in determining whether there is a match. Since
CAM match line 217 CMAQ)corresponding to a Jogi-
cal register 219 RG) connects all external match lines
125 MAG)for registers 105 r(i) comprising logical regis-
ter 219 RG), CAM match line 217 CMA() andall exter-
naj match lines 125 MA()) are deactivated as previously
described if the contents of any register 105 r(i) fail-to
match unmasked bits on CAM data input lines 213 cor-
Tesponding to the cells 105 contained in register 105 r(i).
Thestate ofCAM matchline 217 CMA() thus indicates

- whether the contents of logical register 219 RG) match

45

the data on CAM data input lines 213 D(0) . . . D(p). In
logical terms, this may be expressed as follows:

CMA) = F IGD-a)+j=0

wherePis the logical product as before. As may be seen
from the above equation, a match operation for a logical
register 219 R(j) in CAM 201 is completely equivalent
to a match operation for a register 105 r@i) in CAMM
101.

The behavior of the clear operation in CAM 201is
determined by the behavior of the match operation and
by the fact that CLR lines 135 of all CAMMs 101 in
CAM 201 are connected to CAM CLR line 225, and
consequently, all CLR lines 135 are active when CAM
CLR line 225 is active. As explained in the description
of CAMMs 101, a register 105 r(ji) is cleared only if
CLR line 135 and external match line 125 MA() are
both active. External match line 125 MAQ) fora regis-
ter 105 r(i) in a logical register 219 RG)is active only if
internal match lines 121 m(i) for all registers 105 r{i)
making up logical register 219 R(i) are active. There-
fore, registers 105 r(i) making up logical register 219
RQ,and thus, logical register 219 R() itself, are cleared
only if the contents of logical register 219 R(@i) match

a

NOACEx. 1017 Page 309

NOAC Ex. 1017 Page 310

4,559,618

the data on CAM data inputlines 213 as masked by the
input on CAM mask lines 215. As with the other opera-
tions, the clear operation on a logical register 219 R(i) is
thus completely equivalent to the clear operation on a
register 105 r(i).

4.3.3 Example Match and Clear Operations—FIG.3

A concrete example of a match operation and a clear
operations in 2 CAM 201is provided by FIG. 3. FIG. 3
shows the state of cells 107, CAM data inputlines 213,
CAM mask lines 215, internal match lines 121, internal
clear lines 123, and CAM match lines 217 for 2a CAM
201 comprised of two CAMMs 101. Each CAMM 101
contains 8 4bit registers 105, and consequently, CAM
201 of FIG. 3 contains 8 eight-bit logical registers 219.
FIG. 3 represents CAM 201 as follows: Table 301 repre-
sents the inputs to CAM 201 at the time of the match
and clear operations; row D corresponds to CAM data
input lines 213, and row E corresponds to CAM mask
lines 215; the cohmmns specify individual CAM data
input lines 213 and CAM mask lines 215. The value at
the intersection of a row and a column specifies the
value on the line specified by the column in the set of
lines specified by the row.

Tables 305 and 307 show thestate ofCAM 201 before
and after an associative clear operation. In these tables,
part 302 represents the state of CAMM 101 0 and part
303 the state of CAMM 101 1 making up CAM 201. In
tables 305 and 307, each row corresponds to a logical
register 219 and the numbered columns correspond to
cells 107. The value at the intersection of a row and a
numbered column is thus the value of that cell 107 spec-
ified by the column number in logical register 219 speci-
fied by the row number. Table 305 further contains
lettered columns; the letters heading these columns
specify lines in CAMMs 101 correspondingto registers
105 making up logical registers 219 in CAM 201 and
lines in CAM 201itself. The letter M 121specifies inter-
nal match lines 121, the letter C 123 specifies internal
clear lines 123, the letters MA specify external match
line 125, andthe letters CMA specify CAM matchlines
215. As previously explained, the state ofa CAM match
line 215 is the same as the state of the external match

lines 125 connected to it. Again, the value at the inter-
section ofa row and a lettered column is the state of the
line specified by the letter correspondingto the register
specified by the row.

Turning now to the operation illustrated in FIG.3,
the values of CAM mask lines 215 determine which

values on CAM data input lines 213 are relevant to the
match. In FIG. 3, CAM mask lines E(2) . . . E(7) all
have the value 1; consequently, any value im cells 107
q(i.2) . . . qG,7) produces a match when compared with
the value on the corresponding line of CAM data input
lines 213 DQ) . . . D7) and only the values in cells 107
qG,0) . . . q(i,1) may fail to match when compared with
the value of the corresponding data inputline of data
input lines 213 D(0) . . . D(1). The effect of the masking
can be seen in column m for CAMM 1 303. Since all

CAM mask lines 215 corresponding to cells 107 con-
tained in CAMM 1 303 are active, the contents of these
cells are indifferent and ail internal match lines 121 in
CAMM 1 303 are active. In CAMM 0 302, on the other
hand, only CAM mask lines 215 corresponding to cells
107 g(i,2)...
Cells 107 qG,0) and q(i,l) are relevant to the match. As
FIG. 3 shows, only in registers 105 (1), (4), and (5) do
the contents of these cells match the values on the cor-

25

30

35

40

45

50

55

a

q(i,3) are active, and thus, the contents of 65

10
responding CAM data lines D(0) . . . D(1), and only
internal matchlines 121 corresponding to these registers
105 are active.

Further, since all internal match lines 121 m() -in
registers 105 r(i) making up a logical register 219 RG) ~ .
must be active in order for the CAM match line 217

correspondingto a logical register 219 R(i) to be active, . |
only CAM match lines 217 for logical registers 219 (1), -.
(4), and (5) are active. Finally, an internal clear line 123 -
c(i) in CAMM 0 302 or CAMM1 303 is active only if ~
CAM CLR 225 is active and external match line MA (i) -,.-
125 is active. Since the state of external match line _,
MA(i) 125 is identical witb the state of CAM matchline‘. -
217 to whichit is connected and only CAM matchlines
219 for logical registers (1), (4), and (5) are active, only | <
those internal clear lines 123 in CAMM 0 302-and |.

CAMM 1 303 are active which correspond to registers | -
105 making np logical registers 219 1, 4, and 5..As ~ |
shown in Table 307 of FIG. 3, showing the state of the ©
cells 107 in CAM 201after the clear operation, all cells

107 making upthese logical registers 219 have been set,to 0.

The associative clear operation illustrated in FIG.3.
may be used to simultaneously clear all data having a _‘- :
certain type code from a CAM 201 while leaving data.
with other type codes undisturbed. For example, the--~“
leftmost two bits ofthe data stored in-CAM 20¥ofFIG.
3 might be such a type code. In the example of FIG.-

CAM mask lines 215 mask all bits.but those containing *: «:
the type code, and the unmasked CAM data input lines
213 have the value 10, specifying a type code. As appar-
ent in FIG. 3, when CAM CLR line 225 is active,all:~ ~

CAM 201 logical registers 219 containing data withthe.type code 10 are cleared.

 4.34 CAMs with Different Properties Formed fom a,CAMMS101—FIG.4 -

By varying the manner in which CAMMs 101 are: a
connected together, CAMs with differing properties.-
may be formed. FIG. 4 presents an example of such a
CAM, a CAM with status registers. CAM 401: has two
main parts: status registers 415 and data registers 417.

2eae
Data registers 417 contain data; each registerin status - *:”
registers 415 is associated with a data register 417 and.
contains status information about that data register417:
Status information might include ‘a bit indicating-that' .. ~
the contents ofthe associated data register 417are valid °..
or oneindicating that the associated data register 417 is
being loaded. Theassociation ofregisters in status regis- -
ters 415 with registers in data registers 417 is accom-
plished by connecting all CAMMs 101 in CAM 401 to ~- |
common CAM address lines 404, wherebya single ad-
dress refers either to a register in status registers 415 or
the register in data registers 417 associated with it. The -
division of CAM 401into twosets ofregisters is accom-
plished by connecting CAMMs 101 making up data
registers 417 to one set 403 ofCAM input, output, mask-
ing, control, and match lines and CAMM 101 making *
upstatus registers 415 to another set 405, thus making it
possible to perform read, write, match, and clear opera- - .
tions independently on status registers 415 and data
registers 417.

4.4 Implementation of a CAMM 101

The discussion now turns to an exemplary implemen-
tation of a CAMM 101. The exemplary implementation -
is presented merely for purposes of illustration; other -
implementations are possible which are capable ofper-

NOACEx.1017 Page 310

4
4
ft

NOAC Ex. 1017 Page 311

Soh,agi™

PeateesSAGs:ES
rerneSeere

aesae

sei8
g

a
:
3
7

4,559,618
1

" forming the same operations as the exemplary imple-
mentation and are thus equivalent to it. The exemplary
implementation discussed herein uses TTL gate array
technology.In this technology,all logic functions must
be expressed by means of NAND gates and inverters.
Because of the complexities introduced into the imple-
mentation by this constraint, it is advantageous to first
discuss FIGS. 5 and 5A, which together present a sim-
plified logic diagram for a single register of a CAMM
101. Thereupon, the discussion will turn to the exem-
plary implementation of CAMM 101itself.

4.4.1 Simplified Logic Diagram fora Single Register of
a CAMM 101-—FIG. 5

Thelogic diagram of FIGS. 5 and 5A employs AND
gates, OR gates, and RS flip-flops, that is, flip-flops
having an S input whose activation sets the flip-flop to
1, an R input whose activation sets theflip-flop to 0, a y
output which has the value to which the flip-flop was
last set, and a y output whose valueis the complement

‘of that of the y output. FIGS. 5 and 5A represent a
single register 567 (i), outlined in dotted lines, and addi-
tional elements showing register 567 (j)’s relationship to
the remainder of CAMM 101 to which it belongs. Reg-
ister 567 (i) is functionally equivalentto register 105 r(i)
of FIG.1. Register 567 (i) is capable ofstoring four bits
and consequently is made up of four cells 565 G,0) . . .

ar 3), equivalentto cells 107 qG,0) . . . qm) of FIG. 1.
44.1.1 Inpats and Outputs of Register 567 ()

Inputs to register 567 (i) consist of: mask lines e(0) 501
. through e(3) 507, corresponding to mask lines 127 (0) .
" .. e(m) of FIG.1; data inputlines d(0) 509 and d(1) 571

through d(3) 575, correspondingto lines d(0)... d(m) of
inputdata lines 117,data complementlines d(0) 511 and

;4@) 577 through d() 581, carrying values which are
zx the logical complementof the values on corresponding
‘; data input lines d(0) 509 and d(1) 571 through d(3) 575;
#;OEline 508, corresponding to OE line 131, WE line
_+ 510, corresponding to WE line 133, internal clear line:
--C(l) 523 correspondingtoclear line c(i) of internal clear

Imes 123, and internal address line a(i) 513 correspond-
ing to line a(i) of internal address lines 115.

Register 567 (i)’s outputs include register data output
lines y(i,0) 539 through y(i,3) 551 and an external match
line corresponding to line MA(@ ofexternal match lines
MA 125 in FIG.1. As previously mentioned, external
match lines MA 125 are bi-directional and may be con-
nected to other external match lines MA 125. When so
connected, an external match line MA 125 is active only
if all other external match lines MA 125 connected toit
are active. In FIG. 5, the bidirectional nature of the
external match line andits relationship to correspond-
ing match lines of other CAMMs 101 is expressed by
representing the external match line for register 567(i)
as two lines, MA(iout 556 and MA(Din 559. MAQ@out
556 is continuation of internal match line m(i) 555;
MA()in 559 is connected to CAM match line CMA()
564, correspondingto a line in CAM matchlines 217 of
FIG. 2. The relationship between lines MA(Dout 556,
MAQ)in 559, and their equivalents in other CAMMs
101 is shown by means of wire AND gate 563 (in dotted
lines). Inputs to gate 563 are lines MA(j)out for
CAMMs 101 whose external match lines MA 125 are
Connected, its output is CAM match line CAM() 564,
and MA(@)in 559’s value is determined by the value of
CAM match line CMA() 564.

Yt3lebe

30

we5

45

60

65

12

4.4.1.2 Detailed Discussion of Cell 565 (i,0)
Since all cells 565 in register 567(i) are identical, only

Cell 565 (,0) is discussed in detail. Cell 565 (i,0)’s inputs
are mask line e(0)507, data input line d(0) 509, data
complementline d(0) 511, internal address line a(i) 513,
OEline 508, WE line 510, and internal clear line cl)
523. Cell 565 (i,0)’s outputs are cell match line m(i) 541
and cell output data line y(i,0) 539. The logical compo- -
nents of cell 565 (i,0) are: AND gate 515, receiving
inputs from WE line 510, data line d(0) 509, and internal
address line a(i) 513; AND gate 517,receiving inputs
from WE line 510, data complementline d(0) 511, and
internal address line a(i) 513; OR gate 525, receiving
inputs from internal clear line c(i) 523 and AND gate
517; RS flip-flop RS(i,0) 529, receiving its S input from
AND gate 515 andits R input from OR gate 525; AND
gate 533, receiving inputs from data line d(0) 509 and
the y outputofRS flip-flop RS(i,0) 529; ANDBate534,
receiving inputs from data complement line d(0) 511
and the y output of RS flip-flop RS(G,0); OR gate 540,
receiving inputs from AND gates 533 and 534 and mask
line e(0) 507; and AND gate 535, receiving inputs from
internal address line a(i) 513 and the y output of RS
flip-flop RSG,0) 529.

4.4.1.3 Operations on Register 567(i)
‘Whenread, write, match and associative clear opera-

tions are performed on the contents of register 567 (i),-
the components of cell 565 (i,0) interact as follows: In a
write operation to register 567 (i) to which cell 565 (1,0)
belongs, WEline 510 and internal address line a(i) 513
are both active. Consequently, the states oflines 519 and
521, carrying the outputs of AND gates 515 and 517
respectively, depend on whether data mput line d(0) 509
is active. If it is, then data complementline d(0) 511 is
inactive, line 519 is active, and line 521 is inactive. If
data input line d(0) 509 is inactive, the reverse is true.
Line 519 is connected to the S putofflip-flop RS(i,0)
529, and consequently, if line 519 is active, flip-flop
RS(.0) 529 is set to.1. Line 521 is connected to OR gate
523, which m turn is connected to the R input offlip-
flop RS(,0)529. Therefore, ifline 521 is active, flip-flop
RSG,0) 529 is reset to 0. Thus, after a write operation,
the value at the y output of flip-flop RSG,0) 529 is iden-
tical to the value represented on data input line d(0) 509
at the time of the write operation.

As FIG. 5 shows, internal address line a(i) 513 and .
WE line 510 are connected to other cells 565 in register
567 (i) in the samefashion as they are connected to cell
565 (1,0), and each ofthe other cells receives inputs from
its equivalentsto data input line d(0) 509 and data com-
plementline d(0) 511 in the samefashion as cell 565 (i,0).
Thus, at the end of a write operation, RSflip flops 529
@0 .. . 3) in register 567 (i) contain the values on data
input lines d(0) 509 through d(3) 575.

In a read operation, internal address line a(i) 513 and .
OEline 508 are active. Internal address line a(i) 513 and
line 531 from the y outputofflip-flop RSG,0) 529 serve
as inputs to AND gate 535, whose outputis cell data
line 539 yG,0). Thus, when internal address line a(i) 513
is active, the value of the y outputofflip-flop RS(i,0)
529 determmes the value of cell output data line 539.
Cell output data line 539 is an input to OR gate 569,
along with the equivalent lines from other registers 567.
Thus, if cell output data line 539is active, line 570, the
output ofOR gate 569,is active. Line 570 is one input to
AND gate 571; the other input is OE line 508; conse-

NOAC Ex. 1017 Page 311

4

t

oealearencmnetettefo

NOAC Ex. 1017 Page 312

. the value of the y output, are both active, thatis, if the CAMM 101 represented in FIGS.'6 and 6A through

4,559,618
13 14

quently, when address line a(i) 513 and OEline 508 are match line MA(i) 125 is active onlyif ail other external -~
active, cell data output line y(0) 573's value is deter- match lines MA(i) 125 from other CAMMs 101 con-_..
mined by the value of the y output offlip-flop RS(i,0) nected to it are active, and thus, if.an associative clear © -
529. Since internal address line a(i) 513 and OEline 508 operation may be performed onregister (i) 567, it may _--
are connected in the same fashionin all cells 565 making 5 be performed on corresponding registers 567 whose -.
up register (i) 567, the values at the y outputs of these external match lines are connected to register (i) 567.
registers’ RS flip-flops (i,0. . . 3) determine the values : wid
on data output lines y(0) 573 through y(3) 579. When a 4.5 A TTL Gate Array Implementation of CAMM Oe
register is not being addressed, the outputs of the AND 101—FIGS.6 and 6A through 6F Lo,
gates corresponding to AND gate 535 are inactive. 10 FIGS. 6 and 6A through 6F together contain a logic “
Consequently, only the values in cells 565,0...3)of|diagram for an exemplary TTL gate array implementa... .,
the addressed register 567 (i) determine the values of_tion of an eight-register by four-bit CAMM 101. The. =.
data output lines y(0) 573 through y(3) 579. form ofthe logic in this implementationis dictated by —

In a match operation, the value at the y output of_logical and electrical characteristics of the TTL gate ~-
flip-flop RSG,0) 529 is compared with the value on data 15 array. The only logical devices which may be formed
input line d(0) 509 unless mask line e(0) 517 is active. from the gate array are NAND gates and inverters. |. -
When the operation is performed, the value at the y Further, each NAND gate must have three inpotsanda . ,
output offlip-flop RSG,0) 529, carried on line 531, and=given NAND gate or inverter can drive a maximum of ve
the value on data input line d(0) 509 are both input to—four other NAND gates or inverters. In FIG. 6, only .
AND gate 533. At the same time the value of the y 20 the cells of a single register are shown in detail; cells of © ~
outputofflip-flop RSG,0) 529, carriedon line 532, and remaining registers are represented as boxes withla- .
the value on data complement line d(0) 511 are both _—belled ‘inputs and outputs; the cells and registers so" |
input to AND gate 534. Consequently, if the value on _—represented are, however, identical to the cells and. ~’.
data input line d(0) 509 matches the value at the y out- _—register shown in detail. Cote

| i , the output ofAND or line 25 Te,Be, chtoutperofAND gate 534, is active. line 537 is 4.5.1 Inputs and Ootputs of the TTL-Gate Array® " — *.
active if data input line d(0) 509 and line 531, carrying Implementation are

data on data input line d(0) 509 and the data in flip-flop 6F, has the following inputs: on FIG.6, data input lines
RSG,0) both have the value 1, and line 536 is be active 30 D0 6167, D1 6171, D2 6175, and D3 6179, correspond--
if data complementlined(0) 511 and line 532, carrying _ing to data input lines 117 ofFIG.1; mask lines E0 6169,-
the value of the y output are both active, that is, ifthe|El 6173, EZ 6177, and E3 6181, corresponding to.mask
data on data inputline d(0) 509 and the data in flip-flop lines 127 and serving to mask the corresponding data
RSG,0) 529 both have the value 0. Lines 536 and 537 are —_—input line when they are active; on FIG. 6A, externali!*
inputs toOR gate 540, and consequently, OR gate 540’s 35 address lines AO 6026, A1 6028, and A2 6030, corre- . 2
output, line 541, is activeifcither line 536 or line 537 is sponding to external address lines 113; on FIG.GD,OE -
active. If, on the other hand, the data on data input line line 6197, corresponding to OE 131; and on FIG: 6A, *-
d(0) 509 does not match the data in flip-flop RSG,0) 529, write enable line WE 6068, corresponding to WE 133, *. ‘ i
neither AND gate 533 nor AND gate 534 has two ac-—_and CLR line 6081, ding to CLR 135. Lines ... :
tive inputs, and output lines 537 and 536 are both inac- 40 WE 6068, OF 6197, and 6081: are ‘all normally . ~~ '
tive. active and are inactivated to specify a write, read, or’:

The third input to OR gate 540 is mask line e(0) 507. _—clear operation respectively. Outputs from CAMM 101: :".,
When data line d(0) 509 is being masked, mask line e(0) represented in FIG.6 are data output lines YO 6147,:Y1 =:
507 is active and OR gate 540’s output line 541 is active 6153, Y2 6157, and Y3 6161, on FIGS. 6D and‘6F-corre~ - -
regardless of the values of lines 536 and 537, that is, 45 sponding to data output lines 119 and bidirectional ex-* .-’
regardless of whether data line d(0) 509 has the same_—ternal match lines MO 6182 through"M7-6196 on FIG. -
value as flip-flop RSG,0) 529. Line 541 and its equiva- 6 corresponding to external match lines 125in FIG... :
lents from the other cells 565 in register 567 serve as As specified on FIG. 6C, external match lines M0 6182 ©
inputs to ANDgate 553, whose output isinternal match—_through M7 6196 are connected to open collector out-
line m(@i) 555, corresponding to one of internal match 50 puts. When one such external match line MO6182:
lines 121. Consequently, internal match line m(i) 555 for through M7 6196 is connected to external match lines _
a register (i) 567 is active only if all cell match lines for from other CAMMs 101ofthe type disclosed in FIG. 6,~ -

NeheheheeoamablenemEMERoeahett

register (i) 567’s cells are active. the result is a wire AND: noneof the connected exter-
The associative clear operation takes place when nal matchlines will be active unless all of them are.

CLR line 512 is activated. If external match line MA(- 55 4.5.2 Functional Subdivisions of the TTL
Din 559 is active when CLR line 512 is activated, cell
(i,0) 565 is cleared. CLR line 512 and external match 1
line MA()in 559 are inputs to AND gate 514, which has CAMM 101 of FIG. 6A has the following functional. > :
internal clear line c(i) 523 as its output. Internal clear_subdivisions, outlined in dashed lines: on FIG. 6, data: *: i
line cG) 523 provides an input to OR gate 525, whose 60 and mask input 6183, for receiving inputs from data | - :
outputis connected via line 527 to the R inputof flip- _imput lines DO 6167 through D3 6179 and mask lines EO ~ i
flop RSG,0) 529. Thus, when CLR line 512 and external 6169 through E3 6181; on FIG. 6A, address decoder
match line MA()in 559 are active, internal clear linec(i) 6067, corresponding to address decoder 109, for receiv- -
523 is active, line 527 is active, and flip-flop RSG,0)isset ing external address lines AO 6026 through A2 6028 and
to 0. Since internal clear line c(i) 523 is connected as 65 decoding addresses received on these lines: on FIGS.
described aboveto all other cells 565 in register (i) 567, 6D and 6E, data outputs 6142 for outputting data re-
all cells 565 in register (i) 567 are cleared simultaneously ceived from registers 6176; on FIG. 6B, clear logic :
with cell (i,0) 565. As previously mentioned, an external 6090, corresponding to clear logic 111, for clearing ‘ :

Implementation . . }

NOAC Ex. 1017 Page 312

NOAC Ex. 1017 Page 313

ps

asiaatonal
3

Sts*

JDekesfecitenlenbatonidondteaeeAO

4,559,
15

“individual registers 6176, and on FIG. 6B, match logic
6189, for detecting matches. In addition, one register,
register (0) 6187, on FIG. 6B,is outlined with dashed
lines, and one cell ofregister (0) 6187, cell (0,0) 6185, is
so outlined. Registers 6187 correspondto registers 105 5
of FIG. 1, and cells 6185 correspond to cells 107. The
discussion deals first with each of these functional divi-
sions and then with their interaction in the read, write,
match, and associative clear operations.

4.5.2.1 Data and Mask Inputs 6183

Data and mask inputs 6183 on FIG.6 include data
input lines DO 6167 through D3 6179, mask lines E0
6169 through E3 6181 paired with the data lines, and
associated Jogic. Since each data input line-mask line 15
pair has the same logic,only that for data inputline DO
6167 and mask line E0 6169 is discussed in detail. Begin-
ning with DO 6167, the logic includes inverter 6001,
with D0 6167 as its input and line 6003 as its output;
inverter 6005, with line 6003 as its input and line 6011 as 20
its output; inverter 6007, with mask line EO 6169 as its
input and line 6009 as‘its output; NAND gate 6013, with
inputs from lines 6003 and 6009 and an output to line
6017; inverters 6023, having line 6017 as their input and .
lines to cells 6185 as their outputs; NAND gate 6015, 25
with inputs from lines 6009 and 6011 and an output to
line 6019, and inverters 6020, with inputs from line 6019 -
andlines to cells 6185 as their outputs. In the following,

10

.¢ Only IDOA line 6025, the output of inverter 6021, and
> IDOA line 6024, the output of inverter 6022, are dis- 30
2 cussed in detail.

In the portian ofdata and mask inputs 6183 associated
’; with data input line DO 6167 and mask line E0-6169, the

inputs DO 6167 and EO 6169 and the outputs IDOA 6024
and IDOA 6025 have the following relationships: ifdata 35
input line DO 6167 is not being masked, that is, if mask

+> line EOD 6169 is inactive, IDOA line 6024 is set to the
~ +¥ value of data input line D0 6167 and IDOA line-6025 is

2vset tothe complementofthat value; ifdata input line DO
*4 6167 is being masked, that is, ifEO 6169 is active, IDOA.
#yline 6024 and IDOA line 6025 are both inactive These
“Srelationships are achieved as follows: beginning with

the case in which no masking is taking place, when
mask line E0 6169 is inactive, line 6009 is active and the
values of the outputs of NAND gates 6013 and 6015
depend on the values of lines 6003 and 6011 respec-
tively. The values of lines 6003 and 6011 in turn depend
onthevalueofdata input line DO 6167. Ifdata input line
D9 6167 is active, line 6003 is inactive and line 6011 is
active. Consequently, line 6019, the output of NAND
gate 6015,is inactive, and its inversion, ID0A line 6024,
is active, while line 6017, the output of NAND gate
6013, is active, and its inversion, IDOA line 60285, is
inactive. If data input line DO 6167 is inactive, the re-
verse of the aboveis true. Thus, when mask line EO
6169is inactive, IDOA line 6024's value is always identi-
cal with that of data input line DO 6167 and IDOA line
6025’s value is always the complement of the value of
data input line DO 6167. When data input line D0 6167
is being masked on the other hand, mask line EO 6169 is
active, line 6009 is inactive, and consequently, NAND
gates 6013 and 6015 have active outputs 6017 and 6019
and IDOA line 6024 and IDOA line 6025 are inactive
regardless of the value of data input line DO 6167.

4.5.2.2 Address Decoder 6067—FIGS. 6A. and 7

Turing now to address decoder 6067, on FIG. 6A,
address decoder 6067's inputs are external address lines

40

45

618
16

AO 6026, Al 6028, and A2 6030 and its outputs are
internal address lines 6065, corresponding to internal
address lines 115. Each line in internal address lines

_ 6065 is associated with a register 6187. Lines in internal
address lines 6065 are active unless register 6187 associ-
ated with a line is being addressed; in that case, the line
associated with register 6187 being addressed is inac-
tive. Thus, address decoder 6066 operates by activating
all internal address lines 6065 but theone for the register
specified by external address lines AO 6026 through A2
6030.

Address decoder 6066 consists of inverters 6027

through 6043 and NAND gates 6051 through 6054.
Each address line AO 6026 through A2 6030 is input to
an inverter and the output from that inverter is inputto
another inverter. Thus,for each address line AO 6026
through A2 6030, there is available from the first in-
verter a signal which is the complementofthe signal on
the corresponding external address line and from the
second inverter 2 signal which is identical with that on
the corresponding external address line. The signals
obtained from the inverter outputs are then input to
NAND gates 6051 through 6054. Each of these gates
takes three inputs, one derived from address lme AO
6026, one from address line Ai 6028, and one from
address line AZ 6030. An input derived from a given
address line is obtained from the output of either the

. first or second inverter following. the address line. The
input’s value is therefore either identical with the value
of the address line or the complementof that value. For
example, NAND gate 6063 takes as its inputs line 6033,
line 6035,and line 6049. Line 6033's valuc is the comple-
ment of:the value of external address line AO 6026, linc
6035's value is the complementofthe value of external
address line A1 6028, and line 6049's valueis identical
with that ofexternal address line A2 6030. The inputs to
NAND gates 6051 through 6064 are distributed among

-the gates-in such fashiom that-a given-combination of
signals on external address lines AO 6026 through A2
6030 causes one of NAND gates 6051 through 6064. to
have an inactive output and the remainderto have ac-
tive outputs. For instance, NAND gate 6064 takes as its
inputs line 6037, whose value is the complementof the
value on external address line AZ 6030, line 6035, whose
value is the complement of the value on external ad-
dress line Al 6028, ‘and line 6033, whose value is the
complementof the value on external address line 6026.
NAND gate 6064's output 6067 is active unless line

_ 6037, line 6035, and line 6028 are all simultancously50

35

a

65

active, and the latter is true only ifexternal address lines
AO 6026 through A2 6030 are simultaneously inactive,
that is, only if the values on external address lines AO
6026 through A2 6030 represent a binary 0. With all
other NAND gates 6051 through 6063, when external
address lines AO 6026 through A2 6030 are simulta-
neously inactive, at least one input line to each of
NAND gates 6051 through 6063 is inactive, and conse-
quently, all NAND gates 6051 through 6063 have ac-
tive outputs. .

The complete relationship between combinations of
signals on external address lines AO 6026 through A2
6030 and outputs on internal address lines 6065 is illus-
trated in the truth table in FIG.7. In that table, the table
rows indicate the eight possible combinations of values
on address lines AO 6026 through A2 6030 and the table
columns indicate individual NAND gates 6051 through
6054 and their mput lines. The table entries themselves
show the output of the NAND gate specified by the

NOACEx.1017 Page 313

NOAC Ex. 1017 Page 314

POMPABtee
pricyiciSiete}

Kyfaeoe
“eCyikes

easy«1
x

wsAKARE

AENelieShe5MB”
pinksse:-ise

4,559,618
17

entry’s column for the values on address lines AO 6026
through A2 6030 specified by the entry’s row.

4.5.2.3 Cell 6185 (0,0)

Tuming nowto cell 6185 (0,0), on FIG. 6B, cell 6185 5
(0,0) has the followinginputs: data line ID0A 6024 and
data complement line IDOA 6025 from data and mask
inputs 6183, internal address line XAO 6067, from
NAND gate 6064 of address decoder 6066, internal
write enable line WEO 6078, whose value is derived 10
from external write enable line WE 6068 by way of
inverters 6069, 6071, and 6073 on FIG.6A, and is there-
fore the complementof the value of external write en-
able line 6068, and internal clear line CLRO 6089,
which corresponds to internal clear lines 123 except
that internal clear line CERO 6089is inactive when an

associative clear operation is takingplace. Outputs from
cell 6185 (0,0) are cell data line TYO 6113, whose value
is the complementofthe value stored in cell 6185 (0,0),
and cell match lines 6117 and 6121, which are both
active when either data input line DO 6167 is masked or
the value contained in cell 6185 (0,0) matches the value
on data input line DO 6167.

Cell 6185 (0,0) consists of: inverter 6091, receivingits
input from internal address line KAD 6067; NAND gate
6095, receiving its inputs from inverter 6091, WES line
-6078, and data line IDOA 6024; NAND gate 6097, re-

’ ceiving its mputs from inverter 6091, WEO line 6078,
and data complement line IDOA 6025; NAND gate ,,
6103, receiving its mputs from NAND gate 6095 and
NAND gate 6107; NAND gate 6107, receiving its in-
puts from NAND gate 6103, NAND gate 6097, and
internal clear line CERO 6089; NAND gate 6111, re-
ceivingits inputs from NAND gate 6105 and inverter 35
6091; NAND gate 6115, receiving its inputs from data
line ID0A 6024 and NAND gate 6107, and NAND gate
6119, receiving its inputsfrom NAND gate 6103 and
data complement line IDOA 6025. Finally, connection

- point 6122, connecting the outputs of NAND gates 49
6115 and 6119, is a wire AND; consequently,ifeither or

°*. - both oflines 6117 and 6119 is inactive, line 6123 is inac-
tive.

The components of cell 6185 (0,0) perform the same
logical functions as the components of cell 565 (7,0) in 45
FIG. 5. NAND gates 6095 and 6097 take inputs which
are equivalent to those for AND gates 515 and 517 in
FIG.5 and provide outputs which are the complements
of those of AND gates 515 and 517. Line 6099, the
output of NAND gate 6095, is active unless line 6093, 59
line IDOA 6024, and line WED 6078 areall active. Line
6093 is the complementof internal address line XOA
6067, and consequently, is active only when register
6187 is being addressed, while line WEO 6078 is active
only when a write operation is taking place. Therefore, 55
line 6099 is inactive only when a write operation to
register 6187 (0) is taking place and line IDOA 6024 is
active. During a write operation to register 6187 (0),
line 6099’s value is thus the complementof the value of
line ID0A 6024. NAND gate 6097's inputs are line 6093, 60
line WED 6078, and line IDOA 6025, and like NAND
gate 6097, its output 6101is inactive only when a write
operation to register 6187 (0) is taking place and line
TDOA 6025 is active. During a write operation, there-
fore, Line 6101’s value is the complement of the value 65
of line IDOA 6025 and also the complementof the value

__ of line 6099. At other times, both line 6101 and line 6099
are active.

18
NAND gates 6103 and 6107 function as an RSflip- .

flop with R and S inputs which change the flip-flop’s .~
state when they becomeinactive. NAND gates 6103 -
and 6107 and NANDgates 6095 and 6097 together.thus.
are logically equivalent to AND gates 515 and 517 and “*’
RSflip-flop 529 in FIG. 5. In the RSflip-flop formed by- * :

NAND gates 6103 and 6107, line 6105, the output of- ;o
NAND gate 6103, is the Y output and line 6109, the:
output of NAND gate 6107 is the Y output. The set.
operation works as follows: line 6099 is the.S input. As *the output ofNAND gate 6095,it is inactiveonly-when .i
input data line ID0A 6024, write enable line WEO 6078,.
andline 6093, the complementof internal address line’ .
XAO0 6067, are active. When line 6099 isinactive, line -;
6105 becomes active, i.e., the Y outputis set to 1; At.the - ,
same time, line 6109 becomes inactive, i.e., the Youtput.”
is set to 0. This action takes place as follows: line 6108,:
line 6101 and CLRO lime 6089areinputs to NANDgate; -
6107. On a writeoperation, CLROline 6089is active. If~
line IDOA 6024 is active, lines 6105 and 6101 arealso -
active; consequently, line 6109, the Y output, isinactive. -
If, on the other hand, line IDOA 6026 is inactive,line©. |
6099 is active, lines 6105 and 6101 are inactive; and’ line.” ”
6109 is active. Thus, in this case, the Y output has thea
value 0 and the Y outputthe value 1.-CLE line 6089 acts as the R input to.the flip‘flop!
formed by NAND gates 6103-and 6107 only: when:no:.
write operation is taking place. Under these ‘circum:~~ _
stances, write enable line WEO 6078 is inactive, and’: -
consequently, lines 6099 and 6101 are active. When the . .*

flip-flop formed by NAND gates 6103 and: 6107:con-
tains the value 0, line 6105 is inactive and line6109°is
active regardless of the value of‘CLR line 6089. When:
the flip-flop formed by NAND gates 6103 and 6107.
contains the value 1, line 6105 is active along with line-’
6101 and the value of CLR line 6089. determines:the :
value oflines 6109 and 6105. IfCLR line-6089 remains ’
active, line 6109 remains inactive and line-6105 remains ;
active; if CLR line 6089 becomes inactive, line 6109 -
becomes active and line 6105-becomes inactive,giving
the flip-flop’s Y output the value 0 and its Y. output the
value 1. Since either line 6101 or 6089 can-reset ‘the’:

flip-flop formed by NAND gates 6103 and: 6107, the

connection of these lines to NAND gate6107is func’tionally equivalent to OR gate 525 in- FIG.5. >
NAND gate 6111 in FIG.6A inactivates celldata line .

TY0 6113 when both line 6093 and line.6105 areactive. -
Line 6093 is the complementof internal address line:
XAO 6067, and is therefore active when register 6187 -
(0,0) is being addressed. Line 6105 is the Y output of the.»
flip-flop formed by NAND gates 6103 and 6107, and_.
consequently, when register6187 (0,0) is being ad-
dressed, cell data line line TYO 6113's value is the com- .
plement of the value on line 6105. As shown on FIGS..:
6E and 6F,cell data line TYO6113 receives outputs from, °a
equivalent cells of all registers in the CAMM 101 de-..
scribed in FIG. 6 and then serves as an inputto tri-state.
NAND gate 6145 on FIG. 6F.It thus effectively ORs
these outputs andis equivalent to ORgate 569 in FIG: «"
S. Tri-state NAND gate 6145’s outputis data output line.
YO 6147. This line bas three states,active, inactive, and .*
off.It is in the latter state when OEline 6197 isinactive.

andits complement, line 6149,is active; otherwise, input:
line 6143 is at VCC and is always active, and conse-
quently, data output line YO 6147's valueis the comple- ..
mentofthe value ofcell data line FY0 6113, or the value
of the Y outputof the flip-flop formed by NAND gates._-
6103 and 6107. Together, NAND gates 6145 and 61141 |

NOACEx. 1017 Page 314

NOAC Ex. 1017 Page 315

wy

pi:Shinnani

4

OILS
i

 4,559,618
19

output the value of the Y output of cell 6185 (0,0) when
- register 6187 (0) is addressed and output has been cn-
abled; NAND gates 6145 and 6111 are thus logically

. equivalent to AND gates 535 and 571 of FIG.5.
Turning again to FIG. 6B, NAND gates 6115, 6119,

and the wire AND formed by connection 6122 between.
the outputs of NAND gates 6115, 6119, and internal
match line6123, finally, perform the match function for
cell 6185 (0,0) and are thus equivalent tp AND gates 533
and 534 and OR gate 540 in FIG. 5. NAND gate 6115
takes as its inputs line IDOA 6024 and line 6109 from the
¥ outputof the flip-flop formed by NAND gates 6103 -

and 6107. NAND gate 6119 takes as its inputs line ID0A.
6025 and line 6105 from the Y output ofthe flip-flop. If
mask line EO 6169 is inactive, then, as described in the
discussion of data and mask inputs_6183 above, the val-

~ yes on line ID0A 6024 and line IDOA 6025 are comple-
mentary. As also explained above, the values on lines
6105 and 6109 are always complementary. Conse-
quently, when the value on line IDOA 6024 is the same
as the value on line 6105, NAND gates 6115 and 6119
have complementary inputs and their outputs, lines
6117 and 6121, are both active. When the value on line

20

20
through: 6159. NAND gates 6145 through 6159 are
tri-state, that is, their outputs have three states, active,
inactive, and off. Theoff state is controlled by OE line
6197. When OE line 6197 is active, line 6149 is inactive,
and NANDgates 6145 through 6159 have no output;
otherwise, their outputs are the NAND oftheir inputs.
The other input to each of NAND gates 6155 through
6159is line 6143, which is always active. Consequently,
when OE line 6197 is inactive, the outputs of NAND
gates 6145 throagh 6159 are the complements of the
values on lines 6113, 6125, 6131, and 6137,thatis, identi-
cal with the values contained in cells 6185 (i,0) through
(3) in register 6187 @.

- 4.5.2.6 Match Logic 6189

Match logic 6189 for register 6187 (0), on FIG. 6C,
consists of mternal match line 6123, inverter 6125,
NAND gate 6129, and external match line MO 6182.
The match logic for the other registers 6187 is identical,
and consequently, only that for register 6187(0) is ex-
plained in detail.

Internal match line 6123 connects the output of wire
--AND 6122 with the outputs of equivalent wire ANDs

IDOAis different from that on line 6165, one of NAND .
gates 6115 and 6119 has both inputs high, and Imes 6117

25

and 6121 have have complementary values. When lines -
6117 and 6121 are both active, the output from the
AND formed by connection 6122 is active, indicating a :

s. match. When lines 6117 and 6121 have complementary
» values, the output from the AND formed by connection:
36122 is inactive, indicating no match. Thus, when mask °
-+ line EO 6169 is inactive, the output from the AND
» formed by connection 6122 is equivalent to the output-

- of OR gate’540 when mask line e(0) 507 is imactive.'
As mentioned in the discussion of data and mask.

inputs 6183, when mask line EO 6169 is active, both line’
:: IDOA 6024 and line ID0A'6025 are inactive. Since line
<zIDOA 6024 serves as an input to NAND gate 6115, and
z; line IDOA as an input to NAND gate 6119, the outputs
cof-the NAND gates, lines 6117 and 6121 respectively,
2-are both active regardless of the values on lines 6105
and 6109 and the output from the AND formed by-

connection 6122 is active, indicating a match. Thus,
data and mask inputs 6183, NAND gates 6115 and 6119
and the AND formed by connection 6122 produce the
same results when mask line EO 6169 is active as OR
gate 540 in FIG.5.

4.5.2.4 Register 6187 (0)

Cell 6185(0,0) and three equivalent cells 6185 form
register 6187(0). All cells6185 in register 6187 (0) take
internal address line XAO 6067, and internal clear line
CLRO 6089 as inputs and output to internal match line
6123. Because the cells in register 6187 share internal
address line XAO 6067, internal clear line CLRO 6089,
and internal match line 6123, they act as a single unit in
read, write, match, and associative clear operations.

4.5.2.5 Data Outputs 6142

Data outputs 6142, on FIGS. 6D and 6F, outputs data
contained in CAMM 101 registers 6187 to data output
lines YO 6147 throughY3 6161. Data to be output is
Teceived from lines IYO 6113, IYI 6125, [Y2 6131, and
TY3 6137. As previously explained, when a read opera-
tion is being performed, the values on these lines are the
complements of the values in celis 6185 (i,0) through
(i,3)of register 6187 (i) currently being addressed. Each
of these lines is one input to one of NAND gates 6145

35

40

30

60

65

in the other cells 6185 of register 6187 (0) and thereby
forms another wire AND taking the output of wire
AND 6122 and the outputs ofits equivalents as inputs.
Thus, internal match line 6123 is active only if the out-
puts of wire AND 6122 and its equivalents are all ac-
tive,that is, only if each cell 6185 in register 6187 (0)
indicates a match. Internal match line 6123 thus per-
forms the function of AND gate 553 of FIG.5.

Internal match line:6123 then serves as an input to -
inverter 6125, whose output, line 6126, is an input to
NAND gate 6129. The other input to NAND gate 6129,-
line 6143, is at Vcc. and therefore always active. In
consequence, NAND gate 6129's output is inactive
unless line 6126 is inactive, that is, unless internal match
line 6123 is active. As indicated on FIG. 6A, external
match line MO 6182 is an open collector output; hence,
it acts as the output of a wire AND connecting the
outputs ofthe equivalents of NAND gate 6129 in all
CAMM registers 6187 whose equivalents to external
match line MO 6182 are connected to external match
line MO 6182, andifany ofthese external match lines are
inactive, external match line MO 6182 is inactive.

4.5.2.7 Clear Logic 6090

Clear logic 6090 on FIGS. 6A and 6B activates inter-
nal clear line CLRO 6089 and its equivalents in other
registers 6187. Inputs to clear logic 6090 are CLR line
6081, which is active except when an associative clear
operation is being performed, and external match lines
MO 6182 through M7 6196. Clear logic 6090 includes
imverter 6083-and inverters 6084. Inverters m inverters
6084 are all identical to inverter 6088, and consequently,
only that inverter is described in detail. Inverter 6088
has a controlinput, entering at the side of inverter 6088,
as well as an input for the signal being inverted. As long
as the control inputis inactive, inverter 6088’s outputis
active; when the control inputis active, inverter 6088's
output is the complement of the value of the signal
being inverted. Inverter 6088 thus behaves like a
NAND gate in that verter 6088's outputis inactive
only if the contro] input and the input signal are both
active. The control input for inverter 6088 is line 6095,
whichis the output of inverter 6083 andthesignal input
is extepnal match line MO 6182. Line6095’s value is thus
the complement of the value of CLR line 6081, and

RennETT

NOACEx. 1017 Page 315

NOAC Ex. 1017 Page 316

lhNB6ue
ey

5

4,559,618
21

jnternal clear line CLRO 6089is inactive, clearing regis-
ter 6187(0), only if CLR line 6081 is inactive when ex-
ternal match line MO 6182 is active. Taken together,
therefore, inverter 6083 and inverter 6088 are equiva-
lent to AND gate 514 of FIG.5. 5

4.5.3 Operations in the TTL Gate Array
Implementation

Operations in the TTL gate array implementation are
analogous to those discussed in reference to FIG. 5. On 10
a write operation to register 6187 (0), on FIG. 6B, WE
line 6068 is inactive and address lines AO 6026 through

A3 6030 specify register 6187(0). Consequently,iin each
cell 6185 of the register, WEO line 6078is active, inter-
nal address line KAO 6097 is inactive, the line corre- 15
sponding to line ID0A 6024 in cell 6185 (0,0) has the
value of the line corresponding to data input line DO
6167, and the line corresponding to line IDOA 6025 has
that value’s complement. As explained in the discussion
of cell 6185 (0,0), when WEO line 6078 is active and 20
internal address line XAO 6097 is inactive, the RS flip-
flop contained in eachcell 6185 is set to the value on the
data input line of data input lines D0 6167 through D3
6179 corresponding to that cell 6185.:

Inaread operation onregister 6187 (0), output enable 25
line OE 6197 is inactivated and external address lines
-6026 through 6030 specifyregister 6187 (0), deactivat-

. ing internal address line XAO 6067. As.explained in the
discussion ofcell-6185 (0,0), when internal address line
XAO 6067 is inactive, line [YO 6113 and its equivalents 30

~ in the other cells 6185 making up register 6187(0) have
values which are the complementof the value at the Y
output of cell 6185's flip-flop. The discussion of data
outputs 6142 further showed that when output enable
line OF 6197 is inactivated, the complements of the 35
values ofline 6113 and its equivalents in the other cells
6185 making up register 6187 (0) are output at data
outputs YO 6147 through Y(3) 6161. Since the values
output at data outputs Y(0) 6147 through Y(3) 6161 are
the complements of the values on line 6113 and its 40

_ equivalents, they are identical with the values at the Y
outputs of cells 6185 making up register 6187(0).

Turing now to a match operation, as previously
explained with regard to cell 6185 (0,0), whenever a
value on a data line D0 6167 through D3 6179 matches 45
the value of its corresponding cell 6185 or whenever
mask line EO 6169through E3 6181 is active, the output
of the connectiou in cell 6185 corresponding to connec-
tion 6122 in cell 6185 (0,0) is active. All of the connec-
tions corresponding to connection 6122 in cells 6185 50
belonging to a register 6187 (i) are connected by the line
in register 6187 (1) corresponding to internal match line
6123 ofregister 6187 (0). As explained in the discussion
of match logic 6189, internal match line 6123 and its
equivalents function as wire ANDs taking the outputs 55
from connection 6122 and its equivalents as inputs. The
equivalentof internal match line 6123 for a register 6187
@is therefore active only if all outputs from connec-
tions equivalent to connection 6122 are active. If the
equivalentofinternal match line 6123 for a register 6187 60
(i) is active, then, as explained in the discussion ofmatch
logic 6189, external match line MO 6182 through M7
6196 corresponding to register 6187 (i)is active unless
external match line MO 6182 through 6196 correspond-
ing to register 6187 (i) is connected to external match 65
lines M0 6182 through 6196 belonging to other CAMMs
101 and one of these external match lines MO 6182
through 6196 is inactive.

22 ar
An associative clear operation, finally,is executed for,

a register 6187 (i) when external match line MO 6182 - .
through M7 6196 corresponding to register 6187 (i).is - -
active and CLRline 6081 is inactivated. As explained in +:
the discussion of clear logic 6090, under these circum-;
stances, the equivalent of line CLRO 6089 is inactive,.
and as explained in the discussion of cell 6185 (0,0),

when this is the case, all cells 6185-belongingto register.6187 (i) are simultaneously set to0. -

Embodiments of the present invention may.shave
specific forms other than those presented in FIGS. 1 -
through 7. The functions of the present invention may:
be performed by arrangements oflogical devices other.. 7
than those presented herein and different techniques “~whe
may be used to implement the present invention. For.:*
example, the present invention may be implemented, -using discrete devices, on a chip containing a single s
CAMM 101, or on a chip containing a plurality. of.
CAMMs201, and the devices on the chips may be .
formed using various technologies. Similarly, the num- _—
ber ofbits in a register and the number ofregisters ina =s
CAMM 101 may vary from implementation: to imple- a
mentation. 7

Theinvention may be embodied in yet other specific:an
forms without departing from the.spirit or essential
characteristics thereof. Thus,.the present embodiments ~
are to be considered in all respects as illustrativeand_not;
restrictive, the scope ofthe invention being indicated by:
the appended claims rather than theforegoing descrip--
tion, and all changes which come within the meaning-*,*.

and range of equivalency of the claims 2are therefore - :intendedto be embraced therein. aoe

ing:
(1) a plurality of register means, each.register means of.

said plurality of register means containing.one stored
item of data; oe

(2) means for receiving a pattern item-of data; . .
@)a plurality ofmeans for detecting said register means:.*

containing said stored items of. data.matching‘said - .

register means, being responsive to saidstoreditemof.) °
data contained in said one said register means and to .-.
said pattern item of data, and providing a match sig- —
nal when said onesaid registermeans associated with. -
said one match detection means contains said stored

item of data matching said pattern item of data; and .
(4) a plurality of bidirectional match signalling- means -

for providing said match signal from said content- _ ~
addressable memory module and receiving -said.-
match signal from an external source, each oneofsaid--
bidirectional] match signalling means being associated :
with one of said register means and responsiveto said
match signal from said match detection means associ-
ated with said associated register means and tosaid ~
match signal from said external source, and acting to
provide said match signal only when simultaneously
receiving said match signal from said associated.
match detection means and from said external source. -
2. In the content-addressable memory module of

claim 1, and wherein .
said bidirectional match signalling means isa match line -

connected to said associated match detection means

for providing and receiving a matchstate and a no-
match state;

said matchsignal is said match state; and

NOACEx.1017 Page 316

4weencenetithnieminimw

cence:

NOAC Ex. 1017 Page 317

“Seee
Po2Ba,
gs+98

isae
Rien

ecBiridepiasue
tags

eho

rageSaeaeee
BS en

nkwend3SovakTAREE
Obes.2
a

bakeositm,2
Baerie

attheAa
Cr

seenerscmmcmmrmunmyeneer
i
4

4,559,618
23

‘said matchline is connected to an open-collector driver
circuit in said associated match detection means and
said open-collector driver circuit places said con-
nected matchline in said no match state unless said
stored item of data in said register means associated 5
with said match detection means matches said pattern
item of data.
3. In the content-addressable memory module of

claim 2, and whercin:
said match state is a high voltage and 10
said no matchstate is a low voltage.

4. In the content-addressable memory module of
claim 3, and wherein:
a pattern sequenceofbits in said pattern item of data
_ correspondsto a certain sequence ofbits in each one 15

of said stored items of data, said match detection
means is responsive to said pattern sequence ofbits
and to said certain sequence ofbits, and said stored
item of data matches said pattern item of data when
said bits m said certain sequence match said bits in 20
said pattern sequence.
5. In the content-addressable memory module of

claim 4, and wherein:
said content-addressable memory module further in-

cludes means for receiving a masking item ofdata for 25
specifying said pattern sequence of bitsand

said match detection means is further connected to said
masking item receiving means and is responsive to
said masking item of data.
6. In the content-addressable memory module of 30

, Claim 5, and wherein:
+ said masking item ofdata further specifies a non-pattern

sequence ofbits in said pattern item of data;
said stored items of data further contain a second cer-

tain sequence ofbits corresponding to said non-pat- 35
tern sequence ofbits; and

one said stored item ofdata matches said pattern item of
y- data when-said first certain sequence ofbits matches
»~ Said pattern sequence ofbits, regardless of the values
«g- -Of bits in said second certain sequence of bits. 40
7. A content-addressable memory module compris-‘ing:

(1) a plurality of register means, each register means of
said plorality of register means containing one stored
item of data; 45

(2) means for receiving a pattern item of data;
(3) means for receiving a clear signal specifying that

certain ones ofsaid plurality of register means are to
be cleared, said certain ones being said register means
containing said stored items of data matching said 50
Pattern item of data; and

(4) means for simultaneously clearing said certain ones
of said register means, said simultaneous clearing
means being connected to said plurality of register
means, to said pattern receiving means, and to said 55
clear signal receiving means and responding to said
stored item ofdata, said pattern item ofdata, and said
clear signal by simultaneously clearing said certain
ones of said register means on receipt of said clear
signal in said clear signal receiving means; 60

wherein:

a pattern sequence ofbits in said pattern item of data
corresponds to a certain sequence of bits in each
one ofsaid stored items of data and said stored item
of data matches said pattern item ofdata when said 65
bits in said certain sequence match said bits in said
pattern sequence;

and wherein said simultaneous clearing means mcludes:

“
2

24 .
(a) a plurality of means for detecting said register

means containing said stored items of data match-
__ ing said pattern item of data, each one ofsaid plu-

rality of match detection means being associated
with one said register means and being responsive
to said stored item of data contained in said one

said register means andto said pattern item of data,
and each one of said plurality of match detection
means acting to provide a match signal when said
one said register means associated with said one
match detection means contains said stored item of

data matching said pattern item of data; .
(b) means for providing a register clearing signal speci-

fying any oneof said register means in response to
said clear signal and to said match signal; and -

(c) a plurality of means for clearing said register means,
each one ofsaid register clearing means being associ-
ated with one ofsaid register means and being respon-
sive to said register clearing signal.
8. In the content-addressable memory module of

claim 7, and wherein: .
said content-addressable memory module further in-

cludes a plurality of bidirectional match signalling
means for providing said match signal from said con-
tent-addressable memory module, receiving said
match signal from an external source, and providing-
said match signal to said register clearing signal pro-_
viding means, each bidirectional match. signalling
means of said plurality of bidirectional match signal-
ling means being associated with one register means
of said plurality of register means and being con-
nected to said match detection means associated with
said associated register means and to said: register
clearing signal providing means, and each said bidi-
rectional match signalling means providing said
match signal to said register clearing signal providing
means only when said bidirectional match signalling
meansis simultaneously receiving said match signal
from saidconnected match detection means and from
said external source.

9. In the content-addressable memory module of
claim 8, and .
wherein: .
said bidirectional match signalling means is a match line

connected to said match detection means and to said
register clearing signal providing means;

said match line provides and receives a matchstate and
a no-match state; . _.

said match signal is said match state; and
each said match line is connected to an open-collector

driver circuit m said associated match detection

means and said open-collector driver circuit places
said connected matchline in said no matchstate un-
less said stored item of data in said register means
associated with said match detection means matches
said pattern item of data.
10. A content-addressable memory module compris-

ing: :
(3) a plurality of register means, each register means of |

said plurality of register means containing one stored
item of data; |

(2) means for receiving a pattern item of data;
(3) means for receiving a clear signal specifying that

certain ones of said plurality of register means are to |be cleared, said certain ones being said register means
containing said stored items of data matching said
pattern item of data; and

NOACEx.1017 Page 317

NOAC Ex. 1017 Page 318

 von,
MoenPRS
tee,

Se

25
(4) means for simultaneously clearing said certain ones

of said register. means, said simultaneous clearing
means being connected to said plurality of register
means, to said pattern receiving means, and to said
clear signal receiving means and responding to said 5
stored item of data, said pattern item of data, and said
clear signal by simultaneously clearing said certain
ones of said register means on receipt ofsaid clear
signal in said clear signal receiving means;

wherein: 10
a pattern sequence ofbits in said pattern item of data

corresponds to a certain sequence ofbits in each
oneofsaid stored items ofdata andsaid stored item
of data matches said pattern item ofdata when said
bits in said certain sequence match said bits in said 15
pattern sequence.

and wherein:
said content-addressable memory further includes

means for receiving a masking item of data for
specifying said pattern sequence of bits and said 20
simultaneous clearing means is further connected
to said masking item receiving means and is respon-
sive to said masking item of data;

and wherein:
said masking item of data further specifies 2 non-pat- 25

tern sequence ofbits m said pattern data item;
said stored items of data farther contain a second

certain sequence ofbits corresponding to said non-
pattern sequence of bits; and

onesaid said stored item of data matches said pattern 30
data item when said first certain sequence ofbits
matches said pattern sequence ofbits, regardless of
the values of bits in said second certain sequence of
bits;

and wherein: 35
said masking item of data specifies all said bits in said

pattern item ofdata as said non-pattern sequence of
bits, whereby all said stored items ofdata match
said pattern itemofdats, all said register means in
said plurality of register means are said certain ones 40
of said plurality of register means, and said simulta-
neous clearing means simultaneously clears all said
register means in said plorality of register means
uponreceipt of said clear signal in said clear signal
receiving means. 45IL In thethecontent-addressable memory module of

claim 10, and wherein:
said simultancons clearing means further includes

(a) a plurality of means for detecting said register
means containing said stored items of data match- 50
ing said pattern item of data, each oneofsaid plu-
rality of match detection means being associated
with one said register means, being -responsive to
said stored item of data contained in said one said
register means, to said pattern item of data, and to 55
said mask item of data, and providing a match
signal when said one said register means associated
with said one match detection means contains said
stored item of data matching said pattern item of
data, 0

(b) means for providing a register clearmg signal to
any one ofsaid register means in response to said
clear signal and to said match signal,

(c) a plurality of means for clearing said register
means, each one of said register clearing means 65
being associated with one of said register means
and being responsive to said register clearing sig-
nal.

4,559,618
26

12. In the content-addressable memory module .of aclaim 11, and wherein: 2
said content-addressable memory module further in- -

cludes a plurality of bidirectional match signalling : |.
means for providing said match signal from said con,
tent-addressable memory module, receiving - said.
match signal from an external source, and providing
said match signal to said register clearing signal pro-" .”. .
viding means, each bidirectional match signalling,”
means ofsaid plurality of bidirectional match signal-" *
ling means being associated with one register means _

of said plurality of register means and being con- ‘ .nected to said match detection means associated with .

said associated register means and to said register’ --
clearing signal providing means, and each said Didi-
rectional match signalling means providing said :match signal to said register clearing signal providing ~:
means only when said bidirectional match signalling -
means is simultaneously receiving said match signal -
from said connected match detection means and from
said external source. :
13. In the content-addressable memory ofclaim7, 10,~..

or 1, and wherein said content-addressable memory .o
module further comprises: we
address receiving means connected to said plurality. cof.”

register means for receiving an encoded address spec-
ifying an addressed register.means of said plurality of
register means from an external source,decoding said
encoded address to generate an address signal for'said
addressed register means specified by said encoded.
address, and Providing said address signal ‘to said.
addressed register means, each register means ofsaid>

plurality of register means being responsive to! said
address signal. :14. In the content-addressable memory moidule of

claim 13 and wherein: Lit
said address receiving means includes

(a) encoded address receiving means for receiving an.
encoded address specifying said addressed: register =
means from said external source;. Q

(b) decoding means connected:to said encodedad; a
dress receiving means and responsive to said en- a
coded address for decoding said encoded address::.
and generating said address signal for said ad- -;
dressed register means; and~—s-

(c) means connected to said decoding means andsaid
plurality of register means for providing said ad-:.
dress signal to said addressedregister means. -

15. In the content-addressable memory module of ©
claim 7, 10, or 1, and wherein said content-addressable
memory module further comprises: Lo
data input means for receiving an input. item of data a

from an external source;
means for receiving an address specifying an addressed."

register means ofsaid plurality ofregister means from .
an external source and providing an address signal for
said addressed register means; .

data output means for outputting one said stored item of - -
data from said content-addressable memory module;

means for receiving an output enable signal from an- |
external source;

means for receiving a write enable signal from an exter-
nal source;

data writing means connected to said plurality of regis- ©
ter means, said address receiving means, said data -.
input means, and said write enable signal receiving
means for setting said stored item of data in said ad- _
dressed register means to the value ofsaid input data

NOACEx. 1017 Page 318

APaesmatinenseamenanoahcunrmnbamntlenststttitethtswnmethteninatettemenetrtentetenntte:

NOAC Ex. 1017 Page 319

AORoS

RORESaSC.
hasenila

eeeaman
Kel

Ook)aie

kehe

SUEBcpeSSaBglLoatnt
=FonEEEahork

batameenimarabia

. 4,559,618
27

item: in response to. said: input item of data, said ad-

‘Gata reading means connected to said plurality of regis-
|. .:t@ means, said ‘address: receiving means, said data
‘.;, output:means, andsai¢t output enable signal receiving! ‘i:

. ... tmieans for providing said stored item of data in:said -
i... addressed register means to said data output means in

. signal.

each content-addressable memory module of said
. splurality: ;of . content-addressable, memory; modules. :

including .

© aPlorality of register means, each register means5
‘stored item of daia: .

. (b) means for, receiving.a pattern itemof‘data; | ,

.+:(c). means, for-receiving'a;clear signal specifyingthat:
n _ certain ones ofsaid plurality of register meéaps are {20

woe to be cleared, said pertain. ones being said Tee ‘oe ., means. containing said:storediitemsof:datamatch:
vs ing said pattern item of data: and’lip ln @ imeans' for. simultaneously. clearing said :certain-

Hiebeat

beds un ing means being connected to saidpluralityofre; att
‘tit: ister: means; .to said pattern item receiving: means,‘ -

: and to said ‘clear siprial receiving’ mitans. arid:te:-
vy sponding to:said stored item of data, said pattern:

5. item: ‘of idata, and : said! clear ‘signal . by: simulta: :30
‘ 4. + neously clearing said! certain! ones Uf said register ''! |!

ii > gti: means on receipt: ofsaid clear signalin saidcleat. ‘signal receiving means; and .- «| '~Q) memory clear signal: providing:means connected to!
-‘, said clear signal receiving means in each one of said - 8

plurality of memory modules for simultancously pro-: -
i ;, Viding said clear signal toall said contexit-addtessable *:
iitfii:! gj ghemury modules in‘said plurality of content-address-'-

s. able memory modules;
»wherein: 40
Said simultaneous clearing means includes
~. @ a plurality of means for detecting said register -

means containing said stored items of data match-
ing said pattern item of data, each one of said plu-
rality of match detection means being associated 45
with one said register means and being responsive
to said stored item of data contained in said one

said register means and to said pattern item ofdata,
and each one of said plurality of match detection
means acting to provide a match signal when said 50
one said register means associated with said one
match detection means contains said stored item of
data matching said pattern item of data;

Gi) means for providing a register clearing signal to
any one of said register means in response to said 55
clear signal and to said match signal; and

Gii) a plurality of means for clearing said register
means, each one of said register clearing means
being associated with one of said register means

and being responsive to said register clearing sig- 60
nal;

said content-addressable memory module further in-
cludes a plurality of bidirectional match signalling
means for providing said match signal from said con-
tent-addressable memory module, receiving said 65
match signal from an external source, and providing
said match signal to said register clearing signal pro-
viding means, each bidirectional match signalling

oan :; dress, signal, and. saidiwrite enable. signal; :.:11);:.°11is.

is C 116, A. content-addressable.Memory comprising: *:.. 10
“ay a plurality of content-addressable memorymodules; "i", :.

me ‘said. -content-addressable .memory further includes a

ones ofsaidfegisterni¢ans, shid'simultaneousclear- “Bbi,

28
means ofsaid plurality of bidirectional match'signal-i:::-'-:(s:0: 511)

- ling means being associated:with one register means ‘
“of said: plurality .of register means: and being ‘con-.:::i:. 0° fs.

nected to said match detection meansiassociated withi:. 'i:.) ‘tl:
: said . associated . register- means. and: to said register ‘* Gearing signal providing’ means, and each:said 'bidi-..:!: . . °::

rectional match signalling ‘means: providing said'' <‘''' °° 1!
response to:said address signal and:said qutput enable; | || : imiatch signal to‘said register clearingsignal providing:

‘meansonly when said bidirectional match signalling. ::i!'.:- 1 {'° +:
means in simultaneously receiving ‘said match signal’ mete
‘frdm said‘connected match detection means and from..
said external ‘source; and

’ plurality bfi memory match signalling: means for. rev:
ceiving said match signal from said‘ bidirectional *

‘timatch ‘signalling means and: serving as said external
_ Source for providing;said match signal to said bidires:'me
"tional matchsignalling means, éach one of said mem-_°

ry: match. signalling 1sheans correspondingto one. of . ‘saidbidiréetional iatch sigualling means; being cobrs:.:2°!..,: thay
nected ta said correspondingsaid match signalling— ° ue

“i amedns}in:each of, said icontent-addressable memory:

‘connected:bidirectional match signalling means ‘only.
.Whenallofsaid.connectedbidirectional.match signals:

: ling means are providingsaid matchsignal; =; .
| whereby: said;content-addressable memory respondsto .

‘said Clearsignal provided by. said memory clear sige: .+:1!;.° 5°:
. - nal providing means by clearing said register:means. :;yea liyeonly):whien | said. register ‘means. contain said stored .

itemsofdata matohing:said pattern item of data and: :batts bevdipets
said register means. are associated with said bidirec-. . ay 1

: tional, match;signalling means which:are receiving: ; :

© said match signal fromsaid memory match signalling Pree thedyges
17. In the content:addressable memory:‘of claim. 16:

“and:-wherein:said contentraddressable memory farther:comprises:-

an additional plurality ofsaid content-addressable mem-
ory modules; and

an additional said memory clear signal providing means
connected to said clear signal receiving means in cach

_ one ofsaid additional plurality of memory modules,
and wherein each one of said plurality. of memory

match signalling means is further connected to said
corresponding bidirectional match signalling means
in each content-addressable memory module of said
additional plurality of content-addressable memory
modules.
18. In the content-addressable memory of claim 16,

and wherein said content-addressable memory further
comprises:
an additional plurality ofsaid content-addressable mem-

ory modules; and
an additional plurality of memory match signalling

means, each one of said additional plurality of mem-
ory matchsignalling means being connected to said !
corresponding said match signalling means in each of
said content-addressable memory modules of said
additional plurality of content-addressable memory
modules; and

wherein said memory clear signal providing means is
further connected to said clear signal receiving means
im each content-addressable memory module of said
additional plurality of memory modules.
19. In the content-addressable memory of claim 16,

and wherein:

ET

NOACEx. 1017 Page 319

NOAC Ex. 1017 Page 320

+

rere
a

oeCheeoteaFf
yee
ee,Perecrt

saeoPaeat

iaRAEDNs,

heiNSYa997.40
Sidn

4,559,618
29

a pattern sequence ofbits in said pattern item of data
* corresponds to a certain sequence ofbits in each one
of said stored items of data and said stored item of
data matches said pattern item of data when said bits
in said certain sequence matchsaidbits in said pattern
sequence.
20. In the content-addressable memory of claim 19,

and wherein:
said simultaneous clearing means includes

@ @ plurality of means for detecting said register
means containing said stored items of data match-
ing said pattern item of data, each oneof said plu-
rality of match detection means being associated
with one said register means and being responsive
to said stored item of data contained m said one
said register means and to said pattern sequence of
bits, and each one ofsaid plurality of match detec-
tion means acting to provide a match signal when
said one said register means associated with said
one match detection means contains said stored
item of data matchingsaid pattern item ofdata,

Gi) means for providing a register clearing signal to
any one of said register means in response to said
clear signal and to said match signal, and

ii) a plurality of means for clearing said register
means, each one of said register clearing means
being associated with one of said register means
and being responsive to said register clearing sig-
nal;

said content-addressable memory module further in-
cludes a plurality of bidirectional match signalling
means for providing said match signal from said con-
tent-addressable memory module, receiving said
match signal from an external source, and providing
said match signal to said register clearing signal pro-
viding means, each bidirectional match signalling
means ofsaid plurality of bidirectional match signal-
ling means being associated with one register means
of said plurality of register means and being con-
nected to said match detection means associated with
said associated register means and to said register
clearing signal providing means, and each said bidi-
rectional match signalling means providing said
match signal to said register clearing signal providing
means only when said bidirectional match signalling
means is simultaneously receiving said match signal
from said connected match detection means and from
said external source; and

said content-addressable memory further includes a
plurality of memory match signalling means for re-
ceiving said match signal from said bidirectional
match signalling means and serving as said external
sourcefor providing said match signal to said bidirec-
tional match signalling means, each one of said mem-
ory match signalling means corresponding to one of
said bidirectional match signalling means, being con-
nected to said corresponding said match signalling
means in each of said content-addressable memory
modules, and providing said match signal to said
connected bidirectional match signalling means only
when all of said connected bidirectional match signal-
ling means are providing said match signal,

whereby said content-addressable memory responds to
said clear signal provided by said memory clear sig-
nal providing means by clearing said register means
only when said register means contain said stored
items of data matching said pattern item of data and
said register means are associated with said bidirec-

30
tional match signalling means which are receiving”

said match signal from said memory matchsignalling *means.

21. In the content-addressabie memory of claim 19, - -5 and wherein:

said content-addressable memory module furtherin- : -
cludes meansfor receiving a masking item ofdata for «-*
specifying said pattern sequence of bits and

said simultaneous clearing means is further connected to . .f
10 said masking item receiving means and is responsive Loto said masking item of data.

22. In the content-addressable memory of claim (21, *. : :and wherein:

said masking item ofdata further specifies a non-pattern
15 sequence ofbits in said pattern data item; -said stored items of data further contain a.second cere: a

tain sequence of bits corresponding‘to said non-pat-" ,
tern sequence ofbits; and

onesaid stored item ofdata matches said pattern item-of
20 data when said first certain sequence of bits matches

said pattern sequence ofbits, regardless of the values . i.
ofbits in said second certain sequence of bits. _

23. In the content-addressable memory of claim 22,: ”and wherein:
25 said masking item of data specifies all said bits in ‘said, Ja

pattern item of data as said non-pattern sequence’‘of -bits,
wherebyall said stored items ofdata match said’patter:

item of data, al] said register means m said plurality of
30 register means are said certain ones of said plurality.’ . .

of register means, and said simultancous clearing.
means simultaneously clears all said register means in
said plurality of register means uponTeceipt:ofsaid
clear signal in said clear signal receiving means. |©-

35 24. In the content-addressable memory. module‘of’claim 21, and wherein:
said simultaneous clearing means further includes* :

@ 2 plurality of means for detectingsaid register:
means Containing said stored items of data match-

40 ing said pattern item of data, each one of said plu--
rality of match detection means being associated ‘
with one said register means, being responsive. to .
said stored item of data contained. in said one said: *
register means, to said pattern item of data, and.to .

45 ssid mask item of data, and providing a. match’

signal when said one said register means associatedwith said one match detection means contains said*

stored item of data matching saidpattern item of. ~data,
50 (ii) means for providing a register clearing signal to

any one ofsaid register means in response to said ©
clear signal and to said match signal,.and .

(ii) a plurality of means for clearing said register.,
means, each one of said register clearing means-

55 being associated with one of said register means
and being responsive to said register clearing sig-
nal;

said content-addressable memory module further in-
cludes a plurality of bidirectional match signalling’.

60 means for providing said match signal from said con- -_
tent-addressable memory module, receiving said _
match signal from an external source, and providing
said match signal to said register clearing signal pro-- |
viding means, cach bidirectional match signalling

65 means of said plurality of bidirectional match signal-
ling means being associated with one register means
of said plurality of register means and being con- .
nected to said match detection means associated with . ~

NOACEx. 1017 Page 320

nnhcerpss

NOAC Ex. 1017 Page 321

wes

“ehaeta,eo
ayess

Iewe?

«teint
oye

eee

ads+

hteLtenaadie
ay

>BSbby~
agigherBeta

Bien
rsme

L

4,559,618
31

said’ associated register means and to said register
clearing signal providing means, and each said bidi- -
rectional match signalling means providing said
matchsignal to said register clearing signal providing
means only when said bidirectional match signalling 5
meansis simultaneously receiving said match signal
from said connected match detection means and from
said external source; and

said content-addressable memory further includes a
plurality of memory match signalling means for re- 10
ceiving said match signal from said bidirectional
match signalling means and serving as said external
source for providing said match signal to said bidirec-
tional match signalling means, each one of said mem-
ory match signalling means corresponding.to one of 15
said bidirectional match signalling means, being con-
nected to said corresponding said match signalling
means in each of said content-addressable memory
modules, and providing said match signal to said
connected bidirectional match signalling means only 20
when ail of said connected bidirectional matchsignal-
ling means are providing said match signal,

whereby said content-addressable memory responds to
said clear signal provided by said memoryclear sig-
ual providing means by clearing said register means 25

. 32
(b) means for receiving 2 pattern item ofdata;
(c) a plurality of means for detecting said register

means containing said stored items of data match-
ing said pattern item of data, each oneofsaid plu-
tajity of match detection means being associated
with one said register means, being responsive to
said stored item of data contained in said one said

register means andto said pattern item of data, and
providing a match signal when said one said regis-ter means associated with said one match detection
means contains said stored item of data matching

. Said pattern item of data; and
(d)a plurality ofbidirectional match signalling means

for providing said match signal from said content-
addressable memory module and receiving said
match signal from an external source, each one of
said bidirectional match signalling means being
associated with one of said register means and re-
sponsive to said match signal from said match de-
tection means associated with said associated regis-
ter means and to said match signal from said exter-
nal source, and acting to provide said match signal
only when simultaneously receiving said match. .
signal from said associated match detection means
and from said external source; and

only when said register means contain said stored _ (2) a plurality of memory match signalling means for
items of data matching said pattern item of. data and
said register means are associated with said bidirec-
tional match signalling means which are receiving
said match signal from said memory match signalling 30Means.

25, In the content-addressable memory ofclaim 24,
and wherein said content-addressable memory further
comprises:
an additional plurality ofsaid content-addressable mem- 35

ory modules; and
*~ an additional said memory clear signal providing means

connected to said clear signal receiving means in each ©
one of said additional plurality of memory modules,

= and wherein each one of said plurality of memory 40
4, - Match signalling means is further connected to said
*. corresponding bidirectional match signalling means

in each content-addressable memory module ofsaid
additional plurality of content-addressable memory
modules. 45
26. In the content-addressable memory of claim 24,

and wherein said content addressable memory further
comprises:
an additional plurality ofsaid content-addressable mem-

ory modules; and 50
an additional plurality of memory match signalling

means, cach one ofsaid additional plurality of mem-
ory match signalling means being connected to said
correspondingsaid match signalling means in each of
said content-addressable memory madules of said 55
additional plurality of content-addressable memory
modules; and

wherein said memory clear signal providing means is
further connected to said clear signal receiving means

~ modules.
27. A content-addressable memory comprising:

(1) a plurality of content-addressable memory modules,
each one of said plurality of content-addressable
Memory modules including 65
(a) a plurality of register means, each register-means

of said plurality of register means containing one
stored item of data;

in each oneofsaid additionalplurality of memory 60

receiving said. match signal from said bidirectional
match signalling means and serving as said external
source for providing said match signal to said bidirec-
tional match signalling means, cach one of said mem-
ory match signalling means corresponding to one of
said bidirectional match signalling means, being con-
nected to said corresponding said match signalling
means im each of said content-addressable memory
modules, and providing said match signal to said
connected bidirectional match signalling means only
when all of said connected bidirectional match signal-
ling means aréproviding said match signal.
28. In the content-addressable memory of claim 27,

and wherein said content-addressable memory further
comprises:
an additional plurality ofsaid content-addressable mem-

ory modules; and .
an additional plurality of said memory matchsignalling

means, each one of said additional plurality of mem-
ory match signalling means being connected to said
corresponding said match signalling means in each of
said content-addressable memory modules of said
additional plurality of .content-addressable -memory
modules:

29. In the content-addressable memory of claim 27,
and wherein:
said bidirectional match signalling means is a match line

connected to said match detection means and clearing
signal providing means;

said memory match signalling means is a memory match’
line connected to a corresponding said match line in
each one of said content-addressable memory mod-
ules;

said matchline and said memory matchline provide and
receive a match state and a no-matchstate; ,

said match signal is said match state; and
each said match line is connected to to an open-collec-

tor driver circuit in said associated match detection
means and said open-collector driver circuit places
said connected match line and said connected mem-
ory match line m said no match state unless said
stored item of data in said register means associated

NOAC Ex. 1017 Page 321

Reeaaarattealhkemceets

NOAC Ex. 1017 Page 322

nhaSenge

SREBLktkabate:Ae

a
cstds.@,SES
ki

aeSean

4,559,618
33

, with said match detection means matches said pattern
item of data.
30. In the content-addressable memory ofclaim 29,

and wherein:
said match state is a high voltage and said no match 5

State is a low voltage.
31. In the content-addressable memory of claim 30,

and wherem:
a pattern sequenceofbits in said pattern item of data

corresponds to a certain sequence ofbits in each one
of said stored items of data, said match detection
means is responsive to said pattern sequence ofbits
and to said certain sequence ofbits, and said stored
item of data matches said pattern item of data when
said bits in said certain sequence matchsaid bits in
said pattern sequence. 15
32. In the content-addressable memory module of

claim 31, and wherein:
said content-addressable memory module further in-

cludes meansfor receiving a masking item ofdata for
specifying said pattern sequence ofbits and

said match detection means is further connected to said
masking item receiving means and is responsive to -
said masking item of data.
33. In the content-addressable memory module of

claim 32, and wherein:
said masking item ofdata further specifies a non-pattern 25

sequence ofbits in said pattern data item;
said stored items of data further contain a second cer-

tain sequence ofbits corresponding to said non-pat-
tern sequence ofbits; and

one said stored item ofdata matches said pattern item of 30
data when said first certain sequence of bits matches
said pattern sequence ofbits, regardless of the values
ofbits in said second certain sequence ofbits.
34. In the content-addressable module of claim 33,

and wherein: 3
said masking item of data specifies all said bits in said

pattern item of data as said non-pattern sequence of
bits,

whereby said memory match line is in said match state
when first certain memory modules of said plurality
of memory modules receive said masking items of
dats specifying all said bits in said pattern items of
data received by said first certain memory modules as
said non-pattern bits, second certain memory mod-
ples ofsaid plurality ofmemory modules receive said
masking items not specifying all said bits in said pat- 45
tern item of data as said bits, and said stored items of
data in said register means associated with said mem-
ory match lines in said second certain memory mod-
ules match said pattern items received by said second
certain memory items. 50
35. In the content-addressable memory of claim 34,

and wherein said content-addressable memory further

5

comprises:
an additional plurality of said content-addressable mem-

ory modules; and
an additional plurality of said memory match signalling

means, each oneofsaid additional plurality of mem-
ory match signalling means being connected to said
corresponding said match signalling means in each of
said content-addressable memory modules of said 60
additional plurality of content-addressable memory
modules.
36. In the content-addressable memory of claim 16,

19, 21, or 27, and wherein:
said content-addressable memory module further in-

cludes
address receiving means connected to said plurality

of register means for receiving an encoded address
specifying an addressed register means of said plu-

65

34 .
rality of register means from an external source, ..-
decoding said encoded address to generate an ad-
dress signal for said addressed registermeans speci-___.
fied by said encoded address, and providing said: ; ~
address signal to said addressed register means,- .~-
each register means of said plurality of register :.-
means being responsive to said address signal;'and «.-

(2) memory register address providing means con- ~ -.-
nected to each said address receiving means in said’ ~
plurality of memory modules for simultaneously * ‘
providing ‘said encoded address to said address’. ~
receiving means in each one of said plurality .of -
memory modules, - rs

whereby said encoded address provided by said mem- we
ory register address providingmeans specifies a mem- . <=
ory register madeup ofsaid addressed register means * *
im each oneofsaid plurality of memory modules. -. -.;
37. In the content-addressable memory of claim 17, --- :

18, 25, 26, 28, or 35, and wherein: cae
each content-addressable memory module ofsaid plu- -:-

rality ofcontent-addressable memory modules and of .
said additional plurality of content-addressable mem- ;
ory modules further includes address receiving means, «. .
connected to said plurality of registermeans for.re- - -
ceiving an encoded address specifying an addressed" :: |
register means ofsaid plurality ofregister means from |. - ©
an external source, decoding said encoded address to. *, .

meansspecified by said encoded address, and provid
ing said address sigual to said addressed register *; -
means, each register means ofsaid plurality of regis- *"
ter means being responsive to.said address signal; and ; . _-

said content-addressable memory furtber includes mem- - :_"
ory register address providing means connected to .{”-
each said address receiving means in said pluralityof: *
memory modules and to said address receiving means -.; -
in said additional plorality of memory modules for <:
simultaneously providing said encoded address:to~
said address receiving means in each one ofsaid plu-| *
rality of memory modules and in each one of said--:
additional plurality of memory modules. soe gt
38. In the content-addressable memory of claim 17, °.:

18, 25, 26, 28, or 35, and wherein: - Plot
each content-addressable memory modale.of said: plu- .°,

rality ofcontent-addressable memory. modules and of:
said additional plurality of content-addressablemem-.:~
ory modules farther includes address receiving means ..
connected to said plurality of register means for re-_~
ceiving an encoded address specifying an addressed -; _
register means ofsaid plurality of register meansfrom |, - -
an external source, decoding said encoded address to
generate an address signal for said addressed register
means specified by said encoded address, and provid- .-
ing said address signal to said addressed register -:
means, each register means ofsaid pluralityof regis-
ter means being responsive to said address signal; and © ~

said content-addressable memory further includes .
memory register address providing means connected.

to each said address receiving means in said plural-
ity of memory modules for simultaneously provid- °
ing said encoded address to said address receiving
means in each one of said plurality of memory
modules; and co

additional memory register address providing means -
connected to each said address receiving means in
said additional plurality of memory modules for
simultaneously providing an additional said en- ©
coded address to said address receiving means in
each one of said additional plurality of memory
modules. a

NOAC Ex. 1017 Page 322

NOAC Ex. 1017 Page 323

ica

vet onBOSEhat

wateof

WARS<nseAeERE
PARA
ee

a

nantne

de
“a
ae

aa
3

etnpee

United States Patent 15)
Okamoto et al.

(11] Patent Number: 4,910,668

[45] Date of Patent: Mar. 20, 1990

[54] ADDRESS CONVERSION APPARATUS

[75] Inventors: Tadashi Okamoto, Hirakata; Hiroshi

Kadota, Toyonake; Masaitsu
Nakajima, Hirakata, all of Japan

[73] Assignee: Matsushita Electric Industrial Co.
Ltd., Osaka, Japan

[21] Appl No.: 100,561

(22] Filed: Sep. 24, 1987

(30) Foreign Application Priority Data

Sep. 25, 1986 [JP] Japan un...ennscescssssessserereee 61-226697

[SD] Tint, Cscccssccceccsnensernonccnsecanenensesen GO6F 12/10
(S2J US. Ch. oresnasene . 4/200
[S58] Fleld of Searche -.........-cccsecccssreseee-"364/200, 900
{56} References Cited

U.S. PATENT DOCUMENTS

4,296,475 10/1981 Nederlof et al.0.0:- 364/900
4,433,389 2/1984 York et al. 364/900
4,538,241 8/1985 Levin et all.0 eons364/900
4,607,331 8/1986 Goodrich, Jr. et al. 364/200
4,785,398 11/1988 Joyce et al. ...-...-n.eeccceceee 364/200

Primary Examiner—Gareth D. Shaw
Assistant Examiner—Debra A. Chon
Attorney, Agent, or Firm—-Wenderoth, Lind & Ponack

[57] ABSTRACT

An address conversion apparatus includes a content
addressable memory for storing a plurality of logical
addresses, and a random access memory for storing a
plurality of physical addresses corresponding to the
logical addresses. When an input logical address is re-
ceived, a search is conducted to find the same logical
address stored in the memory. When the same logical
address is found, the content addressable memory
causes the random access memory to output a corre-
sponding physical address. The content addressable
memory includes a plurality of logical address storage
units. Each unit has a plurality of data bit cells for stor-
ing address data and a process identification number cell
for storing a process identification number. Thereby, a
plurality of logical addresses which correspond to dif-
ferent processes are stored in the single content address-
able memory.

2 Claims, § Drawing Sheets

NOACEx.1017 Page 323

NOAC Ex. 1017 Page 324

4,910,668Sheet 1 of 8US. Patent. Mar. 20, 1990

 ¥oabb
.eon———relaeotetef[ofocseerIOH

1‘Ola

NOACEx. 1017 Page 324

NOAC Ex. 1017 Page 325

POENbeeaheAgMREMEMODRneTansPgaEREE:MERSCROME,TEreeeTNeMONennaneesee
wnaoe)voEy)afa~===4fa)O<©Z,

sa

=.tsepPPoeSSS47nta'IvyHi|
.ena5pole5a1Seen225InetPaarTTT792:TTekmilete|lateal(ee,litelt|82:eseoFereeIeT—y:"=°ozee2914

US. Patent

NOAC Ex. 1017 Page 326

(neetraeeeniinssastnrttntntnnatintitintnnetiyint2SemaIRRIeAREEERURITEM3erg)IRRranemewmee~veeemeeteenagememnnoFobi

ov![1||[>9+
ma99.Iob?atz||

tz

9OF%“ape/PreSegl
I

0————eee
|92

-{-————L-fyeteh08oe
Ov

NOACEx.1017 Page 326

4,910,668

 earTTheth

Mar. 20, 1990 Sheet 3 of 8US. Patent

aeeRENEeeeNNeRaeaREaTONIEENeMinaSeaeaeanTemeeaoat

NOAC Ex. 1017 Page 327

amnanansnestityniepreBTMHh

4,910,668

NOACEx.1017 Page 327

||

Sheet 4 of 8

Mar. 20, 1990

FIG. 4A

FIG. 48

FIG. 4C

US. Patent

NOAC Ex. 1017 Page 328

4,910,668Sheet 5 of 8US. Patent Mar.20, 1990

y 1D! LOGeFIG. 4D

lJt©Te

FIG. 4F

 Beeegeeselsalalela|aie
esterehesCIEeinehetRRSemer

NOACEx. 1017 Page 328

Roe,agFbeaAEAREae.btBadeanecofPedtieantentsterre
 estrtd

NOAC Ex. 1017 Page 329

Mar. 20, 1990 Sheet 6 of 8 4,910,668US. Patent

y 1D2 LOGY
FIG. 4G

CQ)ta.elf
S°

8

COINalsJ}AS})yy
FIG. 4H

“AENBEdMe

IDo LOGSFIG. 4J
NOACEx. 1017 Page 329

NOAC Ex. 1017 Page 330

a

i

US. Patent

‘FIG. 4K

FIG. 4L

Mar. 20, 1990 Sheet 7 of8

ID2 LOG

4,910,668

NOACEx. 1017 Page 330

NOAC Ex. 1017 Page 331

FIG. 5

teeth

066107FA=JUNFUT“ST).
§JO§PONS

899016P

NOACEx.1017 Page 331
eoelENLt reneeena|

NOAC Ex. 1017 Page 332

1

ADDRESS CONVERSION APPARATUS

BACKGROUND OF THE INVENTION

This invention relates to an address conversion appa-
ratus used in a computer system employing a micro-
processor, and more particularly to an address conver-
sion apparatus capable of efficiently converting from a
logical address into a physical address.

In 2 computer system, the central processing unit
outputs a logical address when executing a certain pro-
gram or a process. Since this logical address merely
indicates a virtual address on the program, when actu-
ally executing the program, this logical address must be
converted into a physical address, that is, the address 15
storing the instruction or data of the memory which
stores the content of the practical instruction or data. It
is the address conversion apparatus that converts from a
logical address into a physical address.

FIG. 5 shows a block diagram of a translation looka- 20
side buffer (TLB) as an address conversion apparatus
for converting a logical address into a physical address
in the conventional memory management system by
paging.

This TLBis composed ofa content addressable mem- 25
ory (CAM) 12 for storing the logical address 10 deliv-
ered from the CPU,a least recently used circuit (LRU)
14 for controlling the content thereof, and a random
access memory (RAM) 18 being accessed by the CAM
12 and delivering. a physical address 16. The CAM 12 30
possesses plural logical address storing parts 20 for
storing plural logical addresses. In each logical address
storing part 20, a valid bit 22 is provided, and depending
on whether the valid bit 22 is 1 or 0, it is known whether
the logical address stored in the corresponding logical 35
address storing pert 20 is valid (necessary) or invalid
(unnecessary). The LRU 14 is composed ofa number of
least recently used counters 24 corresponding to the
plural logical address storing parts 20, and these count-
ers 24 and the logical address storing perts 20 are mutu- 40
ally linked by means ofleast recently used replace word
wires 26 and content addressable memory word wires
28. The CAM 12 and the LRU 16 are joined by way of
content addressable memory hit wires 30. The RAM 18
possesses physical address storing parts 32 correspond- 45
ing to the logical address storing parts 20 of the CAM
12, and the logical address storing parts 20 and the
physical address storing parts 32 are linked together by
way of random memory sccess word wires 34.

Usually, when a certain process is executed by a pro- 50
cessor, and its logical addresses are converted into
physical addresses at a high speed ,by way of the TLB,
the operation is effected according to the following
procedure.

A certain logical address 10 is fed from the CPU to 55
the CAM 12, and it compared with the logical address
stored in the content addressable memory 12. Here, if a
logical address coinciding with the input logical address
10 is present, the data corresponding to the physical
address stored in the physical address storing part 32 of 60
the RAM 18 corresponding to that logical address is
delivered. As a result of this output of the data corre-
sponding to the physical address, the data on that physi-
cal address is read out by the CPU or the processor, and
is processed. 65

At the time of the above described logical address
retrieval, if no coinciding logical address is present and
the content addressable memory 12 is fully filled with

5

4,910,668
2

the logical address data and it is necessary to delete the
logical address data not required for the time being, the
least recently used logical address storing part 20 is
selected by the LRU 14, and the logical address data
storing in that part is erased, and the data of the logical
address to be used newly will be stored.

Thus, while a certain process is being executed, the
input logical address 10 is converted at high speed by
the TLB into an outputted physical address 16, but in
the CAM 12 of the TLB, there was not field to recog-
nize the process to be executed. Accordingly, when
plural processes, that is, multiprocesses are executed in
the processor, if a content switching occurs due to a
change-over of the process to be executed,it is neces-
sary to invalidate all data of the logical address newly in
each process to update. This is because, even at the
same logical address, if the process to be executed is
different, the address content differs.

Furthermore, in the multiprocess environment, cach
process is scheduled, and the processor is used in time
sharing, and therefore, in each process, it is necessary to
update all logical addresses of the TLB every time
changed over by the context switch until the process is
completely terminated. Therefore, the system perfor-
mance was lowered.

SUMMARY OF THE INVENTION

It is hence a primary object of this invention to pres-
ent an address conversion apparatus capable ofconvert-
ing addresses efficiently even in the environment of
frequent context switching. .

It is another object of this invention to present an
address conversion apparatus comprising a content
addressable memory havinga field for indicating a pro-
cess identification number, and capable of storing logi-
cal addresses ofdifferent processes at the same time.

While the novel features of the invention are set forth

in the appended claims, the invention both as to organi-
zation and content, will be better understood and appre-
ciated, along with other objects and features thereof,
from the following detailed description uaken in con-
jonction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an address conversion
apparatus according to one of the embodiments of this
invention;

FIG.2 is a circuit diagram of a content addressable
memory in the same apparatus;

FIG.3 is a circuit diagram of a least recently used
circuit of the same apparatus;

FIG. 4A to FIG. 4L are diagrams showing the
changes ofdata in address conversion by using the same
apparatus; and

FIG. 5 is a block diagram of a conventional address
conversion apparatus.

DETAILED DESCRIPTION OF THE
INVENTION

The address conversion apparatus of this inventionis
described below while referring to FIG. 1 which shows
a translation lookaside buffer (TLB) as one of the em-
bodiments thereof. The TLB shown in this drawingis
similar in basic structure to the conventional TLB

shown FIG. 5 in and identical parts are given same
numerals and detailed descriptions are omitted.

NOACEx.1017 Page 332

NOAC Ex. 1017 Page 333

4,910,668

3
The CAM 12 comprises, at the beginning of each

logical eddress storing part 20 for storing the logical
address produced from a certain process being executed
by the processor, a process identification number part
(process ID part) for storing the identification number
of that process, a valid bit 22 for indicating the validity
of one word stored in one logical address part, and a
priority encoder (PENC) 38 for specifying by selecting
a specific invalid word disposed physically at a higher
position than the word byreferring to the valid bit 22.

Furthermore, the CAM 12 also comprises a batch
reset wire 40 for initializing the valid bits by simulta-
neously resetting all valid bits 22, a process identifica-
tion number batch reset wire (process ID batch reset
wire) 42 for referring to the process ID part 36, and for
resetting the valid bit 22 of the plural words having the
same unnecessary process identification aumber (pro-
cess ID) when the process is unnecessary or when the
processes handled by the processor exceed the preset
process control number, a priority encoder word wire

5

1s

20

(PENC word wire) 40 for transmitting the specific _
word specified by a priority encoder (PENC) 38 to the
LRU 14, and a content addressable memory full wire
(CAM full wire) 41 for indicating that the CAM 12 is
filled with valid data without any invalid word, to the
LRU 14.

In the physical address part 32 of the random access
memory 18 is stored the address for storing the physical
address which stores the data or instruction correspond-
ing to the process identification number of the process
ID part 36 on each word of the CAM 12 and the logical
address of the logical address storing pert 20.

The LRU 14 comprises a counter 24, a counter valid
bit 44 to indicate whether the value of this counter 24 is
valid, a least recently used batch reset wire 46 for batch-
resetting this counter valid bit 44, and a least recently
used control circuit 48.

Referring now to FIG. 2 through FIG.4, the circuit
structure of the TLB is described more specifically
below, and the operation of the process ID part 36
which is one of the features of this invention during
operation of TLB is also explained in detail.

FIG.2 is a circuit diagram specificallyillustrating the
CAM 12 in FIG. 1. The CAM 12 shown comprises
logical address storing parts 20 composed of plural data
bit cells 49, and a process ED part 36 for storing, for
example, four process IDs 0, 1, 2, 3, and in the process
ID past, for example, there are two process identifica-
tion number cells (D1, ID2) 50, 52 for setting the four
process IDs 0 to 3.

For instance, when the least recent used replace word
wire 26 becomes 1 and replacement is effected for stor-
ing new logical data, a node 22a is set High, and the
valid bit 22 is set at 1, At the same time, the process
identification number ofthe address data and the logical
address are entered into process identification number
cells (ID), [D2) 50, 52 and plural data bit ceils 49 which
make up the logical address storing pert 20.

When the process identification number batch reset
of this invention is effected, a signal “1” is applied to an
arbitrary one of the four process identification batch
reset wires 42 to indicate four processes from 0 to 3, for
example, the reset wire 42a corresponding to the second
process. In the process identification number part 36,
the data corresponding to the second process, thatis,
the data, for example, of which process identification
number cell ID, 50 is “1” and process identification
number cell [Dz 52 is “0” outputs a controlsignal of “1”

25

3x

40

65

4
to the reset circuit 51, and the AND of this control
signal and the control signal “1” ofsaid reset wire 42a is
obtained in this reset circuit 51, and as a result of this
product, the node 222 of the valid bit 22 becomes Low,
and that word becomes invalid. This processing is con-
ducted on all words having the same process identifica-
tion number, and cach invalid signal is entered into the
priority encoder 38. In the priority encoder 28, with
respect to the input of these plural invalid signals, they
are indicated to the LRU 14 as being reloadable word
regions of logical addresses, sequentially one by one,
from the higher ones (the words at higher positions in
FIG. 2). Therefore, if the process identification num-
bers are reset in batch and plural reloadable words
should occur in the CAM 12, only the word at the
highest position is noticed to the LRU 14 as a reloadable
word. At the LRU 14, receiving this notice, when the
data of writing logical address is newly entered into the
TLB, this new logical address data is written into the
word at the highest position, and the priority encoder
38 ofthe CAM 12 delivers the next word in the priority
order as the word at the highest position to the LRU 14.

Furthermore, when the CAM 12 is filled completely
with valid data without any invalid word, the nonactive
state of the priority encoder 38 is detected, and it is
transmitted to the LRU 14 through the CAM full wire
49.

The content addressable memory hit wire 30 is con-
pected to each word, and an indication as to whether
each word is hit or not is forwarded to the LRU 14.

Numeral 54 is a dummy word part for adjusting the
timing of retrieval of the CAM 12.

FIG.3 shows the portion of the one word of LUR 14
of the TLB. The LRU is roughly divided into the
counter part 24 and the other LRU control circuit 38.

The counter part 24 is « 5-bit counter, and each bit
(24a to 24e) has a counter data part 62, a carry propaga-
tion part 64 for propagating the carry of the counter, a
reset part 72 for resetting the counter, and a comparator
part 70 for comparing the counter value with other
word. The LRU control circuit 48 comprises a counter
valid bit 44 to indicate whether the counter of the word
is valid, a carry generating part 76 for generating a
carry only to the words in which the counter valid bit
44 has been set so far if the comparative word wire 68
becomes active or CAM mishit should occur as the

retrieved logical address is not present, and an LRU
teplace word generating part 78 for making the LRU
replace word wire 26 active for the purpose of keeping
uniformity of the LRU 14 and CAM 12, RAM 18 by
referring to the PENC word wire 40 and CAM full wire
41, and CAM hit wire 30 and replace enable signal 36.
Numerals 140, 142, 144 are the clock wires for adjusting
the timing.

The LRU controlcircuit 48, if there is the same as the
retrieval logical address in its word and the hit signal
from the CAM 12 is entered into the LRU control cir-

cuit 48 through the content addressable memory hit
word wire 30, transmits the value of the counterof that
word to the counter reference bit wires 66a to 66¢ in
each bit 24a to 24¢ of the counter part 24.

If there is no hit, on the other hand, the value of the
counter of other word being hit is received from the
counter reference bit wires 66a to 66, and it is com-

pared with the value of the own counter in the compar-
ator 70, and if the value of the own counter is smaller
than the value ofthis hit counter, the comparative word
wire 68 is made active, and this signal is transmitted to

NOACEx.1017 Page 333

NOAC Ex. 1017 Page 334

tasage~Tap.atts
.oewiORGANSEC
fee,

Bnok

2aati
Bsabi

&

aterrsee

4,910,668
5

the carry generating part 76, and the generated carry is
transmitted to the counter pert 24 through the carry
wire 60, and the value of the counter is incremented by
1.

These actions of the LRU circuit are practically de-
scribed below. In short, it is intended to prepare for
updating the content ofthe logical address of the word
to the content ofthe logical address of the highest possi-
bility of use, by always recognizingin the TLB the most
recently used word, or, in other words, by always rec-
ognizing the least recently used word out of N words in
the TLB. For this purpose, data oflogical addresses are
stored in N words in the TLB, and for example, when
the data of a certain word is used at the k-th time out of
N words, the value ofthe counter part 24 of the LRU 14
is k. Accordingly, by the next command, if the logical
address of this k-th word is used, the counter pert 24 of
this word is set to 0, and the counters ofall words hav-
ing so far the values of 0 to (k-1) are increased by 1, so
that the most recently used word can be always recog-
nized as the counter value becomes 0, or the least re-
cently used word can be recognized as the counter
value becomes N.

Meanwhile, the explanation of RAM 18 is omitted
because it is a very common one designed to deliver the
content to a certain address.

This has been a briefexplanation ofan embodiment of
the TLB ofthis invention by CAM 12, LRU 14, and
RAM 18. Below is described the practical operation of
the TLB capable of identifying the process by this in-
vention, mainly relating to the LRU 14.

The circuit action, is explained in FIG. 2, FIG.3, and.
data changes of the TLB in action are given in FIG.4.
Here, the TLBis explained as § entries (8 words).

When the TLB capable ofidentifying the process of
this invention is operated, two cases are roughly consid-
ered.

(1) Ordinary action (not erased by process ID batch
reset wire 42, and valid bit 22 of CAM 12 and
counter valid bit 44 of LRU 14 are matched).

(2) Extraordinary action (erased by process ID batch
reset wire 42, and valid bit 22 of CAM 12 and
counter valid bit 44 of LRU 14 are not matched).

These actions are further described below.

(1) Ordinary action
Forinitialization of the TLB, the batch reset wire 40

for initializing the valid bit 22 is made active in the
CAM 12, and the LRU batch reset wire 46 in the LRU,
and the value of the counter 24 and the counter bit 44 to
see if the counter is effective or not is reset, and the
TLAis initialized. At this time, the data holding each
element of the TLB becomes as shown in FIG. 4A. The
solid line in FIG. 4A shows that the data is present, and
0 of the counter valid bit 44, valid bit 22, and counter
part 24 indicates “reset” and the subsequent 1 denotes
“set” (valid).

@ When a new ID and a logical address (IDp, LOG1)
get into the CAM 122, since there is no word in
which a valid bit 22 is set in the CAM 12, the con-
tent addressable memory bit wire 30 becomes inac-
tive, and a mis-hit is transmitted to the LRU circuit
14. At the same time, from the outside the data to
be written into the RAM 18is transferred, and a
replace enable signal wire 86 becomes active. Here,
at the LRU 14, the LRU replace word wire 26is
made active by the LRU replace word generating
part 78 of the word located physically higher as

5

“5

30

35

65

6
seen from one direction, while the counter valid bit
44 of the same word is set, and as a result of this
series of actions, the content of the TLB changes
from FIG, 4A to FIG. 4B.

Gi) Furthermore, when a new ID and a logic address
(D;, LOG) get into the CAM 12, the content

Je memory hit wire 30 becomes inactive
again, and the CAM 12 indicates a mis-hit. At this
time, the carry generating part 76 of the word in
which the address was stored before generates a
carry, and the counter is increased by 1, and, the
word to be set this time is set in the same process as
in i) above as a result of mis-hit, and the logical
address is newly stored. At this time, the contentof
the TLB changes from FIG. 4B to FIG. 4C. When
mis-hit is repeated several times, the same opera-
tions of i) and ii) are repeated, and the content of
TLB becomes as in FIG. 4D.

(ai)ABerwards, suppose the previously stored logi-cal addresses (ID;, LOG?) get in. At this time, the
CAM 12 makes the CAM hit wire 30 active, and
indicates that the logical address entered into the
LRU 14 has been hit. The LRU 14 receives it, and
the comperator part 70 ofthe word which has been
hit by the CAM 12 transmits the data of the
counter data part 62 to the counter reference bit
wires 66. In the other words, the individual counter
data parts 62 and the counter reference bit wires 66
are compared, and when the value of the own
counter is larger than or equal to the value of the
counter reference bit wires 66 to be referred to, the
comparative word wire 68 is made active by this
comparatorpart 70, and this signal is transmitted to
the carry generating part 76. Receiving this signal,
at the carry generating part 76, if the counter valid
bit 44 has been set, a carry is generated, and the
carry is propagated to the carry propagation part
64 through the carry wire 80. As a result, in the
word in which a carry has occurred, the counter is
increased by 1 only, but the counter value is not
changed in the word having a counter value of
larger than the hit word.

As for the counter of the hit word, the reset wire 82
is made active by the logical gate 114, and the value of
the counter is cleared. By these actions, when the hit
word is the second one from the top, the content of the
TLB changes from FIG. 4D to FIG.4E.

When several of such addresses get in and hit and
mis-hit are further repeated, changing from FIG. 4E to
FIG.4F, the TLB is filled up, and the CAM full wire 41
becomes an active state, which is received by the LRU
14.

(iv) In the filled state of the CAM 12 as shown in
FIG. 4F, when logical address process IDs not
referred red to so far (D2, LOG»)enter, the CAM
12 transmits the mis-hit to the LRU 14 in the same

manner az mentioned above. When a replace signal
86 returns from outside, the LRU 14 generates
carries for all words in the logical gate 102 of the
carry generating part 76 because the CAM 12 is
fail. As a result of this carry generation, of all
words of the LRU 14, the highest position carry
wire 8 of only one word (in this example, the
word of which counter of LRU 14 changes from 7
to 8) is made active, and the counter valid bit 44 is
temporarily reset, and it is transmitted to the LRU
replace word generating part 78, and the LRU
replace word wire 26 is made active. At the same

NOACEx. 1017 Page 334

NOAC Ex. 1017 Page 335

° 4,910,668

7
time, the counter valid bit 44 is set again. Later, as
for the words ofwhich the LRU replace word wire
26 is active, data is written into the CAM 12 and
RAM 18. At this time, the content of the TLB
changes from FIG. 4F to FIG. 4G. $s

(2) Extraordinary action

@ Of the data stored so far in the TLB, ifan unneces-
sary process should occur, for example, supposing
process ID;is unnecessary, the state changes from 10
FIG.4G to FIG. 4H byusingthe circuit for reset-
ting the valid bit of the plural words having the
same process ID and the process ID batch reset
wire 42. At this time, the reset circuit 52 of the
CAM 12 turns on only the transistor connected 15
only to the valid bit 22 having the process ID to be
erased, and the valid bit 22 is reset. At this time, the
PENC 38 of the CAM 12 makes active and sets

only the word located at the highest position as
seen from one direction in the physical configura- 20
tion, out of the words being crased.

Here, suppose the logical address and process ID
(Do, LOGs) to hit get into the CAM 12. Atthis time,
the LRU 14 refers to the CAM hit signal wire 30 and
the counter valid bit 44, and since the values of all 25
counters are legal, the operation iv) of the above ordi-
nary action is effected, and the content of the TLB is
changed from FIG. 4H to FIG. 4J.

Gi) Finally, in this state, suppose the logical address
and process ID (ID,.LOGjo) to mis-hit the CAM 4
get in.

At this time, the PENC 38 of the CAM 12 makes
active only the word at the highest position as seen from
one direction in the physical configuration, and makes
inactive the CAM full wire 41. At this time, the CAM 35
hit wire 30 is inactive.

In this state, the signal of PENC word wire 70 and
the value of counter valid bit 12 are entered into the

logical gate 118 of the LRU replace word generating
part 78. Here, in the word of which value of the counter 40
valid bit 12 is “1” and PENC word wire 40 is active, the

output of the logical gate 118 becomes active, and this
signal makes active the LRU hit word wire 92. As a
result, as mentioned in step iv) of ordinary action, the
TLB sets 0 the valve of the counter of LRU 14 ofthe 45
word which has been hit, as if the stored logical address
had been hit, and increases the counter value by 1 as for
the words requiring increment.

At the same time, different from step iv) of ordinary
action, when the LRU replace enable signal 86 returns, 50
the output of the LRU replace word generating part 78,
that is, the LRU replace word wire 26 becomes active.
By this active LRU replace word wire 26, the data of
the CAM 12and RAM 18are updated. Atthis time, the
content of the TLB changes as shown in FIG. 4K. Then 55
by repeating such mis-hit, the logical addresses causing
mis-hit are stored in the place of the word where the
valid bit 22 of CAM 12 is cleared, and the information
of the physical addresses to be converted is stored in the
process ID, RAM 11, and as the LRU 14 goes on reset- 60
ting the counter value of the word, the content ofthe
TLB changes from FIG. 4K to FIG. 4L, thereby re-
turningto the ordinary TLE content. Hence, even after
Occurrence of erasure by the process ID batch reset
wire 4@, the uniformity of the TLB may be maintained 65
by the operation described above.

By using this TLB, the following effects are ex-

8
(1) If context switching should occur,it is not neces-

sary to reset the content of TLB.
(2) The data of only the unnecessary processes can be

erased.

(3) It is possible to store the data of different pro-
cesses having an identical physical address into the
TLB.

Owing to these effects (1) to (3), itispossible to use a
high speed translation lookaside buffer (TLB) very
effectively on multiprocesses, so that the processing
speed of the processor may be dramatically enhanced.

While specific embodiments of the invention have
been illustrated and described herein, it is realized that
other modifications and changes will occur to those
skilled in the art. It is therefore to be understood that

the appended claims are intended to cover all modifica-
tions and changes as fall within the true spirit and scope
of the invention.

Weclaim:

1. An apparatus for converting a logical address out-
putted by a processor into an equivalent physical ad-
dress, said apparatus comprising:

a content addressable memory;
a random access memory coupled to said content

addressable memory; and,
a least recently used circuit coupled to said content

addressable memory;
said content addressable memory including 2 means

for providing a hit word indication to the proces-
sor, said hit word indication indicating that a corre-
sponding identification number of a process being
processed by the processor and 2 corresponding
logical address of said process is stored in said
content addressable memory, and further indicat-
ing that the equivalent physical address stored in a
corresponding word location of said random ac-
cess memory is accessible;

said content addressable memory further including a
means for providing a miss-hit word indication to
the processor, said miss-hit word indication indi-
cating the absence of a corresponding identifica-
tion number and corresponding logical address of
said process, and further indicating that the proces-
sor is to search a mam memory to locate the equiv-
alent physical address of the logical address,
wherein the logical address is stored in said content
addressable memory at a word location indicated
by said least recently used circuit, and wherein the
thus located physical address is stored in a corre-
sponding word location of said candom access
memory;

said content addressable memory fortber including: a
logical address area for storing the logical address
of said process in each word location of said con-
tent addressable memory; a process identification
number storage area for storing the process identi-
fication number in each word location ofsaid con-

tent addressable memory; a valid bit for providing
an indication of the validity of data stored in both
said logical address area and said process identifica-
tion number storage area in each word location of
said content addressable memory; a word line for
providing a matching word located during a search
of said content addressable memory; a content
addressable memory bit line for indicating whether
said matching word exists in said content address-
able memory, and a content addressable memory
full line for providing an indication as to whether

NOACEx. 1017 Page 335

ewemntce

aNRAntWeetikeaehn“we
TSTECNCRTCAea5tenementsneweetneg

NOAC Ex. 1017 Page 336

4,910,668

wherein, when said least recently used circuit deter-
9

words in said content addressable memory are used
by referring to said valid bit area of each word
location of said content addressable memory;

said random access memory including a physical
address area for storing the physical address of the
main memory to be accessed by said processor;

said least recently used circuit including a counter
data area having a reset portion for indicating a
sequence of searching and reading of data of each
word stored in said least recently used circuit; a
valid bit for indicating the validity ofdata stored in
said counter data area, a counter data reference bit
line for providing counter data of a matching word
when searching said content addressable memory
and being commonly connected to the counter data
area of each word; a comparator area disposed in
each word location for comparing the counter data
of the reference bit and the connter data of other

10

mines that there is an absence of a matching word
in said content addressable memory on the basis of
said content addressable memory bitline, and fur-
ther determines thatsaid content addressable mem-

ory is fully occupied on the basis of said content
addressable memory full line, the value stored in
said counter data area and the carry area of cach
word are simultancously increased by one, and the
logical address and the process identification num-
ber received from the processor are set in the cor-
responding content addressable memory of the
replace word generated in accordance with said
replace word generating area by using a carry
signal generated in said carry unit, and the physical
address located by the processor in the main mem-
ory is set in the random access memory at a corre-
sponding word location of said random access
memory, and

words: a carry area disposed in each word for 20 wherein, when said least recently used circuit deter-
receiving a value stored in said counter data area of mines that there is a matching word in said content
each word, and for selectively varying said value addressable memory on the basis of said content

by one, and for resetting said counter data area, and addressabie memory bay tinesud rast recentlya replace word generating area for specifying 2 circuit receives said wo! e indicating
word to be inpnt to said content addressable mem- 25 matching word from said content addressable
ory in accordance with a carry signal from said memory, and a value of said counter data of a cor-
carry area; responding word is transmitted to each word

wherein, when said least recently used circuit deter- through the counter data reference bit line, and the
mines that there is an absence of a matching word value of said counter data of said matching word30 and the value of the counter data of each other
in said content addressable memory on the basis of
said content addressable memory bit le, and fur-
ther determines that said content addressable mem-

ory is fully unoccupied on the basis of said content
addressable memory full line, the value stored in
said counter data area is increased by one, and the

word are compared, and wherein the value of the
counter data of a word having a value smaller than
that of the counter data of the matching word is
increased by one, and the counter data of the
matching word is rendered to a value of an initial
setting by said reset unit.

valid bit of said counter data area of an unused 2. An apparatus as recited in claim 1, farther compris-
word is set, and the logical address and process ing a priority encoder for selecting one ofthe words in
identification number received from the processor=which said valid bit is absent, and for transmitting the
and the valid bit corresponding to the unused word 49 thus selected word to said least recently used circuit,
are set in said content addressable memory in a=wherein, when there is an absence of a matching word
corresponding word location, and a physical ad- _—in said content addressable memory,said least recently
dress located by the processor in said main memory—used circuit inputs the thus selected word specified by is set in said random access memory in 2 corre- said priority encoder.* e
sponding word location,

45

55

65

NOACEx.1017 Page 336

NOAC Ex. 1017 Page 337

,

 PAT-NO: JP02003044510A

DOCUMENT - IDENTIFIER: JP 2003044510 A

TITLE: GATEWAY SYSTEM

PUBN-DATE: February 14, 2003

INVENTOR- INFORMATION:

NAME

COUNTRY

INOSHITA, AKIHITO N/A

SUZUKI, HIROYOSHI N/A

KUBOTA, HIROMI N/A i

ASSIGNEE- INFORMATION :
NAME

: COUNTRY
: MATSUSHITA ELECTRIC IND CO LTD N/A

&

y APPL-NO: J7P2001225981

2 APPL-DATE: July 26, 2001

4 INT-CL (IPC): G0O6F017/30, GO6F012/00 , GO6F013/00

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a gateway

| system that enables a network

09/02/2003, EAST version: 1.04.0000
NOACEx. 1017 Page 337 ;

NOAC Ex. 1017 Page 338

terminal user to automatically surf valuable Web

pages without any specified
setting.

SOLUTION: An access monitor unit 25 of a gateway

system 80 detects the URL
for Webs a user frequently accesses and manages the
URL with a URL management
table 30. A surfing unit 40 of the gateway system

|

automatically surfs the Webs
having the URL and stores the Web data in a cache
server 50. The gateway
system generate a management table that includes
not only the frequency of the
accesses but also data for the elapsed time from
the most recent accessed time

to the present time and can automatically surf a
Web site being judged as the

high priority site based on the management table.

i

I
|

COPYRIGHT: (C)2003,JPO

\

09/02/2003, EAST version: 1.04.0000
NOACEx. 1017 Page 338

NOAC Ex. 1017 Page 339

Form PTO-948 (Rev. 0 &) U.S. DEPARTMENT OF COMMERCEApplication No. U.S. Patent and Trademark Office

NOTICE OF DRAFTSPERSON'S PATENT DRAWING REVIEW

The drawing(s) filed (insert date) ¢ \. >(] (i y are:
A. approved by the Draftsperson under 37 CFR 1.84 or 1.152.

$

3 objected to by the Draftsperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. Corrected
¢ rawings are required.

& 1. DRAWINGS. 37 CFR 1.84(a): Acceptable 8. ARRANGEMENTOF VIEWS. 37 CFR 1.84(i)
4 categories of drawings: Black ink or ___ Words do notappear on a horizontal, left-to-right

Color (3 sets required). fashion when page1s either upright or turned so
___ Color drawings are not acceptable until petition is that the top becomesthe right side. except for

granted. Fig(s) graphs. Fig(s)
§ ____ Pencil and nonblack ink not permitted. Fig(s) 9. SCALE. 37 CFR 1.84(k)
: 2. PHOTOGRAPHS. 37 CFR 1.84(b) ___ Scale not large enough to show mechanism
a ___ One (1) full-tone set is required. Fig(s) without crowding when drawingis reduced in
+ ____ Photographs may not be mounted. 37 CFR 1.84(e) size to two-thirds in reproduction.
x ____ Photographs must meet papersize requirements of Fig(s)
: 37 CFR 1.84(f). Fig(s) 10. CHARACTER OF LINES, NUMBERS,&

____ Poorquality (half-tone). Fig(s) LETTERS. 37 CFR 1.84(1)
BY 3. TYPE OF PAPER. 37 CFR1.84(e) ____ Lines, numbers & letters not uniformly thick and
4 ____ Papernotflexible, strong, white, and durable. well defined, clean, durable, and black (poorline
Fig(s) quality). Fig(s)

____Erasures,alterations, overwritings. interlineations, 11. SHADING. 37 CFR 1.84(m)
3 folds, copy machine marks not accepted. ___ Solid black areas pale. Fig(s)
a Fig(s) ____ Solid black shading not permitted. Fig(s)
3 4, SIZE OF PAPER. 37 CFR 1.84(f): Acceptable 12. NUMBERS, LETTERS, & REFERENCE

B sizes: CHARACTERS.37 CFR 1.84(p) ‘
a 21.0 cm by 29.7 cm (DIN size A4) or ____ Numbers and reference characters notplain and
i 21.6 cm by 27.9 cm (8 1/2x 11 inches) legible. Fig(s)
¥ ___ All drawing sheets notthe same size. ___ Figure legendsare poor. Fig(s)
i Sheet(s) ___ Numbersand reference characters not oriented in
Z ___ Drawings sheets not an acceptable size. Fig(s)__ the same direction as the view. 37 CFR 1.84(p)(1)
4 5. MARGINS.37 CFR 1.84(g): Acceptable margins: Fig(s)

A Top 2.5 cm Left 2.5 cm Right 1.5 ¢mae [cm ___ English alphabet not used. 37 CFR 1.84(p)(2)* ___ Margins not acceptable. Fig(s) a Fig(s)
x Top) >< Left (L) ___ Numbers, letters and reference characters must bex Right0Bottom (B) at least 32 cm (1/8 inch) in height. 37 CFR
‘ 6. VIEWS. 37 CFR1.84(h) 1.84(p)(3). Figs)
; REMINDER:Specification may require revision to 13. LEAD LINES. 37 CFR 1.84(q)
; correspond to drawing changes, e.g., if Fig. ! is ___Lead lines missing.Fig(s)

changedto Fig. 1A, Fig 1B and Fig. IC,etc., the 14. NUMBERING OF SHEETS OF DRAWINGS.
x specification, at the Brief Description of the Drawings, 37 CFR 1.84(t)
gg. mustlikewise be changed. ____ Sheets not numbered consecutively, and in Arabic
a ___Viewsnot labeled separately or properly. numbers beginning with number 1. Sheet(s)
zs Fig(s) 1S“NUMBERINGOF VIEWS. 37 CFR 1.84(u)
. 7, SECTIONAL VIEWS. 37 CFR 1.84(h)(3) ____ Views not numbered consecutively, and in Arabic
a Sectional designation should be noted with numerals, beginning with number1.Fig(s)__
‘ Y Arabic or Roman numbers. Fig(s) 16. DESIGN DRAWINGS. 37 CFR 1.152
a ____ Surface shading shownnotappropriate.

4 7 Fig(s)
uM ___ Solid black surface shadingis not permitted except
x when used to represent the color black as well as
a : color contrast Fig(s)
¥ COMMENTS:
OS

mebe

Date _/7

Attachmentto Paper No. & b

3 U.S GOVERNMENT PRINTING OFFICE: 2003-300-153

NOACEx. 1017 Page 339

NOAC Ex. 1017 Page 340

3
}

“4

Form PTO-948 (Rev. 0)Application No.
U.S. DEPARTMENT OF COMMERCE

U.S. Patent and Trademark Office

NOTICE OF DRAFTSPERSON'S PATENT DRAWING REVIEW

The drawing(s) filed (insert date) ¢ \ a(| (}) are:
A. approved by the Draftsperson under 37 CFR 1.84 or 1.152.

objected to by the Draftsperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. Corrected
rawings are required.

1. DRAWINGS. 37 CFR 1.84(a): Acceptable
categories of drawings: Black ink or
Color (3 sets required).

8. ARRANGEMENTOFVIEWS. 37 CFR 1.84(i)
___ Words do notappear on a horizontal, left-to-right

fashion when pageis either upright or turned so ____ Color drawingsare not acceptable until petition ts that the top becomestheright side, except for
granted. Fig(s) graphs. Fig(s)

____ Pencil and nonblack ink not permitted. Fig(s) 9. SCALE. 37 CFR 1.84(k)
2. PHOTOGRAPHS, 37 CFR 1.84(b) ____ Scale not large enough to show mechanism
____ One(1) full-tone set is required. Fig(s) without crowding when drawing is reduced in
____ Photographs may not be mounted. 37 CFR 1.84(e) size to two-thirds in reproduction.
____ Photographs must meet paper size requirements of Fig(s) ;

37 CFR 1.84(f). Fig(s) 10. CHARACTEROF LINES, NUMBERS, & ;
___ Poorquality (half-tone). Fig(s) LETTERS. 37 CFR 1.84(1)
3. TYPE OF PAPER. 37 CFR 1.84(e) ___ Lines, numbers & letters not uniformly thick and

Ii

i

___ Papernot flexible, strong, white, and durable. well defined, clean, durable, and black (poorline

Fig(s) quality). Fig(s)
____Erasures,alterations, overwritings. interlineations, 11. SHADING. 37 CFR 1.84(m)

folds, copy machine marks not accepted. ____ Solid black areas pale. Fig(s)
Fig(s) ___ Solid black shading not permitted. Fig(s)

4. SIZE OF PAPER. 37 CFR 1.84(f): Acceptable 12. NUMBERS, LETTERS, & REFERENCE
sizes: CHARACTERS.37 CFR 1.84(p) .
21.0 cm by 29.7 cm (DIN size A4) or ____ Numbersand reference characters not plain and
21.6 cm by 27.9 cm (8 1/2x 11 inches) legible. Fig(s)
___ All drawing sheets not the same size. ____ Figure legendsare poor. Fig(s)

Sheet(s) ___ Numbers and reference characters not oriented in
___ Drawingssheets not an acceptable size. Fig(s) the same direction as the view. 37 CFR 1.84(p)(1)

5. MARGINS. 37 CFR 1.84(g): Accepiable margins: Fig(s)
 Top 2.5 cm Left 2.5 cm Right 1.5 ¢ tom 1,0 ¢ ___ English alphabet not used. 37 CFR | 84(p){2)___ Margins not acceptable. Figs). Fig(s)

Top 1) SsLeft (L) ____ Numbers, letters and reference characters must beRightDe Bottom (B) at least 32 cm (1/8 inch) in height. 37 CFR
6. VIEWS. 37 CFR 1.84(h) 1.84(p)(3). Fig(s)
REMINDER:Specification may require revision to 13. LEAD LINES. 37 CFR 1.84(q) :
correspond to drawing changes, e.g., if Fig. 1 is ____ Lead lines missing. Fig(s) |
changedto Fig. 1A, Fig 1B and Fig. IC, etc., the 14. NUMBERING OF SHEETS OF DRAWINGS. :
specification, at the Brief Description of the Drawings, 37 CFR 1.84(t)
mustlikewise be changed. ____ Sheets not numbered consecutively, and in Arabic
___Viewsnot labeled separately or properly. numbers beginning with number 1. Sheet(s)

Fig(s) 15S<NUMBERINGOF VIEWS. 37 CFR 1.84(u)
7. SECTIONAL VIEWS. 37 CFR 1.84(h)(3) ___ Views not numbered consecutively, and in Arabic

Sectional designation should be noted with numerals, beginning with number1. Fig(s)
‘Arabic or Roman numbers. Fig(s) 16. DESIGN DRAWINGS. 37 CFR 1.152

___ Surface shading shown notappropriate.
Fig(s)

____ Solid black surface shading is not permitted except
when used to represent the color black as well as
color contrast Fig(s)

COMMENTS:

Reviewer . Date tL

If you have questions,call (703) 305-8404. Attachmentto Paper No._“bo

¥t U.S. GOVERNMENTPRINTING OFFICE: 2003-300-153 i

NOACEx. 1017 Page 340

NOAC Ex. 1017 Page 341

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al.

Application No.: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCT FOR
LOOKUPS AND UPDATES OF FLOW

RECORDSIN A NETWORK MONTFO

Examiner: Alan Nguyen

RESPONSETO OFFICEACTION UNDER37 CFR 1.111

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of September 10, 2003.

Auy amendments to the specification begin on a new page immediately after these
introductory remarks.

Any amendments to the claims begin on a new page immediately after such amendments
to the specification,if any.

Any amendments to the drawings begin on a new page immediately after such
amendments to the claims,if any.

The Remarks/arguments begin on anew page immediately after such amendments to the
drawings, if any.

If there are drawing amendments, an Appendix including amended drawingsis attached
following the Remarks/arguments.

Certificate of Facsimile Transmission under 37 CFR 1.8

T herebycertify that this correspondenceis being deposited with the United States Postal Service as first class
mail in an envelope addressed to Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on.

Date: Fb 10, 2.90 4 Signed:
Name: Dov

 senfeld, Reg. No. 38687

PAGE 8/19" RCVD AT 2/10/2004 12:29:32 PM [Eastern Standard Time] “ SVR:USPTO-EFXRF-1/1 * DNIS:8729308 * CSID:15102912985 * DURATION (mm-ss):07-36

NOACEx. 1017 Pa

Group Art Unit: 2662 sy8

7A
02/10/2004 10:34 FAX 15192912985 INVENTEK 008 Mh

RECEIVED
, CENTRAL FAX CENTER

Our Ref./Docket No: APPT-001-4 Patent
FEB 1 @ 2004

ge 341

NOAC Ex. 1017 Page 342

I 02/2042004 12:25 FAX 15102912985 O) INVENTEK O) Zoos

S/N: 09/608266 Page 2

4 AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the
application. All claimsare set forth below with oneof the following annotations.

e (Original): Claim filed with the application.

e (Currently amended): Claim being amendedin the current amendmentpaper.

© (Canceled): Claim cancelled or deleted from the application. No claim textis
shown,

e (Withdrawn): Claim still in the application, but in a non-elected status.

| e (Previously presented): Claim being added in the current amendmentpaper.
e (Previously presented): Claim added or amended in an earlier amendmentpaper.

e¢ (Not entered): Claim presented in a previous amendment, but not entered or whose
entry status unknown. Noclaim text is shown.

j Thefollowing listing ofclaims assumes the amendment submitted on 10 February 2004
: has been entered.

 (Previously presented) A packet monitor for examining packets passing through a

connection point on a computer network, each packets cofforming to one or more
protocols, the monitor comprising:

i (a) a packet acquisition device coupled to the gonnection point and configured
t to receive packets passing through the connef¢tion point;

(b) a memory forstoring a database compriging flow-entries for previously
encountered conversational flows to which a received packet may belong, a

i conversational flow being an exchangeofone or more packetsin any direction
: as a result of an activity correspondingfo the flow;

| (c) a cache subsystem coupled to the flow-entry database memory providing for
fast access of flow-entries from the flow-entry database;

(d) a lookup engine coupled to the packet acquisition device and to the cache
subsystem and configured to lookjip whethera received packet belongsto a
flow-entry in the flow-entry database, the looking up being the cache
subsystem; and

(e) a state processor coupled to/the lookup engine andto the flow-entry-
database memory, the state processor being to perform any state operations
specified for the state of the flow starting from the last encountered state of the
flow in the casethat the pagket is from an existing flow, and to perform any
state operations required for the initial state of the new flow in the casethat the
packet is from an existing flow.

2. (Original) A packet monitor/according to claim 1, further comprising:

PAGE 8/13 * RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/3 * DNIS:8729306 * CSID:15102912985 * DURATION (mm-ss):05-44

NOACEx. 1017 Page 342Wen

NOAC Ex. 1017 Page 343

i
i
t

Shae rernlAir ", 92/20/2004 12:26 FAX 15102912985 C) INVENTEK © oos

S/N: 09/608266 Page 3
!

a parser subsystem coupled to the packet acquisition device and to the
lookup engine such that the acquisition device is coupled to the lookup engine
via the parser subsystem, the parser subsystem configured to extract identifying
information from a received packet,

wherein each flow-entry is identified by identifying information stored in the flow-
entry, and wherein the cache lookup uses a function of the extracted identifying
information,

3. (Original) A packet monitor according to claim 2, wherein the cache subsystem is
an associative cache subsystem including one or more content addressable memory
cells (CAMs).

4, (Currently amended) A packet monitor according tg claim 2, wherein the cache
subsystem includes:

{i) a set of cache memory elements coupled tp the flow-entry database memory,
each cache memory elementincluding an input port to input an-flew a flow-
entry and configured to store a flow-entry of the flow-entry database;

{it) a set of content addressable memory cefls (CAMs) connected according to
W an order of connections from a top CAM fo a bottom CAM,each CAM

containing an address and a pointer to ont of the cache memory elements, and

Al including:
a matching circuit having an/input such that the CAM asserts a

match output when the input is/the same as the address in the CAM
cell, an asserted match output indicating a hit,

a CAM input configured t6 accept an address and a pointer, and

a CAM address output and a CAM pointer output;

(iii)|aCAM controller coupled to the CAM set; and

(iv) amemory controller coupled to the CAM controller, to the cache memory
set, and to the flow-entry memo

wherein the matching circuit inputs of the CAM cells are coupled to the lookup engine
such that that an input to the matching/circuit inputs produces a match outputin any
CAM cell that contains an address eqyial to the input, and

wherein the CAM controller is configured such that which cache memory element a
particular CAM points to changes over time.

3. (Original) A packet monitor according to claim 4, wherein the CAM controlleris
configured such that the bottom C/AM points to the least recently used cache memory
element.

6. (Original) A packet monitor according to claim 5, wherein the address and pointer
output of each CAM starting from the top CAM is coupled to the address and pointer
inputof the next CAM,the final next CAM being the bottom CAM,and wherein the

PAGE 9/13* RCVD AT 2/20/2004 2:20:55 PM [Eastern Standard Time] * SVR:USPTO-EFARF-1/3 * DNIS:9729306 * CSID:15102912985 * DURATION (mm-ss):05-44

NOACEx.1017 Page 343

NOAC Ex. 1017 Page 344

esomeradCEEUIRpNEES8
+pwwee

cmeitepee—etglittttemINeRNCURAEINoe
|
|

02/20/2004 12:26 FAX 15102912985 6 INVENTEK sf

(wf

7-20. (Cancelled).

fdo10

S/N: 09/608266 Page 4 |
CAM controller is configured such than when there is a cache hit, the address and
pointer contents of the CAM that producedthe hit are put in the top CAM ofthestack,

the address and pointer contents of the CAMs above the QAM that produced the
asserted match output are shifted down,such that the CAMs are ordered according to
recentness of use, with the least recently used cache memory element pointed to by the
bottom CAM and the most recently used cache memory element pointed to by the top
CAM.

(Currently amended) A packet monitor for ex. ing packets passing through a
connection point on a computer network, each packets conforming to one or more
protocols, the monitor comprising:

a packet acquisition device coupled to the connection point and configured
to receive packets passing through the connection point;

an input buffer memory coupled to
the packet acquisition device;

configured to accept a packet from

a parser subsystemcoupled to the input buffer memory,the parsing
subsystem configured to extract selected portions of the accepted packet and to
output a parser record containing the selected portions;

a memory to storing a database of one or more flow-entries for any
previously encountered conversational flows, each flow-entry identified by
identifying information stored intheflow-entry;

a lookup engine coupled to the/output of the parser subsystem andto the
flow-entry memory and configur¢d to lookup whetherthe particular packet
whose parser record is output by/the parser subsystem has a matching flow-
entry, the looking up using at Jeast some of the selected packet portions and
determining if the packet is ofanexisting Hew flow;

a cache subsystem coupled/to and between the lookup engine and the flow-
entry database memory providing for fast access of a set of likely-to-be-
accessed flow-entries from the flow-entry database; and

a flow insertion engine coupled to the flow-entry memory andto the lookup
engine and configured to create a flow-entry in the flow-entry database, the
flow-entry including identifying information for future packets to be identified
with the new flow-entry,

the lookup engine configured sugh that if the packet is of an existing flow, the monitor
classifies the packet as belonging to the found existing flow; and if the packetis of a
new flow, the flow insertion engine stores a new flow-entry for the new flow in the
flow-entry database, including jidentifying information for future packets to be

wherein the operation of the parser subsystem depends on one or more of the protocols
to which the packet confo

PAGE 10/13 * RCVD AT 2/20/2004 2:20:59 PM [Easter Standard Time] " SVR:USPTO-EFXRF-1/3 * DNIS:8729306 " CSID:15102912985 " DURATION (mm-ss):05-44

NOACEx. 1017 Page 344

|
|ii
2
i
|3
i

NOAC Ex. 1017 Page 345

02/20/2004 12:27 FAX 15102912985 O INVENTEK | oil

S/N: 09/608266 Page 5

2422. (Currently amended) A monitor according to elajm jaim 21, wherein the
lookup engine updates the flow-entry of an existing flow in the case that the lookup is
successful.

2223. (Currently amended) A monitor according to éleim-20-claim21, further

including a mechanism for building a hash from the selected portions, wherein the
hashis includedin the input for a particular packetto fhe lookup engine, and wherein
the hash is used by the lookup engine to search the fl@w-entry database.

2324. (Currently amended) A monitor according to elaim20-claim 21, further
including a memory containing a database of parsing/extraction operations, the
parsing/extraction database memory. coupled to th¢ parser subsystem, wherein the
parsing/extraction operations are according to one/or more parfsing/extraction
operations looked up from the parsing/extraction Matabase.

2425. (Currently amended) A monitor accor@ing to claim-33-claim 24, wherein the
database of parsing/extraction operations includes information describing how to
determine a set of one or mote protocol dependent extraction operations from data in
the packetthat indicate a protocol used in the packet.

2526. (Currently amended) A method according to slaim20-claim 21, further

(uf including a state processor coupled to the logkup engine andto the flow-entry-database memory, and configured to perform any state operations specified for the
state of the flow starting from the last encountered state of the flow in the case that the
packet is from an existing flow, and to perform any state operations required for the
initial state of the new flow in the case that the packet is from an existing flow.

2627. (Currently amended) A method according to claima25-claim 26, wherein the
set of possible state operations that the sfate processor is configured to perform
includes searching for one or more pattems in the packet portions.

2728. (Currently amended) A monitor according to slaim25-claim 26, wherein the
State processor is programmable, the monitor further including a state
patterns/operations memory coupledjothe state processor, the state operations
memory configured to store a databage of protocol dependentstate patterns/operations.

2829. (Currently amended) A mpnitor according to eleim25-claim 26, wherein the
State operations include updating the flow-entry, including identifying information for
future packets to be identified with/the flow-entry.

2930. (Currently amended) A method of examining packets passing through a
cormection point on a computer nétwork, each packets conforming to one or more
protocols, the method comprising:

{a) receiving a packet frojn a packet acquisition device;

{b) performing one or mgre parsing/extraction operations on the packet to
create a parser record comprising a function of selected portions of the packet;

(c) looking up a flow-efitry database comprising none or more flow-entries for
previously encounterefi conversational flows, the looking up usingat least

PAGE 11/43 * RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/3 * DNIS:8729306 * CSID:15102912985 * DURATION (mm-ss):05-44

NOACEx. 1017 Page 345

|einmiteemceemamememeeeampsnatenitathetremtntitiemmrmat

NOAC Ex. 1017 Page 346

vaafuegemsFaneatieedaaeSars~abioyneSauteedx4GunehstaSaamialessinseeNes

02/20/2004 12:27 FAX 15102912985) INVENTEK , ‘
e

S/N: 09/608266 Page 6)
some of the selected packet portions and determining if the packet is of an
existing flow, the lookup being via a cache; /

(d) if the packet is of an existing flow, classifying the packet as belonging to the
found existing flow; and

(e) if the packet is of a new flow,storing a new flow-entry for the new flow in
the flow-entry database, including identifying/information for future packets to
be identified with the new flow-entry,

wherein the parsing/extraction operations depend on one or more ofthe protocols to
which the packet conforms.

3031. (Currently amended) A method according to claim29-claim 30, wherein
classifying the packet as belonging to the found ¢xisting flow includes updating the
flow-entry of the existing flow.

3432. (Currently amended) A method accoftding to elaim29-claim 30, wherein the
function of the selected portions of the packet forms a signature that includes the
selected packet portions and that can identify future paekers packets, wherein the
lookup operation uses the signature and wheyein the identifying information stored in
the new or updated flow-entry is a signature/for identifying future packets.

3233. (Currently amended) A method gccording to elaim29-claim 30, wherein the
looking up of the flow-entry database useg a hash of the selected packet portions.

3334. (Currently amended) A method according to elaim29-claim 30, wherein
step (d) includes if the packetis of an existing flow, obtaining the last encountered
state of the flow and performing any state operations specified for the state of the flow
starting from the last encountered state/of the flow; and wherein step (e) includes if the
packetis of a new flow, performing state operations required forthe initial state of
the new flow.

Bo1i2

PAGE 12/13 * RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time} * SVR:USPTO-EFXRF-1/3 * DNIS:8729306 * C5ID:15102912985 * DURATION (mm-ss):05-44

NOACEx.1017 Page 346

NOAC Ex. 1017 Page 347

02/20/2004 12:28 FAX 15102912985 O INVENTEK ‘ o13

S/N: 09/608266 Page 7

Claims 1-6 and 21-33 (including two claims numbered 21 prior to this amendment) are the
claims of record of the application. A responseto an office action wasfiled 10 February
2004.

The examiner has indicated to the undersigned that there were two claim 21s in the listing
of claims in the response filed 10 February 2004.

The present amendmentcorrects several typographical errors found in both the original
application and the previous amendment filed on 10 February 2004. The present
amendment assumesthat the previous amendmenthas beenentered.

The undersigned discovered .the previous amendmentincorrectly annotated claims 2-6 as
"previously presented" instead of being annotated as “original.” The present amendment
correctly annotates the claims.

i

| REMARKS

i

| The present amendmentcorrects the typographical error in the previous amendment of
there being two claim 21s. The second instance of claim 21 has been renumbered claim 22,

: and previous claims 22-33 have been renumbered to claims 23-34, respectively. In
addition, newly numbered claims 22-24, 26-29, 31-34 have been amended to depend on
the appropriate newly numbered claims.

Claim 24 of the previous amendment was erroneously dependent on claim 33. The present
; armendmentcorrects this typographical error-newly numbered claim 25 depends on newly
\ numbered claim 24.

! Minortypographical errors were found claims 4, 21, and newly-numbered 32. The present
amendmentcorrects these typographical errors.

No new matter has been added by this amendment.

The Applicants believe that the remaining claims are allowable. Actionto that end is
Tespectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and
allowanceof this application, an email message to the undersigned at dov@inventek.com,

; or a telephonecall to the undersigned at +1-510-547-3378 is requested.

Bek LO 2004
Date

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618
Tel. +1-510-547-3378; Fax: +1-510-291-2985
Email: dov @inventek.com

Respectfully Submitted,

 eld, Reg. No. 38687

PAGE 13/13 * RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time] " SVR:USPTO-EFXRF-1/3 " DNIS:8729306 * CSID:15102912985 " DURATION (mm-ss): 05-44 :

‘ NOACEx. 1017 Page 347

NOAC Ex. 1017 Page 348

‘2004 12:23 Fax 15102912985 INVENTEK

INVENTEK a Fax
Dov Rosenfeld ae ,
5507 College Avenue, Suite 2 ores ALT
Oakland, CA 94618, USA
Phone: (510)547-9378; Fax: (510) 291-2985
dov@inventek.com

joo1

re
*

 Patent Application Ser. No.: 09/608266

Ref./Docket No: APPT-001-4

Applicant(s): Sarkissian, etal.

Filing Date: June 30, 2000

Examiner.: Alan Nguyen

Art Unit: 2662

FAX COVER PAGE

TO: Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

United States Patent and Trademark Office
(Examiner Alan Nguyen, Art Unit 2662)

Fax No.: 703-872-9306

DATE: _ February 20, 2004

FROM: Dov Rosenfeld, Reg. No. 38687

RE: Responseto Office Action (3)
Numberofpages including cover: &

OFFICIAL COMMUNICATION

PLEASE URGENTLY DELIVER A COPY OF
THIS RESPONSE TO

EXAMINER ALAN NGUYEN, ARTUNIT 2662

 Certificate of Facsimile Transmission under 37 CFR 1.8

I herebycertify that this response is being facsimile transmitted to the United States Patent and Trademark Office at
telephone number 703-872-9306 addressed the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Date: Eh 20 L ROO] . | Signed:
Name:

 osenfeld, Reg. No. 38687

PAGE 4/13" RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time} * SVR:USPTO-EFXRF-1/3 * DNIS:8729306 * CSID: 15102912985 * DURATION (mm-ss):05-44

NOACEx. 1017 Page 348

NOAC Ex. 1017 Page 349

Seae

poneenineeCrss6MMI
neeipeeao8

"2004 12:24 FAX 15102912985 INVENTEK 002

09/608266

Filing Date 30 Jun 2000

First Named Inventor Sarkissian, Haig A.

Group Art Unit

Examiner Name Alan Nguyen

ENCLOSURES (check all that appl

Cl Fee Transmittal Form

 Application NumberTRANSMITTAL

FORM
{lo be usedfor all correspondenceafterinitialfiling)

Assignment Papers Ol After Allowance Communication(for an Application) to Group
Drawing(s) Appeal Communication to BoardOC Fee Attached + of Appeals and Interferences(credit card form)

Amsndment (Supplementary)

oO oO After Final

cl oO Affidavits/declaration(s)

Licensing-reljated Papers Appeal Communication to GroupOj (Appeal Notice, Brief, Reply Briof)
Petition Routing Slip (PTO/SB/69) Ol Proprietary Informationand Accompanying Petition

To Convert a oO Status Letter
Provisional Application

Powerof Attomey, Revocation ClChange of Correspondence
Address.

Terminal Disclaimer

Extension of Time Request Additional Enclosure(s)
(please identify below):

Express Abandonment Request

Information Disclosure Statement Smail Entity Statement

OOOOBboaduo
Certified Copy of Priority Document(s) Request of Refund

Response to Missing Parts/ Incomplete
ApplicationOOOOOdO0

Responseto Missing Parts under 37
CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT/ COHRESPONDENCE ADDRESS

Firm or Dov Rosenfeld, Reg. No. 38687
Individual name 2

Signature

Date

ADDRESS FOR CORRESPONDEN®

Firm Dov Rosenfeld

or 5507 College Avenue, Suite 2
Individual name Oakland, CA 94618, Tel: +1-510-547-3378

| herebycertify that this correspondenceis being facsimile transmitted with the United States Patent and Trademark Office at__ >

22313-1450 on this data:

Dov Rosenfeld, Bag-fle~38687
! ao [Dato|February20,2004

PAGE 2/13 * RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/3 ® DNIS:8720306 * CSID:15102912985 * DURATION (mm-ss):05-44

NOACEx. 1017 Page 349

NOAC Ex. 1017 Page 350

}

seCleeihneattg!MANnlapHENRGALEMRLENNONNNSANNNNNNNONCLRENINte
wehe~atwstarathSeeetdOg +raelietnameencenenreeviieeemplianoRoeTERCERA

i}

72004 12:24 FAX 15102912985 INVENTEK gi003

Our Ref./Docket No: APPT-0014 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al.

Application No.: 09/608266

Filed: June 30, 2000

Title: ASSOCIATIVE CACHE STRUCTURE

FOR LOOKUPS AND UPDATES OF FLOW

RECORDSIN A NETWORK MONITOR

Group Art Unit: 2662

Examiner: Alan Nguyen

TRANSMITTAL: SUPPLEMENTARY AMENDMENT

P.O. Box No Fee Amendment

Commissioner for Patents

P.O, Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted berewith is a supplementary amendmentfor the above referenced application.

This application has:
a small entity status. If a claim for such status has not earlier been made, consider
this as a claim for small entity status.

xX. No additional fee is required.

Certificate of Facsimile Transmission under 37 CFR 1.8

I hereby certify that this response is being facsirile transmitted to the United States Patent and Trademark
Office at telephone number 703-872-9306 addressed the Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 22313-1450 on.

Date: Fete HO . AQD 7 : Signed:
Name: Dov Rosenfeld, Reg. No, 38687

PAGE 3/13 * RCVD AT 2/20/2004 2:20:59 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/3 * DNIS:8729306 * CSID:15102912985 * DURATION (mm-ss):05-44

NOACEx. 1017 Page 350

NOAC Ex. 1017 Page 351

2

thefoye2py"8
02/10/2004 10:32 FAX 15102912985 INVENTEK

ih.

004

S/N: 09/608266

wee
Page 2

 AIMS

TOTAL CLAIMS NEW TOTAL NO, OF EXTRA EXTRA‘ACLAIMPREVIOUSLY PAID FOR CLAIMS

TOTAL

CL.

$ 0.00

TOTAL CLAIMFEESPAYABLE:| 0.00|

Applicant(s) believe(s) that'no Extension of Time is required. However, this

conditional petitionis being made to provide for the possibility that applicant has
inadvertently overlooked theneed for a petition for an extensionoftime.

X__ Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a)of:
one months ($110)

two months ($930)

X_ two months ($420)

 four months ($1450)

If an additional extension of time is required, please consider this as a petition therefor

X_ Actredit card payment form for the required fee(s) is attached

X_ The Commissioneris hereby authorized to charge paymentof the following fees
associated with this communication or credit any overpayment to. Deposit Account
No. 50-0292, (A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED): _X Any missingfiling fees required under 37 CFR 1.16 for presentation of

additional claims.

X__ Any missing extensionorpetition fees required under 37 CFR 1.17

Respectfully Submitted,

i.

__Fsh-20,266$—fat2b,2004wosReg. No. 38687
Address for correspondence
Dov Rosenfeld

5507 College Avenue,Suite 2
Oakland, CA 94618

Tel. +1-510-547-3378; Fax: +1-510-291-2985

PAGE4/19* RCVD AT 2/10/2004 12:29:32 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/1*DNIS:8729305*CSID: 15102912985*DURATION (mm-ss):07-36

NOACEx.1017 Page 351

NOAC Ex. 1017 Page 352

NOAC Ex. 1017 Page 353

NOAC Ex. 1017 Page 354

NOAC Ex. 1017 Page 355

NOAC Ex. 1017 Page 356

NOAC Ex. 1017 Page 357

NOAC Ex. 1017 Page 358

NOAC Ex. 1017 Page 359

NOAC Ex. 1017 Page 360

NOAC Ex. 1017 Page 361

NOAC Ex. 1017 Page 362

NOAC Ex. 1017 Page 363

NOAC Ex. 1017 Page 364

NOAC Ex. 1017 Page 365

NOAC Ex. 1017 Page 366

NOAC Ex. 1017 Page 367

NOAC Ex. 1017 Page 368

NOAC Ex. 1017 Page 369

NOAC Ex. 1017 Page 370

NOAC Ex. 1017 Page 371

NOAC Ex. 1017 Page 372

NOAC Ex. 1017 Page 373

NOAC Ex. 1017 Page 374

NOAC Ex. 1017 Page 375

NOAC Ex. 1017 Page 376

NOAC Ex. 1017 Page 377

NOAC Ex. 1017 Page 378

NOAC Ex. 1017 Page 379

NOAC Ex. 1017 Page 380

NOAC Ex. 1017 Page 381

NOAC Ex. 1017 Page 382

NOAC Ex. 1017 Page 383

NOAC Ex. 1017 Page 384

NOAC Ex. 1017 Page 385

NOAC Ex. 1017 Page 386

NOAC Ex. 1017 Page 387

NOAC Ex. 1017 Page 388

NOAC Ex. 1017 Page 389

NOAC Ex. 1017 Page 390

NOAC Ex. 1017 Page 391

NOAC Ex. 1017 Page 392

NOAC Ex. 1017 Page 393

NOAC Ex. 1017 Page 394

NOAC Ex. 1017 Page 395

NOAC Ex. 1017 Page 396

NOAC Ex. 1017 Page 397

NOAC Ex. 1017 Page 398

NOAC Ex. 1017 Page 399

NOAC Ex. 1017 Page 400

NOAC Ex. 1017 Page 401

NOAC Ex. 1017 Page 402

NOAC Ex. 1017 Page 403

NOAC Ex. 1017 Page 404

NOAC Ex. 1017 Page 405

NOAC Ex. 1017 Page 406

NOAC Ex. 1017 Page 407

NOAC Ex. 1017 Page 408

NOAC Ex. 1017 Page 409

NOAC Ex. 1017 Page 410

NOAC Ex. 1017 Page 411

NOAC Ex. 1017 Page 412

NOAC Ex. 1017 Page 413

NOAC Ex. 1017 Page 414

NOAC Ex. 1017 Page 415

NOAC Ex. 1017 Page 416

NOAC Ex. 1017 Page 417

NOAC Ex. 1017 Page 418

NOAC Ex. 1017 Page 419

NOAC Ex. 1017 Page 420

NOAC Ex. 1017 Page 421

NOAC Ex. 1017 Page 422

NOAC Ex. 1017 Page 423

NOAC Ex. 1017 Page 424

NOAC Ex. 1017 Page 425

NOAC Ex. 1017 Page 426

NOAC Ex. 1017 Page 427

NOAC Ex. 1017 Page 428

NOAC Ex. 1017 Page 429

NOAC Ex. 1017 Page 430

NOAC Ex. 1017 Page 431

NOAC Ex. 1017 Page 432

NOAC Ex. 1017 Page 433

NOAC Ex. 1017 Page 434

NOAC Ex. 1017 Page 435

NOAC Ex. 1017 Page 436

NOAC Ex. 1017 Page 437

NOAC Ex. 1017 Page 438

NOAC Ex. 1017 Page 439

NOAC Ex. 1017 Page 440

NOAC Ex. 1017 Page 441

NOAC Ex. 1017 Page 442

NOAC Ex. 1017 Page 443

NOAC Ex. 1017 Page 444

NOAC Ex. 1017 Page 445

NOAC Ex. 1017 Page 446

NOAC Ex. 1017 Page 447

NOAC Ex. 1017 Page 448

NOAC Ex. 1017 Page 449

NOAC Ex. 1017 Page 450

NOAC Ex. 1017 Page 451

NOAC Ex. 1017 Page 452

NOAC Ex. 1017 Page 453

NOAC Ex. 1017 Page 454

NOAC Ex. 1017 Page 455

NOAC Ex. 1017 Page 456

NOAC Ex. 1017 Page 457

NOAC Ex. 1017 Page 458

NOAC Ex. 1017 Page 459

NOAC Ex. 1017 Page 460

NOAC Ex. 1017 Page 461

NOAC Ex. 1017 Page 462

NOAC Ex. 1017 Page 463

NOAC Ex. 1017 Page 464

NOAC Ex. 1017 Page 465

NOAC Ex. 1017 Page 466

NOAC Ex. 1017 Page 467

NOAC Ex. 1017 Page 468

NOAC Ex. 1017 Page 469

NOAC Ex. 1017 Page 470

NOAC Ex. 1017 Page 471

NOAC Ex. 1017 Page 472

NOAC Ex. 1017 Page 473

NOAC Ex. 1017 Page 474

NOAC Ex. 1017 Page 475

NOAC Ex. 1017 Page 476

NOAC Ex. 1017 Page 477

NOAC Ex. 1017 Page 478

NOAC Ex. 1017 Page 479

NOAC Ex. 1017 Page 480

NOAC Ex. 1017 Page 481

NOAC Ex. 1017 Page 482

NOAC Ex. 1017 Page 483

NOAC Ex. 1017 Page 484

NOAC Ex. 1017 Page 485

NOAC Ex. 1017 Page 486

NOAC Ex. 1017 Page 487

NOAC Ex. 1017 Page 488

NOAC Ex. 1017 Page 489

NOAC Ex. 1017 Page 490

NOAC Ex. 1017 Page 491

NOAC Ex. 1017 Page 492

NOAC Ex. 1017 Page 493

NOAC Ex. 1017 Page 494

NOAC Ex. 1017 Page 495

NOAC Ex. 1017 Page 496

NOAC Ex. 1017 Page 497

NOAC Ex. 1017 Page 498

NOAC Ex. 1017 Page 499

NOAC Ex. 1017 Page 500

NOAC Ex. 1017 Page 501

NOAC Ex. 1017 Page 502

NOAC Ex. 1017 Page 503

NOAC Ex. 1017 Page 504

NOAC Ex. 1017 Page 505

NOAC Ex. 1017 Page 506

NOAC Ex. 1017 Page 507

NOAC Ex. 1017 Page 508

NOAC Ex. 1017 Page 509

NOAC Ex. 1017 Page 510

NOAC Ex. 1017 Page 511

NOAC Ex. 1017 Page 512

NOAC Ex. 1017 Page 513

