IW 7696177

1O ALL TO WHOMTHESE; PRESENTS; SHANL) COME3

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

October 16,2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

MANANERRARAR AR

APPLICATION NUMBER: 09/608,266
FILING DATE: June 30, 2000
PATENT NUMBER: 6,771,646
ISSUE DATE: August 03, 2004

By Authority of the

Under Secretary of Commerce for Intellectual Property
and Director of the United Stat atent and Trademark Office

S s L E L L b S R B E Tutal) o T

" 5\3“““

fop o

NOAC Ex. 1017 Page 1

s, T T T T T T TR
281 ° A ‘ ti vy 1| PATENT NUMBER
@ | = . e s
83| . I s SNNEER
® | L ; SEENY f L=
Z El N ﬂj | e771848 |,
N T] 1]
’ o 5 | T RN BT T TR e e 1 6771646
T) - 1J.S. UTILITY Patent Application -
i ‘ W OlPE. | PATENTDATE.
X - 4 /[7 ' - 7004
L, STCANNED a4 o.A.,OC/ G 00 L
v b - == ———— . . . —
APPLICATION NO, CONT/PRIOR | CLASS | SUBCLASS ART UNIT EXAMINER 1
! 0o/608566 o- {370 Do 2apd- S, L
C C . AT g -
N \ —
"\ ' % o ar -) /('/'ir'/{ é/’ SR /Lf g
g Certificate)
< er_tlflca C . po
VLR erfificate
E of Correction SEP 21 2804 P10.2040
12799
i C i~ - £ 2™ L B
S CERTIFICATE Q1 Lofreciion
T zq 2014
ISSUING CLASSIFICATION
x ORIGINAL i i CROSS REFERENCE(S)
CLASS SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)
) ‘} 270 A'»?'ql 4:’ 370 .«L//?. 285N
| INTERNATIONAL CLASSIFICATION | 372 s
T felel R 37/0& 701 223
i : 7/] 119
L, i ’ . "] Continued on 1ssue Slip Inside File Jacket
? TERMINAL DRAWINGS CLAIMSATLOWED
j’ ’,‘ DISCLAIMER Sheets Drwg. ./ "IEigs. Drvg. | Print Fig. Totalgairﬁ's/ Print Claim for O.G.
‘ 20 | 2z | g | S 7

NOTICE OF ALLOWANCE MAILED

. {J The term of this patent e -) e
4 subsequent to (date) - A ’&r\ V. /\/qm/fr\ 7//9/,1

’ }' has been disclaimed. - (Assistant Examingt) 7 ~ {Date)
o 7 The term of this patent shall v \" ~ jo L{ e
/ -

t extend beyond th iration d ‘n o
v — Clergf? s v e
cKY NGO =t
R AmountDue |~ Dath Paid
PRIMARY EXAMINER " / I /09- p L / .
, - {Primary Examiner) (Date) , 8 ‘22,,‘@/ [//7(/

JSSUE BATCH NUMBER
'

(3 The terminal ____months of / /, by / 4 é} lég /x : b
n) {Opte)

this patent have been disclaimed. %
(Legal fistrurnerits Exa ol

WARNING: »
The infosmation disclosed herein may be restncted Unauthonzed disclosure may be prohibited by the United States Code Title 35, Sections 122, 181 and 368
Possession outside the U.S. Patent & Trademark Office s restncted to authonzed employees and contractors-onty.

P oy FILED WiTH:; [_]DisK (cRF) [(JFicHE []co-ROM
(Attached In pocket on right inside flap)

ISSUE FeE IN FILE

R AR et Ry
UEELAN, ko~ DUCY o SV U,

SRS TROR
b
o ——TI .
et
-
1
1Y
>

B . v
ﬂ\i ol
l‘

4
\

(FACE)

[

NOAC Ex. 1017 Page 2

UNITED STATES PATENT AND TRADEMARK OFFICE

Page 1 of |

ilIII!IIIIlI!IIIIIlIlIIIIIHIIllIIII!Illlllllllllllll!II!IH{IIIIIIIII

COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK QOFFICE

WASHINGTON, D C. 2023l
www uspto gov

Bib Data Sheet
FILING DATE
TORN
SERIAL NUMBER 06/30/2000 CLASS GROUP ART UNIT DAOTC}C()ET 55
09/608,266)
RULE 370 2731 APPT-001-4
JIAPPLICANTS
Haig A. Sarkissian, San Antonio; TX:”
Russell S. Dietz, San Josey CA;
i s L/)
b % CONTINUING DATA ek kAkkdhkkkk Ak kkkkkkkkkkk
THIS APPLN, CLAIMS BENEFIT OF 60/141,903 06/30/1999
‘#é‘
kd FORE‘GN APPL‘CATIONS tiit!:ligr}g'/*tt*t*t**
/R
IF REQUIRED, FOREIGN FILING LICENSE
GRANIED **09/01/2000 -
Foreign Pnonty claimed a yes @ no, -
s USC 119 (a-d) conditions [D STATEOR] SHEETS TOTAL |[INDEPENDENT
et ‘ yes 1o L met ater COUNTRY | DRAWING | CLAIMS CLAIMS
Hlowarce - TX 21 20 3
[Venfied and -
cknowledged Exarmrférs S‘fgnature Initiais I
IADDRESS
Dov Rosenfel -
5507 College’ Avenue
Suite 2
Oakland ,CA 94618
TITLE
Associative cache structure for lookups and updates of flow records in a network monitor
O Al Fees
(1 1.16 Fees (Filing)
FILING FEE [FEES: Authority has been given in Paper D 117 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT {ltime)
840 NoC. for following: O 1 18 Fees (Issue)
O other
U Credit

-

file://C:\APPS\PreExam\correspondence\l A .xml

117

NOAC Ex. 1017 Page 3

Y

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE
FEE RECORD SHEET

»

PTO-1556
(5/87)

*U.S. GPO: 1999.459-082/19144

NOAC Ex. 1017 Page 4

NI,

'S'n 96Lof

Wl er o

e Wt @

Lalt 1,

i

AL

i i

>

0} -03-=¢

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Our Ref./Docket No.: _ APPT-001-4

- PTO
§

Box Patent Application
ASSISTANT COMMISSIONER FOR PATENTS

Washington, D.C. 20231

82
L

7501

1l

Dear Assistant Commissioner:

Jjc8l
09

g

Transmitted herewith is the patent application of

INVENTOR(s)/APPLICANT(s)
Last Name First Name, MI Residence (City and State or Country)
Sarkissian Haig A. San Antonio, Texas
Dietz Russell S. San Jose, CA

TITLE OF THE INVENTION

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A
NETWORK MONITOR

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

Dov Rosenfeld, Reg. No. 38,387

5507 College Avenue, Suite 2

Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

ENCLOSED APPLICATION PARTS (check all that apply)

Included are:

X 65 _ sheet(s) of specification, claims, and abstract
X 21 sheet(s) of formal Drawing(s) with a submission letter to the Official Draftsperson

Information Disclosure Statement.
Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION, together with a

copy of each references included in PTO-1449.

Declaration and Power of Attorney

An assignment of the invention to_Apptitude, Inc.

A letter requesting recordation of the assignment.

An assignment Cover Sheet.

Additional inventors are being named on separately numbered sheets attached hereto.
X Return postcard.

This application has:
a small entity status. A verified statement:

is enclosed
was already filed.

The fee has been calculated as shown in the following page.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent

Appﬁc%jtam Commissioner for Patents, Washington, D.C. 20231 on.
/ 93, 02@‘5'@ Signed”

Date:
Name: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1017 Page 5

S i

i bl

S R,

{0

SUBMISSION DOCUMENT Page 2
ATTORNEY DOCKET NO. _APPT-001-4
NO. OF EXTRA RATE EXTRA CLAIM
TOTAL CLAIMS CLAIMS FEE
TOTAL 20 0 $18 $ 0.00
CLAIMS
INDEP. 3 0 $78 $ 0.00
CLAIMS
BASIC APPLICATION FEE: $690.00
- TOTAL FEES PAYABLE: $ 690.00
METHOD OF PAYMENT

A check in the amount of

A check in the amount of $ 40.00 is attached for recordation of the Assignment.

The Commissioner is hereby authorized to charge payment of the any missing filing or other fees
required for this filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

]M30@0Q

Respectfully Submitted,

g e

Date

Correspondence Address:
Dov Rosenfeld

is attached for application fee and presentation of claims.

I/Dov Rosenfeld , Reg. No. 38687

5507 College Avenue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

NOAC Ex. 1017 Page 6

Aol Tl il ot e

S

NN e AW

Our Ref./Docket No: APPT-001-4 Patent
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Sarkissian, et al. Group Art Unit: unassigned

Title: ASSOCIATIVE CACHE STRUCTURE FOR | Examiner: unassigned
LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

LETTER TO OFFICIAL DRAFTSPERSON
SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231

ATTN: Official Draftsperson

Dear Sir or Madam:

Attached please find 21 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,

S 30 2000

¢/ Date Dov Rosenfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618 »
Telephone: (510) 547-3378; Fax: (510) 653-7992

[Certificate of Mailing under 37 CFR 1.10

L hereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: EI417961895US in an envelope addressed to Box Patent

Applicatign, Assistant Commissioner for Patents, Washington, D.C. 202
Dmﬁ%\,ﬁ, 3@, Z@’ﬁ'@ Signed;
| Nathe” Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1017 Page 7

Y

Todl Baall it Buse aonett sesnre

Our Ref./Docket No.: APPT-001-4

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW
RECORDS IN A NETWORK MONITOR

Inventor(s):

SARKISSIAN, Haig A.
San Antonio, Texas

DIETZ, Russell S.
San Jose, CA

Certificate of Mailing under 37 CFR 1.10

T hereby cert‘ffy that this application and all attachments are being deposited with the United States Postal Service as Express Mail
(Express Mail Label: EI1417961895US in an envelope addressed to Box Patent Application, Assistant Commissioner for Patents,

Washington, D.C. 20231 on.
Date: ? Q/ ﬂ@_&@_ Si gn ed: /%—\/

NOAC Ex. 1017 Page 8

5
/
Y loq
10
¢
C 15
C. 20
L
25

SN D

ASSOCIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK MONITOR

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:
60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A
NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference. 4.5, . et nd

This application is related to the followingAU .S. patent applications, each filed
concurrently with the present application, and each assigned to Apptitude, Inc., the

assignee of the present invention:

NO. (D,'P‘S }(’)Ql
U.S. Patent, . Application Serat-No~ koo for METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK, to inventors Dietz, et al., fledJune36;
2000;-AttorneytAgent Reference NumberAPPF-001-, and incorporated herein by

reference.
No. (‘71("("5/71'S
U.S. Patent, Applisation-Sertat-New__~droe, for PROCESSING PROTOCOL
SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE, to inventors Koppenhaver, et al., filed June-38;-2000;

AttorneyfAgent-Reference NumberARPT-001-2, and incorporated herein by

reference.
o) et e

U.S. Patent Application Serial No)\&: for RE-USING INFORMATION FROM
DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MONITORING, to inventors Dietz, et al., filed Jare-36,26006y AttorneyfAgent

Reference-NumberARRT-064-3, and incorporated herein by reference.
&‘“//é o7
U.S. Patent Application Serial No)\ et for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors
Sarkissian, et al., fledJune-30,-20

S, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

NOAC Ex. 1017 Page 9

10

20

25

30

0 b

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. &,651,099
Related and incorporated by reference U.S. Patentepplication— L. au., for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, AtterneviAsentDocket-APRT-064-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC Ex. 1017 Page 10

10

20

25

30

O)

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. & b51,899
Related and incorporated by reference U.S. Pateng@m for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, Atterrey/AgentBecket-APPT-064-1, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC Ex. 1017 Page 11

(™

10

15

20

25

30

0 b

2

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND

There has long been a need for network activity monitors. This need has become
especially acute, however, given the recent popularity of the Internet and other
interconnected networks. In particular, there is a need for a real-time network monitor
that can provide details as to the application programs being used. Such a monitor should
enable non-intrusive, remote detection, characterization, analysis, and capture of all
information passing through any point on the network (i.e., of all packets and packet
streams passing through any location in the network). Not only should all the packets be
detected and analyzed, but for each of these packets the network monitor should
determine the protocol (e.g., http, ftp, H.323, VPN, etc.), the application/use within the
protocol (e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use
within each application or the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also, the network monitor should
not be reliant upon server resident information such as log files. Rather, it should allow a
user such as a network administrator or an Internet service provider (ISP) the means to
measure and analyze network activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and to receive timely notification

of network problems.
No. (6,571,899
Related and incorporated by reference U.S. Patenw for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, Atterney/AgentDocket-ARPT-0614, describes a network monitor
that includes carrying out protocol specific operations on individual packets including
extracting information from header fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for recognizing future packets as
belonging to a previously encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the protocols used. For each
protocol recognized, a slicer extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also preferably generates a hash for

rapidly identifying a flow that may have this signature from a database of known flows.

NOAC Ex. 1017 Page 12

3

10

15

20

25

O D

4

likely that a packet associated with the least recently used flow-entry will soon arrive.

A hash is often used to facilitate lookups. Such a hash may spread entries

randomly in a database. In such a case, a associative cache is desirable.

There thus is a need for a associative cache subsystem that also includes a LRU

replacement policy.

SUMMARY

Described herein is an associative cache system for looking up one or more
elements of an external memory. The cache system comprises a set of cache memory
elements coupled to the external memory, a set of content addressable memory cells
(CAMs) containing an address and a pointer to one of the cache memory elements, and
including a matching circuit having an input such that the CAM asserts a match output
when the input is the same as the address in the CAM cell,\Wh%;; cache memory
elergg‘;ﬁﬁa particular CAM points to changes over time. In the preferred implementation,

the CAMs are connected in an order from top to bottom, and the bottom CAM points to

the least recently used cache memory element.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by referring to the detailed
preferred embodiments, these should not be taken to limit the present invention to any
specific embodiment because such embodiments are provided only for the purposes of
explanation. The embodiments, in turn, are explained with the aid of the following

figures.

FIG. 1 is a functional block diagram of a network embodiment of the present
invention in which a monitor is connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of some of the packets and their
formats that might be exchanged in starting, as an illustrative example, a conversational
flow between a client and server on a network being monitored and analyzed. A pair of
flow signatures particular to this example and to embodiments of the present invention is

also illustrated. This represents some of the possible flow signatures that can be

NOAC Ex. 1017 Page 13

A

ax
-

. b

generated and used in the process of analyzing packets and of recognizing the particular

server applications that produce the discrete application packet exchanges.

FIG. 3'is a functional block diagram of a process embodiment of the present
inventioh that can operate as the packet monitor shown in FIG. 1. This process may be
7/

implémented in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language compiling and
optimization process, which in one embodiment may be used to generate data for

monitoring packets according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

FIG. 6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodiment of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process that is used as part of

the parser in the inventive packet monitor.

FIG. 8 is a flowchart of a monitor lookup and update process that is used as part

of the analyzer in an embodiment of the inventive packet monitor.

. FIG. 9 is d flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including
the pattern recognizer and extractor that can form part of the parser module in an

embodiment of the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine
process that can form part of the analyzer in an embodiment of the inventive packet

monitor.

FIG. 13 is a flowchart of a state processing process that can form part of the

analyzer in an embodiment of the inventive packet monitor.

NOAC Ex. 1017 Page 14

0)

6

FIG. 14 is a simple functional block diagram of a process embodiment of the
present iny,ent'ion that can operate as the packet monitor shown in FIG. 1. This process

may be ﬁnplemented in software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

5 FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of
the elements that may be extracted to form a signature according to one aspect of the

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of
10 FIG. 16 and some of the elements that may be extracted to form a signature according to

one aspect of the invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet
shown in FIGs. 16 and 17A, and some of the elements that may be extracted to form a

signature according to one aspect of the invention.

15 FIG. 18A is a three dimensional structure that can be used to store elements of
the pattern, parse and extraction database used by the parser subsystem in accordance to

one embodiment of the invention.

FIG. 18B ‘gs,a'ri'altemate form of storing elements of the pattern, parse and

extraction database used by the parser subsystem in accordance to another embodiment

20 of the invention.

FIG. 19 is a block diagram of the cache memory part of the cache subsystem /

N

1115 of the analyzer subsystem of FIG. 11. -

FIG. 20 is a block diagram of the cache memory controller and the cache CAM

controller of the cache subsystem.

FIG. 21 is a block diagram of one implementation of the CAM array of the cache
subsystem 1115.

NOAC Ex. 1017 Page 15

S D

7
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and descriptions that may
include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

5 invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network
102 that communicates packets (e.g., [P datagrams) between various computers, for

10 example between the clients 104107 and servers 110 and 112. The network is shown
schematically as a cloud with several network nodes and links shown in the interior of
the cloud. A monitor {08 examines the packets passing in either direction past its
connection point 121 and, according to one aspect of the invention, can elucidate what
application programs are associated with each packet. The monitor 108 is shown

15 examining packets (i.e., datagrams) between the network interface 116 of the server 110
and the network. The monitor can also be placed at other points in the network, such as
connection point 123 between the network 102 and the interface 118 of the client 104, or
some other location, as indicated schematically by connection point 125 somewhere in
network 102. Not shown is a network packet acquisition device at the location 123 on

20 the network for converting the physical information on the network into packets for input

nto monitor 108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the
required communication, e.g., TCP/IP, etc. Any network activity—for example an
application program run by the client 104 (CLIENT 1) communicating with another
running on the server 110 (SERVER 2)—will produce an exchange of a sequence of
Ppackets over network 102 that is characteristic of the respective programs and of the
network protocols. Such characteristics may not be completely revealing at the
individual packet level. It may require the analyzing of many packets by the monitor 108
to have enough information needed to recognize particular application programs. The

Packets may need to be parsed then analyzed in the context of various protocols, for

NOAC Ex. 1017 Page 16

10

15

© b

8

example, the transport through the application session layer protocols for packets of a

type conforming to the ISO layered network model.

Communication protocols are layered, which is also referred to as a protocol
stack. The ISO (International Standardization Organization) has defined a general model

that provides a framework for design of communication protocol layers. This model,
-

shown in table form below, serves as a basic reference for understanding the

functionality of existing communication protocols.

i T s

ISO MODEL

Layer Functionality | Example

7 Application Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR

5 Session RPC, NETBIOS, SNMP, etc.

4 Transport TCP, Novel SPX, UDP, etc.

3 Network IP, Novell IPX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer

1 Physical Ethernet, Token Ring, Frame Relay,
ATM, T1 (Hardware Connection)

Different communication protocols employ different levels of the ISO model or

may use a layered model that is similar to but which does not exactly conform to the ISO

s s 0 A e

et e

model. A protocol in a certain layer may not be visible to protocols employed at other
layers. For example, an application (Level 7) may not be able to identify the source

computer for a communication attempt (Levels 2-3).

In some communication arts, the term “frame” generally refers to encapsulated
data at OSI layer 2, including a destination address, control bits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

NOAC Ex. 1017 Page 17

S

EA
2
+

L

10

15

20

25

J b

9
“packet” generally refers to encapsulated data at OSI layer 3. In the TCP/IP world, the

term “datagram” is also used. In this specification, the term “packet” is intended to
encompass packets, datagrams, frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields and headers for
transmission across a network. For example, a data packet typically includes an address
destination field, a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and footers to identify the beginning
and end of the packet. The terms “packet format” and “frame format,” also referred to as

“cell format,” are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.
However, not every packet carries the same information useful for recognizing all levels
of the protocol. For example, in a conversational flow associated with a particular
application, the application will cause the server to send a type-A packet, but so will
another. If, though, the particular application program always follows a type-A packet
with the sending of a type-B packet, and the other application program does not, then in
order to recognize packets of that application’s conversational flow, the monitor can be
available to recognize packets that match the type-B packet to associate with the type-A
packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be
identified as being associated with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying other packet exchanges that are
parts of conversational flows associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of a flow is an indication of all
previous events in the flow that lead to recognition of the content of all the protocol
levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a
signature of extracted characteristic portions of the packet that can be used to rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the number of packets on the network 102
passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet

NOAC Ex. 1017 Page 18

15

20

25

I
l : j D
N

10
and identify and maintain the state of the flows passing through the connection point.
The monitor 108 therefore masks out all the unimportant parts of each packet that will
not contribute to its classification. However, the parts to mask-out will change with each

packet depending on which flow it belongs to and depending on the state of the flow.

The recognition of the packet type, and ultimately of the associated application
programs according to the packets that their executions produce, is a multi-step process
within the monitor 108. At a first level, for example, several application programs will
all produce a first kind of packet. A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any packets that belong to the
same flow. In some cases, that packet type may be sufficiently unique to enable the
monitor to identify the application that generated such a packet in the conversational
flow. The signature can then be used to efficiently identify all future packets generated in

traffic related to that application.

In other cases, that first packet only starts the process of analyzing the
conversational flow, and more packets are necessary to identify the associated
application program. In such a case, a subsequent packet of a second type—but that
potentiaily belongs to the same conversational flow—is recognized by using the
signature. At such a second level, then, only a few of those application programs will
have conversational flows that can produce such a second packet type. At this level in
the process of classification, all application programs that are not in the set of those that
lead to such a sequence of packet types may be excluded in the process of classifying the
conversational flow that includes these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is produced that allows recognition

of any future packets that may follow in the conversational flow.

It may be that the application is now recognized, or recognition may need to
proceed to a third level of analysis using the second level signature. For each packet,
therefore, the monitor parses the packet and generates a signature to determine if this
signature identified a previously encountered flow, or shall be used to recognize future
packets belonging to the same conversational flow. In real time, the packet is further
analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

NOAC Ex. 1017 Page 19

[R

10

15

20

25

30

11

flows associated with different applications. A new signature for recognizing future
packets may also be generated. This process of analysis continues until the applications
are identified. The last generated signature may then be used to efficiently recognize
future packets associated with the same conversational flow. Such an arrangement makes
it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Another aspect of the invention is adding Eavesdropping. In alternative
embodiments of the present invention capable of eavesdropping, once the monitor 108
has recognized the executing application programs passing through some point in the
network 102 (for example, because of execution of the applications by the client 105 or
server 110), the monitor sends a message to some general purpose processor on the
network that can input the same packets from the same location on the network, and the
processor then loads its own executable copy of the application program and uses it to
read the content being exchanged over the network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodiment of the present
invention that can be implemented with computer hardware and/or software. The system
300 is similar to monitor 108 in FIG. 1. A packet 302 is examined, e.g., from a packet
acquisition device at the location 121 in network 102 (FIG. 1), and the packet evaluated,
for example in an attempt to determine its characteristics, e.g., all the protocol
information in a multilevel model, including what server application produced the

packet.

The packet acquisition device is a common interface that converts the physical
signals and then decodes them into bits, and into packets, in accordance with the
particular network (Ethernet, frame relay, ATM, etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shown here include: (1) the initialization of the monitor to generate what
operations need to occur on packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301,

NOAC Ex. 1017 Page 20

10

15

20

25

30

O >

12
and (3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific
information to parser subsystem 301 and to analyzer subsystem 303. The initialization

occurs prior to operation of the monitor, and only needs to re-occur when new protocols

are to be added.

A flow is a stream of packets being exchanged between any two addresses in the
network. For each protocol there are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these and other fields are used in
monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums, and those parts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304
that parses the packet and determines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction process 306 in parser
subsystem 301 extracts characteristic portions (signature information) from the packet
302. Both the pattern information for parsing and the related extraction operations, e.g.,
extraction masks, are supplied from a parsing-pattern-structures and extraction-
operations database (parsing/extractions database) 308 filled by the compiler and

optimizer 310.

The protocol description language (PDL) files 336 describes both patterns and
states of all protocols that an occur at any layer, including how to interpret header
information, how to determine from the packet header information the protocols at the
next layer, and what information to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections database 338 describes the
particular layering handled by the monitor. That is, what protocols run on top of what
protocols at any layer level. Thus 336 and 338 combined describe how one would
decode, analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates two sets of internal data
structures. The first is the set of parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be recognized in the headers of

packets; the extraction operations are what elements of a packet are to be extracted from

NOAC Ex. 1017 Page 21

10

15

20

25

30

O »

13
the packets based on the patterns that get matched. Thus, database 308 of
parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependent extraction operations from data in the packet that

indicate a protocol used in the packet.

The other internal data structure that is built by compiler 310 is the set of state
patterns and processes 326. These are the different states and state transitions that occur
in different conversational flows, and the state operations that need to be performed (e.g.,
patterns that need to be examined and new signatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDL files and layer selections provides monitor 300 with the
information it needs to begin processing packets. In an alternate embodiment, the
contents of one or more of databases 308 and 326 may be manually or otherwise
generated. Note that in some embodiments the layering selections information is inherent
rather than explicitly described. For example, since a PDL file for a protocol includes the

child protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input
into a packet buffer. The pattern recognition process 304 is carried out by a pattern
analysis and recognition (PAR) engine that analyzes and recognizes patterns in the
packets. In particular, the PAR locates the next protocol field in the header and
determines the length of the header, and may perform certain other tasks for certain types
of protocol headers. An example of this is type and length comparison to distinguish an
IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also
called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures
and extraction operations database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the next protocol layer. Once a
pattern or a set of patterns has been identified, it/they will be associated with a set of
none or more extraction operations. These extraction operations (in the form of
commands and associated parameters) are passed to the extraction process 306
implemented by an extracting and information identifying (EII) engine that extracts
selected parts of the packet, including identifying information from the packet as

required for recognizing this packet as part of a flow. The extracted information is put in

NOAC Ex. 1017 Page 22

15

20

25

30

O .

14
sequence and then processed in block 312 to build a unique flow signature (also called a
“key”) for this flow. A flow signature depends on the protocols used in the packet. For
some protocols, the extracted components may include source and destination addresses.
For example, Ethernet frames have end-point addresses that are useful in building a
better flow signature. Thus, the signature typically includes the client and server address

pairs. The signature is used to recognize further packets that are or may be part of this

flow.

In the preferred embodiment, the building of the flow key includes generating a
hash of the signature using a hash function. The purpose if using such a hash is
conventional—to spread flow-entries identified by the signature across a database for
efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is known to those in the art.

In one embodiment, the parser passes data from the packet—a parser record—
that includes the signature (i.e., selected portions of the packet), the hash, and the packet
itself to allow for any state processing that requires further data from the packet. An
improved embodiment of the parser subsystem might generate a parser record that has
some predefined structure and that includes the signature, the hash, some flags related to
some of the fields in the parser record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further processing, e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation
of the selected portions of the packet to make the identifying signature. For example,

some “digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looks in an internal
data store of records of known flows that the system has already encountered, and
decides (in 316) whether or not this particular packet belongs to a known flow as
indicated by the presence of a flow-entry matching this flow in a database of known

flows 324. A record in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The
UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includes a field that can be modified. In particular, one or the UFKB record fields

NOAC Ex. 1017 Page 23

10

15

20

25

30

O b

15

stores the packet sequence number, and another is filled with state information in the

form of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already
exists is carried out by a lookup engine (LUE) that obtains new UFKB records and uses
the hash in the UFKB record to lookup if there is a matching known flow. In the
particular embodiment, the database of known flows 324 is in an external memory. A
cache is associated with the database 324. A lookup by the LUE for a known record is
carried out by accessing the cache using the hash, and if the entry is not already present

in the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-
signature, state information, and extracted information from the packet for updating
flows, and one or more statistical about the flow. Each entry completely describes a flow.
Database 324 is organized into bins that contain a number, denoted N, of flow-entries
(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.
Buckets (i.e., flow-entries) are accessed via the hash of the packet from the parser
subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flows across the
database to allow for fast lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory attached to the monitor, and
the number of bits of the hash data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16 Mbytes are required. Using a
16-bit hash gives two flow-entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that another embodiment uses

flow-entries that are 256 bytes long.

Herein, whenever an access to database 324 is described, it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e., the signature is for a
new flow, then a protocol and state identification process 318 further determines the
state and protocol. That is, process 318 determines the protocols and where in the state
sequence for a flow for this protocol’s this packet belongs. Identification process 318
uses the extracted information and makes reference to the database 326 of state patterns

and processes. Process 318 is then followed by any state operations that need to be

NOAC Ex. 1017 Page 24

10

15

20

25

30

O D,

16

executed on this packet by a state processor 328.

If the packet is found to have a matching flow-entry in the database 324 (e.g., in
the cache), then a process 320 determines, from the looked-up flow-entry, if more
classification by state processing of the flow signature is necessary. If not, a process 322
updates the flow-entry in the flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in the flow-entry. In our

embodiment, the statistical measures are stored in counters in the flow-entry.

If state processing is required, state process 328 is commenced. State processor
328 carries out any state operations specified for the state of the flow and updates the
state to the next state according to a set of state instructions obtained form the state

pattern and processes database 326.

The state processor 328 analyzes both new and existing flows in order to analyze
all levels of the protocol stack, ultimately classifying the flows by application (level 7 in
the ISO model). It does this by proceeding from state-to-state based on predefined state
transition rules and state operations as specified in state processor instruction database
326. A state transition rule is a rule typically containing a test followed by the next-state
to proceed to if the test result is true. An operation is an operation to be performed while
the state processor is in a particular state—for example, in order to evaluate a quantity
needed to apply the state transition rule. The state processor goes through each rule and

each state process until the test is true, or there are no more tests to perform.

In general, the set of state operations may be none or more operations on a
packet, and carrying out the operation or operations may leave one in a state that causes
exiting the system prior to completing the identification, but possibly knowing more
about what state and state processes are needed to execute next, i.e., when a next packet
of this flow is encountered. As an example, a state process (set of state operations) at a

particular state may build a new signature for future recognition packets of the next state.

By maintaining the state of the flows and knowing that new flows may be set up
using the information from previously encountered flows, the network traffic monitor
300 provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet
protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcement type flows.

NOAC Ex. 1017 Page 25

10

15

20

25

5 b

17
What may seem to prior art monitors to be some unassociated flow, may be recognized

by the inventive monitor using the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this
particular flow-entry. A process 330 decides if more operations need to be performed for
this state. If so, the analyzer continues looping between block 330 and 328 applying
additional state operations to this particular packet until all those operations are
completed—that is, there are no more operations for this packet in this state. A process
332 decides if there are further states to be analyzed for this type of flow according to the
state of the flow and the protocol, in order to fully characterize the flow. If not, the
conversationai flow has now been fully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment, the state processor 328 starts the state processing
by using the last protocol recognized by the parser as an offset into a jump table (jump
vector). The jump table finds the state processor instructions to use for that protocol in
the state patterns and processes database 326. Most instructions test something in the
unified flow key buffer, or the flow-entry in the database of known flows 324, if the
entry exists. The state processor may have to test bits, do comparisons, add, or subtract
to perform the test. For example, a common operation carried out by the state processor

is searching for one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whether the flow is at an
end state. If not at an end state, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process
322.

The flow-entry also is updated after classification finalization so that any further
packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

NOAC Ex. 1017 Page 26

10

15

20

25

0 §

18

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodiment of present invention shown in FIG. 3 automatically
maintains flow-entries, which in one aspect includes storing states. The monitor of
FIG. 3 also generates characteristic parts of packets—the signatures—that can be used to
recognize flows. The flow-entries may be identified and accessed by their signatures.
Once a packet is identified to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be performed in real time for each
different protocol and application. In a complex analysis, state transitions are traversed
as more and more packets are examined. Future packets that are part of the same
conversational flow have their state analysis continued from a previously achieved state.
When enough packets related to an application of interest have been processed, a final
recognition state is ultimately reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow. The signature for that final
state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantages of the present invention is realized.
Once a particular set of state transitions has been traversed for the first time and ends in a
final state, a short-cut recognition pattern—a signature—can be generated that will key
on every new incoming packet that relates to the conversational flow. Checking a
signature involves a simple operation, allowing high packet rates to be successfully

monitored on the network.

In improved embodiments, several state analyzers are run in parallel so that a
large number of protocols and applications may be checked for. Every known protocol
and application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

When each new conversational flow starts, signatures that recognize the flow are
automatically generated on-the-fly, and as further packets in the conversational flow are
€ncountered, signatures are updated and the states of the set of state transitions for any
Potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

NOAC Ex. 1017 Page 27

10

15

20

25

30

0)

19

or more potential applications—are added to the records of previously encountered states

for easy recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

FIG. 4 diagrams an initialization system 400 that includes the compilation
process. That is, part of the initialization generates the pattern structures and extraction
operations database 308 and the state instruction database 328. Such initialization can

occur off-line or from a central location.

The different protocols that can exist in different layers may be thought of as
nodes of one or more trees of linked nodes. The packet type is the root of a tree (called
level 0). Each protocol is either a parent node or a terminal node. A parent node links a
protocol to other protocols (child protocols) that can be at higher layer levels. Thus a
protocol may have zero or more children. Ethernet packets, for example, have several
variants, each having a basic format that remains substantially the same. An Ethernet
packet (the root or level 0 node) may be an Ethertype packet—also called an Ethernet
Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.
Continuing with the IEEE 802.3 packet, one of the children nodes may be the IP

protocol, and one of the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,
packet) of information and includes information on the destination media access control
address (Dst MAC 1602) and the source media access control address (Src MAC 1604).
Also shown in FIG. 16 is some (but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now shows the header information for the next level (level-2) for an
Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the
packet that indicates the next layer level is a two-byte type field 1702 containing the
child recognition pattern for the next level. The remaining information 1704 is shown
hatched because it not relevant for this level. The list 1712 shows the possible children
for an Ethertype packet as indicated by what child recognition pattern is found offset 12.
FIG. 17B shows the structure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the [P protocol are shown in table 1752.

NOAC Ex. 1017 Page 28

10

15

20

25

30

) D

20
The pattern, parse, and extraction database (pattern recognition database, or
PRD) 308 generated by compilation process 310, in one embodiment, is in the form of a
three dimensional structure that provides for rapidly searching packet headers for the
next protocol. FIG. 18A shows such a 3-D representation 1800 (which may be
considered as an indexed set of 2-D representations). A compressed form of the 3-D

structure is preferred.

An alternate embodiment of the data structure used in database 308 is illustrated
in FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process 304 by indexing locations in
a memory rather than performing address link computations. In this alternate
embodiment, the PRD 308 includes two parts, a single protocol table 1850 (PT) which
has an entry for each protocol known for the monitor, and a series of Look Up Tables
1870 (LUT’s) that are used to identify known protocols and their children. The protocol
table includes the parameters needed by the pattern analysis and recognition process 304
(implemented by PRE 1006) to evaluate the header information in the packet that is
associated with that protocol, and parameters needed by extraction process 306
(implemented by slicer 1007) to process the packet header. When there are children, the
PT describes which bytes in the header to evaluate to determine the child protocol. In
particular, each PT entry contains the header length, an offset to the child, a slicer

command, and some flags.

The pattern matching is carried out by finding particular “child recognition
codes” in the header fields, and using these codes to index one or more of the LUT’s.
Each LUT entry has a node code that can have one of four values, indicating the protocol
that has been recognized, a code to indicate that the protocol has been partially
recognized (more LUT lookups are needed), a code to indicate that this is a terminal
node, and a null node to indicate a null entry. The next LUT to lookup is also returned

from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the
form of protocol description files is shown as 402. In the particular embodiment, the
high level decoding descriptions includes a set of protocol description files 336, one for

each protocol, and a set of packet layer selections 338, which describes the particular

NOAC Ex. 1017 Page 29

Loa ot s RAb A

10

15

20

25

30

2 D

layering (sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract
operations 406 is generated (404), and a set of packet state instructions and operations
407 1s generated (405) in the form of instructions for the state processor that implements
state processing process 328. Data files for each type of application and protocol to be
recognized by the analyzer are downloaded from the pattern, parse, and extraction
database 406 into the memory systems of the parser and extraction engines. (See the
parsing process 500 description and FIG. §; the extraction process 600 description and
FIG. 6; and the parsing subsystem hardware description and FIG. 10). Data files for each
type of application and protocol to be recognized by the analyzer are also downloaded
from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG. 11.).

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment) or the or all the lookup tables for the

Because of the large number of possible protocol trees and subtrees, the compiler
process 400 includes optimization that compares the trees and subtrees to see which
children share common parents. When implemented in the form of the LUT’s, this
process can generate a single LUT from a plurality of LUT’s. The optimization process
further includes a compaction process that reduces the space needed to store the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG. 18A that can be
thought of as a set of 2-D structures each representing a protocol. To enable saving space
by using only one array per protocol which may have several parents, in one
embodiment, the pattern analysis subprocess keeps a “current header” pointer. Each
location (offset) index for each protocol 2-D array in the 3-D structure is a relative
location starting with the start of header for the particular protocol. Furthermore, each of
the two-dimensional arrays is sparse. The next step of the optimization, is checking all
the 2-D arrays against all the other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often sparsely populated in that they each have only a small

number of valid entries. So, a process of "folding" is next used to combine two or more

NOAC Ex. 1017 Page 30

10

15

20

25

30

O D

22
2-D arrays together into one physical 2-D array without losing the identity of any of the
original 2-D arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the tree as long as certain
conditions are met. Multiple arrays may be combined into a single array as long as the
individual entries do not conflict with each other. A fold number is then used to associate

each element with its original array. A similar folding process is used for the set of LUTSs

1850 in the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting
at 501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next
(initially the first) packet component from the packet 302. The packet components are
extracted from each packet 302 one element at a time. A check is made (504) to
determine if the load-packet-component operation 503 succeeded, indicating that there
was more in the packet to process. If not, indicating all components have been loaded,

the parser subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a component is successfully loaded in 503, the node and processes are fetched
(505) from the pattern, parse and extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet component. The parser subsystem
301 checks (506) to determine if the fetch pattern node operation 505 completed
successfully, indicating there was a pattern node that loaded in 505. If not, step 511
moves to the next packet component. If yes, then the node and pattern matching process
are applied in 507 to the component extracted in 503. A pattern match obtained in 507
(as indicated by test 508) means the parser subsystem 301 has found a node in the

parsing elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the component does not produce a match (test
508), the parser subsystem 301 moves (510) to the next pattern node from the pattern
database 308 and to step 505 to fetch the next node and process. Thus, there is an
“applying patterns” loop between 508 and 505. Once the parser subsystem 301
completes all the patterns and has either matched or not, the parser subsystem 301 moves

to the next packet component (511).

Once all the packet components have been the loaded and processed from the

NOAC Ex. 1017 Page 31

10

15

20

25

30

w

D)

23
input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 moves to build a packet signature which is described in FIG. 6

stz

FIG. 6 is a flow chart for extracting the information from which to build the

packet signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this
point parser subsystem 301 has a completed packet component and a pattern node
available in a buffer (602). Step 603 loads the packet component available from the
pattern analysis process of FIG. 5. If the load completed (test 604), indicating that there
was indeed another packet component, the parser subsystem 301 fetches in 605 the
extraction and process elements received from the pattern node component in 602. If the
fetch was successful (test 606), indicating that there are extraction elements to apply, the
parser subsystem 301 in step 607 applies that extraction process to the packet component
based on an extraction instruction received from that pattern node. This removes and

saves an element from the packet component.

In step 608, the parser subsystem 301 checks if there is more to extract from this
component, and if not, the parser subsystem 301 moves back to 603 to load the next
packet component at hand and repeats the process. If the answer is yes, then the parser
subsystem 301 moves to the next packet component ratchet. That new packet component
is then loaded in step 603. As the parser subsystem 301 moved through the loop between
608 and 603, extra extraction processes are applied either to the same packet component
if there is more to extract, or to a different packet component if there is no more to

extract.

The extraction process thus builds the signature, extracting more and more
components according to the information in the patterns and extraction database 308 for
the particular packet. Once loading the next packet component operation 603 fails (test
604), all the components have been extracted. The built signature is loaded into the
signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring now to FIG. 7, the process continues at 701. The signature buffer and
the pattern node elements are available (702). The parser subsystem 301 loads the next
pattern node element. If the load was successful (test 704) indicating there are more

nodes, the parser subsystem 301 in 705 hashes the signature buffer element based on the

NOAC Ex. 1017 Page 32

24
hash elements that are found in the pattern node that is in the element database. In 706

the resulting signature and the hash are packed. In 707 the parser subsystem 301 moves

on to the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elements left
s (test 704). Once all the patterns of elements have been hashed, processes 304, 306 and
312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parser record is loaded into the analyzer, in particular, into the UFKB in the
form of a UFKB record which is similar to a parser record, but with one or more

10 different fields.

FIG. 8 is a flow diagram describing the operation of the lookup/update engine
(LUE) that implements lookup operation 314. The process starts at 801 from FIG. 7 with
the parser record that includes a signature, the hash and at least parts of the payload. In
802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE, the
15 lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A
bin herein may have one or more “buckets” each containing a flow-entry. The preferred

embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache, all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

20 Thus, in 804, the system looks up the cache for a bucket from that bin using the
hash. If the cache successfully returns with a bucket from the bin number, indicating
there are more buckets in the bin, the lookup/update engine compares (807) the current
signature (the UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in the cache) is marked in step

25 810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 has a status of “found.” The “found” indication allows the state
: processing 328 to begin processing this UFKB element. The preferred hardware
embodiment includes one or more state processors, and these can operate in parallel with

the lookup/update engine.

30 In the preferred embodiment, a set of statistical operations is performed by a

NOAC Ex. 1017 Page 33

o S A o

;
r
4
t
§

15

20

25

J b

25
calculator for every packet analyzed. The statistical operations may include one or more
of counting the packets associated with the flow; determining statistics related to the size
of packets of the flow; compiling statistics on differences between packets in each
direction, for example using timestamps; and determining statistical relationships of
timestamps of packets in the same direction. The statistical measures are kept in the
flow-entries. Other statistical measures also may be compiled. These statistics may be
used singly or in combination by a statistical processor component to analyze many
different aspects of the flow. This may include determining network usage metrics from
the statistical measures, for example to ascertain the network’s ability to transfer
information for this application. Such analysis provides for measuring the quality of
service of a conversation, measuring how well an application is performing in the

network, measuring network resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more
counters that are part of the flow-entry (in the cache) in step 812. The process exits at
813. In our embodiment, the counters include the total packets of the flow, the time, and

a differential time from the last timestamp to the present timestamp.

It may be that the bucket of the bin did not lead to a signature match (test 808). In
such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The lookup/update engine thus
continues lookup up buckets of the bin until there is either a match in 808 or operation
804 is not successful (test 805), indicating that there are no more buckets in the bin and

no match was found.

If no match was found, the packet belongs to a new (not previously encountered)
flow. In 806 the system indicates that the record in the unified flow key buffer for this
packet is new, and in 812, any statistical updating operations are performed for this
packet by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new” status or a “found” status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash may be used that corresponds to a single flow-entry. In such an

NOAC Ex. 1017 Page 34

;
:
t
L
{
i
i

10

20

25

» D

embodiment, the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

Each of the individual hardware elements through which the data flows in the
system are now described with reference to FIGS. 10 and 11. Note that while we are
describing a particular hardware implementation of the invention embodiment of FIG. 3,
it would be clear to one skilled in the art that the flow of FIG. 3 may alternatively be
implemented in software running on one or more general-purpose processors, or only
partly implemented in hardware. An implementation of the invention that can operate in
software is shown in FIG. [4. The hardware embodiment (FIGS. 10 and 11) can operate
at over a million packets per second, while the software system of FIG. 14 may be
suitable for slower networks. To one skilled in the art it would be clear that more and

more of the system may be implemented in software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem
1000) as implemented in hardware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is
the extraction-operation database memory, in which the extraction instructions are
stored. Both 1001 and 1002 correspond to internal data structure 308 of FIG. 3.
Typically, the system is initialized from a microprocessor (not shown) at which time
these memories are loaded through a host interface multiplexor and control register 1005
via the internal buses 1003 and 1004. Note that the contents of 1001 and 1002 are
preferably obtained by compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser input buffer memory
1008 using control signals 1021 and 1023, which control an input buffer interface
controller 1022. The buffer 1008 and interface control 1022 connect to a packet
acquisition device (not shown). The buffer acquisition device generates a packet start
signal 1021 and the interface control 1022 generates a next packet (i.e., ready to receive
data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a
packet starts loading into the buffer memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory described in block 304 of
FIG. 3. That is, protocol types and associated headers for each protocol layer that exist in

the packet are determined.

NOAC Ex. 1017 Page 35

TROVETE FAF ™ ™ =P A p monn ar

10

15

20

25

30

o D

27
The PRE searches database 1001 and the packet in buffer 1008 in order to
recognize the protocols the packet contains. In one implementation, the database 1001
includes a series of linked lookup tables. Each lookup table uses eight bits of addressing.
The first lookup table is always at address zero. The Pattern Recognition Engine uses a
base packet offset from a control register to start the comparison. It loads this value into
a current offset pointer (COP). It then reads the byte at base packet offset from the parser

input buffer and uses it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a
terminal flag. If the lookup produces a recognition event the database also returns a

command for the slicer. Finally it returns the value to add to the COP.

The PRE 1006 includes of a comparison engine. The comparison engine has a
first stage that checks the protocol type field to determine if it is an 802.3 packet and the
field should be treated as a length. If it is not a length, the protocol is checked in a
second stage. The first stage is the only protocol level that is not programmable. The
second stage has two full sixteen bit content addressable memories (CAMs) defined for

future protocol additions.

Thus, whenever the PRE recognizes a pattern, it also generates a command for
the extraction engine (also called a “slicer”) 1007. The recognized patterns and the
commands are sent to the extraction engine 1007 that extracts information from the
packet to build the parser record. Thus, the operations of the extraction engine are those
carried out in blocks 306 and 312 of FIG. 3. The commands are sent from PRE 1006 to
slicer 1007 in the form of extraction instruction pointers which tell the extraction engine
1007 where to a find the instructions in the extraction operations database memory (1.e.,

slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol
identifier and a process code to the extractor. The protocol identifier is added to the flow
signature and the process code is used to fetch the first instruction from the instruction
database 1002. Instructions include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in bytes. A typical operation is the
MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains

NOAC Ex. 1017 Page 36

- — -

LN 95 Q) S - A W

10

15

20

25

30

J D

28
a byte-wise barrel shifter so that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH. This instruction tells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element(s) of the packet in the
input buffer memory and transferring the data to a parser output buffer memory 1010.

Some instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction
engine 1007 performs extraction operations on data in input buffer 1008 already
processed by PRE 1006 while more (i.e., later arriving) packet information is being
simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the signature are extracted,
the hash is loaded into parser output buffer memory 1010. Any additional payload from
the packet that is required for further analysis is also included. The parser output memory
1010 is interfaced with the analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output buffer memory 1010, a data ready
signal 1025 is asserted by analyzer interface control. The data from the parser subsystem
1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem
that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is
initialized prior to operation, and initialization includes loading the state processing
information generated by the compilation process 310 into a database memory for the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an
analyzer host interface controller 1118, which in turn has access to a cache system 1115.
The cache system has bi-directional access to and from the state processor of the system
1108. State processor 1108 is responsible for initializing the state processor instruction

database memory 1109 from information given over the host bus interface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

NOAC Ex. 1017 Page 37

e

10

15

20

25

29
comprising packet signatures and payloads that come from the parser into the unified
flow key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB
records. A UFKB record is essentially a parser record; the UFKB holds records of
packets that are to be processed or that are in process. Furthermore, the UFKB provides

for one or more fields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:
the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow
insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more
finite state machines (FSM's). There is bi-directional access between each of the finite
state machines and the unified flow key buffer 1103. The UFKB record includes a field
that stores the packet sequence number, and another that is filled with state information
in the form of a program counter for the state processor 1108 that implements state
processing 328. The status flags of the UFKB for any entry includes that the LUE is done
and that the LUE is transferring processing of the entry to the state processor. The LUE
done indicator is also used to indicate what the next entry is for the LUE. There also is
provided a flag to indicate that the state processor is done with the current flow and to
indicate what the next entry is for the state processor. There also is provided a flag to
indicate the state processor is transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107. A record that has been
processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB
record data may be processed by the flow insertion/deletion engine 1110 after being
processed by the state processor 1108 or only by the LUE. Whether or not a particular
engine has been applied to any unified flow key buffer entry is determined by status
fields set by the engines upon completion. In one embodiment, a status flag in the
UFKB-entry indicates whether an entry is new or found. In other embodiments, the LUE
issues a flag to pass the entry to the state processor for processing, and the required

operations for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

NOAC Ex. 1017 Page 38

Bkt v

Tl AL e

TAVAER T =n e

10

15

20

25

30

» b

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem
1115 that includes a caching engine. Cache 1115 is designed to have information flowing
in and out of it from five different points within the system: the three engines, external
memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and
a microprocessor via analyzer host interface and control unit (ACIC) 1118 and host
interface bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor)

can thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includes a set of content
addressable memory cells (CAMSs) each including an address portion and a pointer
portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.
The CAMs are arranged as a stack ordered from a top CAM to a bottom CAM. The
bottom CAM’s pointer points to the least recently used (LRU) cache memory entry.
Whenever there is a cache miss, the contents of cache memory pointed to by the bottom
CAM are replaced by the flow-entry from the flow-entry database 324. This now
becomes the most recently used entry, so the contents of the bottom CAM are moved to
the top CAM and all CAM contents are shifted down. Thus, the cache is an associative

cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basically performs the
operation of blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate
that a “new” UFKB-entry is available. The LUE uses the hash in the UFKB-entry to read
a matching bin of up to four buckets from the cache. The cache system attempts to obtain
the matching bin. If a matching bin is not in the cache, the cache 1115 makes the request

to the UMC 1119 to bring in a matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107 looks at each bucket
and compares it using the signature to the signature of the UFKB-entry until there is a

match or there are no more buckets.

If there is no match, or if the cache failed to provide a bin of flow-entries from
the cache, a time stamp in set in the flow key of the UFKB record, a protocol
identification and state determination is made using a table that was loaded by

compilation process 310 during initialization, the status for the record is set to indicate

NOAC Ex. 1017 Page 39

oo Pl Mo Mipere e e

10

15

20

25

30

» D

31
the LUE has processed the record, and an indication is made that the UFKB-entry is
ready to start state processing. The identification and state determination generates a
protocol identifier which in the preferred embodiment is a “jump vector” for the state
processor which is kept by the UFKB for this UFKB-entry and used by the state
processor to start state processing for the particular protocol. For example, the jump

vector jumps to the subroutine for processing the state.

If there was a match, indicating that the packet of the UFKB-entry is for a
previously encountered flow, then a calculator component enters one or more statistical
measures stored in the flow-entry, including the timestamp. In addition, a time difference
from the last stored timestamp may be stored, and a packet count may be updated. The
state of the flow is obtained from the flow-entry is examined by looking at the protocol
identifier stored in the flow-entry of database 324. If that value indicates that no more
classification is required, then the status for the record is set to indicate the LUE has
processed the record. In the preferred embodiment, the protocol identifier is a jump
vector for the state processor to a subroutine to state processing the protocol, and no
more classification is indicated in the preferred embodiment by the jump vector being
zero. If the protocol identifier indicates more processing, then an indication is made that
the UFKB-entry is ready to start state processing and the status for the record is set to

indicate the LUE has processed the record.

The state processor 1108 processes information in the cache system according to
a UFKB-entry after the LUE has completed. State processor 1108 includes a state
processor program counter SPPC that generates the address in the state processor
instruction database 1109 loaded by compiler process 310 during initialization. It
contains an Instruction Pointer (SPIP) which generates the SPID address. The instruction
pointer can be incremented or loaded from a Jump Vector Multiplexor which facilitates
conditional branching. The SPIP can be loaded from one of three sources: (1) A protocol
identifier from the UFKB, (2) an immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic unit (SPALU) included in the

State processor.

Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the

NOAC Ex. 1017 Page 40

10

20

25

30

0 b

32

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU) contains all the Arithmetic, Logical and
String Compare functions necessary to implement the State Processor instructions. The
main blocks of the SPALU are: The A and B Registers, the Instruction Decode & State
Machines, the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Engine in turn contains the Target Search Register set, the Reference
Search Register set, and a Compare block which compares two operands by exclusive-

or-ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or more state
operations are be executed in state processor 1108 to further analyze the packet that is in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processor 1s
entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
new or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified
flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state processor 1108 starts the
process by using the last protocol recognized by the parser subsystem 301 as an offset
into a jump table. The jump table takes us to the instructions to use for that protocol.
Most instructions test something in the unified flow key buffer or the flow-entry if it
exists. The state processor 1108 may have to test bits, do comparisons, add or subtract to

perform the test.

The first state processor instruction is fetched in 1304 from the state processor
instruction database memory 1109. The state processor performs the one or more fetched
operations (1304). In our implementation, each single state processor instruction is very
primitive (e.g., a move, a compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect of the state processor is its
ability to search for one or more (up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine component of the state processor

responsive to special searching instructions.

NOAC Ex. 1017 Page 41

vy Bovin I sl ot 30 T e TN L W)

TYFETN e ~Fs 0~

10

15

20

25

30

9)
33
In 1307, a check is made to determine if there are any more instructions to be
performed for the packet. If yes, then in 1308 the system sets the state processor
instruction pointer (SPIP) to obtain the next instruction. The SPIP may be set by an

immediate jump vector in the currently decoded instruction, or by a value provided by

the SPALU during processing.

The next instruction to be performed is now fetched (1304) for execution. This
state processing loop between 1304 and 1307 continues until there are no more

instructions to be performed.

At this stage, a check is made in 1309 if the processing on this particular packet
has resulted in a final state. That is, is the analyzer is done processing not only for this
particular packet, but for the whole flow to which the packet belongs, and the flow is
fully determined. If indeed there are no more states to process for this flow, then in 1311
the processor finalizes the processing. Some final states may need to put a state in place
that tells the system to remove a flow—for example, if a connection disappears from a
lower level connection identifier. In that case, in 1311, a flow removal state is set and
saved in the flow-entry. The flow removal state may be a NOP (no-op) instruction which

means there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP
or otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309 it is determined that processing for this flow is not completed, then in
1310 the system saves the state processor instruction pointer in the current flow-entry in
the current flow-entry. That will be the next operation that will be performed the next
time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer
1103 and the flow-entry in the cache. Once the state processor is done, a flag is set in the
UFKB for the entry that the state processor is done. Furthermore, If the flow needs to be
inserted or deleted from the database of flows, control is then passed on to the flow
insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

NOAC Ex. 1017 Page 42

Sl Bl B Rl e

ol

CRELNEN . TR

10

15

20

25

30

J)

34

the state processor is passing processing of this entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the
flow-entry database. In particular, for creating new flows in the flow database, and

deleting flows from the database so that they can be reused.

The process of flow insertion is now described with the aid of FIG. 12. Flows are
grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that
may be new or that the state processor otherwise has indicated needs to be created.

FIG. 12 shows the case of a new entry being created. A conversation record bin
(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that
matches the hash of the UFKB, so this bin may already have been sought for the UFKB-
entry by the LUE. In 1204 the FIDE 1110 requests that the record bin/bucket be
maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the
bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket
and the bucket is marked “used” in the cache engine of cache 1115 using a timestamp
that is maintained throughout the process. In 1209, the FIDE 1110 compares the bin and
bucket record flow signature to the packet to verify that all the elements are in place to
complete the record. In 1211 the system marks the record bin and bucket as “in process”
and as “new” in the cache system (and hence in the external memory). In 1212, the initial
statistical measures for the flow-record are set in the cache system. This in the preferred
embodiment clears the set of counters used to maintain statistics, and may perform other
procedures for statistical operations requires by the analyzer for the first packet seen for a

particular flow,

Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next
bucket for this particular bin in the cache system. If this succeeds, the processes of 1207,
1209, 1211 and 1212 are repeated for this next bucket. If at 1208, there is no valid
bucket, the unified flow key buffer entry for the packet is set as “drop,” indicating that
the system cannot process the particular packet because there are no buckets left in the
system. The process exits at 1213. The FIDE 1110 indicates to the UFKB that the {low
insertion and deletion operations are completed for this UFKB-entry. This also lets the
UFKB provide the FIDE with the next UFKB record.

NOAC Ex. 1017 Page 43

10

15

20

25

30

» D

35

Once a set of operations is performed on a unified flow key buffer entry by all of
the engines required to access and manage a particular packet and its flow signature, the
unified flow key buffer entry is marked as “completed.” That element will then be used
by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and some are maintained
in the cache 1115. The cache system 1115 is intelligent enough to access the flow
database and to understand the data structures that exists on the other side of memory
interface 1123. The lookup/update engine 1107 is able to request that the cache system
pull a particular flow or “buckets” of flows from the unified memory controller 1119 into
the cache system for further processing. The state processor 1108 can operate on
information found in the cache system once it is looked up by means of the
lookup/update engine request, and the flow insertion/deletion engine 1110 can create
new entries in the cache system if required based on information in the unified flow key
buffer 1103. The cache retrieves information as required from the memory through the
memory interface 1123 and the unified memory controller 1119, and updates information

as required in the memory through the memory controller 1119.

There are several interfaces to components of the system external to the module
of FIG. 11 for the particular hardware implementation. These include host bus interface
1122,which is designed as a generic interface that can operate with any kind of external
processing system such as a microprocessor or a multiplexor (MUX) system.
Consequently, one can connect the overall traffic classification system of FIGS. 11 and
12 into some other processing system to manage the classification system and to extract

data gathered by the system.

The memory interface 1123 is designed to interface to any of a variety of memory
systems that one may want to use to store the flow-entries. One can use different types of
memory systems like regular dynamic random access memory (DRAM), synchronous
DRAM, synchronous graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer

NOAC Ex. 1017 Page 44

.

e

ST TRV s T e 4 L om0 o

10

15

20

25

v J

36

interface control 1022. These are designed so that they can be used with any kind of
generic systems that can then feed packet information into the parser. Another generic
interface is the interface of pipes 1031 and 1033 respectively out of and into host
interface multiplexor and control registers 1005. This enables the parsing system to be
managed by an external system, for example a microprocessor or another kind of
external logic, and enables the external system to program and otherwise control the

parser.

The preferred embodiment of this aspect of the invention is described in a
hardware description language (HDL) such as VHDL or Verilog. It is designed and
created in an HDL so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being designed for purposes
related to creating and analyzing traffic within a network. Verilog or other HDL

implementation is only one method of describing the hardware.

In accordance with one hardware implementation, the elements shown in
FIGS. 10 and 11 are implemented in a set of six field programmable logic arrays
(FPGA'’s). The boundaries of these FPGA'’s are as follows. The parsing subsystem of
FIG. 10 is implemented as two FPGAS; one FPGA, and includes blocks 1006, 1008 and
1012, parts of 1005, and memory 1001. The second FPGA includes 1002, 1007, 1013,
1011 parts of 1005. Referring to FIG. 11, the unified look-up buffer 1103 is implemented
as a single FPGA. State processor 1108 and part of state processor instruction database
memory 1109 is another FPGA. Portions of the state processor instruction database
memory 1109 are maintained in external SRAM’s. The lookup/update engine 1107 and
the flow insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes
the cache system 1115, the unified memory control 1119, and the analyzer host interface

and control 1118.

Note that one can implement the system as one or more VSLI devices, rather than
as a set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is
anticipated that in the future device densities will continue to increase, so that the

complete system may eventually form a sub-unit (a “core”) of a larger single chip unit.

NOAC Ex. 1017 Page 45

PN

TR TN A S LR

TRTYETT ey -

i

10

15

20

25

30

9, D

37
Opetration of the Invention

Fig. 15 shows how an embodiment of the network monitor 300 might be used to
analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all packets passing point 121 in
either direction are supplied to monitor 300. Monitor 300 comprises the parser sub-
system 301, which determines flow signatures, and analyzer sub-system 303 that
analyzes the flow signature of each packet. A memory 324 is used to store the database
of flows that are determined and updated by monitor 300. A host computer 1504, which
might be any processor, for example, a general-purpose computer, is used to analyze the
flows in memory 324. As is conventional, host computer 1504 includes a memory, say
RAM, shown as host memory 1506. In addition, the host might contain a disk. In one
application, the system can operate as an RMON probe, in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodiment of the invention is supported by an optional Simple
Network Management Protocol (SNMP) implementation. Fig. 15 describes how one
would, for example, implement an RMON probe, where a network interface card is used
to send RMON information to the network. Commercial SNMP implementations also
are available, and using such an implementation can simplify the process of porting the

preferred embodiment of the invention to any platform.

In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state
analysis for packet exchanges that are commonly referred to as “server announcement”
type exchanges. Server announcement is a process used to ease communications between
a server with multiple applications that can all be simultaneously accessed from multiple
clients. Many applications use a server announcement process as a means of
multiplexing a single port or socket into many applications and services. With this type
of exchange, messages are sent on the network, in either a broadcast or multicast
approach, to announce a server and application, and all stations in the network may

receive and decode these messages. The messages enable the stations to derive the

NOAC Ex. 1017 Page 46

2 D

38

appropriate connection point for communicating that particular application with the
particular server. Using the server announcement method, a particular application
communicates using a service channel, in the form of a TCP or UDP socket or port as in

the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

5 The analyzer 303 is also capable of carrying out “in-stream analysis” of packet
exchanges. The “in-stream analysis” method is used either as a primary or secondary
recognition process. As a primary process, in-stream analysis assists in extracting
detailed information which will be used to further recognize both the specific application
and application component. A good example of in-stream analysis is any Web-based

10 application. For example, the commonly used PointCast Web information application
can be recognized using this process; during the initial connection between a PointCast
server and client, specific key tokens exist in the data exchange that will result in a

signature being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server
15 announcement process. In many cases in-stream analysis will augment other recognition
processes. An example of combining in-stream analysis with server announcement can

be found in business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processes for tracking
applications in client/server packet exchanges. The process of tracking sessions requires
20 an initial connection to a predefined socket or port number. This method of
communication is used in a variety of transport layer protocols. It is most commonly

seen in the TCP and UDP transport protocols of the IP protocol.

W e By e T

During the session tracking, a client makes a request to a server using a specific
port or socket number. This initial request will cause the server to create a TCP or UDP
% 25 port to exchange the remainder of the data between the client and the server. The server
then replies to the request of the client using this newly created port. The original port
used by the client to connect to the server will never be used again during this data

1 exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a
30 version of the TCP/IP FTP protocol that has no directory or password capability. During

the client/server exchange process of TFTP, a specific port (port number 69) is always

NOAC Ex. 1017 Page 47

o

WP My BB R e

e

LI T R

| et

10

15

20

25

30

D D
39

used to initiate the packet exchange. Thus, when the client begins the process of
communicating, a request is made to UDP port 69. Once the server receives this request,
a new port number is created on the server. The server then replies to the client using the
new port. In this example, it is clear that in order to recognize TFTP; network monitor
300 analyzes the initial request from the client and generates a signature for it. Monitor
300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for

monitoring the remaining packets of this data exchange.

Network monitor 300 can also understand the current state of particular
connections in the network. Connection-oriented exchanges often benefit from state
tracking to correctly identify the application. An example is the common TCP transport
protocol that provides a reliable means of sending information between a client and a
server. When a data exchange is initiated, a TCP request for synchronization message is
sent. This message contains a specific sequence number that is used to track an
acknowledgement from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between the client and the server. When
communication is no longer required, the client sends a finish or complete message to
the server, and the server acknowledges this finish request with a reply containing the
sequence numbers from the request. The states of such a connection-oriented exchange

relate to the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement protocols vary. However, the
basic underlying process remains similar. A typical server announcement message is sent
to one or more clients in a network. This type of announcement message has specific
content, which, in another aspect of the invention, is salvaged and maintained in the
database of flow-entries in the system. Because the announcement is sent to one or more
stations, the client involved in a future packet exchange with the server will make an
assumption that the information announced is known, and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPC is the implementation by Sun Microsystems, Inc. (Palo Alto,

California) of the Remote Procedure Call (RPC), a programming interface that allows

NOAC Ex. 1017 Page 48

R e e v -~ o = R

10

15

20

25

® b

40

one program to use the services of another on a remote machine. A Sun-RPC example is

now used to explain how monitor 300 can capture server announcements.

A remote program or client that wishes to use a server or procedure must

establish a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database
called the port Mapper. The port Mapper creates a direct association between a Sun-RPC
program or application and a TCP or UDP socket or port (for TCP or UDP
implementations). An application or program number is a 32-bit unique identifier
assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number of parameters associated with Internet
protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on
a Sun-RPC server can present the mappings between a unique program number and a
specific transport socket through the use of specific request or a directed announcement.

According to ICANN, port number 111 is associated with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1)
making a specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a
predefined UDP or TCP socket. Once the port Mapper process on the sun RPC server

receives the request, the specific mapping is returned in a directed reply to the client.

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2
(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request
(rpcBindLookup). TCP or UDP port 111 is always assoctated Sun RPC. This
request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and
version identifier from the request. The server also uses the fact that this
packet came in using the TCP transport and that no protocol was specified,

and thus will use the TCP protocol for its reply.

NOAC Ex. 1017 Page 49

10

15

20

25

2 D

41
3. The server 110 sends a TCP packet to port number 111, with an RPC
Bind Lookup Reply. The reply contains the specific port number (e.g., port
number ‘port’) on which future transactions will be accepted for the specific

RPC program identifier (e.g., Program ‘program’) and the protocol (UDP or
TCP) for use.

It is desired that from now on every time that port number ‘port’ is used, the
packet 1s associated with the application program ‘program’ until the number ‘port’ no
longer is to be associated with the program ‘program’. Network monitor 300 by creating
a flow-entry and a signature includes a mechanism for remembering the exchange so that
future packets that use the port number ‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request and reply, there are other ways
that a particular program—say ‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast announcement of a particular
association between an application service and a port number, called a Sun RPC
portMapper Announcement. Another, is when some server—say the same SERVER 2—
replies to some client—say CLIENT l—requesting some portMapper assignment with a
RPC portMapper Reply. Some other client—say CLIENT 2—might inadvertently see
this request, and thus know that for this particular server, SERVER 2, port number ‘port’
is associated with the application service ‘program’. It is desirable for the network
monitor 300 to be able to associate any packets to SERVER 2 using port number ‘port’

with the application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3
for Sun Remote Procedure Call. Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is
communicating via its interface to the network 118 to a server 110 (e.g.,, SERVER 2 in
FIG. 1) via the server’s interface to the network [16. Further assume that Remote
Procedure Call is used to communicate with the server 110. One path in the data flow
900 starts with a step 910 that a Remote Procedure Call bind lookup request is issued by
client 106 and ends with the server state creation step 904. Such RPC bind lookup

request includes values for the ‘program,” ‘version,” and ‘protocol’ to use, e.g., TCP or

NOAC Ex. 1017 Page S0

10

15

20

25

30

2 D

42

UDP. The process for Sun RPC analysis in the network monitor 300 includes the

following aspects. :

e Process 909: Extract the ‘program,’ ‘version,” and ‘protocol’ (UDP or TCP). Extract
the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

e Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value is
portMapper, save paired socket (i.e., dest for destination address, src for source
address). Decode ports and mapping, save ports with socket/addr key. There may be
more than one pairing per mapper packet. Form a signature (e.g., a key). A flow-

entry is created in database 324. The saving of the request is now complete.

At some later time, the server (process 907) issues a RPC bind lookup reply. The
packet monitor 300 will extract a signature from the packet and recognize it from the
previously stored flow. The monitor will get the protocol port number (906) and lookup
the request (905). A new signature (i.e., a key) will be created and the creation of the
server state (904) will be stored as an entry identified by the new signature in the flow-
entry database. That signature now may be used to identify packets associated with the

Server.

The server state creation step 904 can be reached not only from a Bind Lookup
Request/Reply pair, but also from a RPC Reply portMapper packet shown as 901 or an
RPC Announcement portMapper shown as 902. The Remote Procedure Call protocol
can announce that it is able to provide a particular application service. Embodiments of
the present invention preferably can analyze when an exchange occurs between a client
and a server, and also can track those stations that have received the announcement of a

service in the network.

The RPC Announcement portMapper announcement 902 is a broadcast. Such
causes various clients to execute a similar set of operations, for example, saving the
information obtained from the announcement. The RPC Reply portMapper step 901
could be in reply to a portMapper request, and is also broadcast. It includes all the

service parameters.

Thus monitor 300 creates and saves all such states for later classification of flows

that relate to the particular service ‘program’.

NOAC Ex. 1017 Page 51

TR AN NN TR B

ot

ahy P, e,
PR R

i

10

15

20

25

30

J J
43
FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature
and flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun
Microsystems Remote Procedure Call protocol. A method embodiment of the present
invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2"

212, from information found in the packets 206 and 207 which, in the example,

correspond to a Sun RPC Bind Lookup request and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206
corresponds to such a request sent from CLIENT 3 to SERVER 2. This packet contains
important information that is used in building a signature according to an aspect of the
invention. A source and destination network address occupy the first two fields of each
packet, and according to the patterns in pattern database 308, the flow signature (shown
as KEY1 230 in FIG. 2) will also contain these two fields, so the parser subsystem 301
will include these two fields in signature KEY 1 (230). Note that in FIG. 2, if an address
identifies the client 106 (shown also as 202), the label used in the drawing is “C;”. If
such address identifies the server 110 (shown also as server 204), the label used in the

drawing is “S;”. The first two fields 214 and 215 in packet 206 are “S;” and C;” because

packet 206 is provided from the server 110 and is destined for the client 106. Suppose

for this example, “S;” is an address numerically less than address “C;”. A third field

“p!” 216 identifies the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are used to communicate
port numbers that are used. The conversation direction determines where the port
number field is. The diagonal pattern in field 217 is used to identify a source-port
pattern, and the hash pattern in field 218 is used to identify the destination-port pattern.

The order indicates the client-server message direction. A sixth field denoted “i1” 219 is

IR

P

an element that is being requested by the client from the server. A seventh field denoted

“sya” 220 is the service requested by the client from server 110. The following eighth

field “QA” 221 (for question mark) indicates that the client 106 wants to know what to

use to access application “sja”. A tenth field “QP” 223 is used to indicate that the client

wants the server to indicate what protocol to use for the particular application.

Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

NOAC Ex. 1017 Page 52

= R oot e N e B]

{
[

15

20

25

30

» »

44
packets, and is transmitted to the server 110 on a well-known service connection

identifier (port 111 indicating Sun RPC).

Packet 207 is the first sent in reply to the client 106 from the server. It is the

RPC Bind Lookup Reply as a result of the request packet 206.

Packet 207 includes ten fields 224-233. The destination and source addresses are

carried in fields 224 and 225, e.g., indicated “C,” and “S”, respectively. Notice the

order is now reversed, since the client-server message direction is from the server 110 to
the client 106. The protocol “pl” is used as indicated in field 226. The request “i!” is in
field 229. Values have been filled in for the application port number, e.g., in field 233

and protocol ““p2” in field 233.

The flow signature and flow states built up as a result of this exchange are now
described. When the packet monitor 300 sees the request packet 206 from the client, a
first flow signature 210 is built in the parser subsystem 301 according to the pattern and
extraction operations database 308. This signature 210 includes a destination and a
source address 240 and 241. One aspect of the invention is that the flow keys are built
consistently in a particular order no matter what the direction of conversation. Several
mechanisms may be used to achieve this. In the particular embodiment, the numerically
lower address is always placed before the numerically higher address. Such least to
highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “S,”<"“C,”, the order is address “S;”
followed by client address “C;”. The next field used to build the signature is a protocol

field 242 extracted from packet 206’s field 216, and thus is the protocol “p!”. The next
field used for the signature is field 243, which contains the destination source port
number shown as a crosshatched pattern from the field 218 of the packet 206. This
pattern will be recognized in the payload of packets to derive how this packet or
sequence of packets exists as a flow. In practice, these may be TCP port numbers, or a
combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p! that will be used to recognize this flow

(e.g., port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun
RPC Bind Lookups, are directly determinable (“known”) at the parser level. So in this

case, the signature KEY-1 points to a known application denoted “al”” (Sun RPC Bind

NOAC Ex. 1017 Page 53

AR Ay

T I AN Yy
H " VAL R

WoAR N

PN Oyt s s 4 3

15

20

25

‘\J S

45

Lookup), and a next-state that the state processor should proceed to for more complex

recognition jobs, denoted as state “stpy” is placed in the field 245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built
by the parser. This flow signature is identical to KEY-1. Hence, when the signature
enters the analyzer subsystem 303 from the parser subsystem 301, the complete flow-

entry is obtained, and in this flow-entry indicates state “stpy”. The operations for state

[

stp” in the state processor instruction database 326 instructs the state processor to build
and store a new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature
built by the state processor also includes the destination and a source addresses 250 and

251, respectively, for server “S;” followed by (the numerically higher address) client
“Cy”. A protocol field 252 defines the protocol to be used, e.g., “p?” which is obtained

from the reply packet. A field 253 contains a recognition pattern also obtained from the
reply packet. In this case, the application is Sun RPC, and field 254 indicates this
application “aZ”. A next-state field 255 defines the next state that the state processor
should proceed to for more complex recognition jobs, e.g., a state “st!”. In this particular
example, this is a final state. Thus, KEY-2 may now be used to recognize packets that
are in any way associated with the application “a2”. Two such packets 208 and 209 are
shown, one in each direction. They use the particular application service requested in the
original Bind Lookup Request, and each will be recognized because the signature KEY-2

will be built in each case.

The two flow signatures 210 and 212 always order the destination and source

address fields with server “S;” followed by client “C;”. Such values are automatically

filled in when the addresses are first created in a particular flow signature. Preferably,
large collections of flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of packets, e.g., represented
by request packet 208 and response packet 209. The client 106 sends packets 208 that

have a destination and source address S; and Cy, in a pair of fields 260 and 261. A field v

T S

262 defines the protocol as “p2”, and a field 263 defines the destination port number.

NOAC Ex. 1017 Page 54

AR R

e

-

e AL
nonnoa gt

4

[}

10

20

25

30

J D

46
Some network-server application recognition jobs are so simple that only a single
state transition has to occur to be able to pinpoint the application that produced the
packet. Others require a sequence of state transitions to occur in order to match a known

and predefined climb from state-to-state.

Thus the flow signature for the recognition of application “a2” is automatically
set up by predefining what packet-exchange sequences occur for this example when a
relatively simple Sun Microsystems Remote Procedure Call bind lookup request
instruction executes. More complicated exchanges than this may generate more than two
flow signatures and their corresponding states. Each recognition may involve setting up a
complex state transition diagram to be traversed before a “final” resting state such as

“st;” in field 255 is reached. All these are used to build the final set of flow signatures

for recognizing a particular application in the future.

The Cache Subsystem

Referring again to FIG. 11, the cache subsystem 1115 is connected to the lookup
update engine (LUE) 1107, the state processor the state processor (SP) 1108 and the flow
insertion/deletion engine (FIDE) 1110. The cache 1115 keeps a set of flow-entries of the
flow-entry database stored in memory 1123, so is coupled to memory 1123 via the
unified memory controller 1119. According to one aspect of the invention, these entries

in the cache are those likely-to-be-accessed next.

It is desirable to maximize the hit rate in a cache system. Typical prior-art cache
systems are used to expedite memory accesses to and from microprocessor systems.
Various mechanisms are available in such prior art systems to predict the lookup such
that the hit rate can be maximized. Prior art caches, for example, can use a lookahead
mechanism to predict both instruction cache lookups and data cache lookups. Such
lookahead mechanisms are not available for the packet monitoring application of cache
subsystem 1115. When a new packet enters the monitor 300, the next cache access, for
example from the LUE 1107, may be for a totally different flow than the last cache
lookup, and there is no way ahead of time of knowing what flow the next packet will

belong to.

One aspect of the present invention is a cache system that replaces a least recently

NOAC Ex. 1017 Page 55

S

L
:
g
L
3
I
5
¢
8

B I a—

10

15

20

25

30

) D,

47

used (LRU) flow-entry when a cache replacement is needed. Replacing least recently
used flow-entries is preferred because it is likely that a packet following a recent packet
will belong to the same flow. Thus, the signature of a new packet will likely match a
recently used flow record. Conversely, it is not highly likely that a packet associated with

the least recently used flow-entry will soon arrive.

Furthermore, after one of the engines that operate on flow-entries, for example
the LUE 1107, completes an operation on a flow-entry, it is likely that the same or
another engine will soon use the same flow-entry. Thus it is desirable to make sure that

recently used entries remain in the cache.

A feature of the cache system of the present invention is that most recently used
(MRU) flow-entries are kept in cache whenever possible. Since typically packets of the
same flow arrive in bursts, and since MRU flow-entries are likely to be required by
another engine in the analysis subsystem, maximizing likelihood of MRU flow-entries
remaining in cache increases the likelihood of finding flow records in the cache, thus

increasing the cache hit rate.

Yet another aspect of the present cache invention is that it includes an associative
memory using a set of content addressable memory cells (CAMs). The CAM contains an
address that in our implementation is the hash value associated with the corresponding
flow-entry in a cache memory (e.g., a data RAM) comprising memory cells. In one
embodiment, each memory cell is a page. Each CAM also includes a pointer to a cache
memory page. Thus, the CAM contents include the address and the pointer to cache
memory. As is conventional, each CAM cell includes a matching circuit having an input.
The hash is presented to the CAM’s matching circuit input, and if the hash matches the
hash in the CAM, the a match output is asserted indicating there is a hit. The CAM
pointer points to the page number (i.e., the address) in the cache memory of the flow-

entry.

Each CAM also includes a cache address input, a cache pointer input, and a cache
contents output for inputting and outputting the address part and pointer part of the
CAM.

The particular embodiment cache memory stores flow-entries in pages of one

bucket, i.e., that can store a single flow-entry. Thus, the pointer is the page number in the

NOAC Ex. 1017 Page 56

:
:
3

2wl jl e

10

15

20

25

30

. b

48
cache memory. In one version, each hash value corresponds to a bin of N flow-entries
(e.g., 4 buckets in the preferred embodiment of this version). In another implementation,
each hash value points to a single flow record, i.e., the bin and bucket sizes correspond.

For simplicity, this second implementation is assumed when describing the cache 1115.

Furthermore, as is conventional, the match output signal is provided to a
corresponding location in the cache memory so that a read or write operation may take

place with the location in the cache memory pointed to be the CAM.

One aspect of the present invention achieves a combination of associatively and
true LRU replacement policy. For this, the CAMs of cache system 1115 are organized in
what we call a CAM stack (also CAM array) in an ordering, with a top CAM and a
bottom CAM. The address and pointer output of each CAM starting from the top CAM

is connected to the address and pointer input of the next cache up to the bottom.

In our implementation, a hash is used to address the cache. The hash is input to
the CAM array, and any CAM that has an address that matches the input hash asserts its
match output indicating a hit. When there is a cache hit, the contents of the CAM that
produced the hit (including the address and pointer to cache memory) are put in the top
CAM of the stack. The CAM contents (cache address, and cache memory pointer) of the
CAMs above the CAM that produced are shifted down to fill the gap.

If there is a miss, any new flow record is put in the cache memory element
pointed to by the bottom CAM. All CAM contents above the bottom are shifted down
one, and then the new hash value and the pointer to cache memory of the new flow-entry

are put in the top-most CAM of the CAM stack.

In this manner, the CAMSs are ordered according to recentness of use, with the
least recently used cache contents pointed to by the bottom CAM and the most recently

used cache contents pointed to by the top CAM.

Furthermore, unlike a conventional CAM-based cache, there is no fixed
relationship between the address in the CAM and what element of cache memory it
points to. CAM’s relationship to a page of cache memory changes over time. For
example, at one instant, the fifth CAM in the stack can include a pointer to one particular

page of cache memory, and some time later, that same fifth CAM can point to a different

NOAC Ex. 1017 Page 57

LA B L& A

10

49

cache memory page.

In one embodiment, the CAM array includes 32 CAMs and the cache memory
includes 32 memory cells (e.g., memory pages), one page pointed to by each CAM
contents. Suppose the CAMs are numbered CAM, CAM;, ..., CAM5, respectively,

with CAM_, the top CAM in the array and CAM5 the bottom CAM.

The CAM array is controlled by a CAM controller implemented as a state
machine, and the cache memory is controlled by a cache memory controller which also is
implemented as a state machine. The need for such controllers and how to implement
them as state machines or otherwise would be clear to one skilled in the art from this
description of operation. In order not to confuse these controllers with other controllers,
for example, with the unified memory controller, the two controllers will be called the

CAM state machine and the memory state machine, respectively.

Consider as an example, that the state of the cache is that it is full. Suppose
furthermore that the contents of the CAM stack (the address and the pointer to the cache
memory) and of the cache memory at each page number address of cache memory are as

shown in the following table.

CAM Hash Cache Point Cache Addr. | Contents
CAM, hashy pageq pageg entryg
CAM; hash, page; page; entry;
CAM, hash, page, page, entry,
CAM; hash; pages pages entrys
CAM, hashy pagey pagey entryy
CAM; hashg pages pages entrys
CAMg hashg pageg pageg entryg
CAM; hash, pagey pagey entry;
CAM;q hashyg pageyg pagesg entry,g
CAM;y hashs pagesg pagesg entrysg
CAM3, hashsy; pages; pages; entrys,

This says that CAM, contains and will match with the hash value hash,, and a lookup

with hash, will produce a match and the address page, in cache memory. Furthermore,

NOAC Ex. 1017 Page S8

TEFUOR AR AR

LA L R 4 i i

10

15

20

50
pagey in cache memory contains the flow-entry, entry,, that in this notation is the flow-
entry matching hash value hashy. This table also indicates that hashg was more recently

used than hash;, hashs more recently than hash,, and so forth, with hashs the least

recently used hash value. Suppose further that the LUE 1107 obtains an entry from
unified flow key buffer 1103 with a hash value hash;,. The LUE looks up the cache

subsystem via the CAM array. CAM3 gets a hit and returns the page number of the hit,
i.e., pages. The cache subsystem now indicates to the LUE 1007 that the supplied hash
value produced a hit and provides a pointer to pages; of the cache memory which
contains the flow-entry corresponding to hashsy, i.e., flowy;. The LUE now retrieve the
flow-entry flows from the cache memory at address pages;. In the preferred

embodiment, the lookup of the cache takes only one clock cycle.

The value hashs is the most recently used hash value. Therefore, in accordance

with an aspect of the inventive cache system, the most recently used entry is put on top
of the CAM stack. Thus hashsy; is put into CAMj, (pointing to pages ;). Furthermore,
hashs is now the LRU hash value, so is moved to CAM3 . The next least recently used
hash value, hash,q is now moved to CAM3, and so forth. Thus, all CAM contents are
shifted one down after the MSU entry is put in the top CAM. In the preferred
embodiment the shifting down on CAM entries takes one clock cycle. Thus, the lookup
and the rearranging of the CAM array to maintain the ordering according to usage
recentness. The following table shows the new contents of the CAM array and the

(unchanged) contents of the cache memory.

NOAC Ex. 1017 Page 59

PSR - ppinas < ar o tum g o o e 4 e v cr ek e v s e o
o ~1\i| AR . ' ‘ "

CeloW

R HH

D D,

51

CAM Hash Cache Point Cache Addr. | Contents

CAM, hashs; pages; pageg entryg
CAM, hash pageg page; entry;
CAM, hash; page; page, entry,
CAM; hash, page, page; entrys
CAM, hashy pages pagey entry,
CAM; hash, pagey pages entrys
CAMg hashs pages pageg entryg
CAM;, hashg pageg page; entry-
CAM,g | hashyg pagesg pPageyg entryyg
CAM3, | hashy pageng pagesg entrysg
CAM3; hashsy pagesg pages; entrys;

To continue with the example, suppose that some time later, the LUE 1007 looks
up hash value hashs. This produces a hit in CAMg pointing to pages of the cache
memory. Thus, in one clock cycle, the cache subsystem 1115 provides LUE 1007 with an
indication of a hit and the pointer to the flow-entry in the cache memory. The most
recent entry is hashs, so hashs and cache memory address pageg are entered into CAM,.
The contents of the remaining CAMs are all shifted down one up to and including the
entry that contained hashs. That is, CAM;, CAMyg, ..., CAM3; remain unchanged. The
CAM array contents and unchanged cache memory contents are now as shown in the

following table.

NOAC Ex. 1017 Page 60

ey T A

RS et B) | o N o —————
" L] (4 VrIll L] ENC ST I3

fru oW

7

w A AR B

10

15

9, D

52
CAM Hash Cache Point Cache Addr. | Contents
CAM, hashs pages page, entryg
CAM,; hashs, pages; page; entry,
CAM, hashy pageg page, entry,
CAM; hash; page,; pages entrys
CAMy hash, page, pagey entry,
CAM; hash; pages pages entrys
CAMgq hashy pagey pageg entryg
CAM;, hashg pageg pagey entry
CAMyg hashyg pageog pageng entry,g
CAM3, | hashyg pageg pagesg entrysq
CAM3; | hashyg pageso pages; entrys;

Thus in the case of cache hits, the CAM array always keeps used hash values in

the order of recentness of use, with the most recently used hash value in the top CAM.

The operation of the cache subsystem when there is a cache hit will be described
by continuing the example. Suppose there is a lookup (e.g., from LUE 1107) for hash
value hash,y. The CAM array produces a miss that causes in a lookup using the hash in
the external memory. The specific operation of our specific implementation is that the
CAM state machine sends a GET message to the memory state machine that results in a
memory lookup using the hash via the unified memory controller (UMC) 1119.
However, other means of achieving a memory lookup when there is a miss in the CAM

array would be clear to those in the art.

The lookup in the flow-entry database 324 (i.e., external memory) results in a hit
or a miss. Suppose that the database 324 of flow-entries does not have an entry matching

hash value hash,z. The memory state machine indicates the miss to the CAM state

machine which then indicates the miss to the LUE 1007. Suppose, on the other hand that

there is a flow-entry—entry,3— in database 324 matching hash value hash3. In this

case, the flow-entry is brought in to be loaded into the cache.

In accordance with another aspect of the invention, the bottom CAM entry

CAMj5, always points to the LRU address in the cache memory. Thus, implementing a

true LRU replacement policy includes flushing out the LRU cache memory entry and

NOAC Ex. 1017 Page 61

RN 74_ i o S A i 1

v D

53

inserting a new entry into that LRU cache memory location pointed to by the bottom
CAM. The CAM entry also is modified to reflect the new hash value of the entry in the

pointed to cache memory element. Thus, hash value hashys is put in CAM3; and flow-
entry entry,s is placed in the cache page pointed to by CAM 31. The CAM array and

now changed cache memory contents are now

CAM Hash Cache Point Cache Addr. | Contents
CAM, hashs pages pageg entryg
CAM,; hashs pages| page; entry
CAM, hashy, pageg page, entry,
CAM; hash, page; pages entrys
CAMy hash, page, pagey entryy
CAM; hash; pages pages entrys
CAMg¢ hashy pageq pageg entryg
CAM, hashg pageg pagey entry;
CAMpyg | hashyg pageog pagezg entryyg
CAM5, hashyg pagesg pages entryys
CAM, hashys pagesg pages; entrysq

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAM5 are now moved to CAM and the entries previously in the top 30 CAMs moved

down so that once again, the bottom CAM points to the LRU cache memory page.

NOAC Ex. 1017 Page 62

o

10

D

54
CAM Hash | Cache Point Cache Addr. | Contents
CAM, hashy3 pagesp pageg entry
CAM;, hashs pages page; entry,
CAM, hashs pages; page, entry,
CAM; hash,, pageg pages entrys
CAM, hash; page; page4 entry,
CAM; hash, page, pages entrys
CAMgq hash; pages; pageg entryg
CAM, hashy page, page; entryy
hashg pageg
CAMyg Pageng entrysg
CAM3g hash,g page,g pagesg entry,s
CAM;3, hashyg pageyg pages, entrys,

Note that the inserted entry is now the MRU flow-entry. So, the contents of

CAMj;; are now moved to CAM and the entries previously in the top 30 CAMs moved

In addition to looking up entries of database 324 via the cache subsystem 1115
for retrieval of an existing flow-entry, the LUE, SP, or FIDE engines also may update the
flow-entries via the cache. As such, there may be entries in the cache that are updated
flow-entries. Until such updated entries have been written into the flow-entry database
324 in external memory, the flow-entries are called “dirty.” As is common in cache
systems, a mechanism is provided to indicate dirty entries in the cache. A dirty entry
cannot, for example, be flushed out until the corresponding entry in the database 324 has

been updated.

Suppose in the last example, that the entry in the cache was modified by the

operation. That is, hashys is in MRU CAM,, CAM, correctly points to pagesq, but the
information in pages of the cache, entry,3, does not correspond to entry,43 in database
324. That is, the contents of cache page page;q is dirty. There is now a need to update the

database 324. This is called backing up or cleaning the dirty entry.

As is common in cache systems, there is an indication provided that a cache
memory entry is dirty using a dirty flag. In the preferred embodiment, there is a dirty flag

for each word in cache memory.

NOAC Ex. 1017 Page 63

Tk

W R hA R

Rt

15

20

25

o >

55
Another aspect of the inventive cache system is cleaning cache memory contents
according to the entry most likely to be first flushed out of the cache memory. In our
LRU cache embodiment, the cleaning of the cache memory entries proceeds in the
inverse order of recentness of use. Thus, LRU pages are cleaned first consistent with the

least likelihood that these are the entries likely to be flushed first.

In our embodiment, the memory state machine, whenever it is idle, is
programmed to scan the CAM array in reverse order of recentness, i.e., starting from the
bottom of the CAM array, and look for dirty flags. Whenever a dirty flag is found, the

cache memory contents are backed up to the database 324 in external memory.

Note that once a page of cache memory is cleaned, it is kept in the cache in case
it is still needed. The page is only flushed when more cache memory pages are needed.
The corresponding CAM also is not changed until a new cache memory page is needed.
In this way, efficient lookups of all cache memory contents, including clean entries are
still possible. Furthermore, whenever a cache memory entry is flushed, a check is first
made to ensure the entry is clean. If the entry is dirty, it is backed up prior to flushing the
entry.

The cache subsystem [115 can service two read transfers at one time. If there are

more than two read requests active at one time the Cache services them in a particular

order as follows:

(1) LRU dirty write back. The cache writes back the least recently used cache
memory entry if it is dirty so that there will always be a space for the fetching

of cache misses.
(2) Lookup and update engine 1107.
(3) State processor 1108.
(4) Flow insertion and deletion engine 1110.
(5) Analyzer host interface and control 1118.

(6) Dirty write back from LRU ~1 to MRU; when there is nothing else pending,

the cache engine writes dirty entries back to external memory.

FIG. 19 shows the cache memory component 1900 of the cache subsystem 1115.

NOAC Ex. 1017 Page 64

[—

Rl Ra¥ad

&

M

IV Y IV BV

10

15

20

25

J D

56
Cache memory subsystem 1900 includes a bank 1903 of dual ported memories for the
pages of cache memory. In our preferred embodiment there are 32 pages. Each page of
memory is dual ported. That is, it includes two sets of input ports each having address
and data inputs, and two sets of output ports, one set of input and output ports are
coupled to the unified memory controller (UMC) 1119 for writing to and reading from
the cache memory from and into the external memory used for the flow-entry database
324. Which of the output lines 1909 is coupled to UMC 1119 is selected by a
multiplexor 1911 using a cache page select signal 1913 from CAM memory subsystem
part of cache system1115. Updating cache memory from the database 324 uses a cache

data signal 1917 from the UMC and a cache address signal 1915.

Looking up and updating data from and to the cache memory from the
lookup/update engine (LUE) 1107, state processor (SP) 1108 or flow insertion/deletion
engine (FIDE) 1110 uses the other input and output ports of the cache memory pages
1903. A bank of input selection multiplexors 1905 and a set of output selector
multiplexors 1907 respectively select the input and output engine using a set of selection

signals 1919.

FIG. 20 shows the cache CAM state machine 2001 coupled to the CAM array
2005 and to the memory state machine 2003, together with some of the signals that pass
between these elements. The signal names are self-explanatory, and how to implement
these controllers as state machines or otherwise would be clear from the description

herein above.

While the above description of operation of the CAM array is sufficient for one
skilled in the art to design such a CAM array, and many such designs are possible, FIG.
21 shows one such design. Referring to that figure, the CAM array 2005 comprises one
CAM, e.g., CAM[7] (2107), per page of CAM memory. The lookup port or update port
depend which of the LUE, SP or FIDE are accessing the cache subsystem. The input data
for a lookup is typically the hash, and shown as REF-DATA 2103. Loading, updating or
evicting the cache is achieved using the signal 2105 that both selects the CAM input data
using a select multiplexor 2109, such data being the hit page or the LRU page (the
bottom CAM in according to an aspect of the invention). Any loading is done via a 5 to

32 decoder 2111. The results of the CAM lookup for all the CAMs in the array is

NOAC Ex. 1017 Page 65

U W

n By R L

10

) D

57
provided to a 32-5 low to high 32 to 5 encoder 2113 that outputs the hit 2115, and which
CAM number 2117 produced the hit. The CAM hit page 2119 is an output of a MUX
2121 that has the CAM data of each CAM as input and an output selected by the signal
2117 of the CAM that produced the hit. Maintenance of dirty entries is carried out
similarly from the update port that coupled to the CAM state machine 2001. A MUX
2123 has all CAMs’ data input and a scan input 2127. The MUX 2123 produces the dirty
data 2125.

Although the present invention has been described in terms of the presently
preferred embodiments, it is to be understood that the disclosure is not to be interpreted
as limiting. Various alterations and modifications will no doubt become apparent to
those of ordinary skill in the art after having read the above disclosure. Accordingly, it is
intended that the claims be interpreted as covering all alterations and modifications as

fall within the true spirit and scope of the present invention.

NOAC Ex. 1017 Page 66

58

CLAIMS

What is claimed is:

’ ,"/ . .
,,y% % [1. A packet monitor for examining packets passing through a connection point on a
i .

computer network, each packets conforming to one or m(/;(re protocols, the monitor
5

comprising: /
/

(a) a packet acquisition device coupled to the cqnnection point and

configured to receive packets passing throughfthe connection point;

(b) a memory for storing a database comprising none or more flow-entries for

previously encountered conversational flows to which a received packet may

nnownu

10 belong;

(©) a cache subsystem coupled to the flowfentry database memory providing

o 4R

N

. for fast access of flow-entries from the flow-entry database; and

(d) a lookup engine coupled to the pacltet acquisition device and to the cache

bk T

subsystem and configured to lookup whether a received packet belongs to a

15 flow-entry in the flow-entry databasg, the looking up being in the cache

w VK BH B4

subsystem.
2. A packet monitor according to claim /1, further comprising:

a parser subsystem coupled fo the packet acquisition device and to the
lookup engine such that the agquisition device is coupled to the lookup
20 engine via the parser subsysfem, the parser subsystem configured to extract

identifying information frgm a received packet,

wherein each flow-entry is idengified by identifying information stored in the flow-
entry, and wherein the cache lpokup uses a function of the extracted identifying

information.

25 3. A packet monitor according to claim 2, wherein the cache subsystem is an
associative cache subsyste,

cells (CAMs).

including one or more content addressable memory

4. A packet monitor acA\ording to claim 2, wherein the cache subsystem includes:

NOAC Ex. 1017 Page 67

R R R TN S TRt

PRI NN

Y

R

wo ol W

10

15

20

9)

e

59

@) a set of cache memory elements coupled/to the flow-entry database
memory, each cache memory element inclpding an input port to input an

flow-entry and configured to store a ﬂow/-entry of the flow-entry database;

(i1) a set of content addressable memoZ{/c‘ells (CAMs) connected according to

an order of connections from a top C to a bottom CAM, each CAM

containing an address and a pointer tof one of the cache memory elements,

and including:

a matching circuit having an input such that the CAM asserts a
match output when the inplit is the same as the address in the CAM

cell, an asserted match output indicating a hit,
a CAM input configyred to accept an address and a pointer, and
a CAM address output and a CAM pointer output;
(iii) a CAM controller coupled to the CAM set; and

(iv) amemory controller coupled to the CAM controller, to the cache memory

set, and to the flow-entry

wherein the matching circuit inppits of the CAM cells are coupled to the lookup
engine such that that an input tof the matching circuit inputs produces a match output

in any CAM cell that contains an address equal to the input, and

wherein the CAM controller js configured such that which cache memory element a

particular CAM points to changes over time.

A packet monitor accorgling to claim 4, wherein the CAM controller is
configured such that the Yottom CAM points to the least recently used cache

memory element.

NOAC Ex. 1017 Page 68

10

15

20

25

6.

3)

60

2
A packet monitor according to claim 5, wherein the address and pointer output of

each CAM starting from the top CAM is coupled to the address and pointer input of

the next CAM, the final next CAM being the bottom CAM, and wherein the CAM
controller is configured such than whefi there is a cache hit, the address and pointer
contents of the CAM that produced the hit are put in the top CAM of the stack, the
address and pointer contents of the CAMs above the CAM that produced the

asserted match output age/ shifted down, such that the CAMs are ordered according
to recentness of use/with the least recently used cache memory element pointed to

by the bottom (}A(M and the most recently used cache memory element pointed to
by the top Cf).M.

A cache system for looking up one or more elements of #n external memory,

comprising:

(a) a set of cache memory elements coupled to the external memory, each
cache memory element including an input porf to input an element of the

external memory and configured to store the/input external memory element;

(b) a set of content addressable memory c¢lls (CAMs) connected according to
an order of connections from a top C to a bottom CAM, each CAM
containing an address and a pointer tefone of the cache memory elements,

and including

. . //
(1) amatching circuit having ut-such that the CAM asserts a match

output when the input is the/same as the address in the CAM cell, an

asserted match output indicating a hit,
(i1) a CAM input confjgured to accept an address and a pointer, and
(1i1) a CAM address putput and a CAM pointer output, and
(©) a CAM controller coypled to the CAM set;

(d) a memory controllef coupled to the CAM controller, to the cache memory

set, and to the external memory,

NOAC Ex. 1017 Page 69

10

15

20

25

10.

I1.

12.

J D

61

wherein the matching circuit inputs of the CAM cells/are coupled such that that an

input to the matching circuit inputs produces a matcH output in any CAM cell that

contains an address equal to the input, and

wherein the CAM controller is configured such that which cache memory element a

particular CAM points to changes over time.

A cache system according to claim 7, whereinf the CAM controller is configured
such that the bottom CAM points to the least re¢ently used cache memory element,
and wherein the CAM controller is configured fo implement a least recently used
replacement policy such that least recently usefl cache memory element is the first

memory element flushed.

A cache system according to claim 8, whefein the address and pointer output of
each CAM starting from the top CAM is coyipled to the address and pointer input of
the next CAM, the final next CAM being the bottom CAM, and wherein the CAM
controller is configured such than when thefte is a cache hit, the address and pointer
contents of the CAM that produced the Aif are puf in the top CAM of the stack, the
address and pointer contents of the CAMSs\above the CAM that produced the
asserted match output are shifted down/such that the CAMs are ordered according
to recentness of use, with the least recgntly used cache memory element pointed to
by the bottom CAM and the most recgntly used cache memory element pointed to

by the top CAM.

A cache system according to clatm 9, wherein the CAM controller is configured
such that replacing any cache merfory elements occurs according to the inverse
order of recentness of use, with the least recently used entry being the first flushed

cache memory entry.

A cache system according to claim 7, wherein each memory element is a page of

memory.

A cache system according to claim 7, wherein each cache memory element is
provided with an indication of whether or not it is dirty, and wherein the CAM
controller is configured t¢ clean any dirty cache memory elements by backing up the

dirty contents into the external memory.

NOAC Ex. 1017 Page 70

13.
14.

| 5
15.

: 10
B 16.
. 17.

) 15
18.

%

20 19,

25

62

A cache system according to claim 12, wherein the contents of any cache
memory element are maintained after cleaning unti} such cache contents need to be

replaced according to the LRU replacement policy.

A cache system according to claim 8, whereiny each cache memory element is
provided with an indication of whether or not it/is dirty, and wherein the CAM
controller is configured to clean any dirty cachg memory elements by backing up the

dirty contents into the external memory.

A cache system according to claim 14, wherein the CAM controller is further
configured to clean any dirty cache memory glements prior to replacing the cache

memory element contents.

A cache system according to claim 15, wherein the CAM controller is further
configured to clean any dirty cache memogy elements prior to replacing the cache

memory element contents.

A cache system according to claim 9/ wherein each cache memory element is

provided with an indication of whet not/i{/is dirty, and wherein the CAM
controller is configured to clean dirty ¢ache memory elements by backing up the

dirty contents into the external memoty in reverse order of recentness of use.

A cache system according to claimi 17, wherein said cleaning in reverse order of

recentness of use automatically progeeds whenever the cache controller is idle.

A cache system for looking up gne or more elements of an external memory,

comprising:

(a) a set of cache memory/elements coupled to the external memory, each
cache memory element including an input port to input an element of the
external memory and cgnfigured to store the input external memory element;

and

)} a set of content addressable memory cells (CAMs) containing an address

and a pointer to one of the cache memory elements, and including a
matching circuit having an input such that the CAM asserts a match output

when the input is the same as the address in the CAM cell,

NOAC Ex. 1017 Page 71

n o

PR

R T

T 08 T

ORI IR

J D

63

wherein which cache memory element a particular CAM points to changes over

time.

20. A cache system according fgtclaim 19, wherein the CAMs are connected in an
order from top to bottom, 9.n/d wherein the bottom CAM points to the least recently

used cache memory elendent.

il #
/

/

NOAC Ex. 1017 Page 72

R TR B0 A LI O IR T

RO LRI TN

i

IR COTI (

10

64

ABSTRACT

ncludes
A cache system for looking up one or more elements of an external MEMOry,SOMPHSHAE

a set of cache memory elements coupled to the external memory, a set of content
addressable memory cells (CAMs) containing an address and a pointer to one of the
cache memory elements, and»i%elﬁéi-ng a matching circuit having an input such that the
CAM asserts a match output Whep the input is the same as the address in the CAM cell.
W’Q'g%\cache memory elemen\tia ‘;articular CAM points to changes over time. In the

preferred implementation, the CAMs are connected in an order from top to bottom, and

the bottom CAM points to the least recently used cache memory element.

A\ NOAC Ex. 1017 Page 73

T ST PRINT OF DRAWINGS
! ASORIGINALLY
' s 4
340\399
\U‘})
e 1/21
| 100

CLIENT 4

ol
9

ANALYZER

SERVER 2
Mo

121

4

CLIENT 3

DATA COMMUNICATIONS
NETWORK

R)

I TR T I

- 102
b 125
118
SERVER 2 105 e
™ CLIENT 2 |/ CLIENT 1~
112 104

FIG. 1

@ NOAC Ex. 1017 Page 74

|
| H3ZAIWNY |
| NOILYEIdO |
ONSS3I00Hd
| 31vLS I HIAVT olLdIns3a
I _ WYHOYLYQ 1020104d
A
|) |
| ON 8zt |
| g92¢ | ‘ gee
| I HAZIWILLO
I 3svaviva ! — UnNv
) ve WOZ NOILDNHLSNI | H311dINOO
| HOSS300Hd I
31VLS — oig
I | NOwvZITYNId eee * [7
1 [T NLvoIdIssY 1D _
_ re
— _ e e o o] - — - — — — _
(4] | S3A
=~ |
™, ocoMmm | _ 3svavlva [
NOILYDIJiLNIQl | NOILOVH X3 80¢
| NMONY g J1VLS ¥ | | any NS Eh
| MO, 10001044 | PSHVd ‘NH3Llvd _
| 31vadn | |
gee gre—~~" [_ |
L F———— | |
|11||“ _ | _
n m. Y e e e _ 4 l
M A | e R T r zie !
x> _ yeeaa) | | ! /[_ |
3 m SMOT4 40 ! Squoosd| 1 | A3 MO (13) zo_F«ﬂ\mMEz* _
; N NM M "
a m‘ 3svawiva | | 1 3RO noua feHidivstannoot] e e NE3 L 1vd E
°2 _ dnoo1 | | H[3noinnatina 3ZIND0D3Y | |
= [[10vH1X3 aNV FZATYNY
35 ¢ g | [—g08 - _
&3 v2g e e e 3l vog

! F IR TN I S U I T I [

NOAC Ex. 1017 Page 75

AT TRV .

|
| €0¢ y |
| HIZAIWNY I
_ ENOILYHILO |
HNSSIO0HJ
_ ETRAES I HIAV] OlLdiOs3a
I I WVYHOVYLYA 700010Hd
A
! mNWU !
| ON I
I 9ze I
| | H3ZIWILHO
< aNv
| 3svaviva !
| V€ §—oN NOILONHLSNI _ H31IdNOO
| HOSS3I0O0Hd I
31VLS ole
I NOILYZITYNI [42> 4 I Y
i [| NLvoidissvio I
— | r S [
& v ! ! _
™ ! | 3svaviva _
ayoo3y NOILYDI4ILNIal | NOILOVH1X3 80g|
I NMONM JIVIS 3 | ! anv ~J
I m%mo,_%m 1000104d | | BSHVd ‘NHILlvd |
I 22 glLe—" 4 | | |
L — L _ r—_—-—-——- | |
_ | _
n m. - - J |
Q | r~ |
4 Y JHOVO VIA I FAR
z > vee ga) I \; . I
SAHOo3y I _ (Hvd)
3 [113) [
g 5l SMOTI4 0 NMONM | 4 | ABEMOTEL | [ool] INOLLYWHOSNI
= 8 3SVavLYQ WO [« NOLLYSHIANOOH—| WOV IO L ¥ 3 g
° m_ danxood | ! VanoiNn ating OvHLX3 3ZINDOO3H |
) \ e | | oo aNv 3ZATYNY] | 20€
m) vee e - - L o J 1 C— voe

\ R TN TR nUE i

NOAC Ex. 1017 Page 76

[T

foby

(R

U S)

PRINT OF DRAWINGS
AS QRIGINALLY D
e — T T rr— bt

3404

GENERATE
PACKET
PARSE AND
EXTRACT
OPERATIONS

4/21

401

402
HIGH LEVEL
PACKET
DECODING
ESCRIPTION

COMPILE

AND
EXTRACTION

C o

ESCRIPTIONS > INSTRUCTIONS

405

GENERATE
PACKET
STATE

AND
OPERATIONS

407

STATE
PROCESSOR
INSTRUCTION

DATABASE C 408 409) DATABASE
LOAD LOAD STATE
,| PARSING NSTRUCTION
»1SUBSYSTEM DATABASE
MEMORY MEMORY

400

:410

FIG. 4

NOAC Ex. 1017 Page 77
——————EEEEEEEEEEE

YRR

I

1l

Wl

L A A

Qarki

PRINT OF DRAWINGS
AS ORIGINALLY D

5/21

INPUT PACK%

503 LOAD PACK
% COMPONEN:\“"’T

3

FETCH NODE A
PROCESS FROM
|__PATTERNS

506

PROCESS TO
COMPONENT

510 509

‘ \¥
PATTERN
NODE

NOAC Ex. 1017 Page 78

[T

i

KR

Lor

PRINT OF DRAWINGS
ASORIGINALLY tp

6/21

601

PACKET 602
COMPONENT AND
E

PATTERN NOD

603 i

LOAD PACKET

COMPONENT - —I

LOAD KEY
BUFFER

PATTERNS

FETCH EXTRACTION
AND PROCESS FROM 605

NO
606
ELEMENTS?

611

NEXT
N PACKET 609
COMPONEN

4

607 2’ APPLY EXTRAC

COMPONEN

MORE TO

TION
PROCESS TO
T \

EXTRACT?

600
608

FIG. 6

YES—

NOAC Ex. 1017 Page 79

» Canti.
' : PRLNT OF DRAWING
ASORIGINALLY £p

R

i

I

ol

b g

703

704

LOAD PATTERN
NODE ELEMENT

708

OUTPUT TO,
ANALYZER

MORE PATTERN
NODES?

YES

Y
HASH KEY BUFFER
ELEMENT FROM N 705

PATTERN NODE

709

4

J’\{PACK KEY & HAﬂ
706 \

v

NEXT PACKET
COMPONENT
707

FIG. 7

700

NOAC Ex. 1017 Page 80

HE T RO AR R TR

il

i1}

|

LR |

Qaelsi-

PRINT OF DRAWINGS
AS ORIGINALLY <p

8/21
801

UFKB ENTRY FOR 802
PACKET

4

COMPUTE CONVERSATION

RECORD BIN FROM HASH |/ 803

4

Q 809

REQUEST RECORD BIN/
BUCKET FROM CACHE

ORE BUCKET.
IN THE BIN?

COMPARE CURRENT BIN = 807
AND BUCKET RECORD KEY
TO PACKET

NEXT BUCKET [«-NO @ 808

YES

MARK RECORD BIN AND
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

4

SET UFKB FOR PACKET
AS ‘FOUND'

\ 4

UPDATE STATISTICS FOR

f‘810

e 804

5 806

SET UFKB FOR
PACKET AS 'NEW!

RECORD IN CACHE

8‘3x(l) FIG. 8

NOAC Ex. 1017 Page 81

e

IR

i

BN

NN

I

Qarlr

PRINT OF DRAW |
AS ORIGIVALLY F_:p

901

PORTMAPPER

903 ‘\

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION!, PORT* AND
'PROTOCOL (TCP OR
UDP)

904 \

]

CREATE SERVER STATE

SAVE 'PROGRAM!,
"VERSION', ‘PORT' AND
'PROTOCOL (TCP OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

LOOKUP REQUEST EXTRACT
PROGRAM
/ FIND ‘PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF '‘PROTOCOL (TCP
SOURCE NETWORK OR UDPY'.
ADDRESS.

9/21

RPC

REQUEST

i 909

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND
‘PROTOCOL (TCP OR
UDP)

908
: SAVE REQUEST

SAVE 'PROGRAM:,
'VERSION' AND
'PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

907

/" 905 906 W

S

FIG. 9

NOAC Ex. 1017 Page 82

Carliaat

A e

il

H

IR

N

1021:]
PACKET

START /| INPUT BUFFER
INTERFACE

PRINT OF DRAWINGS
ASORIGINALLY gp

1000 —y 10/21

100

PATTERN
RECOGNITION
DATABASE

EXTRACTION
OPERATIONS
DATABASE

MEMORY
100 1031
Er\ 1004
INFOIOUT,
HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRLIN
. 1031
1006 PATTERN 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)
1008 1013
. PARSER
PACKET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD
MEMORY
1012

1010

1011 ANALYZER DATA READ

INTERFACE
CONTROL

CONTROL

ANALYZER
READY

1023 FIG 10 1027

NOAC Ex. 1017 Page 83

g

[

iy

W

Qavliar
PRINT OF DRAWINGS
ASORIGINALLY' “p

S11O1 1103

PARSER 1\

INTER-
FACE

LOOKUP/
UPDATE
ENGINE

DATABASE

PROCESSR

DELETION
ENGINE
(FIDE)

UNIFIED
MEMORY
CONTROL
(UMC)

1119 112j‘Z

MEMORY
INTER-
FACE

NOAC Ex. 1017 Page 84

hoali.

I R

vy

P

o

PRINT OF DRAWINGS
AS ORIGINALLY "D

N

1200 —y

12/21

1201

1206-f

REQUEST NEXT
BUCKET FROM
CACHE

1208

SET UFKB FOR
PACKET AS
‘DROP'

1212 ['SET INITIAL STATISTICS

A
ACCESS

RECORD BIN

'

REQUEST RECORD BIN/

<BIN/BUCKET EMPTY

IN BUCKET, MARK 'USED
WITH TIMESTAMP

v

AND BUCKET RECORD
KEY TO PACKET

MARK RECORD BIN AND
BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

h 4

FOR RECORD IN CACHE

6/1213

FIG. 12

NOAC EX 1017 DaCC 8 ey

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW!'

CONVERSATION f1 203

.
BUCKET FROM CACHE |/~ 124

INSERT KEY AND HASH | /~ 1207

OMPARE CURRENT BIN—1209

L/—1211

[

Gdhwe v

' ‘J‘\ ' l‘ [N

il

[

Yo

Chevlsi

PRINT OF DRAWINGS

S ORGRALLY "

13/21

@\/1301

1309

1300 —y UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND' 1302
v
SET STATE PROCESSOR
INSTRUCTION POINTER TO
VALUE FOUND IN UFKB ENTRY
FETCH INSTRUCTION FROM
> STATE PROCESSOR
INSTRUCTION MEMORY
A4
PERFORM OPERATION BASED
ON THE STATE INSTRUCTION
SET STATE
PROCESSOR
INSTRUCTION DONE PROCESSING
POINTER TO STATES FOR THIS
VALUE FOUND IN PACKET?
CURRENT STATE
1308
1310
SAVE STATE
PROCESSOR
INSTRUCTION | _NO DONE PROCESSING
POINTERIN | TATES FOR THIS FLOW?2
CURRENT FLOW
RECORD

v
SET AND SAVE FLOW REMOVAL]
STATE PROCESSOR
INSTRUCTION iN CURRENT

FLOW RECORD

> 1313

FIG. 13

NOAC Ex. 1017 Page 86

140

Bl e

R R BT

R

DATABASE
OF FLOWS

4

UPDATE
"FLOW"
KNOWN

RECORD

3

1404 —> 1406 — 14127 Lro1a14—_ 1418
ANALYZE AND EXTRACT i1 | LOOKUP
RECOGNIZE | | IDENTIFYING ||, BULD_ 1, | KNOWN
PATTERN INFO & PROCL FLOW" KEY[™™ RECORDS
INFORMATION ISTATE Il [(DB 1424)
1
nEEEE J
l |
| |
| |
PATTERN o
STRX%URES o CLASSIFICATION
EXTRACTION []
OPERATIONS o
|
(o 1!
PARSER 1408 b)
SUBSYSEM _ _ _ _ _ _ _ b STATE
| MACHINE
| SELECTOR
1400 : 1426J
: YES
FIG. 14 el
=
| STATE
| ANALYSIS | | T
| DPERATIONS (=
|

v

CLASSIFICATN
FINALIZATION

4

NO—

Ci434

ANALYZER
SUBSYSTEM

1422

- .- - -—-=--- - - - - - =-=- -7 1

|
!
|
I
|
|
|
|
|
I
I
|
I
!
|
!
|
I
I
[
|
I
I
I
I
!
|
]
|
|

NOAC Ex. 1017 Page 87

LS/l

_JATIVNIOTHO §v
SONTMVHQ 30 INTHd .

al

Sl Ol

v

15/21

5 ORIGINALLY 7~ 5p

AS ORIGIN

* PRINT OF DRAWINGS

h S13M0vd
aa
9 QHvO 1
Nalle IDV4HILNI 01
MHOMLIN
A
8051 OBFM
| o 1ZL
HOLINOW
AHOWIN LHOSS3IO0Hd
1SoH [T 1SOH
J p 30IA3Q
9061 pOS1L < NOILISINDO Y«
TAHOWIN) 13M0vd
SMOT4
mm,mwzo " e 10€ c0s} J
HIZATYNY H3SHvd
vmmp

LU L P O T A I yopk, T T

NOAC Ex. 1017 Page 88

[N

ko

R T

PRINT OF DRAW N

AS ORIGINALLY\ 2D Ny
16/21
1602 0 - 3Bytes
A&— 1600
i Dst MAC
offset 0 - 11 |- Dst MAC | Src MAC _//1604
Src MAC N

/_,_,_> e 1606
1608 j/
Dst MAC (6)

[Dst Hash (2] 1610

1612 Src MAC (8)

\ Src Hash (2

1614

et=12
FIG. 16

NOAC Ex 1017 Page 29

" Carkic

PRINT OF DRAWINGS
As_wcﬂ!;ug{iv

17/21
1702
1704

\
ST e TR

-
X 1706

1708\ Type (2)
Hash (1
1710 ash {1) ¥— 1700

\[L3 Offpet = 14

FIG.17A

-
1712

=
iDP = 0x080G*
iP = 0x0800™
CHAOSNET = 0x0804
ARP = 0x0806
VIP = 0x0OBAD*

VLOOP = Ox0BAE
VECHO = OxOBAF
NETBIOS-3COM = 0x3C00 -
0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5
SNA-TH = 0x80D5*
ATALKARP = 0x80F3
IPX = 0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD*
LOOPBACK = 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

i TR 8 e]
L3to | {////emier//// a4V [FrAd Offs6Y ICMP = 1
(5o [T Potocol e
1] Src Address TCP f 6*
D.stAddress ' 1532 ;S
/1] [D0tiots B Fraddind////]///]]] fUR =12
XY uoe 37
¥— 1750 ISO-TP4 = 29#
Dst Address] lSl())[-)lg ;%
Dst Hash (2)r VIP =83#
Src Address E(l)%};;}: ;gg

Src Hash (2)[

L3 Re-Decoding

[Protodol (1) FIG. 17B 413 R Draos

et = L3 + (IHL/4)

NOAC Ex. 1017 Page 90

[a e

D

PRINT OF DRAWINGS
AS QRIGINALLY
e T I T wrne—

18/21

PROTOCOL

/Mﬁ\\\\\\\\\

1870
NOAC Ex. 1017 Page 91

2| [TITTITT1
S\ L

ai3id 40

3d0D 31A8

FIG. 18A
FIG. 18B

A—1850

J_OOO._.Om.n_

HLON37 1314

19/21

D

ALLY

T r—

PRINT OF DRAWINGS
AS ORIGIN

6161
// H
Vlva>2
—I13S3a13™] "
—735dS > SaXNW 10373 LNd1NO Vivarg
=6l —1383N1> <F<ov~«4m
m
13S39vdvD
L‘ SQK
<
< C .
VIVa-OWN-vO| X[© BN
o . , 6061
\\ 91nho vINO . e . g1ho v N0 g1mo v 1Lho
:mT\ 6061 viya viya viba Viva VNG Vira
> LNO-te-39vd 1N0-0-39vd
S3HOULS 3L1dMm mzoﬂw (2€) S39Vd Wvd 1HOd TvNd
—> NI-1E-3Ovd NI-0-39Vd
Gl6l €061 423 IS . . . X 3 X 4 ' S I W
U[mwmmoo<-<o > vivd jHaav
— VAVA-Y2-0-DNN—> o
tmﬁ\ vlva Haav Ammw o
—73S3d14™
—13SdS >) SAXNI LD3713S LNdNI m&mmﬁ
—13S3n7+ Haay n
Viva—

006} \
6161
5061

L BUE g

NOAC Ex. 1017 Page 92

R A

N

PRINT OF DRAWINGS
AS ORIGINALLY -p
T e,

20/21

/ 2001 2005

L——LUEMEMREO—»
~—SETLUEREADY —
——SETLUESEL—]

| | LUE PORT

- FIDEMEMREQ-»]
<~ SETFIDEREADY —
| «— SETFIDESEL—

[N

CACHE_CAM_SM

FSEL_LUE_FIDE-»
e——CAM_HIT—-

|«—CAM_HITPAGE —-

<CAM_LRUPAGE —

CAM_ARRAY

——LOAD_CAM—»

—REFRESH_CAM-—p|

[FIDE PORT

GET BACKUP GOT

|1

|

l L/ 2003

CACHE MEM

3 SIGNALS

CACHE PORT

|

CACHE_MEM_SM

——SEL_CACHE —»

———~CA-MEM-REQ—J
——CA-MEM-WRITE—»|

UumcC

-UMC-O-CA-NEXTADBH

+——UMC-O-CA-READY—

FIG. 20

NOAC Ex. 1017 Page 93

b

[l AH

PRINT OF DRAWI
AS ORIGINALLY, :p
- — N ————

21/21
| CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
- K v, —2109
LOAD, REFRESH, EVICT _ "7 _REF-DATA
\2105 v 2111 | 2103
CAM_INPUTDATA 2113
Y Y
—LOADO->{ CAM[0] FMATGHO + /
pATAd L
—LOAD1-»| CAM[1] FMATCH1 »
DATAZ] L
—LOAD2-{ CAM[2] F-MATCH2 »
—LOAD3-»| CAM[3] FMATCH3 »
ig —LOAD4-»{ CAM4] [FMATCHA > - o o115
o : . T
w 570 32 {—LOAD5»{ | CAM[5] FMATCH5 » | ow O
*_
o - 10 lcam | &
o DECOD {—LOAD6-»| CAM[6] FMATCHB »| HIGH T 2
I 0
ENCOD C
—LOAD7-»| CAM[7] FMATCH7 »
. 2107
—LOAD30%| CAM[30] FMATCH30
—LOAD31»] CAM[31] FMATCH31»
. DATA3
CAM_LRUPAGE
CAM—NIUMBER - CAM| NUMBER
[[| |
2127 DATAO| | « « « DATA31 DATAQ| | * + « DATA31
v v Y Y
> NMuxs2 2123 F NMUX32 &
{} 2121 &
[DIRTYENTRY | |[CURRENT ENTRY| o117
| 1 —
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET = CAM_HITPAGE
\ \J
FIG. 21

NOAC Ex. 1017 Page 94

AN Y

PRINT OF DRAWINGS

AS OFLGINALLY/” |p T
~(_ W,
1/21
100 A 108
CLIENT 4 |
S ANALYZER
107
116
_/
CLIENT 3 SERVER 2
] \1 10
106 121
DATA COMMUNICATIONS
NETWORK
102
125
118
SERVER 105 —
™ CLIENT 2 CLIENT 1
12 ﬁ104

FIG. 1

NOAC Ex. 1017 Page 95

LT N (O

nhn [N T

e h

(214 (215 216 217,218 219 200,221,222 223 -
1 S11 Cq p! i |sa] galsh| QP o——— %
......... (206 (224 (225 226 227228,229 230231232 233 ?‘
e d Ci1 1 S p1 il |sh H s1p p2 2
219\ 2402%41 242 243 244 245
- T X ;
KEY-1Y S | C 1 b ~» a t Y
202 (106 L B @ D 20 —
21 \S)
(=] ‘S
(250 (251 (252 Q2\53 @54 (255 =5 N
KEY-2) Sq | Cy | p2 ||| 4=~ - a2 stq S T
L "2_jn00ooug}_
A
! CLIENT 3 SERV
: (260 (261 262 263 264 (265 APPLICATION $ERVER 2
s 7 ‘
N1} 841 Gy | p? l t datum request o————iﬁ
S TJ Czoe (270 271 272 273 274 275 }r
‘ ——— Ci 1 G4 p2 ’ datum reply No ' FlG 2
j N C L/ L '
209
NOAC Ex. 1017 Page 96

JATIVRIZTAO §v
SONIMVAG 30 1NTHd

—

al

30¢€
HIZATYNY

A

SNOILYH3dO
HNSS3IO0Hd
J1IViS

4

)

NOAC Ex. 1017 Page 97

|
|
|
|
l
|
_ 82t
] ON
| 9ze
I HIZINILJO
« v
| 3SVY8vIva anN
C | gmN —ON NOILONYLSNI HITINOD
P | HOSS3I00Yd
31VLS
I | NoivzIvNI- cee * ‘
i [NLvoIdissY 10
P—-—
- | B
Ql S3A I
Ny ¥ !
Sl | | 3svaviva
a"ooay NOILYDILILNIal | NOILOVHLX3 808
I NMONM <-on A1VLS ¥ | _ anvy ~JS
| MO, 1000104d | 3SHYd ‘NY3LLlvd
31vadn !
I 2ge gle—" b | |
. ———
L . _]
]
q | S)
Mt\, r “ 3HOVD VIA _ _7 zie
3> | veeaa) | [!
! sadoo3y| | | . (Hvd)
b SMOT4 40 (113)
2 _ 0 | £ AHODIY NMONM | | || A3X.MOTd, NOLLYWHO4NI | |NOLLYWHOAN!
o 3svaviva MOT4. MAN WOHA [+ NOLLYSHIANOOR—' 2 IR NY3LLvd
oL ! dmoot | 1 Y 1EnoiNn aling 3ZINDOO3Y
=~ m_ —91€ 10vd1Xx3
7 G N I e | | T ANV IZATYNY
i | T 308 — voe
a vee -lllllllll.«fll\v_smmmmmé
oce T - - - T T T T T T oo o= -

H

LI L S T S N T

Coatiion:

S uy b g

fi

PRINT OF DRAWINGS

AS ORIG M{jm

g 404

GENERATE
PACKET
PARSE AND

4/21

401

402
HIGH LEVEL
PACKET
DECODING
DESCRIPTION

405

"GENERATE
PACKET
COMPILE STATE

EXTRACT
OPERATIONS

DESCRIPTIONS > INSTRUCTIONS

AND
o

OPERATIONS

407

406 RATTERN, PARS STATE
AND PROCESSOR
EXTRACTION INSTRUCTION
DATABASE <:~408 409-:> DATABASE
LOAD LOAD STATE
.| PARSING NSTRUCTION
”1SUBSYSTEM DATABASE
MEMORY MEMORY
k\woo
e
410

FIG. 4

NOAC Ex. 1017 Page 98

Qarkie T
PRINT OF DRAWINGS

A&Q&Q@A&g(:;m i
N N

5/21

/INPUT PACKEW 502

y

503 1 LOAD PACKET

COMPONENT [*
512

. BUILD
. 504 PACKET
) KEY
= FETCH NODE ANO
- » PROCESS FROM)

PATTERNS 505
: 513
g NEXT

PACKET /Z

z 506 COMPONENTC 544

A

APPLY NODE AND
(| PROCESSTO
507 COMPONENT

500

510—\J

EXTRACT
509 S ELEMENTS

FIG. 5

NOAC Ex. 1017 Page 99

~ -

PRINT OF DRAW{ O

5, ;
AS ORIGIVALLY ¥, ' .y
| 6/21
E
, 601
PACKET 602
COMPONENT AND
PATTERN NODE
603 .

5| LOAD PACKET

COMPONENT -

604

LOAD KEY
BUFFER

FETCH EXTRACTION
AND PROCESS FROM/&
PATTERNS 605

z NO
- 606 NEXT
ORE EXTRACTION~ _NOpl PACKET 609
ELEMENTS? COMPONENT
A
5072/ APPLY EXTRACTION
PROCESS TO
COMPONENT \

600

MORE TO 608

EXTRACT?

YES—

FIG. 6

NOAC Ex. 1017 Page 100

Cmuliia

PRINT OF DRAWINGS -

AS ORIGINALLY, = g
ﬁ’ﬁs——&’f—‘n \\/

N

)
—h,

701

EY BUFFER AND 702
PATTERN NODE

4
LOAD PATTERN

703 <
__~1 NODE ELEMENT 208 w

Py

q.r

4

MORE PATTERN
NODES?

YES @
N h 4

) HASH KEY BUFFER

ELEMENT FROM |_§ 705

= PATTERN NODE
= 709
A 4

f\ PACK KEY & HASH

704 3\ »| OUTPUT TO
ANALYZER

706

700

A 4
NEXT PACKET

5_ COMPONENT
707

FIG. 7

NOAC Ex. 1017 Page 101

*3‘

IR

gt

(ANt

CAvirie

PRINT OF DRAWE
AS ORIGINALLY Fiz D

800

8/21

801

UFKB ENTRY FOR 802
PACKET

COMPUTE CONVERSATION| o3
RECORD BIN FROM HASH |/~

A

REQUEST RECORD BIN/
BUCKET FROM CACHE |/ 804

805

5 806

ORE BUCKET
IN THE BIN?

SET UFKB FOR
PACKET AS 'NEW!'

AND BUCKET RECORD KEY

COMPARE CURRENT BIN = 807

TO PACKET

Q 809

NEXT BUCKET {4-NO w 808

YES

MARK RECORD BIN AND 810
BUCKET 'IN PROCESS'IN |/~
CACHE AND TIMESTAMP

4

811

SET UFKB FOR PACKET
AS 'FOUND!

4

UPDATE STATISTICS FOR
RECORD IN CACHE

xé FIG. 8

NOAC Ex. 1017 Page 102

dopnr

B (T

S

R

Qarlk

PRINT OF DRAWINGS
ASORIGINALLY[“D

N’

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'PORT' AND
'PROTOCOL (TCP OR

UDP)

[)

CREATE SERVER STATE

T

904
T

SAVE 'PROGRAM',
‘VERSION', ‘PORT' AND
'PROTOCOL (TCP OR
UDP)' WITH NETWORK
ADDRESS IN SERVER
STATE DATABASE. KEY
ON SERVER ADDRESS
AND TCP OR UDP PORT.

LOOKUP REQUEST EXTRACT
PROGRAM
/ FIND 'PROGRAM'
900 AND 'VERSION' GET 'PORT' AND
WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK OR UDPY.
ADDRESS.

/A 905

BIND LOOKURH

K 909

EXTRACT PORT

GET 'PROGRAM;,
'VERSION' AND
'PROTOCOL (TCP OR
UDP)

908
<<: SAVE REQUEST

SAVE 'PROGRAM;,
'VERSION' AND
'PROTOCOL (TCP OR
UDP) WITH
DESTINATION
NETWORK ADDRESS.
BOTH MAKE A KEY.

907

906 \

.

FIG. 9

NOAC Ex. 1017 Page 103

Qarlirai.

IR T R

b

[RENEN W

[RANER

PRINT OF DRAW Fa
AS__QE_G“F_%‘ kLLY ~ D \J

1000 ~— 10/21

100

PATTERN EXTRACTION

RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

100\
INFOIOUT,

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS [saNTRLIN

1031
1006 PATTERN 1007
RECOGNITN EXTRACTION ENGINE
ENGINE (SLICER)
(PRE)
1010

1008

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOAD
MEMORY

PACKET PARSER INPUT BUFFER
INPUT MEMORY

1012
1010

1021 :] 1025
PACKET

INTERFACE INTERFACE
JEX CONTROL CONTROL
PACKET

102

1023 FIG. 10 1027

NOAC Ex. 1017 Page 104

AR NN

i

NN

T

[
PRINT OF DRAWINGS)
A-S_%I.GL“;QL@D O

11/21
1100 —y

R1101 81103 31118 1122>

o
ENGINE %%%T
(LUE) INTER-
FACE
(HIB)

PARSER
INTER-
FACE

(1119 1123&

UNIFIED § |MEMORY
MEMORY J.\ INTER-
CONTROLM+ FACE

(UMC)

DELETION

NOAC Ex. 1017 Page 105

EE R TREE

R [

i g

Won

PRINT OF DRAWINGS
AS ORIGINALLY FILED

12/21

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

Y
ACCESS
CONVERSATION /1 203
RECORD BIN

'

REQUEST RECORD BIN/| 120
BUCKET FROM CACHE |/~ 129

1200 —y

REQUEST NEXT | NO
{| BUCKET FROM
1206 CACHE

IN/BUCKET EMPTY

B

l

INSERT KEY AND HASH | /~ 1207
IN BUCKET, MARK 'USED
WITH TIMESTAMP

— 3
COMPARE CURRENT BIN—1209

1210\ AND BUCKET RECORD
SET UFKB FOR
PACKET AS KEY TO PACKET
'‘DROP!

MARK RECORD BIN AND
BUCKET N PROGESS' |/~ 2™
AND 'NEW' IN GAGHE

!

1212 _JsET INITIAL STATISTICS
FOR RECORD IN CACHE

é/‘1 213

FIG. 12

NOAC Ex. 1017 Page 106

Shenba i i e

ChR

NEEERE

Cavi
PRINT OF DRAWINGS

AS_—Q&Q@__A&_Y@

/

13/21

1300 — UFKB ENTRY FOR
PACKET WITH STATUS
'NEW' OR 'FOUND’ 1302

v

SET STATE PROCESSOR
INSTRUCTION POINTER TO
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUND IN
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION
POINTER IN
CURRENT FLOW
RECORD

A4

INSTRUCTION MEMORY

v

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

DONE PROCESSING
STATES FOR THIS
PACKET?

1308
1310

DONE PROCESSING
TATES FOR THIS FLOW?2

1305

1309

v
SET AND SAVE FLOW REMOVAH
STATE PROCESSOR
INSTRUCTION IN CURRENT

FLOW RECORD

=<5\f1313

FIG. 13

NOAC Ex. 1017

Page 107

-

140

1404 — 1406 —) 1412’\ 11 1414
ANALYZE AND EXTRACT 1 | LOOKUP
RECOGNIZE | | IDENTIFYING || ., BUILD _ 1, . | KNOWN
PATTERN INFO & PROCL| | "FLOW" KEY™1RECORDS
INFORMATION /STATE Il |(DB 1424)
i I
TSI EIs
: |
!
;!
PATTERN |
STRUCTURES b
AND I
EXTRACTION P!
OPERATIONS] Y
|
(s 1
PARSER 1408 P M
SUBSYSEM _ _ _ _ _ _ _ b STATE
| MACHINE
| . SELECTOR
1400 : 1426~
|
FIG. 14 . 1428
| (LJ__ 1432
| STATE
| ANALYSIS | |
| DPERATIONS [—==
|

AT N W

i g n b

DATABASE
OF FLOWS

UPDATE
"FLOW"
KNOWN

RECORD

A

YES

A 4

CLASSIFICATN
FINALIZATION

NO— |

Cia3a

ANALYZER
SUBSYSTEM

fr--—--—-=-=---- - -~"=- - == -~ 1

1416\

1
I
I
|
|
|
|
|
|
!
!
|
|
!
!
|
|
|
1
|
|
|
|
!
|
l
|
f
|
|

NOACE€ Ex- 1017 Page168

Laivl

1

ATIVNIDINO §Y
SHINIMVEG 40 INTHY

\

PRINT OF DRAW NG
AS ORIGIN

Y

£ F

NALLY [

15/21

Gl Ol

-

P S13IMOVd
dda "
9 advo
ssig | | 30v4u3LNI 201
NHOMLIN
—x
A
8051 0LSH J
v 008
HOLINOW
AHOW3W | H0OSS3ID0Hd
LSOH LSOH >
7 L 30iA3q
930Gt b0S 1 - NOILISINDOY«-
(RHOWIN) 13X0vd
SMOT4 7
40 o I —
£08 LOE 2051
3SvavLlva HIZATVNY H3ISHVd

144 L

PRI T

T TR

IXTET

B

Ll

NOAC Ex. 1017 Page 109

—

PRINT OF DR.AWLX A (,7
ASORIGINALLY b o \
P 16/21
1602 0 - 3 Bytes
A— 1600
= Dst MAC
offset 0 - 11 T~ Dst MAC | Src MAC ~j1604
Src MAC -]
- NI
= y 1606
o 1608
= Dst MAC (6)
, i [Dst Hash (2] 1610
{ 5 1612 Src MAC (6)
', 16 14_Src Hash (21

:i It

et=12
FIG. 16

b b don

NOAC Ex. 1017 Page 110

i

S

PRCI I

MR EYREE

Qanhelric

PRINT OF DRAWINGS
A&.Q&G.U‘:M,L_Y_C)D

17/21
1702
1704
ST e TR
__ J
Y 1706

1708

Type (2)
\»Hash 1) X— 1700

1710

\JL3 Offpet = 14

FIG. 17A

NETBIOS-3COM = 0x3C00 -

O
IDP = 0x0600*
IP = 0x0800*
CHAOSNET = 0x0804
ARP = 0x0806

ViP = 0x0BAD*
VLOOP = O0xOBAE
VECHO = Ox0BAF

0x3COD#
DEC-MOP = 0x6001
DEC-RC = 0x6002
DEC-DRP = 0x6003*
DEC-LAT = 0x6004
DEC-DIAG = 0x6005
DEC-LAVC = 0x6007
RARP = 0x8035
ATALK = 0x809B*
VLOOP = 0x80C4
VECHO = 0x80C5

/ SNA-TH = 0x80D5*
1 ATALKARP = 0x80F3
1712 IPX =0x8137*
SNMP = 0x814C#
IPv6 = 0x86DD *
LOOPBACK = 0x9000
Apple = 0x080007
* L3 Decoding
L5 Decoding
1752
VerinG [30e/Tpe/ Yot Leide /]
[LL33t° //1/1G58Rer/ /] AV [FRAG OfReY IoMP = 1
* Protocol 7 =
27 of VLIIEL Protoco st e i
- Dst Address I(ESSE fg
(1111100993 B iraddig///////1//] PUP = 12
CHAOS =16
X i
e | woghea,
Dst Address 1SO-IP Z 80
Dst Hash (2)] \Sg = gg#
SrcAddress | EIGRP =
Src Hash (2) OSPF =89
* L4 Decoding
[Frotodol (1) FIG.17B #L3 Re-Decoding

et = L3 + (IHL/4)

NOAC Ex. 1017 Page 111

QA

PRINT OF DRAWINGS
AS ORIGINALLY

18/21

PROTOCOL

1802-1

A—1800

HLON31 g13i4

W,

FIG. 18A

R R T

1870

ME\SS

2| [TITT7/T71
= LT

ai3id 40

3d00 31A8

A—1850

10200104d

FIG. 18B

NOAC Ex. 1017 Page 112

LI I

Thwhn”

i

TR AR

[1905

1800

‘_-L? —DATA -»] 4)
i_ADDETR’ «LUESEL—
n A » .
;J: ADDR INPUT SELECT MUXES .ﬁ;:g;
- . .
wl_ 1917
o™ ieNg ADDR_DATA /
| <«—UMC-O-CA-DATA -
<——CA-ADDRESS
ADDR/[DATA c
Yy \ 2 4 vy Y tr \ 2R J v 1903 : 1915
PAGE-0-IN PAGE-31-IN <
DUAL PORT RAM PAGES (32) <
PAGE-0-OUT PAGE.31.0UT | CACHE WRITE STROBES
DATA DATA DATA
DATA DATA ... DATA 1909 1911
0 : >%< CA-UMC-DATA
\\/ - 35 >
=
1907
- CAPAGESEL
l
?]*DATA N CLUESEL— _1q13
0]<DATA | OUTPUT SELECT MUXES < SPSEL—
2 «FIDESEL—

L.

8]4- DATA —t

FIG.19

\1919

NOAC Ex. 1017 Page 113

12/61

el g e

“

ATIVNIOTHO SV
TINTMVHE 40 INTHg

o

HEEEN

IR

b

L R T

W g

*t PRINT

OF DRAWINGS

ASORIGINALLY T

| FIDE PORT I ILUE POF{TJ

20/21

/ 2001

2005

F——LUEMEMREQ-—»
e—SETLUEREADY —
e—SETLUESEL——

——FIDEMEMREQ-+
SETFIDEREADY —
—SETFIDESEL—

[N

CACHE_CAM_SM

-SEL_LUE_FIDE-»
r———CAM_HiT———
«—CAM_HITPAGE —
-CAM_LRUPAGE —
——LOAD_CAM—

—REFRESH_CAM-—»

CAM_ARRAY

1

GET BACKUP GOT 2003
Ll

|

CACHE MEM

3 SIGNALS

CACHE PORT

CACHE_MEM_SM

—SEL_CACHE—»

FIG. 20

NOAC Ex. 1017 Page 114

———CA-MEM-RE@—»
——CA-MEM-WRITE—»

-UMC-O-CA-NEXTADBH

l¢—UMC-O-CA-READY—]

umcC

i PR I A TR

Wi i

]

= < PRINT OF DRAWINGS

ASORIGINALLY 2D

21/21
CAM_HITPAGE, REF-DATA CAM_LRUPAGE, REF-DATA —
2109
LOAD, REFRESH, EVICT REE-DATA
\2105 | 2111 2103
/ CAM_INPUTDATA 2113
Y Y
—LOADO-+{ CAM[0] -MATCHO +
DATAY L~
—LOAD1-»| CAM[1] |MATCH1 »
DATARY L
—LOAD2»{ CAM[2] FMATCH2 +}
—LOAD3-»[CAM[3] -MATCH3 »
»%—: —LOAD4-»{ CAM4] FMATCHA > o 1 & o115
i) - i
w 5TO 32 —LOAD5»{ CAM(5] FMATCH5» (ow S
S JLT o |/ |a
=2
< DECOD | —LOADG-»{ CAM[6] FMATCHe» HIGH (L7 o g
4 > !
—LOAD7+{_ CAM[Z] __ |-MATCH7 » ENCOD -
. 2107
—LOAD30»{ CAM[30] FMATCH304
—LOAD31»{ CAM[31] FMATCH31
. DATA3
CAM_LRUPAGE
CAM_NUMBER - CAM| NUMBER
! [l |
2127 DATAQ| | - + » DATA31 DATAO| | - + * DATA31
Y | Y Y
> NMUx3z2 /2123 F NMUX32 4
2121 s &
| DIRTY ENTRY CURRENT ENTRY
| ;] E I | 2117 L—
DIRTY_PAGE, DIRTY_HASH, DIRTY_BUCKET CAM_HITPAGE
\ \
FIG. 21 o

NOAC Ex. 1017 Page 115

SZﬁ(issian etal. APPT-001-4

. (33

6771646

1/21

100

P
’
-

FIG. 1

CLIENT 4 108
ANALYZER
107
7y 116
. J
SERVER 2
CLIENT 3
\\ VMo
121
. DATA COMMUNICATIONS
NETWORK
E
102
; 125
\ 118
SERVER 2 105 —/
M CLIENT 2 |/ CLIENT 11—
1 112 104

NOAC Ex. 1017 Page 116

[P L Y LT i [4o d W owanoan

&214 (215 Q216

4N

@17 218 219 (220,221,222 223
1 (-~

1(Sq Cq p' |- /j il |sh QA s1p QP o———-————-i’\
- N
P < 206

X /‘><

(224 (225 Q226 Q227§228(229 (230 231S232 233 ><

) Cqi | Sq p! :;<j // il

sta sh| p2| 2

. »
210\ 24020541 242 243 244 245 :
\ \ \ \ :
/ KEY-1\ Sq Cq p1 \<\> ------- - al stp \ v
202 (106 > 20 =
N
21 =] B
(250 (251 (252 253 254 (255 =" N>
A 2 1 —e = - 2 —
evd o1 | o | @ [[[[f-meo £ s, (1IN0
\ J Zthtnt
: CLIENT 3
: 260 261 (262 263 264 265 APPLlCATIONS
JNN L« ¢

N1l 811 Cq p2

ERVER 2 :

-

datum request

o ,I< - (270 (271 272 273 (274 275 ;r
D | e Cq| Sq| PP datum reply no| |
_ | FIG.2
l 209

NOAC Ex. 1017 Page 117

e UBQQSNWS :

-100-LddV

302 ANALYZE AND
! RECOGNIZE
morerZyod i L
INFORMATION

PROTOCOL

DESCIPTIO
LANGUAGE

304 —

PARSER 301
306 —)
EXTRACT BUILD UNIQUE
I:\?FE(;\IJ'\IAFA?%% »{CONVERSATION
(EN) "FLOW" KEY

(PAR)

A

HI L T V)

Bwowonow

314

LO