
NOAC Ex. 1015 Page 1

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October 17, 2018 ¢

2 tookiy
em

THIS IS TO CERTIFY THAT ANNEXEDIS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS
OF:

APPLICATION NUMBER: 09/608,237

FILING DATE: June 30, 2000

PATENT NUMBER: 6,651,099

ISSUE DATE: November18, 2003
By Authority of the

UnderSecretary of Commercefor Intellectual Property
and Director of the United States Patent and Trademark Office

AN P.R. GRANT
! 3 Certifying Officer

PART({) OF (& PART(S)

peOAC Ex.1015Pagel as

 Seea = a = ARATT EDEL eRCCE LT CC Taereece

NOAC Ex. 1015 Page 2

 lihy

7/O08inti|

 APPLICATION NO.
- 09/608237

 Arieeu KorWilliam BaresAPPLICANTS
Method and apparatus for moniterina tradaffic in aBn 8

TITLE

devas mae hgeeecnens lleeaEeSethian ws ese sfontenfieueeswacnianiee Stans seem: qo : » : : : :

:

: eteet =a)

: TERMINAL
{ DISCLAIMER

‘(J Theterm ofthis patent 7
subsequentto 7 (date) . :
has been disclaimed. a | fassant Damien

; {1 The termofthis patent shall ee | :not extend beyond the iaal date | (() Wy
y of U.S Patent. No. Sls 7 :

‘ > MOUSTAFA M. MEKY -

iPRIMARY EXAMINER _{ Amount Due —aIki 29
_ {Primary Damionot “+ (Date) : i : : ag

oO : - ISSUE BATCH NUMBER vtThe terminat months of XR: ‘el = “althis patent have beendisclaimed. nibs ae0384 .(Lega! instr4ments Examiner)”

The Information disclosed herein may berestricted. Unauthorized disclosure may be pforpitea by the United States CodeTitle 35, Sections 122, 181 and 368.Possession outside the U.S. Patent & Trademark Officeis restricted to authorized employees and contractors only.

fan Eescen ce FILED wiTH: [_] DISK (CRF) [7] FICHE O CD-ROM
. issuE &EeE IN FILE : ‘(Attached in pocket onaflap)

 ethteaeennminineenesteae

(FACE)

NOAC Ex. 1015 Page 3

SREES

of 1

UNITED STATES PATENT AND TRADEMARK OFFICE
COMMISSIONER FOR PATENTS

UNITED STATES PATENT AND TRADEMARK OFFICEWASHINGTON, D.C. 2023}
www.uspto.gov

ee : CONFIRMATION NO.9993
Bib Data Sheet

FILING DATE

06/30/2000

RULE

ATTORNEY
DOCKETNO.

APPT-001-1

GROUP ART UNIT

2755
SERIAL NUMBER

09/608 237

[APPLICANTS
Russell S. Dietz, San Jose, CA;
Joseph R. Maixner, Aptos, CA;
Andrew A. Koppenhaver,Littleton, CO;
William H. Bares, Germantown, TN;
Haig A. Sarkissian, San Antonio, TX;
James F. Torgerson, Andover, MN;

* CONTINUING DATA *ithstittetsanaanasaanaes

THIS DPNeo BENEFIT OF 60/141 ,903 06/30/1999
em roai Myo KEKERRERREAAAEREREREIF acanen, OREIGN FILING LICENSE
GRANTED ** 08/21/2000

Foreign Priority claimed yes
35 USC 119 (a-d) conditions Od,no"Q Metafter

Allowance

STATE OR| SHEETS
COUNTRY| DRAWING

 Examiner's Signature (hitials

 Dov Rosenfeld

Suite 2

5507 College Avenue

Oakland ,CA 94618

TITLE

Method and apparatus for monitoringtraffic in a network

 FILING FEE |FEES: Authority has been given in Paper

RECEIVED INo. “to charge/credit DEPOSIT ACCOUNT
for following:

[Gitsrees(issue)———_|1.18 Fees(issue)
L) other

C) Credit

NOACEx. 1015 Page 3

NOAC Ex. 1015 Page 4

aas
ges
#23Be
aan

OH4
eh

OF -O3-00 F-

IN THE U.S. PATENT AND TRADEMARK OFFICE
Application Transmittal Sheet

Our Ref./Docket No.:_APPT-001-1

Box Patent Application —=
ASSISTANT COMMISSIONER FOR PATENTS =
Washington,D.C. 20231 oMi=

PT2it 00

Dear Assistant Commissioner: n=3
-O==35

Transmitted herewith is the patent application of oo
ng
ToS

INVENTOR(s)y/APPLICANT(s) a=
Last Name First Name, MI Residence (City and State or Country)

Dietz Russell S. San Jose, CA

Maixner Joseph R. Aptos, CA
Koppenhaver Andrew A. Fairfax, VA

Additional inventors are being named on separately numbered sheets attached hereto.

TITLE OF THE INVENTION

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

CORRESPONDENCE ADDRESS AND AGENT FOR APPLICANT(S)

DovRosenfeld, Reg. No. 38,387
5507 College Avenue, Suite 2
Oakland, California, 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992 ,

ENCLOSED APPLICATION PARTS(checkall that apply)

Includedare:

Xx 66___sheet(s) of specification, claims, and abstract
x 18__sheet(s) of formal Drawing(s) with a submissionletter to the Official Draftsperson

Information Disclosure Statement. -
Form PTO-1449: INFORMATION DISCLOSURE CITATION IN ANAPPLICATION,together with a
copy of each references included in PTO-1449.
Declaration and Power of Attorney
An assignmentof the invention to_Apptitude,Inc.

A letter requesting recordation of the assignment.
An assignment Cover Sheet.“FELL

Additional inventors are being named on separately numbered shagts attached hereto.
Return postcard. é

This application has:

a small entity status. A verified statement:
is enclosed

wasalready filed.

The fee has been calculated as shownin the following page.

‘Certificate of Mailing under 37 CFR 1.10

Thereby certify that this application and all attachments are being deposited with the United States Postal
Service as Express Mail (Express MailLabel: EI417961944USin an envelope addressed to Box Patent
Application, Assistant Commissioner for Patents, Washington, D.C . 20231 0

Date: Wine BO} Signed Ex. 1015 Page 4
Name-Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1015 Page 5

=
wi

ea
Ce

SUBMISSION DOCUMENT
Page 2

ATTORNEY DOCKET NO._APPT-001-1

BASIC APPLICATIONFEE: $ 690.00

TOTAL FEES PAYABLE:|_$1,470.00

METHOD OF PAYMENT

A check in the amountof is attached for application fee and presentation of claims.
A checkin the amountof$ 40.00 is attached for recordation of the Assignment.
The Commissioner is hereby authorized to charge payment of the any missing filing or other fees

required forthis filing or credit any overpayment to Deposit Account No. 50-0292
(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

 BO too

Date Dov Rosenfeld , Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, California, 94618
Telephone: (510) 547-3378; Fax: (510) 653-7992

NOACEx. 1015 Page 5

NOAC Ex. 1015 Page 6

SUBMISSION DOCUMENT Page 3
ATTORNEY DOCKET NO. _APPT-001-1

ATTORNEY DOCKETNO. _APPT-001-1

Application Cover Sheet (cont.)

INVENTOR(s)/APPLICANT(s)

Last Name First Name, MI Residence (City and Either State or Foreign
Country)

Bares William H. Germantown, TN

Sarkissian Haig A. San Antonio, Texas

Torgerson JamesF. Andover, MN

a
4

ongtERCE
ia

Wau

CK”

Pri

etiq

NOACEx. 1015 Page 6

NOAC Ex. 1015 Page 7

wird

iei!

3

=isehriCRA=NARS2"

Our Ref./Docket No: APPT-001-1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, etal.

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Assistant Commissioner for Patents

Washington, DC 20231
ATTN:Official Draftsperson

Dear Sir or Madam:

Attached please find 18 sheets of formal drawings to be made of record for the above
identified patent application submitted herewith.

Respectfully Submitted,

Date Dov Rosenfeld, Reg. No. 38687 |

Address for correspondenceand attorney for applicant(s):
Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.10

Therebycertify that this application andall attachments are being deposited with the United States Postal
Service as Express Mail (Express Mail Label: £1417961944USin an envelope addressed to Box Patent

Assistant Commissioner for Patents, Washington, D.C. 202
tA Lb 2&cO— Sigae

= Name: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1015 Page 8

re,AeSng
}‘
dy

MopegDeen

LTRIECNTMELLEEIREAEEEEE

ye 8
s
BS

cs
=na

Thereby certify that this application and all attachments are being deposited with theUnited States Postal Service as Express Mail
(Express Mail Label: EI417961944USin an envelope addressed to Box Patent Application, Assistant Commissionerfor Patents,
Washington, D.C. 20231 on.

GJ

Our Ref./Docket No.: _APPT-001-1

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

Inventor(s):

DIETZ, Russell S.

San Jose, CA

MAIXNER,Joseph R.
Aptos, CA

KOPPENHAVER,Andrew A.

Fairfax, VA

BARES,William H.

Germantown, TN

SARKISSIAN,Haig A.
San Antonio, Texas

TORGERSON,JamesF.

Andover, MN

Certificate of Mailing under 37 CFR 1.10

 LEE‘EX. 1015 Page 8Signed:
Namnté: Dov Rosenfeld, Reg. No. 38687

NOAC Ex. 1015 Page 9

10

15

20

25

30

]

METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK

CROSS-REFERENCETO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No.:

60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORKto inventors Dietz,et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

This application is related to the following U.S. patent applications, eachfiled

concurrently with the present application, and each assigned to Apptitude,Inc., the

assignee of the present invention:

AN
U.S.Patent Application Serial No.0“ /6) for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL

DESCRIPTION LANGUAGE,to inventors Koppenhaver, etal., filed June 30, 2000,
sti Lindy ;

“G0T=2, and incorporated herein by reference.

U.S. Patent Application Serial No. ©“. /é¢&2Gfor RE-USING INFORMATION FROM

DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

s&ill ferelng—MONITORING,to inventors Dietz,et al., filed June 30, 2000, Attorey+“~sent

~RefereneeNumber7APPFE-064+-3, and incorporated herein by reference.

U.S. Patent Application Serial No. O_/6c8,2é¢for ASSOCIATIVE CACHE
STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDSIN A

NETWORK MONITOR,to inyentors Sarkissian,et al., filed June 30, 2000,
Sti PRwdindy

=4, and incorporated herein by reference.

U.S. Patent Application Serial No. °4_/6%,267for STATE PROCESSOR FOR

PATTERN MATCHINGIN A NETWORK MONITORPEVICR, to inventorsséi Peng i
Sarkissian,et al., filed June 30, 2000, :

and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, specifically to the real-time

elucidation of packets communicated within a data network,includingclassification

according to protocol and application program.

NOACEx. 1015 Page 9

NOAC Ex. 1015 Page 10

SeCHCHA
eectseasdl

aq

a

a
G

10

15

20

25

30

2

BACKGROUNDTO THE PRESENT INVENTION

There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other internets—

an “internet” being any plurality of interconnected networks which formsa larger, single

network. With the growth of networksusedas a collection of clients obtaining services

from one or moreservers on the network,it is increasingly important to be able to

monitor the use of those services and to rate them accordingly. Such objective

information, for example, as whichservices(i.e., application programs) are being used,

whois using them, how often they have been accessed, and for how long,is very useful in

the maintenance and continued operation of these networks. It is especially important that

selected users be able to access a network remotely in order to generate reports on

networkuse in real time. Similarly, a need exists for a real-time network monitor that can

provide alarmsnotifying selected users of problems that may occur with the network or

site.

Oneprior art monitoring method useslogfiles. In this method, selected network

activities may be analyzed retrospectively by reviewing log files, which are maintained by

network servers and gateways. Log file monitors must access this data and analyze

(“mine”) its contents to determinestatistics about the server or gateway. Several problems

exist with this method, however. First, log file information does not provide a map of

real-time usage; and secondly,log file mining does not supply complete information. This

methodrelies on logs maintained by numerous network devices and servers, which

requires that the information be subjected to refining andcorrelation. Also, sometimes

informationis simply not available to any gateway orserverin order to makea logfile

entry.

Onesuchcase, for example, would be information concerning NetMeeting®

(Microsoft Corporation, Redmond, Washington) sessions in which two computers

connect directly on the network and the data is never seen byaserveror a gateway.

Another disadvantage of creating log files is that the process requires data logging

features of network elements to be enabled, placing a substantial load on the device ,

whichresults in a subsequentdecline in network performance. Additionally,log files can

grow rapidly, there is no standard meansof storage for them, and they require a

NOACEx. 1015 Page 10

NOAC Ex. 1015 Page 11

OOMESao"£eaeoouod

15

20

25

30

significant amount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, California), RMON2, and other

network monitors are available for the real-time monitoring of networks, they lack

visibility into application content and are typically limited to providing network layer

level information.

Pattern-matching parser techniques wherein a packetis parsed and pattern filters

are applied are also known,butthese too are limited in how deepinto the protocol stack

they can examine packets.

Someprior art packet monitors classify packets into connection flows. The term

“connection flow” is commonly usedto describe all the packets involved with a single

connection. A conversational flow, on the other hand, is the sequenceofpackets that are

exchangedin any direction as a result of an activity—for instance, the running of an

application on a server as requestedby a client. It is desirable to be able to identify and

classify conversational flows rather than only connection flows. The reasonfor this is that

someconversational flows involve more than one connection, and some even involve

more than one exchangeof packets betweenaclient and server. Thisis particularly true

whenusing client/server protocols such as RPC, DCOMP, and SAP, which enable a

service to be set up or defined priorto any useofthat service.

An example of such a case is the SAP (Service Advertising Protocol), a NetWare

(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of

servers attached to a network.In the initial exchange, a client might send a SAP request to

a server for print service. The server would then send a SAP reply that identifies a

particular address—for example, SAP#5—astheprint service on that server. Such

responses might be used to update a table in a router, for instance, knownas a Server

Information Table. A client who has inadvertently seen this reply or who hasaccessto the

table (via the router that has the Service Information Table) would know that SAP#5 for

this particular server is a print service. Therefore, in order to print data on the server, such

aclient would not need to make a requestfor a print service, but would simply send data

to be printed specifying SAP#5. Like the previous exchange, the transmission of data to

be printed also involves an exchange betweena client and a server, but requires a second

connection andis therefore independentof the initial exchange. In order to eliminate the

NOACEx. 1015 Page 11

NOAC Ex. 1015 Page 12

}
ré

bee

ogi

pantyomeee

Aetalg
2

ee

SHAME"AIESORCREEAAMTLEENINSINGER:IPEPEN0RRPS80
10

15

20

25

30

€)
4

possibility of disjointed conversational exchanges,it is desirable for a network packet

monitor to be able to “virtually concatenate”—that is, to link—thefirst exchange with the

second.If the clients were the same, the two packet exchanges wouldthen becorrectly

identified as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include RPC (Remote Procedure

Call); DCOM (Distributed Component Object Model), formerly called Network OLE

(Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request

Broker Architecture). RPC is a programminginterface from Sun Microsystems (Palo

Alto, California) that allows one program to use the services of another program in a —

remote machine. DCOM,Microsoft’s counterpart to CORBA,defines the remote

procedurecall that allows those objects—objectsare self-contained software modules—to

be run remotely over the network. And CORBA,a standard from the Object Management

Group (OMG)for communicating betweendistributed objects, provides a way to execute

programs (objects) written in different programming languages running on different

platforms regardless of where they reside in a network.

Whatis needed, therefore, is a network monitor that makesit possible to

continuously analyzeall user sessions on a heavily trafficked network. Such a monitor

should enable non-intrusive, remote detection, characterization, analysis, and capture of

all information passing through any point on the network(i.e., of all packets and packet

streams passing through any location in the network). Not only shouldall the packets be

detected and analyzed, but for each of these packets the network monitor should

determine the protocol(e.g., http, ftp, H.323, VPN,etc.), the application/use within the

protocol(e.g., voice, video, data, real-time data, etc.), and an end user’s pattern of use

within each application or the application context (e.g., options selected, service

delivered, duration, time of day, data requested, etc.). Also, the network monitor should

not be reliant upon server resident information such as log files. Rather, it should allow a

user such as a network administrator or an Internet service provider (ISP) the means to

measure and analyze networkactivity objectively; to customize the type of data that is

collected and analyzed; to undertakereal time analysis; and to receivetimely notification

of network problems.

Considering the previous SAP example again, because onefeatures of the

invention is to correctly identify the second exchange as being associated with a print

NOACEx. 1015 Page 12

NOAC Ex. 1015 Page 13

reaeSLSStetSylvanian:
SyTRAEE

AnHE

faitetix-devi

as

23

10

15

20

25

30

5

service on that server, such exchange would even be recognizedif the clients were not the

same. Whatdistinguishes this invention from prior art network monitorsis that it has the

ability to recognize disjointed flows as belonging to the same conversational flow.

The data value in monitoring network communications has been recognized by

manyinventors. Chiu, et al., describe a methodfor collecting information at the session

level in a computer network in United States Patent 5,101,402,titled “APPARATUS

AND METHODFOR REAL-TIME MONITORING OF NETWORKSESSIONS AND

A LOCAL AREA NETWORK”(the “402 patent”). The 402 patent specifies fixed

locations for particular types of packets to extract information to identify session of a

packet. For example, if a DECnet packet appears, the 402 patent looks at six specific

fields (at 6 locations) in the packetin order to identify the session of the packet. If, on the

other hand, an IP packet appears, a different set of six different locationsis specified for

an IP packet. With the proliferation of protocols, clearly the specifying ofall the possible

places to look to determine the session becomes more and moredifficult. Likewise,

adding a new protocolor application is difficult. In the present invention, the locations

examined and the information extracted from any packet are adaptively determined from

information in the packet for the particular type of packet. There is no fixed definition of

what to look for and where to look in order to form an identifying signature. A monitor

implementation of the present invention, for example, adapts to handle differently IEEE

802.3 packet from the older Ethernet Type 2 (or Version 2) DIX (Digital-Intel-Xerox)

packet.

The 402 patent system is able to recognize up to the session layer. In the present

invention, the numberof levels examined varies for any particular protocol. Furthermore,

the present invention is capable of examining up to whateverlevel is sufficientto

uniquely identify to a required level, even all the wayto the application level (in the OSI

model).

Otherprior art systems also are known. Phael describes a network activity monitor

that processes only randomly selected packets in United States Patent 5,315,580,titled

“NETWORK MONITORING DEVICE AND SYSTEM.” Nakamurateaches a network

monitoring system in United States Patent 4,891,639, titled “MONITORING SYSTEM

OF NETWORK.”Ross,et al., teach a method and apparatus for analyzing and

monitoring networkactivity in United States Patent 5,247,517, titled “METHOD AND

NOACEx. 1015 Page 13

NOAC Ex. 1015 Page 14

Sit

SSSMEDCLORMSIESENETBEUaea
Aoeaeae
vom

painwebsfs

BoTAataeeSGReelyRRRO2OEAN
airme

Se

*
i

w

(EESSE"ES

10

15

20

25

 <
{49

6

APPARATUS FOR ANALYSIS NETWORKS,” McCreery,et al., describe an Internet

activity monitor that decodes packet data at the Internet protocol level layer in United

States Patent 5,787,253, titled “APPARATUS AND METHOD OF ANALYZING

INTERNET ACTIVITY.” The McCreery method decodes IP-packets. It goes through the

decoding operations for each packet, and therefore uses the processing overhead for both

recognized and unrecognizedflows. In a monitor implementation of the present invention,

a signature is built for every flow such that future packets of the flow are easily

recognized. When a new packetin the flow arrives, the recognition process can

commence from whereit last left off, and a new signature built to recognize new packets

of the flow.

SUMMARY

In its various embodiments the present invention provides a network monitor that

can accomplish one or moreofthe following objects and advantages:

e Recognize andclassify all packets that are exchanges between a client and

server into respective client/server applications.

e Recognize andclassify at all protocol layer levels conversational flows that

pass in either direction at a point in a network.

e Determine the connection and flow progress between clients and servers

according to the individual packets exchanged over a network.

e Beusedto help tune the performance of a network according to the current

mix ofclient/server applications requiring network resources.

e Maintainstatistics relevant to the mix ofclient/server applications using

network resources.

e Report on the occurrences of specific sequences of packets used by particular

applications for client/server network conversational flows.

Other aspects of embodimentsof the invention are:

e Properly analyzing each of the packets exchanged betweenaclient and a

server and maintaining information relevantto the current state of each of

these conversational flows.

NOACEx. 1015 Page 14

NOAC Ex. 1015 Page 15

I

 eS

!
|

=
Fe
od

=

10

15

20

25

®@
7

e Providing a flexible processing system that can be tailored or adapted as new

applicationsenter the client/server market.

e Maintainingstatistics relevant to the conversational flowsin a client/sever

networkasclassified by an individual application.

e Reporting a specific identifier, which may be used by other network-oriented

devices to identify the series of packets with a specific application for a

specific client/server network conversational flow.

In general, the embodiments-of the present invention overcome the problems and

disadvantagesofthe art.

Asdescribed herein, one embodiment analyzes each of the packets passing

through any point in the network in either direction, in order to derive the actual

application used to communicate betweena client and a server. Note that there could be

several simultaneous and overlapping applications executing over the network that are

independent and asynchronous.

A monitor embodimentof the invention successfully classifies each of the

individual packets as they are seen on the network. The contents of the packets are parsed

and selected parts are assembledinto a signature (also called a key) that may then be used

identify further packets of the same conversational flow, for example to further analyze

the flow and ultimately to recognize the application program. Thusthe key is a function

of the selected parts, and in the preferred embodiment, the function is a concatenation of

the selected parts. The preferred embodiment forms and remembersthe state of any

conversational flow, which is determined by the relationship between individual packets

and the entire conversational flow over the network. By rememberingthestate of a flow

in this way, the embodiment determines the context of the conversational flow, including

the application program it relates to and parameters such as the time, length of the

conversational flow,datarate,etc.

The monitoris flexible to adapt to future applications developed for client/server

networks. New protocols and protocol combinations may be incorporated by compiling

files written in a high-level protocol description language.

NOACEx. 1015 Page 15

NOAC Ex. 1015 Page 16

aEEURRRker2

Ps

ea=

i jt

we

a

;
F
&
i

I
f

at

filet=on

10

15

20

25

30

8

The monitor embodimentof the presentinvention is preferably implemented in

application-specific integrated circuits (ASIC)orfield programmable gate arrays (FPGA).

In one embodiment, the monitor comprises a parser subsystem that forms a signature from

a packet. The monitor further comprises an analyzer subsystem that receives the signature

from the parser subsystem.

A packet acquisition device such as a media access controller (MAC)ora

segmentation and reassemble module is used to provide packets to the parser subsystem

of the monitor.

In a hardware implementation, the parsing subsystem comprises two sub-parts, the

pattern analysis and recognition engine (PRE), and an extraction engine(slicer). The PRE

interprets each packet, and in particular, interprets individual fields in each packet

according to a pattern database.

The different protocols that can exist in different layers may be thoughtof as

nodes of one or moretrees of linked nodes. The packet type is the rootof a tree. Each

protocolis either a parent node or a terminal node. A parent nodelinks a protocol to other

protocols (child protocols) that can be at higher layer levels. For example, An Ethernet

packet (the root node) may be an Ethertype packet—also called an Ethernet Type/Version

2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 802.3 packet. Continuing with
the IEEE 802.3-type packet, one of the children nodes may bethe IP protocol, and one of

the children of the IP protocol may be the TCP protocol.

The pattern database includes a description of the different headers of packets and

their contents, and howtheserelate to the different nodes in a tree. The PRE traverses the

tree as far as it can. If a node does not include a link to a deeperlevel, pattern matchingis

declared complete. Note that protocols can be the children of several parents. If a unique

node wasgenerated for eachofthe possible parent/child trees, the pattern database might

become excessively large. Instead, child nodes are shared among multiple parents, thus

compacting the pattern database.

Finally the PRE can be used on its own whenonly protocol recognition is

required.

For each protocol recognized,the slicer extracts important packet elements from

the packet. These form a signature(i.e., key) for the packet. Theslicer also preferably

NOACEx. 1015 Page 16

NOAC Ex. 1015 Page 17

er

SARLAPAIRESORRTSaMce
eaPRRS

ALGER,

beShRie,

SeraESRede.

SN
ttLara!

i i

ra

weWare

AAS

10

15

20

25

30

 2

9

generates a hashfor rapidly identifying a flow that may have this signature from a

database of knownflows.

The flow signature of the packet, the hash andat least some ofthe payload are

passed to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem

includes a unified flow key buffer (UFKB)for receiving parts of packets from the parser

subsystem andfor storing signatures in process, a lookup/update engine (LUE) to lookup

a database of flow records for previously encountered conversational flows to determine

whethera signature is from an existing flow, a state processor (SP) for performingstate

processing, a flow insertion and deletion engine (FIDE)for inserting new flowsinto the

database of flows, a memory forstoring the database of flows, and a cache for speeding

up access to the memory containing the flow database. The LUE,SP, and FIDEare all

coupled to the UFKB,andto the cache.

The unified flow key buffer thus contains the flow signature of the packet, the

hash andat least some of the payload for analysis in the analyzer subsystem. Many

operations can be performedto further elucidate the identity of the application program

content of the packet involved in the client/server conversational flow while a packet

signature exists in the unified flow signature buffer. In the particular hardware

embodimentof the analyzer subsystem several flows may be processedin parallel, and

multiple flow signatures from all the packets being analyzed in parallel may beheld in the

one UFKB.

Thefirst step in the packet analysis process of a packet from the parser subsystem

is to lookup the instance in the current database of known packet flow signatures. A

lookup/update engine (LUE) accomplishes this task using first the hash, and then the flow

signature. The searchis carried out in the cache and if there is no flow with a matching

signature in the cache, the lookup engine attempts to retrieve the flow from the flow

database in the memory. The flow-entry for previously encountered flows preferably

includesstate information, which is used in the state processor to execute any operations

defined forthe state, and to determine the next state. A typical state operation may beto

search for one or more knownreference strings in the payload of the packet stored in the

UFKB.

Once the lookup processing by the LUE has been completeda flag stating whether

NOACEx. 1015 Page 17

NOAC Ex. 1015 Page 18

10

15

 USESSSa
j 20

25

30

10

it is found or is new is set within the unified flow signature buffer structure for this packet

flow signature.Foran existing flow, the flow-entry is updated by a calculator component

of the LUE that addsvaluesto counters in the flow-entry database used to store one or

more Statistical measures of the flow. The counters are used for determining network

usage metrics on the flow.

After the packet flow signature has been looked up and contents of the current

flow signature are in the database, a state processor can begin analyzing the packet

payload to further elucidate the identity of the application program componentofthis

packet. The exact operation of the state processor and functions performedbyit will vary

depending on the current packet sequencein the stream of a conversational flow. The

state processor movesto the next logical operation stored from the previous packet seen

with this same flow signature. If any processing is required on this packet, the state

processorwill execute instructions from a databaseofstate instruction for this state until

there are either no moreleft or the instruction signifies processing.

In the preferred embodiment,the state processor functions are programmable to

provide for analyzing new application programs, and new sequencesofpackets andstates

that can arise from using such application.

If during the lookup processfor this particular packet flow signature, the flow is

required to be inserted into the active database, a flow insertion and deletion engine

(FIDE)is initiated. The state processor also may create new flow signatures and thus may

instruct the flow insertion and deletion engine to add a new flow to the database as a new

item.

In the preferred hardware embodiment, each of the LUE,state processor, and

FIDE operate independently from the other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the presentinvention is better understoodbyreferring to the detailed

preferred embodiments, these should notbe takento limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments,in turn, are explained with the aid of the following

figures.

NOACEx. 1015 Page 18

NOAC Ex. 1015 Page 19

WSCUESUEESICHaEUESa
fvinis-ReaA8EtahrssAEPOR

15

20

25

3 rogi io

11

FIG.1 is a functional block diagram of a network embodimentof the present

invention in which a monitoris connected to analyze packets passing at a connection

point.

FIG. 2 is a diagram representing an example of someofthe packets and their

formats that might be exchanged instarting, as an illustrative example, a conversational

flow between a client and server on a network being monitored and analyzed. A pair of

flow signatures particular to this example and to embodimentsof the present inventionis

also illustrated. This represents someof the possible flow signatures that can be generated

and usedin the process of analyzing packéts and of recognizing the particular server

applications that produce the discrete application packet exchanges.

FIG.3 is a functional block diagram of a process embodimentofthe present

invention that can operate as the packet monitor shownin FIG. 1. This process may be

implemented in software or hardware.

FIG.4 is a flowchart of a high-level protocol language compiling and optimization

process, which in one embodiment maybe used to generate data for monitoring packets

according to versions of the present invention.

FIG.5 is a flowchart of a packet parsing process used as part of the parser in an

embodimentof the inventive packet monitor.

FIG.6 is a flowchart of a packet element extraction process that is used as part of

the parser in an embodimentof the inventive packet monitor.

FIG.7 is a flowchart of a flow-signature building processthat is used as part of

the parser in the inventive packet monitor.

FIG.8 is a flowchart of a monitor lookup and update processthat is used as part of

the analyzer in an embodimentof the inventive packet monitor.

FIG.9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognizedbythe inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser subsystem including

the pattern recognizer and extractor that can form part of the parser module in an

embodimentof the inventive packet monitor.

NOACEx. 1015 Page 19

NOAC Ex. 1015 Page 20

2aepeFaeTERTiNiDRSdevasmile

10

15

20

25

12

FIG. 11 is a functional block diagram of a hardware analyzerincludinga state

processorthat can form part of an embodimentofthe inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion and deletion engine

processthat can form part of the analyzer in an embodimentof the inventive packet

monitor.

FIG.13 is a flowchart ofa state processing process that can form part of the

analyzer in an embodimentof the inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process embodimentof the

present invention that can operate as the packet monitor shownin FIG. 1. This process
4

may be implementedin software.

FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS.10 and 11) may operate on a network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC)layer of an Ethernet packet and someof

the elements that may be extracted to form a signature according to one aspectofthe

invention.

FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of

FIG. 16 and someof the elements that may be extracted to form a signature according to

one aspect ofthe invention.

FIG. 17B is an example of an IP packet, for example, of the Ethertype packet

shownin FIGs. 16 and 17A, and someof the elements that may be extracted to form a

signature according to one aspectof the invention.

FIG. 18A is a three dimensional structure that can be used to store elements of the

pattern, parse and extraction database used by the parser subsystem in accordance to one

embodimentof the invention.

FIG. 18B is an alternate form of storing elements ofthe pattern, parse and

extraction database used by the parser subsystem in accordance to another embodimentof

the invention.

NOACEx. 1015 Page 20

NOAC Ex. 1015 Page 21

ANAeeneoapoiemabepinspAnaTaMOwSeite,Saiayoe
AeATgs

id:

SaneteEe

tn

 UGESS

10

15

20

25

30

@ 9
13

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Notethat this documentincludes hardware diagrams anddescriptions that may

include signal names.In mostcases, the namesare sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation andpractice of the

invention.

Operation in a Network

FIG. 1 represents a system embodimentof the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network 102

that communicates packets (e.g., IP datagrams) between various computers, for example

between the clients 104-107 and servers 110 and 112. The network is shown

schematically as a cloud with several network nodes and links shownintheinterior of the

cloud. A monitor 108 examinesthe packets passing in either direction past its connection

point 121 and, accordingto one aspectof the invention, can elucidate what application

programsare associated with each packet. The monitor 108 is shown examining packets

(i.e., datagrams) between the network interface 116 of the server 110 and the network.

The monitor can also be placed at other points in the network, such as connection point

123 between the network 102 andthe interface 118 of the client 104, or some other

location, as indicated schematically by connection point 125 somewhere in network 102.

Not shownis a network packet acquisition device at the location 123 on the network for

converting the physical information on the network into packets for input into monitor

108. Such packet acquisition devices are common.

Various protocols may be employed by the network to establish and maintain the

required communication,e.g., TCP/IP, etc. Any network activity—for example an

application program runbythe client 104 (CLIENT 1) communicating with another

running on the server 110 (SERVER 2)—will produce an exchange of a sequence of

packets over network 102that is characteristic of the respective programs andof the

networkprotocols. Such characteristics may not be completely revealing at the individual

packetlevel. It may require the analyzing of many packets by the monitor 108 to have

enoughinformation needed to recognize particular application programs. The packets

may needto be parsed then analyzed in the context of variousprotocols, for example, the

NOACEx. 1015 Page 21

NOAC Ex. 1015 Page 22

|

ie"goplateoaternkoy.

15

(
:

i
i

\
é

[

ad@
14

transport throughthe application session layer protocols for packets of a type conforming

to the ISO layered network model.

Communication protocols are layered, whichis also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general modelthat

provides a framework for design of communication protocol layers. This model, shownin

table form below,servesas a basic reference for understanding the functionality of

existing communication protocols.

ISO MODEL

Application Telnet, NFS, Novell NCP, HTTP,

H.323

frpos

Data Link’ Network Interface Card (Hardware
Interface). MAC layer

Physical :

Different communication protocols employ different levels of the ISO model or

 Ethernet, Token Ring, Frame Relay,

ATM,T1 (Hardware Connection)

may use a layered modelthatis similar to but which does not exactly conform to the ISO

model. A protocolin a certain layer may not be visible to protocols employedat other

layers. For example, an application (Level 7) may notbeable to identify the source

computer for a communication attempt (Levels 2-3).

In some communicationarts, the term “frame” generally refers to encapsulated

data at OSI layer 2, including a destination address, controlbits for flow control, the data

or payload, and CRC (cyclic redundancy check) data for error checking. The term

NOACEx. 1015 Page 22

NOAC Ex. 1015 Page 23

ICSSeeESD"al
RM TREEaEreeset,

NENPahFEEiheC>eA,RRlaeRhnpeennnoempetld
oleRAAESeeOW

10

15

20

25

30

15

“packet” generally refers to encapsulated data at OSIlayer 3. In the TCP/IP world, the

term “datagram”is also used. In this specification, the term “packet” is intended to

encompass packets, datagrams, frames, and cells. In general, a packet format or frame

format refers to how data is encapsulated with various fields and headers for transmission

across a network. For example, a data packet typically includes an address destination

field, a length field, an error correcting code (ECC)field, or cyclic redundancy check

(CRC)field, as well as headers and footers to identify the beginning and end of the

packet. The terms “packet format” and “frame format,” also referred to as “cell format,”

are generally synonymous.

Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packetcarries the same information useful for recognizingall levels

of the protocol. For example, in a conversational flow associated with a particular

application, the application will cause the server to send a type-A packet, but so will

another. If, though, the particular application program always follows a type-A packet

with the sending of a type-B packet, and the other application program doesnot, then in

order to recognize packets of that application’s conversational flow, the monitor can be

available to recognize packets that match the type-B packet to associate with the type-A

packet. If such is recognized after a type-A packet, then the particular application

program’s conversational flow has started to reveal itself to the monitor 108.

Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchangesthat are

parts of conversational flows associated with other applications. One aspect of monitor

108 is its ability to maintain the state of a flow. The state of a flow is an indication ofall

previous eventsin the flow that lead to recognition of the contentof all the protocol

levels, e.g., the ISO model protocol levels. Another aspect of the invention is forming a

signature of extracted characteristic portions of the packet that can be usedto rapidly

identify packets belonging to the same flow.

In real-world uses of the monitor 108, the numberof packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitorhas verylittle time available to analyze and type each packet

and identify and maintain thestate of the flows passing through the connection point. The

NOACEx. 1015 Page 23

NOAC Ex. 1015 Page 24

“CHICKNESACN

10

15

20

25

30

16

monitor 108 therefore masksoutall the unimportant parts of each packetthat will not

contribute to its classification. However, the parts to mask-out will change with each

packet depending on whichflow it belongs to and depending onthestate of the flow.

The recognition of the packet type, and ultimately of the associated application

programsaccordingto the packets that their executions produce,is a multi-step process

within the monitor 108. At a first level, for example, several application programswillall

producea first kind of packet.Afirst “signature” is produced from selected parts of a

packet that will allow monitor 108to identify efficiently any packets that belong to the

same flow. In somecases, that packet type may be sufficiently unique to enable the

monitorto identify the application that generated such a packetin the conversational flow.

The signature can then be used toefficiently identify all future packets generated in traffic

related to that application.

In othercases, that first packet only starts the process of analyzing the

conversational flow, and more packets are necessary to identify the associated application

program.In such a case, a subsequent packet of a second type—butthat potentially

belongs to the same conversational flow—is recognized by using the signature. At such a

secondlevel, then, only a few of those application programs will have conversational

flows that can produce such a second packet type. Atthis level in the process of

classification, all application programs that are not in the set of those that lead to such a

sequence of packet types may be excluded in the process of classifying the conversational

flow that includes these two packets. Based on the knownpatterns for the protocol and for

the possible applications, a signature is produced that allows recognition of any future

packets that may follow in the conversational flow.

It may bethat the application is now recognized, or recognition may need to

proceedto a third level of analysis using the second level signature. For each packet,

therefore, the monitor parses the packet and generates a signatureto determineifthis

signature identified a previously encounteredflow,or shall be used to recognize future

packets belongingto the same conversational flow. In real time, the packetis further

analyzed in the context of the sequence of previously encountered packets (the state), and

of the possible future sequences such a past sequence may generate in conversational

flowsassociated with different applications. A new signature for recognizing future

packets mayalso be generated. This process of analysis continues until the applications

NOACEx. 1015 Page 24

NOAC Ex. 1015 Page 25

af.bEatESRAalWyWL
ACAIESCER

15

20

25

30

g 9

17

are identified. The last generated signature may then be used to efficiently recognize

future packets associated with the same conversational flow. Such an arrangement makes

it possible for the monitor 108 to cope with millions of packets per second that must be

inspected.

Anotheraspect of the invention is adding Eavesdropping.In alternative

embodiments of the present invention capable of eavesdropping, once the monitor 108

has recognized the executing application programs passing through somepoint in the

network 102 (for example, because of execution of the applications by the client 105 or

server 110), the monitor sends a message to some general purpose processor on the

networkthat can input the same packets from the same location on the network, and the

processorthen loads its own executable copy of the application program andusesit to

read the content being exchanged overthe network. In other words, once the monitor 108

has accomplished recognition of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an embodimentofthe present

invention that can be implemented with computer hardware and/or software. The system

300 is similar to monitor 108 in FIG. 1. A packet 302 is examined,e.g., from a packet

acquisition device at the location 121 in network 102 (FIG.1), and the packet evaluated,

for example in an attempt to determine its characteristics, e.g., all the protocol information

in a multilevel model, including what server application produced the packet.

The packet acquisition device is a commoninterface that converts the physical

signals and then decodes them intobits, and into packets, in accordance with the

particular network (Ethernet, frame relay, ATM,etc.). The acquisition device indicates to

the monitor 108 the type of network of the acquired packet or packets.

Aspects shownhereinclude:(1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of

packets to generate an identifying signature—accomplished by parser subsystem 301, and

(3) the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide protocol specific

information to parser subsystem 301 and to analyzer subsystem 303. Theinitialization

NOACEx. 1015 Page 25

NOAC Ex. 1015 Page 26

eeATENAa
aE

CeCeCUESy”

10

15

20

25

30

18

occurs prior to operation of the monitor, and only needs to re-occur when new protocols
are to be added.

A flowis a stream of packets being exchanged between any two addressesin the

network. For each protocol there are knownto be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the

flow, such as checksums,andthoseparts are not used for identification.

Parser subsystem 301 examines the packets using pattern recognition process 304

that parses the packet and determines the protocol types and associated headers for each

protocollayer that exists in the packet 302. An extraction process 306 in parser subsystem

301 extracts characteristic portions (signature information) from the packet 302. Both the

pattern information for parsing and the related extraction operations,e.g., extraction
masks, are supplied from a parsing-pattern-structures and extraction-operations database

(parsing/extractions database) 308filled by the compiler and optimizer 310.

The protocol description language (PDL)files 336 describes both patterns and

states of all protocols that an occur at any layer, including how to interpret header

information, how to determine from the packet header information the protocolsat the

next layer, and what information to extract for the purpose ofidentifying a flow, and

ultimately, applications and services. The layer selections database 338 describes the

particular layering handled by the monitor. That is, what protocols run on top of what

protocols at any layer level. Thus 336 and 338 combined describe how one would decode,

analyze, and understand the information in packets, and, furthermore, how the

information is layered. This information is input into compiler and optimizer 310.

Whencompiler and optimizer 310 executes, it generates twosets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe whatwill be recognized in the headers of

packets; the extraction operations are what elementsof a packetare to be extracted from

the packets based onthe patterns that get matched. Thus, database 308 of

parsing/extraction operations includes information describing how to determine a set of

one or more protocol dependentextraction operations from data in the packet that indicate

a protocol used in the packet.

NOACEx. 1015 Page 26

NOAC Ex. 1015 Page 27

ieaea

Bus

15

20

25

30

19

The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. Theseare the different states and state transitions that occur in

different conversational flows, and the state operations that need to be performed(e.g.,

patterns that need to be examined and newsignatures that need to be built) during any

state of a conversational flow to further the task of analyzing the conversational flow.

Thus, compiling the PDLfiles and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually or otherwise generated. Note

that in some embodimentsthe layering selections information is inherent rather than

explicitly described. For example, since a PDL file for a protocol includes the child

protocols, the parent protocols also may be determined.

In the preferred embodiment, the packet 302 from the acquisition device is input

into a packet buffer. The pattern recognition process 304is carried out by a pattern

analysis and recognition (PAR) engine that analyzes and recognizespatterns in the

packets.In particular, the PAR locates the next protocolfield in the header and

determines the length of the header, and may perform certain other tasks for certain types

of protocol headers. An exampleofthis is type and length comparisonto distinguish an

IEEE 802.3 (Ethernet) packet from the older type 2 (or Version 2) Ethernet packet, also

called a DIGITAL-Intel-Xerox (DIX) packet. The PAR also uses the pattern structures

and extraction operations database 308 to identify the next protocol and parameters

associated with that protocol that enables analysis of the next protocol layer. Once a

pattern or a set of patterns has beenidentified, it/they will be associated with a set of none

or more extraction operations. These extraction operations (in the form of commands and

associated parameters) are passed to the extraction process 306 implemented by an

extracting and informationidentifying (EID) engine that extracts selected parts of the

packet, including identifying information from the packet as required for recognizing this

packetas part of a flow. The extracted information is put in sequence and then processed

in block 312 to build a unique flow signature (also called a “key”) for this flow. A flow

signature dependsonthe protocols used in the packet. For some protocols, the extracted

components mayinclude source and destination addresses. For example, Ethernet frames

have end-point addresses that are useful in building a better flow signature. Thus, the

signature typically includesthe client and server address pairs. The signature is used to

NOACEx. 1015 Page 27

NOAC Ex. 1015 Page 28

Oooaa*<ESecs

pgessees

AESCN
10

15

20

25

30

20

recognize further packets that are or may bepart ofthis flow.

In the preferred embodiment, the building of the flow key includes. generating a
hashof the signature using a hash function. The purpose if using such a hashis

conventional—to spread flow-entries identified by the signature across a database for

efficient searching. The hash generated is preferably based on a hashing algorithm and

such hash generation is knownto thosein theart.
2

In one embodiment, the parser passes data from the packet—a parser record—that

includesthe signature(i.e., selected portions of the packet), the hash, and the packetitself

to allow for any state processing that requires further data from the packet. An improved

embodimentof the parser subsystem might generate a parser record that has some

predefined structure and that includes the signature, the hash, someflags related to some
of the fields in the parser record, and parts of the packet’s payload that the parser

subsystem has determined might be required for further processing,e.g., for state

processing.

Note that alternate embodiments may use some function other than concatenation

of the selected portions of the packet to make the identifying signature. For example,

some“digest function” of the concatenated selected portions may be used.

The parser record is passed onto lookup process 314 which looksin an internal

data store of records of knownflowsthat the system has already encountered, and decides

(in 316) whetheror not this particular packet belongs to a knownflow as indicated by the

presence of a flow-entry matching this flow in a database of known flows 324. A record

in database 324 is associated with each encountered flow.

The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but

that includesa field that can be modified. In particular, one or the UFKB recordfields

stores the packet sequence number, and anotherisfilled with state information in the form

of a program counter for a state processor that implements state processing 328.

The determination (316) of whether a record with the same signature already

exists is carried out by a lookup engine (LUE)that obtains new UFKB records and uses

the hash in the UFKB recordto lookupif there is a matching knownflow. In the

particular embodiment, the database of known flows 324is in an external memory. A

NOACEx. 1015 Page 28

Mos

NOAC Ex. 1015 Page 29

 elAEay

10

15

20

25

30

21

cache is associated with the database 324. A lookup by the LUE for a knownrecordis

carried out by accessing the cache usingthe hash, andif the entry is not already present in

the cache, the entry is looked up (again using the hash) in the external memory.

The flow-entry database 324 stores flow-entries that include the unique flow-

signature, state information, and extracted information from the packet for updating

flows, and one or morestatistical about the flow. Each entry completely describes a flow.

Database 324 is organized into bins that contain a number, denoted N,of flow-entries

(also called flow-entries, each a bucket), with N being 4 in the preferred embodiment.

Buckets(i.e., flow-entries) are accessed via the hash of the packet from the parser

subsystem 301 (i.e., the hash in the UFKB record). The hash spreads the flowsacross the

database to allow for fast lookupsofentries, allowing shallower buckets. The designer

selects the bucket depth N based on the amount of memory attached to the monitor, and

the numberofbits of the hash data value used. For example, in one embodiment, each

flow-entry is 128 bytes long,so for 128K flow-entries, 16 Mbytes are required. Using a

16-bit hash gives two flow-entries per bucket. Empirically, this has been shownto be

more than adequate for the vast majority of cases. Note that another embodimentuses

flow-entries that are 256 bytes long.

Herein, wheneveran accessto database 324 is described,it is to be understood

that the access is via the cache, unless otherwise stated or clear from the context.

If there is no flow-entry found matchingthe signature,i.e., the signature is for a

new flow, then a protocoland state identification process 318 further determinesthestate

and protocol. That is, process 318 determines the protocols and wherein thestate

sequence for a flow for this protocol’s this packet belongs. Identification process 318 uses

the extracted information and makesreference to the database 326 of state patterns and

processes. Process 318 is then followed by any state operations that need to be executed

on this packetby a state processor 328.

If the packet is found to have'a matching flow-entry in the database 324 (e.g., in
the cache), then a process 320 determines, from the looked-up flow-entry, if more

classification by state processing of the flow signatureis necessary. If not, a process 322

updates the flow-entry in the flow-entry database 324 (€.g., via the cache). Updating

includes updating one or morestatistical measuresstoredin the flow-entry. In our

NOACEx. 1015 Page 29

NOAC Ex. 1015 Page 30

AREAKIMNeage,RE

RiereesetnomreeromenngparceeneTeapawenaenihcrontapslimesoSugmiizensipetbormapimee-nvirom<aenmovehealauanatilennnatts;witeonsinhiapi vi

10

15

20

25

30

22

embodiment, thestatistical measures are stored in counters in the flow-entry.

If state processing is required,state process 328 is commenced. State processor

328 carries out any state operations specified for the state of the flow and updatesthe state

to the next state accordingtoaset ofstate instructions obtained form thestate pattern and

processes database 326.

Thestate processor 328 analyzes both new andexisting flows in order to analyze

all levels of the protocolstack, ultimately classifying the flows by application (level 7 in

the ISO model). It does this by proceeding from state-to-state based on predefined state

transition rules and stateoperations as specified in state processor instruction database

326. A state transition rule is a rule typically containing a test followed by the next-state

to proceedto if the test result is true. An operation is an operation to be performed while

the state processoris in a particular state—for example,in order to evaluate a quantity

needed to applythe state transition rule. The state processor goes through each rule and

each state processuntil the test is true, or there are no moretests to perform.

In general, the set of state operations may be none or more operations on a packet,

and carrying out the operation or operations may leave one inastate that causes exiting

the system prior to completing the identification, but possibly knowing more about what

state andstate processes are needed to execute next, i.e., when a next packet of this flow

is encountered. As an example, a state process (set of state operations) at a particular state

maybuild a new signature for future recognition packets of the nextstate.

By maintaining the state of the flows and knowing that new flows maybe set up

using the information from previously encountered flows, the networktraffic monitor 300

provides for (a) single-packet protocol recognition of flows, and (b) multiple-packet

protocol recognition of flows. Monitor 300 can even recognize the application program

from one or more disjointed sub-flows that occur in server announcementtype flows.

What may seem to prior art monitors to be some unassociated flow, may be recognized by

the inventive monitorusing the flow signature to be a sub-flow associated with a

previously encountered sub-flow.

Thus, state processor 328 applies the first state operation to the packet for this

particular flow-entry. A process 330 decides if more operations needto be performedfor

this state. If so, the analyzer continues looping between block 330 and 328 applying

NOACEx. 1015 Page 30

NOAC Ex. 1015 Page 31

us4
es;

,,re

10

15

20

25

30

® 3

23

additional state operationsto this particular packet until all those operations are

completed—that is, there are no more operations for this packetin this state. A process

332 decides if there are further states to be analyzed for this type of flow accordingto the

state of the flow andthe protocol, in orderto fully characterize the flow. If not, the

conversational flow has now beenfully characterized and a process 334 finalizes the

classification of the conversational flow for the flow.

In the particular embodiment,the state processor 328 starts the state processing by

sing the last protocol recognized by the parseras an offset into a jump table jump

vector). The jumptable finds the state processor instructions to use for that protocol in the
state patterns and processes database 326. Mostinstructions test something in the unified
flow key buffer, or the flow-entry in the database of knownflows 324,if the entry exists.

The state processor may havetotest bits, do comparisons, add, or subtract to perform the

test. For example, a common operation carried out by the state processor is searching for

one or more patterns in the payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides whetherthe flow is at an

end state. If not at an endstate, the flow-entry is updated (or created if a new flow) for

this flow-entry in process 322.

Furthermore,if the flow is knownandif in 332 it is determined that there are

further states to be processed using later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging

to this fully analyzed conversational flow.

After updating, database 324 therefore includes the set of all the conversational

flows that have occurred.

Thus, the embodimentof present invention shownin FIG. 3 automatically

maintains flow-entries, which in one aspect includes storing states. The monitor of FIG. 3

also generates characteristic parts of packets—the signatures—that can be used to

recognize flows. The flow-entries may be identified and accessed by their signatures.

Once a packetis identified to be from a known flow,the state of the flow is known and

this knowledge enablesstate transition analysis to be performedin real time for each

different protocol and application. In a complex analysis,state transitions are traversed as
NOACEx. 1015 Page 31

NOAC Ex. 1015 Page 32

 10

15

20

25

30

24

more and more packets are examined. Future packets that are part of the same

conversational flow have their state analysis continued from a previously achievedstate.

When enough packets related to an application of interest have been processed,a final

recognition state is ultimately reached, i.e., a set of states has been traversed bystate

analysis to completely characterize the conversational flow. The signature for that final

state enables each new incoming packet of the same conversational flow to be

individually recognized in real time.

In this manner, one of the great advantagesof the present inventionis realized.

Oncea particular set of state transitions has been traversedfor the first time and ends in a

final state, a short-cut recognition pattern—a signature—can be generatedthat will key on

every new incomingpacketthatrelates to the conversational flow. Checkinga signature
involves a simple operation, allowing high packet rates to be successfully monitored on
the network.

In improved embodiments, several state analyzers are run in parallel so that a large

numberof protocols and applications may be checked for. Every knownprotocol and

application will have at least one unique set of state transitions, and can therefore be

uniquely identified by watching such transitions.

Wheneach new conversational flow starts, signatures that recognize the flow are

automatically generated on-the-fly, and as further packets in the conversational flow are

encountered, signatures are updated and thestates of the set of state transitions for any

potential application are further traversed according to the state transition rules for the

flow. The new states for the flow—those associated with a set of state transitions for one

or more potential applications—are addedto the records of previously encountered states

for easy recognition and retrieval when a new packetin the flow is encountered.

Detailed operation

FIG. 4 diagramsan initialization system 400 that includes the compilation process.

Thatis, part of the initialization generates the pattern structures and extraction operations

database 308 andthe state instruction database 328. Suchinitialization can occuroff-line

or from a central location.

Thedifferent protocols that can exist in different layers may be thoughtofas

nodes of one or more trees of linked nodes. The packettype is the root ofa tree (called
NOACEx. 1015 Page 32

NOAC Ex. 1015 Page 33

10

15

20

25

30

25

level 0). Each protocol is either a parent node or a terminal node. A parent nodelinks a

protocolto other protocols (child protocols) that can be at higher layer levels. Thus a

protocol may have zero or more children. Ethernet packets, for example, have several

variants, each having a basic format that remains substantially the same. An Ethernet

packet(the root or level 0 node) may be an Ethertype packet—also called an Ethernet

Type/Version 2 and a DIX (DIGITAL-Intel-Xerox packet)—or an IEEE 803.2 packet.

Continuing with the IEEE 802.3 packet, one of the children nodes maybethe IP protocol,

and oneof the children of the IP protocol may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame(i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604).

Also shownin FIG. 16 is some(but not all) of the information specified in the PDL files

for extraction the signature.

FIG. 17A now showsthe header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packetthat indicates the next layer level is a two-byte type field 1702 containing the child

recognition pattern for the next level. The remaining information 1704 is shown hatched

becauseit not relevant for this level. The list 1712 showsthe possible children for an

Ethertype packetas indicated by whatchild recognition pattern is found offset 12.

FIG. 17B showsthestructure of the header of one of the possible next levels, that of the

IP protocol. The possible children of the IP protocol are shownin table 1752.

The pattern, parse, and extraction database (pattern recognition database, or PRD)

308 generated by compilation process 310, in one embodiment,is in the form of a three

dimensional structure that provides for rapidly searching packet headersfor the next

protocol. FIG. 18A showssuch a 3-Drepresentation 1800 (which may be considered as

an indexed set of 2-D representations). A compressed form ofthe 3-D structure is

preferred.

An alternate embodimentof the data structure used in database 308is illustrated in

FIG. 18B. Thus,like the 3-D structure of FIG. 18A,the data structure permits rapid

searches to be performed by the pattern recognition process 304 by indexing locations ina

memory rather than performing addresslink computations. In this alternate embodiment,

NOACEx. 1015 Page 33

NOAC Ex. 1015 Page 34

20

25

30

26

the PRD 308 includestwoparts, a single protocol table 1850 (PT) which has an entry for

each protocol knownfor the monitor, and a series of Look Up Tables 1870 (LUT’s) that

are used to identify known protocols and their children. The protocol] table includes the

parameters needed bythe pattern analysis and recognition process 304 (implemented by

PRE 1006) to evaluate the header information in the packetthat is associated with that

protocol, and parameters needed by extraction process 306 (implemented by slicer 1007)

to process the packet header. When there are children, the PT describes which bytes in the

header to evaluate to determine the child protocol. In particular, each PT entry contains

the headerlength, an offset to the child, a slicer command, and someflags.

The pattern matching is carried out by finding particular “child recognition codes”
in the headerfields, and using these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have oneof four values, indicating the protocol that has

been recognized, a codeto indicate that the protocol has been partially recognized (more

LUTlookupsare needed), a codeto indicate that this is a terminal node, and a null node

to indicate a null entry. The next LUT to lookupis also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-code information in the

form of protocol description files is shown as 402.In the particular embodiment, the high

level decoding descriptions includesa set of protocol description files 336, one for each

protocol, and a set of packet layer selections 338, which describesthe particular layering

(sets of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of packet parse-and-extract

operations 406 is generated (404), and a set of packet state instructions and operations

407 is generated (405)in the form ofinstructions for the state processor that implements

state processing process 328. Data files for each type of application and protocol to be

recognized by the analyzer are downloaded from the pattern, parse, and extraction

database 406 into the memory systemsof the parser and extraction engines. (See the

parsing process 500 description and FIG. 5; the extraction process 600 description and

FIG,6; and the parsing subsystem hardware description and FIG,10). Data files for each

type of application and protocol to be recognized by the analyzer are also downloaded

from the state-processor instruction database 407 into the state processor. (see the state

processor 1108 description and FIG.11.).

NOACEx. 1015 Page 34

NOAC Ex. 1015 Page 35

-.:
ai:

f]
_

:

ul
ji

15

20

25

30

27

Note that generating the packet parse and extraction operations builds and links

the three dimensional structure (one embodiment)orthe or all the lookuptables for the

PRD.

Because of the large number ofpossible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which

children share common parents. When implemented in the form of the LUT’s, this

process can generate a single LUT from a plurality of LUT’s. The optimization process

further includes a compaction process that reduces the space neededtostore the data of

the PRD.

As an example of compaction, consider the 3-D structure of FIG, 18A that can be

thoughtof as a set of 2-D structures each representing a protocol. To enable saving space

by using only one array per protocol which may have several parents, in one embodiment,

the pattern analysis subprocess keeps a “current header” pointer. Each location(offset)

index for each protocol 2-D array in the 3-D structure is a relative location starting with

the start of headerfor the particular protocol. Furthermore, each of the two-dimensional

arrays is sparse. The next step of the optimization, is checkingall the 2-D arrays against

all the other 2-D arrays to find out which ones can share memory. Manyof these 2-D

arrays are often sparsely populated in that they each have only a small numberofvalid

entries. So, a process of "folding" is next used to combine two or more 2-D arrays

together into one physical 2-D array without losing the identity of any ofthe original 2-D

arrays (i.e., all the 2-D arrays continue to exist logically). Folding can occur between any

2-D arrays irrespective of their location in the tree as long as certain conditions are met.

Multiple arrays may be combinedintoasingle array as longas the individual entries do

not conflict with each other. A fold numberis then used to associate each element with its

original array. A similar folding process is used for the set of LUTs 1850 in the alternate

embodimentof FIG. 18B.

In 410, the analyzer has beeninitialized andis ready to perform recognition.

FIG. 5 showsa flowchart of how actual parser subsystem 301 functions. Starting

at 501, the packet 302is input to the packet buffer in step 502. Step 503 loads the next

(initially the first) packet component from the packet 302. The packet components are

extracted from each packet 302 one elementat a time. A check is made (504) to determine

NOACEx. 1015 Page 35

NOAC Ex. 1015 Page 36

20

25

30

28

if the load-packet-componentoperation 503 succeeded,indicating that there was more in

the packet to process.If not, indicating all components have been loaded,the parser

subsystem 301 builds the packet signature (512)—the next stage (FIG 6).

If a componentis successfully loaded in 503, the node and processes are fetched

(505) from the pattern, parse and extraction database 308 to providea set of patterns and

processes for that node to apply to the loaded packet component. The parser subsystem

301 checks (506) to determineif the fetch pattern node operation 505 completed

successfully, indicating there was a pattern node that loaded in 505. If not, step 511

movesto the next packet component. If yes, then the node and pattern matching process

are applied in 507 to the componentextracted in 503. A pattern match obtained in 507 (as

indicated by test 508) means the parser subsystem 301 has found a nodein the parsing

elements; the parser subsystem 301 proceeds to step 509 to extract the elements.

If applying the node process to the componentdoes not produce a match(test

508), the parser subsystem 301 moves (510) to the next pattern node from the pattern

database 308 andto step 505 to fetch the next node and process. Thus,there is an

“applying patterns” loop between 508 and 505. Oncethe parser subsystem 301 completes

all the patterns and has either matched or not, the parser subsystem 301 movesto the next

packet component (511).

Onceall the packet components have been the loaded and processed from the

input packet 302, then the load packet will fail (indicated by test 504), and the parser

subsystem 301 movesto build a packet signature which is described in FIG. 6

FIG.6 is a flow chart for extracting the information from whichto build the

packet signature. The flowstarts at 601, which is the exit point 513 of FIG. 5. At this

point parser subsystem 301 has a completed packet componentand a pattern node

available in a buffer (602). Step 603 loads the packet componentavailable from the

pattern analysis process of FIG.5. If the load completed(test 604), indicating that there

was indeed another packet component, the parser subsystem 301 fetches in 605 the

extraction and process elements received from the pattern node componentin 602.If the

fetch was successful (test 606), indicating that there are extraction elementsto apply, the

parser subsystem 301 in step 607 applies that extraction process to the packet component

based on an extraction instruction received from that pattern node. This removes and

NOACEx. 1015 Page 36

NOAC Ex. 1015 Page 37

 15

20

25

30

29

saves an element from the packet component.

In step 608, the parser subsystem 301 checksif there is more to extract from this

component,andif not, the parser subsystem 301 moves back to 603 to load the next

packet componentat hand andrepeats the process.If the answeris yes, then the parser

subsystem 301 movesto the next packet componentratchet. That new packet component

is then loaded in step 603. As the parser subsystem 301 moved through the loop between

608 and 603, extra extraction processes are applied either to the same packet componentif

there is more to extract, or to a different packet component if there is no more to extract.

The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for

the particular packet. Once loading the next packet componentoperation 603fails (test

604), all the components have been extracted. The built signature is loaded into the

signature buffer (610) and the parser subsystem 301 proceeds to FIG. 7 to complete the

signature generation process.

Referring nowto FIG.7, the process continues at 701. The signature buffer and

the pattern node elements are available (702). The parser subsystem 301 loads the next

pattern node element. If the load was successful (test 704) indicating there are more

nodes,the parser subsystem 301 in 705 hashes the signature buffer element based on the

hash elements that are found in the pattern node that is in the element database. In 706 the

resulting signature and the hash are packed. In 707 the parser subsystem 301 moves on to

the next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more patterns of elementsleft

(test 704). Onceall the patterns of elements have been hashed, processes 304, 306 and

312 of parser subsystem 301 are complete. Parser subsystem 301 has generated the

signature used by the analyzer subsystem 303.

A parserrecordis loaded into the analyzer, in particular, into the UFKB in the

form of a UFKB record whichis similar to a parser record, but with one or more different

fields.

FIG.8 is a flow diagram describing the operation of the lookup/update engine

(LUE) that implements lookup operation 314. The processstarts at 801 from FIG. 7 with

the parser recordthat includes a signature, the hash andat least parts of the ayload. In
NOACEx. 1015 Page 37

NOAC Ex. 1015 Page 38

10

15

20

25

30

30

802 those elements are shown in the form of a UFKB-entry in the buffer. The LUE,the

lookup engine 314 computes a “record bin number” from the hash for a flow-entry. A bin

herein may have one or more “buckets” each containing a flow-entry. The preferred

embodimenthas four buckets per bin.

Since preferred hardware embodimentincludes the cache,all data accesses to

records in the flowchart of FIG. 8 are stated as being to or from the cache.

Thus, in 804, the system looks up the cache for a bucket from that bin using the

hash. If the cache successfully returns with a bucket from the bin number,indicating there

are more bucketsin the bin, the lookup/update engine compares (807) the current

signature (the UFKB-entry’s signature) from that in the bucket(i.e., the flow-entry

signature). If the signatures match (test 808), that record (in the cache) is marked in step

810 as “in process” and a timestamp added. Step 811 indicates to the UFKB that the

UFKB-entry in 802 hasastatus of “found.” The “found”indication allowsthe state

processing 328 to begin processing this UFKB element. The preferred hardware

embodimentincludes one or morestate processors, and these can operate in parallel with

the lookup/update engine.

In the preferred embodiment,a set of statistical operations is performed by a

calculator for every packet analyzed. The statistical operations may include one or more

of counting the packets associated with the flow; determiningstatistics related to the size

of packets of the flow; compiling statistics on differences between packets in each

direction, for example using timestamps; and determiningstatistical relationships of

timestampsofpackets in the same direction. Thestatistical measures are kept in the flow-

entries. Otherstatistical measures also may be compiled. Thesestatistics may be used

singly or in combination bya statistical processor componentto analyze manydifferent

aspects ofthe flow. This may include determining network usage metrics from the

statistical measures, for example to ascertain the network’s ability to transfer information

for this application. Such analysis provides for measuring the quality of service of a

conversation, measuring how well an application is performing in the network, measuring

network resources consumedbyan application, and so forth.

To provide for such analyses, the lookup/update engine updates one or more

counters that are part of the flow-entry (in the cache) in step 812. The processexits at 813.

NOACEx. 1015 Page 38

NOAC Ex. 1015 Page 39

10

15

20

uf : 3 25

30

ekI.4eae

31

In our embodiment,the counters includethetotal packets of the flow, the time, and a

differential time from the last timestamp to the present timestamp.

It may be that the bucketof the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 movesto the next bucketforthis bin. Step 804 again

looks up the cache for another bucket from that bin. The lookup/update engine thus

continues lookup up buckets of the bin until there is either a match in 808 or operation

804 is not successful (test 805), indicating that there are no more buckets in the bin and no

match was found.

If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this

_ packet is new, and in 812, any statistical updating operations are performedfor this packet

by updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new recordforthis flow (again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry for the packet with a

“new”status or a “found”status.

Note that the above system uses a hash to which more than one flow-entry can

match. A longer hash maybeusedthat correspondstoasingle flow-entry. In such an

embodiment, the flow chart of FIG. 8 is simplified as would beclear to those in theart.

The hardware system

Eachofthe individual hardware elements through which the data flows in the

system are now described with reference to FIGS. 10 and 11. Note that while we are

describing a particular hardware implementation of the invention embodimentofFIG.3,

it would be clear to one skilled in the art that the flow of FIG. 3 mayalternatively be

implemented in software running on one or more general-purpose processors, or only

partly implemented in hardware. An implementation of the invention that can operate in

software is shown in FIG. 14. The hardware embodiment (FIGS. 10 and 11) can operate

at over a million packets per second, while the software system of FIG. 14 may be

suitable for slower networks. Tooneskilled in the art it would be clear that more and

more of the system may be implemented in software as processors becomefaster.

FIG. 10 is a description of the parsing subsystem (301, shownhere as subsystem

NOACEx. 1015 Page 39

NOAC Ex. 1015 Page 40

KatsSNSSaSeoMEis

10

15

20

25

30

32

1000) as implemented in hardware. Memory 1001is the pattern recognition database

memory,in whichthe patternsthat are going to be analyzed are stored. Memory 1002is

the extraction-operation database memory, in which the extraction instructionsare stored.

Both 1001 and 1002 correspondto internal data structure 308 of FIG. 3. Typically, the

system is initialized from a microprocessor (not shown) at which time these memories are

loaded through a host interface multiplexor and control register 1005 via the internal

buses 1003 and 1004. Note that the contents of 1001 and 1002 are preferably obtained by

compiling process 310 of FIG.3.

A packetenters the parsing system via 1012 into a parser input buffer memory

1008 using control signals 1021 and 1023, which control an input buffer interface

controller 1022. The buffer 1008 and interface contro! 1022 connect to a packet

acquisition device (not shown). The buffer acquisition device generates a packetstart

signal 1021 and the interface control 1022 generates a next packet(i.e., ready to receive

data) signal 1023 to control the data flow into parser input buffer memory 1008. Once a

packetstarts loading into the buffer memory 1008, pattern recognition engine (PRE) 1006

carries out the operations on the input buffer memory described in block 304 of FIG.3.

That is, protocol types and associated headers for each protocollayerthat exist in the

packet are determined.

The PRE searches database 1001 and the packet in buffer 1008 in order to

recognize the protocols the packet contains. In one implementation, the database 1001

includesa series of linked lookup tables. Each lookuptable uses eight bits of addressing.

Thefirst lookup table is always at address zero. The Pattern Recognition Engine uses a

base packetoffset from a control register to start the comparison.It loads this value into a

current offset pointer (COP).It then reads the byte at base packet offset from the parser

input buffer and usesit as an address into the first lookuptable.

Each lookup table returns a word thatlinks to another lookup table orit returns a

terminal flag. If the lookup produces a recognition event the databasealso returns a

commandfor theslicer. Finally it returns the value to add to the COP.

The PRE 1006includes of a comparison engine. The comparison enginehasa first

stage that checksthe protocoltype field to determineif it is an 802.3 packet andthe field

shouldbetreated as a length.If it is not a length, the protocolis checked in a second

NOACEx. 1015 Page 40

NOAC Ex. 1015 Page 41

15

20

25

30

 z@

33

stage. Thefirst stage is the only protocol level that is not programmable. The secondstage

has twofull sixteen bit content addressable memories (CAMs)definedfor future protocol

additions.

Thus, whenever the PRE recognizesa pattern, it also generates a commandfor the

extraction engine(also called a “slicer”) 1007. The recognized patterns and the commands

are sent to the extraction engine 1007 that extracts information from the packetto build

the parser record. Thus, the operations of the extraction engine are those carried out in

blocks 306 and 312 of FIG. 3. The commandsare sent from PRE 1006to slicer 1007 in

the form of extraction instruction pointers whichtell the extraction engine 1007 where to

a find the instructions in the extraction operations database memory(i.e., slicer instruction

database) 1002.

Thus, when the PRE 1006 recognizesa protocol it outputs both the protocol

identifier and a process code to the extractor. The protocol identifier is added to the flow

signature and the process codeis used to fetch the first instruction from the instruction

database 1002. Instructions include an operation code and usually source and destination

offsets as well as a length. The offsets and length are in bytes. A typical operation is the

MOVE instruction. This instruction tells the slicer 1007 to copy n bytes of data

unmodified from the input buffer 1008 to the output buffer 1010. The extractor contains a

byte-wise barrel shifter so that the bytes moved can be packedinto the flow signature.

The extractor contains anotherinstruction called HASH. This instructiontells the

extractor to copy from the input buffer 1008 to the HASH generator.

Thustheseinstructions are for extracting selected element(s) of the packetin the

input buffer memory andtransferring the data to a parser output buffer memory 1010.

Someinstructions also generate a hash.

The extraction engine 1007 and the PRE operateas a pipeline. That is, extraction

engine 1007 performsextraction operations on data in input buffer 1008 already

processed by PRE 1006 while more(i.e., later arriving) packet information is being

simultaneously parsed by PRE 1006. This provides high processing speed sufficient to

accommodate the high arrival rate speed of packets.

Onceall the selected parts of the packet used to form the signatureare extracted,

the hashis loaded into parser output buffer memory 1010. Anyadditional payload from

NOACEx. 1015 Page 41

NOAC Ex. 1015 Page 42

esa ,OR

mG

aT”Le
ro

onxae

Peg «
cn
ie
Fel

10

15

20

25

30

34

the packetthat is required for further analysis is also included. The parser output memory

1010 is interfaced with the analyzer subsystem by analyzerinterface control 1011. Once

all the information of a packetis in the parser output buffer memory 1010, a data ready

signal 1025 is asserted by analyzer interface control. The data from the parser subsystem

1000 is moved to the analyzer subsystem via 1013 when an analyzer ready signal 1027is

asserted.

FIG. 11 shows the hardware components and dataflow for the analyzer subsystem

that performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzeris

initialized prior to operation,and initialization includes loading the state processing

information generated by the compilation process 310 into a database memoryfor the

state processing, called state processor instruction database (SPID) memory 1109.

The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer

host interface controller 1118, which in turn has access to a cache system 1115. The cache

system has bi-directional access to and from the state processor of the system 1108. State

processor 1108 is responsible for initializing the state processor instruction database

memory 1109 from information given overthe host businterface 1122.

With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

comprising packet signatures and payloads that come from the parserinto the unified flow

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB

records. A UFKB recordis essentially a parser record; the UFKB holds records of packets

that are to be processed or that are in process. Furthermore, the UFKB providesfor one or

morefields to act as modifiable status flags to allow different processes to run

concurrently.

Three processing engines run concurrently and access records in the UFKB 1103:

the lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow

insertion and deletion engine (FIDE) 1110. Each of these is implemented by one or more

finite state machines (FSM's). There is bi-directional access betweeneachofthefinite

state machines and the unified flow key buffer 1103. The UFKB recordincludesa field

that stores the packet sequence number, and anotherthatis filled with state informationin

the form of a program counterfor the state processor 1108 that implements state

processing 328. Thestatus flags of the UFKB for any entry includesthat the LUE is done

NOACEx. 1015 Page 42

NOAC Ex. 1015 Page 43

pate“Sn 10

15

20

25

30

35

and that the LUE is transferring processing of the entry to the state processor. The LUE

doneindicatoris also used to indicate what the next entry is for the LUE.Therealso is

provided a flag to indicate that the state processor is done with the current flow and to

indicate what the next entry is for the state processor. There also is provided a flag to

indicate the state processoris transferring processing of the UFKB-entry to the flow

insertion and deletion engine.

A new UFKB recordis first processed by the LUE 1107. A record that has been

processed by the LUE 1107 maybeprocessed bythe state processor 1108, and a UFKB

record data may be processed bythe flow insertion/deletion engine 1110 after being

processed bythe state processor 1108 or only by the LUE. Whetheror not a particular

engine has been applied to any unified flow key buffer entry is determinedbystatus fields

set by the engines upon completion. In one embodiment, a status flag in the UFKB-entry

indicates whether an entry is new or found. In other embodiments, the LUE issuesa flag

to pass the entry to the state processor for processing, and the required operationsfor a

new record are includedin the SP instructions.

Note that each UFKB-entry maynot needto be processed byall three engines.

Furthermore, some UFKB entries may need to be processed more than once by a

particular engine.

Each of these three engines also has bi-directional access to a cache subsystem

1115 that includes a caching engine. Cache 1115 is designed to have information flowing

in and outofit from five different points within the system: the three engines, external

memory via a unified memory controller (UMC) 1119 and a memory interface 1123, and

a microprocessorvia analyzer host interface and control unit (ACIC) 1118 and host

interface bus (HIB) 1122. The analyzer microprocessor(or dedicated logic processor) can

thus directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that includesa set of content

addressable memorycells (CAMs)each including an addressportion and a pointer

portion pointing to the cache memory (e.g., RAM) containing the cached flow-entries.

The CAMsare arranged as a stack ordered from a top CAM to a bottom CAM.The

bottom CAM’s pointerpoints to the least recently used (LRU) cache memory entry.

Wheneverthere is a cache miss, the contents of cache memory pointed to by the bottom

NOACEx. 1015 Page 43

NOAC Ex. 1015 Page 44‘ MRS)teecaesae
,

10

15

20

25

30

36

CAM arereplaced bythe flow-entry from the flow-entry database 324. This now becomes

the most recently used entry, so the contents of the bottom CAM are movedto the top

CAM and all CAM contents are shifted down. Thus, the cache is an associative cache

with a true LRU replacementpolicy.

The LUE 1107first processes a UFKB-entry, and basically performs the operation

of blocks 314 and 316 in FIG.3. A signal is provided to the LUE to indicate that a “new”

UFKB-entry is available. The LUE usesthe hash in the UFKB-entry to read a matching

bin of up to four buckets from the cache. The cache system attempts to obtain the

matching bin. If a matching binis not in the cache, the cache 1115 makesthe request to

the UMC 1119 to bring in a matching bin from the external memory.

Whena flow-entry is found using the hash, the LUE 1107 looks at each bucket

and comparesit using the signature to the signature of the UFKB-entry until thereis a

matchor there are no more buckets.

If there is no match,orif the cache failed to provide a bin of flow-entries from the

cache, a time stampin set in the flow key of the UFKB record,a protocol identification

and state determination is made using a table that was loaded by compilation process 310

duringinitialization, the status for the record is set to indicate the LUE has processed the

record, and an indication is made that the UFKB-entry is ready to start state processing.

Theidentification and state determination generates a protocol identifier which in the

preferred embodimentis a “jump vector”for the state processor whichis kept by the

UFKB for this UFKB-entry and used by the state processorto start state processing for

the particular protocol. For example, the jump vector jumpsto the subroutine for

processingthe state.

If there was a match,indicating that the packet of the UFKB-entryis for a

previously encountered flow, then a calculator componententers one or morestatistical

measuresstored in the flow-entry, including the timestamp. In addition, a time difference

from the last stored timestamp maybestored, and a packet count may be updated. The

state of the flow is obtained from the flow-entry is examined by looking at the protocol

identifier stored in the flow-entry of database 324.If that value indicates that no more

classification is required, then the status for the recordis set to indicate the LUE has

processed the record. In the preferred embodiment, the protocol identifier is a jump

NOACEx. 1015 Page 44

NOAC Ex. 1015 Page 45

ee

Eeeaa +.eens

tare

mt

10

15

20

25

30

37

vector for the state processorto a subroutine to state processing the protocol, and no more

classification is indicated in the preferred embodimentby the jump vector being zero.If

the protocol identifier indicates more processing, then an indication is made that the

UFKB-entry is ready to start state processing andthestatus forthe recordis set to indicate

the LUE hasprocessedthe record.

The state processor 1108 processes information in the cache system according to a

UFKB-entry after the LUE has completed. State processor 1108 includes a state processor

program counter SPPCthat generates the address in the state processorinstruction

database 1109 loaded by compiler process 310 duringinitialization. It contains an

Instruction Pointer (SPIP) which generates the SPID address. The instruction pointer can

be incremented or loaded from a Jump Vector Multiplexor which facilitates conditional

branching. The SPIP can be loaded from oneofthree sources: (1) A protocol identifier

from the UFKB,(2) an immediate jump vector form the currently decoded instruction, or

(3) a value provided bythe arithmetic logic unit (SPALU)includedin the state processor.

Thus, after a Flow Keyis placed in the UFKB by the LUE with a knownprotocol

identifier, the Program Counteris initialized with the last protocol recognized by the

Parser. This first instruction is a jump to the subroutine which analyzes the protocol that

was decoded.

The State Processor ALU (SPALU)containsall the Arithmetic, Logical and String

Compare functions necessary to implement the State Processorinstructions. The main

blocks of the SPALU are: The A and B Registers, the Instruction Decode & State

Machines,the String Reference Memory the Search Engine, an Output Data Register and

an Output Control Register

The Search Enginein turn contains the Target Search Registerset, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-or-

ing them together.

Thus, after the UFKB sets the program counter, a sequence of one or morestate

operationsare be executed in state processor 1108 to further analyze the packetthatis in

the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor 1108. The state processoris

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is
NOACEx. 1015 Page 45

NOAC Ex. 1015 Page 46

cic
fesyne

BesBeengoPreeve
25AareARehRSIAa38EH

10

15

20

25

30

38

new or corresponding to a found flow-entry. This UFKB-entryis retrieved from unified

flow key buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used

to set the state processor’s instruction counter. The state processor 1108 starts the process

by using the last protocol recognized by the parser subsystem 301 as an offset into a jump

table. The jumptable takes us to the instructionsto use for that protocol. Most

instructions test something in the unified flow key buffer or the flow-entry if it exists. The

state processor 1108 mayhaveto test bits, do comparisons, add or subtract to perform the

test,

Thefirst state processorinstruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performsthe one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare,etc.), so that many suchinstructions need to be

performed on each unified flow key buffer entry. One aspect of the state processorisits

ability to search for one or more (up to four) reference strings in the payloadpart of the

UFKB entry. This is implemented by a search engine componentofthe state processor

responsive to special searching instructions.

In 1307, a check is made to determineif there are any moreinstructionsto be

performed for the packet. If yes, then in 1308 the system sets the state processor

instruction pointer (SPIP) to obtain the next instruction. The SPIP maybe set by an

immediate jump vector in the currently decoded instruction, or by a value provided by the

SPALUduring processing.

The nextinstruction to be performed is now fetched (1304) for execution. This

state processing loop between 1304 and 1307 continuesuntil there are no more

instructions to be performed.

At this stage, a check is made in 1309if the processing on this particular packet

has resulted in a final state. That is, is the analyzer is done processing not only for this

particular packet, but for the whole flow to which the packet belongs, and the flow is fully

determined. If indeed there are no morestates to process forthis flow, then in 1311 the

processorfinalizes the processing. Somefinal states may need to puta state in place that

tells the system to remove a flow—for example, if a connection disappears from a lower

level connection identifier. In that case, in 1311, a flow removal state is set and saved in

NOACEx. 1015 Page 46

NOAC Ex. 1015 Page 47

10

20

25

30

39

the flow-entry. The flow removal state may be a NOP (no-op) instruction which means

there are no removal instructions.

Once the appropriate flow removal instruction as specified for this flow (a NOP or

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can

now obtain another unified flow key buffer entry to process.

If at 1309it is determined that processing for this flow is not completed, then in

1310 the system savesthe state processorinstruction pointer in the current flow-entry in

the current flow-entry. That will be the next operation that will be performed the next

time the LRE 1107 finds packet in the UFKB that matches this flow. The processor now

exits processing this particular unified flow key buffer entry at 1313.

Note that state processing updates information in the unified flow key buffer 1103

and the flow-entry in the cache. Once the state processoris done, a flag is set in the

UFKB forthe entry that the state processor is done. Furthermore,If the flow needs to be

inserted or deleted from the database of flows, control is then passed on to the flow

insertion/deletion engine 1110 for that flow signature and packet entry. This is done by

the state processor setting another flag in the UFKB for this UFKB-entry indicating that

the state processoris passing processing ofthis entry to the flow insertion and deletion

engine.

The flow insertion and deletion engine 1110 is responsible for maintaining the

flow-entry database. In particular, for creating new flowsin the flow database, and

deleting flows from the databaseso that they can be reused.

The processofflow insertion is now described with the aid of FIG. 12. Flows are

groupedinto bins of buckets by the hash value. The engine processes a UFKB-entry that

may be neworthat the state processor otherwise has indicated needs to be created.

FIG. 12 showsthe case of a new entry being created. A conversation record bin

(preferably containing 4 buckets for four records) is obtained in 1203. This is a bin that

matches the hash of the UFKB,so this bin may already have been sought for the UFKB-

entry by the LUE.In 1204 the FIDE 1110 requests that the record bin/bucket be

maintained in the cache system 1115. If in 1205 the cache system 1115 indicates that the

bin/bucket is empty, step 1207 inserts the flow signature (with the hash) into the bucket

and the bucket is marked “used” in the cache engine of cache 1115 using a timestampthat

NOACEx. 1015 Page 47

NOAC Ex. 1015 Page 48

20

25

30

 hh

40

is maintained throughoutthe process. In 1209, the FIDE 1110 compares the bin and

bucket record flow signature to the packetto verify that all the elementsare in place to

complete the record. In 1211 the system marks the record bin and bucketas “in process”

and as “new”in the cache system (and hence in the external memory). In 1212, the initial

statistical measures for the flow-recordare set in the cache system. This in the preferred

embodimentclears the set of counters used to maintain statistics, and may perform other

proceduresforstatistical operations requires by the analyzer for the first packet seen for a

particular flow.

Backin step 1205, if the bucket is not empty, the FIDE 1110 requests the next

bucketfor this particular bin in the cache system.If this succeeds, the processes of 1207,

1209, 1211 and 1212 are repeated for this next bucket.If at 1208, there is no valid bucket,

the unified flow key buffer entryfor the packetis set as “drop,” indicating that the system

cannotprocess the particular packet because there are no buckets left in the system. The

process exits at 1213. The FIDE 1110 indicates to the UFKB thatthe flow insertion and

deletion operations are completed for this UFKB-entry. This also lets the UFKB provide

the FIDE with the next UFKB record.

Oncea set of operations is performed on a unified flow key buffer entry by all of

the engines required to access and managea particular packet and its flow signature, the

unified flow key buffer entry is marked as “completed.” That element will then be used

by the parser interface for the next packet and flow signature coming in from the parsing

and extracting system.

All flow-entries are maintained in the external memory and someare maintained

in the cache 1115. The cache system 1115 is intelligent enough to access the flow

database and to understandthe data structures that exists on the other side of memory

interface 1123. The lookup/update engine 1107 is able to request that the cache system

pull a particular flow or “buckets” of flows from the unified memory controller 1119 into

the cache system for further processing. The state processor 1108 can operate on

information found in the cache system onceit is looked up by meansofthe lookup/update

engine request, and the flow insertion/deletion engine 1110 can create new entries in the

cache system if required based on information in the unified flow key buffer 1103. The

cacheretrieves information as required from the memorythrough the memory interface

1123 and the unified memory controller 1119, and updates information as required in the
NOACEx. 1015 Page 48

NOAC Ex. 1015 Page 49

Ny

o£
re.
‘4au

10

15

20

25

30

€aa
41

memory through the memory controller 1119.

There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system.

Consequently, one can connect the overall traffic classification system of FIGS. 11 and 12

into some other processing system to managetheclassification system and to extract data

gathered by the system.

The memory interface 1123 is:designed to interface to any of a variety of memory

systems that one may wantto use to store the flow-entries. One can use different types of

memory systemslike regular dynamic random access memory (DRAM), synchronous

DRAM,synchronous graphic memory (SGRAM),static random access memory (SRAM),

and so forth.

FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—-a general interface that works in tandem with the signals of the input buffer

interface control 1022. These are designed so that they can be used with any kind of

generic systems that can then feed packet information into the parser. Another generic

interface is the interface of pipes 1031 and 1033 respectively out of and into host interface

multiplexor and control registers 1005. This enables the parsing system to be managed by

an external system, for example a microprocessor or another kind of external logic, and

enables the external system to program and otherwise control the parser.

The preferred embodimentofthis aspect of the invention is described in a

hardware description language (HDL) such as VHDLorVerilog.It is designed and

created in an HDL sothatit may be used asa single chip system or, for instance,

integrated into another general-purpose system that is being designed for purposesrelated

to creating and analyzingtraffic within a network. Verilog or other HDLimplementation

is only one methodof describing the hardware.

In accordance with one hardware implementation, the elements shown in FIGS. 10
and 11 are implementedinasetof six field programmable logic arrays (FPGA’s). The

boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is

implemented as two FPGAS; one FPGA,and includes blocks 1006, 1008 and 1012, parts

NOACEx. 1015 Page 49

NOAC Ex. 1015 Page 50

OERSPRANGBadOB
7Mh

3
¢

10

20

25

30

?i

®

42

of 1005, and memory 1001. The second FPGAincludes 1002, 1007, 1013, 1011 parts of

1005. Referring to FIG. 11, the unified look-up buffer 1103 is implementedas a single

FPGA.State processor 1108 and part of state processor instruction database memory

1109 is another FPGA.Portions ofthe state processor instruction database memory 1109

are maintained in external SRAM’s. The lookup/update engine 1107 and the flow

insertion/deletion engine 1110 are in another FPGA. The sixth FPGA includes the cache

system 1115, the unified memory control 1119, and the analyzer host interface and

control 1118.

Note that one can implementthe system as one or more VSLI devices, rather than

as a set of application specific integrated circuits (ASIC’s) such as FPGA’s.It is

anticipated that in the future device densities will continue to increase,so that the

complete system may eventually form.a sub-unit (a “core’”’) of a larger single chip unit.

Operation of the Invention

Fig. 15 shows how an embodimentof the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets

from a connection point 121 on network 102 sothat all packets passing point 121 in either

direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

signature of each packet. A memory 324is used to store the database offlowsthat are

determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general-purpose computer, is used to analyze the flows in

memory 324. As is conventional, host computer 1504 includes a memory, say RAM,

shown as host memory 1506. In addition, the host might contain a disk. In one

application, the system can operate as an RMONprobe,in which case the host computer

is coupled to a network interface card 1510 that is connected to the network 102.

The preferred embodimentof the invention is supported by an optional Simple

Network ManagementProtocol (SNMP) implementation. Fig. 15 describes how one

would, for example, implement an RMONprobe, where a networkinterface card is used

to send RMONinformation to the network. Commercial SNMP implementationsalso are

available, and using such an implementation can simplify the processof porting the

preferred embodimentofthe invention to any platform.

NOACEx. 1015 Page 50

NOAC Ex. 1015 Page 51

 crAF

; 43

Un addition, MIB Compilers are available. An MIB Compileris a tool that greatly
=n

simplifies the creation and maintenanceof proprietary MIB extensions.

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of carrying out state

analysis for packet exchanges that are commonly referredto as “server announcement”

type exchanges. Server announcement is a process used to ease communications between

a server with multiple applications that can all be simultaneously accessed from multiple

clients. Many applications use a server announcementprocess as a means of multiplexing

a single port or socket into many applications and services. With this type of exchange,

messagesare sent on the network, in either a broadcast or multicast approach, to

announcea server and application, andall stations in the network may receive and decode

these messages. The messages enablethe stations to derive the appropriate connection

point for communicating that particular application with the particular server. Using the

server announcement method,a particular application communicates using a service

channel, in the form of a TCP or UDPsocketorport as in the IP protocolsuite, or using a

SAP as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out“in-stream analysis” of packet

exchanges. The “in-stream analysis” methodis used either as a primary or secondary

recognition process. As a primary process, in-stream analysis assists in extracting detailed

information whichwill be used to further recognize both the specific application and

application component. A good exampleofin-stream analysis is any Web-based

application. For example, the commonly used PointCast Web information application can

be recognized using this process; during the initial connection between a PointCast server

and client, specific key tokensexist in the data exchangethat will result in a signature

being generated to recognize PointCast.

The in-stream analysis process may also be combined with the server

announcementprocess. In many cases in-stream analysis will augment other recognition

Processes. An example of combining in-stream analysis with server announcement can be

foundin business applications such as SAP and BAAN.

“Session tracking” also is known as one of the primary processesfor tracking

applications in client/server packet exchanges. The processof tracking sessions requires

NOACEx. 1015 Page 51

NOAC Ex. 1015 Page 52

10

30

44

an initial connection to a predefined socket or port number. This method of

communication is used in a variety of transport layer protocols. It is most commonly seen

in the TCP and UDPtransport protocols of the IP protocol.

During the session tracking, a client makes a request to a server using a specific

port or socket number. This initial request will cause the server to create a TCP or UDP

port to exchange the remainderof the data betweenthe client and the server. The server

then replies to the requestof the client using this newly created port. The original port

used by the client to connectto the server will never be used again during this data

exchange.

One example of session tracking is TFTP (Trivial File Transfer Protocol), a
version of the TCP/IP FTP protocolthat has no directory or password capability. During

the client/server exchange process of TFTP, a specific port (port number69) is always

used to initiate the packet exchange. Thus, when the client begins the process of

communicating, a request is made to UDPport 69. Oncethe server receives this request, a

new port numberis created on the server. The server thenreplies to the client using the

new port. In this example,it is clear that in order to recognize TFTP; network monitor

300 analyzes the initial request from the client and generates a signature for it. Monitor

300 uses that signature to recognize the reply. Monitor 300 also analyzes the reply from

the server with the key port information, and uses this to create a signature for monitoring

the remaining packets of this data exchange.

Network monitor 300 can also understand the currentstate of particular

connections in the network. Connection-oriented exchanges often benefit from state

tracking to correctly identify the application. An example is the common TCPtransport

protocolthat provides a reliable means of sending information between a client and a

server. When a data exchangeis initiated, a TCP request for synchronization message is

sent. This message contains a specific sequence numberthat is used to track an

acknowledgementfrom the server. Once the server has acknowledged the synchronization

request, data may be exchanged betweentheclient and the server. When communication

is no longer required,the client sends a finish or complete messageto the server, and the

server acknowledgesthis finish request with a reply containing the sequence numbers

from the request. The states of such a connection-oriented exchangerelate to the various

types of connection and maintenance messages.
NOACEx. 1015 Page 52

NOAC Ex. 1015 Page 53

Peeleny’s20aSORECideraOFarrOn
ee

seateraea
teetepetpe3PEsSOROSeSSees.pall©

20

25

3 fod
¥ oe

45

Server Announcement Example

The individual methods of server announcementprotocols vary. However,the

basic underlying process remainssimilar. A typical server announcement messageis sent

to one or moreclients in a network. This type of announcement messagehas specific

content, which, in another aspect of the invention, is salvaged and maintained in the

database of flow-entries in the system. Because the announcementis sent to one or more

stations, the client involved in a future packet exchange with the server will make an

assumption that the information announcedis known,and an aspect of the inventive

monitor is that it too can make the same assumption.

Sun-RPCis the implementation by Sun Microsystems,Inc. (Palo Alto, California)

of the Remote Procedure Call (RPC), a programminginterface that allows one program to

use the services of another on a remote machine. A Sun-RPC example is now used to

explain how monitor 300 can capture server announcements.

A remote program orclient that wishes to use a server or procedure mustestablish

a connection, for which the RPC protocol can be used.

Each server running the Sun-RPC protocol must maintain a process and database

called the port Mapper. The port Mappercreates a direct association between a Sun-RPC

program or application and a TCP or UDPsocket orport (for TCP or UDP

implementations). An application or program numberis a 32-bit unique identifier

assigned by ICANN (the Internet Corporation for Assigned Names and Numbers,

www.icann.org), which manages the huge numberof parameters associated with Internet

protocols (port numbers, router protocols, multicast addresses, etc.) Each port Mapper on

a Sun-RPCserver can present the mappings between a unique program numberand a

specific transport socket through the use of specific request or a directed announcement.

According to ICANN,port number 111 is associated with Sun RPC.

As an example, considera client (e.g., CLIENT 3 shown as 106 in FIG. 1) making

a specific requestto the server (¢.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

UDP or TCP socket. Once the port Mapper process on the sun RPCserverreceives the

request, the specific mapping is returned in a directed reply to theclient.

NOACEx. 1015 Page 53

NOAC Ex. 1015 Page 54

10

20

25

30

 3

46

1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG.1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDPport 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this

packet camein using the TCP transport and that no protocol was specified, and

thus will use the TCP protocolfor its reply.

3. The server 110 sends a TCP packet to port number 111, with an RPC Bind

Lookup Reply. The reply contains the specific port number(e.g., port number

‘port’) on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP)

for use.

It is desired that from now on every time that port number‘port’ is used, the

packetis associated with the application program ‘program’ until the number‘port’ no

longer is to be associated with the program ‘program’. Network monitor 300 bycreating a

flow-entry and a signature includes a mechanism for remembering the exchangeso that

future packets that use the port number‘port’ will be associated by the network monitor

with the application program ‘program’.

In addition to the Sun RPC Bind Lookup request andreply, there are other ways

that a particular program—say ‘program’—mightbe associated with a particular port

number, for example number‘port’. One is by a broadcast announcementofa particular

association between an application service and a port number, called a Sun RPC

portMapper Announcement. Another, is when some server—say the same SERVER 2—

replies to some client—say CLIENT 1—requesting some portMapperassignment with a

RPC portMapper Reply. Someother client—say CLIENT 2—-mightinadvertently see this

request, and thus knowthat for this particular server, SERVER2, port number‘port’ is

associated with the application service ‘program’. It is desirable for the network monitor

300 to be able to associate any packets to SERVER 2 using port number‘port’ with the

application program ‘program’.

NOACEx. 1015 Page 54

NOAC Ex. 1015 Page 55

keseeiaaBaaiia rayPAMiersCostaaswettheTateaeceed re”™e

atats neesheo
a

aexq

15

20

25

30

47

FIG. 9 represents a dataflow 900 of someoperations in the monitor 300 of FIG. 3

for Sun Remote Procedure Call. Supposea client 106 (e.g., CLIENT3 in FIG.1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in

FIG.1) via the server’s interface to the network 116. Further assume that Remote

Procedure Call is used to communicate with the server 110. One path in the data flow 900

starts with a step 910 that a Remote Procedure Call bind lookup requestis issued by client

106 and ends with the server state creation step 904. Such RPC bind lookup request

includes values for the ‘program,’ ‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The

process for Sun RPC analysis in the network monitor 300 includes the following aspects.:

e Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

e Process 908: Decode the Sun RPC packet. Check RPC typefield for ID. If

value is portMapper, save paired socket(i.e., dest for destination address, src

for source address). Decode ports and mapping, save ports with socket/addr

key. There may be more than one pairing per mapper packet. Form a signature

(e.g., a key). A flow-entry is created in database 324. The saving of the request

is now complete.

At somelatertime, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

previously stored flow. The monitor will get the protocol port number (906) and lookup

the request (905). A new signature(i.e., a key) will be created and the creation of the

server state (904) will be stored as an entry identified by the new signature in the flow-

entry database. That signature now maybe usedto identify packets associated with the

Server.

Theserverstate creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from a RPC Reply portMapperpacket shown as 901 or an

RPC Announcement portMapper shownas 902. The Remote Procedure Call protocol can

announcethatit is able to provide a particular application service. Embodimentsof the

present invention preferably can analyze when an exchange occurs betweenaclient and a

server, and also can track those stations that have received the announcementofa service

in the network.

NOACEx. 1015 Page 55

NOAC Ex. 1015 Page 56

aeiMilanx,

;“atealOi EMERiPme*

~ sai>ReCdstallali CESKNdSESoofpairsa
intibsneseag

CEeebeeekeeeePAB)OEteRTneA
macstek:

A

t
REANama

2

10

15

20

25

30

48

The RPC Announcement portMapper announcement 902is a broadcast. Such

causes variousclients to execute a similar set of operations, for example, saving the

information obtained from the announcement. The RPC Reply portMapperstep 901 could

be in reply to a portMapperrequest, and is also broadcast. It includesall the service

parameters.

Thus monitor 300 creates and savesall such states for later classification of flows

that relate to the particular service ‘program’.

FIG. 2 showshow the monitor 300 in the example of Sun RPC builds a signature

and flow states. A plurality of packets 206-209 are exchanged,e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodimentof the present

invention might generate a pair of flow signatures, “signature-1” 210 and “signature-2”

212, from information found in the packets 206 and 207 which,in the example,

correspond to a Sun RPC Bind Lookuprequest and reply, respectively.

Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds

to such a request sent from CLIENT 3 to SERVER2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupythe first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEY1 230

in FIG.2) will also contain these twofields, so the parser subsystem 301 will include

these two fields in signature KEY 1 (230). Note that in FIG,2, if an address identifies the

client 106 (shownalso as 202),the label used in the drawing is “C,”. If such address

identifies the server 110 (shownalsoas server 204), the label used in the drawingis “S,”.

Thefirst two fields 214 and 215 in packet 206 are “S,” and C,” because packet 206 is

provided from the server 110 andis destined for the client 106. Suppose for this example,

“§,” is an address numerically less than address “C,”. A third field “p1” 216 identifies the

particular protocol being used,e.g., TCP, UDP,etc.

In packet 206, a fourth field 217 anda fifth field 218 are used to communicate

port numbersthat are used. The conversation direction determines wherethe port number

field is. The diagonal pattern in field 217 is used to identify a source-port pattern, and the

hashpattern in field 218 is used to identify the destination-port pattern. The order

indicates the client-server message direction. A sixth field denoted “i!” 219 is an element
NOACEx. 1015 Page 56

NOAC Ex. 1015 Page 57

pias3saccients¥ eketaaiier eee5S”SaaRsaanEanes
,.Ka

toesaSyedaid

TAgoeaeeds,

aaNREais:TEES2|
PAs:

PenOeCneeeaeaaecareer ereetetmeneooa
s

weeoe oe= .peksAenros4lienSasaNESsna
cy

aliaa

10

15

20

25

30

49

that is being requested by the client from the server. A seventh field denoted “sa” 220 is

the service requested by the client from server 110. The following eighth field “QA” 221

(for question mark) indicates that the client 106 wants to know what to use to access

application “‘s,a”. A tenth field “QP” 223 is used to indicate that the client wants the

server to indicate what protocolto use for the particular application.

Packet 206 initiates the sequence of packet exchanges,e.g., a

RPC Bind Lookup Request to SERVER2.It follows a well-defined format, as doall the

packets, and is transmitted to the server 110 on a well-knownservice connection identifier

(port 111 indicating Sun RPC).

Packet 207is thefirst sent in reply to the client 106 from the server.It is the

RPC Bind LookupReplyasa result of the request packet 206.

Packet 207 includesten fields 224233. The destination and source addresses are

carried in fields 224 and 225,e.g., indicated ““C,” and “S,”, respectively. Notice the order

is now reversed, since the client-server message direction is from the server 110 to the

client 106. The protocol “p1”is used as indicated in field 226. The request “i!”is in field

229. Values have beenfilled in for the application port number, e.g., in field 233 and

protocol ““‘p2””in field 233.

The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from theclient, a

first flow signature 210 is built in the parser subsystem 301 according to the pattern and

extraction operations database 308. This signature 210 includesa destination and a source

address 240 and 241. One aspect of the invention is that the flow keysare built

consistently in a particular order no matter whatthe direction of conversation. Several

mechanisms maybeusedto achieve this. In the particular embodiment, the numerically

loweraddressis always placed before the numerically higher address. Such least to

highest order is used to get the best spread of signatures and hashes for the lookup

operations. In this case, therefore, since we assume “S 1’<“C,”, the orderis address “S,”

followed by client address “C,”. The nextfield used to build the signatureis a protocol

field 242 extracted from packet 206’s field 216, and thusis the protocol “p!”. The next

field used for the signatureis field 243, which contains the destination source port number

shownas a crosshatchedpattern from the field 218 of the packet 206. This pattern will be
NOACEx. 1015 Page 57

NOAC Ex. 1015 Page 58

+elesahaethnetaEY,
Becoy

10

15

20

25

30

owvp.Ar,23
30

recognized in the payload of packets to derive how this packet or sequence of packets

exists as a flow. In practice, these may be TCP port numbers, or a combination of TCP

port numbers. In the case of the Sun RPC example, the crosshatch represents a set of port

numbers of UDSforp! that will be used to recognizethis flow (e.g., port 111). Port 111

indicates this is Sun RPC. Someapplications, such as the Sun RPC Bind Lookups,are

directly determinable (“known”)at the parser level. So in this case, the signature KEY-1

points to a known application denoted “a!” (Sun RPC Bind Lookup), and a next-state that

the state processor should proceed to for more complex recognition jobs, denoted as state

“Stp” is placed in the field 245 of the flow-entry.

Whenthe Sun RPC Bind Lookupreply is acquired, a flow signature is again built

by the parser. This flow signature is identical to KEY-1. Hence, when the signature enters

the analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is

obtained, andin this flow-entry indicates state “stp”. The operations for state “stp” in the

state processorinstruction database 326 instructs the state processor to build and store a

new flow signature, shown as KEY-2 (212) in FIG. 2. This flow signature built by the

state processoralso includes the destination and a source addresses 250 and 251,

respectively, for server “‘S,” followed by (the numerically higher address) client “C,”. A

protocolfield 252 defines the protocolto be used,e.g., “p2” which is obtained from the

reply packet. A field 253 contains a recognition pattern also obtained from the reply

packet. In this case, the application is Sun RPC,and field 254 indicates this application

“a2”, A next-state field 255 defines the next state that the state processor should proceed

to for more complex recognition jobs, e.g., a state “st!”. In this particular example,this is

a final state. Thus, KEY-2 may nowbeusedto recognize packets that are in any way

associated with the application “a*”. Two such packets 208 and 209 are shown,one in

each direction. They use the particular application service requested in the original Bind

Lookup Request,and each will be recognized because the signature KEY-2 will bebuilt

in each case.

The two flow signatures 210 and 212 always order the destination and source

addressfields with server “S,” followed byclient “C,”. Such values are automatically

filled in when the addressesare first created in a particular flow signature. Preferably,

NOACEx. 1015 Page 58

NOAC Ex. 1015 Page 59

SI

large collectionsof flow signatures are kept in a lookup table in a least-to-highest order

for the best spread of flow signatures and hashes.

Thereafter, the client and server exchange a numberof packets,e.g., represented

by request packet 208 andresponse packet 209. The client 106 sends packets 208 that

have a destination and source address S$, and C, in a pairof fields 260 and 261.A field

262 definesthe protocol as “p2”, and a field 263 defines the destination port number.

Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the packet.

Others require a sequenceofstate transitions to occur in order to match a known and

predefined climb from state-to-state.

Thusthe flow signature for the recognition of application “a2” is automatically set

up by predefining what packet-exchange sequencesoccurfor this example when a

relatively simple Sun Microsystems Remote Procedure Call bind lookup request

instruction executes. More complicated exchanges than this may generate more than two

flow signatures and their corresponding states. Each recognition may involve setting up a

complex state transition diagram to be traversed before a “final”resting state such as “st,”

in field 255 is reached. All these are used to build the final set of flow signatures for

recognizing a particular application in the future.

Embodiments of the present invention automatically generate flow signatures with

the necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generatingstate transitions to

search for. Applications and protocols, at any level, are recognized through state analysis

of sequencesof packets.

Note that one in the art will understand that computer networksare used to

connect manydifferent types of devices, including network appliances such as telephones,

“Internet” radios, pagers, and so forth. The term computeras used herein encompassesall

such devices and a computer networkas used herein includes networks of such

computers.

Although the present invention has been described in termsof the presently

preferred embodiments,it is to be understood that the disclosureis notto be interpreted as

NOACEx. 1015 Page 59

NOAC Ex. 1015 Page 60

Sayeleu.ealrialossBy-
eite

ak

aece
a
c. S

vy Pe
winFS

Reis:
Ei

@ 2
52

limiting. Variousalterations and modifications will no doubt become apparent to those or

ordinary skill in the art after having read the above disclosure. Accordingly, it is intended

that the claims be interpreted as covering all alterations and modificationsas fall within

the true spirit and scope of the present invention.’

NOACEx. 1015 Page 60

NOAC Ex. 1015 Page 61

 -ee OERES2507eeern meeenOREeeeeea

5

7
7.

Rts 3

ae 5

cESo 2
:Eaare.

ee+
<1z.

tan’
a ~.

10:

a,

=ae
LE

x y

at
DO

Esaaa

oe: 15

mi

ie
Pe

ae.

ca

bs2 il

20

RE

+Saasdatesroioe: $enseeePe
aa

53

CLAIMS

Whatis claimedis:

1. A packet monitor for examining packets passing through a connection point on a

computer networkin real-time, the packets provided to the packet monitor via a

packet acquisition device connected to the connection point, the packet monitor

comprising:

(a) a packet-buffer memory configured to accept a packet from the packet

acquisition device;

(b) a parsing/extraction operations memory configured to store a database of

parsing/extraction operations that includes information describing how to

determineatleast one of the protocols used in a packet from data in the

packet;

(c) a parser subsystem coupled to the packet buffer andto the

pattern/extraction operations memory, the parser subsystem configured to

examine the packet accepted by the buffer, extract selected portionsof the

accepted packet, and form a function of the selected portions sufficient to

identify that the accepted packetis part of a conversational flow-sequence;

(d) a memory storing a flow-entry database including a plurality of flow-

entries for conversational flows encountered by the monitor;

(e) a lookup engine connected to the parser subsystem andto the flow-entry

database, and configured to determine using at least some of the selected

portions of the accepted packetif there is an entry in the flow-entry database

for the conversational flow sequence of the accepted packet;

NOACEx. 1015 Page 61

‘

NOAC Ex. 1015 Page 62

54

(f) a state patterns/operations memory configuredto store a set of predefined

state transition patterns and state operations such that traversing a particular

transition pattern as a result of a particular conversational flow-sequence of

A packets indicates that the particular conversational flow-sequenceis

5 associated with the operation of a particular application program, visiting

‘ eachstate in a traversal including carrying out none or more predefined state

operations;

(g) a protocol/state identification mechanism coupledto thestate

: patterns/operations memory and to the lookup engine, the protocol/state

10 identification engine configured to determine the protocol andstate of the

es conversational flow of the packet; and
=.
q a (h) a state processor coupled to the flow-entry database, the protocol/state
q nt identification engine, andto the state patterns/operations memory,the state
j bi processor, configured to carry out any state operations specified in the state
7 ¥ 15 patterns/operations memory for the protocol andstate of the flow of the

a packet,

ce. the carrying out of the state operations furthering the process of identifying which

application program is associated with the conversational flow-sequence of the

packet, the state processor progressing througha series ofstates and state operations

20 until there are no more state operations to perform for the accepted packet, in which

case the state processor updates the flow-entry, or until a final state is reached that

: indicates that no more analysis of the flow is required, in which case the result of the
4
By analysis is announced.

2. A packet monitor accordingto claim 1, wherein the flow-entry includes the state

‘ 25 of the flow, such that the protocol/state identification mechanism determines the
?

state of the packet from the flow-entry in the case that the lookup enginefinds a

uy flow-entry for the flow of the accepted packet.

* NOACEx. 1015 Page 62

NOAC Ex. 1015 Page 63

ms eeBR. t

or:

E Poe 10
a =.

q ad:
ESa
mt

‘ 4y

a QP.
ny

; 15

20

£

a
z BR,*

‘ 25

3.

5.

55

A packet monitor according to claim 1, wherein the parser subsystem includes a

mechanism for building a hash from the selected portions, and wherein the hash is

used by the lookup engine to search the flow-entry database, the hash designed to

spread the flow-entries across the flow-entry database.

A packet monitor according to claim 1, further comprising:

a compiler processor coupled to the parsing/extraction operations memory,the

compiler processor configured to run a compilation process that includes:

receiving commandsin a high-level protocol description languagethat

describe the protocols that may be used in packets encountered by the

monitor, and

translating the protocol description language commandsinto a plurality of

parsing/extraction operations that are initialized into the parsing/extraction

operations memory.

A packet monitor according to claim 4, wherein the protocol description language

commandsalso describe a correspondence betweena set of one or more application

programsandthestate transition patterns/operations that occur as a result of

particular conversational flow-sequences associated with an application program,

wherein the compiler processoris also coupled to the state patterns/operations

memory, and wherein the compilation process further includestranslating the

protocol description language commandsintoa plurality of state patterns andstate

operations that are initialized into the state patterns/operations memory.

A packet monitor according to claim 1, further comprising:

a cache memory coupled to and between the lookup engine andthe flow-entry

database providing for fast access of a set of likely-to-be-accessed flow-entries from

the flow-entry database.

A packet monitor according to claim 6, wherein the cache functionsas a fully

associative, least-recently-used cache memory.

NOACEx. 1015 Page 63

NOAC Ex. 1015 Page 64

eerveeenee

weeeh
ra SSenttEE

CSSaa eed
riqi

i

eee*s24

20

25

8.

10.

11.

56

A packet monitor according to claim 7, wherein the cache functionsas a fully

associative, least-recently-used cache memory and includes content addressable

memories configuredasa stack.

A packet monitor according to claim 1, wherein one or morestatistical measures

about a floware stored in each flow-entry, the packet monitor further comprising:

a calculator for updating the statistical measures in a flow-entry of the accepted

packet.

A packet monitor according to claim 9, wherein, when the application program of

a flow is determined, one or more network usage metrics related to said application

and determined from thestatistical measures are presented to a user for network

performance monitoring.

A methodof examining packets passing throygh a connection point on a

computer network, each packets conforming t¢ one or moreprotocols, the method

comprising:

(a) receiving a packet from a packet acquisition device;

(b) performing one or more parsjng/extraction operations on the packet to

create a parser record compris{ng a function of selected portions of the

packet;

(c) looking up a flow-entry' database comprising none or more flow-entries

for previously encounteged conversational flows, the looking up using at

least some of the selegted packet portions and determining if the packet is of

an existing flow;

(d) if the packet is/of an existing flow,classifying the packet as belonging to

the found existing flow; and

(e) if the packet is of a new flow,storing a new flow-entry for the new flow

in the flow/entry database, including identifying information for future

packetstObe identified with the new flow-entry,

NOACEx. 1015 Page 64

NOAC Ex. 1015 Page 65

10

20

25

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

57

wherein the parsing/extraction operations depend on ohe or more ofthe protocols to

which the packet conforms.

A method according to claim 11, wherein each pAcket passing through the

connection point is examinedin real time.

A methodaccording to claim 11, wherein classifying the packet as belonging to

the found existing flow includes updating the fl@w-entry of the existing flow.

A methodaccording to claim 13, wherein updating includes storing one or more

statistical measures stored in the flow-entry of the existing flow.

A methodaccording to claim 14, whereig the one or morestatistical measures

include measuresselected from the set consisting of the total packet countfor the

flow, the time, and a differential time froyn the last entered time to the present time.

A methodaccording to claim 11, whgrein the function of the selected portions of

the packet formsa signature that includes the selected packet portions and that can

identify future packers, wherein the 1gokup operation uses the signature and wherein

the identifying information stored in/the new or updated flow-entry is a signature for

identifying future packets. S
A methodaccording to claim 1/l, wherein at least one of the protocols of the

packet uses source and destinatign addresses, and wherein the selected portions of

the packet include the source destination addresses.

A method accordingto claiyn 17, wherein the function of the selected portions for

packets of the same flow is cgnsistent independentof the direction ofthe packets.

A method according to cfaim 18, wherein the source and destination addresses

are placed in an order detefmined by the order of numerical values of the addresses

in the function of selected portions.

A methodaccordingfo claim 19, wherein the numerically lower address is placed

before the numerically/higher address in the function ofselected portions.

A method accordifg to claim 11, wherein the looking up ofthe flow-entry

database uses a hasif of the selected packetportions.

NOACEx. 1015 Page 65

NOAC Ex. 1015 Page 66

ag

"4*Ze <28?nt-Rear:esONCRTwt
nes
i

SteABESeEEROrs

are

Sapthy2eeaeaeSeeRi
ene?BEVSexch

PCTCeeeOE

eenae

<

22.

10 36.24,

25.

15 26.

27.

28.

20

29.

25

58

A methodaccordingto claim 11, wherein the parsing/extraction operations are

according to a database of parsing/extraction operafions that includes information

describing how to determine a set of one or more/protocol dependent extraction

operations from data in the packetthat indicateaprotocol used in the packet.

A method according to claim 11, wherein sfep (d) includesif the packetis of an

existing flow, obtaining the last encountered State of the flow and performing any

state operations specified for the state of the flow starting from the last encountered

state of the flow; and wherein step (e) includesif the packet is of a new flow,

performing any state operations required for theinitial state of the new flow.

A methodaccording to claim 23, wheyein the state processing of each received

packetof a flow furthers the identifying/of the application program of the flow.

A method according to claim 23, wherein the state operations include updating

the flow-entry, including storing idenfifying information for future packets to be

identified with the flow-entry. Ww
A method according to claim 25/ wherein the state processing of each received

packet of a flow furthers the identifying of the application program of the flow.

A method according to claim 23, wherein the state operations include searching

the parser record for the existenge of one or morereferencestrings.

A method according to claint 23, wherein the state operations are carried out by a
programmable state processor According to a database of protocol dependentstate

operations.

A packet monitor for exafnining packets passing through a connection point on a

computer network, each pa¢kets conforming to one or more protocols, the monitor

comprising:

(a) a packet acquisition device coupled to the connection point and

configured to redeive packets passing through the connection point;

(b) an input buffer memory coupled to and configured to accept a packet

from the pack¢t acquisition device;

NOACEx. 1015 Page 66

NOAC Ex. 1015 Page 67

59

(c) a parser subsystem coupled to the input buffer memory and including a

slicer, the parsing subsystem configured to extrdct selected portions of the

accepted packet andto output a parser record ¢ontaining the selected

portions;

5 (d) a memory for storing a database compr{sing none or more flow-entries for

previously encountered conversational flows, each flow-entry identified by

identifying information stored in the flgw-entry;

(e) a lookup engine coupled to the output of the parser subsystem andto the

flow-entry memory and configured to lookup whetherthe particular packet

10 whoseparser record is output by thé parser subsystem has a matching flow-RR.-
entry, the looking up using at leasf some of the selected packet portions anderate
determiningif the packet isof art existing flow; and

: (f) a flow insertion engine couyyled to the flow-entry memory andto the

lookup engine and configured to create a flow-entry in the flow-entry

15 database, the flow-entry inclfiding identifying information for future packets

to be identified with the new flow-entry,
the lookup engine configured such that if the packet is of an existing flow, the

monitorclassifies the packet as Belonging to the found existing flow; andif the

packetis of a new flow,the flow insertion engine stores a new flow-entry for the

et conforms.

aa 20 new flow in the flow-entry database, including identifying information for future4

HE packets to be identified with fhe new flow-entry,
i
$s wherein the operation of th¢ parser subsystem depends on oneor more of the
te |protocols to which the pac]

30. A monitor according tO claim 29, wherein each packet passing through the

pted by the packet buffer memory and examined by the
Ci

25 connection point is acc

monitor in real time. /

31. A monitor accordif g to claim 29, wherein the lookup engine updates the flow-

entry of an existing flow in the case that the lookupis successful.

NOACEx. 1015 Page 67

NOAC Ex. 1015 Page 68

SRSSRSrCotieEN
ey

owexORE

BAREIAS.wee AEREE,ENE

15

20

25

32.

33.

34.

35.

36.

37.

60

A monitor according to claim 29, further including a mechanism forbuilding a

hash from the selected portions, wherein the hash ig included in the input for a

particular packet to the lookup engine, and wherejn the hash is used by the lookup

engine to search the flow-entry database.

A monitor according to claim 29, further ingluding a memory containing a

database of parsing/extraction operations, the/parsing/extraction database memory

coupled to the parser subsystem, wherein thd parsing/extraction operations are

according to one or more parsing/extractionj/operations looked up from the

parsing/extraction database.

A monitor according to claim 33, wheyein the database of parsing/extraction

operations includes information describijng how to determine a set of one or more

protocol dependent extraction operatioms from data in the packet that indicate a

protocol used in the packet. W
A monitor according to claim 29, further including a flow-key-buffer (UFKB)

coupledto the output of the parser subsystem andto the lookup engine andto the

flow insertion engine, wherein the putput of the parser monitor is coupled to the

lookup engine via the UFKB, and/wherein the flow insertion engine is coupled to

the lookup engine via the UFKB

A methodaccording to clainj 29, further including a state processor coupled to

the lookup engine andto the flpw-entry-database memory, and configured to

perform any state operations gpecified for the state of the flow starting from the last

encounteredstate of the flow in the case that the packet is from an existing flow,

and to perform any state op¢rations required for the initial state of the new flow in

the case that the packet is from an existing flow.

A method according t¢ claim 29, wherein the set of possible state operations that

the state processoris cogfigured to perform includes searching for one or more

patterns in the packet portions.

NOACEx. 1015 Page 68

NOAC Ex. 1015 Page 69

tiltaky= otacetatlie. CA.ee
ees

SeTBE eiwailedciaeS eROTehGEaeEo
 NiheCoeeis we

ataad

eke", h

i

38.

5 39,

10

40.

41.

15

20

42.

25

61

A monitor according to claim 36, wherein the stafe processor is programmable,

the monitor further includinga state patterns/operations memory coupledto thestate

processor,the state operations memory configurefl to store a database of protocol

dependentstate patterns/operations.

A monitor according to claim 35, further in¢luding a state processor coupled to

the UFKB andto the flow-entry-database meynory, and configured to perform any

state operations specified for the state of the flow starting from the last encountered

state of the flow in the case that the packetis from an existing flow, and to perform

any state operations required forthe initial tate of the new flow inthe case that the

packetis from an existing flow.

A monitor according to claim 36, whefein the state operations include updating

the flow-entry, including identifying information for future packets to be identified

with the flow-entry. \

A packet monitor according to claim 29, further comprising:

a compiler processor cougled to the parsing/extraction operations

memory, the compiler procgssor configured to run a compilation process that

includes:

receiving comspandsin a high-level protocol description language

that describe the fprotocols that may be used in packets encountered

by the monitor and any children protocols thereof, and

translating fhe protocol description language commandsinto a

plurality of parsing/extraction operationsthat are initialized into the

parsing/extyaction operations memory.

A packet monitor accgrding to claim 38, further comprising:

a compiler processor coupled to the parsing/extraction operations

memory, the cémpiler processor configured to run a compilation processthat

includes:

NOACEx. 1015 Page 69

NOAC Ex. 1015 Page 70

meNeriChaleata
ga*

10

15

20

ce <3 25

43.

45.

46.

47.

48.

62

receiving commandsin a high-levpl protocol description language

thatdescribe a correspondence betweenaset of one or more

application programsandthestate/transition patterns/operations that

occur asa result of particular Co ersational flow-sequences
associated with an application pfograms, and

translating the protocol des¢ription language commandsinto a

plurality of state patterns and ftate operations that are initialized into

the state patterns/operations

A packet monitor according to claim 29{ further comprising:

a cache subsystem coupled to and between the lookup engine andthe flow-entry

database memory providing for fast accgss of a set of likely-to-be-accessed flow-

entries from the flow-entry database.

A packet monitor according to claijn 43, wherein the cache subsystem is an

associative cache subsystem includi

cells (CAMs). \

A packet monitor according to glaim 44, wherein the cache subsystem is also a

one or more content addressable memory

least-recently-used cache memory such that a cache miss updates the least recently

used cacheentry.-

A packet monitor according fo claim 29, wherein each flow-entry stores one or

morestatistical measures abouf the flow, the monitor further comprising

a calculator for updating af least one ofthe statistical measures in the flow-entry

of the accepted packet.

A packet monitor according to claim 46, wherein the one or morestatistical

measures include measuref selected from the set consisting of the total packet count

for the flow, the time, and a differential time from the last entered time to the

present time.

A packet monitor acgording to claim 46, further includingastatistical processor

configured to determine one or more network usage metricsrelated to the flow from

one or more ofthestatistical measures in a flow-entry.

NOACEx. 1015 Page 70

NOAC Ex. 1015 Page 71

10

20

25

49.

50.

51.

52.

53.

54.

63

A monitor according to claim 29, whereinf.

flow-entry-database is organizedinto a plurality of bins that each contain N-

numberof flow-entries, and wherein said bins are accessed via a hash data value

created by a parser subsystem based on the selected packet portions, wherein N is

one or more.

A monitor according to claim 49, wherein the hash data value is used to spread a

plurality of flow-entries across the flgw-entry-database and allows fast lookup of a

flow-entry and shallower buckets.

A monitor according to claim 36/ wherein the state processor analyzes both new

and existing flowsin orderto classify them by application and proceeds from state-

to-state based on a set of predefin¢d rules.

A monitor according to claim/29, wherein the lookup engine begins processing as

soon as a parser record arrives from the parser subsystem.
A monitor according toi 36, wherein the lookup engine provides for flow

state entry checking to see if ¢ flow key should be sent to the state processor, and

that outputs a protocolidentifier for the flow.

A method of examining packets passing through a connection point on a

computer network, the method comprising:

(a) receiving a packet from a packet acquisition device;

(b) performing ong or moreparsing/extraction operations on the packet

according to a dgtabase of parsing/extraction operations to create a parser

record comprisipg a function of selected portions of the packet, the database

of parsing/extraction operations including information on how to determine

a set of one or/more protocol dependentextraction operations from data in

the packet thdt indicate a protocol is used in the packet;

(c) looking ypa flow-entry database comprising none or more flow-entries

for previously encountered conversational flows, the looking up using at

least some/of the selected packet portions, and determiningif the packetis of

an existing flow; NOACEx. 1015 Page 71

NOAC Ex. 1015 Page 72

55.

10

56.

57.

15

58.

20

59.

64

(d)- if the packetis of an existing flow,obtai ing the last encountered state of
the flowand performingany state operatigns specified for the state of the
flow starting from the last encountered state of the flow; and

(e) if the packet is of a new flow, perfgrming any analysis required for the

initial state of the new flow and storing a new flow-entry for the new flow in

the flow-entry database, including Adentifying information for future packets

to be identified with the new flow-entry.

A methodaccording to claim 54, whgrein one of the state operations specified for

at least one of the states includes updating the flow-entry, including identifying

information for future packets to-be identified with the flow-entry.

A method according to claim 54, wherein one of the state operations specified for

at least one of the states includes s¢arching the contents of the packet forat least one

referencestring. a\

A methodaccording to claim5, wherein one of the state operations specified for

at least one of the states includgs creating a new flow-entry for future packets to be

identified with the flow, the ngw flow-entry including identifying information for

future packets to be identified with the flow-entry.

A methodaccording to cjaim 54, further comprising forming a signature from the

selected packet portions, wherein the lookup operation uses the signature and

wherein the identifying information stored in the new or updated flow-entry is a

signature for identifying future packets.

A method according/to clatm 54, wherein the state operations are according to a

database of protocol dépendentstate operations.

NOACEx. 1015 Page 72

NOAC Ex. 1015 Page 73

15

20

A monitor for and a method of examining packets passig through a connection point on

a computer network. Each packets conformsto one or/fnore protocols. The method

includes receiving a packet from a packet acquisitioh device and performing one or more

parsing/extraction operations on the packetto cregte a parser record comprising a

function of selected portions of the packet. The’parsing/extraction operations depend on

one or more of the protocols to which the pagket conforms. The method further includes

looking up a flow-entry database containing flow-entries for previously encountered

conversational flows. The lookup uses tie selected packet portions and determiningif

the packetis of an existing flow.If th¢ packetis of an existing flow, the method

classifies the packet as belonging to/the found existing flow, and if the packet is of a new

flow, the method stores a new flow-entry for the new flow in the flow-entry database,

including identifying information for future packets to be identified with the new flow-

entry. For the packet of an existing flow, the method updates the flow-entry of the

existing flow. Such updating/may include storing one or morestatistical measures. Any

stage of a flow,state is majptained, and the method performs anystate processing for an

identified state to further fhe process of identifying the flow. The method thus examines

each and every packet passing through the connection pointin real time until the

application program associated with the conversational flow is determined. The method

NOACEx. 1015 Page 73

NOAC Ex. 1015 Page 74

oy

Rt
Ett et al.

eece?~
ada

a

ora.
ee

oe

-Ne

ify.
a ‘5 ‘.ee: *ee.

aA

APPT-001-1

S
6651099

1/18

CLIENT4 108
> ANALYZER

107
116

|rrr

100

CLIENT 3

~ —™H0
106 121

 DATA COMMUNICATIONS

NETWORK

102

125

123
'

—————_:~«'105 a”

\ [cuenta| CLIENT 1}|~112

FIG. 1

18

—_ 04

NOACEx. 1015 Page 74

NOAC Ex. 1015 Page 75

it

 i—j———] afl acs oc —|———|al occa

APPLICATION SERVER 2

NOACEx. 1015 Page 75

1e12ie

b-L00-LddV
S

woe

NOAC Ex. 1015 Page 76

310

" AigcnsephRey Fecen.. Sciesstilit. ies ERE Ot AY
EMI OTTER OTeeEAENSRita

ANALYZE AND
RECOGNIZE

PATTERN, PARS
AND

EXTRACTION
DATABASE

COMPILER
AND

OPTIMIZER

DATAGRAM
LAYER

EXTRACT
IDENTIFYING

LOOKUP
FROM

KNOWN
RECORDS

 DATABASE
OF FLOWS

UPDATE

PROTOCOL a FLOW" |
& STATE KNOWN

IDENTIFICATION RECORD

SL/E
CLASSIFICATN
FINALIZATION

 STATE

PROCESSOR
INSTRUCTION

DATABASE

NO

ANALYZER

303

NOACEx. 1015 Page 76

je1

L-LO0O0-LddV

NOAC Ex. 1015 Page 77

;
jut etal. APPT-001-1

() 401

 HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

404 405

\

6 GENERATE
é PACKET

2 PLESND COMPILE STATE
a nee DESCRIPTIONS
: OPERATIONS
tv

%
4 403

CD 407
406 PATTERN, PARS STATE

AND PROCESSOR
EXTRACTION INSTRUCTION

DATABASE 408 409 DATABASE

LOAD
PARSING

SUBSYSTEM
MEMORY

DATABASE
MEMORY

400

410

FIG. 4

NOACEx. 1015 Page 77

NOAC Ex. 1015 Page 78

botal. APPT-001-1
a.ahieReas
a!

Fr 5/18

I CN

F/sweurpacker{a
Es 503: LOAD PACKET

4 512
\

abe BUILD
ae 504 PACKETORE IN PACKEL+

hewy

i FETCH NODE ANDO
PROCESS FROM

PATTERN

513

NEXT
PACKET

COMPONENTC 514

KPPLY NOD ANT

PROCESS TO
COMPONENT

510

iy " NEX
op PATTERN

:- NODE

500

nyOEhnARE 509 ELEMENTS

FIG. 5

NOACEx. 1015 Page 78

NOAC Ex. 1015 Page 79

4
7

#4

a5‘

4
a4

a

se
eHBe,

BS’
aby2

a

ee

Biz et al.

aE
Mee:

ear

ae

APPT-001-1

PACKET 602
COMPONENT AND

PATTERN NODE

603

LOAD PACKET
COMPONENT 610

604

LOAD KEY
BUFFER

FETCH EXTRACTION (F7)
AND PROCESS FROM

PATTERNS 605

No 611

606

NEXT
NOp|_PACKET 609ORE EXTRACTION

COMPONENELEMENTS?

YES

607 APPLY EXTRACTION

BOOPONENT
600

MORE TO 608
EXTRACT?

YE

FIG. 6

NOACEx. 1015 Page 79

NOAC Ex. 1015 Page 80

Ric et al. APPT-001-1
 4Reis

a

pare
Be.

Be

a 7/18

EE C) 701wes

EY BUFFER AND 702
PATTERN NODE

: LOAD PATTERN
703 NODE ELEMENT 708

OUTPUT TO
ANALYZER

e 3
ai HASH KEY BUFFER

Eu ELEMENT FROM 705
ee PATTERN NODE

ee PACK KEY & HAS
i 706 x

a. NEXT PACKET
P COMPONENT

, 707

| FIG.7

AFRARE

 Re 704 MORE PATTER

NODES?

aa)ee
700

aex sSngaae7Cees
“Se
or¥

NOACEx. 1015 Page 80

NOAC Ex. 1015 Page 81

—
arse.

Yepjetz et al. APPT-001-1

. 8/18

UFKB ENTRY FOR B02
PACKET

800\
COMPUTE CONVERSATION]—393
RECORDBIN FROM HASH

REQUEST RECORDBIN/
BUCKET FROM CACHE 804

806

NO|SETUFKBFOR
PACKETAS 'NEW'

COMPARE CURRENTBIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET l¢-NO<<KEYMATCH? 808
YES

 ORE BUCKET.808 IN THE BIN?

YES
uM 608 MARK RECORD BINAND|—94,
t. BUCKET ‘IN PROCESS’IN
' CACHE AND TIMESTAMP

ay SET UFKB FOR PACKET
AS 'FOUND'

BA)escad
3

ras

BS
aE304,4

3

f

i

ye
 ¥
f_¥§!ae r

* Be;

811

812 UPDATE STATISTICS FOR
RECORDIN CACHE

mC) FIG. 8
NOACEx. 1015 Page 81

seatheiepeeRSOAAT

NOAC Ex. 1015 Page 82

&ojotz et al. APPT-001-1

PORTMAPPEA

909

EXTRACT PROGRAM EXTRACT PORT

GET ‘PROGRAM', GET 'PROGRAM',
‘VERSION’, 'PORT' AND 'VERSION' AND
‘PROTOCOL (TCP OR ‘PROTOCOL(TCP OR

UDP) UDP)’

a SAVE REQUEST
Hy CREATE SERVER STAT

Z SAVE 'PROGRAM,
SAVE ‘PROGRAM’, ‘VERSION' AND

904 ‘VERSION’, ‘PORT’ AND ‘PROTOCOL(TCP OR
fc ‘PROTOCOL(TCP OR UDP)' WITH
i UDP)' WITH NETWORK DESTINATION

a ADDRESSIN SERVER NETWORK ADDRESS.
ie STATE DATABASE. KEY BOTH MAKEA KEY.

ON SERVER ADDRESS

AND TCP OR UDP PORT.

ae
i B4

fe.
4

hp.$
EXTRACT
PROGRAM

FIND 'PROGRAM'

9007” AND 'VERSION' GET 'PORT' AND

WITH LOOKUP OF ‘PROTOCOL(TCP
SOURCE NETWORK OR UDP)'.

ADDRESS.

FIG. 9
NOACEx. 1015 Page 82

NOAC Ex. 1015 Page 83

Re etal. APPT-001-1
oe

yi 1000 —4 10/18

pe PATTERN 100 EXTRACTION
ae RECOGNITION OPERATIONS
a DATABASE DATABASE
Ea MEMORY 1001 MEMORY

100

e 1005~a
a
,
a4
is i
of
5. 4oe

apt
re

3‘
iPad

;

 abesweetaeitCMMIForiegsBR

1006

PATTERN
RECOGNITN

ENGINE

(PRE)

EXTRACTION ENGINE
(SLICER)

1008

PARSER
OUTPUT PACKET KEY
BUFFER AND PAYLOAD
MEMORY

oo PACKE
INPUT

PARSER INPUT BUFFER
MEMORYsfBhiak:

as

be ha

han
1012

1021
eaner
eenspABi

PACKET
START

 INPUT BUFFER

INTERFACE
CONTROL

ANALYZER DATA READY
INTERFACE
CONTROL

BrMaeeee hy

 oe
ANALYZER

READY

102

1023 FIG. 10 1027eeee

A NOACEx. 1015 Page 83

NOAC Ex. 1015 Page 84

Be, etal. APPT-001-1
74

BSrod

. 11/18
1100 —y.

bc 1101 1103 1115 "22
| 1107

LOOKUP/
: UPDATE
re ENGINE

Es

au PARSER
ee INTER: fv

1119 1123

UNIFIED||MEMORY
MEMORY[Al INTER-

=) CONTROL) FACE
(UMC)

a, NOACEx.1015 Page 84

NOAC Ex. 1015 Page 85

5 ae a ¥
: Ee : Ce { XS

r 12/18

 UFKB ENTRY FOR
PACKET WITH
STATUS 'NEW'

 SlSs 1200

_. ACCESS
CONVERSATION

RECORDBIN

REQUEST NEXT

BUCKET FROM 1205

secgec

i

s 1207
F

iF OMPARE CURRENT BIN—1209
} 1210 AND BUCKET RECORD

SET UFKB FOR
OEKB EC KEY TO PACKET

‘DROP'

MARK RECORDBIN AND
BUCKET'IN PROCESS'
AND 'NEW'IN CACHE

SET INITIAL STATISTICS
FOR RECORDIN CACHE

1213

FIG. 12

NOACEx. 1015 Page 85

NOAC Ex. 1015 Page 86

: oiZ et al. APPT-001-1

a

rostf

SSBS ;BS
aRahs
5

ane xpe
rs

az

AWBRO«
ae

 @ aoe eeA

13/18

1300 —4UFKB ENTRY FOR
PACKET WITH STATUS

‘NEW! OR 'FOUND' 1302

SET STATE PROCESSOR
INSTRUCTION POINTER TO 1303

AALUE FOUNDIN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED|-—1305
ON THE STATE INSTRUCTION

1307

SET STATE
PROCESSOR
INSTRUCTION
POINTER TO

VALUE FOUNDIN
CURRENTSTATE

 NO DONE PROCESSING

STATES FOR THIS
PACKET?

1308

1310
YES

 SAVE STATE
PROCESSOR
INSTRUCTION

POINTERIN
CURRENT FLOW

RECORD

 DONE PROCESSING 1309
TATES FOR THIS FLO NO

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

on
FIG. 13

NOACEx. 1015 Page 86

1311

NOAC Ex. 1015 Page 87

as Th be

140

 LOOKUP

KNOWN

‘DEtaay" DATABASE
OF FLOWS

EXTRACT
IDENTIFYING

INFO & PROCL
[STATE

 RECOGNIZE

PATTERN |
INFORMATION

PATTERN UPDATE

STRUCTURES "FLOW"
AND KNOWN

EXTRACTION RECORD
OPERATIONS

PARSER

SUBSYSEM STATE
MACHINE

SELECTOR

CLASSIFICATN
FINALIZATION

ANALYSIS
DPERATIONS

ANALYZER
SUBSYSTEM

SL/PLee
NOACEx. 1015 Page 87

4

L-l00-LddyTe30ZCY
ms -

NOAC Ex. 1015 Page 88

oa7agmaat wei- +

ss cea”<<, ymaAOU Siee eee
324

DATABASE
1502

PACKET
1504 1506

ACQUISITION

DEVICE
HOST

MEMORY

8L/SL

MONITOR

121 =

102 INTERFACE||DISK
CARD

NOACEx. 1015 Page 88

NOAC Ex. 1015 Page 89

vy

ietz et al. APPT-001-1

16/18

Dst MAC

Dst MAC Src MAC

Src MAC

2Offset = 12

FIG. 16WeWalDeelMusee«

NOACEx. 1015 Page 89

NOAC Ex. 1015 Page 90

SHUIReSS.SSERIPeawen
TRA

: tz et al. APPT-001-1 on

is
. A

17/18
1702

1704

offset
12 to 13 HH

Y 1706

1708 Type (2)

{ESOfffet = 14

FIG. 17A

1712

. YenaieaNieieBLLto dentifie ad ad/ Ose

1| (ZEWProtocolHaatnee
Src Address

 ORRAeA

¥— 1750

Preto

[L4Offfet = L3 + (IHL/4)

FIG. 17B

IDP = 0x0600*
IP = 0x0800*

CHAOSNET= 0x0804
ARP = 0x0806
VIP = OxOBAD*

VLOOP = 0xOBAE
VECHO = 0x0BAF

NETBIOS-3COM = 0x3C00-
Ox3COD#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x6007

RARP = 0x8035
ATALK = 0x809B*

VLOOP = 0x80C4
VECHO= 0x80C5
SNA-TH = 0x80D5*

ATALKARP= 0x80F3

IPv6 = 0x86DD*
LOOPBACK= 0x9000

Apple = 0x080007
*L3 Decoding
L5 Decoding

1752

ICMP = 1

OSPF = 89

*L4 Decoding
#L3 Re-Decoding

NOACEx. 1015 Page 90

NOAC Ex. 1015 Page 91

APPT-001-1
Rie

18/18

PROTOCOL

 HLONSATCTAlS

FIG. 18A

{870

vo
UUT NUM,L

etqials403d093LAd
A1850

moo1O90LOdd

FIG. 18B

NOACEx. 1015 Page 91

NOAC Ex. 1015 Page 92

wT OF DRAWINGS
MSORIGINALLYFILep '01-1
|

100

CLIENT 3

106

Ta
rae

|Ei
DATA COMMUNICATIONS

NETWORK

1/18

CLIENT 4 108
— ANALYZER

107
116

|rt—“(‘CSC*SsSs@COY

SERVER 2

10
121

102

125

123
118

7 1105 oC

CLIENT 2 CLIENT 1 }|~
104

FIG. 1

NOACEx. 1015 Page 92

NOAC Ex. 1015 Page 93

 tet LED ee - Moy 7. : ‘

BPEeRretya a

214 215 < ore219 220.221 222 (223fet]ob]

81/2

 <270 2a (272 (273 (274 (275
“Jsll[=n

209 |

NOACEx. 1015 Page 93

5
|

gsoIPE
<E

5L-L00aan

NOAC Ex. 1015 Page 94

 UE CHEN EN ENera

ay cy i wee | ie Zz2 =
300 ‘0 §

—-—--------—--+~~—~—-—~~ ~~~ / 3PARSER 301 | <_ ~---LLL_ee ap | z
| 304 306 1 0oy I

302 ANALYZE AND EXTRACT 1 | < =
||RECOGNIZE||pentirving||BUILD.UNIQUE|, ||LOOKUP a

PACKET, PATTERN CONVERSATION FROM NEW “FLOW DATABASE ¥
"FLOW" KEY || KNOWN RECORD?

RECORDS OF FLOWS

b-FO

UPDATE

PROTOCOL "FLOW" |
& STATE KNOWN

EXTRACTION IDENTIFICATION RECORD

 |

|

|

DATABASE |
\

d

|

lay
(>

—_ — | ©

1 - CLASSIFICATN||!
310 | STATE FINALIZATION |[— |

PROCESSOR |
{ INSTRUCTION mn

COMPILER 34
AND DATABASE my

OPTIMIZER I !

336 338 | |
| NO |

I l

DATAGRAM| I I

LAYER |
| |

| ANALYZER |

| 303 |

NOACEx. 1015 Page 94 -

NOAC Ex. 1015 Page 95

ig PRINT OF DRAWINGS 4944
~! AS ORIGINALLY FILED ~a ae

4/18

O00

eS 402

HIGH LEVEL
PACKET

DECODING
DESCRIPTIONS

404 405

GENERATEPACKET COMPILE

PARSEOr DESCRIPTIONS
OPERATIONS

x 403

= 407
L STATE
c PROCESSOR
= EXTRACTION INSTRUCTION
= DATABASE 408 409 DATABASE

LOAD LOAD STATE

PARSING NSTRUCTIO
SUBSYSTEM DATABASE

MEMORY MEMORY
400

410

FIG. 4

NOACEx. 1015 Page 95

NOAC Ex. 1015 Page 96

-, PRINT OF DRAWINGS 001-1

- ASORIGINALLY FILED

ts

eat

BxTE
i

oUt
4

wae

ouch

heey
1
Hyq

502
 503 LOAD PACKET

COMPONENT

ORE IN PACKET >

504

 FETCH NODE AND

PROCESS FROMA RN

513

 APPLY NOD ANT

PROCESS TO
COMPONENT

Ns510
Tey

PATTERN
NODE

EXTRACT
509 ELEMENTS

NOACEx. 1015 Page 96

NOAC Ex. 1015 Page 97

| PRINT OF DRAWINGS

" ASORIGINALLY FILED 901-1SSS

‘ & @a

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET
COMPONENT 610

604

LOAD KEY
BUFFER

FETCH EXTRACTION(F7)
AND PROCESS FRO

PATTERNS 605

we

ase
NO 611

606

NEXT
NO PACKET 609

COMPONEN

UA
 ORE EXTRACTION

ELEMENTS?

YES

607|APPLY EXTRACTION

PROCESS TO
MPONENT x

dodGAB?Se
600

 MORE TO 608
EXTRACT?

FIG. 6

NOACEx. 1015 Page 97

NOAC Ex. 1015 Page 98

al PRINT OF DRAWINGS

* ASORIGINALLYFILED
a

”

a

A
t

gs

001-1

7/18

EY BUFFER AND
PATTERN NODE

LOAD PATTERN
NODE ELEMENT

MORE PATTER
NODES?

701

702

703
708

OUTPUT TO
ANALYZER

709

704

YES

HASH KEY BUFFER
ELEMENT FROM
PATTERN NODE

705

PACK KEY & HAS

706

700

NEXT PACKET
COMPONENT

707

FIG. 7

NOACEx. 1015 Page 98

NOAC Ex. 1015 Page 99

"PRINT OF DRAWING? <0, ,
AS ORIGINALLY FILED

8/18

C) 801

UFKB ENTRY FOR 802
PACKET

800\
COMPUTE CONVERSATION 803
RECORDBIN FROM HASH

04REQUEST RECORDBIN/
BUCKET FROM CACHE 8

806

NO|SETUFKB FOR
PACKET AS 'NEW'

COMPARE CURRENTBIN 807
AND BUCKET RECORD KEY

TO PACKET

: NEXT BUCKET|¢-NO<OKEYMATCH? 808
YES

ORE BUCKET:
605 IN THE BIN?

ESA
wt,a

YES

WRGae
609 MARK RECORDBIN AND 810

BUCKET ‘IN PROCESS’IN
CACHE AND TIMESTAMPa
SET UFKB FOR PACKET

811 AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORDIN CACHE

"= UC) FIG. 8

NOACEx. 1015 Page 99

NOAC Ex. 1015 Page 100

>| PRINT OF DRAWINGS=7904.4
ASORIGINALLY FILED ‘

, Kk
4 re Saq _ .

Bag ; Joar Ed Eg

a

9/18

909

EXTRACT PROGRAM EXTRACT PORT

GET ‘PROGRAM ', GET 'PROGRAM',
‘VERSION’,‘PORT' AND ‘VERSION’ AND
‘PROTOCOL(TCP OR ‘PROTOCOL(TCP OR
 UDP) UDP)’

= 908

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

 CREATE SERVER STAT

SAVE 'PROGRAM',

= 904 ‘VERSION’, ‘PORT' AND ‘PROTOCOL(TCP OR
L ‘PROTOCOL(TCP OR UDP)' WITH
= UDP)’ WITH NETWORK DESTINATION
= ADDRESSIN SERVER NETWORKADDRESS.

STATE DATABASE. KEY BOTH MAKEAKEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

 ad

THOR.+

1SEGeH. LOOKUP REQUES

FIND ‘PROGRAM’

EXTRACT
PROGRAMsatEISaf

3007 AND 'VERSION' GET 'PORT' AND

WITH LOOKUP OF ‘PROTOCOL (TCP
+g SOURCE NETWORK OR UDP)’.

4Fh ADDRESS.

+8eR

FIG. 9

NOACEx. 1015 Page 100

NOAC Ex. 1015 Page 101

«, PRINT OF DRAWINGS 4,_,
ASORIGINALLYFILED

a | @

1000 —. 10/18

a PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASEDATABASE
MEMORY 1001 MEMORY

100 400

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL|

= 1031

= 1006 PATTERN 4007
- RECOGNITN EXTRACTION ENGINE
" ENGINE (SLICER)
- (PRE)

= 1008

~ ~ PARSER
5 PACKET\)PARSER INPUT BUFFER OUTPUT PACKET KEY
° INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

= 1012

: 1021
: START|INPUT BUFFER ANALYZER DATA READY

INTERFACE INTERFACE
CONTROL CONTROL

ZER
TY

PACKET READY
102

1023 FIG. 10 1027

NOACEx. 1015 Page 101

NOAC Ex. 1015 Page 102

* PRINT OF DRAWINGS—994.4
ASORIGINALLY FILED

@ @

11/18

1100 4

1101 1103 1115 sig 1124
1107

 pose

ENGINE —y

STPaL|
Hy

1119 1123
wRtai

WuHoeeeHoyag

 AES WTER.
.1 CONTROL 4-7. FACE

(UMC)

1110

FIG. 11

NOACEx. 1015 Page 102

NOAC Ex. 1015 Page 103

w PRINT OF DRAWINGS 901-1
ASORIGINALLYFILED

12/18

we
UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

1200
ak ACCESS

CONVERSATION 1203
RECORDBIN

_ 1204

5 REQUEST NEXT
= BUCKET FROM 1205

no. |!NSERT KEY AND HASH
5 N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

YES

CAaa

PAREeaBlAND BUCKET RECORD

SET UFKB FOR
PACKET AS KEY TO PACKET

‘DROP'

 “iRBae*

 MARK RECORDBIN AND
BUCKET'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORDIN CACHE

 iHRSW.
1213

FIG. 12

NOACEx. 1015 Page 103

NOAC Ex. 1015 Page 104

F x. PRINT OF DRAWING

T-001-1
ASORIGINALLYFILED ~
a ve.u j bits

13/18

Our1301
1300 —~4 UFKB ENTRY FOR

PACKET WITH STATUS
'NEW' OR 'FOUND' 1302

SET STATE PROCESSOR
INSTRUCTION POINTER TO 1303

ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
_ STATE PROCESSOR
= INSTRUCTION MEMORY

= PERFORM OPERATION BASED|-—1305
= ON THE STATE INSTRUCTION

~ SET STATE
‘ = PROCESSOR
‘ = INSTRUCTION NO_-—BiONE PROCESSING 1307

= POINTER TO STATES FOR THIS
2 = VALUE FOUNDIN PACKET?
#. . = CURRENT STATE

= 4308 VES
- 1310
* * SAVE STATE

% PROCESSOR
“ INSTRUCTION |_NO DONE PROCESSING 1309
F POINTER IN TATES FOR THIS FLO
: “s CURRENT FLOW

RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

Ce
FIG. 13

1311

NOACEx. 1015 Page 104

NOAC Ex. 1015 Page 105

eo

Bi i RORYSe. cae 2 oF oak s

ALACI gagET A SLB

1

EXTRACT 11 | LOOKUP
IDENTIFYING *ELOW!REY KNOWN

INFO & PROCL DATABASE
/STATE OF FLOWS

PATTERN UPDATE
STRUCTURES

AND
EXTRACTION
OPERATIONS

PARSER
SUBSYSEM

STATE

MACHINE

SELECTOR

CLASSIFICATN
FINALIZATION

ANALYSIS

ANALYZER
SUBSYSTEM

NOACEx. 1015 Page 105

St/vk

©

eeATIVNIDIOSV= SONTMVNIOINTHE&
L-L00-,C2Ta

NOAC Ex. 1015 Page 106

ASORIGINALLYFILED 01-1
PRINT OF DRAWINGS4

naoot"6

15/18

SnnneeernAYIt

dOHOLINOW

AYOWSW1SOH

AOIASdNOLLISINDOVLayOVd

90S1

LoeWasdvd

asvavivd

eRRTE
AWWA

Bx+Taywt2a Lob

NOACEx. 1015 Page 106

NOAC Ex. 1015 Page 107

PRINT OF DRAWINGS "001-1
. ASORIGINALLY FILED

Eihe

17/18
1702

1704

offset
12 to 13] tT

} © 1706

1708 Type (2)

1710 Hash|') ¥— 1700
\[5Offpet = 14

FIG. 17ASEAEg
#4:

Hess

ey

PEAT
L3 to

[L3 +
(IHL/ 4
u

PRRAEA

¥— 1750

Dst Address

Dst Hash(2)
Src Address

Src Hash (2)

Praga
(L4Offfet = L3 + (IHL/4)

FIG. 17B

IDP = 0x0600*
IP = 0x0800*

CHAOSNET= 0x0804
ARP=0x0806
VIP = OxOBAD*

VLOOP = OxOBAE
VECHO = 0x0BAF

NETBIOS-3COM= 0x3C00 -
0x3COD#

DEC-MOP= 0x6001

IPv6 = 0x8'
LOOPBACK= 0x9000

Apple = 0x080007
* L3 Decoding
L5 Decoding

OSPF = 89

* L4 Decoding
#L3 Re-Decoding

NOACEx. 1015 Page 107

NOAC Ex. 1015 Page 108

OoOo

~<mM\COa7al440CO0a3009SLAG—~~.©"c~IT]O5O_ HILTEHEAFYTxLe\Lea,H/TA/T]3STae”CoMoTLPTTTTTATT]A:@o&lILIITITTYLL]/8&aoteFlTTITTT}LjO0010"ud7$oz—__—____»9HLONS1GSI
n

3z>34lasaoR

zaL.PeASSPIeSoada
29)

weCosbyhsTBRF¥
3

neetaGeBdedalecit

‘:Xiegerat,a8Zg3wattmel.BabeadsAMMSESSFP.A"
NOACEx. 1015 Page 108

NOAC Ex. 1015 Page 109

 oe

This Form is for INTERNAL PTO USE ONLY
il\30c3 NOT get mailed to the applicant.

NOTICE OF FILING / CLAIM FEE(S) DUE
(CALCULATION SHEET)

APPLICATION NUVEBER:

Total Fee Calculatioe

Taal eames

 Fee Gods shia Firca x Fe: Fer - Tau

Sm Le Sin Eate yaf

Caste Filiag Fee wet ' e- - —
Qa Co rg —_ 2 =Tatal Claims: 220 75005 a lie < @ J Lenco,

. ’

Indcoundeat Claum; >) 102! 1 ed

Mahe Cao Claim Present ida dy). .

_—— _ (50 TTSursharge Py 7 .

Eaghsh Transiacan fy ———

_ TOTAL FEE CALCULATION , __——

rp Ferg due ugon filing the agghes.es

M
© boul Filag Fess Qus = 5

4

‘Less Filiag Fees Sutmined=- 5

‘BALANCE DUE =$ (

Mice Of Initial Pateat Exarrunauan

.fO | lure 7
PRMOPE. RAM-O1 (Rev, 12/97)
pe
i

NOACEx. 1015 Page 109

NOAC Ex. 1015 Page 110

file:///c:/APPS/preexam/correspondence/4.htm

 FORMALITIES LETTER UNITED STATES DEPARTMENT OF COMMERCE
P k Offi

AAA ANCAGOA tte,coMdesrone Or PATENT AND TRADEMARKS
0C000000005353894 Washington, DC 20231

APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,237 06/30/2000 Russell S. Dietz APPT-001-1

Dov Rosenfeld
Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER37 CFR 1.53(b)

Filing Date Granted

An application numberandfiling date have been accordedto this application. The item(s) indicated below, however,
are missing. Applicant is given TWO MONTHSfrom the date of this Notice within whichto file all required items and
pay any fees required below to avoid abandonment. Extensionsof time may be obtained byfiling a petition
accompanied by the extension fee underthe provisions of 37 CFR 1.136(a).

* The statutory basic filing fee is missing. ;
Applicant must submit $ 690 fo complete the basic filing fee and/or file a small entity statement claiming such !
status (37 CFR 1.27).
Total additional claim fee(s) for this application is $780.

w $702 for 39 total claims over 20.
m $78 for 1 independentclaims over 3 .

* The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.
To avoid abandonment,a late filing fee or oath or declaration surcharge as set forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing itemsidentified in this letter.
The balance dueby applicant is $ 1600.

A copy of this notice MUSTbe returnedwiththereply.

Boer aw & Hee , .
ustomer Service Center ;

Initial Patent Examination Division (703) 308-1202
‘ PART 3 - OFFICE COPY

NOACEx. 1015 Page 110
8/25/00 7:29 AM

NOAC Ex. 1015 Page 111

a SECSIL
Our Ref./Docket No: Ar. F-001-1 Patent -

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE ar3

P Eawh ant(s): Dietz, et ai.

o

by 06 femplivation No.: 09/608237

Fileg: June 30, 2000
E eerami: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Group Art Unit: 2755

Examiner: (Unassigned)

RESPONSE TO NOTICE TO FILE MISSING PARTS OF APPLICATION

Assistant Commissioner for Patents

Washington, D.C. 20231
Attn: Box Missing Parts

Dear Assistant Commissioner:

This is in response to a Notice to File Missing Parts of Application under 37 CFR 1.53(f).
Enclosedis a copy of said Notice and the following documents and fees to complete the filing
requirements of the above-identified application:

X__ Executed Declaration and Power of Attorney. The above-identified application is the
same application which the inventor executed by signing the enclosed declaration,

X__ Executed Assignment with assignment coversheet.

X Accredit card payment form in the amount of $___ 1772.00 is attached, being for:
X__ Statutory basicfiling fee: $710

Additional claim fee of $782
Assignment recordation fee of$40
Extension Fee First Month of$110
Missing Parts Surcharge$130

Applicant(s) believe(s) that no Extension of Timeis required. However, this conditional
petition is being madeto provide for the possibility that applicant has inadvertently

° overlooked the needfor a petition for an extensionof time.
X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a)of:

X__ one months ($110) two months ($380)

two months ($870) four months ($1360)

If an additional extension of time is required, please consider this as a petition therefor.

aaa

Poh Ah 7;
Slee So YsOBGS7y OFGUKE ST

hgge a”

‘Certificate of Mailing under 37 CFR 1.8

Therebycertify that this response is being deposited with the United States Postal Service as first class mail in an
envelope addressedto the Assistant Commissioner for Patents, Washington, DC, lon.

Date: Aw l ABO

Signed:

NOAC Ex. 1015 Page 112

Application 09/608237, Page 2

X__The Commissioneris hereby authorized to charge paymentof any missing fees associated
with this communication or credit any overpayment to Deposit Account
No. 50-0292

(A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED):

Respectfully Submitted,

Nov | 20¢0 GF
Date ov Rosenfeld, Reg. No. 38687

Address for correspondence: ‘
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Tel. (510) 547-3378; Fax: (510) 653-7992

~ NOACEx. 1015 Page 112

NOAC Ex. 1015 Page 113

cy £3

ATTORNEY DOCKET NO._APPT-001-1

As a below namedinventor, I hereby declare that:

Myresidence/postoffice address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one nameis listed below) or an original, first and joint inventor(if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

lherebystate that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

Thereby claim foreign priority benefits underTitle 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

povss NO
povss NO

Provisional Application

1 hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below: }

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the j
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner providedby thefirst ‘
paragraphofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of '
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT internationalfiling :
date of this application:

FILING DATE STATUS(patented/pending/abandoned
POWER OF ATTORNEY:

As anamedinventor,I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application andtransact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondenceto: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA_94618

I hereby declare thatall statements made herein of my own knowledge are true andthatall statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

NameofFirst Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA_95120-2736

OL P/EO

Date NOACEx. 1015 Page 113

NOAC Ex. 1015 Page 114

Declaration and Power of Attomey (Continued)
Case No; «Case _CaseNumbem

Page 2 f- 60i /

ADDITIONAL INVENTOR SIGNATURES:

Nameof Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptos, CA 95003

Post Office Address: Same

Inventor’s Signature

Nameof Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown, TN__38139

Post Office Address: Same

Inventor’s Signature

Nameof Fifth Inventor: Haig A, Sarkissian

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature

Nameof Sixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

NOACEx. 1015 Page 114

NOAC Ex. 1015 Page 115

5ECLARATION AND POWEROF
iOR PATENT APPLICATION

E,. S:

My residence/post office address and citizenship are’ ‘gfated below ngetto my name;
believe I am theoriginal, first and sole inventor (if onlyaEarppiO's fisted below) or an original, first and joint inventor(ifplural namesare

tisted below) of the subject matter which is claimed and for WiiCh’a patent is sought on the invention entitled:
METHOD:AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unlessthe following box is checked:
(X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

[hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information whichis material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim ofForeign Priority

{hereby claim foreign priority benefits under Title 35, United States Code Section 119 ofany foreign application(s) for patent or inventor(s)
certificate listed below and havealso identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

PRIORITY CLAIMED UNDER 35

YES

Provisional Application

{hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below.

APPLICATION SERIAL NUMBER. FILING DATE

60/141,903 Jume 30, 1999
U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter ofeach of the claims ofthis application is not disclosed in the prior United States application in the manner provided bythefirst
paragraph ofTitle 35, United States Code Section 112, I acknowledgethe duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT intemational filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned

POWER OF ATTORNEY:

As a named inventor, { hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected ith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondenceto: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declarethatall statements made herein ofmy own knowledge are true andthat all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledgethat willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

NameofFirst Inventor: Russell S. Dietz Citizenship: USA.

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor's Signature Date NOACEx.1015 Page 115

NOAC Ex. 1015 Page 116

 - APPT-001-1

 ATTORNEY DOCKET NO
ar

%

- SECLARATION AND POWER
Re OR PATENT APPLICATION
ae NY

RB METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

ey the specification of which is attached hereto unless the following box is checked:
(X) wasfiled on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

[hereby state that I have reviewed an r. the contents of the above-identified specification, including the claims, as amended by any
. amendment(s) referred to above.I ackno edgé the duty to discloseall information which is material to patentability as defined in 37 CFR 1.56.

© Foreign Application(s) and/or Claim of Foreign Priority

thereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
' certificate listed below and havealsoidentified below any foreign application for patent or inventor(s) certificate having a filing date before that of

the application on which priority is claimed:

He - COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER35
epvss
poovers:

Provisional Application

ak I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s)listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

, r U.S. Priority Claim
Sey | hereby claim the benefit underTitle 35, United States Code, Section 120 of any United States application(s) listed belowand, insofaras the
we subject matter of each of the claimsof this application is not disclosed in the prior United States application in the mannerprovided bythefirst

&- paragraphofTitle 35, United States Code Section 112, [acknowledge the duty to disclose material informationas defined in Title 37, Code of
. Federal Regulations, Section 1.56(a) which occurred betweenthefiling date of the prior application and the national or PCT internationalfiling

me date ofthis application:

 »

[APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned)
’ POWER OF ATTORNEY:

As a named inventor, | hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
In the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondenceto: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information andbelief are believed
to be true; and further that these statements were made with the knowledgethat willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

NameofFirst Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

NOACEx. 1015 Page 116
 oS

t First Inventor’s Signature Date

NOAC Ex. 1015 Page 117

 PATENT APPLICATION _
RTATTORNEY, DOCKET NO._APPT-001-1

CLARATION AND POWER OF ATTURNEY
PATENT APPLICATION __

EAs a below namedinventor, I hereby declarethat:

be y residence/post office address andcitizenship are as stated below next to my name; -
& ypelieve | am theoriginal,first and sole inventor (if only one nameis listed below) oran original, first and joint inventor(if plural namesare‘gisted below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
gEMETHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK——— —————————————

 Fhe specification of whichis attached hereto unless the following box is checked: :
t (X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and* was amended on (if applicable).x,

3 hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
S gmendment(s) referred to above. I acknowledgethe duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

”

foreign Application(s) and/or Claim of Foreign Priority
‘thereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patentor inventor(s)
certificate listed below and havealso identified below any foreign application for patent or inventor(s) certificate having a filing date before that of

#the application on whichpriority is claimed:

APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER35 YES: NO:

YES: NO:

- [hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

+», Provisional Application

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim

* [hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
_ subject matter of each‘ofthe claimsof this application is not disclosed in the prior United States application in the manner provided by thefirst

paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred betweenthe filing date of the prior application andthe national or PCT internationalfiling
date of this application:

5 FILING DATE STATUS(patented/pending/abandoned

wk

+ POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application andtransactall business
in the Patent and Trademark Office connected therewith: :

Dov Rosenfeld, Reg. No. 38,687CMmeewat
Send Correspondenceto: © , Direct Telephone CallsTo:

Dov Rosenfeld~~ Dov Rosenfeld, Reg: No. 38,687
5507College Avenue, Suite'2:""" * Tel: (510) 547-3378 os
Oakland, CA 94618

Thereby declare that all statements made herein of my own knowledgeare true and that all statements made on information and beliefare believed
' to be true; and further that these statements were made with the knowledge thatwillful false statements and the like so madeare punishable by
:. fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code andthat such willful false statements may jeopardize the

Validity of the application or any patent issued thereon.

NameofFirst Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

NOACEx. 1015 Page 117

NOAC Ex. 1015 Page 118

Ce
Declaration and PowerofAttorney (~ontinued)
Case No; «Case _CaseNumber
Page 2 APP ~BO(-7

a

«Biaay
ADDITIONAL INVENTOR SIGNATURES: oo,

~

—__—
Nameof Second Inventor: Joseph R. Maixner Citizenship: US

Residence: 121 Driftwood Court, Aptos, CA _95003 ,

Post Office Address: Same

 10/23/2080

nventor’s Sign 7 Date

Nameof Third Inventor: Andrew A. Koppenhaver Citizenship: USA
Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Nameof Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glesalden Drive, Germantown, TN__ 38139 .
Post Office Address: Same ¢

Inventor’s Signature Date :

Nameof Fifth Inventor: Haig A. Sarkisian Citizenship: USA 5
Residence: 8701 Mountain Top, San Antonio, Texas 78255 | 4
Post Office Address: Same 4

Inventor’s Signature Date 4

4
Nameof Sixth Inventor: James F. Torgerson Citizenship: USA 4
Residence: 227 157th Ave., NW, Andover, MN 55304 F
Post Office Address: Same a

a
Inventor’s Signature Date 3

NOACEx. 1015 Page 118

NOAC Ex. 1015 Page 119

— & 2 Oo
Declaration and Power ofAttomey (Continued)
Case No; «Case__CaseNumbem
Page 2 AY?T—OO IF

ADDITIONAL INVENTORSIGNATURES:

Nameof Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptos, CA__95003

Post Office Address: Same

 _

Inventor’s Signature Date

NameofThird Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 9325 W. Hinsdale Place, Littleton, CO __80128

LZOffice Address:Gi x ~ 16/20/0006
DateInventor’sCF

NameofFourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantown, TN__381

Post Office Address: Same

Inventor’s Signature Date

NameofFifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas__78255

Post Office Address: Same

Inventor’s Signature Date

Nameof Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, Andover, MN__ 55304

Post Office Address: Same

Inventor’s Signature Date

NOACEx. 1015 Page 119

NOAC Ex. 1015 Page 120

he

“eRerindy6
“yee:

“RETRO.AUe
«i*

metaee-
eRe

O
ATTORNEY DOCKET NO._APPT-001-1

PATENT APPLICATION _

 DECLYR A

FOR PATE AlRe

As a below namedinventor,I hereby declare that:

Myresidence/post office address and citizenship are as stated below next to my name;
I believe I am theoriginal, first and sole inventor(ifonly one nameis listed below) or an original,first and joint inventor(ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
METHOD AND APPARATUS FOR MONITORING CIN A NETWORK

the specification ofwhich is attached hereto unlessthe following box is checked:
Cc) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable). =

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information whichis material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and havealso identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on whichpriority is claimed:

COUNTRY

povers
povss:NO
Provisional Application

J hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER. FILING DATE

60/141,903 June 30, 1999

US.Priority Claim

Thereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims ofthis application is not disclosed in the prior United States application in the mannerprovided bythe first
paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date ofthis application:

STATUS(patented/pending/abandoned
POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Doy Rosenfeld, Reg. No. 38,687

Send Correspondenceto: Direct Telephone Calls To:
Dov Rosenfeld DovRosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

Thereby declare thatall statements made herein of my own knowledge aretrue andthatall statements made on information andbelief are believed
to be true; and furtherthat these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

NameofFirst Inventor: Rnsselj S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA_ 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

NOACEx. 1015 Page 120

NOAC Ex. 1015 Page 121

Jeclaration and PowerofAttorneyeeetase No; «Case _CaseNumben
ape 2 Aypr-oo1-74

\DDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 121 Driftwood Court, Aptos, CA__ 95003

Past Office Address: Same

Inventor’s Signature

Nameof Third Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA__ 22030

Post Office Address: Same

Inventor’s Signature

NameofFourth Inventor: William H. Bares

Residence: 9005 Glenalden Drive, Germantown, TN_38139

Post Office Address: Same

Inventor’s Signature “

NameofFifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Toventor’s Signature

NameofSixth Inventor: James F. Torgerson

Residence: 227 157th Ave., NW, Andover, MN__ 55304

Post Office Address: Same

mee

Tnventor’s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

SLAMO0
Date

Citizenship: USA

Date

Citizenship: USA

Date

NOACEx. 1015 Page 121

NOAC Ex. 1015 Page 122

weeAT

i

k

$

"BEAPEyO 0
nov 0.6 2000 °

&: PATENT APPLICATION
ATTORNEYDOCKET NO; APPT-001:1.

As a below namedinventor, I hereby declare that:

Myresidence/postoffice address and citizenship are as stated below next to my name;

Ibelieve I am the original, first and sole inventor(if only one nameis listed below) or an original, first and joint inventor(if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the inventionentitled:
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledgethe duty to disclose all information whichis material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and havealso identified below any foreign application for patent or inventor(s) certificate havingafiling date before that of
the application on whichpriority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER35

poevs: NO:
povss NO
Provisional Application

I hereby claim the benefit underTitle 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

US. Priority Claim

I hereby claim the benefit underTitle 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claimsofthis application is not disclosed in the prior United States application in the manner provided bythefirst
paragraph ofTitle 35, United States Code Section 112, I acknowledge the duty to disclose material information as definedin Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between thefiling date of the prior application and the national or PCT internationalfiling
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS(patented/pending/abandoned

POWER OF ATTORNEY:

As a namedinventor, I hereby appointthe following attorney(s) and/or agent(s) listed below to prosecute this application and transactall business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Sénd‘Correspondence.ti: 4. / Direct TelephoneCalls To: ae
“".DowRosenfeld ® veggie SRR Dav Rosenfeld, Reg. No, 38,687 “7, ~~

7.GollegeAvenueShite 2 = Mies Tel: (510) 547-3378 °° ey‘a

etMe yg we de .
. Oakland, CA 94618 7”

T hereby declarethat all statements made herein ofmy own knowledgeare true and thatall statements made on information andbelief are believed
to be true; and furtherthat these statements were made with the knowledgethat willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code and that such willful false statements may jeopardize the
validity of the application or any patent issued thereon.

NameofFirst Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

 mae

First Inventor’s Signature Date NOACEx. 1015 Page 122

NOAC Ex. 1015 Page 123

SRTor

wing

@ 2
Declaration and Power ofAttomey (Continued)
Case No; «Case__CaseNumbem
Page2 *PPAT~ 80) -I

ADDITIONAL INVENTOR SIGNATURES:

Nameof Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptos, CA 95003

Post Office Address: Same

Jnventor’s Signature Date

NameofThird Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA __22030

Post Office Address: Same

Inventor’s Signature Date

NameofFourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature Date

NameofFifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Nara, Aookea Sept Al 2000
Inventor’

NameofSixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave.. NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature Date

NOACEx. 1015 Page 123

NOAC Ex. 1015 Page 124

O° 7 m= |nov 06 ato 3 C) | DO
PATENT APPLICATION

ATTORNEY DOCKET NO, APPT-001-1
Asa below named inventor, I hereby declare that

Myresidence/postoffice address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one nameis listed below) or an original, first and joint inventor(ifplural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
METHOD APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on _June 30, 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

Thereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. [acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

Thereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and havealso identified below any foreign application for patentor inventor(s) certificate having a filing date before that of
the application on whichpriority is claimed:

APPLICATION NUMBER

Poves:NO
povss|

Provisional Application

Thereby claim the benefit underTitle 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

 APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner providedby thefirst
paragraphofTitle 35, United States Code Section 112, I acknowledgethe duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between thefiling date of the prior application and the national or PCT international filing
date ofthis application:

FILING DATE STATUS(patented/pending/abandoned

POWER OF ATTORNEY:

As anamed inventor, I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transactall business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondenceto: . Direct Telephone Calls To:
Dov.Rosenfeld / . Dav Rosenfeld, Reg. No. 38,687

Tek (540) 347-3378
[hereby declarethat all statements made herein ofmy own knowledgeare true andthat all statements made on information andbelief are believed
to be true; and further that these statements were made with the knowledgethat willful false statements andthe like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 of the United States Code andthat such willful false statements mayjeopardize the
validity ofthe application or any patent issued thereon.

NameofFirst Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

 a

First Inventor’s Signature Date
NOACEx. 1015 Page 124

NOAC Ex. 1015 Page 125

CVT

“TR!

Be

i

Q ©
Declaration and Power of Attorney (Continued)
Case No; «Case _CaseNumbem»

Page 2 REPT O01 -f

ADDITIONAL INVENTOR SIGNATURES:

NameofSecond Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptos, CA__95003

Post Office Address: Same

Inventor’s Signature Date

Nameof Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA__ 22030

Post Office Address: Same

Inventor’s Signature Date

NameofFourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Inventor’s Signature Date

NameofFifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

NameofSixth Inventor: James F. Torgerson Citizenship: _USA

Residence: 227 157th Ave. NW, Andover, MN__ 55304

thafifoo
Date

Post Office Address:

 Inventor’s Signature

NOACEx. 1015 Page 125

NOAC Ex. 1015 Page 126

Fr

@ E ~~ file:///c:/APPS/preexam/correspondence/3.htm
‘ e) Z?y06 000 , 4
go gs

Sacer FHF

fy

Nod & ie S

UNITEDSTATES DEPARTMENT OF COMMERCE
Patent and Trademark Office

Addregs COMMISSIONER OF PATENT AND TRADEMARKS
Washington, D C, 20231

APPLICATION NUMBER FILING/RECEIPT DATE FIRST NAMED APPLICANT ATTORNEY DOCKET NUMBER

09/608,237 06/30/2000 Russell 5. Dietz : APPT-O01-1

FO LITIES LETTER

CACC
OC000000005353894

Dov Rosenfeld
Suite 2

5507 College Avenue
Oakland, CA 94618

Date Mailed: 08/25/2000

NOTICE TO FILE MISSING PARTS OF NONPROVISIONAL APPLICATION

FILED UNDER 37 CFR 1.53(b)

Filing Date Granted

An application numberandfiling date have been accordedto this application. The item(s) indicated below, however,
are missing. Applicant is given TWO MONTHSfrom the date of this Notice within which tofile all required items and
pay any fees required below to avoid abandonment. Extensionsof time may be obtainedbyfiling a petition
accompanied by the extension fee underthe provisions of 37 CFR 1.136(a).

* Thestatutory basicfiling fee is missing.
Applicant must submit$68@.fo complete the basic filing fee and/orfile a small entity statement claiming such
status (37 CFR 1.27). 7 .
Total additional claim fee(s) for this application is $780.

m $702 for 39 total claims over 20.
m $78 for 1 independent claims over3. YO

¢ The oath or declaration is missing.
A properly signed oath or declaration in compliance with 37 CFR 1.63, identifying the application by the
above Application Number and Filing Date, is required.

¢ To avoid abandonment, a late filing fee or oath or declaration surcharge asset forth in 37 CFR 1.16(e) of
$130 for a non-small entity, must be submitted with the missing itemsidentified in this letter.

¢ The balance due byapplicantis $ 1600.
20

166
A copy ofthisnotice MUSTbe returned with the reply.

Customer Service Center os

Initial Patent Examination Division (703) 308-1202 =
PART 2 - COPY TO BE RETURNED WITH RESPONSE es

8/25/00 7:29 AM

NOACEx. 1015 Page 126

NOAC Ex. 1015 Page 127

CPlame
Patent 7

MS! igoIN THE UNITED STATES PATENT AND TRADEMARK OFFICE
 Our Docket/Ref. No.: APPT-0U1-|

j¢ant(s): Dietz et al.

.. 09/608237 Group Art Unit: 2755 RECEIVED
Examiner:

APR 16 2001
Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A Technology Center 2100
NETWORK

Commissioner for Patents 7

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

_X__ An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

. Accheckfor petition fees.

_X__ Return postcard.

_X__ The commissioneris hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date: April 9, 2001

 ov Rosenfeld

s Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

Certificate of Mailing under 37 CFR 1.18

| herebycertify that this correspondenceis being deposited with the United States Postal Serviceasfirst
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit: Hoc a, PO& f

Dov Rostatéld, Ree No. 38,687

NOACEx. 1015 Page 127

NOAC Ex. 1015 Page 128

».

_ S J
Our Docket/Ref. No.: APPT-001-1 Patent

Group Art Unit: 2.7 co
Examiner: RECEIVEDFiled: June 30, 2000

Title: METHOD AND APPARATUS FOR APR 16 2001
MONITORING TRAFFIC IN A 400NETWORK Technology Center 2

Commissioner for Patents

Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or
(Within three monthsoffiling national application; or date of entry of international
application; or before mailing date offirst office action on the merits; whichever
occurs last)

under 37 CFR 1.97(c) together with either a:
____ Certification under 37 CFR 1.97(e), or
__ a$180.00 fee under 37 CFR 1.17(p)
(After the CFR 1.97(b) time period, but before final action ornotice of
allowance, whichever occursfirst)

under 37 CFR 1.97(d) together with a:
__ Certification under 37 CFR 1.97(e), and
___ a petition under 37 CFR 1.97(d)(2)(ii), and
___ a $130.00 petition fee set forth in 37 CFR 1.17(i)(1).
(Filed after final action or notice of allowance, whichever occursfirst, but before
paymentof the issue fee)

_X__ Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service asfirst
class mail in an envelope addressed to. Commussioner for Patents, Washington, D.C. 20231.

Date of Deposit: Arar a FOO(
Si puwe__f=Dov Ro d, Reg. No. 38,687

 _, NOAC Ex. 1015 Page 1/28

NOAC Ex. 1015 Page 129

OS/N: 09/608237 Page 2 So IDs
X_ Someof the references werecited in a search report from a foreign patentoffice in a

counterpart foreign application. In particular, references AD, AF, AH, CI, EA, EB, EC, and ED
werecited in a searchreport from a foreign patentoffice in a counterpart foreign application.

It is expressly requested that the cited information be madeofrecord in the application and
appear amongthe “references cited” on any patent to issue therefrom.

As provided for by 37 CFR 1.97(g) and (h), no inference should be madethat the information and
references cited are prior art merely becausetheyare in this statement and norepresentationis
being made that a search has been conductedorthat this statement encompassesall the possible
relevant information.

Respectfully submitted,

Co

osenfeld

Attorney/Agent for Applicant(s)
Reg. No. 38687

Date: April 7, 2001

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

NOACEx. 1015 Page 129

NOAC Ex. 1015 Page 130

Ldn3 /fp\ S <) SHEET 1 OF_5.

ATTY. DOCKET NO. SERIAL NO.

APPT-OO1L-1 09760823 RECEIVEHD
APPLICANT

Dietz et al. aY APR16 2001
(Use several sheets if necessary) FILING DATE

6/30/2000

U.S. PATENT DOCUMENTS

FILING DATE

*EXAMINER DOCUMENT NAME CLASS|SUB-CLASS| /F APPROPRIATE
INITIAL. NUMBER

198 8 198 5

||4°|i99 0 198 8
h99 2 1988

5247517 Sep. Ross et al. 85.5 Sep.Eeeer oe
1999

NSS ~~ On ‘oOiPw woOo \0ODWw

&Oo
~] o

Rye °1994 1991

1994 1992PBs27, (Kalkunte et. al. 370 ns27,
| 1994 1991

994 1993

ae1994 1993

P==1995 199 3
FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS|SUB-CLASS LATION
NUMBER YES 1 NO

"Technical Note: the Narus System," Downloaded April 29, 1999 from.narus.com, Narus Corporation, Redwood City California.

DATE CONSIDERED

EXAMINER L. jth ZL 2 |
“EXAMINER: initial if citation considered, whetheror notcitation is in conformance with MPEP 609. NOACHE&2'FOrc Bas Pp ya aRT|)

and not considered Include a copy of this form with next communication to Applicant.

NOAC Ex. 1015 Page 131

EtalFORM - 1449 \ S SHEET 2 OF S.

ATTY. DOCKET NO. SERIAL NO.

APPT-001-1 °°/°°°"RECEIVEN
APPLICANT

Dietz et al.

(Use several sheets if necessary) FILING DATE
6/30/2000

U.S. PATENT DOCUMENTS

FILING DATE

“EXAMINER DOCUMENT CLASS}SUB-CLASS| iF APPROPRIATE
INITIAL NUMBER

1995 1993

1995

30,nY oOS

eee fas 1992

1995

5493689 Feb. 20, Waclawsky et al. 395peesttsse“uectereiee
Mar. 19, [Hershey et al. 370paresSagfrees

aaOP1996 1995

12, : Mar. 12,

17, .

25,

4,

1993

Mar. 1,
1993

an. 26,
1994

6,

mnINOoV Stansfield et al 39
1996 1993

1996 1993

1997 1993

608662 Mar . Large et al. 364 24.01 Jan. 1
1997 1995

5634009 May 27, |Iddon et al. 395 00.11 Oct. 27,
1995

FOREIGN PATENT DOCUMENTS

.
N

oOo =)wS|eeolea) oO~l~lNo~]w Lo)Pr A ©So

PUBLI-CATION

DOCUMENT DATE
NUMBER

*EXAMINER: initial if citation considered, whetheror notcitation is in conformance with MPEP 609. Or OACRS j i formanix. LOPS PHSET3 1and not considered. Include a copyof this form with next communication to Applicant.

NOAC Ex. 1015 Page 132

SHEET 3 OF 5.

SERIAL NO.

0°/8°°RECEIVED

Dietzet al. 4e4¥ APR16 2001
FILING DATE

6/30/2000

ATTY. DOCKET NO.

APPT-001-1

(Use several sheets if necessary)

U.S. PATENT DOCUMENTS

FILING DATE

“EXAMINER DOCUMENT DATE NAME CLASS|SUB-CLASS|/F BPPROPRIBTE
INITIAL NUMBER

~ We Oo ~

1995

1997 1993

1998 1996

\ 1998 1996

. 1998 1995

‘ 1998 1995

1998 1997

1998 1996

1998 1996

1998 1997

\ 1998 1996

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT DATE COUNTRY CLASS|SUB-CLASS
NUMBER

T H

and not considered. Include a copy of this form with next communication to Applicant.

NOAC Ex. 1015 Page 133

EtalFORM- 1449 . >) SHEET 4 OF 5.

ATTY. DOCKET NO.

APPT-001-1

INFORMATION DISCLOSURE STATEMENT APPLICANT
Dietz et al,

(Use several sheets if necessary) FILING DATE
6/30/2000

U.S. PATENT DOCUMENTS

FILING OATE

INITIAL NUMBER

i . Apr

: ul

1996

. ov

P co wm PR

OQ bP

oO QO or

1998 1996

1998 1996

\ 5850388 Dec. 15, |Anderson et al 70 |252 . 3XY|fee PROSBesaereee
Jan. 19, 00.54 Apr.

1993

ar. 2,

. 6,

oOa or

N

~ OQ BRNdNN OoOQ
Oo wi wo

~J] 0 ~

16,

12,

17,

1996

25,

1,

1,

i,

29

1999

i1999 1997

==DJ
1999 1996

1999 1997

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT COUNTRY CLASS|SUB-CLASS
NUMBER

OTHER DISCLOSURES(Including Author,Title, Date, Pertinent Pages, Place of Publication, Etc.)

a oo Oo

DM

tea)

EXAMINER

“EXAMINER:

and not considered. Include a copy ofthis form with next communication to Applicant.

NOAC Ex. 1015 Page 134

a

Et aLFORM- 1449 PfSHEET 5 OF OS.

ATTY. DOCKET NO.

APPT-001-1

APPLICANT

Dietz et al.

FILING DATE

6/30/2000

FILING DATE

*EXAMINER DOCUMENT IF BPPROPRIBTE
INITIAL NUMBER

ria EAi M 1999 1996
fo [=PR1995 1994

nn2000 1997

1996 1993

S
ia)

Ww wo bo tat Oo

DOCUMENT
NUMBER

"EXAMINER intial if citation considered, whetheror notcitation is in conformance with MPEP 609. NOACGed
and not considered include a copyof this form with next communication to Applicant.

NOAC Ex. 1015 Page 135

Our Docket/Ref. No.: APPT-001-1 Patent

Q\ IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art Unit: 27.35_
Examiner:

Filed: June 30, 2000

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Commissioner for Patents ‘ PR? 9, qv
Washington, D.C. 20231

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or
(Within three monthsoffiling national application; or date of entry of international
application; or before mailing date of first office action on the merits; whichever
occurslast)

_X=Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together
with copies, of patents, publications or other information of which applicant(s) are aware, which
applicant(s) believe(s) may be material to the examination of this application and for which there
may be a duty to disclose in accordance with 37 CFR 1.56.

_X (Certification under 37 C.F.R. 1.97 (e)) Each item of information containedin this
information disclosure statement wasfirst cited in an official communication from a foreign
patent office in a counterpart foreign application not more than three monthspriorto the filing of
this information disclosure statement (written opinion from PCT mailed Jan 11,2002).

It is expressly requested that the cited information be madeof record in the application and
appear amongthe “references cited” on any patentto issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and
referencescited are prior art merely because they are in this statement and no representation is ~

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondenceis being deposited with the United States Postal Serviceas first
class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231,

D osenfeld, Reg. No. 38,687

: NO A i i Pace

center 2400

45

NOAC Ex. 1015 Page 136

S/N: 09/608237 Page 2 IDS

being madethat a search has been conducted or that this statement encompassesall the possible
relevant information.

Date: A © Nour 2007
Respectfully submitted,

Bov Rosenfeld
Attorney/Agent for Applicant(s)
Reg. No. 38687

Correspondence Address:
DovRosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

NOACEx. 1015 Page 136

NOAC Ex. 1015 Page 137

 EtalFOR.. . .. SHEET 1 oF 1.

ATTY. DOCKET NO. SERIAL NO.

APPT-001-1 09/608237

INFORMATION DISCLOSURE STATEMENT [appucant
Dietz et al. d- nA ise several sheets if necessary) FILING DATE GROUP

6/30/2000 Zrs5 2157
U.S. PATENT DOCUMENTS

FILING DATE

*EXAMINER DOCUMENT DATE NAME CLASS|SUB-CLASS|IF APPROPRIATE
INITIAL NUMBER

Mam aa (249,292 Sep. 28, |Chiappa 95 1650 Mar.10,11993

j 5,511,213 Apr. 23, \Correa(MM |e P5118fess

oO

=O Q]oO KINfa[z=|Kk WWw
oO uw © oO oO

1992

AMM ac (9:703,877 Dec. 30, |Nuber et al. "B70 [395 (Nov. 22,1997 1995

M ap »»802,054 Sep. 1, Bellenger 351 Aug. 16,4M 1998 1906
EA

<=>>> | 5a cD=co
2eo

Q

> Q

Ww

wm“J =tioO
“ateri

>=Be
~

>=|
FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS|}SUB-CLASS LATION
NUMBER YES | NO

AP ;
\ . .

EXAMINER . DATE CONSIDERED f

A. pps 6 /2\{r002
OO { D

AO

 “EXAMINER:_initial if citation considered, whetherornotcitation is in conformance with MPEP 609. Drawline throughcitation if not in conformance

and not considered. Include a copyofthis form with next communication to Applicanty

NOAC Ex. 1015 Page 138

a

United States Patent 15
Chiappa

[54] DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE
OF A PLURALITY OF DATA STREAM
CONTROL CIRCUITS TO SELECTIVELY
HANDLE THE HEADER PROCESSING OF
INCOMING PACKETSIN ONE DATA
PACKET STREAM

[76} Inventor: J. Noel Chiappa, 708 E. Woodland
Dr., Grafton, Va. 23692

[21] Appl. No.: 847,880

{22} Filed: Mar.10, 1992 ©

Related U.S. Application Data 7

[63]|Continuation of Ser. No. 332,530, Mar. 31, 1989, aban-
doned.

[ST] Int. Cis oeeeeesteneee GO6F 9/28; GO6F 13/12
52] US. Che ceccecscesstensseccsesesseneasere 395/650; 395/325;

395/800; 370/60, 370/61; 364/DIG.1;
364/228; 364/229.2; 364/230.3; 364/230.4;

364/266

[58] Field of Search0. 364/DIG.1, DIG.2:
340/825.52, 825.1; 370/60, 61, 80; 395/200, -

325, 650, 800

(56) References Cited
U.S. PATENT DOCUMENTS

3,846,763 11/1974 RiikOnencessseeceseeteees 395/275
4,281,315 7/1981 Baueretal .. 364/200
4,312,065 1/1982 UlUgsscccsssnsrececreoeessntensens 370/94
4,456,957 6/1984 Schieltz... .- 364/200
4.493,030 1/1985 Barrart et al. - 364/200
42494,230 1/1985 Turner . . 370/60
4,499,576 2/1985 Fraser..... . 370/60
4,601.586 7/1986 Bahr etal........
4,630,258 12/1986 McMillen et al.
4,630,260 12/1986 Toyetal......... .
4,771,595 10/1988 Strecker etal. .. 364/200
4,807,282 2/1989 Kazanetal. wee 379/284
4,851,997 7/1989 Tatara w. 364/200
4,858.112 8/1989 Puerzeret al. .-. 364/200
4,899,333 2/1990 Roedigercsscsssererereenceee 370/60

Mlea.

pT ERT aT
enovert oy oat

SED

SN

NKa
5,249,292

Sep. 28, 1993
[11] Patent Number:
[45] Date of Patent:

4,975,828 12/1990 Wishneuskyetal. .. ae 395/325
4,979,100 12/1990 Makris et al. ... 395/325

~ 4,991,133 2/1991, Davis et ah ssssccccscrosssesee 395/375

OTHER PUBLICATIONS

“Hyperchannel Net Is Plugged Into the Open-Systems
World,” Electronics, Oct. 1, 1987, pp. 96-97.
“Cisco Introduces High-Performance Desktop Gate-
way That Allows Remote Users to Access World—-
Wide Networks”, ciscoSystems, Inc., Mar. 4, 1988.
“Company Backgrounder Mar. 1988”, ciscoSystems,
Inc. Network Systems brochures.

Primary Examiner—Thomas C. Lee
Assistant Examiner—John C. Loomis

Attorney, Agent, or Firm—Fish & Richardson

[57] ABSTRACT

A high speed data packet switching circuit has a soft-
ware controlled primary processing unit, a plurality of
network interface units connected to a plurality of net-
works for receiving incoming data packet streams and
for transmitting outgoing data packet streams,a plural-
ity of high speed data stream hardware control circuits
for processing data packets in response to instructions
from the primary processing unit and circuitry for inter-
connecting the primary processing unit, the interface
units, and the data stream controlcircuits. The primary
processing unit receives from the networkinterface unit
at least a first one of the data packets of each new data
packet stream and assigns that stream to be processed
by one ofthe data stream control circuits without fur-
ther processing by the primary processing unit. The
apparatus and method thus perform routine, repetitive
processing steps on the further packets of the data
stream using the high speed hardwarecircuitry, while
the initial processing and other non-repetitive or special
processing of the data packets are performed in soft-
ware. Particular hardwareis described for effecting the
high speed hardware processing of the data packets.

17 Claims, 5 Drawing Sheets
pitts geULESwe ma

NOACEx. 1015 Page 138

NOAC Ex. 1015 Page 139

4
‘7

U.S. Patent Sep. 28, 1993

METWORK INTERFACE
(SPECIAL PURPOSE)

Sheet 1 of 5 5,249,292

MMPUT INTERCONWECT-
PATH

CONNECTION

METUORK
CONNECTION

: dewHt

MTERFACE ADAPTOR

PROCESSING

\qemmmreraswarnetumnaaanattnaseaumaamnanaantageammemaaeaat

WETHORK
CONNECTION

t

Lb(ata

CENTRAL xn

Lair qdo&

NOACEx. 1015 Page 139

NOAC Ex. 1015 Page 140

weerReke

0 Cy
U.S. Patent Sep. 28, 1993 Sheet 2 of 5 5,249,292

SINGLE PACKET

¥ NX (fe
PACKET MFER-200|[7

208

BYTE XFER-206fteeJL.

WPUT
BUS

DATA>

ROVRPAGKET-210TL——sSsS<‘<‘<‘i‘;‘zirC
(FROM FIFO's)

FIG. 2

SINGLE PACKET

PACKET NFER-218

OUTPUT pyre XFER-200__— LLrn.

DATA KKKx]

NOACEx. 1015 Page 140

NOAC Ex. 1015 Page 141

f4
§3

r

i

+

U.S. Patent

Sep. 28, 1993 Sheet 3 of 5 5,249,292

INPUT INTERCONNECT
BUSES, 31 FROM
7 CO

STRIPPING
CIROUIT/
COUNTER

~~~~

NOACEx. 1015 Page 141



NOAC Ex. 1015 Page 142

FEoTomittingeI -

n

+ re

cere

U.S. Patent Sep. 28, 1993 Sheet 4 of 5 5,249,292

HOR COMPLETE 

 

 
 

 
 
 
 

PACKET
MATCH

5 ART MEMORY

INPUT DATA
bus

HATCH

 
 HASK

MEMORY

MEMORY

A

256

NOACEx. 1015 Page 142



NOAC Ex. 1015 Page 143

Saemt-—_
speAmney8g8

deOH

eeead

e e
U.S. Patent Sep. 28, 1993 Sheet 5 of 5 5,249,292

PACKET IW

  
 
 

 
  
 

 

520
PACKET S22

————— THROM

1 CP

T0 BUFFERS, SCRATCH
PAD, MUX), HUX2, ALU,ete.

PACKETOUT

FIG. 6

NOACEx. 1015 Page 143



NOAC Ex. 1015 Page 144

setaeOnghte—

reySMSlOntApee“ITEree,SEEMRpetreoe
 

<
3£
:;
i

aaAIAAOR!NSOMIRbmEPEDOMEMEINE|
itiwe

ceabs

1

DATA PACKET SWITCH USING A PRIMARY
PROCESSING UNIT TO DESIGNATE ONE OF A

PLURALITY OF DATA STREAM CONTROL
CIRCUITS TO SELECTIVELY HANDLE THE

HEADER PROCESSING OF INCOMING PACKETS
IN ONE DATA PACKET STREAM

This is a continuation of co-pending application Ser.
No. 332,530 field on Mar. 31, 1989 now abandoned.

BACKGROUNDOF THE INVENTION

Theinvention relates generally to data communica-
tions networks and in particular to the packet switch
used to direct the flow of data packets along data paths
in a data communications network.

In a data communications network, a data packet
switch directs data packets from one network node to
another. The throughput for a packet switch can be
measured in the numberofeither data packets per sec-
ond orbits per second which pass through the switch.
The former measure is important because in a typical
networktraffic, the bulk of the packets are small. How-
ever, when the traffic is weighted by packet size, the
bulk of the data is carried in large data packets. In large
bulk data transfers, the second measure is thus more
important. This is a continuing dichotomy in through-
put measurement. For example. the amount of work
needed to switch packetsis fairly constant, independent
of the packetsize.

The average desired values for both of these mea-
sures of packet throughputare going up quickly, just as
other basic measures of computer power have been
increasing. As the volume of the data transfers in-
creases, increasingly higher throughput rates are being
demanded. Theincrease in the volume of data transfers

results as experience is gained in new systems, and more
and moreapplications, with more and more expansive
needs, are being developed. Also, quickly changing
technology has made the basic underlying data trans-
mission resource very inexpensive. Fiber optics, for
example, offers data rates in the gigabyte per second
range. Finally, many difficult problems in the organiza-
tion of large systems can be bypassed by the free con-
sumption ofresources. The typical drop in cost of such
resources has always made this an attractive path for
meeting difficult system requirements.

Accordingly, the need for throughput rates substan-
tially higher than currently available in a packet switch
is presently sought. Switches more than an order of
magnitude faster than current switches would seem to
be required.

The presentinvention is directed to a class of packet
switch which differs substantially from the other two
classes of devices often commonly (and confusingly)
referred to as packet switches.

Oneclass of packet switch is that commonly used in
digital telephone exchanges. This switch is intended
only to transfer packets among the devices in a single
station, such as a telephone exchange. The formatof the
packet in these systems is chosen to make the hardware
in the switch as simple as possible; and this usually
means that the packets include fields designed for direct
use by the hardware. The capabilities of this class of
switches (for example, in such areas as congestion con-
trol) are very limited to keep the hardware simple.

The second class of packet switchis used in networks
such as X.25 networks. In some sense, these switches

5

30

40

60

&

2
arelittle different from the switch described above, but

thereis a substantial difference. The format of the pack-
ets (that is, the protocols) handled by these switchesis
much more complex. The greater complexity is neces-
sary since the protocols are designed to work in less
restricted environments and in a much larger system,
and provide a greater range of services. While the for-
mats interpreted by thefirst class of switches above are
chosen for easy implementation in hardware, the data
packets handled by this second class of switches are
generally intended to be interpreted by software (which
can easily and economically handle the greater com-
plexity).

In the third class of packet switch, the packet proto-
cols are intended to be used in very large data networks
having manyvery dissimilar links (such as a mix of very
high speed LAN’s and low speed long distance point to
point lines). Examples of such protocols are the United
States designed TCP/IP, and the International Stan-
dards Organization’s IP/CLNSprotocols.

In addition, this third class of switches (called rout-
ers) often handle multiple protocols simultaneously.
Just as there are many humanlanguages, there are many
computer protocols. While a single set of telephone
links and exchanges suffice to handle all human lan-
guages, in computer communication systems the
switches are more involved in the carrying of data, and
must understand someofthe details of each protocol to
be able to correctly handle data in that protocol. The
routers often have to make fairly complex changes to
the packets as they pass through the switch.

It is this latter class of packet switch to which this
invention primarily relates. In current conventional
packet switch design, a programmed general purpose
processor examines each packetas it arrives over the
network interface and processes the packet. Packet
processing requires assignment to an outbound network
interface for transmission over the next communications

link in the data path. While attempts are being made to
build higher speed packet switches, based on this gen-
eral architecture, the attempts have not been very suc-
cessful. One approach is to use faster processors; an-
otheris to make the software run faster; and a third is to
apply multiple processors to the processing task. All of
these approachesfail to meet the need for the reasons
noted below.

The approach which uses faster processors simply
keeps pace with processor dependent (future) demands
since the traffic which the packet switch will handle
will depend uponthe speed ofthe user processors being
used to generate the traffic. Those user processors, like
the processors in the packet switches, will increase in
speed at moreorless the same rate and accordingly no
overall increasein the ability of the future packet switch
over the present packet switch,relative to traffic load,
will be available. Furthermore, this approach may be
impractical as not being cost-effective for wide spread
use. For example, two high speed machines, distant
from each other, must have intermediate switches
which are all equally as powerful; deployment on a
large scale of such expensive switchesis not likely to be
practicable.

The approach whichincreases the execution rate of
the software itself by, for example, removing excess
instructions or writing the code in assembly language,
leads to a limit beyond which an increase in execution
rate cannot be made. The gains which result are typi-
cally small (a few percent) and the engineering costs of

5,249,292

NOACEx. 1015 Page 144



NOAC Ex. 1015 Page 145

 
t

Pa
%*a
®

\

¢
t

:s

&

reRetePen
“ayaa

\sane

 
t
}

i
t

|

3
such distortions in the software are significant in the
long term.

The use of multiple processors to avoid the “proces-
sor bottleneck” provides some gains but again has lim-
its. Given a code path to forward a packet, it is not
plausible to split that path into more than a few stages.
Threeis typical: network input; protocol functions; and
network output. Thebasis forthis limitation is the over-
head incurred to interface the different processors be-
yond a limited numberof task divisions; that is, after a
certain point, the increase in interface overhead out-
weighs the savings obtained from the additional stage.
Thisis particularly true because of the need to tightly
integrate the various components, for example, conges-
tion control at the protocol level requires close coordi-
nation with the output device. Also, the interface over-
head costs are made more severe by the complication of
the interface which is required.

In general then, the multiprocessor approachis not,
as expected, the answer to substantially increasing the
throughput of the packet switching network. This has
been borne out by several attempts by technically well-
regarded groups to build packet switches using this
approach. While aggregate throughput over a large
numberofinterfaces can be obtained,this is, in reality,
little different than having a large number of small
switches. It has thus far proven implausible to substan-
tially speed up a single stream using this approach.

Accordingly, it is a primary object of the present
invention to increase the throughput of a data packet
switch while maintaining reasonable cost, and avoiding
a high complexity of circuitry.

Other objects of the invention are a high speed data
packet switching circuitry and method which can han-
dle large numbers of input streams, large numbers of
output destinations and lines, and large and small data
packets at high bit and packet throughputrates.

SUMMARYOF THE INVENTION

The invention relates to a method and apparatus for
effecting high speed data packet switching. The switch-
ing circuit features a software controlled primary pro-
cessing unit; a plurality of network interface units for
receiving incoming data packet streams and for trans-
mitting outgoing data packet streams from and to net-
work paths respectively; a plurality of data stream con-
trol circuits or flow blocks for processing data packets
in responseto the primary processing unit; and circuitry
for interconnecting the primary processing unit and the
plurality of interface units and data stream controlcir-
cuits. The primary processing unit is adapted to receive
from the networkinterface units, and to process,at least
a first one of the data packets of each new data packet
stream and to assign this stream to be processed by a
data stream controlcircuit without further intervention
or processing by the primary processing unit. It is im-
portant to note that this first packet is not necessarily a
“connection set up” packet or any other similar explicit
direction to the switch to set up a stream. Rather,as is
usual in the connectionless datagram model, this first
packetis just another user data packet.

In particular aspects of the invention, the data stream
control circuit features a pattern matchingcircuit, re-
sponsive to pattern setting signals from the primary
processing unit and to the incoming data packets from
the networkinterface units, for identifying those pack-
ets of a packet stream which will be processed by the
control circuit. The data stream control circuit further

_ 0

_ =)

40

50

60

5,249,292

features a processing unit responsive control circuit for
controlling, in response to control signals sent by the
primary processing unit, the congestion contro} and
header modification, stripping and prepending func-
tions of the data stream control circuit. The data stream

controlcircuit further features a data buffer responsive
to the pattern matching circuitry and the processing
unit responsive control circuit for storing data and pro-
‘tocol elements of an incoming data packet stream and
for outputting a data packet stream to be forwarded
along a communications -path.

The network interface unit features, in one aspect of
the invention, a network interface circuit for communi-
cating with a network channel and an interface adapter
for receiving channel data from the network interface
circuit and for transmitting that channel data over the
interconnecting circuit structure to the data stream
controlcircuits and the primary processing unit, and for
receiving network data from the data stream control
circuits and the primary processing unit over the inter-
connecting circuit structure and for providing received
data to the associated network interface circuit for
transmission over a network channel.

In another particular aspect of the invention, the
software controlled primary processing unit features a
central processing unit, bus circuitry, a plurality of
input storage units for receiving respectively each of
the plurality of data streams from the network interface
units and each storage unit having its output connected
to the bus circuitry, elements for connecting the central
processing unit to the buscircuitry, and a plurality of
output storage units for receiving data from the central
processing unit over the bus circuitry and for providing
the data to the network interface units.

The method of the invention features the step of
separating from a software controlled primary process-
ing unit used in a high speed data packet switching
circuit a portion of the functionality which is repeti-
tively used in connection with the processing of the
second and further packets of an input data stream and
implementing that portion of the functionality in hard-
ware elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Otherobjects, features, and advantages of the inven-
tion will be apparent from the following description
taken together with the drawings in which:

FIG. 1 is an electrical block diagram of an overall
packet switchingcircuitry in accordance with a particu-
lar embodiment of the invention;

FIG.2 is a timing diagram of an input interconnect
circuitry according to a particular embodiment of the
invention;

FIG.3 is a timing diagram of an output interconnect
circuitry in accordance with a particular embodimentof
the invention;

FIG. 4 is a detailed block diagram of the control
circuitry according to a particular embodiment of the
invention;

FIG. 5 is a detailed block diagram of the pattern
matching circuitry according to a particular embodi-
ment of the invention; and

FIG. 6 is a detailed block diagram of the control
circuitry of the flow blocks according to a particular
embodiment of the invention.

NOACEx. 1015 Page 145



NOAC Ex. 1015 Page 146

\
t

oeeenywMURRRENNERERRIpAMNRNRBDyiPEPERomamNNRRRRPRSNRIEBIERAmeagreeni OTCIReyet“
 

5

DESCRIPTION OF A PARTICULAR
PREFERRED EMBODIMENT BACKGROUND

According to the invention, a selected portion of the
packet forwarding operation, previously performed by 5
the processor software, is moved from the software to
the packet switch hardware. In this manner, all of the
load on the software is removed for “normal user data
packets;” and since hardware can operate at a substan-
tially greater speed than software, substantial perfor- 10
mance gain can be achieved. However, any attempt to
translate into hardware all of the functions currently
performed in software would not be possible. Typical
packet switches contain tens of thousands oflines of
code, and are thus of extreme complexity. To imple- 15
mentall of this software in hardware would require
either programmability of the hardware, thusreintro-
ducing the problem of a software system, or require an
unmanageable and uneconomic configuration of hard-
warecircuitry. Accordingly, it is necessary is to select
that amount ofsoftware whichcanefficiently and effec-
tively be performed in hardware and thus reduce to
hardware only a small, but effective, portion of the
software function.

If the software code of a typical packet switching 25
system were monitored, most of it is exercised infre-
quently. It is there to handle errors, or to handle the
controltraffic which forms a small, albeit vital, share of

the packets in the system. Verylittle of the code, a few
percent, is used in connection with processing a “nor- 30
mal” packet through the switch. And it is precisely
those “normal” packets which form a preponderance of
the packets with which the switch deals. Thus, in one
aspect, the invention herein is to select that portion of
the software which will be reproduced in hardware and 35
leave the remaining functionality in software whereitis
more appropriate for reasonsof efficiency and support.
In particular, the illustrated embodiment attempts to do
so with the minimum numberofcircuit elements.

Onewayto reduce the functionality which must be 40
reproduced in hardware is to not implement in hard-
ware the code which handles packets other than normal
data packets. It is feasible to produce a device which
would handle all normal user data packets entirely in
hardware. This would allow a far faster router than is 45
available with current means.

However, even that level of reduction can be sur-
passed, producing an even moreefficient implementa-
tion (the illustrated embodiment of the invention) if a
further observation is made. In the handling of a single 50
data packet, several operations are necessary to forward
each packet. In accordance with the invention, it is
recognized that many of these forwarding operations
are completely repetitive when performed onindividual
packets which are part of a common connection path, 55
that is, part of a data stream having a common source
and often the same destination.

Thus, most packets in the system are part of ongoing
transfers in which as many as thousandsofsimilar pack-
ets flow through the switch. While the meaning of the 60
various packets at higher levels of the communications
system can be quite different, the portion of the packet
protocol which concerns the packet switch is usually
identical from packet to packet. Thus, judicious reten-
tion of information about a traffic stream passing 65
through the switch is often both necessary and useful.It
is necessary to implement some required functions such
as flow and congestion control. It is further useful to

vwo

5,249,292
6

preventthe repetitive computationofidentical informa-
tion for packets belonging to the sametraffic stream.

Jt is further important to recognizethat although the
complexity of the functionality provided at the packet
protocol layer is increasing, it does so (a) because net-
work systems are getting larger and more mechanisms
are required to make the larger systems work correctly,
(b) because the user community is becoming more so-
phisticated, and (c) because systems are being deployed
with extra functionality. This complexity has a direct
bearing on the cost of forwarding packets, since many
added functions are performed on each packet.

System Description

Accordingly, the illustrated embodiment of the in-
vention operates using two important assumptions.
First, that traffic streams exist and are ofsufficient dura-

_ tion to be useful. Second,that the majority of the traffic
in the network is in the streams. Both of these assump-
tions are reasonably descriptive of most data communi-
cations networks.

Referring to FIG. 4, in accordance with a particular
embodimentofthe invention, a specialized hardware 10
does all the work necessary for forwarding a “normal”
packet in a previously identified packet stream from one
network interface to another. All packets which the
specialized hardware 10 cannot process are passed to a
software controlled primary processing unit 11, includ-
ing a central processing unit, CPU, 12, running software
code which is moreorless similar to the current soft-

ware code run by the processors of most packet
switches. If the packet looks like it is part of a new
traffic stream, the central processing unit 12 provides
the specialized hardware 10 with the necessary data
parameters to deal with further packets from that
packettraffic stream. Accordingly, any further packets
seen from that data stream are dealt with automatically
by the specialized hardware 10.

In operation, a packet switch normally examines the
low level network header of an incoming packet at the
input network, and removes that header from the
packet. The packet is then passed to the software of the
appropriate “protocol.” The software generally checks
the packet for errors, does certain bookkeeping on the
packet, ensures that the packet is not violating flow or
access controls, generates a route for the packet, and
passes it to the output network. The output network
constructs the outgoing network header, attaches it to
the packet, and sends the packet on to the next packet
switch or other destination. At all stages in the process,
the packet switch must guard against data congestion.

Mostof these functions are identical on packets of the
same stream and can therefore be separated from those
functions which vary from packet to packet in the same
packet stream. The repetitive functions can be per-
formed once in software at CPU 12, at the time the
hardwareis first set up for a packet stream,thatis, at the
time thefirst packet ofthe stream is being processed. At
this time, the hardwareitself has very little thatit is able
to do. Thereafter, the hardware will handle all succeed-
ing packets of the stream without any further interven-
tion from the central processing unit.

Theillustrated specialized hardware 10 hasa plural-
ity of data stream control circuits (flow blocks) 144,
148, ... ,14p, each flow block having a pattern matching
hardware 16, a controlcircuitry 18, and a data buffer 20.
Aninput bus 22 connects, as described below,to any of
the inbound networkinterfaces, and an output bus 24

NOACEx. 1015 Page 146



NOAC Ex. 1015 Page 147

9carengeaeeaeRSAEERSACREP,
RR

faROE

pes*-

 7
can connect to any outbound network interface. There
is further associated with each input network interface a
CPU input storage buffer 26, the output of which is
directed to the CPU 12 for handling special packets,
that is, packets which are not “normal,” and a CPU
output storage buffer 32, for receiving special packets
from the CPU 12fortransmission to the network inter-
faces.

The network interface devices 30 or 400, as viewed
from the packet processing elements, (either flow
blocks 14, or CPU 12 and storage buffers 26, 32), are
pure sourcesorsinks of data. They are always function-
ing autonomously, and accordingly no intervention is
required on the part of the flow blocks 14 or storage
buffers 26, 32 and CPU 12 to keep these network inter-
face devices operating. The flow blocks 14 should not
interact with the networkinterfaces since that interac-
tion would require extra complexity in the flow block,
a cost to be paid for in each flow block, and not by the
network interface. Further, the central processor 12
should not control the network operation since that
control inevitably slows the central processor opera-
tion, as well as the network. Accordingly, each network
interface device is an autonomousunit.

In the illustrated embodiment, two classes ofnetwork
interface devicesare illustrated. The network interfaces
30a,... ,30n, each include a networkinterface adapter
42, and a standard network interface circuit 40. The

-_ 5

20

25

network interfaces 30 connect to an input interconnect °
path 31, an output interconnect path 52, and a CPU
standard bus 41 for complete communications with all
other circuit elementsof the packet switch, and receive
data from and transmit data to the associated standard
networkinterface circuit 40, The otherclass of network
interface deviceis the special purpose networkinterface
400 which connects to the input interconnect path 31,
the output interconnect path 52, the CPU standard bus
41, and also to the associated network.

In the illustrated embodiment, the packet switch is
configured so that it can be expanded as necessary to
support more traffic streams. The expansion can be
easily implemented by adding additional flow block
circuitries, and if necessary, additional network inter-
face devices. This allows an existing unit to be scaled up
as the traffic load grows.

In operation, a traffic stream is received and first
identified by the CPU 12,asit receives the first packet
of a new traffic stream from a CPU input buffer 26
connected to the input interconnect path 31. A free flow
block 14 is selected to handle future packets of that
traffic stream and all of the necessary information to
handle the traffic stream, including theidentification of
the stream,is loadedinto the pattern matchingcircuitry
16 and the control circuitry 18 of the selected flow
block over the CPU bus41.

As each subsequent packetofthe stream arrives at the
packet switch interface circuit, it is handled by the
network interface 30 (for ease of explanationit is gener-
ally assumed that the receiving network device will be
an interface 30) and flow biock 14 without intervention
by the CPU 12. In particular, as it is received at inter-
face circuit 30, it passes through the network interface
circuitry 30 and is placed on the input interconnectpath
31 so that each flow block 14, assignedto that interface,
can checkthe packet,in parallel, to determineifany one
of those flow blocks recognizes the packet as being
assigned toit. If a matchis found,the packet is accepted
by that flow block and the data, usually modified by the

30

45

55

60

5,249,292

control circuitry 18 of the flow block,is read and stored
by the flow block. Further circuitry of control circuitry
18 will removethe packet from the data buffer 20 of the
flow block 14, with a new header prepended thereto,
when the system is ready to send the packet over the
next link of the data communications path.

Any packet which is not recognized by any of the
flow blocksis available to the CPU from the one of the
CPU input buffers 26 assigned for receiving data from
that network interface. The CPU input buffer for each
network automatically starts to copy each packet from
the input interconnect path 31 each time a packet ar-
rives, and continues to do so until one of the flow blocks
14 for that network interface accepts, or all flow blocks
assigned to that network interface reject, the packet. If
the packet was accepted by one of the assigned flow
block circuitries, the portion of the data stored in the
associated CPU input buffer 26 is discarded, and the
CPU input buffer resets to await the next packet from
that networkinterface. If the packetis rejected by those
flow blocks assigned to that networkinterface, the asso-
ciated buffer 26 passes the packet to the processor 12
which will analyze the packet and process it accord-
ingly. It is important to note that no conflict arises from
trying to put two packets into a CPU input buffer at the
same time since each network interface has its own
associated buffer 26 and a network interface 30 can

receive only one packet at a time.
The CPU 12 further has access to the set of output

buffers 32 (one buffer for each output network) over a
bus 420, through which it can send packetsto thenet-
work interfaces over output interconnect path 52 for
transmission along a link of the transmission chain.

Description of Detailed Elements
Network Interface

Data enters the packet switch from a network
through the network interface. As noted above, these
units are autonomous. They can be constructed either
by building the special purpose hardware 400, one for
each network, whichenables a network to connect
directly with the respective interconnect paths, or by
providing the standard adapter 42, into which an exist-
ing off-the-shelf hardware network interface 40 can be
inserted. The two classes of hardware can both be ad-

vantageously used in the same embodiment.
Referring to FIG. 1, the second approach employs a

standard network interface element 40 (typically an
off-the-shelf commercially available circuitry) which
connects overlines 41a (whichis usually a standard bus)
to the associated interface adapter 42. Each adapter 42
has a standard interface connection which connects to
the input interconnect path 31 for eventual connection
to an as yet unknown Oneof the flow blocks 14 and to
the network associated storage buffer 26. The interface
adapter also has a standard bus interface which con-
nects to CPU bus 41. Theinterface adapter 42 also
provides a third interface for receiving packets from the
flow blocks over the output interconnect path 52.
Adapter 42 provides those received packets, to the
associated network interface 40 for transmission over a
network path to the next network connection. The
choice of this second interface approach is convenient
and allows for modular expansion and network inter-
face card interchangeability; however, use of the
adapter 42 with a separate network interface 40 is likely
to be more expensive than a special purpose network
interface card 400.

NOACEx. 1015 Page 147



NOAC Ex. 1015 Page 148

 
:
;

i

dae

®

The choice of which network interface approach is
adapted thus depends upon both cost and speed. The
interface adapter 42 with its various bus connectionsis,
most likely, the slower path unless the bus 41ais very
fast; and even then, most current networkinterfaces for
high speed networks cannot keep up with a network
which is running at maximum capacity, Additionally,
the use of several cardsis likely to be more expensive.
Accordingly, it may be desirable to provide the special
purpose network interfaces, such as a special network
interface 400, which connect to interconnect paths 31
and 52, for high volume networks where speed is more
important; whereas the slower network interface, em-
ploying off the shelf components, can be employed
where speed is not as important or where the construc-
tion of special purpose hardwareis not cost justified.

The autonomousinterface network unit is, as noted

above, responsible, on the input side, only for ensuring
that all packets destined for the switch are received
from the network and are fed to the flow blocks 14 and

storage buffers 26. Congestion and control are the re-
sponsibility of the flow blocks 14 and the control de-
vices 18 therein. Similarly, the output side of the net-
work interfaces 30 needs only to read data packets sent
by the flow blocks 14 and buffers 32, and transmits them
over the selected network.

It is also possible that inexpensive and slow network
interfaces can be connecteddirectly to the standard bus
41 and be run by the general purpose CPU 12 rather
than by the interface adapter 42. These packets would
then be sent on whichever path the processor normally
uses to send packets which it originates. This is an ac-
ceptable alternative, subject to the speed and time re-
quirements imposed upon the central processor. The
standard bus also provides the central processor unit
with full access to the standard network interfaces 40
and special network interfaces 400 through the network
adapter 42 so that any network interface can be con-
trolled by the CPU 12 when unusual functions, such as
problems with the transmission layer, fault isolation, or
other complex testing tasks must be performed.

The Interconnect Path

Asnoted above, each interface adapter 42 or special
network interface 400 connects to each of the flow
blocks 14 in a most general form ofillustrated structure.
Depending upon the economics and speed desired, the
interconnect circuitry can take a variety of forms using
a number oftechniques which are already knownin the
art. One particular approach, using “brute force,”is to
use a full crossbar switch to makeall possible connec-
tions between each of the network interface adapters
and each ofthe flow blocks, both on the input and the
output interconnect paths. As the flow blocks are as-
signed, and reassigned, between interface adapter units
andspecial networkinterfaces, the various points of the
crossbar can be opened and closed.

An alternate approach, used in digital telephone sys-
tems,is to interface all of the functional units to a high
speed, time division, multiplexed bus. This approach
requires less switch hardware but necessitates a bus
speed comparable to the maximum speed of an interface
times the number of interfaces. Such speed require-
ments may makeit less economical to build such a bus
than might otherwise appear.

The input interconnect path is conceptually simple in
that flowblocks 14 are assigned to buta single network
interface at a time. The relationship is not symmetrical,

40

60

65

an

5,249,292
10

however. The input network interface thus feeds at
most one input packet at a time to the flow blocks;
however, the input packet can be read by manydiffer-
ent flow blocks, all of which are assigned to that net-
work interface. The output side of the flow blocks is
slightly more complex since several flow blocks, each
connected to a different network interface at its input,
may present a packet to the same output network inter-
face simultaneously. The output interconnect must thus
have some method for choosing which, and in what
order, to send the packets. For example, it can service
the flow blocks in the same orderspecified by the CPU
whenthe processorsets up the traffic stream; or prefer-
ably, a grant passing ring configuration can be em-
ployed. It is important, however, to be sure to allocate
appropriate bandwidths to each stream so that accept-
able operation is attained. There are various concepts
for performing this function, well knownto those prac-
ticed in the art, and they will not be discussed here in
any further detail.

The Flow Blocks 14

Each flow block 14 consists, as noted above, of a
pattern matching circuit, the flow block data buffer 20,
and the control device 18. The pattern matching hard-
ware, in the illustrated embodiment of the invention,
contains two variable length bit strings: a “match”bit
string and a “mask”bit string. Thosefields in the packet
which can vary amongthe packets of a single stream,
are set “on” in the “mask” string. Values in these bits
are then ignored. The values in the fields which identify
a stream, and which are alwayspresent in a packet of
the stream,are stored in the “match”bit string. Several
functions can thus be performed by the pattern match-
ing circuitry 16, in addition to merely checking the
assignmentof a packetto a traffic stream. For example,
certain error checks (for valid values) can be per-
formed. Also, since a flow block 14 is assigned by the
CPU 12 to forwardatraffic stream only if a route for
the traffic stream exists, and if the traffic stream is au-
thorized by the access control software in the CPU 12,
a matchbythecircuitry 16 immediately implies that the
packetis allowed by the access control to pass through
the switch, and that a route for the packet exists.

The data buffer 20 of a flow block can be imple-
mented in a variety of ways. The simplest approach,is
to have associated with each flow block a separate
memory array having head andtai] registers to allow
reading and writing. Two disadvantages to this ap-
proacharethatit requires additional hardware and the
buffer memory is split up into many small memory
banks rather than employing a single large memory
bank for the entire packet switch.

Nevertheless, the use of a large memory bank, from
which each flow block buffer memory is allocated,
results in a complex storage managementproblem.It is
necessary in such'a memory structure to maintain a list
of unused blocks, a mappingof the used blocks, etc. In
addition, the flow control mechanism must be more
complex, particularly if there is less total buffering than
the sum of the maximum storages ofall of the data
streams. It must therefore deal with a global resource
shortage of buffer memory in the switch. This problem
can thus remove a primary advantageof having a large
memory bank. In addition, with separate memory
banks, each bank need only be able to support two
simultaneous accesses: a read anda write. With a single

NOACEx. 1015 Page 148



NOAC Ex. 1015 Page 149

 
: B®

11

large bank,all of the network interface accesses must be
handled simultaneously.

A numberofpractical operating problemsexist with
the circuitry illustrated in FIG. 1. Thus, if there are
more identified traffic streams than there are flow
blocks, or if a single packet stream is to be routed over
multiple paths by the network protocol, appropriate
hardware must be available to deal with the various
circumstances. In particular,if there are moreidentified
traffic streams than there are flow blocks 14,it is impor-
tant to avoid “thrashing” as the streams compete for the
flow blocks. If the protocol has adequate flow and con-
gestion control mechanisms, these can be used to inhibit
the excess streams. Also, the flow blocks should be
packaged andinterfaced to the rest of the system so that
additional flow biocks can be installed as load patterns
change or as switches experience higher usage rates
than they are able to handle.

Further, the software can maintain a record of the
streams including the time when each flow block was
last used, so that periodic scans can be made by the
software to find flow blocks which are associated with
streams that are no longeractive and list those flow
blocks as ready for reuse. Further, the software can
maintain a record of the stream parameters so that if a
previously terminated stream should restart, it would
not be necessary to recompute everything. Preferably,
the CPU stores this informationin its local memory.

It mayalso be desirable to avoid assigning a stream to
a flow block until a minimum numberofpackets relat-
ing to a stream have been counted. In this instance the
CPU 12 can maintain the necessary information regard-
ing the stream (and pass the packets of the stream on to
the next network node) and dedicate a flow block to
that stream only after the length ofthe stream has been
assessed.

There are also instances when a single packetis for-
warded over multiple paths. The situation can thus exist
whenpackets of the same data stream are received over
twodifferent network interfaces and/or where a single
packet stream must be divided and forwarded to two or
more output networks. Thefirst problem can be han-
dled simply by allocating one flow block to each inter-
face. The second problem is somewhat harder to han-
dle; however, in most protocols, there is a sequence
field in each packet whereinit is possible to assign two
different flow blocks to the stream in which the se-
quence field was masked out except for, for example,
the lowestbit. In one flow block the bit would have to
match to “zero” and in the other flow block to “one.”
Thereafter, each flow block can be assigned to a differ-
ent output stream,the split being roughly into two divi-
sions. More complex and controlled splitting requires
more sophisticated mechanismsto effect proper queu-
ing and sequencing on the output.

The Flow Block Circuitry

In the description ofthis particular embodiment, the
width of the various buses, the number of identical
interface units or flow blocks, the length of a counter,
etc., are subjectto the particular switching system envi-
ronment and capacity. Accordingly, while specific
numbers are suggested from time to time, the values
“nN, “n", “P”, etc. are variable and may be equal to
each otheror notas the particular embodimentrequires.

Referring to FIG. 1, the flow block control device
circuitry 18 effects bookkeeping functions at the proto-
col level and flow and congestion control. One func-

40

55

60

 
5,249,292

12
tional unit 19a¢ of each control circuitry 18 strips the
input header from a packet before it enters the flow
block data buffer 20 and anotherfunctional unit 196 of
the control circuitry prepends the output headerto the
data packet before it exits the flow block data buffer.

In addition, each protocol tends to have certain book-
keeping functions which must be performed on each
packetof the stream; however, these functions tend to
be slightly different for each protocol. The design ofthe
illustrated control device provides flexibility for han-
dling the different protocols, including in particular the
capability of computing the checksum (and signaling an
error should one occur), and updating the “hop” count.
The control circuitry 18 also needs to be flexible
enoughto handle the different protocols in a very short
time. Accordingly, the design preferably allows for
additional circuitry to be added to the protocol function
circuitry 19@ and 19b. The additional circuitry can also
be implemented in the state machine controller for the
flow block.

Theflow block control circuitry also acts as a flow
contro] agent. Thus, if packets are entering the flow
block at too fast a rate, an error is caused. The specific
hardware configuration depends on the protocol archi-
tecture and the policy implemented therein. One effec-
tive mechanism uses the error alarm signal to show that
the flow block buffer is filled past a selected level. The
control circuitry also needs to set a so-called “discard”
level. This is necessary to protect the congestion con-
trol mechanism of the switch from being overloaded by
a single, out of control, data stream. Such a mechanism
would cause a selectable percentage of the incoming
packets of a stream to be ignored completely rather
than passed, over bus 41, to the congestion control
mechanism of the CPU 12, which it could overload.

The Interconnect Path Operation

In the illustrated embodiment of the invention, the
presently preferred embodiment of the interconnect
paths 31 and 52 uses the simple, brute force, approach;
thatis, a full cross bar is provided for each interconnect
path by assigning a separate bus to each networkinter-
face adapter 30, to which each of flow blocks 14 and
buffers 26 is connected. Each bus has a full set of con-
trol lines for, and in addition to, the data lines of the bus.
Theillustrated interconnectcircuitry thus consists of a
set of, for example, ‘“‘N” identical buses. The intercon-
nect further can include some general signal lines such
as, for example, a system reset line. The full cross baris
also large enough to support the maximum complement
of interface circuitries simultaneously, each interface
being able to proceed at full speed with no buffering.

Considering in particular the input interconnect 31,
there are R buses, “R” being equal to the sum of the
number of special network interface units 400 andinter-
face adapter 42. Each interface data bus is ““M”bits
wide, and is driven only by the associated network
adapter 30 or interface 400. In addition to the data from
each networkinterface 30, each bus also has a plurality
of control signals for controlling the transfer of the
incoming packets from the network to the flow blocks
14 and buffers 26. The control signals allow a flow
block 14 to indicate to the associated CPU input buffer
26 (and CPU 12) whether the packet has been accepted.

Referring to FIG.2, the control signal functions can
be performed with two lines, both driven by the net-
work interface or adapter and“listened”to byall of the
flow blocks assigned to that network (including the

NOACEx. 1015 Page 149



NOAC Ex. 1015 Page 150

 
i
i

i

FNateg

neatAASSREHETSARENCRTPISON,EEEISeAaNeamt
reMbagS
nthacoe

AesaeteMabeyempengen

5,249,292
13

corresponding CPU input buffer 26 assigned to that
network). Oneline 200 indicates when a packetis being
transferred andis active for the duration of the packet
transfer. A non-active period 202 has a minimum time
duration so that the next active period (and the next
packet) is spaced in time from the previous active per-
iod. The beginning of the inactive period indicates the
end of the packet. A second line 206 is a “word trans-
fer” line and each active transition 208 on that line

signals that a new word (a byte in the illustrated em-
bodiment) of data has been placed on the bus by the
network interface.

Thereis further a commoncontrolline 210 which can
be driven by anyofthe flow blocks 14 andlistened to by
the CPU input buffer 26 for that network. When going
active, it signals to the CPU that the current packet has
been accepted by a flow block and the packet may thus
be ignored by the CPU 12. The timing mustbe carefully
controlled, especially if faults are to be detected. For
example,if the packet length in the protocol headeris to
be verified,it is necessary to wait until the entire packet
has been received before accepting the packet. How-
ever, by that time, the next packetis starting. This prob-
lem also arises when verifying header check sums for
packets with no data. The timing can be resolved by
having the acceptline driven at a time during the man-
datory non-active period of the packetline, thatis, after
the packet has completely arrived and before the next
packet begins.

Referring to FIG.3, the output interconnect §2 has a
slightly more complex data bus. The bus is “P” bits
wide and is driven by a sequentially varying one of the
flow blocks 14 and buffers 32 (the “driving circuits”)
assigned to the connected network interface. The out-
put of the driving circuit is read by the associated net-
work interface 30 or 400. Preferably, the driving cir-
cuits are arranged as, and include thecircuitry to form,
a grant-passing ring. In addition, there are other control
lines which are used to control the transfer of the packet
from the drive circuit having the grant. These other
lines 218, 220 are substantially the same as those control
lines 200, 206 of the input interconnect bus. After a
packet has been transferred to a network interface, the
“grant” advancesto the next driving circuit.If the iden-
tified driving circuit has a packet waiting at the time the
grant line becomesactive (typically the rising edge),it
begins a transfer. Otherwise, the grant is passed to the
next driving circuit which repeats the process.

Flow Block Details

As noted above, the flow blocks 14 has several major
functional units. The stages, in the illustrated embodi-
ment, are connected asynchronously since the through-
put of the stages is not constant and some stages have
buffering between them. Referring to FIG.4, the circuit
structure of flow block 14, considered in more detail,
has an input multiplexor 250 which selects the current
input bus and passes the data to both the pattern
matcher 16 andthe rest of the flow block. The pattern
matcher, as noted above, examines the header of the
incoming packet. If it matches the pattern to be handled
by this flow block, the match is indicated by a signal
overa line 252 to the control device logic 18.

Simultaneously, data from the input bus flows
througha stripping circuit 254 which includes a counter
and which discards the first “‘n” bytes of data (the
header) allowing the remainder of the packet to pass
through unmodified. The packet then passes to the

'- o

— wa

40

50

60

an ivy

14

control logic 18 where the higher level protocol func-
tions such as check sum computation and hop count
modification occur. The control logic 18, pattern
matcher 16, and stripping circuit 254 have all been pre-
viously loaded with other necessary data from CPU 12
over bus 41. The inputto the control device has a small
amountof buffering to allow the control deviceto take
more than one cycle when processing certain bytes in
the data stream. The packet passing through this stage
of processing may be modified; for example, this stage
may abort further processing of the packetif an erroris
found, as described in more detail below. The packet
then passes to a counter/truncate circuitry 260 which
contains a counter loaded by the control logic over
circuitry 262. The counter serves two functions: any
unused trailer in the packet is discarded, and, if the
packet is truncated, an error flag is raised over aline
264. The next stage of processing, a circuitry 266, pre-
pends “n” bytes of data, the new output header, loaded
from the CPU 12in a similar mannerto strippingcircuit
254, to the packet as it passes therethrough.It also con-
tains some buffering on the input to allow the new
packet headerto be inserted. In those instances where
the new packetis substantially Jarger than the old one,
the buffering is a necessity. The packet next passes to
the output data buffer 26 which consists of a dual port
(one read-only and one write-only) memory, along with
a control logic 268 to keep track of the packets in the
buffer. The buffer 20 is organized in a ring structure and
a hardware queueof “‘t” buffer pointer/size pairs keeps
track ofthe utilization of the buffer. Additional control

circuitry within the buffer keeps track of the current
start and endofthe “free space”. The packetthen passes
to an output multiplexor 274 which has output bus con-
trol logic and a set of drivers, one for each output bus in
the output interconnect 52. When the flow block re-
ceives the “grant,” for the appropriate output network
interface 30, as described above, packets which are in
the output buffer are read out and passed alongthe bus.
Throughoutthe flow block, there are, in addition, data
paths 276 which allow the CPU 12, over bus41,to load
memories, etc. in order to maintain proper operation of
the flow block.

Referring to FIG. 5, the pattern matcher 16 has two
small memories 60, 62 each “a” bits wide and “b” bytes
long. In theillustrated embodiment, 8256 bit RAM’s
are employed. One memory 62 contains the “masked”
bits and the other memory 60 contains the “match”bits.
Moreprecisely, for those header positions for which a
bit is “‘on”’ in the mask memory,the packet can have any
value in the header whereas,if a bit is “off” in the mask
memory, those correspondingbits in the packet header
must match the CPU predetermined values stored in the
match memory. .

The pattern matcher can operate with varying quan-
tities of data in the memories 60, 62, and if all the mask
“off”bits in the header match the “match” memorybits,
the headeris a “match”, as indicated over line 252, and
the flow block continues to read the packet. In the
illustrated embodiment, an “n” bit counter 280 is reset

over a line 282 when the packet begins arriving and
counts up “one” for each byte received from the bus.
The output of the counter over lines 284 is used as an
index into the two memoriesandis directed, also, to an
“n” bit comparator 286. Comparator 286 compares the
outputofcounter 280 with the output of an “n”bit latch
288 which holds the current header size count. When

NOACEx. 1015 Page 150



NOAC Ex. 1015 Page 151

 
i

15

the count reaches the header count, a header complete
signal is generated overaline 290.

The comparison of the input header to the match
word is effected byte-by-byte, using an eight bit com-
parator 294 and a series of eight identical two-to-one
multiplexors 296. The output of the match memory is
one input of the identical two-to-one multiplexors 296
with the “n”bits (typically eight bits) from the data bus
292 as the other input. In each multiplexor, the select
input is driven by the corresponding output bit over
lines 292 of the mask memory; so that if a mask bit is
“off”, the data bus bit is selected. Otherwise, the match
bit is selected. The “‘n” selected bits are then fed into the
“n” bit (illustrated as eight bits) comparator 294 which,
as noted above, receives the original match data word
as the otherinput.

The output of the comparatoris fed to a flip flop 298
which is set by a signal over a line 299 when the packet
begins to be read. If any byte of the headerfails to have
acomplete match (ofthe selected bits), the output ofthe
comparator goes low andclears (resets) the flip flop.If
the flip flop is still set when the counter 280 has also
reached a match (the end of the header), the packet
headeris accepted and the logical “AND”circuit 300
provides the match indication signal overline 252.

In addition, the pattern matcher further contains data
pads, not shown, which allow the CPU 12 to load
(through bus 41) the match and mask memories 60, 62,
the length latch 288, and other data as well.

Referring now to FIG.6, the data stream controlunit
18 (and stripping circuitry 254) has an arithmetic logic
unit (ALU) 310, special purpose logic which will be
described hereinafter, and a control table stored in a
memory 312. The ALU andthe control store act like a
general purpose microcode engine, but one which has
been specialized to create a very minimal, high speed
processor for packet headers. The functions to be per-
formed, as described above, are very limited.

Theillustrated circuitry allows the processing of the
headers in the transmission time of a complete packet
having no data, thus allowing the flow block to operate
at full network bandwidth with minimum sized packets.
In addition, the control device keeps its required cycle
time as high as possible (that is, operates as slow as
possible) to keep its costs down. ,

In the illustrated typical circuitry, the control table
312 is the heart of the control device. It consists of an
array of words, which are horizontal microcode, used
to directly control the ALU andgates of the control
circuit as is well knownin the art. While somefields of
the control word will perform standard operations,
such as selecting which ALU operation is to be per-
formed on each cycle, otherfields will control the spe-
cial logic associated with packet forwarding.

The illustrated contro] circuitry further includes a
control counter 314 which is set at the start of each
packet. The counterselects one of the control words in
the control array (the output of the control word con-
trolling the logic elements of the control device). While
processing a packet, this counter is incremented at the
cycle speed of the control device, essentially asynchro-
nousto therest of the system, thereby stepping through
the control table at a fixed rate. The input data packet
flows through an input FIFO buffer 320, the output of
which is controlled by a bit in the control table 312. If
thebit is “on,” a byte is read out of the input buffer. This
function, which is thus not performed automatically
when data is read from the buffer, allows data to be

_ °

— wa

25

40

45

50

@

65

5,249,292
16

passed through under control of the local processor,
and allows certain bytes of the packet to be operated on
by more than one control word without the necessity of
storing the byte in an intermediate location. A second
counter 322, cleared at the start of each packet, counts
the current data byte and provides that count for use by
the rest of the control device 18.

Anotherbit of the control word from array 312, ef-
fectively disables the contro] device, thereby allowing
the rest of the packet to pass through to the next stage
of processing. This bit is set in the last control word of
the process sequence, that is, once processing of the
header has been completed. Anotherfield ofthe control
word controls the logic which cancels the packet if
certain conditions are true. This field is thus used to

cancel processing of the packet when fatal errors are
detected. . .

The control circuitry also includes several scratch
pad registers 330. These registers allow accumulation of
results etc., and provide constants for use by the ALU
310. The scratch pad registers 330 can be loaded by the
CPU 12 during that process by which the CPU selects
a flow block to receive a data packet stream.

The apparatus further has a multiplexor 340 to allow
selection from the variety of datasources available as
inputs to the ALU. Theresults of the ALU processing
can be sent to a number ofcircuitries. In particular,
inputs to the multiplexor 340 come from either the input
data buffer 320, count register 322, or the scratch pad
registers 330. Data may be written from the ALU 310,
through a shift/rotate register 311, to either the scratch
pad registers, or output from the control unit through
an output multiplexor 342, Further, a pass around path
343 allowsthe result ofan ALU calculation to be sent to

a register while a data byte is sent to the output. Other
data paths not shown are available which allow the
CPU 12 to load the controltable, the scratch pad regis-
ters 330, the counters 314, 322, etc. when a flow block
is selected to receive a data packet stream.

As noted above,the illustrated embodiment provides
for a flexible flow block configuration which, when
loaded from CPU 12 with protocol setting data signals,
enables the flow block to handle a particular one of a
plurality of packet stream protocols. In an alternative
embodimentof the invention, each flow block can have
implemented therein, in hardware, the necessary cir-
cuitry to enable it to handle one (or more) particular
protocols. Accordingly therefore, different hardware
modules would be needed fordifferent protocols; how-
ever, some speed advantage can be obtained by reduc-
ing the flexibility of the hardware controlled flow
block.

In addition,further circuit efficiency can be obtained,
without loss of flexibility, if those flow blocks which
can be assignedto a particular interface share the same
ALUcircuitry (FIG. 6). Recalling that ALU 310 oper-
ates to process an incoming data packet, and, since only
one data packet can be received from a network at a
time, all of the flow blocks assigned to a particular
network interface can then share the same ALU since
only one of the assigned flow blocks will be active for
receiving a data packet at any particular instant. This
savingsin circuitry can, for example, be advantageously
implemented whena plurality of flow blocks are pro-
vided on the same card module. In that configuration,
all flow blocks of a card module which share an ALU
should be used in connection with the same selected
networkinterface, and in particular, as noted above,the

NOACEx. 1015 Page 151



NOAC Ex. 1015 Page 152

. ®
5,249,292

17 oO 18
card module may be implemented fully in hardware memory with an output of the match bit memory
with different flow blocks of the card module being for determining the validity of an incoming data
used for different protocols. stream packet.

Additions, subtractions, deletions and other modifica- 4. The packet switching circuit of claim 2 wherein
tions to the illustrated embodimentofthe invention will 5 said pattern matching circuit comprises
be apparent to those practiced in the art and are within a match memory
the scope of the following claims. a mask memory,

Whatis claimedis: a comparatorcircuitry, and
1. A high speed data packet switching circuit com- meansforinputting, to the comparator circuitry, data

prising: 10 bits from the match memory and corresponding
a software controlled primary processing units, data bits from an mput packet, said corresponding
a plurality of network interface units for receiving data bits being selected in accordance with the bit

incoming data packet streams and for transmitting values in the mask memory, for determining the
outgoing data packet streams, each of said data acceptability of an input packet.
packet streams having a selected protocol andallof 15 5. The packet switching circuit of claim 4, wherein
the data packets in a said stream having the identi-_—said pattern matching circuit further comprises
cal protocol, meansfor determining the end of an input header for

2 plurality of data stream control circuits for concur- an input packet,
rently receiving at least a portion of a headerof the to the comparatorcircuit for determining whetherall
data packets and selectively processing the re- 20 of the matched bits in the input headerare valid,

. ceived packets only wherein each said data stream and
control circuit processes the data packets of one means for providing an acceptancesignal in response
data stream having oneofsaid selected protocol in to a valid output of the comparator responsive
response to previously generated electrical signals means and the header determining means.
from the primary processing unit based upon 25 6. The high speed data packet switching circuit of
headeridentification informationin the at least first claim 2 wherein the processing unit responsive control
data packet of the new data packet stream for des-_—circuit comprises ignating and initializing one of said data stream a table array storage for storing horizontal micro-
controlcircuits to process a remainderof the data code,
packets of the new data packet stream, 30 accontrol counter for selecting words of the table

means for interconnecting said primary processing array storage,
unit, said plurality of interface units and said plural- an arithmetic logic unit, and
ity of data stream control circuits, meansfor controlling operation ofthe processing unit

said primary processing unit receiving from said net- responsive control circuit using horizontal micro-
workinterface units, and for processing, at least a 35 code output of the table array memory.
first one of the data packets of a new data packet 7. The packet switching circuit of claim 1 wherein
stream and having meansfor generating said elec- said data stream control circuit comprises
trical signals means in each said designated and an input multiplexor for selecting a data packet
initialized data stream control circuit for receiving stream source from among the interconnecting
and processing only those data packets which in- 40 meansaccessible to the control circuit;
clude said header identification information upon a pattern matching circuit responsive to pattern set-
which said designated andinitializing is based. ting signals from the primary processing unit and to

2. The packet switching circuit of claim 1 further incoming data packets from the input multiplexor
wherein each data stream control circuit comprises for identifying those data packets which will be

a pattern machining circuit responsive to pattern 45 processed by the control circuit.
setting signals from the primary processing unit a headerstripping circuitry for removing the header
and to incoming data packets from said network from each data packet from the input multiplexor.
interface units for identifying and receiving a control logic, responsive to the pattern matching
packet stream which will be processed by said circuit and to the stripping circuitry, for passing
controlcircuit, 50 the data packet, without the header, for further

a processing unit responsive control circuit for con- processing by the controlcircuit,
‘ trolling, in response to contro! signals sent by the a counter/truncator circuit for determining whether

primary processing unit, a congestion control the data packet from the control logic is truncated
means, and a headerstripping and prepending func- and for providing an error signal in the event the
tions meansfor the data stream controlcircuit, and 55 packetis truncated, .

; a data buffer responsive to said pattern matching a prepend circuitry for adding a new headerto the
circuit and the processing unit responsive control data packet from the counter/truncatorcircuit,
circuit for receiving and storing data and protocol an output data buffer for buffering the data packet
elements for an incoming data packet stream and from the prepend circuitry and responsive to a

3 for outputting a data packet stream to a said net- 60 buffer controllogic, for maintaining accurate status
ki workinterface unit to be forwardedto a next net- data regarding the contents of the buffer, and for
i work node. outputting a next data packet for transmission over

3. The packet switching circuit of claim 2 wherein a network, and
said pattern matching circuit comprises an output demultiplexor connected to the output data

a mask bit memory, 65 buffer for transmitting data from the output data
a match bit memory,and buffer over the output interconnecting path.

if meansfor comparing databits of incoming data pack- 8. The packet switching circuit of claim 1 further
t ets, not masked by a data word from the mask bit wherein said networkinterface unit comprises
k%

t

NOACEx. 1015 Page 152



NOAC Ex. 1015 Page 153

 
}:
4*
>

5,249,292
19

a network interface circuit for communicating with a
network channelin accordance with a said selected

protocol and delivering data from the channelin a
predetermined format, and

an interface adapter for receiving data from the chan-
nel through the network interface circuit in said
predetermined format and for transmitting that
data from the channel over the interconnecting
meansto said data stream control circuits and said

primary processing unit, for receiving data, to be
sent over a network channel, over said intercon-
necting means from the data stream controlcircuit
and the primary processing unit and for delivering
data received from said interconnecting means to
said network interface circuit for transmission over
a said network channel.

9. The packet switching circuit of claim 8 wherein
said network interface unit further comprises

a single network special purpose hardware interface
circuit having
means for communicating with a network channel,

means for transmitting received network data over
the interconnecting meansto said data stream con-
trol circuits and said primary processing unit,
meansfor receiving network data packets from the

data stream control circuits and the primary
processing unit, and

meansfor processing the received data packets for
transmission over a network channel.

10. The packet switching circuit of claim 1 wherein
said software controlled primary processing unit further
includes

a central processing unit,
a bus means;
a plurality of input storage units for selectively re-

ceiving ones ofsaid plurality of data streams from
the network interface units and each storage unit
having its output connected to said bus means,

means for connecting the central processing unit to
said bus means,

a plurality of output storage units for selectively re-
ceiving data from said central processing unit over
said bus means, and for providing said data to said
network interface units, and

meansfor controlling the input of data to said input
and output storage units.

11. The packet switching circuit of claim 1 wherein
said interconnecting means comprises

an input bus for interconnecting the outputs of said
network interface units, the inputs of said data
stream control circuits, and the primary processing
unit, and

an output bus for interconnecting the outputs ofsaid
data stream control circuits, the inputs to said net-
work interface units, and the primary processing
unit.

12. The packet switching circuit of claim 11 wherein
said interconnecting means further comprises a central
processing unit bus interconnecting said data stream
control circuits, said network interface units, and a
central processing unit of said primary processing unit.

13. The packet switching circuit of claim 12 wherein
said input and output bus means each comprises data
lines and controllines.

14. A high speed data packet switching method for
switching data packet stream among communication
paths comprising the steps of

we 0

15

20

45

w0

55

60

65

20
receiving each packet stream from one ofa plurality

of networks,
processing atleasta first packet of each received data

packet stream using a software controlled, primary
processing unit,

designating that performance of routine, repetitive
header processing of the further packets of one of
said received packet steams, said processing includ-
ing packet forwarding processing to effect routing
of said packet,

receiving and examining by each said high speed
hardware circuitry at least a portion of each packet
of each said received data packet stream, determin-
ing based on said examination of said at least a
portion of each packet by each of said high speed
hardware circuitry, which said high speed hard-
ware circuitry has been designated to process each
further packet of each received data packet stream,
receiving in said designated high speed hardware
circuitry said each further packet.

15. The high speed data packet switching method of
claim 4 further comprising the step of

controlling at leat the initialization of a said high
speed hardware circuitry assigned to process a
packet stream from the software controlled, pri-
mary processing unit.

16. A high speed data packet switching method com-
prising the steps of

receiving incoming packet streams from network
interface units;

processing ones of the received data packets in re-
sponseto a software controlled primary processing
unit using a plurality of hardware data stream con-
trol circuits,

interconnecting the primary processsing unit, the
interface units, and the data stream controlcircuits
for communications therebetween,

processingatleast a first one of the data packets from
the receiving step for each new data packet stream
in the primary processing unit,

identifying, using theprimary processing unit, one of
the data stream controlcircuits for processing the
incoming data packet stream,

determining by each said data stream control circuit
the one data stream control circuit which will pro-
cess each packet of that portion of said incoming
data packet stream which is not processed by said
primary processing unit,

processing that portion of a said data packet stream
whichis not processed bysaid primary processing
unit by said identified data stream controlcircuit,
and

outputting the results of the data stream control cir-
cuit processing and the primary processing unit
processing to form an output data stream for trans-
mission along a communicationspath.

17. A high speed data packet switching circuit for
receiving data packet streams from a plurality of input
communication paths and for transmitting data packet
streams to a plurality of output communication paths,
said circuit comprising

a plurality of network interface units for receiving the
incoming data packet streams and for transmitting
outgoing data packet streams,

a software controlled primary processing unit, having
a bus means,

a central processing unit,

NOACEx. 1015 Page 153



NOAC Ex. 1015 Page 154

oeSER

eotoe

me
 

° 5,249,292
21

a plurality of input storage units for receiving re-
spectively each ofsaid plurality of data streams
from the network interface units and each input
storage unit having its output connectedto said
bus means,

means for connecting the central processing unit to
said bus means, and

a plurality of output storage units for receiving
data from said central processing unit over said
bus means, and for providing said data to said
network interface units,

a plurality of data stream control circuits for ma-
nipulating data packet stream in response to the
primary processing unit,

said data stream control circuits comprising
a pattern matching circuit responsive to pattern

setting signals from the central processing unit
and to incoming streams of data packets from
said networkinterface units for identifying a data
packet to be processed by said control circuit,

means for transferring identified data packets to
said control circuit,

15

25

30

35

40

45

50

55

65

22
a processor responsive control circuit for control-

ling, in response to control signals sent by the
primary processing unit, means for congestion
control, and means for header stripping and pre-
pending functions for the data stream control
circuit, and

a data buffer responsive to said pattern matching
circuit and the processor responsive contro! cir-
cuit for storing an incoming data packet stream
from said control circuit and for outputting a
stored data packet stream to be forwarded to a
network interface unit,

means for interconnecting said primary processing
unit, said plurality of network interface units and

' said plurality of data stream control circuits, and
said primary processing unit receiving from said net-

work interface units at least a first one of the data

packets of each new data packet stream and having
means for designating those data packets of the
stream which are not processing by the primary
processing unit to be processed by a said data
stream control circuit without further processing
by said primary processing unit.= * * * »

NOACEx. 1015 Page 154



NOAC Ex. 1015 Page 155

 United States Patent
Correa

2

|0ci TAUA

_ 1) Patent Number: 5,511,213

[45] Date of Patent: Apr. 23, 1996 

[54]

{76]

(21)

[22]

{51]
{52]

158]

£56]

ASSOCIATIVE MEMORY PROCESSOR
ARCHITECTURE FOR THE EFFICIENT
EXECUTION OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING
AND PATTERN RECOGNITION

Inventor: Nelson Correa, Carrera 6a No 57-11
Apt. 402, Santa Fe de Bogota, D.C.,
Colombia

Appl. No.: 880,711

Filed: May 8, 1992

Tint, C19 onscsssssecoccessecssessnenereseennnsssssenes GO6F 15/38
WS. Che cn enneesecsnseeesneessees 395/800; 395/700; 364/253;

364/274.8; 364/DIG. 1
Field of Searels..-sasevcsssssssssssscessesersee 395/800, 700;

364/253, 274.8, DIG. 1

References Cited

U.S. PATENT DOCUMENTS

4,686,623 8/1987 Wallace .....ss.csscsessscecssssreseseesee 395/700
4,914,590 4/1990 Loatman etal. 364/419.08
4,994,966 2/1991 Hutchins....... w» 364/419.08
5,105,353 4/1992 Charles et al. wo» 395/700
5,239,298—B/1993 Wei ..ecscccscsosssessnsesessnaresssesnnesacees 341/51
5,239,663 8/1993 Faudemayet al. .....s.-0esee00 395/800

  
 

Primary Examiner—Alyssa H. Bowler

12

rrrn Fanerrrnnnmen emereen

Pomocrroorerene PARSING CONTROL
UNIT 

Assistant Examiner—John Harrity
Attomey, Agent, or Firm—Beveridge, DeGrandi, Weilacher
& Young

(57) ABSTRACT

An associative memory processor architecture is disclosed
for the fast and efficient execution of parsing algorithms for
natural language processing and pattern recognition appli-
cations. The architecture consists of an associative memory
unit for the storage of parsing state representations, a ran-
dom access-memory unit for the storage of the grammatical
rules and other tables according to which the parsing is done,
a finite state parsing control unit which embodies the chosen
parsing algorithm, and a communications unit for commu-
nication with a host processor or external interface. The use
of associative memory for the storage of parsing state
representations allows the architecture to reduce the algo-
rithmic time complexity of parsing algorithms both with
respect to grammar size and input string length, when
compared to standard software implementations on general
purpose computers. The disclosed architecture provides for
a fast and compact computerperipheral or system, particu-
larly when physically realized in one or a small number of
integrated circuit chips, and thus contributes to the technical
feasibility of real time applications in speech recognition,
machinetranslation, and syntactic pattern recognition.

7 Claims, 5 Drawing Sheets

ASSOCIATIVE
MEMORY

NOACEx. 1015 Page 155



NOAC Ex. 1015 Page 156

  
   eryN=)saatWnN==oriat4panmnM

=

©)=
=

-------+-4|<)

:|=3\fo)
Z.

g|2AMONZWSSa00VSNOLLVOINNWWOD||WOCNWYION.LNOSONISHVdZ}aAYNOWAWgySALLVIDOSSYBe POLeePLLLJ
©:

Olel
5é|‘913

5

 



NOAC Ex. 1015 Page 157

 
:i
'
q
:

e a

U.S. Patent Apr. 23, 1996 Sheet 2 of 5 5,511,213

DATA BUS OPCODE MATCHFLAG

 
 
 

2)

27

22.

CAM CELL ARRAY

20

23FIG. 2 MRI MR2 MRS PRIORITY

INITIALIZE COMMUNICATIONS UNIT

LOAD GRAMMAR
AND PARSING TABLE

RECOGNIZER

FIG. 6  
 

POSTPROCESSING

EXTRACT PARSE INFORMATION  

NOACEx. 1015 Page 157



NOAC Ex. 1015 Page 158

 
. &

U.S. Patent Apr. 23, 1996 Sheet 3 of 5 5,511,213

FIG. 3

MUVBFR=«RULE
1—~S$
S —> NP UP

NP —» “JOHN”

VP —> “THINKS”
aor=@&
“JOHN THINKS $”
|

0 61 23

FIG. 5

RULE KUVIBRR

DOT POSITION

 

 

STATE PROCESSED BIT

FIRST WORD RVDEX

LAST WORD NWDEX LEFT HAND SYIIBOL

FIG. 7A FIG. 7B

 
 
 
 

CaM

<0, 0, 0, 0,2, 5, I>

<0, 0, 0,0, S, NP, em

NOACEx. 1015 Page 158

CAN

<0, 0, 0,0, Z, S, >

 



NOAC Ex. 1015 Page 159

 
 

U.S. Patent Apr. 23, 1996 Sheet 4 of 5 5,511,213

O

RULE O

RULE 1

RULE 2

RULE 3

P-OFFSET

a1
$

WP P-TABLE
Ww

WP+1

N-OFFSET
NIL

“JOHN”

“THINKS”

‘ N-TABLE
$

AP

w

 
NOACEx. 1015 Page 159 



NOAC Ex. 1015 Page 160

-aeD agiSOane~“4oS.

wsoR

U.S. Patent

&

 
 

 
 
 

<0,0, 2,0, NP, “JOHN”, 1>

<O, 2, 0, 1, Z, a) '

 
 

Apr. 23, 1996

CAM

tu S, I>

<0,0,1,9, S, NP, I>

", 1>

<0,3,0,2, 7, Ml, 1>

FIG. 7C

“JOHN THINKS $”

ITEMS

 

 
 
 

 

 
 

 
  

Sheet 5 of 5

1 --~ 98"$"

$ —oNP UP

NP ----- ©"JOHN”

NP —-— "JOHN"

S——NP > UP

VP ----- © “THINKS”

UP —~-"THINKS"

S --~- NP UPs

1-~-$*"$"

7 ae S$ NOH »

i
akees

5,511,213

ACTION

PREDKT ©

PREDICT

EXANRNE

COMPLETE

PREDICT

EXANEVE

COMPLETE

COMPLETE

ACCT

NOACEx. 1015 Page 160



NOAC Ex. 1015 Page 161

arses

Ras

:

5,511,213
1

ASSOCIATIVE MEMORYPROCESSOR
ARCHITECTURE FOR THE EFFICIENT

EXECUTION OF PARSING ALGORITHMS
FOR NATURAL LANGUAGE PROCESSING

AND PATTERN RECOGNITION

BACKGROUND OF THE INVENTION

The present invention relates broadly to computer hard-
ware architectures using parallel processing techniques and
very large scale integration (VLSD) microelectronic imple-
mentations of them. More particularly, the inventionrelates
to an integrated associative memory processor architecture
for the fast and efficient execution of parsing algorithms
used in parsing intensive and real time natural language
processing and pattern recognition applications, including
speech recognition, machine translation, and natural lan-
guage interfaces to information systems. Parsing is a tech-
nique for the analysis of speech, text, and other patterns,
widely used as a key process in contemporary natural
language processing systems andin syntactic pattern recog-
nition for the identification of sentence structure and ulti-

mately the semantic content of sentences.
Parsing is done with respect to a fixed set of rules that

describe the grammatical structure of a language. Such a set
of rules is called a grammar for the language. In a standard
parsing model, the parser accepts a string of words from its
input and verifies that the string can be generated by the
grammar for the language, according to its mules. In such
case the string is said to be recognized and is called a
sentence of the language. There exist many forms of gram-
mar that have been used for the description of natural
languages and patterns, each with its own generative capac-
ity and level of descriptive adequacy for the grammatical
description given languages. A hierarchy of grammars has
been proposed by N. Chomsky, “On Certain Formal Prop-
erties of Grammar,” Information and Control, Vol. 2, 1959,
p. 137-167, and some of the formalisms that have been or
are currently in use for the description of natural language
ate transformational grammar, two-level grammar, unifica-
tion grammar, generalized attribute grammar, and aug-
mented transition network grammar. Nonetheless, the for-
malism most widely used is that of context-free grammars;
the formalisms just cited, and others, are in some sense
augmentations of or based on context-free grammars.

Likewise, many parsing methods have been reported in
the literature for the parsing of natural languages and
syntactic pattem recognition. For context-free grammars
there are three basic parsing methods, as may be inspected
in “The Theory ofParsing, Translation and Compiling,” Vol.
1, A. V. Aho and J. D. Ullman, 1972. The universal parsing
methods, represented by the Cocke-Kasami-Younger algo-
rithm and Earley’s algorithm, do not impose any restriction
on the properties of the analysis grammar and attempt to
produce all derivations of the input string. The two other
methods, knownas top-down or bottom-up, attempt as their
namesindicate to construct derivations for the input string
from the start symbol of the grammar towards the input
words, or from the input words towards the start symbol of
the grammar. The parsing state representations used by the
parsing methodsinclude, in general, a tripte consisting of the
first and last word positionsin the input string covered by the
parsing state, and a parsing item which may be a grammati-
cal category symbol or a “dotted” grammatical mule, that
shows kow muchofthe item has been recognized in the
sepmentofthe input string markedbythefirst and last word
positions.

40

45

60

65

2

In contrast to the parsing of someartificial languages,
such as programming languages for computers, the chief
problems encountered in parsing natural languages are due
to the size of the grammatical descriptions required,the size
of the vocabularies of said languages and several sorts of
ambiguity such as part of speech, phrase structure, or
meaning found in most sentences. The handling of ambigu-
ity in the description of natural language is by far one ofthe
most severe problems encountered and requires the adoption
of underlying grammatical formalisms such as general con-
text-free grammars and the adoption of universal parsing
methods for processing.

Even the most efficient universal parsing methods known
for context-free grammars (Cocke-Kasami-Younger and
Earley’s algorithms) are too inefficient for use on general
purpose computers due to the amountof time and computer
resources they take in analyzing an input string, imposing
serious limitations on the size of the grammatical descrip-
tions allowed and the types of sentences that may be
handled. The universal parsing methods produce a number
of parsing state representations which is in the worst case
proportional to thesize of the grammatical description of the
language and proportional to the square of the number of
input words in the string being analyzed. Theset of parsing
States actually generated in typical applications is, however,
a sparse subset of the potential set. Other universal parsing
methods used in some systems, including chart parsers,
augmented transition network parsers, and top-down or
bottom-up backtrackingor parallel parsers encounter prob-
lems similar to or worse than the standard parsing methods
already cited. Since parsing algorithms in current art are
typically executed on general purpose computers with a yon
Neumann architecture, the number of steps required for the
execution of these algorithms while analyzing an input
sentence can be as high as proportional to the cube of the
size of the grammatical description of the language and
proportional to the cube of the number of wordsin the input
string.

The existing von Neumann computerarchitecture is con-
stituted by a random access memory device (RAM) which
may be accessed bylocation for the storage of program and
data, a central processing unit (CPU) for fetching, decoding
and execution of instructions from the RAM, and a com-
munications bus between the CPU and RAM,comprising
address, control, and dam lines. Dueto its architecture, the
yon Neumann type computer is restricted to serial operation,
executing one instruction on one data item at a time, the
communications bus often acting as a “bottleneck” on the
speed ofthe serial operation.

With a clever choice of data structure for the representa-
tion of sets of parsing states on a von Neumann computer,
such as the use ofan array ofboolean quantities used to mark
the presence or absence of a given item from the set of
parsing states, it is possible to reduce the numberofsteps
required to perform basic operations on a set of parsing
states to a time that is proportional only to the logarithm of
the numberof states in the set, and therefore to reduce the
total time required for the execution parsing algorithms on
the von Neumann computer. However, the numberof pars-
ing states that may be generated by universal parsing algo-
rithms is dependent on grammar size andinputstring length
and can be quite high. For the type of grammars andinputs
envisioned in language and pattern recognition applications,
this numbercan beofthe orderoftwo to the powerofthirty,
or several thousands of millions of parsing items. This
amount of memory space is beyond the capabilities of
current computers and, where available, it would be ineffi-

NOACEx. 1015 Page 161



NOAC Ex. 1015 Page 162

 
i
it

r

:

5,511,213
3

ciently used. The speedup technique suggested is well
known andillustrates the tradeoff of processing memory
space for reduction of execution time. Universal parsing
algorithms, furthermore, require multiple patterns of access
to their parsing state representations. This defeats the: pur-
pose of special data structures as above, unless additional
memory space is traded off for a fast execution time.

In the technical article “Parallel Parsing Algorithms and
VLSI Implementations for Syntactic Pattern Recognition,”
Y. T. Chiang and K. S. Fu, IEBE Transactions on Pattern
Analysis and MachineIntelligence, Vol. 6, No. 3, 1984, p.
302-314, a parallel processing architecture consisting of a
triangular-shaped VLSI systolic array is devised for the
execution of a variant of the universal parsing algorithm due
to Earley. In the Chiang-Fu architecture, the systolic array
has a number of rows and a numberofcolumns equal to the
number of symbols in the string to be analyzed. Each
processingcell of the systolic array is assigned to compute
one matrix element of the representation matrix computed
by the algorithm. Each cell is a complex VLSIcircuit that
includes a control and data paths to implementthe operators
used in the parsing algorithm, and storage cells for the
storage of cell data corresponding to matrix elements. The
architecture has a regular communication geometry, with
each cell communicating information only to its upper and
right-hand side neighbors. In order to achieve its processing
efficiency requirements, allowing as many processingcells
of the array as possible to operate in parallel, the Chiang-Fu
architecture must: use a weakened form of Earley’s algo-
rithm, Furthermore, in order to meet the VLSI design
requirement that each processor perform a constant time
operation, the architecture restricts the grammar to be free of
null productions, i.e., those whose fight-hand sides have
exactly zero symbols.

In addition to the two disadvantages of the Chiang-Fu
architecture noted above, its main disadvantage, however, is
the complexity of each cell in the processing array and the
required size of the array. The cell design uses complex
special purpose hardware devices such as programmable
logic arrays, shift registers, arithmetic units, and memories.
This approach yields the fastest execution speed for each
cell, but due to its complexity and the highly irregular
pattern of interconnections between the cell’s components
the design is not the best suited for VLSI implementation.
Since the systolic array has a number of rows and a number
of columns equal to the number of symbolsin the string to
be analyzed, the numberofcells in the array is proportional
to the square of the number of symbols in the string.

Associative processing is a technique of parallel compu-
tation that seeks to remove some problems of the von
Neumann computer by decentralizing the computing
resources and allowing the execution of one operation on
multiple data items at a time. An associative memory
processor has distributed computation resources in its
memory, such that the same operation may be executed
simultaneously on multiple data items, in situ, The opera-
tions that may be executed in the memory are fairly simple,
usually restricted to comparison of a stored data word
against a given search patter. The distributed computation
approach eliminates two major obstacles to computation
speed in the von Neumann computer, namely the ability to
operate only on one data item at a time, and the need to move
the data to be processed to and from memory. Since asso-
ciative memory is essentially a memory device,it is the best
suited type ofcircuit for large scale VLSI implementation.
Associative processing is currently used in some special
purpose computations such as addresstranslation in current

15

50

60

65

4

computer systems, and is especially well suited for symbolic
applications such as string searching, data and knowledge
base applications, and artificial intelligence computers. In
contrast to addressing by location in a random access
memory, associative processing is particularly effective
when the sets of data elements to be processed are sparse
relative to the set of potential values of their properties, and
when the data elements are associated with several types of
access patterns or keys.

An associative memory processor architecture for parsing
algorithms, as has been proposed by N. Correa, “An Asso-
ciative Memory Architecture for General Context-free Lan-
guage Recognition,” Manuscript, 1990, stores sets of pars-
ing state representations in an associative memory,
permitting inspection of the membership of or the search for
a given parsing state in a time which is small and constant,
independentofthe number ofstate representations generated
by the algorithm. Additionally, the parsing method chosen is
implemented in a finite state parsing contro! unit, instead of
being programmed an executed by instruction sequences in
the central processing unit of a general purpose computer or
microprocessor. This allows for a maximally parallel sched-
uling of the microoperations required by the algorithm, and
eliminates the need for instruction fetching and decoding in
the general purpose computer. Furthermore, since the asso-
ciative memory need be dimensioned only for the number of
parsing states that may actually be generated by the parsing
algorithms, and since the finite state control unit contains
only the states and hardware required for the execution of
the algorithm, said machine may be fabricated and pro-
grammed more compactly and economically with integrated
circuit technology.

It is apparent from the above that prior art approaches to
the executionofuniversal parsing algorithmsare neither fast
enough nor compact enough for the technical and economic
feasibility of complex symbolic applications requiring a
parsing step, such as real-time voice recognition and under-
standing, real-time text and voice-to-voice machinetransla-
tion, massive document processing, and other pattern rec-
ognition applications. The general purpose von Neumann
computer and other previous proposals for the parallel
execution of those algorithms are not fast enough and not
compact enough. Theassociative processing architecture for
the execution of universal parsing algorithms herein dis-
closed has the potential to offer significant speed improve-
ments in the execution of universal parsing algorithms and
is furthermore more compact and better suited for large scale
VLSI implementation.

SUMMARYOF THE INVENTION

It is therefore an object of the present invention to provide
a new and improved parallel processor architecture that
executes parsing algorithms faster than the prior art
approaches.

It is a further object of the present invention to provide a
new and improved parallel processor architecture which is
dedicated exclusively to the execution of parsing algorithms
and is physically more compact, smaller, and better suited
for large scale VLSI implementation than the prior art
approaches.

It is still a further object of the present invention to show
a particular embodimentofa universal parsing algorithm in
said architecture and the method by which this is achieved.

In accordance with the above objects, the present inven-
tion is addressed to an associative memory processorarchi-

NOACEx. 1015 Page 162



NOAC Ex. 1015 Page 163

 
ant&

 

:

5,511,213
5

tecture consisting of an associative memory unit for the
storage of parsing state representations, a random access
memory unit for the storage of the grammatical rules and
other parsing data and tables according to which the parsing
is done, a finite state parsing control unit which embodies
the chosen parsing algorithm, and a communications unit for
communication with a host processor or external interface.

The associative memory unit (CAM) is used for the
storage of parsing state representations, dynamically com-
puted by the parsing algorithm accordingto the input string
and grammar. Each parsingstate representation consists of
a tuple ofa first word index to a position in the inputstring,
a last word index to a position in the inputstring, a parsing
item, a left-hand side symbolfield., a next symbol field, a
state-not-processed field, and optional fields to store other
information related to the parsing process, such as context
and lookahead symbols, attributes of the parsing state, and
information for parse tree extraction. Each parsing state
representation is storm in one logical CAM word, which
permits fast and easy inspection of the parsingstates already
generated by the algorithm. The parsing item in the third
field of a parsing state representation may be a grammar
symbolor a dotted rule, consisting of a rule number and an
index to a position on the right hand side of the rule.

The random access memory unit (RAM) is used for the
storage of the grammatical rules according to which the
parsing is done. This memory unitis also used to store other
parsing data and tables used by the parsing algorithm, as
detailed below; alternatively, a second random access
memory unit may be used for the storage of such informa-
tion. Each, grammatical rule consists of one left-hand side
symbol and a right-hand side of zero or more symbols. Each
grammatical rule is stored in one logical RAM record, with
one RAM word allocatedto store each of the rule’s symbols.
In this manner,it is possible to retrieve the j-th symbolofthe
p-th grammatical rule from thej-th word of the p-th record
in the RAM. The RAM may be accessed by the communi-
cations unit for the purpose of allowing the host processor
writing into the RAM the grammatical miles according to
which the parsing is done. Alternatively, the RAM may be
a read-only memory, which permanently stores a predefined
set of grammatical rules and tables.

Thefinite state parsing control unit (PCU) is connected to
the CAM and the RAM andis a finite state machine that

embodies the chosen parsing algorithm. The PCU accesses
the CAM for the purposesofinitializing it, inserting initial
or seed parsing states for the parsing process, and requesting
parsing states marked unprocessed for processing. When an
unprocessed parsing state is retrieved from the CAM, the
PCU mayaccess the RAM and mayrequest input symbols
from the communications unit for the purpose of generating
newparsing states to be added to the CAM,as unprocessed.
Each access to the RAM allows the inspection of the
grammatical rules, if any, that may be applicable for pro-
cessing of the current parsing state. The input symbols
requested form the communications unit allow verification
that the next input symbol is compatible with the current
parsing state. When the PCU has generated the number of
parsing state sets required by the inputstring andall parsing
states in the CAM axe marked processed—i.e., there are no
unprocessed states—thePCU performsa test on the contents
of the CAM to decide acceptance ofthe input string, may
optionally execute some post-processing operations, as
detailed below, signals the communications unit that the
parsing of the current input string is complete, and termi-
nates execution. The exact order and the precise nature ofthe
operations performed by the parsing controlunit, generically

_ 5

65

6

described above, depend on the particular parsing algorithm
embodied in the finite state parsing control unit.

The communications unit (CU) is connected to the CAM,
RAM,and PCUandis used for communication with a host
processor or external interface. The communications unit
may be as simple as an interface to a given computer
interconnection bus, or as complex as a system that imple-
ments a computer communications protocol. The commu-
nications unit accesses the RAM for the purposeof allowing
the host processor writing into the RAM the grammatical
rules according to which the parsing is done. Alternatively,
the RAM maybe a read-only memory, which permanently
stores a predefined set of grammatical rules, in which case
the CU need not have access to the RAM. The CU also

accesses the finite state control unit for the purposes of
initializing it and supplying to it input symbols from the
input string to be analyzed. The CU also accesses the CAM
at the end of a parsing process for the purpose of reading out
and sending to the host processor the parsing state repre-
sentations and any other information that may be relevant to
further processing of the input string. An optional additional
function of the communicationsunit is its ability to issue
commands and data to the RAM, CAM and PCU for the
purpose of testing their functionality and correctness of
operation.

Preferably, the associative memory unit is formed on a
single integrated circuit chip, and the random access
memory unit, finite state parsing control unit, and a com-
munications unit are formed together or programmed on a
separate integrated circuit controller chip. Alternatively, all
system components maybe integrated on a single chip, with
optional provision for external expansion of the RAM or
CAM memories. In either case, the operation of the finite
state parsing control unit may allow for the execution of
parse extraction algorithms and useless parsing state mark-
ing and elimination algorithms, to simplify further process-
ing of the parsing result by the host processor.

BRIEF DESCRIPTION OF THE DRAWINGS

In the detailed description of the preferred embodiment of
the invention presented below, reference is made to draw-
ings as presently detailed. The drawings are not necessarily
to scale, emphasis being placed instead upon illustrating the
principles of construction and operation of the invention.

FIG. 1 is a complete schematic illustration of the asso-
ciative memory processing system for parsing,algorithms,
object of the present invention.

FIG. 2 shows the general organization of the associative
memory unit assumed by the preferred embodiment.

FIG. 3 is a small example context-free grammar and
showsa sample inputstring with annotated string positions.

FIG. 4 is a schematic illustration of the RAM memory
map corresponding to the example grammar in FIG. 3

FIG. 5 is a schematic illustration of the parsing state
encodings to be stored in the associative memory, for the
preferred embodiment where the processor embodies Ear-
ley’s algorithm.

FIG.6 is a flow chart of the steps followed by the system
during loading of a grammar, parsing, and extraction of the
parse information.

FIGS. 7.a-c are a schematic illustration of a series of

CAM memory mapsofthe associative processing system at
different times during parsing an inputstring, according to
the example grammar in FIG. 3.

NOACEx. 1015 Page 163



NOAC Ex. 1015 Page 164

SAELooes
abag

BAeSatti

eo7

n
,

5,511,213
7

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG.1 illustrates an embodimentofthe present invention
suitable for the execution of a wide family of parsing
algorithms. Referring to the samefigure, the system includes
an associative memory unit 1 and a communications and
parsing control unit 5. The communications and parsing
control unit includes a random access memory unit 2,a finite
state parsing control unit 3, a communications unit 4,a first
data bus 10, a second data bus 11, and other signals further
detailed below.

Associative memory unit 1 is connected by the internal
data bus 10 and by control fines S1 and S2 to the parsing
control unit The associative memory unit (CAM)is used for
the storage of parsing state representations and its word
width is commensurate with the numberofbits required for
the representation of parsing states. The parsing state rep-
resentations produced by the parsing control unit may be
transferred, i.c., written, to the associative memory through
the internal data bus 10. Likewise, parsing states stored in
the associative memory may betransferred in the opposite
direction, i.e., read, to the parsing control unit by means of
the same internal data bus 10. To provide for fast data
transfers between the associative memory and the parsing
contro] unit, in one bus cycle, the width of thefirst data bus
10 is equal to the width of one CAM word. Controlline S1
from the parsing control unit to the associative memory is
the operation select code for the operation requested of the
associative memory. Control line S2 from the associative
mémory to the parsing control unit is a match flag produced
by the associative memory after a match operation. Because
an associative memory is used for the storage of parsing
State representations, operations such as the insertion of a
new parsing state into the CAM may be performed in
constant time, independent of the number of parsing states
already generated, and the performance degradation result-
ing from the use of random access memory in avon Neu-
mann computer for the storage of the same representations
is mitigated. Also, because an associative memory is used,
multiple access patterns are permitted into the parsing state
representations, without the overhead of additional data
structures. These multiple access patterns play a role in the
implementation of some optimizationsof the parsing algo-
rithm to be embedded in thefinite state parsing control unit.

The general organization of the associative memory unit
assumed by the preferred embodiment is shown in FIG.2.
This device has one array 20 of content addressable memory
cells, one data register 21, one mask register 22, three
general purpose match registers 23, 24, and 25, a priority
encoder 26 for multiple response resolution, and an internal
control section 27 for control of CAM operations. The
device has an associative method of word selection for read
and write operations, in which word selection is achieved by
the use ofonc of the match registers 23, 24, or 25, and the
priority encoder 26. The memory receives data and control
signals from the outside through data and control buses 28
and 29, and produces one match signal.MATCHFLAG 30
after the execution of match operations. The set of opera-
tions provided by the associative memory unit is further
detailed below in the description of the parsing controlunit.

Random access memory unit 2 in FIG. 1 is connected to
the parsing control unit and other system components by a
second internal data bus 11 and by address and control lines
§3 from the PCU. Physically, the RAM is organized as a
linear array of words, divided into logical records of several
words, The number of bits per RAM word mustbe selected

w0

35

65

8

according to the number ofterminal and non-terminal sym-
bols in the grammar; for example, with a word width of ten
bits a total of 1024 different symbols may be encoded. We
let PLEN be the number of wordsin one logical RAM record
and require that it be at least one more than the number of
symbols in the longest grammatical rule to be represented.
The grammatical rules are ordered bytheir left-hand side
symbol and numbered from zero to some positive integer
PMAX, so that the number of RAM words required to store
the grammatical rules is PLEN times PMAX.

The rules ofFIG. 3 constitute a simple grammar with four
non-terminal symbols Z, S, NP, and VP, and three terminal
symbols “$”, “John”, and “thinks”; Z is the start symbol of
the grammar, and “$” is the “end-of-input-string” marker.
Each grammatical mule is stored in one logical RAM record,
as shown in FIG. 4, with one RAM word usedto store each

of the rule’s symbols. In this preferred embodiment, the
logical records have a fixed number of words, such that the
j-th symbol of the p-th grammatical mle may beretrieved
from the RAM wordat address p times PLEN plusj. The
symbol NIL, not in the vocabulary of the grammar, is used
to mark the end of each rule’s right-hand side. The RAM
may be accessed by the communications unit through the
second internal data bus 11 for the purpose of allowing the
host processor to write into the RAM the grammatical mes
according to which the parsing is done. Alternatively, the
RAM may be a mad-only memory, which permanently
stores a predefined set of grammatical rules.

In this embodiment, the random access memory unit
contains additional space for the storage of two parsing
tables, P-TABLE and N-TABLE. P-TABLErelates the non-
terminal symbols of the grammar to the numberofthe record
of the fast production in their list of alternatives in the RAM.
This information is used by the parsing algorithm and is
stored at an offset P_OFFSET from the first word of the

RAM,beyond the end of the space used to store the
grammatical rules. N-TABLE is a table of all the symbols in
the grammar and the special symbol NIL that indicates for
each one whether it may derive the empty string after one or
more derivation steps (i.e., whether it may be nulled). This
table is storm at an offset N_OFFSET from the fast word of
the RAM, beyond the end of the space used to store the
P-TABLE.Thesetables are also shown in FIG.4,

The parsing control unit 3 in FIG. 1 is connected to the
associative memory unit and to the random access memory
unit as already described. The parsing contro! unit is also
connected by the secondinternal data bus 11 and by control
lines S4, $5, and S6 to the communications unit. The second
internal data bus 11 is used to transfer commandsand input
symbols to the parsing control unit, and to read status
information from the same. Control line S4 is the SYM-
BOL_REQUESTline from the PCU to the communications
unit, while S5 is the SYMBOL_READYlinein the converse
direction. Controlline S6 is the END_OF_PARSEline from
the PCU to the communications unit. Because the parsing
control unit is a finite state machine that embodies the
chosen parsing algorithm, it is optimized both with regard to
speed andsize. In this preferred embodiment, the parsing
control unit is designed to execute a version of Earley’s
algorithm, “An Efficient Context-free Parsing Algorithm,”
Communicationsof the Association for Computing Machin-
ery, Vol. 13, No. 2, p. 94~102, knownin the art, and includes
some optimizations oftheoriginal algorithm, suggested by
S: Graham etal., “An Improved Context-free Recognizer,”
A CM Transactions on Programming Languages and Sys-
tems, Vol. 2, No. 3, 1980, p. 415-462, According to Earley’s
algorithm, in the preferred embodiment the parsing control

NOACEx. 1015 Page 164



NOAC Ex. 1015 Page 165

wey

 

:
©

5,511,213
9

unit has a main procedure thatinitializes the machine, writes
an initial parsing state into the associative memory unit, and
then reads unprocessed states from the CAM andprocesses
them according to one of three actions: PREDICT, COM-
PLETE, and EXAMINE,to bedetailed below. The embodi-
ment is most general, allowing arbitrary context-free gram-
mar rules, including grammar rules with zero right-hand side
symbols.In this version, the algorithm uses a number k of
“lookahead” symbols equal to zero. Modification of this
feature of the algorithm is within the state of current an and
may be made by those skilled in theart.

The parsing state representations stored in the associative
memory unit are bit patterns arranged into seven fields
named “first-word-index”, “last-word-index”, “rule-num-
ber”, “dot-position”, “left-hand-side” symbol, “symbol-af-
ter-dot”, and “‘processed-bit”, as shown in FIG. 5. The data
in the fifth and sixth fields, “left-hand-side” symbol and
“symbol-after-dot”, respectively, are redundant, since they
may be obtained from the grammar rules stored in the
random access memory knowing the “mile-number” and
“dot-position” values. However, the operationofretrieving
the symbol onthe right side ofthe dotis essential to the three
actions of the algorithm, particularly the COMPLETER,and
hencethe “symbol-after-dot”field is included in the parsing
state representationsto facilitate and speed up the execution
of this operation. Similarly, the inclusion of the fifth field,
“left-hand-side” symbol, allows the implementation of an
important optimization to the COMPLETER step. A com-
plete behavioral description of the parsing control unit,
corresponding to Earley’s algorithm with the noted optimi-
zations, appears below in TABLE 1, pans A through G. The
first data bus 10 of FIG. 1 is referred to as CAM_BUSin the
descriptive code, and the second data bus 11 of the same
figure is referred to as D_BUS in the same code. The
behavioral description assumes the purely associative
memory of FIG. 2, with one data and one mask register, and
with three match registers MR1, MR2, and MR3, which may
be used for word selection in the CAM operations. The
behavioral description of the CAM operation codes assumed
by the parsing control unit is given in TABLE 2, below.

The communications unit is connected to the associative

memory unit, the random access memory unit, and the
parsing control unit through the second internal dam bus 11.
The CU accesses, through said second internal data bus 11,
the finite state parsing control unit for the purposes of
initializing it and supplying to it input symbols of the input
String to be analyzed. The unit also accesses the CAM at the
end of a parsing process for the purpose of reading out and
sending to the host processor the parsing state representa-
tions and any other information that may be relevant to
further processing of the input string. In this embodiment,
the communications unit implements a communications
protocol for computer peripherals that may be supported by
small computers and workstations. This allows the use of the
associative processor object of the present invention as an
internal or external peripheral device for a wide variety of
computers.

The operation of the associative parsing machine, accord-
ing to the behavioral description ofits components given in
TABLE 1 and TABLE2below, with the grammar of FIG. 3
and for the input string “John thinks $” will now be
described with reference to FIG. 6 and FIGS. 7A to 7C.

When the associative parsing machinestarts its operation
in response to a command from the host processor or
external interface, it requires that the parsing grammar, the
productions table (P-TABLE), and the nullable symbols
table (N-TABLE) havealready been loadedinto the random

10

5

nN5

0
Ye

35

55

60

10
access memory. Thus, for the grammar of FIG. 3, the RAM
configuration is that shown in FIG.4. FIG. 6 is a flow chart
that shows the general operation of the system, including
loading of the analysis grammar, invocation of the main
recognizer procedure, execution of optional post-processing
actions, and extraction of the parse information.

The parsing control unit of the machine uses an associa-
tive memory with one data register DATA_REG, one mask
register MASK_REG,and three matchregisters MR1, MR2,
aod MR3. MR1is used as a general “match” register, MR2
as a temporary “match”register, and MR3 as a “free words”
register. The parsing control unit contains three registers
CURRENT_SET, INPUT_SYMBOLS, and NEXT_SYM-
BOL which are used to store the number of the current

parsing state set being processed (last-word-index), the
number of symbols from the input string already seen, and
the next input symbol from the input string. A one bit flag
EXIST_SYMBOLisuse to indicate that the NEXT_SYM-
BOLregister currently contains the next input symbol from
the input string. The parsing control unit also has a data
register DR used for storing parsing state representations
and a STATUSregister'with “accept”and “error”fields, into
which the result of recognition of the input string is depos-
ited, in the “accept” field of the register. An END_OF-
_PARSE onebit flag is used to signal the communications
unit the end of the parsing process for the inputstring.

The descriptive code correspondingto the top level of the
parsing control unit (RECOGNIZER)is shown in TABLE 1,
part A. The code contains steps to initialize the recognizer,
write an initial parsing state representation into the CAM,
dynamically compute the set of all parsing state represen-
tations, and test for acceptance ofthe input string, depending
on the set of parsing states computed, The intialization steps
of the recognizer in the code of INITIALIZE_RECOG-
NIZER, shown in TABLE 1,part B, reset the CURRENT-
_5ET andother registers of the machine, reset the STATUS
accept and END_OF_PARSE flags, clear the associative
memory, and according to the operation CLEARCAM,in
TABLE 1,part G, set the “free words” register MR3 of the
CAM, indicating that initially all CAM words are free.
Immediately thereafter the parsing control unit assembles
and writes into the CAM an initial parsing state represen-
tation that corresponds to the application of the production
for the initial symbol of the grammar in a top-down deri-
vation. This is shown in the code of WRITE_INITIAL-
_STATE,also in TABLE 1,part B. This initial parsing state
corresponds to the zero-th production of the grammar in
FIG.3 and has first and last word indices equal to zero, rule
number equal to zero, dot position equal to zero, left-hand-
side symbol equal to the numeric code of Z, symbol-after-
dot equal to numeric code of §, and processed-bit mark in
zero. The contents of the CAM afterinsertion of this parsing
state are shown in FIG. 7A.

The principal part of the RECOGNIZE-Rcodeconsists of
an iteration cycle in which the CAM is searched for unproc-
essed parsing states in the current state set and, if any are
found, these are processed, one at a time, according to one
of three actions: PREDICT, COMPLETE, and EXAMINE,
dependingto the type of the symbol found in the “symbol-
after-dot” field of the unprocessed parsing state. PREDICT
is applied when the symbolafter the dot is a non-terminal
symbol, COMPLETE when there is no symbol(i.c., NIL)
after the dot, and EXAMINE whenthe symbolis a terminal
symbol. The processing of each state includes togglingits
processed-bit mark to one(i.e., markingit as processed). The
descriptive code for the three actions PREDICT, COM-
PLETE, and EXAMINE is shown in TABLE 1, part C. The

NOACEx. 1015 Page 165



NOAC Ex. 1015 Page 166

csMENS

aa

weneepiNeAr

.

5,511,213
11

descriptive code for the search of unprocessed parsingstates
from the current state set appears in the code of
MATCH_UNPROCESSED_STATES in TABLE1, part F.

Thefirst parsing state to be processed by the machineis
the initial state inserted into the CAM, as part of the
initialization steps of the RECOGNIZER code.This parsing
state is first read from the CAM into register DR of the
parsing control unit, and then processed according to the
PREDICT operation, since the symbol S found in the
“symbol-after-dot”field is a non-terminal symbol. The PRE-
DICT operation first searches the CAM to verify if the
“symbol-after-dot” in the state (S in this case) has not
already been predicted during processing of the current
parsing state set, and then marks the state processed by
toggling its “‘processed-bit” field to one and rewriting it into
the CAM.If the symbol has been predicted during process-
ing of the current parsing state set no further action is done
by the PREDICT operation. Otherwise, the operation seeks
grammar rules with the “symbol-after-dot” on the left-hand
side and for each one generates a new parsing state repre-
sentation, tobe added to the CAM as unprocessed. The new
states are added into the CAM by the operation
ADD_STATE, shown in TABLE 1, part D. According tothis
operation, a new parsing state representation is not added
into the CAM if it is already found there, ignoring its
“processed-bit”. The ADD_STATE operation may also add
some additional states into the CAM,if some symbolsafter
the dot in the original state to be added are nullable. Since
in the grammar of FIG. 3 there is only one rule for the
symbol § oftheinitial parsing state representation, and there
are no nullable symbols, there is only one new parsing state
added into the CAM by the PREDICT operation, and the
CAM contents after execution of this operation are the two
parsing states shown in FIG. 7B.

After one more iteration in the RECOGNIZER code,in
which the production for the NP non-terminal symbol is
predicted, the associative processor is ready to apply the
EXAMINE operation to thefirst symbol “John”of the input
string. Symbols from the input string are obtained from the
communications unit by the GET_INPUT_SYMBOLopera-
tion of TABLE 1, part E. If the symbolis not already in the
NEXT_SYMBOLregister, the operation raises the SYM-
BOL_REQUESTsignal to the communications unit and
waits until the unit responds with the SYMBOL_READY
signal in the converse direction, at which time the symbol
must be present on the data bus 11 (D_BUS) of FIG. 1 and
is loaded into the NEXT_SYMBOLregister.

The parsing control unit continues operating as made
explicit in its behavioral description of TABLE 1, parts A
through G,until no parsing states axe found unprocessedin
the currentparsing state set and the value of the CURRENT-
_SET registeris greater than the value in the INPUT_SYM-
BOLS register. This condition signals the end of the
dynamic computation of parsing state representations for the
input string read. For the input string “John thinks $”,
assumed as input to the associative parsing machine, the
parsing state representations computed, and hence the con-
tents of the CAM at the end of the iterations of the

RECOGNIZER,are shownin FIG. 7C.Thelast two steps of
the of the parsing control unit, as shown in the RECOG-
NIZER code of TABLE 1,part A, are a test for acceptance
of the input string, by searching the CAM forpresence of a
particular parsing state representation, and to signal the end
of the parsing process, by setting the END_OF_PARSEflag
to one. The details of the test for acceptance appear in
TABLE1,part F.

Throughout TABLE1,the interaction between the opera-
tion of the parsing control unit and the associative memory

w5

65

12

unit is done through the operations of TABLE 1, part G.
These operations assume the basic operation codes of
TABLE 2 for the associative memory unit, and are macro
codesthatutilize those primitive operations of the associa-
tive memory.

Two optimizations of Barley’s original algorithm appear
in the steps CHECK_JF_ALREADY_PREDICTED and
CHECK_IF_ALREADY_COMPLETED of the PREDICT
and COMPLETE operations in TABLE 1, part C. The two
steps, shown in TABLE1, part F, help to avoid lengthy
computations in which a non-terminal symbol already pre-
dicted during computation of the current parsingstate set is
tried to be predicted again,or a non-terminal symbol already
completed from a given parsing state set is tried to be
completed again. A third optimization of the algorithm
appears in the operation ADD_STATE of TABLE 1, part D.
This operation handles in an efficient way what would
otherwise be a series of predict and complete operations on
nullable symbols, using the precomputed information on
nullable symbols from the N-TABLE.

In addition to the execution of the selected parsing
algorithm,thefinite state parsing control unit may optionally
execute some post-processing operations, such as parse
extraction algorithms and useless parsing state marking and
elimination algorithms, to simplify further processing of the
parsing result by the host processor.

The chief advantage of the associative memory parsing
processor over a traditional von Neumann computeris that
it reduces the theoretical and practical time complexity of
universal parsing algorithms both with respect to grammar
size and input string length, in a compact manner. The
hardware implementation of the parsing algorithm to be
used also contributes significantly to speed of operation.
Additionally, when attached to the central processing unit of
a standard computer, the associative processor acts as a
dedicated parallel processor that frees general computing
resources of the host computer for other user tasks. An
advantage ofthe associative memory processor over other
paralle] architectures for the execution of parallel parsing
algorithms, such as the systolic array architecture of Chiang
and Fu,is that the parallel processing elementin the asso-
ciative processoris its associative memory, whichis better
suited for large scale VLSI implementation, due to its
regularity of layout and interconnectionpatterns andits wide
Tange of applications. For the purposes ofillustration, but
notoflimitation, in the following TABLE1, parts A through
G, an example behavioral description of the associative
processor in accordance with the invention is given. It
should be noted by those skilled in the art that the descrip-
tion admits man), different structural realizations and that,
therefore, in the interest of generality, none such is given.

 

 

TABLE 1

pata

Behavioral Description of Parsing Control Unit (PCU):RECOGNIZER

RECOGNIZER:

/* Data register fields DR:<f, i, p, j, Ihs, sad, pb>
CAM MRI: General match register
CAM MR2: Temporary match register
CAM MR3: Free wordsregister
rnnrreannneemeeewanes— */
INITIALIZE_RECOGNIZER;
WRITE_INITIAL_STATE;
repeat .

MATCH_UNPROCESSED_STATES;

NOACEx. 1015 Page 166



NOAC Ex. 1015 Page 167

aansay2oath

potemw

cotow

ze
bans.

arcompre

?, 0

 

 

 

 

 

 

a

 

 

 

5,511,213
13 14

TABLE1-continued TABLE 1

PatAPatC

Bebavioral Description of Parsing Control Unit (PCU): 5 Behavioral Description of PCU: PREDICT, COMPLETE,RECOGNIZER EXAMINE

while MATCHED_STATES do begin PREDICT:
READCAM MR1; CHECK_JF_ALREADY_PREDICTED;
switch CLASSIFY(DR.sad) begin MARK_STATE_PROCESSED;

NON_TERMINAL: PREDICT, 10 if not( MATCHED__STATES) begin
NIL: COMPLETE; FIRST_P := P_TABLE[ DR.sadj;
TERMINAL: EXAMINE; LAST_P = P_TABLE| DR-sad + 1];
default ERROR{(0); DR:= CURRENT_SET;

endswitch; . DRi = CURRENT_SET;
MATCH_UNPROCESSED_STATES; DRj =0;

eadwhile; 15 DRIhs := DR.sad;CURRENT_SET := CURRENT_SET + 1; repeat
EXIST_SYMBOL := 0; DRp := FIRST_P;

until] CURRENT_SET > INPUT_SYMBOLS; DR.sad = RULE[ FIRST_P, 1];
TEST_ACCEPTANCE; DRpb := (DR.sad = NIL);
END_OF_PARSE = 1; ADD_STATE;

END. FIRST_P = FIRST_P + 1,
20 until FIRST_P = LAST_P;

endif;
END.

TABLE 1 COMPLETE:
CHECK_IF_ALREADY_COMPLETED;

part B MARK_STATE_PROCESSED;
25 ifnot( MATCHED.__STATES)begin

Behavioral Description of PCU:Initialization routines DRi = DRE
DR.sad := DRths;

INITIALIZERECOGNIZER: MATCHCAM MRI, DR, < 1, 0, 1, 1, 1,0, 1>;
CURRENT_SET := 0; while MATCHEDSTATES do begin
INPUT_SYMBOLS = 0; READCAM MRI:
EXIST_SYMBOL= 0, 30 DRi:= CURRENT_SET;
SYMBOL_REQUEST := 0; DRj = DRj+1;
END__OF_PARSE = 0; DRead == RULE| DR.p, DRj + 1];
STATUS.accept = 0; DRpb := 0;
STATUS.error{0} := 0; ADD_STATE;
CLEARCAM; SELECTNEXTCAM MR];

END. endwhile;
WRITE_INITIAL_STATE: 35 endif:

DRE = 0; END.
DRj = 0; EXAMINE:
DRp = 0, MARK_STATE_PROCESSED;
DRj = 0; GET_INPUT_SYMBOL,;
-DR.ibs == RULE{ 0, 0); if DR.sad = NEXT_SYMBOLbegin
DR.sad = RULE[0,1); DRi = CURRENT_SET + 1;
DRpb = 0; DRj = DRj+1;
ADD_STATE; DR.sad = RULE[ DRp, DRj + 1);

END. DRpb := 0;
ADD_STATE;

endif;
45 END.

50

NOACEx.1015 Page 167



NOAC Ex. 1015 Page 168

SaAs
vas

eliasilios

 

PPSealte:

Nesteaee
passé:

aad

Ssh.tantal

D r)

15

TABLE 1

5,511,213
16

 
part D

Behavioral Description of PCU: ADD_STATE

ADD_STATE:
WRITESETCAM MR3, DR, < 0, 0, 0, 0, 0, 0, 1>;
if not( MATCHED__STATES)begin

repeat
NULLABLE := N_TABLE|DR.sad];
if NULLABLE begia

DRj =DRj+1
DR.sad := RULE| DR.p, DRj + 1];
WRITESETCAM MR3, DR, < 0, 0, 0, 0, 0, 0, 1>;

endif;
until not( NULLABLE) OR MATCHED_STATES;

endif,
 

TABLE 1 

part E

Behavioral Description of PCU: GET_INPUT_SYMBOL, CLASSIFY 

GET_INPUT_SYMBOL:
if not( EXIST_SYMBOL)begin

SYMBOL_REQUEST := 1;
wait on SYMBOL_READY,
NEXT_SYMBOL:= D_BUS,
SYMBOL_REQUEST := 0;
EXIST_SYMBOL = 1;
INPUT_SYMBOLS := INPUT_SYMBOLS + 1;

endif,
E
CLASSIFY( SYMBOL):

/*  Assomesan n-bit encoding of ‘SYMBOL’as follows
Stwt symbol (ZETA): 2° (n-1)
Other non-terminals: 2° (n-1),....27 2-1
Terminals: 1,...2°@-1l)-1
End-of-string (NIL): 0 

NT = SYMBOL] 2-1);
ZERO = not( OR( SYMBOLn-2], . . .. SYMBOL0]));
if (NT AND ZERO)begin retum(ZETA) endif;

——~----- *f

if (NT AND not ZERO)) begin return( NON__TERMINAL)endif,
if (not NT) AND not( ZERO)) begin return( TERMINAL)endif;
if (not( NT) AND ZERO)begin return( NIL)endif;

E 

 

 

45

TABLE i-continued 

 

 

 

 

TABLE 1
part F

part F ——
Behavioral Description of PCU: Other Macros

Behavioral Description of PCU: Other Macros 50 END.
MATCH_UNPROCESSED_STATES: TEST_ACCEPTANCE:

DRi == CURRENT_SET; DRE = 0;
DR.pb = 0; DRi=INPUT_SYMBOLS;
MATCHCAM MRI, DR, < 1, 0, 1, 1, 1, 1, O; DRop :=0;

END. 35 DRj =
MARK_STATE__PROCESSED: MATCHCAM MRz, DR, < 0, 0, 0, 0, 1, 1, 1>;

DR.pb := 1; STATUS.accept = MATCHED_STATES;
WRITECAM MRI, DR; END.

END.
CHECK_IF_ALREADY_PREDICTED:

DRpb == 1; 60
MATCHCAM MR2,DR, < 1, 9, 1, 1, 1, 0, O>; TABLE 1

END.

CHECK_IF_ALREADY COMPLETED; BartG
DRpb := 1;
MATCHCAM MRz2, DR, < 0,0, 1, 1, 0, 0, O>;

3
Behavioral Description of PCU: CAM Macros

65
ERROR(i):

STATUS.error{ i] = 1:
These macros are expanded into primitive CAM operation codes,
with the following usage of the three match registers: MRI =

sopaevon
i NOACEx. 1015 Page 168



NOAC Ex. 1015 Page 169

gr

lar

Hahse

 

soBt2"actiesSul

Lime

>orceemeT

F e  

  

5,511,213
17 18

TABLE 1-continued TABLE 1-continued

pan G pat G
Behavioral Description of PCU: CAM Macros 5 Behavioral Description of PCU: CAM Macros 

match register, MR2 = temporary match register, MR3 =

 

MOVEREG REG,(REG AND not( MR3));

 

 

 

free words register, MATCHED.STATES := MATCHFLAG;
CLEARCAM: END.

CLEAR; WRITESETCAM REG, DATA, MASK:
SETREG MR3; 10 CAM_BUS = MASK;END. LOADMASK;

READCAM REG: CAM_BUS = DATA;
READ REG; MATCH MR2;
DR := CAM_BUS; MOVEREG MR2, (MR2 AND not( MR3));

END. MATCHED_STATES := MATCHFLAG;

WRITECAM REG,DATA: 15 if not( MATCHFLAG)beginCAM_BUS = DATA; WRITE REG;
WRITE REG; SELECTNEXT REG,

END. endif;
SELECTNEXTCAM REG: END.

SELECTNEXT REG;

MATCHED_STATES := MATCHFLAG; 20END. . . . . .

MATCHCAM REG, DATA, MASK: Also, for the purposesofillustration, but not of limitation,
CAM_BUS = MASK; in the following TABLE 2, a behavioral description of theLOADMASK; : : aes
CAMBus DATA; CAM operation codes assumed bythe parsing control unit is
MATCH REG; given.

TABLE 2

Behavioral Description of CAM Operation Codes

* CAM registers: DATA__REG, MASK_REG, MR1, MR2, MR3
CAM width: WCAM (hits per word)
CAM height HCAM (number of words)
CAM i] is the i-th CAM word, fori=1,..., HCAM
ee peeennvoveeenen—eceee== #/

 

CLEAR
DATA_REG = 0;
MASK_REG :=0;=/* MASKregister: “0”don’t mask, “1” mask
MRI{i] :=0; {* MATCH register 1, for i= 1,..., HCAM
MR2{[ i] = 0; /* MATCH register 2, fori=1,..., HCAM
MR3[ i] = 0; /* MATCH register 3, for i=1,..., HCAM

END.
READ REG: /* REG = MRI, MR2, or MR3

DATA_REG == CAMPRIORITY| REG)};
CAM_BUS = DATA_REG,

END.
WRITE REG: /* REG = MRI, MR2, or MR3

DATA_REG = CAM_BUS;
CAMPRIORITY[ REG]] = DATA_REG;

END. :
SELECTNEXT REG: /* REG = MRL, MR2, or MR3

REG = SELECT_NEXT( REG); /* resets LSB of REG set to “1"
MATCHFLAG == OR(REG|1], . . .. REG{ HCAM));

END.
LOADMASK:

MASK_REG := CAM_BUS;
END.

SETREG REG: /* REG = MRI, MR2, or MR3
REGi] = 1;  fori=1,..., HCAM

END.
RESETREG REG: / REG = MRI, MR2, or MR3

REG{ i] = 0; f* fori=1,...,HCAMEND.
MOVEREG REG,expression: /* REG = MRI, MR2, or MR3

/* expression: register, Boolean
REGi] := expression{ i]; /* fori=1,...,HCAM
MATCHFLAG := OR(REG[ 1], . . . REG[ HCAM));

END.
MATCH REG:

DATA_REG := CAM_BUS;
SEARCH_PATTERN = DATA_REG * MASK_REG;
MLINE|i) = MATCH( CAMij, SEARCH_PATTERN);
MATCHFLAG:= OR( MLINE[ 1], . . .. MLINE[ HCAM)});
REG|i] = MLINE|i]; /* fori=1,...HCAM

/* REG = MRI, MR2, or MR3

NOACEx. 1015 Page 169

*]



NOAC Ex. 1015 Page 170

 

palesen

Papin:MinKidlll
PietsSansSO

—
5Sipeowe

 

4é
i‘
:

5,511,213
19

TABLE 2-continued

Behavioral Description of CAM Operation Codes

20

 
END.
 

While this invention has been shown particularly and
described with reference to a preferred embodiment, it shall
be understood by those skilled in the an that numerous
modifications may be made in form and details of the
architecture, in the choice of the parsing algorithm to be
used, and in the particular embodimentof said algorithm,
that are within the scope andspirit of the inventive contri-
bution, as defined by the appended claims. For example,the
associative memory unit has been shown with a particular
organization and set of operation codes it can execute, but
this does not preclude the use of other associative memory
means that can implementthe required operations. Likewise,
different arrangements in the number and nature of the
control signals used to interconnect the system components
are possible. Variations and optimizations in the choice of
the parsing algorithm are possible, which may affect the time
and space complexity of the device. Some of the optimiza-
tions referred to may require minor changes to the architec-
ture of the preferred embodiment, such as the inclusion of
additional tables for the parsing process. One such optimi-
zation worth noting is the inclusion of a table or other means
in the random access memory to store the relation FIRSTk
between non-terminal and terminal symbols, to avoid use-
less predictions.

Finally, the behavioral description of the parsing control
unit shown in Table 1, corresponding to the particular
parsing algorithm chosen, or any other alternative one,
admits of many distinct physical realizations, such as may be
obtained by marial transformation of the specification into
structural, logical, electrical, and geometrical levels of
description, or as the same descriptions may be obtained by
means of automated synthesis tools for silicon compilation.

Whatis claimed is:

1. An associative memory processing system for execut-
ing parsing algorithms and real time context-free language
processing and pattem recognition of an input symbolstring,
said system comprising:

an associative memory unit logically arranged as an array
of words for storing parsing state representations, each
associative memory word being compared, in paraliel
with all other words, to an input search pattem corre-
sponding to a parsing state representation;

myo

ry5

ww 5

a tandom access memory unit for storing parsing data
including context-free language grammatical rules
according to which parsing is done for the context-free
language of the input symbolstring;

a parsing control unit, connected to said associative
memory unit and said random access memory unit, for
accessing said associative memory unit to store and
fetrieve parsing state representations according to an
input symbolstring said parsing control unit being a
finite state machine that executes a parsing algorithm,
correspondingto the context-free languageof the input
symbolstring, for syntactically recognizing the input
symbolstring; and

a communications unit for providing communication
between said associative memory processing system
and an external device.

2. An associative memory processing system as claimed
in claim 1 wherein said parsing control unit executes parsing
algorithms for natural language processing and pattern rec-
ognition applications.

3. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of integrated circuit semiconductor
chips. :

4. An associative memory processing system as claimed
in claim 1 wherein said associative memory unit is formed
of one or more banks of associative memory chips, and said
random access memory unit and said parsing control unit are
formed on a separate integrated circuit semiconductor chip.

5. An associative memory processing system as claimed
in claim 1 wherein all system components are formed on a
single integrated circuit semiconductor chip.

6. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit accesses said
associative memory unit in an amount of time that is
constant and independent of an amount of parsing data
stored in said associative memory unit.

7. An associative memory processing system as claimed
in claim 1, wherein said parsing control unit performs
post-processing actions.

* *e * # OF

NOACEx. 1015 Page 170



NOAC Ex. 1015 Page 171

obicapiageadig
ae

2ta

‘an

Paap

wae -

kee

bes

Peerreses

iz

 

United States Patent us,
Nuberet al.

[54} ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED
DATA STREAM

[75] Inventors: Ray Nuber, La Jolla; Paul Moroney,
Olivenhain; G. Kent Walker,
Escondido, all of Calif.

(73] Assignee: General Instrument Corporation of
Delaware, Chicago,Ill.

{*] Notice: The term ofthis patent shall not extend
beyond the expiration date of Pat. No.
5,517,250.

[21] Appl. No.: 562,611

[22] Filed: Nov. 22, 1995

[51] Urnt. CLS onceccssocsenseenseneereee HOAJ 3/06; HOAN 7/12
[52] U.S. Ch. cecsevrssccrssrnenenes 370/395; 370/510; 370/514;

375/366; 348/423; 348/462; 348/466; 348/467
[58} Field of Searcyescssscsssssssssnsenee 370/389, 395,

370/503, 509, 510, 514, 516; 375/362,
365, 366, 368, 371; 348/423, 461, 462,

464, 466, 467

[56] References Cited

U.S. PATENT DOCUMENTS

5,365,272 11/1994 Siractsa ..reccscsssessoesscaseserrsscere 48/461

mi ; ;

: US0057038774
5,703,877

*Dec. 30, 1997

(11) Patent Number:

45} Date of Patent:

5,376,969 12/1994 Zdepski ...nrsercscscserccarsosrssees- 348/466
5,467,342 11/1995 Logstonet al.......... 370/253
5,517,250 5/1996 Hoogenboom et al. 348/467 
5,537,409 7/1996 Moriyama ef al. oo.cneneees 370/471

Primary Examiner—Alpus H. Hsu
Attorney, Agent, or Firm—Barry R. Lipsitz

{57] ABSTRACT

Audio data is processed from a packetized data stream
carrying digital television information in a succession of
fixed length transport packets. Some of the packets contain
& presentation time stamp (PTS)indicative of a time for
commencing the output of associated audio data. After the
audio data stream has been acquired, the detected audio
packets are monitored to locate subsequent PTS’s for adjust-
ing the timing at which audio data is output. thereby
providing proper lip synchronization with associated video.
Errors in the audio data are processed in a manner which
attempts to maintain synchronization of the audio data
stream while masking the errors. In the event that the
synchronization condition cannot be maintained, for
example in the presence of errors over more than one audio
frame, the audio data stream is reacquired while the audio
output is concealed. An exror condition is signaled to the
audio decoder by altering the audio synchronization word
associated with the audio frame in which the error has
occurred. .

25 Claims, 4 Drawing Sheets

— 100
COMMANO:FORCE IDLE

EVENT:AUDIO PTS AND DATA
RECENED

 
  
 
 
 

 
 

 
ERROR: PTS, SYNC, OV, ADP,
ENC, RS, AUD, PTRS FULL

ERROR:SYNC, ENC,
RS, AUD, PTRS
FuuL
 

ERROR:SYNC, ENC, RS,
AUD, PTRS FULL  

ERROR:PCR DIS!

  
 

ERROR: PTS, SYNC, OV, ADP, ENC, RS, AUD, PTRS FULL

NOACEx. 1015 Page 171



NOAC Ex. 1015 Page 172

188 BYTES(MPEG)

 
 

ELEMENTARY
STREAM yuajed“SN

y

f

PACKET $
S
Ss

g
24 8

—_

TRANSPORT g
PACKETS >

an
~J
=

i
CO
~J
~J

NOACEx. 1015 Page 172



NOAC Ex. 1015 Page 173

TRANSPORT

5 STREAM

40
 

PCR.
60

 
 
 
 

 

 

 

42

VIDEO CONTROL DATA

ADDR. + CONTROL 52
= DED

DATA PARSING
AUDI=BUFFER} AUDIO__.ini

| | eee: CODERADDR. + CONTROL zee

  
  
 

yuajed*S'N
VIDEO OUT

AUDIO OUT
 

AUDIO CONTROL DATA

on> L661“OE29g
  

 

DECODERTIME PROGRAM CLOCK FIG. 2
CLOCK |

46 wn

. e
he

RESET 2
cereeee1 =

 

 
PROGRAM

CLOCK

 

I
}
I

LOOP
FILTER VCO COUNTER

62 64 66 68

16 FIG. 3 LLS‘E0OL‘S
NOACEx. 1015 Page 173



NOAC Ex. 1015 Page 174

TRANSPORT
PACKETS

40

TO

uP

70

PID
DETECT

72
AUDIO PKTS

CONTROL VIDEO
PKTS PKTS

ZA
44

88

74

MODIFIED SYNC
WORD INSERTER

 
 

 
  

 

FIG. 4 yuajeg“Sl
AUDIO DATA TO

BUFFER

 

78 o :JtaWORD & ‘@
DETECT INVERTER 8

2~]

SYNC WORD 2UF NG & ep g
PCR & PTS} or¢—|OUTPUT TIMING 84S
DETECT COMPENSATOR .

&

AUDIO SAMPLE
& BIT RATE CONTROL CJ
CALCULATOR os

ADDRESS
»
CO
a|
a|

NOACEx. 1015 Page 174

 



NOAC Ex. 1015 Page 175

embersitSl

: uscheaeSaleidai
FenzeppsFi,

Hamadadss5,maeAK“ga”

re— i

“ QO O

U.S. Patent Dec. 30, 1997 Sheet 4 of 4 5,703,877

100

COMMAND:FoRCE ILE [____)

102

COMMAND:ACQUIRE [|

INTERRUPT:DPTS REQ||
 

 
 
 

 
 
 
 
 
 

 

 
 

DELTA PTS WAIT

104

EVENT:INPUT PROCESSOR WRITES DPTS—ACQ ERROR:SYNC,
ENC, RS, AUD,
PTRS FULL

PCR ACQUIRE

106

. ERROR:SYNC, ENC,
EVENT:AUDIO PCR RECEIVED RS, AUD, PTRS

108 FULL
PTS ACQUIRE

 ERROR:SYNC, ENC, RS,

EVENT:AUDIO PTS AND DATA AUD, PTRS FULL
RECEIVED

0 Come ERROR:PCR DISt
ERROR: PTS, SYNC, OV, ADP,

EVENT:STC=PTS+DPTS|| ENC, RS, AUD, PTRS FULL

FRROR: PTS, SYNC, OV, ADP, ENC, RS, AUD, PTRS FULL
FIG. 5

NOACEx. 1015 Page 175



NOAC Ex. 1015 Page 176

cron

seteOYahs
areeee:

Cig aoe

“ts

Behas

bak

careers

FeRECSNSSNES:oi
aateMEEbeayph

Parsay”

Ry

- OQ

5,703,877
1

ACQUISITION AND ERROR RECOVERY OF
AUDIO DATA CARRIED IN A PACKETIZED

DATA STREAM

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus
for acquiring audio data from a packetized data stream and
recovery from errors contained in such data.

Various standards have emerged for the transport of
digital data, such as digital television data. Examples of such
standards include the Moving Pictures Experts Group
(MPEG)standards and the DigiCipher® II standard propri-
etary to General Instrument Corporation of Chicago, IIL,
U.SA., the assignee of the present invention. The DigiCi-
pher® II standard extends the MPEG-2 systems and video
standards, which are widely known and recognized as trans-
port and video compression specifications specified by the
International Standards Organization (ISO) in Document
serics ISO 13818. The MPEG-2 specification’s systems ”
“layer” provides a transmission mediumindependent coding
technique to build bitstreams containing one or more MPEG
programs. The MPEG coding technique uses a formal gram-
mar (“syntax”) and a set of semantic rules for the construc-
tion of bitstreams. The syntax and semantic rules include
provisions for demultiplexing, clock recovery, elementary
stream synchronization and error handling,

The MPEGtransport stream is specifically designed for
use with media that can generate data errors. Many
programs, cach comprised of one or more clementary
streams, may be combined into a transport stream. Examples
of services that can be provided using the MPEG format are
television services broadcast over terrestrial, cable television
and satellite networks as well as interactive telephony-based
services. The primary mode of information carriage in
MPEG broadcast applications will be the MPEG-2 transport
stream. The syntax and semantics of the MPEG-2 transport
stream are defined in International Organisation for
Standardisation, ISO/IEC 13818-1, International Standard,
1994 entitled “Generic Coding of Moving Pictures and
AssociatedAudio: Systems,” recommendation H.222, incor-
porated. herein by reference.

Multiplexing according to the MPEG-2 standard is
accomplished by segmenting and packaging elementary 4
streams such as compressed digital video and audio into
packetized elementary stream (PES) packets which are then
segmented and packaged into packets. As noted
above, each MPEG transport packet is fixed at 188 bytes in
length. The first byte is a synchronization byte having a
specific cight-bit pattern, ¢.g., 01000111. The sync byte
indicates the beginning of each transport packet.

Following the sync byte is a three-byte field which
includes a one-bit transport packet error indicator, a one-bit
payload unit start indicator, a one-bit transport priority
indicator, a 13-bitpacket identifier (PID), a two-bit transport
scrambling control, a two-bit adaptation field control, and a
four-bit continuity counter. The remaining 184 bytes of the
packet may carry the data to be communicated. An optional
adaptation field may follow the prefix for carrying both
MPEG related and private information of relevance to a
given transport stream or the elementary stream carried
within a given transport packet. Provisions for clock
recovery, such as a program clock reference (PCR), and
bitstream splicing informationare typical of the information
carried in the adaptation field. By placing such information
in an adaptation field, it becomes encapsulated with its

30

35

2

associated data to facilitate remultiplexing and network
routing operations. When an adaptation field is used. the
payload is correspondingly shorter in length.

The PCR is a sample of the system time clock (STC) for
5 the associated program at the time the PCR bytes are

received at the decoder. The decoder uses the PCR values to

synchronize a decoder system time clock (STC) with the
encoder’s system time clock. The lower nine bits of a 42-bit
STC provide a modulo-300 counter that is incremented at a

10 27 MHz clock rate. At each modulo-300 rollover, the count

in the upper 33 bits is incremented, such that the upper bits
of the STC represent time in units of a 90 kHz clock period.
This enables presentation time stamps (PTS) and decode
time stamps (DTS) to be used to dictate the proper time for

15 the decoder to decode access units and to present presenta-
tion units with the accuracy of one 90 kHz clock period.
Since each program or service carried by the data stream
may have its own PCR, the programs can be multiplexed
asynchronously.

Synchronization of audio, video and data presentation
within a program is accomplished using a time stamp
approach. Presentation time stamps (PTSs) and/or decode
time stamps (DTSs)are inserted into the transport stream for

a5 the separate video and audio packets. The PTS and DTS3 information is used by the decoder to determine when to
decode and display a picture and when to play an audio
segment. The PTS and DTSvalues are relative to the same
system time clock sampled to generate the PCRs.

All MPEG video and audio data must be formatted into a

packetized elementary stream (PES) formed from a succes-
siou ofPES packets. Each PES packet includes a PES header
followed by a payload. The PES packets are then divided
into the payloads of successive fixed length transport pack-

PES packets are of variable and relatively long length.
Various optional fields, such as the presentation time stamps
and decode time stamps may be included in the PES beader.
When the transport packets are formed from the PES, the

49 PES headers immediately follow the transport packet head-
ers, A single PES packet may span many transport packets
and the subsections of the PES packet must appear in
consecutive transport packets of the same PID value. It
should be appreciated, however, that these transport packets

5 may be freely multiplexed with other transport packets
having different PIDs and carrying data from different
elementary streams within the constraints of the MPEG-2
Systems specification.

Video programs are carried by placing coded MPEG
so Video streams into PES packets which are then divided into

transport packets for insertion into a transport stream. Each
video PES packet contains one or more coded video
pictures, referred to as video “access units.” A PTS and/or a
DTSvalue may be placed into the PES packet header that

55 encapsulates the associated access units. The DTS indicates
when the decoder should decode the access unit into a

presentation unit. The PTS is used to actuate the decoder to
present the associated presentation unit.

Audio programs are provided in accordance with the
60 MPEG Systems specification using the same specification of

the PES packet layer. PTS values may be included in those
PES packets that contain thefirst byte of an audio access unit
(sync frame). Thefirst byte of an audio access unit is part of
an audio sync word. An audio frame is defined as the data

65 between two consecutive audio syne words, including the
preceding sync word and not including the succeeding sync
word.

NOACEx. 1015 Page 176



NOAC Ex. 1015 Page 177

 

baee ee”5 Pa«

calliefot:NAR
Fareeeea?yiLalit.

eeeeeelysheuncalahaadiarl
ReactNeSASiaad

me

bait Sdcee
sto

Re
pee

RAGEEsas9heA?
Fal0allaeS
ebofay pieert
iy

ere,

O

5,703,877
3

In DigiCipher® U, audio transport packets include one or
both of an adaptation field and payload field. The adaptation
field may be used to transport the PCR values. The payload
field transports the audio PES, consisting of PES headers
and PES data. PES headers are used to transport the audio
PTS values. Audio PES data consists of audio frames as

specified, e.g., by the Dolby® AC-3 or Musicam audio
syntax specifications. The AC-3 specifications are set forth
in a documententitled Digital Audio Compression (AC-3),
ATSC Standard, Doc. A/52, United States Advanced Tele-
vision Systems Committee. The Musicam specification can
be found in the document entitled “Coding of Moving
Pictures and Associated Audio for Digital Starage Media at
Up to About 1.5 MBIT/s,” Part 3 Audio, 11172-3 (MPEG-1)
published by ISO. Each syntax specifies an audio sync frame
as audio syne word, followed by audio information includ-
ing audio sample rate, bit rate and/or frame size, followedby
audio data.

In order to reconstruct a television signal from the video
and audio information carried in an MPEG/DigiCipher® IT
transport stream, a decoder is required to process the video
packets for output to a video decompression processor
(VDP) and the audio packets for output to an audio decom-
pression processar (ADP). In order to properly process the
audio data, the decoder is required to synchronize to the
audio data packet stream. In particular, this is required to
enable audio data to be buffered for continuous outputto the
ADPandto enable the audio syntax to be read for audio rate
information necessary to delay the audio output to achieve
proper lip synchronization with respect to the video of the
same program.

Several events can result in error conditions with respect
to the audio processing. These include loss of audio trans-
port packets due to transmission channel errors. Exrors will
also result from the receipt of audio packets which are not
properly decrypted or are still encrypted. A decoder must be
able to handle such errors without significantly degrading
the quality of the audio output.

The decoder must also be able to handle changes in the
audio sample rate and audio bit rate. The audio sample rate
for a given audio clementary stream will rarely change. The
audio bit rate, however, can often change at program
boundaries, and at the start and end of commercials. It is
difficult to maintain synchronization to the audio stream
through such rate changes, since the size of the audio sync
frames is dependent on the audio sample rate and bit rate.
Handling undetected errors in the audio stream, particularly
in systems where error detection is weak, complicates the
tracking of the audio stream through rate changes. When a
received bitstream indicates that an audio rate has changed,
the rate may or may not have actually changed. If the
decoder responds to an indication from the bitstream that the
audio rate has changed when the indication is in error and
the rate has not changed, a loss of audio synchronization will
likely occur. This can result in an audio signal degradation
that is noticeable to an end usez.

To support an audio sample rate change, the audio clock
rates utilized by the decoder must be changed. This process
can take significant time, again degrading the quality of the
andio output signal, Still further, such a sample rate change
will require the audio buffers to be cleared to establish a
different sample-rate-dependentlip sync delay. Thus, it may
not be advantageous to trust a signal in the reccived bit-
stream indicating that the audio sample rate has changed.

With respect to bit rate changes, the relative frequency of
such changes compared to undetected errors in the bit rate

4
information will be dominated by whether the receiver has
adequate error detection. Thus, it would be advantageous to
provide a decoder having two modes of operation. In a
robust error detection environment such as for satellite
communications or cable media, where error detection is
robust, a seamless mode of operation can be provided by
trusting a bit rate change indication provided by the data. In
a less robust errar detection environment, indications ofbit
rate changes can be ignored, at the expense of requiring
resynchronization of the audio in the eventthat the bit rate
has actually changed.

It would be further advantageous to provide an audio
decoder in which synchronization to the audio bitstream is
maintained when the audio data contains errors. Such a

decoder should conceal the audio for those sync frames in
which an error has occurred, to minimize the aural impact of
audio data errors.

It would be still further advantageous to provide a decoder
in which the timing at which audio data is output from the
decoder’s audio buffer is adjusted on an ongoing basis. The
intent of such adjustments would be to insure correct pre-
sentation time for audio elementary streams.

Thepresent invention provides methods and apparatus for
decoding digital audio data from a packetized transport
stream having the aforementioned. and other advantages.

SUMMARYOF THE INVENTION

In accordance with the present invention, a method is
provided for processing digital audio data from a packetized
data stream carrying television information in a succession
of fixed length transport packets. Each of the packets
includes a packet identifier (PID). Some of the packets
contain a program clock reference (PCR) value for synchro-
nizing a decoder system time clock (STC). Some of the

35 packets contain a presentation time stamp (PTS)indicative
of a time for commencing the output of associated data for
use in reconstructing a television signal. In accordance with
the method, the PID’s for the packets carried in the data
stream are monitored to identify audio packets associated
with the desired program. The andio packets are examined
to locate the occurrence of at least one audio synchroniza-
tion word therein for use in achieving a synchronization
condition. The audio packets are monitored after the syn-
chronization condition has been achieved to locate an audio

PTS.After the PTS is located, the detected audio packets are
searched to locate the next audio synchronization word.
Audio data following the next audio synchronization word is
stored in a buffer. The stored audio data is output from the
buffer when the decoder system time clock reaches a speci-
fied time derived from the PTS. The detected audio packets
are continually monitored to locate subsequent audio PTS’s
for adjusting the timing at which the stored audio data is
output from the buffer on an ongoing basis.

APTSpointer can be provided to maintain a current PTS
value and an address of the buffer identifying where the sync
word of an audio frame referred to by the current PTS is
stored. In order to provide the timing adjustment. the PTS
value in the PTS pointer is replaced with a new PTS value
after data stored at the address specified by the PTS pointer
has been output from the buffer. The address specified by the
PTSpointer is then replaced with a new address correspond-
ing to the sync word of an audio framereferred to by the new
PTSvalue. The output of data from the buffer is suspended
when the new buffer address is reached during the presen-
tation process. The output of data from the buffer is recom-
menced when the decoder’s system time clock reaches a
specified time derived from the new PTS value.

NOACEx. 1015 Page 177



NOAC Ex. 1015 Page 178

ooAaReEN

2rs
2

.soseeMey otataath iasgear
SasASa

patna

ate8we
*

 

: Oo aeSD

5,703,877
5

In an illustrated embodiment, the output of data from the
buffer is recommenced when the decoder’s system time
clock reachesthe time indicated by the sum of the new PTS ©
value and an offset value. The offset value provides proper
lip synchronization by accounting for any decoder video
signal processing delay. In this manner, after the audio and
video data has been decoded, the audio data can be presented
synchronously with the video data so that, for example, the
movement of a person’s lips in the video picture will be
sufficiently synchronous to the sound reproduced.

The method of the present invention can comprise the
further step of commencing a reacquisition of the audio
synchronization conditionif the decoder’s system time clock
is beyondthe specified time derived from the new PTS value
before the output of data from the buffer is recommenced.
Thus, if a PTS designates that an audio frame should be
presented at a time which has already passed, reacquisition
of the audio data will automatically commence to carrect the
timing exror, thus minimizing the duration of the resultant
audio artifact.

In the illustrated embodiment, two consecutive audio

synchronization words define an audio frame therebetween,
including the preceding sync word, but not including the
succeeding sync word. The occurrence of errors may be
detected in the audio packets. Upon detecting a first audio
packet ofa current audio frame containing an crror, the write
pointer for the buffer is advanced by the maximum number
of bytes (N) contained in one of the fixed length transport
packets. At the same time, the current audio frame is
designated as being in exror. The subsequent audio packets
of the current audio frame are monitored for the next audio

synchronization word aftes the error has been detected. If the
synchronization ward Is not received at the expected point in
the audio elementary stream, subsequent data is not stored in
the buffer until the sync word is located. Storage of audio
data into the buffer is resumed with the next sync wordif the
next audio synchronization ward is located within N bytes
after the commencementof the search therefor. If the next

audio synchronization word is not located within N bytes
after the commencement of the search therefor, a reacqui-
sition of the synchronization condition is commenced. These
steps will insure the buffer is maintained at the correct
fullness when as many as one transport packet is lost per
audio sync frame, even with the sync frame size changes
such as with a sample rate of 44.1 ksps, and will resynchro-
nize the audio when too many audio transport packets are
lost.

Whenever the audio data from which the television audio

is being reconstructed is in earor, it is preferable to conceal
the error in the television audio. In the illustrated

embodiment, a current audio frame is designated as being in
error by altering the audio synchronization word for that
frame. For example, every other bit of the audio synchro-
nization word can be inverted. The error in the television

audio for the corresponding audio frame may then be
concealed in response to an altered synchronization word
during the decoding and presentation process. This method
allowsthe buffering and error detection processto signal the
decoding and presentation process whenerrors occur via the
data itself, without the necd for additional interprocess
signals.

The audio data can include information indicative of an

audio sample rate and audio bit rate, at least one of which is
variable. In such a situation, it is advantageous to maintain
synchronization within the audio elementary stream during
a rate change indicated by the audio data. This can be
accomplished by ignoring an audio sample rate change

10

2s

30

40

50

55

65

6

indicated by the audio data on the assumption that the
sample rate has not actually changed, and concealing the
audio frame containing the data indicative of an audio
sample rate change while attempting to maintain the syn-
chronization condition. This strategy will properly respond
to an event in which the audio sample rate change or bit rate
change indication is the result of an exror in the indication
itself, as opposed to an actual rate change.

Similarly, audio data can be processed in accordance with
a new rate indicated by the audio data in the absence of an
crror indication pertaining to the audio frame containing the
new rate, while attempting to maintain the synchronization
condition. The audio data is processed without changing the
rate if an error indication pertains to the audio frame
containing the new rate. At the same time, the audio frame
to which the error condition pertains is concealed while the
decoder atternpts to maintain the synchronization condition.
If the synchronization condition cannot be maintained, a
reacquisition of the synchronization condition is
commenced, as desired when the sample rate actually
changes.

Apparatus in accordance with the present invention
acquires audio information carried by a packetized data
stream. The apparatus also handles exrors contained in the
audio information. Means are provided for identifying audio
packets in the data stream. An audio elementary stream is
recovered from the detected audio packets for storage in a
buffer. An audio presentation time stamp (PTS)is located in
the detected audio packets. Means responsive to the PTS are
provided for commencing the output of audio data from the
buffer at a specified time. Means are provided for monitoring
the detected andio packets after the output of audio data
from the buffer has commenced, in order to locate subse-
quent audio PTS’s for use in governing the output of audio
data from the buffer to insure audio is presented synchronous
to any other elementary streams of the same program and to
maintain correct buffer fullness.

The apparatus can further comprise means for maintain-
ing a PTS pointer with a current PTS value and an address
of the buffer identifying where a portion of audio data
referred to by the current PTSis stored. Means are provided
for replacing the PTS value in the PTS pointer with a new
current PTS value after data stored at the address set forth in

the PTS pointer has been output from the buffer. The address
in the PTS pointer is then replaced with a new address
corresponding to a portion of audio data referred to by the
new currentPTS value. Means responsive to the PTS pointer
are provided for suspending the output of data from the
buffer when the new addressis reached. Meansare provided
for recommencing the output of data from the buffer at a
time derived from the new current PTS value.In the event

that the new current PTS value is outside a predetermined
range, means provided in the apparatus conceal the audio
signal and reestablish synchronization.

In an illustrated embodiment, the audio transport packets
have a fixed length of M bytes. The transport packets carry
a succession of audio frames cach contained wholly or
partially in said packets. The audio frames each begin with
an audio synchronization word. Means are provided for
detecting the occurrence of errors in the audio packets. A
write pointer for the buffer is advanced by the maximum
number of audio frame bytes per audio transport packet (N)
and a current audio frame is designated as being in error
upon detecting an etror in an audio packet of the current
audio frame. Means are provided for monitoring the detected
audio packets of the current audio frame for the next audio
synchronization word after the error has been detected. If the

NOACEx. 1015 Page 178



NOAC Ex. 1015 Page 179

 
: OQ Q

5,703,877
7

synchronization word is not received where expected within
the audio elementary stream, subsequent audio data is not
buffered until the next audio synchronization word is
received. This process compensates for too many audio
bytes having been buffered when the exrored audio packet
was detected. Such an event will occur cach time the lost

packet does not camry the maximum number of possible
audio data bytes. Means are provided for resuming the
storage of audio data in the buffer if the next audio syn
chronization word is located within N bytes after the com-
mencement of the search therefor. If the next audio syn-
chronization word is not located within said N bytes after the
commencementof the search therefor, the audio timing will
be reacquired. In this manner, the size of the sync frames
buffered will be maintained including for those frames that
are marked as being in error, unless the next sync word is not
located where expected in the audio elementary stream to
recover from the error before buffering any of the next
successive frame. This algorithm allows the decode and
presentation processes to rely on buffered audio frames
being the correct size in bytes, even when data exrors result
in the loss of an unknown amount of audio data.

Means can also be provided for concealing error in an
audio signal reproduced from data output from the buffer
when the data output from the buffer is in error. Means are
furtherprovided for altering the audio synchronization word
associated with a current audio frame,to signal the decode
and presentation process that a particular frame is in error.
The concealing means are responsive to altered synchroni-
zation words for concealing audio associated with the cor-
responding audio frame.

Decoder apparatus in accordance with the invention
acquires audio information carried by a packetized data
stream and handles errors therein. Means are provided for
identifying audio packets in the data stream. The successive
audio frames are extracted from the audio transport packets.
Each audio frame is carried by one or more of the packets,
and the start of each audio frameis identified by an audio
synchronization word. Means responsive to the syachroni-
zation words obtain a synchronization condition enabling
the recovery of audio data from the detected audio packets
for storage in a buffer. Means are provided for detecting the
presence of errors in the audio data. Meansresponsiveto the
error detecting means control the flow of data through the
buffer when an error is present, to attempt to maintain the
synchronization condition while masking the error. Means
are provided for reestablishing the audio timing if the
controlling means cannot maintain the synchronization con-
dition,

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration showing how audio
transport packets are formed from an elementary stream of
audio data;

FIG.2 is a block diagram of decoder apparatus that can
be used in accordance with the present invention;

FIG. 3 is a more detailed block diagram of the decoder
system time clock (STC) illustrated in FIG. 2;

FIG. 4 is a more detailed block diagram of the demulti-
plexing and data parsing circuit of FIG. 2; and

FIG. 5 is a state diagram illustrating the processing of
audio data in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a diagrammatic lustration showing how one or
more digital programs can be multiplexed into a stream of

20

25

30

40

55

a

65

8

transport packets. Multiplexing is accomplished by seg-
menting elementary streams such as coded video and audio
into PES packets and then segmenting these into transport
packets. The figure is illustrative only, since a PES packet,
such as PES packet 16 illustrated, will commonly translate
into other than the six transport packets 24 illustrated.

Tn the example of FIG. 1, an elementary stream generally
designated 10 contains audio data provided in audio frames
14 delineated by synchronization words 12. Similar elemen-
tary streams will be provided for video data and other data
to be transported.

The first step in forming a transport packet stream is to
reconfigure the elementary stream for cach type of data into
a corresponding packetized elementary stream (PES)
formed from successive PES packets, such as packet 16
illustrated. Each PES packet contains a PES header 18
followed by a PES payload 20, The payload comprises the
data to be communicated, The PES header 18 will contain

information useful in processing the payload data, such as
the presentation time stamp (PTS).

The header and payload data from each PES packet are
encapsulated into transpost packets 24, each containing a
transport header 30 and payload data 32. The payload data
of the transport packet 24 will contain a portion of the
payload data 20 and/or PES header 18 from PES packet 16.
In an MPEG implementation, the transport header 30 will
contain the packet identifier (PID) which identifies the
transport packet, such as an audio transport packet 24, a
video transport packet 26, or other data packet 28, In FIG.
1, only the derivation of the audio transport packets 24 is
shown. In order to derive video packets 26 and other packets
28, corresponding elementary streams (not shown)are pro-
vided which are processed into PES packets and transport
packets in essentially the same manner illustrated in FIG. 1
with respect to the formation of the audio transport packets

Each MPEG transport packet contains 188 bytes of data,
formed from the four-byte transport header 30 and payload
data 32, which can be up to 184 bytes. In the MPEG
implementation, an adaptation field of. ¢.g., eight bytes may
be provided between the transport header @ and payload 32.
The variable length adaptation field can contain, for
example, the program clock reference (PCR) used for syn-
chronization of the decoder system time clock (STC).

The plurality of audio transport packets 24, video trans-
port packets 26 and other packets 28 is multiplexed as
illustrated in FIG. 1 to form a transport stream 22 that is
communicated over the communication channel from the

encoder to the decoder. The purpose of the decoder is to
demultiplex the different types of transport packets from the
transport stream, based on the PID’s of the individual
packets, and to then process each of the audio, video and
other components for use in reconstructing a television
signal.

FIG.2 is a block diagram of a decoder for recovering the
video and audio data. The transport stream 22 is input to a
demultiplexer and data parsing subsystem 44 via terminal
40. The demultiplexing and data parsing subsystem com-
municates with a decoder microprocessor 42 via a data bus
88. Subsystem 44 recovers the video and audio transport
packets from the transport packet stream and parses the
PCR, PTS and other necessary data therefrom for use by
other decoder components. For example, PCR’s are recov-
ered from adaptation fields of transport packets for use in
synchronizing a decoder system time clock (STC) 46 to the
system time clock of the encoder. Presentation time stamps
for the video and audio data streams are recovered from the

NOACEx. 1015 Page 179



NOAC Ex. 1015 Page 180

 
: CG

5,703,877
9

respective PES packet headers and communicated as video
or audio control data to the video decoder 52 and andio
decoder 54, respectively.

The decoder time clock 46is illustrated in greater detail
in FIG. 3. An important function of the decoder is the
reconstruction of the clock associated with a particular
program. This clock is used to reconstruct, for example, the
proper horizontal scan rate for the video. The proper pre-
sentation rate of audio and video presentation units must
also be assured. These are the audio sample rate and the
video frame rate. Synchronization of the audio to the video,
referred to as “lip sync”, is also required.

In order to generate a synchronized program clock, the
decoder system time clock (STC) 46 receives the PCR’s via
terminal 60. Before the commencement of the transport
Stream decoding, a PCR value is used to preset a counter 68
for the decoder system time clock. As the clock runs, the
value of this counter is fed back to a subtracter 62. The local

feedback value is then compared with subsequent PCR’s in
the transport stream as they arrive at terminal 60. When a
PCR arrives, it represents the correct STC value for the
program. The difference between the PCR value and the
STC value, as output from subtracter 62,is filtered by a loop
filter 64 and used to drive the instantancous frequency of a
voltage controlled oscillator 66 to either decrease or increase
the STC frequency as necessary. The STC has both a 90 kHz
and 27 MHz component,andthe loop filter 64 converts this
to units in the 27 Mhz domain. The output of the VCO 66
is a 27 MHz oscillator signal which is used as the program
clock frequency output from the decoder system time clock.
Those skilled in the art will recognize that the decoder time
clock 46 illustrated in FIG. 3 is implemented using well
known phase locked loop (PLL) techniques.

Before beginning audio synchronization, the decoder of
FIG.2, and particularly subsystem 44,will remain idle until
it is configured by decoder microprocessor 42. The configu-
ration consists of identifying the type of audio data stream
to be processed (e.g., Dolby AC-3 or Musicam audio),
identifying the PID of packets from which the audio PCR
values are to be extracted, and identifying the PID for audio
packets,

During the idle state, subsystem 44 will instruct audio
decoder 54 to conceal the audio output. Concealment can be
accomplished by zeroing all of the audio samples. Subse-
quent digital signal processing will result in a smooth aural
transition from no sound to sound, and back to no sound.
The concealment of the audio output will be terminated
when the synchronization process reaches a tracking state.
Decoder microprocessor 42 configures the audio format as
AC-3 or Musicam, depending on whether audio decoder 54
is an AC-3 or Musicam decoder. Microprocessor 42 deter-
Maines the audio PID and audio PCR PID from program map
information provided in the transport stream. The program
map information is essentially a directory of PID’s, and is
identified via its own PID.

Once the demultiplexer and data parsing subsystem 44 is
commanded to enter a Frame Sync state via an acquire
command, it will begin searching for two consecutive audio
sync words and will supply the decoder microprocessor 42
with the audio sampling rate and audio bit rate indicated
within the audio elementary stream. To Jocate the sync
words, subsystem 44 will receive transport packets on the
audio PID and extract the PES data, searching for the
occurrence of the audio sync word, which is a
predetermined, fixed word. For example, the AC-3 audio
sync word is 0000 1011 0111 O111 (16 bits) while the
Musicam syne word is 1111 1111 112] (12 bits).

40

45

50

55

6

65

10
The number of bits between thefirst bit of two consecu-

tive audio sync words is referred to as the frame size. The
frame size depends on whether the audio stream is AC-3 or
Musicam and has a different value for each combination of

audio sample and bit rate. In a preferred embodiment.
subsystem 44 is required to synchronize to AC-3 and Musi-
cam sample rates of 44.1 ksps and 48 ksps. The AC-3 audio
syntax conveys the audio sample rate and audio frame size
while the Musicam audio syntax conveys the audio sample
rate and audio bit rate. Both AC-3 and Musicam specify one
sync frame size for each bit rate when the sample rate is 48
ksps. However, AC-3 and Musicam specify two sync frame
sizes for each bit rate when the sample rate is 44.1 ksps, a
fact which complicates synchronization, especially through
packet loss. When the sample rate is 44.1 ksps. the correct
sync frame size between the two possibilities is indicated by
the least significant bit of the AC-3 frame size code or by a
Musicam padding bit.

Once two consecutive audio sync words have been
received with the camrect number of bytes in between, as
specified by the sync frame size, subsystem 44 will store the
audio sample rate and audio bit rate implied by the audio
syntax for access by the decoder microprocessor 42, inter-
tupting the microprocessor to indicate that subsystem 44 is
waiting for the microprocessor to supply it with an audio
PTS correction factor. The correction factor is necessary in
order to know when to output audio data to the audio
decoder 54 during initial acquisition and during tracking for
proper lip synchronization. The value is denoted as dPTS.
Thelip sync value used for trackingis slightly less than that
used for initial acquisition to allow for time errors which will
exist between any two PTS values, namely that which is
used for acquisition and those which are used for tracking,

Decoder microprocessor 42 sets the correction factors
such that audio and video-will exit the decoder with the

same time relationship asit entered the encoder, thus achiev-
ing lip synchronization. These correction factors are deter-
mined based on audio sample rate and video frame rate (¢.g.,
60 Hz or 50 Hz). These dependencies exist because the audio
decompression processing time required by audio decoder
54 potentially depends on audio sample and bit rate while
the video decompression implemented by video decoder 52
potentially depends on video frame rate and delay mode. In
a preferred implementation, the PTS correction factors con-
sist of 11 bits, representing the number of 90 kHz clock
periods by which audio data is to be delayed before output
to the audio decoder 54, With 11 bit values, the delay can be
as high as 22.7 milliseconds.

Once the demultiplexing and data parsing subsystem 44
requests the decoder microprocessor 42 to supply the cor-
rection factors, it will monitor reception of consecutive sync
words at the expected positions within the audlo elementary
stream. If an error condition occurs during this time, sub-
system 44 will transition to searching far two consecutive
audio sync words with the correct number of data bytes in
between. Otherwise, subsystem 44 remains in State dPTS-
wait until the decoder microprocessor services the interrupt
from subsystem 44 by writing dPTS,. to subsystem 44.

Once subsystem 44 is provided with the PTS correction
factors, it checks whether a transport packet has been
received on the audio PCR PID containing a PCR value.
carried in the adaptation field of the packet. Until this has
occumred, reception of consecutive syne words will continue
{State=PCR Acquire]. If an error condition occurs during
this time, subsystem 44 will transition to searching for two
consecutive audio sync words {State=Frame Sync].
Otherwise, it will remain in State=PCR Acquire until it
receives a PCR value on the audio PCR PID.

NOACEx. 1015 Page 180



NOAC Ex. 1015 Page 181

 

¥, Pitataing aedae

PhaehcaeEDLagetes?
>eh

eMetestiossow§Atmay
aos)

aFickeg

4'

 

OQ XO

5,703,877
11

After a PCR has been acquired, subsystem 44 will begin
searching for a PTS [State=PTS Acquire], which is carried
in the PES header of the audio transport packets. Until this
has occurred, subsystem 44 will monitor the reception of
consecutive sync words. If an error condition occurs during
this time, it will transition to an error handling algorithm
[State=Error Handling}. Otherwise, it will remain in the PTS
acquire state until it receives a PTS value on the audio PID.

When subsystem 44 receives an audio PTS value,it will
begin searching for reception of the next audio sync word,
This is important since the PTS defines the time at which to
output the data which begins with the oext audio frame.
Since audio frames are not aligned with the audio PES,the
number of bytes which will be received between the PTS
and the next audio sync word varies with time. If an exror
condition occurs before reception of the next audio sync
ward, subsystem 44 returns to searching for audio frame
synchronization [State=Frame Sync]. It should be appreci-
ated that since audio sync frames and PES headers are not
aligned,it is possible for a PES header, and the PTS which
it may contain, to be received between the 12 or 16 bits
which form an audio sync word. In this case, the sync word
to which the PTS refers is not the sync word which is split
by the PES header, but rather the following sync word.

When subsystem 44 receives the next syac word, it has
acquired PTS. At this point, it will store the received PTS
and the PES data (starting with the sync word which first
followed the PTS)into an audio buffer 50, together with the
buffer address at which it writes the sync word. This stored
PTS/buffer address pair wiil allow subsystem 44 to begin
outputting audio PES data to the audio decoder 54 at the
correct time, starting with the audio syac word. In a pre-
ferred embodiment, the buffer 50 is implemented in a
portion of dynamic random access memory (DRAM)
already provided in the decoder.

Once subsystem 44 begins buffering audio data, a number
of parameters must be tracked which will allow it to handle
particular error conditions, such as loss of an audio transport
packet to transmission erors. These parameters can be
tracked using audio pointers including a PTS pointer, a
DRAM offset address pointer, and a valid flag pointer
discussed in greater detail below.

After PTS is acquired, subsystem 44 begins waiting to
synchronize to PTS [State=PTS Sync]. In this state, the
demultiplexer and data parsing subsystem 44 continuesto
receive audio packets via terminal 40, writes their PES data
into buffer 50, and maintains the error pointers. When this
state is entered, subsystem 44 comparesits audio STC to the
correct outputstart time, which is the PTS value in the PTS
pointer plus the acquisition PTS correction factor (dPTS,,,,,)-
If subsystem 44 discovers that the correct time has passed,
iLe.. PCR>PTS+4PTS,., one or more of the three values is
incorrect and subsystem 44 will flag decoder microprocessor
42. At this point, the state will revert to State=Frame Sync,
and subsystem 44 will return to searching for two consecu-
tive audio sync words. Otherwise, until PCR=PTS+dPTS,,,,
subsystem 44 will continue to receive audio packets, write
their PES data into the buffer 50, maintain the error pointers,
and monitor the reception of consecutive sync words.

When PCR=PTSHIPTS,... subsystem 44 has synchro-
nized to PTS and will begin tracking the audio stream
[State=Track]. At this time, subsystem 44 will begin trans-
ferring the contents of the audio buffer to the audio decoder
54 upon the audio decoder requesting audio data, starting
with the sync word located at the buffer address pointed to
by the PTS pointer. In the tracking state, subsystem 44 will

20

3s

35

6

65

12

continueto receive audio packets, write their PES data into
the buffer 50, maintain the cxror pointers, and monitor
reception of consecutive sync words. If an error condition
occurs during this time, subsystem 44 will transition to exror
processing. Otherwise,it will remain in State=Track until an
error occurs or microprocessor 42 commands it to return to
the idle state.

As subsystem 44 outputs the sync word of each sync
frame to the audio decoder 54 as part of the “audio” referred
to in FIG.2,it will signal the error stats of each audio sync
frame to the audio decoder using the sync word. The sync
word of audio sync frames in which subsystem 44 knows of
no errors will be output as specified by the Dolby AC-3 or
Musicam specification, as appropriate. The sync word of
audio sync frames in which subsystem 44 knowsof errors
will be altered relative to the correct sync words. As an
example, and in the preferred embodiment, every other bit of
the sync word of sync frames to which an error poinier
points will be inverted, starting with the most significant bit
of the sync word. Thus, the altered AC-3 sync word will be
1010 0001 1101 1101 while the altered Musicam sync word
will be 0101 0101 0101. Only the bits of the sync word will
be altered. The audio decoder 54 will conceal the audio

errors in the sync frame which it receives in which the sync
ward has been altered in this manner. However, the audio
decoder will continue to maintain synchronization with the
audio bitstream. Synchronization will be maintained assum-
ing the audio bit rate did not change, and knowing that two
syne frame sizes are possible when the audio sample rate is
44.1 ksps.

In accordance with the preferred embodiment, audio
decoder 54 will maintain synchronization through sample
and bit rate changes if this feature is enabled by the decoder
microprocessor 42. If the microprocessor disables sample
Tate changes, audio decoder 54 will conceal the audio errors
in each sync frame received with a sample rate that does not
match the sample rate of the sync frame on which the audio
decoder last acquired, and will assume that the sample rate
did not change in order to maintain synchronization. The
audio decoder is required to process through bit rate
changes. If an error in the bit rate information is indicated,
e.g., through the use of a cyclic redundancy code (CRC) as
well known in the art, audio decoder 54 will assume that the
bit rate of the corresponding sync frame is the same bit rate
as the previous sync frame in order to maintain synchroni-
zation. If the decoder microprocessor 42 has enabled rate
changes, the audio decoder 54 will assume that the rates
indicated in the sync frameare correct, will process the sync
frame, and use the appropriate sync frame size in maintain-
ing synchronization with the audio bitstream.

Demultiplexer and data parsing subsystem44 will also aid
microprocessor 42 in checking that audio data continues to
be output at the correct time by resynchronizing with the
PTS for some PTS values received, To accomplish this,
when a PTS value is received it will be stored in the PTS
pointer, along with the audio offset address at which the next
sync word is written in audio buffer 50, if the PTS pointer
is not already occupied. In doing this, subsystem 44 will
ensure that the next sync word is received at the correct
location in the audio PES bitstream. Otherwise, the PTS
value will not be stored and subsystem 44 will defer resyn-
chronization until the next successful PTS/DRAM offset
address pair is obtained. Subsystem 44 will store the PTS/
DRAM offset address pair in the PTS pointer until it begins
to output the associated audio sync frame. Once it begins
outputting audio data to the audio decoder 54, subsystem 44
will continue to service the audio decoder’s requests for

NOACEx. 1015 Page 181



NOAC Ex. 1015 Page 182

 
f A

*:a ,cS

“ai.

a

cyteaeseetgeyMey°R
d

 

QO

5,703,877
13

audio data, outputting cach audio sync frame in sequence.
This will continueuntil the sync frame pointed to by the PTS
pointer is reached. When this occurs, subsystem 44 will stop
outputting data to the audio decoder 54 until PCR=PTS+
aPTS,20% This will detect audio timing errors which may
have occurred since the last resynchronization by this
method.

If PCR>PTSHPTS,,, when subsystem 44 completes
output of the previous sync frame, the audio decoder 54 is
processing too slow or an undetected exror has occurred in
aPCR or PTSvalue. After this error condition, subsystem44
will flag microprocessor 42, stop the output to the audio
decoder 54, clear audio buffer 50 and the pointers, and return
to searching for two consecutive sync words separated by
the correct number of audio data bytes. If the audio decoder
54 is not requesting data when the buffer read pointer equals
the address pointed to by the PTS pointer, an audio process-
ing error has occumed and subsystem 44 will maintain
synchronization with the audio stream, clear its audio buffer
and pointers, and return to searching for two consecutive
audio sync words [State=Frame Syncj.

In order to handle errors, subsystem 44 sets a unique exror
flag for each error condition, which is reset when micropro-
cessor 42 reads the flag. Each exror condition which inter-
tupts microprocessor 42 will be maskable under control of
the microprocessor. Table1 lists the various error conditions
related to audio synchronization and the response by sub-
system 44.In this table, “Name” is a name assigned to each
error condition as referenced in the state diagram of FIG. 5.
“Definition” defines the conditions indicating that the cor-
responding error has occurred. “INT” is an interrupt desig-
nation which, if “yes”, indicates that subsystem 44 will
interrupt microprocessor 42 when this error occurs. “Check
State” and “Next State” designate the states in which the
etror will be detected (checked) and the audio processor will

20

14

enter, respectively, with the symbol “>” that the designated
error will be detected when the audio processing state of
subsystem 44 is higher than the designated state. The audio
processing state hierarchy, from lowest to highest, is:

L. Idle

2. Frame Sync

3. OPTSLoi
4. PCRacg
5. PTS.2g
6. PTS Sync
7. Track

The symbol “2” preceding a state indicates that the error
will be detected when the audio processing state of sub-
system44 is equal to or higher than the designated state. The
designated state(s) indicate(s) that the error will be detected
in this state or that the audio processing of subsystem 44 will
proceed to this state after the associated actions are carried
out. The designation “same” indicates that the audio pro-
cessing of subsystem 44 will stay in the same state after the
associated actions are carried out.

The heading “‘Buifer Action” indicates whether the audio
buffer is to be flushed by setting its read and write pointers
to be equal to the base address of the audio buffer. The
designation “none” indicates no change from normal audio
buffer management.

The heading “Pointer Action” indicates by the term
“reset” that the PTS pointer, error pointers or both will be
retumed to the state specified as if subsystem 44 had been
reset. The designation “none” indicates no change from
nonmal pointer management. The designation “see other
actions” indicates that other actions under the “Other

Actions” heading may indicate a pointer to be set or reset.
The “Other Actions” heading states any additional actions
required of the subsystem 44 as a result of the error.

NOACEx. 1015 Page 182



NOAC Ex. 1015 Page 183

 tog sgt fee, ekwlROSaaa
   

 

 

ARE as vs ne

TABLE 1

SUMMARY OF ERRORS, EXCEPTIONS, AND ACTIONS.

Check Next Buffer Pointer
Name Definition Int State State Action Action Other Actions

ptea_err PCR > PTS + oPTS,., yes pta_sync frame__sync flush reset none
pts_err PCR > PTS + dPTS,., yes track frame__syoc Bush reset Stop output to Audio Decoder (ADP).
syne_err Input processor loses sync with input sudio yes >idle frame._sync flush Teset Stop output tp ADP.frames
ov_emr Audio Buffer overfiows yes Rpte_syne frame_sync flush reset Input processor maintains synchronization with the audio

bitstream. Stop output to ADP.
under_err Audio Buffer underflows no track samme pone none Input processor maintains synchronization with the sudio

bitstream. Stop output to ADP.
fa_err Input processor reaches Audio PBS data yes >frame_sync same pone none Continue proccssing as if the audio sample rate had not changed.

which indicates the audio sample rate has
changed since the current PID was acquired

fo_err Input processor receives Audio PES date yes >frame_sync6age none none If bit rate changes are ensbled, input processor will continue
which indicates the audio bit rate has changed processing, trusting that the bit rate in fact changed and using the
relative to the last audio sync frame reached appropriate sync frame size to maintam synchronization. If bit

rate changes ere pot enabled, mput processor will continue
processing using the bit rate indicated by the last audio sync framereceived.

pts_miss Sync word not found dus to losa of audio data =n Gpts_ecquire same none pone None but other error conditions may also apply in this caseafter a PTS is received
per_dist Input processor reaches « transport pecket on nO pta_sync pts acquire fSush ptacrese! Input processor stops storing PTS vaiues in the PTS pointer until

the Audio PCR PID with the error:none—after reception of the next Audio PCR value.
discontinuityindicator bit ofits
adaptation_field cet

per_dis2 Input processor receives « transport packeton 0 track eane noue pts:resct Input processor stops storing PTS values in the PTS pointer until
the Audio PCR PID with the errornone after reception of the next Audio PCR value.
discontinuity__indicator bit of its
adaptation_ficld set

aud_etrla Audio data of one transport packet of the Seo >idle seme or none pts:none Maintain Audio Buffer fullness by advancing the FIFO write
current input sync frame is lost due to exrors other frame__sync; error:see pointer by 184 bytea (MPEG), use an error pointer to mark the

actions see other other current sync frame as in error, and continue processing without
actions actions generating an interrupt. If it is possible that more than one sudio

sync word was lost with the missing sudio transport packet, such as
when supporting Musicam Layer II at less than 64 kbps or AC-3 at
leas than 48 kbps, return to the Frame Sync state and generate an
interrupt. If the next audio sync word is not received when
expected, begin a byte-by-byte search for the eudio ryoc word
during the reception of subsequent audio data. Once the sync
byte search is started, stop storing audio date in the buffer until
the sync word in found. Do not store the first byte examined
during the scarch. Resume storing audio data when the sync byte
ia found, starting with the syne word itself. If the sync word is not
found during the first 184 bytes searched, return to the Frame
Sync state! and generate an interrupt

NOACEx. 1015 Page 183

ST

oT

 

LL8‘COL‘S



NOAC Ex. 1015 Page 184

TABLE 1-continued 

SUMMARYOF ERRORS, EXCEPTIONS, AND ACTIONS.

Check Next Buffer Pointer
Name Definition Int State State Action Action Other ActionsetneccPSists

aud_errib Audio data of one transport packet of the yes >idle frame_sync flush pts:reset nous
current input sync frame is lost due to errors €rror:none
after aud_erria has occured during the same
input syne frame .

aud_err2—Audio data of moze than one transport packet yes >idle frame_sync flush pts:reset ‘Use an error pointer to mark the current sync frame us in error.
of the current input sync frumo is lost duc to error:ece
errors other

actions

ptre_full Audio data of one transport packet is lost yes @pts_sync frame_sync flush resct Input processor maintains synchronization with the audio
while Error Mods is Unprotected bitstream. Stop output to ADP.

‘Tp implement the above error processing for MPEG or DigiCipher I implementations, the Input Processor can maintain an audio frame byte count by:
setting @ counter’s value so the sync frame size in bytes ss each eync word is received,
decrementing the counter as each received suxtio byte is stored in the Audio Buffer (FIFO),
decrementing the counter by 184 bytes when a single audio transport packet ia lost to compensate for the advancementof the FIFO write pointer by 184,
incrementing the counter by the amaller of the two sync frame sizes in bytes corresponding to the current bit rate if the above decrement resulted in a negative counter value (indicating the lost transport packet

Possibly contained the next audio gnc word and sccounting for the possibility that the audio sample rate is 44.1 Keps and the sync frame size has changed from the larger value to the smaller value),Tetuming to the Frame Sync state if the above increment resulted in s counter value which was still negative (indicating the lost transport packet possibly contained more than one audio sync word), and
beginning the byte-by-byte syne word search when the counter is zero.

 

LI

LL8*€0L'S

St

NOACEx. 1015 Page 184



NOAC Ex. 1015 Page 185

 
O

5,703,877
19

As indicated above, the demultiplexing and data parsing
subsystem 44 of FIG. 2 maintains several pointers to support
audio processing. The PTS pointer is a sect of parameters
related to a PTS value, specifically a PTS valuc, a DRAM
offset address, and a validity flag, In the illustrated embodi-
ment, the PTS value comprises the 17 least significant bits
of the PTS value received from the audio PES header. This

value is associated with the audio sync frame pointed to by
the pointer’s DRAM offset addressfield. The use of 17 bits
allows this field to specify a 1.456 second time window
((2'?-190 kHz), which exceeds the maximum audio time
span which the audio buffer 50 is sized to store.

The DRAM offset address maintained by the PTS pointer
is a 13-bit offset address, relative to the audio buffer base
address, into the DRAM at whichthefirst byte of the audio
sync frame associated with the pointer’s PTS valueis stored.
The 13 bits allows the pointer to address an audio buffer as
large as 8192 bytes.

The PTS pointer validity flag is a one-bit flag indicating
whether or not this PTS pointer contains a valid PTS value
and DRAM offset address. Since MPEG does not require
PTS values to be transported more often than every 700
milliseconds, subsystem 44 mayfinditself not having a valid
PTS value for some intervals of time.

After the decoder is reset, the valid flag of the PTS pointer
is set to invalid. When a new PTS valueis received, if the

valid flag is set, the newly received PTS value is ignored. If
the valid flag is not set, the newly received PTS value is
stored into the PTS pointer but its valid flag is not yet set to
valid. After a new PTS value is stored into the PTS pointer,
the processing of audio data is continued and each audio data
byte is counted. If the next audio sync frameis received and
placed into the buffer correctly. the DRAM offset address
(which corresponds to the buffer address into which thefirst
byte of the sync word of this sync frame is stored) is stored
into the pointer’s DRAM offset address field. Then, the
pointer’s valid flag is set to valid. The next audio sync frame
is received and placed into the buffer correctly when no data
is lost for any reason between reception of the PTS value and
reception of a subsequent syne word before too many audio
bytes (i.c., the number of audio bytes per sync frame) are
buffered. If the next audio, sync frame is not received or
placed into the buffer correctly, the valid flag is not set to
valid.

After the PTS pointer is used to detect any audio timing
exrors which may have occurred since the last resynchroni-
zation, the valid flag is set to invalid to allow subsequent
PTS pointers to be captured and used. This occurs whether
the PTS pointer is in the PTS syncor tracking state.

Theerror pointers are parameters related to an audio sync
frame currently in the buffer and known to contain errors.
The error pointers comprise a DRAM offset address and a
validity flag. The DRAM offset address is a 13-bit offset
address, relative to the audio buffer base address, into the
DRAM at which the first byte of the audio sync frame
knownto contain exrors is stored. Thirteen bits allows the

pointer to address an audio buffer as large as 8192 bytes. The
validity flag is a one-bit flag indicating whether or not this
error pointer contains a valid DRAM offset address. When
receiving data from a relatively exror free medium, sub-
system 44 will find itself not having any valid error pointers
for some intervals of time.

Subsystem 44 is required to maintain a total of two exrar
pointers and one error mode flag. After reset, the validity flag
is set to invalid and the error mode is set to “protected.”
When a syne wordis placed into the audio buffer,if the valid

- wA

2

25

20

flag of one or more error pointers is not set, the buffer
address of the sync word is recorded into the DRAM offset
address of one of the invalid errar pointers. At the sametime,
the error mode is set to protected. If the validity flag of both
error pointers is set when a sync word is placed into the
buffer, the error mode is set to unprotected but the DRAM
offset address of the syne word is not recorded.

When audio data is placed into the buffer and any error is
discovered in the audio data, such as due to the loss of an

audio transport packet or the reception of audio data which
has not been properly decrypted, subsystem 44 will revert to
the PTS acquire state if the error mode is unprotected.
Otherwise, the validity bit of the error pointer which con-
tains the DRAM offset address of the sync word whichstarts
the syne frame currently being received is set. In the rare
eventthat an error is discovered in the data for an audio sync
frame during the same clock cycle that the sync word for the
syne frame is removed from the buffer, the sync word will
be corrupted as indicated above to specify that the sync
frame is known to contain an audio error. At the same time,
the validity bit is cleared such that it does not remain set after
the sync frame has been output. This avoids the need to reset
subsystem 44 in order to render the pointer useful again.

When audio data is being removed from the audio buffer,
the sync word is corrupted if the DRAM offset address of
any emror pointer matches that of the data currently being
removed from the buffer. At the same time, the validity bit
is set to invalid.

The decoder of FIG. 2 also illustrates a video buffer 58

and video decoder 52, These process the video data at the
same time the audio data is being processed as described
above. The ultimate goal is to have the video and audio data
output together at the proper time so that the television
signal can be reconstructed with proper lip synchronization.

FIG.4 is 2 block diagram illustrating the demultiplexing
and data parsing subsystem 44 of FIG. 2 in greater detail.
After the transport packets are input via terminal 40, the PID
of each packet is detected by circuit 70. The detection of the
PIDs enables demultiplexer 72 to output audio packets,

“0 video packets and any other types of packets carried in the

45

60

65

data stream, such as packets carrying control data, on
separate lines.

The audio packets output from demultiplexer 72 are input
to the various circuits necessary to implement the audio
processing as described above. Circuit 74 modifies the sync
word of each audio frame known to contain exrors. The

modified sync words are obtained using a sync word inverter
78, which inverts every other bit in the sync words output
from a sync word, PCR and PTSdetection circuit 86, in the
event that the audio frame to which the syne word corre-
sponds contains an error. Error detection is provided by exror
detection circuit 76.

The syne word, PCR and PTS detection circuit 80 also
outputs the sync word for each audio frame to an audio
sample and bit rate calculator 86. This circuit determines the
audio sample and bit rate of the audio data and passes this
information to decoder microprocessor 42 via data bus 88.

The PCR and PTSare outputfrom circuit 80 to a lip sync
and output timing compensator 82. Circuit 82 also receives
the dPTS values from microprocessor 42, and adds the
appropriate values to the PTS in order to provide the
necessary delay for proper lip synchronization. Compensa-
tor 82 also determines if the delayed presentation timeis
outside of the acceptable range with respect to the PCR,in
which case an esror has occurred and resynchronization will
be required.

NOACEx. 1015 Page 185



NOAC Ex. 1015 Page 186

 
&¥

DWeePE

: QO GC)

5,703,877
21

Buffer contro! 84 provides the control and address infor-
mation to the audio output buffer 50. The buffer control 84
is signaled by error detection circuit 76 whencver an error
occurs that requires the temporary suspension of the writing
of data to the buffer. The buffer contro! 84 also receives the
delay values from lip syne and output timing compensator
82 in order to control the proper timing of data output from
the buffer.

FIG. 5 is a state diagram illustrating the processing of
audio data and responseto errors as set forth in Table 1. The
idle state is represented by box 100. Acquisition of the audio
data occurs during the frame sync state 102. The dPTS-wait
state is indicated by box 104. Boxes 106,108 and 110
represent the PCR,.., PTS...» and PTS syncstates, respec-
tively. Once audio synchronization has occurred, the signal
is tracked as indicated by the tracking state of box 112. The
outputs of cach of boxes 104, 106, 108, 110 and 112indicate
the error conditions that cause a return to the frame syn-
chronization state 102. The error PCR DIS1 during the PTS
sync state 120 will cause a return to the PTS acquirestate,
as indicated in the state diagram of FIG. 5.

It should now be appreciated that the present invention
provides methods and apparatus for acquiring and process-
ing errors in audio data communicated via a transport packet
scheme. Transport packet exrors are handled while main-
taining audio synchronization. During such error conditions,
the associated audio errors are concealed. Corrupted data in
an audio frame is signaled by altering the sync pattern
associated with the audio frame. PTS’s are used to check the

timing of processing and to correct audio timing errors.
Although the invention has been described in connection

with various specific embodiments,it should be appreciated
and understood that numerousadaptations and modifications
may be made thereto, without departing from the spirit and
scope of the invention as set forth in the claims.

We claim:

1. A method for processing digital audio data from a
packetized data stream carrying digital television informa-
tion in a succession of fixed length transpost packets, each
of said packets including a packet identifier (PID), some of

3

10

25

30

35

said packets containing a program clock reference (PCR) ,,
value for synchronizing a decoder system time clock (STC),
and some of said packets containing a presentation time
stamp (PTS) indicative of a time for commencing the output
of associated data for use in reconstructing a television
signal, said method comprising the steps of:

monitoring the PID’s for the packets carried in said data
stream to detect audio packets, some of said audio
packets carrying an audio PTS;

storing audio data from the detected audio packets in a
buffer for subsequent output;

monitoring the detected audio packets to locate audio
PTS’s;

comparing a time derived from said STC with a time
derived from the located audio PTS’s to determine

whether said audio packets are too early to decode, too
late to decode, or ready to be decoded; and

adjusting the time at which said stored audio data is output
from said buffer on an ongoing basis in response to said
comparing step.

2. A method in accordance with claim 1 wherein a PTS

pointer is provided to maintain a current PTS value and an
address of said buffer identifying where a portion of audio
data referred to by said current PTS is stared, said timing
adjustment being provided by the further steps of:

replacing said PTS value in said PTS pointer with a new
current PTS value after data stored at said address has

been output from said buffer,

45

22

replacing said address in said PTS pointer with a new
address corresponding to a portion of audio data
referred to by said new current PTS value;

suspending the output of data from said buffer when said
new address is reached; and

recommencing the output of data from said buffer when
said decoder system time clock reaches a presentation
time derived from said new current PTS value.

3. A method in accordance with claim 2 wherein said

presentation time is determined from the sum of said new
current PTS value and an offset value that provides proper
lip synchronization by accounting for a video signal pro-
cessing delay.

4. A method in accordance with claim 1 wherein the time

at which the audio data is output from said buffer is
dependent onan offset value added to said PTSforproviding
proper lip synchronization by accounting for a video signal
processing delay.

5. A method in accordance with claim 1 comprising the
further steps of:

examining the detected audio packets to locate the occur-
rence of at least one audio synchronization word
therein for use in achieving a synchronization condition
priorto locating said audio PTS’s;

commencing a reacquisition of said synchronization con-
dition if said comparing step determinesthat said audio
packets are too late to decode.

6. A method in accordance with claim 5 wherein two

consecutive audio synchronization words with a correct
number of audio data bytes in between define an audio
frame, said audio frame including only one of said two
consecutive audio synchronization words, said method com-
prising the further steps of:

detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an error, advancing a write pointer for
said. buffer by the maximum number of payload bytes
(N) contained in one of said fixed length transport
packets and designating said current audio frame as
being in error;

monitoring the detected audio packets of said current
audio frame for the next audio synchronization word
after said error has been detected, and if said synchro-
nization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer;

Tesuming the storage of audio data in said buffer upon
detection of said next audio synchronization word if
said next audio synchronization ward is located within
N bytes after the commencementofthe search therefor;
and

if said next audio synchronization word is not located
within said N bytes after the commencementof the
search therefor, commencing a reacquisition of said
synchronization condition.

7. A method in accordance with claim 6 comprising the
further step of concealingtelevision audio exrors whenever
the audio data from which said television audio is being

go reconstructed is in exror.

65

8. A method in accordance with claim 7 wherein:

a current audio frame is designated as being in exror by
altering the audio synchronization ward for that frame;
and

said concealing step is responsive to an altered. synchro-
nization word for concealing audio associated with the
corresponding audio frame.

NOACEx. 1015 Page 186



NOAC Ex. 1015 Page 187

 
?

fo

5,703,877
23

9. A method for processing digital audio data from a
packetized data stream carrying digital television informa-
tion in a succession of transport packets having a fixed
length of N bytes, each of said packets including a packet
identifier (PID). some of said packets containing a program
clock reference (PCR) value for synchronizing a decoder
system tims clock, and some of said packets containing a
presentation time stamp (PTS) indicative of a time for
commencing the output of associated data for use in recon-
structing a television signal, said method comprising the
steps of:

monitoring the PID’s for the packets carried in said data
stream to detect audio packets;

examining the detected audio packets to locate the occur-
rence of audio synchronization words for use in achiev-
ing a synchronization condition, cach two consecutive
audio synchronization words defining an audio frame
therebetween;

monitoring the detected audio packets after said synchro-
nization condition has been achieved to locate an audio
PTS;

searching the detected audio packets after locating said
audio PTS to locate the next audio synchronization
word;

storing audio data following said next audio synchroni-
zation word ia a buffer;

detecting the occurrence of errors in said audio packets;
upon detecting a first audio packet of a current audio

frame containing an error, advancing a write pointer for
said buffer by N bytes and designating said current
audio frame as being in error;

monitoring the detected audio packets of said current
audio frame for the next audio synchronization word
after said error has been detected, and if said syachro-
nization word is not received where expected in the
audio stream, discarding subsequent audio data while
searching for said synchronization word rather than
storing the subsequent audio data into said buffer;

resuming the storage of audio data in said buffer upon
detection of said next audio synchronization word if
said next audio synchronization word is located within
N bytes after the commencementofthe search therefor,
and

if said next audio synchronization word is not located
within said N bytes after the commencement of the
search therefor, commencing a reacquisition of said
synchronization condition.

10. A method in accordance with claim 9 comprising the
further step of concealing television audio errors whenever
the audio data from which said television audio is being
reconstructed is in exror.

11. A method in accordance with claim 1@ wherein:

a current audio frame is designated as being in error by
altering the audio synchronization word for that frame;
aod

said concealing step is responsive to an altered synchro-
nization word for concealing audio associated with the
corresponding audio frame.

12. A method in accordance with claim 9 wherein said
audio data includes information indicative of an audio

sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

5

15

30

35

45

50

65

24

ignoring a rate change indicated by said audio data on the
assumption that the rate has notactually changed;

concealing the audio frame containing the data indicative
of an audio sample rate change while attempting to
maintain said synchronization condition; and

commencing a reacquisition of said synchronization con-
dition if said condition cannot be maintained.

13. A method in accordance with claim 9 wherein said
audio data includes information indicative of an audio

sample rate and audio bit rate, at least one of said audio
sample rate and audio bit rate being variable, said method
comprising the further step of attempting to maintain syn-
chronization of said audio packets during a rate change
indicated by said audio data by:

processing said audio data in accordance with a new rate
indicated by said audio data in the absence of an error
indication pertaining to the audio frame containing the
new rate, while attempting to maintain said synchro-
nization condition;

processing said audio data without changingthe rate if an
error indication pertains to the audio frame containing
the new rate, while concealing the audio frame to which
said exror condition pertains and attempting to maintain
said synchronization condition; and

commencing a reacquisition of said synchronization con-
dition if said condition cannot be maintained.

14. Apparatus for acquiring audio information carried by
a packetized data stream and processing errors therein,
comprising:

means for detecting audio transport packets in said data
stream;

means for recovering audio data from said detected audio
transport packets for storage in a buffer;

Means for locating an audio presentation time stamp
(PTS)in said detected audio transport packets;

meansresponsiveto said PTS for commencing the output
of audio data from said buffer at 2 specified time;

meansformonitoring the detected audio transport packets
after the output of audio data from said buffer has
commenced, to locate subsequent audio PTS’s;

means for comparing a time derived from a decoder
system time clock (STC) to a time derived from the
subsequent audio PTS’s to determine whether audio
data stored in said buffer is too carly to decode, too late
to decode, or ready to be decoded; and

means responsive to said comparing means for adjusting
the time at which said stored audio data is output from
said buffer.

15. Apparatus in accordance with claim 14 further com-
prising:

means for maintaining a PTS pointer with a current PTS
value and an addressof said buffer identifying where a
portion of audio data referred to by said current PTSis
stored;

means for replacing said PTS value in said PTS pointer
with a new current PTS value after data stored at said

address has been output from said buffer, aod for
replacing said address in said PTS pointer with a new
address corresponding to a portion of audio data
referred to by said new current PTS value;

means responsive to said PTS pointer for suspending the
outputof data from said buffer when said new address
is reached; and

means for recommencing the output of data from said
buffer at a time derived from said new current PTS
value.

NOACEx. 1015 Page 187



NOAC Ex. 1015 Page 188

aF
kyNit
4h

0

25

16. Apparatus in accordance with claim 15 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said buffer andreestablishing the
detection of said audio transport packets if the time
derived from said new current PTS valueis outside a

predetermined range.
17. Apparatus in accordance with claim 14 wherein said

audio transport packets each contain a fixed number N of
payload bytes, said packets being arrangedinto successive
audio frames commencing with an audio synchronization
word, said apparatus further comprising:

means for detecting the occurrence of errors in said audio
packets;

means for advancing a write pointer for said buffer by N
bytes and designating a current audio frame as being in
efror upon detecting an esror in an audio tansport
packet of said current audio frame;

means for monitoring the detected audio transport packets
of said currentaudio framefor the next audio synchro-

: nization word after said error has been detected, andif
an said synchronization word is not received where

expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said buffer;

means for resuming the storage of audio data in said
buffer upon detection of said next audio synchroniza-

a tion word if said next audio synchronization word is
a located within said fixed number N of bytes after the

commencementof the search therefor; and
means for reestablishing the detection of said audio

transport packets if said next audio synchronization
word is not located within said fixed number N ofbytes
after the commencementof the search therefor.

18, Apparatus in accordance with claim 17 further com-
prising:

means for concealing error in an audio signal reproduced
from data output from said buffer when the data output
from said buffer is in exror.

19. Apparatus in accordance with claim 18 further com-
prising:

means for altering the audio synchronization word asso-
ciated with a current audio frame to designate that
frame as being in error;

wherein said concealing means are responsive to altered
synchronization words for concealing errors in audio
associated with the corresponding audio frame.

20. Apparatus for acquiring audio information carried by
a packetized data stream and processing errors therein,
comprising:

. means for detecting audio transport packets in said data
- stream, said packets being arranged into successive

audio frames commencing with an audio synchroniza-
tion word;

means responsive to said synchronization words for
obtaining a synchronization condition enabling the
recovery of audio data from said detected audio trans-
part packets for storage in a buffer;

means for detecting the presence of exrors in said audio
data;

means responsive to said error detecting means for con-
trolling the flow of data through said buffer when an
error is present, to attempt to maintain said synchroni-
zation condition while masking said error; and

 

SWAPA
fsgetSy

4

 

5,703,877
26

means for reestablishing the detection of said audio
transport packets if said controlling means cannot
maintain said synchronization condition.

21. Apparatus in accordance with claim 20 wherein said
5 audio transport packets each contain a fixed number N of

payload bytes, and said means responsive to said aror
detecting means comprise:

means for advancing a write pointer for said bufferby said
fixed number N of bytes and designating a current
audio frame as being in error upon the detection of an
error in an audio transport packet thereof;

means for monitoring the detected audio transport packets
of said current audio frame for the next audio synchro-
nization word after said error has been detected, and if
said synchronization word is not received where
expected in the audio stream, discarding subsequent
audio data while searching for said synchronization
word rather than storing the subsequent audio data into
said buffer; and

means for resuming the storage of audio data in said
buffer upon detection of said next audio synchroniza-
tion word if said next audio synchronization word is
located within said fixed number N of bytes after the
commencement of the search therefor.

25 22. Apparatus in accordance with claim 20 further com-
prising:

meansfor concealing error in an audio signal reproduced
from data output from said buffer when the data output
from said buffer is in error.

30 23. Apparatus in accordance with claim 22 further com-
prising:

means for altering the audio synchronization word asso-
ciated with an audio frame containing a data error to
designate that frame as being in error;

wherein said concealing means are responsiveto altered
syuchronization words for concealing exrors in audio
associated with the corresponding audio frame.

2A. A method for managing esrors in data received in
4g bursts from a packetized data stream carrying digital infor-

mation in a succession of fixed length transport packets, at
Jeast some of said packets containing a presentation time
stamp (PTS) indicative of a time for commencingthe fixed
rate presentation of presentation units from a buffer into
which they are temporarily stored upon receipt. said method
comprising the steps of:

monitoring received packets to locate associated PTS’s,
said received packets carrying presentation units to be
Presented,

synchronizing the presentation of said presentation units
from said buffer to a system time clock (STC) associ-
ated with the packetized data stream using timing
information derived from the PTS’s located in said

monitoring step; and
identifying discontinuity errors resulting from a loss of

one or more transmitted packets between successive
ones of the received packets and, if a discontinuity of
no more than one packet is identified, advancing a write
pointer of said buffer by a suitable number of bits to
compensate for the discontinuity, while maintaining the
synchronization of said presentation with respect to
said STC.

25. A method in accordance with claim 24 wherein said
transport packets each contain a fixed number N of payload

6s bytes, said method comprising the further steps of:
advancing said write pointer by said fixed number N of

bytes upon the detection of a discontinuity error;

10

35

45

30

NOACEx. 1015 Page 188



NOAC Ex. 1015 Page 189

. x C) 9

5,703,877
27 28

continuing said monitoring step after said discontinuity resuming the storage of presentation units in said buffer
error has been detected in order to search for a syn- upon the detection of said synchronization wordif said
chronization word, and if said synchronization word is synchronization word is located within said fixed num-
not located where expected. discarding subsequent ber N of bytes after the commencementof the search
presentation units while searching for said synchroni- 5 therefor.
zation word rather than storing said subsequent pre-
sentation units in said buffer; and * 8 t te

NOACEx. 1015 Page 189

 



NOAC Ex. 1015 Page 190

 
fe

a4

a ,
3

odaansSas
sa

mithmeatAEEcn

wtSelighdoe
:

+
~ a4

t
iy
ir$

 

United States Patent [19]
Bellenger

0,
5,802,054

Sep. 1, 1998

(11) Patent Number:

[45] Date of Patent: 

[54] ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODES

{75] Inventor: Donald M. BeDenger, Los Altos Hills,
Calif.

{73] Assignee: 3Com Corporation, Santa Clara, Calif.

[21] Appl. No.: 698,745

[22] Filed: Aug. 16, 1996

[51] Eine CLS nceenennesesrmnemnernenene HO4L 12/66
[52] US. C1. cccsresneercesseessseserronscanensesnsereetscaresecerees SPOOL
[58] Field of Search 0asccncsnssnsnnene 370/351, 400,

370/401, 402, 407, 408, 422

[56] References Cited

U.S. PATENT DOCUMENTS

4,947390 B/1990 Sheehy -.neonsomnansecrecnseesnsseeeeeee SIN4OL
5,047,917 9/1991 Athas et all. .....cccsereesssossereene JOAI2O0
5,166,931 11/1992 Riddle 2.ceuevserssceeccscerereceey STOVE01
5,321,695 6/1994 Faulk, Jr...sssenssassscansscanees 3740]
5,390,173 2/1995 Spinney et al. .oneecvsssenneonee 370/401
S,ATISAT 121995 Sugiyama cesccreseseneeesneenner 370/401
5,610,905 3/1997 Murthy et ab. cacseccssssereenee 370/401
5,657,314 8/1997 McClure et ab. ceneenerssserrenne 370401

OTHER PUBLICATIONS

ATOMIC: A Low-Cost, Very High-Speed, Local Commn-
nication Architecture, Danny Cohen, Gregory Finn, Robert
Felderman, Annette DeSchon, USC/Information Sciences
Institute, 1993 International Conference on Parallel Process-
ing.
The Use of Message-Based Multicomputer Components to
Construct Gigabit Networks, by D. Cohen, G. Finn, R.

Felderman and A. DeSchon, University of Southern Cali-fornia/Information Sciences Institute.

ATOMIC: A High-Speed Local Communication Architec-
ture, by R. Felderman, A. DeSchon, D. Cohen, G. Finn,
USC/Information Sciences institute, Journal of High Speed
Networks 1 (1994) pp. 1-28, IOS Press.
ATOMIC: A Local Communication Network Created

Through Repeated Application of Multicomputing Compo-
nents, by D. Cohen, G. Finn, R. Felderman, A. DeSchon.

 

An Integration ofNetwork Communication and Workstation
Architecture, by Gregory G. Finn, USC/Information Sci-
ences Institute, Published Oct. 1991, ACM Computer Com-
munication Review.

(List continued on next page.)

Primary Examiner—Ajit Patel
Attorney, Agent, or Firm—Mark A. Haynes; Kent R.
Richardson; Wilson, Sonsini, Goodrich & Rosati

[57] ABSTRACT

An atomic type switch mesh is combined with standard local
area network links, such as high speed Ethernet, and a
bridge-like protocol to provide a high performance scalable
network switch. The network switch comprises a plurality of
switch nodes, a first set of communication links which are
coupled between switch nodes internal to the network
switch, and a second set of communication links which
comprise network links from switch nodes on the border of
the network switch to systems external to the network
switch. The respective switch nodes include a set of parts
(having more than two members) which are connected to
respective communication links in cither the first or second
set of communication links. Each port in the set comprises
a medium access control (MAC) logic unit for a connec-
tionless network protocol, preferably high speed Ethernet.
The switch nodes also include a route table memory which
has a set of accessible memory locations that store switch
route data specifying routes through the plurality of switch
nodes within the boundaries of the network switch. Flow

detect logic is coupled with the set of parts on the switch
node, which monitors frames received by the set ofports and
generates an identifying tag for use in accessing the route
‘table memory. Finally, the switch node includes node route
logic which is coupled with the flow detect logic, the route
table memory and the set of ports. The node route logic
monitors frames received by the set of ports to route a
received frame for transmission out a port in the set of ports.

56 Claims, 6 Drawing Sheets

NOACEx. 1015 Page 190



NOAC Ex. 1015 Page 191

 
°

QO

5,802,054
Page 2 

OTHER PUBLICATIONS

ATOMIC: A Low-Cost, Very—High-Speed LAN, by D.
Cohen, G. Finn, R. Felderman, A. DeSchon.
The Design of the Caltech Mosaic C Multicomputer, C.
Seitz, N. Boden, J. Seizovic, and W. Su, Computer Science
256-80, California Institute of Technology.
802.3z Higher Speed Task Force Objectives (Gigabit Eth-
ernet), Apr., 1996.

Netstation Architecture Multi~Gigabit Workstation Network
Fabric, G. Finn, P, Mockapetris, USC/Information Sciences
Institute.

A Zero—Pass End-to-End Checksum Mechanism for IPv6’,
G. Finn, S. Hotz, C. Rogers, USC/Information Sciences
Institute, Dec., 1995.

Network Backplane, G. Finn, USC/Information Sciences
Institute, Apr., 1994.

NOACEx. 1015 Page 191



NOAC Ex. 1015 Page 192

 
o QO

U.S. Patent Sep. 1, 1998 Sheet 1 of 6 5,802,054

  

 
ATOMIC MESH

NETWORK SWITCH

, 12-5

| i ’ Acie STATION
11-9 17

END
STATION 12-6

42-9 END

itn|=
12-7

” FIG.1

NOACEx. 1015 Page 192



NOAC Ex. 1015 Page 193

 
& O

U.S. Patent Sep. 1, 1998 Sheet 2 of 6 5,802,054

121 122 123

PHY PHY PHY

105 102 110 111

PHY SWITCH SWITCH
4-2 1-3

Flow 1-113p-125
.

121

PHY SWITCH PHYmm|PHY|
_ RAM FRA RAM

120] FLow FLOW FLOW|y-114
PHY SWITCH SWITCH SWITCH44 32 33 PHY|108

" Ra RAB Ra

119] Flow FLOW Flowjy7115
PHY SWITCH SWITCH SWITCH|PHY|

ST a8 PRAM|147 [RAM]=446|RAM|‘27
PHY|PHY|PHY

430 129 128

151

FIG. 2
150

NOACEx. 1015 Page 193



NOAC Ex. 1015 Page 194

 
% O QO

 

 
 

  
  
 

 

U.S. Patent Sep. 1, 1998 Sheet 3 of 6 5,802,054

[a0Tet

| FLOW SWITCH NODE 270-1
| Ic TO OTHER
| CHIP
| 21 260-1 204

270-2

| FLOW 201-2 |y-203-2 208
| ‘Losie SWITCH (irYS} i PORT 2-(N FLOWS) PORT2 , PHY
| 1 260-2

I ees 271
| 212 {
| e {
| (ROUTE e
| TABLE 210 902-X i
| MGMT) 201-X |(—203-Xp~270-X

| CPU SWITCH ar) TO OTHER
(NODE PORT X : CHIP

260-X

| {
| I
{ 213 |
{ ARBITER 211 |
|
I I
Lowe 1 FIG. 3

BUFFER(S) 
250

TAG[ROUTEHDR BLK-UNBLK[AGE...|
251 252 253 254

NOACEx. 1015 Page 194



NOAC Ex. 1015 Page 195

U.S. Patent Sep. 1, 1998 Sheet 4 of6 5,802,054

300

 
 

 
 

  
 
 

 FRAME

RECEIVED ON PORT N

FIG. 4 YES
ROUTE HEADER?

GENERATE TAG FROM
FLOW DETECT

ADD ROUTE HEADER

 
 

DECREMENT HEADER,
TRANSMIT ON PORT [D IN

HEADER

 
 
 

TRANSMIT ON DEFAULT
PORT

 
NOACEx. 1015 Page 195

 



NOAC Ex. 1015 Page 196

 

  

  
 
 

 

wz

wgLOS&at|13SMO7dHSVH_|@%Yjwmorsnsvi—zOat9‘Sidwv@=|8MOT4HSVH_|ineos]fe{moras_}+—=eggauaaya1avi3in0w|_9MOTSHSVH_|=SLy¢—~snounsvd+—S:waa{ymca_—ZZ|emotansvdbe—°SSIMULIH.—|znorssinbe—8Lp|LMOT4HSVH|
00g

xSWVuS3Q3AI3034
=

COs

wnYOLVYINADHSVH
~=—5

3eyzrLipolya|doa|wnsyoaHo||usavanal|osm|zounos| issaq_|40S}~+—00+’W}g0PLOvgop!Sor
a)

 



NOAC Ex. 1015 Page 197

 

 

Ree

¥F ss

a

"5Aanton

U.S. Patent Sep. 1, 1998

700
 
  

 
 
 

 
 
   
 

 
 
  
 

FRAME

RECEIVED IN ROUTER

 GENERATE ROUTE
HEADERS FOR FLOWS

SWITCHES

 SEND MSG TO FLOW

SWITCHES TO UPDATE

ROUTE TABLES AND
BLOCK MATCHING

PACKETS

703

FORWARD PACKET TO
DESTINATION

704

  SEND MSG TO FLOW
SWITCHES TO UNBLOCK

O

Sheet 6 of 6 5,802,054

FIG. 7

NOACEx. 1015 Page 197



NOAC Ex. 1015 Page 198

 
Oo

5,802,054
1

ATOMIC NETWORK SWITCH WITH
INTEGRATED CIRCUIT SWITCH NODES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of network
intermediate devices, and more particularly to high-
performance switches for routing data in computer net-
works.

2. Description of Related Art
Network intermediate systems for interconnecting net-

works include various classes of devices, including bridges,
routers and switches. Systems for the interconnection of
multiple networks encounter 2 variety of problems,includ-
ing the diversity of network protocols executed in the
networks to be interconnected, the high bandwidth required
in order to handle the convergence of data from the inter-
connected networks at one place, and the complexity of the
systems being designed to handle these problems. As the
bandwidth of local area network protocols increases, with
the development of so-called asynchronous transfer mode
(“ATM”), 100 megabit per second Ethemet standards, and
proposals for gigabit per second Ethernet standards, the
problems encountered at network intermediate systems are
being multiplied.

One technique which has been the subject of significant
research for increasing the throughput of networks is known
as the so-called atomic LAN. The atomic LAN is described

for example in Cohen, et al., “ATOMIC: A Low-Cost, Very
High-Speed, Local Commnnication Architecture”, 1993
International Conference on Parallel Processing. There is a
significant amount of published information about the
atomic LAN technology. Felderman, et al. “ATOMIC: A
High-Speed Local Communication Architecture”, Journal
ofHigh Speed Networks, Vol. 1, 1994, pp. 1-28; Coben, et
al., “ATOMIC: A Local Communication Network Created
Through Repeated Application of Multicomputing
Components”, DARPA Coatract No. DABT63-91-C-001,
Oct. 1, 1992; Coben et al., “The Use of Message-Based
Multicomputer Components to Construct Gigabyte Net-
works”; DARPA Contract No. DABT63-91-C-001, pub-
lished Jun. 1, 1992; Finn, “An Integration of Network
Communications with Workstation Architecture”, ACM, A
Computer Communication Review, October 1991; Cohen et
al., “ATOMIC: Low-cost, Very-High-Speed LAN”, DARPA
Contract No. DABT63-91-C-001 (publication date
unknown, downloaded from Internet on or about May 10,
1996).

The atomic LAN is built by repeating simple four port
switch integrated circuits in the end stations, based on the
well known Mosaic architecture created at the Califomia
Institute ofTechnology. These integrated circuits at the end
stations are interconnected in a mesh arrangement to pro-
duce a large pool of bandwidth that can cross many ports.
Thelinks that interconnect the switches run at 500 megabits
per second. Frames are routed among the endstations of the
network using a differential source route code adapted for
the mesh. One or more end stations in the mesh act “address

consultants” to map the mesh and calculate source route
codes. All of the links are self timed, and depend on
acknowledged signal protocols to coordinate flow across the
links to prevent congestion. The routing method for navi-
gating through the mesh, known as “worm hole” routing is
designed to reduce the buffering requirements at each node.

The atomic LAN has not achieved commercial applica-
tion to a significant degree, with an exception possibly in

10

15

20

30

35

so

55

60

2

connection with a supercomputer known as Paragon from
Intel Corporation of Santa Clara, Calif. Basically it has been
only a rescarch demonstration project. Critical limitations of
the design include the fact that it is based on grossly
non-standard elements which make commercial use imprac-
tical. For example, there is no way to interface the switch
chips taught according to the atomic LAN project with
standard workstations. Each workstation needs a special
interface chip to become part of the mesh in order to
participate in the LAN. Nonetheless, the ATOMIC LAN
project has demonstrated a high throughput and readily
extendable architecture for communicating data.

Typical switches and routers in the prior art are based on
an architecture requiring a “backplane” having electrical
characteristics that are superior to any of the incoming links
to be switched. For example, 3Com Corporation of Santa
Clara, Calif., produces a product known as NetBuilder2,
having a core bus backplane defined which runs at 800
megabits per second. This backplane moves traffic among
various local area network external parts.

There are several problems with the backplane approach
typical ofprior art intermediate systems. First, the backplane
must be defined fast enough to handle the largest load that
might occur in the intermediate system. Furthermore, the
customer must pay for worst case backplane design, regard-
less of the customer’s actual need for the worst case system.
Second, the backplaneitself is just another communication
link. This communication link must be completely sup-
ported as a backplane for the network intermediate system,
involving intricate and expensive design. The lower vol-
umes for specialized backplane link further increases the
cost of network intermediate systems based on the back-
plane architecture.

Tn light of the ever increasing complexity and bandwidth
requirements of network intermediate systems in commer-
cial settings, it is desirable to apply the atomic LAN prin-
ciples in practical, easy to implement, and extendable net-
work intermediate systems.

SUMMARY OF THE INVENTION

According to the present invention, the fine scalability of
an atomic type LAN mesh, is combined with standard local
area network links, such as high speed Ethernet, and a
standard routing protocol to provide a high performance
scalable network switch. The need for the special purpose
backplane bus is removed according to this architecture,
while providing scalability, high performance, and simplic-
ity of design.

Accordingly, the present invention can be characterized as
a network switch that comprises a plurality of switch nodes
asranged in a mesh, a first set of internal communication
links which are coupled between switch aodes internal to the
network switch, and a second set of external communication
links which comprise network links from switch nodes on
the border of the network switch to systems external to the
network switch. The respective switch nodes include a set of
ports (having more than two members) which are connected.
to respective communication links in one of the first or
second sets of communication links. The ports in the set of
ports include respective medium access control (MAC) units
for transmission and reception of data frames according to a
network protocol, preferably a connectionless protocol like
high speedEthernet, and are connectable to a port on another
network switch node inside the mesh across an internal
communication link, or to a network communication
medium outside the mesh which constitutes, or is coupled
with, an external communication link.

NOACEx. 1015 Page 198



NOAC Ex. 1015 Page 199

 
}

5,802,054
3

The switch nodes also include resources to execute a
routing process for frames inside the mesh. These resources
include a route table memory which has a set of accessible
memory locations that store switch route data specifying
routes through the plurality of switch nodesinside the mesh
of the network switch for specific flowsofdata frames, or for
data frames having specific destination addresses. Flow
detect logic is coupled with the set of ports on the switch
node, which monitors frames received by the set ofparts and
generates an identifying tag for use in accessing the route
table memory. Example tags consist of a destination address
at one of the data link layer or the network layer, a portion
of the destination address, or hash values based on one or
mate fields in control segments of the frame. The tags
preferably act as flow signatures to associate a frame with a
sequence of frames traversing the switch. For cxample,
when a large file is transferred, a sequence of frames is
generated which constitutes a flow of data to a single
destination, and frames in the sequence have a single idcn-
tifying tag. Finally, the switch node includes node route
logic which is coupled with the flow detect logic, the route
table memory and the set of ports. The node route logic
monitors frames received by the set of ports to route a
received framefor transmission out a port in the set of ports.

The node route logic determines whether the received
frame includes a switch route field that indicates a port in the
set of ports to which the frame should be directed for
transmission. If the received frame includes a switch route

field, that field is updated according to a source route type
protocol, and the frame is forwarded with the updated switch
route field out the indicated post. If the received frame does
not include a switch route field, such as would normally be
the case for a frame entering the network switch at a switch
node on the border of the network switch, then the identi-
fying tag generated by the flow detect logic is usedto access
the route table memory. Switch route data is retrieved from
the route table memory, if an entry exists for the identifying
tag of the current frame. This data is used to generate a
switch route field for the frame, and to direct the frame out
& port indicated by the data.

The node route logic on the respective switch node also
includes logic that forwards a received frame for transmis-
sion on a defanit port in the set ofports, when the route table
memory does not include switch route data for the identi-
fying tag. The default port is coupled to a route leading to a
Processor in the system at which switch route data is
generated, such as a multi-protocol nctwork router either
internal or extemal to the network switch. Thus, the node
route logic further includes logic toreceive switch route data
from a remote system for a particular identifying tag. This
switch route data is stored in the route table memory in
association with the particular identifying tag. When a new
entry is made in a switch route table, frames having the
patticular identifying tag are blocked, with or without
buffering, until notification is received that it is clear to
forward frames having the particular ideatifying tag. This
blocking technique allows the remote system to which a
frame was directed for routing, to forward the frame to its
destination, prior to other frames in the same flow sequence
being routed. to that destination. This preserves the order of
transmission of frames in a particular flow. The node route
logic begins forwarding frames according to the switchroute
data stored in the route table memory for a particular tag
after it receives notification fromthe remote system that it is
clear to forward frames.

The term frame is used herein, unless stated otherwise, in
a generic sense as a unit of data transferred accordingto a

15

35

45

60

4

network protocol, intending to include data units called
frames, packets, cells, strings, or other names which may
have more specific meaning in other contexts.

In the preferred system, all the ports on the switch node
execute a single local area networkprotocol, Preferably this
protocol is an Ethernet protocol like the carrier sense,
multiple access with collision detection CSMA/CD protocol
of the widely used Ethernet standard and variants of it. More
preferably, the protocol is specified for operation at 100
megabits per second or higher, more preferably at the
emerging one gigabit per second Ethernet standard protocol
For example, half duplex and full duplex “Gigabit” Ethemet
(TEBE802.3z) or 100 Megabit Ethernet (802.3u)are used in
preferred embodiments.

Flow control between the nodes is handled according to
the standard LAN protocol of the ports, such as the Ethernet
protocol, Thus, managementof the frame flow through the
switch is conducted on a frame by frame basis with the
format of the frame inside the switch essentially unaltered
from the format entering or exiting the switch, with well
understood and easily implemented technology.

According to another aspect of the present invention, the
flow detect logic on the respective switch nodes comprises
logic which computes a plurality of hash values in response
to reapective sets of control fields in a received frame. The
Tespective seta of control ficlds comelate with different
network frame formats which might be encountered in the
network, Logic is also included which determines a particu-
lar network frame format for a reccived frame, and selects
one of the plurality of hash values as the identifying tag in
response to the particular network frame format that has
been detected. The hash values preferably comprise cyclic
redundancy codes which are generated with hardware CRC
generators. In this manner, the identifying tag for an incom-
ingframeis generatedvery quickly, allowing for cut through
of frames in a switch node so that a transmission of a frame
on an outgoing portcan begin before the complete frame has
been received at the incoming port.

The present invention can also be characterized as indi-
vidual switch nodes for use in a network switch in the
configuration described above. In another aspect, the net-
work switch node comprises an integrated circuit on which

the plurality ofports, the flow control logic, and the flowdetect logic are incorporated, and interconnected by anembeddedhigh speed bus. A system including any two or
mare of such integrated circuits combined together to form
a mesh, provide a network switch. According to another
aspect of the invention, the posts on the integrated circuits
are coupled with standard jackconnectors, or other standard
connector interfaces, allowing users of switch circuits
including a plurality of integrated circuits to connect them
together using cables in any desired configuration. Thus, a
very flexible switch architecture is provided which can be
configured for individual installations very easily.

Ahigh pexfonnance networkswitch is provided according
to the present invention based on a switch node made with

an integrated circuit having 3or more LAN ports. A frame
is routed amongst the nodes in the switch without moving
across any intermediate non-LAN bus (excluding the
memory interface in cach of the nodes used for the frame
buffers). A route decision is made in cach node based on a
switch route header attached to the LAN frame, or on the
Ethernet address contained within the frame, or directed to
a default route if no route is stored in the route table and the
Ethernet address is unknown. The flow control amongst the
nodes in the switch is handled based on standard LAN

NOACEx. 1015 Page 199



NOAC Ex. 1015 Page 200

 
ce

: O

5,802,054
5

control signals. In the preferred system, the standard LAN
interface amongst the nodes is 100 megabit per second or
higher Ethernet, and more preferably the emerging 1 gigabit
per second Ethernet protocol.

Other aspects and advantagesof the present invention can
be seen upon review of the drawings, the detailed descrip-
tion and the claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of a network including an
atomic network switch according to the present invention,
interconnecting a plurality of standard Ethemet links,

FIG. 2 is a block diagram of a network switch based on
a mesh of switch nodes according to the present invention.

FIG.3 is a block diagram of a switch node according to
the present invention.

FIG. 4 is a flow chart illustrating the process executed by
the node route logic in the switch node of FIG. 3.

FIG.5 is a diagram illustrating the process of generating
identifying tags based on cyclic redundancy code hash
generators for the flow detect logic of the system of FIG.3.

FIG.6 is a simplified block diagram of the flow detect
logic formultiple parallel fiows for use in the system ofFIG.
3.

FIG.7 is a flow chart illustrating the process executed in
arouter or other networkrouteprocessor for frames received
from the network switch, which do not have entries in the
route tables of the network switch.

DETAILED DESCRIPTION

A detailed description of embodiments of the present
invention is provided with reference to FIGS. 1 through 7,
where FIG. 1 illustrates the context in which the present
invention is utilized. In FIG.1, an atomic network switch 10
according to the present invention is connected by standard.
Ethernet links 11-1 through 11-9 to a plurality of end stations
12-1 through 12-9. The number of end stations and Ethernet
links shown in FIG. 1 is arbitrary. Alarger or smaller number
of links could be connected to a single atomic switch 10
according to the present invention, as described in detail
below. Furthermore, the connections 11-1 through 11-9 from
the atomic switch to the respective end stations are all
standard network connections, preferably CSMA/CD pro-
tocol links, such as the standard full duplex fast Ethemet
(IEZE802.3u) specified for 100 megabits per second cach
way, oc the emerging standard full duplex, 1 gigabit per
second Ethernet protocol. In the preferred system, all links
11-1 through 11-9 operate according to the same network
protocol. However, alternative systems accommodate mul-
tiple network protocols on the external ports of switch 10.

The end stations 12-1 through 12-9 may be personal
computers, high performance workstations, multimedia
appliances, printers, network intermediate systems coupled
to further networks, or other data processing devices as
understood in the art.

According to one embodiment of the present invention
one of the end stations, such as end station 12-1 includes
resources to manage the configuration ofthe atomic network
switch 10, such as initializing route tables, maintaining the
route tables, and providing other functions. Thus, end station
12-1 mayinclude resourcesto act as a multi-protocol router,
such as the NetBuildes2 manufactured by 3Com Corporation
of Santa Clara, Calif.

FIG.2 illustrates the internal architecture of the atomic
network switch 10 shown in FIG. 1. The atomic network

55

6

6

switch 10 is comprised of a plurality of switch nodes
arranged in rows and columns in FIG. 2. The switch nodes
are labeled in the drawing by column and row numbers.
Thus, the switch node in the upper left hand corner is node
1-1. The switch node at row 1, column 2 is node 1-2, and so
on throughout the mesh. In a preferred embodiment, cach
switch node includes an integrated circuit, such as integrated
circuit 105 in node 1-1, coupled to a memory chip, such as
chip 106 in node 1-1. Each of the nodes includes four ports.
Thus, node 1-1 includes part 101, port 102, port 103, and
port 104.

The boundary ofthe network switch in FIG. 2 comprises
the nodes 101 and 102 of node 1-1, port 110 of node 1-2, port
111 of node 1-3, 112 of node 1-3, port 113 of node 2-3, port
114of node 3-3, port 115 of node 4-3, port 116 of node 4-3,
port 117 of node 4-2, part 118 of node 4-1, port 119 of node
4-1, port 120 of node 3-1, and port 121 of node 2-1. Each of
the ports 116-121, 101 and 102 on the boundary of the
switch is connected to through a physical layer device,
121-134 to respective physical communication media, such
as fiberoptic cables, twistedpair cables, wireless links, such
as radio frequency or infrared channels, or other media
specified according to standard local area network physical
layer specifications. The connection between switch nodes,
such as the connection 140 between port 141 on node 2-3
and port 142 on node 2-2, consist of medium independent
interface connections which are defined for connection

between MAC logic on a port, and medium dependent
components for a port. However, these medium independent
connections are connected from MAC logic to MAC logic
directly. Preferably all the links between the ports in the
network switch exccute the same network protocol as the
ports on the boundary of the switch. However, alternative
systems support multiple protocol types at the bonndary.

Management of the configuration of the network switch is
accomplished in arouter 150 which is connected acrosslink
151 to the physical layer device 130 on the network switch.

The memory chips, such as chip 106 at node 1-1, in the
network switch are used to store route tables, and as frame
buffers used in routing of frames amongst the nodes ofthe
switch.

In operation, the network switch receives and transmits
standard LAN frames on physical interfaces 121-134.
Preferably, the LAN interconnections comprise CSMA/CD
LANs, such as 100 Megabit Ethernet (IEEE802.3 u), or 1
gigabit Ethermet. When a standard frame enters the switch at
one physical interface, it is directed out of the switch
through another physical interface as indicated by the
address data carried by the frame itscif. The individual nodes
in the switch include a switch routing feature. Each indi-
vidual node selects a port on which to transmit a received
frame based uponthe contents of the header of the incoming
frame.

There are two internal modes for routing frames inside the
switch. In the base mode, cach node routes frames using a
switch route header attached to the beginning of the regular
LAN frame. The switch route header in one example con-
sists of a series of bytes, each byte specifying one or more
hops of the route. The top two bits in one byte specify a
direction, in the next bits specify the distance. As a frame
moves through cach node, the header is updated until it
reaches the target. Before a frame leaves the mesh,all the
switch route bytes are stripped, and the frame has the same
format as it had when it entered the mesh or, if required, a
format adapted to the network protocol of the exit port.

The nodes of the switch, at least nodes on the boundary
of the switch, also have a look up mode. When a frame

NOACEx. 1015 Page 200



NOAC Ex. 1015 Page 201

 
Q S.

5,802,054
7

enters the switch, with no source route header, the Ethernet
addresses, or other fields of the control header of the frame
are utilized access the route table. In preferred systems, a
CRC-like checksum generator is run over the header of the
frame, or over selected fields in the header. At the end of the
header, the checksum, or the low order bits of the checksum,
are used as a hash code to access a route table stored in the
memory associated with the node. Other look up techniques
could be utilized for accessing the route table in the memory.
For example, the destination addressof the incoming frame
could be used directly as an address in the table.

If there is an entry in the route table correspondingto the
header of the frame, then the switch route data fromthe table
is used to create a switch route header. The header is
attached to the frame, and the frame is transmitted at the
appropriate port. If no entry is foundin the route table, then
the frame is routed to a default address, such as the address
of a muttiprotocol router associated with the switch. The
multiprotocol router at the default address also performs
toanagement functions such as reporting status, initializing
the network, broadcast functions, and managing node route
tables. Routing the frame to a default address alternatively
involves attachment of a switch route header to direct the
frame to the default address, or simply forwarding the frame
at a default port in the local node, such that the next node in
the mesh toreceive theframe also looks it up in its own route
table to determine whether the frame is recognized. Hither
way, the frame reaches the default address and is handled
appropriately.

Flow control of the frames in the mesh, and at the

boundary of the mesh, is based on the network protocol of
the links, such as Ethemet. Therefore, in the prefexred
Ethernet example, if a post is not available in a target node
due to a basy link, a collision onthelink, or lack ofmemory
space at the target node, the frame will be refused with ajam
signal or a busy signal on the link. The sending node buffers
the frame, andretrics the transmission later, according to the
backoff and retry rules of the protocol or other flow control
techniques of the protocol.

The standard higher-speed Ethernet protocols include
both half duplex and full duplex embodiments. The 100
Megabit per second. Ethernet, defined by IREE8023u,
clause 31 “MAC Control,” defines a frame-based flow
control scheme for the full duplex embodiment. Flow con-
trol slows down the aggregate rate of packets that a particu-
larport is sending. The method used revolves around control
frames distinguished by a unique multicast address and a
length/type field in the packet. When a MACpost controller
detects that it has received a control frame,the opcode in the
control frame is sensed, and transmission of packets is
controlled based on the opcode. In existing specifications,a
single opcode PAUSE is defined. Thus, in response to the
PAUSEopcode,transmission of packets is cither enabled or
disabled depending on the current state in a Xon/Xoff type
mechanism. Thus,this full duplex mode docs not depend on
the shared media, collision detect techniques of the classic
CSMA/CD protocols.

All the proposed standards in the Ethemet family basi-
cally use the standard 802.3/Ethemet frame format, con-
formed to the 802.2 logical link control layer interface, and
the 802 functional requirement document with the possible
exception of Hamming distance. Also, the minimum and
maximum frame size as specified by the current 8023
standard and by the half or full duplex operational modes is
different in the higher rate standards. Thus,the half and full
duplex embodiments of the 100 Megabit per second and
Gigabit per second Ethernet standards are often referred to

10

30

x

3s

6

65

8

as CSMA/CD protocols, even though they may not fit
completely within the classic CSMA/CD definition.

FIG. 3 is a simplified block diagram of a single node in
the network switch according to the present invention. The
node consists of an integrated circuit 200 comprising ports
201-1, 201-2, . .. 201-X. Each port includes the frame buffer
and port management logic normally associated with stan-
dard bridges. Also, coupled to cach of the ports, is a medium
access control MACunit202-1, 202-2, ...202-X. The MAC
units 202-1 to 202-X are coupled to medium independent
interfaces MII 203-1, 203-2, . . . 203-X.

In the embodiment of FIG. 3, cach of the medium
independent interfaces is connected to a connector jack
260-1, 260-2, 260-X. The connector jacks comprise a stan-
dard connector to which a cable 270-1, 270-2, 270-X is
easily connected by the user. The cable may comprise a
coaxial cable for medium independentinterfaces based on
seial data, or ribbon cables for wider data buses. A variety
of mechanical jack configurations can be used as known in
the art. For example, coaxial stubs can be mounted on
printed circuit boards adjacent each port of the integrated
circuits. A short coaxial cable is then connected from stub-

to-stub in order to arrange the plurality of integrated circuit
chips in a mesh that suits the particular installation. Also,
standard ribbon connector jacks can be surface mounted on
printed wiring boards adjacent to the integrated circuit. The
ribbon cables are connected into the ribbon connector jacks
in order to establish the inter-connection.

In alternatives, cach of the switches is mounted on a
daughter board, with jacks designed to be connected to a
mother board in which the data is routed according to the
needs of the particular application. In alternative systems,
the jacks 260-1 through 260-X are not included, and the
medium independent interfaces are routed in the printed
wiring board in a hard-wired configuration, designed for a
patticular installation.

Medium independent interfaces allow for communication
by means of the jacks 260-1 to 260-X and cables 270-1 to
210-X, or otherwise, directly with otherMAC units on other
switch infegrated circuits, or to physical layer devices for
connection to actual communication media. For example,
the MII 203-1 in FIG. 2 is connected directly to a port on
another node in the switch. The MII 203-2 in FIG. 2 is

connected to a physical layer device 204 for port 2 through
jack 271. The physical layer device 204 is connected to a
physical transmission medium 285 for the LAN being
utilized. The MII 203-X in FIG. 2 is coupled directly to
another chip within the switch mesh.

According to one embodiment of the present invention,
integrated circuit 20@ includes a memory interface 206 for
connection directly to an external memory, such as a Ram-
bus dynamic random access memory RDRAM 207. The
RDRAM 207 is utilized to store the switch route table 220,
and for frame buffers 221 utilized during the routing of
frames through the node.

The internal architecture of the integrated circuit 200 can
take on a varicty of formats. In one preferred embodiment,
the internal architecture is based on a standard bus archi-

tecture specified for operation at 1 Gigabit per second, or
higher. In one example, a 64 bit-wide bus 21€ operating at
100 Megahertz is used, providing 6.4 Gigabits per second as
a theoretical maximum. Even higher data rates are achiev-
able with faster clocks. The integrated circuit of FIG. 3
includes bus 210 which is connected to a memory arbiter
unit 211. Arbiter unit 211 connects the bus 210 to a CPU
processor 212 across line 213. The processor 212 is utilized

NOACEx. 1015 Page 201



NOAC Ex. 1015 Page 202

 
: OQ

5,802,054
9

to execute the route logic for the node. Each of the switch
parts 201-1 to 201-X is coupled to the bus 210, and thereby
through the arbiter 211 to the CPU 212 and the memory
interface 206. Also, flow detect logic 215 is coupled to the
bus 210 for the purpose of monitoring the frame received in
the node to detect flows, and to generate identifying tags for
the purpose of accessing the switch route table in the
RDRAM 207. The arbiter 211 provides for arbitration
amongst the ports, the flow detect logic, the memory, and the
CPU for access to the bus, and other management necessary
to accomplish the high speed transfer data from, the ports to
the frame buffers and back out the port.

A representative location 256 of the switch route table is
shown. The location 250 includes a field 251 far the iden-

tifying tag, a field 252 for the route header, a field 253 for
a block-unblock control bit, and a field 254 or fields for
information used in the management of the route table, such
as the age of the entry. The tag field 251 may be associated
with a location by one or more of using the tag or a portion
of the tag in the address, by storing all or part of the actual
tag data in the addressed location, or by using other memory
tag techniques.

The route header in the prefered embodiment consists of
a sequence of route bytes. The first field in a route byte
includes information identifying a direction, which corre-
sponds to a particular port on the node, and a secondfield in
the byte includes a count indicating the number of steps
through the switch from node to node which should be
executed in the direction indicated by the first field. For
example, an cight bit route byte in a switch having nodes
with four ports, includes a twobit direction field, and a six
bit count field, specifying up to 63 hops in one of four
directions. A sequence of route bytes is used to specify a
route through the switch. Thus, the switch route header uses
source routing techniques within the switch for thepurposes
of managing flow frames through the switch. The source
Toute approach may, for example, in a 4 port node include a
field for hops to right, hops to the left, hops up and hops
down. Thefirst field may carry information indicating left 4
hops, followed by a field indicating down 2 hops, followed
by a field indicating left one hop to exit the switch. Thus, a
frame would be transmitted out the left and in the right port
of 3 nodes, in the right and out the down port of 1 node, in
the top and out the down of1 node, and in the top and out
the left of the last node on the boundary of the switch. A
standard Ethernet frame format takes over for transmission

through the network outside the switches. As the size of the
mesh grows, and the bandwidth handled by the mesh
increases, more sophisticated routing techniques are avail-
able because of the flexible technology utilized. For larger
switches, more than one route exists for frames entering one
node and leaving on another node. Thus, the switch can be
configured to minimize the mumber of frames which are
blocked in passage through the switch, while maintaining
optimum utilization of the bandwidth available through the
switch.

The block-unblock field 253 is used during the updating
of the switch route table by the host CPU 212 to block
routing of frames corresponding to new entries, until it is
assured that the first frame in the flow to which the entry
cosresponds, arrives at its destination before the node begins
forwarding following framesin the flow to the destination
using the route header, in order to preserve the order of
transmissionof the frames. Theage ficld 254 is used also by
the CPU 212 for the purpose ofmanagingthe contents of the
route table. Thus, entries which have not been utilized for a
certain amount of time are deleted, or used according to

23

3

40

45

5S

6

65

10
least-recently-used techniques for the purposes of finding
locations for new entries. Other contral fields (not shown)
include a field for storing a count of the number of packets
forwarded by the node using this route, a drop/keep field to
indicate packets that will be dropped during overflow
conditions, a priority “high/low”field for quality of service
algorithms, and additional fields reserved for future use, to
be defined according to a particular embodiment.

The frame buffer 221 is preferably large enough to hold
several frames of the standard LAN format. Thus, a standard
Ethermet frame may comprise 1500 bytes. Preferably, the
frame buffer 221 is large enough to hold at least one frame
for each of the ports on the flow switch.

The flow switch 200 includes more than 2 ports, and
preferably 4 or more ports. All the ports are either connected
through the media independent interfaces 203-1 through
203-X directly to other chips in the mesh, or to physical
layer devices for connection to external communication
media.

The router or other management node for the switch may
communicate with each of the nodes 20@ using well-known
Inanagement protocols, such as SNMP (simple network
management protocol), enhancements of SNMP, or the like.
Thus, the RDRAM 207 associated with each node also
stores statistics and control data used by the management
process in controlling the switch node.

Although in FIG. 3, the RDRAM 207 is shown off the
chip 200, alternative embodiments incorporate memory into
the switch integrated circuit 200, for more integrated design,
smaller footprint for the switch, and other classic purposes
for higher integration designs.

The CPU 212 executes the node route logic for the node.
A simplified flow chart of the node route process executed
by CPU 211 is shown in FIG. 4.

The process begins with the receipt of the frame on a
particular post (step 300),The CPU first determines whether
the frame carries a route header (step 3@1). This process is
executed in parallel with the transferring of the frame being
received to the frame buffer of the node.If the frame carries

a route header, then the CPU updates the header by decre-
menting the hop count, or otherwise updating the informa-
tion to account for a traversed leg of the route according to
the particular switch route technique utilized. The CPU
transmits the frame (with updated header) on the port
identified by the header (step 302). If at step 301, no switch
route header was detected, the flow detect logic is accessed
to determine a tag for the frame (step 303). The tag is
utilized by the CPU to access entries in the route table (step
304). If a match is found in the route table, then a route
header is generated for the frame (step 305). Then, the
header is updated (if required), and the frame is transmitted
on the port identified by the data in the table (step 302). If
at step 304, no match was found in the route table, then the
frame is transmitted on a default port (step 3@6). An alter-
native techniqueto transmitting the frame on a default port,
is to add a default route header to the frame, and transmit the
frame according to the information in the default route
header. In this manner, subsequent nodes in the switch will
not be required to perform the look-up operation for the
purposes of routing the frame. However, it may be desirable
to have each node look up the frame in its own route table,
in order to insure that if any node already bas data useful in
forwarding the frame, then that frame will be forwarded
appropriately without requiring processing resources of the
management process at the default address.

FIG. 5 illustrates the technique executed by the flow
detect logic in generating an identifying tag for the frame

NOACEx. 1015 Page 202



NOAC Ex. 1015 Page 203

 
 

 

| O eSOo

5,802,054
ll

being received. FIG. 5 includes the format of a standard
Ethernet(802.3) style frame 400. The frame includesa start
of frame deliminator SOF in field 401. A destination address
is carried in field 402. A source address is carried in field
403, and miscellaneous control information is carried in
additional fields 404. A network Jayer header, such as an
Internet protocol header in this example, is found in field
405. Other style petwork layer headers could be used
depending on the particular frame format. The data field of
variable length is found at section 406 ofthe frame. The end
of the frame includes a CRC-type checksumfield 407 and an
end-of-frame deliminator 408. The flow detect logic runs a
CRC-type hash algorithm over selected fields in the control
header of the frame to generate a pseudo-random tag. Thus,
the ficld 410, the field 411,the field 412, and the field 413
are selected for input into a CRC hash generator 414,The tag
generated by the hash generator 414 is supplied on line 415
for use in accessing the route table 416. The route table
either supplies a route header on Line 417,or indicates a miss
on line 418. In this way, the route management software
executed by the CPU can make the appropriate decisions.

The embodiment of FIG. 5 selects a particular set offields
within the frame for the purpose of generating the pseudo-
random tag. The particular set of fields is selected to
cosrespond to one standard frame format encountered in the
network. However, a variety of frame formats may be
transmitted within a single Ethernet style of network,
although in this example, a CRC-type hash generator is
utilized, relying on typical CRC-type algorithms,referred to
as polynomial arithmetic, modulo IL This type of arithmetic
is also referred to as “binary arithmetic with no carry” or
serial shift exclusive-OR feedback. However, a varicty of
pseudo-random number generation techniques can be
utilized, other than CRC-like algorithms. The two primary
aspects needed for a suitable pseudo-random hash code are
width and chaos, where width is the number of bits in the
hash code, which is critical to prevent exrors caused by the
occurrence of packets which are unrelated but nonetheless
result in the same hash being generated, and chaos is based
on the ability to produce a number in the hash register that
is unrelated to previous values.

Also, according to the present invention, the parsing of
the frames incoming for the purposes of producing an
address to the look-up table can take other es. This
parsing can be referred to as circuit identification, because it
is intended to generate a number that is unique to the
particular path of the incoming frame.

Thecircuit identification method depends on verifying a
match on specific fields of numbers in the incoming frame.
There are two commontable look-up methods, referred to as
binary search and hash coding. The key characteristic of
binary search is that the time to locate an entry is propor-
tional to the log base 2 of the number of entries in the table.
This look-up time is independent of the number ofbits in the
comparison, and the time to locate a number is relatively
precisely known.

A second, more preferred, method of look-up is based on
bash coding, In this technique, a subset of address field or
other controlfields of the frame are used as a short address
to look into the circuit table. If the circuit table contains a
match to the rest of the address field, then the circuit has
been found. If the table contains a null value, then the
address is known notto exist in the table. The hash method
has several disadvantages. It requires a mostly empty table
to be efficient. The time to find a circuit cannot be guaran-
teed. The distribution of duplicates may not be uniform,
depending on the details of which fields are selected for the
initial address gencration.

25

sO

55

65

12

The address degeneracy problem of the hash coding
technique is reduced by processing the initial address frag-
mentthrough a polynomial shift register. This translates the
initial address to a uniformly-distributed random number. A
typical example of random number generation is the CRC
algorithm mentioned above. In a preferred hashing
technique, the hardware on the flow switch includes at least
a template register, pseudo-random number generation logic
and a pseudo-random result register. The template register is
loaded to specify bytes of a subject frame to be included in
the hash code. The template specifies all protocol-dependent
fields for a particular IL. The fields are not distin-
guished beyond whether they are included in the hash or not.
As the frame is processed, cach byte of the initial header is
either included in the hash function or it is ignored, based on
the template. A hash function is generated based on the
incoming packet and the template. The pseudo-random
number generator is seeded by the inputhash bits selectedby
the template. The change of a single bit in the input stream
should cause a completely unrelated random number to be
generated. Most commonalgorithms for generating pseudo-
random numbers are linear-congrucntial, and polynomial
shift methods known in the art. Of course, other pseudo-
random ourober generation techniques are available.

A first field of the pseudo-random number is used as an
address for the look-up table. The number of bits in this ficld
depends on the dimensions of the look-up table. For
example,if the circuit table has 64,000 possible entries, and
the hash number is eight bytes long, the first two bytes are
used as an address. The other six bytes are stored as a kcy
in the hash table. if the key in the hash table matches the key
in the hash code, then the circuit is identified. The additional
bytes in the table for the addressed entry specify the route to
be applied. The length of the pseudo-random hash code is
critical, to account for the probability that two unrelated
frames will result in the same hash number being generated.
Therequired length depends on thesizeof the routing tables,
aad the rate of turnover of routes.

The problem with a pure hash code circuit identification
technique is that there is a chance of randomly misronting a
packet. The problemarises when you are geucrating random
numbers out of a larger set. There is a chance that two
different input patterns will produce the same hash code.
Typically, a hash code will be loaded into a table with a
known route. Then a second, different, packet will appear
that reduces to the same hash code as the onc already in the
table. The second packet will be falsely identified as having
a known route, and will be sent to the wrong address. The
exact mechanism of this exror can be understood by the
well-known statistics of the “birthday problem.” The “birth-
day problem” answers the question, “What is the probability
that two people in a group will have the same birthday?” It
turns out that the number of people in a group required for
there to be a likelihood of two people having the same
birthday is quite small. For example, there is a 50% chance
that two people out of a group of 23 will have the same
birthday.

The probability of a switching exror depends on the
number of circuits active. For example, if there are no
circuits active, then there is no chance that an invalid circuit
will be confused with another circuit, since there are no valid
circuits.As each circuit is added to the table, it decreases the
remaining available space for other numbers by approxi-
mately (4)"™, where “bits” is the number of bits in the hash
code. If the hash code is 32 bits long, then each entry into
the circuit table will reduce the remaining code space by
(4), which is equal to 2.32x10-?°. The cumulative prob-

NOACEx. 1015 Page 203



NOAC Ex. 1015 Page 204

yi

es33

ISLSSSARINMREIT:>Stor

 
“z.

m=
mat?

 

5%

Megp

eeaaeaeaes
sae

ere shenares

menteyeeTSS

#

Ww

 

: O

 

5,802,054
13.—C, 14

ability of not making an error in the circuit table is equal to Example for IP:
the product of the individual entry errors up to the size of the
table. This is (1)*(114°7)*(1342%)*(1-3/2°4)... *(1-n/2>7),where n is the number of entries in the table In the caseof Preamble 64 bits sre discarded
a 32-bit hash code, and an 8,000-entry circuit table, thes Destimation «sa 2-4, open
probability of making an exrorin the table would be about Packet type bytes 13-14 Ignore (8023 length)
0.7%. With a 64,000-entry circuit table, the probability of an byte 15: TP byte 1 = version length =
earor would be about 39%. veaS: eaeate pe = Ignore

Using a 32-bit hash code and some typical-sized circuit 19-22: Pss = Ignore
tables indicates that the conventional wisdom is correct. 19 2 9 =TIL= optional
That is, there will be routing errors if only a 32-bithash code P10 =Prom= optional
is used. However, if the number ofbits in the hash code is ms a Baechksum=Tenor
increased and probability is recalculated for typical-sized 31-34 IP 17-20 = Destination IP address = Used
circuit tables, we find that the probability of exror quickly 3s- PP ai- =
approaches zero for hash codes just slightly longer than 32
bits. Far example, an 8,000-cntry table with a 40-bit hash
code will reduce the exror rate to 0.003%. A 48-bit hash code
will reduce the error to 0.000012%. These calculations show

that a pure hash code look-up table can be used if the length
of the hash code is longer than 32 bits for typical-size tables.

As a further example, consider the case of a 64-bit hash
code. Assuming an 8,000-entry table, the probability of
making an error is 2*107'?, Even if the table is completely
replaced with new entries every 24 hours, it would take over
one billion years for an error to occur. Using a 64-bit hash
code with a 64,000-entry table would give a probability of
exror of 10-'°. Assuming the table tumed over every day,it
would take about 28 million years for an error to occur. An
exror might occur sooner, but the rate would be negligible.
In all cases, there is no realistic chance of making an exror 38
based on this routing technique within thelifetime of typical
networking equipment.

In a preferred embodiment, filtering mechanisms are

This means that the hash pointer generated either points to
a valid key or a miss is assumed. There is no linear search
for matching key. When a circuit is not found in the table,
the packet is routed to a default address. Normally, this
default address directs the packet to a stored program router.
The router will then parse the packet using standard
methods, and then communicate with the flow switch circuit
to update the circuit table with the comect entry. All subse-
quent packets are directly routed by the switch element
without further assistance from the router.

Example template organizations for the bridging

 

embodiment, the IP routing embodiment, and the IPX rout-
ing embodiment are set forth below.

Example for bridging:

Bests ethemet pecket==—-Preamble 64 bits are discarded
DestinationAddress: bytes 1-6 Used
SourceAddrees: bytes 7-12 Used
Packet Typo: bytes 13-14 are ignored (802.3 length)
Date bytes: 15 upto 60) sare ignored.
Cre: Last 4 bytes=are ignored 

The template register is 8 bytes long. Each bit specifies
one byte of the header. Thefirst bit corresponds to byte I of
the DestinationAddress.

The template for bridging is FF-F0-€0-00 00-00-00-00
The selector is: Always TRUE. Hierarchy=1 (default to

bridging)

50

55

 

Assume that optional fields are included in the pseudo-random hash code.

The template would then be: FF-F2-03-03 FC-0€-00-00
The selector is: Bytes 13-15=080045, Hierarchy=2

 
Example for IPX in an Ethernetframe:

Preamble 64 bits ero discarded
Destination bytes 1-6 Optional
Sourwe bytes 7-12
Type bytes 13-14 Optional (Selector=8137)
byte Px
15-16 1-2 Checisum=Ignore
17-18 34 Length Ignore
19 5 Hop count Optional
0 6 Type Optional (Selector = 2 or 4)21-24 7-10 Dest Net Use
25-30 11-16 Dest Host Use
31-32 17-18=Dest Socket Ignow
33-36 19-22 Sre Net Use

7" as Sre Host UseIgnore

a(with optional fields): FP-PC-3E-FC FF-C0-00-00Bytes 13-14 = 8137, Hierarchy = 2 

The examples shown are representative, and may not
comespond to what would actually be required for any
particular application. There are many protocol pattern pos-
sibilities. Some combinations may not beresolvable with the
hierarchy described in these three examples.

In the embodiment in which there are a number of filters
operating in parallel, the flow detect logic includes the
template register discussed above, a second register loaded

with & template for detecting the specific protocal typeby the template register. This feeds combina-tional logic that provides a boolean function, returning a tue
or false condition based on a string compare of a section of
the frame to determine the protocol. Athirdregister is loaded
with a hierarchy number, which is used to arbitrate among
similar protocols, which might simultancously appear to be
true based on the second protocol detect register. A fourth
register is optional, and contains a memory start address
which triggers the operation of the filter.

The multiple instantiations ofthe filters operate in paral-
Ie. The filters can be reprogrammed onthe fly to support the
exact types of traffic encountered. Furthermore,the filters
may operate in a pipeline mode along a series of switching
nodes. Bach protocol returns its hierarchy number when that
filter detects the protocol pattern contained in the template.
For example, bridging protocol may be defined as true for
hierarchy 1 for all frames, If no stronger filter fires, such as
an IP or IPX filter, then the bridgingfilterwill be selected as
the default.

Thus, the flow detect logic in a preferred system executes
a plurality of hash flow analyses in parallel as illustrated by

NOACEx. 1015 Page 204



NOAC Ex. 1015 Page 205

 
5,802,054

15

FIG. 6. Thus in FIG. 6, a received frame is supplied on line
500 in parallel to hash flow logic 1 through hash flow logic
N, each flow corresponding to a particular frame format.
Also,the received frame is supplied to a hash flow “select”
501 which is used for selecting one of the N flows. The
output of flows 1 through N are supplied through multi-
plexer 502 in FIG.6, which is controlled by the outputof the
select flow 501. The output of the select flow 501 causes
selection of a single flow on line 503, which is used for
accessing the route table by the CPU.

Thus a preferred embodiment of the present invention
uses a routing technique base on flow signatures. Individual
frames of data move from one of the Ethernet ports to a
shared buffer memory at the node. As the data is being
moved from the input port to the buffer, a series of hash
codes is computed for various sections of the input data
stream. Which bits are or are not included in each hash

calculation is determined by a stared vector in a vector
register corresponding to that calculation. For example, in
the most common case of an IP packet, the hash function
starts at the 96th bit to find the “0800” code following the
link-layer source address,it then includes the “45” code, 32
bits of IP source, 32 bits of IP destination, skips to protocol
ID 8 bits, and then at byte 2@ takes the source part 16 bits
and the destination port 16 bits. The result is a 64 bit random
number identifying this particular IP flow.

The hash code is looked up in or used to access 2 local
memory. If the code is found, itmeans that this flow type has
been analyzed previously, and the node will know to apply
the same routing as applied to the rest of the flow. If there
is no entry comespondingto this hash code, itmeans that the
flow has not been seen lately, and the node will route the
frame to a default destination. A least recently used
algorithm, or othercachereplacement scheme, is used to age
flow entries out of the local tables.

In practice, many filters operate simuliancously. For
example, filters may be defined for basic bridging, IP
routing, sub-variants,AppleTalk, and so on.The actual limit
to the number offilters will be determined by the available
space on the ASIC. Thelogic of thefilters is basically the
same for all thefilters. The actual function of each filter is

defined by a vector register specifying which bits are
detected.

A second feature is the use of multi-level filters. In the
common case simultancously supporting bridging, IP, and
IPX; abouttenfilters operate in parallel. An additional level
of coding is used to select which of the other filters is to be
used as the relevanthash code. This second level filterwould
detect whether the flow was IP or IPX for example.

In the case where the flow is not recognized, it is passed
to the default route. As the packet passes along the defanit
route, additional nodes may examine the packet and detect
its flow type based on different filters or on a different set of
flow signatures (hash table entries) stored. This method of
cascading filters and tables allows for the total size and
speed of the mesh to be expanded by adding nodes.
Ultimately,if a packet can notbe routed by any of the nodes
along the default route, the packet will arrive at the final
default router, typically a NetBuilder2. The default router
will analyze the packet using standard parsing methods to
determine its cosrect destination. A flow signature will be
installed in an appropriate node, or nodes, of the mesh so
that subsequentflows of the same signature can be routed
autonomously without further intervention.

A flow effectively defines a “circuit” or a “connection”;
however, in standard Ethernet design, packets are treated

10

35

@

16

individually without any regard to a connection. Typically a
router will analyze every single packetas if it had never seen
it before, even though the router might have just processed
thousands of identical packets. This is obviously a huge
waste of routing resources. The automation of this flow
analysis with multiple levels of parallel and cascaded hash-
ing algorithms combined with a default router is believed to
be a significant improvementover existing routing methods.

Flow based switchingis also critical to ensuring quality of
service guarantees for different classes of traffic.

FIG.7 is a flow chart illustrating the process executed in
the router or other management node, whenever a frame is
received which does not have a switch route header. Thus,
the process of FIG. 7 begins at step 700 where a frame is
received in the router, such as the router 150 in FIG. 2. The
router applies the multiprotocol routing techniquesto deter-
mine the destination of the frame. Based on the destination,
and other information about the flows within the switch,
switch route headers are generated for nodes in the switch
(step 761). Thus, a different route header is generated for
each node in the switch mesh, and correlated with the tag
which would be generated according to the received frame
at each node. Next, a message is sent to the nodes in the
switch to update the route tables with the new route headers,
and to blockframes which match the tag of the frame being
routed (block 782).

After step 702, the frame is forwarded from the router to
its destination (step 703). After the frame has been for-
warded to its destination, the router sends a messageto all
of the nodes in the switch to unblock frames which have a

matching tag (step 704). This blocking and unblocking
protocol is used to preserve the order in which frames are
transmitted through the switch, by making sure that the first
frame of a single flow arrives at its destination ahead of
following frames.

Logic in the nodes for the purpose of accomplishing the
blocking and unblocking operation take a variety of formats.
In one example, the entry at each location in the route table
includes a field which indicates whether the flow is blocked

or not. When an entry is first made in the route table, the
blocking field is set. Only after a special instruction is
teceived to unblock the location, is the blocking ficld
cleared, and use of the location allowed at the switch node.

Accordingly, in the preferred system the atomic network
switch according to the present invention is based on
repeateduse ofa simple4-port switch integrated circuit. The
integrated circuits are interconnected to create a mesh with
a large pool of bandwidth across many ports. The links that
interconnect the integrated circuits run sccording to a LAN
protocol, at preferably 100 megabits per second or higher,
such as a gigabit per second. Individual ports act as autono-
mousrouters between the boundaries of the switch accord-

ing to the switch route protocol which is layered on top of
the standard frame format. The overall bandwidth of the

switch can be arbitrarily increased by adding more atomic
nodes to the switch. Using a well-understood and. simple
interface based. on standard Bthemet LAN protocols, vastly
simplifies the implementation of each node in the switch,
because each is able to rely on well understood MAClogic
units and port structures, rather than proprietary complex
systems of prior atomic LANS. Furthermore, any node of
any switch can be connected to a physical layer device that
connects to an Ethernet medium, or can be disconnected
from the Ethernet medium and connected to another node

switch to readily expand and change the topology of the
switch. The fine granularity and scalability of the mesh

NOACEx. 1015 Page 205



NOAC Ex. 1015 Page 206

 

 

 
 

 

iiie
ae%re
&=Ls
5.

4u
w

weegatesad.ct

17

architecture, combined with the ability to optimize the
topology of the switchfor a particular environment allow

implementation of a high bandwidth, low cost networkswitch.

A high bandwidth and very flexible fetwork switch is
achievable according to the present invention with a simple,
scalable, low-cost architecture.

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise forms disclosed. Obviously,
many modifications and variations will be apparent to prac-
titioners skilled in this art. It is intended that the scope of the

invention be defined by the following claims agd their

1. For a network switch including a mesh of intercon-
nected network switch nodes, a network switch node com-
prising:

a set of ports having more than two members, and the
ports in the set inctuding respective medium access
contro] units for transmission and reception of data
frames according to a networkprotocol, the ports in the
set of ports being connectable to a port on another
network switch node inside the mesh, or to a network “
communication medium outside the mesh; and

node route logic, coupled with the set of ports, which
monitors frames received by the set of ports to route a
received frame for transmission according to the net-
work protocol to a sclected part in the set of ports,
including logic to select the selected port according to
rules for navigating through the mesh inside to the
network switch, and wherein the node route logic
forwards the received frame for transmission to a

default location of a multiprotoco] router resource
associated with the switch when the node route logic
cannot otherwise determine a route for the received
frame.

2. The network switch node of claim 1, wherein the
network protocol comprises a connectionless protocol.

3. The network switch node of claim 1, wherein the
network protocol comprises an Ethernet protocol.

4. The network switch node of claim 1, wherein the
uetwork protocol comprises an Ethermet, full duplex proto-
coL

5. The network switch node of claim 1, wherein ports in
the set of ports include medium independent interfaces for
the network protocol.

6. The network switch node of claim 1, further including:
route table memory, coupled with the node route logic,

having a set of accessible locations for storing switch
route data;

flow detect logic, coupled with the set of ports, which
monitors frames received by the set of ports and
generates an identifying tag for use in accessing the
Toute table memory;

wherein the node route logic includes logic which deter-
mines whether the received frame includes a switch

route field indicating a port in the set ofports, andifthe
received frame includes a switch route field, updates
the switch route field, and forwards the received frame
with the updated switch route field to the port indicated
by the switch route field, and if the received frame does
not include a switch route field, accesses the route table

, Memory using the identifying tag generated in the flow
detect logic to retrieve switch route data indicating a

5,802,054

5

18

port in the set ofports, adds a switch route field to the
received frame, and forwards the received frame with

the switch route field to the part indicated by the switch
route data.

7. The network switch node of claim 6, wherein the
default location includes a default port and wherein the node

_ Toute logic forwards the reccived framefor transmission on

10

15

25

30

33

60

65

the defaultport in the set ofports when the switch route table
does not include switch route data for the identifying tag.

8. The network switch node of claim 7, wherein the
default port is coupled to a route to a multi-protocol,
network route processor at which switch route data is
generated.

9. The network switch node of claim 6, including logic to
receive switch route data from a remote system for a
particular identifying tag, to store the switch route data in the
route table memory in association with the particular iden-
tifying tag, and to block frames having the particular iden-
tifying tag until notification is received that it is clear to
forward frames having the particular identifying tag, and
after notification is received that it is clear to forward frames

havingthe particular identifying tag, forward frames having
the particular tag according to the switch route data.

10. The network switch node of claim 6, wherein the
- default location includes a default port and wherein the node
route logic forwards the received frame for transmission on
the default port in the set of ports when the route table
memory does not include switch route data for the identi-
fying tag; and farther including:

logic to receive switch route data from a remote system
for a particular identifying tag, to store the switch route
data in the route table memory in association with the
particular identifying tag, and to block frames having
the particular identifying tag until notification is
received that it is clear to forward frames having the
particular identifying tag, and after notification is
received that it is clear to forward frames having the
patticular identifying tag, forward frames having the
patticular tag according to the switch route data.

11 The network switch node of claim 16, wherein the
default port is coupled to a route to a multi-protocol,
network route processor at which switch route data is
generated.

12, The networkswitch node of claim 6, wherein the flow
detect logic comprises:

logic which computes a plurality of hash valucs in
response to respective sets of control fields in a
received frame, where the respective sets of control
fields cocrelate with respective network frame formats;
and

logic which determines a particular network frame format
for a received frame, and selects one of the plurality of
hash values as the identifying tag in response to the
particular network frame format.

13. The network switch node of claim 12, wherein the
hash values comprise pseudo-random codes.

14.The network switch node of claim 6, wherein the flow
detect logic comprises:

logic which computes a hash value in response to a set of
control fields in a received frame, where the set of
control fields correlates with a network frame format,
and applies the hash value as the identifying tag.

15. The network switch node of claim 14, wherein the
hash value comprises a pscudo-random code.

16. The network switch node of claim 1, wherein the
network protocol comprises an Ethernet protocol, specified
for operation at 100 Megabits per second.

NOACEx. 1015 Page 206



NOAC Ex. 1015 Page 207

 

 

5
1 ”

D

5,802,054
19

17. The network switch node of claim 16, wherein the
Ethernet protocol comprises a full duplex protocol.

48. The network switch node of claim 1, wherein said set
of ports and said node route logic comprise elements of a
single integrated circuit.

19. The network switch node of claim 18, wherein ports
in the set of ports include medium independent interfaces for
the networkprotocol, and the networkprotocol comprises an
Ethernet protocol, specified for opezation at 100 Megabits
per second or bigher.

20. The network switch node of claim 19, wherein the
Ethernet protocol comprises a full duplex protocol.

21. The network switch node of claim 1, wherein ports of
the set of ports include medium independent interfaces for
the network protocol, the medium independent interfaces
defining a particular bus configuration, and further including
connectors coupled to the medium independentinterfaces
adapted to receive cables configured according to the par-
ticular bus configuration.

22. An integrated circuit, comprising:
a set of ports for access to respective communication

media, the set ofports having more than two members,
and the ports in the set including respective medium
access control logic for a network protocol;

a memory interface for connection to a route table
memory having a set of accessible locations for storing
switch route data;

flow detect logic, coupled with the set of ports, which
monitors frames received by the set of ports and
generates an identifying tsg for use in accessing the
route table memory; and

node route logic, coupled with the flow detect logic, the
memory interface and the set of ports, which monitors
frames received by the set of ports to route a received
frame for transmission to a port in the set of ports, the 35
node route logic determining whether the received
frame includes a switch route field indicating a port in
the set of ports, and if the received frame includes a
switch route field, updates the swifch route field, and
forwards the received frame with the updated switch
route field to the port indicated by the switch route
field, and if the received frame does not include a
switch route field, accesses the route table memory

generated in the flow detect logic to retrieve switch
route data indicating a port in the set of ports, adds a
switch route field to the received frame, and forwards
the receivedframewith the switch route field to the port
indicated by the switch route data and if the route table
memory docs not include switch route data for the
identifying tag, then forwards the received frame to a
default location of a multiprotocol router resource
associated with the switch.

23. The integrated circuit of claim 22, wherein tbe net-
work protocol comprises a connectionless protocol.

2A. The integrated circuit of claim 22, wherein the net-
work protocol comprises an Ethernet protocol.

25. The integrated circuit of claim 24, wherein the Eth-
ernet protocol comprises a full duplex protocol.

26. The integrated circuit of daim 22, wherein ports in the
set of ports include medium independentinterfaces for the
network protocol

27. The integrated circuitofclaim 22, wherein the default
location includes a default port and wherein the node route
logic forwards the received frame for transmission on the
default port in the set of ports when the switch route table
does not include switch route data for the identifying tag.

20

28. The integrated circuit of claim 27, including logic to
teceive switch route data from a remote system for a
particular identifying tag, to store the switch route data in the
route table memory in association with the particular iden-

5 tifying tag, and to block frames having the particular iden-
tifying tag until notification is received that it is clear to
forward frames having the particular identifying tag, and
after notification is received that it is clear to forward frames

having the particular identifying tag, forward frames having
10 the particular identifying tag according to the switch route

data.

29, The integrated circuit of claim 22, wherein the default
location includes a default port and wherein the node route
logic forwards the received frame for transmission on the

15 default port in the set of ports when the route table memary
does not include switch route data for the identifying tag;
and further including:

logic to receive switch route data from a remote system
for a particular identifying tag, to store the switch route
data in the route table memory in association with the
particular identifying tag, and to block frames having
the particular identifying tag until notification is
received that it is clear to forward frames having the
particular identifying tag, and after notification is
received that it is clear to forward frames having the
particular identifying tag, forward frames having the
particular identifying tag according to the switch routedata.

30. The integrated circuit of claim 22, wherein the flow
30 detect logic comprises:

logic which computes a plurality of hash values in
Tesponse to respective sets of control fields in a
received frame, where the respective sets of control
fields comelate with respective network frame formats;
and

logic which determines aparticular networkframe format
for a received frame, and selects one of the plurality of
hash values as the identifying tag in response to the
particular network frame format.

31. The integrated circuit of daim 3@, wherein the hash
valnes comprise pseudo-random codes.

32. The integrated circuit of claim 22, wherein the flow
detect logic comprises:

45 logic which computes a hash value in response to set of
control fields in a received frame, where the set of
control fields correlates with a network frame format,

and applies the hash value as the identifying tag.
33. The integrated circuit of claim 32, wherein the hash

value comprises a pseudo-random code,
34. The integrated circuit of claim 22, including an

embedded bus interconnecting the set of ports, the flow
detect logic, the node route logic and the memory interface.

35. The integrated circuit of claim 22, wherein the net-
55 work protocol comprises an Ethernet protocol, specified for

operation at 100 Megabits per second or higher.
36. The integrated circuit of claim 35, wherein the Eth-

ernct protocol compriscs a full duplex protocol.
37. The integrated circuit of claim 35, including a

6 bi-directional, embedded bus interconnecting the set of
ports, the flow detect logic, the node route logic and the
memory interface, the embedded bus specified for operation
at 1 Gigabit per second or higher.

38. The integrated circuit of claim 22, including the route
65 table memory on the integrated circuit.

39. A network switch, comprising:
a plurality of switch nodes;

NOACEx. 1015 Page 207



NOAC Ex. 1015 Page 208

5

5,802,054

5

21

a first set of communication links, communication links in
the first set coupled between switch nodes in the
plurality of switch nodes internal to the network switch;

a second set of communication links, communication
links in the second set comprising network links exter-
nal to the network switch;

the respective switch nodes in the plurality of switch
nodes including
a set of ports connected to respective communication

links in either the first set of communication links or
the second set of communication links, the set of
ports having more than two members, and the ports
in the set including respective medium access control
logic for a network protocol;

10

route table memory having a set of accessible locations 15
for storing switch route data which specify routes
through the plurality of switch nodes;

flow detect logic, coupled with the set of ports, which
monitors frames received by the set of ports and
generates an identifying tag for use in accessing the
route table memory; and

node route logic, coupledwith the flow detect logic,the
route table memory and the set of ports, which
monitors frames received by the set of ports to route
areccived frame for transmission to a port in the set
of ports, the node route logic determining whether
the received frame includes a switch route field

indicating a port in the set of posts, and if the
received frame includes a switch route field, updates
the switch route field, and forwards the received
frame with the updated switch route field to the port
indicated by the switch route field, and if the
received frame does not include a switch route field,
accesses the route table memory usingthe identify-
ing tag generated in the flow detect logic to retrieve
switch route data indicating a port in the set ofports,
adds a switch route field to the received frame, and
forwards the received frame with the switch route

field to the port indicated by the switch route data,
and if the route table memory does not include
switch route data corresponding to the identifying
tag, then forwarding the received frame to a default
location of a multiprotocol router resource associ-
ated with the switch.

40. The network switch of claim 39, whercin the network

Protocol for ports in the set ofports on the respective switcha connectionless protocolwalThe network vnteh of claims, wherein the network
Protocol for ports in the set of ports on the respective switch
nodes comprises an Ethernet protocol

42. The network switch of claim 41, wherein the Ethernet
protocol comprises a full duplex protocol

43. The network switch of claim 39, wherein ports in the
set of ports on the respective switch nodes include medium
independent interfaces for the network protocol.

44, The network switch of claim 39, wherein the default
location includes a default port and wherein the node route
logic on the respective switch nodes forwards the received
frame for transmission on the default port in the set of parts
when the switch route table does not include switch route

data for the identifying tag.
45. The network switch of claim 44, wherein the default

port is coupled to a route to a multi-protocol, network route
processor at which switch route data is generated.

46, The network switch of claim39,including logic on the
Tespective switch nodes to receive switch route data from a
remote system for a particular identifying tag, to store the

2s

30

35

40

43

355

65

22

switch route data in the route table memory in association
with the particular identifying tag, and to block frames
having the particular identifying tag until notification is
received that it is clear to forward frames having the
particular identifying tag, and after notification is received
that it is clear to forward frames having the particular
identifying tag, forward frames having the particular iden-
tifying tag according to the switch route data.

47, The network switch of claim 39, wherein the node
route logic on the respective switch nodes forwards the
received frame for transmission on a default part in the set
of ports when the route table memory does not include
switch route data for the identifying tag; and further includ-
ing:

logic on the respective switch nodes to receive switch
route data from a remote system for a particular iden-
tifying tag, to store the switch route data in the route
table memory in association with the particular identi-
fying tag, and to block frames having the particular
identifying tag until notification is received that it is
clear to forward frames having the particular identify-
ing tag, and after notification is received that it is clear
to forward frames havingthe particular identifying tag,
forward frames having the particular identifying tag
according to the switch route data.

48. The network switch of claim 47, wherein the default
port is coupled to a route to a muilti-protocol, network route
Processor at which switch route data is generated.

49. The network switch of claim 39, wherein the flow
detect logic on the respective switch nodes comprises:

logic which computes a plurality of hash values in
response to respective sets of controf fields in a
Teceived frame, where the respective sets of control
fields correlate with respective network frame formats;
and

logic which determines a particular networkframe format
for a received frame, and selects one of the plurality of
hash values as the identifying tag in response to the
particular network frame format.

50. The network switch of claim 49, wherein the hash
values comprise pseudo-random codes.

SL The network switch of claim 39, wherein the flow
detect logic on the respective switch nodes comprises:

logic which computes a hash value in response to set of
control fields in a received frame, where the set of
control fields cocrelates with a network frame format,
and applies the hash value as the identifying tag52. The network switch of claim 51, wherein thehash

value comprises a pseudo-random code.
53. The network switch of claim 39, wherein the network

protocol for ports in the set ofparts on the respective switch
nodes comprises an Ethernet protocol, specified for opera-
tion at 100 Megabits per second or higher.

54, The network switch of claim 53, wherein the Ethernet
protocol comprises a fall duplex protocol.

55. The network switch of claim 39, wherein the MAC
logic for ports in the set of ports on the respective switch
nodes executes the same networkprotocol for all ports in the
set of ports.

56. The network switch of claim 39, wherein ports in the
set of ports on the respective switch nodes include medium
independentinterfaces for the networkprotocol, the medium
independent interfaces defining a particular bus
configuration, and further include connectors coupled to the
medium independent interfaces adapted to receive cables
configured according to the particular bus configuration.

*s 8 # mw ®

NOACEx. 1015 Page 208



NOAC Ex. 1015 Page 209

23K

odd > 1
  
 
 

Patent

Group Art Unit: 2755  
 

  
 
 

 
Filed: June 30, 2000 Examiner:

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFICIN A
NETWORK

achnology Center 2100  
Commissioner for Patents

Washington, D.C. 20231

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

 

Transmitted herewith are:

X_ An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copyof eachreferencecited in form 1449.

A checkfor petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communicationorcredit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Date: 20. MV)ol 2002
Respectfully submitted,

aoa Rosenfeld
Attorney/Agent for Applicant(s)

. Reg. No. 38687
Correspondence Address:

Dov Rosenfeld

5507 College Avenue, Suite 2
Oakland, CA 94618

Telephone No.: +1-510-547-3378

  
  

  

Certificate of Mailing under 37 CFR 1.18

 I herebycertify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissionerfor Patents, Washington, D.C. 20231.

Date of Deposit: 2© f War 206 2_ Signature: Z
; Dov Rosenfeld, Reg. No. 38,687

NOACEx. 1015 Page 209



NOAC Ex. 1015 Page 210

 

© O
UNITED STATES PATENT AND TRADEMARK OFFIGE 

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address COMMISSIONER FOR PATENTS

BO Box 1450
Alexandna, Virginia 22313-1450
www uspto gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO CONFIRMATION NO.

09/608,237 06/30/2000 Russell S. Dietz APPT-001-1 9993

 
7590 06/25/2003

Dov Rosenfeld EXAMINER
Suite 2

5507 College Avenue MEKY, MOUSTAFA M
Oakland, CA 94618 ART UNIT PAPER NUMBER

2157 LDATE MAILED:06/25/2003

Please find below and/or attached an Office communication conceming this application or proceeding.

PTO-90C (Rev. 07-01)

NOACEx. 1015 Page 210



NOAC Ex. 1015 Page 211

‘ , : Application No. Applicant(s) 
  09/608,237 DIETZ ET AL.

Office Action Summary Examiner Art Unit
Moustafa M Meky 2157 oe

-- The MAILING DATEofthis communication appears on the cover sheet with the correspondenceaddress--
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM

THE MAILING DATE OF THIS COMMUNICATION.Extensions of time may be available underthe provisions of 37 CFR 1.136(a) in no event, however, maya reply be timelyfiled
after SIX (6) MONTHSfrom the mailing date of this communication.

- If the period for reply specified aboveis less than thirty (30) days, a reply within the statutory minimum ofthirty (30) days will be consideredtimely.
lf NO period for reply is specified above, the maximumstatutory period will apply and will expire SIX (6) MONTHSfrom the mailing date of this communication.
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED(35 U.S C.§ 133)

- Anyreply received by the Office later than three monthsafter the mailing date of this communication, evenif timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

 
 

 
 
 

 
 

 
 

 1)X] Responsive to communication(s) filed on 18 April 2002.

2a)L]_ This action is FINAL. 2b)X] This action is non-final. 
3)L] Sincethis application is in condition for allowance exceptfor formal matters, prosecution as to the merits is

closed in accordancewith the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.
Disposition of Claims

 
 

4)IX] Claim(s) 1-59 is/are pendingin the application. 
 

 4a) Of the above claim(s) is/are withdrawn from consideration.

5) Claim(s) 1-10 is/are allowed.

6)X] Claim(s) 11-59 is/are rejected.

7)L) Claim(s)__ is/are objectedto.

8)L] Claim(s)
Application Papers

 
 
 

are subject to restriction and/or election requirement.
 

 
9)L] Thespecification is objected to by the Examiner.

10)L] The drawing(s)filed on

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)L_] The proposed drawing correction filed on is: a)_] approved b)[_] disapproved by the Examiner.

If approved, corrected drawings are requiredin reply to this Office action.

 
is/are: a)LJ acceptedorb)_] objected to by the Examiner.

 
 
 
 

 

 
12)C The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)_] Acknowledgmentis madeof a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or(f).

a)LJAll b)L) Some* c)L] Noneof:

1.) Certified copies of the priority documents have been received.

 

 
 

2.L] Certified copies of the priority documents have been received in Application No. 
3...) Copiesof the certified copies of the priority documents have beenreceivedin this National Stage

application from the International Bureau (PCT Rule 17.2(a)).
* See the attached detailed Office action for a list of the certified copies not received.

 
 

14)X] Acknowledgmentis madeof a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application). 
a) LJ Thetranslation of the foreign language provisional application has been received.

15)L] Acknowledgmentis madeof a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.
Attachment(s)

 

 
1) Xl Notice of References Cited (PTO-892) 4) CT Interview Summary (PTO-413) Paper No(s).
2) C] Notice of Draftsperson’s Patent Drawing Review (PTO-948) 5) CT Notice of Informal Patent Application (PTO-152)
3) Xl Information Disclosure Statement(s) (PTO-1449) Paper No(s) 4,5 . 6) C Other:

 
 
U.S Patent and Trademark Office ve ™
PTO-326 (Rev. 04-01) Office Action Summary Part of Paper No. 6

 



NOAC Ex. 1015 Page 212

O ©)

Application/Control Number: 09/608,237 Page 2

Art Unit: 2157

1. Claims 1-59 are presenting for examination.

2. Claims 1-10 are allowed overthe prior art of record.

2.1. The prior art of record taken singularly or in combination does not teach or suggest a

packet monitor havinga state patterns/operations memory configuredto store a set of predefined

state transition patters and state operations suchthat traversing a particular transition pattern as a

result of a particular conversational flow-sequence ofpackets indicates that the particular

conversational flow-sequenceis associated with the operation of a particular application program

and a state processor configured to carry out any state operations in the state patterns/operations

memory for the protocol and state of the flow of the packet (claim 1).

3. The followingis a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the

basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by anotherfiled in the
United States before the invention thereofby the applicant for patent, or on an international application by
another whohasfulfilled the requirements of paragraphs (1), (2), and (4) of section 371© ofthis title before
the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act

of 1999 (AIPA) do not apply to the examination of this application as the application being

examined wasnot(1) filed on or after November 29, 2000, or (2) voluntarily published under 35

U.S.C. 122(b). Therefore, this application is examined under 35 U.S.C. 102(e) prior to the

amendmentby the AIPA (pre-AIPA 35 U.S.C. 102(e)).

NOACEx. 1015 Page 212



NOAC Ex. 1015 Page 213

eo

©) C)

Application/Control Number: 09/608,237 Page 3

Art Unit: 2157

4. Claims 11-59 are rejected under 35 U.S.C. 102(e) as being anticipated by Mulleret al.

(US Pat. No. 6,483,804).

5. Asto claims 11-12, Muller shows in Fig 1A, a method of examining packets through a

connection point(the point connects the network to the NIC ofthe circuit 100).

Muller discloses the following steps:

* receiving a packet from a packet acquisition device (NIC), see col 6, lines 26-29, lines 54-60,

col 8, lines 33-35;

* performing one or more parsing/extraction operations to create a record comprising a function

of selected portions of the packet, see col 7, lines 31-44, col 8, lines 50-67, col 9, lines 1-5;

* looking up a flow-entry database 110 to determineifthe packetis of an existing flow,see col 9,

lines 18-24, col 11, lines 32-45 ;

* if the packetis of an existing flow, classifying the packet as belongingto the found existing

flow, see col 11, lines 46-52; and

* if the packet is of a new flow,storing a new flow-entry in the flow-entry database 110, see col

11, lines 46-52.

6. Asto claims 13-15, Muller teaches updating the flow-entry ofthe existing flow including

measuresselected from the set consisting of the total packet count,see col7, lines 36-45, col 8,

lines 50-54, lines 64-66.

7. As to claim 16, Muller showsthat the function of the selected portions ofthe packet

forms a signature (flow key), see col 8, lines 64-67, col 9, lines 1-5, col 11, lines 35-37.

NOACEx. 1015 Page 213



NOAC Ex. 1015 Page 214

Application/Control Number: 09/608,237 | Page 4

Art Unit: 2157

8. As to claims 17-20, Muller showsat least one of the protocols uses source and destination

addresses, see col 7, lines 31-40.

9. Asto claim 21, Muller shows the looking up of the flow-entry database 110 uses a hash
of the selected packet portions, see col 9, lines 18-22.
10. As to claim 22, Muller shows determining a set of one or more protocol from data in the

packet, see col 10, lines 63-67, col 11, lines 27-30.

11. As to claim 23, Muller showsobtaining the last encountered state of the existing flow and

performing any state operations required for a new flow,see col9, lines 15-28.

12. As to claim 24, Muller showsidentifying ofthe application program ofthe flow,see col

8, lines 60-61, col 12, lines 45-47.

13. As to claim 25, Muller showsstoring identifying information for future packets, see col 9,

lines 26-28.

14. As to claim 26, Muller showsidentifying the application program ofthe flow,see col 8,

lines 60-61, col 12, lines 45-47.

15. As to claim 27, Muller showssearching the parser record for the existence of one or more

referencestrings, see col 9, lines 32-36.

16. As to claim 28, Muller showsthe state operations are carried by state processor, see col

9, lines 42-47, col 10, lines 61-63

17. As to claim 29-59, the claims are similar in scope to claims 11-28, and they are rejected

underthe samerationale.

NOACEx. 1015 Page 214~—mw



NOAC Ex. 1015 Page 215

Application/Control Number: 09/608,237 Page 5

Art Unit: 2157

Therefore, it can be seen from paragraphs 5-17 that Muller anticipates claims 11-59.

18. The prior art made of record and notrelied upon is considered pertinent to applicant's

disclosure.

19. Any inquiry concerning this communication or earlier communications from the examiner

should be directed to Moustafa M. Meky whose telephone numberis (703) 305-9697. The

examiner can normally be reached on week days from 8:30 am to 4:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Ario Etienne, can be reached on (703) 308-7562. The fax phone numberfor

this Group is (703) 308-9052. .

Anyinquiry of a general nature orrelating to the status of this application or proceeding

should be directed to the Group receptionist whose telephone numberis (703) 305-

9600. The fax numberfor the After-Final correspondence/amendment is (703) 746-

7238. The fax numberforofficial correspondence/amendmentis (703) 746-7239. The

fax numberfor Non-official draft correspondence/amendmentis (703) 746-7240.

M.M.M

June 22, 2003

x
epiAy

badly?

yoy é - 

NOACEx. 1015 Page 215



NOAC Ex. 1015 Page 216

 
 
 

 
 

Application/Contro! No. Applicant(s)/Patent Under
Reexamination

09/608237 DIETZ ET AL.

Examiner Art Unit

U.S. PATENT DOCUMENTS

Document Number Date . .

S-6,483,804 11-2002|Muller et al 370/230
— Cj

 

 
 
 
 

 

 

 
Notice of References Cited

  
> U

US-6,453,360 Muller et al.

U

U

U

 
c?

56110760 or 370/224
S-

S-   
 

FOREIGN PATENT DOCUMENTS .

Document Number Date
Country Code-Number-Kind Code MM-YYYY

Ih|||||——_|
pe
|
 
Oe Copyofthis reference is not being furnished with this Office action. (See MPEP § 707.05(a).)

‘ates in MM-YYYY formatare publication dates. Classifications may be USorforeign. 
Us, Patent and Trademark Office

PTO-g92 (Rev. 01-2001) . Notice of References Cited PartePaper No. 6° NOACEx. 1015 Page

 

 
  



NOAC Ex. 1015 Page 217

 

ac

 

a2) United States Patent (10) Patent No.: US 6,483,804 B1
Mulleretal. (45) Date of Patent: Nov. 19, 2002

(54) METHOD AND APPARATUS FOR DYNAMIC EP 0 573 739 12/1993
PACKET BATCHING WITH A HIGH EP 0 853 411 7/1998
PERFORMANCE NETWORK INTERFACE EP 0 865 180 9/1998

wo WO 95/14269 5/1995

(75) Inventors: Shimon Muller, Sunnyvale, CA (US); wo WO 97/28505 8/1997
Denton E. Geniry Je Femont, cA’Woe ie
(Us) WoO 'WO99/00948 1/1999

 
wo WO 99/00949 1/1999 ......... HO4L/12/56(73) Assignee: Sun Microsystems, Inc., Santa Clara, ’ mt

CA (US) OTHER PUBLICATIONS
Toong Shoon Chan,etal., “Parallel Architecture Support for
High-Speed Protocol Processing,” Feb. 1, 1997, Micropro-
cessors And Microsystems, vol. 20, No. 6, pp. 325-339.

(List continued on next page.)

(*) Notice: Subject to any disclaimer,the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 0 days.

(21) Appl. No.: 09/260,324 Primary Examiner—Wellington Chin
(22) Filed: Mar. 1, 1999 Assistant Examiner—William Schultz

’ (74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
(ST) Tint. C07 ooccccnecasecenseenesccnnesonseeavece H04J 1/16 LLP
52) US. Ch onceeoeseee 370/230; 370/235; 709/225; ABSTRA©) ” ms Ov 67 cT

(58) Fleld of Search ou...scccsseseeeee 370/230, 231,|Avsystem and method are provided for identifying related
370/235, 392, 389, 225, 226, 241, 401, packets in a communication flow for the purpose of collec-

428, 427, 473, 474, 394, 252, 466, 409; tively processing them through a protocol stack comprising

709/225, 226, 235, 241, 228 one or more protocols under which the packets were trans-
 

  

 
 
 
 
 

(56) References Cited ieve AL ‘U.S. PATENT DOCUMENTS flow keyis generated to identify a communication flow that a7
includes the packet, and is stored in a database offlow keys.

5,414,704 A 5/1995 Spinney .......+. . 370/60 Whenthe packet is placed in a queue to be transferred to a
5,583,940 A 12/1996 Vidrascu et al. ..........+0 380/49 host computer, the flow key and/orits flow number(e.g., its

3748°905 “ ai008 Kaiserswerth ot aet al. "598900-70 index into the database) is stored in a separate queue. Near, user etal. ......... . ii ‘ i

Sharam A Sioee Ginal” Sama 1,tieal whichIspacketisrane©tebos
5,778,180 A «7/1998 Gentry ef all. .......... 395/200.42 mputcr,acyn

een TLS packetthat is related to the packet being transferred (i.c., is
. 395/200.63 «sim the same flow) but whichwill be transferred later in tine.

395/200.8 If a related packet is located, the host computer is alerted
+= 370/392 and, as a result, delays processing the transferred packet

5,920,705 A * 7/1999 Lyon et al. e+ 370/409 until the related packet is also received. By collectively
6,157,955 A * 12/2000 Narad et al...cece 709/228 processing, the related packets, processor time is more effi-

FOREIGN PATENT DOCUMENTS ciently utilized.

EP 0 447 725 9/1991 oe G06F/15/16 27 Claims, 49 Drawing Sheets

5,778,414 A 7/1998 Winter et al. ...
5,787,255 A 7/1998 Parlan et al. ..
5,793,954 A 8/1998 Baker et al.
5,870,394 A 2/1999 Oprea ...

CE> CE»

Emaeaesgucveen400r
PoPeerrier) 

NOACEx. 1015 Page 217



NOAC Ex. 1015 Page 218

naeomemeesnr

US 6,483,804 B1
Page 2 

OTHER PUBLICATIONS

Peter Newman,et al., “IP Switching and Gigabit Routers,”
IEEE Communications Magazine, vol. 335, No. 1, Jan.
1997, pp. 64-69.
Francois Le Faucheur, “IETF Multiprotocol Label Switch-
ing (MPLS)Architecture,” IEEE International Conference,
Jun. 22, 1998, pp. 6-15.
F. Hallsall, “Data Communications, Computer Networks
and Open Systems,” Electronic Systems EngineeringSeries,
pp. 451-452.
R. Cole, et al., “IP Over ATM: A Framework Document,”
IETF Online, Apr. 1996, pp. 1-31.
Sally Floyd & Van Jacobson, Random Early Detection
Gateways for Congestion Avoidance, Aug., 1993, IEEE/
ACM Transactions on Networking.
U.S. patent application Ser. No. 08/893,862, entitled
“Mechanism for Reducing Interrupt Overhead in Device
Drivers,” filed Jul. 11, 1997, inventor Denton Gentry.
Pending U.S. patent application Ser. No. 09/259,445,
entitled “Method and Apparatus for Distributing Network
Processing on a Multiprocessor Computer,” by Shimon
Muller et al. filed Mar. 1, 1999 (Attorney Docket
SUN-P3481-JTF).
Pending U.S. patent application Ser. No. 09/260,367,
entitled “Method and Apparatus for Suppressing Interrupts
in a High-Speed Network Environment,” by Denton Gentry,
filed Mar. 1, 1999 (Attomey Docket SUN—P3482_JTF).
Pending U.S. patent application Ser. No. 09/259,736entitled
“Method and Apparatus for Modulating Interrupts in a
Network Interface,” by Denton Gentry et al., filed Mar. 1,
1999 (Attorney Docket SUN-P3483-JTF).
Pending U.S. patent application Ser. No. 09/259,765,
entitled “A High Performance Network Interface,” by Shi-
mon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-—P3485-JTF).

Pending U.S. patent application Ser. No. 09/260,618,
entitled “Method and Apparatus for Classifying Network
Traffic in a High Performance Network INterface,” by
Shimon Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3486-JTF).

Pending US. patent application Ser. No. 09/259,932,
entitled “Method and Apparatus for Managing a Network
Flow in a High Performance Network Interface,” by Shimon
Muller et al., filed Mar. 1, 1999 (Attorney Docket
SUN-P3487-JTF).

Pending US. patent application Ser. No. 09/258,952,
entitled “Method and Apparatus for Early Random Discard
of Packets,” by Shimon Muller et al., filed Mar. 1, 1999
(Attorney Docket SUN-P3490-JTF).

Pending U.S. patent application Ser. No. 09.260,333,
entitled “Method andApparatus for Data Re—Assembly with
a High Performance Network Interface,” by Shimon Muller
et al, filed Mar. 1, 1999 (Attorney Docket
SUN-P3507-JTF).

Pending U.S. patent application Ser. No. 09/258,955,
entitled “Dynamic Parsing in a High Performance Network
Interface,” by Denton Gentry, filed Mar. 1, 1999 (Attomey
Docket SUN-P3715—JTE).

Pending U.S. patent application Ser. No. 09/259,936,
entitled “Method and Apparatus for Indicating an Interrupt
in a Network Interface,” by Denton Gentry etal., filed Mar.
1, 1999 (Attorney Docket SUN-P3814-JTF).

* cited by examiner

NOACEx. 1015 Page 218



NOAC Ex. 1015 Page 219

 
 
 
 
 

  
 

  
 
 
 
 

 
  

 
 

 
 
 
 

 

  
  
  

 
 

 
  

 
  

  
 

 
 
 

 
 
 

pocececenn en tne eencencenennnnnennnenenceeseeeseneectennnnintnnennneeneene qcwooneeee

NETWORKINTERFACE RECEIVECIRCUIT 100 ZR
i

mS
{ &

DYNAMIC o
PACKET S

! BATCHING FLOW FLOW DATABASE =
' MODULE DATABASE MANAGER108

HI 122 110 |

Oo! |
Ss i; Z
mo | =—_

o | ! &be

Mi CONTROL LOAD =
Pet QUEUE DISTRIBUTOR HEADER PARSER Ss
Ui 118 112 106
TAY DMA ENGINE i
E 120
R } m2

t i &yt i ow &
s | i £ a
T T Ss

1 W
ei INPUT PORT |W =
Mo! PROCESSING RMODULE | r

! 104i ,

1 4
1 \ 0
I CHECKSUM oe
‘ GENERATOR114 a
| | a
| a

iw)
FIG. 1A 2

=
a=

ed=

NOACEx. 1015 Page 219

rs



NOAC Ex. 1015 Page 220

 

 

U.S. Patent Nov.19, 2002

RECEIVE PACKE?AT IPP
MODULE FROM NETWORK

132

PARSE PACKET:

GENERATE FLOW KEY,
RETRIEVE HEADER INFO

134

 
 
  
 

 STORE/UPDATE FLOW IN

FLOW DATABASE; ASSIGN
OPERATION CODE

136

  
  
 

ASSIGN PROCESSOR
NUMBER FOR MULTI-
PROCESSOR SYSTEM

138

US 6,483,804 B1Sheet 2 of 49

NOTIFY HOST COMPUTER
OF PACKET TRANSFER

148

STORE PACKET IN HOST
MEMORY

146

SEARCH FOR RELATED

PACKET(S)
144

 
YES

 
 
 
  
 
 

NO
 
 

PACKET
READY TO BE

TRANSFERRED?
142

POPULATE PACKET AND
CONTROL QUEUES

140 
FIG. 1B

NOACEx. 1015 Page 220



NOAC Ex. 1015 Page 221

 

U.S. Patent Nov. 19,2002 Sheet 3 of 49 US 6,483,804 B1

LAYER ONE HEADER
210

LAYER TWO HEADER

HEADER PORTION
204

LAYER THREE HEADER
214

LAYER FOUR HEADER
216

DATA PORTION
202 

TRAILER 206

I oe!

PACKET 200

FIG.2

NOACEx. 1015 Page 221



NOAC Ex. 1015 Page 222

U.S. Patent Nov. 19, 2002 Sheet 4 of 49 US 6,483,804 B1

HEADER PARSER106

HEADER MEMORY “(PP
302 MODULE

 
INSTRUCTION MEMORY

306

FLOW -——
DATABASE:

MANAGER t

IPP
MODULE

PARSER
304 

FIG. 3

| | j I| | | } | I I | I { ! | I I I | | I| | \ | I | | | | | I |

NOACEx. 1015 Page 222



NOAC Ex. 1015 Page 223

coveeianaseemsmenaceeretmeeimentsiititet

  
U.S. Patent Nov.19, 2002 Sheet 5 of 49 US 6,483,804 BL

 
  
  

 

COPY PACKET HEADER
402

VLAN TAGGED
HEADER?

404

  

 
 
 

 

ETHERNET ETHERNET OR
802.3 HEADER?

408

 
 

 
 
  
  
 

 

VERIFY
LLC SNAP

ENCAPSULATION?
410

NO

OTHERIUNKNOWN a

—{4)

IPv4 OR IPv6
HEADER?

412

FIG. 4A

NOACEx. 1015 Page 223



NOAC Ex. 1015 Page 224

U.S. Patent Nov. 19,2002 Sheet 6 of 49 US 6,483,804 B1 
(c)_7

VERIFY NO(+) eg >a)418 _ YES

PROCESSIPv6 HEADER
420

NO

 PROCESSIPv4 HEADER
416 
 S

SET NO_ASSIST FLAG FOR
PACKET

430

 
FIG. 4B

NOACEx. 1015 Page 224Jirirereemyemenerrrnnternment



NOAC Ex. 1015 Page 225

 

U.S.PatentNov.19,2002Sheet7of49
FLOW ACTIVITY
INDICATOR 524

=Sin
SEQUENCE#

522

FLOW VALIDITY
INDICATOR 520

FLOW *

0
TCP

FLOW DATABASE110

DESTINATION
PORT 516

0
wz32anaag

oOe=z

és
<=

ecwda22SHSipeo50or26*2

 
ASSOCIATED PORTION504ASSOCIATIVE PORTION 502 US6,483,804B1FIG. 5

NOACEx. 1015 Page 225



NOAC Ex. 1015 Page 226

U.S. Patent Nov.19, 2002 Sheet 8 of 49 US 6,483,804 B1

 
  

 
 

 
 
 

 
 

RECEIVE SEARCH
REQUEST

602

 
 

FLAGGED FOR NO
ASSISTANCE?

604

SEARCH FLOW DATABASE
606

 
 

 MATCH FLOW
KEY IN DATABASE?

608

RETRIEVE FLOW # AND
FLOW DATA

610

  
  

 
YES ATTEMPT

TO ESTABLISH
CONNECTION?

614

DOES PACKET
CONTAIN DATA?

612
  

 
FIG. 6A

NOACEx. 1015 Page 226

 



NOAC Ex. 1015 Page 227

 

U.S. Patent Nov.19, 2002 Sheet 9 of 49 US 6,483,804 B1 
 
 

   
  
  

 

 
 
  

 
 

FLOW
SEQUENCE

NUMBERS MATCH?
616

NO TEAR DOWNFLOW;
SELECT OPCODE 2 FOR

PACKET
628

TEAR DOWN FLOW;
SELECT OPCODE 3 FOR

PACKET
626

 
  

 
  
  

 
  
 

MORE DATA
TO FOLLOW?

620

UPDATE FLOW SEQUENCE
NUMBER& ACTIVITY

INDICATOR; SET FLOW
VALIDITY INDICATOR

622

SELECT OPCODE 4 FOR
PACKET

624

 
FIG. 6B

NOACEx. 1015 Page 227



NOAC Ex. 1015 Page 228

U.S. Patent Nov.19, 2002 Sheet 10 of 49 US 6,483,804 B1

 
 
 
 

 
 
 

  

REPLACE FLOW: 

 
 
 

MORE DATA SET FLOW SEQUENCE#;
TO FOLLOW? SET ACTIVITY INDICATOR;

630 SET FLOW VALIDITY

 

 
  

   
 

634

 
 

  

 
TEAR DOWN FLOW;    
 

SELECT OPCODE 2 FOR SELECT OPCODE7 FORPACKET
PACKET Ss  

 632

 
 

  
  

 
  
 

SELECT OPCODE 0 FOR TEAR DOWNFLOW; 
 

 

SELECT OPCODE1 FOR

Pa PACKET640

UPDATE AS REQUIRED:
FLOW SEQUENCE#

ACTIVITY INDICATOR;
VALIDITY INDICATOR

642

  FLAGS OKAY?
638 

  

 

FIG. 6C

sememee

NOACEx. 1015 Page 228arereeee



NOAC Ex. 1015 Page 229

.nempSN,mtttBtnNRTNNOCCHCCTTTECTIAHAEACEORrsnnminninnnnmnynpituiuietttta—tietnrererer—rnr—vrttaerattetmnanantithttnmueNANAAM™4
‘. U.S. Patent Nov.19, 2002 Sheet 11 of 49 US 6,483,804 B1

 
  
 

YES NO FLOW
DATABASE FULL?

646

 
  

 

 
 
 

 
 

RETRIEVE FLOW # OF
LEAST RECENTLY ACTIVE

FLOW
650

RETRIEVE LOWEST FLOW #
HAVING AN INVALID FLOW

INDICATOR
648

 

 
 
 
 

NO
 DOES PACKET

CONTAIN DATA?
652

 
 
 
 “MORE DATA NO

TO FOLLOW? _-
654

  ( : YES

FIG. 6D

NOACEx. 1015 Page 229



NOAC Ex. 1015 Page 230

ncnnecnennpemeerrineenontenetet

U.S. Patent

 
 

 
 660

 
 

PACKET
662

ADD FLOW:

SET FLOW SEQUENCE#,
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY

SELECT OPCODE 6 FOR

Nov.19, 2002

NO

SELECT OPCODE 5 FOR
PACKET

668 

 
  

 
 
 
 

 

 
 

FLOW
DATABASE FULL?

658

Sheet 12 of 49 US 6,483,804 B1

YES 

 
 
 
 

REPLACE FLOW:

SET FLOW SEQUENCE#;
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY
664 

 SELECT OPCODE 7 FOR
PACKET

666
 
 

FIG. 6E

NOACEx. 1015 Page 230



NOAC Ex. 1015 Page 231

U.S. Patent Nov. 19,2002 Sheet 13 of 49 US 6,483,804 B1

 

  
 

RECEIVE AND PARSE
PACKET PROCESS PACKET

702 718 
 

 
 

 

 
 

LOAD DISTRIBUTOR
RECEIVES FLOW KEY

704

ALERT SELECTED
PROCESSOR

716
 
 

 
 

 
   
 

PACKET INFORMATION
STORED FOR PROCESSING
BY SELECTED PROCESSOR

714

 HASH FLOW KEY
706 

 
 

 
 
  
 
 

PERFORM MODULUS
OPERATION ON HASH

VALUE
708

 

 
 

ALERT HOST COMPUTER
712 

 STORE PACKET AND
PROCESSOR NUMBER

710

FIG. 7

NOACEx. 1015 Page 231



NOAC Ex. 1015 Page 232

U.S. Patent Nov.19, 2002 Sheet 14 of 49 US 6,483,804 B1

 
PACKET QUEUE 116 PACKET

#

ENTRY 800 PACKET PORTION 802 |
READmmpap nttetenennnete 1 0

POINTER FILLER 802a
810 CHECKSUM PACKET DIAGNOSTIC AND STATUS

VALUE LENGTH INFORMATION
804 806 808

WRITE
POINTER

812

255

FIG. 8

NOACEx. 1015 Page 232



NOAC Ex. 1015 Page 233

 
U.S. Patent Nov. 19,2002 Sheet 15 of 49 US 6,483,804 B1

CONTROL QUEUE 118 PACKET
#

ENTRY 900 OP. PAYLOAD|PAYLOAD|OTHER
CODE OFFSET SIZE STATUS 0

906 908 910 912 READ
POINTER

914

WRITE
POINTER

916

255

FIG. 9

NOACEx. 1015 Page 233



NOAC Ex. 1015 Page 234

  
  

 
 

   

+

_aFaoPsoSOb‘SideSRfaignm~~,Femei=ve=mnbb.5ananoLayxovd|a{I!LoL|SYIOVNWWONIY5NOLS1dWODa|IZwv(‘S!Jor4
J

=||;%|HOLdINOSSG||2|NOILATANOS||n7)|dGb|!Wgnano°JOMLNOD”||5gZ00}|
|

s!YSOVNVNVNe00!|A
*I

xaT8v.NL|woLdtuosaaS$
©nennenenceneennenee:|

zbanee0z|H{t|{eb||ZINGOWi:ONINJays~ONIHOLVa=|1ayOve|o|OINWNAG||yoo!|=|31aVvL|a|ATaWASSVfabeqt“38MOA{e!{KNieeeee—02}SNIDN3AVAG 



NOAC Ex. 1015 Page 235

 
U.S. Patent Nov.19, 2002 Sheet 17 of 49 US 6,483,804 B1

 
PACKET

FLOW RE-ASSEMBLY TABLE 1004 #

VALIDITY FLOW RE-ASSEMBLY |
INDICATOR NEXTrv BUFFER INDEX 04106 1102

63

HEADER TABLE 1006

VALIDITY HEADER BUFFER

INDICATOR NEXTaaess INDEX
1116 4112

MTU TABLE 1008

VALIDITY NEXT ADDRESS MTU BUFFER INDEXINDICATOR
N98 1124 4122

JUMBO TABLE 1010

VALIDITY JUMBO BUFFER

INDICATOR NEXTa INDEX
1136 4132

FIG. 11

NOACEx. 1015 Page 235 



NOAC Ex. 1015 Page 236

 
 

FREE DESCRIPTOR
RING
1200

FREE DESCRIPTOR 1202

FIG. 12A

FREE B

 

ARRAYINDEX
FIELD 1212

 

UFFER ARRAY 1210

BUFFER IDENTIFIER FIELD 1214 yuajeg“Sn

 Z00Z“61“AON,

6FJOBTJ90N§

Taros‘esr‘9SO
NOACEx. 1015 Page 236



NOAC Ex. 1015 Page 237

DESCRIPTOR frieerags DATA OFFSET|DATABUFFER|DATASIZE|~~~_
TYPE 1238 1036 1234 INDEX 1232 4230 sO ~

HEADER
OFFSET 1246

LAYER THREE

HEADER BUFFER HEADERSIZE
INDEX 1244 1242

NEXT BUFFER
INDEX 1240

PROCESSOR FLOW

HEADER OFFSET|IDENTIFIER ACKAntong ObaeD NUMBER
1258 4256 1250

OTHER1266 INDICATOR LENGTH Vatcesep /
1264 1262 ‘

OWNERSHIP PACKET

FIG. 12B

7

 

/

|

COMPLETION DESCRIPTOR 1222 yuaqed‘S'0
 

 TOOT“6T“AON
 COMPLETION

DESCRIPTOR RING
1220

 6hJO6T94S

Taros‘esr‘9Sa
NOACEx. 1015 Page 237



NOAC Ex. 1015 Page 238

 
U.S. Patent Nov.19, 2002 Sheet 20 of 49 US6,483,804 B1

START
1300

PACKET STOREDIN DATA
QUEUE NO

1302
 

  
 

 

    
 

 

 
 

  
 
 

 

  
 
 

YES OPERATION
CODE5?

1318

READ PACKET ENTRY
FROM CONTROL QUEUE

1304

NO

YES OPERATION
FETCH FLOW NUMBER CODE 4?

1306 1316

YES * ° YES

NO

YES YES
OPERATION

CODE1?
1310

OPERATION
CODE 2?

1312

NO

FIG. 13

NOACEx. 1015 Page 238



NOAC Ex. 1015 Page 239

U.S. Patent Nov.19, 2002 Sheet 21 of 49 US 6,483,804 B1

 
  

 
 

 

  

  

 
  

 
 

HEADER
BUFFER VALID?

1400

PREPARE HEADER BUFFER
1402

 
 
  

COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

 
  
 

 
 
 

UPDATE HEADER BUFFER
TABLE

1412

HEADER
BUFFER FULL?

1408
 
 

INVALIDATE HEADER
BUFFER

1410

FIG. 14

NOACEx. 1015 Page 239

 



NOAC Ex. 1015 Page 240

U.S. Patent Nov.19, 2002 Sheet 22 of 49 US 6,483,804 B1

  
  
 

 
 
 

HEADER
BUFFER VALID?

1500
 

 
PREPARE HEADER BUFFER

1502

 
 

COPY PACKETINTO
HEADER BUFFER

1504
 
 
 

   

 
    

FLOW
RE-ASSEMBLY

BUFFER VALID?
1506

   
 

WRITE COMPLETION
DESCRIPTOR

1508
 
  

  
 
 
 

 

WRITE COMPLETION
DESCRIPTOR

1512

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1510
 
 
 

  
 
 
 
 

 
 
 

UPDATE HEADER BUFFER
TABLE

1518

HEADER

BUFFER FULL?
1514

 
 

 

 
INVALIDATE HEADER

BUFFER
1516

 
  
  

FIG. 15

NOACEx. 1015 Page 240

 



NOAC Ex. 1015 Page 241

U.S. Patent Nov. 19,2002 Sheet 23 of 49 US 6,483,804 B1

 
  
 
  
  

 
  
  
 

FLOW
RE-ASSEMBLY

BUFFER VALID?
1600

 
 
 

WRITE COMPLETION
DESCRIPTOR

1602

  INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1604

  
  

 
  

 

SMALL PACKET?
1606

JUMBO PACKET?
1608 

FIG. 16A

NOACEx. 1015 Page 241



NOAC Ex. 1015 Page 242

U.S. Patent Nov. 19,2002 Sheet 24 of 49 US 6,483,804 B1

>

  
 
 
  

HEADER
BUFFER VALID?

1610
 

  

 
  

 
 

PREPARE HEADER BUFFER
1612

COPY PACKET INTO
HEADER BUFFER

1614

WRITE COMPLETION
DESCRIPTOR

1616

 
 
 

UPDATE HEADER BUFFER
TABLE

1622

HEADER
BUFFER FULL?

1618

 

 
  
 

 
 

INVALIDATE HEADER
BUFFER

1620

FIG. 16B

NOACEx. 1015 Page 242

 



NOAC Ex. 1015 Page 243

U.S. Patent Nov. 19,2002 Sheet 25 of 49 US 6,483,804 B1

 
  
   

 

  

 
  

 
 

 

MTU
BUFFERVALID?

1630
 
 

PREPARE MTU BUFFER
1632

COPY PACKET INTO MTU
BUFFER

1634

WRITE COMPLETION
DESCRIPTOR

1636

   
MTU UPDATE MTU BUFFER

BUFFER FULL? TABLE
1638 1642

 
   
 

INVALIDATE MTU BUFFER
640

FIG. 16C

NOACEx. 1015 Page 243

 



NOAC Ex. 1015 Page 244

 
U.S. Patent Nov. 19, 2002

C3

 
 

NO
 
 
 

JUMBO
BUFFER VALID?

1650

YES

 

  
 

  SPLIT JUMBO
BUFFERS?

1654

NO

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 

PACKET

TOO LARGE FOR
ONE BUFFER?

1656

 
 
 
 

TRANSFER PACKET INTO
JUMBO BUFFER

1658

WRITE COMPLETION
DESCRIPTOR

1660
 
 

INVALIDATE JUMBO
BUFFER

1668 
FIG. 16D

Sheet 26 of 49

TRANSFERFIRST PART OF
PACKET INTO CURRENT

JUMBO BUFFER

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER

WRITE COMPLETION

US 6,483,804 BL

PREPARE JUMBO BUFFER
1652 

 
 
 1662

 
 
 
 1664

 
 DESCRIPTOR

1666 

END
1699

NOACEx. 1015 Page 244



NOAC Ex. 1015 Page 245

U.S. Patent Nov. 19, 2002 Sheet 27 of 49 US 6,483,804 B1

(ca)
/

    $fF4GSGotaneSe
 
 
 

HEADER
BUFFER VALID?

1670

PREPARE HEADER BUFFER
1672

 
 
  

 
   

 
 
 
 

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1674

 
 

 
 

 
 
 

 
 
 
 

PACKET
TOO LARGE FOR

ONE BUFFER?
1676

TRANSFERFIRST PART OF

PACKET DATAINTO JUMBO
BUFFER

1682 

 
 

  
 
 

   
  
 

TRANSFER PACKET DATA TRANSFER REMAINDER OF
INTO JUMBO BUFFER PACKET DATA INTOSECOND JUMBO BUFFER

1678 1684

 

 
 

WRITE COMPLETION
DESCRIPTOR

1680

WRITE COMPLETION
DESCRIPTOR

1686
 
 

©
FIG. 16E

NOACEx. 1015 Page 245



NOAC Ex. 1015 Page 246

U.S. Patent Nov.19, 2002 Sheet 28 of 49 US 6,483,804 B1

@

INVALIDATE JUMBO
BUFFER

1688

 
 

 

  

 
 
 

YES NO HEADER
BUFFER FULL?

1690

 
 
  
 

 
 

INVALIDATE HEADER UPDATE HEADER BUFFER
BUFFER TABLE

1692 1694

 
 

FIG. 16F

NOACEx. 1015 Page 246



NOAC Ex. 1015 Page 247

 
U.S. Patent Nov. 19,2002 Sheet 29 of 49 US 6,483,804 B1

 
    
 

 
 

   
 
 

 
  
 

 

 

NO
HEADER

BUFEER VALID? PREPARE HEADER BUFFER
4700

YES

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1704

RE-ASSEMBLY NO PREPARE FLOW RE-
BUFFER VALID? ASSEMBLY BUFFER

4706 4708

YES

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
4740

WRITE COMPLETION
DESCRIPTOR

1712

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1714

NOACEx. 1015 Page 247



NOAC Ex. 1015 Page 248

U.S. Patent Nov. 19,2002 Sheet 30 of 49 US 6,483,804 B1

 
 
 
 
 

   
  
  
 

TCP
PAYLOAD TOO

LARGE FOR
BUFFER?

1716

 
 
 
 

 
 
 
 

TRANSFER FIRST PORTION
OF PAYLOAD INTO FLOW
RE-ASSEMBLY BUFFER

1722 
 

 
 
 

TRANSFER PAYLOAD INTO
FLOW RE-ASSEMBLY

BUFFER
1718

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

1724

 

  
 
   

 

WRITE COMPLETION

DESCRIPTOR.
1720

WRITE COMPLETION
DESCRIPTOR

1726
 

 
  

  

 

 

INVALIDATE ENTRY IN
FLOW RE-ASSEMBLY

BUFFER TABLE
1728

FIG. 17B

NOACEx. 1015 Page 248

 



NOAC Ex. 1015 Page 249

U.S. Patent Nov.19, 2002 Sheet 31 of 49 US 6,483,804 B1

 
 

YES NO
 HEADER

BUFFER FULL?
1730 

 
 

 
 
 

 
 

  

INVALIDATE HEADER
BUFFER

1732

UPDATE HEADER BUFFER
TABLE

1734

 

FIG. 17C

NOACEx. 1015 Page 249

 



NOAC Ex. 1015 Page 250

U.S. Patent Nov.19, 2002 Sheet 32 of 49 US 6,483,804 B1

 
  

  
 
 

HEADER
BUFFER VALID?

1800
 PREPARE HEADER BUFFER

1802
 

  
  

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1804
 

 
  
 

 

  
 
 

  

TCP
PAYLOAD TOO

LARGE FOR
BUFFER?

1808

 
  
 
  
  
 

FLOW
RE-ASSEMBLY

BUFFER VALID?
1806

 NO

FIG. 18A

NOACEx. 1015 Page 250



NOAC Ex. 1015 Page 251

 
U.S. Patent Nov. 19, 2002 Sheet 33 of 49

PREPARE FLOW RE-
ASSEMBLY BUFFER

1810

TRANSFER PACKET DATA

INTO FLOW RE-ASSEMBLY
BUFFER

1812

WRITE COMPLETION
DESCRIPTOR

1814

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

1816

 
(=)

FIG. 18B

US 6,483,804 B1

NOACEx. 1015 Page 251



NOAC Ex. 1015 Page 252

 
U.S. Patent

YES

 
 
 

TABLE

1826

Nov. 19, 2002

RELEASE FLOW IN FLOW
RE-ASSEMBLY BUFFER

 
  

 
  

 
  
  

  
 
 

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WRITE COMPLETION
DESCRIPTOR

1822

 FLOW
RE-ASSEMBLY
BUFFER FULL?

1824

  

 
FIG. 18C

Sheet 34 of 49

UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

US 6,483,804 B1

NO

 
 

 1828

NOACEx. 1015 Page 252



NOAC Ex. 1015 Page 253

U.S. Patent Nov.19, 2002 Sheet 35 of 49 US6,483,804 B1

(s) 
 
  TRANSFER FIRST PORTION

OF PACKET PAYLOADINTO
RE-ASSEMBLY BUFFER

1830

 
  

 
 
 

 TRANSFER REMAINING
PACKET PAYLOADINTO

SECOND BUFFER
1832

 

  
 WRITE COMPLETION

DESCRIPTOR
1834

  

 
 
 

 UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

1836
 

  
 
 

YES NO
 HEADER

BUFFER FULL?
1838
 

 
 
 

 
  
 
 

INVALIDATE HEADER
BUFFER TABLE

1840

 
  

UPDATE HEADER BUFFER
1842

FIG. 18D

NOACEx. 1015 Page 253

 



NOAC Ex. 1015 Page 254

U.S. Patent Nov. 19,2002 ‘Sheet 36 of 49 US 6,483,804 B1

©) Cs
YES

 

  
 

  
NO

SMALL PACKET?
1900

JUMBO PACKET?
1902

YES
NO

 
 

 
 

NO
 MTU

BUFFER VALID?
1904

PREPARE MTU BUFFER
1906

YES

WRITE COMPLETION
DESCRIPTOR

1910

TRANSFER PACKET INTO
MTU BUFFER

1908

 
 
 
 
 

 
 

MTU
BUFFER FULL?

1912

UPDATE MTU BUFFER
TABLE

1916
 

 
 
   
 

INVALIDATE MTU BUFFER
1914

END
1999

FIG. 19A

NOACEx. 1015 Page 254

 



NOAC Ex. 1015 Page 255

U.S. Patent Nov.19, 2002 Sheet 37 of 49 US 6,483,804 BI

 
 
  

 
 

 
 
 

HEADER
BUFFER VALID?

1920

  PREPARE HEADER BUFFER
1922 

TRANSFER PACKETINTO
HEADER BUFFER

1924

WRITE COMPLETION
DESCRIPTOR

1926

 

 
  
 

 
 
 

UPDATE HEADER BUFFER
TABLE

1932

HEADER
BUFFER FULL?

1928
 
 

INVALIDATE HEADER
BUFFER

1930

FIG. 19B

NOACEx. 1015 Page 255

 



NOAC Ex. 1015 Page 256

U.S. Patent Noy.19, 2002 Sheet 38 of 49 US 6,483,804 B1

F2

 
  
 
 

 

  
 

NO
JUMBO

1940

YES

YES

  SPLIT JUMBO
PACKETS?

1944
F3

NO

 
 
 

 

 

 
  

 
 

 
  
 

 
 
 
 
 
 

PACKET TRANSFER FIRST PORTION
TOO LARGE FOR OF PACKET INTO CURRENT

ONE BUFFER? JUMBO BUFFER
1946 1952

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

  
 
 

TRANSFER PACKET INTO
JUMBO BUFFER

1948

  
  

 

 
 

 WRITE COMPLETION
DESCRIPTOR

1956

WRITE COMPLETION
DESCRIPTOR

1950

INVALIDATE JUMBO END
BUFFER 4999

1958

FIG. 19C

 
 

 

NOACEx. 1015 Page 256

 



NOAC Ex. 1015 Page 257

U.S. Patent Nov. 19, 2002 Sheet 39 of 49 US 6,483,804 B1

 
  
  
 

 
 

  
 

HEADER
BUFFER VALID?

1960

 
  

PREPARE HEADER BUFFER
1962

   
  

 
 
 
 
 

TRANSFER PACKET
HEADERINTO HEADER

BUFFER
1964

 
 
 
 

PACKET
TOO LARGE FOR

ONE BUFFER?
1966

 

 
  

 
 

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1972

  TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1974

TRANSFER PACKET DATA
INTO JUMBO BUFFER

1968
  

  
 
 

 

 
WRITE COMPLETION

DESCRIPTOR
1970

WRITE COMPLETION
DESCRIPTOR

1976
 
 

FIG. 19D

NOACEx. 1015 Page 257

 



NOAC Ex. 1015 Page 258

 
U.S. Patent Nov.19, 2002 Sheet 40 of 49 US 6,483,804 B1

  

 
 
  

  
 

INVALIDATE JUMBO
BUFFER

1978

YES NO
 HEADER

BUFFER FULL?
1980

UPDATE HEADER BUFFER
TABLE

1984

 INVALIDATE HEADER
BUFFER

1982
 
 

 

FIG. 19E

NOACEx. 1015 Page 258



NOAC Ex. 1015 Page 259

U.S. Patent Nov.19, 2002 Sheet 41 of 49 US 6,483,804 B1

 
  
 

 

  
 
 

HEADER

BUFFER VALID?
2000

 
 

 
 

PREPARE HEADER BUFFER
2002

 
  

 
 
 
 

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
2004

 
 
 

 
  

 

FLOW
RE-ASSEMBLY

BUFFER VALID?
2006

 

 
WRITE COMPLETION

DESCRIPTOR
2008

PREPARE FLOW RE-
ASSEMBLY BUFFER

2010

FIG. 20A

NOACEx. 1015 Page 259

 



NOAC Ex. 1015 Page 260

U.S. Patent Nov. 19,2002 Sheet 42 of 49 US 6,483,804 B1

 
 
  

 
  

 
 
  

 
 

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
2012

WRITE COMPLETION
DESCRIPTOR

2014

 UPDATE FLOW RE-
ASSEMBLY BUFFER TABLE

2016

 
   
 

 
 
 

UPDATE HEADER BUFFER
TABLE
2022

HEADER
BUFFER FULL?

2018
 
 

INVALIDATE HEADER
BUFFER

2020

FIG. 20B

NOACEx. 1015 Page 260

 



NOAC Ex. 1015 Page 261

 
 

" DYNAMIC PACKET BATCHING MODULE122

ENTRY ENTRY#
2106 VALIDITY

INDICATOR FLOW NUMBER
2110 2108
 

  
 

quayed‘S'0
READ POINTER

7007‘“6T“AON
CONTROLLER 2104 MEMORY2102 
 

WRITE POINTER 6bJ9CH3994S
255

|

|

|

|
|

|

|

|

|

|

|

|

|

Taros‘esr‘9sa
NOACEx. 1015 Page 261



NOAC Ex. 1015 Page 262

U.S. Patent Nov. 19,2002 Sheet 44 of 49 US 6,483,804 B1

 
 

 

 
 
  

 
  

 
 

TRANSFER

PACKET TO HOST?
2202

INVALIDATE PACKET
ENTRY IN MEMORY

2204

INCREMENT READ
POINTER

2206

SEARCH MEMORY FOR
RELATED PACKET

2208

ALERT HOST COMPUTER
2210

FIG. 22A

NOACEx. 1015 Page 262

 



NOAC Ex. 1015 Page 263

 
U.S. Patent Nov.19, 2002 Sheet 45 of 49 US 6,483,804 B1

 
 
 
 
  

 

CREATE NEW
ENTRY?

2222

MEMORYFULL?
2224

GENERATE NEXT ENTRY
2226

INCREMENT WRITE
POINTER

2228

FIG. 22B

NOACEx. 1015 Page 263



NOAC Ex. 1015 Page 264

U.S. Patent Nov.19, 2002 Sheet 46 of 49 US 6,483,804 B1

 

  
 
 

  
 
 

INSTRUCTION CONTENT 2306

(EXTRACTION MASK, COMPARE VALUE, OPERATOR,
SUCCESS OFFSET, SUCCESS INSTRUCTION,FAILURE OFFSET,

FAILURE INSTRUCTION, OUTPUT OPERATION, OPERATION ARGUMENT,
OPERATION ENABLER, SHIFT, OUTPUT MASK)

po WAIT OxFFFF, 0x0000, NP, 6, VLAN,0, WAIT, CLR_REG,Ox3FF, 1, 0, 0x0000
OxFFFF, 0x8100, EQ, 1, CFI, 0, 802.3, IM_CTL, Ox00A,3, 0, OxFFFF

 
 
 

INSTR.|INSTR.
NO. NAME

2302 2304 
 

  
 
 

  
 

ac
= [=
CS[es[errceneore
TTPHET|errrniennu628comoNoemRom
T=[meaerroen.2.naro
pefm

|8|rvs|Ox3FFF, 0x0000, EQ, 1, iPV4_4, 0, DONE, LD_LEN, Ox03E,1, 0, OxFFFF
T=[|eon77ersAmmon
Te[Reoreen0ERAGO

|12|ves|0x0000, 0x0000, EQ,3, IPV6_4, 0, DONE, LD_FID, 0x484, 1, 0, OxFFFF

0x0000, 0x0000, EQ, 0, TCP_2, 4, TCP_2, LD_SEQ, 0x081, 3, 0, OxFFFF

TCP_2 0x0000, 0x0000, EQ, 0, TCP_3, 0, TCP_3, ST_FLAG,0x145,3, 0, 0x002F

|18|TCP_3 0x0000, 0x0000, EQ, 0, TCP_4, 0, TCP_4, LD_R1, 0x205,3, 0xB, OxF000

OxFFFF, 0x0800, EQ, 1, IPV4_2, 0, IPV6_1, LD_SAP, 0x100, 3, 0, OxFFFF

 
  

 

OxFFOO, 0x4500, EQ,3, IPV4_3, 0, DONE, LD_SUM, Ox00A, 1, 0, ox0000

  
  
  

 

  
TCP_4 0x0000, 0x0000, EQ, 0, WAIT, 0, WAIT, LD_HDR, OxOFF, 3, 0, OxFFFF

DONE 0x0000, 0x0000, EQ, 0, WAIT, 0, WAIT, IM_CTL, 0x001, 3, 0x0000 
PROGRAM 2300

FIG. 23

NOACEx. 1015 Page 264

 



NOAC Ex. 1015 Page 265

US 6,483,804 B1Sheet 47 of 49Nov.19, 2002—=o&=owiw_

b2‘Sls
OreYOLVSIGNIOldsVEL

 

ObbeYAaLNAOD

  

90v2yorecOreHYOMLENOMLNOIOSYANONOISYOuvaZNOISYHALndWOOWowsLSOHOL
o0re

LOLOLOLO4000000000000000aAnSNd
LanovVd

OL?vbp?eabyeYOLVOIONIYOLVOIGNI "YOLVSIGNIALNIavEOddALIMNaVvEoudALNIgvaOdd
 

NOACEx. 1015 Page 265

 



NOAC Ex. 1015 Page 266

U.S. Patent Nov. 19,2002 Sheet 48 of 49 US 6,483,804 B1

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CONFIGURE PROBABILITY

INDICATOR(S)
2504

SELECT CRITERIA FOR
NON-DISCARDABLE

PACKETS,IF ANY
2506

INITIALIZE COUNTER
2508

RECEIVE PACKET FROM
NETWORK

2510

IS
PACKET

DISCARDABLE?
2512

 
FIG. 25A

NOACEx. 1015 Page 266

 



NOAC Ex. 1015 Page 267

U.S. Patent Nov. 19,2002 Sheet 49 of 49 US 6,483,804 B1

  

 
  

 
  

 
 
  

 
  

DETERMINE ACTIVE
REGION

2514

COMPARE COUNTER AND
PROBABILITY INDICATOR

2516

INCREMENT COUNTER
2518

 DISCARD
PACKET?

2520

DISCARD PACKET
2524

 STORE PACKET
2522  

FIG. 25B

NOACEx. 1015 Page 267

 



NOAC Ex. 1015 Page 268

 
US 6,483,804 B1

1

METHOD AND APPARATUS FOR DYNAMIC
PACKET BATCHING WITH A HIGH

PERFORMANCE NETWORK INTERFACE

TABLE OF CONTENTS

BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE FIGURES
DETAILED DESCRIPTION

Introduction

One Embodiment of a High Performance Network Inter-
face Circuit

An Illustrative Packet

One Embodiment of a Header Parser

Dynamic Header Parsing Instructions in One Embodi-
ment of the Invention

One Embodiment of a Flow Database

One Embodiment of a Flow Database Manager
One Embodiment of a Load Distributor

One Embodimentof a Packet Queue
One Embodiment of a Control Queue

One Embodiment of a DMA Engine
Methods of Transferring, a Packet Into a Memory Buffer

by a DMA Engine
A Method of Transferring a Packet

Code 0

A Method of Transferring a Packet
Code 1

A Method of Transferring a Packet
Code 2

A Method of Transferring a Packet
Code 3

A Method of Transferring a Packet
Code 4

A Method of Transferring a Packet
Code 5

A Method of Transferring a Packet with Operation
Code 6 or 7

One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodimentof the

Invention
CLAIMS

with Operation

with Operation

with Operation

with Operation

with Operation

with Operation

BACKGROUND

This invention relates to the fields of computer systems
and computer networks. In particular, the present invention
relates to a Network Interface Circuit (NIC) for processing
communication packets exchanged between a computer
network and a host computer system.

Theinterface between a computer and a networkis often
a bottleneck for communications passing between the com-
puter and the network. While computer performance (c.g.,
processor speed)has increased exponentially over the years
and computer network transmission speeds have undergone
similar increases, inefficiencies in the way networkinterface
circuits handle communications have become more and
more evident. With each incremental increase in computer or
network speed, it becomes ever more apparent that the
interface between the computer and the network cannot keep
pace. These inefficiencies involve several basic problems in
the way communications between a network and a computer
are handled.

10

15

30

45

50

55

65

2

Today’s most popular forms of networks tend to be
packet-based. These types of networks, including the Inter-
net and many local area networks, transmit information in
the form of packets. Each packetis separately created and
transmitted by an originating endstation and is separately
received and processed by a destination endstation. In
addition, cach packet may, in a bus topology network for
example, be received and processed by numerous stations
located between the originating and destination endstations.

One basic problem with packet networks is that each
packet must be processed through multiple protocols or
protocollevels (known collectively as a “protocol stack”) on
both the origination and destination endstations. When data
transmitted betweenstations is longer than a certain minimal
length, the data is divided into multiple portions, and cach
portion is carried by a separate packet. The amountof data
that a packet can carry is generally limited by the network
that conveys the packet and is often expressed as a maxi-
mum transfer unit (MTU). The original aggregation of data
is sometimes known as a “datagram,” and each packet
carrying part of a single datagraniisprocessed very simi-
larly to the other packets of the datagram.

Communication packets are generally processed as fol-
lows. In the origination endstation, each separate data por-
tion of a datagram is processed through a protocol stack.
Duringthis processing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is
received by a network interface circuit, which transfers the
packet to the destination endstation or a host computer that
serves the destination endstation. In the destination

endstation, the packet is processed through the protocol
stack in the opposite direction as in the origination endsta-
tion. During this processing the protocol headers are
removed in the opposite order in which they were applied.
The data portionis thus recovered and can be madeavailable
to a user, an application program,etc.

Several related packets (c.g., packets carrying data from
one datagram) thus undergo substantially the same process
in a serial manner(i.¢c., one packet at a time). The more data
that must be transmitted, the more packets mustbe sent, with
each one being separately handled and processed through
the protocol stack in each direction. Naturally, the more
packets that must be processed, the greater the demand
placed upon an endstation’s processor. The number of
packets that must be processed is affected by factors other
than just the amountof data being sent in a datagram. For
example, as the amountof data that can be encapsulated in
a packet increases, fewer packets need to be sent. As stated
above, however, a packet may have a maximum allowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traffic is

approximately 1,500 bytes). The speed of the network also
affects the number of packets that a NIC may handle in a
given period of time. For example, a gigabit Ethernet
network operating at peak capacity may require a NIC to
receive approximately 1.48 million packets per second.
Thus, the number of packets to be processed through a
protocol stack may place a significant burden upon a com-
puter’s processor. Thesituation is exacerbated bythe needto
process each packet separately even though each one will be
processed in a substantially similar manner.

Arelated problem to the disjoint processing of packets is
the manner in which data is moved between “user space”
(c.g., an application program’s data storage) and “system
space” (e.g., system memory) during data transmission and
receipt. Presently, data is simply copied from one area of

NOACEx. 1015 Page 268



NOAC Ex. 1015 Page 269

 
US 6,483,804 B1

3

memory assigned to a user or application program into
another area of memory dedicated to the processor’s use.
Because each portion of a datagram that is transmitted in a
packet may be copied separately (e.g., one byte at a time),
there is a nontrivial amount of processortime required and
frequent transfers can consume a large amount of the
memory bus’ bandwidth. Illustratively, each byte of data in
a packet received from the network may be read from the
system space and written to the user space in a separate copy
operation, and vice versa for data transmitted over the
network. Although system space generally provides a pro-
tected memory area (€.g., protected from manipulation by
user programs), the copy operation does nothing of value
when seen from the point of view of a network interface
circuit. Instead, it risks over-burdening the host processor
and retarding its ability to rapidly accept additional network
traffic from the NIC. Copying each packet’s data separately
can therefore be very inefficient, particularly in a high-speed
network environment.

In addition to the inefficient transfer of data (¢.g., one
packet’s data at a time), the processing of headers from
packets received from a network is also inefficient. Each
packet carrying part of a single datagram generally has the
sameprotocol headers (e.g., Ethernet, IP and TCP), although
there may be somevariation in the values within the packets’
headers for a particular protocol. Each packet, however, is
individually processed through the same protocol stack, thus
requiring multiple repetitions of identical operations for
related packets. Successively processing unrelated packets
through different protocol stacks will likely be much less
efficient than progressively processing a numberof related
packets through one protocol stack at a time.

Another basic problem concerning the interaction
between present network interface circuits and host com-
puter systems is that the combination often fails to capitalize
on the increased processor resources that are available in
multi-processor computer systems. In other words, present
attempts to distribute the processing of network packets
(c.g., through a protocol stack) among a numberofprotocols
in an efficient mannerare generally ineffective. In particular,
the performanceof present NICs does not comeclose to the
expected or desired linear performance gains one may
expect to realize from the availability of multiple processors.
In some multi-processor systems, little improvementin the
processing ofnetworktraffic is realized from the use of more
than 4-6 processors, for example.

In addition, the rate at which packets are transferred from
a network interface circuit to a host computer or other
communication device may fail to keep pace with the rate of
packet arrival at the network interface. One element or
another of the host computer (¢.g., a memory bus, a
processor) may be over-burdened or otherwise unable to
accept packets with sufficient alacrity. In this event one or
more packets may be dropped or discarded. Dropping pack-
ets may cause a network entity to re-transmit sometraffic
and, if too many packets are dropped, a network connection
may require re-initialization. Further, dropping one packet
or type of packet instead of another may makea significant
difference in overall! network traffic. If, for example, a
control packet is dropped, the corresponding network con-
nection may be severely affected and may dolittle to
alleviate the packet saturation of the network interface
circuit because ofthe typically small size of a control packet.
Therefore, unless the dropping of packets is performed in a
manner that distributes the effect among many network
connections or that makes allowance for certain types of
packets, network traffic may be degraded more than neces-
Sary.

10

20

25 ‘One embodiment of the invention Haw ke m one ormore communication flows are sto w_dat: dyich 1s ind flow number and which ma NS

30

35

40

45

50

35

4

Thus, present NICs fail to provide adequate performance
to interconnect today’s high-end computer systems and
high-speed networks. In addition, a network interface circuit
that cannot make allowance for an over-burdened host

computer may degrade the computer's performance.

SUMMARY

In one embodimentof the invention a system and method
are provided for identifying a packet within a particular
communication flow through a communication device such
as a network interface.In particular, the communication flow
may include a first packet transferred from the network
interface to a host computer. Based on an identifier of the
flow, another packet in the same flow may beidentified to
the host computer. To increase the efficiency of handling
network traffic, the flow packets may then be collectively
processed through a protocol stack on a host computer.

In this embodiment, a high performance network interface
of a host computer receives a packet from a network.

cation flow, connection _or circuit that includes the packet.  

   destination enti t are exchanging the packet. In

 

mana; ule. If ihemanagedbyaflowdatabase.managementmod)
database docs not_ already include the flow key ‘of th
received packet, then the received packet’s communication
flowmay. be a new flow at the network interface. In this case

How is registered in the database by storing its flow ke
, possibly, other information concerning the flow. Thus,2ook s Te ia ldentihe: iis Tiow Key and/orits

flownumber—
The packetis stored in a packet memory (e.g., a que

await transfer to the T, and the packet’s flow
number is sfored in a How memory of a dynamic packet

m0 en the packetis transferred or is about
to be transferred, the flow memory is searched to determine
whether another packet stored in the packet memory is part
of the same communication flow (e.g., has the same flow
numberor flow key).

In this embodiment, if another packet has the same flow
number then the host computer is alerted by storing an
indicator in a host memory, such as a descriptor. In another
embodimentof the invention, if no other packet is found
with the same flow number then a different indicator is

stored in a host memory. Adifferentindicator may be stored,
for example, if the packet is determined to bethe last packet
of its communication flow. Depending on the indicator that
is stored, the host computer may delay processing the packet
to await another packet having the same flow number.

The dynamic packet batching module also includes a
controller in a present embodiment of the invention. The
controller attempts to populate the flow memory with infor-
mation associated with or derived from packets:stored in the

 

packet memory. Iilustratively, each entry in the flow

60 nor hisnianSa icBoeand an indicator of whether entry may

65

be invalidated when its packet is transferred to the host
computer, at which time it may be replaced with another
entry.

In one embodiment of the invention, ol ckets that

conform to one or moreofa setofpre-selected protocols are
eligible for dynamic packetbatching.In this embodiment, aa

Information within a header portion of the packet is

we

NOACEx. 1015 Page 269

oe



NOAC Ex. 1015 Page 270

 
US 6,483,804 B1

5

header_parser module may be configured to determinewhetherareceivedpacketiTonmalisdtyaccordarspacketisformattedinaccodance with
one of the protocols. Jf compatible with the pre-selected#rotoaols, he reorivedpackelmayalsotecehe ikebeseht
of other processing efficiencies, such as re-assembling data

ma i fe packets in one flow ordistributing the pro-
cessing_ofpacketsamongprocessorsip@Miulfi-processor
system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A is a block diagram depicting a network interface
circuit (NIC) for receiving a packet from a network in
accordance with an embodimentof the present invention.

FIG. 1B is a flow chart demonstrating one method of
operating the NIC of FIG. 1A to transfer a packet received
from a network to a host computer in accordance with an
embodimentof the invention.

FIG.2 is a diagram of a packet transmitted over a network
and received at a network interface circuit in one embodi-
mentof the invention.

FIG.3 is a block diagram depicting a header parser of a
network interface circuit for parsing a packet in accordance
with an embodimentof the invention.

FIGS. 4A-4B comprise a flow chart demonstrating one
method of parsing a packet received from a network at a
network interface circuit in accordance with an embodiment

of the present invention.
FIG. § is a block diagram depicting a network interface

circuit flow database in accordance with an embodiment of
the invention.

FIGS. 6A-6E comprise a flowchart illustrating one
method of managing a network interface circuit flow data-
base in accordance with an embodimentof the invention.

FIG. 7 is a flow chart demonstrating one method of
distributing the processing of network packets among mul-
tiple processors on a host computer in accordance with an
embodimentof the invention.

FIG. 8 is a diagram of a packet queue for a network
interface circuit in accordance with an embodimentof the
invention.

FIG. 9 is a diagram of a control queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 10 is a block diagram of a DMA engine for trans-
ferring a packet received from a network to a host computer
in accordance with an embodimentof the invention.

FIG.11 includes diagrams ofdata structures for managing
the storage of network packets in host memory buffers in
accordance with an embodimentof the invention.

FIGS. 12A-12B are diagrams of a free descriptor, a
completion descriptor and a free buffer array in accordance
with an embodimentof the invention.

FIGS. 13-—20 are flow charts demonstrating methods of
transferring a packet received from a network to a buffer in
a host computer memory in accordance with an embodiment
of the invention.

FIG. 21 is a diagram of a dynamic packet batching
module in accordance with an embodimentof the invention.

FIGS. 22A-22B comprise a flow chart demonstrating one
method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
computerin orderto locate a packet in the same communi-
Cation flow as a packet being transferred, in accordance with
aa embodimentof the invention.

6

FIG. 23 depicts one set of dynamic instructions for
parsing a packet in accordance with an embodimentof the
invention.

FIG. 24 depicts a system for randomly discarding a packet
5 from a network interface in accordance with an embodiment

of the invention.

FIGS. 25A-25B comprise a flow chart demonstrating one
method of discarding a packet from a network interface in
accordance with an embodimentof the invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of particular applications of the
invention and their requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled in the art and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
invention. Thus, the present invention is not intended to be
limited to the embodiments shown, butis to be accorded the
widest scope consistent with the principles and features
disclosed herein.

In particular, embodiments of the invention are described

below in the form of a network interface circuit wereceiving communication packets formatted in accordance

internet,Onein the art will recognize, however, that
the present invention is not limited to communication pro-
tocols compatible with the Internet and may be readily
adapted for use with other protocolsandincommunication
devices 1 thana .

The program environmentin which a present embodiment
35 Of the invention is executed illustratively incorporates a

general-purpose computeror a special purpose device such
a hand-held computer. Details of such devices (c.g.,
processor, memory, data storage, input/output ports and
display) are well known and are omitted for the sake of

ao. clarity.
It should also be understood that the techniques of the

present invention might be implemented using a variety of
technologies. For example, the methods described herein
may be implemented in software nmning on a program-

45 mable microprocessor, or implemented in hardware utilizing
either a combination of microprocessors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particular, the methods described herein may be imple-

50 mented by a series of computer-executable instructions
residing on a storage medium such as a carrier wave, disk
drive, or other computer-readable medium.
Introduction

In one embodimentof the present invention, a network
55 interface circuit (NIC) is confi to receive and”process

communicationpackelsexchangedbetweenahostcomputer
_SystemandanetworksuchastheIntemet. In particular, the

NIC_is configured to receive and manipulate packets for-
matted in accordance with a protocol stack (e.¢., a combi-

60 nation of communication protocols) supported by a network
coupled to the NIC.

A protocol stack may be described with reference to the
seven-layer ISO-OSI (International Standards
Organization—Open Systems Interconnection) model

65 framework. Thus, one illustrative protocol stack includes the
Transport Control Protocol (TCP) at layer four, Internet
Protocol (IP) at layer three and Ethernet at layer two. For

10

25

30

@

NEE>
a)

NOACEx. 1015 Page 270

= acquste”
jovi

CLP”
ouvis



NOAC Ex. 1015 Page 271

gonaOH
ea

BERNEeMager

 

DG2eauiiaaaceaaoeeall
BRNe
“srgtos

 

US6,483,804 B1
7

purposes ofdiscussion, the term “Ethemet” may be used
herein to refer collectively to the standardized IEEE
(Institute of Electrical and Electronics Engineers) 802.3

F specification as well as version two of the non-standardized
form of the protocol. Wheredifferent forms of the protocol
need to be distinguished, the standard form maybe identified
by including the “802.3”designation.

Other embodiments of the invention are configured to
i work with communications adhering to other protocols, both

Exchange), etc.) and unknown at the present time. One
skilled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets described below
may be performed on communication devices other than a
NIC.For example, a modem, switch, router or other com-
munication port or device (e.g., serial, parallel, USB, SCSI)
may be similarly configured and operated.

In embodiments of the invention described below, a NIC
receives a packet from a network on behalf ofa’host
computer system or other communication device. The NIC

(@ analyzes the packet (c.g., by retrieving certain fields from
me or more of its protocol headers) ani S action to

increase the efficiency with which the packetis transferred
orfrovidedfoitsdestinationentity. Equipment and methods
discussed below for increasing the efficiency of processing
or transferring packets received from a network mayalso be
used for packets moving in the reverse direction (i.¢., from
the NIC to the network).

  
  

BS One techniqu ay be applied to incoming network
Pi traffic involves, ing or parsing one or more headers of
yy 1 -&., headers for the layer two, three and

four protocols) in order to identify the packet’: ce and
destination entities and ibly retrieve certain other infor-

mation. Using identifiers of the communicating entiti
key, data_frommultiplepacketsmaybeageregated_or
Te-assembled. Typically, a datagram sent to one destination

*"~ éntityfrom one source entily is transmitted via multiple
packets. Aggregating data from multiple related packets
‘eg.packets carrying data fromthesamedatagram) thus
allows” a data, to_be mbled_andcollectively

TIENiobossomputer.The datagram may then beprovi ¢ destination entity i -

ner. For example,rather than providing data from one packet
at a time (and one byte at a time) in separate “copy”
Operations, a “page-flip” operation may be performed. In a
page-flip, an entire memory page ofdata may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In anothertechnique,packelsreceivedfromanetworkareplacedinaqueuetoawaittransferto.ahostcomputer. While
awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a numberof
Telated packets to a single processor of a multi-processor
host computer system. By distributing packets conveyed
between different pairs of source and destination entities
among different processors, the processing of packets
through their respective protocol stacks can be distributed
while still maintaining packets in their correct order.

The techniques discussed above for increasing the effi-
ciency with which packets are processed may involve a
combination of hardware and software modules located on
a network interface and/or a bost computer system. In one

 

Ppa

8

particular embodiment, aparsingmoduleonahostcomput-
er’sNICparsesheaderportionsofpackets. IIlustratively,the

parsing module comprises a microsequencer operating
according to a set of replaceable instructions stored as

5 micro-code. Using information extracted from the packets,
multiple packets from one source entity to one destination
entity m identified.Ahardware re-assembly module on
the NIC maythen gather the data from the multiple packets.

other hari odule on the NICisconfigured to
recognizerelated packets awaiting transfer to the host com-
puter so that they may be processed through an appropriate
protocol stack collectively, rather than serially. The
re-assembled data and the packet’s headers may then be
provided to the host computer so that appropriate software
(e.g., a device driver for the NIC) may process the headers
and deliver the data to the destination entity.

Where the host computerincludesqultiple processors, a
load distributor (which may also be implemented in hard-
ware on the NIC) may select a processor to process the
headers of the multiple packets through a protocol stack.In another Snboriment of the invention, a system is
provided for randomly discarding a packet from a NIC when
the NICis saturated or nearly saturated with packets await-
ing transfer to a host computer.
One Embodiment of a High Performance Network Interface
Circuit

FIG. 1A depicts NIC 100 configured in accordance with
an illustrative embodiment of the invention. A brief descrip-
tion of the operation and interaction of the various modules
of NIC 100 in this embodiment follows. Descriptions incor-
porating much greater detail are provided in subsequent
sections.

 

20

25

30

A communication packet may be received at_NIC 100 acJAgL- LveS
fr6m network 102 by a medium access contro — CG)35 module (not shown in FIG. 1A). The MAC module performs
low-level processing of the the

acket from ik, performing someerror checking,
detecting packet fragments, detecting over-sized packets,
removing the layer one preamble,etc.

Input Port Processing (IPP) module 104 then receives the
packet.TheIPPmodulestorestheentirepacketinpacket
queue 116, as received from the MAC module or network,
and a portion of the packet is copied into header parser 106.

To one embodimentof the invention IPP module 104 may act
as a coordinatorofsorts to prepare the packetfor transfer to
a host computer system.In such a role, IPP module 104 may
receive information concerning a packet from various mod-
ules of NIC 100 and dispatch such information to other
modules.

Headerparser 106 parses a header portion ofthe packetto
tetricve various pieces of information that will be used to

Same so éitity for one destination entity) and i
subsequent processing of the packets. In the illustrated

émbodiment, header parser 106 communicates with flow
database manager (FDBM) 108, which manages flow data-
base (FDB) 110. In particular, header parser 106 submits a wuery to FDBM 108 to determine whe i a peo
nication flow (described below)exists between _the source

60 entity that_sent_a packet _and the destination entity. The
destination entity may comprise an application program, a

communicationmodte,orsome-oiherclementofabostcomputer system that ts to receive the packet.
—Totheillustrated embodimentofthe invention, a commu-

nication flow comprises one or more datagram packets from
one source eplity10-One destination entity A flow may be
identified by a flow key assembled from source and desti-
et

NOACEx. 1015 Page 271

s¥orect! ya .
iG (meg YA)

40

45

° fee) ©)
= Cat
- eho +
fe -— PRONG

itbbear

C0
dusted=pag

: io "
POOopOf

(S)

55

 



NOAC Ex. 1015 Page 272

US 6,483,804 B1
9

gationidentifiersretrievedfromthepacketbyheaderparser06. In one embodimentof the invention a flow key com-
prises address and/or port information for the source and
destination entities from the packet’s layer three (c.g., IP)
and/or layer e.g. tocol headers.

For purposes of the illustrated embodiment of the
. invention, a communication flow is similar to a TCP end-

ob to-end connection but is generally shorter in duration. In
particular, in this embodimentthe duration of a flow may be
limited to the time needed to receive all of the packets
associated with a single datagram passed from the source
ntity to the destination entity.

Thus, for purposes of flow management, header parser
106 passes the packet’s flow key to flow database manager
108. The header parser may also provide the flow databaseee  manager with other information concerning the packet that

was retrieved from the packet (e.g., length of the packet).ayabase manager 108 ‘searches FDB 110 in 
 

eo Q.2 cy om header parser“106.
hu? a | ¥0 siores information concern-4 f y ing each val omm atidn How involving a destinationpe? O énfity served by NIC 100. Thus, FDBM 108 updatesjatesFDB
yl as necessary, penne.upon the information receivedHomheaderheader parser ion, 10 embodiment of{heinvention FDBM 108 associates an operation or action

code with the ‘feceived packet. An operation code may be
Ups wd to identity whether a packetis part of a new or existiniow, whether the packet includes data or just control

"nformation, the amountof data within the packet, whether
the packet data can be re-assembled with related data (e.g.,
other data in a datagram sent from the source entity to the
destination entity), etc. FDBM_ 108 may use information

\ tetrieved from theFSaaeetanapptpelecimatoncode.The-paciat'soperand provides by header parser 106to selec 0} ode. ‘TheSgeleoCRTappTOpHATEOperationcode.Thepackel’soperopera-tion code is then passed back to‘the headerparser, along with
An finder oF thepackersFonBsacket’s flow withm FDB 110.oneoPoweembodimentoftheInventiontheoof the invention the combination of
header parser 106, FDBM 108 and FDB 110,or a subset of
these modules, may be known asatraffic classifier duc to
their role in classifying or identifying network traffic
received at NIC 100.

In the illustrated embodiment, header

e 
 i

le
|aurr may determine which processor an incomin sche

is to be routed to for processing through the appropriat

provoce!sack.Forexample,oad distributothat related packets are routed to a single processor. By
erSendingaflpackelsin-onecommunicationHowarend-to-: end connection to a single processor, the correct ordering ofSacsycinbeoniOreedLoaddstibutor112may.be
. “omiltedinonealternative embodimentof the invention. In

another alternative embodiment, header parser 106 mayalso
communicate directly with other modules of NIC 100
besides the load distributor and flow database manager.

Thus, after header parser 106 parses a packet 08gaderparser106parsesapacketFDBM108

altersorupdatesEDB140andloaddistributor112identifies
aprocessor18TisTostComputersysiem_to_prnoess.the

acket erThese’actions,Hieheaderparser passes variousinformation back to module 104. Iilustratively, this
~imformatiommayinchideThepacket's flowkey,anincox ofSETaorwHInInHow’estates TIO,aientice of
aprocessoriaWheHOSTComputersystem,andvariousotherdaeconningTispacket(ea,aslengih,@lengthofa
‘packetheader).

Now the packet may be stored in packet que ich
holds packets for manipulation by DMA (Direct Memory
en

 

 
Biwee:

25

45

65

10

Access) engine 120 and transfer to a_host computer,1p
addition to storingthepacketin-a-packet queue,2_corre
 
passed to d amic acket batchin module 122. Control

queue118containsrelatedcontrolinformation for each
acket in packet queue 116.

fPacketaichingmodile122drawsuponinformation
concerning packets in packet queuc lo batch

(cg, collective)processingofTalesTomUp related
packets. In one embodiment of the invention packet batch-
ing module 122 alerts the host computer to the availability
of headers from related packets so that they may be pro-
cessed together.

Although the processing of a packet’s protocol headers is
performed by a processor on a host computer system in one
embodiment of the invention, in another embodiment the
protocol headers maybe processedby a processor located on
NIC 100. In the former embodiment, software on the host
computer(e.g., a device driver for NIC 100) can reap the
advantages of additional memory and a replaceable or
upgradeable processor (e.g., the memory may be supple-
mented and the processor may be replaced by a faster
model).

During the storage of a packet in packet queue 116,
checksum generator 114 may perform a checksum opera-
tion. The checksum may be added to the packet queue as a
trailer to the packet. Illustratively, checksum generator 114
generates a checksum from a portion of the packet received
from network 102. In one embodiment of the invention, a
checksum is generated from the TCP portion of a packet
(c.g., the TCP header and data).If a packet is not formatted
according to TCP, a checksum may be generated on another
portion of the packet and the result may be adjusted in later
processing as necessary. For example, if the checksum
calculated by checksum generator 114 was not calculated on
the correct portion of the packet, the checksum may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(c.g., a device driver). Checksum generator 114 may be
omitted or merged into another module of NIC 100 in an
alternative embodiment of the invention.

From the information obtained by header parser 106 and
the flow information managed by flow database manager
108, the host computer system served by NIC 100 in the
illustrated embodiment_is able_to process network traffic
very efficiently. For example, data portions of related pack-

mH te-assembled by DMA engine 120 to form
aggregationsthatcanbemoreefficientlymanipulated.And,

y assembling the data into ers the size of a memory
page, the data can be more efficiently transferred to a
destination entity through “page-flipping,” in which an
entire memory page filled by DMA engine 120 is provided
at once. One page-flip can thus take the place of multiple
copy operations. Meanwhile, the header portions of the
re-assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the processing of network traffic through appro-
priate protocol stacks may be efficiently distributed in a
multi-processor host computer system. In this embodiment,
load distributor 112 assigus or distributes related

(¢.g., packets in the same communication flow) to the same
processor.Inp lar, packets having the same source and
“destinationaddressesintheirlayerthreeprotocol (c.g,, IP)
headers and/or the same source and destination ports in their

Tayer four protocol @g. TCP) headers may be sent ta_a
single processor. 

NOACEx. 1015 Page 272

(pt
QD) aha



NOAC Ex. 1015 Page 273

oe

@

js6

 
A

P

. ab[Ee
Ne,

pen
}

US 6,483,804 B1
11

In the NIC illustrated in FIG. 1A, the processing enhance-
ments discussed above (€.g., re-assembling data, batch pro-
cessing packet headers, distributing protocolstack
processing) are possible for packets Tece tk
102 that are formatted according fo one or more pre- ted
protocol stacks. In this embodiment of the invention net-
work 102 is the Internet and NIC 100 is therefore configured
to process packets using one of several protocol stacks
compatiblewiththe Internet. Packétsnotconligureduccord-
ing to the pre-selected protocols are also processed, but may
not receive the benefits of the full suite of processing
efficiencies provided to packets meeting the pre-selected
protocols.

For example, packets not matching oneof the pre-selected
protocol stacks may be distributed for processing in a
multi-processor system onthe basis of the packets’ layer two
(c.g., medium access control) source and destination
addresses rather than their layer three or layer four
addresses. Using layer two identifiers provides less pranu-
larity to the load distribution procedure, thus possibly dis-
tributing the processing of packets less evenly than if layer
three/four identifiers were used.

FIG.1B depicts one method of using NIC 100 of FIG. 1A
to receive one packet from network 102 andtransferit to a
host computer. State 130 is a start state, possibly character-
ized by theinitialization or resetting of NIC 100.

In state 132, a packet is received by NIC 100 from
network 102. As“iircadydescribed,thepacketmayBe
Formattedaccordingto2varietyofcommunicationpro'o:cols. The packet may be received and initially manipulated
‘by a MAC module before being passed to an IPP module.

In state 134, a portion of the packet is copied and passed
to header parser 108. Header 1 106 then parses the
packet fo extract valu ore of its headers

for its data. A flow key is generated from someof the
reirievedinformationtoidentifythecommunicationflow

that includes the packet, The degree or extent to which the
packet is parsed may depend uponits protocols, in that the
headerparser maybe configured to parse headers ofdifferent

protocolsfodifferentdepths.Inparticular,headerparser106
may be optimized (e.g., its operating instructions
configured) fora specific set of protocols or protocol stacks.If the packetcoMGGIS-1S-OUe-OFmoreGfthespecified
protocols it may be parsed more fully than a packetthat does
not adhere to any of the protocols.

In state 136, information extracted from the packet’s
headers is forwarded to flo base manager 108 and/or
load distributor 112. The FDBM uses the information to set

upa flow i flow database 110 jf one does not already exist
‘or this communication flow..If an entry already exists for
e packet’s flow, it may be updated to reflect the receipt of

tion code to summarize one or more ¢ lenisucs or

conditions of the packet, The operation code maybe used by

appropriate manner, as described in subsequent sections.
The operation codeis returned to the header parser, along
with an index (e.g., a flow number) ofthe packet’s flow in
thetowtaba.”
Tnstate138, load distributor 112 assigns a processor

number to the packet, ¢ host computer includes multiple

provessors,andretumnstheprocessornumberfo-the-headheprocessoraumberiobeheader
processor,Tnusiratively,_the_processor_numeridentifies

“Whichprocessori1conductthepacketDrenchHspotas)Stack on the host computer, State 138 may be omitted in an
‘dlernativecuibadineatoftthe invention, particularly if the
host computer consists of only a single processor.

 

 

12

In state 140,shepacketisstoredinpacketqueus116- Asthe contents of the packet are placed into the packet queue,
checksum generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as

5 to which portion of the packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet. In one embodimentof the invention, the
packetis stored in the packet queueat substantially the same
timethat a copyof a header portion ofthe packetis provided

10 to header parser 106.
Also in state 140, gpntrol information for the packet is

stored in control queue 118and information concerning the

packet'sflow(c.g.flownumber,flowkey)maybeprovidedto dynamic packet batching module_122.__
15 ~~Tirsfate 142, NIC 100 determines whether the packet is

ready to be transferred to host computer memory. Until it is
Teady to be transferred, the illustrated procedure waits.

When the packet is ready to be transferred (e.g., the
packet is at the head of the packet queue or the host

20 computer receives the packet ahead of this packet in the
packet queue), in state 144 dynamic packetbatching module
122 determines whether a related packet will soon be
transferred. If so, then when the present packetis transferred
to host memory the host computeris alerted that a related

25 packet will soon follow. The host computer may then
process the packets (c.g., through their protocol stack) as a
group.

In state 146, the packet_is transferred (e.g., via a direct
memory accessOperation)tohostcomputermemory. And,

30 in state 148, the host computeris notified that the packet was
transferred. The illustrated procedure then ends atstate 150.
Oneskilled in the art of computer systems and networking
will recognize that the procedure described aboveis just one
method of employing the modules of NIC 100 to receive a

35 single packet from afietworkandtransferitf0ahost

‘computer-sysiem. Other suitable methods are also contem-plated within the scope of the invention.
An Illustrative Packet

FIG.2 is a diagram of an illustrative packet received by
40 NIC 100 from network 102. Packet 200 comprises data

portion 202 and header portion 204, and may also contain
trailer portion 206. Depending upon the network environ-
ment traversed by packet 200, its maximum size (c.g., its
maximum transfer unit or MTU) may be limited.

Tnthe illustrated embodiment, data portion 202 comprises
data_being provided to_a destination or receiving entity
within a computer system (e.g. ication prc

45

 
 computer. Header portion 204 comprises one or more héad-

50 ers prefixed to the data portion by the source or originating
entity or a computer system comprising the source entity,

C7”)Eac ormally corresponds to a different comm
cationprotocol.

In a typical network environment, such as the Internet,
55 individual headers within header portion 204 are attached

(e.g., prepended) as the packetis processed through different
layers of a protocol stack (e.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers

60 210, 212, 214 and 216, correspondingto layers one through
four, respectively, of a suitable protocol stack. Each protocol
header contains information to be used by the receiving
computer system as the packet is received and processed
through the protocolstack. Ultimately, each protocol header

65 is removed and data portion 202 is retrieved.
As described in other sections, in one embodimentof the

invention a system and method are provided for parsing———

 

NOACEx. 1015 Page 273



NOAC Ex. 1015 Page 274

 
US 6,483,804 B1

13

packet200toretrievevatiousbitsofinformation. In thisembodiment, packet 200 is parsed in order to identify the
beginning of data portion 202 andto retrieve one or more
values for fields within header portion 204. Ilustratively,
however, layer one protocol header or preamble 210 corre-
sponds to a hardware-level specification related to the cod-
ing of individual bits. Layer one protocols are generally only
needed for the physical process of sending or receiving the
packet across a conductor. Thus, in this embodiment of the
invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 andis therefore
not parsed.

The extent_to which header portion 204 is parsed may
depend upon how many, if any, of the protocols represented
in the header portion match a set of pre-selected protocols.
For example, theparsingproceduremaybeabbreviatedor
aborted once itis ined that oneof the packet’s headersbortedonceitisdeterminedthatoneofthepacket’

correspondstoanunsuppatied protocol.particular, in one embodimentof the invention NIC 100
is configured primarily for Internet traffic. Thus, in this
embodimentpacket 200 is extensively parsed only. ayhen the

yer two protocolis Ethernet(either traditional Ethemet or8023Ethernet,withofwithowtGpgingforVirtualLot,withorwithouttaggingforcal
Area Networks), the ¢ protocol is IP(Internet
Protocol) and the layer four protocol is TCP (Transport
Contro. col).Packetsadheringtootherprotocols may
be parsed to some (e.g., lesser) extent. NIC 100 may,

however,-be-configured to support and parsevirtuallyany

satispomsfeader,Masaivelyprotocol
headers that are parsed, and the extent to which they are
parsed, are determined by the configuration of a set of
instructions for operating header parser 106.

As described above, the protocols corresponding to head-
ers 212, 214 and 216 depend upon the network environment
in whichapacketis sent. The protocols also depend upon the
communicating entities. For example, a packet received by
a network interface may be a control packet exchanged
between the medium access controllers for the source and

destination computer systems.In this case, the packet would
be likely to include minimal or no data, and may not include
layer three protocol header 214 orlayer four protocol header
216. Control packets are typically used for various purposes
related to the managementof individual connections.

Another communication flow or connection could involve

two application programs.In this case, a packet may include
headers 212, 214 and 216, as shown in FIG.2, and mayalso
include additional headers related to higher layers of a
protocol stack (e.g., session, presentation and application
layers in the ISO-OSI model). In addition, some applications
may include headers or header-like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 202 may include NFS headers
related to individual NFS datagrams. A datagram may be
defined as a collection of data sent from one entity to
another, and may comprise data transmitted in multiple
packets. In other words, the amount of data constituting a
datagram maybe greater than the amountofdata that can be
included in one packet.

Oneskilled in the art will appreciate that the methods for
parsing a packet that are described in the following section
are readily adaptable for packets formatted in accordance
with virtually any communication protocol.
One Embodiment of a Header Parser

FIG. 3 depicts header parser 106 of FIG. 1Ain accordance
with a present embodimentof the invention. Illustratively,
header parser 106 comprises header memory 302 and parser
304, and parser 304 comprises instruction memory 306.

14

Although depicted as distinct modules in FIG. 3, in an
alternative embodimentofthe invention header memory 302
and instruction memory 306 are contiguous.

In theillustrated embodiment, parser 304 parses a header
5 stored in heade Z" acco to instructions

stored_in instruction ry 306. The instructions are

designedfortheparsingofparticularpfotounlsorapariat protocolstack, as discussed above. In one embodimentof
the invention, instruction memory 306 is modifiable (e.g.,

10 the memory is implemented as RAM, EPROM, EEPROMor
the like), so that new or modified parsing instructions may
be downloaded or otherwise installed. Instructions for pars-
ing a packet are further discussed in the following section.

In FIG. 3, a header portion of a packet stored in IPP
15 module 104 (shown in FIG. 1A) is copied into header

memory 302.Illustratively, a specific numberof bytes(e.g.,
114) at the beginning of the packet are copied. In an
alternative embodiment of the invention, the portion of a
packet that is copied may be of a different size. The

20 particular amount of a packet copied into header memory
302 should be enough to capture one or more protocol
headers, or at least enough information (e.g., whether
includedin a headeror data portion of the packet) to retrieve
the information described below. The header portion stored

25 in header memory 302 maynotinclude the layer one header,
which may be removedprior to or in conjunction with the
packet being processed by IPP module 104.

After a header portion of the packet is stored in header
memory3UZ,parser304parses the header portion according

30 ic instructions stored in instruction memory 306.In the

“presently described embodiment, instructions for operating
parser 304 apply the forma’ tep

specific information. In particular, specifications of commu-
35 inication protocols are well known and widely available.

Thus, a protocol header may be traversed byte by byte or

Someotherfashionbyreferringtotheprotocolspecifica:tions. In a present em ent of the invention the parsing
algorithm is dynamic, with information retrieved from one

40 field of a headeroften altering the manner in which another
part is parsed.

For example, it is known that the Type field of a packet
adhering to the traditional, form of Etheret(e.g., version
two) begins at the thirteenth byte of the (layer two) header.

45 By comparison, the Type field of a packet following the
IEEE 802.3 version of Ethemet begins at the twenty-first
byte of the header. The Type field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which illustratively involves tag-

50 ging or encapsulating an Ethermetheader). Thus, in a present
embodimentofthe invention, the values in certain fields are
retrieved and tested in order to ensure that the information

needed from a header is drawn from the correct portion of
the header. Details concerning the form of a VLAN packet

55 may be foundin specifications for the IEEE 802.3p and EEE
802.3q forms of the Ethernet protocol.

The operation of header parser 106 also depends upon
other differences between protocols, such as whether the
packet uses version four or version six of the Intemet

60 Protocol, etc. Specifications for versions four and six of IP
may be located in IETF (Internet Engineering Task Force)
RFCs (Request for Comment) 791 and 2460, respectively.

The more protocols that are “known”by parser 304, the
more protocols a packet may be tested for, and the more

65 complicated the parsing of a packet’s header portion may
become. One skilled in the art will appreciate that the
protocols that may be parsed byparser 304 are limited only

NOACEx. 1015 Page 274



NOAC Ex. 1015 Page 275

 
US 6,483,804 B1

15

by the instructions according to which it operates. Thus, by
augmenting or replacing the parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually any informa-
tion may be retrieved from a packet’s headers.

If, of course, a packet header does not conform to an
expected or suspected protocol, the parsing operation may
be terminated.In this case, the packet may not be suitable for
one more ofthe efficiency enhancements offered by NIC 100
(c.g., data re-assembly, packet batching, load distribution).

Illustratively, the information retrieved from a packet’s
headers is used by other portions of NIC 100 when process-
ing thatpacket. For example,as a result of the packet parsin
performed by parser 304 a flow Key is generated to identify
the communication flow or communication connection that
“comprises the packet. Illustratively, the flow key is
assembled tenatine one or more addresses corte-

sponding to one or more of the communicating entities. In

a present embodiment, a flow key is formed from a combi.nation of the source and ation addresses drawn

e IP headerandthesource an tinahon po! en from
theTCP header.Otherindiciaofthecommunicatingentities
inaybe used, such as the Ethernet source and destination
addresses (drawn from the layer two header), NFS file
handles or source and destination identifiers for other appli-
cation datagrams drawn from the data portion of the packet.

Oneskilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol
stack associated with a packet. Thus, a combination of IP 30
and TCP indicia may identify the entities with greater
particularity than layer two information.

Besides a flow key, parser 304 also generates a control or
status indicator to summarize additional information con-

cerning the packet. In one embodiment of the invention a
control indicator includes a sequence number (e.g., TCP
Sequence number drawn from a TCP header) to ensure the
correct ordering of packets when re-assembling their data.
The control indicator may also reveal whether certain flags
in the packet’s headers are set or cleared, whether the packet
contains any data, and, if the packet contains data, whether
the data exceeds a certain size. Other data are also suitable

for inclusion in the control indicator, limited only by the
information that is available in the portion of the packet
parsed by parser 304.

In one embodiment of the invention, header parser 106
provides the flow key and all or a portion of ie trol

ingicaloyWoToedatabaseTanager108.Asdiscussedina
following section, FDBM 108 managesa database orother
data structure containing information relevant to communi-
cation flows passing through NIC 100.

In other embodiments of the invention, parser 304 pro-
duces additional information derived from the header of a

packet for use by other modules of NIC 100. For example,
header parser 106 may report the offset, from the beginning
of the packet or from some other point, of the data or
payload portion of a packet received from a network. As
described above, the data portion of a packet typically
follows the header portion and may be followedbya trailer
Portion. Other data that header parser 106 may report
include the location in the packet at which a checksum
operation should begin, the location in the packet at which
the layer three and/or layer four headers begin, diagnostic
data, payload information, etc. The term “payload”is often
used to refer to the data portion of a packet. In particular, in
one embodimentofthe invention header parser 106 provides
a payloadoffset and payload size to control queue 118.

25 ai

16

4in appropriate circumstances, header parser 106 may also
report (e.g., to IPP module 104 and/or control queue 118)
that the packet is not formatted in accordance with the
protocols that parser 304 is configured to manipulate. This

5 report may take the form ofasignal (e.g., the No__Assist
signal described below), alert, flag or other indicator. The
signal may be raised or issued wheneverthe packet is found
to reflect a protocol other than the pre-selected protocols that
are compatible with the processing enhancements described

10 above (c.g., data re-assembly, batch processing of packet
headers, loaddistribution). For example, in one embodiment
of the invention parser 304 may be configured to parse and
efficiently process packets using TCP at layer four, IP at
layer three and Ethernetat layer two. In this embodiment, an

15 IPX (Internetwork Packet Exchange) packet would not be
considered compatible and IPX packets therefore would not
be gathered for data re-assembly and batch processing.

At the conclusion of parsing in one embodimentof the
invention, the various pieces of information described above

20 are disseminated to appropriate modules of NIC 100,valeFthis(andasdescribed inafollowingsection)flow.databaseanager letermines whether an active flow is associ-
ated with the flow key derived from the packet and sets an

operationcode_tobeusedin-subsequent_procesbe“used.insubsequentprocessing.Intion, IPP module 104 transmits the packet to packet
queue 116. IPP module 104 may also recei f the

‘Mormalonexactedyearparser 106,andpasit
anothermodule of NIC 100.

In the embodimentofthe invention depicted in FIG.3, an
entire header portion of a received packet to be parsed is
copied and then parsed in one evolution, after which the
headerparserturns its attention to another packet. However,
in an alternative embodiment multiple copy and/or parsing
operations may be performed on a single packet. In

35 particular, an initial header portion of the packet may be
copied into and parsed by header parser 106 in a first
evolution, after which another header portion may be copied
into header parser 106 and parsed in a second evolution. A
headerportion in one evolution may partially or completely

40 overlap the header portion of another evolution. In this
manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to loada full set of instructions for
parsing a packet into instruction memory 306. Ilustratively,

45 a first portion of the instructions may be loaded and
executed, after which other instructions are loaded.

With reference now to FIGS. 4A-4B, a fiow chart is
presented to illustrate one method by which a header parser
mayparse a headerportion of a packet received at a network

50 interface circuit from a network.In this implementation,the
headerparser isconfigured,oroptimized,forparsing. pack-

ets confo to a set of pre-se r protocol
stacks). For packets meeting these criteria, various informa-tion is retrieved from the header portion to assist in the

55 re-assembly of the data porti d packets (e.g.,
packets compnising data from_a_si jatagram). Otherea
e s of the network interface circuit may also
be enabled.

The information generated by the header parser includes,
60 in particular, a flow key with whichto identify the commu-

nication How or communication connection that comprises
ie received packet. In one embodiment of the invention,

data from packets having the same flow key may be iden-
tified and re-assembled to form a datagram. In addition,

65 headers of packets having the same flow key may be
processed collectively through their protocol stack (c.g.,
rather than serially).

NOACEx. 1015 Page 275



NOAC Ex. 1015 Page 276

 

 

 

 

PeggHthnee
Pn.

US 6,483,804 B1
17

In another embodiment of the invention, information
retrieved by the headerparseris also used to distribute the
processing of network traffic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-processor host
computer system.

In the method illustrated in FIGS. 4A-4B, the set of
pre-selected protocols corresponds to communication pro-
tocols frequently transmitted via the Internet. In particular,
the set of protocols that may be extensively parsed in this
method include the following. At layer two: Ethernet
(traditional version), 802.3 Ethernet, Ethernet VLAN
(Virtual Local Area Network) and 802.3 Ethernet VLAN. At
layer three: IPv4 (with no options) and IPv6 (with no
options). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
method. Headerparsers in alternative embodiments of the
invention parse packets formatted through other protocol
stacks. In particular, a NIC maybe configured in accordance
with the most common protocol stacks in use on a given
network, which may or may not include the protocols
compatible with the header parser method illustrated in
FIGS. 4A-4B.

As described below, a received packet that does not
correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining certain headerfield values, the determination that
a packet does not conform to the selected set of protocols
may be made at virtually any time during the procedure.
Thus, the illustrated parsing method has as one goal the
identification of packets not meeting the formatting criteria
for re-assembly of data.

Variousprotocol headerfields appearing in headers for the
selected protocols are discussed below. Communication
protocols that may be compatible with an embodimentof the
present invention (e.g., protocols that may be parsed by a
header parser) are well known to persons skilled in the art
and are described with great particularity in a number of
references. They therefore need not be visited in minute
detail herein. In addition,the illustrated method ofparsing a
header portion of a packet for the selected protocols is
merely one method of gathering the information described
below. Other parsing procedures capable of doing so are
equally suitable.

In a present embodimentofthe invention, the illustrated
procedure is implemented as a combination of hardware and
software. For example, updateable micro-code instructions
for performing the procedure may be executed by a microse-
quencer. Alternatively, such instructions may be fixed (e.g.,
Stored in read-only memory) or may be executed by a
Processor or microprocessor.

In FIGS. 4A-4B,state 400 is a start state during which a
packetis received by NIC 100 (shown in FIG. 1A) andinitial
processing is performed. NIC 100 is coupled to the Internet
for purposes of this procedure. Initial processing may
include basic error checking and the removal of the layer one
preamble. After initial processing, the packet is held by IPP
module 104 (also shown in FIG. 1A). In one embodiment of
the invention, state 400 comprises a logical loop in which
the header parser remains in an idle or wait state until a
packetis received.

In state 402, apeaderportionofthepacketis.copiedinto
memory (c.g., header memory 302 of FIG. 3). In a presentembodimentofthetaventionapredetermined number of
bytes at the beginning (c.g., 114 bytes) of the packet are

10

15

20

25

35

40

45

50

55

60

18

copied. Packet portions of different sizes are copied in
alternative embodiments of the invention,the sizes of which

are guided by the goal of copying enough ofthe packet to
capture and/or identify the necessary header information.
Illustratively, the full packet is retained by IPP module 104
while the following parsing operations are performed,
although the packet may, alternatively, be stored in packet
queue 116 prior to the completion of parsing.

Also in state 402, a pointer to be used in parsing the
packet may be initialized. Because the layer one preamble
was removed, the header portion copied to memory should
begin with the layer two protocol header. [lustratively,
therefore, the pointer is initially set to point to the twelfth
byte of the layer two protocol header and the two-byte value
at the pointer position is read. As one skilled in the art will
recognize, these two bytes may be part of a number of
different fields, depending upon which protocol constitutes
layer two of the packet’s protocol stack. For example, these
two bytes may comprise the Type field of a traditional
Ethemetheader,the Length field of an 802.3 Ethernet header
or the TPID (Tag Protocol IDentifier) field of a WLAN-
tagged header.

In state 404, a first examination is madeofthe layer two
header to determine if it comprises a VLAN-tagged layer
two protocol header. Illustratively, this determination
depends upon whether the two bytes at the pointer position
store the hexadecimal value 8100. If so, the pointer is
probably located at the TPID field of a VLAN-tagged
header. If not a VLAN header, the procedure proceeds to
state 406.

If, however, the layer two header is a VLAN-tagged
header, in state 406 the CFI (Canonical Format Indicator)bit
is examined. If the CFI bit is set (e.g., equal to one), the
illustrated procedure jumps to state 430, after whichit exits.
In this embodiment of the invention the CFI bit, when set,
indicates that the formatof the packet is not compatible with
(i.c., does not comply with) the pre-selected protocols (e.g.,
the layer two protocol is not Ethernet or 802.3 Ethernet). If
the CFI bit is clear (¢.g., equal to zero), the pointeris
incremented (e.g., by four bytes) to position it at the next
field that must be examined.

In state 408, the layer two header is further tested.
Although it is now known whether this is or is not a
VLAN-tagged header, depending upon whether state 408
was reached through state 406 or directly from state 404,
respectively, the header may reflect either the traditional
Ethemet format or the 802.3 Ethernet format. At the begin-
ning of state 408, the pointer is cither at the twelfth or
sixteenth byte of the header, either of which may correspond
to a Length field or a Type field. In particular,if the two-byte
value at the position identified by the pointer is less than
0600 (hexadecimal), then the packet corresponds to 802.3
Ethemet and the pointer is understood to identify a Length
field. Otherwise, the packet is a traditional (e.g., version
two) Ethemet packet and the pointer identifies a Type field.

If the layer two protocol is 802.3 Ethernet, the procedure
continues atstate 410. If the layer two protocolis traditional
Ethernet, the Type field is tested for the hexadecimal values
of0800 and O8DD.If the tested field has one of these values,
then it has also been determined thatthe packet’s layer three
protocolis the Internet Protocol. In this case the illustrated
procedure continuesat state 412. Lastly, if the field is a Type
field having a value other than 0800 or 86DD (hexadecimal),
then the packet’s layer three protocol does not match the
pre-selected protocols according to which the header parser
was configured. Therefore, the procedure continues at state
430 and then ends.

NOACEx. 1015 Page 276



NOAC Ex. 1015 Page 277

US 6,483,804 B1
19

In one embodimentof the invention the packet is exam-
ined in state 408 to determineif it is a jumbo Ethernetframe.
This determination would likely be made prior to deciding
whether the layer two header conforms to Ethermet or 802.3
Ethernet.Illustratively, the jumbo frame determination may
be made based on the size of the packet, which may be
reported by IPP module 104 or a MAC module.If the packet
is a jumbo frame, the procedure may continue at state 410;
otherwise, it may resumeatstate 412.

In state 410, the procedure verifies that the layer two
protocol is 802.3 Ethernet with LLC SNAP encapsulation. In
particular, the pointer is advanced (e.g., by two bytes) and
the six-byte value following the Length field in the layer two
headeris retrieved and examined.If the header is an 802.3
Ethermet header, the field is the LLC_SNAP field and
should have a value ofAAAA03000000 (hexadecimal). The
original specification for an LLC SNAP header may be
found in the specification for IEEE 802.2. If the value in the
packet’s LLC_SNAP field matches the expected value the
pointer is incremented anothersix bytes, the two-byte 802.3
Ethemet Type field is read and the procedure continues at
state 412. If the values do not match, then the packet does
not confonn to the specified protocols and the procedure
enters state 430 and then ends.

In state 412, the pointer is advanced (e.g., another two
bytes) to locate the beginning of the layer three protocol
header. This pointer position may be saved for later use in
quickly identifying the beginning of this header. The packet
is now known to conform to an accepted layer two protocol
(c.g., traditional Ethernet, Ethernet with VLAN tagging, or
802.3 Ethernet with LLC SNAP) and is now checked to
ensure that the packet’s layer three protocol is IP. As
discussed above, in the illustrated embodiment only packets
confomning to the IP protocol are extensively processed by
the header parser.

Tilustratively,if the value of the Type field in the layer two
header (retrieved in state 402 or state 410) is 0800
(hexadecimal), the layer three protocol is expected to be IP,
version four. If the value is 86DD (hexadecimal), the layer
three protocol is expected to be IP, version six. Thus, the
Type field is tested in state 412 and the procedure continues
at state 414 or state 418, depending upon whether the
hexadecimal value is 0800 or 86DD,respectively.

In state 414, the layer three header’s conformity with
version four of IP is verified. In one embodiment of the

invention the Version field of the layer three headeris tested
to ensure that it contains the hexadecimal value 4, corre-
sponding to versionfour ofIP. If in state 414 the layer three
header is confirmed to be IP version four, the procedure
continues at state 416; otherwise, the procedure proceeds to
state 430 and then ends at state 432.

In state 416, various pieces of information from the IP
header are saved. This information tay include the IHL (IP

“Header Length), Total Length, Protocol and/or Fragment
Offset fields. The IP source address and the IP destination

addresses_mayalsobestored. d_ destination
address values are each four bytes long in version four ofIP.

ese addresses are used, as described above, to generate a_ flow key that identifies the communication owinwi
_thispacketwassent.TheTotaLengiiBelaSiorestheSize

of the IP segmentof this packet, which ilustratively com-
prises the IP header, the TCP header and the packet’s data
portion. The TCP segmentsize of the packet(e.g., the size
of the TCP header plus the size of the data portion of the
packet) may be calculated by subtracting twenty bytes (the
size of the IP version four header) from the Total Length
value. After state 416, the illustrated procedure advances to
state 422.

10

20

25

30

35

40

45

50

55

60

65

20

In state 418, the layer three header’s confomnity with
version six ofIP is verified by testing the Version field for
the hexadecimal value 6.If the Versionfield does not contain

this value, the illustrated procedure proceeds to state 430.
In state 420, the values of the Payload Length (¢.g., the

size of the TCP segment) and Next Headerfield are saved,
plus the IP source and destination addresses. Source and
destination addresses are each sixteen bytes long in version
six of IP.

In state 422 of the illustrated procedure,it is determined
whether the IP header (cither version four or version six)
indicates that the layer four header is TCP. Illustratively, the
Protocolfield of a version four IP headeris tested while the
Next Header field of a version six headeris tested. In either

case, the value should be 6 (hexadecimal). The pointer is
then incremented as necessary (e.g., twenty bytes for IP
version four, forty bytes for IP version six) to reach the
beginning of the TCP header.If it is determinedin state 422
that the layer four headeris not TCP, the procedure advances
to state 430 and ends at end state 432.

In one embodimentof the invention, other fields of a
version four IP header may be tested in state 422 to ensure
that the packet meets the criteria for enhanced processing by
NIC 100. For example, an IHL field value other than 5
(hexadecimal) indicates that IP options are set for this
packet, in which case the parsing operation is aborted. A
fragmentationfield valuc other than zero indicates that the IP
segment of the packet is a fragment, in which case parsing
is also aborted. In cither case, the procedure jumps to state
430 and then ends at end state 432.

In state 424, the packet’s TCP header is parsed and
various data are collected from it. In particular, the TCP
source port and destination port values are saved. The TCP
sequence number, which is used to ensure the correct
re-assembly of data from multiple packets, is also saved.
Further, the values of several components of the Flags
field—ilhustratively, the URG (urgent), PSH (push), RST
(reset), SYN (synch) and FIN (finish) bits—are saved. As
will be seen in a later section, in one embodiment of the
invention these flags signal various actions to be performed
or statuses to be considered in the handling of the packet.

Othersignals or statuses may be generated in state 424 to
reflect information retrieved from the TCP header. For

example, the point from which a checksum operation is to
begin may be saved(illustratively, the beginning of the TCP
header); the ending point of a checksum operation may also
be saved (illustratively, the end of the data portion of the
packet). An offset to the data portion of the packet may be
identified by multiplying the value of the Header Length
field of the TCP header by four. The size of the data portion
may then be calculated by subtracting the offset to the data
portion from the size of the entire TCP segment.

In state 426, a flow key is assembled by concatenating the
IP source and destinati and
destination,ports. As already described, the flow key may be
used to identify a communication flow or communication
connection, and may be used by other mo f NIC 100
tO process network trafic more efficiently. Although the
sizes Of the source and destination addresses differ between

IP versions four andsix (e.g., four bytes each versus sixteen
bytes each, respectively), in the presently described embodi-
ment of the invention all flow keys are of uniform size. In
particular, in this embodimentthey are thirty-six bytes long,
including the two-byte TCP source port and two-byte TCP
destination port. Flow keys generated from IP, version four,
packet headers are padded as necessary (¢.g., with twenty-
four clear bytes) to fill the flow key’s allocated space.

NOACEx. 1015 Page 277



NOAC Ex. 1015 Page 278

 

US 6,483,804 B1
21

In state 428, a control or status indicator is assembled to
provide various information to one or more modules of NIC
100. In one embodiment of the invention a control indicator

includes the packet’s TCP sequence number, a flag or
identifier (e.g., one or more bits) indicating whether the 5
packet contains data (e.g., whether the TCP payload size is
greater than zero), a flag indicating whether the data portion
of the packet exceeds a pre-determined size, and a flag
indicating whether certain entries in the TCP Flags field are
equivalent to pre-determined values. The latter flag may, for
example, be used to inform another module of NIC 100 that
components of the Flags field do or do not have a particular
configuration. After state 428, the illustrated procedure ends
with state 432.

State 430 maybe entered at several different points of the
illustrated procedure. This state is entered, for example, 15
when it is determined that a header portion that is being
parsed by a header parser does not conform to the pre-
selected protocol stacks identified above. As a result, much
of the information described above is not retrieved. A

practical consequence ofthe inability to retrieve this infor- 20
mationis that it then cannot be provided to other modules of
NIC 100 and the enhanced processing descnbed above and
in following sections may not be performed for this packet.
In particular, and as discussed previously, in a present
embodimentof the invention one or more enhanced opera- 25
tions may be performed on parsed packets to increase the
efficiency with which they are processed. IHustrative opera-
tions that may be applied include the re-assembly of data
from related packets (e.g., packets containing data from a
single datagram), batch processing of packet headers 30
through a protocol stack, load distribution or load sharing of
protocol stack processing,efficient transfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 2 flag or signal
(illustratively termed No__Assist) is set or cleared to indicate 35
that the packet presently held by IPP module 104 (e.g.,
which was just processed by the header parser) does not
conform to any of the pre-selected protocolstacks. This flag
or signal may be relied upon by another module of NIC 100
when deciding whether to perform one of the enhanced 40
operations.

Anotherflag or signal may be set or cleared in state 430
to initialize a checksum parameter indicating that a check-
sum operation,ifperformed, should start at the beginning of
the packet (e.g., with no offset into the packet). Illustratively, 45
incompatible packets cannot be parsed to determine a more
appropriate point from which to begin the checksum opera-
tion. After state 430, the procedure ends with end state 432.

afterparsing-a.packe’-theheaderparsermaydistributeinformation generated from the packet to one or more 50
modules ofNIC 100. For example, in on
invention the flow key is provided to flow datab: ager

108,loaddistributor112andoneorbothofcontrolqueue
118andpacketqueue,116. Ellustratively, the control indica-

for is providedto flow database manager 1087Thisandother 55
containformationeuchasTCPpayloadsize,TCPpayload

offset and the No_Assist signal may be retumed to IPP
module 104 and provided to control queue 118. Yet addi-
tional control and/or diagnostic information, such as offsets
to the layer three and/or layer four headers, may be provided 60
to IPP module 104, packet queve 116 and/or control queue
118. Checksum information (¢.g., a starting point and either
an endingpointor other means of identifying a portion of the
packet from which to compute a checksum) may be pro-
vided to checksum generator 114. 65

As discussed in a following section, although a received
packetisparsed on NIC 100 (e.g., by header parser 106), the

10

22

packets are still processed (e.g., through their respective
protocol stacks) on the host computer system in the illus-
trated embodimentof the invention. However, after parsing
a packet in an alternative embodimentofthe invention, NIC
100 also performs one or more subsequent processing steps.
For example, NIC 100 may include one or more protocol
processors for processing one or more of the packet’s
protocol headers.
Dynamic Header Parsing Instructions in One Embodiment
of the Invention

In one embodimentof the presentinvention, header parser
106 parses a packet received from a network according to a
dynamic sequence of instructions. The instructions may be
stored in the header parser’s instruction memory (¢.g.,
RAM, SRAM, DRAM,flash) that is re-programmable or
that can otherwise be updated with new or additional
instructions. In one embodiment of the invention software

operating on a host computer (e.g., a device driver) may
download a set of parsing instructions for storage in the
header parser memory.

The number and formatofinstructions stored in a header

parser’s instruction memory maybetailored to one or more
specific protocols or protocol stacks. An instruction set
configured for one collection of protocols, or a program
constructed from that instruction set, may therefore be
updated or replacedby a different instruction set or program.
For packets received at the network interface that are for-
matted in accordance with the selected protocols (.g.,
“compatible” packets), as determined by analyzing or pars-
ing the packets, various enhancements in the handling of
network traffic become possible as described in the follow-
ing sections. In particular, packets from one datagram that
are configured according to a selected protocol may be
re-assembled for efficient transfer in a host computer. In
addition, headerportions of such packets may be processed
collectively rather than serially. And, the processing of
packets from different datagrams by a multi-processor host
computer may be shared or distributed among the proces-
sors. Therefore, one objective of a dynamic header parsing
operation is to identify a protocol according to which a
received packet has been formatted or determine whether a
packet header conforms to a particular protocol.

FIG. 23, discussed in detail shortly, presents an illustrative
series of instructions for parsing the layer two, three and four
headers of a packetto determine if they are Ethemet, IP and
TCP, respectively. The illustrated instructions comprise one
possible program or microcode for performing a parsing
operation. As one skilled in the art will recognize, after a
particular set of parsing instructions is loaded into a parser
memory, a numberofdifferent programs may be assembled.
FIG.23 thus presents merely one of a number of programs
that may be generated from the stored instructions. The
instructions presented in FIG. 23 may be performed or
executed by a microsequencer, a processor, a microproces-
sor or other similar module located within a network inter-
face circuit.

In particular, other instruction sets and other programs
may be derived for different communication protocols, and
may be expanded to other layers of a protocol] stack. For
example, a set of instructions could be generated for parsing
NES (Network File System) packets. Ilustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RPC) and External Data Representation (XDR), respec-
tively. Other instructions could be configured to parse a
portion of the packet’s data (which may be considered layer
seven). An NFS header may be considered a part of a
packet’s layer six protocol header or part of the packet’s
data.

NOACEx. 1015 Page 278



NOAC Ex. 1015 Page 279

US 6,483,804 B1
23

One type of instruction executed by a microsequencer
may be designed to locate a particular field of a packet(c.g.,
at a specific offset within the packet) and compare the value
stored at that offset to a value associated with thatfield in a

particular communication protocol. For example, one
instruction may require the microsequencer to examine a
value in a packet header at an offset that would correspond
to a Type field of an Ethemet header. By comparing the
value actually stored in the packet with the value expected
for the protocol, the microsequencer can determine if the
packet appears to conform to the Ethernet protocol.
Tlustratively, the next instruction applied in the parsing
program depends upon whether the previous comparison
was successful. Thus, the particular instructions applied by
the microsequencer, and the sequence in which applied,
depend upon which protocols are represented by the pack-
et’s headers.

The microsequencer may test one or more field values
within each headerincluded in a packet. The more fields that
are tested and that are found to comport with the format of
a known protocol, the greater the certainty that the packet
conforms to that protocol. As one skilled in the art will
appreciate, one communication protocol may be quite dif-
ferent than another protocol, thus requiring examination of
different parts of packet headers for different protocols.
Ilustratively, the parsing of one packet may endin the event
of an error or because it was determined that the packet
being parsed does or does not conform to the protocol(s) the
instructions are designed for.

Eachinstruction in FIG. 23 maybe identified by a number
and/or a name. A particular instmmction may perform a
variety of tasks other than comparing a header field to an
expected value. An instruction may, for example, call
another instruction to examine another portion of a packet
header, initialize, load or configure a register or other data
structure, prepare for the arrival and parsing of another
packet, etc. In particular, a register or other storage structure
may be configured in anticipation of an operation that is
performed in the network interface after the packet is parsed.
For example, a program instruction in FIG. 23 may identify
an output operation that may or may not be performed,
depending upon the success or failure of the comparison of
a value extracted from a packet with an expected value. An
output operation may store a value in a register, configure a
register (c.g., load an argument or operator) for a post-
parsing operation,clear a register to await a new packet, etc.

A pointer may be employed to identify an offset into a
packet being parsed. In one embodiment, such a pointeris
initially located at the beginning of the layer two protocol
header. In another embodiment, however, the pointer is
situated at a specific location within a particular header (c.g.,
immediately following the layer two destination and/or
source addresses) when parsing commences. Dlustratively,
the pointer is incremented through the packet as the parsing
procedure executes. In one alternative embodiment,
however, offsets to areas of interest in the packet may be
computed from one or more known or computed locations.

In the parsing program depicted in FIG. 23, a headeris
navigated (e.g., the pointer is advanced) in increments of
two bytes (e.g., sixteen-bit words). In addition, where a
particular field of a header is compared to a known or
expected value, up to two bytes are extracted at a time from
the field. Further, when a value or headerfield is copied for
storage in a register or other data structure, the amount of
data that may be copied in one operation may be expressed
in multiples of two-byte units or in other units altogether
(c.g., individual bytes). This unit of measurement(€.g., two

10

25

40

50

55

60

24

bytes) may be increased or decreased in an alternative
embodimentof the invention. Altering the unit of measure-
ment may alter the precision with which a header can be
parsed or a header value can be extracted.

In the embodimentof the invention illustrated in FIG. 23,
a set ofinstructions loaded into the header parser’s instruc-
tion memory comprises a numberof possible operations to
be performed whiletesting a packet for compatibility with
selected protocols. Program 2300 is generated from the
instruction set. Program 2300 is thus merely one possible
program, microcode or sequence ofinstructions that can be
formed from the available instruction set.

In this embodiment, the loaded instruction set enables the
following sixteen operations that may be performed on a
packet that is being parsed. Specific implementations of
these operations in program 2300 are discussed in additional
detail below. These instructions will be understood to be

illustrative in nature and do not limit the composition of
instruction sets in other embodiments of the invention. In

addition, any subset of these operations may be employed in
a particular parsing program or microcode. Further, multiple
instructions may employ the same operation and have dif-
ferent effects.

ACLR_REGoperation allows the selective initialization
of registers or other data structures used in program 2300
and, possibly, data structures used in functions performed
after a packet is parsed. Initialization may comprise storing
the value zero. Anumberofillustrative registers that may be
initialized by a CLR_REG operation are identified in the
remaining operations.

A LD_FID operation copies a variable amount of data
from a particular offset within the packet into a register
configured to store a packet’s flow key or other flow
identifier. This register may be termed a FLOWID register.
The effect of an LD_FID operation is cumulative. In other
words, each timeit is invoked for one packet the generated
data is appended to the flow key data stored previously.

A LD_SEQ operation copies a variable amountof data
from a particular offset within the packet into a register
configured to store a packet’s sequence number(e.g., a TCP
sequence number). This register may be assigned the label
SEQNO.This operationis also cumulative—the second and
subsequent invocations ofthis operation for the packet cause
the identified data to be appended to data stored previously.

A LD_CTL operation loads a value from a specified
offset in the packet into a CONTROL register. The CON-
TROL register may comprise a controlindicator discussed in
a previous section for identifying whether a packet is
suitable for data re-assembly, packet batching, load distri-
bution or other enhanced functions ofNIC 100. In particular,
a control indicator may indicate whether a No__Assistflag
should be raised for the packet, whether the packet includes
any data, whether the amount of packetdata is larger than a
predetermined threshold, etc. Thus, the value loaded into a
CONTROLregister in a LD__CTL operation mayaffect the
post-parsing handling of the packet.

ALD_SAP operation loads a value into the CONTROL
register from a variable offset within the packet. The loaded
value may comprise the packet’s ethertype. In one option
that may be associated with a LD_SAP operation,the offset
of the packet’s layer three header mayalso be stored in the
CONTROLregister or elsewhere. As one skilled in the art
will recognize, a packet’s layer three header may immedi-
ately follow its layer two ethertype field if the packet
conforms to the Ethernet and IP protocols.

ALD_R1 operation may be used to load a value into a
temporary register (¢.g., named R1) from a variable offset

NOACEx. 1015 Page 279



NOAC Ex. 1015 Page 280

US 6,483,804 B1
25

within the packet. A temporary register may be used for a
variety of tasks, such as accumulating values to determine
the length of a header or other portion of the packet. A
LD_R1 operation may also cause a value from another
variable offset to be stored in a second temporary register
(e.g., named R2). The values stored in the R1 and/or R2
registers during the parsing of a packet may or may not be
cumulative.

A LD_L3 operation may load a value from the packet
into a register configuredto store the location of the packet’s
layer three header. This register may be named L3OFFSET.
In one optional methodof invokingthis operation, it may be
used to load a fixed value into the LJOFFSETregister. As
another option, the LD_13 operation may add a value
stored in a temporary register (e.g., R1) to the value being
stored in the LJOFFSETregister.

ALD_SUM operationstores the starting point within the
packet from which a checksum should be calculated. The
register in which this value is stored may be named a
CSUMSTARTregister. In one alternative invocation of this
operation, a fixed or predetermined value is stored in the
register. As another option, the LD_SUM operation may
add a value stored in a temporary register (¢.g., R1) to the
value being stored in the CSUMSTARTregister.

A LD_HDRoperation loads a value into a register
configured to store the location within the packet at which
the header portion maybe split. The value that is stored may,
for example, be used during the transfer of the packet to the
host computer to store a data portion of the packet in a
separate location than the header portion. The loaded value
may thus identify the beginning of the packet data or the
beginning of a particular header. In one invocation of a
LD_HDRoperation, the stored value may be computed
from a presentposition of a parsing pointer described above.
In anotherinvocation,a fixed or predetermined value may be
store. As yet another alternative, a value stored in a tempo-
rary register (e.g., R1) and/or a constant may be added to the
loaded value.

A LD_LENoperation stores the length of the packet’s
payload intoaregister (e.g., a PAYLOADLENregister).

An IM_FID operation appends or adds a fixed or prede-
termined value to the existing contents of the FLOWID
register described above.

An IM_SEQ operation appends or adds a fixed or pre-
determined value to the contents of the SEQNO register
described above.

An IM_SAP operation loads orstores a fixed or prede-
termined value in the CSUMSTART register described
above.

An IM_R1operation may add or load a predetermined
value in one or more temporary registers (¢.g., R1, R2).

An IM_CTL operation loads or stores a fixed or prede-
termined value in the CONTROLregister described above.

A ST_FLAGoperation loads a value from a specified
offset in the packet into a FLAGSregister. The loaded value
may comprise one or more fields or flags from a packet
header.

One skilled in the art will recognize that the labels
assigned to the operations and registers described above and
elsewhere in this section are merelyillustrative in nature and
in no way limit the operations and parsing instructions that
may be employed in other embodiments ofthe invention.

Instructions in program 2300 comprise instruction num-
ber field 2302, which contains a numberof an instruction
within the program, and instruction namefield 2304, which
contains a nameof an instruction. In an alternative embodi-
ment of the invention instruction number and instruction

name fields may be mergedor one of them may be omitted.

is

20

25

Kt)

35

40

45

55

60

26

Instruction content field 2306 includes multiple portions
for executing an instruction. An “extraction mask”portion
of an instruction is a two-byte mask in hexadecimal notation.
An extraction mask identifies a portion of a packet header to
be copied or extracted, starting from the current packetoffset
(c.g., the current position of the parsing pointer).
Iijustratively, each bit in the packet’s header that corre-
sponds to a one in the hexadecimal value is copied for
comparison to a comparison or test value. For example, a
value of OxFFOO in the extraction mask portion of an
instruction signifies that the entire first byte at the current
packet offset is to be copied and that the contents of the
second byte are irrelevant. Similarly, an extraction mask of
0x3FFF signifies that all but the two mostsignificantbits of
the first byte are to be copied. A two-byte value is con-
structed from the extracted contents, using whatever was
copied from the packet. ILustratively, the remainderof the
value is padded with zeros. One skilled in the art will
appreciate that the format of an extraction mask (or an
output mask, described below) maybe adjusted as necessary
to reflect little endian or big endian representation.

One or more instructions in a parsing program may not
require any data extracted from the packet at the pointer
location to be able to perform its output operation. These
instructions may have an extraction mask value of0x0000 to
indicate that although a two-byte value is still retrieved from
the pointer position, every bit of the value is masked off.
Such an extraction mask thus yields a definite value of zero.
This type of instruction may be used when, for example, an
output operation needs to be performed before another
substantive portion of header data is extracted with an
extraction mask other than 0x0000.

A “compare value”portion of an instruction is a two-byte
hexadecimal value with which the extracted packet contents
are to be compared. The compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header should match or have a
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

An “operator” portion of an instruction identifies an
operator signifying how the extracted and compare values
are to be compared. Illustratively, EQ signifies that they are
tested for equality, NE signifies that they are tested for
inequality, LT signifies that the extracted value must be less
than the compare value for the comparison to succeed, GE
signifies that the extracted value must be greater than or
equal to the compare value, etc. An instruction that awaits
artival of a new packet to be parsed may employ an
operation of NP. Other operators for other functions may be
added and the existing operators may be assigned other
monikers.

A “success offset” portion of an instruction indicates the
numberof two-byte units that the pointer is to advance if the
comparison between the extracted and test values succeeds.
A “success instruction” portion of an instruction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, “failure offset” and “failure instruction” por-
tions indicate the number of two-byte wnits to advance the
pointer and the next instruction to execute, respectively, if
the comparison fails. Although offsets are expressed in units
of two bytes (e.g., sixteen-bit words) in this embodiment of
the invention, in an alternative embodimentof the invention
they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Notali of the instructions in a program are necessarily
used for each packetthat is parsed. For example, a program

NOACEx. 1015 Page 280



NOAC Ex. 1015 Page 281

US 6,483,804 Bt
27

may include instructions to test for more than one type or
version of a protocol at a particular layer. In particular,
program 2300 tests for either version four or six of the IP
protocol at layer three. The instructions that are actually
executed for a given packet will thus depend upon the format
of the packet. Once a packet has been parsed as much as
possible with a given program orit has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instruction for halting the
parsing procedure may be executed. Illustratively, a next
instruction portion of an instruction (e.g., “success instruc-
tion”or“failure instruction”) with the value “DONE”indi-
cates the completion of parsing of a packet. A DONE, or
similar, instruction may be a dummyinstruction. In other
words, “DONE” may simply signify that parsing to be
terminated for the present packet. Or, like instruction eigh-
teen of program 2300, a DONE instruction may take some
action to await a new packet(e.g., by initializing a register).

The remaining portions of instruction content field 2306
are used to specify and complete an output or other data
storage operation. In particular, in this embodiment an
“output operation” portion of an instruction corresponds to
the operations included in the loaded instruction set. Thus,
for program 2300, the output operation portion of an instruc-
tion identifies one of the sixteen operations described above.
The output operations employed in program 2300 are further
described below in conjunction with individual instructions.

An “operation argument” portion of an instruction com-
prises one or more arguments orfields to be stored, loaded
or otherwise used in conjunction with the instruction’s
output operation. Illustratively, the operation argument por-
tion takes the form of a multi-bit hexadecimal value. For

program 2300, operation arguments are eleven bits in size.
An argument or portion of an argument may have various
meanings, depending upon the output operation. For
example, an operation argument may comprise one or more
numerical values to be stored in a register or to be used to
locate or delimit a portion of a header. Or, an argumentbit
may comprise a flag to signal an action or status. In
particular, one argument bit may specify that a particular
registeris to be reset; a set of argument bits may comprise
an offset into a packet header to a value to be stored in a
register, etc. Illustratively, the offset specified by an opera-
tion argumentis applied to the location of the parsing pointer
position before the pointer is advanced as specified by the
applicable success offset or failure offset. The operation
arguments used in program 2300 are explained in further
detail below.

An “operation enabler” portion of an instruction content
field specifies whether or when an instruction’s output
operation is to be performed.In particular, in the illustrated
embodimentof the invention an instruction’s output opera-
tion may or may not be performed, depending onthe result
of the comparison between a value extracted from a header
and the compare value. For example, an output enabler may
be set to a first value (e.g., zero) if the output operation is
never to be performed. It may take different values if it is to
be performed only when the comparison does or does not
satisfy the operator (e.g., one or two, respectively). An
operation enabler may take yet another value(e.g., three) if
it is always to be performed.

A “shift” portion of an instruction comprises a value
indicating how an output value is to be shifted. A shift may
be necessary because different protocols sometime require
values to be formatted differently. In addition, a value
indicating a length or location of a header or headerfield
may require shifting in order to reflect the appropriate

5

10

15

20

25

30

35

40

45

50

35

28

magnitude represented by the value. For example, because
program 2300 is designed to use two-byte units, a value may
needto be shifted if it is to reflect other units (e.g., bytes).
A shift value in a present embodimentindicates the number
of positions (c.g., bits) to right-shift an output value. In
another embodiment of the invention a shift value may
represent a different shift type or direction.

Finally, an “output mask” specifies how a value being
stored in a register or other data structure is to be formatted.
As stated above, an output operation may require an
extracted, computed or assembled value to be stored. Similar
to the extraction mask, the output mask is a two-byte
hexadecimal value. For every position in the output mask
that contains a one, in this embodimentof the invention the
corresponding bit in the two-byte value identified by the
output operation and/or operation argumentis to be stored.
For example, a value of OxFFFF indicates that the specified
two-byte value is to be stored as is. Ilustratively, for every
position in the output mask that contains a zero, a zero is
stored. Thus, a value of OxFO00 indicates that the most
significant four bits ofthe first byte are to be stored, but the
rest of the stored valueis irrelevant, and may be padded withzeros.

An output operation of “NONE”maybeused toindicate
that there is no output operation to be performed orstored,
in which case otherinstruction portions pertaining to output
may be ignored or may comprise specified values (e.g., all
zeros). In the program depicted in FIG. 23, however, a
CLR_REG output operation, which allows the selective
re-initialization of registers, may be used with an operation
argument of zero to effectively perform no output. In
particular, an operation argumentofzero for the CLR_REG
operation indicates that no registers are to be reset. In an
alternative embodiment of the invention the operation
enablerportion of an instruction couldbeset to a value (e.g,,
zero) indicating that the output operation is never to be
performed.

The format and sequence ofinstructions in FIG. 23 will
be understood to represent just one method of_parsing a
packet t ec ether it conforms to Sree
communication protocol. In particular, the instructions are
designed to examine one or more portions of one or more
packet headers for comparison fo known or expected values

andtoconfigureorJoadaregisterorothsrstoragelocationaS_mecessary- one skilled in the art will appreciate,
instructions for parsing a packet may take any of a number
of forms and be performedin a variety of sequences without
exceeding the scope of the invention.

With reference now to FIG. 23,instructions in program
2300 may be described in detail. Prior to execution of the
program depicted in FIG. 23,a parsing pointeris situated at
the beginning of a packet’s layer two header. The position of
the parsing pointer may be stored in a register for easy
reference and update during the parsing procedure. In
particular, the position of the parsing pointer as an offset
(c.g., from the beginning of the layer two header) may be
used in computing the position of a particular position
within a header.

Program 2300 begins with a WAIT instruction («.g.,
instruction zero) that waits for a new packet (c.g., indicated
by operator NP) and, when oneis received, sets a parsing
pointer to the twelfth byte of the layer two header.This offset
to the twelfth byte is indicated by the success offset portion
of the instruction. Until a packet is received, the WAIT
instruction loopsonitself. In addition, a CLR_REG opera-
tion is conducted, butthe operation enablersetting indicates
that it is only conducted when the comparison succeeds
(e.g., when a new packetis received).

NOACEx. 1015 Page 281



NOAC Ex. 1015 Page 282

US 6,483,804 B1
29

The specified CLR_REGoperation operates accordingto
the WAITinstruction’s operation argument (L¢., Ox3FF). In
this embodiment, each bit of the argument corresponds to a
register or other data structure. The registers initialized in
this operation may include the following: ADDR (¢.g., to
store the parsing pointer’s address or location), FLOWID
(c.g., to store the packet’s flow key), SEQNO(e.g., to store
a TCP sequence number), SAP (c.g., the packet’s ethertype)
and PAYLOADLEN (c.g., payload length). The following
registers configured to store certain offsets mayalso be reset:
FLOWOFF (c.g., offset within FLOWID register), SEQOFF
(c.g., offset within SEQNO register), L3OFFSET(e-g.,
offset of the packet’s layer three header), HDRSPLIT (e-g.,
location to split packet) and CSUMSTART(e.g., starting
location for computing a checksum). Also, one or more
status or control indicators (e.g., CONTROL or FLAGS
register) for reporting the status of one or more flags of a
packet header may be reset. In addition, one or more
temporary registers (¢.g., R1, R2) or other data structures
mayalso be initialized. These registers are merely illustra-
tive of the data structures that may be employed in one
embodimentof the invention. Otherdata structures may be
employed in other embodiments for the same or different
output operations.

Temporary registers such as R1 and/or R2 maybe used in
program 2300 to track various headers and header fields.
Oneskilled in the art will recognize the numberof possible
combinations of communication protocols and the effect of
those various combinations on the structure and format of a

packet’s headers. More information may need to be exam-
ined or gathered from a packet conforming to one protocol
or set ofprotocols than from a packet conforming to another
protocol or set of protocols. For example, if extension
headers are used with an Internet Protocol header, values
from those extension headers and/ortheir lengths may need
to be stored, which values are not needed if extension
headers are not used. When calculating a particular offset,
such as an offset to the beginning of a packet’s data portion
for example, multiple registers may need to be maintained
and their values combined or added. In this example, one
register or temporary register may track the size or format of
an extension header, while anotherregister tracks the base IP
header.

Instruction VLAN (c.g., instruction one) examines the
two-byte field at the parsing pointer position (possibly a
Type, Length or TPID field) for a value indicating a VLAN-
tagged header (c.g., 8100 in hexadecimal). If the header is
VLAN-tagged, the pointer is incremented a couple of bytes
(e-g., one two-byie unit) and execution continues with
instruction CFI; otherwise, execution continues with instruc-
tion 802.3. In either event, the insiruction’s operation
enabler indicates that an IM_CTL operation is always to be
performed.

As described above, an IM_CTL operation causes a
control register or other data structure to be populated with
one or more flags to report the status or condition of a
packet. As described in the previous section, a control
indicator may indicate whether a packet is suitable for
enhanced processing (c.g., whether a No_Assist signal
should be generated for the packet), whether a packet
includes any data and, if so, whether the size of the data
portion exceeds a specified threshold. The operation argu-
ment 0x00 A for instruction VLAN comprises the value to
be stored in the control register, with individual bits of the
argument corresponding to particular flags. Illustratively,
flags associated with the conditions just described may be
set to one, or true, in this IM_CTL operation.

10

20

30

35

40

45

50

60

30

Instruction CFI (¢.g., instruction two) examines the CFI
bit or flag in a layer two header.If the CFI bitis set, then the
packet is not suitable for the processing enhancements
described in other sections and the parsing procedure ends
by calling instruction DONE (c.g., instruction eighteen). If
the CFI bit is not set, then the pointer is incremented another
couple of bytes and execution continues with instruction
802.3. As explained above, a null output operation (e.g.,
“NONE’)indicates that no output operation is performed.In
addition, the output enabler value (c.g., zero) further ensures
that no output operation is performed.

In instruction 802.3 (€.g., instruction three), a Type or
Length field (depending on the location of the pointer and
format of the packet) is examined to determine if the
packet’s layer two format is traditional Ethernet or 802.3
Ethemet. If the value in the headerfield appears to indicate
802.3 Ethermet(e.g., contains a hexadecimal valueless than
0600), the pointer is incremented two bytes (to what should
be an LLC SNAP field) and execution continues with
instruction LLC__1. Otherwise, the layer two protocol may
be considered traditional Ethernet and execution continues
with instruction IPV4 __1. Instruction 802.3 in this embodi-
mentof the invention does not include an output operation.

In instructions LLC_1 and LLC_2 (¢g., instructions
four and five), a suspected layer two LLC SNAP field is
examined to ensure that the packet conforms to the 802.3
Ethemet protocol. In instruction LLC_1,a first part of the
field is tested and, if successful, the pointer is incremented
two bytes and a second part is tested in instruction LLC_2.
If instruction LLC_2 succeeds, the parsing pointer is
advanced four bytes to reach what should be aType field and
execution continues with instruction IPV4 __1.If either test
fails, however, the parsing procedure exits. In the illustrated
embodiment of the invention, no output operation is per-
formed while testing the LLC SNAP field.

In instruction IPV4_1 (¢.g., instruction six), the parsing
pointer should be at an Ethermet Type field. This field is
examined to determineif the layer three protocol appears to
correspond to version four of the Intemet Protocol. If this
test is successful (e.g., the Type field contains a hexadecimal
value of 0800), the pointer is advanced two bytes to the
beginning of the layer three header and execution of pro-
gram 2300 continues with instruction IPV4_2.If the test is
unsuccessful, then execution continues with instruction
IPV6_1. Regardless ofthe test results, the operation enabler
value (¢.g., three) indicates that the specified LD_SAP
output operation is always performed.

As described previously, in a LD_SAP operation a pack-
et’s ethertype (or Service Access Point) is stored in a
Tegister. Part of the operation argument of 0x100, in par-
ticular the right-mostsix bits (e.g., zero) constitute an offset
to a two-byte value comprising the ethertype. The offsetin
this example is zero because, in the present context, the
parsing pointeris alreadyat the Type field that contains the
ethertype. In the presently described embodiment, the
remainder of the operation argument constitutes a flag
specifying that the starting position of the layer three header
(c.g., an offset from the beginning of the packet) is also to
be saved (e.g., in the L3OFFSETregister). In particular, the
beginning of the layer three header is known to be located
immediately after the two-byte Type field.

Instruction IPV4_2 (e.g., instruction seven) tests a sus-
pected layer three version field to ensure that the layer three
protocolis version four of IP. In particular, a specification for
version four of IP specifies thatthe first four bits of the layer
three header contain a value of Ox4.If the test fails, the
parsing procedure ends with instruction DONE.If the test

NOACEx. 1015 Page 282



NOAC Ex. 1015 Page 283

US 6,483,804 B1
31

succeeds, the pointer advances six bytes and instruction
IPV4_3is called.

The specified LD_SUM operation, which is only per-
formed if the comparison in instruction IPV4_2 succeeds,
indicates that an offset to the beginning of a point from
which a checksum maybe calculated should be stored. In
particular, in the presently described embodiment of the
invention a checksum should be calculated from the begin-
ning of the TCP beader(assumingthat the layer four header
is TCP). The value of the operation argument (¢.g., OxO0A)
indicatesthat the checksum is located twenty bytes (c.g, ten
two-byte increments) from the currentpointer. Thus, a value
of twenty bytes is added to the parsing pointer position and
the result is stored in a register or other data structure (e.g.,
the CSUMSTARTregister).

Instruction IPV4_3 (e.g., instruction eight) is designed to
determine whether the packet’s IP headerindicatesIP frag-
mentation. If the value extracted from the header in accor-

dance with the extraction mask does not equal the compari-
son value, then the packet indicates fragmentation. If
fragmentation is detected, the packet is considered unsuit-
able for the processing enhancements described in other
sections and the procedure exits (¢.g., through instruction
DONE). Otherwise, the pointer is incremented two bytes
and instruction IPV4_4 is called after performing a
LD_LEN operation.

In accordance with the LD_LEN operation,the length of
the IP segmentis saved. The illustrated operation argument
(¢.g., 0x03E) comprises an offset to the Total Length field
wherethis value is located.In particular, the least-significant
six bits constitute the offset. Because the pointer has already
been advanced pastthis field, the operation argument com-
prises a negative value. One skilled in the art will recognize
that this binary value (e.g., 111110) maybe used to represent
the decimal value of negative two. Thus,the present offset
of the pointer, minus four bytes (e.g., two two-byte units), is
saved in a register or other data structure (e.g., the PAY-
LOADLEN register). Any other suitable method of repre-
senting a negative offset may be used. Or, the IP segment
length may be saved while the pointer is at a location
preceding the Total Length field (e.g., during a previous
instruction).

In instruction IPV4_4 (e.g., instruction nine), a one-byte
Protocol field is examined to determine whether the layer
four protocol appears to be TCP. If so, the pointer is
advanced fourteen bytes and execution continues with
instruction TCP_1; otherwise the procedure ends.

The specified LD_FID operation, which is only per-
formed when the comparison in instruction IPV4_4
succeeds, involves retrieving the packet’s flow key and
storing it in a register or other location (e.g., the FLOWID
register). One skilled in the art will appreciate that in order
for the comparisonin instruction IPV4__4to be successful,
the packet’s layer three and four headers must conform to IP
(version four) and TCP, respectively. If so, then the entire
flow key (e.g., IP source and destination addresses plus TCP
source and destination port numbers) is stored contiguously
in the packet’s header portion. In particular, the flow key
comprises the last portion of the IP header and the initial
portion of the TCP header and may be extracted in one
operation. The operation argument(e.g., 0x182) thus com-
Prises two values needed to locate and delimit the flow key.
Illustratively, the right-most six bits of the argument (c.g.,
0x02) identify an offset from the pointer position, in two-
byte units, to the beginning of the flow key. The otherfive
bits of the argument(¢.g., 0x06) identify the size of the flow
key, in two-byte units, to be stored.

15

20

35

40

45

50

5S

65

32

In instruction IPV6_1 (e.g., instruction ten), which fol-
lows the failure of the comparison performed byinstruction
IPV4_1,the parsing pointer should be at a layer two Type
field. If this test is successful (e.g., the Type field holds a
hexadecimal value of 86DD), instruction IPV6_2 is
executed after a LD_SUM operation is performed and the
pointer is incremented two bytes to the beginning of the
layer three protocol. If the test is unsuccessful, the procedure
exits.

The indicated LD__SUM operation in instruction IPV6_1
is similar to the operation conducted in instruction IPV4_2
but utilizes a different argument. Again, the checksum is to
be calculated from the beginning of the TCP header
(assuming the layer four header is TCP). The specified
operation argument(e.g., 0x015) thus comprises an offset to
the beginning of the TCP header—twenty-one two-byte
steps ahead. The indicated offset is added to the present
pointer position and saved in a register or other data struc-
ture (e.g., the CSUMSTART register).

Instruction IPV6 _2 (e.g., instruction eleven) tests a
suspected layer three version field to further ensure that the
layer three protocolis version six of IP. If the comparison
fails, the parsing procedure ends with the invocation of
instruction DONE.If it succeeds, instruction IPV6_3 is
called. Operation IM_R1, which is performed only when
the comparison succeeds in this embodiment, saves the
length of the IP header from a Payload Lengthfield. As one
skilled in the art will appreciate, the Total Length field (e.g.,
IP segmentsize) of an IP, version four, header includes the
size of the version four header. However, the Payload
Length field (¢.g., IP segment size) of an IP, version six,
header does not include the size of the version six header.

Thus,the size of the version six header, which is identified
bythe right-most eight bits of the output argument(e.g.,
0x14, indicating twenty two-byte units) is saved.
Illustratively, the remainder of the argumentidentifies the
data structure in which to store the header length (e.g.,
temporary register R1). Because of the variation in size of
layer three headers between protocols, in one embodiment
of the invention the headersize is indicated in different units

to allow greater precision. In particular, in one embodiment
of the invention the size of the headeris specified in bytes
in instruction IPV6_2, in which case the output argument
could be 0x128.

Instruction IPV6_3 (e.g., instruction twelve) in this
embodiment does not examine a header value. In this

embodiment, the combination of an extraction mask of
0x0000 with a comparison value of 0x0000 indicates that an
output operation is desired before the next examination of a
portion of a header. After the LD_FID operation is
performed, the parsing pointer is advanced six bytes to a
Next Headerfield of the version six IP header. Because the

extraction mask and comparison values are both 0x0000, the
comparison should never fail and the failure branch of
instruction should never be invoked.

As described previously, a LD_FID operation stores a
flow key in an appropriate register or other data structure
(c.g., the FLOWID register). Illustratively, the operation
argument of 0x484 comprises two values for identifying and
delimiting the flow key. In particular, the right-mostsix bits
(c.g., 0x04) indicates that the flow key portion is located at
an offset of cight bytes (e.g., four two-byte increments) from
the current pointer position. The remainderof the operation
argument (c.g., 0x12) indicates that thirty-six bytes (c.g., the
decimal equivalent of 0x12 two-byte units) are to be copied
from the computed offset. In the illustrated embodiment of
the invention the entire flow keyis copied intact, including

NOACEx. 1015 Page 283



NOAC Ex. 1015 Page 284

 

US 6,483,804 B1
33

the layer three source and destination addresses and layer
four source and destination ports.

In instruction IPV6_4 (e.g., instruction thirteen), a sus-
pected Next Headerfield is examined to determine whether
the layer four protocolof the packet’s protocol stack appears
to be TCP. If so, the procedure advances thirty-six bytes
(e.g., eighteen two-byte units) and instruction TCP_1 is
called; otherwise the procedure exits (¢.g., through instruc-
tion DONE). Operation LD_LENis performedif the value
in the Next Headerfield is 0x06. As described above,this
operation stores the IP segment size. Once again the argu-
ment(e.g., 0x03F) comprises a negative offset, in this case
negative one. This offset indicates that the desired Payload
Length field is located two bytes before the pointer’s present
position. Thus, the negative offset is added to the present
pointer offset and the result saved in an appropriate register
or other data structure (e.g., the PAYLOADLEN register).

In instructions TCP_1, TCP_2, TCP_3 and TCP_4
(c.g., instructions fourteen through seventeen), no header
values—otherthan certain flags specified in the instruction’s
output operations—are examined,but various data from the
packet’s TCP header are saved. In the illustrated
embodiment, the data that is saved includes a TCP sequence
number, a TCP header length and one or moreflags. For each
instruction,the specified operation is performed and the next
instruction is called. As described above, a comparison
between the comparison value of 0x0000 and a null extrac-
tion value, as used in each of these instructions, will never
fail. After instruction TCP_4, the parsing procedure returns
to instruction WAIT to await a new packet.

For operation LD__SEQin instruction TCP_1, the opera-
tion argument(e.g., 0x081) comprises two values to identify
and extract a TCP sequence number. The right-most six bits
(¢.g., 0x01) indicate that the sequence numberis located two
bytes from the pointer’s current position. The rest of the
argument (¢.g., 0x2) indicates the numberof two-byte units
that must be copied from thatposition in order to capture the
sequence number. Iliustratively, the sequence number is
stored in the SEQNOregister.

For operation ST_FLAG in instruction TCP_2, the
Operation argument(¢.g., 0x145) is used to configure a
register (e.g., the FLAGSregister) with flags to be used in
a post-parsing task. The right-most six bits (¢.g., 0x05)
constitute an offset, in two-byte units, to a two-byte portion
of the TCP headerthat contains flags that may affect whether
the packet is suitable for post-parsing enhancements
described in other sections. For example, URG, PSH, RST,
SYN and FIN flags may be located at the offset position and
be used to configure the register. The output mask (e.g.,
0x002F) indicates that only particular portions (e.g, bits) of
the TCP header’s Flags field are stored.

Operation LD__R1ofinstruction TCP_3is similar to the
operation conducted in instruction [PV6_2. Here, an opera-
tion argument of 0x205 includes a value (e.g., the least-
significant six bits) identifying an offset of five two-byte
units from the current pointer position. That location should
include a Header Length field to be stored in a data structure
identified by the remainder of the argument(e.g., temporary
register R1). The output mask (e.g., OxFOOO) indicates that
only the first four bits are saved (e.g., the Header Length
field is only four bits in size).

As one skilled im the art may recognize, the value
extracted from the Header Length field may need to be
adjusted in order to reflect the use of two-byte units (c.g.,
sixteen bit words)in theillustrated embodiment. Therefore,
in accordance with the shift portion of instruction TCP_3,
the value extracted from the field and configured by the

20

25

35

45

55

65

34

output mask (e.g., OxF000) is shifted to the right eleven
positions when stored in order to simplify calculations.

Operation LD_HDRof instruction TCP_4 causes the
loading of an offset to the first byte of packet data following
the TCP header. As described in a later section, packets that
are compatible with a pre-selected protocol stack may be
separated at some point into header and data portions.
Saving an offset to the data portion now makesit easier to
split the packetlater. Illustratively, the right-most seven bits
of the OxOFF operation argument compriseafirst element of
the offset to the data. One skilled in the art will recognize the
bit pattern (e.g., 1111111) as equating to negative one. Thus,
an offset value equal to the current parsing pointer(e.g., the
value in the ADDR register) minus two bytes—which
locates the beginning of the TCP header—is saved. The
remainder of the argument signifies that the value of a
temporary data structure (e.g., temporary register R12) is to
be added to this offset. In this particular context, the value
saved in the previous instruction (e.g., the length of the TCP
header) is added. These two values combine to form an
offset to the beginning of the packet data, whichis stored in
an appropriate register or other data structure (e.g., the
HDRSPLITregister).

Finally, and as mentioned above, instruction DONE (e.g.,
instruction eighteen) indicates the end of parsing of a packet
when it is determined that the packet does not conform to
one or more of the protocols associated with the illustrated
instructions. This may be considered a “clean-up” instruc-
tion. In particular, output operation LD_CTL, with an
operation argumentof 0x001 indicates that a No__Assistflag
is to be set (¢.g., to one) in the control register described
above in conjunction with instruction VLAN. The
No__Assist flag, as described clsewhere, may be used to
inform other modules of the network interface that the

present packet, is unsuitable for one or more processing
enhancements described elsewhere.

It will be recognized by one skilled in the art that the
illustrated program or microcode merely provides one
method ofparsing a packet. Other programs, comprising the
sameinstructions in a different sequence or different instruc-
tions altogether, with similar or dissimilar formats, may be
employed to examine and store portions of headers and to
configure registers and other data structures.

Theefficiency gains to berealized from the application of
the enhanced processing described in following sections
more than offset the time required to parse a packet with the
illustrated program. Further, even though a header parser
parses a packet on a NIC in a current embodimentof the
invention, the packet may still need to be processed through
its protocol stack (e.g., to remove the protocol headers) by
a processor on a host computer. Doing so avoids burdening
the communication device (e.g., network interface) with
such a task.
One Embodiment of a Flow Database

FIG.5 depicts flow database (FDB) 110 according to one
embodiment of the invention. Dlustratively FDB 110 is
implemented as a CAM (Content Addressable Memory)
using a re-writeable memory component (e.g., RAM,
SRAM, DRAM).In this embodiment, FDB 110 comprises
associative portion 502 and associated portion 504, and may
be indexed by flow number 506.

The scope of the invention does not limit the form or
structure of flow database 110. In alternative embodiments

of the invention virtually any form of data structure may be
employed (e.g., database, table, queue, list, array), cither
monolithic or segmented, and may be implemented in hard-
ware or software. Theillustrated form of FDB 110 is merely

NOACEx. 1015 Page 284



NOAC Ex. 1015 Page 285

 
US 6,483,804 B1

35

one manner of maintaining useful information concerning
communication flows through NIC 100. As one skilled in the
art will recognize, the structure of a CAM allows highly
efficient and fast associative searching.

In the illustrated embodiment of the invention, the infor-
mation stored in FDB 110 andthe operation of flow database
manager (FDBM) 108 (described below) permit functions
such as data re-assembly, batch processing of packet
headers, and other enhancements. These functions are dis-
cussed in detail in other sections but may be briefly
described as follows.

One form of data re-assembly involves the re-assembly or
combination of data from multiple related packets (e.g.,
packets from a single communication flow or a single
datagram). One method forthe batch processing of packet
headers entails processing protocol iple

relatedpacketsthroughaprotocolstackcollectivelyrather

linnonepackettatine,AnotbersatireRETOofC 100 involves the distribution or sharing of such proto-
col stack processing (and/or other functions) among proces-
sors in a noulti-processor bost computer system. Yet another
possible function of NIC 100 is to enable the transfer of
re-assembled data to a destination entity (e.g., an application

| program) in an efficient aggregation (¢.g., a memory page),
thereby avoiding piecemeal and highly inefficient transfers
of one packet’s data at a time. Thus, in this embodiment of
the invention, one purpose of FDB 110 and FDBM 108is to
generate information for the use of NIC 100 and/ora host
computer system in enabling, disabling or performing one or
more of these functions.

Associative portion 502 of FDB 110 in FIG. 5 stores the
flow key of each valid flow destined for an entity served by
NIC 100. Thus, in one embodiment of the invention asso-
ciative portion 502 includes IP source address 510, IP
destination address 512, TCP source port 514 and TCP
destination port 516. As described in a previous section these
fields may be extracted from a packet and provided to
FDBM 108by header parser 106.

Although each destination entity served by NIC 100 may
participate in multiple communication flows or end-to-end
TCP connections, only one flow at a time will exist between
a particular source entity and a particular destination entity.
Therefore, cach flow key in associative portion 502 that
corresponds to a valid flow should be unique from all other
valid flows. In alternative embodiments of the invention,
associative portion 502 is composed of different fields,
reflecting alternative flow key forms, which may be deter-
mined by the protocols parsed by the header parser and the
information used to identify communication flows.

Associated portion 504 in the illustrated embodiment
comprises flow validity indicator 520, flow sequence num-
ber 522 andflow activity indicator 524. These fields provide
information conceming the flow identified by the flow key
stored in the correspondingentry in associative portion 502.
Thefields of associated portion 504 may beretrieved and/or
updated by FDBM 108as describedin the following section.

Flow validity indicator 520 in this embodiment indicates
whetherthe associated flowis valid or invalid. Ilustratively,
the flow validity indicatoris set to indicate a valid flow when
the first packet ofdata in a flow is received, and may be reset
to reassert a flow’s validity every time a portion of a flow’s
datagram (¢.g., a packet) is correctly received.

Flow validity indicator 520 may be marked invalid after
the last packet of data in a flow is received. The flow validity
indicator may also be set to indicate an invalid flow when-
evera flow is to be tom down (e.g., terminated or aborted)
for some reasonother than the receipt of a final data packet.

ooaimere 20

25

35

40

55

65

36

For example, a packet may be received out of order from
other packets of a datagram,a control packetindicating that
a datatransfer or flow is being aborted maybereceived, an
attempt may be made to re-establish or re-synchronize a
flow (in which case the original flow is terminated),etc. In
one embodimentof the inventionflow validity indicator 520
is a single bit, flag or value.

Flow sequence number 522in the illustrated embodiment
comprises a sequence numberof the next portion of data that
is expected in the associated flow. Because the datagram
being sent in a flow is typically received via multiple
packets, the flow sequence numberprovides a mechanism to
ensure that the packets are received in the correct order. For
example, in one embodiment of the invention NIC 100
re-assembles data from multiple packets of a datagram. To
perform this re-assembly in the most efficient manner, the
packets need to be received in order. Thus, flow sequence
number522 stores an identifier to identify the next packet or
portion of data that should be received.

In one embodimentof the invention, flow sequence num-
ber 522 corresponds to the TCP sequence numberfield
found in TCP protocol headers. As one skilled in the art will
recognize, a packet’s TCP sequence number identifies the
position of the packet’s data relative to other data being sent
in a datagram. For packets and flows involving protocols
other than TCP, an alternative method of verifying or
ensuring the receipt of data in the correct order may be
employed.

Flowactivity indicator 524 in the illustrated embodiment
reflects the recency of activity of a flow or, in other words,
the age of a flow. In this embodiment ofthe invention flow
activity indicator 524 is associated with a counter, such as a
flow activity counter (not depicted in FIG. 5). The flow
activity counter is updated (e.g., incremented) cach time a
packetis received as part of a flow that is already stored in
flow database 110. The updated counter valueis then stored
in the flow activity indicator field of the packet’s flow. The
flow activity counter may also be incremented each time a
first packet of a new flow that is being added to the database
is received. In an alternative embodiment, a flow activity
counter is only updated for packets containing data (e.g.,it
is not updated for control packets). In yet anotheralternative
embodiment, multiple counters are used for updating flow
activity indicators of different flows.

Because it can not always be determined when a com-
munication flow has ended (e.g., the final packet may have
beenlost), the flow activity indicator may be used to identify
flows that are obsolete or that should be torn down for some

other reason. For example, if flow database 110 appears to
be fully populated (e.g., flow validity indicator 520 is set for
each flow number) when thefirst packet of a new flow is
received, the flow having the lowest flow activity indicator
may bereplaced by the new flow.

In the illustrated embodimentof the invention,the size of
fields in FDB 110 maydiffer from one entry to another. For
example, IP source and destination addresses are four bytes
large in version four of the protocol, but are sixteen bytes
large in version six. In one alternative embodimentofthe
invention, entries for a particular field may be uniform in
size, with smaller entries being padded as necessary.

In another alternative embodimentof the invention,fields
within FDB 110 may be merged. In particular, a flow’s flow
key may bestored as a single entity or field instead of being
stored as a numberof separate fields as shown in FIG.5.
Similarly, flow validity indicator 520, flow sequence number
522 andflow activity indicator 524 are depicted as separate
entries in FIG. 5. However,in an alternative embodimentof

NOACEx. 1015 Page 285



NOAC Ex. 1015 Page 286

ewmeenwrianannninaedchatenatmammLROSAEEESNsapLonRCNNCUNNNrenintampgatqnanpNNey

US 6,483,804 B1
37

the invention one or more of these entries may be combined.
In particular, in one alternative embodimentflow validity
indicator 520 and flow activity indicator 524 comprise a
single entry havinga first value (¢.g., zero) when the entry’s
associated flow is invalid. As long as the flow is valid,
however, the combined entry is incremented as packets are
received, and is reset to the first value upon termination of
the flow.

In one embodimentof the invention FDB 110 contains a

maximum of sixty-four entries, indexed by flow number
506, thus allowing the database to track sixty-four valid
flows at a time. In alternative embodiments of the invention,
more or fewer entries may be pennitted, depending upon the
size of memory allocated for flow database 110. In addition
to flow number 506, a flow may be identifiable by its flow
key (stored in associative portion 502).

In the illustrated embodiment of the invention, flow
database 110 is empty (e.g., all fields are filled with zeros)
when NIC 100 is initialized. When the first packet of a flow
is received header parser 106 parses a header portion of the
packet. As described in a previous section, the header parser
assembles a flow key to identify the flow and extracts other
information concerning the packet and/orthe flow. The flow
key, and other information, is passed to flow database
manager 108. FDBM 108 then searches FDB 110 for an
active flow associated with the flow key. Because the
database is empty, there is no match.

In this example, the flow keyis therefore stored (e.g., as
flow number zero) by copying the IP source address, IP
destination address, TCP source port and TCP destination
port into the corresponding fields. Flow validity indicator
520 is then set to indicate a valid flow, flow sequence
number 522 is derived from the TCP sequence number
(illustratively provided by the header parser), and flow
activity indicator 524 is set to an initial value (e.g., one),
which may be derived from a counter. One method of
generating an appropriate flowsequence number, which may
be usedtoverify that the next portion ofdata received for the
flow is received in order,is to add the TCP sequence number
and the size of the packet’s data. Depending upon the
configuration of the packet (c.g., whether the SYN bit in a
Flags field of the packet’s TCP headeris set), however, the
sum may need to be adjusted (e.g., by adding one) to
correctly identify the next expected portion of data.

As described above, one method of generating an appro-
priate initial value for a flow activity indicator is to copy a
countervaluethat is incremented for each packet received as
part ofa flow. For example,for the first packet received after
NIC 100 is initialized, a flow activity counter may be
incremented to the value of one. This value may then be
stored in flow activity indicator 524 for the associated flow.
The next packetreceived as part of the same(or a new) flow
causes the counter to be incremented to two, which valueis
stored in the flow activity indicator for the associated flow.
In this example, no two flows should have the same flow
activity indicator except atinitialization, when they mayall
equal zero or some other predetermined value.

Uponreceipt and parsing of a later packet received at NIC
100, the flow databasc is searched for a valid flow matching
that packet’s flow key. Illustratively, only the flow keys of
active flows (e.g., those flows for which flow validity
indicator 520is set) are searched. Altematively,all flow keys
(c.g,, all entries in associative portion 502) may be searched
but a match is only reported if its flow validity indicator
indicates a valid flow. With a CAM such as FDB 110 in FIG.

5, flow keys and flow validity indicators may be searchedin
parallel.

e 5

25

40

45

5S

60

65

38

If a later packet contains the next portion of data for a
previous flow (e.g., flow numberzero), that flow is updated
appropriately. In one embodiment of the invention this
entails updating flow sequence number 522 and increment-
ing flow activity indicator 524 to reflect its recent activity.
Flow validity indicator 520 may also be set to indicate the
validity of the flow,although it should already indicate that
the flow is valid.

As new flows are identified, they are added to FDB 110
in a similar Manner to the first flow. When a flow is

terminatedoftomdawn.theassociatedentryinFDB110isinvalidated. In one embodiment_of the invention, flow

Validityindicator520ismerelycleazed-(o.g, set to zero) fore terminated flow. In another embodiment, one or more
e terminated flow are cleared or set to an arbitrary

or predetermined value. Because of the bursty nature of
network packet traffic, all or most of the data from a
datagram is generally received in a short amount oftime.
Thus, cach valid flow in FDB 110 normally only needs to be
maintained for a short periodof time, and its entry can then
be used to store a different flow.

Dueto the limited amount of memory available for flow
database 110 in one embodimentofthe invention,the size of
eachfield may be limited. In this embodiment, sixteen bytes
are allocated for IP source address 510 and sixteen bytes are
allocated for IP destination address 512. For IP addresses

shorter than sixteen bytes in length, the extra space may be
padded with zeros. Further, TCP source port 514 and TCP
destination port 516 are each allocated two bytes. Also in
this embodiment, flow validity indicator 520 comprises one
bit, flow sequence number 522 is allocated four bytes and
flow activity indicator 524 is also allocated four bytes.

As one skilled in the art will recognize from the embodi-
ments described above,a flowis similar, but not identical, to
an end-to-end TCP connection. ATCP connection mayexist
for a relatively extended period oftime,sufficient to transfer
multiple datagrams from a source entity to a destination
entity. A flow, however, may exist only for one datagram.
Thus,during one end-to-end TCP connection, multiple flows
maybe set up and torn down (e.g., once for cach datagram).
As described above, a flow may be set up (¢.g., added to
FDB 110 and marked valid) when NIC 100 detects the first
portion of data in a datagram and may be torn down (e.g.,
marked invalid in FDB 110) when the last portion of data is
received. [llustratively, each flow set up during a single
end-to-end TCP connection will have the same flow key
because the layer three and layer four address and port
identifiers used to form the flow key will remain the same.

In the illustrated embodiment, the size of flow database
110(e.g., the numberof flow entries) determines the maxi-
mum numberof flows that may beinterleaved (e.g., simul-
taneously active) at one time while enabling the functions of
data re-assembly and batch processing of protocol headers.
In other words, in the embodiment depicted in FIG. 5, NIC
100 can set up sixty-four flows and receive packets from up
to sixty-four different datagrams(i.e., sixty-four flows may
be active) without tearing down a flow. If a maximum
numberof flows through NIC 100 were known, flow data-
base 110 could be limited to the corresponding number of
entries.

The flow database may be kept small because a flow only
lasts for one datagram in the presently described embodi-
ment and, because of the bursty nature of packet traffic, a
datagram’s packets are generally received in a short period
of time. The short duration of a flow compensates for a
limited number of entries in the flow database. In one
embodimentofthe invention, if FDB 110is filled with active

NOACEx. 1015 Page 286



NOAC Ex. 1015 Page 287 

US 6,483,804 B1
39

flows and a new flow is commenced(i.c., a first portion of
data in a new datagram), the oldest(e.g., the least recently
active) flow is replaced by the new one.

In an alternative embodimentof the invention, flows may
be kept active for any number of datagrams (or other
measure of networktraffic) or for a specified length or range
of time. For example, when one datagram ends its flow in
FDB 110 may be kept “open”(i.c., not torn down) if the
database is not full (e.g., the flow’s entry is not needed for
a different fiow). This scheme may further enhance the
efficient operation of NIC 100 if another datagram having
the same flow key is received. In particular, the overhead
involved in setting up another flow is avoided and more data
re-assembly and packet batching (as described below) may
be performed. Advantageously, a flow may be kept open in
flow database 110 until the end-to-end TCP connection that

encompasses the flow ends.
One Embodimentof a Flow Database Manager

FIGS. 6A4-6E depict one method of operating a flow
database manager (FDBM),such as flow database manager
108 of FIG. 1A, for managing flow database (FDB) 110.
Illustratively, FDBM 108stores and updates flow informa-and genera:
tion stored in How database generates an operation.

code for a packet received by NIC 100. FDBM 108 also tears
down a flow (e.g., replaces, removes or otherwise invali-
dates an entry in FDB 110) whenthe flow is terminated or
aborted.

In one embodimentof the invention a packet’s operation
codereflects the packet’s compatibility with predetermined
criteria for performing one or more functions of NIC 100
(e.g., data re-assembly, batch processing of packet headers,
load distribution). In other words, depending upon a pack-
et’s operation code, other modules of NIC 100 may or may
not perform oneof these functions, as describedin following
sections.

In another embodiment of the invention, an operation
code indicates a packet status. For example, an operation
code mayindicate that a packet: contains nodata, is a control
packet, contains more than a specified amount ofdata, is the
first packet of a new flow, is the last packet of an existing
flow, is out of order, contains a certain flag (e.g., in a
protocol header) that does not have an expected value (thus
possibly indicating an exceptional circumstance), etc.

The_operation-offlowdatabase_manager-108—depends

uponpacketinformationprovidedbyheaderparser106andfata drawn from flow database . After FDBM_ 108
rocesses the packet information and/or da | infor-

mation(¢.g,, the packet’s operation code) is stored in control

queue 118 and 0 ma en low
may be entered or e mm down).

With reference now to FIGS. 6A—6E,state 600 is a start
state in which FDBM 108 awaits information drawn from a

packet received by NIC 100 from network 102.In state 602,
arser or another le of NIC 100 notifies

-EDBM1088ofanewpacketbyprovidingthepacket'sflow-e¥_andsomecontrolinformation,Receiptoftisdatainaybe interpreted as a request to search FD to determine
whether _a flow having this flow key already exists.

tion passed to FDBM 108 includes a sequence number(e.g.,
a TCP sequence number) drawn from a packet header. The
control information mayalso indicate the status of certain
flags in the packet’s headers, whether the packet includes
data and, if so, whether the amountofdata exceeds a certain
size. In this embodiment, FDBM 108 also receives a
No_Assist signal for a packet if the header parser deter-
minesthatthe packet is not formatted accordingto oneofthe

5

10

15

20

25

30

35

40

45

50

55

60

65

40

pre-selected protocol stacks (i.e., the packet is not
“compatible”), as discussed in a previous section.
Illustratively, the No_Assist signal indicates that one or
more functions of NIC 100 (e.g., data re-assembly, batch
processing, load-balancing) may not be provided for the
packet.

In state 604, FDBM 108 determines whether a No__Assist
signal was asserted for the packet. If so, the procedure
proceeds to state 668 (FIG. 6E). Otherwise, FDBM 108
searches FDB 110 for the packet’s flow keyin state 606. In
one embodiment of the invention only valid flow entries in
the flow database are searched. As discussed above, a flow’s
validity may bereflected by a validity indicator such as flow
validity indicator 520 (shown in FIG.5). If, in state 608,it
is determined that the packet’s flow key was not found in the
database, or that a match was found but the associated flow
is not valid, the procedure advances to state 646 (FIG. 6D).

If a valid match is found in the flow database, in state 610

th“Hownumber(6g.theflowdatabaseindexfor the
maichingentry)ofthematchingflow-is-noted ‘and flowinformation stored in FDB 110is read. Iltustratively, this

information—ineludes—fiow~validity indicator 520, flow
sequence number 522 and flow activity indicator 524
(shown in FIG.5).

In state 612, FDBM 108 determines from information
received from header parser 106 whether the packet contains
TCP payload data. If not, the illustrated procedure proceeds
to state 638 (FIG. 6C); otherwise the procedure continues to
state 614.

In state 614, the flow database manager determines
whether the packet constitutes an attempt to reset a com-
munication connection or flow. Illustratively, this may be
determined by examining the state of a SYN bit in one ofthe
packet’s protocol headers (e.g., a TCP header). In one
embodiment of the invention the value of one or more

control or flag bits (such as the SYN bit) are provided to the
FDBMbythe header parser. As one skilled in the art will
recognize, one TCP entity may attempt to reset a commu-
nication flow or connection with another entity (e.g.,
because of a problem ononeofthe entity’s host computers)
and senda first portion of data along with the re-connection
request. This is the situation the flow database manager
attempts to discern in state 614. If the packet is part of an
attempt to re-connect or reset a flow or connection, the
procedure continuesat state 630 (FIG. 6C).

In state 616, flow database manager 108 compares a
Sequence number(c.g., a TCP sequence number) extracted
from a packet header with a sequence number (¢¢.g., flow
sequence number 522 ofFIG.5) of the next expected portion
of data for this flow. As discussed in a previous section, these
sequence numbers should correlate if the packet contains the
flow’s next portion of data. If the sequence numbers do not
match, the procedure continues at state 628.

In state 618, FDBM 108 determines whethercertain flags
extracted from one or more of the packet’s protocol headers
match expected values. For example, in one embodiment of
the invention the URG, PSH, RST and FIN flags from the
packet’s TCP header are expected to be clear (i.c., equal to
zero). If any of these flags are set (e.g., equal to one) an
exceptional condition may exist, thus making it possible that
one or more of the functions (e.g., data re-assembly, batch
processing, load distribution) offered by NIC 100 should not
be performedfor this packet. As long as the flags are clear,
the procedure continues at state 620; otherwise the proce-
dure continuesat state 626.

In state 620, the flow database manager determines
whether more data is expected during this flow. As discussed

NOACEx. 1015 Page 287



NOAC Ex. 1015 Page 288

 
Beene

US 6,483,804 Bi
41

above, a flow may be limited in duration to a single
datagram. Therefore, in state 620 the FDBM determines if
this packet appears to be the final portion of data for this
flow’s datagram.Iilustratively, this determination is made on
the basis of the amountof data included with the present
packet. As one skilled in the art will appreciate, a datagram
comprising more data than can be carried in one packetis
sent via multiple packets. The typical manner of dissemi-
nating a datagram among multiple packets is to put as much
data as possible into each packet. Thus, each packet except
the last is usually equal or nearly equal in size to the
maximum transfer unit (MTU) allowed for the network over
which the packets are sent. The last packet will hold the
remainder, usually causing it to be smaller than the MTU.

Therefore, one manner of identifying the final portion of
data in a flow’s datagram is to examine the size of each
packet and compareit to a figure (e.g., MTU) that a packet
is expected to exceed except when castying the last data
portion. It was described above that control information is
received by FDBM 108 from header parser 106. An indi-
cation of the size of the data carried by a packet may be
included in this infomation.In particular, header parser 106
in one embodiment of the invention is configured to com-
pare the size of each packet’s data portion to a pre-selected
value. In one embodiment of the invention this value is

programmable. This valueis set, in the illustrated embodi-
ment of the invention, to the maximum amount of data a
packet can carry without exceeding MTU.In one alternative
embodiment, the value is set to an amount somewhat less
than the maximum amountof data that can be carried.

Thus, in state 620, flow database manager 108 determines
whether the received packet appears to carry the final
portion of data for the flow’s datagram.If not, the procedure
continues to state 626.

In state 622, jt has been ascertained that the packet is
compatible with pre-selected protocols and is suitable for

_one or mor ns-offeredbyNIC 100. In particular, the
packet has been formatted appropriately for one or more of

the functions discussed above. FDBM 108 has determinedthat the received packet is part of an exiscompatible wi c pre-selectedprotocolsandcoToontainsthe
nextportionofdatafortheflowflow (but not the final portion).

cr, packet is not part of an attempt to re-set a
flow/connection, and important flags have their expected

values. Thus, flow database 110 can be updated as follows.
indicator(¢.g., flow activity indicator 524 of 
 activity. In one embodiment of the invention flow activity
indicator 524 is implemented as a counter, or is associated
with a counter, that is incremented each timedata is received

10

20

25

40

50

for a flow. In another embodiment of the invention, an
activity indicator or counter is updated every time a packet

having. a flow key matching av: id ow (¢.g...whetherarnot
the paces includes dailustrated embodiment, after a flow activity indi-
cator or*counter is incrementedit is examined to determine
if it “rolled over” to zero (i.e., whether it was incremented
past its maximum value). If so, the counter and/or the flow
activity indicators for each entry in flow database 110 are set
to zero and the current flow’sactivity indicatoris once again
incremented. Thus, in one embodimentof the invention the
rolling overof a flow activity counter or indicator causesthe
re-initialization of the flow activity mechanism for flow
database 110. Thereafter, the counter is incremented and the
flow activity indicators are again updated as described
previously. Oneskilled in the art will recognize that there are
many other suitable methods that may be applied in an

55

60

65

42

embodiment of the present invention to indicate that one
flow was active more recently than another was.

Also in state 622, flow sequence number 522 is updated.
Ilustratively, the new flow sequence numberis determined
byadding the size of the newly receiveddatato the existing
flow sequence number. Depending upon the configuration of
the packet (e.g., values in its headers), this sum mayneedto
be adjusted. For example, this sum may indicate simply the
total amount of data received thus far for the flow’s data-

gram. Therefore, a value may need to be added (e.g., one
byte) in orderto indicate a sequence numberofthe next byte
of data for the datagram. As one skilled in the art will
recognize, other suitable methods of ensuring that data is
received in order may be used in place of the scheme
described here.

Finally, in state 622 in one embodimentof the invention,
flow validity indicator 520 is set or reset to indicate the
flow’s validity.

Then, in state 624, an operation code is associated with
the packet. In the ‘LMRcnibodimestoFlhe-iavention,
Gperation codes comprise codes generated by flow database

manager108and-sored™inr-controt-quewe118Ta this
embodiment,anoperationcodeis three bits in size, thus
allowing for eight operation codes. Operation codes may
have a variety of other forms and ranges in alternative
embodiments. For the illustrated embodiment of the

invention, TABLE i describes cach operation code in terms
of the criteria that lead to each code’s selection and the

ramifications of that selection. For purposes of TABLE 1,
setting up a flow comprises inserting a flow into flow
database 110. Tearing down a flow comprises removing or
invalidating a flow in flow database 110. The re-assembly of
data is discussed in a following section describing DMA
engine 120.

In the illustrated embodimentof the invention, operation
code 4 is selected in state 624 for packets in the present
context of the procedure (e.g., compatible packets carrying
the next, but not last, data portion of a flow). Thus, the
existing flow is not tom down and there is no needto set up
a new flow. As described above, a compatible packetin this
embodimentis a packet conforming to one or more of the
pre-selected protocols. By changing or augmenting the
pre-selected protocols, virtually any packet may be compat-
ible in an alternative embodimentof the invention.

Returning now to FIGS. 6A-6E, after state 624 the
illustrated procedure ends at state 670.

In state 626 (reached from state 618 or state 620),
operation code 3 is selected for the packet. [lustratively,
operation code 3 indicates that the packet is compatible and
matches a valid flow (e.g., the packet’s flow key matchesthe
flow key of a valid flow in FDB 110). Operation code 3 may
also signify that the packet contains data, does not constitute
an attempt to re-synchronize or reset a cOmmunication
flow/connection and the packet’s sequence number matches
the expected sequence number (from flow database 110).
But, either an important flag (e.g., one of the TCP flags
URG,PSH,RSTorFIN) is set (determined in state 618) or
the packet’s data is less than the threshold value described
above (in state 620), thus indicating that no more data is
likely to follow this packet in this flow. Therefore, the
existing flow is tom down but no new flow is created.
Illustratively, the flow may be tom down byclearing the
flow’s validity indicator(e.g., setting it to zero). After state
626,the illustrated procedure ends at state 670.

In state 628 (reached from state 616), operation code 2 is
selected for the packet. In the present context, operation
code 2 may indicate that the packet is compatible, matches

NOACEx. 1015 Page 288



NOAC Ex. 1015 Page 289

 US 6,483,804 Bi
43

a valid flow (e.g., the packet’s flow key matches the flow key
of a valid flow in FDB 110), contains data and does not
constitute an attempt to re-synchronize or reset a commu-
nication flow/connection. However, the sequence number
extracted from the packet(in state 616) does not match the
expected sequence number from flow database 110. This
may occur, for example, when a packet is received out of
order. Thus, the existing flow is torn down but no new flow
is established. Illustratively, the flow may be tom down by
clearing the flow’svalidity indicator(e.g., setting it to zero).
After state 628, the illustrated procedure ends at state 670.

State 630 is entered from state 614 whenit is determined

that the received packet constitutes an attempt to reset a
communication flow or connection (¢.g., the TCP SYN bitis
set). In state 630, flow database manager 108 determines
whether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made
on the basis of control information received by the flow
database manager from the header parser. If more data is
expected (e.g., the amount of data in the packet equals or
exceeds a threshold value), the procedure continues at state
634.

In state 632, operation code 2 is selected for the packet.
Operation code 2 was also selected in state 628 in a different
context. In the present context, operation code 2 may
indicate that the packet is compatible, matches a valid flow
and contains data. Operation code 2 mayalso signify in this
context that the packet constitutes an attempt to
re-synchronize orreset a communication flow or connection,
but that no more data is expected once the flow/connection
is reset. Therefore, the existing flow is tom down and no new
flow is established. Ilustratively, the flow may be torn down
by clearing the flow’s validity indicator (e.g., setting it to
zero). After state 632, the illustrated procedure ends at state
670.

In state 634, flow database manager 108 responds to an
attempt to reset or re-synchronize a communication flow/
connection whereby additional data is expected. Thus, the
existing flow is tom down and replaced as follows. The
existing flow maybe identified by the flow numberretrieved
in state 610 or by the packet’s flow key. The flow’s sequence
number(c.g., flow sequence number 522 in FIG.5)is set to
the next expected value. [lustratively, this value depends
upon the sequence number (c.g., TCP sequence number)
retrieved from the packet (e.g., by header parser 106) and the
amount of data included in the packet. In one embodiment
of the invention these two values are added to determine a

new flow sequence mumber. As discussed previously, this
sum may needto be adjusted (e.g., by adding one). Also in
state 634, the flow activity indicator is updated (e.g.,
incremented). As explained in conjunction with state 622,if
the flow activity indicator rolls over, the activity indicators
for all flows in the database are set to zero and the present
flow is again incremented. Finally, the flow validity indica-
tor is set to indicate that the flow is valid.

In state 636, operation code 7 is selected for the packet.
In the present context, operation code 7 indicates that the
packetis compatible, matchesavalid flow andcontains data.
Operation code 7 may furthersignify, in this context, that the
packet constitutes an attempt to re-synchronize or reset a
communication flow/connection and that additional data is

expected once the flow/connection is reset. In effect,
therefore, the existing flow is tom down and a new one (with
the same flow key)is stored in its place. After state 636, the
illustrated procedure ends at end state 670.

State 638 is entered after state 612 whenit is determined

that the received packet contains no data. This often indi-

20

30

35

40

45

55

60

65

44

cates that the packet is a control packet. In state 638, flow
database manager 108 determines whether one or more flags
extracted from the packet by the header parser match
expected or desired values. For example, in one embodiment
of the invention the TCP flags URG, PSH, RST and FIN
mustbe clear in order for DMA engine 120 to re-assemble
data from multiple related packets (.g., packets having an
identical flow key). As discussed above, the TCP SYN bit
mayalso be examined.In the present context (e.g., a packet
with nodata), the SYN bit is also expected to be clear (c.g.,
to store a value of zero).If the flags (and SYN bit) have their
expected values the procedure continues at state 642. If,
however, any ofthese flags are set, an exceptional condition
mayexist, thus making it possible that one or more functions
offered by NIC 100 (e.g., data re-assembly, batch
processing, load distribution) are unsuitable for this packet,
in which case the procedure proceeds to state 640.

In state 640, operation code 1 is selected for the packet.
Illustratively, operation code 1 indicates that the packet is
compatible and matches a valid flow, but does not contain
any data and one or more important flags orbits in the
packet’s header(s) are set. Thus, the existing flow is tom
down and no newflow is established.Illustratively, the flow
maybe torn down byclearing the flow’s validity indicator
(c.g., setting it to zero). After state 640, the illustrated
procedure ends at end state 670.

In state 642, the flow’s activity indicatoris updated (e-g.,
incremented) even though the packet contains no data. As
described above in conjunction with state 622,if the activity
indicator rolls over, in a present embodimentof the inven-
tion all flow activity indicators in the database are set to zero
and the current flow is again incremented. The flow’s
validity indicator may also be reset, as well as the flow’s
sequence number.

In state 644, operation code 0 is selected for the packet.
Illustratively, operation code Q indicates that the packetis
compatible, matches a valid flow, and that the packet does
not contain any data. The packet may, for example, be a
control packet. Operation code 0 further indicates that none
of the flags checked by header parser 106 and described
above (¢.g., URG, PSH, RST and FIN) are set. Thus, the
existing flow is not tom down and no new flow is estab-
lished. After state 644, the illustrated procedure ends at end
state 670.

State 646 is entered from state 608if the packet’s flow key
does not match any of the flow keys of valid flows in the
flow database. In state 646, FDBM 108 determines whether
flow database 110 is full and may save someindication of
whether the database is full. In one embodiment of the
invention the flow database is considered full when the

validity indicator(e.g., flow validity indicator 520 of FIG. 5)
is set for every flow number(c.g., for every flow in the
database). If the database is full, the procedure continues at
state 650, otherwise it continuesat state 648.

In state 648, the lowest flow number of an invalid flow
(e.g., a flow for which the associated flow validity indicator
is equal to zero) is determined. Illustratively, this flow
number is where a new flow will be stored if the received

packet warrants the creation of a new flow. After state 648,
the procedure continues at state 652.

In state 650, the flow numberof the least recently active
flow is determined. As discussed above, in the illustrated
embodimentofthe invention a flow’s activity indicator(e.g.,
flow activity indicator 524 of FIG. 5) is updated (c.g.,
incremented) each time data is received for a flow.
Therefore, in this embodimenttheleast recently active flow
can be identified as the flow having the least recently

NOACEx. 1015 Page 289



NOAC Ex. 1015 Page 290

 US 6,483,804 B1
45

updated (¢.g., lowest) flow activity indicator. Ilustratively,if
multiple flows have flow activity indicators set to a common
value (e.g., zero), one flow number may be chosen from
them at random or by someothercriteria. After state 650, the
procedure continuesatstate 652.

In state 652, flow database manager 108 determines
whether the packet contains data. Illustratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet has data. If the packet does not
include data (e.g., the packet is a control packet), the
illustrated procedure continues at state 668.

In state 654, flow database manager 108 determines
whether the data received with the present packet appears to
contain the final portion of data for the associated datagram/
flow. As described in conjunction with state 620, this deter-
mination may be made onthe basis of the amount of data
included with the packet. [f the amount of data is less than
a threshold value (a programmable value in the illustrated
embodiment), then no more data is expected and this is
likely to be the only data for this fiow. In this case the
procedure continues at state 668. If, however,the data meets
or exceeds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

In state 656, the values of certain flags are examined.
These flags may include, for example, the URG, PSH, RST,
FIN bits of a TCP header.If any of the examined flags do not
havetheir expectedordesired values (¢.g., if any of the flags
afe set), an exceptional condition may exist making one or
more of the functions of NIC 100 (e.g., data re-assembly,
batch processing, load distribution) unsuitable for this
packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

To state 658, the flow database manager retrieves the
information stored in state 646 concerning whether fiow
database 110 is full. If the database is full, the procedure
continuesat state 664; otherwise the procedure continuesat
state 660.

In state 660, a new flow is added to flow database 110 for
the present packet.Ilustratively, the new flow is stored at the
flow number identified or retrieved in state 648. The addition

of a new flow may involvesetting a sequence number(¢.g.,
flow sequence number 522 from FIG. 5). Flow sequence
number 522 may be generated by adding a sequence number
(¢.g., TCP sequence number) retrieved from the packet and
the amount of data included in the packet. As discussed
above, this sum may need to be adjusted (e.g., by adding
one).

Stpring a new flow may also include initializing an
activity indicator(c.g., flow activity indicator 524 ofFIG.5).
In one embodiment of the invention this initialization

involves storing a value retrieved from a counter that is
incremented each time data is received for a flow.
Illustratively, if ae counter or a flow activit icator isincremented Fi} le value, the counter
and all flow xctivity indicators are cleared or reset. Also in
state 660, a validity indicator (e.g., flow validity indicator
520ofFIG.5) is set to indicate that the flow is valid. Finally,
the packet’s flow key is also stored in the flow database,in
tbe entry corresponding to the assigned flow number.

In state 662, operation code 6 is selected for the packet.
Illustratively, operation code 6 indicates that-the-packet is

tible. tch any valid flows and contains the

have their expected or necessary values, additional data is
expected in the flow and the flow database is notfull. Thus,
operation code 6 indicates that there is no existing flow to
tear down and that a new flow has been stored in the flow
database. After state 662, the illustrated procedure ends at
state 670.

2

35

40

45

50

60

46

In state 664, an existing entry in the flow database is
replaced so that a new flow, initiated by the present packet,
can be stored. Therefore, the flow number of the least
recently active flow, identified in state 650,is retrieved. This
flow may be replaced as follows. The sequence number of
the existing flow (e.g., flow sequence number 522 of FIG. 5)
is replaced with a value derived by combining a sequence
number extracted from the packet (e.g., TCP sequence
number) with the size of the data portion of the packet. This
sum may need to beadjusted(e.g., by adding one). Then the
existing flow’sactivity indicator (c.g., flow activity indicator
524)is replaced. For example, the value of a flow activity
counter may be copied into the flow activity indicator, as
discussed above. The flow’s validity indicator (e.g., flow
validity indicator 520 of FIG. 5) is then set to indicate that
the fiow is valid. Finally, the flow key of the new flow is
stored.

In state 666, operation code 7 is selected for the packet.
Operation code 7 was also selected in state 636. In the
present context, operation code 7 may indicate that the
packet is compatible, did not match the flow key of any valid
flows and contains thefirst portion of data for a new flow.
Further, the packet’s flags have compatible values and
additional data is expected in the flow. Lastly, however,in
this context operation code 7 indicates that the flow database
is full, so an existing entry was torn down and the new one
stored in its place. After state 666, the illustrated procedure
ends at end state 670.

In state 668, operation code 5 is selected for the packet.
State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or situa-
tions. For example, operation code 5 may be selected when
a No_Assist signal is detected (in state 604) for a packet. As
discussed above, the No__Assist signal may indicate that the
corresponding packet is not compatible with a set of pre-
selected protocols. In this embodiment of the invention,
incompatible packets are ineligible for one or more of the
various functions of NIC 100 (e.g., data re-assembly, batch
processing, load distribution).

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code may indicate
that the received packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
context operation code 5 may indicate that the packet does
not match any valid flow keys. It may further indicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state
654. In this context, it appears that the packet’s data is
complete (e.g., comprises all of the data for a datagram),
meaning that there is no other data to re-assemble with this
packet’s data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation cade 5 mayindicate that the packet
does not match any valid flow keys, contains data, and more
data is expected, but at Jeast one fiag in one or more ofthe
packet’s protocol headers does not have its expected value.
For example, in one embodimentof the invention the TCP
flags URG, PSH, RST and FIN are expected to beclear.If
any of these flags are set an exceptional condition may exist,
thus making it possible that one of the functions offered by
NIC 100 is unsuitable for this packet.

As TABLE1reflects, there is no flow to tear down and no
new flow is established when operation code 5 is selected.
Following state 668, the illustrated procedure ends at state
670.

NOACEx. 1015 Page 290



NOAC Ex. 1015 Page 291

 
 

US 6,483,804 B1
47

One skilled in the art will appreciate that the procedure
illustrated in FIGS. 6A—6E and discussed above is but one

suitable procedure for maintaining and updating a flow
database and for determining a packet’s suitability for
certain processing functions. In particular, different opera- 5
tion codes may be utilized or may be implemented in a
different manner, a goal being to produce information for
later processing of the packet through NIC 100.

Although operation codes are assigned forall packets by
a flow database managerin the illustrated procedure, in an
alternative procedure an operation code assigned by the
FDBM maybe replaced or changed by another module of
NIC 100. This may be doneto ensure a particular method of
treating certain types of packets. For example, in one
embodiment of the invention IPP module 104 assigns a
predetermined operation code (¢.g., operation code 2 of
TABLE 1) to jumbo packets (e.g., packets greater in size
than MTU) so that DMA engine 120 will not re-assemble
them. In particular, the IPP module may independently
determine that the packet is a jumbo packet (e.g., from
information provided by a MAC module) and therefore
assign the predetermined code. Illustratively, header parser
106 and FDBM 108 perform their normal functions for a
jumbopacket and IPP module 104 receivesafirst operation
code assigned by the FDBM. However, the IPP module
replaces that code before storing the jumbo packet and
information concerning the packet. In one alternative
embodiment header parser 106 and/or flow database man-
ager 108 may be configured to recognize a particular type of
packet (c.g., jumbo) and assign a predetermined operation
code.

The operation codes applied in the embodiment of the
invention illustrated in FIGS. 6A-6E are presented and
explained in the following TABLE 1. TABLE 1 includes
illustrative criteria used to select each operation code and
illustrative results or effects of each code.

TABLE 1 

Op.
Code Criteria for Selection Result of Operation Code 

QO Compatible control packet with
clear flags; a flow was previously
established for this flow key.

Do not set up a new flow,
Do not tear down existing
flow;
Do not re-assemble data
(packet contains no data).
Do notset up a new flow;
Tear down existing flow;
Do nore-assemble data
(packet contains no data}.
Do not set up a new flow,
Tear down existing flow;
Do not re-assemble packet
data.

1 Compatible control packet with at
least one flag or SYN bit set; a
flow was previously established.

2 Compatible packet whose sequence
number docs not match sequence
numberin flow database, or SYN
bit is net (indicating attempt to re-
establish a connection) but there is
no more data to come; a flow was
previously established.~Or—
Jumbo packet.

3  Acompatible packet carrying a
final portion of flow data, or a flag
is set (but packet is in sequence,
unlike operation code 2); a flow
was previously established.

4 Receipt of next compatible packet
in sequence; a flow was previouslyestablished.

Do not set up a new flow,
Tear down existing flow,
Re-assemble data with
previous packets.

Do not set up a new flow;
Do not tear down existing
flow;
Re-assemble data with
other packets.

5 Packet cannot be re-assembled Donot set up a flow,
because: incompatible,a fing is sct, There is no flow to tear
packet contains no data or there is down;
no more data to come. No flow Do not re-assemble.
was previously established.

48

TABLE 1-continued 

Op.
Code Criteria for Selection Result of Operation Code

6 First compatible packet of a new Set up a new flow,
flow, no flow was previously There is no flow to tear
established. down;

Re-assemble data with
packets to follow.

10 7~~Fimt compatible packet of 2 new Replace existing flow;
flow, but flow database is full; no Re-assemble data with
flow was previously established.-Or-
Compatible packet, SYN bit is sct
and additional data will follow; 2
flow was previously established.

packets to follow.

 

One Embodimentof a Load Distributor

In one embodimentof the invention, load distributor 112
enables the processing of packets through their protocol

Ilustratively, load distributor 112 generates an identifier

0 itted- The multiple processors may be located
Within-a-hesteomptter system that is served by NIC 100. In
one altemative embodiment, one or more processors for
manipulating packets throughaprotocol stack are located on
NIC 100.

Without an effective method of sharingor distributing the
processing burden, one processor could become overloaded
if it were required to process all or most network traffic
received at NIC 100, particularly in a high-speed network
environment. The resulting delay in processing network
traffic could deteriorate operations on the host computer
system as well as other computer systems communicating
with the host system via the network.

As oneskilled in the art will appreciate, simply distrib-
uting packets among processors in a set of processors (e.g.,
such as in a round-robin scheme) may not be an efficient
plan. Such a plan could easily result in packets being
processed outoforder. For example, if two packets from one
communication flow or connection that are received at a
networkinterface in the correct order were submitted to two

different processors, the second packet may be processed
before the first. This could occur, for example, if the
processorthat received the first packet could not immedi-
ately process the packet because it was busy with another
task. When packets are processed out of order a recovery
scheme must generally be initiated, thus introducing even
more inefficiency and more delay.

Therefore, in a present embodiment of the invention

pon their Ho entities. lescribed above, a header
patser may generate a flow key from layer three (e.g., IP)

55 and layer four (e.g., TCP) source and destination identifiers
retrieved from a packet’s headers. The flow key may be used

apyentitythe_communicationflowtowhichthepackshichthepacket
ackets having an identical flow ke submittedtoa

«0SiigpinesAsTongasthepacketsareeivedin
yy NIC 100, they should be provided to the host computer

and processed in order by their assigned processor.

Illustratively,multiplep.ets sent from one source entity
to one destination entity will have the same flo ven

65ffthepack € pai parate dataprams, as lo eir
fayer three and layer fouridentifiers remain the same. As
distissedabove, separate flows are set up and torn down for

25

30

50

 

NOACEx. 1015 Page 291



NOAC Ex. 1015 Page 292

US 6,483,804 B1
49

each datagram within one TCP end-to-end connection.
Therefore,just as all packets within one flow are sent to one
processor, all packets within a TCP end-to-end connection
will also be sent to the same processor. This helps ensure the
correct ordering of packets for the entire connection, even
between datagrams.

Depending upon the network environment in which NIC
100 operates (c.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described
above, for example, a flow key measures 288 bits.
Meanwhile, the number of processors participating in the
load-balancing scheme may be much smaller. For example,
in the embodiment of the invention described below in

conjunction with FIG. 7, a maximum of sixty-four proces-
sors is supported. Thus, in this embodimentonly a six-bit
number is needed to identify the selected processor. The
larger flow key may therefore be mapped or hashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier
(e.g., a processor number) to specify a processor to process
a packet received by NIC 100, based on the packet’s flow
key.In this embodimentof the invention, network 102 is the
Internet and a received packet is formatted according to a
compatible protocol stack (e.g., Ethernet at layer two, IP at
layer three and TCP atlayer four).

State 700 is a start state. In state 702 a packetis received
by NIC 100 and a header portion of the packet is parsed by
header parser 106 (a method ofparsing a packet is described
in a previous section). In state 704, load distributor 112
receives the packet’s flow key that was generated by header
parser 106.

Because a packet’s flow key is 288 bits wide in this
embodiment, in’state 706 a has! 100 is performed to
generate_a_value that is rin magnitude-—Fhe hash
operation may, for example, compriseathirty-two bit CRC
(cyclic redundancy check) function such as ATM
(Asynchronous Transfer Mode) Adaptation Layer 5 (AAL5).
AALS generates thirty-two bit numbers that are fairly evenly
distributed among the 27” possible values. Another suitable
method of hashing is the standard Ethemet CRC-32 func-
tion. Other hash functions that are capable of generating
relatively small numbers from relatively large flow keys,
where the gumbers generated are well distributed among a
range of values, are also suitable.

operation is performed over the number of processors avai
able for distributin, baring the processing.Illustratively,
software executing on the host computer (e.g., a device
driver for NIC 100) programs or stores the number of
processors such that it may be read or retrieved by load
distributor 112 (e.g., in a register). The numberofprocessors
available for load balancing maybe all or a subset of the
numberofprocessors installed on the host computer system.
In the illustrated embodiment, the number of processors
available in a host computer system is programmable, with
a maximum valueofsixty-four. The result of the modulus
operation in this embodiment, therefore,is the numberof the
processor(e.g., from zero to sixty-three) to which the packet
is to be submitted for processing.In this embodimentof the
invention, load distributor 112 is implemented in hardware,
thus allowing rapid execution of the hashing and modulus
functions. In an alternative embodiment of the invention,
virtually any numberof processors may be accommodated.

In state 710, the number of the processorthat will process
the packet through its protocol stack is stored in the host
computer’s memory.Ilustratively, state 710 is performed in

10

15

20

25

30

35

45

50

35

65

50

parallel with the storage of the packet in a host memory
buffer. As described in a following section, in one embodi-
ment of the invention a descriptor ring in the host comput-
er’s memory is constructed to hold the processor number
and possibly other information concerning the packet (e.g.,
a pointer to the packet, its size, its TCP checksum).

A descriptor ring in this embodiment is a data structure
comprising a numberofentries, or “descriptors,”for storing
information to be used by a network interface circuit’s host
computer system.In the illustrated embodiment, a descriptor
temporarily stores packet information after the packet has
been received by NIC 100, but before the packet is pro-
cessed by the host computer system. The information stored
in a descriptor may be used, for example, by the device
driver for NIC 100 or for processing the packetthrough its
protocol stack.

In state 712, an interruptorotheralert is issuedto the host
computer to inform it that a new packet has been delivered
from NIC 100. In an embodimentof the invention in which

NIC 100 is coupled to the host computer by a PCI
(Peripheral ComponentInterconnect) bus, the INTA signal
may be asserted across the bus. A PCI controller in the host
receives the signal and the host operating system is alerted
(¢.g., Via an interrupt).

In state 714, software operating on the host computer
(c.g., a device driver for NIC 100) is invoked (e.g., by the
host computer’s operating system interrupt handler) to act
upon a newly received packet. The software gathers infor-
mation from one or more descriptors in the descriptor ring
and places information needed to complete the processing of
each new packet into a queue for the specified processor
(i.c., according to the processor numberstored in the pack-
et’s descriptor). Iilustratively, each descriptor corresponds to
a separate packet. The information stored in the processor
queue for cach packet may include a pointer to a buffer
containing the packet, the packet’s TCP checksum,offsets of
one or more protocol headers, etc. In addition, each proces-
sor participating in the loac distribution scheme may have an
associated queue for processing network packets. In an
alternative embodiment of the invention, multiple queues
maybe used (c.g., for multiple priority levels orfor different
protocol stacks).

Illustratively, one processor on the host computer system
is configured to receive all alerts and/or internipts associated
with the receipt of network packets from NIC 100 and to
alert the appropriate software routine or device driver. This
initial processing may, alternatively, be distributed among
multiple processors. In addition, in one embodiment of the
invention a portion of the retrieval and manipulation of
descriptor contents is performedas part of the handling of
the interrupt that is generated when a new packet is stored
in the descriptor ring. The processor selected to process the
packet will perform the remainder of the retrieval/
manipulation procedure.

In state 716, the processor designated to process a new
packetis alerted or woken. In an embodimentof the inven-
tion operating on a Solaris™ workstation, individual pro-
cesses executed by the processor are configured as
“threads.” A thread is a process running in a normal mode
(c.g., not at an interrupt level) so as to have minimal impact
on other processes executing on the workstation. A normal
mode process may, however, execute at a high priority.
Alternatively, a thread may run at a relatively low interrupt
level.

A thread responsible for processing an incoming packet
may block itself when it has no packets to process, and
awaken whenit has work to do. A “condition variable” may

NOACEx. 1015 Page 292



NOAC Ex. 1015 Page 293

 
 

US 6,483,804 B1
51

be used to indicate whether the thread has a packet to
process. Illustratively, the condition variableis set to a first
value when the threadis to process a packet (¢.g., when a
packetis received for processing by the processor) andis set
to a second value when there are no more packets to process.
In the illustrated embodimentof the invention, one condition
variable may be associated with each processor’s queuc.

In an alternative embodiment, the indicated processor is
alerted in state 716 by a “cross-processor call.” A cross-
processor call is one way of communicating among proces-
sors whereby one processor is interrupted remotely by
another processor. Other methods by which one processor
alerts, or dispatches a process to, another processor may be
used in place of threads and cross-processorcalls.

In state 718, a thread or other process on the selected
processor begins processing the packet that was storedin the
processor’s queue. Methods of processing a packet through
its protocol stack are well known to those skilled in the art
and need not be described in detail. The illustrated procedure
then ends with end state 720.

In one alternative embodiment of the invention, a high-
speed network interface is configured to receive and process
AIM (Asynchronous Transfer Mode) traffic. In this
embodiment, a load distributor is implemented as a set of
instructions (e.g., as software) rather than as a hardware
module. As one skilled in the art is aware, ATM traffic is
connection-oriented and may be identified by a virtual
connection identifier (VCI), which corresponds to a virtual
circuit established between the packet’s source and destina-
tion entities. Each packet that is part of a virtual circuit
includes the VCI in its header.

Advantageously, a VCI is relatively small in size (e.g.,
sixteen bits). In this altermative embodiment, therefore, a
packet’s VCI may be used in place of a flow key for the
purpose of distributing or sharing the burden of processing
packets through their protocol stacks. Illustratively, traffic
from different VCIs is sent to different processors, but, to
ensure correct ordering of packets, all packets having the
same VCI are sent to the same processor. When an ATM
packetis received at a network interface, the VCT is retrieved
from its header and provided to the load distributor. The
modulus of the VCI over the mumber of processors that are
available for load distribution is then computed. Similar to
the illustrated embodiment, the packet and its associated
processor numberare then provided to the host computer.

As described above, load distribution in a present embodi-
mentof the invention is performed on the basis of a packet’s
layer three and/or layer four source and destination entity
identifiers. In an alternative embodiment of the invention,
however, load distribution may be performed onthe basis of
layer two addresses.In this alternative embodiment, packets
having the same Ethernet source and destination addresses,
for example, are sent to a single processor.

As one of skill in the art will recognize, however,this may
result in a processor receiving many more packets than it
wouldif layer three and/or layer four identifiers were used.
For example,if a large amountoftraffic is received through
a router situated near (in a logical sense) to the host
computer, the source Ethernet address for all of the traffic
may be the router’s address even though thetraffic is from
a multitude of different end users and/or computers. In
contrast, if the host computer is on the same Ethernet
segment as all of the end users/computers, the layer two
source addresses will show greater variety and allow more
effective load sharing.

Other methods of distributing the processing of packets
received from a network may differ from the embodiment

10

15

eo)

35

45

50

55

60

65

52

illustrated in FIG. 7 without exceeding the scope of the
invention. In particular, one skilled in the art will appreciate
that many alternative procedures for assigning a flow’s
packets to a processor and delivering those packets to the
processor may be employed.
One Embodiment of a Packet Queue

As described above, packet queue 116 stores packets
received from IPP moduleI04pnortotheirreassembly by
DMA engine 120 and their_transfer.to_the hast-computersystem.FIG-®depicispacket queue 116 according to one
embodimentof the invention.

In the illustrated embodiment, packet queue 116is imple-
mented as a FIFO (First-In First-Out) queue containing up to
256 entries. Rach packet queue entry in this embodiment
stores one packet plus various information conceming the
packet. For example, entry 800 includes packet portion 802
plus a packet status portion. Because packets ofvarious sizes
are stored in packet queue 116, packet portion 802 may
include filler 8022 to supplement the packet so that the
packet portion ends at an appropriate boundary (e.g., byte,
word, double word).

Filler 802a may comprise random data or data having a
specified pattern. Filler 802 a may be distinguished from the
stored packet by the pattem ofthefiller data or by a tag field.

Illustratively, packet status information includes TCP
checksum value 804 and packet length 806 (e.g., length of
the packet stored in packet portion 802). Storing the packet
length may allow the packet to be easily identified and
retrieved from packet portion 802. Packet status information
may also include diagnostic/status information 808.
Diagnostic/status information 808 may include a flag indi-
cating that the packetis bad (e.g., incomplete, received with
an error), an indicator that a checksum was or was not
computedfor the packet, an indicator that the checksum has
a certain value, an offset to the portion of the packet on
which the checksum was computed, etc. Other flags or
indicators may also be included for diagnostics, filtering, or
other purposes. In one embodiment of the invention, the
packet’s flow key (described above and usedto identify the
flow comprising the packet) and/or flow number (e.g., the
corresponding index of the packet’s flow in flow database
110) are included in diagnostic/status information 808. In
another embodiment, a tag field to identify or delimit filler
802< is included in diagnostic/status information 808.

In one alternative embodimentof the invention, anyorall
of the packetstatus information described aboveis stored in
control queue 118 rather than packet queue 116.

In the illustrated embodiment of the invention packet
queue 116 is implemented in hardware (e.g., as random
access memory).In this embodiment, checksum value 804 is
sixteenbits in size and maybestored by checksum generator
114. Packet length 806 is fourteen bits large and may be
stored by header parser 106. Finally, portions of diagnostic/
status information 808 maybe stored by one or more of IPP
module 104, header parser 106, low database manager 108,
load distributor 112 and checksum generator 114.

Packet queue 116 in FIG. 8 is indexed with two pointers.
Read pointer 810 identifies the next entry to be read from the
queue, while write pointer 812 identifies the entry in which
the next received packet and related information is to be
stored. As explained in a subsequent section, the packet
stored in packet portion 802 of an entry is extracted from
packet queue 116 whenits data is to be-reassembled by
DMA engine 120 and/or transferred to the host computer
system.
One Embodiment of a Control Queue

In one embodimentof the invention, contr uc 118
stores control and status information concerning a packet

eneatenee

NOACEx. 1015 Page 293



NOAC Ex. 1015 Page 294

 

 

US 6,483,804 B1
53 54

received by NIC 100. In this embodiment, control queue 118 , FIG. 9 depicts a read pointer and a write pointer for
retains information used to enable the batch processing of / indexing control queue 118. Read pointer 914 indicates an
protocol headers and/or the re-assembly of data from mul- j entry to be read by DMA engine 120. Write pointer 916
tiple related packets. Control queue 118 may also store | indicates the entry in which to store information concerninginformation to be used by the host computer or a series of 5 the next packet stored in packet queue 116.
instructions operating on a host computer(¢.g., a device In an alternative embodimentof the invention, a second
driver for NIC 100). The informationstored in control queue read pointer (not shown in FIG.9) may beused for indexing
msmay suppiement or duplicate information stored in control queue 118. As described in a later section, when apacket queue 116. : ‘ :

FIG. 9 depicts control queue 118 in one embodiment of packetis to be transferred to the host computer, information
the invention. The illustrated control queue contains one *° drawn fom entries in the control queue is searched to

* q determine whether a related packet (¢.g., a packet in theentry for each packet stored in packet queue 116 (c.g., up to fl P B.apacke256 entries). In one embodimentof the invention each entry same flow as the packetto be transferred)is also going to be
in control queue 118 corresponds to the entry (e.g., packet) transferred. If so, the host computer is alerted so that
in packet queue 116 having the same number. FIG.9 depicts protocol headers from the related packets may be processed
entry 900 having various fields, such as CPU number 902, 15 collectively.In this alternative embodiment of the invention,
No_Assist signal 904, operation code 906, payload offset  telated packets are identified by matching their flow num-
908, payload size 910 and other status information 912. An bers (or flow keys) in status information 912. The second
entry may also includeother status or control information read pointer maybe used to look aheadin the control queue
(not shown in FIG. 9). Entries in contro] queue 118 in for packets with matching flow numbers.
alternative embodiments of the invention may comprise 20 In one embodiment of the invention CPU number 902
different information. may be stored in the control queue by load distributor 112

CPU (or processor) number 902,discussed in a previous and No_Assist signal 904 may be stored by header parser
section, indicates which one of multiple processors on the 106. Operation code 906 may be stored by flow database
host computer system should process the packet’s protocol—manager 108, and payload offset 908 and payload size 910
headers. Ilustratively, CPU number 902 is six bits in size. 95 may be stored by header parser 106. Portions of other status
No__Assist signal 904,also described in apreceding section, information may be written by the preceding modules and/or
indicates whether the packet is compatible with (g., iS others, such as IPP module 104 and checksum generator114.
formatted accordingto) any of a set of pre-selected protocols In one particular embodiment of the invention, however,
that may be parsed by header parser 106. No_Assist signal manyofthese items of information are stored by IPP module
904 may comprise a single flag (e.g. one bit). In one se :
embodimentofthe inventionthestate or value of No_Assist 30 104 or some other module acting in somewhatof a coordi-
signal 904 may be used by flow database manager 108 to natorrole. . ;determine whether a packet’s data is reassembleable and/or One Embodiment of a DMA Engine ;
whetherits headers may be processed with those of related FIG. 10 sa block diagram DMA (Direct Memory
packets. In particular, the FDBM may use the No_Assist_Access) engine im one embodiment of the invention.
signal in determining which operation code to assign to the 35 One purpose of DMA engine 120 in this embodiment is to
packet. transfer packets from packet queue 116 into buffers in host

Operation code 906 provides information to DMA engine eermemory.Becauserelatedpackets(¢.¢.,packets
120 to assist in the re-assembly of the packet’s data. Asalarepartofone.flow)-can_hs.identifiedby-theirlowdescribed in a previous section, an operation code may numbers or flow keys, data from the aybe
indicate whether a packet includes data or whether a pack- 40 transferred together(e.g., in the same buffer). By using one
et’s datais suitable for re-assembly.Ilustratively, operation  “buffef for m one flow, the data can be proVided-to-an
code 906 is three bits in size. Payload offset 908 and payloadapplicationprogramorotherdestinationiaahighlyefficient
size 910 correspond to the offset and size of the packet’s|mramerForexample,afterthe host computer receives the
TCP payload(e.g., TCP data), respectively. These fields may data, a page-flip operation may be performedto transfer the
be seven and fourteen bits large, respectively. 45 data to an application’s memory space rather than perform-

In the illustrated embodiment, other status information ing numerous copy operations.
912 includes diagnostic and/or status information concerm- With reference back to FIGS. 1A-B,a packetthatis to be
ing the packet. Status information 912 mayincludeastarting transferred into host memory by DMA engine 120is stored
position for a checksum calculation (which may be seven in packet queue 116 after being received from network 102.
bits in size), an offset of the layer three (e.g., IP) protocol 50 Headerparser 106 parses a headerportion ofthe packet and
header (which may also be seven bits in size), etc. Status generatesa flow key, and flow database manager 108 assigns
information 912 mayalso include an indicator as to whether an operation code to the packet. In addition, the communi-
the size of the packet exceeds a first threshold (e.g., whether cation flow that includes the packet is registered in flow
the packet is greater than 1522 bytes) orfalls under a second database 110. The packet’s flow may beidentified byits flow
threshold (e.g., whether the packet is 256 bytes or less). This 55 key or flow number(e.g., the index of the flow in flow
information may be useful in re-assembling packet data. database 110). Finally, information concerning the packet
IWustratively, these indicators comprise single-bitflags. (e.g., operation code, a packet size indicator, flow number)

In one alternative embodiment of the invention, status is stored in control queue 118 and, possibly, other portions
information 912 includes a packet’s flow key and/of flow or modules of NIC 100, and the packetis transferred to the
number(c.g., the index of the packet’slowiifiow-database 60 host computer by DMA engine 120. During the transfer
110). The flow key or flow number may, for example, be process, the DMAengine may draw uponinformation stored
ised for debugging or other diagnostic purposes. In one in the control queue to copy the packet into an appropriate
embodimentof the invention, the packet’s flow number may buffer, as described below. Dynamic packet batching module
be stored in status information 912 so that multiple packets;|122 mayalso use information stored in the control queue, as!
in a single flow maybe identified. Such related packet may} discussed in detail in a following section. —
then be collectively transferred to and/or processed by a host \, With reference now to FIG. 10, one embodiment of a
computer. » DMA engineis presented. In this embodiment, DMA man-

NOACEx. 1015 Page 294



NOAC Ex. 1015 Page 295

  
 

US 6,483,804 B1
55

ager 1002 manages the transfer of a packet, from packet
queue 116, into one or more buffers in host computer
memory. Free ring manager 1012 identifies or receives
empty buffers from host memory and completion ring man-
ager 1014 releases the buffers to the host computer, as
described below. Thefree ring manager and completion ring
managers may be controlled with logic contained in DMA
manager 1002. In the illustrated embodiment, flow
re-assembly table 1004, header table 1006, MTU table 1008
and jumbotable 1010 store information concerning buffers
used to store different types of packets (as described below).
Information stored in one of these tables may include a
reference to, or some other means ofidentifying, a buffer. In
FIG. 10, DMA engine 120 is partially or fully implemented
in hardware.

Empty buffers into which packets may be stored are
identified via a free descriptor ring that is maintained in host
memory.As one skilled in the art is aware, a descriptor ring
is a data structure that is logically arranged as a circular
queue. A descriptor ring contains descriptors for storing
information (c.g., data, flag, pointer, address). In one
embodiment of the invention, cach descriptor stores its
index within the free descriptor ring and an identifier (¢.g.,
memory address, pointer) of a free buffer that may be used
to store packets. In this embodimenta bufferis identified in
a descriptorby its address in memory,although other means
of identifying a memory buffer are also suitable. In one
embodimentof the invention a descriptor index is thirteen
bits large, allowing for a maximum of 8,192 descriptors in
the ring, and a buffer address is sixty-four bits in size.

In the embodimentof FIG. 10, software that executes on
a host computer, such as a device driver for NIC 100,
maintains a free buffer array or other data structure (e.g.,list,
table) for storing referencesto (¢.g., addresses of) the buffers
identified in free descriptors. As descriptors are retrieved
from the ring their buffer identifiers are placed in the array.
Thus, whena bufferis needed for the storage of a packet,it
maybeidentified byits index (c.g., cell, element) in the free
buffer array. Then, when the buffer is no longer needed, it
may bereleased to the host computer by placing its array
index or reference in a completion descriptor. A packet
stored in the buffer can then be retrieved by accessing the
buffer identified in the specified element of the array. Thus,
in this embodimentof the invention the size of a descriptor
index (¢.g,, thirteen bits) may not limit the numberofbuffers
that may be assigned by free ring manager 1012. In
particular, virtually any number of buffers or descriptors
could be managed by the software. For example, in one
alternative embodiment of the invention buffer identifiers

may be stored in one or more linked lists after being
retrieved from descriptors in a free descriptor ring. When the
buffer is released to the host computer, a reference to the
head of the buffer’s linked list may be provided. The list
could then be navigated to locate the particular buffer (e.g.,
by its address).

As oneskilled in the art will appreciate, the inclusion of
a limited number of descriptors in the free descriptor ring
(e.g., 8,192 in this embodiment) means that they may be
re-used in a round-robin fashion. In the presently described
embodiment, a descriptor is just needed long enough to
retrieve its buffer identifier (e.g., address) and place it in the
free buffer array, after which it may be re-used relatively
quickly. In other embodiments of the invention free descrip-
tor rings having different numbers offree descriptors may be
used, thus allowing some control overthe rate at which free
descriptors must be re-used.

In onealternative embodimentofthe invention, instead of
using a separate data structure to identify a buffer for storing

20

25

30

40

55

65

56

a packet, a buffer may be identified within DMA engine 120
bythe index of the free descriptor within the free descriptor
ring that referenced the buffer. One drawbackto this scheme
when the ring contains a limited number of descriptors,
however,is that a particular buffer’s descriptor may need to
be re-used before its buffer has been released to the host

computer. Thus, cither a method of avoiding or skipping the
re-use of such a descriptor must be implemented or the
buffer referenced by the descriptor must be released before
the descriptor is needed again. Or, in anotheralternative, a
free descriptor ring maybe of such a large size that a lengthy
or even virtually infinite period of time may pass from the
timea free descriptoris first used until it needs to be re-used.

Thus, in the illustrated embodimentof the invention free
ring manager 1012 retrieves a descriptor from the free
descriptor ring, stores its buffer identifier (e.g., memory
address) in a free buffer array, and provides the array index
and/or buffer identifier to flow re-assembly table 1004,
header table 1006, MTU table 1008 or jumbotable 1010.

Free ring manager 1012 attempts to ensure that a bufferis
always available for a packet. Thus, in one embodiment of
the invention free ring manager 1012 includes descriptor
cache 10124 configured to store a number of descriptors
(c.g., up to cight) at a time. Wheneverthere are less than a
threshold numberof entries in the cache (e.g., five), addi-
tional descriptors may be retrieved from the free descriptor
ring. Advantageously, the descriptors are of such a size (e.g.,
sixteen bytes) that some multiple (e.g., four) of them can be
efficiently retrieved in a sixty-four byte cache line transfer
from the host computer.

Returning now to the illustrated embodiment of the
invention, each buffer in host memory is one memory page
in size. However, buffers and the packets stored in the
buffers may be divided into multiple categories based on
packet size and whether a packet’s data is being
re-assembled. Re-assembly refers to the accumulation of
data from multiple packets of a single flow into one buffer
for efficient transfer from kemel space to useror application
space within host memory. In particular, re-assembleable
packets may be defined as packets that conform to a pre-
selected protocol (c.g., a protocolthat is parseable by header
parser 106). By filling a memory page with data for one
destination, page-flipping may be performed to provide a
page in kernel space to the application or user space. A
packet’s category (e.g., whether re-assembleable or non-re-
assembleable) may be determined from information
retrieved from the control queue or flow database manager.
In particular, and as described previously, an operation code
may be used to determine whether a packet contains a
re-assembleable portion of data.

In theillustrated embodimentof the invention, data por-
tions of related, re-assembleable, packets are placed into a
first category ofbuffers—which may be termed re-assembly
buffers. A second category of buffers, which may be called
header buffers, stores the headers of those packets whose
data portions are being re-assembled and mayalso store
small packets (e.g., those less than or equal to 256 bytes in
size). A third category of buffers, MTU buffers, stores
non-re-assembleable packets that are larger than 256 bytes,
but no larger than MTU size (e.g., 1522 bytes). Finally, a
fourth category of buffers, jumbo buffers, stores jumbo
packets (e.g., large packets that are greater than 1522 bytes
in size) that are not being re-assembled. IIlustratively, a
jumbo packet maybestored intact(e.g., its headers and data
portions kept together in one buffer) or its headers may be
stored in a header buffer while its data portion is stored in an
appropriate (e.g., jumbo) non-re-assembly buffer.

NOACEx. 1015 Page 295



NOAC Ex. 1015 Page 296

 

 US 6,483,804 B1
57

In one alternative embodiment of the invention, no dis-
tinction is made between MTU and jumbopackets. Thus, in
this alternative embodiment, just three types of buffers are
used: re-assembly and header buffers, as described above,
plus non-re-assembly buffers. Ilustratively, all non-small
packets (e.g., larger than 256 bytes) that are not
re-assembled are placed in a non-re-assembly buffer.

In anotheralternative embodiment, jumbo packets may be
re-assembled in jumbobuffers. In particular, in this embodi-
mentdata portions of packets smaller than a predetermined
size (¢.g., MTU) are re-assembled in normal re-assembly
buffers while data portions of jumbo packets (e.g., packets
greater in size than MTU) are re-assembled in jumbo
buffers. Re-assembly of jumbo packets may be particularly
effective for a communication flow that comprises jumbo
frames of a size such that multiple frames can fit in one
buffer. Header portions of both types of packets may be
stored in one type of headerbufferor, alternatively, different
header buffers may be used for the headers of the different
types of re-assembleable packets.

In yet another alternative embodiment of the invention
buffers may be of varying sizes and may be identified in
different descriptor rings or other data structures. For
example, a first descriptor ring or other mechanism may be
used to identify buffers of a first size for storing large or
jumbopackets. A second ring may store descriptors refer-
encing buffers for MTU-sized packets, and another ring may
contain descriptors for identifying page-sized buffers (e.g.,
for data re-assembly).

A buffer used to store portions of more than one type of
packet—such as a header buffer used to store headers and
small packets, or a non-re-assembly buffer used to store
MTU andjumbo packets—maybe termed a “hybrid” buffer.

Illustratively, each time a packet or a portion of a packet
is stored in a buffer, completion ring manager 1014 popu-
lates a descriptor in a completion descriptor ring with
information concerning the packet. Included in the informa-
tion stored in a completion descriptorin this embodimentis
a numberorreference identifying the free buffer array cell
or element in which an identifier (e.g., memory address) of
a buffer in which a portion of the packet is stored. The
information mayalso include an offset into the buffer (.g.,
to the beginning of the packet portion), the identity of
anotherfree buffer array entry that stores a buffer identifier
for a buffer containing anotherportion of the packet, a size
of the packet, etc.Apacket maybe stored in multiple buffers,
for example, if the packet data and header are stored
separately (e.g., the packet’s data is being re-assembled in a
re-assembly buffer while the packet’s header is placed in a
headerbuffer). In addition, data portions of a jumbo packet
or a re-assembly packet may span two or more buffers,
depending on the size of the data portion.

A distinction should be kept in mind between a buffer
identifier (e.g., the memory address ofa buffer) and the entry
in the free buffer array in whichthe bufferidentifieris stored.
In particular, it has been described above that when a
memory bufferis released to a host computer it is identified
to the host computerbyits position within a free buffer array
(or other suitable data structure) rather than by its buffer
identifier. The host computerretrieves the buffer identifier
from the specified array element and accesses the specified
buffer to locate a packet stored in the buffer. As one skilled
in the art will appreciate, identifying memory buffers in
completion descriptors by the buffers’ Positions in a free
buffer array can be more efficient than identifying them by
their memory addresses. In particular, in FIG. 10 buffer
identifiers are sixty-four bits in size while an indexin a free

25

30

35

40

45

55

68

58

buffer array or similar data structure will likely be far
smaller. Using array positions thus saves space compared to
using buffer identifiers. Nonetheless, buffer identifiers may
be used to directly identify buffers in an alternative embodi-
ment of the invention, rather than filtering access to them
through a free buffer array. However, completion descriptors
would have to be comespondingly larger in order to accom-
modate them.

A completion descriptor may also include one or more
flags indicating the type or size of a packet, whether the
packet data should be re-assembled, whether the packetis
the last of a datagram, whether the host computer should
delay processing the packet to await a related packet, etc. As
described in a following section, in one embodimentof the
invention dynamic packet batching module 122 determines,
at the time a packet is transferred to the host computer,
whethera related packet will be sent shortly. If so, the bost
computer may be advised to delay processing the transferred
packet and await the related packet in order to allow more
efficient processing.

A packet’s completion descriptor may be marked appro-
priately when the buffer identified by its buffer identifier is
to be released to the host computer. For example, a flag may
be set in the descriptor to indicate that the packet’s bufferis
being released from DMA engine 120 to the host computer
or software operating on the host computer(¢.g., a driver
associated with NIC 100). In one embodiment of the
invention, completion ring manager 1014 includes comple-
tion descriptor cache 10144. Completion descriptor cache
10142 may store one or more completion descriptors for
collective transfer from DMA engine 120 to the host com-
puter.

Thus, empty buffers are retrieved from a free ring and
used buffers are released to the host computer through a
completionring. Onereason that a separate ring is employed
to release used buffers to the host computeris that buffers
may not be released in the order in which they were taken.
In one embodimentof the invention, a buffer (especially a
flow re-assembly buffer) may notbe released until it is full.
Alternatively, a buffer may be released at virtually any time,
such as when the end of a communication flow is detected.

Free descriptors and completion descriptors are further
described below in conjunction with FIG. 12.

Another reason that separate rings are used for free and
completion descriptors is that the number of completion
descriptors that are required in an embodiment of the
invention may exceed the numberof free descriptors pro-
vided in a free descriptor ring. For example, a buffer
provided by a free descriptor may be used to store multiple
headers and/or small packets. Each time a header or small
packet is stored in the header buffer, however, a separate
completion descriptor is generated. In an embodimentof the
invention in which a header buffer is eight kilobytes in size,
a header buffer may store up to thirty-two small packets. For
each packet stored in the header buffer, another completion
descriptor is generated.

FIG.11 includes diagramsofillustrative embodiments of
flow re-assembly table 1004, header table 1006, MTU table
1008 and jumbo table 1010. One alternative embodiment of
the invention includes a non-re-assembly table in place of
MTU table 1006 and jumbotable 1010, correspondingto a
single type of non-re-assembly buffer for both MTU and
jumbopackets. Jumbo table 1010 may also be omitted in
another altemative embodiment of the invention in which

jumbobuffers are retrieved or identified only when needed.
Because a jumbo buffer is used only once in this alternative
embodiment, there is no need to maintainatable to track its
use.

NOACEx. 1015 Page 296



NOAC Ex. 1015 Page 297

US 6,483,804 B1
59

Flow re-assembly table 1004 in the illustrated embodi-
mentstores information concerning the re-assembly ofpack-
ets in one or more communication flows. For each flow that

is active through DMA engine 120, separate flow
re-assembly buffers may be used to store the flow’s data.
Morethan one buffer may be used for a particular flow, but
each flow has one entry in flow re-assembly table 1004 with
which to track the use of a buffer. As described in a previous
section, one embodiment of the invention supports the
interleaving of up to sixty-four flows. Thus, flow
re-assembly buffer table 1004 in this embodiment maintains
up to sixty-four entries. A flow’s entry in the flow
re-assembly table may matchits flow number(e.g., the index
of the flow’s flow key in flow database 110) or, in an
alternative embodiment, an entry may be used for any flow.

In FIG. 11, an entry in flow re-assembly table 1004
includes flow re-assembly buffer index 1102, next address
1104 and validity indicator 1106. Flow re-assembly buffer
index 1102 comprises the index, or position, within a free
buffer array or other data structure for storing buffer iden-
tifiers identified in free descriptors, of a buffer for storing
data from the associated flow. Illustratively, this value is
written into each completion descriptor associated with a
packet whose data portion is stored in the buffer. This value
maybe used by software operating on the host computer to
access the buffer and process the data. Next address 1104
identifies the location within the buffer (e.g., a memory
address) at which to store the next portion of data.
Ilustratively, this field is updated each time data is added to
the buffer. Validity indicator 1106 indicates whether the
entry is valid. [lustratively, each entry is set to a valid state
(c.g., Stores a first value) whenafirstportion of data is stored
in the flow’s re-assembly buffer and is invalidated (e.g.,
stores a second value) whenthe buffer is full. When an entry
is invalidated, the buffer may be released or returned to the
host computer(e.g., because it is full).

Header table 1006 in the illustrated embodiment stores

information concerning one or more headerbuffers in which
packet headers and small packets are stored. In the illus-
trated embodimentof the invention, only one header buffer
is active at a time. That is, beaders and small packets are
stored in one buffer until it is released, at which time a new
buffer is used. In this embodiment, header table 1006
includes header buffer index 1112, next address 1114 and
validity indicator 1116. Similar to flow re-assembly table
1004, header buffer index 1112 identifies the cell or element
in the free buffer array that contains a buffer identifier for a
header buffer. Next address 1114 identifies the location
within the header buffer at which to store the next header or

small packet. This identifier, which may be a counter, may
be updated cach time a headeror small packetis stored in the
header buffer. Validity indicator 1116 indicates whether the
header buffer table and/or the header buffer is valid. This

indicator may be set to valid when a first packet or header
is stored in a header buffer and may be invalidated whenit
is released to the host computer.

MTU table 1008 stores information concerning one or
more MTU buffers for storing MTU packets (c.g., packets
larger than 256 bytes butless than 1523 bytes) that are not
being re-assembled. MTU buffer index 1122 identifies the
free buffer array element that contains a buffer identifier
(c.g., address) of a buffer for storing MTU packets. Next
address 1124 identifies the location in the current MTU
buffer at which to store the next packet. Validity indicator
1126 indicates the validity of the table entry. The validity
indicator may be set to a valid state whenafirst packet is
stored in the MTU buffer and an invalid state when the buffer
is to be released to the host computer.

20

30

35

40

ss

60

6S

60

Jumbo table 1010 stores information conceming one or
more jumbo buffers for storing jumbo packets (e.g., packets
larger than 1522 bytes) that are not being re-assembled.
Jumbo buffer index 1132 identifies the element within the

free buffer array that stores a buffer identifier corresponding
to a jumbo buffer. Next address 1134identifies the location
in the jumbo buffer at which to store the next packet. Validity
indicator 1136 indicates the validity of the table entry.
Illustratively, the validity indicator is set to a valid state
whena first packet is stored in the jumbo buffer and is set
to an invalid state when the buffer is to be released to the

host computer.
In the embodimentof the invention depicted in FIG. 11,

a packetlarger than a specified size (e.g., 256 bytes) is not
re-assemblied if it is incompatible with the pre-selected
protocols for NIC 100 (¢.g., TCP, IP, Ethernet) or if the
packetis too large (e.g., greater than 1522 bytes). Although
two types of buffers (e.g., MTU and jumbo) are used for
non-re-assembleable packets in this embodiment, in an
alternative embodimentof the invention any number may be
used, including one. Packets less than the specified size are
generally not re-assembled. Instead, as described above,
they are stored intact in a header buffer.

In the embodimentof the invention depicted in FIG. 11,
next address fields may store a memory address, offset,
pointer, counter or other means of identifying a position
within a buffer. Advantageously, the next address field of a
table ortable entry is initially set to the address of the buffer
assignedto store packets of the type associated with the table
(and, for re-assembly table 1004, the particular flow). As the
buffer is populated, the address is updated to identify the
location in the buffer at which to store the next packet or
portion of a packet.

Llustratively, each validity indicator stores a first value
(¢.g., one) to indicate validity, and a second value(c.g., zero)
to indicate invalidity. In the illustrated embodimentof the
invention, cach index field is thirteen bits, cach address field
is sixty-four bits and the validity indicators are each onebitin size.

Tables 1004, 1006, 1008 and 1010 may take other forms
and remain within the scope of the invention as contem-
plated. For example, these data structures may take the form
of arrays, lists, databases, etc., and may be implemented in
hardware or software. In the illustrated embodimentof the

invention, header table 1006, MTU table 1008 and jumbo
table 1010 each contain only one entry at a time. Thus, only
one header buffer, MTU buffer and jumbo buffer are active
(c.g., valid) at a time in this embodiment. In an alternative
embodimentof the invention, multiple header buffers, MTU
buffers and/or jumbo buffers may be used (e.g., valid) atonce.

In one embodimentofthe invention, certain categories of
buffers (e.g., header, non-re-assembly) may store a pre-
determined number of packets or packet portions. For
example, where the memory page size of a host computer
Processor is eight kilobytes, a header buffer may store a
maximum of thirty-two entries, each of which is 256 bytes.
Illustratively, even when one packet or headeris less than
256 bytes, the next entry in the buffer is stored at the next
256-byte boundary. A counter may be associated with the
buffer and decremented (or incremented) cach time a new
entry is stored in the buffer. After thirty-two entries have
been made, the buffer may be released.

In one embodimentof the invention, buffers other than
header buffers may be divided into fixed-size regions. For
example, in an cight-kilobyte MTU buffer, each MTU
packet may be allocated two kilobytes. Any space remaining

NOACEx. 1015 Page 297



NOAC Ex. 1015 Page 298

 
US 6,483,804 B1

61

in a packet’s area after the packet is stored may beleft
unused or may be padded.

In one alternative embodimentof the invention,entries in
a header buffer and/or non-re-assembly buffer (¢.g., MTU,
jumbo)are aligned for moreefficient transfer. In particular,
two bytes of padding (e.g., random bytes) are stored at the
beginning of each entry in such a buffer. Because a packet’s
layer two Ethernet header is fourteen bytes long, by adding
two pad bytes each packet’s layer three protocol header
(c.g., IP) will be aligned with a sixteen-byte boundary.
Sixteen-byte alignment, as one skilled in the art will
appreciate, allows efficient copying of packet contents (such
as the layer three header). The addition of two bytes may,
however, decrease the size of the maximum packet that may
be stored in a header buffer (e.g., to 254 bytes).

As explained above, counters and/or padding mayalso be
used with non-re-assembly buffers. Some non-re-
assembleable packets (e.g., jumbo packets) may, however,
be split into separate header and data portions, with each
portion being stored in a separate buffer—similar to the
re-assembly of flow packets. In one embodiment of the
invention padding is only used with header portions of split
packets. Thus, when a non-re-assembled (c.g., jumbo)
packetis split, padding may be applied to the header/small
buffer in which the packet’s header portion is stored but not
to the non-re-assembly buffer in which the packet’s data
portion is stored. When, however, a non-re-assembly packet
is stored with its header and data together in a non-re-
assembly buffer, then padding may be appliedto that buffer.

In another altemative embodiment of the invention, a
second level of padding may be added to cach entry in a
buffer that stores non-re are larger
than 256 bytes (e.g., MTU packets and jumbo packets that
are not split). In this alternative embodiment, a cacheline of
storage (c.g., sixty-four bytes for a Solaris™ workstation) is
skipped in the buffer before storing each packet. The extra
padding area may be used by software that processes the
packets and/or their completion descriptors. The software
may use the extra padding area for routing or as temporary
storage for information needed in a secondary orlater phase
of processing.

For example, before actually processing the packet, the
software may store somedata that promotes efficient multi-
tasking in the padding area. The information is then avail-
able when the packetis finally extracted from the buffer. In
patticular, in one embodiment of the invention a network
interface may generate one or more data valuesto identify
multicast or alternate addresses that correspond to a layer
two address of a packet received from a network. The
multicast or alternate addresses may be stored in a network
interface memory by software operating on a host computer
(c.g., a device driver). By storing the data value(s) in the
padding, enhanced routing functions can be performed when
the host computer processes the packet.

Reserving sixty-four bytes at the beginning of a buffer
also allows headerinformation to be modified or prepended
if necessary. For example, a regular Ethernet header of a
packet may, because of routing requirements, need to be
replaced with a much larger FDDI(Fiber Distributed Data
Interface) header. One skilled in the art will recognize the
size disparity between these headers. Advantageously, the
reserved padding area may be used for the FDDI header
rather than allocating another block of memory.

In a present embodiment of the invention DMA engine
120 may determine which category a packet belongs in, and
which type of bufferto store the packetin, by examining the
packet’s operation code. As described in a previous section,

20

25

30

35

40

50

35

65

62

an operation code may be stored in control queue 118 for
each packet stored in packet queue 116. Thus, when DMA
engine 120 detects a packet in packet queue 116,it may fetch
the corresponding information in the control queue and act
appropniately.

An operation code may indicate whether a packet is
compatible with the protocols pre-selected for NIC 100. In
an illustrative embodimentof the invention, only compatible
packets are eligible for data re-assembly and/or other
enhanced operations offered by NIC 100 (e.g., packet batch-
ing orloaddistribution). An operation code may also reflect
the size of a packet (e.g., less than or greater than a
predetermined size), whether a packet contains data oris a
control packet, and whether a packetinitiates, continues or
ends a flow. In this embodiment of the invention, cight
different operation codes are used. In alternative embodi-
ments of the invention more orless than eight codes may be
used. TABLE1lists operation codes that may be used in one
embodimentof the invention.

FIGS. 12A-12Billustrate descriptors from a free descrip-
tor ring and a completion descriptorring in one embodiment
of the invention. FIG. 12Aalso depicts a free buffer array for
storing buffer identifiers retrieved from free descriptors.

Free descriptor ring 1200 is maintained in host memory
and is populated with descriptors such as free descriptor
1202. Ilustratively, free descriptor 1202 comprises ring
index 1204, the index of descriptor 1202 in free ring 1200,
and buffer identifier 1206. A buffer identifier in this embodi-

ment is a memory address, but may, alternatively, comprise
a pointer or any other suitable means of identifying a buffer
in host memory.

In the illustrated embodiment, free buffer array 1210 is
constructed by software operating on a host computer(e.g,
a device driver). An entry in free buffer array 1210 in this
embodimentincludes array index field 1212, which may be
used to identify the entry, and buffer identifier field 1214.
Each entry’s buffer identifier field thus stores a buffer
identifier retrieved from a free descriptor in free descriptor
ring 1200.

In one embodiment of the invention,free ring manager
1012 of DMA engine 120 retrieves descriptor 1202 from the
ring and stores buffer identifier 1206 in free buffer array
1210. The free ring manageralso passes the buffer identifier
to flow re-assembly table 1004, header table 1006, MTU
table 1008 or jumbo table 1010 as needed. In another
embodimentthe free ring managerextracts descriptors from
the free descriptorring and stores them in a descriptor cache
until a buffer is needed, at which time the buffer’s buffer
identifier is stored in the free buffer array. In yet another
embodiment, a descriptor may be used (e.g., the buffer that
it references may be used to store a packet) whilestill in the
cache.

In one embodimentof the invention descriptor 1202 is
sixteen bytes in length. In this embodiment, ring index 1204
is thirteen bits in size, buffer identifier 1206 (and buffer
identifier field 1214 in free buffer array 1210)is sixty-four
bits, and the remaining space maystore other information or
maynot be used. The size of array index field 1212 depends
upon the dimensions of array 1210; in one embodimentthe
field is thirteenbits in size.

Completion descriptor ring 1220 is also maintained in
host memory. Descriptors in completion ring 1220 are
written or configured when a packetis transferred to the host
computer by DMA engine 120. The information written to a
descriptor, such as descriptor 1222, is used by software
operating on the host computer(e.g., a driver associated with
NIC 100) to process the packet.Iilustratively, an ownership

NOACEx. 1015 Page 298



NOAC Ex. 1015 Page 299

 

 

US 6,483,804 B1
63

indicator (described below) in the descriptor indicates
whether DMA engine 120 has finished using the descriptor.
For example,this field may be set to a particular value (e.g.,
zero) when the DMA engine finishes using the descriptor
and a different value(e.g., one) when it is available for use
by the DMAengine. However, in another embodimentof the
invention, DMA engine 120 issues an interrupt to the host
computer when it releases a completion descriptor. Yet
another means of alerting the host computer may be
employed in an alternative embodiment. Descriptor 1222,in
one embodiment of the invention, is thirty-two bytes in
Iength.

In the illustrated embodimentof the invention, informa-
tion stored in descriptor 1222 concems a transferred packet
and/orthe buffer it was stored in, and includes the following
fields. Data size 1230 reports the amount of data in the
packet(e.g., in bytes). The data size field may contain a zero
if thereis no data portion in the packet or no data buffer(e.g.,
flow re-assembly buffer, non-re-assembly buffer, jumbo
buffer, MTU buffer) was used. Data buffer index 1232 is the
index, within free buffer array 1210, of the buffer identifier
for the flow re-assembly buffer, non-re-assembly buffer,
juxobo buffer or MTU buffer in which the packet’s data was
stored. When the descriptor corresponds to a small packet
fully stored in a headerbuffer, this field may store a zero or
remain unused. Data offset 1234is the offset of the packet’s
data within the flow re-assembly buffer, non-re-assembly
buffer, jumbo buffer or MTU buffer(e.g., the location of the
first byte of data within the data buffer).

In HIG. 128,flags field 1236 includes one or more flags
concerning a buffer or packet. For example, if a header
buffer or data is being released (e.g., because it is full), a
release header or release data flag, respectively, is set. A
release flow flag may be used to indicate whether a flow has,
at least temporarily, ended. In other words,if a release flow
flag is set (e.g., stores a value ofone),this indicates that there
are no other packets waiting in the packet queuethat are in
the same flow as the packet associated with descriptor 1222.
Otherwise,if this flag is not set (e.g., stores a value of zero),
software operating on the host computer may queue this
packet to await one or more additional flow packets so that
they may be processed collectively. A split flag may be
included in flags field 1236 to identify whether a packet’s
contents (e.g., data) spans multiple buffers. Ilustratively,if
the split flag is set, there will be an entry in next data buffer
index 1240, described below.

Descriptor type 1238,in the presently described embodi-
mentof the invention, may take any ofthree values. A first
value (€.g., one) indicates that DMA engine 120 is releasing
a flow bufferfor a flow thatis stale (e.g., no packet has been
received in the flow for some period of time). Asecond value
(e-g., two) may indicate that a non-re-assembleable packet
was stored in a buffer. Athird value (e.g., three) may be used
to indicate that a flow packet (e.g., a packet that is part of a
flow through NIC 100) was stored in a buffer.

Next buffer index 1240 stores an index, in free buffer

array 1210, of an entry containing a buffer identifier corre-
spondingto a buffer storing a subsequentportion of a packet
if the entire packet, or its data, could notfit into the first
assigned buffer. Theoffset in the next buffer may be assumed
to be zero. Headersize 1242reports the length of the header
(e.g., in bytes). The header size may be set to zero if the
header buffer was not used for this packet (e.g., the packet
is not being re-assembled andis not a small packet). Header
buffer index 1244 is the index, in free buffer array 1210, of
the buffer identifier for the header buffer used to store this
packet’s header. Header offsct 1246 is the offset of the

20

25

30

35

40

45

55

65

64

packet’s header within the buffer (e.g., header buffer) in
which the header was stored. Theheaderoffset may take the
form of a numberofbytesinto the buffer at which the header
can be found. Alternatively, the offset may be an index value,
reporting the index position of the header. For example, in
one embodimentof the invention mentioned above, entries
in a header buffer are stored in 256-byte units. Thus, each
entry begins at a 256-byte boundary regardless ofthe actual
size of the entries. The 256-byte entries may be numbered or
indexed within the buffer.

In the illustrated embodiment, flow number 1250 is the
packet’s flow number (e.g., the index in flow database 140
of the packet’s flow key). Flow number 1250 may be used
to identify packets in the same flow. Operation code 1252 is
a code generated by flow database manager 108, as
described in a previous section, and used by DMA engine
120 to process the packet andtransfer it into an appropriate
buffer. Methods of transferring a packet depending uponits
operation code are described in detail in the following
section. No__Assist signal 1254, also described in a previous
section, may be set or raised when the packet is not
compatible with the protocols pre-selected for NIC 100. One
result of incompatibility is that header parser 106 may not
extensively parse the packet, in which case the packet will
hot receive the subsequent benefits. Processor identifier
1256, which may be generated by load distributor 112,
identifies a host computer system processor for processing
the packet. As described in a previous section, load distribu-
tor 112 attempts to share ordistribute the load of processing
network packets among multiple processors by having all
packets within one flow processed by the same processor.
Layer three beader offset 1258 reports an offset within the
packet of the first byte of the packet’s layer three protocol
(c.g., IP) header. With this value, software operating on the
host computer may easily strip off one or more headers or
header portions.

Checksum value 1260 is a checksum computed for this
packet by checksum generator 114. Packet length 1262 is the
length (¢.g., in bytes) of the entire packet.

Ownership indicator 1264 is used in the presently
described embodiment of the invention to indicate whether

NIC 100 or software operating on the host computer “owns”
completion descriptor 1222. In particular,a first value (e.g.,
zero) is placed in the ownership indicator field when NIC
100 (c.g., DMA engine 120) has completed configuring the
descriptor. Illustratively, this first value is understood to
indicate that the software may now process the descriptor.
Whenfinished processing the descriptor, the software may
store a second value (¢.g., one) in the ownership indicatorto
indicate that NIC 100 may now use the descriptor for
another packet.

Oneskilled in the art will recognize that there are numer-
ous methods that may be used to inform host software that
a descriptor has been used by, or returned to, DMA engine
120. In one embodimentof the invention, for example, one
or more registers, pointers or other data structures are
maintained to indicate which completion descriptors in a
completion descriptor ring have or have not been used. In
particular, a head register may be used to identify a first of
a series of descriptors that are owned by host software, while
a tail register identifies the last descriptor in the series.DMA
engine 120 may update these registers as it configures and
releases descriptors. Thus, by examiningthese registers the
host software and the DMA enginecan determine how many
descriptors have or have not been used.

Finally, other information, flags and indicators may be
stored in other field 1266. Other information that may be

NOACEx. 1015 Page 299



NOAC Ex. 1015 Page 300

 US 6,483,804 B1
65

stored in one embodiment of the invention includes the

length and/or offset of a TCP payload,flags indicating a
small packet (¢.g., less than 257 bytes) or a jumbo packet
(e.g., more than 1522 bytes), a flag indicating a bad packet
(¢.g., CRC error), a checksum starting position, etc.

In alternative embodiments of the invention only infor-
mation and flags needed by the host computer (e.g., driver
software) are included in descriptor 1222. Thus, in one
alternative embodiment one or more fields other than the

following may be omitted: data size 1230, data buffer index
1232, data offset 1234, a split flag, next data buffer index
1240, header size 1242, header buffer index 1244, header
offset 1246 and ownership indicator 1264.

In addition, a completion descriptor may be organized in
virtually any form; the orderof the fields of descriptor 1222
in FIG. 12 is merely one possible configuration. It is
advantageous, however, to locate ownership indicator 1264
towards the end of a completion descriptor since this indi-
cator may be used to inform host software when the DMA
engine has finished populating the descriptor. If the owner-
ship indicator were placed in the beginningof the descriptor,
the software may read it and attempt to use the descriptor
before the DMA engine has finished writing to it.

Oneskilled in the art will recognize that other systems and
methods than those describedin this section may be imple-
mented to identify storage areas in which to place packets
being transferred from a networkto a host computer without
exceeding the scope of the invention.

“Methods of Transferring a Packet into a Memory Buffer by
a DMA Engine

FIGS. 13-20 are flow charts describing procedures for
transferring a packet into a host memory buffer. In these
procedures, a packet’s operation code helps determine
which buffer or buffers the packetis stored in.An illustrative
selection of operation codes that may be used in this
procedure are listed and explained in TABLE 1.

The illustrated embodiments of the invention employ four
categories of bost memory buffers, the sizes of which are
programmable. The buffer sizes are programmable in order
to accommodate various host platforms, but are pro~-
grammed to be one memory page in size in present embodi-
ments in order to enhance the efficiency of handling and
processing network traffic. For example, the embodiments
discussed in this section are directed to the use of a host

computer system employing a SPARC™ processor, and so
eachbufferis cight kilobytes in size. These embodiments are
casily adjusted, however, for host computer systems
employing memory pages having other dimensions.

One type ofbufferis for re-assembling data from a fiow,
another type is for headers of packets being re-assembled
and for small packets (e.g., those less than or equal to 256
bytesin size) that are not re-assembled.A third type ofbuffer
stores packets up to MTU size (e.g., 1522 bytes) that are not
re-assembled, and a fourth type storesjumbo packets that are
greater than MTU size and which are not re-assembled.
These buffers are called flow re-assembly, header, MTU and
jumbobuffers, respectively.

The proceduresdescribed in this section make use of free
descriptors and completion descriptors as depicted in FIG.
12. In particular, in these procedures free descriptors
retrieved from a free descriptor ring store buffer identifiers
(c.g., memory addresses, pointers) for identifying buffers in
whichto store a portion of a packet. A used buffer may be
returned to a host computer by identifying the location
within a free buffer array or other data structure used to store
the buffer’s buffer identifier. One skilled in the art will
recognize that these procedures may be readily adapted to

20

25

30

35

40

45

50

55

60

65

66

work with alternative methods of obtaining and returning
buffers for storing packets.

FIG.13 is a top-level view ofthe logic controlling DMA
engine 120 in this embodimentof the invention. State 1300
is a start state.

In state 1302, a packetis stored in packet queue 116 and
associated information is stored in control queue 118. One
embodimentof a packet queue is depicted in FIG. 8 and one
embodimentof a control queue is depicted in FIG. 9. DMA
engine 120 may detect the existence of a packet in packet
queue 116 by comparing the queue’s read and write pointers.
As long as they do not reference the same entry, then it is
understoodthat a packetis stored in the queue.Alternatively,
DMA engine 120 may examine control queue 118 to deter-
mine whether an entry exists there, which would indicate
that a packet is stored in packet queue 116. As long as the
control queue’s read and write pointers do not reference the
same entry, then an entry is stored in the control queue and
a packet must be stored in the packet queue.

In state 1304, the packet’s associated entry in the control
queucis read. lustratively, the control queue entry includes
the packet’s operation code, the status of the packet’s
No_Assistsignal (c.g., indicating whether or not the packet
is compatible with a pre-selected protocol), one or more
indicators conceming the size of the packet (and/orits data
portion), etc.

In state 1306, DMA engine 120 retrieves the packet’s flow
number. As described previously, a packet’s flow numberis
the index of the packet’s flow in flow database 110. A
packet’s flow number may, as described in a following
section, be provided to and used by dynamic packet batching
module 122 to enable the collective processing of headers
from related packets. In one embodimentof the invention, a
packet’s flow number may be provided to any of a number
of NIC modules (¢.g., IPP module 104, packet batching
module 122, DMA engine 120, control queue 118) after
being generated by flow database manager 108. The flow
number mayalso bestored in a separate data structure (c.g.,
a register) until necded by dynamic packet batching module
122 and/or DMA engine 120. In one embodiment of the
invention DMAengine 120retrieves a packet’s flow number
from dynamic packet batching module 122.In an alternative
embodiment of the invention, the flow number may be
retrieved from a different location or module.

Then, in states 1308-1318, DMA engine 120 determines
the appropriate manner of processing the packet by exam-
ining the packet’s operation code. The operation code may,
for example, indicate which buffer the engine should transfer
the packet into and whether a flow is to be set up or tom
down in flow re-assembly buffer table 1004.

The illustrated procedure continues at state 1400 (FIG.
14) if the operation code is 0, state 1500 (FIG. 15) for
operation code 1, state 1600 (FIG. 16) for operation code 2,
state 1700 (FIG. 17) for operation code 3, state 1800 (FIG.
18) for operation code4, state 1900 (FIG. 19) for operation
code 5 and state 2000 (FIG. 20) for operation codes 6 and
7.

A Methodof Transferring a Packet with Operation Code 0
FIG. 14 depicts an illustrative procedure in which DMA

engine 120 transfers a packet associated with operation code
0 to a host memory buffer. As reflected in TABLE 1,
operation code 0 indicates in this embodiment that the
packet is compatible with the protocols that may be parsed
by NIC 100. As explained above, compatible packets are
eligible for re-assembly, such that data from multiple pack-
ets of one flow may be stored in one buffer that can then be
efficiently provided (€.g., via a page-flip) to a user or

NOACEx. 1015 Page 300



NOAC Ex. 1015 Page 301

 
US 6,483,804 B1

67

program’s memory space. Packets having operation code 0,
however,are small and contain no flow data for re-assembly.
Theyare thus likely to be control packets. Therefore, no new
flow is set up, no existing flow is torn down and the entire
packet may be placed im a header buffer.

In state 1400, DMA engine 120 (c.g. DMA manager
1002) determines whether there is a valid (e.g., active)
header buffer. Illustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which manages the active headerbuffer.If the validity
indicatoris set (e.g., equal to one), then there is a header
buffer ready to receive this packet and the procedure con-
tinuesat state 1404.

Otherwise, in state 1402 a header buffer is prepared or
initialized for storing small packets (e.g., packets less than
257 bytes in size) and headers of re-assembled packets (and,
possibly, headers of other packets—such as jumbo packets).
In the illustrated embodiment, this initialization process
involves obtaining a free ring descriptor and retrievingits
buffer identifier (¢.g., its reference to an available host
memory buffer). The buffer identifier may then be stored in
a data structure such as free buffer array 1210 (shown in
FIG. 12A). As described above, in one embodimentof the
invention free ring manager 1012 maintains a cache of
descriptors referencing empty buffers. Thus, a descriptor
may be retrieved from this cache andits buffer allocated to
headerbuffer table 1006.If the cache is empty, new descrip-
tors may be retrieved from a free descriptor ring in host
memory to replenish the cache.

When a new buffer identifier is retrieved from the cache

or from the free descriptor ring, the buffer identifier’s
position in the free buffer array is placed in header buffer
index 1112 of header buffer table 1006. Further, an initial
storage location in the buffer identifier (e.g., its starting
address) is stored in next address field 1114 and validity
indicator 1116is set to a valid state.

In state 1404, the packet is copied ortransferred (e.g., via
a DMA operation) into the header buffer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodimentof the
invention pad bytes are inserted before the packetin order to
align the beginning of the packet’s layer three (e.g., IP)
header with a sixteen-byte boundary. In addition, a header
buffer may be logically partitioned into cells of predeter-
mined size (c.g., 256 bytes), in which case the packet or
padding may begin at a cell boundary.

In state 1406, a completion descriptor is written or con-
figured to provide information to the host computer(¢.g., 4
software driver) for processing the packet. In particular, the
header buffer index (e.g. the index within the free buffer
amay of the buffer identifier that references the header
buffer) and the packet’s offset in the header buffer are placed
in the descriptor. Illustratively, the offset may identify the
location of the cell in which the headeris stored, or it may
identify the first byte of the packet. The size of the packetis
also stored in the descriptor, illustratively within a header
size field. A data size field within the descriptoris set to zero
to indicate that the entire packet was placed in the header
buffer(e.g., there was no data portion to store in a separate
data buffer). A release headerflagis set in the descriptorif
the header buffer is full. However, the header buffer may not
be tested to see if it is full until a later state of this procedure.
In such an embodimentof the invention, the release header
flag may be set (or cleared) at that time.

As described in a later section, in one embodimentof the
invention a release flow flag may also be set, depending
upon dynamic packet batching module 122. For example,if

15

20

25

35

40

50

6S

68

the packet batching module determines that another packet
in the same flow will soon be transferred to the host

computer, the release flow flag will be cleared (¢.g., a zero
will be stored). This indicates that the host computer should
await the next flow packet before processing this one. Then,
by collectively processing multiple packets from a single
flow, the packets can be processed more efficiently while
requiring Jess processor lime.

In the descriptor type field, a value is stored to indicate
that a flow packet was transferred to host memory. Also, a
predetermined value (e.g., zero) is stored in the ownership
indicatorfield to indicate that DMA engine120is done using
the descriptor and/or is releasing a packet to the host
computer. Illustratively, the host computer will detect the
change in the ownership indicator (e.g., from one to zero)
and use the stored information to process the packet. In one
alternative embodiment of the invention, DMA engine 120
issues an interrupt or other signal to alert the host computer
that a descriptor is being released. In another alternative
embodiment, the host computer polls the NIC to determine
when a packet has been received and/or transferred. In yet
another altemative embodiment, the descriptor type field is
used to inform the host computer that the DMA engine is
releasing a descriptor. In this alternative embodiment, when
a non-zero value is placed in the descriptor type field the
host computer may understand that the DMA engine is
teleasing the descriptor.

In a present embodimentof the invention, the ownership
indicator field is not changed until DMA engine 120 is
finished with any other processing involving this packet or
is finished makingall entries in the descriptor. For example,
as described below a header buffer or other buffer may be
found to be full at some time after state 1406. By delaying
the setting of the ownership indicator, a release header flag
can be set before the descriptor is reclaimed by the host
computer, thus avoiding the use of another descriptor.

In state 1408, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, up to thirty-two entries
may be stored in a beader buffer. Thus, a counter may be
used to keep track of entries placed in each new header
buffer and the buffer can be considered full when thirty-two
entries are stored. Other methods of determining whether a
buffer is full are also suitable. For example, after a packet is
stored in the header buffer a new next address field may be
calculated and the difference between the new next address

field and the initial address of the buffer may be compared
to the size of the buffer(e.g., eight kilobytes). If less than a
predetermined number of bytes (e.g., 256) are unused, the
buffer may be considered full.

If the buffer is full, in state 1410 the header buffer is
invalidated to ensure that it is not used again. [lustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computervia a descriptor. In this embodiment ofthe inven-
tion a release header flag in the descriptor is set. If the
descriptor that was written in state 1406 was already
released (e.g., its ownership indicator field changed),
another descriptor may be used in this state. If another
descriptor is used simply to report a full header buffer, the
descriptor’s header size and data size fields may be set to
zero to indicate that no new packet was transferred with this
descriptor.

If the header bufferis not full, then in state 1412 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

NOACEx. 1015 Page 301



NOAC Ex. 1015 Page 302

|

 

US 6,483,804 B1
69

small packet. The processing associated with a packet hav-
ing operation code 0 then ends with end state 1499. In one
embodiment ofthe invention, the ownership indicator field
of a descriptor that is written in state 1406 is not changed,
or an interruptis not issued, until end state 1499. Delaying
the notification of the host computer allows the descriptor to
be updated or modified for as long as possible before turning
it over to the host.

A Methodof Transferring a Packet with Operation Code 1
FIG. 15 depicts an illustrative procedure in which DMA

engine 120transfers a packet associated with operation code
1 to a host memory buffer. As refiected in TABLE 1, in this
embodiment operation code 1 indicates that the packet is
compatible with the protocols that may be parsed by NIC
100. A packet baving operation code 1, however, may be a
control packet having a particular flag set. No new flow is set
up, but a flow should already exist and is to be tom down;
there is no data to re-assemble and the entire packet may be
stored in a header buffer.

In state 1500, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (¢.g., active)
header buffer. Iflustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which managestheactive header buffer.If the validity
indicatoris set, then there is a header buffer ready to receive
this packet and the procedure continues atstate 1504.

Otherwise, in state 1502 a new headerbuffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

Whena new descriptor is obtained from the cache or from
the free descriptor ring, its buffer identifier (e.g., pointer,
address, index) is stored in free buffer array 1210 and its
initial storage location (e.g., address or cell location) is
stored in next address field 1114 of header buffer table 1006.

The index or position of the buffer identifier within the free
buffer array is stored in header buffer index 1112. Finally,
validity indicator 1116 is set to a valid state.

In state 1504 the packet is copied into the header bufferat
the address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodimentof the invention pad bytes are inserted before
the packet in order to align the beginning of the packet’s
layer three (¢.g., IP) header with a sixteen-byte boundary.
And, the packet (with or without padding) may be placed
into a pre-defined areaor cell of the buffer.

In the illustrated embodiment, operation code 1 indicates
that the packet’s existing flow is to be torn down. Thus,in
State 1506 it is determined whethera flow re-assembly buffer
is valid (e.g., active) for this flow by examining the flow’s
validity indicator in flow re-assembly buffer table 1004.If,
for example, the indicator is valid, then there is an active
buffer storing data from one or more packets in this flow.
Illustratively, the flow is tom down by invalidating the flow
re-assembly buffer and releasing it to the host computer.If
there is no valid flow re-assembly buffer for this flow, the
illustrated procedure continues at state 1512. Otherwise, the
procedure proceeds to state 1508.

In state 1508, a completion descriptor is configured to
release the flow’s re-assembly buffer and to provide infor-
mation to the host computer for processing the current
packet. In particular, the header buffer index and the offset
ofthefirst byte of the packet(or location ofthe packet’scell)

15

20

25

30

35

45

50

55

60

65

70

within the header buffer are placed in the descriptor. The
index within the free buffer array of the entry containing the
re-assembly buffer’s buffer identifieris stored in a data index
ficld of the descriptor. The size of the packetis stored in a
headersize field and a data size field is set to zero to indicate

that no separate buffer was used for storing this packet’s
data. A release header flag is set in the descriptor if the
headerbuffer is full and a release data flag is set to indicate
that no more data will be placed in this flow’s present
re-assembly buffer(c.g., it is being released). In addition, a
release flow flag is set to indicate that DMA engine 120 is
tearing down the packet’s flow. The header buffer may not
be testedto see if it is full until a later state of this procedure.
In such an embodimentof the invention, the release header
flag may beset at that time.

In state 1510, the flow’s entry in flow re-assembly buffer
table 1004 is invalidated. After state 1510, the procedure
continuesat state 1514.

In state 1512, a completion descriptor is configured with
information somewhatdifferent than that of state 1508. In

particular, the header buffer index, the offset to this packet
within the header buffer and the packet size are placed
within the same descriptorfields as above. The data size field
is set to zero, as above, but no data index needs to be stored
and norelease data flag is set (e.g., because there is no flow
re-assembly buffer to release). A release header flag is still
set in the descriptorif the header buffer is full and a release
flow flag is again set to indicate that DMA engine 120 is
tearing down the packet’s flow. Also, the descriptor type
field is changed to a value indicating that DMA engine 120
transferred a flow packet into host memory.

In state 1514, it is determined whether the header buffer
is now full. In this embodimentof the invention, where cach
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counteris used to keep
track of entries placed into each new header buffer. The
buffer is considered full when thirty-two entries are stored.

If the buffer is full, in state 1516 the header buffer is
invalidated. Ilustratively, this involves setting the header
buffer table’s validity indicator to invalid and communicat-
ing this status to the host computer via the descriptor
configured in state 1508 or state 1512. In this embodiment
of the invention a release headerflag in the descriptoris set
to indicate that the header buffer is full.

If the header buffer is not full, then in state 1518 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 1 then ends with end state 1599. In this endstate, the
descriptor used for this packet is tumed over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero), issuing an interrupt, or some other
mechanism.

Oneskilled in the art will appreciate that in an alternative
embodimentof the invention a change in the descriptor type
field to any value other than the value (c.g., zero) it had when
DMA engine 120 was usingit, may constitute a surrender of
“ownership” of the descriptor to the host computer or
software operating on the host computer. The host computer
will detect the change in the descriptor type field and
subsequently use the stored information to process the
packet.
A Method of Transferring Packet with Operation Code 2

FIGS. 16A-16F illustrate a procedure in which DMA
engine 120 transfers a packet associated with operation code
2 to a host memory buffer. As reflected in TABLE 1,

NOACEx. 1015 Page 302



NOAC Ex. 1015 Page 303

 

US 6,483,804 Bi
71

operation code 2 may indicate that the packet is compatible
with the protocols that may be parsed by NIC 100, but that
it is out of sequence with another packet in the same flow.
It may also indicate an attempt to re-establish a flow,butthat
no more data is likely to be received after this packet. For
operation code 2, no new flow is set up and any existing flow
with the packet’s flow number is to be tom down. The
packet’s data is not to be re-assembled with data from other
packets in the same flow.

Because an existing flow is to be tom down (e.g., the
flow’s re-assemblybufferis to be invalidated andreleased to
the host computer), in state 1600 it is determined whether a
flow re-assembly buffer is valid (e.g., active) for the flow
having the flow oumber that was read in state 1306. This
determination may be made by examining the validity
indicator in the flow’s entry in flow re-assembly buffer table
1004.Illustratively, if the indicator is valid then there is an
active buffer storing data from one or more packets in the
flow. If there is a valid flow re-assembly bufferfor this flow,
the illustrated procedure continuesat state 1602. Otherwise,
the procedure proceeds to state 1606.

In state 1602, a completion descriptor is written or con-
figured to release the existing flow re-assembly buffer. In
particular, the flow re-assembly buffer’s index (.g., the
location within the free buffer array that contains the buffer
identifier corresponding to the flow re-assembly buffer) is
written to the descriptor. In this embodiment of the
invention, no offset needs to be stored in the descriptor’s
data offset field and the data size field may be set to zero
because no new data was stored in the re-assembly buffer.
Similarly, the header buffer is not yet being released, there-
fore the header index and headeroffset fields of the descrip-
tor need not be used and a zero maybe stored in the header
size field.

Ilustratively, the descriptor’s release header flag is
cleared (e.g., a zero is stored in the flag) because the header
buffer is notto be released. The release data flagis set (e.g.,
a oneis stored in the flag), however, because no more data
will be placed in the released flow re-assembly buffer.
Further, a release flow flag in the descriptor is also set, to
indicate that the flow associated with the released flow

re-assembly buffer is being tom down.
The descriptor type field may be changed to a value

indicating that DMA engine 120 is releasing a stale flow
buffer (¢.g., a flow re-assembly buffer that has not been used
for some time). Finally, the descriptor is turned overto the
host computer by changing its ownership indicator field or
by issuing an interrupt or using some other mechanism. In
one embodimentofthe invention, however, the descriptoris
not released to the host computeruntil end state 1699.

Then, in state 1604, the flow re-assembly bufferis invali-
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assembly buffer table 1004 appropriately.

In state 1606, it is determined whether the present packet
is a small packet (¢.g., less than or equal to 256 bytes in
size), suitable for storage in a header buffer. If so, the
illustrated procedure proceeds to state 1610. Information
stored in packet queue 116 and/or control queue 118 may be
used to make this determination.

In state 1608, it is determined whether the present packet
is a jumbopacket (¢.g., greater than 1522 bytes in size), such
that it should be stored in a jumbobuffer.If so,the illustrated
procedure proceeds to state 1650. If not, the procedure
continues at state 1630.

In state 1610 (reached from state 1606), it has been
determinedthat the present packet is a small packetsuitable
for storage in a header buffer. Therefore, DMA engine 120

bewa

20

25

35

50

55

60

72

(c.g.. DMA manager 1002) determines whether there is a
valid (¢.g., active) header buffer. Ilustratively, this determi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which managesthe active header
buffer. If the validity indicatoris set, then there should be a
headerbuffer readyto receive this packet and the procedure
continuesat state 1614. ‘

Otherwise, in state 1612 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 andretrievingits reference
fo an empty buffer. If the cache is empty, new descriptors
may be retrieved from the free descriptor ring in host
memory to replenish the cache.

Whena new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indicator of the first storage location in the buffer is placed
in next address field 1114 of header buffer table 1006. The

buffer identifier’s position or index within the free buffer
array is stored in header buffer index 1112, and validity
indicator 1116is set to a valid state.

In state 1614 the packet is copied or transferred (c.g., via
a DMA operation) into the header buffer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodimentof the
invention pad bytes are inserted before the header in order
to align the beginning of the packet’s layer three protocol
(c-g., IF) header with a sixteen-byte boundary. In addition,
the packet may be positioned within a cell of predetermined
size (¢.g., 256 bytes) within the header buffer.

In state 1616, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for processing the packet. In
particular, the header buffer index (e.g. the position within
the free buffer array of the header buffer’s buffer identifier)
and the packet’s offset within the header buffer are placed in
the descriptor. [lustratively, this offset may serve to identify
the first byte of the packet, the first pad byte before the
packetor the beginningof the packet’s cell within the buffer.
The size of the packetis also stored in the descriptor in a
header size field. A data size field within the descriptor may
be set to zero to indicate that the entire packet was placed in
the header buffer (e.g., no separate data portion was stored).
A release header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodimentof the invention, the release headerflag may
be set (or cleared)at that time. A release data flag is cleared
(¢.g., set to a value of zero), because there is no separate data
portion being conveyed to the host computer.

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (c.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention the ownership indicatorfield is not changed until
end state 1699 below. In one altemative embodimentof the

invention, DMA engine 120 issues an interrupt or other
signal to alert the host computer that a descriptor is being
released.

In state 1618,it is determined whether the header buffer
is full. In this embodiment of the invention, where each

NOACEx. 1015 Page 303



NOAC Ex. 1015 Page 304

US 6,483,804 B1
73

buffer is cight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into cach new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1620 the header buffer is
invalidated to ensure thatit is not used again. Ilustratively,
this involves setting the header buffer table’s validity indi-
cator to an invalid state and communicating this status to the
host computer. In this embodiment of the invention, a
release header flag in the descriptor is set. The illustrated
procedure then ends with end state 1699.

If the header bufferis not full, then in state 1622 the next
address field of header buffer table 1006 is updated to
indicate the address or cell boundary at which to store the
next header or small packet. The illustrated procedure then
ends with end state 1699.

In state 1630 (reached from state 1608), it has been
determined that the packet is not a small packet or a jumbo
packet. The packet may, therefore, be stored in a non-re-
assembly buffer (e.g., a1 MTU buffer) used to store packets
that are up to MTU in size (e.g., 1522 bytes). Thus, in state
1630 DMA engine 120 determines whethera valid (e.g.,
active) MTU bufferexists. Illustratively, this determination
is made by examining validity indicator 1126 of MTU buffer
table 1008, which manages an active MTU buffer. If the
validity indicatoris set, then there is an MTU buffer ready
to receive this packet and the procedure continues at state
1634.

Otherwise,in state 1632 a new MTU bufferis prepared or
initialized for storing non-re-assembleable packets up to
1522 bytes in size. Ilustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 andretrieving its
reference to an empty buffer (¢.g., a buffer identifier). If the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

‘Whena new descriptoris obtained from the cache or from
the free descriptor ring, the buffer identifier (¢.g., pointer,
address, index) contained in the descriptor is stored in the
free buffer array. The buffer’s initial address or some other
indication of the first storage location in the buffer is placed
in next address field 1124 of MTU buffer table 1008. Further,
the position of the buffer identifier within the free buffer
asray is stored in MTU buffer index 1122 and validity
indicator 1126 is set to a valid state.

In state 1634 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU buffer at the address or
location specified in the next address field. As described
above, in one embodimentofthe invention pad bytes may be
inserted before the headerin orderto align the beginning of
the packet’s layer three protocol (e.g., IP) header with a
sixteen-byte boundary. In another embodimentofthe inven-
tion packets may be aligned in an MTU buffer in cells of
predefined size (e.g., two kilobytes), similar to entries in a
header buffer.

In state 1636, a compiction descriptor is written or con-
figured to provide necessary information to the host com-
puter (c.g., a software driver) for processing the packet. In
particular, the MTU buffer index (e.g. the free buffer array
clement that contains the buffer identifier for the MTU

buffer) and offset (c.g., the offset of the first byte of this
packet within the MTU buffer) are placed in the descriptor
in data index and data offset fields, respectively. The size of
the packet is also stored in the descriptor, illustratively
within a data size field. A header size field within the
descriptoris set to zero to indicate that the entire packet was

20

30

35

40

45

50

65

74

placed in the MTU buffer(¢.g., no separate header portion
was stored in a header buffer). Arelease data flag is set in the
descriptor if the MTU buffer is full. However, the MTU
buffer may not be tested to see if it is full until a later state
of this procedure. In such an embodimentof the invention,
the release data flag may be set (or cleared) at that time. A
release headerflag is cleared (e.g., set to zero), because there
is no separate header portion being conveyed to the host
computer.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In a present embodimentof the
invention the ownership field is not set until end state 1699
below. In one alternative embodiment of the invention,
DMA engine 120issues an interrupt or other signal to alert
the host computer that a descriptor is being released, or
communicates this event to the host computer through the
descriptor type field.

In state 1638, it is determined whether the MTU bufferis
full. In this embodimentof the invention, where each buffer
is cight kilobytes in size and entries in the MTU buffer are
allotted two kilobytes, a counter may be used to keep track
of entries placed into cach new header buffer. The buffer
may be considered full when a predetermined number of
entries (¢.g., four) are stored. In an alternative embodiment
of the invention DMA engine 120 determines how much
storage space within the buffer has yet to be used. If no space
remains, orif less than a predetermined amountof space is
still available, the buffer may be considered full.

If the MTU bufferis full, in state 1640 it is invalidated to
ensure that it is not used again.Ilustratively, this involves
setting the MTU buffer table’s validity indicator to invalid
and communicating this status to the host computer. In this
embodiment of the invention, a release data flag in the
descriptor is set. The illustrated procedure then ends with
end state 1699.

If the MTU bufferis not full, then in state 1642 the next
address field ofMTU buffertable 1008 is updated to indicate
the address or location (e.g., cell boundary) at whichto store
the next packet. The illustrated procedure then ends with end
state 1699.

In state 1650 (reached from state 1608), it has been
determined that the packet is a jumbo packet(e.g., thatit is
greater than 1522 bytesin size). In this embodiment of the
invention jumbo packets are stored in jumbo buffers and, if
splitting of jumbo packets is enabled(e.g., as determined in
state 1654 below), headers of jumbo packets are stored in a
header buffer. DMA engine 120 determines whether a valid
(¢.g., active) jumbo buffer exists. Mlustratively, this deter-
mination is made by examining validity indicator 1136 of
jumbobuffer table 1010, which manages the active jumbo
buffer. If the validity indicator is set, then there is a jumbo
buffer ready to receive this packet and the procedure con-
tinues at state 1654. As explained above, a jumbo buffer
table may not be used in an embodimentof the invention in
which a jumbo buffer is used only once (e.g., to store just
one, or just part of one, jumbo packet).

Otherwise, in state 1652 a new jumbo buffer is prepared
orinitialized for storing a non-re-assembleabie packetthatis
larger than 1522 bytes. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 andretrievingits reference
to an empty buffer (¢.g., a buffer identifier). If the cache is

NOACEx. 1015 Page 304



NOAC Ex. 1015 Page 305

 

US 6,483,804 B1
75

empty, new descriptors may be retrieved from the free
descriptor ring in host memory to replenish the cache.

When a new descriptoris obtained from the cache or from
the free descriptor ring, its buffer identifier (e.g., pointer,
address, index) is stored in a free buffer array (or other data
structure). The buffer’s initial address or other indication of
the first storage location in the buffer is placed in next
address field 1134 of jumbo buffer table 1010. Also, the
location of the buffer identifier within the free buffer array
is stored in jumbo buffer index 1132 and validity indicator
1136is set to a valid state.

Then,in state 1654 DMA engine 120 determines whether
splitting of jumbo buffers is enabled.If enabled, the header
of a jumbo packet is stored in a header buffer while the
packet’s data is stored in one or more jumbo buffers. If not
enabled, the entire packet will be stored in one or more
jumbo buffers. Illustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator(e.g., flag, bit, register) that may be
set by software operating on the host computer (.g., a
device driver). If splitting is enabled, the illustrated proce-
dure continues at state 1670. Otherwise, the procedure
continues with state 1656.

In state 1656, DMA engine 120 determines whether the
packet will fit into one jumbo buffer. For example, in an
embodimentof the invention using eight kilobyte pages, if
the packet is larger than cight kilobytes a second jumbo
buffer will be needed to store the additional contents.If the

packet is too large, the illustrated procedure continues at
state 1662.

In state 1658,the packet is copied ortransferred (e.g., via
a DMA operation) into the current jumbo buffer, at the
location specified in the next address field 1134 of jumbo
buffer table 1010. When the packetis transferred intact like
this, padding may be added to align a header portion of the
packet with a sixteen-byte boundary. One skilled in the art
will appreciate that the next address field may not need to be
updated to accountfor this new packet because the jumbo
buffer will be released. In other words, in one embodiment
of the invention a jumbo buffer may beused just once (e.g.,
to store one packet or a portion of one packet).

In state 1660, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbobuffer index(e.g., the position within the free buffer
array ofthe buffer identifier for the jumbo buffer) and the
offset of the packet within the jumbo buffer are placed in the
descriptor. Ilustratively, these values are stored in data
index and data offset fields, respectively. The size of the
packet (e.g., the packet length) may be stored in a data size
field.

A headersize field is cleared (c.g., a zero is stored) to
indicate that the header buffer was notused (e.g., the header
was notstored separately from the packet’s data). Because
there is no separate packet header, header index and header
offset fields are not used orare set to zero (e.g., the values
stored in their fields do not matter). A release header flag is
cleared anda release data flag is set to indicate that no more
data will be placed in this jumbo buffer (¢.g., because it is
being released).

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In an alternative embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

76

the descriptor may be released by issuing an interrupt or
other alert. In yet another embodiment, changing the
descriptor type field (e.g., to a non-zero value) may signal
the release of the descriptor. In one embodiment of the
invention the ownership indicator is not set until end state
1699 below. After state 1660, the illustrated procedure
resumes at state 1668.

Instate 1662,a first portion of the packet is stored in the
present(c.g., valid) jumbo buffer, at the location identified in
the buffer’s next address field 1134. Then, because the full
packet will notfit into this buffer, in state 1664 a new jumbo
buffer is prepared and the remainder of the packet is stored
in that buffer.

In state 1666, a completion descriptor is written or con-
figured. The contents are similar to those described in state
1660 butthis descriptor mustreflect that two jumbo buffers
were used to store the packet.

Thus, the jumbo buffer index (¢.g., the index, within the
free buffer array, of the buffer identifier that identifies the
header buffer) and the offset of the packet within the first
jumbobuffer are placed in the descriptor, as above. The size
of the packet(e.g., the packet length) is stored in a data size
field.

A headersize field is cleared (¢.g., a zero is stored) to
indicate that the header buffer was not used (e.g., the header
was notstored separately from the packet’s data). Because
there is no separate packet header, header index and header
offsetfields are not used (e.g., the values stored in their fields
do not matter).

A release header flag is cleared and a release data flag is
set to indicate that no more data will be placed in these
jumbo buffers (e.g., because they are being released).
Further,a split packetflag is set to reflect the use of a second
jumbo buffer, and the index (within the free buffer array) of
the buffer identifier for the second buffer is stored in a next
index field.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Finally, a predeter-
mined value (c.g., zero) is stored in the descriptor’s own-
ership indicator field, or some other mechanism is
employed, to indicate that DMA engine 120is releasing a
packet to the host computer and turning over ownership of
the descriptor. In one embodiment of the invention, the
descriptoris not released to the host computer until end state
1699 below.

In state 1668, the jumbo buffer entry or entries in jumbo
buffer table 1010 are invalidated (¢.g., validity indicator
1136is set to invalid) to ensure that they are not used again.
In the procedure described above a jumbo packet was stored
in, at most, two jumbobuffers. In an alternative embodiment
of the invention a jumbo buffer may be stored across any
numberofbuffers. The descriptor(s) configured to report the
transfer of such a packet is/are constructed accordingly, as
will be obvious to one skilled in the art.

After state 1668, the illustrated procedure ends with end
state 1699.

In state 1670 (reached from state 1654), it has been
determined that the present jumbo packet will be split to
store the packet headerin a header buffer and the packet data
in one or more jumbo buffers. Therefore, DMA engine 120
(c.g.-, DMA manager 1002) determines whether there is a
valid (¢.g., active) header buffer. [lustratively, this determi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which managesthe active header
buffer. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-
tinuesat state 1674.

NOACEx. 1015 Page 305



NOAC Ex. 1015 Page 306

 

US 6,483,804 B1
77

Otherwise, in state 1672 a new headerbuffer is prepared
orinitialized for storing small packets and headers of other
packets. Ilustratively, this initialization process involves
obtaining a free ring descriptor from a cache maintained by
free ring manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptoris obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication of thefirst storage location or cell in the bufferis
placed in next address field 1114 of header buffer table 1006.
Also, the index of the buffer identifier within the free buffer
array is stored in header buffer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1674 the packet’s headeris copied or transferred
(e.g., Via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodimentof the invention pad bytes are inserted before
the header in order to align the beginning of the packet’s
layer three protocol (e.g., IP) header with a sixteen-byte
boundary.In addition, the packet’s header maybe positioned
within a cell of predeterminedsize (e.g., 256 bytes) within
the buffer.

In state 1676, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload)will fit into one jumbo
buffer. Lf the packet is too large, the illustrated procedure
continues at state 1682.

In state 1678, the packet’s data is copied or transferred
(e.g., Via a DMA operation) into the current jumbo buffer, at
the location specified in the next address field 1134 ofjumbo
buffer table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo buffer will be
released. In other words, in one embodimentof the invention
a jumbo buffer may be used just once (e.g., to store one
packet or a portion of one packet).

In state 1680, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
header buffer index (e.g. the index of the header buffer’s
buffer identifier within the free buffer array) and offsetof the
packet’s header within the buffer are placed in the descriptor
in header index and header offset fields, respectively.
Llustratively, this offset may serve to identify the first byte
of the header, the first pad byte before the header or the
location of the cell in which the headeris stored. The jumbo
buffer index (e.g., the position or index within the free buffer
array of the buffer identifier that identifies the jumbo buffer)
and the offset of the first byte of the packet’s data within the
jumbobuffer are placed in data index and data offset fields,
respectively. Header size and data size fields are used to
store the size of the packet’s header (€.g., the offset of the
payload within the packet) and data (¢.g., payload size),
respectively.

Arelease header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodimentofthe invention,the release headerflag may
be set (or cleared) at that time. A release datafiagis also set,
because no more data will be placed in the jumbo buffer
(c.g., it is being released to the host computer).

The descriptortype field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable

15

20

25

30

45

50

60

65

78

packet into host memory. Also, a predetermined value(e.g.,
zero) is stored in the descriptor’s ownership indicatorfield
to indicate that DMA engine 120is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodimentof the invention the ownership indicator
is not changed until end state 1699 below.In an alternative
embodiment, the descriptor may be released by issuing an
interrupt or other alert. In yet another alternative
embodiment, changing the descriptor type value may signal
the release of the descriptor.

After state 1680, the illustrated procedure proceeds to
State 1688.

In state 1682,a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo buffer, at the location
identified in the buffer’s next address field 1134.

Because alli of the packet’s data will notfit into this buffer,
in state 1684 a new jumbo buffer is prepared and the
remainder of the packet is stored in that buffer.

In state 1686, a completion descriptor is written or con-
figured. The contents are similar to those described in states
1680 but this descriptor mustreflect that two jumbo buffers
were used to store the packet. The header buffer index (e.g.
the index of the free buffer array clement containing the
header buffer’s buffer identifier) and offset (e.g., the location
of this packet’s header within the header buffer) are placed
in the descriptor in header index and headeroffsetfields,
respectively. The jumbo buffer index (e.g., the index, within
the free buffer array, of the buffer identifier that references
the jumbo buffer) and the offset of the first byte of the
packet’s data within the jumbo buffer are placed in data
index and data offset fields, respectively. Header size and
data size fields are used to store the size of the packet’s
header (¢.g., as measured by the offset of the packet’s
payload from thestart of the packet) and data (e.g., payload
size), respectively.

A release headerflag is set in the descriptorif the header
bufferis full. However, the header buffer may not be tested
to sec if it is full until a later state of this procedure. In such
an embodimentof the invention, the release headerflag may
beset (or cleared) at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(.g., it is being released to the host computer). Further, a
split packetflag is set to indicate that a secondjumbo buffer
was used, and the location (within the free buffer array or
other data structure) of the second buffer’s buffer identifier
is stored in a next indexfield

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(c.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and tuming over ownership of the
descriptor. In one embodimentof the invention the owner-
ship indicator is not changed until end state 1699 below.

In state 1688, the jumbo buffer’s entry in jumbo buffer
table 1010 is invalidated (e.g., validity indicator 1136is set
to invalid) to ensure thatit is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbobuffers. In an alternative embodimentof the invention
a jumbo packet maybe stored across any mumberofbuffers.
The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1690, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used

NOACEx. 1015 Page 306



NOAC Ex. 1015 Page 307

 

US 6,483,804 B1
79

to keep track of entries placed into each new header buffer.
The buffer may be considered full when thirty-two entries
are stored.

If the buffer is full, in state 1692 the header buffer is
invalidated to ensure thatit is not used again. Iilustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
headerflag in the descriptoris set. The illustrated procedure
then ends with end state 1699.

If the header bufferis not full, then in state 1694 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

smal] packet. The illustrated procedure then ends with end
state 1699.

In end state 1699, a descriptor may be tumed overto the
host computer by changing a value in the descriptor’s
descriptor type field (e.g., from one to zero), as described
above. [llustratively, the host computer (or software operat-
ing on the host computer) detects the change and under-
stands that DMA engine 120 is returning ownership of the
descriptor to the host computer.
A Method of Transferring a Packet with Operation Code 3

FIGS. 17A-17Cillustrate one procedure in which DMA
engine 120 transfers a packet associated with operation code
3 to a host memory buffer. As reflected in TABLE 1,
operation code 3 may indicate that the packet is compatible
with a protocol that can be parsed by NIC 100 and thatit
carries a final portion ofdata for its flow. No new flowis set
up, but a flow should already exist and is to be tom down.
The packet’s data is to be re-assembled with data from
previous flow packets. Because the packet is to be
re-assembled, the packet’s header should be stored in a
header buffer and its data in the flow’s re-assembly buffer.
The flow’s active re-assembly buffer may be identified by
the flow’s entry in flow re-assembly buffer table 1004.

In state 1700, DMA engine 120 (¢.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header buffer. [Hustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which managesthe active headerbuffer.If the validity
indicator is set (e.g., equal to one), then it is assumed that
there is a header buffer ready to receive this packet and the
procedure continues at state 1704.

Otherwise, in state 1702 a new header buffer is prepared
or initialized for storing small packets and headers of
fre-assembled packets. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 and retrieving its buffer
identifier (¢.g., a reference to an available memory buffer).
If the cache is empty, new descriptors maybe retrieved from
the free descriptor ring in host memory to replenish the
cache.

Wlustratively, when a new descriptor is obtained from the
cache or from the free descriptor ring, the buffer identifier
(e.g., pointer, address, index) contained in the descriptoris
stored in a free buffer array. The buffer’s initial address or
someother indication of the first storage location or cell in
the buffer is placed in next address field 1114 of header
buffer table 1006. Further, the index of the buffer identifier
within the free buffer array is stored in header buffer index
1112 and validity indicator 1116 is set to a valid state.

In state 1704 the packet’s headeris copiedortransferred
into the header buffer at the address or location specified in
the next address field of header buffer table 1006. As
described above, in one embodimentof the invention pad
bytes maybe inserted before the headerin orderto align the

10

15

20

25

30

35

50

55

6:a

80

beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary.In addition, the header
may bepositioned within a cell of predetermined size (e.g.,
256 bytes) within the header buffer.

In the illustrated embodiment, operation code3 indicates
that an existing flow is to be tom down (e.g., the flow
re-assembly buffer is to be invalidated and released to the
host computer). Thus,in state 1706 it is determined whether
a flow re-assembly bufferis valid (c.g., active) for this flow
by examining the validity indicator in the flow’s entry in
flow re-assembly buffer table 1004. Hlustratively, if the
indicator is valid then there should be an active buffer

storing data from one or more packets in this flow. If there
is a valid flow re-assembly bufferforthis flow,the illustrated
procedure continues at state 1712. Otherwise,the procedure
proceeds to state 1708.

In state 1708, a new flow re-assembly buffer is prepared
to store this packet’s data. IHustratively, a free ring descrip-
tor is obtained from a cache maintainedby free ring manager
1012 and its reference to an empty bufferis retrieved. Lf the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

Whena new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or other indication
of its first storage location is placed in next address field
1104 of the flow’s entry in flow re-assembly buffer table
1004, The flow’s entry in the re-assembly buffer table may
be recognized by its flow owmber. The location within the
free buffer array of the buffer identifier is stored in
re-assembly buffer index 1102, and validity indicator 1106 is
set to a valid state.

In state 1710, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re-assembly buffer table 1004.

In state 1712, a completion descriptor is written or con-
figured to release the flow’s re-assembly buffer and to
provide information to the host computer for processing the
packet. In particular, the header buffer index (e.g., the index,
within the free buffer array, of the header buffer’s identifier)
and the offset of the packet’s header within the header buffer
are placed in the descriptor. ILlustratively, this offset serves
to identify the first byte of the header, the first pad byte
preceding the headerorthe cell in which the headeris stored.
The flow re-assembly buffer index (e.g., the index, within
the free buffer array, of the flow re-assembly buffer’s
identifier) and the offset of the packet’s data within that
buffer are also stored in the descriptor.

Thesize of the packet’sdata (e.g., the size of the packet’s
TCP payload) and header(e.g., the offset of the TCP payload
within the packet) portions are stored in data size and header
size fields, respectively. The descriptor type field is given a
value that indicates that a flow packet has been transferred
to host memory. A release header flag may be set if the
header buffer is full and a release data flag may be set to
indicate that no more data will be placed in this flow
re-assembly buffer (e.g., because it is being released). In
addition, a release flow flag is set to indicate that DMA
engine 120 is tearing down the packet’s flow. The header
buffer may not be tested to see if it is full until a later state
of this procedure. In such an embodiment, the release header
flag may be set (or cleared) at that time.

Then,in state 1714, the flow re-assembly buffer is invali-
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assembly buffer table 1004 appropriately.
After state 1714, the procedure continues at state 1730.

NOACEx. 1015 Page 307



NOAC Ex. 1015 Page 308

US 6,483,804 B1
81

In state 1716, DMA engine 120 determines whether the
packet’s TCP payload (e.g., the packet’s data portion) will fit
into the valid flow re-assembly buffer. If not, the illustrated
procedure continues at state 1722.

In state 1718, the packet data is copied ortransferred (e.g.,
via a DMA operation) into the flow’s re-assembly buffer, at
the location specified in the next address field 1104 of the
flow’s entry in flow re-assembly table 1004. One skilled in
the art will appreciate that the next address field may or may
not be updated to account for this new packet because the
re-assembly buffer is being released.

In state 1720, a completion descriptor is written or con-
figured to release the flow’s re-assembly buffer and to
provide information to the host computer for processing the
packet. The header buffer index (e.g., the location or index,
within the free buffer array, of the header buffer’s identifier)
andthe offset of the packet’s header within the header buffer
are placed in the descriptor. The flow re-assembly buffer
index (e.g., the location or index within the free buffer array
of the flow re-assembly buffer’s identifier) and the offset of
the packet’s data within that buffer are also stored in the
descriptor.

Thesize ofthe packet’s data (e.g., the size of the packet’s
TCPpayload)and header(¢.g., the offset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a valuc
that indicates that a flow packet has been transferred to host
memory. A release headerflag is set if the header buffer is
full and a release data flag is set to indicate that no more data
will be placed in this flow re-assembly buffer(e.g., because
it is being released). As explained above, the header buffer
maynot be tested to see if it is full until a later state of this
procedure, at which time the release header flag may beset.
Finally, a release flow flag is set to indicate that DMAengine
120 is tearing down the packet’s flow. After state 1720, the
illustrated procedure resumes at state 1728.

In state 1722,a first portion of the packet’s payload (¢.g.,
data) is stored in the flow’s present (c.g., valid) re-assembly
buffer, at the location identified in the buffer’s next address
field 1104.

Because the full payload will not fit into this buffer, in
state 1724 a new flow re-assembly buffer is prepared and the
remainder of the payload is stored in that buffer. In one
embodiment of the invention information concerning the
first buffer is stored in a completion descriptor. This infor-
mation may includethe position within the free buffer array
ofthe first buffer’s buffer identifier and the offset of the first

portion of data within the buffer. The flow’s entry in flow
re-assembly buffer table 1004 may then be updated for the
second buffer(e.g., store a first address in next address field
1104 and the location of buffer’s identifier in the free buffer

array in re-assembly buffer index 1102).
In state 1726, a completion descriptor is written or con-

figured. The contents are similar to those described for states
1712 and 1720 but this descriptor must reflect that two
re-assembly buffers were used.

Thus, the header buffer index (e.g., the position within the
free buffer array of the buffer identifier corresponding to the
header buffer) and the offset of the packet’s header within
the header buffer are placed in the descriptor, as above. The
first flow re-assembly buffer index (e.g., the position, within
the free buffer array, of the buffer identifier corresponding to
the first flow re-assembly buffer usedto store this packet’s
payload) and the offset of the packet’sfirst portion of data
within that buffer are also stored in the descriptor.

Thesize of the packet’s data (c.g., the size of the packet’s
TCP payload) and header(e.g., the offset of the TCP payload

20

25

35

45

50

55

6 mn

82

within the packet) are stored in data size and headersize
fields, respectively. The descriptor type field is given a value
that indicates that a flow packet has been transferred to host
memory. A release headerflag is set if the header bufferis
full and a release data flag is set to indicate that no more data
will be placed in this flow re-assembly buffer. A release flow
flag is set to indicate that DMA engine 120 is tearing down
the packet’s flow.

Because two re-assembly buffers were used,a split packet
flag is set and the index, within the free buffer array, of the
re-assembly buffer’s buffer identifier is stored in a next index
field. Additionally, because the packet contains the final
portion of data for the flow, a release next data buffer flag
mayalso besetto indicate that the second flow re-assembly
buffer is being released.

In state 1728, the flow’s entry in flow re-assembly buffer
table 1004 is invalidated to ensure thatit is not used again.

In state 1730,it is determined whether the header buffer
is full. In this embodimentof the invention, where each
buffer is cight kilobytes in size and entries in the header
bufferare no larger than 256 bytes, a counteris used to keep
track of entries placed into each new header buffer. The
buffer is considered full when thirty-two entries are stored.

If the buffer is full, in state 1732 the header buffer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptoris set.

If the header bufferis not full, then in state 1734 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 3 then ends with end state 1799. In this end state, the
descriptor used for this packet is tumed over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). Alternatively, some other mechanism may
be used, such as issuing an interrupt or changing the
descriptor’ descriptortype field. IHustratively, the descriptor
type field would be changedto a value indicating that DMA
engine 120 transferred a flow packet into host memory.

In one alternative embodiment of the invention an opti-
mization may be performed when processing a packet with
operation code 3. This optimization takes advantage ofthe
knowledge that the packet contains the last portion of data
for its flow. In particular, instead of loading a descriptor into
flow re-assembly buffer table 1004 the descriptor may be
used where it is—in a descriptor cache maintained by free
ring manager 1012.

For example, instead of retrieving a buffer identifier from
a descriptor and storing it in an array in state 1708 above,
only to store one packet’s data in the identified buffer before
releasing it, it may be more efficient to use the descriptor
without removing it from the cache. In this embodiment,
when a completion descriptor is written the values stored in
its data index and data offset fields are retrieved from a

descriptor in the descriptor cache. Similarly, when the first
portion of a code 3 packet’s data fits into the flow’s active
buffer but a new one is needed just for the remaining data,
a descriptor in the descriptor cache may again be used
without first loading it into a free buffer array and the flow
re-assembly buffer table. In this situation, the completion
descriptor’s next index field is retrieved from the descriptor
in the descriptor cache.
A Methodof Transferring a Packet with Operation Code 4

FIGS. 18A-18D depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-

NOACEx. 1015 Page 308



NOAC Ex. 1015 Page 309

US 6,483,804 B1
$3

tion code 4 to a host memory buffer. As reflected in TABLE
1, operation code 4 in this embodiment indicates that the
packet is compatible with the protocols that may be parsed
by NIC 100 and continues a flow thatis already established.
No new flow is set up, the existing flow is not to be tom
down, and the packet’s data is to be re-assembled with data
from other flow packets. Because the packet is to be
re-assembled, the packet’s header should be stored in a
header buffer and its data in the flow’s re-assembly buffer.

In state 1800, DMA engine 120 determines whether there
is a valid (e.g., active) header buffer. Ilustratively, this
determination is made by examining validity indicator 1116
of header buffer table 1006, which manages the active
header buffer. If the validity indicator is set, then there
should be a header buffer ready to receive this packet and the
procedure continues at state 1804.

Otherwise, in state 1802 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Ilustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptorring in
host memory to replenish the cache.

Whena new descriptoris obtained from the cache or from
the free descriptor ring, the buffer identifier (c.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage location in the buffer is place
in next address field 1114 of header buffer table 1006. Also,
the position or index ofthe buffer identifier within the free
buffer array is stored in headerbuffer index 1112 and validity
indicator 1116is set to a valid state.

In state 1804 the packet’s header is copied or transferred
into the header buffer at the address or location specified in
the next address field of header buffer table 1006. As

described above, in one embodimentof the invention pad
bytes are inserted before the header in order to align the
beginning of the packet’s layer three protocol (¢.g., IP)
header with a sixteen-byte boundary. In addition, the pack-
et’s header may be positioned within a cell of predetermined
size (e.g., 256 bytes) within the buffer.

In the illustrated embodiment, operation code 4 indicates
that an existing flow is to be continued. Thus, in state 1806
it is determined whether a flow re-assembly buffer is valid
(c.g., active) for this flow by examiningthe validity indicator
in the flow’s entry in flow re-assembly buffer table 1004.
Illustratively, if the indicator is valid then there is an active
buffer storing data from one or more packets in this flow. If
there is a valid flow re-assembly buffer for this flow, the
illustrated procedure continues at state 1808. Otherwise, the
procedure proceeds to state 1810.

In state 1808, it is determined whether the packet’s data
(e.g., its TCP payload) portion is too large for the current
flow re-assembly buffer. If the data portion is too large, two
flow re-assembly buffers will be used and the illustrated
procedure proceeds to state 1830. Otherwise, the procedure
continuesat state 1820.

In state 1810, because it was found(in state 1806) that
there was no valid flow re-assembly buffer for this packet,
a new flow re-assembly buffer is prepared. I!ustratively, a
free ring descriptor is obtained from a cache maintained by
free ring manager 1012 andits reference to an empty buffer
is retrieved. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptoris obtained from the cacheor from
the free descriptor ring, the buffer identifier (c.g., pointer,

15

20

25

30

40

45

50

55

65

84

address, index) containedin the descriptoris stored in a free
buffer array. The buffer’s initial address or other indicator of
its first storage location is placed in next address field 1104
of the flow’s entry in flow re-assembly buffer table 1004.
The flow’s entry in the table may be recognizedbyits flow
number. The location of the buffer identifier in the free buffer

array is stored in re-assembly buffer index 1102, and validity
indicator 1106 is set to a valid state.

In state 1812, the packet’s data is copied or transferred
(c.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re-assembly buffer table 1004.

In state 1814, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header buffer index
(c.g., the index within the free buffer array of the buffer
identifier that identifies the header buffer) and the offset of
the packet’s header within the header buffer are placed in the
descriptor. Illustratively, this offset may serve to identify the
first byte of the header, the first pad byte preceding the
headeror the header’s cell within the header buffer. The flow

re-assembly buffer index (e.g., the index within the free
buffer array of the buffer identifier that identifies the flow
Te-assembly buffer) and the offset of the packet’s data within
that buffer are also stored in the descriptor.

Thesize of the packet’s data (e.g., the size of the packet’s
TCPpayload) and header(c.g., the offset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release headerflag is set if the header bufferis
fill but a release data flag is not set, because more data will
be placed in this flow re-assembly buffer. The header buffer
maynotbe tested to see if it is full until a later state of this
procedure. In such an embodiment, the release header flag
may be set (or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared (€.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
processing this one. By collectively processing multiple
packets from a single flow, the packets can be processed
more efficiently and less processor time is required. If,
however, no other packets in the same flow are identified,the
release flow flag maybe set (¢.g., a one is stored) to indicate
that the host computer should process the flow packets it has
received so far, without waiting for more.

In state 1816, the flow’s entry in flow re-assembly buffer
table 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re-assembly buffer
at which the next flow packet’s data should be stored. After
state 1816,the illustrated procedure continuesat state 1838.

In state 1820 (reached from state 1808), it is known that
the packet’s data, or TCP payload, will fit within the flow’s
current re-assembly buffer. Thus,the packet data is copied or
transferred into the buffer at the location identified in next

address field 1104 of the flow’s entry in flow re-assembly
buffer table 1004.

In state 1822, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header buffer index
(¢.g., the index within the free buffer array of the buffer
identifier that identifies the header buffer) and the offset of
the packet’s header within the header buffer are placed in the

NOACEx. 1015 Page 309



NOAC Ex. 1015 Page 310

US 6,483,804 B1
85

descriptor. The flow re-assembly buffer index (e.g., the
index within the free buffer array of the bufferidentifier that
identifies the flow re-assembly buffer) and the offset of the
packet’s data within that buffer are also stored in the
descriptor.

The size of the packet’s data (c.g., the size of the packet’s
TCPpayload) and header(e.g., the offset of the TCP payload
within the packet) are stored in data size and headersize
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to hast
memory. A release headerflag is set if the header buffer is
full but a release data flag is set only if the flow re-assembly
buffer is now full. The header and flow re-assembly buffers
maynotbe tested to see if they are full until a later state of
this procedure. In such an embodiment, the flags may be set
(or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determinesthat another packetin the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processing this one. By collec-
tively processing multiple packets from a single flow, the
packets can be processed more efficiently and less processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so fas, without waiting for more.

In state 1824, the flow re-assembly buffer is examined to
determineif it is full. In the presently described embodiment
of the invention this test is conducted by first determining
how much data (¢.g., how many bytes) has becn stored in the
buffer. Iilustratively, the flow’s next address field and the
amountof data stored from this packet are summed. Then,
the initial buffer address (c.g., before any data was stored in
it) is subtracted from this sum. This value, representing how
muchdata is now stored in the buffer, is then compared to
the size of the buffer (c.g., eight kilobytes).

If the amountof data currently stored in the buffer equals
the size of the buffer, thenit is full. In the presently described
embodimentof the invention it is desirable to completely fill
flow re-assembly buffers. Thus, a flow re-assembly buffer is
not considered full until its storage space is completely
populated with flow data. This scheme enables the efficient
processing of network packets,

If the flow re-assembly buffer is full, in state 1826 the
buffer is invalidated to ensure it is not used again.
Ilustratively, this involves setting the header buffer table’s
validity indicator to invalid and communicatingthis status to
the host computer. In this embodiment of the invention, a
release data flag in the descriptoris set. After state 1826, the
procedure continues at state 1838.

If the flow re-assembly bufferis not full, then in state 1828
next address field 1104 in the flow’s entry in flow
re-assembly buffer table 1004 is updated to indicate the
address at which to store the next portion of flow data. After
state 1828, the procedure continues at state 1838.

In state 1830 (reached from state 1808),it is known that
the packet’s data will not fit into the flow’s current
re-assembly buffer. Therefore, some ofthe data is stored in
the current buffer and the remainder in a new buffer. In

particular, in state 1830 a first portion of data (e.g., an
amount sufficient to fill the buffer) is copied or transferred
into the currentflow re-assembly buffer.

In state 1832, a new descriptoris loaded from a descriptor
cache maintained by free ring manager 1012.Its identifier of

15

35

45

55

65

86

a new buffer is retrieved and the remaining data from the
packet is stored in the new buffer. In one embodimentof the
invention,after the first portion of data is stored information
from the flow’s entry in flow re-assembly table 1004 is
stored in a completion descriptor. Illustratively, this infor-
mation includes re-assembly buffer index 1102 andthe offset
of the first portion of data within the full buffer. Then the
new descriptor can be loaded—its index is stored in
te-assembly buffer index 1102 andan initial address is stored
in next address 1104.

In state 1834, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header buffer index
(c.g., the location of the header buffer’s buffer identifier
within the free buffer array) and the offset of the packet’s
header within the header buffer are placed in the descriptor.
The flow re-assembly buffer index (e.g., the location of the
flow re-assembly buffer’s buffer identifier within the free
buffer array) and the offset of the packet’s data within that
buffer are also stored in the descriptor.

Thesize of the packet’s data (e.g., the size of the packet’s
TCP payload) and header(e.g., the offset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release headerflag is set if the header bufferis
full and a release data flag is set because the first flow
re-assembly buffer is being released. The header buffer may
not be tested to see if it is full until a later state of this

procedure. In such an embodiment, the release header flag
may be set (or cleared) at that time.

Because two re-assembly buffers were used, a split packet
flag in the descriptor is set and the index, within the free
descriptor ring, of the descriptor that references the second
re-assembly buffer is stored in a next index field.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host commuter, the release flow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processing this one. By collec-
tively processing multiple packets from a single flow, the
packets can be processed more efficiently and less processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 1836, next address field 1104 in the flow’s entry
in flow re-assembly buffer table 1004 is updated to indicate
the address in the new buffer at which to store the next

portion of flow data.
In state 1838, it is determined whether the header buffer

is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track ofentries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1840 the header buffer is
invalidated to ensure that it is not used again. Hlustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptoris set.

If the header bufferis not full, then in state 1842 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet.

NOACEx. 1015 Page 310



NOAC Ex. 1015 Page 311

US6,483,804 B1
87

The processing associated with a packet having operation
code 4 then ends with end state 1899. In this endstate, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). In one alternative embodiment of the
invention, DMA engine 120issues an interruptor uses other
means to alert the host computer that a descriptor is being
released.

In one altemmative embodiment of the invention the opti-
mization described above for packets associated with opera-
tion code 3 may be performed when processing a packet
with operation code 4. This optimization is useful, for
example, when a code 4 packet’s datais too largeto fit in the
current flow re-assembly buffer. Instead of loading a new
descriptor for the second portion of data, the descriptor may
be used where it is—in a descriptor cache maintained byfree
ring manager 1012. This allows DMA engine 120 to finish
transferring the packet and tum over the completion descrip-
tor before adjusting flow re-assembly buffer table 1004 to
reflect a new buffer.

In particular, instead of loading information from a new
descriptor in state 1832 above, it may be more efficient to
use the descriptor without removingit from the cache.In this
embodiment a new buffer for storing a remainder of the
packet’s data is accessed by retrieving its buffer identifier
from a descriptor in the free ring mamnager’s descriptor
cache. The data is stored in the buffer and, after the packet’s
completion descriptor is configured and released, the nec-
essary informationis loaded into the flow re-assembly table
as described above. Illustratively, re-assembly buffer index
1102 stores the buffer identifier’s index within the free buffer

array, and an initial memory address of the buffer, taking into
account the newly stored data, is placed in next address
1104.

A Method of Transferring a Packet with Operation Code 5
FIGS. 19A—19E depict a procedure in which DMAengine

120 transfers a packet associated with operation code 5 to a
host memory buffer. As reflected in TABLE 1, operation
code 5 in one embodimentofthe invention may indicate that
a packet is incompatible with the protocols that may be
parsed by NIC 100. It may also indicate that a packet
contains all of the data for a new flow (e.g., no more datawill
be received for the packet’s flow). Therefore, for operation
code 5, no new flow is set up and there should not be any
flow to tear down. The packet’s data, if there is any, is not
to be re-assembled.

In state 1900, it is determined whether the present packet
is a small packet(¢.g., less than or equal to 256 bytes in size)
suitable for storage in a header buffer. If so, the illustrated
procedure proceeds to state 1920.

Otherwise, in state 1902 it is determined whether the
present packet is a jumbo packet (e.g., greater than 1522
bytesin size), such thatit should be stored in a jumbobuffer.
If so, the illustrated procedure proceeds to state 1940.If not,
the procedure continues at state 1904.

In state 1904, it has been determined that the packetis not
a smal] packet or a jumbo packet. The packet may,therefore,
be stored in a non-re-assembly buffer used to store packets
that are no greater in size than MTU (Maximum Transfer
Unit) in size, which is 1522 bytes in a present embodiment.
This buffer may be called an MTU buffer. Therefore, DMA
engine 120 determines whether a valid (e.g., active) MTU
buffer exists. Hlustratively, this determination is made by
examiningvalidity indicator 1126 of MTU buffer table 1008,
which manages the active MTU buffer. If the validity
indicatoris set, then there should be a MTU buffer ready to
receive this packet and the procedure continues at state
1908.

20

25

30

35

40

45

55

88

Otherwise, in state 1906 a new MTU bufferis prepared or
initialized for storing non-re-assembleable packets up to
1522 bytes in size. [llustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
buffer identifier (¢.g., a reference to an empty host memory
buffer). If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

Whenanew descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (¢.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage location in the buffer is placed
in next address field 1124 of MTU buffer table 1008. The

buffer identifier’s index or position within the free buffer
array is stored in MTU buffer index 1122, and validity
indicator 1126 is set to a valid state.

In state 1908 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU buffer at the address or
location specified in the next address field of MTU buffer
table 1008. As described above, in one embodimentof the
invention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
protocol (¢.g., IP) header with a sixteen-byte boundary. In
addition, the packet may be positioned within a cell of
predetermined size (¢.g., two kilobytes) within the MTU
buffer.

In state 1910, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter for processing the packet. In particular, the MTU
buffer index (e.g. the location within the free buffer array of
the buffer identifier for the MTU buffer) and offset (e.g., the
offset to the packet or the packet’s cell within the buffer) are
placed in the descriptor in data index and data offsetfields,
respectively. The size of the packet is stored in a data size
field. A header size field within the descriptor may be set to
zero to indicate that the entire packet was placed in the MTU
buffer (c.g., 00 separate header portion was stored in a
header buffer). A release data flag is set in the descriptorif
the MTU bufferis full. The MTU buffer may not, however,
be tested to see if it is full until a later state of thisprocedure.
In such an embodiment of the invention, the release data flag
may be set (or cleared) at that time. A release header flag
maybe cleared (e.g., not set), because there is no separate
header portion being conveyed to the host computer.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and tuming over
ownership of the descriptor. In one embodiment of the
invention, the ownership indicator is not set until end state
1999 below. In an alternative embodimentof the invention,
the descriptor may be released by issuing an interrupt or
otheralert. In yet another alternative embodiment, changing
the descriptor’s descriptor type field may signal the descrip-
tor’s release.

In state 1912, DMA engine 120 determines whether the
MTU buffer is full. In this embodiment of the invention,
where cachbufferis eight kilobytes in size, each entry in the
MTU buffer may be allotted two kilobytes of space and a
counter may be used to keep track of entries placed into an
MTU buffer. The buffer may be considered full when a
predetermined numberofentries (¢.g., four) are stored. In an
alternative embodiment of the invention entries in an MTU

NOACEx. 1015 Page 311



NOAC Ex. 1015 Page 312

US 6,483,804 B1
89

buffer may or may not be allocated a certain amount of
Space, in which case DMA engine 120 maycalculate how
muchstorage space within the buffer has yet to be used. If
no space remains,orif less than a predetermined amount of
space is still available, the buffer may be considered full.

If the MTU buffer is full, in state 1914 the buffer is
invalidated to ensure that it is not used again.Illustratively,
this involves setting the MTU buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer.In this embodimentof the invention a release data
flag in the descriptoris set. The illustrated procedure then
ends with end state 1999,

If the MTU bufferis not full, then in state 1916 the next
address field of MTU buffertable 1008 is updatedto indicate
the address at which to store the next packet. The illustrated
procedure then ends with end state 1999.

In state 1920 (reached from state 1900), it has been
determined that the present packet is a small packet suitable
for storage in a header buffer. Therefore, DMA engine 120
(c.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. Illustratively, this detecmi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer, If the validity indicatoris set, then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1924.

Otherwise, in state 1922 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Ilustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

‘When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or some other
indicator of the first storage location or cell in the buffer is
placed in next address field 1114 of header buffer table 1006.
Further, the buffer identifier’s position within the free buffer
artay is stored in header buffer index 1112 and validity
indicator 1116is set to a valid state.

In state 1924 the packet is copied or transferred (e.g., via
a DMA operation) into the header buffer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodiment of the
invention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
protocol (e.g., IP) header with a sixteen-byte boundary. In
addition, the packet may be positioned within a cell of
predetermined size (e.g., 256 bytes) within the buffer.

In state 1926, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (¢.g., a software driver) for processing the packet. In
particular, the header buffer index(e.g. the index ofthe free
buffer array element that contains the header buffer’s
identifier) and offset are placed in the descriptor, in header
index and header offset fields, respectively. Ilustratively,
this offset serves to identify the first byte of the packet, the
first pad byte preceding the packet or the location of the
packet’s cell within the buffer. The size of the packetis also
stored in the descriptor, illustratively within a header size
field. A data size field within the descriptor may be set to
zero to indicate that the entire packet was placed in the
header buffer (e.g., no separate data portion was stored in
another buffer). A release header flag may be set in the

10

1

20

25

30

35

40

45

60

6iy

90

descriptor if the header buffer is full. However, the header
buffer may notbe tested to see if it is full until a later state
of this procedure. In such an embodimentof the invention,
the release header flag may beset (or cleared)at that time.
A release data flag may be cleared (e.g., not set), because
there is no separate data portion being conveyed to the host
computer.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred 2 non-re-assembleable
packet into host memory. Also, a predetermined valuc (e.g.,
zero) is stored in the descriptor’s ownership indicatorfield
to indicate that DMA engine 120is releasing 2 packet to the
host computer and turning over ownership of the descriptor.
In one embodimentof the invention the ownership indicator
is not set until end state 1999 below.

In state 1928it is determined whether the header bufferis

full. In this embodimentof the invention, where each buffer
is eight kilobytes in size and entries in the header bufferare
no larger than 256 bytes, a counteris used to keep track of
entries placed into each new header buffer. The buffer is
considered full when thirty-two entries are stored.

If the buffer is full, in state 1930 the header buffer is
invalidated to ensure that it is not used again. Ilustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
headerflag in the descriptor is set. The illustrated procedure
then ends with end state 1999.

If the header bufferis not fill, then in state 1932 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet. The illustrated procedure then ends with end
state 1999.

In state 1940 (reached from state 1902), it has been
determined that the packet is a jumbo packet(e.g., thatit is
greater than 1522 bytesin size). In this embodimentof the
invention a jumbo packet’s data portion is stored in a jumbo
buffer. Its header is also stored in the jumbo buffer unless
splitting of jumbo packets is enabled, in which case its
header is stored in a header buffer. DMA engine 120 thus
determines whethera valid (¢.g., active) jumbo buffer exists.
Illustratively, this determination is made by examining
validity indicator 1136 of jumbo buffer table 1010, which
manages an active jumbo buffer. If the validity indicatoris
set, then there is a jumbo buffer ready to receive this packet
and the procedure continues at state 1944.

Otherwise, in state 1942 a new jumbo bufferis prepared
or initialized for storing a non-re-assembleable packetthatis
larger than 1522 bytes.Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

Whena new descriptor is obtained from the cacheor from
the free descriptor ring, the buffer identifier (e.g., pointer,
address,index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or other indication
of the first storage location within the buffer is placed in next
address field 1134 of jumbo buffer table 1010. The position
ofthe buffer identifier within the free buffer array is stored
in jumbobuffer index 1132, and validity indicator 1136is set
to a valid state.

Then,in state 1944, DMA engine 120 determines whether
splitting of jumbo buffers is enabled. If enabled, the header
of a jumbo packet is stored in a header buffer while the
packet’s data is stored in one or more jumbo buffers. If not

NOACEx. 1015 Page 312



NOAC Ex. 1015 Page 313

US6,483,804 B1
91

enabled, the entire packet will be stored in one or more
jumbobuffers. Mlustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator(e.g., flag, bit, register) that is set by
software operating on the host computer (c.g., a device
driver). If splitting is enabled, the illustrated procedure
continues at state 1960. Otherwise, the procedure proceeds
to state 1946.

In state 1946, DMA engine 120 determines whether the
packet will fit into one jumbo buffer. For example, in an
embodimentof the invention using eight kilobyte pages, if
the packet is larger than eight kilobytes a second jumbo
buffer will be needed to store the additional contents.If the

packet is too large, the illustrated procedure continues at
state 1952.

Otherwise, in state 1948 the packet is copied or trans-
ferred (¢.g., via a DMA operation) into the current jumbo
buffer, at the location specified in the next address field 1134
of jumbo buffer table 1010. When the packetis transferred
intact like this, padding may be added to align a header
portion of the packet with a sixteen-byte boundary. One
skilled in the art will appreciate that the next address field
may not need to be updated to account for this new packet
because the jumbo buffer will be released. In other words, in
one embodimentof the invention a jumbo bufferis only used
once (¢.g., to store one packetor a portion ofone packet). In
an altemative embodimentof the invention a jumbo buffer
may store portions of two or more packets, in which case
next address field 1134 may need to be updated.

In state 1950, a completion descriptoris written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbo buffer index (¢.g., the index, within the free buffer
array, of the buffer identifier that corresponds to the jumbo
buffer) and the offset of the first byte of the packet within the
jumbobuffer are placed in the descriptor, in data index and
data size fields, respectively. The size of the packet(e-g., the
packet length) is stored in a data size field.

A header size field may be cleared (e.g., a zero is stored)
to indicate that the header buffer was not used (c.g., the
header was not stored separately from the packet’s data).
Because the packet was stored intact, header index and
headeroffset fields may or may not be used (c.g., the values
stored in their fields do not matter). A release headerflag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer ¢.g., because it is
being released).

The descriptortype field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., Zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and tumming over ownership of the
descriptor. In one embodimentof the invention, the owner-
ship indicator is not changed until end state 1999 below.
After state 1950, the illustrated procedure resumes at state
1958. In one alternative embodimentof the invention, DMA
engine 120 issues an interrupt or uses some other means,
possibly not until end state 1999,to alert the host computer
that a descriptor is being released.

In state 1952, a first portion of the packetis stored in the
present (¢.g., valid) jumbo buffer,at the location identified in
the buffer’s next address field 1134. Because the whole

packetwill notfit into this buffer, in state 1954 a new jumbo
buffer is prepared and the remainder of the packetis stored
in that buffer.

In state 1956, a completion descriptor is written or con-
figured. The contents are similar to those described in state

20

25

30

35

40

45

50

55

60

65

92

1950 butthis descriptor must refiect that two jumbo buffers
were used to store the packet. Thus, the jumbo buffer index
(e.g., the index, within the free buffer array, of the array
elementcontaining the header buffer’s buffer identifier) and
the offset of the first byte of the packet within the first jumbo
buffer are placed in the descriptor, as above. The size of the
packet(c.g., the packet length) is stored in a data size field.

A headersize field may be cleared (¢.g., a zero is stored)
to indicate that the header buffer was not used (e.g., the
header was not stored separately from the packet’s data).
Because there is no separate packet header, header index and
headeroffset fields may or may notbe used (e.g., the values
stored in their fields do not matter).

A release header flag is cleared and a release dataflag is
set to indicate that no more data will be placed in these
jumbo buffers (e.g., because they are being released).
Further, a split packet flag is set to indicate that a second
jumbobuffer was used, and the index (within the free buffer
array) of the buffer identifier for the second buffer is stored
in a next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. And, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicatorfield
to indicate that DMA engine 120is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not changed until end state 1999 below.

In state 1958, the jumbo buffer’s entry in jumbo buffer
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the
invention, a jumbo buffer may be stored across any number
of buffers. The descriptor that is configured to report the
transfer of such a packet is constricted accordingly, as will
be obvious to one skilled in the art.

After state 1958, the illustrated procedure ends at end
State 1999.

In state 1960 (reached from state 1944), it has been
determined that the present jumbo packet will be split to
store the packet beaderin a header buffer and the packet data
in one or more jumbo buffers. Therefore, DMA engine 120
(c.g., DMA manager 1002)first determines whetherthere is
a valid (¢.g., active) header buffer. Ilustratively, this deter-
mination is made by examining validity indicator 1116 of
header buffer table 1006, which managesthe active header
buffer. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-
tines at state 1964.

Otherwise, in state 1962 a new header buffer is prepared
orinitialized for storing small packets and headers of other
packets. Illustratively, this initialization process involves
obtaininga free ring descriptor from a cache maintained by
free ring manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

Whena new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage locationor cell in the bufferis
placed in next address field 1114 of headerbuffertable 1006.
The index or position of the buffer identifier within the free
buffer array is stored in header buffer index 1112, and
validity indicator 1116 is set to a valid state.

NOACEx. 1015 Page 313



NOAC Ex. 1015 Page 314

US 6,483,804 B1
93

In state 1964 the packet’s header is copied or transferred
(c.g., via a DMA operation) into the header buffer at the
address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes may be inserted
before the header in order to align the beginning of the
packet’s layer three protocol (e.g., IP) header with a sixteen-
byte boundary. In addition, the header may be positioned
within a cell of predetermined size (¢.g., 256 bytes) in the
buffer.

In state 1966, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload)will fit into one jumbo
buffer. If the packet is too large to fit into one (¢.g., the
current jumbobuffer), the illustrated procedure continues at
state 1972.

In state 1968, the packet’s data is copied or transferred
(e.g., Via a DMA operation) into the current jumbo buffer, at
the location specified in the next address field 1134 of jumbo
buffer table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo buffer will be
released. In other words,in one embodimentof the invention
a jumbo buffer is only used once (e.g., to store one packet
or a portion of one packet).

In state 1970, a completion descriptor is wntten or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
headerbuffer index (e.g. the free buffer array position of the
buffer identifier corresponding to the header buffer) and
offset of the packet’s headerare placed in the descriptor in
header index and header offset fields, respectively.
Uhstratively, this offset servesto identify the first byte of the
header, the first pad byte preceding the header orthe cell in
which the headeris stored. The jumbo buffer index (e.g., the
index within the free buffer array of the buffer identifier that
references the jumbo buffer) andtheoffset of the first byte
of the packet’s data within the jumbo buffer are placed in
data index and data offset fields, respectively. Header size
and data size fields are used to store the size of the packet’s
header(¢.g,, the offset of the payload within the packet) and
data (¢.g., payloadsize), respectively.

A release header flag may be set in the descriptor if the
headerbuffer is full. However, the header buffer may not be
tested to sceif it is full until a later state of this procedure.
In such an embodimentofthe invention, the release header
flag may be set (or cleared) at that time. A release data flag
is also set, because no more data will be placed in the jumbo
buffer (e.g., it is being released to the host computer).

The descriptortype field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetermined value(¢.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodimentof the invention the ownership indicator
is notset until end state 1999 below.

After state 1970, the illustrated procedure proceeds to
stale 1978.

In state 1972, a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo buffer, at the location
identified in the buffer’s next address field 1134. Because all

ofthe packet’s data will notfit into this buffer,in state 1974
a new jumbo buffer is prepared and the remainder of the
packetis stored in that buffer.

In state 1976, a completion descriptor is written or con-
figured. The contents are similar to those describedin states
1970 but this descriptor must reflect that two jumbo buffers

10

15

20

25

30

35

40

45

55

60

65

94

were used to store the packet. The header buffer index (e.g.
the free buffer array elementthat contains the header buffer’s
identifier) and offset of the header are placed in the descrip-
tor in header index and headeroffsetfields, respectively. The
jumbo buffer index (e.g., the free buffer array element
containing the jumbobuffer’s buffer identifier) and the offset
of thefirst byte of the packet’s data within the jumbo buffer
are placed in data index and data offset fields, respectively.
Headersize and data size fields are used to store the size of

the packet’s header(e.g., the offset of the payload within the
packet) and data (e.g., payload size), respectively.

A release headerflag is set in the descriptorif the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment ofthe invention, the release header flag may
be set (or cleared) at that time. A release data flag is also set,
because no more data will be placed in the jumbo buffer
(c.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbobuffer
was used, and the position or index within the free buffer
array of the second buffer’s buffer identifier is stored in a
next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(c.g., Zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and tuming over ownership of the
descriptor. In one embodiment of the invention the owner-
ship indicator is not set until end state 1999 below. In an
alternative embodiment of the invention DMA engine 120
issues an interrupt or uses someother signal to alert the host
computer that a descriptor is being released.

In state 1978, the jumbo buffer’s entry in jumbo buffer
table 1010is invalidated (c.g., validity indicator 1136is set
to invalid) to ensure thatit is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodimentofthe invention
a jumbo buffer maybe stored across any oumberof buffers.
The descriptor that is configured to report the transfer of
such a packetis constructed accordingly, as will be obvious
to one skilled in the art.

In state 1980, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 1982 the header buffer is
invalidated to ensure that it is not used again. [lustratively,
this involvessetting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
headerflag in the descriptoris set. The illustrated procedure
then ends with endstate 1999.

If the header buffer is not full, then in state 1984 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet. The illustrated procedure then ends with end
state 1999.

In end state 1999, a descriptor may be tumed overto the
host computerbystoring a particular value (c.g., zero) in the
descriptor’s ownership indicator field as described above.
Illustratively, the host computer (or software operating on
the host computer) detects the change and understands that
DMAengine 120 is retuming ownership ofthe descriptor to
the host computer.

NOACEx. 1015 Page 314



NOAC Ex. 1015 Page 315

Ime
US 6,483,804 B1

95

A Method of Transferring a Packet with Operation Code 6
or Operation Code 7

FIGS. 20A-20B depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-
tion code 6 or 7 to a host memory buffer. As reflected in
TABLE 1, operation codes 6 and 7 may indicate that a
packet is compatible with the protocols pre-selected for NIC
100 and is the first packet of a new flow. The difference
between these operation codes in this embodiment of the
invention is that operation code 7 is used when an existing
flow is to be replaced (e.g., in flow database 110 and/or flow
re-assembly buffer table 1004) by the new flow. With
operation code6, in contrast, no flow needs to be tom down.
For both codes, however, a new flow is set up and the
associated packet’s data may be re-assembled with data
from other packets in the newly established flow. Because
the packet data is to be re-assembled, the packet’s header
should be stored in a headerbuffer andits data in a new flow

re-assembly buffer.
As described in a previous section, the flow that is torn

down to make room for a new flow (in the case of operation
code 7) may be the least recently used flow. Because flow
database 110 and flow re-assembly buffer table 1004 contain
only a limited numberof entries in the presently déscribed
embodimentof the invention, when they are full and a new
flow arrives an old one must be torn down. Choosing the
least recently active flow for replacementis likely to have
the least impact on network traffic through NIC 100. In one
embodimentof the invention DMA engine 120 tears down
the flow in flow re-assembly buffer table 1004 that has the
same flow numberas the flow that has been replaced in flow
database 110.

In state 2000, DMA engine 120 determines whether there
is a valid (e.g., active) header buffer. Ilustratively, this
determination is made by examining validity indicator 1116
of header buffer table 1006, which manages the active
headerbuffer. If the validity indicator is set, then there is a
headerbuffer ready to receive this packet and the procedure
continues at state 2004.

Otherwise, in state 2002 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. ILlustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors maybe retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptoris obtained from the cache or from
the free descriptorring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or some other
indication ofthe first storage location orcell in the bufferis
placed in next address field 1114 of header buffer table 1006.
The position or index of the buffer identifier within the free
buffer array is stored in header buffer index 1112, and
validity indicator 1116is set to a valid state.

In state 2004 the packet’s headeris copied or transferred
into the header buffer at the address orlocation specified in
the next address field of header buffer table 1006. As
described above, in one embodimentof the invention pad
bytes maybeinserted before the headerin orderto align the
beginning of the packet’s layer three protocol (¢.g., IP)
header with a sixteen-byte boundary. In addition, the pack-
et’s header maybe positioned in a cell of predeterminedsize
(c.g., 256 bytes) within the buffer.

As discussed above, operation code7 indicates that an old
flow is to be torn down in flow re-asscmbly buffer table 1004

20

25

30

35

45

50

60

65

96

to make room for a new flow.This requires the release of any
flow re-assembly buffer that may be associated with the flow
being tom down.

Thus, in state 2006 it is determined whether a flow
re-assemblybufferis valid (e.g., active) for a flow having the
flow numberthat was read from control queue 118for this
packet. As explained in a previous section, for operation
code 7 the flow number represents the entry in flow database
110 (and flow re-assembly buffer table 1004) that is being
replaced with the new flow. DMAengine 120 thus examines
the validity indicator in the flow’s entry in flow re-assembly
buffer table 1004. Illustratively, if the indicator is valid then
there is an active buffer storing data from one or more
packets in the flow that is being replaced. If there is a valid
flow re-assembly buffer for this flow, the illustrated proce-
dure continues at state 2008. Otherwise, the procedure
proceeds to state 2010. It will be understood that the
illustrated procedure will normally proceed to state 2008 for
operation code 7 and state 2010 for operation code 6.

In state 2008, a completion descriptor is written or con-
figured to release the replaced flow’s re-assembly buffer. In
particular, the flow re-assembly buffer index(e.g., the index
within the free buffer array of the flow re-assembly buffer’s
buffer identifier) is written to the descriptor. In this embodi-
mentof the invention, no offset needs to be stored in the
descriptor’s data offset field and the data size field is set to
zero because no new data was stored in the bufferthatis

being released. Similarly, the header buffer is not yet being
released, and therefore the header index and headeroffset
fields of the descriptor need not be used and a zero may be
stored in the headersize field.

The descriptor’s release headerflag is cleared (e.g., a zero
is stored in the flag) because the header buffer is not being
released. The release data flag is set (e.g., a one is stored in
the flag), however, because no more data will be placed in
the released flow re-assembly buffer. Further, a release flow
flag in the descriptor is set to indicate that the flow associ-
ated with the released flow re-assembly bufferis being torn
down.

The descriptortype field is changed to a value indicating
that DMA engine 120is releasing a stale flow buffer (e.g.,
a flow re-assembly buffer that has not been used for some
time). Finally, the descriptor used to release the replaced
flow’s re-asserobly buffer and terminate the associated flow
is tuned over to the host computer by changing its owner-
ship indicatorfield (e.g., from one to zero). In one alternative
embodiment of the invention, DMA engine 120 issues an
interrupt or employs some other means ofalerting the host
computer that a descriptor is being released.

In state 2010, a new flow re-assembly buffer is prepared
for the flow that is being set up. Illustratively, a free ring
descriptor is obtained from a cache maintained byfree ring
manager 1012 andits buffer identifier (¢.g., a reference to an
empty memory buffer) is retrieved. If the cache is empty,
new descriptors may be retrieved from the free descriptor
ding in host memory to replenish the cache.

Whena new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptoris stored in a free
buffer array. The buffer’s initial address or other indication
of the first storage location in the buffer is placed in next
address field 1104 of the flow’s entry in flow re-assembly
buffer table 1004. The flow’s entry in the table may be
recognized byits flow number. Theposition or index of the
buffer identifier within the free buffer array is stored in
re-assembly buffer index 1102,and validity indicator 1106 is
set to a valid state.

NOACEx. 1015 Page 315



NOAC Ex. 1015 Page 316

US6,483,804 B1
97

In state 2012, the packet’s data is copied or transferred
(c.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re-assembly buffer table 1004.

In state 2014, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header buffer index
(e.g., the location or position within the free buffer array of
the buffer identifier that references the header buffer) and the
offset of the packet’s header within the header buffer are
placed in the descriptor. Ilustratively, the offset identifies
the first byte of the header, the first pad byte preceding the
header or the location of the header’s cell in the header
buffer.

The flow re-assembly buffer index (¢.g., the location or
position, within the free buffer array, of the buffer identifier
that references the flow re-assembly buffer) and the offset of
the packet’s data within that buffer are also stored in the
descriptor. It will be recognized, however, that the offset
reported for this packet’s data may be zero, because the
packet data is stored at the very beginning of the new flow
re-assembly buffer.

Thesize of the packet's data (¢.g., the size of the packet’s
TCP payload) and header(¢.g., the offset of the TCPpayload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is changed to a
value indicating that DMA engine 120 transferred a flow
packet into host memory. A release header flag is set if the
headerbufferis full but a release data flag is not set, because
more data will be placed in this flow re-assembly buffer. The
header buffer may notbe tested to sec if it is full until a later
state of this procedure. In such an embodiment, the release
header flag may be set (or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determinesthat another packet in the same flow will soon be
transferred to the host computer, the release flow fiag will be
cleared (¢.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
processing this once. By collectively processing multiple
packets from a single flow, the packets can be processed
more efficiently and less processor time will be required for
network traffic. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 2016, the flow’s entry in flow re-assembly buffer
table 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re-assembly buffer
at which the next flow packet’s data should be stored.

In state 2018, it is determined whether the header buffer
is full. In this embodiment of the invention, where cach
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The buffer is considered full when thirty-two entries are
stored.

If the buffer is full, in state 2020 the header buffer is
invalidated to cnsure that it is not used again.Ilustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
headerflag in the descriptoris set.

If the header buffer is notfull, then in state 2022 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet.

20

25

30

35

40

50

55

60

65

98

The processing associated with a packet having operation
codes 6 and 7 then ends with end state 2099.In this endstate,
the descriptor used for this packet (e.g., the descriptor that
was configured in state 2014) is tumed over to the host
computer by changing its ownership indicator field (¢.g.,
from one to zero). In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or employs
other means (¢.g., such as the descriptor’s descriptor type
ficld) to alert the host computer that a descriptor is being
released.

One Embodiment of a Packet Batching Module
FIG.21is a diagram of dynamic packet batching module

122 in one embodiment of the invention. In this

embodiment, packet batching module 122 alerts a host
computerto the transfer, or impending transfer, of multiple
packets from one communication flow. The related packets
maythenbe processed through an appropriate protocol stack
collectively, rather than processing one at a time. As one
skilled in the art will recognize, this increases the efficiency
with which network traffic may be handled by the host
computer.

In the illustrated embodiment, a packetis transferred from
NIC 100 to the host computer by DMA engine 120 (c.g., by
copying its payload into an appropriate buffer). When a
packet is transferred, packet batching module 122 deter-
mines whether a related packet (e.g., a packet in the same
flow) will soon be transferred as well. In particular, packet
batching module 122 examines packets that are to be trans-
ferred after the present packet. One skilled in the art will
appreciate that the higher the rate of packet arrival at NIC
100, the more packets that are likely to await transfer to a
host computer at 2 given time. The more packets that await
transfer, the more packets that may be examined by the
dynamic packet batching module andthe greater the benefit
it may provide. In particular, as the number of packets
awaiting transfer increases, packet batching module 122
mayidentify a greater numberof related packets for collec-
tive processing. As the number of packets processed
together increases, the amount of host processor time
required to process each packet decreases.

Thus, if a related packet is found the packet batching
module alerts the host computer so that the packets may be
processed as a group. As described in a previous section,in
one embodimentof the invention dynamic packet batching
module 122 alerts the host computerto the availability of a
related packet by clearing a release flow flag in a completion
descriptor associated with a transferred packet. The flag
may, for example, be cleared by DMA engine 120 in
response to a signal oralert from dynamic packet batching
module 122.

In contrast, in an alternative embodimentof the invention
dynamic packet batching module 122 or DMA engine 120
may alert the host computer when no related packets are
found or when, for some other reason, the host processor
should not delay processing a transferred packet. In
particular, a release flow flag may be set when the host
computer is not expected to receive a packet related to a
transferred packet in the near future (c.g., thus indicating
that the associated flow is being released or torn down). For
example, it may be determinedthat the transferred packetis
the last packet in its flow or that a particular packet doesn’t
even belong to a flow (e.g., this may be reflected in the
packet’s associated operation code).

With reference now to FIG. 21, packet batching module
122 in one embodimentofthe invention includes memory
2102 and controller 2104. I[ustratively, each entry in
memory 2102, such as entry 2106, comprises two fields:

NOACEx. 1015 Page 316



NOAC Ex. 1015 Page 317

US 6,483,804 B1
99

flow number 2108 and validity indicator 2110. In alternative
embodiments of the invention, other information may be
stored in memory 2102. Read pointer 2112 and write pointer
2114 serve as indices into memory 2102.

In the illustrated embodiment, memory 2102 is an asso-
ciative memory (c.g., a CAM) configured to store up to 256
entries. Each entry corresponds to and represents a packet
stored in packet queue 116. As described in a previous
section, packet queue 116 may also contain up to 256
packets in one embodimentofthe invention. When a packet
is, or is about to be transferred, by DMA engine 120 from
packet queue 116to the host computer, memory 2102 may
be searched for an entry having a flow numberthat matches
the flow numberof the transferred packet. Because memory
2102 is a CAM in this embodiment, all entries in the
memory may be searched simultaneously or nearly simul-
taneously. In this embodiment, memory 2102 is imple-
mented in hardware, with the entries logically arranged as a
ring. In alternative embodiments, memory 2102 may be
virtually any type of data structure (e.g., array, table, list,
queue) implemented in hardware or software. In one par-
ticular alternative embodiment, memory 2102 is imple-
mented as a RAM, in which case the entries may be
examined in a serial manner.

The maximum of 256 entries in the illustrated embodi-

ment matches the maximum numberofpackets that may be
stored in a packet queue. Because the depth of memory 2102
matches the depth of the packet queue, when a packet is
stored in the packet queue its flow number may be auto-
matically stored in memory 2102. Although the same num-
ber of entries are provided for in this embodiment, in an
alternative embodimentof the invention memory 2102 may
be configured to hold a smaller or greater number ofentries
than the packet queue. And, as discussed in a previous
section, for each packet stored in the packet queue,related
information mayalso be stored in the control queue.

In the illustrated embodiment of the invention, flow
number 2108 is the index into flow database 110 of the flow

comprising the corresponding packet. As described above, in
one embodiment of the invention a flow includes packets
carrying data from one datagram sent from a source entity to
a destination entity. Hlustratively, each related packet has the
same flow key and the same flow number. Flow number
2108 may comprise the index of the packet’s flow key in
flow database 110.

Validity indicator 2110 indicates whether the information
stored in the entry is valid or current. In this embodiment,
validity indicator 2110 maystore a first value (e.g., one)
when the entry contains valid data, and a secondvalue(e.g.,
zero) whenthe data is invalid. For example, validity indi-
cator 2110 in entry 2106 may beset to a valid state when the
corresponding entry in packet queue 116 contains a packet
awaiting transfer to the host computer and belongs to a flow
(c.g., which may be indicated by the packet’s operation
code). Similarly, validity indicator 2110 may be set to an
invalid state when the entry is no longer needed (e.g., when
the corresponding packet is transferred to the host
computer).

Flowvalidity indicator 2110 mayalso be set to an invalid
state when a corresponding packet’s operation code indi-
cates that the packet does not belong to a flow. It may also
be set to an invalid state when the corresponding packet is
a control packet (€.g., contains no data) or is otherwise
non-re-assembleable (e.g., because it is out of sequence,
incompatible with a pre-selected protocol, has an unex-
pected control flag set). Validity indicator 2110 may be
managed by controller 2104 during operation of the packet
batching module.

20

25

30

40

45

50

55

60

65

100

In the illustrated embodimentofthe invention, an entry’s
flow number is received from a register in which it was
placed for temporary storage. Apacket’s flow number may
be temporarily storedin a register, or other data structure, in
order to facilitate its timely delivery to packet batching
module 122. Temporary storage of the flow number also
allows the flow database manager to turn its attention to a
later packet. A flow number may, for example, be provided
to dynamic packet batching module 122 at nearly the same
time that the associated packetis stored in packet queue 116.
Illustratively, the flow number may be stored in the register
by flow database manager 108 or by IPP module 104. In an
alternative embodiment, the flow numberis received from
control queue 118 or some other module of NIC 100.

In the illustrated embodiment of the invention, memory
2102 contains an entry comesponding to each packet in
packet queue 116. When a packet in the packet queue is
transferred to a host computer (c.g., whenit is written to a
re-assembly buffer), controller 2104 invalidates the memory
entry that corresponds to that packet. Memory 2102 is then
searched for another entry having the same flow numberas
the transferred packet. Afterwards, when a new packet is
stored in packet queue 116, perhaps in place of the trans-
ferred packet, a new entry is stored in memory 2102.

In an alternative embodimentof the invention, memory
2102 may be configured to hold entries for only a subset of
the maximum numberofpackets stored in packet queue 116
(c.g., just re-assembleable packets). Entries in memory 2102
maystill be populated when a packetis stored in the packet
queue. However,ifmemory 2102 is full when a new packet
is received,then creation of an entry for the new packet must
wait until a packet is transferred and its entry in memory
2102 invalidated. Therefore, in this alternative embodiment
entries in memory 2102 may be created by extracting
information from entries in control queue 118 rather than
packet queue 116. Controller 2104 would therefore continu-
ally attempt to copy information from entries in control
queue 118 into memory 2102. The function of populating
memory 2102 may be performed independently or semi-
independently of the function of actually comparing the flow
numbers of memory entries to the flow number of a packet
being transferred to the host computer.

In this alternative embodimenta second read pointer may
be used to index control queue 118to assist in the population
of memory 2102.In particular, the second read pointer may
be used by packet batching module 122 to find and fetch
entries for memory 2102. Illustratively, if the second, or
“lookahead” read pointer references the same entry as the
control queue’s write pointer, then it could be determined
that no new entries were added to control queve 118 since
the last check by controller 2104. Otherwise, as long as there
is an empty (e.g., invalid) entry in memory 2102, the
necessary information (e.g., flow number) may be copied
into memory 2102 for the packet corresponding to the entry
referenced by the lookahead read pointer. The lookahead
read pointer would then be incremented.

Retuming now to FIG. 21, read pointer 2112 of dynamic
packet batching module 122 identifies the current entry in
memory 2102 (e.g., the entry corresponding to the packetat
the front of the packet queue or the next packet to be
transferred). Wustratively, this pointer is incremented each
time a packet is transferred to the host computer. Write
pointer 2114 identifies the position at which the next entry
in memory 2102 is to be stored. Illustratively, the write
pointer is incremented cach time an entry is added to
memory 2102. One mannerofcollectively processing head-
ers from related packets is to form them into one “super-

NOACEx. 1015 Page 317



NOAC Ex. 1015 Page 318

US 6,483,804 B1
101

"header. In this method, the packets’ data portions are stored
separately (e.g., in a separate memory page or buffer) from
the super-header.

Illustratively, a super-header comprises one combined
header for each layer of the packets’ associated protocol
stack (e.g., one TCP header and one IP header). To form each
layer’s portion of a super-header, the packet’s individual
headers may be merged to make a regular-sized header
whose fields accurately reflect the assembled data and
combined headers. For example, merged headerfields relat-
ing to payload or header length would indicate the size of the
aggregated data or aggregated headers, the sequence number
of a merged TCP header would be set appropriately, etc. The
super-header portion may then be processed through its
protocol stack similar to the manner in which a single
packet’s header is processed.

This method of collectively processing related packets’
headers (e.g., with “super-"headers) may require modifica-
tion of the instructions for processing packets (e.g., a device
driver). For example, because multiple headers are merged
for eachlayerof the protocolstack, the software may require
modification to recognize and handle the super-headers. In
one embodiment of the invention the number of headers

folded or merged into a super-header maybe limited. In an
alternative embodimentof the invention the headers of all

the agpregated packets, regardless of number, may be com-
bined.

In another methodofcollectively processing related pack-
ets’ header portions, packet data and headers may again be
stored separately (¢.g., in separate memory pages). But,
instead of combining the packets’ headers for each layer of
the appropriate protocol stack to form a super-header, they
may be submitted for individual processing in quick suc-
cession. For example, all of the packets’ layer two headers
maybe processed in a rapid sequence—oneafter the other—
thenall of the layer three headers,etc. In this manner, packet
processing instructions need not be modified, but headers
are still processed more efficiently. In particular, a set of
instructions (e.g., for each protocol layer) may be loaded
once for all related packets rather than being separately
loaded and executed for cach packet.

As discussed in a previous section, data portions of related
packets may be transferred into storage areas of predeter-
mined size (e.g., memory pages) for efficient transfer from
the host computer’s kermel space into application or user
space. Where the transferred data is of memory page size,
the data may be transferred using highly efficient “page-
flipping,” wherein a full page of data is provided to appli-
cation OF user memory space.

FIGS. 22A-22B present one method of dynamic packet
batching with packet batching module 122.In theillustrated
method, memory 2102 is populated with flow numbers of
packets stored in packet queue 116. In particular, a packet’s
flow number and operation code are retrieved from contro]
queue 118, IPP module 104, flow database manager 108 or
other module(s) of NIC 100. The packet’s flow number is
stored in the flow numberportion of an entry in memory
2102, and validity indicator 2110 is set in accordance with
the operation code. For example, if the packet is not
re-assembleable (e.g., codes 2 and 5 in TABLE 1), the
validity indicator may be set to zero; otherwise it may be set
to one.

The illustrated method may operate in parallel to the
operation of DMA engine 120. In other words, dynamic
packet batching module 122 may search for packets related
to a packet in the process of being transferred to a host
memory buffer. Altematively, a search may be conducted

15

20

25

30

35

40

45

50

55

60

65

102

shortly after or before the packet is transferred. Because
memory 2102 may be associative in nature, the search
operation may be conducted quickly, thus introducinglittle,
if any, delay into the transfer process.

FIG. 22A may be considered a method of searching for a
related packet, while FIG. 22B may be considered a method
of populating the dynamic packet batching module’s
memory.

FIGS. 22A-22B eachreflect one “cycle” of a dynamic
packet batching operation (e.g., one search and creation of
one new memory entry). Ilustratively, however, the opera-
tion of packet batching module 122 mins continuously. That
is, at the end of one cycle of operation another cycle
immediately begins. In this manner, controller 2104 strives
to ensure memory 2102 is populated with entries for packets
as they are stored in packet queue 116. If memory 2102 is
not large enough to store an entry for each packet in packet
queue 116, then controller 2104 attempts to keep the
memory as full as possible and to quickly replace an
invalidated entry with a new one.

State 2200 is a start state for a memory search cycle. In
state 2202,it is determined whetherapacket(e.g., the packet
at the front of the packet queue) is being transferred to the
host computer. This determination may, for example, be
based on the operation of DMA engine 120 orthe status of
a pointer in packet queue 116 or control queue 118.
Illustratively, state 2202 is initiated by DMA engine 120 as
a packet is copied into a buffer in the host computer. One
purpose of state 2202 is simply to determine whether
memory 2102 should be searched for a packetrelated to one
that was, will be, or is being transferred. Until a packetis
transferred, or about to be transferred, the illustrated proce-
dure continues in state 2202.

When, however, it is time for a search to be conducted
(c-g., a packet is being transferred), the method continues at
state 2204.In state 2204, the entry in memory 2102 corre-
sponding to the packet being transferred is invalidated.
Ilustratively, this consists of storing a predetermined value
(.g., zero) in validity indicator 2110 for the packet’s entry.
In a present embodimentof the invention read pointer 2112
identifies the entry corresponding to the packet to be trans-
ferred. As oneskilled in the art will recognize, one reasonfor
invalidating a transferred packet’s entry is so that when
memory 2102 is searched for an entry associated with a
packet related to the transferred packet, the transferred
packet’s own entry will not be identified.

In one embodimentofthe invention the transferred pack-
et’s flow numberis copied into a register (¢.g., a hardware
register) when dynamic packet batching module 122is to
search for a related packet. This may be particularly helpful
(e.g., to assist in comparing the flow number to flow
numbers of other packets) if memory 2102 is implemented
as a RAM instead of a CAM.

Instate 2206, read pointer 2112 is incremented to point to
the next entry in memory 2102. If read pointer is incre-
mented to the same entry that is referenced by write pointer
2114, and that entry is also invalid (as indicated by validity
indicator 2110), it may be determined that memory 2102 is
now cmpty.

Then, in state 2208, memory 2102 is searched for a packet
related to the packet being transferred (e.g., the memory is
searched for an entry having the same flow number). As
described above, entries in memory 2102 are searched
associatively in one embodimentof the invention. Thus,the
result of the search operation may be a single signal indi-
cating whether or not a match was found.

In the illustrated embodiment of the invention, only valid
entries (¢.g., those having a value of one in their validity

NOACEx. 1015 Page 318



NOAC Ex. 1015 Page 319

US6,483,804 B1
103

indicators) are searched. As explained above, an entry may
be marked invalid (e.g., its validity indicator stores a value
of zero) if the associated packet is considered incompatible.
Entries for incompatible packets may be disregarded
because their data is not ordinarily re-assembled and their
headers are not nommally batched.In an alternative embodi-
ment of the invention, all entries may be searched but a
matchis reported only if a matching entry is valid.

In state 2210, the host computeris alerted to the avail-
ability or non-availability of a related packet. In this embodi-
mentof the invention, the host computeris alerted by storing
a predetermined value in a specific field of the transferred
packet’s completion descriptor (described in a previous
section). As discussed in the previous section, when a packet
is transferred a descriptor in a descriptor ring in host
memory is populated with information concerning the
packet (¢.g., an identifier ofits location in host memory,its
size, an identifier of a processor to process the packet’s
headers). In particular, a release flow flag or indicatoris set
to a first value (e.g., zero) if a related packet is found, and
a second value if no related packet is found. Hustratively,
DMA engine 120 issues the alert or stores the necessary
information to indicate the existence of a related packet in
response to notification from dynamic packet batching mod-
wle 122. Other methods of notifying the host computerofthe
presence of a related packet are also suitable (¢.g., an
indicator, flag, key), as will be appreciated by one skilled in
the art.

In FIG. 22B, state 2220 is a start state for a memory
population cycle.

In state 2222,it is determined whether a new packet has
been received at the network interface. Hlustratively, a new
entry is made in the packet batching module’s memory for
each packet received from the network. The receipt of a new
packet may be signaled by IPP module 104. For example,
the receipt of a new packet may be indicated by the storage
of the packet’s flow number, by IPP module 104, in a
temporary location (c.g., a register). Until a new packetis
received, the illustrated procedure waits. When a packet is
received, the procedure continues at state 2224.

In state 2224, if memory 2102 is configured to store fewer
entries than packet queue 116 (and, possibly, control queue
118), memory 2102 is examined to determineif it is full.

In one embodimentofthe invention memory 2102 may be
considered full if the validity indicatoris set (¢.g., equal to
one) for each entry or for the entry referenced by write
pointer 2114. If the memory is full, the illustrated procedure
waits until the memory is not full. As one skilled in the art
will recognize, memory 2102 and other data structures in
NIC 100 maybe tested for saturation (e.g., whether they are
filled) by comparing their read and write pointers.

In state 2226, a new packet is represented in memory
2102 by storing its flow numberin the entry identified by
write pointer 2114 and storing an appropriate value in the
entry’s validity indicatorfield. Jf, for example, the packetis
not re-assembleable (e.g., as indicated by its operation
code), the entry’s validity indicator may beset to an invalid
state. For purposes of the operation of dynamic packet
batching module 122, a TCP control packet may or may not
be considered re-assembleable. Thus, depending upon the
implementation of a particular embodiment the validity
indicator for a packet that is a TCP control packet may be set
to a valid or invalid state.

In an alternative embodimentofthe invention an entry in
memory 2102 is populated with information from the con-
trol queue entry identified by the second read pointer
described above. This pointer may then be incremented to
the next entry in control queue 118.

20

25

40

50

3S

60

65

104

In state 2228, write pointer 2114 is incremented to the
next entry of memory 2102, after which the illustrated
method ends at end state 2230. If write pointer 2114 refer-
ences the same entry as read pointer 2112, it may be
determined that memory 2102 is full. One skilled in the art
will recognize that many other suitable methods of manag-
ing pointers for memory 2102 may be employed.

As mentioned above,in one embodiment ofthe invention
one or both of the memory search and memory population
operations run continuously. Thus, end state 2230 may be
removed from the procedure illustrated in FIG. 22B, in
which case the procedure would return to state 2222 after
state 2228.

Advantageously, in the illustrated embodiment of the
invention the benefits provided to the host computer by
dynamic packet batching module 122 increase as the host
computer becomes increasingly busy. In particular, the
greater the load placed on a host processor, the more delay
that will be incurred until a packet received from NIC 100
may be processed. As a result, packets may queue up in
packet queue 116 and, the more packets in the packet queue,
the more entries that can be maintained in memory 2102.

The more entries that are stored in memory 2102, the
further ahead dynamic packet batching module can look for
a related packet. The further ahead it scans, the more likely
it is that a related packet will be found. As more related
packets are found and identified to the host computer for
collective processing, the amountofprocessor time spent on
network traffic decreases and overall processor utilization
increases.

One skilled in the art will appreciate that other systems
and methods may be employed to identify multiple packets
from a single communication flow or connection without
exceeding the scope of the present invention.
Early Random Packet Discard in One Embodiment ofthe
Invention

Packets may arrive at a network interface from a network
at a rate faster than they can be transferred to a host
computer. When suchasituation exists, the network inter-
face must often drop, or discard, one or more packets.
Therefore, in one embodiment of the present invention a
system and method for randomly discarding a packet are
provided. Systems and methods discussed in this section
maybe applicable to other communication devices as well,
such as gateways, routers, bridges, modems, etc.

As oneskilled in the art will recognize, one reason that a
packet may be droppedis that a network interface is already
storing the maximum numberofpackets that it can store for
transfer to a host computer. In particular, a queue that holds
packets to be transferred to a host computer, such as packet
queue 116 (shown in FIG. 1A), may be fully populated when
another packet is received from a network. Either the new
packet or a packet already stored in the queue may be
dropped.

Partly because of the bursty nature of much network
traffic, multiple packets may often be dropped when a
network interface is congested. And, in some network
interfaces, if successive packets are dropped one particular
network connection or flow (e.g., a connection or flow that
includesall of the dropped packets) may be penalized even
if it is not responsible for the high rate of packet arrival. If
a network connection or flow is penalized too heavily, the
network entity generating the traffic in that connection or
flow maytear it down in the belief that a “broken pipe” bas
been encountered. As oneskilled in the art will recognize, a
broken pipe occurs when a network entity interprets a
communication problem as indicating that a connection has
been severed.

NOACEx. 1015 Page 319



NOAC Ex. 1015 Page 320

US 6,483,804 B1
105

Forcertain network traffic (e.g., TCPtraffic), the dropping
of a packet mayinitiate a method of flow control in which
a network entity’s window (c.g., number of packets it
transmits before waiting for an acknowledgement) shrinks
oris reset to a very low number. Thus, every time a packet
from a TCP communicantis dropped by a network interface
at a receiving entity, the communicant must re-synchronize
its connection with the receiving entity. If one or a subset of
communicants are responsible for a large percentage of
network traffic received at the entity, then it seems fair that
those communicants should be penalized in proportion to the
amountoftraffic that it is responsible for.

In addition, it may be wise to prevent certain packets or
types of packets from being discarded. For example, dis-
carding a small control packet may do very little to alleviate
congestion in a networkinterface and yet have a drastic and
negative effect upon a network connection or flow. Further,
if a network interface is optimized for packets adhering to a
particular protocol, it may be more efficient to avoid drop-
ping such packets. Even further, particular connections,
flows or applications may be prioritized, in which case
higherpriority traffic should not be dropped.

Thus, in one embodiment of a network interface accord-
ing to the present invention, a method is provided for
randomly discarding a packet when a communication
device’s packet queue is full oris filled to some threshold
level. Intelligence may be added to such a method by
selecting certain types of packets for discard (e.g., packets
from a particular flow, connection or application) or except-
ing certain types of packets from being discarded (e.g.,
control packets, packets conformingto a particular protocol
or set of protocols).

A provided method is random in that discarded packets
are selected randomly from those packets that are considered
discardable. Applying a random discard policy may be
sufficient to avoid broken pipes by distributing the impact of
dropped packets among multiple connections or flows. In
addition, if a small number of transmitting entities are
tesponsible for a majority of the traffic received at a network
interface, dropping packets randomly may ensure that the
offending entities are penalized proportionately. Different
embodiments of the invention that are discussed below

provide various combinations of randomness and
intelligence, and oneof these attributes may be omitted in
one or more embodiments.

FIG. 24 depicts a system and method for randomly
discarding packets in a present embodimentofthe invention.
In this embodiment, packet queue 2400 is a hardware FIFO
(e.g., first-in first-out) queue that is 16 KB in size. In other
embodiments of the invention the packet queue may be
smaller or larger or may comprise another type of data
structure (¢.g., list, array, table, heap) implemented in hard-
ware or software.

Similar to packet queue 116 discussed in a previous
section, packet queue 2400 receives packets from a network
and holds them for transfer to a host computer. Packets
arriving from a network mayarrive from the network at a
high rate and may be processed or examined by one or more
modules (e.g., header parser 106, flow database manager
108) prior to being stored in packet queue 2400. For
example, where the network is capable of transmitting one
gigabit of traffic per second, packets conformingto one set
ofprotocols (e.g., Ethemet, IP and TCP) maybe received at
a rate of approximately 1.48 million packets per second.
After being stored in packet queue 2400, packets are trans-
ferred to a host computerat a rate partially dependent upon
events and conditions internal to the host computer. Thus,

10

20

25

35

40

45

35

106

the network interface may not be able to control the rate of
packettransmittal to the host computer.

In the illustrated embodiment, packet queue 2400 is
divided into a plurality of zones or regions, any of which
may overlap or share a common boundary. Packet queue
2400 may be divided into any numberof regions, and the
invention is not limited to the three regions depicted in FIG.
24. Illustratively, region zero (represented by the oumeral
2402) encompasses the portion of packet queue 2400 from
OKB (c.g., no packets are stored in the queue) to 8 KB (c.g.,
half full). Region one (represented by the numeral 2404)
encompasses the portion of the packet queue from 8 KB to
12 KB. Region two (represented by the numeral 2406)
encompasses the remaining portion of the packet queue,
from 12 KB to 16 KB.In an alternative embodiment, regions
mayonly bedefined for a portion of packet queue 2400. For
example, only the upper half (e.g., above 8 KB) may be
divided into one or more regions.

The number and size of the different regions and the
location of boundaries between the regions may vary
according to several factors. Amongthe factors are the type
of packets received at the network interface (e.g., the pro-
tocols according to which the packets are configured), the
size of the packets, the rate of packet arrival (e.g., expected
rate, averagerate, peak rate), the rate of packet transfer to the
host computer, the size of the packet queue, etc. For
example, in another embodiment of the invention, packet
queue 2400 is divided into five regions. A first region
extends from 0 KB to 8 KB;a second region ranges from 8
KB to 10 KB;a third from 10 KB to 12 KB;a fourth from
12 KB to 14 KB;anda final region extends from 14 KB to
16 KB.

During operation of a network interface according to a
present embodiment, traffic indicator 2408 indicates how
full packet queue 2400 is. Traffic indicator 2408, in one
embodiment of the invention, comprises read pointer 810
and/or write pointer 812 (shown in FIG.8). In the presently
discussed embodiment in which packet queue 2400 is fully
partitioned, traffic indicator 2408 will generally be located in
one of the regions into which the packet queue was divided
or at a dividing boundary. Thus, during operation of a
network interface appropriate action may be taken, as
described below, depending upon how full the packet queue
is (e.g., depending upon whichregion is identified by traffic
indicator 2408).

In FIG. 24, counter 2410 is incremented as packets arrive
at packet queue 2400. In the illustrated embodiment, counter
2410 continuously cycles through a limited range ofvalues,
such as zero through seven. In one embodiment of the
invention, each time a new packet is received the counter is
incremented by one. In an alternative embodiment, counter
2410 may not be incremented when certain “non-
discardable” packets are received. Various illustrative crite-
tia for identifying non-discardable packets are presented
below.

For one or more regions of packet queue 2400, an
associated programmable probability indicatorindicates the
probability that a packet will be dropped whentraffic indi-
cator 2408 indicates that the level of traffic in the packet
queue has reached the associated region. Therefore, in the
illustrated embodiment probability indicator 2412 indicates
the probability that a packet will be dropped while the packet
queueis less than half full (¢.g., when traffic indicator 2408
is located in region zero). Similarly, probability indicators
2414 and 2416 specify the probability that a new packetwill
be dropped whentraffic indicator 2408 identifies regions one
and two, respectively.

NOACEx. 1015 Page 320



NOAC Ex. 1015 Page 321

US 6,483,804 B1
105

Forcertain network traffic (e.g., TCPtraffic), the dropping
of a packet may initiate a method of flow control in which
a network entity’s window (e.g., number of packets it
transmits before waiting for an acknowledgement) shrinks
or is reset to a very low number. Thus, every time a packet
from a TCP communicantis dropped by a network interface
at a receiving entity, the communicant must re-synchronize
its connection with the receiving entity. If one or a subset of
communicants are responsible for a large percentage of
network traffic received at the entity, then it seems fair that
those communicants should be penalized in proportion to the
amountoftraffic that it is responsible for.

In addition, it may be wise to prevent certain packets or
types of packets from being discarded. For example, dis-
carding a small control packet may do very little to alleviate
congestion in a network interface and yet have a drastic and
negative effect upon a network connection orfiow. Further,
if a network interface is optimized for packets adhering to a
particular protocol, it may be more efficient to avoid drop-
ping such packets. Even further, particular connections,
flows or applications may be prioritized, in which case
higherpriority traffic should not be dropped.

Thus, in one embodiment of a network interface accord-
ing to the present invention, a method is provided for
randomly discarding a packet when a communication
device’s packet queue is full oris filled to some threshold
level. Intelligence may be added to such a method by
selecting certain types of packets for discard (¢.g., packets
from a particular flow, connection or application) or except-
ing certain types of packets from being discarded (c.g.,
control packets, packets conforming to a particular protocol
or set of protocols).

A provided method is random in that discarded packets
are selected randomly from those packets that are considered
discardable. Applying a random discard policy may be
sufficient to avoid broken pipes by distributing the impact of
dropped packets among multiple connections or flows. In
addition, if a small number of transmitting entities are
responsible for a majority of the traffic received at a network
interface, dropping packets randomly may ensure that the
offending entities are penalized proportionately. Different
embodiments of the invention that are discussed below

provide various combinations of randomness and
intelligence, and one of these attributes may be omitted in
one or more embodiments.

FIG. 24 depicts a system and method for randomly
discarding packets in a present embodimentof the invention.
In this embodiment, packet queue 2400 is a hardware FIFO
(c.g., first-in first-out) queue that is 16 KB in size. In other
embodiments of the invention the packet queue may be
smaller or larger or may comprise another type of data
structure (¢.g., list, array, table, heap) implemented in hard-
ware or software.

Similar to packet queue 116 discussed in a previous
section, packet queue 2400 receives packets from a network
and holds them for transfer to a host computer. Packets
arriving from a network may artive from the network at a
high rate and may be processed or examined by one or more
modules (e.g., header parser 106, flow database manager
108) prior to being stored in packet queue 2400. For
example, where the network is capable of transmitting one
gigabit oftraffic per second, packets conforming to one set
ofprotocols (e.g., Ethemet, IP and TCP) maybe received at
a rate of approximately 1.48 million packets per second.
After being stored in packet queue 2400, packets are trans-
ferred to a host computerat a rate partially dependent upon
events and conditions internal to the host computer. Thus,

20

25

30

40

45

50

55

65

106

the network interface may not be able to control the rate of
packet transmittal to the host computer.

In the illustrated embodiment, packet queue 2400 is
divided into a plurality of zones or regions, any of which
may overlap or share a common boundary. Packet queue
2400 may be divided into any number of regions, and the
inventionis not limited to the three regions depicted in FIG.
24. Illustratively, region zero (represented by the numeral
2402) encompasses the portion of packet queue 2400 from
0 KB (<.g., no packets are stored in the queue) to 8 KB (e.g.,
half full). Region one (represented by the numeral 2404)
encompasses the portion of the packet queue from 8 KB to
12 KB. Region two (represented by the numeral 2406)
encompasses the remaining portion of the packet queue,
from 12 KB to 16 KB.In an alternative embodiment, regions
mayonly be defined for a portion of packet queue 2400. For
example, only the upper half (¢.g., above 8 KB) may be
divided into one or more regions.

The number and size of the different regions and the
location of boundaries between the regions may vary
according to several factors. Amongthe factors are the type
of packets received at the network interface (e.g., the pro-
tocols according to which the packets are configured), the
size of the packets, the rate of packet arrival (¢.g., expected
rate, average rate, peak rate), the rate ofpacket transfer to the
host computer, the size of the packet queuc, etc. For
example, in another embodiment of the invention, packet
queue 2400 is divided into five regions. A first region
extends from 0 KB to 8 KB; a second region ranges from 8
KB to 10 KB; a third from 10 KB to 12 KB;a fourth from
12 KB to 14 KB;anda final region extends from 14 KB to
16 KB.

During operation of a network interface according to a
present embodiment, traffic indicator 2408 indicates how
full packet queue 2400 is. Traffic indicator 2408, in one
embodiment of the invention, comprises read pointer 810
and/or write pointer 812 (shown in FIG.8). In the presently
discussed embodiment in which packet queue 2400 is fully
partitioned, traffic indicator 2408 will generally be located in
one ofthe regions into which the packet queue was divided
or at a dividing boundary. Thus, during operation of a
network interface appropriate action may be taken, as
described below, depending upon how full the packet queue
is (c.g., depending upon whichregionis identified bytraffic
indicator 2408).

In FIG.24, counter 2410 is incremented as packets arrive
at packet queue 2400.In the illustrated embodiment, counter
2410 continuously cycles through a limited range of values,
such as zero through seven. In one embodiment of the
invention, each time a new packetis received the counteris
incremented by onc. In an altemmative embodiment, counter
2410 may not be incremented when certain “non-
discardable” packets are received. Various illustrative crite-
ria for identifying non-discardable packets are presented
below.

For one or more regions of packet queue 2400, an
associated programmable probability indicator indicates the
probability that a packet will be dropped whentraffic indi-
cator 2408 indicates that the level of traffic in the packet
queue has reached the associated region. Therefore, in the
illustrated embodiment probability indicator 2412 indicates
the probability that a packet will be dropped while the packet
queueis less than half full (e.g., when traffic indicator 2408
is located in region zero). Similarly, probability indicators
2414 and 2416 specify the probability that a new packet will
be dropped whentraffic indicator 2408 identifies regions one
and two, respectively.

NOACEx. 1015 Page 321



NOAC Ex. 1015 Page 322

US 6,483,804 B1
107

In the illustrated embodiment, probability indicators
2412, 2414 and 2416 each comprise a set, or mask, of
sub-indicators such as bits orflags. Illustratively, the number
ofsub-indicators in a probability indicator matchesthe range
of counter values—in this case, eight. In one embodimentof
the invention, cach sub-indicator may have one of two
values (¢.g., Zero or one) indicating whether a packet is
dropped. Thus, the sub-elements of a probability indicator
may be numbered from zero to seven (illustratively, from
Tight to left) to correspond to the eight possible values of
counter 2410. For cach position in a probability indicator
that stores a first value (c.g., one), when the value of counter
2410 matches the numberof that bit, the next discardable
packet received for packet queue 2400 will be dropped. As
discussed above, certain types of packets (¢.g., control
packets) may not be dropped. Mlustratively, counter 2410 is
only incremented for discardable packets.

In FIG. 24, probability indicator 2412 (e.g., 00000000)
indicates that no packets are to be dropped as long as the
packet queue is less than half full (e.g., as long as traffic
indicator 2408 is in region zero). Probability indicator 2414
(c.g., 00000001) indicates that every cighth packet is to be
dropped when there is at least 8 KB stored in the packet
queue. In other words, whentraffic indicator 2408 is located
in region one, there is a 12.5% probability that a discardable
packet will be dropped. In particular, when counter 2410
equals zero the next discardable packet, or a packetalready
stored in the packet queue, is discarded. Probability indica-
tor 2416 (e.g., 01010101) specifies that every other discard-
able packet is to be dropped. There is thus a 50% probability
that a discardable packet will be dropped when the queueis
more than three-quarters full. Illustratively, when a packetis
dropped, counter 2410 is still incremented.

As another example, in the alternative embodiment
described above in which the packet queue is divided into
five regions, suitable probability indicators may include the
following. For regions zero and one, 00000000; for region
two, 00000001; for region three, 00000101; and for region
four, 01111111. Thus,in this alternative embodiment, region
one is treated as an extension to region zero. Further, the
probability of dropping a packet has a wider range, from 0%
to 87.5%.

In one alternative embodiment described above, only a
portion of a packet queue is partitioned into regions.In this
alternative embodiment, a default probability or null prob-
ability (e.g., 00000000) of dropping a packet may be asso-
ciated with the un-partitioned portion. Illustratively, this
ensures that no packets are dropped before theleveloftraffic
stored in the queue reaches a first threshold. Even in an
embodiment where the entire queue is partitioned, a default
or null probability may be associated with a region that
encompasses or borders a 0 KB threshold.

Just as a packet queue may be divided into any numberof
regions for purposes of the present invention, probability
indicators may comprise bit masks of any size or magnitude,
and need not be of equal size or magnitude. Further, prob-
ability indicators are programmable in a present
embodiment, thus allowing them to be altered even during
the operation of a network interface.

One skilled in the art will recognize that discarding
packets on the basis of a probability indicator injects ran-
domness into the discard process. A random early discard
policy may be sufficient to avoid the problem of broken
pipes discussed above. In particular, in one embodiment of
the invention, all packets are considered discardable, such
that all packets are counted by counter 2410 and all are
candidates for being dropped. As already discussed,

45

25

30

35

40

45

50

55

65

108
however, in another embodiment of the invention intelli-
gence is added in the process of excluding certain types of
packets from being discarded.

It will be understood that probability indicators and a
counter simply constitute one system for enabling the ran-
dom discard of packets in a network interface. Other mecha-
nisms are also suitable. In one alternative embodiment, a
random number generator may be employed in place of a
counter and/or probability indicators to enable a random
discard policy. For example, when a random numberis
generated, such as M, the Mth packet (or every Mth packet)
after the number is generated may be dropped. Or, the
random number may specify a probability of dropping a
packet. The random number may thus be limited to (e.g.,
hashed into) a certain range of values or probabilities. As
another alternative, a random number generator may be used
in tandem with multiple regions or thresholds within a
packet queue. In this alternative embodiment a program-
mable value, represented here as N, may be associated with
a region or queue threshold. Then, when a traffic indicator
reaches that threshold or region, the Nth packet (or every
Nth packet) may be dropped until another threshold or
boundary is reached.

In yet another alternative embodiment of the invention,
the probability of dropping a packet is expressedas a binary
fraction. As one skilled in the art will recognize, a binary
fraction consists of a series of bits in which cach bit

represents one half of the magnitudeof its more significant
neighbor. For example, a binary fraction may use four digits
in one embodimentof the invention. From left to right, the
bits may represent 0.5, 0.25, 0.125 and 0.0625, respectively.
Thus, a binary fraction of 1010 would be interpreted as
indicating a 62.5% probability of dropping a packet (c.g.,
50% plus 12.5%). The more positions (e.g., bits) used in a
binary fraction, the greater precision that may be attained.

In one implementation of this alternative embodiment a
separate packet counter is associated with cach digit. The
counter for the leftmostbit increments at twice the rate of the
next counter, which increments twice as fast as the next
counter, etc. In other words, when the counter for the most
significant (¢.g., left) bit increments from 0 to 1 the other
counters do not change. When the mostsignificant counter
increments again, from 1 back to 0, then the next counter
increments from 0 to 1. Likewise, the counter for the third
bit does not increment from 0 to 1 until the second counter

returns to 0. In summary, the counter for the most significant
bit changes(i.c., increments) each time a packetis received.
The counterfor the next most significant bit maintains each
value (ie., 0 or 1) for two packets before incrementing.
Similarly, the counter for the third most significant bit
maintains each counter value for four packets before incre-
menting and the counter for the least significant bit main-
tains its values for cight packets before incrementing.

Each time a packetis received or a counter is incremented
the counters are compared to the probability indicator(e.g.,
the specified binary fraction). In one embodiment the deter-
mination of whether a packet is dropped depends upon
which of the fraction’s bits are equal to one. Mlustratively,
for cach fraction bit equal to one a random packetis dropped
if the corresponding counter is equal to one and the counters
for any bits of higher significance are equal to zero. Thus for
the example fraction 1010, whenever the most significant
bit’s counter is equal to one a random packet is dropped. In
addition, a random packet is also dropped whenever the
counter for the third bit is equal to one and the counters for
the first two bits are equal to zero.

Aperson skilled in the art mayalso derive other suitable
mechanisms for specifying and enforcing a probability of

NOACEx. 1015 Page 322



NOAC Ex. 1015 Page 323

US 6,483,804 B1
109

dropping a packet received at a network interface without
exceeding the scope of the presentinvention.

As already mentioned, intelligence may be imparted to a
random discard policy in order to avoid discarding certain
types of packets. In a previous section, methods of parsing
a packet received from a network were described. In
particular, in a present embodiment of the invention a packet
received from a network is parsed before it is placed into a
packet queue such as packet queue 2400. Duringthe parsing
procedure various information concerning the packet may be
gleaned. This information may beusedto inject intelligence
into a random discard policy. In particular, one or more fields
of a packet header may be copied, an originating or desti-
nation entity of the packet may be identified, a protocol may
be identified, etc.

Thus, in various embodiments of the invention, certain
packets or types of packets may be immune from being
discarded. In the embodimentillustrated in FIG. 24, for
example, control packets are immune. As one skilled in the
art will appreciate, control packets often contain information
essential to the establishment, re-establishment or mainte-
nance of a communication connection. Dropping a control
packet may thus have a more serious and damaging effect
than dropping a packet that is not a control packet. In
addition, because control packets generally do not contain
data, dropping a control packet may save very little space in
the packet queue.

Manyothercriteria for immunizing packets are possible.
For example, when a packet is parsed according to a
procedure described in a previous section, a No_Assist flag
or signal may be associated with the packet to indicate
whether the packet is compatible with a set of pre-selected
communication protocols. Iilustratively, if the flag is set to
a first value (e.g., one) or the signal is raised, the packet is
considered incompatible and is therefore ineligible for cer-
tain processing enhancements (¢.g., re-assembly of packet
data, batch processing of packet headers, load-balancing).
Because a packet for which a No_Assistflag is set to the
first value may be a packet conforming to an unexpected
protocol or unique format, it may be better not to drop such
packets. For example, a network manager may want to
ensure receipt of all such packets in order to determine
whether a parsing procedure should be augmented with the
ability to parse additional protocols.

Another reason for immunizing a No__Assist packet(c.g.,
packets that are incompatible with a set of selected
protocols) from being discarded concerns the reaction to
dropping the packet. Because the packet’s protocols were
not identified, it may not be known how the packet’s
protocols respondto the loss of a packet. In particular,if the
senderof the packet does not lowerits transmission rate in
response to the dropped packet(e.g., as a form of congestion
control), then there is no benefit to dropping it.

Apacket’s flow number maybe used to immunize certain
packets in another alternative embodimentof the invention.
As discussed in a previous section, a network interface may
include a flow database and flow database manager to
maintain a record of multiple communication flows received
by the network interface. It may be efficacious to prevent
packets from one or more certain flows from being dis-
carded, Immunized flows may include a flow involving a
high-priority network entity, a flow involving a particular
application, etc. For example, it may be considered rela-
tively less damaging to discard packets from an animated or
streaming graphics application in which a packet, or a few
packets, may be lost without seriously affecting the desti-
nation entity and the packets may not even need to be

10

15

20

25

35

40

45

50

55

65

110

retransmitted. In contrast, the consequences may be more
severe if a few packets are dropped from a file transfer
connection. The packets will likely need to be retransmitted,
and the transmitting entity’s window may be shrunk as a
result—thus decreasing the rate offile transfer.

In yet anotheralternative embodiment of the invention, a
probability indicator may comprise a bit mask in which each
bit corresponds to a separate, specific flow through the
network interface. In particular, the bits may correspond to
the flows maintained in the flow database described in a

previous section.
Although embodiments of the invention discussed thus

far in this section involve discarding packets as they arrive
at a packet queue, in an alternative embodiment packets may
be discarded from within the packet queue. In particular, as
the packet queueis filled (e.g., as a traffic indicator reaches
pre-defined regions or thresholds), packets already stored in
the queue may be discarded at random according to one or
more probability indicators. In the embodimentillustrated in
FIG.24, for example, when traffic indicator 2408 reaches a
certain threshold, such as the boundary between regions one
and two or the end of the queue, packets may be deleted in
one or more regions according to related probability indi-
cators. Such probability indicators would likely have differ-
ent values than those indicated in FIG. 24.

In a present embodiment of the invention, probability
indicators and/or the specifications (e.g., boundaries) into
which a packet queueis partitioned are programmable and
may be adjusted by software operating on a host computer
(¢.g., a device driver). Criteria for immunizing packets may
also be programmable. Methods of discarding packets in a
networkinterface or other communication device may thus
be altered in accordance with the embodiments described in

this section, even during continued operation of such a
device. Various other embodiments and criteria for ran-

domly discarding packets and/or applying criteria for the
intelligent discard of packets will be apparent to those
skilled in the art.

FIGS. 25A—25B comprise a flow chart demonstrating one
method of implementing a policy for randomly discarding
packets in a network interface according to the embodiment
of the invention substantially similar to the embodiment
illustrated in FIG. 24. In this embodiment, a packet is
received while packet queue 2400 is not yet full. As one
skilled in the will appreciate, this embodiment provides a
method of determining whetherto discard the packet. Once
packet queue 2400 is full, when another packet is received
the network interface generally must drop a packet—cither
the onejust received or one already stored in the queue—in
which case the only decision is which packet to drop.

In FIG. 25A, state 2500 is a start state. State 2500 may
reflect the initialization of the networkinterface (and packet
queue 2400) or may reflect a point in the operation of the
network interface at which one or more parameters or
aspects conceming the packet queue and the random discard
policy are to be modified.

In state 2502, one or more regions are identified in packet
queue 2400, perhaps by specifying boundaries suchas the 8
KB and 12 KB boundaries depicted in FIG. 24. Although the
regions depicted in FIG. 24 fully encompass packet queue
2400 when viewed in unison, regions in an alternative
embodiment of the invention may encompass less than the
entire queue.

In state 2504, one or more probability indicators are
assigned and configured. In the illustrated embodiment, one
probability indicator is associated with cach region.
Alternatively, multiple regions may be associated with one

NOACEx. 1015 Page 323



NOAC Ex. 1015 Page 324

US 6,483,804 B1
111

probability indicator. Even further, one or more regions may
not be explicitly associated with a probability indicator, in
which case a default or null probability indicator may be
assumed. As described above, a probability indicator may
take the form of a multi-bit mask, whereby the oumber of
bits in the maskreflect the range of possible values main-
tained by a packet counter. In another embodimentof the
invention, a probability indicator may take the form of a
random number or a thresbold value against which a ran-
domly generated number is compared when a decision must
be whetherto discard a packet.

In state 2506, if certain types of packets are to be
prevented from being discarded, criteria are expressed to
identify the exempt packets. Some packets that may be
exempted are control packets, packets conforming to
unknown or certain known protocols, packets belonging to
a particular network connection or flow, etc. In one embodi-
ment of the invention, no packets are exempt from being
discarded.

In state 2508, a packet or traffic counteris initialized. As
described above, the counter may be incremented, possibly
through a limited range ofvalues, when a discardable packet
is received for storage in packet queue 2400. The limited
range of counter values may correspond to the number of
bits in a mask form of a probability indicator. Alternatively,
the counter may be configured to increment through a
greater range, in which case a counter value maybefiltered
through a modulus or hash functionprior to being compared
to a probability indicator as described below.

In state 2510, a packet is received from a network and
may be processed through one or more modules (¢.g., a
header parser, an IPP module) priorto its arrival at packet
queue 2400. Thus, in state 2510 the packet is ready to be
stored in the packet queue. One or more packets may already
be stored in the packet queue andatraffic indicator(e.g., a
pointer or index) identifies the level oftraffic stored in the
queue (e.g., by a storage location and/or region in the
queuc).

In state 2512, it may be determined whether the received
packet is discardable. For example, if the random discard
policy that is in effect allows for the exemption of some
packets from being discarded, in state 2512 it is determined
whether the received packet meets any of the exemption
criteria. If so, the illustrated procedure continues at state
2522. Otherwise, the procedure continuesat state 2514.

In state 2514, an active region of packet queue 2400 is
identified. In particular, the region of the packet queue to
which the queue is presently populated with traffic is deter-
mined. Theleveloftraffic stored in the queue depends upon
the number and size of packets that have been stored in the
queue to await transfer to a host computer. The slower the
transfer process, the higher the level oftraffic may reach in
the queue. Although the level of traffic stored in the queue
rises and falls as packets are stored andtransferred, the level
may be identified at a given time by examining the traffic
indicator. The traffic indicator may comprise a pointer
identifying the position ofthe Jast or next packetto be stored
in the queue. Such a pointer may be compared to another
pointer that identifies the next packet to be transferred to the
host computer in order to reveal how muchtraffic is stored
in the queue.

In state 2516, the counter value (c.g., a value between zero
and seven in the embodimentof FIG. 24) is compared to the
probability indicator associated with the active region. As
previously described, the counteris incremented as discard-
able packets are received at the queue. This comparison is
conducted so as to determine whether the received packet

5

15

25

30

50

55

60

65

112

should be discarded. As explained above, in the embodiment
of FIG. 24 the setting of the probability indicator bit
corresponding to the counter value is examined. For
example,if the counter has a value of N, then bit number N
of the probability indicator mask is examined.If the bit is set
to a first state (¢.g., one) the packet is to be discarded;
otherwise it is not to be discarded.

In state 2518, the counter is incremented to reflect the
receipt of a discardable packet, whether or not the packet is
to be discarded. In the presently discussed embodiment of
the invention, if the counter contains its maximum value
(e.g., seven) prior to being incremented, incrementing it
entails resetting it to its minimum value (e.g., zero).

In state 2520,if the packetis to be discarded the illustrated
procedurecontinues at state 2524. Otherwise, the procedure
continuesat state 2522.In state 2522, the packetis stored in
packet queue 2400 and the illustrated procedure ends with
end state 2526.In state 2524,the packetis discarded and the
illustrated procedure ends with end state 2526.

Sun, Sun Microsystems, SPARC and Solaris are trade-
marks or registered trademarks of Sun Microsystems, Incor-
porated in the United States and other countries.

The foregoing descriptions of embodiments of the inven-
tion have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or
to limit the invention to the forms disclosed. Many modi-
fications and variations will be apparent to practitioners
skilled in the art. Accordingly, the above disclosure is not
intended to limit the invention; the scope of the invention is
defined by the appended claims.

Whatis claimed is:

1. Amethodofidentifying multiple packets in a commu-
nication flow between a source entity and a destination
entity, comprising:

storinga first flow identifier of a first packet received from
a source entity for a destination entity, wherein said first
flow identifier comprises an identifier of the source
entity and an identifier of the destination entity;

storing said first packet in a packet memory for transfer
toward the destination entity;

storing a second flow identifier of a second packet,
storing said second packet in said packet memory;
determining whether said first flow identifier matches said

second flow identifier;

storing a first indicator in the destination entity if a first
communication flow identified bysaid first flow iden-
tifier comprises said second packet; and

storing a second indicator in the destination entity if said
first packet is the only packet stored in the packet
memory that is part of said first communication flow.

2. The method ofclaim 1, further comprising, prior to said
storing a first flow identifier, parsing said first packet to
retrieve said identifier of the source entity and said identifier
ofthe destination entity.

3. A method of identifying one or more packets in a
communication flow between a source entity and a destina-
tion entity, comprising:

receiving a first packet at a communication device;
identifying a first communication flow comprising said

first packet with a first flow identifier configured to
identify both the source entity and the destination
entity;

determining whether said first communication flow also
comprises a second packet received at said communi-
cation device after said first packet was received at said
communication device; and

NOACEx. 1015 Page 324



NOAC Ex. 1015 Page 325

US 6,483,804 B1
113

transferring said first packet to a host computer for
processing in accordance with a communication pro-
tocol associated with said first packet.

4. The method of claim 3, further comprising:
transferring said second packet to said host computer;
wherein said host computeris configured to collectively

process a header portion of said first packet and a
header portion of said second packet in accordance
with said communication protocol.

5. The method of claim 3, wherein said identifying
comprises:

receiving a flow key generated by concatenating an iden-
tifier of the source entity and an identifier of the
destination entity;

wherein saidfirst flow identifier comprises said flow key.
6. The method of claim 3, wherein said identifying

comprises:
receiving an index of said first communication flow in a

flow database;

wherein said first flow identifier comprises said index.
7. The method of claim 3, wherein said determining

comprises comparing said first flow identifier with a second
flow identifier associated with a second packet received at
said communication device.

8. The method of claim 7, wherein said determining
further comprises:

storing said first flow identifier in a flow memory; and
storing said second flow identifier in said flow memory;

and

comparing said stored first flow identifier and said stored
second flow identifier.

9. The method of claim 8, wherein said flow memory is
an associative memory in said communication device.

10. The method of claim 3,further comprising storing said
first packet in a packet memory.

11. The method of claim 10, wherein said determining
comprises comparingsaid first flow identifier configured to
identify said first communication flow with a second flow
identifier configured to identify a second communication
flow comprising a packet stored in said packet memory.

12. The method of claim 3, further comprising informing
said host computerof said transfer of said first packet.

13. The method of claim 12, wherein said informing
comprises configuring an indicator in a host memory.

14, The method of claim 13, wherein said indicator is
configured to indicate that said host computer should delay
processing said first packet until said second packet is
transferred to said host computer.

15. The method of claim 13, wherein said indicator
indicates that said host computer should not delay process-
ing said first packet.

16. A method of transferring a packet from a network
interface to a host computer, comprising:

receiving a first packet at a network interface;
storing said first packet in a packet memory;

receiving a first flow identifier configured to identify a
communication flow comprising said first packet;

storing said first flow identifier in a flow memory;
searching said flow memory for a second packet in said

communication flow received at the network interface

after said first packet,
transferring said first packet to said host computer; and
configuring an indicator in a host memory to indicate

whether processing of said first packet by said host

15

30

35

45

65

114

computer should be delayed to await transfer of said
second packet to said host memory.

17. The method of claim 16, wherein said generating
comprises:

receiving an index of said communication flow in a flow
database;

wherein said flow identifier comprises said index.
18. The method of claim 16, wherein said receiving

comprises:
receiving a flow key comprising an identifier of a source

of said first packet and an identifier of a destination of
said first packet;

wherein said flow identifier comprises said flow key.
19. The method of claim 16, wherein said packet memory

comprises said flow memory.
20. The method of claim 16, wherein said configuring

comprises:
storing a first indicator in a host memory if said commu-

nication flow comprises said second packet; and
storing a second indicatorin said host memory if saidfirst

packetis the only packet in said packet memory thatis
part of said communication flow.

21. A computer system for processing a packet received
from a network interface, comprising:

a network interface configured to receive a first packet
from a network and transfer said first packet to a host
computer memory, said network interface comprising:
a packet memory configuredto store said first packet;
a flow memory forstoring a first flow numberassoci-

ated with said first packet, wherein said first flow
number is configured to identify a communication
flow comprising said first packet;

a packet batcher configured to determine whether the
communication flow includes a second packet stored
in said packet memory after said first packet; and

a notifier configured to:
store a first code in a host indicator if said packet

memory includes the second packet; and
store a second code in said host indicator if said

packet memory does not include the second
packet; and

a processorfor processing a header portion of saidfirst
packet.

22. A computerreadable storage medium storing instruc-
tions that, when executed by a computer, cause the computer
to perform a method oftransferring a packet from a network
interface to a host computer, the method comprising:

receiving a first packet at a communication device;
identifying a first communication flow comprising said

first packet with a first flow identifier configured to
identify both the source entity and the destination
entity;

determining whether said first communication flow also
comprises a second packet received at said communi-
cation device after said first packet was received at said
communication device; and

transferring said first packet to a host computer for
processing in accordance with a communication pro-
tocol associated with said first packet.

23. A processor readable storage medium containing a
data structure configured to store information conceming a
packet to be transferred from a network interface to a host
computer, the data structure including one or more entries,
cach entry comprising:

a flow number configured to identify a communication
flow comprisingafirst packet received at the network

NOACEx. 1015 Page 325



NOAC Ex. 1015 Page 326

US 6,483,804 B1
115

+” interface from a source entity for a destination entity
associated with the host computer; and

a validity indicator configured to provide:
a first indication if said first packet is ready for transfer

to the bost computer; and
a second indication if said first packet is a control

packet;
wherein said data structure is searched for a second entry

containing said flow number when said first packetis
transferred to the host computer to determine if said
communication flow also comprises a second packet
received at the network interface after said first packet.

24. The method of claim 3, wherein said identifying
comprises:

parsing said first packet to retrieve an identifier of the
source entity and an identifier of the destination entity;
and

combining said source entity identifier and said destina-
tion entity identifier to form said first flow identifier.

25. A communication interface, comprising:

a header parser configured to parse a header of a first
packet received at the communication interface,
wherein the first packet was issued from a source entity
for a destination entity;

a flow database configured to facilitate managementof a
communication flow comprising the first packet, the
flow database comprising:
a flow key configured to identify the communication

flow using identifiers of the source entity and the
destination entity;

an activity indicator configured to indicate a recency
with which a packet in the communication flow has
been received; and

a validity indicator for indicating whether the commu-
nication flow is valid;

a code generator configured to generate an operation code
for the first packet, to facilitate forwarding of the first
packet toward the destination entity, and

116

a packet batching module configured to determine
whether a second packet received at the communication
interface is part of the communication flow.

26. A method of processing a packet through a commu-
5 Mication interface, the method comprising:

15

30

35

receiving a first packet from a network, wherein thefirst
packet is part of a communication flow between a
source entity and a destination entity;

determining whether a header portion of the first packet
conformsto one of a set of communication protocols;

assembling a flow identifier to identify the communica-
tion flow, wherein said flow identifier comprises a
source entity identifier and a destination entity identi-
fier;

updating a flow database configured to facilitate manage-
ment of communication flows through the communi-
cation interface, wherein said updating comprises:
configuringa flow activity indicator associated with the

communication flow to reflect receipt of the first
packet; and

configuring a flow validity indicator associated with the
communication flow to indicate that the communi-
cation flow is valid;

assigning an operation code to the first packet, said
operation code indicating whether a portion of data in
the first packet is reassembleable with another portion
of data in another packet in the communication flow;
and

determining whether a second packet received at the
communication interface is part of the communication
flow.

27. The method of claim 3, further comprising:
storing a first indicator in the host computerif said first

communication flow comprises said second packet; and
storing a secondindicatorin the host computerif said first

packet is the only packet stored in the communication
device that is part of said communication flow.

re ee

NOACEx. 1015 Page 326



NOAC Ex. 1015 Page 327

   
 IW 7696177
 

  

~*~ 2 Sew Vo
~ aia it s .

TICs TOIL T TNA ITT oe i . TYHTEATNTDSTIOTTOGTHT Gavi STOP UOT TMAH TURD ERLE eae aisTMTInn i nl
NA VTOEDEED cy DFAMERICAG/©

v T®ALL,TOWHOMTHESE; PRESENTS) SHALE, COME: on

   
   

 
 
   

 
UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and TrademarkOffice

 

 

 
 
 
 

 
 
 

 
 

 

 

October 17, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDSOF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

APPLICATION NUMBER: 09/608,237

FILING DATE: June 30, 2000

PATENT NUMBER: 6,651,099

ISSUE DATE: November 18, 2003

    
 
 

 
                      

i

|
| By Authority of the

UnderSecretary of Commerce for Intellectual Property
| and Director of the United States Patent and TrademarkOffice

| ogo a. :
: ay ar N , TOAe

AEAAY P.R. GRANT
Certifying Officer

re PART (95 OF (2.PART(S)
: aCe me aa

| {oeieee tifoniiaTEL



NOAC Ex. 1015 Page 328

 

 

a2, United States Patent
Hegde

00100000
US 6,570,875 B1

May27, 2003
(10) Patent No.:
(45) Date of Patent: 

(54) AUTOMATIC FILTERING AND CREATION
OF VIRTUAL LANS AMONGA PLURALITY
OF SWITCH PORTS

(75) Inventor: Gopal D. Hegde, San Jose, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(Us)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 0 days.

(21) Appl. No.: 09/172,723

(22) Filed: Oct. 13, 1998

(SY) Ente C07 coeececsessesessssssseee HO4L 12/28; HO4L 12/56
(52) US. Ch eect 370/389; 370/392; 370/395.53;

370/395.32

(58) Field of Search ......cccsscscsssssssssceseess 370/389, 352,
370/353, 354, 356, 360, 390, 392, 396,

398, 395.3, 395.31, 395.42, 395.5, 395.53,
401, 413, 415, 417, 422, 428, 395.32, 432

(56) References Cited
U.S. PATENT DOCUMENTS

5,715,250 A 2/1998 Watanabe ..........cccree 370/395
5,920,699 A TIVD99 Bare ....ccsesseeeceseee 395/200.55

(List continued on next page.)
OTHER PUBLICATIONS

Douglas E. Comer and David L. Stevens, Adress Discovery
and Binding (ARP), Internetworking with TCP/IP, vol. D:
Design, Implementation, and Internals, Chapter 4, 1994,
pp.39-59.

(List continued on next page.)

Primary Examiner—Douglas Olms
Assistant Examiner—Phirin Sam

(74) Attorney, Agent, or Firm—Pillsbury Winthrop LLP

(57) ABSTRACT

Tn a method and apparatus for performing muiltiprotoco}
switching and routing, incoming data packets are examined
and the fiow (i.¢., source and destination) with which they
are associated is determined. A flow table contains forward-

ing information that can be applied to all the packets
belonging to the flow. If an entry is not present in the table
for the particular flow, the packet is forwarded to the CPU
to be processed. The CPU can then update the table with new
forwarding information to be applied to all future packets of
the same flow. When the forwarding information is already
presentin the table, packets can be forwarded at wire-speed.
A dedicated ASIC is preferably employed to contain the
table, as well as the engine for examining the packets and
forwarding them according to the stored information.
Decision-making tasks are thus moreefficiently partitioned
between the switch and the CPU so as to minimize process-
ing overhead. Processes executing on the CPU maintain
information regarding filters, mirrors, prioritics, and
VLANs.Such information is further integrated with the flow
table forwarding information when flows corresponding to
the established filters, mirrors, priorities and WLANsare
detected. Accordingly,filters, mirrors, priorities and VLANs
can be automatically implemented when forwarding deci-
sions are made, which implementation is done at wire
speeds. According to another aspect, VLANsare automati-
cally created and updated based on the automatic detection
of multicast groups existing among the hosts connected to
the ports of the switch. After such VLANsare established,
broadcast packets destined for the detected multicast groups
are forwarded only along ports whose hosts are members
thereof, thereby preventing needless and burdensometraffic
from congesting other network segments and host connec-
tion.

14 Claims, 14 Drawing Sheets

 

 

NOACEx. 1015 Page 328



NOAC Ex. 1015 Page 329

US 6,570,875 B1
 Page 2

U.S. PATENT DOCUMENTS 6,335,935 B2* 1/2002 Kadambietal. ........... 370/396

6,005,863 A * 12/1999 Denget al...ese 370/392 OTHER PUBLICATIONS
6,047,325 A 4/2000 Jain etal...... ~ 709/227

 
 
 

 
6,091,725 A * 7/2000 Cheriton et al. .
6,094,435 A * 7/2000 Hoffman etal. .
6,128,298 A 10/2000 Wootton etal. .
6,216,167 B1 * 4/2001 Momirov.....
6,243,758 B1 * 6/2001 Okanove ..
6,246,680 Bl * 6/2001 Muller et al. .*

*
*

- 370/392 Douglas E. Comer and David L. Stevens, RIP: Active Route
. 370/414 Propagation and PassiveAcquisition, Internetworking with
- 370/392—-TCPAP, vol. H: Design, Implementation, and Internals,
ora, Chapter 18, 1994,pp. 355-379.
: 370/389 Keith Tumer,Is It a Switch or Is It a Router, PC Magazine,
. 370/389 Nov. 18, 1997.

8/2001 Bass et al. .... - 370/390
12/2001 Haggerty et al. ........... 370/400 * cited by examiner

6,256,306 B1
6,272,134 Bl
6,331,983 B1

NOACEx. 1015 Page 329

 



NOAC Ex. 1015 Page 330

US 6,570,875 B1Sheet 1 of 14May27, 2003U.S. Patent

WAN

Muiltiprotocol eeeeaed  
FIG.1

NOACEx. 1015 Page 330

 

 



NOAC Ex. 1015 Page 331

US 6,570,875 B1Sheet 2 of 14May27, 2003U.S. Patent

Cols

  OTTe1
|

|

|Se|SeG/||||EaGn||EaYWHS||||STM|STIavL|!|a
|

|JieVLNd)||LNOUWENDLINOD!|||Gg|aeTINGONHOLIMSoC!|MOTs!l04||este|os|O8-—S©O:©)O>!ne~P=STt-FosN\
OF©AERINMIEN£VSTcianwe“a”aeeeoo

NOACEx. 1015 Page 331

 



NOAC Ex. 1015 Page 332

U.S. Patent May27, 2003 Sheet 3 of 14 US 6,570,875 B1

78-1...78-M

79-1... THV i

 
NOACEx. 1015 Page 332

 



NOAC Ex. 1015 Page 333

U.S. Patent May27,2003 Sheet 4 of 14 US 6,570,875 B1

 
 

60
|

LL

nnA--~-5-H7
190
| |

TO 70! !TC10 75! SWITCH ENGINE po---------~-5 ITO 50
1/0 QUEUE |PORT INTERFACE 1[aeawoe

| |
| 1/0 QUEUE |PORT INTERFACE 2) || [VO QUEUEPOTTERE 2)
||ADDRESS REGISTERS ! |

DOMAIN REGISTERS | carte r
| ORITY REG 1/0 QUEUE| PORT INTERFACE

Pe

TO_80)|CPU INTERFACE =——!i
(|

| 120 |

1 110 |
| 130 MEMORY INTERFACE
| l
| |
| |
| |
Lo4

; TO 90

NOACEx. 1015 Page 333

 



NOAC Ex. 1015 Page 334

ERMenmT Meme Fo

 
 

140 150 BASE RECORD
ADDRESS

. FROM 105
: EHTERNET ADDRESS ESOLUM RECORD OFFSET

: AREA eFSOLUTON § (FROM 140), HASH AO];TADORESS_RESOLUTIONRECORD!

; ~\FTRZ (FROM 140) 190
: Pd

IPX AREA BASE ADDRESS PRIORITY TAG! (FROM 105)|ee
: 160 PRIORITY TAG

BASERoe 170 ADDRESS(FROM 105) (FROM _150) fd
PROTOCOL ENTRY RASE NETWORK

PROTOCOL OFFSET___ TABLE /| NETWORK ENTRY ADDRESS
(FROM 150) TABLE (FROM 105)

PROTOCOL INCREMENT ,(FROM 150) NERO 16)BASE ADDRESS ee ]_EFROM 180)
—=~[_FILERTAG|BASE ADDRESS

(FROM 105) ATER TAS (FROM 105)
A AOOR 210

(FROM 160) 900 MIRROR ADDR
—— EL row 18) F1G.5

yusyed‘SD
€007‘LZABA

PTJO§72NS

TaSL8‘0LS‘°9SN
NOACEx. 1015 Page 334



NOAC Ex. 1015 Page 335

U.S. Patent May27, 2003 Sheet 6 of 14 US 6,570,875 B1

$2

 Membership

é2=
j:

 

FIG. 6

NOACEx. 1015 Page 335 



NOAC Ex. 1015 Page 336

U.S. Patent May27, 2003 Sheet 7 of 14 US 6,570,875 B1

 
 

  
  
 

 
  
  

Multicast
Packet?

Update VLAN
(Fig. 14)

 
 
 
 

§20 592oORTCNegAheieTRNHie

Process Packet

at Layer 2
(Fig. 13)

Process Packet at

Layer 3+
(Fig. 8)

FIG. 7

NOACEx. 1015 Page 336 



NOAC Ex. 1015 Page 337

wesettomaneesae

U.S. Patent May27, 2003 Sheet 8 of 14

Get Source and Dest.
Info from Packet

Header

S42, Check Flow Table
for Entries for

Source and Dest.

(Fig. 11)
 

S46
 
  
  
 

Entries in Flow
Table for Source

and Dest.?

 

S50
S48

Only Dest.
Unresolved?

$54

S58

Forward Packet

According to
Default Broadcast

Enable for Protocol

 
FIG. 8

US 6,570,875 B1

Forward Packet

According to
Flow Table

(Fig. 12) 
Forward Packet on

Port(s) Indicated
by Source Flow

Table Entry 
Forward to CPU

for Processing
(Fig. 9) 

NOACEx. 1015 Page 337 



NOAC Ex. 1015 Page 338

YaaalasWhaleah
U.S. Patent May27, 2003 Sheet 9 of 14 US 6,570,875 B1MONOCe52ot

Unresolved? Entry and Link to

S70<i EeSH

 ination
Unresolved or

Broadcast? N

87.

Y
S76

Packet Process and
Addressed to Forward0Prewonetercncwennnnnnnnnnnnncnnennnnn7

Switch? Y }
tt

s7 C : !
$38

'
packet Send ARP

i IP (PX? Request on Ports }
Reqi 7 P ofDest. Routing '

Domain :
S% '

S8 PX : i
N S90 ‘ t:

Get Ethernet Get ARP i
Address for IPX response |---~-----~+

Server/Client

ss4 $9

$94

$96

FIG. 9
 

b NOACEx. 1015 Page 338

 



NOAC Ex. 1015 Page 339

U.S. Patent May27, 2003 Sheet 10 of 14 US 6,570,875 B1

 

  
 

 
 

 

 

GET LAST TWELVE BITS
OF UNRESOLVED

S100 ADDRESS
S104

$102

VALID ENTRY EXIST CREATE VALID HASH
FOR THIS HASH? ENTRY

S106|INCREMENT NUMBER
OF RECORDS IN HASH

ENTRY

S108 CREATE ADDRESS

RESOLUTION S114
S112 RECORD ENTRY

S110

SORT ADDRESS
STORE ADDRESS NUMBER OF RESOLUTION RECORD

RESOLUTION RECORD RECORDS > 1? ENTRIES ASSOCIATED
ENTRY WITH HASH

$120

CREATE ProTocoL| _Y
ENTRY 

  
  

S122

STORE PROTOCOL ENTRY IN S124
PROTOCOL ENTRY TABLE AT CREATE. NETWORK S118
INCREMENT ACCORDING TO ENTRY

PROTOCOL CARRIED BY PACKET
 

  
  
  

 LINK ADDRESS
STORE NETWORK RESOLUTION RECORD TO

ENTRY AND LINK To||DEFAULT PROTOCOL AND
S126 PROTOCOL ENTRY NETWORK ENTRIES

FIG.10

NOACEx. 1015 Page 339 



NOAC Ex. 1015 Page 340

U.S. Patent — May27,2003 Sheet 11 of 14 US 6,570,875 B1

 

 

$130

Extract last pvelve
bits of address

$132

Hash onto address

resolution hash using
last twelvebits

1$134 $136

$138

Get address resolution

record entry for this
address pointed to by

hash entry 
S144

S140

 
  
  

 

Get Protocol Offset
for this address and

¥ pointed to by address
resolution record

entry

 Address
resolution record

entry exist?

$146
$142

Get Protocol Entry by
incrementing from

Protocol Offset

according to protocol
carried by packet

 
$148

Get Network Entry
pointed to by

Protocol Entry
  
 

FIG. 11

NOACEx. 1015 Page 340

 



NOAC Ex. 1015 Page 341

WoaMmeae U.S. Patent May 27,2003 Sheet 12 of 14 US 6,570,875 B1

$150 S132

 Drop
Y Packet

FIG.12 sis N

Determine Port(s)
Associated With

Destination

S156 S158.

 
NOACEx. 1015 Page 341

 



NOAC Ex. 1015 Page 342

U.S. Patent May27, 2003 Sheet 13 of 14 US 6,570,875 B1

$180

Get Source and Dest.
Info from Packet

Header 
 
 
    

 

S182
Check Flow Table

for Entries for
Source and Dest.

(Fig. 11)

$184

re $186
. Forward Packet

Entries in Flow According to
Table for Source Flow Table

and Dest.? Y (Fig. 12)

N S190$188

Forward Packet

Dest. to Port Indicated
Unresolved? by Dest. Flow

Table Entry

Y

$192

Forward Packet on

Source Ports Indicated by
Unresolved?

Y

$196

Notify CPU

S200

 
Forward Packet

on All Ports 

& FIG. 13

fees

. NOACEx. 1015 Page 342

 



NOAC Ex. 1015 Page 343

U.S. Patent May27,2003 Sheet 14 of 14 US 6,570,875 BL

 
 
 

 
 
 

 

 

FROM FIG.7

$22 $214

 
 
 

  
 

CREATE FLOW
TABLE ENTRIES FOR

ADDRESS AND
RECORD PORT IN

 WINDOWS~95/NT
MULTICAST GROUP?

 

   
  N S210  

 
   

 

CREATE FLOW
TABLE ENTRIES FOR

ADDRESS AND
RECORD PORT IN

   APPLETALK
MULTICAST GROUP?

    
 

N $218

IP MULTICAST

GROUP $226

LEAVE

REPORT?

NOACEx. 1015 Page 343 
 



NOAC Ex. 1015 Page 344

US 6,570,875 B1
1

AUTOMATIC FILTERING AND CREATION
OF VIRTUAL LANS AMONGA PLURALITY

OF SWITCH PORTS

RELATED APPLICATION

This application is related to co-pending U.S.application
Ser. No. 09/058,335, filed Apr. 10, 1998, and entitled,
“Method And Apparatus For Multiprotocol Switching And
Routing,” commonly owned by the assignee of the present
application, the contents ofwhich are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to packet switches and
routers, and more particularly, to a switching and routing
method and apparatus capable of automatically filtering
flows of packets between switch ports allowing for creation
of a high performance hardware assisted firewall for Intranet
applications and automatically creating virtual LANs among
switch ports. In addition, the present invention describes a
mechanism to reserve bandwidth for endto end applications
and provide guaranteed quality of service (QoS) for them.

2. Description of the Related Art

Packet switches and routers forward data packets between
nodes in a network. However, securing machines and data
from unauthorized access is fast becoming a very important
issue for corporate networks. According to industry experts,
more than 70% of breaking are internal (ce. employees
stealing sensitive information from their own company).
Also HR department in a company would not want engi-
neers to get access to payroll data. This has created a need
for a high performance firewall to secure and separate
different networks. In conventional routers, this is done by
software which inspects every packet that is being routed
and determines whetheranyfilters have been configured for
that session. This information is typically manually config-
ured by a system administrator. However, the processing
Tequired to inspect packets and apply the appropriate filter
significantly reduces the packets rate through the router. The
rate further reduces if a large numberoffilters have been
configured.

Multimedia networking (voice and video on LAN/WAN)
Tequires Quality of Service guarantees. Protocols such as
Resource Reservation Protocol (RSVP), Real Time Protocol
(RTP), Real Time Control Protocol (RTCP) have been
defined to provide these services on LANs/WANs. Under-
lying hardware however needs to support prioritization of
traffic and bandwidth reservation for these protocols to
Operate. Network traffic contains normal and high priority
data. A good switch should be able to prioritize traffic in such
a way that while high priority traffic gets its share of
bandwidth, low priority traffic does not starve completely.
This is called Weighted Fair Queuing (WFQ). This invention
describes mechanisms to provide these services in hardware.

Likewise, virtual LANs (VLANs) are often desired for
controlling broadcast and multicast packet flows in com-
puter networks. Broadcast and multicast packets are typi-
cally forwarded onall ports of a switch and each node
Connected to the switch will have to process such packets.
Someswitches allow system administrators to manually set
up VLANs among groups of nodes such that broadcasts and
multicasts from nodes belonging to one group are confined
to that group. This reduces the numberofpackets that nodes
on the switched network must process. However, much

10

15

20

45

50

60

65

2

administrative overhead is required to create and maintain
VLAN groups, and to assign and update memberships in the
groups.

Accordingly, there remains a need in the art for a switch-
ing device that can support prioritization and QoS guaran-
tees of network traffic and/or create VLANs automatically
without any administrator intervention. The present inven-
tion fulfills this need.

SUMMARY OF THE INVENTION

An object of the invention is to provide a method and
apparatus that can forward packets to their destination at
high throughput rates without requiring substantial process-
ing overhead.

Anotherobject of the invention is to provide a method and
apparatus that can both switch and route packets with the
same minimal processing overhead.

Another objectof the invention is to provide a method and
apparatus that is capable of both switching and routing
packets at wire speed.

Anotherobject ofthe invention is to provide a method and
apparatus that is capable of wire-speed switching and rout-
ing of packets that are associated with all possible Layer 2
and Layer3 traffic protocols.

Anotherobject of the invention is to provide a method and
apparatus that provides wire-speed switching and routing
functionality in a switched internetwork, but does not
require reconfiguration of existing end stations or network
infrastructure.

Another object of the invention is to provide a method and
apparatus that provides wire-speed application of filters of
flows between nodes in a switched internetwork.

Anotherobject of the invention is to provide a method and
apparatus that provides wire-speed application of mirrors of
flows between nodes in a switched intermetwork.

Another object of the invention is to provide a method and
apparatus that provides wire-speed application of priorities
for flows between nodes in a switched internetwork.

Anotherobject of the inventionis to provide a method and
apparatus that enhances network security.

Anotherobject of the invention is to provide a method an
apparatus that reduces unnecessary networktraffic.

Anotherobject of the invention is to provide a method and
apparatus that provides wire-speed switch and routing func-
tionality while supporting application or networklevelfilters
for intranet security applications.

Another object of the inventionis to provide a method and
apparatus that provides wire-speed switch and routing func-
tionality while supporting VLANsthat are created automati-
cally with no administrator intervention.

Another objectof the inventionis to provide a method and
apparatus for wire speed switching and routing functionality
while supporting bandwidth reservation.

Another object of the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting multilevel priority queueing.

Another objectof the invention is to provide a method and
apparatus for wire speed switching and routing functionality
while supporting weighted fair queueing.

The present inventionfulfills these objects, amongothers,
by providing a method and apparatus for performing mul-
tiprotocol switching and routing. Incoming data packets are
examined and the flow (i.e., source and destination) with
which they are associated is determined. A flow table

NOACEx. 1015 Page 344

 



NOAC Ex. 1015 Page 345

US 6,570,875 B1
3

contains forwarding information that can be applied to the
flow.lf an entry is not present in the table for the particular
flow, the packet is forwarded to the CPU to be processed.
The CPU can then update the table with new forwarding
information to be applied to all future packets of the same
flow. When the forwarding informationis already present in
the table, packets can thus be forwarded at wire-speed. A
high speed static memory is preferably used to contain the
table. A dedicated ASICis preferably used to implementthe
engine for examining individual packets and forwarding
them accordingto the stored information. Decision-making
tasks are thus more efficiently partitioned between the
switch and the CPU so as to minimize processing overhead.

Information regarding filters, priorities, and VLANsis
maintained by processes executing on the CPU and are
programmed into the forwarding table for the hardware to
apply whenit detects a matching flow.

According to another aspect of the invention, Internet
Group Management Protocol (GMP) packets (for IP mul-
ticast control), Zone Information Protocol (ZIP) packets (for
AppleTalk) and NetBios & DLC/LLCpackets with multi-
cast addresses are forwarded to the CPU by the hardware.
The CPU can then create and update VLANs automatically
for those multicast groups in the forwarding table with no
administrator intervention. Once such VLANs are

established, packets destined for the detected multicast
groups are forwarded only on the ports whose hosts are
members thercof, preventing needless and burdensometraf-
fic from congesting other network segments and host con-
nections.

Afurther aspect of the invention provides mechanismsfor
administrators to reserve bandwidths and assign priorities to
traffic flows. Protocols such as RSVP can then be used to

automatically reserve bandwidth for certain flows. This
provides Quality of Service guarantees for traffic being
switched.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and advantages of the present
invention will become apparent to those skilled in the art
after considering the following detailed specification,
together with the accompanying drawings wherein:

HIG. 1 is a block diagram illustrating a packet switching
architecture in accordance with the present invention;

FIG. 2 is a block diagram illustrating a multiprotocol
switch of the presentinvention in an architecture such as that
illustrated in FIG. 1;

FIG.3 is a block diagram illustrating a configurationtable
of the present invention in a multiprotocol switch such as
that illustrated in FIG. 2;

FIG.4 is a block diagram illustrating a switch module of
the present invention in a multiprotocol switch such as that
illustrated in FIG.2;

FIG.5 is a block diagram illustrating a flow table of the
Present invention in a multiprotocol switch such as that
illustrated in FIG. 2;

FIG. 6 is a flowchart illustrating a method used during
Operation of a multiprotocol switch according to the present
invention;

FIG.7 is a flowchart illustrating a method used to process
data packets received in a multiprotocol switch according to
the present invention;

FIG.8 is a flowchart illustrating a method used to process
data packets according to Layer 3+ protocols in a multipro-
tocol switch according to the present invention;

 
 

15

30

40

45

55

65

4

FIG.9 is a flowchartillustrating a method used to process
unresolved Layer 3+ data packets received in a multiproto-
col switch according to the present invention;

FIG.10 is a flowchart illustrating a methodused to create
flow processing entries in a multiprotocol switch according
to the present invention;

FIG.11 is a flowchart illustrating a method used to resolve
flow processing information accordingto flow identification
information contained in data packets processed in a mul-
tiprotocol switch according to the present invention;

FIG. 12 is a flowchart illustrating a method used to
forward data packets according to flow processing informa-
tion programmedfor the particular flow with which the data
packets are associated in a multiprotocal switch accordingto
the present invention;

FIG. 13 is a flowchart illustrating a method used to
process data packets according to Layer 2 protocols in a
multiprotocol switch according to the present invention; and

FIG. 14 is a flowchart illustrating a method used to
automatically configure and update VLAN information in a
multiprotocol switch built according to the present inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A device and method capable of performing wire-speed
multiprotocol switching and routing of data packets between
nodes in a network is described in the aforementioned

related co-pending U.S. application Ser. No. 09/058,335.
FIG.1 is a block diagram illustrating a switch architecture
in accordance with the present invention, which switch
architecture is more fully described in the co-pending appli-
cation. It includes a multiprotocol switch 40 having N
input/outputports 50-1 . . . 50-N. The input/outputports can
be attached to nodesin a local area network (LAN) or they
can be attached to different network segments or different
networks in a wide area network (WAN) directly or via
routers. As explained in more detail in the co-pending
application, the multiprotocol switch has the ability to
forward packets among and between local nodes and exter-
nal networks attached to it at wire speeds, and in accordance
with a plurality of Layer 2 and Layer 3 protocols.

FIG. 2 further illustrates a multiprotocol switch 40 in
accordance with the principles of the invention. In addition
to input/output ports 50,it includes a switch module 60 and
a flow table 70. Switch module 60 further communicates

with a packet buffer 75, a CPU 80 and a shared memory 90.
Flow table 70 and shared memory 90 are mapped memory
spaces that are accessible by both switch module 60 and
CPU80. CPU 80 also communicates with a routing table 65,
a configuration table 85 and a system administrator 45.

Although shown separately for clarity, switch module 60
and flow table 70 are preferably implemented together as an
application specific integrated circuit (ASIC). Such an
implementation permits data packets to be switched between
ports 50 at wire speed in accordance with flows, filters and
priorities specified in flow table 70. However, other specific
implementations of switch module 60 and flow table 70 in
accordance with the invention will be apparent to those
skilled in the art after being taught by the following disclo-
sures of their logical functions and data structures, for
example.

CPU 80 can be implemented by a MIPS microprocessor
made by IDTInc.of Santa Clara, Calif., and shared memory
90 can be implemented bya fast static RAM (SRAM) such

NOACEx. 1015 Page 345

<a



NOAC Ex. 1015 Page 346

US 6,570,875 B1
5

as that manufactured by 1SSI. Packet buffer 75 for storing
packets can be implemented using Synchronous DRAM
(SDRAM) suchas that manufactured by Samsung, Inc. CPU
80 partitions packet buffer 75 on a periport basis. The
amount of memory allocated to each partition depends on
port speed. So, for example, a gigabit port is allocated more
memory than a 10/100 Mbps port.

Although not shown for clarity, it should be understood
that CPU 80 includes program and data memory for storing
programsthat are executed by CPU 80 and data needed by
those programs. Such data can include routing tables and the
like. Programs executed by CPU 80 can include conven-
tional routing update and costing functions implemented
with known protocols such as Routing Information Protocol
(RIP) for setting and maintaining conventional routing table
information in routing tables 65, as well as processes for
setting and maintaining system configuration information
for the network in configuration table 85 in accordance with
commands by system administrator 45, which system con-
figuration information can include routing domains for
example. Such conventional routing processes are in addi-
tion to the novel processes performed by the multiprotocol
switch of the presentinvention that will be described in more
detail below. However, a detailed description of such con-
ventional processes will not be given so as notto obscure the
invention.

Ports 50 are preferably RJ45 10/100 Mb ports, and can
include port modules suchas, for example, a 8x10/100 Mb
port module (100 Base TX), a 1-Gigabit port module, or a
4x100 Base FX port module.

The term “routing domain” is used in this document to
describe multiple ports (50-1 . . . 50-N) that belong to the
same IP or IPX network. All the ports that belong to a
routing domain have the same IP address and subnet mask
or same IPX address. Each routing domain represents a
virtual router port on the switch.

In the architecture shown in FIG. 2, data packets arrive at
ports 50-1 . . . 50-N. As will be described in more detail
below, switch module 60 continually monitors each of the
ports for incoming traffic. When a data packet arrives, it
checks the packet header for information that identifies the
flow to which the packet belongs. For example, a flow of
packets between two hosts in the network can be identified
by the Ethernet and/or IP/IPX addresses of the hosts, and
perhaps further by IP/IPX sockets and the protocol by which
the hosts are communicating. This fiow identification infor-
mation is extracted from the header of each packet that
traverses the network through the multiprotocol switch.
IP/IPX data packets are buffered in packet buffer 75 while
flow identification and forwarding processing is performed.

Software processes executing on CPU 80 handle inter-
facing with a system administrator 45 to retrieve, store and
Manage configuration information in configuration table 85.
The software processes and interfaces can be implemented
in many ways known to those skilled in the art, and so they
will not be described in detail here so as not to obscure the

invention. However, some of the contents of configuration
table 85 should be noted. In addition to conventional system
Configuration information such as routing domains, this
table includes informationrelatingto filters, priorities, band-
width reservations for applications and VLANsestablished
between ports and hosts of the network.

As further illustrated in FIG. 3, in addition to routing
domain settings 81-1 . . . 81-R,sets offilters 76-1 . . . 76-F,
Priorities 77-1... 77-P, and mirrors 78-1. . . 78-M, are
Maintained in configuration table 85. Also maintained in

10

15

20

30

35

45

65

6

configuration table 85 is a list of VLANs 79-1... 79-V,
whichlist includes each established VLAN and the members

thereof. Filters, priorities, mirrors and can be port-specific,
host-specific, application-specific, or protocol-specific. That
is, for example,a filter may be established between twoports
of the switch (e.g. forbid any communication between ports
Aand B), between twohosts connected to ports of the switch
(e.g. forbid any communication between host A having
Ethemet address X, and host B having Ethernet address Y),
between two applications running on hosts connected to
ports of the switch (e.g. forbid any telnet sessions between
hostsA and B), or between two hosts using a certain protocol
(e.g. forbid ICMP communications between IP hosts A and
B). Whenapriority level is assigned to a port, host,
application or protocol, packets associated therewith are
forwarded via a selected one of multiple priority queues, as
will be described in more detail below. A mirror permits
packets destined for one port, host or application to be
duplicated and forwarded on one or more ports.

In addition to the VLANs automatically created and
maintained by the present invention, as will be described in
more detail below, the list of VLANs 79-1 . . . 79-V allows
system administrators to manually create and maintain
VLANs,orto disable automatic creation of VLANs,by the
switch.

Routing domains 81-1... 81-R contain thelists of routing
domains established for the network and the members

thereof. For example, a typical routing domain configuration
for IP networks involves assigning ports io routing domains
and specifying a separate IP address and subnet mask for
each routing domain. For IPX networks, administrators need
to configure an IPX network address and a frame type for the
routing domain in addition to specifying ports that belong to
the routing domain. Such configuration information for IP
and IPX networks are maintained and updated by processes
executing on CPU 80 and stored as routing domains 81-1...
81-R in configuration table 85. Each individual port can
belong to only one routing domain. In accordance with an
aspectof the invention that will be described in more detail
below, the routing domain configurations are used to auto-
matically configure mules in flow table 70 such that IP and
IPX flows of packets from nodes belonging to the same
routing domain are switched at Layer 3+ at wire speed,
while IP and EPX flows of packets from communicating
nodes on different routing domains are routed at wire speed
at Layer 3+.

FIG. 4 further illustrates a switch module 60 in accor-
dance with the architecture illustrated in FIG. 3. As can be

seen, it includes switch engine 100, address registers 105,
domain configuration registers 115, priority level configu-
ration registers 125, CPU interface 110, port interfaces
120-1 . . . 120-N with associated I/O queues, and memory
interface 130. As is further apparent from thefigure, switch
engine 100 accesses information contained in flow table 70,
address registers 105, domain configuration registers 115
and priority level configuration registers 125, and manages
packets buffered in packet buffer 75. CPU interface 110
communicates with CPU 80, thereby providing communi-
cation means between CPU 80 and switch engine 100,
address registers 105, domain configuration registers 115,
priority level configuration registers 125, port interfaces
120-1. . .120-N, and memory interface 130. Port interfaces
120-1 . . . 120-N respectively communicate with ports
50-1 .. . 50-N, and memory interface 130 manages access
to shared memory 90. It should be noted that in this
configuration, both switch engine 100 and CPU 80 (via CPU
interface 110 and memory interface 130) can forward pack-

NOACEx. 1015 Page 346

 



NOAC Ex. 1015 Page 347

US 6,570,875 B1
7

ets on ports 50-1 . . . 50-N via port interfaces 120-1...
120-N and their associated I/O queues, although in the
preferred embodiment, switch engine 100 can forward pack-
ets at wire speeds with no intervention from CPU 80.

Switch engine 100 performs the flow identification and
processing operations for forwarding packets received via
port interfaces 120-1 . . . 120-N.It accesses flow table 70 to
look up the forwarding information associated with the
flows. Address registers 105 provide address information to
assist switch engine 100 in locating appropriate flow pro-
cessing information in flow table 70. The contents of these
registers can be configured by CPU 80 via CPU interface
110,and include the base Ethermet address of ports 50-1...
50-N.

Domain configuration registers 115 provide routing
domain configuration information in accordance with rout-
ing domains 81-1 . . .81-R established in configuration table
85. For each port, separate IP and IPX routing domain
identifiers associated therewith are stored in domain con-

figuration registers 115, which registers are configured by
CPU 80 via interface 110. Routing domain configuration
information for IP and IPX networks is maintained and

updated by processes executing on CPU 80 and stored as
routing domains 81-1 . . . 81-R in configuration table 85.
CPU 80 then uses this configuration information to config-
ure domain configuration registers 115 via interface 110.

Although shown singly for clarity, the I/O queue associ-
ated with each of port interfaces 120-1 . . . 120-N includes
several queues, cach having a corresponding priority level
that can be configured by the software running on CPU 80.
Switch engine 100 forwards packets destined for one of
ports 50-1 . . . 50-N using the appropriate queue, in accor-
dance with priority rules configured in the flow table. The
numberof times in a service interval packets in each queve
wiil be processed is programmed such that higher priority
queues get serviced more frequently than lower priority
queues. Eachflow can be assignedaparticular priority level,
and thus have a desired QoS,as will be explained in more
detail below. Priority level configuration registers 125 pro-
vide service level settings for each respective level of
Priority correspondingto the I/O queuesassociated with port
interfaces 120-1 . . . 120-N.

FIG. 5 further illustrates the contents of flow table 70. In

this example, flow table 70 includes address resolution hash
140,address resolution record table 150, protocolentry table
160 and network entry table 170. Flow table 70 further
includes priority tags 190, filter tags 200 and mirror tags
210. The contents of these tables, and their interrelations,
will be described in more detail below in connection with the

Creation and maintenance of flow table entries according to
the invention. Switch engine 100 has read access of the
tablesin flow table 70, and CPU 80 has read and write access
to the tables.

The operation of the multiprotocol switch of the present
invention will now be described in more detail with refer-
ence to FIGS.6 to 14.

After powerup (step S2), and before any packets are
received, flow table 70 is empty. Configuration table 85
contains routing domain,filter, mirror, priority, and VLAN
configurations that have been established already for the
Ociwork, and can be updated at any time by a system
administrator via software processes executing on CPU 80.

In addition to switching and routing packets, the multi-
Protocol switch of the present invention performs tasks that
are performed by conventional switches and routers such as
Toute determination, routing table updates, and the like.

20

55

60

65

8
Such tasks are well known to those skilled in the art and are

not depicted in the overall operation of the switch, as
illustrated in FIG. 6, so as not to obscure the invention. Of
note, however, are the unique capabilities of the multipro-
tocol switch with respect to multicast group managementfor
IP, AppleTalk and NetBios networks.

In accordance with an object of the invention, virtual
LANsare automatically created for every IP multicast group
associated with nodes and segments attached to the switch.
Upon powerup (step S2), software processes executing on
CPU 80 cause the multiprotocol switch to send out host
membership query messages (IGMP messages addressed to
224.0.0.1) (step S4). Hosts attachedto the switch that belong
to multicast groups send IGMP host membership report
messages. The switch can thus determine all the multicast
groups to which nodes attached to it belong and forward IP
multicast packets within multicast groups appropmiately.

The switch then enters into an operational state wherein
switch engine 100 continually monitors for data packets
arriving on each of ports 50 via port interfaces 120-1. . .
120-N (step S6). When a packet is received (step S8), it is
processed in accordance with the algorithm further illus-
trated in FIG. 7 (step S10). CPU 80 also periodically sends
out IGMP queries (step S12 and step S14) to determine all
active IP multicast groups to which hosts attached to the
ports of the switch belong and keepsits multicast group table
updated. Moreover, hosts send IGMP packets to join and
leave IP multicast groups. These IGMP packets are inter-
cepted by switch engine 100 and sent to CPU 80. CPU 80
can therefore have up to date information about IP multicast
group membership.

Packet processing and switching in the multiprotocol
switch of the invention, that can be included in step S10 of
FIG. 6 for example,is further illustrated in FIG. 7.

Whena packetis received, switch engine 100 first exam-
ines the packet headerand if the packet is a multicast packet
(step $22), the packet is forwarded to CPU 80 for special
processing to automatically create and/or update VLAN
information (step S24). Whether or not it is a multicast
packet, switch engine 100 keeps the packet for further
processing.

Layer 3+ switching and routing can be disabled for the
system by setting a flag in configuration table 85, for
example. In that event, each packet traversing through the
port is processed and switched as a Layer 2 packet, regard-
less of the protocol carried by the packet. Accordingly, if
Layer 3+ switching and routingis disabled (as determined in
step S24), processing branchesto step S26.

All data packet headers include the source and destination
Ethernet addresses of the packets. The protocol used by the
communicating hosts can also be determined from the
Ethemet data packet header. For example, Ethermet Type II
packets contain a type field that explicitly indicates the
protocol(such as IP, IPX, ARP, RARP and LAT) that packet
belongs to. Moreover,it is known that different protocols use
different Ethernet frame formats. For example, IP uses
Ethernet II or SNAP packet formats. IPX can use all four
Ethernet formats (depending on configuration),AppleTalk (a
trademark ofApple Computer Corp., Cupertino, Calif.) uses
the SNAP packet format and NetBios typically uses the
Ethemet 802.2 LLC format. The protocol carried by the
packet thus can be leamed either explicitly or implicitly
from the packet header.

Layer 4 protocols such as Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) are built on top
of the Layer 3 IP protocol. In addition to the information

NOACEx. 1015 Page 347

 



NOAC Ex. 1015 Page 348

%

 
 

US 6,570,875 B1
9

above, the headers for these protocols further contain source
and destination socket numbers, which can identify indi-
vidual applications such as FTP, Telnet, e-mail and HTTP,
running on IP hosts. Specifically, the protocol carriedfield in
the IP header identifies the protocol carried by the IP
datagram. For example, if the protocol carried field has a
value of 6, this indicates that the IP datagram carries a TCP
packet, whereas a value of 17 indicates that a UDP packet
follows the IP header.

The IPX protocol is also at Layer 3 of the OSI model.
Most Novell NetWare (trademark of Novell, Inc. of Provo,
Utah) applications run on top of IPX. IPX headers contain
source and destination socket numbers which identify appli-
cations running on the hosts, in addition to IPX source and
destination network and [PX source and destination node

addresses, which identify end-to-end IPX hosts. Different
Novell Netware Layer 4 protocols use the IPX datagram to
send and receive packets. The protocol field in the IPX
header indicates which protocol (SAP or RIP) the IPX
datagram is carrying.

As evident from the foregoing, flows of packets associ-
ated with IP and IPX protocols can thus be identified by their
IP/IPX source and destination node and/or socket
information, and those associated with other protocols can
be identified by their source and destination Ethernet
addresses. In this example of the invention, flows ofpackets
associated with IP and IPX protocols, as well as ARP and
RARP packets, are processed by the multiprotocol switch to
support special Layer 3+ processing and/or routing across
different networks. Accordingly, as shown in FIG. 7, switch
engine 100 determines the protocol type from the packet
(step S28). As shown above, this may be explicitly defined
in the header as in the Ethernet Type II type field or may be
implicitly derived from other information in the IP or IPX
header. If the packet is not an IP/IPX or ARP/RARP packet
(determined in step S30), processing branches to step S26
and it is processed and switched as a Layer 2 packet,
regardless of the protocol carried by the packet. Otherwise,
processing advances to step S32 and the packet is processed
in accordance with Layer 3+ protocols.

FIG. 8 further illustrates switch engine processing of
Layer 3+ packets, which processing can be included in step
S32 of FIG. 7 for example.

Switch engine 100 first extracts the address information
for both the source and destination ends of the flow with

which the packetis associated (step S40). As shown above,
headers of packets associated with IP and IPX protocols
include IPAIPX source and destination node addresses and
may further include socket numbers.

Switch engine 100 then checks to see whether entries
exst in the flow table for both ends ofthe flow (step S42).
If entries exists for both ends of the flow (determinedin step
S44), the packet is forwarded at wire speed in accordance
with any filters, mirrors, priorities or VLANsestablished in
the flow table entry (step S46).

If flow table entries do not exist for both ends ofthe flow,
the packet is “unresolved.” For unresolved IP/IPX and
ARP/RARP packets, switch engine 100 forwards or broad-
Casts the packet as best it can under the circumstances. If
only the destination end of the flow was unresolved
(determined in step $48), a flow table entry exists for the
Source end of the flow, containing a broadcast enable entry
for the source. Accordingly, switch engine 100 forwards the
Packet on the port(s) indicated by the broadcastenable entry
associated with the source (step S56).

If only the source end of the flow is unresolved, a flow
table ¢ntry exists for the destination.In this situation, switch

20

45

50

5S

60

6S

10

engine 100 notifies CPU 80 via CPU interface 110 thatthe
packet is unresolved (step S56). The message to the CPU
contains the source and destination addresses (and possibly
socket numbers), the port on which the packet arrived, and
an indication that the’source endof the flow was unresolved.

As will be described in more detail below, CPU 80 will
process the packet, andif appropriate, will create entries in
flow table 70 containing forwarding information and links to
information relating to any previously-configured filters,
Priorities, mirrors or VLANs corresponding to the unre-
solved ends of the flow.

If both the source and destination ends of the flow are

unresolved, switch engine 100 notifies CPU 80 via CPU
interface 110 that the both ends of the flow were unresolved

(step S58). Moreover, switch engine 100 forwards the packet
on all ports indicated by the default broadcast enable entry
for this protocol. As will be explained in more detail below,
default entries exist for IP, IPX, and non-IP/IPX types of
flows. Switch engine 100 can determine which ports on
which to forward the packet according to the default broad-
cast enable entry, and causes the packet to be forwarded to
a default I/O queue (typically one with lowest priority)
associated with each of the indicated ports (step $60).

After the unresolved packet is broadcast or forwarded in
steps S50 or S60, the destination node, if attached to the
switch, will respond. The response packet will be processed
as described above anda flow table entry for the responding
node will be created by the CPU as in step S56. At that point,
flow table entries for both ends of the flow will have been

created so that any subsequent packets belonging to that
flow will be forwarded by switch engine 100 at wire speed.

CPU processing for unresolved IPAIPX or ARP/RARP
packets, as initiated in step S48 of FIG. 8 for example, is
further illustrated in FIG. 9.

First, CPU 80 determines whether the source of the flow
is unresolved, from the message sent by switch engine 100
for example (step $70). If so, processing advancesto step
S72, where a flow table entry for the source of the flow is
created by software executing in CPU 80, in accordance
with any filters, mirrors, and priorities associated with the
source node (that may have been configured by the network
administrator) in flow table 70.

Processing then advances to step S74, where CPU 80
determines whetherthe destination of the flow is unresolved,
from the message sent by switch engine 100 for example.If
not, then the source was the only unresolved portion of the
flow, and so the packet can be forwarded in accordance with
the flow table information (step S76).

If the destination of the flow is unresolved, as determined
in step S74, processing continues to step S78, where CPU 80
determines whether the packet is addressed to the switch.
Such packets can include, for example, ARP packets from
hosts that are attempting to get the Ethemet address of their
IP gateway. Since the IP address of the gatewayis actually
associated with a port of the switch, such ARP requests must
be processed by the switch and responded to appropriately
by, for example, sending an ARP response back to the
requesting host containing the Ethernet address ofthe gate-
way interface (step S80). Such packets can also include
responses to ARP requests sent by CPU 80 to determine the
Ethernet address of the host for programmingthe swap fields
of a flow table entry, as will be described in more detail
below in connection with the processing of steps S88 and
S90. The dashed line connecting steps S80 and $90 in FIG.
9 thus represents the logical processing flow when an ARP
request sent by CPU 80 in step S88 is responded to by the

NOACEx. 1015 Page 348



NOAC Ex. 1015 Page 349

US 6,570,875 Bi
11

host at the requested IP node, which processing will be
further described below.

If the destination of the flow is unresolved and the packet
is not addressed to the switch, a flow table entry needs to be
created for the destination of the flow. First, it must be
determined whether the flow requires switching or routing.
This is determined in step S62. If the destination Ethernet
address of the packet is the Ethernet address of the port of
the switch on which the packet arrived (as determined from
address registers 105) and the destination IP or IPX address
js not the IP/IPX address of the switch, then the packet needs
to be routed. If the destination Ethemet address is not the
Ethemet address of the port of the switch, CPU 80 further
looks up the routing domains configuredin tables 81-1...
81-R in configuration table 85. If a packet is going from
aport in one routing domain to a port in another routing
domain,then the packet will require routing. Otherwise,it is
switched. This is required to support IP multicast routing, as
will be described even further below.

If it is determined in step S62 that the unresolved desti-
nation is in another network, the Ethemet address of the
destination needs to be determined to perform routing. That
is, during routing, switch engine 100 needs to replace the
source Ethernet address in the packet with the Ethernet
address of the switch port on which the packet is being
forwarded, and the destination Ethernet address of the
packet needs to be replaced by the Ethernet address of the
destination node orthe router en route to the destination.It
is this destination Ethernet address that needs to be deter-
mined.

If the packet is an IP packet (as determined in step S86),
CPU 80 determines the IP network that the destination

belongs to and determines the port(s) that connect to or
Ok belong to that network. CPU 80 can dothis, for example, by
ee cross-referencing the destination IP address with the con-
avs tents of routing table 65 (created statically by an adminis-

trator or dynamically learned using routing protocols such as
oN RIP and OSPF). If no such network exists, CPU 80 sends an

ICMP redirect message to the host indicating tbat the
network was unreachable.If it finds an entry in routing table
65 for the network, CPU 80 sends an ARP requestpacket on
all the ports belonging to that network (step S88). The
destination or next hop sends an ARP response containingits
Ethemet address. Switch engine 100 sends this response to
CPU 80 (step S48 in FIG. 8). CPU 80 extracts the Ethernet
address contained in the response packet, and records the
port on which the packetarrived (step S80 and step S90). For

% further information regarding binding machine level
fe addresses with network level addresses using ARP, see
& generally Douglas E. Comer and David L. Stevens, Inter-
¢.Bctworking with TCP/IP—Vol.I]: Design, Implementation,
petod Internals, 1994, Chapter 4, pp. 39-59.

If the packetis an IPX packetthat needs to be routed and
ne destination address is unresolved (as determined in steps

4. and S86), the Ethemet address of the destination is
ysrmined using IPX RIP information in routing tables 65
pintancd by CPU 80 (if the destination is a Netware

Eve ). If the destination is a Netware client, then the
punation Ethemet address is already known. In cither
put, the Ethemet address associated with the IPX desti-

addressis determined in step $92. For further infor-
s n regarding route determination and updating using

pee See generally IPX Routing Guide, published by Novell
On

 

 
 
 

 
 

 
 

 
 

 
80 then createshe fi a flow table entry for the destinationne How (step $94) and programs the Ethernet address

30

45

65

12

swapfield of the entry with the Ethernet address information
determined in the preceding steps (step S96).

Processing for creating flow table entries for unresolved
packets, as performed in steps S72 and S94 of FIG. 9 for
example, is further illustrated in FIG. 10.

First, in step S100, CPU 80 extracts the last twelve (least
significant) bits (0-11) of the Ethemetor IP/IPX address that
could not be resolved by switch engine 100. CPU 80 uses
these twelve bits as a hash into flow table 70 to determine

whether an address resolution hash entry exists in address
resolution hash table 140 for the unresolved address (step
S102). The address resolution bashentry is used as a starting
link for all forwarding and other packet processing infor-
mation associated with the node corresponding to the unre-
solved address.

Separate hash areas are maintained for Ethemet, IP and
IPX address tables. Each hash entry is 32 bits long and has
a format as shown below (bit positions of each field shown
in parentheses):

 
Hash Ac-

ceased (31)
Record. Offset

(27-10)
Number of

Records (9-2)
Record Link No Entries

Valid (1)=Valid (0)

The Hash Accessed field indicates whether this hash has

been accessed by switch engine 100. This field can thus be
used to age out hashes using the Least Recently Used (LRU)
algorithm, for example. Aging software executing on CPU
80 initially sets this bit on all the hash entries. When a node
associated with this bash entry sends data on the network,
switch engine 100 clears this bit. The aging software can
later and/or periodically delete bash entries that do not have
the Hash Accessed bit cleared.

The Record Offset field contains the address offset from
the Base Record Address of address resolution record table

150 at whichthe first record entry for the group of addresses
that map to this hash is stored. The first address resolution
record entry associated with this hash will thus reside at
location (Base Record Address+Record Offset). The Base
Record Address is stored in a register within address regis-
ters 105. The Record Offset field is originally set to zero, but
CPU 80 updates it with the offset of the address resolution
record entry forthis flow, after such entry is stored in address
resolution record table 150, so as to link it to this bash entry.

The Number of Records field indicates the number of

addresses (minus one) that the switch bas learned mapto this
hash.This field is originally set to zero,but is updated when
CPU 80 creates additional address resolution record entries
that are linked to this hash.

The Record Link Valid field, when set, indicates that the
data stored at location (Base Record Address+Record
Offset+(Number of Recordsx2)+2) is actually a Link Entry.
Since each hash can only point to 128 address resolution
recordentries (7 bit field), this bit can be usedto increase the
numberof records for this hash value.If this bit is not set,
and the No Entries Valid bit is also not set, then the data
stored at (Base Record Address+Record Offset+(Numberof
Recordsx2)) is the last possible address resolution record for
this particular bash entry.

The No Entries Valid bit indicates that there are no valid

addresses that mapto this hash. This bit is originally set, but
is cleared when CPU 80 creates an address resolution record

correspondingto this hash entry.
Accordingly, in step S102, when CPU 80 next determines

whether a valid hash entry exists in address resolution hash

NOACEx. 1015 Page 349



NOAC Ex. 1015 Page 350

US 6,570,875 B1
13

140 at the position corresponding to the twelve bits of the
unresolved address, it inspects the No Entries Valid field of
the entry. If the bit is set, CPU 80 clears it and all otherbits
in the entry, thereby creating a valid bash entry at the
position in address resolution bash 140 correspondingto the
unresolved address (step $104).

CPU 80 next increments the Numberof Records field in
the hash entry to indicate that an additional address resolu-
tion record entry for this hash will be created (step $106). If
the number of records that will exist for this hash exceeds
the field size of the Number of Records field, that field is
decremented and the Record Link Validfield bit is set.

Processing advances to step S108, where CPU 80 creates
an entry in address resolution record table 150 for the host
corresponding to the unresolved address. The format of an
address resolution record entry is shown below.

 

Protocol Offset (31-18) Ethemet Address bits 15—12,
23-16, 31-26 (17-0)OR

. IP/LPX Address bits 15-12,
ae: - 23-16, 31-26 (17-0)

. wan Port Priority Mirror Ethemet Address bits 25-24,
_— Number Tag Addr—_Enable 39-32, 47-40 (17-0)

(31-23) (22-19) (18) OR
4 IP/IPX Address bits 25-24 and

: Socketbits 0-15 (17-0) 

CPU 80fills the Address fields with the remaining 36 bits
of the unresolved address that were not used as the initial

hash. For non-IP/IPX packets, CPU fills these fields with the
». Femaining most significant bits of the Ethemet address

Contained in the unresolved entry message from switch
‘engine 100. For IP and IPX packets, CPU 80fills these fields

with the remaining most significant bits of the IP/IPX
hs: widiress and the host application socket number. If no special
¥.¢onfigurations (filter, mirror or priority) have been config-

pred for the host application, CPU 80inserts a “don’t care”
f yaluc of bex Oxffff for the socket numberto indicate that the
aacket numberis not used to identify the IP/IPX flow with
¥awhich this entry is associated. Moreover, if the protocol

ich as ICMP, IGMP)carrying the packet does not use
socket numbers a “don’t care” value is used for the socketauc.

bathePort Numberfield indicates the port (50-1. . . 50-N)
gexbich this Ethemet (or IP or IPX) address resides. CPU
peiiiis this field with the port number contained in the
pesolved entry message from switch engine 100.
xe Protocol Offset field indicates the offset from the
Protocol Address at which the entries in the Protocol
; pfor each protocol]associated with this flow are stored.
meese Protocol Address is stored in a register in address
wets 105. The protocolthe packet belongs to is used as
Aeement from the Protocol Offset to point to the
a entry. The increments for each protocol are
men a Tegister in address registers 105. The address of
pry in the Protocol Table for the flow associated with
Ss resolution record will thus be Base Protocol
we+Protocol Offset+Protocol Increment. If and when

fe creates a protocol table entry forthis flow, explained
Pdetail below, CPU 80 fills the Protocol Offset field
pre Protocol entry to this address resolution record.

r ot Tag Addr field provides the address to one of
d is Priority tags 190. The Base Address forpriority

ee1°Stored in a register in address registers 105.
My, the address to the Ptority tag field for this flow

 
 
 

 

 
 
 
 
 

 
 
 
 
 

 

 

Bs¢
r

45

55

60

65

14

is located at Base Address+Priority Tag Addr. CPU 80
initially sets the Priority Tag Addr field to zero. If priorities
are configured for this flow, as will be explained below, a
priority tag will be configured, priority processing will be
enabledbysetting a bit in the Protocol Offset entry, and the
address to the configured priority tag will be programmedin
this field to link the priority tag to the address resolution
record entry.

The Mirror Enable field qualifies the mirror tag (tag
address found in the protocol entry).If this bit is set, mirror
processing is enabled for this flow. CPU 80 initially sets this
bit to zero. If mirrors are configured for the flow, as
explained in more detail below, a mirror tag will be
configured, and the mirrors will be enabled by setting this
bit.

After creating the address resolution record for the unre-
solved portionof the flow, processing advancesto step S100,
where CPU 80 determines how many address resolution
records now exist for this hash by examining the Number of
Records field in the bash entry. If this is the first address
resolution record entry created for this hash, CPU 80 simply
stores the address resolution record entry it created in
address resolution record table 150 at the address corre-

sponding to Base Record Address+Record Offset (step
S112). It then links this entry to the address resolution hash
entry by storing the address offset from the Base Record
Address where the entry is stored in the Record Offset field
of the hash.

If it is determined in step S110 that there are more than
one address resolution record entries for this hash, CPU 80
sorts the existing entries with the newly created entry in
order of the remaining address bits of the unresolved flow
address, and stores them accordingly (step S114). The
entries are already linked to the address resolution hash
entry by the previous programming of the Record Offset
field.

Processing then advances to step S116, where CPU 80
determines whether ‘any special processing has been config-
ured or is otherwise required for this flow. This includes
determining whether any filters, mirrors, priorities or
VLANsare associated with this flow. CPU 80 does this, by
cross-referencing the flow identification information in the
unresolved packet with the entries in configuration table 85.

If it is determined in step S116 that no filters, mirrors,
priorities, VLANs or swap addresses need to be pro-
grammedfor this flow (i.e. routing is not configured for the
switch), the address resolution record is linked to a default
set ofprotocol entries whichareall linked in turn to a default
network entry (step $118). If this is a TCP, UDP or IPX
packet with a socket number, the socket numberportion of
the remaining address bits in the address resolution record
entry for this flow will be set to the “don’t care” value of
Oxffff. The default network entry will be described in more
detail below.

Otherwise, if it is determined in step S116 that this flow
requires special handling, unique entries in protocol table
160 and network table 170 for the flow must be created, and
processing by CPU 80 continues byfirst creating a protocol
entry (step S120).

The address pointed to by the Protocol Offsetfield of the
address resolution record indexesa list ofentries in protocol
table 160. Different filters, mirrors and priorities can be
established between two nodes and/or processes depending
onthe particular protocol used for communication between
them. The protocol increment for the particular protocol
(provided by address registers 105) points to the appropriate

NOACEx. 1015 Page 350



NOAC Ex. 1015 Page 351

15

set offilters, etc. for the flow, as indicated by a 32-bit entry
in the protocol table, having the following format:

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fitr Mirror Filter Priority B/W Priority Network
Addr Addr Enable Queue (18-15) Enable Offset

(31-27)|(26-23) (22) (21-19) (14) (13-0) 

The Fitr Addr field provides the address to one of the 32
32-bitfilter tags 200. The Base Address forfilter tags 200 is
stored in a register in address registers 105. Accordingly, the
address to the filter tag for this flow is located at Base
Address+Fltr Addr. CPU 80initially sets the Fltr Addr field
to zero.If filters are configured for this flow, CPU 80 will
createafilter tag in filter tags 200 and program the address
of the tag within filter tags 200 in this field to link the
configured filter tag to the protocol entry. CPU 80 deter-
mines whether anyfilters are configured for this flow by
cross-referencingthe filter tables 76-1 . . . 76-F in configu-
ration table 85 with the flow identification information for
this side of the flow.

Each 32-bit filter tag contains 8 bits of veto information
and 24 bits of match information. CPU 80 configures filter
tags for each side (source and destination) of the flow to be
filtered. Ifpackets belongingto the flow are to be blocked (as
in firewalling), CPU 80 configures the filter tags for the
source and destination sides of the flow so that their veto bits

do not match andtheir match bits do match. For example,if
a firewall is established between a first network having
nodes A, B and C and a second network having nodes D, E
and F, CPU 80 may configure the filter tags for nodes A, B
and C suchthat they have match bits of 0x000001 and veto
bits of 0x02, while nodes D, E and F are configured with
filter tags having match bits of 0x000001 and veto bits of
0x03. Accordingly, nodes A, B and C will be able to
communicate with cach other, but not with nodes D, E and
F, whoare also able to communicate with each other. Now
assume that node C in the first network is to be given the
privilege of communicating with nodes in the second net-
work. This can be done by changing its match bits to
0x000002. Now node C will be able to communicatewith all
nodes in both networks.

The Mirror Addr field provides the address to one of the
16 16-bit mirror tags 210. If the mirror enable bit in the
address resolution record linked to this protocol entry is set,
mirroring is enabled for flows to which this node belongs.
The Base Address for mirror tags 210is stored in a register
maddress registers 105. Accordingly, the address to the
Add. tag for this node is located at Base Address+Mirror

CPU 80 determines whether any mirrors are configured
; or this flow by cross-referencing the mirror tables 78-1 . . .

: -M i configuration table 85 with the flow identification
: information for this side of the flow. lf any of the established
Mirrors correspondto this flow, one of the 16 16-bit mirror
p. lags 210 will be configured for it. Each mirror tag field
f, Contains 1 bit of match information. CPU 80initiallysets the

t Addr field to zero. If traffic belonging to the flow is
murored on another port(s), CPU 80 sets the mirror

iebit in the address resolution entry for cach end of the
Sof theneeures a tag in mirror tags 210, and links both ends
:Of both Ow to the sametag byfilling the Mirror Addr field
E: conf Tespective protocol entries with the address of the
baad es)Sa in mirror tags 210 (offset from the Base
: combi Witch engine 100 can thereafter locate the tag by
E ining the Mirror Addr field with the Base Address for

E enab

  
 

 

25

30

35

40

45

50

55

60

65

US 6,570,875 B1
16

mirror tags 210 which is stored in a register in address
registers 105. The port(s) on which the flow is to be mirrored
is configured in the Mirror Entry of the network entry linked
to this protocol entry (described below).

The Priority Enable field qualifies the priority tag
(addressed by the Priority Tag Addrin the address resolution
record entry correspondingto this flow). If this bit is set, the
flow is processed at a higher priority. CPU 80 initially sets
this bit to zero. If priorities are configured for this flow, a
priority tag will be configured, priority processing will be
enabled by setting this bit, and the address to the configured
priority tag within priority tags 190 will be programmed in
the Priority Tag Addr field of the address resolution record
entry linked to this protocol entry to link the priority tag to
the address resolution record entry.

CPU 80 determines whether any priorities are configured
for this flow by cross-refereneing the priority tables 77-1...
77-P in configuration table 85 with the flow identification
informationforthis side of the flow. If any of the established
priorities correspond to this flow, a priority tag will be
configured for it. Each priority tag contains 1 bit of match
information. If packets belonging to the flow are to be
forwarded with priority, CPU 80 enables priority by setting
the Priority Enable field in the protocol entries of both ends
of the flow, configures a priority tag in priority tags 190, and
links the address resolution records of both ends of the flow

to the same configured priority tag. The level of priority
associated with this flow is determined by the Priority Queue
field and the service level for that queue programmed in
priority configuration registers 125.

The Priority Queuefield is valid if the Priority Enable bit
is set for the flow. CPU 80 initially sets this field to zero.If
2 priority is configuredfor this flow, CPUfills this field with
the priority level with which all packets belonging to this
flow will be forwarded by the switch. For example,if eight
levels of priority are supported, there will be eight 1/0
queues associated with each port 50-1 . . . 50-N, and this
field will indicate which one of the queues into which
packets belonging to this flow will be placed.

Each queve’s correspondingpriority level is user config-
urable. That is, a system administrator can program the
number of times per service interval a queue having that
priority level should be serviced on a system wide basis.
This configuration is stored in priority level configuration
registers 125. One such register exists for each priority
level/queue. For example,if a value of 5 is programmed into
priority configuration register for priority level 4, the queue
corresponding to that priority level will be serviced 5 times
in a service interval. The service interval is determined by
adding togetherall the priority level values programmedinto
each priority configuration register. Weighted Fair Queueing
is implemented by servicing the queues with equal priority
after servicing the queues in accordance with established
Priorities (i.e. after all the queues are serviced per the
Ptiorities in priority level configuration registers 125, ser-
vice queue 1, once, queue 2 once and so on until all the
queues are serviced). This ensures that even the lowest
priority queues are serviced once every service interval.

After creating the protocol entry for this unresolved
portion of the flow, CPU 89 storesthe entry in protocol entry
table 160 at the Protocol Increment associated with the

protocol used by the hosts of this flow, which incrementis
referenced to the Protocol Offset for this flow. Then CPU 80
links the protocol entry with the address resolution record
entry for this flow by writing the Protocol Offset from the
Base Protocol Address where this record is stored in the
Protocol Offset field in the address resolution record entry
(step $122).

NOACEx. 1015 Page 351

 



NOAC Ex. 1015 Page 352



NOAC Ex. 1015 Page 353



NOAC Ex. 1015 Page 354



NOAC Ex. 1015 Page 355



NOAC Ex. 1015 Page 356



NOAC Ex. 1015 Page 357



NOAC Ex. 1015 Page 358



NOAC Ex. 1015 Page 359



NOAC Ex. 1015 Page 360



NOAC Ex. 1015 Page 361



NOAC Ex. 1015 Page 362



NOAC Ex. 1015 Page 363



NOAC Ex. 1015 Page 364



NOAC Ex. 1015 Page 365



NOAC Ex. 1015 Page 366



NOAC Ex. 1015 Page 367



NOAC Ex. 1015 Page 368



NOAC Ex. 1015 Page 369



NOAC Ex. 1015 Page 370



NOAC Ex. 1015 Page 371



NOAC Ex. 1015 Page 372



NOAC Ex. 1015 Page 373



NOAC Ex. 1015 Page 374



NOAC Ex. 1015 Page 375



NOAC Ex. 1015 Page 376



NOAC Ex. 1015 Page 377



NOAC Ex. 1015 Page 378



NOAC Ex. 1015 Page 379



NOAC Ex. 1015 Page 380



NOAC Ex. 1015 Page 381



NOAC Ex. 1015 Page 382



NOAC Ex. 1015 Page 383



NOAC Ex. 1015 Page 384



NOAC Ex. 1015 Page 385



NOAC Ex. 1015 Page 386



NOAC Ex. 1015 Page 387



NOAC Ex. 1015 Page 388



NOAC Ex. 1015 Page 389



NOAC Ex. 1015 Page 390



NOAC Ex. 1015 Page 391



NOAC Ex. 1015 Page 392



NOAC Ex. 1015 Page 393



NOAC Ex. 1015 Page 394



NOAC Ex. 1015 Page 395



NOAC Ex. 1015 Page 396



NOAC Ex. 1015 Page 397



NOAC Ex. 1015 Page 398



NOAC Ex. 1015 Page 399



NOAC Ex. 1015 Page 400



NOAC Ex. 1015 Page 401



NOAC Ex. 1015 Page 402



NOAC Ex. 1015 Page 403



NOAC Ex. 1015 Page 404



NOAC Ex. 1015 Page 405



NOAC Ex. 1015 Page 406



NOAC Ex. 1015 Page 407



NOAC Ex. 1015 Page 408



NOAC Ex. 1015 Page 409



NOAC Ex. 1015 Page 410



NOAC Ex. 1015 Page 411



NOAC Ex. 1015 Page 412



NOAC Ex. 1015 Page 413



NOAC Ex. 1015 Page 414



NOAC Ex. 1015 Page 415



NOAC Ex. 1015 Page 416



NOAC Ex. 1015 Page 417



NOAC Ex. 1015 Page 418



NOAC Ex. 1015 Page 419



NOAC Ex. 1015 Page 420



NOAC Ex. 1015 Page 421



NOAC Ex. 1015 Page 422



NOAC Ex. 1015 Page 423



NOAC Ex. 1015 Page 424



NOAC Ex. 1015 Page 425



NOAC Ex. 1015 Page 426



NOAC Ex. 1015 Page 427



NOAC Ex. 1015 Page 428



NOAC Ex. 1015 Page 429



NOAC Ex. 1015 Page 430



NOAC Ex. 1015 Page 431



NOAC Ex. 1015 Page 432



NOAC Ex. 1015 Page 433



NOAC Ex. 1015 Page 434



NOAC Ex. 1015 Page 435



NOAC Ex. 1015 Page 436



NOAC Ex. 1015 Page 437



NOAC Ex. 1015 Page 438



NOAC Ex. 1015 Page 439



NOAC Ex. 1015 Page 440



NOAC Ex. 1015 Page 441



NOAC Ex. 1015 Page 442



NOAC Ex. 1015 Page 443



NOAC Ex. 1015 Page 444



NOAC Ex. 1015 Page 445



NOAC Ex. 1015 Page 446



NOAC Ex. 1015 Page 447



NOAC Ex. 1015 Page 448



NOAC Ex. 1015 Page 449



NOAC Ex. 1015 Page 450



NOAC Ex. 1015 Page 451



NOAC Ex. 1015 Page 452



NOAC Ex. 1015 Page 453



NOAC Ex. 1015 Page 454



NOAC Ex. 1015 Page 455



NOAC Ex. 1015 Page 456



NOAC Ex. 1015 Page 457



NOAC Ex. 1015 Page 458



NOAC Ex. 1015 Page 459



NOAC Ex. 1015 Page 460



NOAC Ex. 1015 Page 461



NOAC Ex. 1015 Page 462



NOAC Ex. 1015 Page 463



NOAC Ex. 1015 Page 464



NOAC Ex. 1015 Page 465



NOAC Ex. 1015 Page 466



NOAC Ex. 1015 Page 467



NOAC Ex. 1015 Page 468



NOAC Ex. 1015 Page 469



NOAC Ex. 1015 Page 470



NOAC Ex. 1015 Page 471



NOAC Ex. 1015 Page 472



NOAC Ex. 1015 Page 473



NOAC Ex. 1015 Page 474



NOAC Ex. 1015 Page 475



NOAC Ex. 1015 Page 476



NOAC Ex. 1015 Page 477



NOAC Ex. 1015 Page 478



NOAC Ex. 1015 Page 479



NOAC Ex. 1015 Page 480



NOAC Ex. 1015 Page 481



NOAC Ex. 1015 Page 482



NOAC Ex. 1015 Page 483



NOAC Ex. 1015 Page 484



NOAC Ex. 1015 Page 485



NOAC Ex. 1015 Page 486



NOAC Ex. 1015 Page 487



NOAC Ex. 1015 Page 488



NOAC Ex. 1015 Page 489



NOAC Ex. 1015 Page 490



NOAC Ex. 1015 Page 491



NOAC Ex. 1015 Page 492



NOAC Ex. 1015 Page 493



NOAC Ex. 1015 Page 494



NOAC Ex. 1015 Page 495



NOAC Ex. 1015 Page 496



NOAC Ex. 1015 Page 497



NOAC Ex. 1015 Page 498



NOAC Ex. 1015 Page 499



NOAC Ex. 1015 Page 500



NOAC Ex. 1015 Page 501



NOAC Ex. 1015 Page 502



NOAC Ex. 1015 Page 503



NOAC Ex. 1015 Page 504



NOAC Ex. 1015 Page 505



NOAC Ex. 1015 Page 506



NOAC Ex. 1015 Page 507



NOAC Ex. 1015 Page 508



NOAC Ex. 1015 Page 509



NOAC Ex. 1015 Page 510



NOAC Ex. 1015 Page 511



NOAC Ex. 1015 Page 512



NOAC Ex. 1015 Page 513



NOAC Ex. 1015 Page 514



NOAC Ex. 1015 Page 515



NOAC Ex. 1015 Page 516



NOAC Ex. 1015 Page 517



NOAC Ex. 1015 Page 518



NOAC Ex. 1015 Page 519



NOAC Ex. 1015 Page 520



NOAC Ex. 1015 Page 521



NOAC Ex. 1015 Page 522



NOAC Ex. 1015 Page 523



NOAC Ex. 1015 Page 524



NOAC Ex. 1015 Page 525



NOAC Ex. 1015 Page 526



NOAC Ex. 1015 Page 527



NOAC Ex. 1015 Page 528



NOAC Ex. 1015 Page 529



NOAC Ex. 1015 Page 530



NOAC Ex. 1015 Page 531



NOAC Ex. 1015 Page 532



NOAC Ex. 1015 Page 533



NOAC Ex. 1015 Page 534



NOAC Ex. 1015 Page 535



NOAC Ex. 1015 Page 536



NOAC Ex. 1015 Page 537



NOAC Ex. 1015 Page 538



NOAC Ex. 1015 Page 539



NOAC Ex. 1015 Page 540



NOAC Ex. 1015 Page 541



NOAC Ex. 1015 Page 542



NOAC Ex. 1015 Page 543



NOAC Ex. 1015 Page 544



NOAC Ex. 1015 Page 545



NOAC Ex. 1015 Page 546



NOAC Ex. 1015 Page 547



NOAC Ex. 1015 Page 548



NOAC Ex. 1015 Page 549



NOAC Ex. 1015 Page 550



NOAC Ex. 1015 Page 551



NOAC Ex. 1015 Page 552



NOAC Ex. 1015 Page 553



NOAC Ex. 1015 Page 554



NOAC Ex. 1015 Page 555



NOAC Ex. 1015 Page 556



NOAC Ex. 1015 Page 557



NOAC Ex. 1015 Page 558



NOAC Ex. 1015 Page 559



NOAC Ex. 1015 Page 560



NOAC Ex. 1015 Page 561



NOAC Ex. 1015 Page 562



NOAC Ex. 1015 Page 563



NOAC Ex. 1015 Page 564



NOAC Ex. 1015 Page 565



NOAC Ex. 1015 Page 566



NOAC Ex. 1015 Page 567



NOAC Ex. 1015 Page 568



NOAC Ex. 1015 Page 569



NOAC Ex. 1015 Page 570



NOAC Ex. 1015 Page 571



NOAC Ex. 1015 Page 572



NOAC Ex. 1015 Page 573



NOAC Ex. 1015 Page 574



NOAC Ex. 1015 Page 575



NOAC Ex. 1015 Page 576



NOAC Ex. 1015 Page 577



NOAC Ex. 1015 Page 578



NOAC Ex. 1015 Page 579



NOAC Ex. 1015 Page 580



NOAC Ex. 1015 Page 581



NOAC Ex. 1015 Page 582



NOAC Ex. 1015 Page 583



NOAC Ex. 1015 Page 584



NOAC Ex. 1015 Page 585



NOAC Ex. 1015 Page 586



NOAC Ex. 1015 Page 587



NOAC Ex. 1015 Page 588



NOAC Ex. 1015 Page 589



NOAC Ex. 1015 Page 590



NOAC Ex. 1015 Page 591



NOAC Ex. 1015 Page 592



NOAC Ex. 1015 Page 593



NOAC Ex. 1015 Page 594



NOAC Ex. 1015 Page 595



NOAC Ex. 1015 Page 596



NOAC Ex. 1015 Page 597



NOAC Ex. 1015 Page 598



NOAC Ex. 1015 Page 599



NOAC Ex. 1015 Page 600



NOAC Ex. 1015 Page 601



NOAC Ex. 1015 Page 602



NOAC Ex. 1015 Page 603



NOAC Ex. 1015 Page 604



NOAC Ex. 1015 Page 605



NOAC Ex. 1015 Page 606



NOAC Ex. 1015 Page 607



NOAC Ex. 1015 Page 608



NOAC Ex. 1015 Page 609



NOAC Ex. 1015 Page 610



NOAC Ex. 1015 Page 611



NOAC Ex. 1015 Page 612



NOAC Ex. 1015 Page 613



NOAC Ex. 1015 Page 614



NOAC Ex. 1015 Page 615



NOAC Ex. 1015 Page 616



NOAC Ex. 1015 Page 617



NOAC Ex. 1015 Page 618



NOAC Ex. 1015 Page 619



NOAC Ex. 1015 Page 620



NOAC Ex. 1015 Page 621



NOAC Ex. 1015 Page 622



NOAC Ex. 1015 Page 623



NOAC Ex. 1015 Page 624



NOAC Ex. 1015 Page 625



NOAC Ex. 1015 Page 626



NOAC Ex. 1015 Page 627



NOAC Ex. 1015 Page 628



NOAC Ex. 1015 Page 629



NOAC Ex. 1015 Page 630



NOAC Ex. 1015 Page 631



NOAC Ex. 1015 Page 632



NOAC Ex. 1015 Page 633



NOAC Ex. 1015 Page 634



NOAC Ex. 1015 Page 635



NOAC Ex. 1015 Page 636



NOAC Ex. 1015 Page 637



NOAC Ex. 1015 Page 638



NOAC Ex. 1015 Page 639



NOAC Ex. 1015 Page 640



NOAC Ex. 1015 Page 641



NOAC Ex. 1015 Page 642



NOAC Ex. 1015 Page 643



NOAC Ex. 1015 Page 644



NOAC Ex. 1015 Page 645



NOAC Ex. 1015 Page 646



NOAC Ex. 1015 Page 647



NOAC Ex. 1015 Page 648



NOAC Ex. 1015 Page 649



NOAC Ex. 1015 Page 650



NOAC Ex. 1015 Page 651



NOAC Ex. 1015 Page 652



NOAC Ex. 1015 Page 653



NOAC Ex. 1015 Page 654



NOAC Ex. 1015 Page 655



NOAC Ex. 1015 Page 656



NOAC Ex. 1015 Page 657



NOAC Ex. 1015 Page 658



NOAC Ex. 1015 Page 659



NOAC Ex. 1015 Page 660



NOAC Ex. 1015 Page 661



NOAC Ex. 1015 Page 662



NOAC Ex. 1015 Page 663



NOAC Ex. 1015 Page 664



NOAC Ex. 1015 Page 665



NOAC Ex. 1015 Page 666



NOAC Ex. 1015 Page 667



NOAC Ex. 1015 Page 668



NOAC Ex. 1015 Page 669



NOAC Ex. 1015 Page 670



NOAC Ex. 1015 Page 671



NOAC Ex. 1015 Page 672



NOAC Ex. 1015 Page 673



NOAC Ex. 1015 Page 674



NOAC Ex. 1015 Page 675



NOAC Ex. 1015 Page 676



NOAC Ex. 1015 Page 677



NOAC Ex. 1015 Page 678



NOAC Ex. 1015 Page 679



NOAC Ex. 1015 Page 680



NOAC Ex. 1015 Page 681



NOAC Ex. 1015 Page 682



NOAC Ex. 1015 Page 683



NOAC Ex. 1015 Page 684



NOAC Ex. 1015 Page 685



NOAC Ex. 1015 Page 686



NOAC Ex. 1015 Page 687



NOAC Ex. 1015 Page 688



NOAC Ex. 1015 Page 689



NOAC Ex. 1015 Page 690



NOAC Ex. 1015 Page 691


