
NOAC Ex. 1019 Page 1

IW 7696177

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

October. 10, 2018

It's, THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE

RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS

OF:

 APPLICATION N-U--:MBER--10/684 776

FILING DATE. October 14, 2003

PATENT NUMBER: 6,954, 789 -

ISSUE DATE: October I1, 2005

I.‘NRI!:VIMI‘MP-IMEWI-IG'IHH‘IHHH-‘RNDIH-N.‘

By Authority of the

Under Secretary of Commerce for Intellectual Property

and Director of the United States Patent and Trademark Office

Certifying Officer

NOAC EX- 1019...???

NOAC Ex. 1019 Page 2

Attorney Docket No. APPT-001 -1 -1

Russell 3. Dietz

Title METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

Express Mail Label No. EV325162991US o

_ Mail Stop Patent Application
ADDRESS TO. Commissioner for Patents 0) {\

PO. Box 1450

Alexandria, VA 22313-1450 _

UTILITY PATENT APPLICATION

TRANSMITTAL

(New Nonprovisional Applicati ns Under 37 CFR §
1.53(b))

 APPLICATION ELEMENTS

 1. B Fee transmittal form (in duplicate) 7. El CD-ROM in duplicate, large table, or computer p'r
(Appendix) N

 2. I] Applicant(s) claim(s) a small entity status.

 8. D Nucleotide &/or amino acid sequence submission
 3. 67 sheet(s) of specification, claims, and abstract

4. E 18 sheet(s) of formal Drawing(s) with a

submission letter to the Official Draftsperson

Assignment papers (cover sheet & documents)

10. III 37 CFR 3.730;) statement. [I Power of
Attorney 5. IE Declaration and IX] Power of Attorney

 a. D Newly executed (original or copy) English translation document.

 b. Copy from prior application for continuing Information Disclosure Statement (Form PTO-1449)
application with box 18 completed and copies of IDS citations.
 i. D DELETION OF INVENTOR(S)

signed statement attached deleting
inventor(s) named in the prior application.

Preliminary Amendment.

Return Receipt postcard.

 6. D Application Data Sheet Certified copies of priority documents.

 Request and certification under 35 USC 122

(b)(2l(B)(i)-

Other: List of inventors, with residence city,
stuntate/co _.

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary
amendment, or in an Application Data Sheet under 37 CFR 1.76:

E Continuation . D Divisional. D Continuation in Of prior application no:

part (CIP).

Prior application information. Examiner: Khanh Q_ DINH Group Art Unit: 2155

 For CONTINUATION OR DIVISIONAL APPLICATIONS ONLY: the entire disclosure of the prior application, from which an oath or declaration is
supplied under item 5b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by
reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

19. CORRESPONDENCE ADDRESS

Customer Number: 21921. (Name: Dov Rosenfeld, INVENTEK)

’
. t : / D t :Signa ure [11/ OC‘I’ I31'ln ,2003

I

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as

Express Mail (Express Mail Label: EV325162991US in an envelope addressed to Mail Stop Patent Application,

Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313—1450 on.

Date: Q51: A} 20:23 Signed:
[‘1' Name: Dov R enfeld, Reg. No. 38687

NOAC EX. 1019 Page 2

NOAC Ex. 1019 Page 3

FEE TRANSMITTAL Attorney Docket No. AP PT-001 -1 -1

First Inventor Russell 8. Dietz

37CFR§153m»

Title METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

$242.00 $73364) Express Mail Label No. EV325162991US

METHOD OF PAYMENT

1. IXI The commissioner is hereby authorized to charge any missing fees and credit any overpayment to

(New Nonprovisional Applications Under

Deposit
Account
Number

50-0292

' Deposit
Account

Name

INVENTEK/ROSENFELD

D Applicant(s) claim(s) a small entity status.

2. EI Payment is enclosed:

U check E credit card. D Money order
(Credit Card Charge

form enclosed

 FEE CALCULATION
 CLAIMS AS FILED

NO. FILED

49

OTHER THAN SMALL ENTITY

RATE

$18.00

$86.00

 NO. EXTRA

29 Total Claims $ 522.00

$ 0.00

 Independent

Claims
 Multiple Dependent Claims (if applicable) $0.00

$0.00

$770.00

$1,292.00

 Assignment Recording Fee

Basic Filing Fee

 Total Filing Fee

SUBMITTED BY

K Customer Number: 21921. (Dov Rosenfeld, INVENTEK)

m DOV Rosenfeld, - - gisuafion' No' I 38687'- I,/

//'

NOAC EX. 1019 Page 3

NOAC Ex. 1019 Page 4

Our Ref/Docket No: APPT-OOI- 1-1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No. APPT-001 -1 -1

First Inventor Russell 8. Dietz

Title METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

Express Mail Label No. EV325162991US

Last Name First Name, MI Residence (City and Either Citizenship
State or Foreign Country)

 INVENTOR(S)IAPPLICANT(S)

(New Nonprovisional Applications Under 37
CFR § 1.53(b))

Dietz Russell 8. San Jose, California, USA US

Maixner Joseph R. Aptos, California, USA US

Koppenhaver Andrew A. Littleton, CO, USA US

Bares William H. Germantown, TN, USA US

Sarkissian Haig A. San Antonio, Texas, USA US

Torgerson James F. Andover, MN, USA US

NOAC EX. 1019 Page 4

NOAC Ex. 1019 Page 5

Our Ref./Docket No: APPT-OOl— 1 —1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al.

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Group Art Unit: unassigned

Examiner: unassigned

LETTER TO OFFICIAL DRAFTSPERSON

SUBMISSION OF FORMAL DRAWINGS

The Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

A'ITN: Official Draftsperson

Dear Sir or Madam:

Attached please find E sheets of formal drawings to be made of record for the above-

identified patent application submitted herewith.

Respectfully Submitted,

 Oct I3.?.DD§

Date enfeld, Reg. No. 38687

Address for correspondence and attorney for applicant(s):

Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone: (510) 547-3378; Fax: (510) 653-7992

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal

Service as Express Mail (Express Mail Label: EV325162991US in an envelope addressed I ail Stop

Patent Application, Commissioner for Patents, PO. Box 1450, Alexandria, V - 50 on.

Date: Oct g , 2.00 3 Signed:
I Name: Dov Rosenfeld, Reg. No. 38687

NOAC EX. 1019 Page 5

NOAC Ex. 1019 Page 6

First Inventor Russell S. Dietz

Title METHOD AND APPARATUS FOR MONITORING
TRAFFIC IN A NETWORK

_$lztu.00 W Express Mail Label No. EV325162991US

FEE TRANSMITTAL

(New Nonprovisional Applications Under
37 CFR § 1.53(b))

METHOD OF PAYMENT

1. E The commissioner is hereby authorized to charge any missing tees and credit any overpayment to

Deposit
Account
Number

50-0292

Deposit
Account

Name

INVENTEK/ROSENFELD

D Applicant(s) claim(s) a small entity status.

2. E Payment is enclosed:

D check IX] credit card. U Money order
(Credit Card Charge

form enclosed

FEE CALCULATION

CLAIMS AS FILED

NO. FILED

49

OTHER THAN SMALL ENTITY

RATE

$18.00

$86.00

 NO. EXTRA

2

Total Claims $ 522.00

Independent $ 0.00
Claims

Multiple Dependent Claims (if applicable) $0.00

$0.00

$770.00

$1 292.00

Assignment Recording Fee

Basic Filing Fee

Total Filing Fee

SUBMITTED BY

Customer Number: 21921 _ (DOV Rosenfeld, INVENTEK)

NOAC EX. 1019 Page 6

NOAC Ex. 1019 Page 7

Our Ref/Docket No.2 APPT-OOl - 1- 1

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK

Inventor(s):

DIETZ, Russell S.

San Jose, California, USA

MAIXNER, Joseph R.

Aptos, California, USA

KOPPENHAVER, Andrew A.

Littleton, CO, USA

BARES, William H.

Germantown, TN, USA

SARKISSIAN, Haig A.

San Antonio, Texas, USA

TORGERS ON, James F.

Andover, MN, USA

 Certificate of Mailing under 37 CFR 1.10

I hereby certify that this application and all attachments are being deposited with the United States Postal Service as

Express Mail (Express Mail Label: EV325162991US in an envelope addressed to Mail Stop Patent Application,
Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313—1450 on.

Date: 06" g , ZQQS Signed:
[‘0‘ Name: Dov Rosen e (1, Reg. No. 38687

NOAC EX. 1019 Page 7

NOAC Ex. 1019 Page 8

METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This invention is a continuation of U.S. Patent Application Serial No. 09/608237 for

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK to

inventors Dietz, et al., filed June 30, 2000, Attomey/Agent Reference Number APPT-OOl-l,

the contents of which are incorporated herein by reference

[0002] This invention claims the benefit of U.S. Provisional Patent Application Serial No.:

60/141,903 for METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed June 30, 1999, the contents of which are

incorporated herein by reference.

[0003] This application is related to the following U.S. patent applications, each filed

concurrently with the present application, and each assigned to the assignee of the present

invention:

[0004] U.S. Patent Application Serial No. 09/609179 for PROCESSING PROTOCOL

SPECIFIC INFORMATION IN PACKETS SPECIFIED BY A PROTOCOL DESCRIPTION

LANGUAGE, to inventors Koppenhaver, et al., filed June 30, 2000, Attorney/Agent

Reference Number APPT-001—2, and incorporated herein by reference.

[0005] U.S. Patent Application Serial No. 09/608126 for RE—USING INFORMATION

FROM DATA TRANSACTIONS FOR MAINTAINING STATISTICS IN NETWORK

MONITORING, to inventors Dietz, et al., filed June 30, 2000, Attorney/Agent Reference

Number APPT-OOl—3, and incorporated herein by reference.

[0006] U.S. Patent Application Serial No. 09/608266 for ASSOCIATIVE CACHE

STRUCTURE FOR LOOKUPS AND UPDATES OF FLOW RECORDS IN A NETWORK

MONITOR, to inventors Sarkissian, et al., filed June 30, 2000, Attorney/Agent Reference

Number APPT-001-4, and incorporated herein by reference.

[0007] U.S. Patent Application Serial No. 09/608267 for STATE PROCESSOR FOR

PATTERN MATCHING IN A NETWORK MONITOR DEVICE, to inventors Sarkissian, et

APPT-001-1-1

NOAC EX. 1019 Page 8

NOAC Ex. 1019 Page 9

2

al., filed June 30, 2000, Attomey/Agent Reference Number APPT-OOl-S, and incorporated

herein by reference.

FIELD OF INVENTION

[0008] The present invention relates to computer networks, specifically to the real—time

elucidation of packets communicated within a data network, including classification

according to protocol and application program.

BACKGROUND TO THE PRESENT INVENTION

[0009] There has long been a need for network activity monitors. This need has become

especially acute, however, given the recent popularity of the Internet and other internets—an

“internet” being any plurality of interconnected networks which forms a larger, single

network. With the growth of networks used as a collection of clients obtaining services from

one or more servers on the network, it is increasingly important to be able to monitor the use

of those services and to rate them accordingly. Such objective information, for example, as

which services (i.e., application programs) are being used, who is using them, how often they

have been accessed, and for how long, is very useful in the maintenance and continued

operation of these networks. It is especially important that selected users be able to access a

network remotely in order to generate reports on network use in real time. Similarly, a need

exists for a real—time network monitor that can provide alarms notifying selected users of

problems that may occur with the network or site.

[0010] One prior art monitoring method uses log files. In this method, selected network

activities may be analyzed retrospectively by reviewing log files, which are maintained by

network servers and gateways. Log file monitors must access this data and analyze (“mine”)

its contents to determine statistics about the server or gateway. Several problems exist with

this method, however. First, log file information does not provide a map of real-time usage;

and secondly, log file mining does not supply complete information. This method relies on

logs maintained by numerous network devices and servers, which requires that the

information be subjected to refining and correlation. Also, sometimes information is simply

not available to any gateway or server in order to make a log file entry.

APPT—OO 1- 1-1

NOAC EX. 1019 Page 9

NOAC Ex. 1019 Page 10

3

[0011] One such case, for example, would be information concerning NetMeeting®

(Microsoft Corporation, Redmond, Washington) sessions in which two computers connect

directly on the network and the data is never seen by a server or a gateway.

[0012] Another disadvantage of creating log files is that the process requires data logging

features of network elements to be enabled, placing a substantial load on the device , which

results in a subsequent decline in network performance. Additionally, log files can grow

rapidly, there is no standard means of storage for them, and they require a significant amount

of maintenance.

[0013] Though Netflow® (Cisco Systems, Inc., San Jose, California), RMON2, and other

network monitors are available for the real-time monitoring of networks, they lack visibility

into application content and are typically limited to providing network layer level

information.

[0014] Pattern—matching parser techniques wherein a packet is parsed and pattern filters are

applied are also known, but these too are limited in how deep into the protocol stack they can

examine packets.

[0015] Some prior art packet monitors classify packets into connection flows. The term

“connection flow” is commonly used to describe all the packets involved with a single

connection. A conversational flow, on the other hand, is the sequence of packets that are

exchanged in any direction as a result of an activity—for instance, the running of an

application on a server as requested by a client. It is desirable to be able to identify and

classify conversational flows rather than only connection flows. The reason for this is that

some conversational flows involve more than one connection, and some even involve more

than one exchange of packets between a client and server. This is particularly true when using

client/server protocols such as RPC, DCOMP, and SAP, which enable a service to be set up

or defined prior to any use of that service.

[0016] An example of such a case is the SAP (Service Advertising Protocol), a NetWare

(Novell Systems, Provo, Utah) protocol used to identify the services and addresses of servers

attached to a network. In the initial exchange, a client might send a SAP request to a server

for print service. The server would then send a SAP reply that identifies a particular

APPT-001-1-1

NOAC EX. 1019 Page 10

NOAC Ex. 1019 Page 11

4

address—for example, SAP#5——as the print service on that server. Such responses might be

used to update a table in a router, for instance, known as a Server Information Table. A client

who has inadvertently seen this reply or who has access to the table (via the router that has

the Service Information Table) would know that SAP#5 for this particular server is a print

service. Therefore, in order to print data on the server, such a client w0uld not need to make a

request for a print service, but would simply send data to be printed specifying SAP#5. Like

the previous exchange, the transmission of data to be printed also involves an exchange

between a client and a server, but requires a second connection and is therefore independent

of the initial exchange. In order to eliminate the possibility of disjointed conversational

exchanges, it is desirable for a network packet monitor to be able to “virtually concatenate”—

that is, to link—the first exchange with the second. If the clients were the same, the two

packet exchanges would then be correctly identified as being part of the same conversational

flow.

[0017] Other protocols that may lead to disjointed flows, include RPC (Remote Procedure

Call); DCOM (Distributed Component Object Model), formerly called Network OLE

(Microsoft Corporation, Redmond, Washington); and CORBA (Common Object Request

Broker Architecture). RPC is a programming interface from Sun Microsystems (Palo Alto,

California) that allows one program to use the services of another program in a remote

machine. DCOM, Microsoft’s counterpart to CORBA, defines the remote procedure call that

allows those objects—objects are self-contained software modules—to be run remotely over

the network. And CORBA, a standard from the Object Management Group (OMG) for

communicating between distributed objects, provides a way to execute programs (objects)

written in different programming languages running on different platforms regardless of

where they reside in a network.

[0018] What is needed, therefore, is a network monitor that makes it possible to continuously

analyze all user sessions on a heavily trafficked network. Such a monitor should enable non-

intrusive, remote detection, characterization, analysis, and capture of all information passing

through any point on the network (i.e., of all packets and packet streams passing through any

location in the network). Not only should all the packets be detected and analyzed, but for

each of these packets the network monitor should determine the protocol (e. g., http, ftp,

APPT—001-1-1

NOAC EX. 1019 Page 11

NOAC Ex. 1019 Page 12

5

H.323, VPN, etc.), the application/use within the protocol (e. g., voice, video, data, real—time

data, etc.), and an end user’s pattern of use within each application or the application context

(e. g., options selected, service delivered, duration, time of day, data requested, etc.). Also, the

network monitor should not be reliant upon server resident information such as log files.

Rather, it should allow a user such as a network administrator or an Internet service provider

(ISP) the means to measure and analyze network activity objectively; to customize the type of

data that is collected and analyzed; to undertake real time analysis; and to receive timely

notification of network problems.

[0019] Considering the previous SAP example again, because one features of the invention is

to correctly identify the second exchange as being associated with a print service on that

server, such exchange would even be recognized if the clients were not the same. What

distinguishes this invention from prior art network monitors is that it has the ability to

recognize disjointed flows as belonging to the same conversational flow.

[0020] The data value in monitoring network communications has been recognized by many

inventors. Chiu, et al., describe a method for collecting information at the session level in a

computer network in United States Patent 5,101,402, titled “APPARATUS AND METHOD

FOR REAL-TIME MONITORING OF NETWORK SESSIONS AND A LOCAL AREA

NETWORK” (the “402 patent”). The 402 patent specifies fixed locations for particular types

of packets to extract information to identify session of a packet. For example, if a DECnet

packet appears, the 402 patent looks at six specific fields (at 6 locations) in the packet in

order to identify the session of the packet. If, on the other hand, an IP packet appears, a

different set of six different locations is specified for an IP packet. With the proliferation of

protocols, clearly the specifying of all the possible places to look to determine the session

becomes more and more difficult. Likewise, adding a new protocol or application is difficult.

In the present invention, the locations examined and the information extracted from any

packet are adaptively determined from information in the packet for the particular type of

packet. There is no fixed definition of what to look for and where to look in order to form an

identifying signature. A monitor implementation of the present invention, for example, adapts

to handle differently IEEE 802.3 packet from the older Ethernet Type 2 (or Version 2) DIX

(Digital-Intel-Xerox) packet.

APPT—001-1—1

NO‘AC EX. 1019 Page 12

NOAC Ex. 1019 Page 13

6

[0021] The 402 patent system is able to recognize up to the session layer. In the present

invention, the number of levels examined varies for any particular protocol. Furthermore, the

present invention is capable of examining up to whatever level is sufficient to uniquely

identify to a required level, even all the way to the application level (in the 081 model).

[0022] Other prior art systems also are known. Phael describes a network activity monitor

that processes only randomly selected packets in United States Patent 5,315,580, titled

“NETWORK MONITORING DEVICE AND SYSTEM.” Nakamura teaches a network

monitoring system in United States Patent 4,891,639, titled “MONITORING SYSTEM OF

NETWORK.” Ross, et al., teach a method and apparatus for analyzing and monitoring

network activity in United States Patent 5,247,517, titled “METHOD AND APPARATUS

FOR ANALYSIS NETWORKS,” McCreery, et al., describe an Internet activity monitor that

decodes packet data at the Internet protocol level layer in United States Patent 5,787,253,

titled “APPARATUS AND METHOD OF ANALYZING INTERNET ACTIVITY.” The

McCreery method decodes IP-packets. It goes through the decoding operations for each

packet, and therefore uses the processing overhead for both recognized and unrecognized

flows. In a monitor implementation of the present invention, a signature is built for every

flow such that future packets of the flow are easily recognized. When a new packet in the

flow arrives, the recognition process can commence from where it last left off, and a new

signature built to recognize new packets of the flow.

SUMMARY

[0023] In its various embodiments the present invention provides a network monitor that can

accomplish one or more of the following objects and advantages:

[0024] o Recognize and classify all packets that are exchanges between a client and

server into respective client/server applications.

[0025] o Recognize and classify at all protocol layer levels conversational flows that pass

in either direction at a point in a network.

[0026] 0 Determine the connection and flow progress between clients and servers

according to the individual packets exchanged over a network.

APPT-001-1-1

NOAC EX. 1019 Page 13

NOAC Ex. 1019 Page 14

[0027]

[0028]

[0029]

[0030]

[0031]

[0032]

[0033]

[0034]

[0035]

7

Be used to help tune the performance of a network according to the current mix

of client/server applications requiring network resources.

Maintain statistics relevant to the mix of client/server applications using

network resources.

Report on the occurrences of specific sequences of packets used by particular

applications for client/server network conversational flows.

Other aspects of embodiments of the invention are:

Properly analyzing each of the packets exchanged between a client and a server

and maintaining information relevant to the current state of each of these

conversational flows.

Providing a flexible processing system that can be tailored or adapted as new

applications enter the client/server market.

Maintaining statistics relevant to the conversational flows in a client/sever

network as classified by an individual application.

Reporting a specific identifier, which may be used by other network-oriented

devices to identify the series of packets with a specific application for a specific

client/server network conversational flow.

In general, the embodiments of the present invention overcome the problems and

disadvantages of the art.

[0036] As described herein, one embodiment analyzes each of the packets passing through

any point in the network in either direction, in order to derive the actual application used to

communicate between a client and a server. Note that there could be several simultaneous

and overlapping applications executing over the network that are independent and

asynchronous.

[0037] A monitor embodiment of the invention successfully classifies each of the individual

packets as they are seen on the network. The contents of the packets are parsed and selected

parts are assembled into a signature (also called a key) that may then be used identify further

APPT—001-1-1

NOAC EX. 1019 Page 14

NOAC Ex. 1019 Page 15

8

packets of the same conversational flow, for example to further analyze the flow and

ultimately to recognize the application program. Thus the key is a function of the selected

parts, and in the preferred embodiment, the function is a concatenation of the selected parts.

The preferred embodiment forms and remembers the state of any conversational flow, which

is determined by the relationship between individual packets and the entire conversational

flow over the network. By remembering the state of a flow in this way, the embodiment

determines the context of the conversational flow, including the application program it relates

to and parameters such as the time, length of the conversational flow, data rate, etc.

[0038] The monitor is flexible to adapt to future applications developed for client/server

networks. New protocols and protocol combinations may be incorporated by compiling files

written in a high—level protocol description language.

[0039] The monitor embodiment of the present invention is preferably implemented in

application—specific integrated circuits (ASIC) or field programmable gate arrays (FPGA). In

one embodiment, the monitor comprises a parser subsystem that forms a signature from a

packet. The monitor further comprises an analyzer subsystem that receives the signature from

the parser subsystem.

[0040] A packet acquisition device such as a media access controller (MAC) or a

segmentation and reassemble module is used to provide packets to the parser subsystem of

the monitor.

[0041] In a hardware implementation, the parsing subsystem comprises two sub-parts, the

pattern analysis and recognition engine (PRE), and an extraction engine (slicer). The PRE

interprets each packet, and in particular, interprets individual fields in each packet according

to a pattern database.

[0042] The different protocols that can exist in different layers may be thought of as nodes of

one or more trees of linked nodes. The packet type is the root of a tree. Each protocol is either

a parent node or a terminal node. A parent node links a protocol to other protocols (child

protocols) that can be at higher layer levels. For example, An Ethernet packet (the root node)

may be an Ethertype packet—also called an Ethernet Type/Version 2 and a DIX (DIGITAL—

Intel-Xerox packet)—or an IEEE 802.3 packet. Continuing with the IEEE 802.3-type packet,

APPT—001-1-1

NOAC EX. 1019 Page 15

NOAC Ex. 1019 Page 16

9

one of the children nodes may be the IP protocol, and one of the children of the IP protocol

may be the TCP protocol.

[0043] The pattern database includes a description of the different headers of packets and

their contents, and how these relate to the different nodes in a tree. The PRE traverses the tree

as far as it can. If a node does not include a link to a deeper level, pattern matching is

declared complete. Note that protocols can be the children of several parents. If a unique

node was generated for each of the possible parent/child trees, the pattern database might

become excessively large. Instead, child nodes are shared among multiple parents, thus

compacting the pattern database.

[0044] Finally the PRE can be used on its own when only protocol recognition is required.

[0045] For each protocol reco nized, the slicer extracts important packet elements from theg

packet. These form a signature (i. 6., key) for the packet. The slicer also preferably generates a

hash for rapidly identifying a flow that may have this signature from a database of known

flows.

[0046] The flow signature of the packet, the hash and at least some of the payload are passed

to an analyzer subsystem. In a hardware embodiment, the analyzer subsystem includes a

unified flow key buffer (UFKB) for receiving parts of packets from the parser subsystem and

for storing signatures in process, a lookup/update engine (LUE) to lookup a database of flow

records for previously encountered. conversational flows to determine whether a signature is

from an existing flow, a state processor (SP) for performing state processing, a flow insertion

and deletion engine (FIDE) for inserting new flows into the database of flows, a memory for

storing the database of flows, and a cache for speeding up access to the memory containing

the flow database. The LUE, SP, and FIDE are all coupled to the UFKB, and to the cache.

[0047] The unified flow key buffer thus contains the flow signature of the packet, the hash

and at least some of the payload for analysis in the analyzer subsystem. Many operations can

be performed to further elucidate the identity of the application program content of the packet

involved in the client/server conversational flow while a packet signature exists in the unified

flow signature buffer. In the particular hardware embodiment of the analyzer subsystem

APPT—001-1—1

NOAC EX. 1019 Page 16

NOAC Ex. 1019 Page 17

10

several flows may be processed in parallel, and multiple flow signatures from all the packets

being analyzed in parallel may be held in the one UFKB.

[0048] The first step in the packet analysis process of a packet from the parser subsystem is

to lookup the instance in the current database of known packet flow signatures. A

lookup/update engine (LUE) accomplishes this task using first the hash, and then the flow

signature. The search is carried out in the cache and if there is no flow with a matching

signature in the cache, the lookup engine attempts to retrieve the flow from the flow database

in the memory. The flow-entry for previously encountered flows preferably includes state

information, which is used in the state processor to execute any operations defined for the

state, and to determine the next state. A typical state operation may be. to search for one or

more known reference strings in the payload of the packet stored in the UFKB.

[0049] Once the lookup processing by the LUE has been completed a flag stating whether it

is found or is new is set within the unified flow signature buffer structure for this packet flow

signature. For an existing flow, the flow-entry is updated by a calculator component of the

LUE that adds values to counters in the flow-entry database used to store one or more

statistical measures of the flow. The counters are used for determining network usage metrics

on the flow.

[0050] After the packet flow signature has been looked up and contents of the current flow

signature are in the database, a state processor can begin analyzing the packet payload to

further elucidate the identity of the application program component of this packet. The exact

operation of the state processor and functions performed by it will vary depending on the

current packet sequence in the stream of a conversational flow. The state processor moves to

the next logical operation stored from the previous packet seen with this same flow signature.

If any processing is required on this packet, the state processor will execute instructions from

a database of state instruction for this state until there are either no more left or the instruction

signifies processing.

[0051] In the preferred embodiment, the state processor functions are programmable to

provide for analyzing new application programs, and new sequences of packets and states

that can arise from using such application.

APPT-001-1—1

NOAC EX. 1019 Page 17

NOAC Ex. 1019 Page 18

11

[0052] If during the lookup process for this particular packet flow signature, the flow is

required to be inserted into the active database, a flow insertion and deletion engine (FIDE) is

initiated. The state processor also may create new flow signatures and thus may instruct the

flow insertion and deletion engine to add a new flow to the database as a new item.

[0053] In the preferred hardware embodiment, each of the LUE, state processor, and FIDE

operate independently from the other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

[0054] Although the present invention is better understood by referring to the detailed

preferred embodiments, these should not be taken to limit the present invention to any

specific embodiment because such embodiments are provided only for the purposes of

explanation. The embodiments, in turn, are explained with the aid of the following figures.

[0055] FIG. 1 is a functional block diagram of a network embodiment of the present

invention in which a monitor is connected to analyze packets passing at a connection point.

[0056] FIG. 2 is a diagram representing an example of some of the packets and their formats

that might be exchanged in starting, as an illustrative example, a conversational flow between

a client and server on a network being monitored and analyzed. A pair of flow signatures

particular to this example and to embodiments of the present invention is also illustrated. This

represents some of the possible flow signatures that can be generated and used in the process

of analyzing packets and of recognizing the particular server applications that produce the

discrete application packet exchanges.

[0057] FIG. 3 is a functional block diagram of a process embodiment of the present invention

that can operate as the packet monitor shown in FIG. 1. This process may be implemented in

software or hardware.

[0058] FIG. 4 is a flowchart of a high-level protocol language compiling and optimization

process, which in one embodiment may be used to generate data for monitoring packets

according to versions of the present invention.

[0059] FIG. 5 is a flowchart of a packet parsing process used as part of the parser in an

embodiment of the inventive packet monitor.

APPT—001-1-1

NOAC Ex. 1019 Page 18

NOAC Ex. 1019 Page 19

12

[0060] FIG. 6 is a flowchart of a packet element extraction process that is used as part of the

parser in an embodiment of the inventive packet monitor.

[0061] FIG. 7 is a flowchart of a flow-signature building process that is used as part of the

parser in the inventive packet monitor.

[0062] FIG. 8 is a flowchart of a monitor lookup and update process that is used as part of the

analyzer in an embodiment of the inventive packet monitor.

[0063] FIG. 9 is a flowchart of an exemplary Sun Microsystems Remote Procedure Call

application than may be recognized by the inventive packet monitor.

[0064] FIG. 10 is a functional block diagram of a hardware parser subsystem including the

pattern recognizer and extractor that can form part of the parser module in an embodiment of

the inventive packet monitor.

[0065] FIG. 11 is a functional block diagram of a hardware analyzer including a state

processor that can form part of an embodiment of the inventive packet monitor.

[0066] FIG. 12 is a functional block diagram of a flow insertion and deletion engine process

that can form part of the analyzer in an embodiment of the inventive packet monitor.

[0067] FIG. 13 is a flowchart of a state processing process that can form part of the analyzer

in an embodiment of the inventive packet monitor.

[0068] FIG. 14 is a simple functional block diagram of a process embodiment of the present

invention that can operate as the packet monitor shown in FIG. 1. This process may be

implemented in software.

[0069] FIG. 15 is a functional block diagram of how the packet monitor of FIG. 3 (and

FIGS. 10 and 11) may operate on a network with a processor such as a microprocessor.

[0070] FIG. 16 is an example of the top (MAC) layer of an Ethernet packet and some of the

elements that may be extracted to form a signature according to one aspect of the invention.

[0071] FIG. 17A is an example of the header of an Ethertype type of Ethernet packet of FIG.

16 and some of the elements that may be extracted to form a signature according to one

aspect of the invention.

APPT-001-1-1

NOAC EX. 1019 Page 19

NOAC Ex. 1019 Page 20

13

[0072] FIG. 17B is an example of an IP packet, for example, of the Ethertype packet shown

in FIGS. 16 and 17A, and some of the elements that may be extracted to form a signature

according to one aspect of the invention.

[0073] FIG. 18A is a three dimensional structure that can be used to store elements of the

pattern, parse and extraction database used by the parser subsystem in accordance to one

embodiment of the invention.

[0074] FIG. 18B is an alternate form of storing elements of the pattern, parse and extraction

database used by the parser subsystem in accordance to another embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0075] Note that this document includes hardware diagrams and descriptions that may

include signal names. In most cases, the names are sufficiently descriptive, in other cases

however the signal names are not needed to understand the operation and practice of the

invention.

Operation in a Network

[0076] FIG. 1 represents a system embodiment of the present invention that is referred to

herein by the general reference numeral 100. The system 100 has a computer network 102

that communicates packets (e.g., [P datagrams) between various computers, for example

between the clients 104—107 and servers 110 and 112. The network is shown schematically as

a cloud with several network nodes and links shown in the interior of the cloud. A monitor

108 examines the packets passing in either direction past its connection point 121 and,

according to one aspect of the invention, can elucidate what application programs are

associated with each packet. The monitor 108 is shown examining packets (i.e., datagrams)

between the network interface 116 of the server 110 and the network. The monitor can also

be placed at other points in the network, such as connection point 123 between the network

102 and the interface 118 of the client 104, or some other location, as indicated schematically

by connection point 125 somewhere in network 102. Not shown is a network packet

acquisition device at the location 123 on the network for converting the physical information

on the network into packets for input into monitor 108. Such packet acquisition devices are
common.

APPT-001-1-1

NOAC EX. 1019 Page 20

NOAC Ex. 1019 Page 21

14

[0077] Various protocols may be employed by the network to establish and maintain the

required communication, e. g., TCP/IP, etc. Any network activity—for example an application

program run by the client 104 (CLIENT l) communicating with another running on the

server 110 (SERVER 2)——will produce an exchange of a sequence of packets over network

102 that is characteristic of the respective programs and of the network protocols. Such

characteristics may not be completely revealing at the individual packet level. It may require

the analyzing of many packets by the monitor 108 to have enough information needed to

recognize particular application programs. The packets may need to be parsed then analyzed

in the context of various protocols, for example, the transport through the application session

layer protocols for packets of a type conforming to the ISO layered network model.

[0078] Communication protocols are layered, which is also referred to as a protocol stack.

The ISO (International Standardization Organization) has defined a general model that

provides a framework for design of communication protocol layers. This model, shown in

table form below, serves as a basic reference for understanding the functionality of existing

communication protocols.

ISO MODEL

Telnet, NFS, Novell NCP, HTTP,
H.323

Data Link Network Interface Card (Hardware
Interface). MAC layer

Physical Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

Layer Functionality

\) Application

P-d

[0079] Different communication protocols employ different levels of the ISO model or may

use a layered model that is similar to but which does not exactly conform to the ISO model.

A protocol in a certain layer may not be visible to protocols employed at other layers. For

APPT—001-1-1

NOAC EX. 1019 Page 21

NOAC Ex. 1019 Page 22

15

example, an application (Level 7) may not be able to identify the source computer for a

communication attempt (Levels 2—3).

[0080] In some communication arts, the term “frame” generally refers to encapsulated data at

OSI layer 2, including a destination address, control bits for flow control, the data or payload,

and CRC (cyclic redundancy check) data for error checking. The term “packet” generally

refers to encapsulated data at OSI layer 3. In the TCP/IP world, the term “datagram” is also

used. In this specification, the term “packet” is intended to encompass packets, datagrams,

frames, and cells. In general, a packet format or frame format refers to how data is

encapsulated with various fields and headers for transmission across a network. For example,

a data packet typically includes an address destination field, a length field, an error correcting

code (ECC) field, or cyclic redundancy check (CRC) field, as well as headers and footers to

identify the beginning and end of the packet. The terms “packet format” and “frame format,”

also referred to as “cell format,” are generally synonymous.

[0081] Monitor 108 looks at every packet passing the connection point 121 for analysis.

However, not every packet carries the same information useful for recognizing all levels of

the protocol. For example, in a conversational flow associated with a particular application,

the application will cause the server to send a type—A packet, but so will another. If, though,

the particular application program always follows a type—A packet with the sending of a type-

B packet, and the other application program does not, then in order to recognize packets of

that application’s conversational flow, the monitor can be available to recognize packets that

match the type-B packet to associate with the type-A packet. If such is recognized after a

type-A packet, then the particular application program’s conversational flow has started to

reveal itself to the monitor 108.

[0082] Further packets may need to be examined before the conversational flow can be

identified as being associated with the application program. Typically, monitor 108 is

simultaneously also in partial completion of identifying other packet exchanges that are parts

of conversational flows associated with other applications. One aspect of monitor 108 is its

ability to maintain the state of a flow. The state of a flow is an indication of all previous

events in the flow that lead to recognition of the content of all the protocol levels, e. g., the

ISO model protocol levels. Another aspect of the invention is forming a signature of

APPT-001-1-1

NOAC EX. 1019 Page 22

NOAC Ex. 1019 Page 23

16

extracted characteristic portions of the packet that can be used to rapidly identify packets

belonging to the same flow.

[0083] In real-world uses of the monitor 108, the number of packets on the network 102

passing by the monitor 108’s connection point can exceed a million per second.

Consequently, the monitor has very little time available to analyze and type each packet and

identify and maintain the state of the flows passing through the connection point. The

monitor 108 therefore masks out all the unimportant parts of each packet that will not

contribute to its classification. However, the parts to mask-out will change with each packet

depending on which flow it belongs to and depending on the state of the flow.

[0084] The recognition of the packet type, and ultimately of the associated application

programs according to the packets that their executions produce, is a multi-step process

within the monitor 108. At a first level, for example, several application programs will all

produce a first kind of packet. A first “signature” is produced from selected parts of a packet

that will allow monitor 108 to identify efficiently any packets that belong to the same flow. In

some cases, that packet type may be sufficiently unique to enable the monitor to identify the

application that generated such a packet in the conversational flow. The signature can then be

used to efficiently identify all future packets generated in traffic related to that application.

[0085] In other cases, that first packet only starts the process of analyzing the conversational

flow, and more packets are necessary to identify the associated application program. In such a

case, a subsequent packet of a second type—but that potentially belongs to the same

conversational flow—is recognized by using the signature. At such a second level, then, only

a few of those application programs will have conversational flows that can produce such a

second packet type. At this level in the process of classification, all application programs that

are not in the set of those that lead to such a sequence of packet types may be excluded in the

process of classifying the conversational flow that includes these two packets. Based on the

known patterns for the protocol and for the possible applications, a signature is produced that

allows recognition of any future packets that may follow in the conversational flow.

[0086] It may be that the application is now recognized, or recognition may need to proceed

to a third level of analysis using the second level signature. For each packet, therefore, the

APPT—001-1-1

NOAC EX. 1019 Page 23

NOAC Ex. 1019 Page 24

17

monitor parses the packet and generates a signature to determine if this signature identified a

previously encountered flow, or shall be used to recognize future packets belonging to the

same conversational flow. In real time, the packet is further analyzed in the context of the

sequence of previously encountered packets (the state), and of the possible future sequences

such a past sequence may generate in conversational flows associated with different

applications. A new signature for recognizing future packets may also be generated. This

process of analysis continues until the applications are identified. Thelast generated signature

may then be used to efficiently recognize future packets associated with the same

conversational flow. Such an arrangement makes it possible for the monitor 108 to cope with

millions of packets per second that must be inspected.

[0087] Another aspect of the invention is adding Eavesdropping. In alternative embodiments

of the present invention capable of eavesdropping, once the monitor 108 has recognized the

executing application programs passing through some point in the network 102 (for example,

because of execution of the applications by the client 105 or server 110), the monitor sends a

message to some general purpose processor on the network that can input the same packets

from the same location on the network, and the processor then loads its own executable copy

of the application program and uses it to read the content being exchanged over the network.

In other words, once the monitor 108 has accomplished recognition of the application

program, eavesdropping can commence.

The Network Monitor

[0088] FIG. 3 shows a network packet monitor 300, in an embodiment of the present

invention that can be implemented with computer hardware and/or software. The system 300

is similar to monitor 108 in FIG. 1. A packet 302 is examined, e. g., from a packet acquisition

device at the location 121 in network 102 (FIG. 1), and the packet evaluated, for example in

an attempt to determine its characteristics, e.g., all the protocol information in a multilevel

model, including what server application produced the packet.

[0089] The packet acquisition device is a common interface that converts the physical signals

and then decodes them into bits, and into packets, in accordance with the particular network

APPT—001-1—1

NOAC EX. 1019 Page 24

NOAC Ex. 1019 Page 25

18

(Ethernet, frame relay, ATM, etc.). The acquisition device indicates to the monitor 108 the

type of network of the acquired packet or packets.

[0090] Aspects shown here include: (1) the initialization of the monitor to generate what

operations need to occur on packets of different types—accomplished by compiler and

optimizer 310, (2) the processing—parsing and extraction of selected portions—of packets to

generate an identifying signature—accomplished by parser subsystem 301, and (3) the

analysis of the packets—accomplished by analyzer 303.

[0091] The purpose of compiler and optimizer 310 is to provide protocol specific information

to parser subsystem 301 and to analyzer subsystem 303. The initialization occurs prior to

operation of the monitor, and only needs to re—occur when new protocols are to be added.

[0092] A flow is a stream of packets being exchanged between any two addresses in the

network. For each protocol there are known to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these and other fields are used in

monitor 300 to identify the flow. There are other fields not important for identifying the flow,

such as checksums, and those parts are not used for identification.

[0093] Parser subsystem 301 examines the packets using pattern recognition process 304 that

parses the packet and determines the protocol types and associated headers for each protocol

layer that exists in the packet 302. An extraction process 306 in parser subsystem 301

extracts characteristic portions (signature information) from the packet 302. Both the pattern

information for parsing and the related extraction operations, e.g., extraction masks, are

supplied from a parsing-pattern—structures and extraction—operations database

(parsing/extractions database) 308 filled by the compiler and optimizer 310.

[0094] The protocol description language (PDL) files 336 describes both patterns and states

of all protocols that an occur at any layer, including how to interpret header information, how

to determine from the packet header information the protocols at the next layer, and what

information to extract for the purpose of identifying a flow, and ultimately, applications and

services. The layer selections database 338 describes the particular layering handled by the

monitor. That is, what protocols run on top of what protocols at any layer level. Thus 336 and

338 combined describe how one would decode, analyze, and understand the information in

APPT-001-1-1

NOAC EX. 1019 Page 25

NOAC Ex. 1019 Page 26

19

packets, and, furthermore, how the information is layered. This information is input into

compiler and optimizer 310.

[0095] When compiler and optimizer 310 executes, it generates two sets of internal data

structures. The first is the set of parsing/extraction operations 308. The pattern structures

include parsing information and describe what will be recognized in the headers of packets;

the extraction operations are what elements of a packet are to be extracted from the packets

based on the patterns that get matched. Thus, database 308 of parsing/extraction operations

includes information describing how to determine a set of one or more protocol dependent

extraction operations from data in the packet that indicate a protocol used in the packet.

[0096] The other internal data structure that is built by compiler 310 is the set of state

patterns and processes 326. These are the different states and state transitions that occur in

different conversational flows, and the state operations that need to be performed (e. g.,

patterns that need to be examined and new signatures that need to be built) during any state of

a conversational flow to further the task of analyzing the conversational flow.

[0097] Thus, compiling the PDL files and layer selections provides monitor 300 with the

information it needs to begin processing packets. In an alternate embodiment, the contents of

one or more of databases 308 and 326 may be manually or otherwise generated. Note that in

some embodiments the layering selections information is inherent rather than explicitly

described. For example, since a PDL file for a protocol includes the child protocols, the

parent protocols also may be determined.

[0098] In the preferred embodiment, the packet 302 from the acquisition device is input into

a packet buffer. The pattern recognition process 304 is carried out by a pattern analysis and

recognition (PAR) engine that analyzes and recognizes patterns in the packets. In particular,

the PAR locates the next protocol field in the header and determines the length of the header,

and may perform certain other tasks for certain types of protocol headers. An example of this

is type and length comparison to distinguish an IEEE 802.3 (Ethernet) packet from the older

type 2 (or Version 2) Ethernet packet, also called a DIGITAL-Intel-Xerox (DIX) packet. The

PAR also uses the pattern structures and extraction operations database 308 to identify the

next protocol and parameters associated with that protocol that enables analysis of the next

APPT—001— 1-1

NOAC EX. 1019 Page 26

NOAC Ex. 1019 Page 27

2O

protocol layer. Once a pattern or a set of patterns has been identified, it/they will be

associated with a set of none or more extraction operations. These extraction operations (in

the form of commands and associated parameters) are passed to the extraction process 306

implemented by an extracting and information identifying (EH) engine that extracts selected

parts of the packet, including identifying information from the packet as required for

recognizing this packet as part of a flow. The extracted information is put in sequence and

then processed in block 312 to build a unique flow signature (also called a “key”) for this

flow. A flow signature depends on the protocols used in the packet. For some protocols, the

extracted components may include source and destination addresses. For example, Ethernet

frames have end—point addresses that are useful in building a better flow signature. Thus, the

signature typically includes the client and server address pairs. The signature is used to

recognize further packets that are or may be part of this flow.

[0099] In the preferred embodiment, the building of the flow key includes generating a hash

of the signature using a hash function. The purpose if using such a hash is conventional—to

spread flow-entries identified by the signature across a database for efficient searching. The

hash generated is preferably based on a hashing algorithm and such hash generation is known

to those in the art.

[00100] In one embodiment, the parser passes data from the packet—a parser record—that

includes the signature (i.e., selected portions of the packet), the hash, and the packet itself to

allow for any state processing that requires further data from the packet. An improved

embodiment of the parser subsystem might generate a parser record that has some predefined

structure and that includes the signature, the hash, some flags related to some of the fields in

the parser record, and parts of the packet’s payload that the parser subsystem has determined

might be required for further processing, e.g., for state processing.

[00101] Note that alternate embodiments may use some function other than concatenation of

the selected portions of the packet to make the identifying signature. For example, some

“digest function” of the concatenated selected portions may be used.

[00102] The parser record is passed onto lookup process 314 which looks in an internal data

store of records of known flows that the system has already encountered, and decides (in 316)

APPT—001-1—1

NOAC EX. 1019 Page 27

NOAC Ex. 1019 Page 28

21

whether or not this particular packet belongs to a known flow as indicated by the presence of

a flow-entry matching this flow in a database of known flows 324. A record in database 324

is associated with each encountered flow.

[00103] The parser record enters a buffer called the unified flow key buffer (UFKB). The

UFKB stores the data on flows in a data structure that is similar to the parser record, but that

includes a field that can be modified. In particular, one or the UFKB record fields stores the

packet sequence number, and another is filled with state information in the form of a program

counter for a state processor that implements state processing 328.

[00104] The determination (316) of whether a record with the same signature already exists is

carried out by a lookup engine (LUE) that obtains new UFKB records and uses the hash in

the UFKB record to lookup if there is a matching known flow. In the particular embodiment,

the database of known flows 324 is in an external memory. A cache is associated with the

database 324. A lookup by the LUE for a known record is carried out by accessing the cache

using the hash, and if the entry is not already present in the cache, the entry is looked up

(again using the hash) in the external memory.

[00105] The flow-entry database 324 stores flow-entries that include the unique flow-

signature, state information, and extracted information from the packet for updating flows,

and one or more statistical about the flow. Each entry completely describes a flow. Database

324 is organized into bins that contain a number, denoted N, of flow—entries (also called flow-

entries, each a bucket), with N being 4 in the preferred embodiment. Buckets (i.e., flow—

entries) are accessed via the hash of the packet from the parser subsystem 301 (i.e., the hash

in the UFKB record). The hash spreads the flows across the database to allow for fast lookups

of entries, allowing shallower buckets. The designer selects the bucket depth N based on the

amount of memory attached to the monitor, and the number of bits of the hash data value

used. For example, in one embodiment, each flow-entry is 128 bytes long, so for 128K flow-

entries, 16 Mbytes are required. Using a l6-bit hash gives two flow-entries per bucket.

Empirically, this has been shown to be more than adequate for the vast majority of cases.

Note that another embodiment uses flow-entries that are 256 bytes long.

APPT-001-1—1

NOAC EX. 1019 Page 28

NOAC Ex. 1019 Page 29

22

[00106] Herein, whenever an access to database 324 is described, it is to be understood that

the access is via the cache, unless otherwise stated or clear from the context.

[00107] If there is no flow-entry found matching the signature, i.e., the signature is for a new

flow, then a protocol and state identification process 318 further determines the state and

protocol. That is, process 318 determines the protocols and where in the state sequence for a

flow for this protocol’s this packet belongs. Identification process 318 uses the extracted

information and makes reference to the database 326 of state patterns and processes. Process

318 is then followed by any state operations that need to be executed on this packet by a state

processor 328.

[00108] If the packet is found to have a matching flow-entry in the database 324 (e.g., in the

cache), then a process 320 determines, from the looked-up flow-entry, if more classification

by state processing of the flow signature is necessary. If not, a process 322 updates the flow-

entry in the flow—entry database 324 (e.g., via the cache). Updating includes updating one or

more statistical measures stored in the flow-entry. In our embodiment, the statistical measures

are stored in counters in the flow-entry.

[00109] If state processing is required, state process 328 is commenced. State processor 328

carries out any state operations specified for the state of the flow and updates the state to the

next state according to a set of state instructions obtained form the state pattern and processes

database 326.

[00110] The state processor 328 analyzes both new and existing flows in order to analyze all

levels of the protocol stack, ultimately classifying the flows by application (level 7 in the ISO

model). It does this by proceeding from state-to-state based on predefined state transition

rules and state operations as specified in state processor instruction database 326. A state

transition rule is a rule typically containing a test followed by the next-state to proceed to if

the test result is true. An operation is an operation to be performed while the state processor is

in a particular state—for example, in order to evaluate a quantity needed to apply the state

transition rule. The state processor goes through each rule and each state process until the test

is true, or there are no more tests to perform.

APPT-001-1-1

NOAC EX. 1019 Page 29

NOAC Ex. 1019 Page 30

\

23

[00111] In general, the set of state operations may be none or more operations on a packet, and

carrying out the operation or operations may leave one in a state that causes exiting the

system prior to completing the identification, but possibly knowing more about what state

and state processes are needed to execute next, i.e., when a next packet of this flow is

encountered. As an example, a state process (set of state operations) at a particular state may

build a new signature for future recognition packets of the next state.

[00112] By maintaining the state of the flows and knowing that new flows may be set up using

the information from previously encountered flows, the network traffic monitor 300 provides

for (a) single-packet protocol recognition of flows, and (b) multiple-packet protocol

recognition of flows. Monitor 300 can even recognize the application program from one or

more disjointed sub—flows that occur in server announcement type flows. What may seem to

prior art monitors to be some unassociated flow, may be recognized by the inventive monitor

using the flow signature to be a sub-flow associated with a previously encountered sub-flow.

[00113] Thus, state processor 328 applies the first state operation to the packet for this

particular flow—entry. A process 330 decides if more operations need to be performed for this

state. If so, the analyzer continues looping between block 330 and 328 applying additional

state operations to this particular packet until all those operations are completed—that is,

there are no more operations for this packet in this state. A process 332 decides if there are

further states to be analyzed for this type of flow according to the state of the flow and the

protocol, in order to fully characterize the flow. If not, the conversational flow has now been

fully characterized and a process 334 finalizes the classification of the conversational flow

for the flow.

[00114] In the particular embodiment, the state processor 328 starts the state processing by

using the last protocol recognized by the parser as an offset into a jump table (jump vector).

The jump table finds the state processor instructions to use for that protocol in the state

patterns and processes database 326. Most instructions test something in the unified flow key

buffer, or the flow-entry in the database of known flows 324, if the entry exists. The state

processor may have to test bits, do comparisons, add, or subtract to perform the test. For

example, a common operation carried out by the state processor is searching for one or more

patterns in the payload part of the UFKB.

APPT—001-1-1

NOAC Ex. 1019 Page 30

NOAC Ex. 1019 Page 31

24

[00115] Thus, in 332 in the classification, the analyzer decides whether the flow is at an end

state. If not at an end state, the flow-entry is updated (or created if a new flow) for this flow-

entry in process 322.

[00116] Furthermore, if the flow is known and if in 332 it is determined that there are further

states to be processed using later packets, the flow-entry is updated in process 322.

[00117] The flow-entry also is updated after classification finalization so that any further

packets belonging to this flow will be readily identified from their signature as belonging to

this fully analyzed conversational flow.

[00118] After updating, database 324 therefore includes the set of all the conversational flows

that have occurred.

[00119] Thus, the embodiment of present invention shown in FIG. 3 automatically maintains

flow-entries, which in one aspect includes storing states. The monitor of FIG. 3 also

generates characteristic parts of packets—the signatures—that can be used to recognize

flows. The flow-entries may be identified and accessed by their signatures. Once a packet is

identified to be from a known flow, the state of the flow is known and this knowledge enables

state transition analysis to be performed in real time for each different protocol and

application. In a complex analysis, state transitions are traversed as more and more packets

are examined. Future packets that are part of the same conversational flow have their state

analysis continued from a previously achieved state. When enough packets related to an

application of interest have been processed, a final recognition state is ultimately reached,

i.e., a set of states has been traversed by state analysis to completely characterize the

conversational flow. The signature for that final state enables each new incoming packet of

the same conversational flow to be individually recognized in real time.

[00120] In this manner, one of the great advantages of the present invention is realized. Once a

particular set of state transitions has been traversed for the first time and ends in a final state,

a short-cut recognition pattern—a signature—can be generated that will key on every new

incoming packet that relates to the conversational flow. Checking a signature involves a

simple operation, allowing high packet rates to be successfully monitored on the network.

APPT—001-1-1

NOAC EX. 1019 Page 31

NOAC Ex. 1019 Page 32

25

[00121] In improved embodiments, several state analyzers are run in parallel so that a large

number of protocols and applications may be checked for. Every known protocol and

application will have at least one unique set of state transitions, and can therefore be uniquely

identified by watching such transitions.

[00122] When each new conversational flow starts, signatures that recognize the flow are

automatically generated on-the—fly, and as further packets in the conversational flow are

encountered, signatures are updated and the states of the set of state transitions for any

potential application are further traversed according to the state transition rules for the flow.

The new states for the flow—those associated with a set of state transitions for one or more

potential applications—are added to the records of previously encountered states for easy

recognition and retrieval when a new packet in the flow is encountered.

Detailed operation

[00123] FIG. 4 diagrams an initialization system 400 that includes the compilation process.

That is, part of the initialization generates the pattern structures and extraction operations

database 308 and the state instruction database 328. Such initialization can occur off-line or

from a central location.

[00124] The different protocols that can exist in different layers may be thought of as nodes of

one or more trees of linked nodes. The packet type is the root of a tree (called level 0). Each

protocol is either a parent node or a terminal node. A parent node links a protocol to other

protocols (child protocols) that can be at higher layer levels. Thus a protocol may have zero

or more children. Ethernet packets, for example, have several variants, each having a basic

format that remains substantially the same. An Ethernet packet (the root or level 0 node) may

be an Ethertype packet—also called an Ethernet Type/Version 2 and a DIX (DIGITAL-Intel-

Xerox packet)——or an IEEE 803.2 packet. Continuing with the IEEE 802.3 packet, one of the

children nodes may be the IP protocol, and one of the children of the IP protocol may be the

TCP protocol.

[00125] FIG. 16 shows the header 1600 (base level 1) of a complete Ethernet frame (i.e.,

packet) of information and includes information on the destination media access control

address (Dst MAC 1602) and the source media access control address (Src MAC 1604). Also

APPT—001-1—1

NOAC EX. 1019 Page 32

NOAC Ex. 1019 Page 33

26

shown in FIG. 16 is some (but not all) of the information specified in the PDL files for

extraction the signature.

[00126] FIG. 17A now shows the header information for the next level (level-2) for an

Ethertype packet 1700. For an Ethertype packet 1700, the relevant information from the

packet that indicates the next layer level is a two-byte type field 1702 Containing the child

recognition pattern for the next level. The remaining information 1704 is shown hatched

because it not relevant for this level. The list 1712 shows the possible children for an

Ethertype packet as indicated by what child recognition pattern is found offset 12. FIG. 17B

shows the structure of the header of one of the possible next levels, that of the IP protocol.

The possible children of the IP protocol are shown in table 1752.

[00127] The pattern, parse, and extraction database (pattern recognition database, or PRD) 308

generated by compilation process 310, in one embodiment, is in the form of a three

dimensional structure that provides for rapidly searching packet headers for the next protocol.

FIG. 18A shows such a 3-D representation 1800 (which may be considered as an indexed set

of 2—D representations). A compressed form of the 3—D structure is preferred.

[00128] An alternate embodiment of the data structure used in database 308 is illustrated in

FIG. 18B. Thus, like the 3-D structure of FIG. 18A, the data structure'permits rapid searches

to be performed by the pattern recognition process 304 by indexing locations in a memory

rather than performing address link computations. In this alternate embodiment, the PRD 308

includes two parts, a single protocol table 1850 (PT) which has an entry for each protocol

known for the monitor, and a series of Look Up Tables 1870 (LUT’s) that are used to'identify

known protocols and their children. The protocol table includes the parameters needed by the

pattern analysis and recognition process 304 (implemented by PRE 1006) to evaluate the

header information in the packet that is associated with that protocol, and parameters needed

by extraction process 306 (implemented by slicer 1007) to process the packet header. When

there are children, the PT describes which bytes in the header to evaluate to determine the

child protocol. In particular, each PT entry contains the header length, an offset to the child, a

slicer command, and some flags.

APPT-001-1-1

NOAC EX. 1019 Page 33

NOAC Ex. 1019 Page 34

27

[00129] The pattern matching is carried out by finding particular “child recognition codes” in

the header fields, and using these codes to index one or more of the LUT’s. Each LUT entry

has a node code that can have one of four values, indicating the protocol that has been

recognized, a code to indicate that the protocol has been partially recognized (more LUT

lookups are needed), a code to indicate that this is a terminal node, and a null node to indicate

a null entry. The next LUT to lookup is also returned from a LUT lookup.

[00130] Compilation process is described in FIG. 4. The source—code information in the form

of protocol description files is shown as 402. In the particular embodiment, the high level

decoding descriptions includes a set of protocol description files 336, one for each protocol,

and a set of packet layer selections 338, which describes the particular layering (sets of trees

of protocols) that the monitor is to be able to handle.

[00131] A compiler 403 compiles the descriptions. The set of packet parse—a'nd-extract

operations 406 is generated (404), and a set of packet state instructions and operations 407 is

generated (405) in the form of instructions for the state processor that implements state

processing process 328. Data files for each type of application and protocol to be recognized

by the analyzer are downloaded from the pattern, parse, and extraction database 406 into the

memory systems of the parser and extraction engines. (See the parsing process 500

description and FIG. 5; the extraction process 600 description and FIG. 6; and the parsing

subsystem hardware description and FIG. 10). Data files for each type of application and

protocol to be recognized by the analyzer are also downloaded from the state-processor

instruction database 407 into the state processor. (see the state processor 1108 description and

FIG. 11.).

[00132] Note that generating the packet parse and extraction operations builds and links the

three dimensional structure (one embodiment) or the or all the lookup tables for the PRD.

[00133] Because of the large number of possible protocol trees and subtrees, the compiler

process 400 includes optimization that compares the trees and subtrees to see which children

share common parents. When implemented in the form of the LUT’s, this process can

generate a single LUT from a plurality of LUT’s. The optimization process further includes a

compaction process that reduces the space needed to store the data of the PRD.

APPT—001-1—1

NOAC EX. 1019 Page 34

NOAC Ex. 1019 Page 35

28

[00134] As an example of compaction, consider the 3-D structure of FIG. 18A that can be

thought of as a set of 2-D structures each representing a protocol. To enable saving space by

using only one array per protocol which may have several parents, in one embodiment, the

pattern analysis subprocess keeps a “current header” pointer. Each location (offset) index for

each protocol 2—D array in the 3-D structure is a relative location starting with the start of

header for the particular protocol. Furthermore, each of the two-dimensional arrays is sparse.

The next step of the optimization, is checking all the 2-D arrays against all the other 2-D

arrays to find out which ones can share memory. Many of these 2-D arrays are often sparsely

populated in that they each have only a small number of valid entries. So, a process of

"folding" is next used to combine two or more 2—D arrays together into one physical 2-D

array without losing the identity of any of the original 2-D arrays (i.e., all the 2—D arrays

continue to exist logically). Folding can occur between any 2-D arrays irrespective of their

location in the tree as long as certain conditions are met. Multiple arrays may be combined

into a single array as long as the individual entries do not conflict with each other. A fold

number is then used to associate each element with its original array. A similar folding

process is used for the set of LUTs 1850 in the alternate embodiment of FIG. 18B.

[00135] In 410, the analyzer has been initialized and is ready to perform recognition.

[00136] FIG. 5 shows a flowchart of how actual parser subsystem 301 functions. Starting at

501, the packet 302 is input to the packet buffer in step 502. Step 503 loads the next (initially

the first) packet component from the packet 302. The packet components are extracted from

each packet 302 one element at a time. A check is made (504) to determine if the load—

packet-component operation 503 succeeded, indicating that there was more in the packet to

process. If not, indicating all components have been loaded, the parser subsystem 301 builds

the packet signature (512)—the next stage (FIG 6).

[00137] If a component is successfully loaded in 503, the node and processes are fetched (505)

from the pattern, parse and extraction database 308 to provide a set of patterns and processes

for that node to apply to the loaded packet component. The parser subsystem 301 checks

(506) to determine if the fetch pattern node operation 505 completed successfully, indicating

there was a pattern node that loaded in 505. If not, step 511 moves to the next packet

component. If yes, then the node and pattern matching process are applied in 507 to the

APPT—001—1- 1

NOAC EX. 1019 Page 35

NOAC Ex. 1019 Page 36

29

component extracted in 503. A pattern match obtained in 507 (as indicated by test 508)

means the parser subsystem 301 has found a node in the parsing elements; the parser

subsystem 301 proceeds to step 509 to extract the elements.

[00138] If applying the node process to the component does not produce a match (test 508),

the parser subsystem 301 moves (510) to the next pattern node from the pattern database 308

and to step 505 to fetch the next node and process. Thus, there is an “applying patterns” loop

between 508 and 505. Once the parser subsystem 301 completes all the patterns and has

either matched or not, the parser subsystem 301 moves to the next packet component (511).

[00139] Once all the packet components have been the loaded and processed from the input

packet 302, then the load packet will fail (indicated by test 504), and the parser subsystem

301 moves to build a packet signature which is described in FIG. 6

[00140] FIG. 6 is a flow chart for extracting the information from which to build the packet

signature. The flow starts at 601, which is the exit point 513 of FIG. 5. At this point parser

subsystem 301 has a completed packet component and a pattern node available in a buffer

(602). Step 603 loads the packet component available from the pattern analysis process of

FIG. 5. If the load completed (test 604), indicating that there was indeed another packet

component, the parser subsystem 301 fetches in 605 the extraction and process elements

received from the pattern node component in 602. If the fetch was successful (test 606),

indicating that there are extraction elements to apply, the parser subsystem 301 in step 607

applies that extraction process to the packet component based on an extraction instruction

received from that pattern node. This removes and saves an element from the packet

component.

[00141] In step 608, the parser subsystem 301 checks if there is more to extract from this

component, and if not, the parser subsystem 301 moves back to 603 to load the next packet

component at hand and repeats the process. If the answer is yes, then the parser subsystem

301 moves to the next packet component ratchet. That new packet component is then loaded

in step 603. As the parser subsystem 301 moved through the loop between 608 and 603, extra

extraction processes are applied either to the same packet component if there is more to

extract, or to a different packet component if there is no more to extract.

APPT-001- 1— 1

NOAC EX. 1019 Page 36

NOAC Ex. 1019 Page 37

30

[00142] The extraction process thus builds the signature, extracting more and more

components according to the information in the patterns and extraction database 308 for the

particular packet. Once loading the next packet component operation 603 fails (test 604), all

the components have been extracted. The built signature is loaded into the signature buffer

(610) and the parser subsystem 301 proceeds to FIG. 7 to complete the signature generation

process.

[00143] Referring now to FIG. 7, the process continues at 701. The signature buffer and the

pattern node elements are available (702). The parser subsystem 301 loads the next pattern

node element. If the load was successful (test 704) indicating there are more nodes, the parser

subsystem 301 in 705 hashes the signature buffer element based on the hash elements that are

found in the pattern node that is in the element database. In 706 the resulting signature and

the hash are packed. In 707 the parser subsystem 301 moves on to the next packet component

which is loaded in 703.

[00144] The 703 to 707 loop continues until there are no more patterns of elements left (test

704). Once all the patterns of elements have been hashed, processes 304, 306 and 312 of

parser subsystem 301 are complete. Parser subsystem 301 has generated the signature used by

the analyzer subsystem 303.

[00145] A parser record is loaded into the analyzer, in particular, into the UFKB in the form of

a UFKB record which is similar to a parser record, but with one or more different fields.

[00146] FIG. 8 is a flow diagram describing the operation of the lookup/update engine (LUE)

that implements lookup operation 314. The process starts at 801 from FIG. 7 with the parser

record that includes a signature, the hash and at least parts of the payload. In 802 those

elements are shown in the form of a UFKB-entry in the buffer. The LUE, the lookup engine

314 computes a “record bin number” from the hash for a flow-entry. A bin herein may have

one or more “buckets” each containing a flow—entry. The preferred embodiment has four

buckets per bin.

[0014?] Since preferred hardware embodiment includes the cache, all data accesses to records

in the flowchart of FIG. 8 are stated as being to or from the cache.

APPT—001—1-1

NOAC EX. 1019 Page 37

NOAC Ex. 1019 Page 38

31

[00148] Thus, in 804, the system looks up the cache for a bucket from that bin using the hash.

If the cache successfully returns with a bucket from the bin number, indicating there are more

buckets in the bin, the lookup/update engine compares (807) the current signature (the

UFKB-entry’s signature) from that in the bucket (i.e., the flow-entry signature). If the

signatures match (test 808), that record (in the cache) is marked in step 810 as “in process”

and a timestamp added. Step 811 indicates to the UFKB that the UFKB-entry in 802 has a

status of “found.” The “found” indication allows the state processing 328 to begin processing

this UFKB element. The preferred hardware embodiment includes one or more state

processors, and these can operate in parallel with the lookup/update engine.

[00149] In the preferred embodiment, a set of statistical operations is performed by a

calculator for every packet analyzed. The statistical operations may include one or more of

counting the packets associated with the flow; determining statistics related to the size of

packets of the flow; compiling statistics on differences between packets in each direction, for

example using timestamps; and determining statistical relationships of timestamps of packets

in the same direction. The statistical measures are kept in the flow-entries. Other statistical

measures also may be compiled. These statistics may be used singly or in combination by a

statistical processor component to analyze many different aspects of the flow. This may

include determining network usage metrics from the statistical measures, for example to

ascertain the network’s ability to transfer information for this application. Such analysis

provides for measuring the quality of service of a conversation, measuring how well an

application is performing in the network, measuring network resources consumed by an

application, and so forth.

[00150] To provide for such analyses, the lookup/update engine updates one or more counters

that are part of the flow-entry (in the cache) in step 812. The process exits at 813. In our

embodiment, the counters include the total packets of the flow, the time, and a differential

time from the last timestamp to the present timestamp.

[00151] It maybe that the bucket of the bin did not lead to a signature match (test 808). In

such a case, the analyzer in 809 moves to the next bucket for this bin. Step 804 again looks

up the cache for another bucket from that bin. The lookup/update engine thus continues

lookup up buckets of the bin until there is either a match in 808 or operation 804 is not

APPT-001- 1 — 1

NOAC EX. 1019 Page 38

NOAC Ex. 1019 Page 39

32

successful (test 805), indicating that there are no more buckets in the bin and no match was

found.

[00152] If no match was found, the packet belongs to a new (not previously encountered)

flow. In 806 the system indicates that the record in the unified flow key buffer for this packet

is new, and in 812, any statistical updating operations are performed for this packet by

updating the flow-entry in the cache. The update operation exits at 813. A flow

insertion/deletion engine (FIDE) creates a new record for this flow (again via the cache).

[00153] Thus, the update/lookup engine ends with a UFKB-entry for the packet with a “new”

status or a “found” status.

[00154] Note that the above system uses a hash to which more than one flow—entry can match.

A longer hash may be used that corresponds to a single flow-entry. In such an embodiment,

the flow chart of FIG. 8 is simplified as would be clear to those in the art.

The hardware system

[00155] Each of the individual hardware elements through which the data flows in the system

are now described with reference to FIGS. 10 and 11. Note that while we are describing a

particular hardware implementation of the invention embodiment of FIG. 3, it would be clear

to one skilled in the art that the flow of FIG. 3 may alternatively be implemented in software

running on one or more general—purpose processors, or only partly implemented in hardware.

An implementation of the invention that can operate in software is shown in FIG. 14. The

hardware embodiment (FIGS. 10 and 11) can operate at over a million packets per second,

while the software system of FIG. 14 may be suitable for slower networks. To one skilled in

the art it would be clear that more and more of the system may be implemented in software as

processors become faster.

[00156] FIG. 10 is a description of the parsing subsystem (301, shown here as subsystem

1000) as implemented in hardware. Memory 1001 is the pattern recognition database

memory, in which the patterns that are going to be analyzed are stored. Memory 1002 is the

extraction-operation database memory, in which the extraction instructions are stored. Both

1001 and 1002 correspond to internal data structure 308 of FIG. 3. Typically, the system is

initialized from a microprocessor (not shown) at which time these memories are loaded

APPT-001-1-1

NOAC EX. 1019 Page 39

NOAC Ex. 1019 Page 40

33

through a host interface multiplexor and control register 1005 via the internal buses 1003 and

1004. Note that the contents of 1001 and 1002 are preferably obtained by compiling process
310 of FIG. 3.

[00157] A packet enters the parsing system via 1012 into a parser input buffer memory 1008

using control signals 1021 and 1023, which control an input buffer interface controller 1022.

The buffer 1008 and interface control 1022 connect to a packet acquisition device (not

shown). The buffer acquisition device generates a packet start signal 1021 and the interface

control 1022 generates a next packet (i.e., ready to receive data) signal 1023 to control the

data flow into parser input buffer memory 1008. Once a packet starts loading into the buffer

memory 1008, pattern recognition engine (PRE) 1006 carries out the operations on the input

buffer memory described in block 304 of FIG. 3. That is, protocol types and associated

headers for each protocol layer that exist in the packet are determined.

[00158] The PRE searches database 1001 and the packet in buffer 1008 in order to recognize

the protocols the packet contains. In one implementation, the database 1001 includes a series

of linked lookup tables. Each lookup table uses eight bits of addressing. The first lookup table

is always at address zero. The Pattern Recognition Engine uses a base packet offset from a

control register to start the comparison. It loads this value into a current offset pointer (COP).

It then reads the byte at base packet offset from the parser input buffer and uses it as an

address into the first lookup table.

[00159] Each lookup table returns a word that links to another lookup table or it returns a

terminal flag. If the lookup produces a recognition event the database also returns a command
\

for the slicer. Finally it returns the value to add to the COP.

[00160] The PRE 1006 includes of a comparison engine. The comparison engine has a first

stage that checks the protocol type field to determine if it is an 802.3 packet and the field

should be treated as a length. If it is not a length, the protocol is checked in a second stage.

The first stage is the only protocol level that is not programmable. The second stage has two

full sixteen bit content addressable memories (CAMS) defined for future protocol additions.

[00161] Thus, whenever the PRE recognizes a pattern, it also generates a command for the

extraction engine (also called a “slicer”) 1007. The recognized patterns and the commands

APPT—001-1—1

NOAC EX. 1019 Page 40

NOAC Ex. 1019 Page 41

34

are sent to the extraction engine 1007 that extracts information from the packet to build the

parser record. Thus, the operations of the extraction engine are those carried out in blocks

306 and 312 of FIG. 3. The commands are sent from PRE 1006 to slicer 1007 in the form of

extraction instruction pointers which tell the extraction engine 1007 where to a find the

instructions in the extraction operations database memory (i.e., slicer instruction database)

1002.

[00162] Thus, when the PRE 1006 recognizes a protocol it outputs both the protocol identifier

and a process code to the extractor. The protocol identifier is added to the flow signature and

the process code is used to fetch the first instruction from the instruction database 1002.

Instructions include an operation code and usually source and destination offsets as well as a

length. The offsets and length are in bytes. A typical operation is the MOVE instruction. This

instruction tells the slicer 1007 to copy 11 bytes of data unmodified from the input buffer 1008

to the output buffer 1010. The extractor contains a byte-wise barrel shifter so that the bytes

moved can be packed into the flow signature. The extractor contains another instruction ,

called HASH. This instruction tells the extractor to copy from the input buffer 1008 to the

HASH generator.

[00163] Thus these instructions are for extracting selected element(s) of the packet in the input

buffer memory and transferring the data to a parser output buffer memory 1010. Some

instructions also generate a hash.

[00164] The extraction engine 1007 and the PRE operate as a pipeline. That is, extraction

engine 1007 performs extraction operations on data in input buffer 1008 already processed by

PRE 1006 while more (i.e., later arriving) packet information is being simultaneously parsed

by PRE 1006. This provides high processing speed sufficient to accommodate the high arrival

rate speed of packets.

[00165] Once all the selected parts of the packet used to form the signature are extracted, the

hash is loaded into parser output buffer memory 1010. Any additional payload from the

packet that is required for further analysis is also included. The parser output memory 1010 is

interfaced with the analyzer subsystem by analyzer interface control 1011. Once all the

information of a packet is in the parser output buffer memory 1010, a data ready signal 1025

APPT—001-1-1

NOAC EX. 1019 Page 41

NOAC Ex. 1019 Page 42

35

is asserted by analyzer interface control. The data from the parser subsystem 1000 is moved

to the analyzer subsystem via 1013 when an analyzer ready signal 1027 is asserted.

[00166] FIG. 11 shows the hardware components and dataflow for the analyzer subsystem that

performs the functions of the analyzer subsystem 303 of FIG. 3. The analyzer is initialized

prior to operation, and initialization includes loading the state processing information

generated by the compilation process 310 into a database memory for the state processing,

called state processor instruction database (SPID) memory 1109.

[00167] The analyzer subsystem 1100 includes a host bus interface 1122 using an analyzer

host interface controller 1118, which in turn has access to a cache system 1115. The cache

system has bi-directional access to and from the state processor of the system 1108. State

processor 1108 is responsible for initializing the state processor instruction database memory

1109 from information given over the host bus interface 1122.

[00168] With the SPID 1109 loaded, the analyzer subsystem 1100 receives parser records

comprising packet signatures and payloads that come from the parser into the unified flow

key buffer (UFKB) 1103. UFKB is comprised of memory set up to maintain UFKB records.

A UFKB record is essentially a parser record; the UFKB holds records of packets that are to

be processed or that are in process. Furthermore, the UFKB provides for one or more fields to

act as modifiable status flags to allow different processes to run concurrently.

[00169] Three processing engines run concurrently and access records in the UFKB 1103: the

lookup/update engine (LUE) 1107, the state processor (SP) 1108, and the flow insertion and

deletion engine (FIDE) 1110. Each of these is implemented by one or more finite state

machines (FSM's). There is bi—directional access between each of the finite state machines

and the unified flow key buffer 1103. The UFKB record includes a field that stores the packet

sequence number, and another that is filled with state information in the form of a program

counter for the state processor 1108 that implements state processing 328. The status flags of

the UFKB for any entry includes that the LUE is done and that the LUE is transferring

processing of the entry to the state processor. The LUE done indicator is also used to indicate

what the next entry is for the LUE. There also is provided a flag to indicate that the state

processor is done with the current flow and to indicate what the next entry is for the state

APPT—001-1-1

NOAC EX. 1019 Page 42

NOAC Ex. 1019 Page 43

36

processor. There also is provided a flag to indicate the state processor is transferring

processing of the UFKB-entry to the flow insertion and deletion engine.

[00170] A new UFKB record is first processed by the LUE 1107. A record that has been

processed by the LUE 1107 may be processed by the state processor 1108, and a UFKB

record data may be processed by the flow insertion/deletion engine 1110 after being

processed by the state processor 1108 or only by the LUE. Whether or not a particular engine

has been applied to any unified flow key buffer entry is determined by status fields set by the

engines upon completion. In one embodiment, a status flag in the UFKB-entry indicates

whether an entry is new or found. In other embodiments, the LUE issues a flag to pass the

entry to the state processor for processing, and the required operations for a new record are

included in the SP instructions.

[00171] Note that each UFKB-entry may not need to be processed by all three engines.

Furthermore, some UFKB entries may need to be processed more than once by a particular

engine.

[00172] Each of these three engines also has bi-directional access to a cache subsystem 1115

that includes a caching engine. Cache 1115 is designed to have information flowing in and

out of it from five different points within the system: the three engines, external memory via

a unified memory controller (UMC) 1119 and a memory interface 1123, and a

microprocessor via analyzer host interface and control unit (ACIC) 1118 and host interface

bus (HIB) 1122. The analyzer microprocessor (or dedicated logic processor) can thus directly

insert or modify data in the cache.

[00173] The cache subsystem 1115 is an associative cache that includes a set of content

addressable memory cells (CAMs) each including an address portion and a pointer portion

pointing to the cache memory (e. g., RAM) containing the cached flow-entries. The CAMs are

arranged as a stack ordered from a top CAMto a bottom CAM. The bottom CAM’s pointer

points to the least recently used (LRU) cache memory entry. Whenever there is a cache miss,

the contents of cache memory pointed to by the bottom CAM are replaced by the flow-entry

from the flow-entry database 324. This now becomes the most recently used entry, so the

APPT—001~1-1

NOAC EX. 1019 Page 43

NOAC Ex. 1019 Page 44

37

contents of the bottom CAM are moved to the top CAM and all CAM contents are shifted

down. Thus, the cache is an associative cache with a true LRU replacement policy.

[00174] The LUE 1107 first processes a UFKB-entry, and basically performs the operation of

blocks 314 and 316 in FIG. 3. A signal is provided to the LUE to indicate that a “new”

UFKB—entry is available. The LUE uses the hash in the UFKB—entry to read a matching bin

of up to four buckets from the cache. The cache system attempts to obtain the matching bin.

If a matching bin is not in the cache, the cache 1115 makes the request to the UMC 1119 to

bring in a matching bin from the external memory.

[00175] When a flow—entry is found using the hash, the LUE 1107 looks at each bucket and

compares it using the signature to the signature of the UFKB—entry until there is a match or

there are no more buckets.

[00176] If there is no match, or if the cache failed to provide a bin of flow-entries from the

cache, a time stamp in set in the flow key of the UFKB record, a protocol identification and

state determination is made using a table that was loaded by compilation process 310 during

initialization, the status for the record is set to indicate the LUE has processed the record, and

an indication is made that the UFKB-entry is ready to start state processing. The

identification and state determination generates a protocol identifier which in the preferred

embodiment is a “jump vector” for the state processor which is kept by the UFKB for this

UFKB-entry and used by the state processor to start state processing for the particular

protocol. For example, the jump vector jumps to the subroutine for processing the state.

[00177] If there was a match, indicating that the packet of the UFKB-entry is for a previously

encountered flow, then a calculator component enters one or more statistical measures stored

in the flow—entry, including the timestamp. In addition, a time difference from the last stored

timestamp may be stored, and a packet count may be updated. The state of the flow is

obtained from the flow-entry is examined by looking at the protocol identifier stored in the

flow—entry of database 324. If that value indicates that no more classification is required, then

the status for the record is set to indicate the LUE has processed the record. In the preferred

embodiment, the protocol identifier is a jump vector for the state processor to a subroutine to

state processing the protocol, and no more classification is indicated in the preferred

APPT—001-1-1

NOAC EX. 1019 Page 44

NOAC Ex. 1019 Page 45

38

embodiment by the jump vector being zero. If the protocol identifier indicates more

processing, then an indication is made that the UFKB-entry is ready to start state processing

and the status for the record is set to indicate the LUE has processed the record.

[00178] The state processor 1108 processes information in the cache system according to a

UFKB-entry after the LUE has completed. State processor 1108 includes a state processor

program counter SPPC that generates the address in the state processor instruction database

1109 loaded by compiler process 310 during initialization. It contains an Instruction Pointer

(SPIP) which generates the SPID address. The instruction pointer can be incremented or

loaded from a Jump Vector Multiplexor which facilitates conditional branching. The SPIP

can be loaded from one of three sources: (1) A protocol identifier from the UFKB, (2) an

immediate jump vector form the currently decoded instruction, or (3) a value provided by the
arithmetic logic unit (SPALU) included in the state processor.

[00179] Thus, after a Flow Key is placed in the UFKB by the LUE with a known protocol

identifier, the Program Counter is initialized with the last protocol recognized by the Parser.

This first instruction is a jump to the subroutine which analyzes the protocol that was

decoded.

[00180] The State Processor ALU (SPALU) contains all the Arithmetic, Logical and String

Compare functions necessary to implement the State Processor instructions. The main blocks

of the SPALU are: The A and B Registers, the Instruction Decode & State Machines, the

String Reference Memory the Search Engine, an Output Data Register and an Output Control

Register I

[00181] The Search Engine in turn contains the Target Search Register set, the Reference

Search Register set, and a Compare block which compares two operands by exclusive-or—ing

them together.

[00182] Thus, after the UFKB sets the program counter, a sequence of one or more state

operations are be executed in state processor 1108 to further analyze the packet that is in the

flow key buffer entry for this particular packet.

[00183] FIG. 13 describes the operation of the state processor 1108. The state processor is

entered at 1301 with a unified flow key buffer entry to be processed. The UFKB-entry is new

APPT-001-1-1

NOAC EX. 1019 Page 45

NOAC Ex. 1019 Page 46

39

or corresponding to a found flow-entry. This UFKB-entry is retrieved from unified flow key

buffer 1103 in 1301. In 1303, the protocol identifier for the UFKB-entry is used to set the

state processor’s instruction counter. The state processor 1108 starts the process by using the

last protocol recognized by the parser subsystem 301 as an offset into a jump table. The jump

table takes us to the instructions to use for that protocol. Most instructions test something in

the unified flow key buffer or the flow-entry if it exists. The state processor 1108 may have to

test bits, do comparisons, add or subtract to perform the test.

[00184] The first state processor instruction is fetched in 1304 from the state processor

instruction database memory 1109. The state processor performs the one or more fetched

operations (1304). In our implementation, each single state processor instruction is very

primitive (e.g., a move, a compare, etc.), so that many such instructions need to be performed

on each unified flow key buffer entry. One aspect of the state processor is its ability to search

for one or more (up to four) reference strings in the payload part of the UFKB entry. This is

implemented by a search engine component of the state processor responsive to special

searching instructions.

[00185] In 1307, a check is made to determine if there are any more instructions to be

performed for the packet. If yes, then in 1308 the system sets the stateprocessor instruction

pointer (SPIP) to obtain the next instruction. The SPIP may be set by an immediate jump

vector in the currently decoded instruction, or by a value provided by the SPALU during

processing.

[00186] The next instruction to be performed is now fetched (1304) for execution. This state

processing loop between 1304 and 1307 continues until there are no more instructions to be

performed.

[00187] At this stage, a check is made in 1309 if the processing on this particular packet has

resulted in a final state. That is, is the analyzer is done processing not only for this particular

packet, but for the whole flow to which the packet belongs, and the flow is fully determined.

If indeed there are no more states to process for this flow, then in 1311 the processor finalizes

the processing. Some final states may need to put a state in place that tells the system to

remove a flow—for example, if a connection disappears from a lower level connection

APPT—001-1—1

NOAC Ex. 1019 Page 46

NOAC Ex. 1019 Page 47

40

identifier. In that case, in 1311, a flow removal state is set and saved in the flow-entry. The

flow removal state may be a NOP (no-op) instruction which means there are no removal

instructions.

[00188] Once the appropriate flow removal instruction as specified for this flow (a NOP or

otherwise) is set and saved, the process is exited at 1313. The state processor 1108 can now

obtain another unified flow key buffer entry to process.

[00189] If at 1309 it is determined that processing for this flow is not completed, then in 1310

the system saves the state processor instruction pointer in the current flow-entry in the current

flow-entry. That will be the next operation that will be performed the next time the LRE 1107

finds packet in the UFKB that matches this flow. The processor now exits processing this

particular unified flow key buffer entry at 1313.

[00190] Note that state processing updates information in the unified flow key buffer 1103 and

the flow-entry in the cache. Once the state processor is done, a flag is set in the UFKB for the

entry that the state processor is done. Furthermore, If the flow needs to be inserted or deleted

from the database of flows, control is then passed on to the flow insertion/deletion engine

1110 for that flow signature and packet entry. This is done by the state processor setting

another flag in the UFKB for this UFKB-entry indicating that the state processor is passing

processing of this entry to the flow insertion and deletion engine.

[00191] The flow insertion and deletion engine 1110 is responsible for maintaining the flow-

entry database. In particular, for creating new flows in the flow database, and deleting flows

from the database so that they can be reused.

[00192] The process of flow insertion is now described with the aid of FIG. 12. Flows are

grouped into bins of buckets by the hash value. The engine processes a UFKB-entry that may

be new or that the state processor otherwise has indicated needs to be created. FIG. 12 shows

the case of a new entry being created. A conversation record bin (preferably containing 4

buckets for four records) is obtained in 1203. This is a bin that matches the hash of the

UFKB, so this bin may already have been sought for the UFKB—entry by the LUE. In 1204

the FIDE 1110 requests that the record bin/bucket be maintained in the cache system 1115. If

in 1205 the cache system 1115 indicates that the bin/bucket is empty, step 1207 inserts the

APPT—001-1-1

NOAC EX. 1019 Page 47

NOAC Ex. 1019 Page 48

41

flow signature (with the hash) into the bucket and the bucket is marked “used” in the cache

engine of cache 1115 using a timestamp that is maintained throughout the process. In 1209,

the FIDE 1110 compares the bin and bucket record flow signature to the packet to verify that

all the elements are in place to complete the record. In 1211 the system marks the record bin

and bucket as “in process” and as “new” in the cache system (and hence in the external

memory). In 1212, the initial statistical measures for the flow-record are set in the cache

system. This in the preferred embodiment clears the set of counters used to maintain

statistics, and may perform other procedures for statistical operations requires by the analyzer

for the first packet seen for a particular flow.

[00193] Back in step 1205, if the bucket is not empty, the FIDE 1110 requests the next bucket

for this particular bin in the cache system. If this succeeds, the processes of 1207, 1209, 1211

and 1212 are repeated for this next bucket. If at 1208, there is no valid bucket, the unified

flow key buffer entry for the packet is set as “drop,” indicating that the system cannot process

the particular packet because there are no buckets left in the system. The process exits at

1213. The FIDE 1110 indicates to the UFKB that the flow insertion and deletion operations

are completed for this UFKB-entry. This also lets the UFKB provide the FIDE with the next

UFKB record.

[001 94] Once a set of operations is performed on a unified flow key buffer entry by all of the

engines required to access and manage a particular packet and its flow signature, the unified

flow key buffer entry is marked as “completed.” That element will then be used by the parser

interface for the next packet and flow signature coming in from the parsing and extracting

system.

[00195] All flow-entries are maintained in the external memory and some are maintained in

the cache 1115. The cache system 1115 is intelligent enough to access the flow database and

to understand the data structures that exists on the other side of memory interface 1123. The

lockup/update engine 1107 is able to request that the cache system pull a particular flow or

“buckets” of flows from the unified memory controller 1119 into the cache system for further

processing. The state processor 1108 can operate on information found in the cache system

once it is looked up by means of the lookup/update engine request, and the flow

insertion/deletion engine 1110 can create new entries in the cache system if required based on

APPT-001-1-1

NOAC Ex. 1019 Page 48

NOAC Ex. 1019 Page 49

42

information in the unified flow key buffer 1103. The cache retrieves information as required

from the memory through the memory interface 1123 and the unified memory controller

1119, and updates information as required in the memory through the memory controller

1119.

[00196] There are several interfaces to components of the system external to the module of

FIG. 11 for the particular hardware implementation. These include host bus interface

1122,which is designed as a generic interface that can operate with any kind of external

processing system such as a microprocessor or a multiplexor (MUX) system. Consequently,

one can connect the overall traffic classification system of FIGS. 11 and 12 into some other

processing system to manage the classification system and to extract data gathered by the

system.

[00197] The memory interface 1123 is designed to interface to any of a variety of memory

systems that one may want to use to store the flow-entries. One can use different types of

memory systems like regular dynamic random access memory (DRAM), synchronous

DRAM, synchronous graphic memory (SGRAM), static random access memory (SRAM),

and so forth.

[00198] FIG. 10 also includes some “generic” interfaces. There is a packet input interface

1012—a general interface that works in tandem with the signals of the input buffer interface

control 1022. These are designed so that they can be used with any kind of generic systems

that can then feed packet information into the parser. Another generic interface is the

interface of pipes 1031 and 1033 respectively out of and into host interface multiplexor and

control registers 1005. This enables the parsing system to be managed by an external system,

for example a microprocessor or another kind of external logic, and enables the external

system to program and otherwise control the parser.

[00199] The preferred embodiment of this aspect of the invention is described in a hardware

description language (HDL) such as VHDL or Verilog. It is designed and created in an HDL

so that it may be used as a single chip system or, for instance, integrated into another general—

purpose system that is being designed for purposes related to creating and analyzing traffic

APPT-001-1—1

NOAC EX. 1019 Page 49

NOAC Ex. 1019 Page 50

43

within a network. Verilog or other HDL implementation is only one method of describing the

hardware.

[00200] In accordance with one hardware implementation, the elements shown in FIGS. 10

and 11 are implemented in a set of six field programmable logic arrays (FPGA’s). The

boundaries of these FPGA’s are as follows. The parsing subsystem of FIG. 10 is implemented

as two FPGAS; one FPGA, and includes blocks 1006, 1008 and 1012, parts of 1005, and

memory 1001. The second FPGA includes 1002, 1007, 1013, 1011 parts of 1005. Referring

to FIG. 11, the unified look—up buffer 1103 is implemented as a single FPGA. State processor

1108 and part of state processor instruction database memory 1109 is another FPGA. Portions

of the state processor instruction database memory 1109 are maintained in external SRAM’s.

The lookup/update engine 1107 and the flow insertion/deletion engine 1110 are in another

FPGA. The sixth FPGA includes the cache system 1115, the unified memory control 1119,

and the analyzer host interface and control 1118.

[00201] Note that one can implement the system as one or more VSLI devices, rather than as a

set of application specific integrated circuits (ASIC’s) such as FPGA’s. It is anticipated that

in the future device densities will continue to increase, so that the complete system may

eventually form a sub—unit (a “core”) of a larger single chip unit.

Operation of the Invention

[00202] Fig. 15 shows how an embodiment of the network monitor 300 might be used to

analyze traffic in a network 102. Packet acquisition device 1502 acquires all the packets from

a connection point 121 on network 102 so that all packets passing point 121 in either

direction are supplied to monitor 300. Monitor 300 comprises the parser sub-system 301,

which determines flow signatures, and analyzer sub-system 303 that analyzes the flow

signature of each packet. A memory 324 is used to store the database of flows that are

determined and updated by monitor 300. A host computer 1504, which might be any

processor, for example, a general—purpose computer, is used to analyze the flows in memory

324. As is conventional, host computer 1504 includes a memory, say RAM, shown as host

memory 1506. In addition, the host might contain a disk. In one application, the system can

APPT—001-1-1

NOAC EX. 1019 Page 50

NOAC Ex. 1019 Page 51

44

operate as an RMON probe, in which case the host computer is coupled to a network

interface card 1510 that is connected to the network 102.

[00203] The preferred embodiment of the invention is supported by an optional Simple

Network Management Protocol (SNMP) implementation. Fig. 15 describes how one would,

for example, implement an RMON probe, where a network interface card is used to send

RMON information to the network. Commercial SNMP implementations also are available,

and using such an implementation can simplify the process of porting the preferred

embodiment of the invention to any platform.

[00204] In addition, MIB Compilers are available. An MIB Compiler is a tool that greatly

simplifies the creation and maintenance of proprietary MIB extensions.

Examples of Packet Elucidation ’

[00205] Monitor 300, and in particular, analyzer 303 is capable of carrying out state analysis

for packet exchanges that are commonly referred to as “server announcement” type

exchanges. Server announcement is a process used to ease communications between a server

with multiple applications that can all be simultaneously accessed from multiple clients.

Many applications use a server announcement process as a means of multiplexing a single

port or socket into many applications and services. With this type of exchange, messages are

sent on the network, in either a broadcast or multicast approach, to announce a server and

application, and all stations in the network may receive and decode these messages. The

messages enable the stations to derive the appropriate connection point for communicating

that particular application with the particular server. Using the server announcement method,

a particular application communicates using a service channel, in the form of a TCP or UDP

socket or port as in the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

[00206] The analyzer 303 is also capable of carrying out “in-stream analysis” of packet

exchanges. The “in-stream analysis” method is used either as a primary or secondary

recognition process. As a primary process, in-stream analysis assists in extracting detailed

information which will be used to further recognize both the specific application and

application component. A good example of in-stream analysis is any Web-based application.

For example, the commonly used PointCast Web information application can be recognized

APPT-001-1-1

NOAC EX. 1019 Page 51

NOAC Ex. 1019 Page 52

45

using this process; during the initial connection between a PointCast server and client,

specific key tokens exist in the data exchange that will result in a signature being generated to

recognize PointCast.

[00207] The in-stream analysis process may also be combined with the server announcement

process. In many cases in-stream analysis will augment other recognition processes. An

example of combining in-stream analysis with server announcement can be found in business

applications such as SAP and BAAN.

[00208] “Session tracking” also is known as one of the primary processes for tracking

applications in client/server packet exchanges. The process of tracking sessions requires an

initial connection to a predefined socket or port number. This method of communication is

used in a variety of transport layer protocols. It is most commonly seen in the TCP and UDP

transport protocols of the IP protocol.

[00209] During the session tracking, a client makes a request to a server using a specific port

or socket number. This initial request will cause the server to create a TCP or UDP port to

exchange the remainder of the data between the client and the server. The server then replies

to the request of the client using this newly created port. The original port used by the client

to connect to the server will never be used again during this data exchange.

[00210] One example of session tracking is TFI‘P (Trivial File Transfer Protocol), a version of

the TCP/IP FTP protocol that has no directory or password capability. During the

client/server exchange process of TFI‘P, a specific port (port number 69) is always used to

initiate the packet exchange. Thus, when the client begins the process of communicating, a

request is made to UDP port 69. Once the server receives this request, a new port number is

created on the server. The server then replies to the client using the new port. In this example,

it is clear that in order to recognize TFTP; network monitor 300 analyzes the initial request

from the client and generates a signature for it. Monitor 300 uses that signature to recognize

the reply. Monitor 300 also analyzes the reply from the server with the key port information,

and uses this to create a signature for monitoring the remaining packets of this data exchange.

[00211] Network monitor 300 can also understand the current state of particular connections

in the network. Connection-oriented exchanges often benefit from state tracking to correctly

APPT—001-1—1

NOAC EX. 1019 Page 52

NOAC Ex. 1019 Page 53

46

identify the application. An example is the common TCP transport protocol that provides a

reliable means of sending information between a client and a server. When a data exchange is

initiated, a TCP request for synchronization message is sent. This message contains a specific

sequence number that is used to track an acknowledgement from the server. Once the server

has acknowledged the synchronization request, data may be exchanged between the client

and the server. When communication is no longer required, the client sends a finish or

complete message to the server, and the server acknowledges this finish request with a reply

containing the sequence numbers from the request. The states of such a connection-oriented

exchange relate to the various types of connection and maintenance messages.

Server Announcement Example

[00212] The individual methods of server announcement protocols vary. However, the basic

underlying process remains similar. A typical server announcement message is sent to one or

more clients in a network. This type of announcement message has specific content, which, in

another aspect of the invention, is salvaged and maintained in the database of flow—entries in

the system. Because the announcement is sent to one or more stations, the client involved in a

future packet exchange with the server will make an assumption that the information

announced is known, and an aspect of the inventive monitor is that it too can make the same

assumption.

[00213] Sun—RPC is the implementation by Sun Microsystems, Inc. (Palo Alto, California) of

the Remote Procedure Call (RFC), a programming interface that allows one program to use

the services of another on a remote machine. A Sun-RPC example is now used to explain

how monitor 300 can capture server announcements.

[00214] A remote program or client that wishes to use a server or procedure must establish a

connection, for which the RFC protocol can be used.

[00215] Each server running the Sun-RFC protocol must maintain a process and database

called the port Mapper. The port Mapper creates a direct association between a Sun—RPC

program or application and a TCP or UDP socket or port (for TCP or UDP implementations).

An application or program number is a 32-bit unique identifier assigned by ICANN (the

Internet Corporation for Assigned Names and Numbers, www.icann.org), which manages the

APPT-001-1-1

NOAC EX. 1019 Page 53

NOAC Ex. 1019 Page 54

47

huge number of parameters associated with Internet protocols (port numbers, router

protocols, multicast addresses, etc.) Each port Mapper on a Sun-RFC server can present the

mappings between a unique program number and a specific transport socket through the use

of specific request or a directed announcement. According to ICANN, port number 111 is

associated with Sun RPC.

[00216] As an example, consider a client (e.g., CLIENT 3 shown as 106 in FIG. 1) making a

specific request to the server (e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined UDP

or TCP socket. Once the port Mapper process on the sun RPC server receives the request, the

specific mapping is returned in a directed reply to the client.

[00217] 1. A client (CLIENT 3, 106 in FIG. 1) sends a TCP packet to SERVER 2

(110 in FIG. 1) on port 111, with an RPC Bind Lookup Request

(rpcBindLookup). TCP or UDP port 111 is always associated Sun RPC. This

request specifies the program (as a program identifier), version, and might

specify the protocol (UDP or TCP).

[00218] 2. The server SERVER 2 (110 in FIG. 1) extracts the program identifier and

version identifier from the request. The server also uses the fact that this packet

came in using the TCP transport and that no protocol was specified, and thus

will use the TCP protocol for its reply.

[00219] 3. The server 110 sends a TCP packet to port number 111, with an RPC Bind

Lookup Reply. The reply contains the specific port number (e. g., port number

‘port’) on which future transactions will be accepted for the specific RPC

program identifier (e.g., Program ‘program’) and the protocol (UDP or TCP) for

use.

[00220] It is desired that from now on every time that port number ‘port’ is used, the packet is

associated with the application program ‘program’ until the number ‘port’ no longer is to be

associated with the program ‘program’. Network monitor 300 by creating a flow-entry and a

signature includes a mechanism for remembering the exchange so that future packets that use

the port number ‘port’ will be associated by the network monitor with the application

program ‘program’.

APPT—001-1-1

NOAC EX. 1019 Page 54

NOAC Ex. 1019 Page 55

48

[00221] In addition to the Sun RPC Bind Lookup request and reply, there are other ways that a

particular program—say ‘program’—might be associated with a particular port number, for

example number ‘port’. One is by a broadcast announcement of a particular association

between an application service and a port number, called a Sun RPC portMapper

Announcement. Another, is when some server—say the same SERVER 2—replies to some

client—say CLIENT l—requesting some portMapper assignment with a RPC portMapper

Reply. Some other client—say CLIENT 2—might inadvertently see this request, and thus

know that for this particular server, SERVER 2, port number ‘port’ is associated with the

application service ‘program’. It is desirable for the network monitor 300 to be able to

associate any packets to SERVER 2 using port number ‘port’ with the application program

‘program’ .

[00222] FIG. 9 represents a dataflow 900 of some operations in the monitor 300 of FIG. 3 for

Sun Remote Procedure Call. Suppose a client 106 (e. g., CLIENT 3 in FIG. 1) is

communicating via its interface to the network 118 to a server 110 (e.g., SERVER 2 in FIG.

1) via the server’s interface to the network 116. Further assume that Remote Procedure Call is

used to communicate with the server 110. One path in the data flow 900 starts with a step 910

that a Remote Procedure Call bind lookup request is issued by client 106 and ends with the

server state creation step 904. Such RPC bind lookup request includes values for the

‘program,’ ‘version,’ and ‘protocol’ to use, e. g., TCP or UDP. The process for Sun RPC

analysis in the network monitor 300 includes the following aspects. :

[00223] 0 Process 909: Extract the ‘program,’ ‘version,’ and ‘protocol’ (UDP or TCP).

Extract the TCP or UDP port (process 909) which is 111 indicating Sun RPC.

[00224] 0 Process 908: Decode the Sun RPC packet. Check RPC type field for ID. If value

is portMapper, save paired socket (i.e., dest for destination address, src for source

address). Decode ports and mapping, save ports with socket/addr key. There may

be more than one pairing per mapper packet. Form a signature (e.g., a key). A

flow-entry is created in database 324. The saving of the request is now complete.

[00225] At some later time, the server (process 907) issues a RPC bind lookup reply. The

packet monitor 300 will extract a signature from the packet and recognize it from the

APPT—001-1-1

NOAC EX. 1019 Page 55

NOAC Ex. 1019 Page 56

49

previously stored flow. The monitor will get the protocol port number (906) and lookup the

request (905). A new signature (Le, a key) will be created and the creation of the server state

(904) will be stored as an entry identified by the new signature in the flow-entry database.

That signature now may be used to identify packets associated with the server.

[00226] The server state creation step 904 can be reached not only from a Bind Lookup

Request/Reply pair, but also from 3 RFC Reply portMapper packet shown as 901 or an RPC

Announcement portMapper shown as 902. The Remote Procedure Call protocol can

announce that it is able to provide a particular application service. Embodiments of the

present invention preferably can analyze when an exchange occurs between a client and a

server, and also can track those stations that have received the announcement of a service in

the network.

[00227] The RPC Announcement portMapper announcement 902 is a broadcast. Such causes

various clients to execute a similar set of operations, for example, saving the information

obtained from the announcement. The RPC Reply portMapper step 901 could be in reply to a

portMapper request, and is also broadcast. It includes all the service parameters.

[00228] Thus monitor 300 creates and saves all such states for later classification of flows that

relate to the particular service ‘program’.

[00229] FIG. 2 shows how the monitor 300 in the example of Sun RPC builds a signature and

flow states. A plurality of packets 206-209 are exchanged, e.g., in an exemplary Sun

Microsystems Remote Procedure Call protocol. A method embodiment of the present

invention might generate a pair of flow signatures, “signature-l” 210 and “signature-2” 212,

from information found in the packets 206 and 207 which, in the example, correspond to a

Sun RPC Bind Lookup request and reply, respectively.

[00230] Consider first the Sun RPC Bind Lookup request. Suppose packet 206 corresponds to

such a request sent from CLIENT 3 to SERVER 2. This packet contains important

information that is used in building a signature according to an aspect of the invention. A

source and destination network address occupy the first two fields of each packet, and

according to the patterns in pattern database 308, the flow signature (shown as KEYl 230 in

FIG. 2) will also contain these two fields, so the parser subsystem 301 will include these two

APPT—001-1-1

NOAC EX. 1019 Page 56

NOAC Ex. 1019 Page 57

50

fields in signature KEY l (230). Note that in FIG. 2, if an address identifies the client 106

(shown also as 202), the label used in the drawing is “C1”. If such address identifies the

server 110 (shown also as server 204), the label used in the drawing is “$1”. The first two

fields 214 and 215 in packet 206 are “SI” and C1” because packet 206 is provided from the

server 110 and is destined for the client 106. Suppose for this example, “SI” is an address

numerically less than address “C1”. A third field “pl” 216 identifies the particular protocol

being used, e.g., TCP, UDP, etc.

[00231] In packet 206, a fourth field 217 and a fifth field 218 are used to communicate port

numbers that are used. The conversation direction determines where the port number field is.

The diagonal pattern in field 217 is used to identify a source-port pattern, and the hash pattern

in field 218 is used to identify the destination-port pattern. The order indicates the client-

server message direction. A sixth field denoted “i1” 219 is an element that is being requested

by the client from the server. A seventh field denoted “sla” 220 is the service requested by

the client from server 110. The following eighth field “QA” 221 (for question mark) indicates

that the client 106 wants to know what to use to access application “sla”. A tenth field “QP”

223 is used to indicate that the client wants the server to indicate what protocol to use for the

particular application.

[00232] Packet 206 initiates the sequence of packet exchanges, e.g., a

RPC Bind Lookup Request to SERVER 2. It follows a well-defined format, as do all the

packets, and is transmitted to the server 110 on a well-known service connection identifier

(port 111 indicating Sun RPC).

[00233] Packet 207 is the first sent in reply to the client 106 from the server. It is the

RFC Bind Lookup Reply as a result of the request packet 206.

[00234] Packet 207 includes ten fields 224—233. The destination and source addresses are

carried in fields 224 and 225, e. g., indicated “C1” and “S 1”, respectively. Notice the order is

now reversed, since the client—server message direction is from the server 110 to the client

106. The protocol “p1” is used as indicated in field 226. The request “i1” is in field 229.

APPT—001-1-1

NOAC EX. 1019 Page 57

NOAC Ex. 1019 Page 58

51

Values have been filled in for the application port number, e.g., in field 233 and protocol

““p2”” in field 233.

[00235] The flow signature and flow states built up as a result of this exchange are now

described. When the packet monitor 300 sees the request packet 206 from the client, a first

flow signature 210 is built in the parser subsystem 301 according to the pattern and extraction

operations database 308. This signature 210 includes a destination and a source address 240

and 241. One aspect of the invention is that the flow keys are built consistently in a particular

order no matter what the direction of conversation. Several mechanisms may be used to

achieve this. In the particular embodiment, the numerically lower address is always placed

before the numerically higher address. Such least to highest order is used to get the best

spread of signatures and hashes for the lookup operations. In this case, therefore, since we

assume “Sl”<“C1”, the order is address “81” followed by client address “C1”. The next field

used to build the signature is a protocol field 242 extracted from packet 206’s field 216, and

thus is the protocol “p1”. The next field used for the signature is field 243, which contains the

destination source port number shown as a crosshatched pattern from the field 218 of the

packet 206. This pattern will be recognized in the payload of packets to derive how this

packet or sequence of packets exists as a flow. In practice, these may be TCP port numbers,

or a combination of TCP port numbers. In the case of the Sun RPC example, the crosshatch

represents a set of port numbers of UDS for p1 that will be used to recognize this flow (e.g.,

port 111). Port 111 indicates this is Sun RPC. Some applications, such as the Sun RPC Bind

Lookups, are directly determinable (“known”) at the parser level. So in this case, the

signature KEY-1 points to a known application denoted “a1” (Sun RPC Bind Lookup), and a

next—state that the state processor should proceed to for more complex recognition jobs,

denoted as state “stD” is placed in the field 245 of the flow—entry.

[00236] When the Sun RPC Bind Lookup reply is acquired, a flow signature is again built by

the parser. This flow signature is identical to KEY-1. Hence, when the signature enters the

analyzer subsystem 303 from the parser subsystem 301, the complete flow-entry is obtained,

and in this flow-entry indicates state “stD”. The operations for state “stD” in the state

processor instruction database 326 instructs the state processor to build and store a new flow

signature, shown as KEY—2 (212) in FIG. 2. This flow signature built by the state processor

APPT—001-1-1

NOAC EX. 1019 Page 58

NOAC Ex. 1019 Page 59

52

also includes the destination and a source addresses 250 and 251, respectively, for server

“S1” followed by (the numerically higher address) client “C1”. A protocol field 252 defines

the protocol to be used, e. g., “p2” which is obtained from the reply packet. A field 253

contains a recognition pattern also obtained from the reply packet. In this case, the

application is Sun RFC, and field 254 indicates this application “a2”. A next-state field 255

defines the next state that the state processor should proceed to for more complex recognition

jobs, e.g., a state “stl”. In this particular example, this is a final state. Thus, KEY-2 may now

be used to recognize packets that are in any way associated with the application “a2”. Two

such packets 208 and 209 are shown, one in each direction. They use the particular

application service requested in the original Bind Lookup Request, and each will be

recognized because the signature KEY-2 will be built in each case.

[00237] The two flow signatures 210 and 212 always order the destination and source address

fields with server “SI” followed by client “C1”. Such values are automatically filled in when

the addresses are first created in a particular flow signature. Preferably, large collections of

flow signatures are kept in a lookup table in a least-to-highest order for the best spread of

flow signatures and hashes.

[00238] Thereafter, the client and server exchange a number of packets, e. g., represented by

request packet 208 and response packet 209. The client 106 sends packets 208 that have a

destination and source address 81 and C1, in a pair of fields 260 and 261. A field 262 defines

the protocol as “p2”, and a field 263 defines the destination port number.

[00239] Some network-server application recognition jobs are so simple that only a single

state transition has to occur to be able to pinpoint the application that produced the packet.

Others require a sequence of state transitions to occur in order to match a known and

predefined climb from state-to—state.

[00240] Thus the flow signature for the recognition of application “a2” is automatically set up

by predefining what packet-exchange sequences occur for this example when a relatively

simple Sun Microsystems Remote Procedure Call bind lookup request instruction executes.

More complicated exchanges than this may generate more than two flow signatures and their

corresponding states. Each recognition may involve setting up a complex state transition

APPT—001-1-1

NOAC Ex. 1019 Page 59

NOAC Ex. 1019 Page 60

53

diagram to be traversed before a “final” resting state such as “stl” in field 255 is reached. All

these are used to build the final set of flow signatures for recognizing a particular application

in the future.

[00241] Embodiments of the present invention automatically generate flow signatures with the

necessary recognition patterns and state transition climb procedure. Such comes from

analyzing packets according to parsing rules, and also generating state transitions to search

for. Applications and protocols, at any level, are recognized through state analysis of

sequences of packets.

[00242] Note that one in the art will understand that computer networks are used to connect

many different types of devices, including network appliances such as telephones, “Internet”

radios, pagers, and so forth. The term computer as used herein encompasses all such devices

and a computer network as used herein includes networks of such computers.

[00243] Although the present invention has been described in terms of the presently preferred

embodiments, it is to be understood that the disclosure is not to be interpreted as limiting.

Various alterations and modifications will no doubt become apparent to those or ordinary

skill in the art after having read the above disclosure. Accordingly, it is intended that the

claims be interpreted as covering all alterations and modifications as fall within the true spirit

and scope of the present invention.

APPT—001-1-1

NOAC EX. 1019 Page 60

NOAC Ex. 1019 Page 61

54

CLAIM

We claim:

1. A packet monitor for examining packets passing through a connection point on a

computer network in real-time, the packets provided to the packet monitor via a packet

acquisition device connected to the connection point, the packet monitor comprising:

(a) a packet-buffer memory configured to accept a packet from the packet

acquisition device;

(b) a parsing/extraction operations memory configured to store a database of

parsing/extraction operations that includes information describing how to

determine at least one of the protocols used in a packet from data in the packet;

(c) a parser subsystem coupled to the packet buffer and to the pattern/extraction

operations memory, the parser subsystem configured to examine the packet

accepted by the buffer, extract selected portions of the accepted packet, and form

a function of the selected portions sufficient to identify that the accepted packet is

part of a conversational flow-sequence;

(d) a memory storing a flow-entry database including a plurality of flow-

entries for conversational flows encountered by the monitor;

(e) a lookup engine connected to the parser subsystem and to the flow-entry

database, and configured to determine using at least some of the selected portions

of the accepted packet if there is an entry in the flow-entry database for the

conversational flow sequence of the accepted packet;

(f) a state patterns/operations memory configured to store a set of predefined

state transition patterns and state operations such that traversing a particular

transition pattern as a result of a particular conversational flow—sequence of

packets indicates that the particular conversational flow-sequence is associated

with the operation of a particular application program, visiting each state in a

traversal including carrying out none or more predefined state operations;

APPT-001-1-1

NOAC EX. 1019 Page 61

NOAC Ex. 1019 Page 62

55

(g) a protocol/state identification mechanism coupled to the state

patterns/operations memory and to the lookup engine, the protocol/state

identification engine configured to determine the protocol and state of the

conversational flow of the packet; and

(h) a state processor coupled to the flow—entry database, the protocol/state

identification engine, and to the state patterns/operations memory, the state

processor, configured to carry out any state operations specified in the state

patterns/operations memory for the protocol and state of the flow of the packet,

the carrying out of the state operations furthering the process of identifying which

application program is associated with the conversational flow-sequence of the packet,

the state processor progressing through a series of states and state operations until there

are no more state operations to perform for the accepted packet, in which case the state

processor updates the flow-entry, or until a final state is reached that indicates that no

more analysis of the flow is required, in which case the result of the analysis is

announced.

A packet monitor according to claim 1, wherein the flow-entry includes the state of

the flow, such that the protocol/state identification mechanism determines the state of the

packet from the flow-entry in the case that the lookup engine finds a flow-entry for the

flow of the accepted packet.

A packet monitor according to claim 1, wherein the parser subsystem includes a

mechanism for building a hash from the selected portions, and wherein the hash is used

by the lookup engine to search the flow-entry database, the hash designed to spread the

flow-entries across the flow-entry database.

A packet monitor according to claim 1, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the

compiler processor configured to run a compilation process that includes:

receiving commands in a high—level protocol description language that describe the

protocols that may be used in packets encountered by the monitor, and

APPT—001-1-1

NOAC EX. 1019 Page 62

NOAC Ex. 1019 Page 63

10.

56

translating the protocol description language commands into a plurality of

parsing/extraction operations that are initialized into the parsing/extraction operations

memory.

A packet monitor according to claim 4, wherein the protocol description language

commands also describe a correspondence between a set of one or more application

programs and the state transition patterns/operations that occur as a result of particular

conversational flow-sequences associated with an application program, wherein the

compiler processor is also coupled to the state pattems/operations memory, and wherein

the compilation process further includes translating the protocol description language

commands into a plurality of state patterns and state operations that are initialized into the

state patterns/operations memory.

A packet monitor according to claim 1, further comprising:

a cache memory coupled to and between the lookup engine and the flow-entry

database providing for fast access of a set of likely—to-beaccessed flow-entries from the

flow-entry database.

A packet monitor according to claim 6, wherein the cache functions as a fully

associative, least-recently—used cache memory.

A packet monitor according to claim 7, wherein the cache functions as a fully

associative, least-recently-used cache memory and includes content addressable

memories configured as a stack.

A packet monitor according to claim 1, wherein one or more statistical measures

about a flow are stored in each flow-entry, the packet monitor further comprising:

a calculator for updating the statistical measures in a flow-entry of the accepted

packet.

A packet monitor according to claim 9, wherein, when the application program of a

flow is determined, one or more network usage metrics related to said application and

determined from the statistical measures are presented to a user for network performance

monitoring.

APPT-001-1-1

NOAC EX. 1019 Page 63

NOAC Ex. 1019 Page 64

57

11. A method of examining packets passing through a connection point on a computer

network, each packets conforming to one or more protocols, the method comprising:

(a) receiving a packet from a packet acquisition device; ~

(b) performing one or more parsing/extraction operations on the packet to create a

parser record comprising a function of selected portions of the packet;

(c) looking up a flow-entry database comprising none or more flow—entries for

previously encountered conversational flows, the looking up using at least some of

the selected packet portions and determining if the packet is of an existing flow;

(d) if the packet is of an existing flow, classifying the packet as belonging to the

found existing flow; and

(e) if the packet is of a new flow, storing a new flow-entry for the new flow in the flow-

entry database, including identifying information for future packets to be identified

with the new flow—entry,

wherein the parsing/extraction operations depend on one or more of the protocols to

which the packet conforms.

12. A method according to claim 11, wherein each packet passing through the connection

point is examined in real time.

13. A method according to claim 11, wherein classifying the packet as belonging to the

found existing flow includes updating the flow-entry of the existing flow.

14. A method according to claim 13, wherein updating includes storing one or more

statistical measures stored in the flow—entry of the existing flow.

15. A method according to claim 14, wherein the one or more statistical measures include

measures selected from the set consisting of the total packet count for the flow, the time,

and a differential time from the last entered time to the present time.

16. A method according to claim 11, wherein the function of the selected portions of the

packet forms a signature that includes the selected packet portions and that can identify

future packers, wherein the lookup operation uses the signature and wherein the

APPT-001-1-1

NOAC EX. 1019 Page 64

NOAC Ex. 1019 Page 65

l7.

18.

19.

20.

21.

22.

23.

24.

58

identifying information stored in the new or updated flow-entry is a signature for

identifying future packets.

A method according to claim 11, wherein at least one of the protocols of the packet

uses source and destination addresses, and wherein the selected portions of the packet

include the source and destination addresses.

A method according to claim 17, wherein the function of the selected portions for

packets of the same flow is consistent independent of the direction of the packets.

A method according to claim 18, wherein the source and destination addresses are

placed in an order determined by the order of numerical values of the addresses in the

function of selected portions.

A method according to claim 19, wherein the numerically lower address is placed

before the numerically higher address in the function of selected portions.

A method according to claim 11, wherein the looking up of the flow—entry database

uses a hash of the selected packet portions.

A method according to claim 11, wherein the parsing/extraction operations are

according to a database of parsing/extraction operations that includes information

describing how to determine a set of one or more protocol dependent extraction

operations from data in the packet that indicate a protocol used in the packet.

A method according to claim 11, wherein step (d) includes if the packet is of an

existing flow, obtaining the last encountered state of the flow and performing any state

operations specified for the state of the flow starting from the last encountered state of the

flow; and wherein step (e) includes if the packet is of a new flow, performing any state

operations required for the initial state of the new flow.

A method according to claim 23, wherein the state processing of each received packet

of a flow furthers the identifying of the application program of the flow.

APPT-001-1—1

NOAC EX. 1019 Page 65

NOAC Ex. 1019 Page 66

25.

26.

27.

28.

29.

59

A method according to claim 23, wherein the state operations include updating the

flow—entry, including storing identifying information for future packets to be identified

with the flow-entry.

A method according to claim 25, wherein the state processing of each received packet

of a flow furthers the identifying of the application program of the flow.

A method according to claim 23, wherein the state operations include searching the

parser record for the existence of one or more reference strings.

A method according to claim 23, wherein the state operations are carried out by a

programmable state processor according to a database of protocol dependent state

operations.

A packet monitor for examining packets passing through a connection point on a

computer network, each packets conforming to one or more protocols, the monitor

comprising:

(a) a packet acquisition device coupled to the connection point and configured to receive

packets passing through the connection point;

(b) an input buffer memory coupled to and configured to accept a packet from the

packet acquisition device;

(c) a parser subsystem coupled to the input buffer memory and including a slicer, the

parsing subsystem configured to extract selected portions of the accepted packet and

to output a parser record containing the selected portions;

((1) a memory for storing a database comprising none or more flow-entries for

previously encountered conversational flows, each flow-entry identified by

identifying information stored in the flow—entry;

(e) a lookup engine coupled to the output of the parser subsystem and to the flow-entry

memory and configured to lookup whether the particular packet whose parser record

is output by the parser subsystem has a matching flow-entry, the looking up using at

APPT-001-1-1

NOAC EX. 1019 Page 66

NOAC Ex. 1019 Page 67

30.

31.

32.

33.

34.

60

least some of the selected packet portions and determining if the packet is of an

existing flow; and

(f) a flow insertion engine coupled to the flow-entry memory and to the lookup engine

and configured to create a flow-entry in the flow-entry database, the flow—entry

including identifying information for future packets to be identified with the new

flow-entry,

the lookup engine configured such that if the packet is of an existing flow, the monitor

classifies the packet as belonging to the found existing flow; and if the packet is of a new

flow, the flow insertion engine stores a new flow-entry for the new flow in the flow—entry

database, including identifying information for future packets to be identified with the

new flow-entry,

wherein the operation of the parser subsystem depends on one or more of the protocols to

which the packet conforms.

A monitor according to claim 29, wherein each packet passing through the connection

point is accepted by the packet buffer memory and examined by the monitor in real time.

A monitor according to claim 29, wherein the lookup engine updates the flow—entry of

an existing flow in the case that the lookup is successful.

A monitor according to claim 29, further including a mechanism for building a hash

from the selected portions, wherein the hash is included in the input for a particular

packet to the lookup engine, and wherein the hash is used by the lookup engine to search

the flow-entry database.

A monitor according to claim 29, further including a memory containing a database of

parsing/extraction operations, the parsing/extraction database memory coupled to the

parser subsystem, wherein the parsing/extraction operations are according to one or more

parsing/extraction operations looked up from the parsing/extraction database.

A monitor according to claim 33, wherein the database of parsing/extraction

operations includes information describing how to determine a set of one or more

APPT—001-1-1

NOAC EX. 1019 Page 67

NOAC Ex. 1019 Page 68

35.

36.

37.

38.

39.

40.

61

protocol dependent extraction operations from data in the packet that indicate a protocol

used in the packet.

A monitor according to claim 29, further including a flow-key-buffer (UFKB)

coupled to the output of the parser subsystem and to the lookup engine and to the flow

insertion engine, wherein the output of the parser monitor is coupled to the lookup engine

via the UFKB, and wherein the flow insertion engine is coupled to the lookup engine via

the UFKB.

A method according to claim 29, further including a state processor coupled to the

lookup engine and to the flow-entry-database memory, and configured to perform any

state operations specified for the state of the flow starting from the last encountered state

of the flow in the case that the packet is from an existing flow, and to perform any state

operations required for the initial state of the new flow in the case that the packet is from

an existing flow.

A method according to claim 29, wherein the set of possible state operations that the

state processor is configured to perform includes searching for one or more patterns in the

packet portions.

A monitor according to claim 36, wherein the state processor is programmable, the

monitor further including a state patterns/operations memory coupled to the state

processor, the state operations memory configured to store a database of protocol

dependent state patterns/operations.

A monitor according to claim 35, further including a state processor coupled to the

UFKB and to the flow—entry—database memory, and configured to perform any state

operations specified for the state of the flow starting from the last encountered state of the

flow in the case that the packet is from an existing flow, and to perform any state

operations required for the initial state of the new flow in the case that the packet is from

an existing flow.

A monitor according to claim 36, wherein the state operations include updating the

flow-entry, including identifying information for future packets to be identified with the

flow-entry.

APPT-001- 1— 1

NOAC EX. 1019 Page 68

NOAC Ex. 1019 Page 69

41.

42.

43.

44.

62

A packet monitor according to claim 29, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the

compiler processor configured to run a compilation process that includes:

receiving commands in a high-level protocol description language that

describe the protocols that may be used in packets encountered by the

monitor and any children protocols thereof, and

translating the protocol description language commands into a plurality of

parsing/extraction operations that are initialized into the parsing/extraction

operations memory.

A packet monitor according to claim 38, further comprising:

a compiler processor coupled to the parsing/extraction operations memory, the

compiler processor configured to run a compilation process that includes:

receiving commands in a high-level protocol description language that

describe a correspondence between a set of one or more application programs

and the state transition patterns/operations that occur as a result of particular

conversational flow—sequences associated with an application programs, and

translating the protocol description language commands into a plurality of

state patterns and state operations that are initialized into the state

pattems/operations memory.

A packet monitor according to claim 29, further comprising:

a cache subsystem coupled to and between the lookup engine and the flow-entry

database memory providing for fast access of a set of likely-to-be-accessed flow-entries

from the flow-entry database.

A packet monitor according to claim 43, wherein the cache subsystem is an

associative cache subsystem including one or more content addressable memory cells

(CAMS).

APPT—001-1—1

NOAC EX. 1019 Page 69

NOAC Ex. 1019 Page 70

45.

46.

47.

48.

49.

50.

51.

52.

63

A packet monitor according to claim 44, wherein the cache subsystem is also a least—

recently-used cache memory such that a cache miss updates the least recently used cache

entry.

A packet monitor according to claim 29, wherein each flow—entry stores one or more

statistical measures about the flow, the monitor further comprising

a calculator for updating at least one of the statistical measures in the flow-entry of

the accepted packet.

A packet monitor according to claim 46, wherein the one or more statistical measures

include measures selected from the set consisting of the total packet count for the flow,

the time, and a differential time from the last entered time to the present time.

A packet monitor according to claim 46, further including a statistical processor

configured to determine one or more network usage metrics related to the flow from one

or more of the statistical measures in a flow-entry.

A monitor according to claim 29, wherein:

flow-entry-database is organized into a plurality of bins that each contain N—number

of flow—entries, and wherein said bins are accessed via a hash data value created by a

parser subsystem based on the selected packet portions, wherein N is one or more.

A monitor according to claim 49, wherein the hash data value is used to spread a

plurality of flow-entries across the flow-entry-database and allows fast lookup of a flow-

entry and shallower buckets.

A monitor according to claim 36, wherein the state processor analyzes both new and

existing flows in order to classify them by application and proceeds from state—to-state

based on a set of predefined rules.

A monitor according to claim 29, wherein the lookup engine begins processing as

soon as a parser record arrives from the parser subsystem.

APPT-001-1-1

NOAC EX. 1019 Page 70

NOAC Ex. 1019 Page 71

64

53. A monitor according to claim 36, wherein the lookup engine provides for flow state

entry checking to see if a flow key should be sent to the state processor, and that outputs a

protocol identifier for the flow.

54. A method of examining packets passing through a connection point on a computer

network, the method comprising:

(a) receiving a packet from a packet acquisition device;

(b) performing one or more parsing/extraction operations on the packet according to a

database of parsing/extraction operations to create a parser record comprising a

function of selected portions of the packet, the database of parsing/extraction

operations including information on how to determine a set of one or more protocol

dependent extraction operations from data in the packet that indicate a protocol is

used in the packet;

(c) looking up a flow-entry database comprising none or more flow—entries for

previously encountered conversational flows, the looking up using at least some of

the selected packet portions, and determining if the packet is of an existing flow;

(d) if the packet is of an existing flow, obtaining the last encountered state of the flow

and performing any state operations specified for the state of the flow starting from

the last encountered state of the flow; and

(e) if the packet is of a new flow, performing any analysis required for the initial state of

the new flow and storing a new flow-entry for the new flow in the flow—entry

database, including identifying information for future packets to be identified with

the new flow—entry.

55. A method according to claim 54, wherein one of the state operations specified for at

least one of the states includes updating the flow-entry, including identifying information

for future packets to be identified with the flow-entry.

56. A method according to claim 54, wherein one of the state operations specified for at

least one of the states includes searching the contents of the packet for at least one

reference string.

APPT-001-1-1

NOAC EX. 1019 Page 71

NOAC Ex. 1019 Page 72

65

57. A method according to claim 55, wherein one of the state operations specified for at

least one of the states includes creating a new flow—entry for future packets to be

identified with the flow, the new flow-entry including identifying information for future

packets to be identified with the flow—entry.

58. A method according to claim 54, further comprising forming a signature from the

selected packet portions, wherein the lookup operation uses the signature and wherein the

identifying information stored in the new or updated flow-entry is a signature for

identifying future packets.

59. A method according to claim 54, wherein the state operations are according to a

database of protocol dependent state operations.

APPT—001-1-1

NOAC EX. 1019 Page 72

NOAC Ex. 1019 Page 73

66

ABSTRACT

A monitor for and a method of examining packets passing through a connection point on

a computer network. Each packets conforms to one or more protocols. The method

includes receiving a packet from a packet acquisition device and performing one or more

parsing/extraction operations on the packet to create a parser record comprising a function

of selected portions of the packet. The parsing/extraction operations depend on one or

more of the protocols to which the packet conforms. The method further includes looking

up a flow—entry database containing flow-entries for previously encountered

conversational flows. The lookup uses the selected packet portions and determining if the

packet is of an existing flow. If the packet is of an existing flow, the method classifies the

packet as belonging to the found existing flow, and if the packet is of a new flow, the

method stores a new flow-entry for the new flow in the flow—entry database, including

identifying information for future packets to be identified with the new flow-entry. For

the packet of an existing flow, the method updates the flow—entry of the existing flow.

Such updating may include storing one or more statistical measures. Any stage of a flow,

state is maintained, and the method performs any state processing for an identified state to

further the process of identifying the flow. The method thus examines each and every

packet passing through the connection point in real time until the application program

associated with the conversational flow is determined.

APPT—001-1—1

NOAC EX. 1019 Page 73

NOAC Ex. 1019 Page 74

Dietz et al. APPT-001-1

1/18

_

100 CLIENT 4 108
\ ANALYZER

107

116
_

\ 121 W10
106

 DATA COMMUNICATIONS

NETWORK

102

125

123
_ 118

SERVER A — 105 I —

—\ CLIENT 2 CLIENT 1

112 104

FIG. 1

A NOAC EX. 1019 Page 74

NOAC Ex. 1019 Page 75

APPT-OO1-1Dietz et al.

 -_____1I:.:wmaa_E_____-H1.111|1aiaEMvmmmm>mmmzo:<o_#_n_<m8Emm8m85m8m.3sz .

NOAC EX. 1019 Page 75

2/18

fiEfiHNQHflEmmmNmm5N0mmmmmmmm\INNommmNNVNN
~gfififififlwgflflflMNNNNNFNNCNNarmwFNAFN9Nmrmvrm

NOAC Ex. 1019 Page 76

APPT-001-1Dietz et al.

%mm_N>._<Z<

..ZOrr<EmEO02mmm00mm

mm><.__>_<m0<._.<o

mwN.__>=._.n_ODZ<mw.=n=>_OO

mm<m<k<oZO_._.ODI._.mz_IOmmmOOmn.

Nam

ZO_._.<N_._<Z_..._Z._.<0_n=ww<._0

m;

_

_mm<m<k<o_zo_5<Exw

DEOOmI

_Z>9>%._7M_v_0ZO_._.an__m._v__\wm<40m:.<._.mwm._.<0n5._OOO._.Omn_

mIO<O<_

vmmme_uAVwomOOmm_m<¢26::5220E__ .o:<wmm>zooozcfiEzmo.zmmEE(8mnsxoo.___ magz:95m5<Exmmuzooomm
Em_3m._IIIIIIIIIIIIImmmmme

Jom\v_llllllllllllllllll
NOAC EX. 1019 Page 76

NOAC Ex. 1019 Page 77

Dietz et al. APPT-001-1

HIGH LEVEL

PACKET
DECODING

Tl ESCRIPTION‘

‘ D A

GENERATE PACKET

PACKET COMPILE STATE
PARSE AND - ESCRIPTION ~

EXTRACT V
OPERATIONS

 OPERATIONS

407

406 7/‘ATTERN, PAR E STATE
AND PROCESSOR

EXTRACTION lNSTRUCTION
DATABASE DATABASE

LOAD LOAD STATE
PARSING NSTRUCTIO

SUBSYSTEM DATABASE
MEMORY MEMORY

 400

NOAC EX. 1019 Page 77

NOAC Ex. 1019 Page 78

Dietz et al. APPT-001-1

502

OREINPACK V'

FETCHNODEANI
PROCESS FROM

PATTE'NS

503

PACKET

KEY

504

513

MORE
PATTERN

NODES?

NEXT
PACKET

COMPONE 511

‘3. 7". “'

PROCESSTO
COMPONENT

 510 \500 V

‘

PATTERN
NODE

 509

NOAC EX. 1019 Page 78

NOAC Ex. 1019 Page 79

Dietz et aI. APPT-OO1-1

603

LOAD PACKET
COMPONENT 610

604

NO

606

6/18

0

PACKET 502
COMPONENT AND
PATTERN NODE

MOREPACKE LOADKEY
COMPONENT BUFFER

YES

FETCH EXTRACTION ' 6
‘NDPROCESSFRO'

PATTERNS 605

611

NEXT

N. PACKET 609ORE EXTRACTIO ‘
COMPONENELEMENTS?

YES

607 APPLYEXTRACHO

ENTESNSEP
600

 MORETO 608

EXTRACT?

YE

FIG. 6

NOAC EX. 1019 Page 79

NOAC Ex. 1019 Page 80

Dietz et al. APPT-001-1

7/18

0

EY BUFFER AND 702

PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

704 MORE PATTER OUTPUT T.

NODES? ANALYZER

YES

HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

706 \

NEXT PACKET
COMPONENT

707

FIG. 7

709

700

NOAC EX. 1019 Page 80

NOAC Ex. 1019 Page 81

Dietz et al. APPT-OO1-1

8/18

0

UFKB ENTRY FOR
PACKET 802

800\
COMPUTECONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804
806

NO SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No @ 808
YES

ORE BUCKET

805 IN THE BIN?

YES

809 MARK RECORD BIN AND 810
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET

8“ AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813m. FIG. 8

NOAC EX. 1019 Page 81

NOAC Ex. 1019 Page 82

Dietz et al. APPT-001-1

9/18

901 902 910

RPC

BIND LOOKU "
REQUEST

 ‘ NNOUNCME

'ORTMAPP '

'ORTMAPP '

909

EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION', 'PORT' AND

'PROTOCOL (TCP OR
UDP)

EXTRACT PORT

GET 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)‘

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

'PROTOCOL (TCP OR
UDP)‘ WITH

DESTINATION

NETWORK ADDRESS.
BOTH MAKE A KEY.

CREATE SERVER STA E

SAVE 'PROGRAM',
'VERSION', 'PORT' AND

'PROTOCOL (TCP OR
UDP)l WITH NETWORK
ADDRESS IN SERVER

STATE DATABASE. KEY

ON SERVER ADDRESS
AND TCP OR UDP PORT.

904

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

LOOKUP REQUE

FIND 'PROGRAM'

900/

AND 'VERSION' GET 'PORT' AND

WITH LOOKUP OF 'PROTOCOL (TCP
SOURCE NETWORK oR UDP)‘. ADDRESS.

FIG. 9

NOAC EX. 1019 Page 82

NOAC Ex. 1019 Page 83

Dietz et al. APPT-001-1

10/1 8

PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 100‘ MEMORY

100 100 1031
V 1004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

1031

100' PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100

PARSER

PA KET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA

MEMORY

1012

1021

INTERFACE INTERFACE
CONTROL CONTROL

ANALYZER

READY

‘ .

PACKET

102

1023 FIG. 10 1027

NOAC EX. 1019 Page 83

NOAC Ex. 1019 Page 84

Dietz et al. APPT-001-1

11/18

1 1 00 N

1101 1103
1115 1118112

1107

@0111
ANALYZE' H T

ENGWE HOST 53%
¢UEI .‘INESESAC.’|NTER_

FACE

03E$§OL 003)
PROCESS‘ (I
INSTRUCN
DATABAS:

(SMD)

UNHHED
FLOW

PARSER KEY
INTER-.‘:UFFER
FACE (UFKB)

 PROCESSR

(SP) 1119112

UNIFIED MEMORY

MEMORY h INTER-

FLOW
INSERTION/
DELETION

ENGINE

(FIDE)

 II

NOAC EX. 1019 Page 84

NOAC Ex. 1019 Page 85

Dietz et al.

APPT-OO1-1

1 2/1 8

1201

UFKB ENTRY FOR

PACKET WITH 1202
STATUS 'NEW'

1200N

ACCESS
CONVERSATION

RECORD BIN

1 203

1 204

REQUEST NEXT
BUCKET FROM 1 205

CACH E1206

1207

1208

 OMPARE CURRENT BI 1209
AND BUCKET RECORD

KEY TO PACKET

 1210 SET UFKB FOR
PACKET AS

'DROP'

MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

1211

FIG. 12

NOAC EX. 1019 Page 85

NOAC Ex. 1019 Page 86

Dietz et al.

' APPT-001—1

13/18

W1301
1300 \A UFKB ENTRY FOR

PACKET WITH STATUS
'NEW' OR 'FOUND'

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED
ON THE STATE INSTRUCTION

SET STATE
PROCESSOR

INSTRUCTION NO DONE PROCESSING
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?

CURRENT STATE

1308 YES
1310

SAVE STATE
PROCESSOR

INSTRUCTION NO

 DONE PROCESSING

TATES FOR THIS FLOPOINTER IN
CURRENT FLOW

RECORD

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

1313

FIG. 13

NOAC EX. 1019 Page 86

1 302

1 303

1 304

1305

1 307

1 309

1311

NOAC Ex. 1019 Page 87

APPT-001-1Dietz et al.

14/18

EMFm>mmDmEMN>4<Z<

m_m>._<z<
.zmbfim

ZOP<N3<ZEH<O_n=wm<._0

mm:

IOFOm—I—mwm_Z_IO<_>_m._.<._.m

Ewm>wm3m_mmwm<m

mZO_.r<mm_n_OZO_.rO<m._.Xm_

DmOOmm

Z>>OZv_OZ<__>>O._n___mmkaODmHm
zmwt.<n_

m...<n_n5

m>>O._u_”—0

2&3meEEQmm<m<F<OBECOMEJOOEn—.wOu—Z_ZINE/\n—ziOzxoz_>u_:zmn__muzooommE209B<Exm.z<mN>4<z.

NOAC EX. 1019 Page 87

NOAC Ex. 1019 Page 88

APPFOOL1Dietz et al.

15/18

>mO_>_m=>_.50:
wowF

vomw

mw<m<k<o

vmm

QE<Om0<mmw._.z_vEO>>._.m_Z

3.GEanmO._._ZOS_

mlom..wN>._<Z<

Elmmumm<a

Now

w0_>m_n_OEQDOO.Fm¥0<m
momF

Fm?

NOAC EX. 1019 Page 88

NOAC Ex. 1019 Page 89

Dietz et al. APPT-001-1

16/18

NOAC EX. 1019 Page 89

NOAC Ex. 1019 Page 90

Dietz et al. APPT-OO1-1

17/18
1702

1704

ff t

1 1706

1708 Type (2) '

FIG. 17A
1712

Ifili’lfilflllflfilfiflllfl'lllll
WWI-L3 to ‘

[53:] 4 Wily/MI”501%;le
_1]

Dst Address_
IIIIIIiyiiiiLhilflil/IIIIIIIIIIA

Dst Address

Dst Hash (2)

Src Hash (2)

-o'<1>

-et = L3 + (lHL/4)

FIG. 17B

IDP = 0x0600*
IP = 0X0800*

CHAOSNET = 0x0804
ARP = OX0806
VIP = OXOBAD*

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS—3COM = 0x3C00 -
0X3COD

DEC-MOP = 0X6001
DEC-RC = 0x6002

DEC-DRP = 0X6003*
DEC-LAT = 0X6004

DEC-DIAG = 0X6005
DEC-LAVC = 0x600?

RARP = 0X8035
ATALK= 0x8098*

VLOOP = OXBOC4
VECHO = OX80C5
SNA—TH = OX80D5*

ATALKARP= OX80F3
IPX = 0x8137*

SNMP = 0x814C#
IPv6 = 0X86DD*

LOOPBACK = OX9000

Apple = 0x080007

* L3 Decoding
L5 Decoding

1 752

ICMP = 1

IGMP = 2
GGP = 3
TOP = 6 *
EGP = 8

IGRP = 9
PUP = 12

CHAOS = 16
UDP = 17*
IDP = 22#

lSO-TP4 = 29
DDP = 37#

ISO-IP = 80

VIP = 83#
EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

NOAC EX. 1019 Page 90

NOAC Ex. 1019 Page 91

APPT-001-1Dietz et al.

18/18

PROTOCOL

\=HE!ihhiiii!i=iiihi\hint.--
r1800

h....4ll“MNmhiiiiiiiiwiii...it.Nmhiihiiii«$0
T

thin!in.%mIHOZm:DIEE
-liiil!SEE

1 642

1802-1

FIG. 18A

/1870
LUT NUM
__}

E3
Q._m=u_nomOOOwh>m

W

@9AOOOHONE

FIG. 18B

NOAC EX. 1019 Page 91

NOAC Ex. 1019 Page 92

\. PATENT APPLICATION \x- -

DECLARATION AND POWER OF ATTORNEY ‘ ’ ' ' ' ' ' ‘ ATTORNEY DOCKET NO. APPT-OOl-l
FOR PATENT APPLICATION ~ ‘

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe l am the original, first and sole inventor (if only one name is listed below) or an originalnfirst and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:

(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and
was amended on (if applicable).

I hereby state that 1 have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(5)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FlLED PRIORITY CLAlMED UNDER 35

--— Yes: _ NO: _
—_— Yes: _ NO: __
Provisional Application I

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

 APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999 ,

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States applicationts) listed below and, insofar as the

subject matter of each ofthe claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material infomiation as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filingdate ofthis application:

 APPLICATION SERIAL NUMBER FILING DATE STATUS(atented/ endin labandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
In the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No, 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland, CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 ofTitle 18 ofthc United States Code and that such willful false statements mayjeopardize the
validity ofthe application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

& £0
Date

NOAC EX. 1019 Page 92

NOAC Ex. 1019 Page 93

\f/

Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumber»

Page 2 ' ’"

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 121 Driftwood Court, Aptos, CA 95003

Post Office Address: Same

—___—_________ ____‘____
Inventor’s Signature Date

I

Name of'I‘hird Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

m M“
Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive Germantown. TN 38139—————_——l—._—______

Post Office Address: Same

M ———_______
Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio: Texas 78255

Post Office Address: Same

MM _______—
Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, AndoverI MN 55304

Post Office Address: Same

M ————._______
Inventor’s Signature Date

NOAC EX. 1019 Page 93

NOAC Ex. 1019 Page 94

PATENT APPLICATION

' h~\.-.ORN_EYI nocicnr N0."APPT-001-I

DECLARATION AND POWER OF
FOR PATENT APPLICATION V

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an originalufirst and joint inventor (ifplural names are
listed below) of the subject matter which is claimed and for which a patent IS sought on the Invention entitled:

METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification ofwhich is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (ifapplicablc).

I hereby state that I have reviewed and understood the contents ofthe above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 1 19 ofany foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

—_— Yes: No:
——_ YES: No;

Provisional Application '

I hereby claim the benefit under Title 35, United States Code Section 1 19(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141903 June 30, 1999

US. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed belo\v and, insofar as the
subject matter of each ofthe claims ofthis application is not disclosed in the prior United States application in the manner provided by the first
paragraph ofTitle 35, United States Code Section 1 12. I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations. Section 1.56(a) which occurred between the filing date ofthe prior application and the national or PCT international filing
date ofthis application:

APPLICATION SERIAL NUMBER FILING DATE STATUSI unatented/endinyabandoned)

POWER OF ATTORNEY:

As a named inventor. I hereby appoint the following attorney(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patent and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

 V

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosenfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland. CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed

to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or Imprisonment, or both, under Section 1001 ofTitle 18 ofthe United States Code and that such willful false statements mayjeopardize the
validity ofthe application or any patent issued thereon.

Name of First Inventor: Russell 5. Dietz Citizenship: USA

Residence: 6146 Ostenberg Drive, San Jose, CA 95120-2736

Post Office Address: Same

First Inventor’s Signature Date

NOAC EX. 1019 Page 94

NOAC Ex. 1019 Page 95

Declaration and Power of Attome)_,,ontinued) x,»
Case No; «Case CaseNumber»

Page 2 ’f " “9”]

ADDITIONAL INVENTOR SIGNATURES:

Name ofSecond Inventor: Joseph R. Maixner Citizenship: USA

Residence: 12] Driftwood Court, Aptos, CA 95003

Post Office Address: Same

10/23/20 doO
nventor’s Sign Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

_.______._________

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA
I

Residence: 9005 Glenalden Drive, Germantown, TN 38139

Post Office Address: Same

Mm

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

H M
Inventor’s Signature Date

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

m m
Inventor’s Signature Date

NOAC EX. 1019 Page 95

NOAC Ex. 1019 Page 96

 DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION '

As a below named inventor, l hereby declare that:

My rcsidencelpost office address and citizenship are as stated below next to my name;I believe 1 am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names arelisted below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
W
the specification of which is attached hereto unless the following box is checked:(X) was filed onWas US Application Serial No. 09/608237 or PCT lntemational Application Number and

was amended on (if applicable).

te thatl have reviewed and understood the contents
amendment(s) referred to above. I acknowledge the duty to disc
Foreign Application(s) and/or Claim of Foreign Priority 119 of any foreign application(s) for patent or inventor(s)
1 hereby claim foreign priority benefits under Title 35, United States Code Sectioncertificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

fication, including the claims. as amended by any
aterial to patentability as defined in 37 CFR 156.

of the above-identified speci
l hereby sta lose all information which is m

Provisional Application

I hereby claim the benefit under Title 35. United States Code Section 119(e) of any United Sta
APPLICATlON SERIAL NUMBER W

60/141,903 June 30, 1999

US. Priority Claim ‘ United States application(s) listed below and, insofar as the
' 'on in the manner provided by the first

'5 not disclosed in the prior United States applrcatrcknowledge the duty to disclose material information as defined i Title 37, Code of' 'on and the national or PC international filing

tes provisional application(s) listed below:

POWER OF ATTORNEY: (3) and/or agent(s) listed below to prosecute this application and transact all business
As a named inventor. I hereby appoint the following attorneyin the Patent and Trademark 0 rec connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:Dov Rosenfeld, Reg. No. 38,687
Dov Rosenfeld
5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland CA 94618

1 hereby declare that all statements made herein of my own knowledge are true and
to be true; and further that these statements were made withfine or imprisonment. or both, under Section 1001 of Title 18 of the United States Co
validity of the application or any patent issued thereon.

on information and belief are believed
like so made are punishable by

de and that such willful false statements may jeopardize the

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Osgenperg Drive, §gn Jose, CA 25120-2236

Post Office Address: Same

First Inventor‘s Signature Date

NOAC EX. 1019 Page 96

NOAC Ex. 1019 Page 97

Declaration and Power of Attomey-:_sontinued) V-
Case No; «Case CaseNumbem

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner Citizenship: USA

Residence: 12] Driftwood Court, Aptog, CA 95003

Post Office Address: game

Inventor’s Signature Date

Name of Third Inventor: Andrew A. Koppenhgver Citizenship: USA

Residence: 9325 W. Hinsdale Place Littleton CO 80128

Post Office Address: S. e

A“ fl fi—x IOZmZaoQQ
DateInventor’s Signature

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 90 SGlenalden Drive ermantown TN 38139

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Inventor’s Signature Date

Name of Sixth Inventor: James F. 'I‘orgerson Citizenship: USA

Residence: 227 157th Ave.a NW, Andover, MN 55304

Post Office Address: Same

Inventor’s Signature Date

NOAC EX. 1019 Page 97

NOAC Ex. 1019 Page 98

V PATENT APPLICATION

DECLARATION AND POWER OF A'I'I NEY . ATT ‘NEY DOCKET NO. APP'T-OOl-l
FOR PATENT APPLICATION ‘~-——" ‘ cg ,,

As a below named inventor, I hereby declare that:

My residencdpost office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is so t on the invention entitlett

METHOD AND APPARATUS FOR MONITORBNIG TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT International Application Number and

was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed

PRIORITY CLAIMED UNDER 35

 COUNTRY APPLICATION NUMBER

Provisional Application '

I hereby claim the benefit under Title 35, United States Code Section 1 19(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

vs. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section l.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS o “tent c .‘ din_/abandoned

POWER OF ATTORNEY:

As a named inventor, I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all business
in the Patmt and Trademark Office connected therewith:

Dov Rosenfeld, Reg. No. 38,687

Send Correspondence to: Direct Telephone Calls To:
Dov Rosenfeld Dov Rosarfeld, Reg. No. 38,687

5507 College Avenue, Suite 2 Tel: (510) 547-3378
Oakland CA 94618

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, raider Section 1001 of Title 18 of the United States Code and that such wrllful false statements may jeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenberg DriveI San JoseI CA 95120-2736

Post Office Address: Same

First Inventor‘s Signature Date

NOAC EX. 1019 Page 98

NOAC Ex. 1019 Page 99

Declaration and Power ofAttorney (Continued)

Case No; «Case CaseNumber»

Page2 fiflPT-MI-I VJ-

ADDI'I'IONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R Maixner Citizenship: USA

Residence: 121 Driftwood Cong, AptosI CA 95003

Post Office Address: Same

Inventor‘s Signature Date

Name of Third Inventor: Andrew A. Koppenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive Germantown TN 38139

Post Office Address: Same ‘

“7 flflaflaz /74 /& f (9 o
Inventor‘s Signature Date

Name of Fifth Inventor. Haig A. Sarkissian . Citizenship: USA

Residence: 8701 Mountain To San Antonio Texas 78255

Post Office Address: Same

Inventor‘s Signature Date

Name of Sixth Inventor. James F. Togerson - Citizenship: USA

Residence: 227 157th Ave.I NW, Andover, NIN 55304

Post Office Address: Same

Inventor's Signature Date

NOAC EX. 1019 Page 99

NOAC Ex. 1019 Page 100

PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are
listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHQD AND APPARA! US FQR MQNITQRINQ TRAFFIC IN A NETWQRK

the specification of which is attached hereto unless the following box is checked:

(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCI‘ International Application Number and
was amended on (if applicable).

I hereby state that I have reviewed and understood the contents of the above-identified specification, including the claims, as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all information which is material to patentability as defined in 37 CFR 156

Foreign Application(s) and/or Claim of Foreign Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section 119 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed:

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

——_ yes: __ No: __
—-— - N0: _ ,

Provisional Application

I hereby claim the benefit under Title 35, United States Code Section 119(e) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60/141,903 June 30, 1999

U.S. Priority Claim

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the
subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first
paragraph of Title 35, United States Code Section 1 I2, I acknowledge the duty to disclose material information as defined in Title 37, Code of
Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS atented/ endin abandoned)

POWER OF ATTORNEY:

As a named inventor, I hereby fappoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all businessin the Patent and Trademark 0 ice connected therewith:

Dov Rosenfeld, Reg. No. 38,687

. , Send Correspondence to:
DovRosenfeld
5.597;"C01légéfiivcnuéi;
Oakland..CA5 .94618‘ , ;' “ ::

I hereby declare that all statements made herein of my own knowledge are fine and that all statements made on information and belief are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willfirl false statements may jeopardize the
validity of the application or any patent issued thereon.

Name ol'First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Ostenbcrg Drive, San Jose, QA 95120-2236

Post Office Address: Same

First Inventor‘s Signature Date

NOAC EX. 1019 Page 100

NOAC Ex. 1019 Page 101

/ ‘\.. -\r-

Declaration and Power of Attorney (Continued)
Case No; «Case CaseNumber»

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Mating; Citizenship: USA

Residence: 121 Driftwood Court, Aptog CA 95003

Post Office Address: Same

Inventor’s Signature — Date

Name of Third Inventor: Andrew A. Kopgenhaver Citizenship: USA

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor’s Signature Date

Name of Fourth Inventor: William H. Bares Citizenship: USA

Residence: 9005 Glenalden Drive Germantown TN 38139l

Post Office Address: Same

Inventor’s Signature Date

Name of Fifth Inventor: Haig A. Sarkissian Citizenship: USA

Residence: 8701 Mountain Top, San Antonio, Texas 78255

Post Office Address: Same

Hat jaw—“MIL”-
Inventor’ ignature 5;”. 2/ 8000

Name of Sixth Inventor: James F. Torgerson Citizenship: USA

Residence: 227 157th Ave., NW, Andover, MN 55304

Post Office Address: Same

Inventor's Signature Date

NOAC EX. 1019 Page 101

NOAC Ex. 1019 Page 102

PATENT APPLICATION

As a below named inventor. I hereby declare that:

My residence/post office address and citizenship are as stated below next to my name;

I belie\e I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (If plural names are
listed below) of the subject matter whichIs claimed and for which a patent is sought on the invention entitled:
METHOD AND APPARATUS FOR MONITORING TRAFFIC IN A NETWORK

the specification of which is attached hereto unless the following box is checked:
(X) was filed on June 30 2000 as US Application Serial No. 09/608237 or PCT lntemational Application Number and

was amended on (ifapplicable).

I hereby state that I have reviewed and understood the contents of the above- identified specification including the claims as amended by any
amendment(s) referred to above. I acknowledge the duty to disclose all infonnation whichIs material to patentability as definedIn 37 CFR 1.56.

Foreign Application(s) and/or Claim of Foreign- Priority

I hereby claim foreign priority benefits under Title 35, United States Code Section I 19 of any foreign application(s) for patent or inventor(s)
certificate listed below and have also identified below any foreign application for patent or inventor(s) certificate having a filing date before that of
the application on which priority is claimed.

COUNTRY APPLICATION NUMBER DATE FILED PRIORITY CLAIMED UNDER 35

Provisional Application

I hereby claim the benefit under Title 35. United States Code Section I l9(c) of any United States provisional application(s) listed below:

APPLICATION SERIAL NUMBER FILING DATE

60’l4l ,903 June 30.1999

US Priority Claim

I hereby claim the benefit under Title 35. United States Code, Section 120 of any United States application(s) listed below and insofar as the
subject matter ofeach ofthe claims ofthis applicationIs not disclosedIII the prior United States applicationIn the manner provided by the first
paragraph of Title 35. United States Code Section I I2. I acknowledge the duty to disclose material information as definedIn Title 37 Code of
Federal Regulations. Section I .56(a) which occurred between the filing date ofthe prior application and the national or PCT intemational filing
date of this application:

APPLICATION SERIAL NUMBER FILING DATE STATUS ooatented/ending/abandoned

POWER OF ATTORNEY:

As a named inventor. I hereby appoint the following attomey(s) and/or agent(s) listed below to prosecute this application and transact all businessIn the Patent and Trademark Office connected therewith:

Dov Rosenfcld, Reg. No. 38,687

ondenc t" ' .. .' - ,2 .5 ' Direct Telephone Calls To:. .
' ‘ - ' eld,iRegNo 38687

'Oakland CA 94618

I hereby declare that all statements made herein ofmy own knowledge are true and that all statements made on information and behef are believed
to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by
fine or imprisonment, or both, under Section 100] ofTitlc l8 ofthe United States Code and that such willful false statements mayjeopardize the
validity of the application or any patent issued thereon.

Name of First Inventor: Russell S. Dietz Citizenship: USA

Residence: 6146 Osteuberg Drive, San .IoseI CA 95120-2736

Post Office Address: Same

First Inventor's Signature Date

NOAC EX. 1019 Page 102

NOAC Ex. 1019 Page 103

.v

Declaration and Power of Attorney (Continued)

Case No; «Case CaseNumber»

Page 2 M "' Q9, '1

ADDITIONAL INVENTOR SIGNATURES:

Name of Second Inventor: Joseph R. Maixner

Residence: 12] Driftwood Court, Aptos, CA 95003

Post Office Address: Same

Inventor‘s Signature

Name ofThird Inventor: Andrew A. Koppenhaver

Residence: 10400 Kenmore Drive, Fairfax, VA 22030

Post Office Address: Same

Inventor's Signature

Name of Fourth Inventor: William H. Bares

Residence: 9005 Glcnalden Drive, Cermantown, TN 38139

Post Office Address: Same

________________.____———————-—

Inventor’s Signature

Name of Fifth Inventor: Haig A. Sarkissian

Residence: 8701 Mountain Top, San AntonioI Texas 78255

Post Office Address: Same

Inventor’s Signature

Name of Sixth Inventor: James F. Torgverson

Residence: 227 157th Ave., NW, Andover, MN 55304

In ntor‘s Signature

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

Date

Citizenship: USA

?:>/ 60
Date

NOAC EX. 1019 Page 103

NOAC Ex. 1019 Page 104

Our Ref/Docket No: APPT-OOl-l-l Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al. Group Art Unit: 2155

Application No.2

Filed:

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Examiner: Khanh Q. DINH

PRELIMINARY AMENDMENT

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a preliminary amendment prior to any Office Action.

Any amendments to the specification begin on a new page immediately after these
introductory remarks.

Any amendments to the claims begin on a new page immediately after such amendments
to the specification, if any.

Any amendments to the drawings begin on a new page immediately after such
amendments to the claims, if any.

The Remarks/arguments begin on a new page immediately after such amendments to the

drawings, if any.

If there are drawing amendments, an Appendix including amended drawings is attached
following the Remarks/arguments.

Certificate of Mailing under 37 CFR 1.10

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express
Mail addressed to the Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313-1450 on.

Date: Q: g, 2% 3 Signed:
H Name: D

 osenfeld, Reg. No. 38687

NOAC EX. 1019 Page 104

NOAC Ex. 1019 Page 105

Ref/Docket: APPT-OOl-l-l Page 2

AMENDMENT(S) TO THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims on the

application. All claims are set forth below with one of the following annotations.

0 (Original): Claim filed with the application following the specification.

0 (Currently amended): Claim being amended in the current amendment paper.

- (Cancelled): Claim cancelled or deleted from the application.

0 (Withdrawn): Claim still in the application, but in a non—elected status.

0 (New): Claim being added in the current amendment paper.

0 (Previously presented): Claim not being currently amended, but which was
amended or was new in a previous amendment paper.

0 (Not entered): Claim presented in a previous amendment, but not entered or whose
entry status unknown. No claim text is shown.

1.—10. (Cancelled).

11. (Original) A method of examining packets passing through a connection point on a
computer network, each packets conforming to one or more protocols, the method
comprising:

(a) receiving a packet from a packet acquisition device;

(b) performing one or more parsing/extraction operations on the packet to
create a parser record comprising a function of selected portions of the packet;

(c) looking up a flow-entry database comprising none or more flow-entries for
previously encountered conversational flows, the looking up using at least
some of the selected packet portions and determining if the packet is of an

existing flow;

(d) if the packet is of an existing flow, classifying the packet as belonging to the
found existing flow; and

(e) if the packet is of a new flow, storing a new flow—entry for the new flow in
the flow—entry database, including identifying information for future packets to
be identified with the new flow—entry,

wherein the parsing/extraction operations depend on one or more of the protocols to
which the packet conforms.

12. (Original) A method according to claim 11, wherein each packet passing through’
the connection point is examined in real time.

NOAC EX. 1019 Page 105

NOAC Ex. 1019 Page 106

Ref/Docket: APPT—OO 1 - 1 — 1 Page 3

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(Original) A method according to claim 11, wherein classifying the packet as
belonging to the found existing flow includes updating the flow—entry of the existing
flow.

(Original) A method according to claim 13, wherein updating includes storing one
or more statistical measures stored in the flow-entry of the existing flow.

(Original) A method according to claim 14, wherein the one or more statistical
measures include measures selected from the set consisting of the total packet count
for the flow, the time, and a differential time from the last entered time to the present
time.

(Original) A method according to claim 11, wherein the function of the selected
portions of the packet forms a signature that includes the selected packet portions and
that can identify future packers, wherein the lookup operation uses the signature and
wherein the identifying information stored in the new or updated flow—entry is a
signature for identifying future packets.

(Original) A method according to claim 11, wherein at least one of the protocols of
the packet uses source and destination addresses, and wherein the selected portions of
the packet include the source and destination addresses.

(Original) A method according to claim 17, wherein the function of the selected
portions for packets of the same flow is consistent independent of the direction of the
packets.

(Original) A method according to claim 18, wherein the source and destination
addresses are placed in an order determined by the order of numerical values of the
addresses in the function of selected portions.

(Original) A method according to claim 19, wherein the numerically lower address
is placed before the numerically higher address in the function of selected portions.

(Original) A method according to claim 11, wherein the looking up of the flow—
entry database uses a hash of the selected packet portions.

(Original) A method according to claim 11, wherein the parsing/extraction
operations are according to a database of parsing/extraction operations that includes
information describing how to determine a set of one or more protocol dependent
extraction operations from data in the packet that indicate a protocol used in the
packet.

(Original) A method according to claim 11, wherein step (d) includes if the packet
is of an existing flow, obtaining the last encountered state of the flow and performing
any state operations specified for the state of the flow starting from the last
encountered state of the flow; and wherein step (e) includes if the packet is of a new
flow, performing any state operations required for the initial state of the new flow.

NOAC EX. 1019 Page 106

NOAC Ex. 1019 Page 107

Ref./Docket: APPT-OOl—l—l Page 4

24.

25.

26.

27.

28.

29.

(Original) A method according to claim 23, wherein the state processing of each
received packet of a flow furthers the identifying of the application program of the
flow.

(Original) A method according to claim 23, wherein the state operations include
updating the flow-entry, including storing identifying information for future packets to
be identified with the flow-entry.

(Original) A method according to claim 25, wherein the state processing of each
received packet of a flow furthers the identifying of the application program of the
flow.

(Original) A method according to claim 23, wherein the state operations include
searching the parser record for the existence of one or more reference strings.

(Original) A method according to claim 23, wherein the state operations are carried
out by a programmable state processor according to a database of protocol dependent
state operations.

(Original) A packet monitor for examining packets passing through a connection
point on a computer network, each packets conforming to one or more protocols, the
monitor comprising:

(a) a packet acquisition device coupled to the connection point and configured
to receive packets passing through the connection point;

(b) an input buffer memory coupled to and configured to accept a packet from
the packet acquisition device;

(c) a parser subsystem coupled to the input buffer memory and including a
slicer, the parsing subsystem configured to extract selected portions of the
accepted packet and to output a parser record containing the selected portions;

(d) a memory for storing a database comprising none or more flow-entries for
previously encountered conversational flows, each flow—entry identified by
identifying information stored in the flow—entry;

(e) a lookup engine coupled to the output of the parser subsystem and to the
flow—entry memory and configured to lookup whether the particular packet
whose parser record is output by the parser subsystem has a matching flow—
entry, the looking up using at least some of the selected packet portions and
determining if the packet is of an existing flow; and

(f) a flow insertion engine coupled to the flow-entry memory and to the lookup
engine and configured to create a flow-entry in the flow—entry database, the
flow—entry including identifying information for future packets to be identified
with the new flow-entry,

NOAC EX. 1019 Page 107

NOAC Ex. 1019 Page 108

Ref/Docket: APPT-OOl—l-l Page 5

30.

31.

32.

33.

34.

35.

36.

37.

the lookup engine configured such that if the packet is of an existing flow, the monitor
classifies the packet as belonging to the found existing flow; and if the packet is of a
new flow, the flow insertion engine stores a new flow—entry for the new flow in the
flow-entry database, including identifying information for future packets to be
identified with the new flow—entry,

wherein the operation of the parser subsystem depends on one or more of the protocols
to which the packet conforms.

(Original) A monitor according to claim 29, wherein each packet passing through
the connection point is accepted by the packet buffer memory and examined by the
monitor in real time.

(Original) A monitor according to claim 29, wherein the lookup engine updates the
flow-entry of an existing flow in the case that the lockup is successful.

(Original) A monitor according to claim 29, further including a mechanism for
building a hash from the selected portions, wherein the hash is included in the input
for a particular packet to the lookup. engine, and wherein the hash is used by the
lookup engine to search the flow—entry database.

(Original) A monitor according to claim 29, further including a memory containing
a database of parsing/extraction operations, the parsing/extraction database memory
coupled to the parser subsystem, wherein the parsing/extraction operations are
according to one or more parsmg/extraction operations looked up from the
parsing/extraction database.

(Original) A monitor according to claim 33, wherein the database of
parsing/extraction operations includes information describing how to determine a set
of one or more protocol dependent extraction operations from data in the packet that
indicate a protocol used in the packet.

(Original) A monitor according to claim 29, further including a flow—key-buffer
(UFKB) coupled to the output of the parser subsystem and to the lookup engine and to
the flow insertion engine, wherein the output of the parser monitor is coupled to the
lookup engine via the UFKB, and wherein the flow insertion engine is coupled to the
lookup engine via the UFKB.

(Original) A method according to claim 29, further including a state processor
coupled to the lookup engine and to the flow—entry-database memory, and configured
to perform any state operations specified for the state of the flow starting from the last
encountered state of the flow in the case that the packet is from an existing flow, and
to perform any state operations required for the initial state of the new flow in the case
that the packet is from an existing flow.

(Original) A method according to claim 29, wherein the set of possible state
operations that the state processor is configured to perform includes searching for one
or more patterns in the packet portions.

NOAC EX. 1019 Page 108

NOAC Ex. 1019 Page 109

Ref/Docket: APPT-OOl- 1 -1 Page 6

38.

39.

40.

41.

42.

43.

(Original) A monitor according to claim 36, wherein the state processor is
programmable, the monitor further including a state patterns/operations memory
coupled to the state processor, the state operations memory configured to store a
database of protocol dependent state pattems/operations.

(Original) A monitor according to claim 35, further including a state processor
coupled to the UFKB and to the flow—entry-database memory, and configured to
perform any state operations specified for the state of the flow starting from the last
encountered state of the flow in the case that the packet is from an existing flow, and

to perform any state operations required for the initial state of the new flow in the case
that the packet is from an existing flow.

(Original) A monitor according to claim 36, wherein the state operations include
updating the flow-entry, including identifying information for future packets to be
identified with the flow-entry.

(Original) A packet monitor according to claim 29, further comprising:

a compiler processor coupled to the parsing/extraction operations memory,
the compiler processor configured to run a compilation process that includes:

receiving commands in a high—level protocol description language

that describe the protocols that may be used in packets encountered by
the monitor and any children protocols thereof, and

translating the protocol description language commands into a

plurality of parsing/extraction operations that are initialized into the
parsing/extraction operations memory.

(Original) A packet monitor according to claim 38, further comprising:

a compiler processor coupled to the parsing/extraction operations memory,
the compiler processor configured to run a compilation process that includes:

receiving commands in a high—level protocol description language
that describe a correspondence between a set of one or more application

programs and the state transition pattems/operations that occur as a
result of particular conversational flow-sequences associated with an
application programs, and

translating the protocol description language commands into a

plurality of state patterns and state operations that are initialized into
the state pattems/operations memory.

(Original) A packet monitor according to claim 29, further comprising:

a cache subsystem coupled to and between the lookup engine and the flow-entry
database memory providing for fast access of a set of likely-to-be-accessed flow-
entries from the flow-entry database.

NOAC EX. 1019 Page 109

NOAC Ex. 1019 Page 110

Ref/Docket: APPT-OO 1 - 1 -1 Page 7

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

(Original) A packet monitor according to claim 43, wherein the cache subsystem is

an associative cache subsystem including one or more content addressable memory

cells (CAMS).

(Original) A packet monitor according to claim 44, wherein the cache subsystem is
also a least-recently-used cache memory such that a cache miss updates the least

recently used cache entry.

(Original) A packet monitor according to claim 29, wherein each flow-entry stores
one or more statistical measures about the flow, the monitor further comprising

a calculator for updating at least one of the statistical measures in the flow—entry of

the accepted packet.

(Original) A packet monitor according to claim 46, wherein the one or more
statistical measures include measures selected from the set consisting of the total

packet count for the flow, the time, and a differential time from the last entered time to

the present time.

(Original) A packet monitor according to claim 46, further including a statistical

processor configured to determine one or more network usage metrics related to the
flow from one or more of the statistical measures in a flow—entry.

(Original) A monitor according to claim 29, wherein:

flow-entry-database is organized into a plurality of bins that each contain N—number
of flow-entries, and wherein said bins are accessed via a hash data value created by a

parser subsystem based on the selected packet portions, wherein N is one or more.

(Original) A monitor according to claim 49, wherein the hash data value is used to
spread a plurality of flow—entries across the flow-entry-database and allows fast lookup
of a flow-entry and shallower buckets.

(Original) A monitor according to claim 36, wherein the state processor analyzes

both new and existing flows in order to classify them by application and proceeds
from state-to-state based on a set of predefined rules.

(Original) A monitor according to claim 29, wherein the lookup engine begins

processing as soon as a parser record arrives from the parser subsystem.

(Original) A monitor according to claim 36, wherein the lookup engine provides for
flow state entry checking to see if a flow key should be sent to the state processor, and
that outputs a protocol identifier for the flow.

(Original) A method of examining packets passing through a connection point on a

computer network, the method comprising:

(a) receiving a packet from a packet acquisition device;

NOAC EX. 1019 Page 110

NOAC Ex. 1019 Page 111

Ref/Docket: APPT-OO 1 - 1 -1 Page 8

(b) performing one or more parsing/extraction operations on the packet

according to a database of parsing/extraction operations to create a parser

record comprising a function of selected portions of the packet, the database of

parsing/extraction operations including information on how to determine a set

of one or more protocol dependent extraction operations from data in the

packet that indicate a protocol is used in the packet;

(0) looking up a flow—entry database comprising none or more flow—entries for

previously encountered conversational flows, the looking up using at least

some of the selected packet portions, and determining if the packet is of an

existing flow;

((1) if the packet is of an existing flow, obtaining the last encountered state of

the flow and performing any state operations specified for the state of the flow

starting from the last encountered state of the flow; and

(e) if the packet is of a new'flow, performing any analysis required for the

initial state of the new flow and storing a new flow-entry for the new flow in

the flow—entry database, including identifying information for future packets to

be identified with the new flow—entry.

55. (Original) A method according to claim 54, wherein one of the state operations

specified for at least one of the states includes updating the flow-entry, including

identifying information for future packets to be identified with the flow—entry.

56. (Original) A method according to claim 54, wherein one of the state operations

specified for at least one of the states includes searching the contents of the packet for

at least one reference string.

57. (Original) A method according to claim 55, wherein one of the state operations

specified for at least one of the states includes creating a new flow—entry for future

packets to be identified with the flow, the new flow-entry including identifying

information for future packets to be identified with the flow-entry.

58. (Original) A method according to claim 54, further comprising forming a signature

from the selected packet portions, wherein the lookup operation uses the signature and

wherein the identifying information stored in the new or updated flow-entry is a

signature for identifying future packets.

59. (Original) A method according to claim 54, wherein the state operations are

according to a database of protocol dependent state operations.

NOAC EX. 1019 Page 111

NOAC Ex. 1019 Page 112

Ref/Docket: APPT-OO 1 - 1 -1 Page 9

REMARKS

This is a continuation of US. Patent Application 09/608237. Claims 1-59 are the claims as

filed. Claims l—10 are the allowed claims of the parent Application No. 09/608237, and are

being cancelled by this preliminary amendment. Claims 11-59 remain the claims of record

after this amendment. Examination thereof is respectfully requested.

If the Examiner has any questions or comments that would advance the prosecution and

allowance of this application, an email message to the undersigned at dov@inventek.com,

or a telephone call to the undersigned at +1—510-547-3378 is requested.

Respectfully Submitted,

@9- is 2003 g 33 :—
Date Dov Ros nf ld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Tel. +1 —5 10-547-3378

Fax: +1-510-291-2985

Email:dov@inventek.com.

NOAC EX. 1019 Page 112

NOAC Ex. 1019 Page 113

‘\.
is

7./nP.701 E
534567-_nnnnuu-nunnG7777777wWWWWw

um.O0-vlT
\».xv.

FILING DATE ‘0’/
’

_ 7

SERIALNO. l Ob
APPLICANT(S)

EMT

AFTER 1|? AMENDMENT AFTER 2ND MENDM

FEE CALCULATION SHEET
WCLAIM

.R

D

7WN.l7mM
34N.N..

mm.T.I.

3..

u.s. DEPARTMENT of COMMERCE

“Ea-E.

a..._====_______=_===========—
PT041360 (12/02) _, Patent an*MAY BE USED FOR ADDITIONAL CLAIMS 0!? AMEN iMENTS d Trgdem'grk Office

NOAC EX. 1019 Page 113

NOAC Ex. 1019 Page 114

PATENT APPLICATION SERIAL NO.

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

10/20/2003 YPOLITEI 00000080 10684776

01 FC:1001 770.00 UP
02 FC:1202 522.00 HP

PTO-1556

(5/87)

'U.S. Government Printing Office: 2002 — 489-267/69033

NOAC EX. 1019 Page 114

NOAC Ex. 1019 Page 115

Application orgocket Number
PATENT APPLICATION FEE DETERMINATION RECORD

Effective October 1, 2003

CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN
Column 1 TYPE l:l OR SMALL ENTITY

RATE RAT

38500 OR BASIC FEE

 .n

IO) 0)
II

U?
PITI \m

ITI

770.00

G” ._A a)

II
0 II

OR 0ID + I\) (D0
ll

* If the difference in column 1 is less than zero, enter “0" in column 2 OR TOTAL

CLAIMS AS AMENDED - PART II OTHER THAN

SMALL ENTITY OR SMALL ENTITY

HIGHEST
ADDL ADDLREMAININ NUMBER

ALTER G PREVlOUSLY RATE TIONAL RATE TIONAL
AMENDMENT PAID FOR FEE FEE

AMENDMENTA' 0R X85: -

TOTAL

OR ADDIT. FEE-

HIGHEST

ID REMAINING NUMBER ADD"
'- AFTER PREVIOUSLY ATE TIONAL RATE TIONAL

5 AMENDMENT PAlD FOR FEE FEE
E

g Total OR X$18= -
I; Independent X =
:1 OR 85

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

TOTAL

OR ADDIT. FEE-

CLAIMS HIGHEST

REMAINING NUMBER
AFTER PREVIOUSLY

ADDI-

RATE TIONAL

FEEPAID FOR

 AMENDMENTC
 FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

* If the entry in column 1 is less than the entry in column 2, write "0' in column 3.
"‘ lithe “Highest Number Previously Paid For" IN THIS SPACE is less than 20. enter ‘20."
”It the 'Highest Number Previously Paid For“ IN THIS SPACE is less than 3. enter '3.“

The “Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

O :17Ion0)
ll

ADDIT. FEE
FORM PTO-875 (Rev. 10/03l Patent and Trademark Office.'U.S. DEPARTMENT OF COMMERCE

L\ NOAC EX. 1019 Page 115

NOAC Ex. 1019 Page 116

- si-

Q‘JHAQBS‘eQfial No.: 10/684,776

Filed: October 14,2003

Title: METHOD AND APPARATUS FOR

Group Art Unit: 2155

Examiner:

MONITORING TRAFFIC IN A

NETWORK

Commissionerfor Patents

P.O.

Alex

Box 1450

andria, VA 22313—1450

TRANSMITTAL: INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X

l><M

An Information Disclosure Statement for the above referenced patent application,
together with PTO form 1449 and a copy of each reference cited in form 1449.

A payment for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated
with this communication or credit any overpayment to Deposit Account 50-0292.

A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

: {kc 3.1003
Respectfully submitted,

Dov senfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547-3378

 Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service
addressed to: Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313

Date of Deposit: Egg 3 7.00 3 Signature:

NOAC EX. 1019 Page 116

NOAC Ex. 1019 Page 117

Our Docket/Ref. No.2 APPT-OO 1 - 1-1 . Patent

lIN THE UNITED STATES PATENT ANDZTRADEMARK OEIFJICE

 PépplicanKs):(4

Q~+SerialNog 10/684,776

Filed: October 14, 2003

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Group Art Unit: 2155

Examiner:

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313~1450

TRANSMITTAL: TNEORMATTON DISCLOSURE STATEMENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

A payment for petition fees.

X Return postcard.

X The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date: Dec 2, Lg);

 Dov Rosenfe

Attorney/Age

Reg. No. 38687

or Applicant(s)

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547—3378

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Pos . .‘
NOAC EX. 1019 Page 117

NOAC Ex. 1019 Page 118

Patent

Group Art Unit: 2155c

Crab '

Filed: October 14, 2003

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

' , “QSBQFialNo.: 10/684,776
Examiner:

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

TNEORMATTON DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

__ under 37 CFR 1.97(c) together with either a:

Certification under 37 CFR 1.97(e), or

_ a $180.00 fee under 37 CFR 1.17(p)

(After the CFR 1.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

__ under 37 CFR 1.97(d) together with a:

__ Certification under 37 CFR 1.97(e), and

__ a petition under 37 CFR 1.97(d)(2)(ii), and

_ a $130.00 petition fee set forth in 37 CFR 1.17(i)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

A Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

 Certificate of Mailing under 37 CFR 1.18

 I hereby certify that this correspondence is being deposited with the United States Postal Service
addressed to: Commissioner for Patents, PO. Box 1450, Alexandria, VA .

Date of Deposit: [he 8 Lg}; Signature:

NOAC EX. 1019 Page 118

NOAC Ex. 1019 Page 119

S/N: 09/608266 Page 2 IDS

__ (Certification under 37 CFR. 1.97 (e)) Each item of information contained in this

information disclosure statement was first cited in a communication from a foreign patent office
in a counterpart foreign application not more than three months prior to the filing of this
information disclosure statement.

A (Cited in a related case) Each item of information contained in this information disclosure

statement was first cited in a communication from the US. Patent and Trademark Office in a

related application. The present application is related to such other applications by claiming
. priority of the same US. Provisional patent application.

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR l.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date: [25$ 2g}
Respectfully submitted,

Attorney ent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.2 +1-510—547-3378

NOAC EX. 1019 Page 119

NOAC Ex. 1019 Page 120

SHEET 1 OF 3.a.

ATTY.DOCKETNO. SERMLNO,

APPT—OOl-l—l 10/684,776

iiiiiiIIIIIIIIllllllllllllllllllllllll
HUNGDATE GROUP

14 Oct 2003 2155

US. PATENT DOCUMENTS

E! aIfORM - 1449

em%1),

FILING DATE

'EXAMINER IF APPROPRIATE
INITIAL

DOCUMENT

NUMBER

5,680,585

DATE NAME CLASS SUB-CLASS
M O\10-1997 Bruell \I O L»)

5,721,827 02—1998 \1 0 KO N I-‘ \‘ILogan et a1.

OW ,272,151 08—2001 0.) \I O a}. ('1) k0Gupta et a1.

0‘ ,430,409 08—2002 Rossmann

.h U1 U1 51> [\J N I-‘

6,516,337 02—2003 Tripp et a1.

6,519,568 02—2003! arvey et a1.

>>m
EEIo

q o m

III

I:32It:It:

:5x

_‘.am
.

\I 0 k0 [\J O N

FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-

DOCUMENT DATE COUNTRY CLASS SUB-CLASS LATION
NUMBER YES | NO

)-2

b

3:

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

bIt

 EXAMINER DATE CONSIDERED

'EXAMINER: initial if citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance
and [IQ considered. Include a copy of this form with next communication to Applicant.

NOAC EX. 1019 Page 120

NOAC Ex. 1019 Page 121

aI.FORM-1MQWSHEET 2 OF 3.

ATTY.DOCKETNO. " SERMLNO.

APPT—OOl—l—l 10/684,776

APPLICANT

 HUNGDATE

14 Oct 2003

GROUP
0'

(‘95‘9 several sheets if necessary)
BE 1 7 m u 2 l 5 5

S
f

- +

' RADEMPF U.S. PATENT DOCUMENTS

08-2000 Chen et al 370

07‘2“”

6,453,345 09—2002 Trcka et al.

FILING DATE

'EXAMI N ER IF APPROPR/A TE
INITIAL

DOCUMENT

NUMBER

5,850,388 [\D U'l [\J

6,097,699 N LA) I“BE

BC 6 269,330

E

\‘I o a}. p L.)

m

\1 0 L0 [0 N a;

,381,306

BK —
FOREIGN PATENT DOCUMENTS

PUBLI-CATION TRANS-
DATE COUNTRY CLASS SUB-CLASS LATION

YES I NO

e~ —
OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication. Etc.)

‘dvanced Methods for Storage and Retrieval in Image;

ttp://www.cs.tulane.edu/ww/Prototype/proposal.html; 1998

6,282,570% \1 0 KO [\J N u;

5,761,429to(D \‘I 0 L0 N [\J as.

5,799,154 N [\J U)

CD

CD

CDI

w \1 L0 to [\J

 DOCUMENT

NUMBER

Ieasurement and Analysis of the Digital DECT Propagation
as Channel; IEEE; 1998

iiiiiiiiiiIllllllllllllllllllllllll
'EXAMlNER: initial il citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance

and ggt considered. Include a copy of this form with next communication to Applicant.

EXAMINER

NOAC EX. 1019 Page 121

NOAC Ex. 1019 Page 122

SHEET 3 OF 3

ATTY.DOCKETNO. SERMLNO.

APPT—OOl-l-l 10/684,776
4.4"

INFORMA‘WWWLOSUHE STATEMENT APPLICANT

 (Use several sheets if necessary) FILING DATE GROUP

14 Oct 2003 2155

US. PATENT DOCUMENTS

\I H I—‘ I—‘ O (I)

FILING DATE
IF APPROPRIATE 'EXAMINER

INITIAL
DOCUMENT

NUMBER

5 530,958

DATE NAME CLASS SUB-CLASS

06—1996 \I '._| [.1 I.CA ‘garwal et al.

4 458,310 07—1984 Chang, Shih—Jeh \I ._1 I—‘ }_| H \0
~

CB

6,003,123 12—1999 Carter et al. \1 I-“ I—‘ N O \ICC

5,530,834 06—1996 Colloff et a1.0U \"I '._\ H I-‘ DJ 0t

U1 ,749,087 05—1998 oover et al.

,949,369 04—1976 Churchill, Jr. \I |_1 H

\‘I H I-‘ DJNI—‘ too[\J N400,559,618 12—1985 b.) O‘\ U‘lIouseman et a1.

,910,668 03—1990 Okamoto et al.0I

5,917,821 06—1999 L») \1 OGobuyan et al.

29

O

OX

0TI

0IT]

FOREIGN PATENT DOCUMENTS

C) 0 Ch "1] O I—‘ \I \ (A)

PUBLl-CATION TRANS-

DOCUMENT DATE COUNTRY CLASSIFICATION LATION
NUMBER YES I NO

1P 2003—44510A 02—2003 Japan 0

O2

0

OTHER DISCLOSURES (Including Author. Title, Date, Pertinent Pages, Place of Publication, Etc.)

0

EXAMINER DATE CONSIDERED

'EXAMINER: initial if citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance
and not considered. Include a copy of this term with next communication to Applicant.

NOAC EX. 1019 Page 122

NOAC Ex. 1019 Page 123

This Page Is Inserted by IFW Operations

and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of

the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

0 BLACK BORDERS

o TEXT CUT OFF AT TOP, BOTTOM OR SIDES

0 FADED TEXT

o ILLE’GIBLE TEXT

o SKEWED/SLANTED IMAGES

o COLORED PHOTOS

0 BLACK OR VERY BLACK AND WHITE DARK PHOTOS

0 GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,

please do not report the images to the

Image Problem Mailbox.

NOAC EX. 1019 Page 123

NOAC Ex. 1019 Page 124

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane.edu/www/Prototype/proposal.html

—-

Title: Advanced Methods for Storage and Retrieval in image Databases

Prototype Lead: Dr. Cris Koutsougeras, (504)862-3369, ckeeecs . tulane . edu

Proposed Funding Source: ESDIS Prototyping

Type: Prototype

Category: Engineering

Primary Purpose: Technology Evolution

Keg Requirements Addressed: IMS—OlSO, IMS-0160, and IMS—190

Key Risks Addressed: 089 and 105

Results Need Date: N/A

Objective

We will continue to develop image/granule analysis and retrieval methods based on queries over metadata descriptions of the images. We will be
working closely with members of the MODIS science team and, for development and testing purposes, will base our research on MODIS products.
In particular, we will use a land surface Level 3 product (MOD13 including NDVI) and an atmospheric product. The atmospheric product is likely
to be the Level 2 Cloud Product (MOD06) but discussions are still underway with MODIS participants about this and about a possible oceanic
product as well. The prototype that currently exists at Tulane University will be extended to include these products. The principle on which the
Tulane prototype is based is that an abstraction of an image/granule in the form of metadata is immediately accessible, not the image/granule itself.
Queries by researchers are performed over the metadata. Selected images/granules are then transmitted to the researcher on a delayed basis.
Extending the prototype using these diverse MODIS products will enable us to not only directly benefit the MODIS science team but also to
develop methods that will assist DAAC users in general.

On a broader front, we will be addressing the issue of a uniform interface for heterogeneous data (Level 3 requirement [MS-0150), providing
different levels of user interaction support (lMS-Ol60), and investigating how to save knowledge between metadata searches (lMS-Ol90). The
effort will be a step toward defining precisely the set of user services needed (Risk 089) and reducing the likelihood that significant data will be
overlooked due to the large volumes of data managed by EOSDIS (Risk l05).

Approach

A prototype has been implemented as an end-to-end, client-server testbed (Fig. 1). This testbed, provides a close analog to the ECS Science Data
Processing Segment (SDPS) subsystems. The prototype has at its core the ObjectStore database and most of the current contents are based on the
NDVI product. The interface is interactive and web-based. Queries are performed over simple, atomic data as well as some structured data, e.g.,
image histograms. A set of metadata has been defined but is subject through this study to modification as we concentrate on new products and
interact with the MODIS science team.

1 of6 ‘ 11/6/2003 11:25 AM

NOAC EX. 1019 Page 124

NOAC Ex. 1019 Page 125

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane.edu/www/Prototype/proposal.html

Us r Defined Training Set

WWW Based Cli nt

HTML FORMS CL'ENT
(Netscap)

H P ,

Advanced 'TT Server
” Client ..

Dataset 1 Dataset ‘2 ” " trainingv’sets

Fig. 1: Architecture of the Tulane EOS Query Prototype

Architecture of Present System. Because ObjectStore is an object-oriented database, the schema is discussed in terms of the object-oriented
concepts of classes, data members, and methods. It is important to distinguish between geodata and metadata. Geodata, sometimes called granule
level metadata, deals with the context of the image and includes information such as: date, flight, time, perspective (angle), instrument, latitude,
data format, longitude, and mission.

Metadata deals with the content of the image and includes such things as the mean irradiance, cloud cover percentage, and texture measures.

The Database Classes. There are two classes employed -- image and tile. An object of class image contains an image and the geodata associated
with it. An object of class tile contains the descriptive metadata and the identities of the image/subimage to which the object pertains. "Tile" is the
word we use to designate the statistics associated with any one member of the quad tree frames of an image. The tile objects are collected into a

container set called tiles and the image objects are collected into a container set called Images Images are stored in the database strictly for
development purposes. In a deployable system, the images would be stored on another media in a data warehouse.

Fig. 2 depicts the relationship among the objects and their container sets. There is a many-to-one relationship between the tile objects and image
objects. Each tile object contains the metadata for a portion of the image. Each tile object is stored separate from the image object to which it refers.
This permits (1) uniform querying of metadata at the image and subimage levels (2) changing the tiling protocol or philosophy without having to
change the database implementation.

Ob'ecfitore

:1 Tile Object

7/% huge Object

2 01’6 11/6/2003 11:25 AM

NOAC EX. 1019 Page 125

NOAC Ex. 1019 Page 126

Advanced Methods for Storage and Retrieval in Image

3of6

ob-ectsture

:1 Tue Object7

% hinge Object

Fig. 2: Relationship Among Objects

http://www.cs.tulane.edu/www/Prototype/proposal.html

Table 1 shows several of the two dozen metadata members of a tile object in the prototype implementation. The first three members, TileID,
lmageld, and Channel, identify the tile and correlate it to an image object. The remaining data members are metadata values over which queries are
performed.

Table 1: Tile Object Data Members

 i

Integer

, Metadata Data Type Description

1 i 1
Tileld i String Tile identity as described in

I

lmageld gluteger glmage of which tile is a:
t ' subimage

' Channel ! Instrument band number lI.1
i

NullPixels

Integer

' Integer[264]

Woa

= Number of pixels in each
histogram

Spatial mean of all pixels

Standard deviation of pixel
, values

Pixel value mode statistic

Minimum pixel value

Maximum pixel value

- The fraction of the tile having

cloud

The fraction of pixels having
null

values

11/6/2003 11:25 AM

NOAC Ex. 1019 Page 126

NOAC Ex. 1019 Page 127

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane.edu/www/Prototype/proposal.html

i FourPhase Real[20][20] The phase angles of the
l l Fourier

I transform

1

FourAmp Real[20][20] The amplitude of the Fourier

l transform

Real[20][20} Wavelet (Haar) coefficients

Slope Real Fractal dimension
11

Amplitude : Real[20]..l__,

Sample Queries for the Proposed System. The purpose of metadata collection is to make accessible to the Earth science community the granules
collected daily. To profile by example the kinds of uses that an EOS DAAC must be responsive to, we present two typical query scenarios.

Scenario 1 User Goal: Find areas experiencing recent and ongoing deforestation

Approach Using the MODIS NDVl lOOkm by lOOkm, look for both "high" standard deviation and "high" roughness. Omit tiles
having a high percentage of cloudiness.

Discussion The tiles having the above characteristics are likely the ones representing the boundaries of the forest.

Scenario 2 User Goal: Study lee-wave cloud formation — clouds having a distinctive linear cloud pattern.

Approach Find (using any means) a set of tiles having the desired pattern and another set lacking it within the cloud product (MOD06).
Cluster the training set using the Fourier signatures to define the texture of the desired tiles. Use the query system to search for images
having a similar texture.

Discussion This is an example of an "advanced client" query. The researcher must put more effort into the initial search. Afterwards, the
work can be reused by the researcher as well as by others.

Relationship of the Proposed Research to the Present Tulane Prototype. Presently, a researcher must be familiar with the nature of the
metadata and their potential applications. This is because the researcher has to be able to express what (s)he is searching for and express the search
requirements in terms of the metadata. The prototype web site performs simple queries over single-valued metadata variables such as

Retrieve images and subimages having a standard deviation of intensity less than x .

On structured data such as histograms, somewhat more advanced queries are possible such as submitting an exemplar histogram and retrieving the
images/subimages that have similar histograms.

The next step is putting in place an interface that assists this translation in accordance with the spirit of Level 3 requirement IMS-0160. Although
one could envision this interface as being so sophisticated that it is able to translate a sort of natural language query into a query involving the
ground procedures, classes, and metadata of the database, it would first be necessary to establish the concept at a more modest scale.

Evaluation Method/Criteria

We will work in conjunction with MODIS science team members. These members will have remote access to the web site and will be able to

provide specific requirements and provide feedback based on hands~on experience with the prototype.

Potential Impact

The prototype will address three significant lMS level 3 requirements: (I) uniform user interfaces, (2) interaction methods for different researchers

with different skill levels, and (3) saving search knowledge between query sessions by researchers. It will address two key risks: (1) lack of
well-defined user services and (2) overlooking significant information due to the volume of data managed. Additionally, there is a short-term impact
that should not be overlooked. It will be of direct and immediate benefit to the MODIS science team members.

Milestones and Deliverables

Scope of Work. Using the current prototype as a basis, Tulane University will extend the system by emphasizing two (and possibly three)
MODIS Level 2 and 3 products. The extensions include providing query support that requires different skill levels of researchers using the
system, saving search knowledge between query sessions, and developing better approaches to characterizing the information at the
subimage/subgranule level. The prototype made available to MODIS science team members may entail revising the metadata as now

4 0“ . 11/6/2003 11:25 AM

NOAC EX. 1019 Page 127

NOAC Ex. 1019 Page 128

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulanc.edu/www/Prototype/proposal.htmlc

defined based on their feedback.

The duration of the work outlined in this SOW is 12 months.

Summary of Tasks. The efforts during this period of performance will target further refinements to the existing work. More specifically,
we target the issues of efficient storage (space problem) and efficient retrieval. We can build on the framework that has been created,
refine it, and make it more user friendly.

Further development of the prototype will follow two directions: (1) Development of methods that use the available storage space more
effectively (see Tasks 2 and 3); (2) Development of interface mechanisms that allow greater query flexibility for researchers having more
expertise in data management (see Tasks 4 and 5).

Task 1: Project Management. Provide monthly progress reports to the Project Manager and Technical Lead. These 1-2 page reports will
summarize the previous month's progress, plans for the upcoming month, and any identified issues or impediments to progress. These
reports will also provide estimated dollar and labor contract expenditures for that month.

Task 2: Image Decomposition. Decomposition by quad tree, as described in the Approach section, is often preferred by scientists using
land products. Frequently the phenomenon sought by such scientists is not distributed across the entire image. Almost always, it is
contained in a subimage and the criteria used to find it will often be masked by the image as a whole. That is why the present prototype
computes the metadata over each tile in a quad tree.

Yet, the quad tree has drawbacks. Atmospheric and oceanic scientists sometimes prefer other forms of decomposition. In a quad tree, the
chief object in an image, say, a hurricane, is may be partitioned among different tiles. Clearly metadata particular to the storm will be
washed out by the background that surrounds the parts. Other decomposition methods require the use of criteria based on image content.
This might be pixel values or texture. However, decomposing the image into "blobs" that represent areas of uniformity is a plausible
approach. Blobs fall short of complete image segmentation by region in that they need not fully partition the image and may overlap. They
constitute an augmentation of the quad tree decomposition, not a replacement for it. Metadata should be computed for each blob in
addition to each quad tree tile. A blob will more likely contain a coherent object in its entirety.

To illustrate, examine Fig. 3. Using ellipses as the basic geometry of a blob, the significant features on an image are enclosed. Shapes other
than ellipses will be investigated. With respect to the database schema, minimal changes are necessary. A blob description will just become
an additional tile in the illustration of Fig. 2. The metadata for a blob is the same as that for a tile.

Task 3: Data Space Conservation. Data concerning terabytes of mages must be immediately accessible. To conserve space, we will
investigate ways to discover parts of images (partial images) that reoccur and thus can be seen as building blocks. These can be helpful in
composing an image (or many images) but metadata descriptors of each of these components need to be stored only once. As a simplistic
example, consider an image that contains large bodies of water over which there is a uniform distribution of pixel values. If these areas
were represented as repetitions of a single tile, we would only need to store a detailed (sub)image description of this tile and then describe
the large bodies of water as a (structured) collection of pointers to it, thus saving substantially in the space required to store the imagemetadata.

N El
Is

MEN - III-SCA- ”Of-f. l)
. C(T— rLW-i‘l? 1m

NuxlwllXrM'Isthxn-“Wh :n

Fig. 3: Blob Decomposition of an Image

There are a couple of different possibilities for discovering building blocks. First, we can try to identify reoccurring tiles within an image.
Second, we can try to discover tiles that are useful in many images. The process of discovery must be automated and run at ingest time.
This problem has properties similar those of binpacking and thus an optimal solution will not be easy to find. However, evolutionary
algorithm techniques are promising and may provide good practical solutions The issues to be addressed in this task are: (1) determining
the geometry of the tiles, (2) tradeoffs in space savings in conjunction with the geometry of the tiles (this relates to the frequency of
reoccurrence), and (3) evolutionary algorithm techniques for optimal decompositions.

5 0“ ' 11/6/2003 11:25 AM

NOAC EX. 1019 Page 128

NOAC Ex. 1019 Page 129

Advanced Methods for Storage and Retrieval in Image http://www.cs.tulane.edu/www/Prototype/proposal.html‘1

Task 4: Advanced and Reconstructive Metadata. During the year just past, we examined and chose metadata that are statistically
significant, that have high information content, and that researchers are already familiar with. We did not (and were not required to)
incorporate mechanisms for using the more highly structured metadata (such as texture and transform coefficients) into queries. We did
go beyond the requirements of the previous grant and develop means of using histogram information within queries.

In the coming year we will develop query mechanisms to complement all the metadata. Additionally, because we have defined and are
collecting metadata from which the image can be reconstructed at reduced resolution, we will ,develop mechanisms by which the
researcher can define her/his personal metadata and collect it from any set of images defined via less advanced queries. For example,
consider the Fourier coefficients. They require much storage but contain much information. A researcher might reconstruct the image or
tiles from an image using the Fourier coefficients then compute the eigenvalues of the pixel autocorrelation matrix. This is the sort of
query for which we can provide the basic structure through this task.

Task 5: Query Reuse. The result of a query is a set of image and tile id’s. The simplest approach to query reuse (and the one we will start
with) is to associate with various sets a "cluster condition," a Boolean statement which each member of the set satisfies. This leads to the

ability to reuse a set when the condition reoccurs. Next we will elaborate this in the form of an inverted file for which the key is a tile id
from which the complete set of cluster conditions (seen thus far) satisfied by that tile can be accessed. This will achieve a powerful query
reuse capability.

Deliverables. NASA will have the right to examine the software at any time. Provision to FTP software to NASA will be made on an
informal basis. Three additional deliverables are proposed.

Item A: Decomposition approach presented as written document. This document will define the approaches used for decomposition
(other than the quad tree) and the reasons for which one was selected. The issues of feasibility of performing the method upon
ingest will be described together with experiences using the method. This is the culmination of Task 2.

Item B: Operational end-to-end WWW-based prototype allowing direct query of fixed (statistical) metadata, utilization of
advanced queries that incorporate structured metadata, and allow a researcher to utilize reconstructive metadata (e.g., Fourier
coefficients) to define her/his personal metadata.

Item C: Final report summarizing "lessons learned," focusing primarily on the architecture'of the prototype, the design of the
components that constitute the query interface, and changes that would be appropriate if another database product were utilized as
the core of the system.

Bear in mind that in additional to the deliverables, the MODIS science team will be able to gain direct benefit from the project beginning
in late September and continuing throughout the prescribed period of performance.

6 of6 11/6/2003 11:25 AM

NOAC Ex. 1019 Page 129

NOAC Ex. 1019 Page 130

«4‘

Measurement and Analysis of the Digital

DECT Propagation Channel"

Fulvio Babichl, Giancarlo Lombardil, Steno Schiavonz, Elvio Valentinuzzil

1: Dipartimento di Elettrotecnica, Elettronica e Inforrnatica,

Universita di Trieste, Via A. Valerio 10, I-34127 Trieste, Italy
Phone: +39-40—676-3458; Fax: +39-40-676—3460

babich, lombardi, valent@stelvio.univ.trieste.it

http://ingsun1.univ.trieste/"{babich, lombardi}

2: TELITAL S.p.A., Viale Stazione di Prosecco SIB, I—34010 Sgonico (TS), Italy,
Phone: +39-40-4192-244; Fax: +39-40-251257; s teno . schiavon@ rs 1 . teli tal . it

Abstract - In this paper, an experimental setup is pre-

sented, to measure bit error patterns over a DECT

indoor radio channel. A prefixed bit sequence has

been exchanged on the air between a mobile and a

fixed part, using a DECT modem. DECT interfer-

ers were active in the environment during the exper-

iments. Error patterns have been obtained from re-

ceived sequences, aligning and comparing them with

‘ the transmitted ones. They have been stored in real

time on a mass memory, by means of a data acqui-

sition board, built for this purpose. Some results
are shown, inherent to the Packet Error Distribution

(PED) and to the burst and interburst length distri-

butions, obtained from the acquired database. Finite
State Markov Channel models have been determined,

using measurement conditions, to reproduce and ver-

ify empiric results.

ll Introduction

Wireless communications are experiencing a consid-

erable growth, due to their flexibility. The quick in-

crease of the subscriber number requires to reconsider

system architecture, in order to adapt it to the prop-

agation environment, as carefully as possible, and,

consequently, to obtain capacity gain. Given that ur—
ban and indoor wireless communications are the most

requested from users, Cordless Telecommunication

(CT) systems are being perfectioned, because they al-

low better coverage and capacity, with lower power

expense, than traditional cellular systems. Among Eu-

ropean standards, DECT is'the most modern digital

standard, providing a broad range of services.

Being the mobile propagation channel (with inter-

‘This work has been partially supported by MURST “ex-quota
40%", Italy.

ference) the main reason of degradation of the trans-

mitted signal, it may be useful to evaluate the channel

correlation properties, to increase system capacity by

taking into account channel memory [1]. In fact, the

traditional techniques of coding and interleaving de-

stroy error correlation at the receiver, but do limit sys-

tem capacity. It is useful, then, to study the correla-

tion properties of bit error sequences and to find mod-

els reproducing their behavior. Generally, bit error

streams on a wireless channel are obtained, through

simulation or as post-processing of experimental ana-

log measurements [2, 3, 4].

In this paper, an experimental setup is presented,

to measure and store bit error patterns over a DECT

indoor radio channel. Measurements have been per-

formed, building a database of bit error sequences

in an indoor environment. The packet error distri-

bution (PED) and the burst/interburst length distribu-
tions have been obtained from some streams of the

database and compared with the distribution obtained

from a Finite State Markov Channel model, proposed

in [5] and whose parameters are estimated from mea-
surement conditions.

The measurement setup is described in Section 2,
while measurement execution is outlined in Section 3.

Results about PED and burst/interburst length distri-

butions are discussed in Section 4 and 5, respectively,
while some conclusions are drawn in Section 6.

2 Measurement Setup

The measurements have been performed, using as
transmitter and as receiver, two radio communication

testers for DECT systems (CMD60, manufactured by

R&S), respectively. The scheme of measurement ap-

paratus is displayed in Figure l. A continuous TI'L

NOAC EX. 1019 Page 130

NOAC Ex. 1019 Page 131

Data

Acquisition Out

4—Track
Oscilloscope

Data
Generation

and

Alignment

E» V.

E . , K 4

S“ Samgpling i.» DATA
; Comparison % ‘ EF

Figure 2: Scheme of the data acquisition board.

binary sequence, having DECT bit rate (1.152 Mb/s),

is generated and supplied to the first tester, where it
modulates a DECT carrier at 1897.344 MHz in the

DECT GMSK format (BT = 0.5). This signal is am-

plified by 40 dB, transmitted over a 80 m coaxial cable

(attenuation 29 dB) to the mobile end, where it is am-

plified again, by 30 dB, before being fed to a discone

transmitting antenna.

The receiving part is made by another discone an-

tenna, similar to previous, connected by a 5 m coax-

ial cable to a 20 dB low noise amplifier, that supplies

the signal to the second tester, where the received bi-

nary sequence is obtained by a frequency discrimina-

tor. This sequence is aligned with the transmitted se-

quence, used as reference, because the delay of the
measurement chain is about one and a half bit.

The comparison between transmitted and received

sequence and the storage of the error sequence inside

a PC Pentium 133 MHz are made, using a dedicated

acquisition digital board, controlled via software us-

ing the interrupt management. The sampling and de-

cision circuitry of the received signal are also on the

board. It is composed by the blocks showed in Fig-

ure 2. The demodulated sequence (DEMOD OUT),

having a Gaussian bit shape, is sampled and converted

to 'ITL levels, to be compared with the reference se-

quence (DATA REF). The high rate of the data re-

quires a parallel acquisition: shift registers, suitably

joined to the serial data‘line, are used. The paral-
lelized data are stored inside buffers, to be available

on the ISA System Bus, carrying them to the PC. The

control circuitry is for address and interrupt manage—
ment.

3 Measurement Execution

The measurements have been executed in the labora-

tory and office wing of a PCS factory, near Trieste.

The plan can be found in [6]. The basic structure of

the floor is given by a very long hallway, terminated
by a large laboratory and interrupted by metal fire-cut

doors. Along the hallway, several medium sized room

(in mean 5 X 5 m) and stairs are displaced. The fur-

nishing is typical of offices and laboratories, with sev-
eral metal cabinets and work benches. Further details

are given in [6, 7].

The experiments have been carried on after office

time, so that very few people was in the environ-

ment and stationarity can be assumed. On the other
side, several DECT terminals were active and it has

been observed that interference is the main reason of

error during measurement execution. The receiving

antenna is fixed on a 2.10 m dielectric pole, while

the transmitting one is moving and kept at a 1.90 m

height. The mobile antenna has been continuously

displaced along straight and circular paths. Straight

paths have a minimum length of 7 m (in the rooms)

and a maximum length of 35 m (in the main hallway).

The antenna was held on a vertical pole mounted on a

trolley and moved by a person, with speed ~ 0.4 m/s.

Circular paths have a ray of 1.5 m. The antenna is held

on a horizontal arm, mounted on a vertical pole rotat-

ing around its axis by means of an electromagnetic

engine. The angular speed impressed by the engine

is 271' rad/min, corresponding to an antenna peripheric
speed of 0.16 m/s.

Three positions of the receiving antenna have been

chosen, two in rooms along the hallway and one in the

lab terminating the hallway. The paths of the trans—

mitter has been chosen, trying to cover many rooms

of the floor. The measurement along every path has

been carried on with transmitter constant power. The

experiment at any path has been repeated varying the

signal power at modulator output among the values -

15, -25 and -35 dBm, respectively (about 40 dB have

NOAC EX. 1019 Page 131

NOAC Ex. 1019 Page 132

0 2 4 6 8 1O 12 14 16 18 20

Figure 3: Packet Error Distribution P(n, m) with n = 64.
Solid line: Measure; Dashed Line: Theory.

to be added to these values to obtain radiated power).
The final database contains 32 error streams obtained

from straight paths and 33 error streams obtained from

circular paths.

4 PED Evaluation

The database has been pre—processed to transform the

bit error sequences in gap sequences, according to def-
initions in [8].

The first quantity evaluated from experimental data

is Packet Error Distribution (PED). PED P(n,m) is

defined as the probability that a data block, made by
71 bits, contains 71. errors and is connected to Packet

Error Rate PER by the equation:

t

PER: i P(n,m)=l—ZP(n,m), (I)
m=t+1 m=0

being t the number of errors in the block, that can be
corrected.

Signal fading rate is very low: fDTb = 8.7- 10‘7,

for circular paths, and fDTb = 2.2 - 10‘6, for linear

paths, where Tb = 868 us is bit duration, fD = §
is channel Doppler spread, 11 is mobile speed and

= 15.7 cm is the wavelength. However, errors are

caused mainly by interference, originating from few

base stations, transmitting signaling packets (96 bit

long) in every slot (T1 = 417113). To represent the

instant signal-to-interferenoe ratio (SIR), it seems rea-
sonable to use the Finite State Markov Channel model

(FSMC), proposed in [5], with fading rate fDT]. This

means assuming that interference has approximately

the same effect of fading with fb = fpgf. The model
considers Rayleigh fading, quantized on L levels, by

means of L— 1 thresholds (referred to SIR [Section 3])

{Ak }L; L fading states {Sh};1are obtained, so

1o .—.—-1———r—.-w-—r—.———r—

10

gN_ —2

£10a.

10'3

0-4
0 510152025303540455055606570

m

Figure 4: Packet Error Distribution P(n,m) with n =
256. Solid line: Measure; Dashed Line: Theory.

that {Skz SIR E [A]c Ak+1)Lk—0, where A0: 0 and
AL“~ +00

The FSMC model is completelyLcharacterized by
the transition matrix T = {thE1:33;:_0 and by the
crossover probabilities e = {ek}£~k0:0(where ek is the
average error probability over the Binary Symmetric

Channel, corresponding to the SIR in the state Sk).

The transition probabilities are given by:

 N

tkk+1~ ’23, k 0, ..,L—2, (2a)
Rt
N

thc—l % —(I,:)’ k —' 1, .. ,L — 1, (2b)
Rt

tia‘ z 0, Vi1j=li—jl> 1, (26)

toc = 1 — Z 1,), (2d)
19H:

Where Rik) = 2% =y/2MfoexP(fieh)’
g is the average SIR, pk = exp(— ’2) —
exp (—A—efl) ,k = 0,... ,L — 1 are the steady state
probabilities for each state Sk. The crossover proba-

bilities for an incoherently demodulated 2-FSK, well

approximating GMSK, are given by:

6;, = 13:51:?) {exp [—Ak (i + é)]

1-.. <2 + a1 1,
k=mqu—L

PED has been evaluated from this model with the al—

gorithm, described in [8, 3].

Figs. 3 and 4 compare measured PED with PED

obtained from FSMC model, for a particular circu-

lar path measurement, with -15 dBm power level at

NOAC Ex. 1019 Page 132

NOAC Ex. 1019 Page 133

2'VI
.5
a
E
it}
B‘2‘D.

10" __s__ ..l— ._L_. A ._:_.__ L
o 100 200 300 , 400 500 600 700 800

n[bits]

Figure 5: Burst length distribution. —: Measure; -._.:
First order model at bit level; - - -: First order model at
block level.

modulator (SR1). In the former, packet length 'n. is 64,
while in the second it is 256. The mean bit error rate is

Pb = 1.46 - 10‘2, so that an average SIR g = 18.2 dB

is estimated from Pb = W19 [9]. Continuous line rep-
resents PED obtained from data, while dashed line

represents PED obtained from FSMC model, evalu-

ated using eqns. (2) and (3). The model has 12 quan-

tization levels, using as thresholds {A,c = g —— 2(11 —

Is) it. as.
It can be noticed that FSMC model follows well ex-

perimental results in Figure 3, while it shows some de-

parture in Figure 4. Furthermore, it has been checked

that PED behavior is quite insensitive to the value of

fDT (if fDT ,5 10-3). It can be noticed that the
effect of interference on PED is well represented by

the FSMC model, defined by eqns. (2) and (3), used

in presence of fading with AWGN [3]. This means
that the effect of interference, also when interferers

are temporally deterministic and in small number, can

be considered Gaussian. The major departure of the-

ory from measurement in Figure 4 puts on evidence

the limits of the approximation.

5 Burst Distribution

The error stream has been also analyzed, considering

the burst and interburst length distribution. A burst

is defined as a group of bit, starting and ending with

a wrong bit, such that the maximum separation be-

tween any couple of wrong bits is never higher than a

fixed number NG (guard interval) [10]. In this work,

it is NC = 100. The group of bits between two con-

secutive bursts is an interburst. Figs. 5 and 6 show
with solid line the distribution of burst and interburst

length, respectively, obtained from the same experi-

mental data, used in Section 4. Inside each figure,

the dash-dotted line represents the behavior obtained

Prtinterburstlength5n]
0

0 1000 2000 3000 4000 5000 6000 7000 8000
n[bits]

Figure 6: lnterburst length distribution. —: Measure;
----: First order model at bit level; - - -: First order model at
block level.

from the FSMC, therein described. The burst and in-

terburst length distributions are approximated by the

residence time distribution in the state set 31—59 and

510—512, considered as error and no-error states at

bit level, respectively. The evaluation method is de-

scribed in [11].

The dashed line represents the results obtained from

a first order Markov model at block level, discussed in

the following. Let n = 64 be the block length. Let G

and B be the events of correct block (without errors)

and of wrong block (containing wrong bits), respec—
tively. Let a two-state FSMC model at the bit level

be obtained, quantizing SIR with respect to a thresh-

old F, to represent the process at bit level. A typical

value, also used here, is F = 9—4 (dB). Equations (2)
give its transition matrix:

Pbb pb

=1 91It pgb pgg a

and its stationary distribution pbit = [pb pg], where g
and b are the no-error and error states at the bit level,

respectively. .

A first order Markov chain describing the G—B pro-

cess can be built from Tbit, p1,“, and its transition ma-

trix is given by:

Tblock 2

P88 = 1 — PEG PEG = Pg (1999)"‘1
PGB = 1 - PGG PGG = (1)519)"

where PEG : P(bm+1 = O,...,bm+n = Olb =

1)pb + P(bm+1 = 0, . . . ,bm+n = 0“) = 0)pg and
PGG 2: P(bm+1 = 0,. . . ,bm+n = 0|bm = 0) (given
'n > 1).

The burst and interburst length distributions are ob-
tained from this model, as residence time in the B and

G state, respectively.

NOAC EX. 1019 Page 133

NOAC Ex. 1019 Page 134

The second model shows a closer resemblance with

the experimental results, because the state definition
matches better the burst and interburst definitions.

Therefore, from the burst/interburst distribution point

of view, the channel with interference is well repre-
sented even by an on-off Markov model, where the

‘on’ condition corresponds to SIR being above a suit-
able threshold F. Moreover, the first model exhibits

larger deviation in the burst length case, because the

approximation of a burst, as a sequence of totally

wrong bits, is an oversimplification.

6 Conclusions and Future Work

In this paper, a measurement system has been de-

scribed, for the acquisition of bit error streams on a

DECT digital channel. A database of error patterns

has been obtained in a laboratory and office environ-

ment, considering also the effect of some DECT in-

terferers thereby placed. Some processing has been

made on it, consisting in evaluation of Packet Er-

ror Distribution (PED) and of burst and interburst

length distributions. The experimental results for PED

match with the ones given by a FSMC model, typ-

ically adopted for fading channel with AWGN. This

puts on evidence that the interference effect can be as-

sumed Gaussian. Burst/interburst length distributions

are correctly modeled even by a simple on-off model.

Though, some deviations between models and exper-

imental results have been also observed, due to the
deterministic features of interference.

Future work will consist in examining more com-

plex models, that are capable of giving more accurate

results and that can be applied to further character-

izing features of the channel, as the gap distribution.

The aim is to find a class of models, capable to give

a unitary description of digital wireless channel be-

havior, both at the bit level and at the packet level,

so that parameters useful to system project are readily
obtained from it.

Acknowledgments

The authors wish to thank the TELITAL S.p.A., for

having supplied measurement instrumentation and

having followed its execution with continuous and

qualified technical support.

References

[1] A. Goldsmith and P. Varaiya, “Capacity, Mutual

Information and Coding for Finite-State Markov

Channels”, IEEE Trans. Inform. Theory, vol. 42,

no. 3, pp. 868 — 886, May 1996.

[2] A. J. Goldsmith, L. J. Greenstein, and G. J.

Foschini, “Error Statistics of Real-Time Power

Measurements in Cellular Channels with Multi-

path and Shadowing”, IEEE Trans. Veh. Tech—

nol., v01. 43, no. 3, pp. 439 — 446, Aug. 1994.

[3] H. Bischl and E. Lutz, “Packet Error Rate in

the Non-Interleaved Rayleigh Channel”, IEEE

Trans. Commun., vol. 43, no. 2/3/4, pp. 1375 —

1382, Feb./Mar./Apr. 1995.

[4] P. M. Crespo, R. Mann Pelz, J. P. Cosmas, and
J. Garcia-Frias, “Results of Channel Error Pro-

files for DECT”, IEEE Trans. Commun., vol. 44,

no. 8, pp. 913 — 917, Aug. 1996.

[5] H. S. Wang and N. Moayeri, “Finite-State
Markov Channel: A Useful Model for Radio

Communication Channel”, IEEE Trans. Veh.

Technol., vol. 44, no. 1, pp. 163 — 171, Feb.
1995. h

[6] F. Babich, G. Lombardi, and E. Valentinuzzi,

“Indoor Propagation Characteristics in DECT

Band”, in Proceedings of IEEE VTC ’96, At-

lanta, GA, Apr. 27 — May 2, 1996, pp. 574 — 578.

[7] F. Babich, G. Lombardi, L. Tomasi, and E. Va-

lentinuzzi, “Indoor Propagation Measurements

at DECT Frequencies”, in Proc. ofIEEE MELE-

CON ’96, Bari, Italy, May 13 — 16, 1996, pp.
1355 — 1359.

[8] L. N. Kanal and A. R. K. Sastry, “Models for

Channels with Memory and Their Applications

to Error Control”, Proc. IEEE, vol. 66, no. 7, pp.

724 — 744, July 1978.

[9] J. G. Proakis, .Digital Communications,

McGraw—Hill, New York, 1989.

[10] E. A. Newcombe and S. Pasupathy, “Error Rate

Monitoring for Digital Communications”, Proc.

IEEE, vol. 70, no. 8, Aug. 1982.

[1 l] Attila Csenki, Dependabilityfor Systems with a

Partitioned State Space, vol. 90 of Lecture Notes

in Statistics, Springer-Verlag, 1994.

NOAC EX. 1019 Page 134

NOAC Ex. 1019 Page 135

PAT-NO: ' JP02003044510A

DOCUMENT-IDENTIFIER: JP 2003044510 A

TITLE: GATEWAY SYSTEM

PUBN—DATE: February 14, 2003

INVENTOR—INFORMATION:
NAME

COUNTRY

INOSHITA, AKIHITO _ N/A

SUZUKI, HIROYOSHI N/A

KUBOTA, HIROMI N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MATSUSHITA ELECTRIC IND CO LTD N/A

APPL—NO: ' JP2001225981

APRL—DATE: July 26, 2001 _

INT—CL (IPC): G06FOl7/30, G06F012/00 , G06FOl3/00

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a gateway

system that enables a network

09/02/2003, EAST Version: 1.04.0000

NOAC EX. 1019 Page 135

NOAC Ex. 1019 Page 136

terminal user to automatically surf valuable Web

pages without any specified

setting.

SOLUTION: An access monitor unit 25 of a gateway

system 80 detects the URL

for Webs a user frequently accesses and manages the

URL with a URL management

table 30. A surfing unit 40 of the gateway system

automatically surfs the Webs

having the URL and stores the Web data in a cache
server 50. The gateway

system generate a management table that includes
not only the frequency of the
accesses but also data for the elapsed time from

the most recent accessed time

to the present time and can automatically surf a
Web site being judged as the

high priority site based on the management table.

COPYRIGHT: (C)2003,JPO

09/02/2003, EAST Version: 1.04.0000

NOAC EX. 1019 Page 136

NOAC Ex. 1019 Page 137

JP20030§14510A1httptifwww.genhepatenmomg’Login.dogfidov/(tyHIFN/Felch/JP2003044510A.cpc'?toolbarzbottommum:JP200304451OApartzmgmj Page 1 of 11

(19>amfiam- (JP) (12) a} 55 1%: :4: a} g (A) (IIMfi'FtHE’Afififi
#552003—44510

(P2003—44510A)

(43) fifi B 51153215513 2 F1143 (2003. 2.14)

(51)Int.Cl.7 $13345 F 1 fan-11%)

G06F 17/30 340 G06F 17/30 3408 58075

110 110F 58082

4 1 9 4 1 9 B

12/00 5 4 6 12/00 5 4 6 P

13/00 5 4 0 13/00 5 4 0 B

gfiam flax flmfimam 0L ($11H)

(mafia fifiz001—225980P2001—225981) «mum 000005821

mTfifigfifiiéa

kfififififit$fifiwm§fi

0040a #1? %§

W§MflfifififitzmafimTaafil

% fiTfifiIfififiéfim

«mama %* %§

W§MEflfifififlxmaimTE3§1

E mTfifilfiwfiéflw

(74JfEEQJK 100105050

flat Em

(2911:1351 Slzlfil3£|57526|3(2001.7.26)

Q}—

(54) (fiflflm%fikl y—bfix’ffifi

(W)K¥%)

{fifll $vbv—7%Xml—Wfififlfifii

Efibfi<10\fifififile—yéaflmmflflf

% 511: 50:06: to

Kfl%$fll f—b71480077txfim%25

#1l—ffififim77txfiéfil70URLéfifl

L1URL%E?—7w3onzfifit‘flm%4o

#\%®URL®VI7&EQWKKEL\VI7¥—

75‘361' v 9:07—25 Obzfifi’d‘é. 77tX3fiJ§®

kaéf\Efi®77tz%fi#$&fiLtfifimfifi

§%U%fif—7w&¢mb‘Chugdwrgfigm

EuWEBv4béflibfaflflEéfiictbtg

5°
93MFG-fififiifi

NOAC EX. 1019 Page 137

NOAC Ex. 1019 Page 138

lfi%fii®fifll

{fiifill WEB7§VféfiflLn$vb7—7

fixt$vb7—7LmWEBv—Ntmfifié¢fi¢

55—FW:4§ETW>0T\ IP/Vfi'v F7t‘7—5:

4V7$t\fifi$vb7—7fififlélfiéfltWE

BV4F®URLfi$fit\fiEURLfiWEB7§W

Wflaxfiéht@fléfiwté77txflfifiw%

txfifiURLt%077tx@fi€fimfififfifif

6URL%fl?—7wt\fifiURL§E?—7wEfi

nz$vb7—7EfiLTWEBv4bm¥—7§E%

thfiTéflE%t\fififlfl$fimfittWEB¥

~7Efifi¢6¥vvvlv—Néfiz\W§$vb7

—7%fl®77txfi§fifikmtf\EQTWE

B?—7éfl%¢é:téfiwtféf—bvz4fi

fie

[fifiEZI WEURLfiflf—fwu¥wmmeh

ty%A7?b%fiéfio:tffi&t§fibttéfl

a~ifififlifi%fifiwhuuRLfiflf—jwéfi

fib?7txfi§&%§?§filtifiwtféfififi

lfifimf—FV:4§E°

[fiifi3] fi§URL%E?—7w&\$vb7—

7%XW8077txfiF\EfiBfiMm77tx¢é

m%%afixitaiflTEET%\fiEflflflu\$

vb7—7%$#6®77t1fiEQEWURL#BM

t‘$wfiwehkmmmURLifflEvéctéfi

mt¢&%fifilfifimf—bv14fifi.

{fififi4l fifiURL%E?—7wu\$vb7—

7%Xfl6077t1fifi\Efiafimt77tx¢é

MEEEE‘itu$flffififéxfififlfifiu\i

vb7—7%$#zm77txfiE@%mURLufi

L\bé‘E%EWm%m77txfiE®flétmtt

EfifiwflmiéctEfiw&¢éfiifil%fi0f—

FVI4§Eo

[fififiS] f—bvx4mfifiéhéfivbv—7

fiifififlfifiié%€ksnr\$vb7—7%xé

fifliéfiflfiééétfii‘fifiURLfifl?—7w

fiiU~fifi¥rv&Jv—NE%$7F7—7%$C

tnfiflvéltéfiwtféfiifil~¥ifi4mw

fhfln§fimf—bfi14fifi.

{fiifiel fi$fiflfluIP7Fuxémmffifl

€55:k&%fitiéfiifi5fiflmf—bvl4§

fio

{fiifi7l W§$flfiuMAc7vaémnrfi

fléfifi:téfiwtiéfiXEBifimf—bvx4

fifi°

[fififiSI fifi$fl%u$—b§%émm<$flé

Hiltéfimtvbfififi5fifiwf—bvx4fi

fio

lfififi9] WfiflflfitibflfiLtHTMLm?

w-57’£'Compa.lctHTML (cl-ITML) Kaela?-

JP20030454510A Ihtjpj/www.getthepatenl.com/Logi_ll.dog/$dov/@ HIFN/Fetch/JP2003044510A.cpc?too!bar:bottompnum=JP200304451OA_part=mainJ_

(2)fi2003~44510(P2003-445fi

6Em%ééamfii\fifi%rv91v—Nufl#®

WEB?—7&HTMLtcHTML®2§flwv—7

777§¥Tfifibfs<ltéfifit¢é\fiifil

itufififisfifimf—bvx4fifi.

{fififilol fififlflfitxomfiLtHTMLm

$—7&BMLKE&¢6§&$E§$K%Z\WE?

valv—Nufl—QWEB?—52HTMLaBM

L®2§fiwv—77v7§%f%fibrfi<ztéfi

fitféfififilztufififisflfimf—bvx4fi

Eo

{fififilll ivb7—7fiifi77t1LtWE

Bfi"! MCOWL URLfstU77’cXfiEZ. 35%)“

u\URLt77t1fiEtEfi®77txfififléfi

fittfimmfifiéfivfimf—7wéwmb\Wow

fiéhkfimf—7w&77txmfiififlkmttfi

fiEfiL\fiflfiflf—thfiih6fifimfidwf

§fiE®EHWEBv4béflitffiflflfiéfiw\

%m%%tttfiéhtfi%&%§wauWEBv4b

m$—7&§E¢éctéfiwt¢éWEBaflfiflfi

E.

[$32131 2] 7"- }"714331’. L'CQZIVEJ—

y&\

$vb7—7fixfi77thtWEBv4bmou

(\URLB;U77tXfiE.$éuu\URLt7

7txfifitfifio77txfififléfifibtfifimfi

fiéfifl%&?—7w2¢&¢ét%m\Wfiéhk?

E?—7w&T7txm%$fifitmt1%fififi¢é

ifit\

fifiéaflf—szfiihéfifitfio’m fififimfi

wWEBV%bEWELTE§flEEfiM\%®%%t

LrfiahtfiifififimfiuWEBv4b®?—7E

§fi¢é$attrfifiéfiétw®7urfiA.

{fiwmfiwfifiWI

{0001}

l%%®fiv%fifififil$%wu\V—b714fifi

MEL fie; WWW(wor1d wide web)%a)zx4n_7-—

*xrm$—7é$vrv—éagmsz—Nvem

fi¢6A4N—?%XbEflMfififiEBof—FVI

4tfi¢6o

[OOOZIf—bfil4u\fifi§9fo$§fi5

$vb7—7fiéfifiv&tmm¢fififiébofifir

%O\fi$\&aéhébwu\afiuswé$vb7

—7fiméfim¢é$—A$wbv—af—bfix4a

Eil%%u

(0003)

{fifiwfifi)fi$\éflmv—Nayex—ysiu

§fi®75%7yb:VE;—7fi$vb7—7TEK

n\gv—N2y51—7EA4N—?#Xhfifi®7

w+x¥47$—7fififiéfl180\$75477h

3751—7K8HT\757VV7FVI7Ki0

NOA’C EX. 1019 Page 138

%ggon1

NOAC Ex. 1019 Page 139

TxC015??W%X?47¥—7éfififiéltfi

3%QVX?A#$<%<W5.Cwlifiyxf

A09“); L161 Mibf‘ 4 V7—2‘~~7 Ha‘o’c‘réww

W (World Wide Web) tW6fi/159X'7‘Afi‘t'fi‘éwfi)

hég7W+X¥47¥~7é30¥§u\flifiHT

ML (hyper text markup language) twcfhééflizfig

$Kloffifi3h180\?#ZFX§\fiiE‘E

E\%¥$—7\Bthm(§fififi)TTerfi

80377”) 7—:‘/ a V7°D75A72CEE§UC tfifiTfiE

KQGTM&.CQI5&X§(UT\HTMLN—y

£%¢&)BIUVW+X¥47¥—7tm\%fl%fl

URL (uniform resource locator) kWLIIiléEIfi—O)

7FVXW§U§TBflTH%.l-Wfl\75WVL

KENTURLEEE¢5CEKIGT‘fingTM

LN—ybéuuvw+x¥47¥—7t77t1¢é

Ckffi't"é6. ilk-y b‘7—7fifiififfl 4’ Vy—F'fvy 1‘54?

mivb7—7Ltfiméntwww%mn4N—;q

1bm¥—7&Mfi¢é%fitu\7a47ybfifi

(*vb7—7fifi)tfifiéhél—V4V7—7I

—X”Wfibr7§VWJ§EM‘*VF7—7LKB

H§EW®V—N%k774wgtéfififiét\ifi

Tfivfuiof\fiiéht774»t%®774w

éx4V&LtN—9Efifiiéflm774wtfififl

WflmfiéflfoEV17WKflAébfiffifiN~y

fifiiéhéo

A [O 0 O 4] CC'C‘K LEE1E‘EVD7 74/1/7J‘QEHOZEQ

E¢%N—Vfiéfiflbfifiéfi&tbuu\100

N—Vfléfifi?é&—§K®UV7%E10f9%fi

L'C Jlfio:§%-T<“9"é 42%;?) 39 a

{000513t\fl5774wfiux$vr7—7i

czfiifif6tb‘ Léawwwgmw ”—5-er b (07"

—7€Hfi¢é%fitfl‘$fifi§$€$bffl8mfi

éhtfifQN—Vwfififi%7$&iTflflfib0%

EE§¢6.%®tbnfififitfiim774wnfifi

“9" 2,) fiN— SimfiXfi/ififi‘fi—ffi‘ é ffifi’éffig ih‘(w

é.

{0006]%CT\CWlfiQgiéfitififitL

TfififlflfififikéoCflaflflflfifiéfii675

4TVF§ETH‘mfibtfii774W#fifiiéN

—V®$—7t§fiN—V®?—7téfifiT§%i5

LZQ’J'CWZé.

(0007]UT\ifififlflfififiEEfiWQMéi

WT%%15.

[0008)®fi%%12V7F717r7U—U—

71 (FreeLoader. Inc,)T‘Oir /\°‘/ flyif'fléjfi‘é

y7bv17ffiorWWWLwfiEN—yéafimm

Wfitffifififitflfiiéy7bfiz7T%5oflfi
QV7FCFW§fiflJ(BJLGHIm.)%#%

éofifittfimtfifiWKflfléfl‘$b§ELtN

~V§WfiT§él5tfiofwé.

JP200304451OA Lh:tpu’i'www‘genhepatenmomiLogin‘dogiSdovik’s‘H1FNfFetcl1/JP2008044510A.cpc?1oolbar:botiompnum:JP20030445!OApartzmainL Page 3 of 11~

(3)fi2003-44510(P2003-445fl

{0009] Qt‘éfiéf‘filZ :fififi5118—299664'C‘

u\?bafiéhtfifl&UN5x—7ufiot\m&

gammay7fiéwozw<ayv17flm%§fiz

ofififififififiéhzmé;

[0010)

{fiwfiflmb;5tvéfifiltcafrifiLta

fiflflfifiéfi¢6V7Ffiz7$$fififlmfifiéfi

mmwgnzmvcm fifififimELW—Vflxfivt

fioxfifiéhtEEQN—thémfibtox$3

EfltUV7fiWTN—V&m%¢éfiE\l—ffifl

Efififiéfiifi&ctuxazmfiN—Vfiéfiok

OrfiiLtfiflnflfiiééaéfifié%fiLru
b.

[0011)t:5#\fif1~rfinyv~w#5%

figfiéfiiLafihfimwawtw\:yv—wéi

Bibfé t waiamwzxgcma .

[0012)§t~fiifiamkfiWfiKfil—Wflfi

gaggm~ -y b7—762fi¢%fi%fi*fi‘¥tfiéfcb\

mbfiazflyv—wmfifitéhaul—fmufii

T65:&mtw5fififibé.itrafiflflwfifi

5%fivénwcva:y%mivb7—7fifiéfi

nflém'cm‘mmu‘mwzmt mi fififiEMfi o

{0013}%:T‘$%%mamurl—rfirm%

iéfibt<tb€%QN—V&%$;<afimmmfi

T3éWEB?—5(WI7?—7)®m%%%ébo

trxyb7—7¢fi%E(f—bv14)éfifi¢é

:tc%6o

(0014}

{afiéflRvétm®$&l$%%m¥—b¢x4§

Ew—Efifu.WEB7§WWEfifiLt$VFV—

7fiit$vb7—7imWEBV—Néfifififit?

65—F714EBMT\IPN7VF717—$¥V

7%t~fifi$vb7~7fi$flélfiéhtWEBV

4F®URLfi$$trfifiURLfiWEB7§7ffl

61héht®fiéfifl¢é77txfi§fifl%t‘m
%URL&%®77txfifiéfimfififfi%€6UR

Lfifif—7WtrfifiURLfiflf—7WEmuf%

vbv—7éfiL1WEBv%bm¥—7EE%WKW

fiTéflfiflt‘fiEflEflfiflfiLtWEB?—ié

$fi¢é¥rv91V—Nifi2~$va—7fiifl

6w77txfi§%fiumUT‘EQTWEB¥—9E

mgvéo

[0015}$%Wtihfi\WEB797Wfilfié

htURLt\WEB73WWfl6Afi§htEflEU

RLEE?—7»T%EL.$wmb6hnéfiff—

FVI4fiafiWKWEB¥—7EKEL‘f—bb;

4KWEEflt*¥vylv—NKEfiLTS<CE

?‘fitl—ffiéwfii%%¥tLamTJ—$mfi

hmébfitWEB¥—7&#ufifi¥—7KEfiLT

8<:t#w%6.itoivh7—7%X&Efltt

NOAC EX. 1019 Page 139

NOAC Ex. 1019 Page 140

<TB‘WEBf—705fiflflfiflfifi.

(0016}it\$%%ufifiURL%E?—7wfi

$bRwent7%A7vbfifiEfioctTfifiuE

fiLtt$W6—E%EULEfifififihwURL%E

?—7w&EfiL77txfiEéfififéé:aT‘7

7txfifim$€d§fléhk77txfifié7UT?

éltfiTébtbxfi£K77tXLkURLK%g

éhfiwo

[0017}ik‘$%%®m®%fiTM\WEURL

@E?—7w&‘$va—7%X#am77txfi

E\Efiafimm77tx¢éM§éa%\ituifi

fixfifé.fifififl$u‘$vb7—7%X#em7

7txfi§®EHURLfl$WE‘$bmb6htflm

QURLiTflflféctT‘77t1fiE®EHUR

LamoTWEBv4b0?—7&Efi¢é:tfi?$
6.

[0018}it‘$%%®%®%fifu‘fifiURL

fifif—7w&\$vb7—7fi$#5077txfi

E\Efiafimn77tx¢ém%%afixitufifl

Tfififéxfififlfifiu\$vb7—7%X#5m7

7tXfiEQEWURLKfiL\%%‘E%EWK%®

77txfi§®flékfltkflflfififlfi¢éctT\

77t1fiE®EHURLdEflfiEEE<T%Ztfi

T§é¢

{0019):t\$%%®%®%&fu‘f—bv;

4K§fién6$vb7—7fififififififi?é%fit

Bmz\$wb7—7%X&%fltéfifl$ééetfi

1‘WEURL%E?—7WBiUxfi%##vylfi

—N&%ivb7—7%X:tufiflvéctf\$v

b7—7fixrtt77txfigfingEBfi4FE

afiflmfiéctfifl%éc
{002013k‘$%%®%®§§Tfixfi%%fll

P7FVX\MACTFVX\$—b§%%mh1%fl

éh\ivb7—7fi*:tt77txfiE®EwWE

Bfi4béfi§fl®¢éctfimfié.

[0 0 2 1 1 if; iswflmflflmfigfifli fifiéflfllfilfii

KiUmfiLtHTML®¥—7€CompactHT

ML(cHTML)KE&¢éQ&%E¥6Kfii\fi

E¥&vylfi—Ntfl—WWEB?—7§HTMLt

cHTMLm2Efimv—77vréfiTafitrs<

CtT~HTMLfiflflWEB7§VWTWfiLtUR

Liitfififlfibfflfitt$—yécHTMLfim

WEBfavféfifiLt$wb7—7fikrfifivé

:tfimfiéo

(0022)zt\$%%®%wfififu\fififlm%

KlUmfiLtHTML®?—7EBMLK§m¢é§

m$235fifii‘Wfi%kvvlfi—NKfl—®WE

B?—7&HTML&BMLmZEfimv—77v7é

%Tfi%LTB<CtT\HTMLfiEflWEB7§V

ffwfiLtURLéinaflflELfmfiLt¥~7

JP200304.4510A Lily/{WWWgetthepatent.com;’Login.dog/Sdovié,‘ HIFN/Fetch/JF’2008044510A.cpc'?ioolbar=bottompnum=JP2003044510Apart=mainl Page 4 of 11

(4)fi2003—44510(P2003—445fl

EBMLflmWEB7avféfiflLt?VEaaw$

yb7—7%$Tmfivéctfiw%éo
[0023}

(fifiwiflmfifilUT‘$%%®%mwfifitou

THEE?ELT%W€§.'

[0024](%m®%%1>fllu‘¢%W®E§fl

@fi%&$of—bv;4m—M®7nv7mr%0‘

E2~®4u\Elmf—FWI4SO®QW¥M®M

Eitflffiéoikxm5fl\E105—FWI4K

BHfiURLfiE?—7»®W§®~WEE?ET%

0‘fl6u\URL§E$—7»®fi®fl(747é%

Ebtfl)§$bxfl7fi‘URLfiflf~7wmmw

M<77txfi§mflflé$§LtM>éfitflT$
6.

(0025}fl1t3w1\§%fi%1ouf—bv1

4fi$OIPN&vb®7xV—?4VV%\Zlul

—Wfi77t1LTH6WEBfi%FOURLW$%\

ZZQWEBV4FK®77tXfiE%M$‘fififi?

25m77tx§fifi~30HfifiURLfi$$KiD

fimLtURLtfi%77txfiE%M%nxUfiwL

t77txfi§t§§fifir§fiiéURLEQ?—7

w~40fi§fi®WEBfi4F®$—7§Efl?flfi¢

émE%\50u77tht¥—9éafifié%vV

ylv—N\90u$vb7—7\91ufifi$vb7

—7Lm%%WEBv—N‘92u$vb7—7fi$t

fifl§h6WEBT§WWffiéo

{0026IEZ‘@3\E4EEOT$%%®—%fi

wfifitsa%fiflfl@fi&mfi¢§fl%¢&.

{00271fl2m\$th—7%X#60WEB¥

—7fifi¥fitfifl$éWEB¥—7fi‘f—bvx4

Wm%vvylv—N50mabom%émfimmfifi

AT%&.

{0028}%wa—7%xb5WEB$—7mmfi

EifiV—FWI4KfiLT%fiGtt%\f—va

4u$vb7—7fixfi77txbifithuéUR
LEURLW$$21rmmvéttbt‘%m77t

XfiEé?7tXfiE%M$22TfimL‘URLfifl

f—7w30tfififié.

{0029)f—bfi;4fi%fiéhkURLnfim¢

6WEB$~7fi¥rv91fi—K50K%M%fi\i

VFW—79OEfiLTWEBV—N91K77kx

L\fifi®WEB$—7§mfib.#Tvylv—N5

Okifiiétflfifi\$vb7—7fifiiflWEBT

5VV92KWEB¥—7E§%3fiéo

{0030}&E‘E3u$vb7—7%*WB®WE

B¥—9mfi¥mtflmféWEB$—7fi‘f~bv

L4W®*#791V—N50K50t%€@§¢0&

flar%é.$vb7—7fixfleWEBf—ymfifi

fiifif—bv14tfibffifiott$‘$vb7~

7%x#77t1L;5tL1u6URLtfim¢6W

NOAC EX. 1019 Page 140

NOAC Ex. 1019 Page 141

E B7"—5’75*3?*\’ *7 9147—115 Obtfii’wf‘ ‘1“? -7:‘/

1V—KWBWEB¥—7#7VVD—Féfl\$vh

7—7fikthEB7fiv%92mfifiéhé.

{003llkt‘E4uf—bv14fiaflflméfi

5%?0flfimfifiarbé.f—bvl4uURLfi

Ef—fwsoééfib‘77txfi§fifimfior$

vF7—790LOWEBV—K91E77txt\W

EB?—7EW%L\¥¥791V—N50tfifi¢

6°:0tg‘URLfiaf-7w30u%fiéhé®

Afi‘ffiéhécau%wo

[0032)E5uf—#¢:4fi%flféURL%fl

f—7w300—MT%6.

[0033}EéuURLfifif—7w3on74vé

fifi‘fiiflURLtfiLTflifi72%fiUWtwo

tbé—Eflfi?7txfi&fihfi%®URLéuRL

%@%—7wsomeafimcm%¢éo%5¢é:z

T‘l—Wflfifififibvffifififififit77th

tWEBv4b0?—7EH03TBEE&E€6C&

ufi<aéo

[0034}E7MURLfiflf—7W30C77t1

fifimmfléofi\flifi‘T7t1fi§ifl5miT

twat%&—Emmmi?®WEBv4b%a%fl@

véctfiféé.%5€é:tt\77t1fifimfi
HWEBV4FKWOTEQME¢6tw\fi¥MiK

$vb7—7u77th&<té.

(0035](%M®%%Z)E8fi\$¥mwfifit

flbgf—bv14mfifiéfiiflf%é.$¥W®E

fi®§$wafifiu‘H1m?—bfix4tflt?%é

fix77txfim%25nsmr‘éemfifl%20&

bocttfiwfifiéo

{00361fifl%20u\f—bv14mfifimiv

b7—7fififififiéh§%€t‘$$vb747fii

gawtamgévg.

[0037}Lkfiof.fl8®¥—FV1%TH\f

—bV14t$fiéh§$vb7—7fififififififi?

5%QTB\$vb7—7fifiCtKURLfifl?—7

w30WT77txfififififléh\$vb7—7fiX

fimfwafiflfléfifiztfififita6.

[0038}flifi\$vh7—7%X93L®WEB

7?WW92§§¢LTl—WfiWEBV4FA®77

txéfiormétéxivb7—7%$93fit%0

¥T$htURL%m%—7w3omfifiu77txfi

®URLt77txfififififiéhé°

{0039}flE$40d$vb7-7fi$$tt77

tzfiELMmURLEEEflEL\$ny1v—N

50KWEB¥—7Efifi¢éo

{0040}WEB¥—7u#rvylfi—NSOWT

B$vb7~7fi$ftt§fléh‘Wfil—VWWE

B757W92l077txéfifitfi‘fi—bfi%%

uioam$vb7—7fixflew77txwéflfi

JP200304§510A mgtp:/;’www.gettfl§patent.com;’ngin.dog/$dov!@HIFN/Fetch/JP2003044510A.cgc?too!bar=bottompnum=JP200304451OApartzmain| Page 5 o! 11

(5)%2003—44510(P2003-445fi

L\#rvyl#—N50®$—7éyvyn—FL\

WEBv4bmmfifimfiéofixwfiflnuIPVF

1/1‘ 37263“ Ethe rne t (fifififi) @MAC

TFV11itu\$—b§%flfihéh6.it.$

va—7%XET®URL%§?—7WxfilU‘*

valv—Nméfié$fi%t¢hw‘@Afifimfi

fififié6o

[0041}EQu$vb7—7%$:ktfifiéh%

URLfiflf—TWW—Wfifié.Efiéhéi5E\

fififlgfléhT\URLfi%Eéhfwéo

{0042}($Mmfifi3)®10d.$¥fim%fi

mf—bVI4mmm&fivflf%é,Elomf—b

Vl4wfiwu\HTML§$:®7—77v7§%K

fimfiéfim%60&mzfuéctr%é°

(004311vb7—7fixxfifiafiflméfii

a‘$vb7—7fi$#6®77txt;0URLtT

7txfi§§fiflLURLEE?—7w3onfifiéh
6.

[0044)fiEfi4OMURL§Ef~7W30WE

77txfi§m§mURL&aflfiEL,¥&vylv
—N50tWEB¥—7Efifi¢éo%®t%\HTM

L0WEB¥~7t\HTMLE%:®7—77VT§

%tEanWEB¥—7mzfifié%vvViv—N

cfifitfb<o

{0045}%:®7~7TVT§%tLTM‘Com

PactHTMLi’o’JiU‘ BMLfi‘EfJW)éo

[0046}&El—V#6®77t1#%okt§\

1—f0fifi7—Wfififi0WEBjavv9zfi‘c

HTMLfifiWEBVfiVffl~BMLfim®WEBf

§VWWE%WL%V791v—N50in\fifiv—

wa£bfizfifififiQWEB¥—7éyvyn—FL

Tfi§?6:t#w%%o

l0047}%ifi1Nyayaawfifim77txf

6WEBV4F®¥—7EE%MEL~flELT%fiL

tWEBfi4bm¥—92i%—Ffimfifififityfl

yu—FLTEQfifi¢KWEB¥—7éfi§¢§:t

maize). '

(00481uiinwawa15uxxfiwmxn

fi‘aflflfifi%&fiitf—FV14nihfi‘l—

Vflémlfififiéwfitfif~1—fmfikr77t

XthéWEBv4b0?—7&Eflfl@¢6tn5

wfififian&ouifiwbt$%%®WEBv%bm

ayflflfimm§¢maimu‘allufivxaua

6.??b5‘$vb7—7fiifi77tXLtWEB

*7‘4’ F‘COHT‘ URLBiU77t1fiE. b5)“

u\URLt77tXfiEtEfi077txfififlafi

fiLtfifimfifiéfiUfiE¥—7»éwmb\mow

fiéhnfifl?—7wé77txwfiifimtmtffi

fiEflL<va7100)‘fiflf—7wnfiah5

fifiugdwrfifigm%wWEBv4béflibta

NOAC EX. 1019 Page 141

NOAC Ex. 1019 Page 142

EMEEEH(X?77110)‘%®%¥ttf%6

htfifi§fi§wEuwan4bm%—7E§fi¢6

(1-7—v7120)°

{004913t‘$%%tihfi\fiURLfi747

~2fi5‘¥me8htfiEWK1—¥flem77t

xfifiw%%ufifiéhk77txfifié7U7¢éz

tT~fifikfi¥t77txbfthRLQ%§E%

Hffififlflfi$$§tu5fi¥fifishae

(0050)at‘$%%mihw‘l—Vm77tx

figwaummhéRwantmmiTmWEBv4b

@¥~2&Efl?flfi¢é:tf\1—Wfi77tx?

§WEBV4bfiéfififitfbfin77txfi§ifl

®WEBfi4FEEATfl$i<EflflE¢§thfifi

fibu’fiéhzgo

{0051}it\$%%txhfi\l—W®77tx

fiE®%%KmUTEflflETéEflE%16CtT\

fi¥t77tx¢5WEBfi4bmfifiufifiénéfi

Ebg<aétmfififififieh6.

[0052)3t\$%%uihfi*vh7—7fii

Efifliéfifl¥fiEfiiéltT\f—FVI4tfi

fiéhé$vb7-7%$fi§flfifi¢é%€f$\%

$vb7—7fixrtt77txfi§#EMWEBv4

béfiflflflfialtfiw%étb‘@A0754N9

—#¥5hétw5%¥fi%$héo

{OOSBIik‘HTML®¥—7ECHTMLK§

mvéfim%2fizéztr\HTMLrufiLtWE

Bfi%b®?—7E\i%—Ffim®%%¥%&8®c

HTMLfimWEBifiv¥§fifiLt$vb7—7fi

xvmfir%5twimfififiahé.

{0054lin\HTML®$—7&BMLKQ&¢

$§fifléfiiélt?‘HTMLTWELtWEBV

4b®?—7E‘BMLflEWEB7§V¥EfiflLk

?V5&E®$vb7—7%*Tmfifééthfifl%

bfié‘rahaao

{0055}

JP20030451510A http:A’wwwAgetthepatem.com,/Login.dgg/Sdoviki‘HIFNfFetch/JP2003044S1owc?togjbar=bottompnum=dP2003044510Apari=main| Page 6 of 11

(6)%2003—44510(P2003-445&

(%%m%%luiathlfit$%%t;hfi‘fi

flaaiéLQ<rb\l—Vfififim77txéfi0

fiLTHéifitW17fi%bEE§WKMEL‘fifi

af—yéfifivéc&fifé\1—¥®flfififimi
#6.

{Emmfiiaflw) ,
{El}$%fi®%fi®%filtflfi5i—FVI4®

fifiéfi€7n77fl

(E2}f~bvl4wfl¢$M®—WE$¢E

{EBIf—bvl4®%W$M®wmwéiTfl

[fl4lf—bvx4wfl¢$Mmm®M§fiifl

{E51URLfifif—7wm~méivfl

{E61URLfifif—7wmwmfléfivfl

{E71URLfifif—7wwmmflEfififl

{is}$fifi®¥flmfi§2tfifiéf—bvx%w

fifiéfi¢7n77fl

{E9}Eswf—bv14m8wtfiméh5URL

fifl?—7»wflfié%¢m

[E10]$%%m¥mwfifi3m##éf—bv14
mfifiéfivfnv7fl

(H11)$%%mm#6WEBv4bwaflflEfiE

mi$flfi$fiéfi¢7u~®

[fi%®fi%l '

10 717—¥4y7%

20 fi%%

21 URLfiflfi

22 77t1fi§fiwfi

30 URLfiflf—7w

40 fl@%

5 0 31"? “/ 917—”

60 am%

90 $vk7—7

91 WEBv—A

92 WEBjaflf

NOAC EX. 1019 Page 142

NOAC Ex. 1019 Page 143

JP200304.4510A htt :I’iwmv. etthe atentcom/Lo in.dog/$dovi@ H!FNiFetch/JP2003044510AAcpc'Noolbar=bottompnum=JP200304451OApart=main| Page 7 of 11

(7) fiZOO3—44510 (P2003'445JL

- 91 WEflfi-A'

scum-94mm: -(Ir—mm

[I2]

«hm-Mi ill-0:4 WEiw—h'
WEB75'7'U'

_ W’afi—A‘
b‘BHEfim -

uRLfim—v'» “37"9t‘m‘

THIXEEEW . FIN-mm
' ”E77tl

W7'41“}fivbw-A'
«?’—5$fi

1:51;?

NOAC EX. 1019 Page 143

NOAC Ex. 1019 Page 144

JP200304§510A mtg:fiwmv.getthep_atem.comiLogin.dog/$dov/@ H!FN/Fetch/JP2003044510A.gpc7toolbarzbonompnuszP200304451manzmam

bra—m2:
wear-1'74}
#BHEfifix

(8) fi2003-44510 (P2003—445JL

[ES]

’r'-+')x1‘
m’zfl—A'

Wfl-A’l:

WEB-F‘éflab
URLEE‘T-Tlr
nuflazfi

liar?"

“PO-7115*

[E4]

‘r'-|-'7:1‘ WEBfi-n‘
URLHE‘F-TM:

_. aura—mm '

Imm—n' figs;
mama T

WEBii—n'

[E11]

 4717-flfil3fib‘7flzzLT:WEB'HH:OL\‘C.
uRLfSkU‘MtXflE. new; uRLtntxfl
:tfimmnmgmsfimnfimmuu
ESCEE-i—wamL. 1mmname

gty‘mntmaiammu‘rmfififi

 Emailamaflmzamwua
"° muwewrwzuam-Efia

 Ehfllwfi§tbt§5htmflfiflw
BL‘WEB‘HWJ‘T’JE3W6

NOAC EX. 1019 Page 144

Page 8 of 11

NOAC Ex. 1019 Page 145

JP2003049510A Ihttp://wwvlgenhepatentcomILogin.dog/Sdovi@ HIFNiFetch/JP2003044510A.cpc?1oo!bar:bottompnum2JP200304451OApartzmain]

(9) $2003-44510 (P2003—445JL

{ES}

—n
- n

U

-

_n
—n
—n
_n
_n

WJ/wwwyomlurison/ n

[“6]

—_

filial/1p exerts com/

hupJ/leamnfoseek oom/

hwy/www.mamrohl com/

79tXflE(I)

- - I.“

—nn

Wmvomw nu

NOAC EX. 1019 Page 145

Page 9 of 11

NOAC Ex. 1019 Page 146

JP200304§510A [http:/,:"www.gemfipatenmomXLogin.dog/SdovlifiHlFN/Fetch/JP2003044510A.cpc'Ztoolbar:bofiompnum:JP2003044510A9art=main| Page 10 of 11

(10) 52003—44510 (P2003—445JL

hup-J/www.yuniuri.oojp/ n

NOAC EX. 1019 Page 146

NOAC Ex. 1019 Page 147

JP2003044510A [http:/_/www.getthepatent.com.:’Logindogfidovi© HlFNfFetch/JP2003044510A.cpc?toolbar=bottompnum=JP200304451ogpart=mgqj

(11) 52003-44510 (P2003—445JL

{E9}

mm__
——-m
——n
m—n
_—-
—_n

m-

HilfiEM)

 m hwy/melnfosedmom/
m http://wwwmalmcfl oon/

7nybx—Vmfié

(72)%EH% $53 223% F7—A(3§%) 53075 KK07 ND36 NRZO PR04 UU40

MJIIEfifififiitg¥E§KETE 3%1 58082 FA03 FA12 GC04

% ETfifilfififififiw

NOAC EX. 1019 Page 147

Pa_g_e11oH1

m-umm

NOAC Ex. 1019 Page 148

Patent

Group Art Unit: 2141

 erial No.: 10/684,776

Filed: October 14,2003

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Examiner:

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313—1450

TRANSMITTAL: INFORMATION DISCLOSURE STATENIENT

Dear Commissioner:

Transmitted herewith are:

X An Information Disclosure Statement for the above referenced patent application,

together with PTO form 1449 and a copy of each reference cited in form 1449.

A payment for petition fees.

Return postcard.

The commissioner is hereby authorized to charge payment of any missing fee associated

with this communication or credit any overpayment to Deposit Account 50-0292.
A DUPLICATE OF THIS TRANSMITTAL IS ATTACHED

Respectfully submitted,

Date; MMW LII ZOO“,

Do senfeld

Attorney/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-54

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, PO. Box 1450, Alexandria, VA
22313-1450.

Date of Deposit: My Q! 5 ' W I Signature:
Amy Drury

NOAC EX. 1019 Page 148

NOAC Ex. 1019 Page 149

 Docket/Ref. No.2 APPT-OOl-l-l Patent

“m“ B m 'L.
I? HE UNITED STATES PATENT AND TRADEMARK OFFICE‘-.

‘0

 Applicant(s): Dietz et a1.

Serial No.: 10/684,776 Gmup A“ UM: 2141

Filed: October 14, 2003 Examiner:

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A

NETWORK

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

INFORMATION DISCLOSURE STATEMENT

Dear Commissioner:

This Information Disclosure Statement is submitted:

X under 37 CFR 1.97(b), or

(Within three months of filing national application; or date of entry of international

application; or before mailing date of first office action on the merits; whichever

occurs last)

_ under 37 CFR 1.97(c) together with either a:

Certification under 37 CFR 1.97(e), or

_ a $180.00 fee under 37 CFR 1.17(p)

(After the CFR 1.97(b) time period, but before final action or notice of

allowance, whichever occurs first)

_ under 37 CFR 1.97(d) together with a:

Certification under 37 CFR 1.97(e), and

__ a petition under 37 CFR 1.97(d)(2)(ii), and

_ a $130.00 petition fee set forth in 37 CFR 1.17(i)(1).

(Filed after final action or notice of allowance, whichever occurs first, but before

payment of the issue fee)

with copies, of patents, publications or other information of which applicant(s) are aware, which

applicant(s) believe(s) may be material to the examination of this application and for which there

may be a duty to disclose in accordance with 37 CFR 1.56.

X Applicant(s) submit herewith Form PTO 1449-Information Disclosure Citation together

Certificate of Mailing under 37 CFR 1.18

I hereby certify that this correspondence is being deposited with the United States Postal Service as first
class mail in an envelope addressed to: Commissioner for Patents, PO. Box 1450, Alexandria, VA
22313-1450.

Date of Deposit: 421M Q2] 1 F (My) Signature:
NOAC EX. 1019 Page 149

NOAC Ex. 1019 Page 150

SIN: 10/684,776 Page 2 IDS

statement was first cited in a communication from the US Patent and Trademark Office in a

related application. The present application is related to such other applications by claiming

priority of the same US. Provisional patent application.

X (Cited in a related case) Each item of information contained in this information disclosure

It is expressly requested that the cited information be made of record in the application and
appear among the “references cited” on any patent to issue therefrom.

As provided for by 37 CFR1.97(g) and (h), no inference should be made that the information and

references cited are prior art merely because they are in this statement and no representation is

being made that a search has been conducted or that this statement encompasses all the possible
relevant information.

Date: WW L1! 200V]
Respectfully submitted,

Dov enfeld

Attomey/Agent for Applicant(s)

Reg. No. 38687

Correspondence Address:
Dov Rosenfeld

5507 College Avenue, Suite 2

Oakland, CA 94618

Telephone No.: +1-510-547—3378

NOAC EX. 1019 Page 150

NOAC Ex. 1019 Page 151

Eta/.FORM-1449 SHEET 1 OF 1.

ATTY.DOCKETNO. SERMLNO.

APPT—OOl—l—l 10/684,776

APPUCANT

Dietz et al.

HUNGDATE

14 Oct 2003

US. PATENT DOCUMENTS

DOCUMENT DATE NAME CLASS
NUMBER

FILING DATE

‘EXAMINER SUB-CLASS IF APPROPRIATE
INITIAL

)- U3C I—‘ '—l W H 0.: \I O \O N U) \IA
[\J O O U)

6,330,226 B1 . l Chapman et al

3

1 .

26

0 ' , .

3:-B
NU on) on I—‘

6,651,099 B1 .b

>b

C
N— 00 0< (,0

I-‘ oo U H (D (1’ N (I) ('1‘ $1! H W 0

6,424,624 B1 ul 23

I

I

I

I

N, O O N-
6,279,113 B1>rn

21>I ||||llllllllllllllllllllllllllll
m

Co5o
o.

.5
N O O I—‘

6,363,056 B1TI
I-' (Q I-‘ (D ('1' $1) '_l U) \l O N U1 [0

N— 09’ OH N-

U21 (0

I-‘ WC LOW 03.
6,115,393 . 5 U) \I O C }_I

Nm om0'0 0

,972,453 Iov. 2 LA) \I k0
H LO LO 0

, Ianlel III et al

_5
—70

' Jr. et a1. 95

I—‘ KC 00 L0

,535,338 91< w 0
I—‘ mC \OI—' m

mH mC m (D (D (T 9) |._l. 9,

,802,054 . 1,
I—‘UJ mm kO'U 00

U1
I—" kOC KOLQ m.

,720,032
I

AK

FOREIGN PATENT DOCUMENTS

PUBLl-CATION

DOCUMENT DATE COUNTRY CLASS SUB-CLASS
NUMBER

OTHER DISCLOSURES (Including Author, Title, Date, Pertinent Pages, Place of Publication, Etc.)

AM

l—*'T.I KDID \00‘ (X)

5.: \1 PO I-‘ 0 ID N O
NI5NI-’ OO

I—‘

I-’ KO \0 \I

Periakaruppam and E. Nemeth. "GTrace—A Graphical Traceroute T001." 1999
senix LISA. Available on www.caida.org,
RL: http://www.caida.org/outreach/papers/1999/GTrace/GTrace.pdf

2

Stallings. "Packet Filtering in the SNMP Remote Monitor." November 1994.
‘vailable on www.ddj.com,
RL: http://www.ddj.com/documents/s=1013/ddj9411h/9411h.htm

-A

—
EXAMINER DATE CONSIDERED

'EXAMINER: initial if citation considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance
and not considered, Include a copy of this form with next communication to Applicant.

NOAC EX. 1019 Page 151

NOAC Ex. 1019 Page 152

This Page Is Inserted by IFW Operations

and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of
the original documents submitted by the applicant. '

Defects in the images may include (but are not limited to):

0 BLACK BORDERS

0 TEXT CUT OFF AT TOP, BOTTOM OR SIDES

0 FADED TEXT

o ILLEGIBLE TEXT

‘ o SKEWED/SLANTED IMAGES

0 COLORED PHOTOS

0 BLACK OR VERY BLACK AND WHITE DARK PHOTOS

. GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,

please do not report the images to the

Image Problem Mailbox.

NOAC EX. 1019 Page 152

NOAC Ex. 1019 Page 153

GTrace — A Graphical Traceroute T001
Ram Periakaruppan, Evi Nemeth
University of Colorado at Boulder

Cooperative Association for Internet Data Analysis (CAIDA)
{ramanath, evi }@cs.colorado.edu

Abstract

Traceroute [Jacobson88], originally
-written by Van Jacobson in 1988, has become a
classic tool for determining the routes that
packets take from a source host to a destination
host. It does not provide any information

. regarding the physical location of each node
along the route, which makes it difficult to
effectively identify geographically circuitous
unicast routing. indeed, there are examples of
paths between hosts just a few miles apart that
cross the entire United States and back,
phenomena not immediately evident from the
textual output of traceroute. While such path
information may not be of much interest to many
end users, it can provide valuable insight to
system administrators, network engineers,
operators and analysts. We present a tool that
depicts geographically the 1? [bath information
that traceroute provides, drawing the nodes on a V
world map according to their latitude/longitude
coordinates. ////

/
/

/

1. Introduction /

Today's/lntemet has evolved into a
large and complex aggregation of network
hardware scattered across the globe, with
resources accessed transparently with respect to
their location, be it in the next room or on
another continent. As the Internet becomes
increasingly commercialized among many
different corporate administrative entities, it is
more difficult to ascertain the geographical
routes that packets actually travel across the
network. Knowledge of these geographical paths
can provide useful insight to system
administrators, network engineers, operators and
analysts.

It is challenging to obtain the location
for a given node of a path Since there is no
existing database that accurately maps hostnames

or IP addresses to physical locations. Although
RFC 1876 [RFC1876] defined a DNS resource
record to carry such location information (the
LOC record) for hosts, networks and subnets,
very few sites maintain LOC records. Hence
there is no straightforward way to determine the
physical location of hosts.

GTrace is a graphical front end to
traceroute that uses a number of heuristics to
determine the location of a node. Often the name
of a node in the path contains geographical
information such as a city name/abbreviation or
airport code. GTrace operates on the assumption
that these codes and names indicate the physical
location of the node. The locations obtained are
connected together on a world map to show the
geographical path that packets take from the
source to destination host. GTrace also tries to
verify the validity of each location obtained,
eliminating ones that are incorrect.

The following sections review the
traceroute tool and describe the design and
implementation of GTrace. We also show
example output from GTrace.

2. Traceroute

Traceroute is a tool that discovers the
route an IP datagram takes through the lntemet
from a source host to a destination host. it works
by exploiting the TTL (Time To Live) field of
the 1P Header. Each router that handles an IP
datagram decrements the TTL field. When the
TTL reaches zero, a router must discard the
packet and send an error message to the
originator of the datagram.

Traceroute uses this feature, initially
sending a datagram with the TTL set to one.
The first router along the path, upon receiving
the datagram decrements the TTL, discards the
datagram and sends back an lCMP error

NOAC EX. 1019 Page 153

NOAC Ex. 1019 Page 154

message. Traceroute records this first IP address

(source address of the error message packet) and
then sends the next datagram with the TTL set to

two. This process continues until the datagram
finally reaches the target host, or until the
maximum TTL threshold is reached.

3. Design and Implementation of GTrace

Recognizing that it is not possible to

obtain precise physical location information for
all existing 11’ addresses, our main design criteria
for GTrace was that it be sufficiently flexible to

support the addition of new databases and
heuristics. We chose to implement GTrace in
Java, for both its portability and its new Swing

[Swing] user interface toolkit. GTrace operates
in two phases. In the first phase GTrace executes
traceroute to the destination host and tries to

determine locations for each node along the path.

 gnu—7.4qoyn-uvn—c

Domain Fusing[.mkw cum

During the second phase, GTrace verifies
whether the locations obtained in the previous

phase are reasonably correct.

GTrace is composed of the following

seven key components: Graphical User Interface,
Dispatcher Thread, Hop Threads, Lookup Client,
NetGeo Server, Lookup Server and Location
Verifier. Fig. 1 illustrates the overall architecture
of the tool. The function of each component is
described below.

3.1 Graphical User Interface

The Main Thread handles all features of

the Graphical User Interface and is responsible

for spawning the dispatcher thread when a
destination host is specified. Fig. 2 shows a

snapshot of GTrace on startup. The GUI has two
sections, with a map on the top and traditional

Hop Thread

Fig. I GTrace Architecture

NOAC EX. 1019 Page 154

NOAC Ex. 1019 Page 155

traceroute output below. The tool supports

zooming in or out of particular regions of the
'maps. Twenty-three maps are available courtesy
of VisualRoute [VisualRoute] and users can also
add their own. We later provide an example that

highlights some of the features of the GUI.

vealewrmewzmn:

Fig. 2 GTraces startup screen

3.2 Dispatcher Thread

The function of the dispatcher thread is
to execute traceroute to the destination host. It

then reads the output of traceroute, creating a
new thread for each line of output. These threads

are referred to as hop threads. The dispatcher
thread can also read traceroute output from a
file, which allows users to visualize traceroutes

performed using third-party traceroute servers.

3.3 Hop Threads

Each hop thread parses its line of
traceroute output and immediately notifies the
main thread so that it can update the display with
relevant traceroute fields for the corresponding

hop. It then creates an instance of the Lookup
Client, which tries to determine the location of

the node and return the resulting information to
the main thread before exiting.

3.4 Lookup Client

The Lookup Client tries to determine
the location of a node by using a set of search
heuristics. Many of the nodes in a typical
traceroute path are in the “.net" domain. Often

the names of these nodes have some

geographical hint in them. The Lookup Client
uses customized domain parsing files that

specify rules for extracting these geographic
hints. We have such files for several “.net“

domains that use internally consistent naming
conventions within their domain.

However this technique does not solve

the problem of locating nodes that do not have
embedded geographical hints. GTrace also
utilizes databases from CAIDA [DBCAIDA] and

NDG Software [DBNDG] that map hostnames
and IP addresses to latitude/longitude
coordinates. For nodes with no information in

these databases, the Lookup Client uses the

domain's registered address (unfortunately often
only the headquarters for a geographically
distributed infrastructure) obtained through a

whois lookup to determine the location. Nodes
for which the Lookup Client is unable to
determine a location are listed in the text portion,

but skipped in the geographical display.

The search algorithm is described

below. We try each heuristic in turn, stopping as
soon as one yields a location. The Lookup Client
also makes a note of the search step that

produced the location, providing this information
to the user as well as the Location Verifier.

Search Algorithm:

1. Check the cache to see if the location for the

IP address has already been determined from
a previous trace.

2. Check ifthe host has a DNS LOC record. If

not, reduce the hostname to the next higher
level domain (i.e., remove the first

component of the name) and check again for
a LOC record. Continue until we have

reached the last meaningful component of
the name (for example foo.com in
xxx.foo.com or bar.com.au in

xxx.yyy.bar.com.au). Note that if a site has a
LOC record for the whole domain, but

machines are located outside the scope of
that LOC record, GTrace would end up

using incorrect data. If the Location Verifier
detects such a situation, GTrace will notify

the user and optionally can be configured to
notify GTraces author, who will contact the
DNS administrator at the corresponding site
to correct their LOC records.

NOAC EX. 1019 Page 155

NOAC Ex. 1019 Page 156

3. Search for a complete match of the
hostname/1P address in the databases and

files specified in the GTrace configuration
file.

4. If the hostname has a corresponding domain
parsing file, use the rules defined in the file

to extract geographical hints and proceed as
indicated in the file.

5. Reduce the hostname to the next higher
level domain as in step 2 and search for a
match as in step 3. The process is repeated

until we have reached the last meaningful
component of the name.

6. Query the NetGeo [NetGeo] server with the
IP address. NetGeo determines the location

based on whois registrant information.

7. If still no match occurs and the last two
letters of the hostname end in a two-letter

country code, map it to the geographic
center of that country.

The search algorithm is ordered in

decreasing level of location reliability. Locations

obtained from steps 2 and 3 are taken as
authoritative, while those from step 4 onward are
considered a guess. Cache entries will indicate

whether the location was authoritatively
determined or was a guess; this status determines
the color of the lines connecting the nodes on the
map.

The Lookup Client does not determine
locations for IP addresses that fall in the ranges
10.0.0.0 - 10.255.255.255, 172.1600 -
172.31.255.255 or 192.168.0.0 -

192.168.255.255, as these blocks are reserved for

private intemet use [RFC 1918]. Unfortunately
some addresses in these blocks do occur in traces

since some lSPs use this address space for
internal router interfaces. These nodes are shown

in the text portion of the display with the
location marked as private intemet use.

The Lookup Client queries the Lookup
Server if one is defined in the GTrace

configuration file and if location information has
not been obtained through step 1, 2 or 3 of the
search algorithm. GTrace compares the reply
from the Lookup Server with any obtained
previously from local lookups, with preference
given to the location obtained through a lower
numbered search step. Based on the GTrace

configuration file, the Lookup Client also uses

databases, text files and domain parsing files as
follows.

Databases

The Lookup Client may need to
perform lookups in many databases before
determining a location. GTrace's database

support is provided by the BerkeleyDB
[BerkeleyDB] embedded database system, which
supports a Java API that the Lookup Client uses
to query the databases. The database interface

allows multiple thread reads on the same

database at the same time. Locking is not an
issue, since Lookup Clients only read, do not
write.

The following five databases are
packaged with the GTrace distribution.

Machinedb Maps machine names to

their latitude/longitude
values.

Organizationdb Maps organizations to

[DBCAIDA] their latitude/longitude
values.

Maps 1? addresses to their
DBNDG latitude/lon_itude values.

Cities.db Maps cities around the
[DBCAIDA] world to their latitude

/lonitude values.

Maps airport codes to

their latitude/longitude
values.

Airportdb
[AirportCodes]

One can add a new database in

BerkeleyDB format to GTrace with

GTraceCreateDB and by adding an entry to the
GTrace configuration file. The contents-of the

database ie., whether it maps hostnames, IP
addresses, or both to latitude/longitude values,

also have to be indicated in the configuration
file. The user can also add records to existing
databases using GTraceAddRec.
GTraceCreateDB and GTraceAddRec are Java

classes packaged with the GTrace distribution.

Text Files

Users may also specify new locations
for nodes in text files, though it is more efficient
to create a database for large data sets. New files

have to be listed in the GTrace configuration file

NOAC EX. 1019 Page 156

NOAC Ex. 1019 Page 157

in order for the search algorithm to have access
to them.

Domain Parsing files

Files describing properties of each
domain are used to ferret out geographical hints
embedded in hostnames. These files define
parsing rules using Perl5 compatible regular
expressions. GTrace uses the regular expression
library from ORO Inc. [OROMatcher] for
parsing. New files can be added and existing
ones modified without requiring any changes to
GTrace.

For example, ALTERNET (a domain
name used by UUNET, a part of
MCI/WorldCom) names some of their router
interfaces with three letter airport codes as
shown below:

193.ATM8-0-0.GW2.EWR1.ALTER.NET
(EWR -> Newark. NJ)

190.ATM8—0-0.GW3.BOS1.ALTER.NET
(808 -> Boston. MA)

198.ATM6-0.XR2.SCL1.ALTER.NET
(Exception)

199.ATM6—0.XR1.ATL1.ALTER.NET
(ATL -> Atlanta. GA)

5 an example of a GTrace
that would work for

ALTERNET hosts. The file first defines the
-regular expressions, followed by any domain

tions. The exceptions are strings
that match the result of the regular expressions.
The user may identify the exceptions location
either by city or by lat
the format shown below:

Fig. 3 Show

domain parsing file

=city.state.country
city.country
L: latitude. longitude

exception

In the former case, the u
use GTraceQueryDB to ensure
database has a latitu

city specified. The

193.ATM8-against
return “EWR”.NET, would

following the last
what to do with a s

itude/longitude value using

ser should also
that the cities

de/longitude entry for the
first line in Fig. 3 defines a

substitution operation, which when matched
0-0.GW2.EWR1.ALTER.

The contents

“/ ” of the first line indicate
uccessful match, namely in

this case to instruct the program to first check for
a match in the data specified in the current file
and then for a match in the airport database.
//

s/.'?\.([A\.]+)\d\.ALTER\.NET/$1Ithis.airport.db
scl=santaclara. ca. us
tco=tysonscorner. va. us
nol=neworleans. la. us

Fig. 3 Example of a domain parsing file for
ALTERNET.

on for checking the domain

parsing file first is that sometimes the naming
scheme for a given domain is not consistent. For

h for SCL obtained from

l98.ATM6-O.XR2.SCL1.ALTER.NET in the
ld return a location for

airport database wou
Santiago de Chile. In the case of ALTERNET,
they also use three letter codes that are not
airport codes but abbreviations for US cities
(Fig. 3 illustrates three such abbreviations.)
Note that if this exception list were not present
and SCL did get mapped to Chile, the Location
Verifier would likely have eliminated it using the
Round Trip Time (RTT) heuristic described

ld have recognized the RTT as
later, which wou
much too small to get a packet to Chile and back.

The reas

Ps name their hosts with
phical hint in them. For

example VERIONET names some of their hosts
in the following format: den0.sjc0.verio.net,
which typically suggests source and destination
of the interface. If there is no rule on whether the
convention is to use the source or destination
label first in the hostname, the rule could be
defined to extract both and GTrace could use the
Location Verifier‘s heuristics to guess.

Sometimes 18

more than one geogra

The advantage of this technique is that
describe an entire domain as a set of

g database entries for every
The limitation of the

ll fail for domains that do
stent naming schemes.

one can

rules without needin
host in the domain.
technique is that it wi
not use internally consi

3.5 NetGeo Server

l design of the Lookup
sults of what's

e of a

f world

The origina

Client performed and parsed re
lookups directly, which required storag
prohibitively large number of mappings o

NOAC EX. 1019 Page 157

NOAC Ex. 1019 Page 158

locations to latitude/longitude values.
Distributing such a large database with GTrace
was not ideal. CAIDAs NetGeo [NetGeo] tool,
with its ability to determine geographical
locations based on the data available in whois
records, provided a vital resource.

NetGeo is a database and collection of
Perl scripts used to map IP addresses to
geographical locations. Given an IP address,
NetGeo will first search its own local database.
If a record for the target address is found in the
database, NetGeo will return the requested
location information, e.g., latitude and longitude.
If NetGeo finds no matching record in its
database, it will perform one or more whois
lookups until it finds a whois record for the
appropriate network. The NetGeo Perl scripts
will then parse the whois record and extract
location information, which NetGeo both returns
to the client and stores in its local database for
future use.

The NetGeo database contains tables for
mapping world location names (city, state/
province/district, country) or US zip,codes to
latitude/longitude values. Most whois records
provide enough address information for NetGeo
to be able to associate some latitude/longitude
value with the IP address. Occasionally the
whois record only suggests a country or state, in
which case NetGeo returns a generic
latitude/longitude for that country or state. In
preliminary testing, NetGeo has been able to
parse addresses and find (albeit sometimes
imprecise) latitude/longitude information for
89% of 17,000 RIPE whois records, 76% of 700
APNIC whois records and for more than 95% of
30,000 ARIN whois records.

3.6 Lookup Server

The Lookup Server handles requests
from Lookup Clients and tries to determine the
location of a host or IP address by executing
steps 3, 4 and S of the search algorithm. This
information is sent back to the client, which then
decides whether to use the location information
or not depending on the locations it might have
received from other Lookup Servers or lookups
it performed locally. The Lookup Client selects
the location that was obtained from the lowest
numbered search step.

The Lookup Server can also be
requested by the Lookup Client to execute step 2

of the search algorithm. This is because not all
versions of nslookup support queries for LDC
records. GTrace tests the version of nslookup on
the machine it is running on to determine if such
a request is necessary.

3.7 Location Verifier

The Main Thread invokes the Location
Verifier once all the hop threads have died and
the trace is complete. The task of the Location
Verifier is to check whether the locations
obtained for nodes along the path are reasonable.
The verifier does not determine new locations for
nodes, it only indicates to the user why an
existing location might be wrong and where the
node could possibly be located.

The verifier algorithm is based on the
fact that IP packets can not travel faster than the
speed of light. Light travels across different .
mediums at different speeds: 3.0 x 108 m/s in
vacuum, 2.3 x 108 m/s in copper and 2.0 x 108
m/s in fiber [Peterson]. GTrace uses the speed of
light in copper for all of its calculations.

For each successive pair of hops that
have locations, the verifier algorithm uses the
deltas of the round-trip times (RTT) returned by
traceroute to rule out locations that are
physically not possible. Traceroute measures
RTT rather than one way latency, as this would
require control over both end nodes and delays
are often not symmetric. Also, one must be
cautious with the RTT values since they
incorporate several components of delay. The
RTT between two nodes has four components:
the speed-of—light propagation delay, the amount
of time it takes to transmit the unit of data,
queuing delays inside the network and the
processing time at the destination node to
generate the ICMP time exceeded message.
Traceroute typically sends 40-byte UDP
datagrams, so it is safe to assume negligible
transmit time. Ideally, for the verifier algorithm
one would like the RTT to represent only the
propagation delay, but this is not the case due to
variable queuing and processing delays, hence it
is not possible to set the upper bound on the RTT
to a hop. Accordingly the verifier algorithm uses
the minimum RTT returned by traceroute, as this
would represent the best approximation of the
propagation delay. Things are further
complicated by the fact that the RTT delta
between hops k and k+1 can be biased because

NOAC EX. 1019 Page 158

NOAC Ex. 1019 Page 159

the lCMP packet takes from hop k
different from the return path it

Location Verifier tries
s for hops it thinks are

the return path

can be totally
takes from hop k+1. The
to re-determine RTT value
biased using ping.

By default, traceroute sends three
me it increments the TTL to
t hop. Changing the value of

he GTrace configuration file

will modify this behavior. The larger the value of
q, the more accurate the estimate of the
propagation delay, but large values of q also
slow down GTrace as traceroure has to send 4
packets for each hop.

datagrams each ti
search for the nex

the q parameter in t

Knowing the geographical distance
between two nodes, GTrace can calculate the
time-of-flight RTT (the propagation delay at the
speed-of-light in copper), compare it against

a value and flag a problem if the RTT

ation of the source or of the
destination or both is incorrect. The details of the
verification algorithm are as follows:

Verifier Algorithm:

0 hop k in aipath should
he RTT to hop k+1 or
ot always true due to

queuing delays, asymmetric paths and other
delays. We allow a lms,fudge factor to
cover such discrepancies. Thus the RTTs
between hops k and k+1 should be such that
RTT(k) S RTT(k+I) + lms. lfthis condition
does not hold true then the RTT to each of

ding hop k is
the out—of—order hops prece ii the first
estimated again with ping, i.e. ti
hop j preceding k such that RTTU) s

lms. lf the RTT estimatesRTT(k+1) +
obtained using ping still do not satisfy the
condition RTT(k) .<_ RTT(k+l
hop k is not use
verifier algorithm.

l. ldeally, the RTT t
always be less than t
k+2... But this is n

2. Cluster the traceroute path into reg
having similar
the assumption that nodes
will tend to be in the same geo
region.

3. For each region identified
step, calculate the time-o
pairs of hops that have loca

) + lms, then
d in the later stages of the

ions

RTT values. This is based on
with similar RTTs

graphic

in the previous

f—fiight RTT for
tions. If the RTT

delta reported by Iraceroute for that pair of
of-flight RTT,

hops is smaller than the time-
fiag the pair of hops so that it is corrected in
step 5.

4. Repeat step 3 for hops falling on the edges
of adjacent regions.

5. Try to “correct" unreasonable location
values that were identified in steps 3 and 4
using the reliability of the search step that
produced the location match. Adjacent
nodes between regions are corrected first
because they represent larger and probably
more inaccurate locations. Correcting the
nodes identified in step 3 follows this. By
correct, we mean trying different
alternatives for the incorrect location based
on the cluster in which it falls, flagging it to
the user and not plotting it in the display.

Example:

er the trace shown in Fig. 4,
xpressed as city names for
The Search Step column

f the search algorithm

produced the location for that hop. Step 1 of the
verifier algorithm would mark hop 13 as
unusable since its RTT is greater than its
subsequent hops. In this case it is probably due
to the return path from hop 13 being longer than
that from hop 14. Next, step 2 of the algorithm
would cluster the traceroute path into the
following regions: l-4, 5, 6-8, 9-l0, 11-12 and

Consid

where locations are e
ease of illustration.
indicates which step 0

d 8 since it is not possible for
m San Francisco to New

llisecond. Likewise, step
between hops l0 and 11.

hops 10 and ll,

between hops 7 an

a packet to travel fro
Jersey in less than. a mi
4 would flag a problem
Step 5 would first try to correct
since they fall in different regions. Seeing that
the location for hop ll was obtained through
step 3 of the search algorithm and hop l0 was
from a higher step, the Location Verifier would
change hop l0s location to that of hop 11’s, in
this example to Washington and rerun the's repeated
algorithm from step 3. This process 1
until all locations from one hop, to the next are
physically realistic. ln the end the Location
Verifier would have indicated to the user that
hop 8 is incorrect and is most probably located‘ . Hops 9 and 10

d may be in Washington
are also incorrect an

abeled San Francisco towith their interfaces 1

NOAC EX. 1019 Page 159

NOAC Ex. 1019 Page 160

Search

Ste 0

Ill—m”.—
.

_l—Il- .
n__--

__--I
III—_——
__--
Ill_—l—-—-—

--___I-Poone
-_u——
l—n—
m

1944 ms

81.254 ms

Fig. 4 A sample traceroute output produced by the first phase of GTrace.

identify the other end of that link.

4. Configuration Files

The configuration options in GTrace are

quite flexible. How it functions and executes the
search algorithm depends on the contents of two
configuration files: GTrace.conf and
GTraceMaps.conf

4.1 GTrace.conf

GTrace.conf specifies the location of
the commands GTrace uses and lists databases,

text files, Lookup Servers if any, to use in the

search algorithm. Fig. 5 shows an example

configuration file. This file is automatically
generated by the configure scripts while
installing GTrace.

4.2 GTraceMaps.conf

The GTraceMaps.conf configuration

file specifies attributes of the maps that GTrace
uses in displays. Users can add their own maps

as part of or independent from the existing world
hierarchy. Independent maps allow users to

describe their own intranet topology and then use

GTrace as a graphical debugging tool within
their network.

#GTrace configuration file

#Paths

TRACEROUTE=Iuersbin/traceroute -q 3
WHOlS=lusrlbinlwhois

PING: lusr/sbinlping
NSLOOKUP=/usr/sbin/nslookup
DOMAINFlLES=/home/ram/gtrace/data
DATABASES=/home/ram/gtrace/db

#Names of databases and text files to be used

#for location lookups. Order is important, list
#them in the order they should be searched.
CITIES=cities.db '

AlRPORTS=airporLdb

HOSTSLOC=Machine.db.hostnameslipaddr;
Hosts.db.lpaddr;
Organizatlon.db,hostnames/ipaddr;

TEXTFILES=England.txl.hostnames/ipaddr;

#Location of Lookup Servers if any
LOOKUPSRVS=

Fig. 5 Sample GTrace.conffile

NOAC EX. 1019 Page 160

NOAC Ex. 1019 Page 161

5. GTrace Features

Fig. 6 shows an example of a trace that
was executed from University of Colorado,
Boulder to CAIDA in San Diego. On the display,
the colors of the lines on the map indicate the

Fig. 6 Example of a trace produced by GTrace

reliability of the location obtained for the
endpoints. The colors are decided based on the
following criteria:

Green Both endpoints are authoritative
locations.

One endpoint is authoritative and

the other is a guess whose location
is not a country center, state center
or obtained from a whois record.

Both endpoints are guesses and the
locations of both the endpoints are

not a country center, state center or
obtained from a whois record.

One endpoint is a location that is a
country center, state center or
obtained from a whois record.

The table in the lower section of the

display consists of six columns. The first column
provides the user with a checkbox that is enabled
for each location plotted on the map. The user
can disable a checkbox and the corresponding

location will be skipped. Locations that are

flagged as unreasonable by the Location Verifier
are not plotted by default.

The second, third and fourth columns

display the hop number, IP address and host
name respectively. Clicking on columns three

and four will bring up whois information for the
node.

Column five provides the latitudes and

longitudes obtained for each hop. Clicking on
this column will provide an explanation of how
the location was determined and whether the
Location Verifier detected any problems. A
small colored ball in front of the latitude and

longitude value indicates which search step
produced the location. The colors and the search
step they represent are given below:

Ste 2 LOC record.

Ste 3 Comlete match

Ste 4 Domain oarsin_ file

Ste 5 Hostname reduction match

m Ste. 6 whois record
Ste 7 Count code

_ The last column shows the smallest of

the round trip times returned by traceroute. The
color of the value indicates how many packets

timed out: black implies that no packets timed

out, blue implies that one packet timed out, and a
value in red indicates that two or more packets
timed out.

6. Using GTrace in the Local
Environment

System Administrators often use
traceroute as a debugging tool to identify

problems in their network. GTrace provides a
visual representation that can facilitate
understanding and debugging of their network. It
can be used to discover routing loops as well as

for deciding routes. For example in a large
campus if a path from host A to host B (located
in the same building) goes across campus and

back, the routing could be fixed to avoid such
inefficient paths. GTrace can also be useful from
an end user perspective. Students can use the tool
to work out the topology of their campus
network.

7. Conclusion

* GTrace is a handy tool for identifying

network topology and routing problems as well
as gaining more macroscopic insight into the
Internet infrastructure. While GTrace uses

several heuristics to determine locations and its

NOAC EX. 1019 Page 161

NOAC Ex. 1019 Page 162

approach does not guarantee accuracy, it is 9. Availability and Support
robust and extensible. New databases, new GTrace-1.0 is the current release and it
Lookup Servers and learned insights into ISP‘snaming conventions can easily be added to can be downloaded from the GTrace home pageGTrace. We hope that users and system at http://www.caida.org/Tools/GTrace. Theadministrators Will find GTrace useful and source code comes with the GTrace distribution.comfibme their 0W“ domain parsing files, or Further information on using the tool or how youeven run their own Lookup Servers for can contribute domain parsing files can be found
community use.

on the GTrace home page.

ccess of GTrace lies in
“-“et” domains, Since 10. Author InformationThe practical su

the rules defined for the
these comprise the majority of hops in many
traceroutes. Looking up a “.net" name in the
whois database is only useful for small localized
lSPs. Relying on whois heuristics would result in
backbone providers' “.net” nodes to all uselessly
map to a single corporate headquarters for that
provider.

n is pursuing his

Master‘s degree in Computer Science at the
orado, Boulder. He can be

University of Col
reached at <ramanath@cs.colorado.edu>.

eth has been a computer

science faculty member at the University of
Currently she is on leave

Colorado for years.
doing the “SC (lntemet Engineering Curriculum)erative Association for

Ram Periakaruppa

The accuracy of this tool would be
if the lntemet/ community

much improvedmaintained LOC records in, the DNS. project at CAlDA (Coop0C records‘ are optional, lntemet Data Analysis) on the UCSD campusand working furiously to make the publisher‘sUnfortunately since L
non-trivial in effort to support a
clear payoff to lSPs, pervasive/(me 0

occur /'and

f arbitrary lntemet infrastructure
,heuristics to determine

r’id without anyfthem will deadline for the third edition of the UNlXSystem Administration Handbook. She can be
lorado.edu>.

reached at <evi@cs.co

visualization 0

will continue to require
physical location of nodes. References

ting of Airport Codes,
[AirportCodes] Lis com/airportcodes.html

8. Acknowledgments http://www.mapping.

BerkeleyDB PackageWe would like to thank kc claffy at
CAIDA for suggesting the idea to develop this

l. We would also like to mention a special
word of thanks to the following people and
institutions: VisualRoute for permission to use
their maps and labels, Sleepycat Software for theJim Donohoe for
BerkeleyDB Package, to the entire research
developing NetGeo and
team at CAlDA who helped with many aspects
during the development of GTrace.

students (Colorado: RobertSeveral
Jamey Wood, Jeremy

Cooksey, Brent Halsey,
Bargen and UCSD: Jim Anderson) wrote
graphical traceroute tools as class projects in Evi
Nemeth‘s Network System‘s class. Many good
ideas from these students‘ projects were
incorporated into GTrace.

[BerkeleyDB]
Distribution, http://www.sleepycat.com

[DBCAlDA] Database
CAlDA,http:l/www.cai .

[DBNDG] Database file compiled by NDG
Software, httpzllwww.dtek.chalmers.se/~d3augus
t/xt/dl/

[Jacobson88] Van Jacobson, Traceroute source
code and documentation. Available from:
ftp://ftp.ee.lbl.gov/traceroute.tar.Z.

The lntemet Geographic Database,
[NetGeo]
httpzllwww.caida.orngools/NetGeo

[OROMatcher] OROMatcher - Regular
Expression Package for Java,
http://www.savarese.org

NOAC EX. 1019 Page 162

NOAC Ex. 1019 Page 163

Larry L, & Davie, Bruce 8.,
A Systems Approach,

Computer Networks —
Morgan Kaufmann, (1996).

[RFC1876] RFC 1876, Davis, C., Vixie, P.,/and Dickinson 1., A means for
Goodwin, T.,

ation information in th

[RFC1918] RFC 1918, Rekhter, Y., Moskowitz,
B., Karrenberg, D., Groot, G. /]/, Lear 13.,
Address Allocation for Friyme 1ntemets,
February (1996). /

[Swing] Java Foundat/idn C1asses — Swing
htipzlljavasun.com/prpducts/jfc/

Maps from VisualRoute,
[Visua1Route]
http://www.vis/ua1route.com

NOAC EX. 1019 Page 163

NOAC Ex. 1019 Page 164

This Page Is Inserted by IFW Operations 4
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of

the original documents submitted by the applicant. '

Defects in the images may include (but are not limited to):

0 BLACK BORDERS

0 TEXT CUT OFF AT TOP, BOTTOM OR SIDES

o FADED TEXT

o ILLEGIBLE TEXT

0 SKEWED/SLANTED IMAGES

0 COLORED PHOTOS

0 BLACK OR VERY BLACK AND WHITE DARK PHOTOS

0 GRAY SCALE DOCUMENTS

IMAGES ARE BESTAVAILABLE COPY.

As rescanning documentswill not correct images,
please do not report the1mages to the

Image. Problem Mailbox. _

NOAC EX. 1019 Page 164

NOAC Ex. 1019 Page 165

i) NOV94: Packet Filtering in the SNMP Remote Monitor Page 1 of 7

I .3 ' ’ Software Tools for theI: 0 Professional Programmer

Packet Filtering in the SNMP Remote Monitor

Controlling remote monitors on a LAN

William Stallings

William is president of Comp-Comm Consulting ofBrewster, MA. This article is based on his recent book, SNMP, SNMPvZ,

and CMIP: The Practical Guide to Network Management Standards (Addison-Wesley, 1993). He can be reached at
stallings@acm.0rg.

The Simple Network Management Protocol (SNMP) architecture was designed for managing complex, multivendor
internetworks. To achieve this, a few managers and numerous agents scattered throughout the network must communicate.

Each agent uses its own management-information database (MIB) of managed objects to observe or manipulate the local data
available to a manager.

The remote-network monitoring (RMON) MIB, defined as part of the SNMP framework, provides a tool that an SNMP or

SNMPV2 manager can use to control a remote monitor of a local-area network. The RMON specification is primarily a
definition of a data structure containing management information. The effect, however, is to define standard network-

monitoring functions and interfaces for communicating between SNMP-based management consoles and remote monitors. In

general terms, the RMON capability provides an efficient way of monitoring LAN behavior, while reducing the burden on
both other agents and management stations; see figure 1.

The accompanying text box entitled, "Abstract Syntax Notation One (ASN.1)" gives details on defining the communication
formats between agents and managers.

The key to using RMON is the ability to define "channels"--subsets of the stream of packets on a LAN. By combining
various filters, a channel can be configured to observe a variety of packets. For example, a monitor can be configured to
count all packets of a certain size or all packets with a given source address.

To use RMON effectively, the person responsible for configuring the remote monitor must understand the underlying filter
and channel logic used in setting it up. In this article, I'll examine this filter and channel logic.

The RMON MIB contains variables that can be used to configure a monitor to observe selected packets on a particular LAN.
The basic building blocks are a data filter and a status filter. The data filter allows the monitor to screen observed packets
based on whether or not a portion of the packet matches a certain bit pattern. The status filter allows the monitor to screen
observed packets on the basis of their status (valid, CRC error, and so on). These filters can be combined using logical AND
and OR operations to form a complex test to be applied to incoming packets. The stream of packets that pass the test is
referred to as a "channel," and a count of such packets is maintained. The channel can be configured to generate an alert if a
packet passes through the channel when it is in an enabled state. Finally, the packets passing through a channel can be
captured in a buffer. The logic defined for a single channel is quite complex. This gives the user enormous flexibility in
defining the stream of packets to be counted.

Filter Logic

At the lowest level of the filter logic, a single data or status filter defines characteristics of a packet. First, consider the logic
for defining packet characteristics using the variables input (the incoming portion of a packet to be filtered), filterPktData
(the bit pattern to be tested for), filterpktDataMask (the relevant bits to be tested for), and filterPktDataNotMask (which

http://www.ddj.com/print/ . 3/4/2004

NOAC EX. 1019 Page 165

NOAC Ex. 1019 Page 166

.\I

NOV94: Packet Filtering in the SNMP Remote Monitor - Page 2 of 7

indicates whether to test for a match or a mismatch). For the purposes of this discussion, the logical operators AND, OR,
NOT, XOR, EQUAL, and NOT-EQUAL are represented by the symbols 0, +, --, _, =, and _, respectively.

Suppose that initially, you simply want to test the input against a bit pattern for a match. This could be used to screen for

packets with a specific source address, for example. In the expression in Eggnple l a , you would take the bit-wise
exclusive-OR of input and filterPktData. The result has a 1 bit only in those positions where input andfilterPktData differ.
Thus, if the result is all Os, there's an exact match. Alternatively, you may wish to test for a mismatch. For example, suppose
a LAN consists of a number of workstations and a server. A mismatch test could be used to screen for all packets that did not
have the server as a source. The test for a mismatch would be just the opposite of the test for a match; see Example 11b). A 1
bit in the result indicates a mismatch.

The preceding tests assume that all bits in the input are relevant. There may, however, be some "don't—care" bits irrelevant to

the filter. For example, you may wish to test for packets with any multicast destination address. Typically, a multicast address
is indicated by one bit in the address field; the remaining bits are irrelevant to such a test. The variable filterPktDataMask is
introduced to account for "don't—care" bits. This variable has a 1 bit in each relevant position and 0 bits in irrelevant positions.
The tests can be modified; see Example Me).

The XOR operation produces a result that has a 1 bit in every position where there is a mismatch. The AND operation
produces a result with a 1 bit in every relevant position where there is a mismatch. If all of the resulting bits are 0, then there
is an exact match on the relevant bits; if any of the resulting bits is 1, there is a mismatch on the relevant bits.

Finally, you may wish to test for an input that matches in certain relevant bit positions and mismatches in others. For

example, you could screen for all packets that had a particular host as a destination (exact match of the DA field) and did not
come from the server (mismatch on the SA field). To enable these more complex tests to be performed, use
filterPktDataNotMask, where:

o The 0 bits in filterPktDataNotMask indicate the positions where an exact match is required between the relevant bits
of input and filterPktData (all bits match).

0 The 1 bits in filterPktDataNotMask indicate the positions where a mismatch is required between the relevant bits of
input andfilterPktData (at least one bit does not match).

For convenience, assume the definition in Example 21a 1. Incorporating filterPktDataNotMask into the test for a match gives
Example 2g b).

The test for a mismatch is slightly more complex. If all of the bits offilterPktDataNotMask are 0 bits, then no mismatch test
is needed. By the same token, if all bits offilterPktDataNotMask are 1 bits, then no match test is needed. However, in this

case, filterPktDataNotMask is all Os, and the match test automatically passes relevant_bits_diflerent00=0. Therefore, the test
for‘mismatch is as in Example 2(9). '

The logic for the filter test is summarized in Figure 2. If an incoming packet is to be tested for a bit pattern in a portion of the
packet, located at a distance filterPktDataOfi‘set from the start of the packet, the following tests will be performed:

. Test #1: As a first test (not shown in the figure), the packet must be long enough so that at least as many bits in the
packet follow the offset as there are bits in filterPktData. If not, the packet fails this filter.

0 Test #2: Each bit set to 0 in filterPktDataNotMask indicates a bit position in which the relevant bits of the packet
portion should matchfilterPktData. If there is a match in every desired bit position, then the test passes; otherwise the
test fails.

0 Test #3: Each bit set to 1 in filterPktDataNotMask indicates a bit position in which the relevant bits of the packet
portion should not match filterPktData. In this case, the test is passed if there is a mismatch in at least one desired bit
position.

A packet passes this filter if and only if it passes all three tests.

Why use the filter test? Consider that you might want to accept all Ethernet packets that have a destination address of "A5"h
but do not have a source address of "BB"h. The first 48 bits of the Ethernet packet constitute the destination address and the

next 48 bits, the source address. Example 3 implements the test. The variable filterPktDataOfi’set indicates that the pattern
matching should start with the first bit of the packet; filter PktData indicates that the pattern of interest consists of "A5"h in
the first 48 bits and "BB"h in the second 48 bits; filter PktDataMask indicates that the first 96 bits are relevant; and

http://www.ddj.com/print/ 3/4/2004

NOAC EX. 1019 Page 166

NOAC Ex. 1019 Page 167

Q NOV94: Packet Filtering in the SNMP Remote Monitor Page 3 of 7

filterPktDataNotMask indicates that the test is for a match on the first 48 bits and a mismatch on the second 48 bits.

The logic for the status filter has the same structure as that for the data filter; see Figure 2 For the status filter, the reported
status of the packet15 converted into a bit pattern. Each error--status condition has a unique integer value, corresponding to a
bit position in the status-bit pattern. To generate the bit pattern, each error value18 raised to a power of 2 and the results are
added. If there are no error conditions, the status-bit pattern is all Os. An Ethernet interface, for example, has the error values
defined in Table 1. Therefore, an Ethernet fragment would have the status value of 6(21+22).

Channel Definition

A channel15 defined by a set of filters. For each observed packet and each channel, the packet18 passed through each of the
filters defined for that channel. The way these filters are combined to determine whether a packet18 accepted for a channel
depends on the value of an object associated with the channel (channelAcceptType), which has the syntax INTEGER
{acceptMatched(1) acceptFailed(2)}.

If the value of this object is acceptMéztchedU), packets will be accepted for this channel if they pass both the packet-data and
packet-status matches of at least one associated filter. If the value of this object is acceptFailed(2), packets will be accepted
to this channel only if they fail either the packet-data match or the packet-status match of every associated filter.

Figure 3 illustrates the logic by which filters are combined for a channel whose accept type is acceptMatched. A filter is
passed if both the data filter and the status filter are passed; otherwise, that filter has failed. If you define a pass as a logical l
and a fail as a logical 0, then the result for a single filter is the AND of the data filter and status filter for that filter. The

overall result for a channel is then the OR of all the filters. Thus, a packet is accepted for a channel if it passes at least one
associated filter pair for that channel.

If the accept type for a channel is acceptFailed, then the complement of the function just described is used. That is, a packet
is accepted for a channel only if it fails every filter pair for that channel. This would be represented in Figure 3 by placing a
NOT gate after the OR gate.

Channel Operation

The value of channelAcceptType and the set of filters for a channel determine whether a given packet is accepted for a
channel or not. If the packet is accepted, then the counter channelMatches is incremented. Several additional controls are

associated with the channel: channelDataControl, which determines whether the channel is on or off; channelEventStatus,

which indicates whether the channel is enabled to generate an event when a packet is matched; and channelEventIndex,
which specifies an associated event.

When channelDataControl has the value off, then, for this channel, no events may be generated as the result of packet
acceptance, and no packets may be buffered. If channelDataControl has the value on, then these related actions are possible.

Figure 4 summarizes the channel logic. If channelDataControl is on, then an event will be generated if: 1. an event is defined
for this channel in channelEventIndex; and 2. channelEventStatus has the value eventReady or eventAlwaysReady. If the
event status is eventReady, then each time an event is generated, the event status is changed to eventFired. It then takes a
positive action on the part of the management station to reenable the channel. This mechanism can therefore be used to

control the flow of events from a channel to a management station. If the management station is not concerned about flow
control, it may set the event status to eventAlwaysReady, where it will remain until explicitly changed.

Summary

The packet-filtering facility of RMON provides a powerful tool for the remote monitoring of LANs. It enables a monitor to

be configured to count and buffer packets that pass or fail an elaborate series of tests. This facility is the key to successful
remote-network monitoring.

Abstract Syntax Notation One (ASN.1)

Steve Witten

http://www.ddj.com/print/ 3/4/2004

NOAC EX. 1019 Page 167

NOAC Ex. 1019 Page 168

t‘.

NOV94: Packet Filtering in the SNMP Remote Monitor Page 4 of 7

Steve, a software engineerfor Hewlett-Packard, specializes in network testing and measurement. You can contact him at
stevewi @hpspd.spd. hp. com.

SNMP protocol and M18 are formally defined using an abstract syntax. This allowed SNMP's authors to define data and data
structures without regard to differences in machine representations. This abstract syntax is an OSI language called "abstract
syntax notation one" (ASN.1). It is used for defining the formats of the packets exchanged by the agent and manager in the
SNMP protocol and is also the means for defining the managed objects.

ASN.1 is a formal language defined in terms of a grammar. The language itself is defined in ISO #8824. The management
framework defined by the SNMP protocol, the SMI, and the M18 use only a subset of ASN.l‘s capabilities. While the general
principles of abstract syntax are good, many of the bells and whistles lead to unnecessary complexity. This minimalist
approach is taken to facilitate the simplicity of agents.

Listings Que through filigree show an M18, using a fictitious enterprise called SNMP Motors. Listjflggne is an ASN.1.

module that contains global information for all MlB modules. Listing,,hyo, another ASN.1 module, contains the definitions
of specific MIB objects. Finally. Lifittflglbtstg illustrates manageable objects.

Once data structures can be described in a machine-independent fashion, there must be an unambiguous way of transmitting
those structures over the network. This is the job of the transfer-syntax notation. Obviously, you could have several transfer-
syntax notations for an abstract syntax, but only one abstract-syntax/transfer-syntax pair has been defined in 081. The basic
encoding rule (BER) embodies the transfer syntax. The BER is simply a recursive algorithm that can produce a compact octet
encoding for any ASN.1 value.

At the top level, the BER describes how to encode a single ASN.1 type. This may be a simple type such as an Integer, or an
arbitrarily complex type. The key to applying the BER is understanding that the most complex ASN.1 type is nothing more
than several simpler ASN.1 types. Continuing the decomposition, an ASN.1 simple type (such as an Integer) is encoded.

Using the BER, each ASN.1 type is encoded as three fields: a tag field, which indicates the ASN.1 type; a length field, which
indicates the size of the ASN.1 value encoding which follows; and a value field, which is the ASN.1 value encoding.

Each field is of variable length. Because ASN.1 may be used to define arbitrarily complex types, the BER must be able to
support arbitrarily complex encodings.

It is important to note how the BER views an octet. Each octet consists of eight bits. BER numbers the high-order (most
significant) bit as bit 8 and the low—order (least significant) bit as bit 1. It's critical that this view be applied consistently
because different machine architectures use different ordering rtiles.

Ejgutjewl RMON description.

figure; Logic for the filter test.

Figure 3 Logic by which filters are combined for a channel whose accept type is acceptMatched.

Figure 4: Logic for channel filter.

procedure packet_data_match;
begin
if (result = 1 and channelAcceptType = acceptMatched) or

(result = O and channelAcceptType = acceptFailed)
then begin

channelMatches := channelMatches + 1;
if channelDataControl = on
then begin

if (channelEventStatus _ eventFired) and
(channelEventIndex _ 0) then generate_event;

if (channelEventStatus = eventReady) then -
channelEventStatus := eventFired

end;
end:

http://www.ddj.com/print/ 3/4/2004
NOAC EX. 1019 Page 168

NOAC Ex. 1019 Page 169

Q NOV94: Packet Filtering in the SNMP Remote Monitor Page 5 of 7

end;

Example 1: Testing the input against a bit pattern for a match.

(a) (input XOR filterPktData) = o ——> match

(b) (input XOR filterPktData) (does not equal) 0 ——> mismatch

(c) ((input XOR filterPktData) (and) filterPktDataMask) =
0 ——> match on relevant bits

((input XOR filterPktData) (and) filterPktDataMask) (does not equal)
0 -—> mismatch on relevant bits

Table l: Ethernet-interface error values.

Bit Error

Packet is longer than 1518 octets.
Packet is shorter than 64 octets.

Packet experienced a CRC or
alignment error.

NHO

Example 2: Assuming the definition in (a), incorporating filterPktDataNotMask into the test for a match, you end up with
(b). Test for a mismatch is shown in (c).

(a) relevant_bits_different =
(input XOR filterPktData) (and) filterPktDataMask

(b) (relevant_bits_different (and) filterPktDataNotMask') =
O —-> successful match

(c) ((relevant_bits_different (and) filterPktDataNotMask) (does not equal) 0) +
(filterPktDataNotMask = 0) -—> Successful mismatch

Example 3: Launching a filter test.

filterPktDataOffset = 0

filterPktData = "00 00 00 00 00 A5 00 00 00 00 00 BB"h
filterPktDataMask = “FF FF FF FF FF FF FF FF FF FF FF FF'h
filterPktDataNotMask = "00 00 00 00 00 00 FF FF FF FF FF FF'h

Listing One

SNMP—motors—MIB DEFINITIONS
IMPORTS

enterprises
FROM RFCllSS—SMI;

SNMP—motors OBJECT IDENTIFIER z:: (enterprises 9999)
expr OBJECT IDENTIFIER (SNMP—motors 2)
END

BEGIN

LEfingTwo

SNMP—motors—car—MIB DEFINITIONS
IMPORTS

SNMP—motors

FROM SNMP—motors—MIB;
IMPORTS

BEGIN

http://www.ddj.com/print/ 3/4/2004

NOAC EX. 1019 Page 169

NOAC Ex. 1019 Page 170

NOV94: Packet Filtering in the SNMP Remote Monitor

OBJECT TYPE, ObjectName, NetworkAddress,

IpAddress, Counter, Gauge, TimeTicks, Opaque
FROM RFCllSS-SMI;

car OBJECT IDENTIFIER ::= (SNMP—motors 3)
—— this is a comment

-— Implementation of the car group is mandatory
-— for all SNMP—motors cars.

-— (the rest of the SNMP-motors—car—MIB module)
END

Listing Three

carName OBJECT TYPE

SYNTAX DisplayString (SIZE (0. 64))
ACCESS read—only
STATUS mandatory
DESCRIPTION

"A textual name of the car."
::= (car 1)

carLength OBJECT TYPE
SYNTAX INTEGER (0..100)
ACCESS read—only
STATUS mandatory
DESCRIPTION

"The length of the car in feet."
. (car 2)

carPassengers OBJECT TYPE
SYNTAX INTEGER (O..4)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of passengers in the car."
::= (car 3)

carPassengerTable OBJECT TYPE

SYNTAX SEQUENCE OF CarPassengerEntry
ACCESS not—accessible

STATUS mandatory
DESCRIPTION

"A table describing each passenger."
::= (car 4)

carPassengerEntry OBJECT TYPE
SYNTAX SEQUENCE OF CarPassengerEntry
ACCESS not—accessible

STATUS mandatory
DESCRIPTION

“A entry table describing each passenger."
.2: (carPassengerTangfll)

CarPassengerEntry ::= SEQUENCE (
carPindex

INTEGER,
carPname

DisplayString,
carPstatus

INTEGER
)
carPindex OBJECT TYPE

SYNTAX INTEGER (1..4)

ACCESS read—only
STATUS mandatory
DESCRIPTION

"Index for each passenger which ranges from
1 to the value of carPassengers."

::= (carPassengerEntry l)
carPname OBJECT TYPE

http://www.ddj.com/print/

Page 6 of 7

3/4/2004

NOAC EX. 1019 Page 170

NOAC Ex. 1019 Page 171

NOV94: Packet Filtering in the SNMP Remote Monitor Page 7 of 7

SYNTAX DisplayString (SIZE (0..64))
ACCESS read—write

STATUS mandatory
DESCRIPTION

"The name of the passenger."
.:= (carPassengerEntry 2)

carPstatus OBJECT TYPE

SYNTAX INTEGER (other(1),driver(2))
ACCESS read—write

STATUS mandatory
DESCRIPTION

"The status of the passenger.“
{ carPassengerEntry 3)

Copyright © 1994, Dr. Dobb’s Journal

http://www.ddj.com/print/ 3/4/2004

NOAC EX. 1019 Page 171

NOAC Ex. 1019 Page 172

Freeform Search Page 1 of 1

Freeform Search

W

US Pre—Grant Publication Full—Text Database
US Patents Full—Text Database

US OCR Full—Text Database

Database: EPO Abstracts Database

JPO Abstracts Database

Derwent World Patents Index

IBM Technical Disclosure Bulletins

L3 same packet

Term:

Display: Documents in Display Format: I“ t Starting with Number ILJ

Generate: 0 Hit List 6) Hit Count 0 Side by Side 0 Image

Search History

DATE: Friday, October 01, 2004 Printable Copy Create Case

Set Name Query V ' Hit Count Set Name
side by side result set

DB=USPT,' PL UR= YES; 0P=ADJ

g L3 same packet 20 L4

|__§ l1 same L2 46 Q

Q new adjl flow 1021 L2

Q (present or exist$3) adj2 flow 5136 Q

END OF SEARCH HISTORY

http://westbrs:9000/bin/gate.exe?state=638ha1.5.1&f=ffsearch 10/1/04

NOAC EX. 1019 Page 172

NOAC Ex. 1019 Page 173

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
Unltcd States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTSP.0V Box 1450

Alexandria, Virginia 223134450www.usplo.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NOT CONFIRMATION N0.

10/684,776 10/14/2003 Russell 3. Dietz APPT—OOl-l-l 3352

DOV ROSENFELD MEKY, MOUSTAFA M
5507 COLLEGE AVE
SUITE 2 PAPER NUMBER

OAKLAND, CA 94618 2157

DATE MAILED: 10/05/2004

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

0L
NOAC EX. 1019 Page 173

NOAC Ex. 1019 Page 174

Application No. Applicant(s)

. 10/684,776 DIETZ ET AL.

Office Action Summary Examiner
Moustafa M Meky

-- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address --'
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE _3_‘ MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event. however. may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication. - g
- If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- ' Failure to reply within the set or extended period for reply will. by statute. cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication. even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

MIX Responsive to communication(s) filed on 14 October 2003.

2a)l:] This action is FINAL. 2b)IZI This action is non—final.)3
3)I:] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is .

closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 O.G. 213. ‘*

Disposition of Claims

4)IZ Claim(s) llfl is/are pending in the application.
4a) Of the above claim(s) __ is/are withdrawn from consideration.

5)l:| Claim(s)_ is/are allowed.

6)IZ Claim(s) £53 is/are rejected.

7)l:] Claim(s) __ is/are objected to.

8)I:l Claim(s)_are subject to restriction and/or election requirement.

Application Papers

9)l:| The specification is objected to by the Examiner.

10)l:| The drawing(s) filed on_ is/are: a)l:] accepted or b)l:l objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). .
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)I:] The oath or declaration is objected to by the Examiner, Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 1 19

‘ 12)[j Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)—(d) or (f).
a)[:] All b)|:l Some * c)l:l None of:

1.[:] Certified copies of the priority documents have been received.

2.[:l Certified copies of the priority documents have been received in Application No.

3.I:| Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) IE Notice of References Cited (PTO-892) 4) El Interview Summary (PTO—413)
2) [I Notice of Draftsperson’s‘ Patent Drawing Review (PTO-948) Paper N0(s)/Mai| Date._.
3) [2 information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) 5) El Notice of Informal Patent Application (PTO-152)

Paper NO(s)/Mail Date 12/17/03 & 3/8/04. 6) El Other: . ‘
U.S. Patent and Trademark Office

PTOL-326 (Rev. 1-04) Office Action Summary Part of Paper No./Mail Date 2

NOAC EX. 1019 Page 174

NOAC Ex. 1019 Page 175

[0/584/1776 We’ 2

1. Claims 11-59 are presenting for examination.

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by another filed in

the United States before the invention thereof by the applicant for patent, or on an international
application by another who has fulfilled the requirements of paragraphs (1), (2). and (4) of section

3718 of this title before the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors

Protection Act of 1999 (AlPA) do not apply to the examination of this application as the

application being examined was not (1) filed on or after November 29, 2000, or (2)

voluntarily published under 35 U.S.C. 122(b). Therefore, this application is examined ‘

under 35 U.S.C. 102(e) prior to the amendment by the AIPA (pre-AIPA 35 U.S.C.

102(e)).

3. Claims 11-59 are rejected under 35 U.S.C. 102(e) as being anticipated by Muller

et al. (US Pat. No. 6,483,804).

4. As to claims 11-12, Muller shows in Fig 1A, a method of examining packets

through a connection point (the point connects the network to the NIC of the circuit 100).

Muller discloses the following steps:

* receiving a packet from a packet acquisition device (NIC), see col 6, lines 26-29, lines

54-60, col 8, lines 33-35;

NOAC EX. 1019 Page 175

NOAC Ex. 1019 Page 176

lo/é 841776 . , flage 3

* performing one or more parsing/extraction operations to create a record comprising a

function of selected portions of the packet, see col 7, lines 31-44, col 8, lines 50—67, col

9, lines 1-5;

* looking up a flow-entry database 110 to determineif the packet is of an existing flow,

see col 9, lines 18-24, col 11, lines 32-45 ; '

* if the packet is of an existing flow, classifying the packet as belonging to the found

existing flow, see col 11, lines 46-52; and

* if the packet is of a new flow, storing a new flow-entry in the flow-entry database 110,

see col 11, lines 46-52.

5. As to claims 13-15, Muller teaches updating the flow-entry of the existing flow

including measures selected from the set consisting of the total packet count, see col 7,

lines 36-45, col 8, lines 50-54, lines 64-66.

6. As to claim 16, Muller shows that the function of the selected portions of the

packet forms a signature (flow key), see col 8, lines 64-67, col 9, lines 1-5, col 11, lines

35-37.

7. , As to claims 17-20, Muller shows at least one of the protocols uses source and

destination addresses, see col 7, lines 31-40.

8. As to claim 21, Muller shows the looking up of the flow-entry database 110 uses

a hash of the selected packet portions, see col 9, lines 18-22.

9. As to claim 22, Muller shows determining a set of one or more protocol from data

in the packet, see col 10, lines 63-67, col 11, lines 27-30.

10. As to claim 23, Muller shows obtaining the last encountered state of the existing

flow and performing any state operations required for a new flow, see col 9, lines 15-28.

NOAC EX. 1019 Page 176

NOAC Ex. 1019 Page 177

_ lo/éBZI, 776 Page, 4

11. As to claim 24, Muller shows identifying of the application program of the flow,

' see col 8, lines 60-61, col 12, lines 45-47.

12. As to claim 25, Muller shows storing identifying information for future packets,

see col 9, lines 26-28.

13. As to claim 26, Muller shows identifying the application program of the flow, see \

col 8, lines 60-61, col 12, lines 45-47.

14. As to claim 27, Muller shows searching the parser record for the existence of one

or more reference strings, see col 9, lines 32-36.

15. As to claim 28, Muller shows the state operations are carried by state processor,

see col 9, lines 42-47, col 10, lines 61-63

16. As to claim 29—59, the claims are similar in scope to claims 11-28, and they are

rejected under the same rationale.

Therefore, it can be seen from paragraphs 4-16 that Muller anticipates claims 11-59.

17. The prior art made of record and not relied upon is considered pertinent to

applicant's disclosure.

18. Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Moustafa M. Meky whose telephone number is (703)

305-9697. The examiner can normally be reached on week days from 8:30 am to 4:30

pm.

NOAC VEX. 1019 Page 177

NOAC Ex. 1019 Page 178

Mam/776 ' _ page 5

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Ario Etienne, can be reached on (703) 308-7562. The fax phone number

for this Group is (703) 308-9052.

Any inquiry of a general nature or relating to the status of this application or proceeding

should be directed to the Group receptionist whose telephone number is (703) 305-

9600. The fax number for the After-Final correspondence/amendment is (703) 746-

7238. The fax number for official correspondence/amendment is (703) 746-7239. The I

fax number for Non-official draft correspondence/amendment is (703) 746-7240.

M.M.M

October 01, 2004

W W;
MOUSTAF . MEKV

PREMARY MINER

NOAC 11:5 1019 Page 178

NOAC Ex. 1019 Page 179

EtaLf'Gnm - 14491 SHEET 1 OF 3

A‘lTY. DOCKET No. ' SERIAL No.

APPT-001-1—1 10/684,776

APPLICANT

; 1 (Use several sheets if necessary) FILING DATE GROUP _

g 14 Oct 2003 w Z.I 57

" ‘Immkd‘ us. PATENT DOCUMENTS
FIUNG DATE

DATE CLASS

I

IFAPPFIOPRIATE

'EXAMINER

INITIAL
DOCUMENT

NUMBER

, 680, 585

SUBCLASS

\I O U)

.12.MN ('13Pm KO\1

\J O \O N O [\J

, 721, 827 \l 0 L0

, 272 , 151 (.0 \1 O

O (X) N O O M '-
,430,409 ‘

lb U1 U1 422.1

, 516, 337

, 519, 568 \I 0 U1

bI

h0

\

KKkK xK1Ax

a.
S

FOREIGN PATENT DOCUMENTS

PUBLICATION TRANS-
DATE LATIONDOCUMENT LASS

NUMBER
COUNTRY SUB-CLASS

III!!!|IIIllll III.lIllEEII
OTHER DISCLOSURES (Including Author. Tulle, Dale, Pertinent Pages. Place of Publication. Etc.)

 i!

EXAMINER DATE CONSIDERED =

/l/. // .7 30 my
‘EXAMINER: Initial ll cltatlon considered. whether or not cilallon is in conformance with MPEP 609, Draw line through citation It not in conlonn'anca

and 391 consldared. Include a cap 01 this term wilh next communicallon to Applicant.

Bgsfi' AVQEEQbflg‘IQQPyIOH Pa 6 179
—____I’__

NOAC Ex. 1019 Page 180

SHEET 2 OF 3.

am. DOCKET NO. ' SERIAL No.

APPT-OOl-l-l 10/684,776

FIUNG DATE GROUP r. , h
14 Oct 2003 39%? d‘S

“Fania - 1449

\i

U.S. PATENT DOCUMENTS

I.

FILING DATE

“EXAMINER DOCUMENT DATE CLASS SUB-CLASS IFAPFROPRIATE
' INITIAL NUMBER

U‘l ,850,388 -

88 6,097,699 —

b) \‘i O N U! N
MN

FOREIGN PATENT DOCUMENTS

PUBLl-CATiON TRANS-

DOCUMENT DATE COUNTRY , CLASS SUB-CLASS LATION
NUMBER

1/_fl__,

O:‘J‘ (D5 (D ('1' $1! |.—l Lu \1 O N U) H

m \l O \O [\J N P§KSEag§ I“EE“!I“1II‘ax COOH 00.1:com NMNH 00OLD COOKD i-‘N0(1) MMi

DJ\‘l \lO \0lb wlb NLA)
i:4 (DC:5LG (D (T DJ H \l 0 k0 N N p

EA

E
1; \‘l O k0 N N lb

N N b)

rBK

 ——,—-

IIIIII?
1

iii.III
III<

l'fl(D

E! IIIIé

I ttp: / /www. cs . tulane . edu/ww/Prototype/proposal . html;BE31

IE1 Inn I easurement and Analysis of the Digital DECT Propagation
Channel,- IEEE; 1998

EXAMINER / DATE CONSIDERED
fi%. w;* qflzwflum%

'EXAMINER: Initial ii citation considered. whether or not citation is In conformance with MPEP 609. Draw line through citation It not in contonnance
and mt considered. Include a cop at this form with next communication to Applicant.

%@Sii Amiigbie CQiQV
NOAC EX. 1019 PageAl80

NOAC Ex. 1019 Page 181

_ ._.~._

SHEET 3 OF 3.

xnv.oocxer~o. SERMLNof

APPT—OOl-l—l 10/684,776

APPLICANT

FILING DATE GROUP

14 Oct 2003 m..- 257

(Use several sheets if necessary)

U.S. PATENT DOCUMENTS

““996

07—1984 Chang, Shih—Jeh

FILING DATE
DOCUMENT IF APPROPRIATE

NUMBER
SUB-CLASS

I.U1 W 0 l0 UT 00 \l H I—'I I

g
,458,310 \1 l—l H H H \D

kk
,003,1230Q \1 H H N O \1

06-1996 olloff et a1.

04—1976 Churchill, Jr.

06—1999‘ obuyan et a1

ox _
FOREIGN PATENT DOCUMENTS .

,530,834 \I H H H w 0‘

,749,087

,949,369 \1 H H H N m

8

0 U1 H KO \0 (D 00<(D H (D ('I' 95 H \J H H H O (I)

ER
a: U1 U1 k0 an H 00I C: ox U1 p \0

I5 \0 H O 0‘: ON 00 \I I—' I—' N O \1I

5 917,821 DJ \1 O I» \D NCI"3::e312x3%*s.
ii

P 2003—44510A

PUBLICATION TRANS-

DOCUMENT DATE COUNTRY CLASSIFICATION LATION
NUMBER ‘ YES I No

- c~
OTHER DISCLOSURES (Including Author. Tulle. Date. Pertinent Pages. Place of Publication. EIC)

 IE-

DATE CONSIDERED

' 7 ~3‘ o «— 2m ‘24
'EXAMINER: Initial if cimlon consldered. whether or not cltatlon Is in conlon'nance wlth MPEP 609. Draw line 1hrough citation II no! In conlormance

and 1191 conslderad. Include a copy of lhls form with next'communlcailon t0 Applicant.

@egl Avallgble CQPV
NoAg EX. 1019 Page 181

NOAC Ex. 1019 Page 182

EtaLFbRM~144 SHEET 1 OF 1.

SERIAL N0. »

10/684,776

 A‘ITY. DOCKET NO.

APPT—OOl—l—l

APPLICANT

Dietz et a1.

FILING DATE

14 Oct 2003

L .- .2

US. PATENT DOCUMENTS

3N (DO no
DJ

,330,226 Bl 11, hapman et a1. an. 27,

FILING DATE

'EXAMINER DOCUMENT DATE CLASS SUB-CLASS IFAPPROPRIATE ,
INITIAL NUMBER

,625,657 131 Sep. 23, _709 237 ar. 25.1999

k1:i“k:<Z:\\\Egésggl
,972,453IIanie1, III et: al.

I
:1

E:KR.

2001 1998

,651,099 El Iov. 18, IIietz et al. 709 224 un. 30,

2002 1998

AE ,279,113 131 119. 21, _713 201 un. 4.' 2001 1998

_ 2002 1998

6,115,393 Sep. 5, Engel et al. 370 ul. 21,

H— L0C)0< o.

N O

,53S,338 w L0 III

I.» q to

NI-I OO o N O

I'DU‘ N no

9, Irause et a1.

§:
,802,054 Sep. 1, 'ellenger

K i
E

l-' ‘0‘: \DH m.

:-3, HI 5,720,032 Feb. 17, Picazo, Jr_. et a1.

U) \1 0 lb 0 H

I—IH noL0 tono CO(D u to U1

FOREIGN PATENT DOCUMENTS

PUBLI-CATION

DOCUMENT ' DATE
NUMBER

COUNTRY CLASS SUB-CLASS

.-IIII.I.II 1!-Wi
OTHER DISCLOSURES (Including Author. Title. Date. Pertinent Pages, Place of Publication. Etc.)

I' Periakaruppam and E. Nemeth. "GTrace—A Graphical Traceroute T001." 1999
senix LISA. Available on www.caida.org,
RL: http://www.ca1da.org/outreach/papers/1999/GTrace/GTrace.pdf

EXAMINER DATE CONSIDERED

M. I, 4: #309,203
'EXAMINER: Initial II cltatlon considered, whether or not citation is In conlotmance with MPEP 609. Draw line through citation it not In conlormanca

8N1 I19! considered. Include a copy oI this loan with next communication to Applicant.

I999: AVQIIQbIe CQpV
NOAC Egg: 1019 Page 182

NOAC Ex. 1019 Page 183

Application/Control No. Applicant(s)/Patent Under
Reexamination

10/684,776 DIETZ ET AL. Notice ofReferences Cited . .Examiner Art Unlt

Moustafa M Meky 2157 Page 1 0f 1
US. PATENT DOCUMENTS .

Document Number Date . .
Country Code-Number-Kind Code MM YYYY C'ass'ficam"

n

US 6,466,985 10-2002 Goyal et al. 709/238

fl .

—- _
-

U -
—-

_
-

(DU)

(I)

FOREIGN PATENT DOCUMENTS

Document Number Date . .
Country Code-Number-Kind Code MMYYYY CIaSSIficatIon

CD

NON-PATENT DOCUMENTS

- Include as applicable: Author. Title Date, Publisher, Edition or Volume, Pertinent Pages)

I.—

I.—
‘A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a)‘)
Dates in MM—YYYY format are publication dates. Classifications may be US or foreign.

US. Patent and Trademark Office

PTO-892 (Rev. O1~2001) Notice of References Cited Part Of Paper No. 6

ANOAC EX. 1019 Page 183 7

NOAC Ex. 1019 Page 184
lof2

http://neo:8000/PrexServlet/PrexAction

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademrk Office
Addreu: COMMISSIONER FOR PATENTS12.0.3“ 1450

Alexandria, Vuginia 223134450WWW»mpto.gov

*
BIBDATASHEET* CONFIRMATION NO. 3352

Bib Data Sheet

FILING DATE .

SERIAL NUMBER 10/14/2003 CLASS GROUP ART UNIT DAOTgSgTNEg
10/684,776 709 2157 APPT-OO1-1-1

‘ PPLICANTS

Russell S. Dietz, San Jose, CA;

Joseph R. Maixner, Aptos, CA; '
Andrew A. Koppenhaver, Littleton, CO;Wi|liam H. Bares, Germantown, TN;
Haig A. Sarkissian, San Antonio, TX;
James F. Torgerson, Andover, MN;

** CONTINUING DAT *******fi*************i***

This application is a CON of 09/608,237 06/30/2000 PAT 6,651,099
which claims benefit of 60/141,903 06/30/1999

I Y“) HIV/‘7
** FOREIGN APPLICATION‘S ********************

WW M IV/V/
IF REQUIRED, FOREIGN FILING LICENSE GRANTED
** 01/16/2004

Foreign Priority claimed D yes no35 USC 119 (a—d) conditions El Q; E! STATE QR SHEETSye no Met after Allowance

W— COUNTRY DRAWING CLAIMSExamIner' Sign tu InItIals
1 A13. .1 ,_

 Method and an caratus for monitorin- traffic in a network

lCl All Fees

{D 1.16 Fees (Filing)

l

FILING FEE FEES: Authority has been given in Paper [F3 1.17 Fees (Processing Ext- of INo. to charge/credit DEPOSIT ACCOUNT tlme)

0 RECEIVED NO- .__.f0r followmgr [[3 1.18 Fees (Issue) 1

NOACE_X. 1019 Page—liéi’BO/M 6:12PM

NOAC Ex. 1019 Page 185

Applicant(s)
0.Nn.mta.w.m.pA

Index of Claims
DIETZ ET AL.

Moustafa M Meky

10/684,776
ExaminerWNW”W

WWWWM

H Non-Elected(Through numeral)
Cancelled Rejected

ObjectedInterferenceRestricted

12345678901234567890123456789123M56789012367000000000011111111112222222222333333334444445. 111 a-----=--=-=-I-I----—-------—- 35701234567892345782350a---=-=-------------------I-

36789012345678901234567890123456781111112222222222333333333444444444
Part of Paper No. 2US. Patent and Trademark Office

NOAC EX. 1019 Page 185

NOAC Ex. 1019 Page 186

Search Notes APP'icam" ”0- AppI-cant(S)

10/684.776 DIETZ ET AL.
Examiner Art Unit 1

1 Moustafa M Mek 2157 ‘

SEARCH NOTES

SEARCHED (INCLUDING SEARCH STRATEGY)

200. 201,
220, 223, 10/1/2004
224.231 WEST SEARC 10/1/2004

709 232, 236 10/1/2004 m

709 238—240 10/1/2004 MMM

246

US. Patent and Trademark Office Part of Paper No. 2

NOAC EX. 1019 Pa 6 186

NOAC Ex. 1019 Page 187

. rRef./Docket No: APPT-001—1-1 Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al. Group Art Unit: 2157

Application No.2 10/684,776

Filed: October 14, 2003

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Examiner: Moustafa M. Meky

RESPONSE TO OFFICE ACTION UNDER 37 CFR 1.1115

Mail Stop Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

This is a response to the Office Action of October 5, 2004.

Any amendments to the specification begin on a new page immediately after these

introductory remarks. Any amendments to the claims begin on a new page immediately

after such amendments to the specification, if any. Any amendments to the drawings

begin on a new page immediately after such amendments to the claims, if any.

The Remarks/arguments begin on a new page immediately after such amendments to the

drawings, if any.

A Declaration by inventor Russell S. Dietz, and a set of Exhibits are attached following the

Remarks/arguments .

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this correspondence is being deposited with the United States Postal Service as First
Class Mail addressed to the Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313-1450 on.

NOAC EX. 1019 Page 187

NOAC Ex. 1019 Page 188

Application N0.: 10/684,776 Page 2

REMARKS

Claims 11—59 are the claims of record of the application. Claims 11—59 have been rejected.

In paragraph 3 of the Office Action, claims 11—59 have been rejected under 35 USC 102(e)

as anticipated by Muller et a1. (U.S. Patent 6,483,804).

The reference date for US. Patent 6,483,804 is 1 March 1999. The independent claims of

the present invention were reduced to practice prior to this reference date. A declaration by

the first inventor Russel] S. Dietz under 37 CFR 1.131 swearing behind US. Patent

6,483,804 is attached, together with several Exhibits to such declaration. The declaration

and exhibit shows that prior to the reference date of March 1, 1999, the inventor conceived

of the invention of independent claims 11, 29, and 54 of the present invention.

Furthermore, the declaration and exhibit shows that prior to the reference date of March 1,

1999, the inventor reduced to practice the invention of independent claims 11, 29, and 54

of the present invention. The invention of these claims functioned for its intended purpose

by running the apparatus on a computer, and a program implementing the method on test

data that was part of a node of a network.

Thus, the rejection of independent claims 11, 29, and 54 under 35 USC 102(e) is

overcome. Withdrawal of the rejection and allowance of independent claims 11, 29, and 54

are respectfully requested.

Furthermore, the remaining claims 12—28, 30—53, and 55—59 are all dependent on these

independent claims 11, 29, and 54. Thus, these claims are also allowable. Withdrawal of

the rejection and allowance of claims 12—28, 30—53, and 55—59 are respectfully requested.

For these reasons, and in view of the above amendment, this application is now considered

to be in condition for allowance and such action is earnestly solicited.

The Applicants believe all of Examiner’s rejections have been overcome with respect to all

remaining claims (as amended), and that the remaining claims are allowable. Action to that

end is respectfully requested. If the Examiner has any questions or comments that would

advance the prosecution and allowance of this application, an email message to the

undersigned at dov@inventek.com, or a telephone call to the undersigned at +1-510—547-

3378 is requested.

Respectfully Submitted,,

(an 00?

Date enfeld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,

Oakland, CA 94618

Tel. 510-547-3378; Fax: +1-510-291—2985; Email:dov@inventek.com

NOAC Ex. 1019' Page 188

NOAC Ex. 1019 Page 189

Our Ref/Docket No: APPT—OOl-l-l Patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Dietz, et al. Group Art Unit: 2157

 . Application No.: 10/684,776

Mir i. 1““ 8 Filed: October 14, 2003Eu.

o Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Examiner: Moustafa M. Meky

TRANSMITTAL: RESPONSE TO OFFICE ACTION

Mail Stop Amendment
Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

Transmitted herewith is a response to an office action for the above referenced application.

Included with the response are:

X A Declaration under 37 CFR 1.131 with Exhibits;

This application has:

a small entity status. If a claim for such status has not earlier been made, consider

this as a claim for small entity status.

No additional fee is required.

03/10/2005 m1 00000092 10604775

01 rcuase - 450.0009

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this correspondence is being deposited with the United States Postal Service as First
Class Mail addressed to the Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313-1450 on. ’ -

Name: Amy D1",-

NOAC EX. 1019 Page 189

NOAC Ex. 1019 Page 190

Application No.: 10/684,776 Page 2

Applicant(s) believe(s) that no Extension of Time is required. However, this

conditional petition is being made to provide for the possibility that applicant has

inadvertently overlooked the need for a petition for an extension of time.

X Applicant(s) hereby petition(s) for an Extension of Time under 37 CFR 1.136(a) of:

one months ($120) X two months ($450)

three months ($1020) four months ($1590)

If an additional extension of time is required, please consider this as a petition therefor.

X A credit card payment form for the required fee(s) is attached.

X The Commissioner is hereby authorized to charge payment of the following fees

associated with this communication or credit any overpayment to Deposit Account

No. 50-0292 (A DUPLICATE OF THIS TRANSMI'ITAL IS ATTACHED):

X Any missing filing fees required under 37 CFR 1.16 for presentation of
additional claims.

X Any missing extension or petition fees required under 37 CFR 1.17.

Respectfully Submitted,

 Mar/1,1005“
Date Dov Rose eld, Reg. No. 38687

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,

Oakland, CA 94618

Tel. 510—547—3378; Fax: +1-510-291—2985

if NOAC EX. 1019 Page 190

NOAC Ex. 1019 Page 191

TRANSMITTAL Application Number

FORM
(to be used for all correspondence after initial filing)

Assignment Papers After Allowance Communication

(for an Application) 10 Group

Drawing(s) ' Appeal Communication to Board
of Appeals and Interferences

D Fee Transmittal Form
Fee Attached

RAmendment / esponse

D [3 After Final
Affidavits/declaration(s)

under 1,131 with Exhibits

Extension of Time Request

Licensing-related Papers , Appeal Communication to Group

‘ (Appeal Notice, Brief, Reply Brief)

Petition Routing Slip (PTO/SB/69) ‘ Proprietary Information
and Accompanying Petition

To Convert a Status Letter

Provisional Application '

Power of Attorney, Revocation Additional Enclosure(s)

Change of Correspondence (please identify below):Address

Express Abandonment Request . Terminal Disclaimer

Small Entity Statement Exhibits to Declaration
under 1 .131

Information Disclosure Statement

Certified Copy of Priority Document(s) Request of Refund

El

L__|

El

El

El

El

El

El

El

Response to Missing Parts/ Incomplete
Application

D D Response to Missing Parts under 37 ‘CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT/ CORRESPONDENCE ADDRESS

Dov Rosenfeld, Reg. No. 38687 ‘x
11/ \.

_
ADDRESS FOR CORRESPONDENCE '

Firm Dov Rosenfeld

or 5507 College Avenue, Suite 2,

Individual name Oakland, CA 94618, Tel: 510-547-3378

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an .
envelope addressed to: Commissioner for Patents, PO. Box 1450, Alexandria, VA 22313-1450
on this date:

__

NOAC EX. 1019 Pagf

NOAC Ex. 1019 Page 192

To: Dov Rosenfeld Page 2 of4 2005-03—02 22:37:00 (GMT) +1 (408) 317-0351 From: Russell Dietz

Applicant(s): Dietz, et a]. Group Art Unit: 2157

Application No.: 10/684,776

Filed: October 14,2003

Title: METHOD AND APPARATUS FOR

MONITORING TRAFFIC IN A NETWORK

Examiner: Moustafa M. Meky

DECLARATION UNDER 37 CFR 1.131

Commissioner for Patents

PO. Box 1450

Alexandria, VA 22313-1450

Dear Commissioner:

1. 1 am an inventor of claims 1 1—59 of the above referenced patent application.

2. Claims 11—59 have been rejected under 35 USC 102(e) as anticipated by Muller et

a1. (U .8. Patent 6,483,804) that has a reference date of March 1, 1999.

3. Prior to the reference date of March 1, 1999, I conceived of the invention of claims

ll, 29, and 54 shown in the following:

0 Exhibit A0:Directory of documents

0 Exhibit A1: Technically Elite MeterFlow Accelerator Modules System

Specification (Document MFASystempdf)

9 Exhibit A2: Technically Elite MeterFlow Accelerator Parser Module Specification

(Document MFAParserpdt)

0 Exhibit A3: Technically Elite MeterFlow Accelerator Analyzer Module

Specification (Document MFAAnalyzepdt)

0 Exhibit A4: Protocol Tracking Summary (Document MFAProtocoiLayoutpdt)

A copy of each of Exhibits A0 to A4 is attached. The dates on each such copy has been

deleted. I confirm that the dates are all prior to March 1, 1999. These exhibits are as
follows.

Exhibit A0 is a dated computer directory of documents that describe the design and tests to

run the design on real data.

Exhibit A] is the overall design of the system that implements the method claims 11 and
54, and includes the elements of claim 29.

4.‘ Exhibit A2 is a detailed design of the parsing/extraction unit that carries out step (b) of

3': claim 1 1, that corresponds to element (c): the parser subsystem of claim 29, and that

”i carries out the parsing/extraction operations of element (b) of claim 54.

iii: NOAC EX. 1019 Page 192

NOAC Ex. 1019 Page 193

To: Dov Rosenfeld Page 3 of4 2005-03—02 22:37:00 (GMT) +1 (408) 317-0351 From: Russell Dietz

Exhibit A3 is a detailed. design of the analyzer that carries out the operations of elements
(0), (d) ,and (e) of method claim 29, that corresponds to elements (d),>(e) and (f) unit

parsing/extraction unit that carries out carries out the operations of elements (0), (d) ,and

(e) of method claim 54, that corresponds to element (0): the parser subsystem of claim 29,

and that carries out the parsing/extraction operations of element (b) of claim 54.

Exhibit A4 is a summary of the protocols that the system can analyze.

t3. Note that Technically Elite was the name of the predecessor of the assignee of the present
‘* invention at the time.

3. Prior to the reference date of March 1, 1999, 1 reduced to practice the invention of

claims 11, 29, and S4 of the above referenced patent application as shown in the following
documents:

0 Exhibit BO is a dated computer directory of test data and documents used
therefore.

0 Exhibit B1: Technically Elite MeterFlow Accelerator Modules Testbencli

Specification (Document MFATest.pdf in directory of Exhibit A0)

0 Exhibit B2: The first page of file bigcpl.

The cpi files (big.cpl, bigfgc3.cpl, bigfgpccpl, bigfpayl.cpl, bigfpay12.cpl,

bigfpgrpcpi, bigfpgrp2.cpl, bigfragcpl, bigfrag2.cpl, outputcpl, Protocolscpl,

shortcpl, shrtfpg2.cpl, shrtfps3.cpl, shrtfps4.c;pl, shrtfpsS.cpl, shrttunl.cpl) are files

for the protocol compiler of all the actual protocols recognized by the system.

These files include a description of the parser information for the parser to perform

the parsing/extracting operation according to the protocol. They also contain the

state processing states for the state operations of elements (d) and (e) of claim 54.

The first page of one file is provided.

0 Exhibit BS: The first four pages of a printout of fiie MFATESTHEX that contains

the actual packets captured. by the packet acquisition device described in element

(a) of claims 1 l and 54, and corresponding to the contents of element (b), the input

buffer memory of claim 29. The packet acquisition device for the experiment was a

SUN workstation connected to a connection point of a network.

0 Exhibit B4: The file packetstxt that describes the nature of the packets in
MFATESTHEX.

0 Exhibit B5: The contents of files mfaptpkt.txt and mfaptpkt2.txt that are files that

contain the elements that were extracted by the parsing/extracting of

0 Exhibit B6: The contents of files mfaptkey.txt and mfaptkey2.txt that are files that

contain the keys that were generated from the extracted data (Exhibit B4) and used

for looking up the flow-entry database per element (0) of method claims 11 and 54,

which are operations carried out by the lookup engine of element (e) of claim 29.

NOAC Ex. 1019 Page 193

NOAC Ex. 1019 Page 194

To: Dov Rosenfeld Page 4 of 4 2005-03—02 22:37:00 (GMT) +1 (408) 317-0351 From: Russell Dietz

0 Exhibit B7: The first four pages of a printout of file MFATESTTXT that includes

the decoded packets that were generated by operation of the method. that includes

the elements of each of method claims 11 and 54, by an apparatus that includes the
elements of claim 29.

0 Exhibit B8: Protocol Definition Language (PDL') Reference Guide (the document

MFS-PDL-Referencepdi) that provides a reference to the protocol definition

language used in cpl files.

0 Exhibit B9: State—based Sub-Classification Overview (document MFS-State-

Classificationpdt) that describes the states of some of the protocols that are

supported.

The invention functioned for its intended purpose by running the apparatus on a computer,

and a program implementing the method on test data that was part of a node of a network.

The above exhibits are each a copy. The date on each copy has been deleted. I confirm that

the deleted dates are each prior to March 1, 1999.

Therefore, and in summary, l declare that the inventions of claims 11, 29, and 54 were

reduced to practice prior to the reference data of March 1, .1999.

I hereby declare under penalty ofperjury under the laws of the United States of America

that all statements made herein of my own knowledge are true and that all statements made

on information and belief are believed to be true; and further that these statements were

made with the knowledge that willful false statements and the like so "made are punishable

by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code

”if: and that such willful false statements may jeopardize the validity of the application or any
patent issued thereon.

Signed,

March 1, 2005

Date Russell S. Dietz

Address for correspondence:
Dov Rosenfeld

5507 College Avenue, Suite 2,

Oakland, CA 94618
Tel. 510—547-3378

Fax: +1-510-291-2985; Email:dov@inventek.com

 NOAC EX. 1019 Page 194

NOAC Ex. 1019 Page 195

0 Exhibit A0:Directory of documents

ngnwxm
MW:‘H‘wnfyww

1‘
“I1f
1‘ta

L: '

i
’1.

x

NOAC EX. 1019 Page 195

NOAC Ex. 1019 Page 196

. ardware Specification-din txt
D7rectory of M: \aaa -----INVENTEK _CLI T$\H1fn\PatentS\APIfT-001-1-1 f1“ led

-Proof of Reductn to Pract7ce\ Hardware $pec1f1‘cat1’on\

M:\aaa-----INVENTEK LIENTS\H1'fn\Pateqt5\APRT—001-1-1 filed -Praof of
Reductn to Pract1ce Hardware Spec1f7cat1on\

MFAAna gyzefdf 317 KB 04:47:46 AM aMFAApp .pd ‘ 12 KB 05:50:46 AM a
MFAParser.pdf 124 [(5 3:56:18 AM a

MFAProtocoILa/outwdf 13 KB 09:24:38 AM aMFASyste/n. a’ .93 KB 03:56:50 AM a
MFATest.p f _ 18 KB 03:56:26 AM a

AAAAAAAAAAAAAAAAAAAAAAA/1AAAA/1AAAAAAAAAAAAAAAAAAAAAAA

Total 0 f07der(s); 6 ff7e(5)

Tota7 files size: 1 MB; 580 KB; 5.93.910 Bytes

AA

Page 1

NOAC EX. 1019 Page 196

NOAC Ex. 1019 Page 197

0 Exhibit A1: Technically Elite MeterFlow Accelerator Modules System
Specification (Document MFASystem.pdf)

NOAC EX. 1019 Page 197

NOAC Ex. 1019 Page 198

Technicallyflite a QQNEIDENTIAL

Technically Elite MeterFlow Accelerator Modules System
Specification

1 Introduction

The Technically Elite MeterFlow Accelerator is a set of synthesizable modules designed to do wire speed
hardware based application traffic recognition for Fast Ethernet and Gigabit Ethernet. Originally designed
for RMON2 network management the MeterFlow Accelerator also allows Layer 3 (Network) through
Layer 7 (Application) visibility for switches and routers .The MeterFlow Accelerator poaches the network
traffic and builds a “flow” database that is then extracted for further processing. Each flow consists of the
information necessary to track the conversation between the two end points of the traffic. This
conversation is also characterized and vital statistics counted. The resulting flow database is useful for

many applications. Some of these include RMON2 network management, traffic steering, quality of
service, security, and service level management.

1.1 Technically Elite MeterFlow Accelerator Highlights

° Synthesizable modules written in both the Verilog and Vl-[DL
- Processes up to Gigabit speeds

0 Complete traffic data

0 State based parallel processing architecture
- Distributes work to eliminate bottlenecks

- Layer 3 network protocols to dynamic transaction oriented applications at Layer 7
o Scalable architecture for any size switch or probe

0 Can recognize over 2000 different protocols

- Extensible to new protocols

o Recognizes encapsulations

0 Open interface

- Easy to use software tools including protocol compiler and C model

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 1 of 22 _

NOAC EX. 1019 Page 198

NOAC Ex. 1019 Page 199

Technically Elite .. CONFIDENTIAL

2 Overview

The Technically Elite MeterFlow Accelerator Modules System Specification outlines the general system
requirements. It provides an overview of how the modules interact with each other and external devices. It

also provides guidance for the testing methodology to be used in the verification of the cores.

The Technically Elite network analysis suite consists of three main components. These are the parser, the
analyzer and software. The parser works on the information contained in a single packet. The analyzer

builds flow information across multiple packets. The software consists ofa compiler, a C model and a

database of protocol information. The database delineates all the information needed by the parser to

recognize the protocols and build the flow key. The database also delineates how each protocol’s flow

entry should be updated as well as the procedure to recognize multi—packet protocols (state processing).
Also included in the module set is a host interface module. This module defines a burst oriented bus

interface compatible with the Intel i960. This module can be easily modified to interface to other bus
types.

After initialization the network data first goes to the parser. The parser attempts to recognize the various

possible protocols in a particular packet. It then builds a flow key data structure that is passed to the

analyzer. The analyzer first attempts to find a particular packets related flow in its’ database. Then using

the information it gathered from previous packets in this flow and the current packets’ data it updates the

flows’ data base entry. Once a flow has been completely recognized, updates consist of gathering statistics.

On a regular basis the external system reads the flow data base for further processing.

The parser and analyzer modules are RTL synthesizable modules written in both the Verilog and VHDL

hardware description languages. Each major component of the cores has a matching testbench. The

testbenches fully exercise the unit under test and provide an automated verification environment. Input

stimulus files are automatically generated by the compiler and expected data files are automatically
generated by the C model.

MeterFlow Accelerator Modules System Specification lg.doc

Confidential Page 2 of 22 -

NOAC EX. 1019 Page 199

NOAC Ex. 1019 Page 200

Technically Elites. __ ,__._C_QNFIQENTIAL

3 Top Level MeterFlow Accelerator Module Symbol

HostWrite
HostBlast_N
HostWait_N HostDataOutlSSzO]

HostAddress[22:0]

HostReady_N

HostByleEn_N[7:O]

HostDatalnlsazol

MemRAS_N[1:0]
MemCAS_N[3:O]

MemCIkEn
MemCIkOut

MemClkln MemWR_N
MemDatalnleazol ' MemBA

MemDSF
MemByteEn_N[7:0]

MemAddressll 1 :0]

MemDataOut[63:O]
MemDirRead

DPPacketDelim
DPDataStb_N
DPKillPkt_N

DPData[31 :0]

lnstN'éme

DPReady_N

4 Top Level MeterFlow Accelerator Module Pin Descriptions

4.1.1.1 General Interface Si _nals

“mm
Reset_N IN Reset — active low.

When this signal is active the module sets it’s registers to

their default condition and suspends operation. It will only

respond to host access cycles. The DataPort interface will

keep DPReady_N active to avoid problems for the external
circuitr . MCLK IN Module Clock.

All internal and external transfers except for memory
transfers are s nchronized b this sinal.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 3 of 22 -

‘fiu- -

NOAC EX. 1019 Page 200

NOAC Ex. 1019 Page 201

Technlcally Elit9

4.1.1.2 Memor Interface

--Efl
MemClkIn IN 1 Memory clock'1n.

This si nalis used to' enerate the memor interface timin-.

MemRAS_N Memor Row Address Strobe bus — active low.

MemCAS_N Memor Column Address Strobe bus— active low.

MemClkEn OUT 1 Memory Clock Enable.

Some memories require this signal to be disabled for a
certain amount of time after reset.

MemClkOut OUT Memory Clock Out.

This signal is used by synchronous memory for all

operations MemClkIn is buffered and sent out on this pin.

This helps reduce skew between this clock and the other

EQNFIPENTIAL

MemWR_N -_Memor Write— act1ve low
MemBA

MemDSF " " .

:Me_mByteEn_N’ '7_._- _____J__.-.V

wMemAddress ' OUT
MemDataIn IN

..MemDataout LOUT

OUT.“1:“? v. MA. . “m.

Memory Bank Address

Used by multi—bank memory to select the bank the current

_op_e_1a_tion is toooperateon

H jMe_r_n_o_ry S_p_ecial Function select._
'Memo_ryBfie Enable bus— act1__v_e lovv
! Memory Address bus.-_J,____.. , _...____._._...._H_._._.__.._. ,..,.__ 1-... V

' Mempwmwgsim-

TMemorj Data Outputbus.

MemDirRead

MeterFlow Accelerator Modules System Specification lg.doc

Confidential

l Memory Data bus Direction15 Read
This signal15 used to control the tri—state enable on the

bidirectional memory data bus. If MemDirRead1s active

data is coming into the module from the memory. If it is
i inactive the module is drivin data out to the memor .

Page 4 of 22

NOAC EX. 1019 Page 201

NOAC Ex. 1019 Page 202

Technically Ellte CONFIDENTIAL

4.1.1.3 Host Interface Sinals

mm:
HostModSeLN IN Host interface Module Select - active low.

HostModSeLN is sampled on the rising edge of MCLK. If

it is active, it signifies that the external host is attempting to
access the module.

HostWrite Write.

Write is sampled on the rising edge of MCLK. This signal

is only valid when HostModSeLN is active. Ifthis signal is
active, the host is attempting to write to the module. Inactive

this signal sign signifies a read from the module. It should
also be used to control the direction of the host data bus if it
is bidirectional.

HostBlast__N Burst Last — active low

HostBlast_N15 sampled on the rising edge of MCLK
HostBlast_N tells the module that the current transfer15 the
last transfer in this burst.

HostWait_N IN Wait —- active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers

between itself and the module. This could also be used by

additional interface logic to slow transfers so it can

multiplex the bus down to a smaller size without additional

FIFOs. If wait is active, HostRead _N is blocked.

HostReady_N Ready — active low.

HostReady_N should be sampled on the rising edge of

MCLK. The module returns HostReady_N when the

current cycle is completed. For a write operation,

HostReady_N means that the HostDataIn bus has been

latched. For a read operation HostReady_N means that the

requested data is on the HostDataOut bus and is valid.

HostRead _N is blocked b HostWait_N.
HostAddress Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
HostModSeLN is active. This bus defines the first address

in this burst to access in the 64 Megabyte address space of
the module. See Section x.x.x for the Address Utilization

_.__._.,_____.____..W, . _ W Map.-
HostByteEn_N . 3 Host ByteEnable bus — Active low

' ’ HostWait_N18 sampled on the rising_e_geofMCLK.”
HostDataIn 5 Host Data Input bus.

‘ 3 HostDataIn'1s sampled on the rising edge of MCLK if

,___ __,___._ -, ., __HostWrite'_1s activ_e an_d HostWai_t____N1s 1nact1ve
HostDataOut ' Host Data Output bus.

3 HostDataOut should be sampled on the rising edge of
MCLK. Data on this bus is valid during a read cycle when

! HostRead _N is active.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 5 of 22 -

NOAC EX. 1019 Page 202

NOAC Ex. 1019 Page 203

Technisally Elite-.- EQNFIDENTIAL

 4.1.1.4 Data Port Interface

“mm
DPPacketDelim IN Data Port Packet Delimiter.

This signal should be driven active when the external logic

wants to send a packet to the module. DPPacketDelim

should remain active during the entire packet transfer.

DPDataSflLN I.
DPKillPkLN

DPReady_N OUT

overruns, DPReady_N will go inactive when the module
can actuall acce t one more data transfer.

DPPacketDelim must go inactive for one clock between

Data Port Data bus.

ackets.

Data Port Data Strobe.

When active, this signal tells the module that data on the

DPData bus is valid. If DPReady_N was inactive at the end

of the previous cycle, DPDataStb_N should not be driven

active. If DPReady_N goes inactive in the same cycle as

DPDataStb_N, then the module will latch the incoming
data so that no data is lost.

Data Port Kill Packet.

If this signal becomes active while DPPacketDelim is

active, the module will attempt to stop processing the

current packet and flush it‘s input FIFO. If however, parsing

of the packet is completed, the packet will not be able to be

recalled. This should only be a problem in a ‘cut through’
imolementation.

Data Port Ready — active low.

This signal when driven active means that the module can '

accept new data. If however the modules’ input FIFO is

filled, DPReady_N will be driven inactive. To prevent

5 MeterFlow Accelerator Modules Block Diagrams

The following page is the top level block diagram for the MeterFlow Accelerator Module.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 6 of 22 -

NOAC EX. 1019 Page 203

NOAC Ex. 1019 Page 204

CONFIDENTIALTeejnically Elite

2.8(06828£4935..388252.8268

.aunwriuouoxsézlgmimfiz35.723180:

Sumogunfiovtmmz.§.x_8£aa2-32meFEEBEEQ

...!!!!!!

airings:

seinunfnaa
_oK~Zu:w-$m.uoxEin>nvt§un

z|€=auaxszH.33:96.:.5.5.3.5351
Eufivuoaanso:

24328:

ll!

2.7.5.8...

.9.53.335052353:I:

n.t
z_-m..!_s.<

HI:u5.2.6255:mail3%...El(m5:El2.5%....El35s.;HE£85:
.922955-2"9832.550:Sizxwéso:53.5:

96w_EN-Ea:

fl.

3633025932.;363555.813:

2.5.52828533038301zJuwinfia2.3323
NOAC EX. 1019 Page 204

MeterFlow Accelerator Modules System Specification 1g.doc

Page 7 of 22Confidential

NOAC Ex. 1019 Page 205

Technically Elite CONFIDENTIAL

6 Description of Modules and Software

6.1 Parser Module

6.1.1 Parser Module Highlights

0 Builds key and payload data structure for analyzer (flow key)

0 Scaleable protocol pattern recognition engine

0 Supports from 1 to 2048 simultaneous unique protocol patterns

0 At 62.5 MegaHertz can process up to 1.5 MegaPackets per second

0 Accepts protocol database output from MeterFlow compiler

6.1.2 Parser Module Symbol

Reset_N
MCLK
AnalyzerReady
DPPacketDelim
DPDataStb_N
DPKillPkt_N ParserKeyDelim

DPData[3120] ParserDataAvail
ParserSeI_N ParserData[63:0]
HostWrite DP Ready_N
HostBlast.N ParHostReady_N

H°s‘wa“-N ParHostDataOul[63:0]
HostAddress[13:O]

HostByteEn_N[7:0)

HostDataln[63:0]

6.1.3 Parser Module Description

The parser module consist of two main sub-modules. These are the pattern recognition engine and the

slicer. The parser module pouches the network data through the DataPort interface. The data is first

processed by the pattern recognition engine. This engine consists of a database and a comparison engine.
The database can reside in ROM or RAM. If the database is in a RAM the parser can be programmed to

recognize new protocols or a different set of protocols.

The set of specified protocols defines a tree of linked nodes. Each protocol is either a parent node or a
terminal node. A protocol is a parent node if it links to other protocols that can be contained in it. For

example IP is a parent to UDP. As each protocol is recognized, the pattern recognition engine emits a
unique protocol identifier. It also emits a process code that the slicer uses to build the flow key.

The slicer extracts information from the packet to build the flow key. For example, it will extract the

source and destination addresses from the packet and pack them into the flow key data structure. It may

also process certain parts of the packet to speed up flow processing performed by the analyzer. It will build
a hash value from certain parts of the packet to speed looking up the flow in the analyzers’ database.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 8 of 22 -

NOAC EX. 1019 Page 205

NOAC Ex. 1019 Page 206

Technically Elite_ CONFIDENTIAL

6.1.4 Parser Module Pin Descriptions

 6.1.4.1 General Interface Si nals

-_IEE Descrition

-'-Reset - aetive low.
When this signal is active the parser sets it’s registers to

MCLK .-

their default condition and suspends operation. It will only

6.1.4.2 Anal zer Interface

respond to host access cycles. The DataPort interface will

-m Widthm

keep DPReady_N active to avoid problems for the external
circuitr .

Module Clock.

transfers are s nchronized b this sinal.

AnalyzerReady IN Analyzer Ready.
This sinal tells the arser that the anal zer can accet data.

ParserKeyDelim OUT Parser Key Delimiter. '
The ParserKeyDelim signal becomes active when the first

goes inactive when the last quadword of the key is
transferred.

ParserDataAvail OUT Parser Data Available.

If this signal is active the data on the ParserData bus is
valid. ‘

All internal and external transfers except for memory

quadword of a new key is ready to transfer to the analyzer. It

Parser Data bus.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 9 of 22 .

NOAC EX. 1019 Page 206

NOAC Ex. 1019 Page 207

Technica!lymE_lilew ...,CQNEIPE_NTIAL

6.1.4.3 Data Port Interface

Si.nal Dir
DPPacketDelim Data Port Packet Delimiter.

This signal should be driven active when the external logic

wants to send a packet to the parser. DPPacketDelim

should remain active during the entire packet transfer.

DPPacketDelim must go inactive for one clock between
ackets.

DPDataStb_N Data Port Data Strobe.

When active, this signal tells the parser that data on the

DPData bus is valid. If DPReady_N was inactive at the end

of the previous cycle, DPDataStb_N should not be driven

active. If DPReady_N goes inactive in the same cycle as

DPDataStb_N, then the parser will latch the incoming data
so that no data is lost.

DPKillPkt__N ~ Data Port Kill Packet.

If this signal becomes active while DPPacketDelim is

active, the parser will attempt to stop processing the current

packet and flush it’s input FIFO. If however, parsing of the

packet is completed, the packet will not be able to be

recalled. This should only be a problem in a ‘cut through’
imlementation.

DPReady_N Data Port Ready — active low.

This signal when driven active means that the parser can

accept new data. If however the parser’s input FIFO is filled,

DPReady_N will be driven inactive. To prevent overruns,

DPReady_N will go inactive when the parser can actually
accet one more data transfer.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 10 of 22 —

NOAC EX. 1019 Page 207

NOAC Ex. 1019 Page 208

TechmcallyEllte CONFIDENTIAL

6.1.4.4 Host Interface Si nals

”QB-Ill!—ParserSeI_N Parser Select - active low.

ParserSel_N is sampled on the rising edge of MCLK. If it

is active, it signifies that the external host is attempting to
access the .

HostWrite Write.

Write is sampled on the rising edge of MCLK. This signal

is only valid when ParserSel _N is active. If this signal is
active, the host is attempting to write to the parser. Inactive
this si_nal si_n si nifies a read from the .

HostBlast_N IN Burst Last — active low.

-'-HostBlast_N is sampled on the rising edge of MCLK.HostBIast_N tells the parser that the current transfer is the
last transfer in this burst. A

IN 1HostWait_N Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers
between itself and the

ParHostReady_N OUT Parser to Host Ready — active low.

ParHostReady__N should be sampled on the rising edge of

MCLK. The parser returns ParHostReady_N when the

current cycle is completed. For a write operation,

ParHostReady_N means that the HostDataIn bus has been

latched. For a read operation ParHostReady_N means that

the requested data is on the ParHostDataOut bus and is

valid. ParHostRead _N is blocked b HostWait_N.
HostAddress 13 Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
ParserSeLN is active. This bus defines the first address in

this burst to access in the 64 Kilobyte address space of the

Parser See Section xx. x for the Address”UtilizationMap.
wHostByteEn_—N ¥ N H M Host Byte Enable bus —- Active low

- .. .Q..._...._.._ L .. ,_ .. Hqsth‘Ltflgsgmpleflgntherising edge of MCLK
HostDataIn Host Data Input bus.

' ‘ E HostDataInlS sampled on the rising edge of MCLK if
_. _ _.__,____ . __ __ HgstWrite is activgand HostW9it_1_‘{i§_in.§9_tive;.._,_ ._ __ . ..

ParHostDataOut“ . ParserHost Data Output bus. _
: = ParHostDataOut should be sampled on the rising edge of

MCLK. Data on this busIS valid during a read cycle when
ParHostRead _NIS active.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 11 of 22 -

NOAC EX. 1019 Page 208

NOAC Ex. 1019 Page 209

“Technically Elit_e____

6.2 Analyzer Module

6.2.1 Analyzer Module Highlights

0 “Flexible" Rule-based Traffic Classification

0 State-based Tracking of Traffic

0 Multiple Packets for Layer Processing

0 Internal Cache and Memory Controller (32 - 64KB)

0 Direct High Bandwidth (64 bit) Memory Interface

Up to 16MB of memory (75K Flows)

SG/SDRAM Support

Programmable Rules/State Engine
Selectable Protocols in Flows

Future Protocols Support

Scalable System Design

6.2.2 Analyzer Module Symbol

Reset_N
MCLK

MemClkln MemFlAS_N[1:O]

MemDataIn[63:0] MemCAS N[3:0]
MemClkEn

MemClkOut
MemWR_N

MemBA
MemDSF

MemByteEn_N[7:0]

AnalyzerSe|_N
HostWrite
HostBlast_N
HostWait,N

HostAddress[21:Ol

MemAdddress[11:0]

MemDataOutI63:0]
MemDirRead

AnaHostReady_N

HostByteEn_N[7:0]

HostDataInl63:0] AnaHostDataOut[63:0]

ParserKeyDelim
ParserDataAvail AnalyzerReady
ParserData[63:0]

MeterFlow Accelerator Modules System Specification lg.doc

Confidential Page 12 of 22

CQNFIDE,NTIAL

NOAC EX. 1019 Page 209

NOAC Ex. 1019 Page 210

I99hnically... E_li_t9 . CONEIPENTIAL

6.2.3 Analyzer Module Description

The analyzer module consists of the flow lookup engine, the flow insertion/deletetion engine, the simple
rules engine, the complex rules engine, the caching memory controller, the host update controller and the

process synchronizer. Each of these sub-modules work in parallel to create and update flows.

As a flow key enters the analyzer, the lookup engine attempts to find it in the flow database. If the flow

exists, the lookup engine retrieves the flow from the caching memory controller. It then makes a decision

based on the state information included in the flow entry to either send it to the simple rules engine, the

complex rules engine or to update the flow entry itself. This updating consists of adding values to counters

in the flow database entry. If a flow does not exist,.the flow key is sent to the flow insertion/deletetion

engine which adds the flow to the database. Based on the flow key information the flow

insertion/deletetion engine may be also send the new flow to one of the rules engines for processing.

The simple rules engine updates the flow based on the current state and the flow key information. The

complex rules engine processes multi packet protocol recognition. It may have to search through a series

of possible states to determine the flow’s actual state. The result of the complex engine’s processing is a

consolidated flow entry. For example, a PointCast session will open multiple conversations that on a

packet by packet basis look like separate flows. Since each conversation is merely a subflow under the

PointCast master flow, a single flow that consolidates all of the information for the flow is desired.

The caching memory controller can be setup to work with various configurations of SDRAM or SGRAM.

It uses it’s cache to optimize memory bandwidth. On a typical network the packets will have a certain

amount of congruity. This means that the cache can have a high hit rate.

6.2.4 Analyzer Module Pin Out

6.2.4.1 General Interface Si_nals

“mm
Reset_N IN Reset - active low.

When this signal is active the analyzer sets it‘s registers to

their default condition and suspends operation. It will only
res nond to host access c cles. MCLK IN Module Clock.

All internal and external transfers except for memory
transfers are s chronized b this si nal.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 13 of 22 -

NOAC EX. 1019 Page 210

NOAC Ex. 1019 Page 211

Technically Elite CONFIDENTIAL

6.2.4.2 Memor Interface

mm Width Descri tion
MemClkIn IN Memory clock in.

This si_nal is used to enerate the memor interface timin.

MemRAS_N Memor Row Address Strobe bus — active low.

MemCAS_N Memor Column Address Strobe bus— active low.

MemClkEn OUT Memory Clock Enable.

Some memories require this signal to be disabled for a
certain amount of time after reset.

MemClkOut OUT 1 Memory Clock Out.

This signal is used by synchronous memory for all

operations. MemClkIn is buffered and sent out on this pin.

This helps reduce skew between this clock and the other
si nals.

MemWR_N O-_ Memor Write— active lowMemory Bank Address.

Used by multi-bank memory to select the bank the current

oeration is to operate91"”

___" _ ._ ‘ ‘ . Memory_S_pecial Function select. ._ ____

MemByteEnN 1 OUT Memory l_3_yte Enable bus- active low __ .. ‘...___..__.. g... .J.___—___ » .. _ -..._. _ -.._.

MemAddress OUT ._ .. Memory Address bus:

_MemDataIn 11:1 __ . _Memory Data Imt1111ng ‘ffiffjf.._j ”.'i.'f.".'_”fl
MemDataOu_t___ _ OUT y ‘1, MemoryData Outputbus

MemDirRead f 1 Memory Data bus Direction15 Read.
9 This signal15 used to control the tri-state enable on the

i bidirectional memory data bus. If MemDirRead15 active

Edata15 coming into the analyzer from the memory. If it is
'inactive the anal zer is drivin data out to the memor .

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 14 of 22 -(:

NOAC EX. 1019I$Page 211

NOAC Ex. 1019 Page 212

Technically Elite ' CONFIDENTIAL

6.2.4.3 Host Interface Si_nals

"mm
AnalyzerSeLN IN Host interface Analyzer Select - active low.

AnalyzerSeLN is sampled on the rising edge of MCLK. If

it is active, it signifies that the external host is attempting to
access the anal zer.

HostWrite Write.

Write is sampled on the rising edge of MCLK. This signal

is only valid when AnalyzerSeLN is active. If this signal is

active, the host is attempting to write to the analyzer.

Inactive this signal sign signifies a read from the analyzer. It
should also be used to control the direction of the host data

bus if it is bidirectional.

HostBlast_N Burst Last — active low.

HostBlast_N is sampled on the rising edge of MCLK.

HostBlast_N tells the analyzer that the current transfer is
the last transfer in this burst.

HostWait_N Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers

between itself and the analyzer. This could also be used by

additional interface logic to slow transfers so it can

multiplex the bus down to a smaller size without additional
FIFOs. If wait is active, HostRead _N is blocked.

AnaHostReady_N Analyzer to Host Ready — active low.

AnaHostReady _N should be sampled on the rising edge of

MCLK. The analyzer returns AnaHostReady _N when the

current cycle is completed. For a write operation,

AnaHostReady _N means that the HostDataIn bus has

been latched. For a read operation AnaHostReady _N

means that the requested data is on the HostDataOut bus

and is valid. AnaHostRead _N is blocked b HostWait_N.
HostAddress Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
AnalizerSeLN is active. This bus defines the first address

in this burst to access in the 32 Megabyte address space of
the analyzer. See Section x.x.x for the Address Utilization

Map.

HostByteEnN ’ l Host Byte Enablebus—Acnvelow
_____ .-. _, ___ ______ .. 1 ,, ._ ._E___Hos_t_Wait_Nis sampled or_1_the_ris1_r1_g£9.89meMCLK
HostDataIn Host Data Input bus.

' = HostDataInIS sampled on the rising edge of MCLK if

_________ ,. ,_ ___.-_HQStW_FLt£_!S.§C_UX€ arLQEOLtYYaLLN1.5inactive _ . ._
AnaHostDataOut Analyzer Host Data Output bus.

' l ,AnaHostDataOut should be sampled on the rising edge of
I MCLK. Data on this bus is valid during a read cycle when
. AnaHostRead __N is active.

MeterFlow Accelerator Modules System Specification lg.doc

Confidential Page 15 of 22 '

NOAC EX. 1019 Page 212

NOAC Ex. 1019 Page 213

Testinkallelit? . .. CONFIDENTIAL

6.2.4.4 Parser Interface

minim
AnalyzerReady OUT 1 Analyzer Ready.

This sinal tells the narser that the anal zer can accet data,

ParserKeyDelim IN 1 Parser Key Delimiter.

The ParserKeyDelim signal becomes active when the first

quadword of a new key is ready to transfer to the analyzer. It

goes inactive when the last quadword of the key is
transferred.

ParserDataAvail IN Parser Data Available.

If this signal is active the data on the ParserData bus is
valid.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 16 of 22 ‘

NOAC EX. 1019 Page 213

NOAC Ex. 1019 Page 214

Technically Elite“ CONFIDENTIAL

6.3 Host Interface Module

6.3.1 Host Interface Module Highlights

0 i960 style burst interface

0 Easily modified for connection to other buses

6.3.2 Host Interface Symbol

MCLK

HostModSeLN
HostBlast_N
HostWait_N

AnaHostReady_N
AnalyzerSe|_N

ParserSel_N

HostDataOut[63:0]

HostReady_N

ParHostReady_N

HostAddressl22:0]

AnaHostDataOut[63:0]

ParHostDataOut[63:0]

6.3.3 Host Interface Module Description

The Host Interface module contains the host data multiplexer to select either the parser or the analyzer

data bus. It also decodes the host address to create ParserSel_N or AanlyzerSel_N.

6.3.4 Host Interface Module Pin Out

6.3.4.1 General Interface Si_nals

-IM_—_
Reset_N IN Reset - active low.

When this signal is active the analyzer sets it’s registers to

their default condition and suspends operation. It will only
res-0nd to host access c cles. MCLK IN Module Clock.

All internal and external transfers except for memory
transfers are s nchronized b this si nal.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential . Page 17 of 22 -

NOAC EX. 1019 Page 214

NOAC Ex. 1019 Page 215

TeChyically Elite ._ , CONFIDENTIAL

6.3.4.2 Host Interface Si_nals

Width Descri 0 tion

AnalyzerSel_N OUT 1 Host interface Analyzer Select - active low.

AnalyzerSeLN is sampled on the rising edge of MCLK. If

it is active, it signifies that the external host is attempting to
access the anal zer.

ParserSel_N OUT Parser Select - active low.

ParserSeLN is sampled on the rising edge of MCLK. If it
is active, it signifies that the external host is attempting to
access the .arser.

HostBlast_N I Burst Last — active low.

HostBlast_N is sampled on the rising edge of MCLK.

HostBlast_N tells the analyzer that the current transfer is
the last transfer in this burst.

N

HostWait~N IN Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers

between itself and the analyzer. This could also be used by

additional interface logic to slow transfers so it can

multiplex the bus down to a smaller size without additional
FIFOs. If wait is active, HostRead _N is blocked.

AnaHostReady_N Analyzer to Host Ready — active low.

AnaHostReady _N should be sampled on the rising edge of

MCLK. The analyzer returns AnaHostReady _N when the

current cycle is completed. For a write operation,

AnaHostReady _N means that the HostDataIn bus has

been latched. For a read operation AnaHostReady _N

means that the requested data is on the HostDataOut bus
and is valid. AnaHostRead _N is blocked b HostWait_N.

ParHostReady_N Parser to Host Ready - active low.

ParHostReady_N should be sampled on the rising edge of

MCLK. The parser returns ParHostReady_N when the

current cycle is completed. For a write operation,
ParHostReady_N means that the HostDataIn bus has been

latched. For a read operation ParHostReady_N means that

the requested data is on the ParHostDataOut bus and is
valid. ParHostRead _N is blocked b HostWait_N.

HostReady_N Ready — active low.

HostReady_N should be sampled on the rising edge of

MCLK. The module returns HostReady_N when the

current cycle is completed. For a write operation,

HostReady_N means that the HostDataIn bus has been

latched. For a read operation HostReady_N means that the

requested data is on the HostDataOut bus and is valid.
HostRead _N is blocked b HostWait_N.

HostAddress IN 23 Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
AnalizerSeLN is active. This bus defines the first address

in this burst to access in the 64 Megabyte address space of

the analyzer. See Section x.x.x for the Address Utilization
Ma .

MeterFlow Accelerator Modules System Specification lg.doc

Confidential Page 18 of 22 -

NOAC EX. 1019 Page 215

NOAC Ex. 1019 Page 216

Technlcally Elite {CONFIDENTIAL
AnaHostDataOut IN E 64 E AnalyzerEostData Output bus

E z E AnaHostDataOut should be sampled on the rising edge ofl

E MCLK. Data on this bus15 valid during a read cycle when
5 _ _ E_An_aHoo_stReadyN15 active

64ParEostEataOut _IN- E.ParserHost Data output bus.
E ParHostDataOut should be sampled on the rising edge of
'.MCLK Data on this bus15 valid during a read cycle when

., ,1 , , , _ .____ _ __. "_E_I_’arljltp_stReady_N-.15 QCEEV§;_,_- _....____
HostDataOut OUT E64 E Host Data Output bus.

= E E HostDataOut should be sampled on the rising edge of
E E MCLK. Data on this bus18 valid during a read cycle when

E HostRead _Nis active.

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 19 of 22 -

NOAC EX. 1019 Page 216

NOAC Ex. 1019 Page 217

Technically Elite___ CONFIDENTIAL

6.4 MeterFIow Compiler

6.4.1 MeterFlow Compiler Highlights

ANSI compatible C implementation

Simple Packet Description Language

Technically Elite supplied Packet Description Language files for all common protocols

Any or all protocols can be included

Automatically generates parser module pattern recognition database

Automatically generates slicer instructions

Automatically generates unique protocol identifiers for use throughout system

Automatically generates analyzer programming

0 Automatically generates test input stimulus

6.4.2 MeterFlow Compiler Description

The MeterFlow Compiler generates all the information needed to program the MeterFlow accelerator. It’s

input is a set of files that define the protocols to recognize and the target system. It can also be used by the

engineer to define the size of the databases required to support a certain set of protocols. The output of the

compiler is a set of files used to program each part of the MeterFlow Accelerator.

The compiler first reads the protocol definition files defined in the protocol list file and creates a tree
defining each protocols relationship to the others. Protocols with the same name are assumed to be the

same. For example, FTP under UDP and TCP are condensed into a single entry linked to both parent

protocols. The compiler then reads the hardware definition file or uses a default maximum definition. It

then searches the protocol space to find a solution. If a solution is found that fits into the hardware

constraints, the compiler outputs database in a form that can be loaded into either the testbenches, the C
model, or the hardware.

If the t option is selected, the compiler will generate an input stimulus file for the testbenches. This file

contains a series of packets one for each protocol in the protocol list.

6.4.3 MeterFlow Compiler Invocation

MFC <options>

6.4.3.1 Options

i < filename> Protocol list

filename

Descri u tion

The protocol list file contains the names of each protocol to be
included in this run. The default is MeterFlow.pl. The names must

match the filename prefix of the protocol definition language file

associated with that protocol. For example, if the TCP protocol is to be

included, and the file is called TCP.PDL, the protocol list file should
contain the line:

I TCP;

If the children of TCP are to be included they can be added

automatically by replacing the above line with:
I TCP c;

Child protocols can be excluded by the following line as a example:
E FTP;

Meter-Flow Accelerator Modules System Specification 1g.doc

Confidential Page 20 of 22 -

NOAC EX. 1019 Page 217

NOAC Ex. 1019 Page 218

Technically Elite CONFIDENTIAL
o <prefix> Output file The output file prefix allows the user to change the start of the

urefix filename of the outut files The default'is MeterFlow.

d <filename> Hardware This input file is used by the compiler to constrain processing to the

definition available hardware resources. If the compiler cannot find a solution at

filename the effort level it will output a set of files with the best solution it
found and reort an error.

e <n> Effort Nis a number from 1 to 5. The default18 3 An effort level of 5 tells
the com iler to exhaust the search sace.

t Generate This option generates a file that can be run through the C model to

input generate expected output data. Then both files can be run through the
stimulus file testbenches for automated testin of the modules.

6.5 MeterFlow C Model

6.5.1 MeterFlow C Model Highlights

ANSI compatible C implementation
Models the MeterFlow Accelerator modules

Outputs expected data for the testbenches

Excepts the same input files as the testbenches

6.5.2 MeterFlow C Model Description

The MeterFlow C Model reads the same files used by the modules and emulates them. It is used to

generate expected data for the automated testbenches included with the modules.

6.5.3 MeterFlow C Model Invocation

MCM <options>

6.5.3.1 Options

m— Descrition
i < filename> Input The input file prefix allows the user to change the start of the filename

filename of the input files. The default is MeterFlow.
refix

o <prefix> Output file The output file prefix allows the user to change the start of the
urefix filename of the outut files. The default is MeterFlow.

d <filename> Hardware This input file is used by the C model to emulate the available
definition hardware resources.

filename

7 MeterFlow Accelerator Single Chip Implementation Top Level

Schematic

MeterFlow Accelerator Modules System Specification 1g.doc

Confidential Page 21 of 22 -

NOAC EX. 1019 Page 218

NOAC Ex. 1019 Page 219

,s

Technically Elite CONFIDENTIAL,

cosflchmEE.3200.956:52822282307.582I

A AAAAAAAAA A

oH——QUPKEwZOK2cmmmeE06Zw<OEw§o;z,m<mEms_

9.mm(o.32.:mw..m><28:9:888gm23:83_-246359Inaming:sagaosmosmz8;F5335:Sfizlcmagmswz
uwoewz53.226350259.65»:55050285513053.9:z‘méEms.85250358:zinmwzfio:

5H8.23%21:5...210ZiemmumomoE__wgwxum&o.oumesmaoeoi5505228525533:sizsfimsemoxsummwmeuuswo:Z=m>>amoI2Jmm§mor0:52onZ|_wwuofi~moxv20:Zlfiwmx

aO._.I<ms_

l
AAAAAAAAY an AAAA

onnmSOSmoEws.ouno:EEQEwE

98223.8:.oéz'cwmEma:ouwwmGUSmoI
MeterFlow Accelerator Modules System Specification 1g.doc

Page 22 of 22Confidential

NOAC EX. 1019 Page 219

NOAC Ex. 1019 Page 220

0 Exhibit A2: Technically Elite MeterFlow Acceler

(Document MFAParser.pdf)
ator Parser Module Specification

_ _ - _.NQA.QEX+1019_.P.age 220

NOAC Ex. 1019 Page 221

Technic__all_y___l:ilit9__.. ,. .V ..§.9NEIDENTIAL

Technically Elite
MeterFlow Accelerator

Parser Module

Specification

Not For External Release!

Revision Histor

W

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 1 of 44 -

NOAC EX. 1019 Page 221

NOAC Ex. 1019 Page 222

I9Chni991LXElit9 CONFIDENTIAL

0 Table of Contents

0 Table of Contents .. 2
1 Introduction .. 5
2 Technically Elite MeterFlow Accelerator Parser Module Highlights .. 5
3 Architectural Overview ... 6

3.1 Bandwidth requirements.. 7
3.2 Architectural Block Diagram ... 8

4 Top Level MeterFlow Accelerator Parser Module Symbol ... 9
5 MeterFlow Accelerator Parser Module Top Level Pin Descriptions ... 10

5.1.1.1 General Interface Signals ... 10
5.1.1.2 Analyzer Interface.. 10
5.1.1.3 DataPort Interface .. 11
5.1.1.4 Host Interface Signals .. 12

6 MeterFlow Accelerator Parser Module Top Level VHDL Entity .. 13
7 MeterFlow Accelerator Parser Module Top Level Verilog Module .. 13
8 MeterFlow Accelerator Parser Module Top Level Schematic ... 16
9 Parser Module Constants Files .. 17

9.1 Parser module Verilog Constants File — ParserConstants.v .. 17
9.2 Parser module VHDL Constants File — ParserConstants.vhd.. 17

10 Sub-module Descriptions ... 18
10.1 Pattern Recognition Engine Sub-module — PRE... 18

10.1.1 Symbol .. 18
10.1.2 Highlights .. 18
10.1.3 Description .. 18
10.1.4 Search Algorithm Psuedo-code .. 18
10.1.5 Implementation Information .. 18

10.1.5.1 Database Word Definition .. 18
10.1.6 File Names .. 18
10.1.7 Pin Descriptions .. 19

10.1.7.1 General Interface Signals ... 19
10.1.7.2 Slicer Interface ... 19
10.1.7.3 CPU Interface MUX Interface .. 19
10.1.7.4 Parser Input Buffer Interface .. 19

10.1.8 Verilog Module.. 19
10.2 Slicer Sub-module ... 21

10.2.1 Symbol .. 21
10.2.2 Description .. 21

10.2.2.1 Instruction Word Definition ... 21
10.2.3 Implementation Information .. 21
10.2.4 File Names .. 21
10.2.5 Pin Descriptions .. 22

10.2.5.1 General Interface Signals ... 22
10.2.5.2 Parser Input Buffer Interface .. 22
10.2.5.3 Parser Output Buffer Interface .. 22
10.2.5.4 CPU Interface MUX Interface .. 22
10.2.5.5 Pattern Recognition Engine Interface ... 22
10.2.5.6 Analyzer Interface Control Interface... 24

10.2.6 Verilog Module.. 24

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 2 of 44 -

NOAC EX. 1019 Page 222

NOAC Ex. 1019 Page 223

Technically Elite CONFIDENTIAL
10.3 Pattern Recognition Database Sub-module - PRD .. 25

10.3.1 Symbol .. 25
10.3.2 Highlights .. 25
10.3.3 Description .. 25
10.3.4 Implementation Information .. 25
10.3.5 File Names .. 25
10.3.6 Pin Descriptions .. 25

10.3.6.1 CPU Interface MUX Interface .. 25
10.3.7 Verilog Module.. 25

10.4 Slicer Instruction Database Sub—module —SID .. 26
10.4.1 Symbol .. 26
10.4.2 Highlights .. 26
10.4.3 Description .. 26
10.4.4 Implementation Information .. 26
10.4.5 File Names .. 26
10.4.6 Pin Descriptions .. 26

10.4.6.1 CPU Interface MUX Interface... 26
10.4.7 Verilog Module.. 26

10.5 CPU Interface MUX and Control Register Sub-module - CMC................... 28
10.5.1 Symbol .. 28
10.5.2 Description .. 28
10.5.3 File Names .. 28
10.5.4 Pin Descriptions .. 28

10.5.4.1 General Interface Signals ... 28
10.5.4.2 Slicer Instruction Database Interface .. 28
10.5.4.3 Pattern Recognition Database Interface .. 28
10.5.4.4 Slicer Interface ... 29
10.5.4.5 Pattern Recognition Engine Interface ... 29
10.5.4.6 Host Interface Signals .. 29

10.5.5 Verilog Module.. 30
10.6 Parser Input Buffer Sub-module — PIB ... 32

10.6.1 Symbol .. 32
10.6.2 Highlights .. 32
10.6.3 Description .. 32
10.6.4 Implementation Information ..‘.............. 32
10.6.5 File Names .. '. ... 33
10.6.6 Pin Descriptions .. 33

10.6.6.1 General Interface Signals ... 33
10.6.6.2 DataPort Interface .. 33
10.6.6.3 DataPort Interface Control Interface ... 33
10.6.6.4 Pattern Recognition Engine Interface 33
10.6.6.5 Slicer Interface ... 34

10.6.7 Verilog Module.. 34
10.7 Parser Output Buffer Sub-module - POB ... 36

10.7.1 Symbol .. 36
10.7.2 Highlights .. 36
10.7.3 Description .. 36
10.7.4 Implementation Information .. 36

10.7.5 File Names .. 36
10.7.6 Pin Descriptions .. 37

10.7.6.1 General Interface Signals ... 37
10.7.6.2 Slicer Interface ... 37
10.7.6.3 Analyzer Interface Control Interface... 37
10.7.6.4 Analyzer Interface .. 3 7

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential _ Page 3 0f 44 -

NOAC EX. 1019 Page 223

NOAC Ex. 1019 Page 224

Technically E1i¥9__._ CONFIDENTIAL
10.7.7 Verilog Module.. 38

10.8 DataPort Interface Control Sub-module - DPIC ... 39
10.8.1 Symbol .. 39
10.8.2 Description .. 39
10.8.3 Implementation Information .. 39
10.8.4 File Names .. 39
10.8.5 Pin Descriptions .. 39

10.8.5.1 General Interface Signals ... 39
10.8.5.2 DataPort Interface .. 39

10.8.5.3 Parser Input Buffer Interface .. 40
10.8.5.4 Pattern Recognition Engine Interface ... 40

10.8.6 Verilog Module.. 40

10.9 Analyzer Interface Control Sub-module ~AIC .. 42

10.9.1 Symbol .. 42

10.9.2 Description .. 42

10.9.3 Implementation Information .. 42

10.9.4 File Names .. 42

10.9.5 Pin Descriptions .. 42

10.9.5.1 General Interface Signals ... 42

10.9.5.2 Analyzer Interface .. 42

10.9.5.3 Slicer Interface ... 43

10.9.5.4 Parser Output Buffer Interface .. 43

10.9.6 Verilog Module.. 43

Technically Elite Meter-Flow Accelerator Parser Module Specification

Confidential Page 4 of 44 -

NOAC EX. 1019 Page 224

NOAC Ex. 1019 Page 225

Technicallyfllite, . CONFIDENTIAL

1 Introduction

This document is designed to be the repository for all information related to the MeterFlow Accelerator

Parser Module. This specification is designed to provide the engineer with enough information to fully
implement the module. There will be revisions during and after the implementation process that will be
reflected in this document.

Each part of this specification describes a different aspect of the module. It concentrates on the interfaces
between the parser module and the other parts of the system. The other parts of the system include the
analyzer module, the host interface module and importantly the software that models, programs and tests
the system The key to a successful implementation is the interfaces between modules and between sub-
module and sub-module. Each interface is described in detail. Any changes to the interfaces may affect the
entire module and even the entire system. Care must be taken that each interface is understood completely
before implementation is begun.

2 Technically Elite MeterFlow Accelerator Parser Module

Highlights

0 Synthesizable modules written in both the Verilog and VHDL

0 Scalable architecture for any size switch or probe
0 Can recognize over 2000 different protocols
0 Extensible to new protocols

Recognizes encapsulations

Builds key and payload data structure for analyzer (flow key)
Scaleable protocol pattern recognition engine

At 62.5 MegaHertz can process up to 1.5 MegaPackets per second
Accepts protocol database output from MeterFlow compiler

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 5 of 44 -

LL—_ NOAC EX. 1019 Page 225I ____

NOAC Ex. 1019 Page 226

Technically Elite“ _ CONFIQENTIAL

3 Architectural Overview

The parser module consist of two main sub-modules. These are the pattern recognition engine (PRE) and
the slicer. The PRE analyzes the packet and the slicer builds the flow key from the packet and instructions
from the pattern recognition engine .The parser has been split into two parts for several reasons. First and
foremost, the split correctly partitions the functions to allow maximum reuse of silicon across the over two

thousand protocols that can be supported. Another advantage of the split architecture is that the compiler
can analyze the three dimensional space occupied by the offset, level, and pattern data of the specified
protocols and compact the databases used in the parser module. The set of specified protocols defines a
tree of linked nodes. Each protocol is either a parent node or a terminal node. A protocol is a parent node
if it links to other protocols that can be contained in it. For example IP is a parent to UDP. Protocols can
be the children of several parents. If a unique node was generated for each of the possible parent/child
trees, the database would explode exponentially. Instead, child nodes are shared among multiple parents
thus compacting the database. Finally the PRE can be used on it’s own when only protocol recognition is
required.

The parser module pouches the network data through the DataPort interface. The data is first processed by
the pattern recognition engine. This engine consists of a comparison engine and a database. The

comparison engine has a first stage that checks the protocol type field to determine if it is an 802.3 packet
and the field should be treated as a length. If it is not a length, the protocol is checked in the second stage.
This is the only protocol level that is not programmable. This is because the detection of the protocol at
this level is simple and well defined. It is implemented with partial CAMs that return a node identifier if

hit. This second stage has two full sixteen bit CAMs defined for future protocol additions. After this

detection is completed the engine initializes Current Offset Pointer (COP) to the next part of the packet
that needs to be checked. The node identifier from the previous stage and the data pointed to by the COP
are used by the PRE to lookup an entry in the database. As each protocol is recognized, the pattern
recognition engine emits a unique protocol identifier. It also emits a process code that the slicer uses to
build the flow key. This process is repeated until the node identifier’s Terminal bit is set. At that point the
PRE has completely recognized the protocols in the packet and readies itself for the next packet.

The slicer extracts information from the packet to build the flow key. For example, it will extract the
source and destination addresses from the packet and pack them into the flow key data structure. It may
also process certain parts of the packet to speed up flow processing performed by the analyzer. It will build
a hash value from certain parts of the packet to speed looking up the flow in the analyzers’ database. The
slicer transfers data from it’s input Buffer to it’s output Buffer based on the sequence of instructions in it’s
instruction database. When the PRE recognizes a protocol it outputs both the protocol identifier and a
process code to the slicer. The protocol identifier is added to the flow key and the process code is used to
fetch the first instruction from the instruction database. Instructions consist an operation code and usually
source and destination offsets as well as a length. The offsets and length are in bytes. A typical operation
is the MOVE instruction. This instruction tells the slicer to copy n bytes data unmodified from the input
Buffer to the output Buffer. The slicer contains a byte-wise barrel shifter so that the bytes moved can be
packed into the flow key. The slicer contains another instruction called HASH. This instruction tells the

slicer to copy from the input Buffer to the HASH generator. The result from the HASH generator is always
written into the first two bytes of the flow key. It is used to accelerate the lookup of the flow in the
analyzers flow database. Once the flow key is completed, the slicer transfers it to the analyzer for further
processrng.

The parser module databases can reside in ROM or RAM. If the databases are in a RAM the parser can be
programmed to recognize new protocols or a different set of protocols.

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 6 of 44 -

NOAC EX. 1019 Page 226

NOAC Ex. 1019 Page 227

TESEEEQEHY Elite r , CONFIDENTIAL
3.1 Bandwidth requirements-

The target throughput for the MeterFlow Accelerator running at 62.5 Megahertz is 1.5 million packets per
second (PPS). This is the sustained maximum throughput ofa single Gigabit channel. At this rate the
parser module has 41.6 cycles to process each packet. In order to reduce the need for front end buffering
external to the parser module, the architecture has been designed to complete the protocol recognition
generation in no more than 36 cycles. Since there could be up to 12 different protocols in each to be
processed, the parser module has been designed to average three cycles per protocol. This is the very worst
case because a packet that has twelve levels of protocols in it will most likely be much larger than the
minimum packet size. This can be used as to advantage again in the reduction of external buffering. The
slicer must also complete the flow key generation within 36 cycles to keep the system in balance and
unstalled. This however can be extended ifthe payload copying instructions run to there maximum values.

The average packet will have between 4 and 5 levels ofprotocol with no encapsulations. At three cycles
per protocol the PRE will use only 15 cycles to complete a packet. This means that the PRE has a typical
sustained throughput of over three million packets per second.

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential page 7 of 44 -

NOAC EX. 1019 Page 227

NOAC Ex. 1019 Page 228

Igghnicallelits ,, _. “CONEIPENTIAL

3.2 Architectural Block Diagram

Pattern Recognition

Database Memory

Slicer Instructon

Database

. CPUDataOut
CPU Interface Mux and Control Register

CPUDataln

DPData ParserData
Parser Input Buffer

DPDataStb_N ParserDataAvail

DataPort Interface Analyzer Interface

DPReady_N' Control Control AnalyzerReady

Technically Elite MeterFlow Accelerator Parser Module Specification)
Confidential Page 8 of 44 -

NOAC EX. 1019 Page 228

NOAC Ex. 1019 Page 229

let

Technically Elite____ CONFIDENTIAL

4 Top Level MeterFlow Accelerator Parser Module Symbol

Reset_N

MCLK

AnalyzerReady
DPPacketDelim

DPDataStb_N

DPKillPkt_N

DPData[31:O]

ParserSeI_N

HostWrite

HostBlast_N

HostWait_N

HostAddress[13:O]

HostByteEn_N[7:O]

HostDataln[63:0]

 ParserKeyDelim
ParserDataAvail

ParserData[63:0]

DPRead'y_N

ParHostReady_N

ParHostDataOut[63:O]

Confidential
Technically Elite MeterFlow Accelerator Parser Module Specification

Page 9 of 44 -

NOAC EX. 1019 Page 229

NOAC Ex. 1019 Page 230

T.e9hnically,EEt9 ‘ .. . QQNEIDENTIAL

5 MeterFlow Accelerator Parser Module Top Level Pin
Descriptions

5.1.1.1 General Interface Signals

-m_—mm_
Reset_N IN Reset - active low.

When this signal is active the parser sets it’s registers to

their default condition and suspends operation. It will only
respond to host access cycles. The DataPort interface will

keep DPReady_N active to avoid problems for the external
circuitr .

MCLK IN 1 Module Clock.

All internal and external transfers except for memory
transfers are s nchronized b this si nal.

5.1.1.2 Analyzer Interface

Descrition

AnalyzerReady IN Analyzer Ready.
This si_nal tells the narser that the anal zer can accet data.

ParserKeyDelim OUT 1 Parser Key Delimiter.

The ParserKeyDelim signal becomes active when the first

quadword of a new key is ready to transfer to the analyzer. It

goes inactive when the last quadword of the key is
transferred.

ParserDataAvail OUT 1 Parser Data Available.

---If this signal is active the data on the ParserData bus isvalid.

Parser Data bus-

I

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential . Page 10 of 44

NOAC EX. 1019 Page 230

NOAC Ex. 1019 Page 231

_ CONEIDENTIALTechnically Elite... .

DataPort Packet Delimiter.

This signal should be driven active when the external logic

wants to send a packet to the parser. DPPacketDelim

should remain active during the entire packet transfer.

DPPacketDelim must go inactive for one clock between
ackets.

DPDataStb_N DataPort Data Strobe.

When active, this signal tells the parser that data on the

DPData bus is valid. If DPReady_N was inactive at the end

of the previous cycle, DPDataStb_N should not be driven

active. If DPReady_N goes inactive in the same cycle as

DPDataStb_N, then the parser will latch the incoming data
so that no data is lost.

DPKillPkt_N DataPort Kill Packet.

If this signal becomes active while DPPacketDelim is

active, the parser will attempt to stop processing the current

packet and flush it’s input Buffer. If however, parsing of the

packet is completed, the packet will not be able to be

recalled. This should only be a problem in a ‘cut through’
imlementation.

DPReady N DataPort Ready — active low.
. This signal when driven active means that the parser can

accept new data. If however the parser’s input Buffer is

filled, DPReady_N will be driven inactive. To prevent

overruns, DPReady_N will go inactive when the parser can
actual] acce t one more data transfer.

IN 32 DataPort Data bus.

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 11 of 44 -

NOAC EX. 1019 Page 231

NOAC Ex. 1019 Page 232

TechnicallyElite CONFIDENTIAL

5.1.1.4 Host Interface Signals

mm—
ParserSel_N IN Parser Select - active low.

ParserSel_N is sampled on the rising edge of MCLK. If it

is active, it signifies that the external host is attempting to
access the arser.

HostWrite Write.

Write is sampled on the rising edge of MCLK. This signal
is only valid when ParserSel __N is active. If this signal is
active, the host is attempting to write to the parser. Inactive

' ‘nal si_n si nifies a read from the arser.

HostBlast_N 1 Burst Last — active low.

HostBlast_N is sampled on the rising edge of MCLK.
HostBlast_N tells the parser that the current transfer is the
last transfer in this burst.

HostWait_N 1 Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers
between itself and the .

ParHostReady_N 1 Parser to Host Ready - active low. ,

ParHostReady_N should be sampled on the rising edge of
MCLK. The parser returns ParHostReady_N when the

' current cycle is completed. For a write operation,
ParHostReady_N means that the HostDataIn bus has been

latched. For a read operation ParI-IostReady_N means that
the requested data is on the ParHostDataOut bus and is

valid. ParHostRead _N is blocked b HostWait_N.
HostAddress Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
ParserSeLN is active. This bus defines the first address in

this burst to access in the 64 Kilobyte address space of the
__.__... .. . - ._ . ,_.Ea_r.8.:c_r_-.§9.e_S_ec_ti_2n_x Xe:fettbe.Addtess.Uti.l_i_2.ati.9_r1.Mep.-.

HostByteEnN ’ 5 Host Byte Enable bus — Active low.

a _.___H_0§t_‘;Vait_NfigaflpleggnjhsxisingEdgeOfMCLK. _
1Host Data Input bus.

i HostDataIn is sampled on the rising edge of MCLK if
_-.._____-________.__._____ HOSIWl‘ite15 active and_H0_5.tYYa1t._NLS_1necnve .
ParHostDataOut I OUT 64 [ParserHost Data Output bus.

fParHostDataOut should be sampled on the rising edge of
P.MCLK Data on this bus15 valid during a read cycle when
ngarHostReadyNis active.

HostDataIn ll
i
i

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 12 of 44 -

NOAC EX. 1019 Page 232

NOAC Ex. 1019 Page 233

TEChni‘EEUX Elite”. WCONEJDENTIAL

6 MeterFlow Accelerator Parser Module Top Level VHDL Entity

entity PAR_TOP is
Port

(

AnalyzerReady : In std_logic;

DPDataStb_N: In std_logic;

DPData : In std_logic_vector (31 downto 0);

DPKjllPkt_N : In std_logic;

DPPacketDelim : In std__logic;

HostAddress : In std_logic_vector (13 downto 0);
HostBlast_N : In std_logic;

o HostByteEn_N : In std_logic_vector (7 downto 0);

HostDataIn : In std_logic_vector (63 downto O);
HostWait_N : In std_logic;

HostWrite : In std__logic;

MCLK : In std_logic;

ParserSel_N : In std_logic;

Reset_N : In std_logic;

DPReady_N : Out std_logic;

ParHostDataOut : Out std_logic_vector (63 downto O);

ParHostReady_N : Out std_]ogic;

ParserDataAvail : Out std_1ogic;

ParserData : Out std_logic_vector (63 downto 0);

ParserKeyDelim : Out std_logic
);

end PAR_TOP;

7 MeterFlow Accelerator Parser Module Top Level Verilog
Module

module par_top(AnalyzerReady, DPData, DPDataStb, DPKillPkt_N, DPPacketDelim, DPReady_N,
HostAddress, HostBlast_N, HostDataIn, HostWait_N, HostWrite,
MCLK, ParHostDataOut, ParHostReady_N, ParserData,

ParserDataAvail, ParserKeyDelim, ParserSel_N, Reset_N);
input AnalyzerReady;
input [63:0] DPData;

input DPDataStb, DPKillPkt_N, DPPacketDelim;
output DPReady_N;
input [12:0] HostAddress;

input HostBlast_N;

input [63:0] HostDataIn;

input HostWait_N, HostWrite, MCLK;

output [63:0] ParHostDataOut;

output ParHostReady_N;
output [63:0] ParserData;

output ParserDataAvail, ParserKeyDelim;
input ParserSel_N, Reset_N;
wire [8:0] DPICAdd;

wire [63:0] PIBuSlData;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential _ Page 13 of 44 -

NOAC EX. 1019 Page 233

NOAC Ex. 1019 Page 234

.TeChnicaHY. EL“? CONEIPENTIAL
wire [8:0] SIPBAdd;

wire [63:0] PIBuPREData;

wire [8:0] PREnPIBAdd;

wire [29:0] CMCoSlData;

wire [8:0] SlAdd;

wire [3:0] PREnSlProtocol;

wire [63:0] SlPOBData;

wire [5:0] PREnSlCommand;

wire [8:0] SlPOBAdd;

wire [8:0] CMCoPRDAdd;

wire [22:0] CMCoPRDData;

wire [3:0] BaseOffset;

wire [22:0] CMCoPREData;

wire [8:0] PREAdd;

wire [22:0] PRDData;

wire [29:0] SlData;

wire [8:0] CMCoSIDAdd;

wire [8:0] AICPOBAdd;

wire [29:0] SIDData;

wire [29:0] CMCoSIDData;

wire [8:0] AICoPOBAdd;

wire [8:0] SlFlowKeySize;

wire [8:0] SlPIBAdd;
wire AICDone;

wire CMCoSIDWr;

wire CMCoPRDWr;

wire PREnSlEn;

wire SlWrStb;

wire SlDone;

wire PREDone;

wire DPICWrStb;

wire DPICDone;

wire ParserEn;

AIC Ill (.AICDone(AICDone), .AICoPOBAdd(AICoPOBAdd[810]),

.AnalyzerReady(AnalyzerReady), .MCLK(MCLK),

.ParserDataAvail(ParserDataAvail), .ParserEn(ParserEn),

.ParserKeyDelim(ParserKeyDelim), .Reset_N(Reset_N), .SlDone(SlDone),

.SlFlowKeySize(SlFlowKeySize[8:0]));
PRE 110 (.BaseOffset(BaseOffset[320]), .CMCoPREData(CMCoPREData[22:0]),

.MCLK(MCLK), .ParserEn(ParserEn), .PIBuPREData(PIBuPREData[63:0]),

.PREAdd(PREAdd[8:0]), .PREDone(PREDone), .PREnPIBAdd(PREnPIBAdd[8:O]),

.PREnSlCommand(PREnSlCommand[520]), .PREnSlEn(PREnSlEn),

.PREnSlProtocol(PREnSlProtocol[3:O]), .Reset_N(Reset_N));

DPIC Il (.DPDataStb(DPDataStb), .DPICAdd(DPICAdd[8:O]), .DPICDone(DPICDone),

.DPICWrStb(DPICWrStb), .DPKillPkt_N(DPKillPkt_N),

.DPPacketDelim(DPPacketDelim), .DPReady_N(DPReady_N), .MCLK(MCLK),

.ParserEn(ParserEn), .PREDone(PREDone), .Reset_N(Reset_N));

Slicer I2 (.CMCoSlData(CMCoSlData[29:0]), .MCLK(MCLK), .ParserEn(ParserEn),

.PIBuSlData(PIBuSlData[6320]), .PREDone(PREDone),

.PREnSlCommand(PREnSlCommand[5:0]), .PREnSlEn(PREnSlEn),

.PREnSlProtocoKPREnSlProtocol[3:0]), .Reset_N(Reset_N),

.SlAdd(SlAdd[8:0]), .SlDone(SlDone),

.SlFlowKeySize(SlFlowKeySize[8:O]), .SlPIBAdd(SlPIBAdd[8:0]),

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 14 of 44 m-

NOAC EX. 1019 Page 234

NOAC Ex. 1019 Page 235

Technically Elite
.SlPOBAdd(SlPOBAdd[820]), .SIPOBData(SlPOBData[63:Ol),
.SlWrStb(SlWrStb));

CONFIQENTlAL

SID I3 (.CMCoSIDAdd(CMCoSIDAdd[820]). .CMCOSIDData(CMCoSIDData[29:0]),
.CMCoSIDWr(CMCoSIDWr), .SIDData(SIDData[29:0]));

PRD I4 (.CMCoPRDAdd(CMCoPRDAdd[8:0]), .CMCoPRDData
.CMCoPRDWr(CMCoPRDWr), .PRDData(PRDData[22:O]));

(CMCOPRDData[22:O]),

PCB 15 (.AICDone(AICDone), .AICoPOBAdd(AICoPOBAdd[8:0]), .MCLK(MCLK),
.ParserData(ParserData[6320]), .ParserEn(ParserEn), .Reset_N(ReseI_N),
.SlDone(SlDone), .SlPOBAdd(SlPOBAdd[8:0]), .SlPOBData(S]POBData[63:0]),
.SlWrStb(SlWrStb));

PIB I6 (.DPData(DPData[63:O]), .DPICAdd(DPICAdd[8:0]), .DPICDone(DPICDone),
.DPICWrStb(DPICWrStb), .MCLK(MCLK), .ParserEn(ParserEn),

.PIBuPREData(PIBuPREData[6330]), .PIBuSlData(PIBuSlData[63:O]),

.PREDone(PREDone), .PREnPIBAdd(PREnPIBAdd[8:OJ), .Reset_N(Reset_N),

.SlDone(SlDone), .SlPIBAdd(SIPBAdd[8:O]));

CMC 18 (.BaseOffset(BaseOffset[320]), .CMCoPRDAdd(CMCoPRDAdd[820]),
.CMCoPRDData(CMCoPRDData[22:0]), .CMCoPRDWr(CMCoPRDWr),
.CMCoPREData(CMCoPREData[22:0]), .CMCoSIDAdd(CMCoSIDAdd[820]),
.CMCoSIDData(CMCoSIDData[820]), .CMCoSIDWr(CMCoSIDWr),
.CMCoS]Data(CMCoSlData[29:O]), .HostAddress(HostAddress[l230]),
.HostBlast_N(HostBlast_N), rHostDataIn(HostDataIn[63:0]),
.HostWait_N(HostWait_N), .HostWrite(HostWrite), .MCLK(MCLK),
.ParHostDalaOut(ParHostDataOut[6320]),

.ParHostReady_N(ParHostReady_N), .ParserEn(ParserEn),

.ParserSel_N(ParserSel_N), .PRDData(PRDData[22:O]),
,PREAdd(PREAdd[8:O]), .Reset_N(Reset_N), .SIDData(SlData[29:O]),
.SlAdd(SlAdd[8:0]));

endmodule // par_top

Technically Elite MeterFlow Accelerator Parser Module Specification
Confidential Page 15 of 44

NOAC EX. 1019 Page 235

NOAC Ex. 1019 Page 236

leghnicallywfllitg . EQNVFIPE‘NTIAL

8 MeterFlow Accelerator Parser Module Top Level Schematic

Insert Schematic Here

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 16 0f 44 :1“.

NOAC EX. 1019 Page 236

NOAC Ex. 1019 Page 237

2gr.:-'

Technically Elite“ CONFIDENTIAL

9 Parser Module Constants Files

The parser module constants files contain a list of constants used to allow rapid configuration of the
module. For example the size of the slicers instruction database data bus is defined as :

Verilog

‘define PAR_SLI_DWIDTH 23 // Parser Slicer Instruction Database Data Bus Width

VHDL

constant PAR_SLI_DWIDTH : integer := 23; -- Parser Slicer Instruction Database Data Bus Width

9.1 Parser module Verilog Constants File — ParserConstants.v
‘define PAR_COM_SHIFT 3 // Parser Command Shift
‘define PAR_SLI_DWIDTH 23

‘define PAR_DP__DW'IDTH 32 // Parser Data Port Data Bus Width

‘define PAR_PIB_DWIDTI-l 64 // Parser Input Buffer Data Bus Width
‘define PAR_PIB_AWIDTH 9 // Parser Input Buffer Address Bus Width
‘define PAR_PRD_AWIDTH 9 // Parser Pattern Recognition Database Address Bus Width
‘define PAR_PRD_DWIDTH 23 // Parser Pattern Recognition Database Data Bus Width
‘define PAR_SID_AWIDTH 9 // Parser Slicer Instruction Database Address Bus Width
‘define PAR_SID_DWIDTH 30 // Parser Slicer Instruction Database Data Bus Width
‘define PAR_POB_DWIDTH 64 // Parser Output Buffer Data Bus Width
‘define PAR_POB_AWIDTH 9 // Parser Output Buffer Address Bus Width
‘define PAR_BASE_OFF_WIDTH 4 // Parser Base Offset Width
‘define PAR_HOST_AWIDTH 13 // Parser Host Address Bus Width

‘define PAR_HOST_BE_WIDTH 8 // Parser Host Byte Enable Bus Width
‘define PAR_HOST_DWIDTH 64 // Parser Host Data Bus Width

‘define PAR_PRE_COM_WIDTH 6 // Parser Command Width
‘define PAR_COM_CT_WIDTH 4 // Parser Command Count Width
‘define PAR_PRE_PRO_WIDTH 4 // Parser

‘define PAR_CONTROL_REG_SIZE 5 // Parser Control Register Size
‘define PAR_H_SIDDELTA 34

‘define PAR_H_PRDDELTA 41

‘define PAR_H_CRDELTA 59 // CANT BE NESTED!

‘define PAR_SL_FKS_WIDTH 9 // Parser Slicer Flow Key Size Width

9.2 Parser module VHDL Constants File - ParserConstants.vhdI

Insert ParserConstants. vhd here

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 17 of 44 fl

NOAC EX. 1019 Page 237

NOAC Ex. 1019 Page 238

Technically Elit H CONFIDENTIAL

10 Sub-module Descriptions

10.1 Pattern Recognition Engine Sub-module — PRE

10.1.1 Symbol

10.1.2 Highlights

Scaleable protocol pattern recognition engine
Supports from 1 to 2048 simultaneous unique protocol patterns
At 62.5 Megal-lertz can process up to 1.5 MegaPackets per second
Accepts protocol database output from MeterFlow compiler

10.1.3 Description

The Pattern Recognition Engine module searches it’s database and the packet in order to recognize the
protocols the packet contains. The database consists of a series of linked lookup tables. Each lookup table
uses eight bits of addressing. The first lookup table is always at address zero. The Pattern Recognition
Engine uses the BaseOffset from the control register to start the comparison. It loads this value into the
Current Offset Pointer (COP). It then reads the byte at BaseOffset from the Parser Input Buffer and uses
it as an address into the first lookup table.

Each lookup table returns a word that links to another lookup table or it returns a terminal flag. If the
lookup produces a recognition event the database also returns a command for the Slicer. Finally it returns
the value to add to the COP.

10.1.4 Search Algorithm Psuedo-code

10.1.5 Implementation Information

 10.1.5.1 Database Word Definition

1:0 Opcode
00 Terminal Node found

01 Intermediate Node

10 Endin ' Terminal Node found

Next Lookup table

* uses PAR_PRE_LU_W1DTH
Slicer Command

* uses PAR_PRE_COM_WIDTH
* Mask

* uses PAR_PRE_MASK_WIDTH

10.1.6 File Names

Top: PRE.v(hd)

Technically Elite MeterFlow Accelerator Parser Module Specification
MR

Confidential Page 18 of 44 -

NOAC EX. 1019 Page 238

NOAC Ex. 1019 Page 239

Technically Elite CONEIPENTIAL
Uses: ParserConstants.v(hd)

10.1.7 Pin Descriptions

10.1.7.1 General Interface Signals

Reset - active low._ I-

_-l__
I— Pattern Reconition En _ine Done.

Parser Enable bit from control re _ister

' ir Width mm-

PREnSlE Pattern Reconition En _ine to Slicer Enable

_--Pattern Recognition Engine to Slicer Command bus* uses PAR_PRE_COM_WIDTH

PREnSlProtocol Pattern Recognition Engine to Slicer Protocol bus
* uses PAR_PRE_PRO_WIDTH

10.1.7.3 CPU Interface MUX Interface

Sinal I'm! Width _m_
PREAdd OUT Pattern Recognition Engine Address bus

* uses PAR_PRD_AWIDTH

)k

BaseOffset IN 4 Base Offset.

This is the first offset the Pattern Recognition Engine will

CMCoPREData IN

10.1.7.4 Parser Input Buffer Interface

-_m Width -
PREnPIBAdd OUT * Pattern Recognition Engine Parser Input Buffer Address

bus.

* Uses PAR_PIB_AWIDTH

PIBuPREData IN * Parser Input Buffer to Pattern Recognition Engine Data bus.
* Uses PAR_PIB _DWIDTH

10.1.8 Verilog Module

5

/*

PREV

PRE — Pattern Recognition Module

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 19 of 44 9

NOAC EX. 1019 Page 239

NOAC Ex. 1019 Page 240

Technically Elite CONFIDENTIAL
*/ _.__ ..._...____...___-.._._-.._.__.A..-i_-<
‘include "ParserConstants.v"

module PRE(Reset_N, MCLK ,ParserEn, PREDone, PREnSlEn, PREnSlCommand, PREnSlProtocol,
PREAdd, BaseOffset, CMCoPREData, PREnPIBAdd, PIBuPREData);

// General Interface Interface

input Reset_N;

input MCLK;

input ParserEn;

output PREDone;
// Slicer Interface

output PREnSlEn;

output [‘PAR_PRE_COM_WIDTH-l : O] PREnSlCommand;

output [‘PAR_PRE_PRO_WIDTH-l : 0] PREnSlProtocol;
// CMC Interface

output [‘PAR_PRD‘AWIDTH—l : O] PREAdd;

input [‘PAR_BASE_OFF_WIDTH-l : 0] BaseOffset;

input [‘PAR_PRD_DWIDTH-l : 0] CMCoPREData;
// Parser Input Buffer Interface

output [‘PAR_PIB__AWIDTH-l : 0] PREnPIBAdd;

input [‘PAR_PIB_DWIDTH—1 : 0] PIBuPREData;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 20 of 44 *

NOAC EX. 1019 Page 240

NOAC Ex. 1019 Page 241

Technically Elite” CONFIDENTIAL

10.2Slicer Sub-module

10.2.1 Symbol

10.2.2 Description

The Slicer cuts up the packet to build the flow key. The Slicer module accepts commands from the Pattern
Recognition Engine. Based on the command received, the Slicer either transfers data from the Parser

Input Buffer to the Parser Output Buffer or it transfers data from the Parser Input Buffer to it’s internal
hash generator. It contains a buffer that FIFO's up the commands. When the Pattern Recognition Engine
asserts PREDone the Slicer completes any pending commands, transfers the hash to the Parser Output
Buffer and asserts SlDone.

 10.2.2.1 Instruction Word Definition

Source Address »

* uses PAR_PIB_AWIDTH
* Destination Address

* uses PAR_POB_AWIDTH

Length

* uses PAR_SL__LEN_WIDTH

10.2.3 Implementation Information

The Slicer contains a byte wise barrel shifter that is used to pack data into the flow key. A Moore finite
state machine controls the execution of commands. The command comes into the Slicer and is shifted to
provide an address. The Slicer uses this address to read the Slicer Instruction Database.

10.2.4 File Names

Top: Slicer.v(hd)

Uses: ParserConstants.v(hd)

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 21 of 44 ‘

NOAC EX. 1019 Page 241

NOAC Ex. 1019 Page 242

I991!_!1i9§1l_xElit9 .._C0NEIDENTIAL

10.2.5 Pin Descriptions

10.2.5.1 General Interface Signals

-—I]fl -
SlPIBAdd Slicer Parser Input Buffer Address bus.— * Uses PAR_PIB_AWIDTH
PIBuSlData --Parser Input Buffer to Slicer Data bus.- * Uses PAR_PIB_DWIDTH

10.2.5.3 Parser Output Buffer Interface

Sinai Inn—m
SlPOBAdd * Slicer Parser Output Buffer Address bus.— -—

—_

- Slicer to Parser Output Buffer Data bus.
* Uses PAR_POB_DWIDTH

MUX Interface10.2.5.4 CPU Interface

SiAdd -- Slicer Address bus- * uses PAR_SID_AWIDTI-I
CMCoSlData CMC to Slicer Data bus- * uses PAR_SID_DWIDTH

10.2.5.5 Pattern Recognition Engine Interface

O

E
1’€5':o— OS O

E

-IEI Widthm
PREnSlEn __Pattern Reco_nition En _ine to Slicer Enable
PREDone -_Pattern Reconition En ine Done. PREnSlCommand h-i

N * Pattern Recognition Engine to Slicer Command bus

* uses PAR_PRE_COM_WIDTH

-_Pattern Reconition En ine to Slicer Protocol bus PREnSlProtocol

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 22 of 44 ‘

NOAC EX. 1019 Page 242

NOAC Ex. 1019 Page 243

.IgghnicalleLite... CONFERENIIAL
I * uses PAR_PRE_PRO_WIDTH I

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 23 of 44 -

NOAC EX. 1019 Page 243

NOAC Ex. 1019 Page 244

Teshyically Elitfi CONFIDENTIAL
10.2.5.6 Analyzer Interface Control Interface

M inal m Width .

SlFlowKeySize OUT * Pattern Recognition Engine to Slicer Protocol bus
* uses PAR_SL_FKS_WIDTH

10.2.6 Verilog Module

/*

Slicer.v

Slicer Module

*/

‘include "ParserConstants.v"

module Slicer(Reset_N, MCLK ,ParserEn, SlDone, SlPIBAdd, PIBuSlData, SIPOBAdd, SiWrStb,
SIPOBData, SlAdd, CMCoSlData, PREnSlEn, PREDone, PREnSlCommand, PREnSlProtocol,
SlFlowKeySize);

// General Interface Interface

input Reset_N;

input MCLK;

input ParserEn;

output SlDone;

// Parser Input Buffer Interface

output [‘PAR_PIB_AWIDTH—1 : 0] SlPIBAdd;

input [‘PAR__PIB_DWIDTH—1 : O] PIBuSlData;

// Parser Output Buffer Interface

output [‘PAR_POB_AWIDTI-I—1 : 0] SlPOBAdd;
output SlWrStb;

output [‘PAR_POB_DWIDTH—l : O] SlPOBData;
// CMC Interface

output [‘PAR_SID_AWIDTH-l : 0] SlAdd;

output [‘PAR_SID_DWIDTH-1 : O] CMCoSiData;

// Pattern Recognition Engine Interface
input PREnSlEn;

input PREDone;

input [‘PAR_PRE_COM_WIDTH-1 : O] PREnSlCommand;

input [‘PAR_PRE_PRO_WIDTH—1 : O] PREnSlProtocol;
// AIC

output [‘PAR_SL_FKS_WIDTH-l : 0] SiFlowKeySize;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 24 of 44 .

NOAC EX. 1019 Page 244

NOAC Ex. 1019 Page 245

Technically...E_l_ite_-_... . EQNHDENTIAL

10.3 Pattern Recognition Database Sub-module - PHD

10.3.1 Symbol

10.3.2 Highlights

0 Scaleable implementation

0 Wraps either RAM or ROM instantiation or can be synthesized latches

10.3.3 Description

The Pattern Recognition Database Memory module is a wrapper for the storage medium used to hold the

pattern recognition database. Only the CPU can write this memory.

10.3.4 Implementation Information

The module can be synthesized or a RAM or ROM cell can be instantiated into the wrapper.

10.3.5 File Names

Top: PRD.v(hd)
Uses: ParserConstants.v(hd),GenericRAM.v(hd)

10.3.6 Pin Descriptions

10.3.6.1

Si-na1 IE] Width

CPU Interface MUX Interface

CMCoPRDWr-_

* uses PAR_PRD AWIDTl-l

m“ --—* uses PAR_PRD_DWIDTH

* uses PAR_PRD_DWIDTH

10.3.7 Verilog Module

/*

PRD.v

*/

‘include “ParserConstants.v"

module PRD(CMCOPRDData, PRDData. CMCoPRDAdd, CMCoPRDWr);

input [‘PAR_PRD_AWIDTH-l : 0] CMCoPRDAdd;

input [‘PAR__PRD_DWIDTH—l : O] CMCoPRDData;

output [‘PAR_PRD_DWIDTH—l : O] PRDData;
input CMCoPRDWr;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 25 of 44 -

NOAC EX. 1019 Page 245

NOAC Ex. 1019 Page 246

aux--

Technically. Elite .. _ QQNEIDENTIAL

10.4 Slicer Instruction Database Sub-module -SID

10.4.1 Symbol

10.4.2 Highlights

0 Scaleable implementation

0 Wraps either RAM or ROM instantiation or can be synthesized latches

10.4.3 Description

The Slicer Instruction Database module is a wrapper for the storage medium used to hold the pattern
recognition database. Only the CPU can write this memory.

10.4.4 Implementation Information

The module can be synthesized or a RAM or ROM cell can be instantiated into the wrapper.

10.4.5 File Names

Top: SID.v(hd)

Uses: ParserConstants.v(hd),GenericRAM.v(hd)

10.4.6 Pin Descriptions

10.4.6.1 CPU Interface MUX Interface

Sinai m Width
CMCoSIDWr CMC to SID Write Strobe*
CMCoSIDAdd IN CMC to SID Address bus

* uses PAR_SID_AWIDTH

SIDData -SID Data bus- * uses PAR_SID_DWIDTH
CMCoSIDData CMC to SID Data bus

* uses PAR_SID_DWIDTH

10.4.7 Verilog Module

/*

SID.v

*/

‘include "ParserConstants.v"

module SID(CMCOSIDData, SIDData, CMCoSIDAdd, CMCoSIDWr);

input [‘PAR_SID_AWIDTH-l : 0] CMCoSIDAdd;

input [‘PAR_SID_DWIDTH—l : 0] CMCoSIDData;
output [‘PAR_SID_DWIDTH—1 : 0] SIDData;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 26 of 44 _ _'

NOAC EX. 1019 Page 246

NOAC Ex. 1019 Page 247

.. CQNEIDENTIALIechnically Elitem
input CMCoSIDWr;

Technically Elite MeterFlow Accelerator Parser Module Specification
Confidential Page 27 of 44 '

NOAC EX. 1019 Page 247

NOAC Ex. 1019 Page 248

Technisally Elite-.. . CONFIDENTIAL

10.5 CPU Interface MUX and Control Register Sub-module - CMC

10.5.1 Symbol

10.5.2 Description

The CPU Interface MUX and Control Register module controls the communication between the external
CPU and the Parser. The CMC contains a MUX for the CPU read back. It also contains the control
register for the Parser.

10.5.3 File Names

Top: CMC.V(hd)

Uses: ParserConstants.v(hd)

10.5.4 Pin Descriptions

10.5.4.1 General Interface Signals

-Im Widthm
Reset - active low.-I_

1 Parser Enable bit from control register.
When this bit becomes active

10.5.4.2 Slicer Instruction Database Interface

m

—_* uses PAR_SID_AWTDTH

* uses PAR_SID_DWIDTH
CMC to SID Data bus

* uses PAR_SID_DWIDTH

10.5.4.3 Pattern Recognition Database Interface

-I3fil Width —m_
CMCoPRDWr -_CMC to PRD Write Strobe

CMCoPRDAdd CMC to PRD Address bus

* uses PAR_PRD AWIDTH
PRDData IN * PRD Data bus

--
CMCoPRDData --CMC to PRD Data bus* uses PAR_PRD_DWIDTH

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 28 of 44 ‘

NOAC EX. 1019 Page 248

NOAC Ex. 1019 Page 249

Technically Elite . .. SQNHPENTIAL

10.5.4.4 Slicer Interface

* uses PAR_SID_AWIDTI-l

OUT * CMC to Slicer Data bus

* uses PAR_SID__DWIDTH

10.5.4.5 Pattern Recognition Engine Interface

---Pattern Recognition Engine Address bus* uses PAR_PRD_AWIDTH
BaseOffset OUT 4 Base Offset.

This is the first offset the Pattern Recognition Engine will
check.

CMCoPREData CMC to Pattern Rcognition Engine Data bus_ * uses PAR_PRD_DWIDTH

10.5.4.6

MCLK. The parser returns ParHostReady_N when the
current cycle is completed. For a write operation,
ParHostReady_N means that the HostDataIn bus has been

latched. For a read operation ParHostReady_N means that
the requested data is on the ParHostDataOut bus and is

valid. ParHostRead _N is blocked b HostWait_N.

Host Interface Signals

1 .

ParserSeLN Parser Select ~ active low.

ParserSel_N is sampled on the rising edge of MCLK. If it

is active, it signifies that the external host is attempting to
access the arser.

HostWrite IN Write.

Write is sampled on the rising edge of MCLK. This signal
is only valid when ParserSel _N is active. Ifthis signal is

’ active, the host is attempting to write to the parser. Inactive
this sinal si n si_nifies a read from the

HostBlast_N IN Burst Last — active low.

I.HostBlast_N is sampled on the rising edge of MCLK.HostBlast_N tells the parser that the current transfer is the
last transfer in this burst.

HostWait_N IN Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers
between itself and the .arser.

ParHostReady_N OUT Parser to Host Ready — active low.

ParHostReady_N should be sampled on the rising edge of

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 29 of 44 y

NOAC EX. 1019 Page 249

NOAC Ex. 1019 Page 250

Technically Elite_ _ . CONFIDENTIAL
HostAddress Host Address bus.

HostAddress'lS sampled on the rising edge of MCLK if
ParserSel_N is active. This bus defines the first address in

this burst to access in the 64 Kilobyte address space of the

._ ‘Par‘se__.__r_See SEQQQLPSit._>_t_fgruth_e_{§t_d_tlre_s_s_Utilization Map.

1 Host Byte Enable bus - Active low
_IHostWait_Nis sa_p__ledon the risingedgeof MCLK
Host Data Input bus

'HostDataInlS sampled on the rising edge of MCLK if

____ ,.,_____._..___ . .. _._ ‘HostWilteIS active and HostWajt=N_is inactive
ParHostDataOut '1 ‘ iParserHost Data Output bus.

t ’ ! ParHostDataOut should be sampled on the rising edge of

MCLK. Data on this bus is valid during a read cycle when

ParHostReady_N is active.

10.5.5 Verilog Module

/*

CMC.v

CMC - CPU Interface MUX and Control Register Module

*/

‘include "ParserConstants.v"

module CMC(Reset_N, MCLK ,ParserEn, CMCoSIDWr, CMCoSIDAdd, SIDData, CMCoSIDData,
CMCoPRDWr, CMCoPRDAdd, PRDData, CMCoPRDData, SlAdd, CMCoSlData, PREAdd, BaseOffset,

CMCoPREData, ParserSel_N, HostWrite, HostBlast_N, HostWait_N, ParHostReady_N, HostAddress,
HostDataIn, ParHostDataOut);

// General Interface Interface

input Reset_N;

input MCLK;
output ParserEn;
// Sicer Instruction Database Interface

output CMCoSIDWr;

output [‘PAR_SID__AWIDTH-l : 0] CMCoSIDAdd;

input [‘PAR_SID_DWIDTH-1 : 0] SIDData;

output [‘PAR_SID_AWIDTH—1 : 0] CMCoSIDData;

// Pattern Recognition Database Interface

output CMCoPRDWr;

output [‘PAR_PRD_AWIDTH-l : O] CMCoPRDAdd;

input [‘PAR_PRD_DWIDTH—1 : 0] PRDData;

output [‘PAR_PRD_DWIDTH-1 : 0] CMCoPRDData;
// Slicer Interface

input [‘PAR_SID_AWIDTH—1 : 0] SlAdd;

output [‘PAR_SID_DWIDTH—l : 0] CMCoSlData;

// Pattern Recognition Engine Interface

input [‘PAR_PRD_AWIDTH-1 : O] PREAdd;

output [‘PAR_BASE_OFF_WIDTH-1 : 0] BaseOffset;

output [‘PAR_PRD_DWIDTH-l : 0] CMCoPREData;
//Host Interface

input ParserSel_N;

input HostWrite;

Technically Elite MeterFlow Accelerator Parser Module Specification
Confidential Page 30 of 44 *

NOAC EX. 1019 Page 250

NOAC Ex. 1019 Page 251

Technically Elite .. CONFIQENTIAL

input HostBlast_N;

input HostWait_N;

output ParHostReady_N;

input [‘PAR__HOST_AWIDTH-l : 0] HostAddress;

input [‘PAR_HOST_DWIDTl-l-l : 0] HostDataIn;

output [‘PAR_HOST__DWIDTH-l : 0] ParHostDataOut;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 31 of 44 .-

NOAC EX. 1019 Page 251

NOAC Ex. 1019 Page 252

Technically Elite _____________ CONFIDENTIAL

10.6Parser Input Buffer Sub-module — PIB

10.6.1 Symbol

piamzaeanmm t 'Itl

nieueirtamzs 2 an

: Me §‘:‘~“£iilli\' m
10.6.2 Highlights

Scaleable implementation

Asynchronous three ported RAM

Can be build from three separate single port RAM cells

Wraps either RAM instantiation or can be synthesized latches

Separate dual read and a single write interfaces

10.6.3 Description

The Parser Input Buffer is a wrapper for the buffer that is used to store the start of the packet. It is three

ported with separate dual read and a single write interfaces. The data from the DataPort interface is stored
in one of three logical or physical buffers through the write port. The Pattern Recognition Engine uses one

of the read ports and the Slicer uses the other. The three interfaces never access the same third of the
buffer at the same time. Each of the interfaces looks like a single buffer to the attached modules. The

Parser Input Buffer controls which of the three buffers the module is controlling. When the first packet
comes in the DataPort Interface Control module writes the data into one of the three buffers. It then

increments a modulo three counter to point to the next buffer. The Pattern Recognition Engine will then

begin processing the packet. Finally after the Pattern Recognition Engine is finished the Slicer will get
access to the buffer. In this way each of the three processes have access to a buffer and each get access to

the packet in turn.

10.6.4 Implementation Information

The module can be synthesized or RAM cells can be instantiated into the wrapper. The instantiated RAM
can be either a single three ported cell or three separate RAM cells. The Parser Input Buffer can be three
separate RAM cells because the control logic will never try to read and write the same third of the buffer
at the same time.

Technically Elite MeterFlow Accelerator Parser Module Specification
Confidential Page 32 of 44 .

NOAC EX. 1019 Page 252

NOAC Ex. 1019 Page 253

TCFPHiCE'HXEJLW
10.6.5 File Names

_ .,.,_CQNEIPENTIAL

Top: PIB.v(hd)

Uses: ParserConstants.v(hd), Generic3PortRAM.v(hd)

10.6.6 Pin Descriptions

 10.6.6.1

m-——_

General Interface Signals

Module Clock.

Parser Enable bit from control re ister

DataPort Interface 10.6.6.2

“mm
D

DPData IN DataPort Data bus.
* Uses PAR_DP_DWIDTH

10.6.6.3 DataPort Interface Control Interface

-IIM Width
DPICAdd IN * DataPort Interface Control Address bus.

* Uses PAR_PIB_AWIDTH

DPICDone IN 1 DataPort Interface Control Done.

This input is used to tell the Parser Input Buffer that the
DataPort Interface Control module has finished writing the

buffer. The Parser Input Buffer also uses this signal to

increment it’s internal pointer so that the next address from
the DataPort Interface Control will point to the next packet

buffer. DPICAdd is ignored for one cycle after DPICDone
is active.

DPICWriteStb DataPort Interface Control Write Strobe.

10.6.6.4

PREnPIBAdd IN

 Pattern Recognition Engine Interface

Widthw
* Pattern Recognition Engine Parser Input Buffer Address

bus.

* Uses PAR_PIB_AWIDTH

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 33 0f 44 -

NOAC EX. 1019 Page 253

0'

NOAC Ex. 1019 Page 254

Technically Elite CONFIPENTIAL
 10.6.6.4 Pattern Recognition Engine Interface

PREDone IN Pattern Recognition Engine Done.

This input is used to tell the Parser Input Buffer that the

Pattern Recognition Engine has finished processing the

current packet and the buffer can be freed. The Parser Input

Buffer also uses this signal to increment it’s internal pointer
so that the next address from the Pattern Recognition

Engine will point to the next packet buffer. PREnPIBAdd
is i_nored for one c cle after PREDone is active.

_--Parser Input Buffer to Pattern Recognition Engine Data bus.* Uses PAR_PIB _DWIDTH

10.6.6.5

SlPIBAdd IN Slicer Parser InputBuffer Address bus.
* Uses PAR_PIB_AWIDTH

IN 1 Slicer Done.

This input is used to tell the Parser Input Buffer that the

Slicer has finished processing the current packet and the

buffer can be freed. The Parser Input Buffer also uses this

signal to increment it’s internal pointer so that the next

address from the Slicer will point to the next packet buffer.
SlPIBAdd is i _nored for one c cle after SlDone is active.

Parser Input Buffer to Slicer Data bus.
* Uses PAR_PIB_DWIDTH

10.6.7 Verilog Module

 Slicer Interface

/*

PIB.V

*/

‘include "ParserConstants.v"

module PIB(Reset_N, MCLK ,ParserEn, DPData, DPICAdd, DPICDone, DPICWrStb, PREnPIBAdd,

PREDone, PIBuPREData, SlPIBAdd, SlDone, PIBuSlData);

input Reset_N;

input MCLK;

input ParserEn;

input DPICDone;

input DPICWrStb;

input PREDone;

input SlDone;

input [‘PAR_PIB_DWIDTH-1 : 0] DPData;

input [‘PAR_PIB_AWIDTH-1 : 0] DPICAdd;

input [‘PAR_PIB_AWIDTH-1 : O] PREnPIBAdd;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 34 of 44 -

NOAC EX. 1019 Page 254

NOAC Ex. 1019 Page 255

Ii

Technically Elite CONFIDENTIAL.
input [‘PAR_PIB_AWIDTH-l : O] SlPIBAdd;

output [‘PAR_PIB_DWIDTH—1 : 0] PIBuPREData;

output [‘PAR_PIB_DWIDTH—l : O] PIBuSlData;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 35 of 44 -

NOAC EX. 1019 Page 255

NOAC Ex. 1019 Page 256

Technically Elite__. .. CONFIDENTIAL

10. 7Parser Output Buffer Sub-module - POB

10.7.1 Symbol

10.7.2 Highlights

0 Scaleable implementation

0 Asynchronous dual ported RAM

0 Can be build from two separate single port RAM cells

0 Wraps either RAM instantiation or can be synthesized latches

0 Separate read and write interfaces

10.7.3 Description

The Parser Output Buffer is a wrapper for the buffer that is used to store the output of the Slicer. It is dual

ported with separate read and write interfaces. The write interface is controlled by the Slicer. The read
interface is controlled by the Analyzer Interface Control logic. The Parser Output Buffer maintains a

pointer to the two buffers such that one buffer is controled by the Slicer and one is controlled by the
Analyzer Interface Control logic.

10.7.4 Implementation Information

The module can be synthesized or RAM cells can be instantiated into the wrapper. The instantiated RAM

can be either a single dual ported cell or two separate RAM cells. The Parser Output Buffer can be two

separate RAM cells because the control logic will never try to read and write the same half of the buffer at
the same time.

10.7.5 File Names

Top: POB.v(hd)
Uses: ParserConstants.v(hd), GenericZPortRAM.v(hd)

Technically Elite MeterFlow Accelerator Parser Module Specification
Confidential Page 36 of 44 -

NOAC EX. 1019 Page 256

NOAC Ex. 1019 Page 257

Technically Elite“,C0NFIQENTIAL

10.7.6 Pin Descriptions

 10.7.6.1

m

General Interface Signals

10.7.6.2

”mm——

* Uses PAR_POB_AWIDTH '

SlDone IN Slicer Done.

This input is used to tell the Parser Output Buffer that the

Slicer has finished processing the current flow and the

buffer can be sent to the Analyzer. The Parser Output Buffer

also uses this signal to increment it’s internal pointer so that

the next address from the Slicer will point to the next flow

buffer. SlPOBAdd is ignored for one cycle after SlDone is
active.

SlWrStb IN _ Slicer Write Strobe.

SlPOBData IN * Slicer to Parser Output Buffer Data bus.
* Uses PAR_POB_DWIDTH

10.7.6.3

mum—w
AICoPOBAdd Analyzer Interface Control to Parser Output Buffer Address

bus.

AICDone I.
* Uses PAR_POB.AWIDTH

10.7.6.4

Analyzer Interface Control Done.

-_Im Width mm—

This input is used to tell the Parser Output Buffer that the

ParserData OUT Parser Data bus.

. * Uses PAR_ANA_DWIDTH

Analyzer Interface Control has finished sending the current

flow to the Analyzer. The Parser Output Buffer also uses

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 37 of 44 -

Slicer Interface

 Analyzer Interface Control Interface

this signal to increment it’s internal pointer so that the next

address from the Analyzer Interface Control will point to the

next flow buffer. AICoPOBAdd is ignored for one cycle
after AICDone is active.

 Analyzer Interface

NOAC EX. 1019 Page 257

NOAC Ex. 1019 Page 258

Isehnisally Elite
10.7.7 Verilog Module

_, CONEIPENTIAL

/*

POB.v

*/

‘include "ParserConstants.v"

module POB(Reset_N, MCLK ,ParserEn, SlPOBData, SlPOBAdd, SlDone, SlWrStb,

AICoPOBAdd, AICDone, ParserData);

input Reset_N;

input MCLK;

input ParserEn;

input SlDone;

input SlWrStb;

input AICDone;

input [‘PAR_POB_DWIDTH-1 : O] SlPOBData;

input [‘PAR_POB_AWIDTH-1 : O] SlPOBAdd;

input [‘PAR_POB_AWIDTH—1 : 0] AICoPOBAdd;

output [‘PAR_POB_DWIDTH—l : 0] ParserData;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 38 of 44 -

NOAC EX. 1019 Page 258

NOAC Ex. 1019 Page 259

TechnicallyElite CONFIDENTIAL

10.8 DataPort Interface Control Sub-module - DPIC

10.8.1 Symbol

10.8.2 Description

The DataPort Interface Control module handshakes with the external source of packets. The external

device starts sending the packet to the DataPort Interface Control module by asserting DPPacketDelim.
The transfer of data is coordinated by the DPDataStb_N/DPReady_N pair. If the external device decides

to about the packet it can assert DPKillPkt_N.

10.8.3 Implementation Information

The Analyzer Interface Control moduleIS implemented as a Moore type finite state machine Each of the
outputs of the state machine are registered to assure maximum setup time for the external device.

10.8.4 File Names

Top: DPIC.v(hd)
Uses: ParserConstants.v(hd)

10.8.5 Pin Descriptions

 10.8.5.1

m

—-_—

General Interface Signals

 10.8.5.2 DataPort Interface

nm—-
DPPacketDelim DataPort Packet Delimiter.

This signal should be driven active when the external logic

wants to send a packet to the parser. DPPacketDelim

should remain active during the entire packet transfer

DPPacketDelim must go inactive for one clock between
ackets.

.I'Datapon Data Stmbe
When active, this signal tells the parser that data on the

DPData bus is valid. If DPReady_N was inactive at the end

Technically Elite MeterFlow Accelerator Parser Module Specification
Confidential Page 39 of 44 -

of the previous cycle, DPDataStb_N should not be driven
active. If DPReady_N goes inactive in the same cycle as
DPDataStb_N, then the parser will latch the incoming data
so that no data is lost.

NOAC EX. 1019 Page 259

NOAC Ex. 1019 Page 260

.Teshnigally..Elite_. _ CONFIDENTIAL.
10.8.5.2 DataPort Interface

mum——
DPKillPkt_N IN 1 DataPort Kill Packet.

If this signal becomes active while DPPacketDelim is

active, the parser will attempt to stop processing the current

packet and flush it‘s input Buffer. If however, parsing of the
packet is completed, the packet will not be able to be

recalled. This should only be a problem in a ‘cut through'
imlementation.

.I.DataPort Ready — active low.
This signal when driven active means that the parser can

10.8.5.3

accept new data. If however the parser's input Buffer is

filled, DPReady_N will be driven inactive. To prevent

overruns, DPReady_N will go inactive when the parser can

DataPort Interface Control Address bus.

* Uses PAR_PIB_AWIDTH "

DPICDone OUT DataPort Interface Control Done.

This output is used to tell the Parser Input Buffer that the-I-DataPort Interface Control module has finished writing thebuffer.

actual] acceot one more data transfer.

DPICWriteStb -_DataPort Interface Control Write Strobe.

 Parser Input Buffer Interface

10.8.5.4 Pattern Recognition Engine Interface

-Iml Width Descrition
pan... Reconnmn EJne Done

10.8.6 Verilog Module

/*

DPIC.v

*/

‘include "ParserConstants.v"

module DPIC(Reset_N, MCLK ,ParserEn, DPPacketDelim, DPDataStb, DPKillPkt_N, DPReady_N,
DPICAdd, DPICDone, DPICWrStb, PREDone);

input Reset_N;

input MCLK;

input ParserEn;

input DPPacketDelim;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 40 of 44 '

NOAC EX. 1019 Page 260

NOAC Ex. 1019 Page 261

T99hnicall_y__Elite__
input DPDataStb;

input DPKillPkt_N;

input PREDone;

output DPReady_N;

output DPICDone;

output DPICWrStb;

output [‘PAR_PIB_AWIDTH-1 : 0] DPICAdd;

CON IDENTIAL

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 41 of 44 .

NOAC EX. 1019 Page 261

NOAC Ex. 1019 Page 262

Technically Elite .y..___§_Q.NEIPENTIAL

10.9Analyzer Interface Control Sub-module -AIC

10.9.1 Symbol

10.9.2 Description

The Analyzer Interface Control module handshakes with the Analyzer in order to transfer the flow key for

further processing. The Analyzer Interface Control module starts a transfer to the Analyzer by asserting

ParserKeyDelim. It then transfers the data via the AnalyzerReady/ParserDataAvail handshake pair.
The Analyzer Interface Control module also sends the address of the data to be sent to the Parser Output
Buffer.

10.9.3 Implementation Information

The Analyzer Interface Control module is implemented as a Moore type finite state machine. Each of the
outputs of the state machine are registered to assure maximum setup time for the Analyzer interface.

10.9.4 File Names

Top: AIC.v(hd)
Uses: ParserConstants.v(hd)

10.9.5 Pin Descriptions

10.9.5.1 General Interface Signals

Descrition

_-I_Reset - active low.
Module Clock.

muParser Enable bit from control re ister

10.9.5.2 Analyzer Interface

Descfi'tion

AnalyzerReady IN Analyzer Ready.
This si_nal tells the arser that the anal zer can accet data.

ParserKeyDelim OUT 1 Parser Key Delimiter.

The ParserKeyDelim signal becomes active when the first

quadword of a new key is ready to transfer to the analyzer. It

goes inactive when the last quadword of the key is
transferred.

ParserDataAvail OUT 1 Parser Data Available.

If this signal is active the data on the ParserData bus is
valid.

Technically Elite MeterFlow Accelerator Parser Module Specification -

Confidential Page 42 of 44 ‘

NOAC EX. 1019 Page 262

NOAC Ex. 1019 Page 263

IechnicallyElite CONFIDENTIAL
10.9.5.3

mam-llam— -
SlFlowKeySize Slicer Flow Key Size bus.

This bus is valid when SlDone is active. It communicates

the size of the flow key so the Analyzer Interface Control

10.9.5.4

 Slicer Interface

can send the right amount of data to the Analyzer.
* uses PAR_MAX_FLOW_KEY_SIZE
Slicer Done.

This input is used to tell the Analyzer Interface Control that
the Slicer has finished processing the current packet and can
be sent to the Anal zer.

 Parser Output Buffer Interface

m-*Width Descri a tion
AICoPOBAdd OUT Analyzer Interface Control to Parser Output Buffer Address

bus.

‘ AICDOM '-
* Uses PAR_POB_AWIDTH

10.9.6 Verilog Module

Analyzer Interface Control Done.

This output is used to tell the Parser Output Buffer that the

Analyzer Interface Control has finished sending the current (
flow to the Anal zer.

/*

AIC.v

*/

‘include "ParserConstants.v"

module AIC(Reset_N, MCLK ,ParserEn, AnalyzerReady, ParserKeyDelim, ParserDataAvail,

SlFlowKeySize, SlDone, AICoPOBAdd,AICDone);

input Reset_N;

input MCLK;

input ParserEn;

input AnalyzerReady;

output ParserKeyDelim;

output ParserDataAvail;

input SlDone;

input [‘PAR_SL_FKS_WIDTH-l : 0]SlFlowKeySize;

output [‘PAR_PIB_AWIDTH-l : O] AICoPOBAdd;
output AICDone;

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 43 of 44 -

NOAC EX. 1019 Page 263

NOAC Ex. 1019 Page 264

Technicallyijiiiygu _ CONFIDENTIAL

Technically Elite MeterFlow Accelerator Parser Module Specification

Confidential Page 44 of 44 -

NOAC EX. 1019 Page 264

NOAC Ex. 1019 Page 265

:1.

Exhibit A3: Technically Elite MeterFlow Accelerator Analyzer Module
Specification (Document MFAAnalyzepdf)

--..___~._~_._~ . ___.. ___ __ . ____ M, NOAC Ex. 1019 Page 265

NOAC Ex. 1019 Page 266

Technically Elite CONFIDENTIAL

Technically Elite
MeterFlow Accelerator

Analyzer Module

Specification

Not For External Release!

Revision Histor

M

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 1 of 51 ‘

NOAC EX. 1019 Page 266

NOAC Ex. 1019 Page 267

Technically Elite CONFIDENTIAL

0 Table of Contents

0 Table of Contents .. 2
1 Introduction... 5
2 Technically Elite MeterFlow Accelerator Analyzer Module Highlights .. 5
3 Architectural Overview 6

3.1 Flow Database ... 7
3.1.1 Extracted Input Data from Parser Diagram ... 8
3.1.2 Flow Entry Description ... 9

3.2 Architectural Block Diagram .. 9
4 Top Level MeterFlow Accelerator Analyzer Module Symbol .. 10
5 MeterFlow Accelerator Analyzer Module Top Level Pin Descriptions ... 11

5.1.1.1 General Interface Signals .. 1 1
5.1.1.2 Memory Interface .. 1 1
5.1.1.3 Host Interface Signals ... 12
5.1.1.4 Parser Interface ... 13
5.1.1.5 Known Flow Interface ... 13

6 MeterFlow Accelerator Analyzer Module Top Level VHDL Entity 14
7 MeterFlow Accelerator Analyzer Module Top Level Verilog Module .. 14
8 MeterFlow Accelerator Analyzer Module Top Level Schematic .. 14
9 Analyzer Module Constants Files .. 15

9.1 Analyzer module Verilog Constants File — ParserConstants.v .. 15
9.2 Analyzer module VHDL Constants File — ParserConstants.vhd ... 15

10 Sub-module Descriptions ... 16
10.1 Unified Flow Key Buffer - UFKB ... 16

10.1.1 Symbol .. 16
10.1.2 Highlights .. 16
10.1.3 Description .. 16
10.1.4 Implementation Information .. 16
10.1.5 File Names .. 16
10.1.6 Pin Descriptions .. 16

10.1.6.1 General Interface Signals .. 16
10.1.6.2 Parser Interface ... 17
10.1.6.3 Lookup and Update Engine Interface .. 17
10.1.6.4 State Processor Interface ... 18
10.1.6.5 Flow Insertion and Deletion Engine Interface ... 18

10.1.7 Verilog Module ... 19
10.1.8 VHDL Component .. 20

10.2 Lookup and Update Engine - LUE .. 21

10.2.1 Symbol .. 21
10.2.2 Highlights ...~... 21

10.2.3 Description .. 21

10.2.4 Implementation Information .. 21

10.2.5 File Names .. 21
10.2.6 Pin Descriptions .. 21

10.2.6.1 General Interface Signals .. 21

10.2.6.2 Unified Flow Key Buffer Interface ... 21

10.2.6.3 Cache Interface.. 22

10.2.6.4 Known Flow Interface' .. 23
10.2.7 Verilog Module ... 23

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 2 of 51 ..

NOAC EX. 1019 Page 267

NOAC Ex. 1019 Page 268

Technically Elite CONFIDENTIAL
10.2.8 VHDL Component .. 23

10.3 Analyzer CPU Interface and Control - ACIC ... 24

10.3.1 Symbol .. 24

10.3.2 Description .. 24

10.3.3 File Names .. 24

10.3.4 Pin Descriptions .. 24

10.3.4.1 General Interface Signals .. 24

10.3.4.2 Host Interface Signals ... 24

10.3.4.3 Cache Interface.. 25
10.3.4.4 State Processor Instruction Database Interface ... 26

10.3.5 Verilog Module ... 26

10.3.6 VHDL Component .. 26
10.4 Flow Insertion and Deletion Engine - FIDE... 27

10.4.1 Symbol .. 27

10.4.2 Highlights .. 27

10.4.3 Description .. 27

10.4.4 Implementation Information .. 27

10.4.5 File Names .. 27
10.4.6 Pin Descriptions .. 27

10.4.6.1 General Interface Signals .. 27
10.4.6.2 Unified Flow Key Buffer Interface ... 27

10.4.6.3 Cache Interface.. 28

10.4.7 Verilog Module ... 28

10.4.8 VHDL Component .. 29

10.5 State Processor Instruction Database - SPID .. 30

10.5.1 Symbol .. 30

10.5.2 Highlights 30
10.5.3 Description .. 30

10.5.4 Implementation Information .. 30

10.5.5 File Names .. 30

10.5.6 Pin Descriptions .. 30

10.5.6.1 General Interface Signals .. 30

10.5.6.2 Analyzer CPU Interface Control Interface .. 30

10.5.6.3 State Processor Interface ... 31

10.5.7 Verilog Module ... 31

10.5.8 VHDL Component .. 31
10.6 Unified Memory Controller - UMC .. 32

10.6.1 Symbol .. 32

10.6.2 Highlights .. 32

10.6.3 Description .. 32

10.6.4 Implementation Information .. 32

10.6.5 File Names .. 32

10.6.6 Pin Descriptions .. 32

10.6.6.1 General Interface Signals .. 32
10.6.6.2 Memory Interface .. 32

10.6.6.3 Cache Interface .. 33

10.6.7 Verilog Module ... 33

10.6.8 VHDL Component .. 34
10.7 Cache .. 35

10.7.1 Symbol .. 35
10.7.2 Highlights .. 35
10.7.3 Description .. 35

10.7.3.1 Priority .. 35
10.7.4 Implementation Information .. 36

10.7.5 File Names .. 36

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 3 of 51 -

NOAC EX. 1019 Page 268

NOAC Ex. 1019 Page 269

Technically Elite CONFIDENTIAL

10.7.6 Pin Descriptions .. 36

10.7.6.1 General Interface Signals .. 36

10.7.6.2 Unified Memory Controller Interface.. 36

10.7.6.3 Flow Insertion and Deletion Engine Interface ... 36
10.7.6.4 Analyzer CPU Interface Control Interface .. 37

10.7.6.5 Lookup Engine Interface ... 37
10.7.6.6 State Processor Interface ... 38

10.7.7 Verilog Module ... 38

10.7.8 VHDL Component .. 39
10.8 State Processor - SP .. 40

10.8.1 Symbol .. 40

10.8.2 Highlights .. 40

10.8.3 Description .. 40
10.8.4 Architecture ... 40

10.8.4.1 Scratch Pad Registers .. 40
10.8.4.2 Instruction Pointer and Stack .. 40

10.8.4.3 Flag Register ... 40

10.8.4.3.1 Flag Register Word Definition .. 40
10.8.4.4 Compare Block ... 41

10.8.4.5 Flow Key Pointer .. 41

10.8.4.6 Flow Entry Pointer .. 41
10.8.5 Instruction Definitions ... 41

10.8.5.1 Jump .. 41
10.8.5.2 Call .. 41

10.8.5.3 Return .. 41

10.8.5.4 Copy .. 42

10.8.5.5 Compare .. 42
10.8.5.6 Instruction Word Definition .. 42

10.8.6 Implementation Information .. 42
10.8.7 File Names .. 42

10.8.8 Pin Descriptions .. 42

10.8.8.1 General Interface Signals .. 42

10.8.8.2 Unified Flow Key Buffer Interface ... 42
10.8.8.3 Cache Interface .. 43

10.8.8.4 State Processor Interface ... 43

10.8.9 Verilog Module ... 44
10.8.10 VHDL Component .. 44

11 Appendix A - Multi-Packet State Processing.. 45
1 1.1 Overview ... 45

1 1.2 Analyzer Data Input Requirements ... 45
11.3 State-base Traffic Classification ... 45

11.3.1 Session Tracking ... 45
11.3.2 Server Announcement ... 46

11.3.2.1 Sun RPC Analysis ... 46

1 1.3.2.2 Process for Sun RPC Analysis .. 47

1 1.3.3 Port Mapper Operation ... 50
1 1.3.4 Service Announcement .. 50

11.3.5 In-stream Recognition and Extraction ... 50

11.3.5.1 Web-based Applications ... 50

Technically Elite MeterFlow Accelerator Analyzer Module Specification 0

Confidential Page 4 of 51 -

NOAC EX. 1019 Page 269

NOAC Ex. 1019 Page 270

Technically Elite CONFIDENTIAL

1 introduction

This document is designed to be the repository for all information related to the MeterFlow Accelerator

Analyzer Module. This specification is designed to provide the engineer with enough information to fully
implement the module. There will be revisions during and after the implementation process that will be
reflected in this document.

Each part of this specification describes a different aspect of the module. It concentrates on the interfaces

between the analyzer module and the other parts of the system. The other parts of the system include the

parser module, the host interface module and importantly the software that models, programs and tests the
system The key to a successful implementation is the interfaces between modules and between sub-module

and sub-module. Each interface is described in detail. Any changes to the interfaces may affect the entire

module and even the entire system. Care must be taken that each interface is understood completely before
implementation is begun.

2 Technically Elite MeterFlow Accelerator Analyzer Module

Highlights

Flexible Rule-based Traffic Classification

State-based Tracking of Traffic

Multiple Packets for Layer Processing

Internal Cache and Memory Controller

Direct High Bandwidth (64 bit) Memory Interface

SG/SDRAM Support

Programmable Rules/State Processor
Selectable Protocols in Flows

Future Protocols Support

Scalable System Design

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 5 of 51 ‘

NOAC EX. 1019 Page 270

NOAC Ex. 1019 Page 271

Technically Elite CONFIDENTIAL

3 Architectural Overview

The analyzer module consists five major sub-modules with several supporting sub-modules. The major sub-
modules are the flow lockup/update engine, the flow insertion and deletion engine, the state processor, the
cache, and the unified memory controller. Each of these sub-modules work in parallel to create and update
flows.

As a flow key enters the analyzer, the lookup engine attempts to find it in the flow database. If the flow
exists, the lookup engine retrieves the flow from the cache. It then makes a decision based on the state

information included in the flow entry to either send it to the state processor or not. In either case it updates
the flow entry. This updating consists of adding values to counters in the flow database entry. If a flow does
not exist, the state processor sends the flow key to the flow insertion and deletion engine which adds the
flow to the database.

The state processor updates the flow based on the current state and the flow key information. The state
processor processes single and multi packet protocol recognition. It may have to search through a series of

possible states to determine the flow’s actual state. The result of the state processor’s processing is a
consolidated flow entry. For example, a PointCast session will open multiple conversations that on a packet
by packet basis look like separate flows. Since each conversation is merely a subflow under the PointCast
master flow, a single flow that consolidates all of the information for the flow is desired.

The unified memory controller can be setup to work with various configurations of SDRAM or SGRAM. It
also controls the SRAM tag memory for shadowing of flow entries.

The cache is used to optimize memory bandwidth. On a typical network the packets will have a certain

amount of congruity. This means that the cache can have a high hit rate with .

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 6 of 51 -

NOAC EX. 1019 Page 271

NOAC Ex. 1019 Page 272

Technically Elite CONFIDENTIAL

3.1 Flow Database

The Flow Database consists of a series of 128 byte entries. Each entry completely describes a flow. The

format and information contained in the flow is described in section xxx. The database is organized into
buckets. Each bucket contains n flow entries. N is determined by the designer. Buckets are accessed via a

hash value created by the Parser based on information in the packet. This hash spreads the flows across the

database and is based on a proprietary Technically Elite algorithm. This method allows fast look up of an
entry while allowing for shallower buckets. The designer selects the bucket depth based on the amount of

memory attached to the analyzer and the number of bits of the hash value used. For example, for 128k flow
entries 16 Megabytes are required. Using a 16 bit hash gives two entries per bucket. This has been
empirically shown to be more than adequate for the vast majority of cases.

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 7 of 51 —

NOAC EX. 1019 Page 272

NOAC Ex. 1019 Page 273

Technically Elite CONFIDENTIAL

3.1.1 Extracted Input Data from Parser Diagram

Network Source Address (16)

Analyzer
Extracted Input Data

(96 bytes)

WW«

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 8 of 51 -

NOAC EX. 1019 Page 273

NOAC Ex. 1019 Page 274

Technically Elite CONFIDENTIAL

3.1.2 Flow Entry Description

3.2 Architectural Block Diagram

LookUp/Update
Englne - LUE

Analyzer CPU
lntertace And

Control - ACIC CPUlnterlace

Unllled Flow Key
Butler _ UFKB Stale Processor - SP

"UQ)..
(D
m.

5'..
m....
W
o0 State

Processor
lnstructlon
Database -

SPID

Unllled Memory
Flow Insertlon/ Controler - UMC

Deletion Englne -
FIDE

Memory Interface

Technically Elite MeterFlow Accelerator Analyzer Module Specification '

Confidential Page 9 of 51 ‘

NOAC EX. 1019 Page 274

NOAC Ex. 1019 Page 275

Technically Elite CONFIDENTIAL

4 Top Level MeterFIow Accelerator Analyzer Module Symbol

MemDatalnl6320]

AnalyzerSel_N
HostWrile
HostBlasLN
Holeait_N

HostAddress[21:O]

HoslByteEn_N[7:0)

HostDatalni6320]

ParserKeyDelim
ParserDataAvail

ParserDataI6310]

MemRAS_N[l :0]

MemCAS_N{3:O]
MemClkEn

MemCIkOut
MemWR_N

MemBA
MemDSF

MemByleEn_N[7:0)

MemAdddressH 1:0]

MemDataOutl63:0]
MemDirRead

AnaHoiseady_N

AnaHolealaOutl63z0]

AnalyzerReady

Confidential
Technically Elite MeterFlow Accelerator Analyzer Module Specification

Page 10 of 51

NOAC EX. 1019 Page 275

NOAC Ex. 1019 Page 276

Technically Elite CONFIDENTIAL

5 MeterFlow Accelerator Analyzer Module Top Level Pin
Descriptions

Reset__N IN Reset - active low.

reSoond to host access c cles.

5.1.1.1 General Interface Signals

When this signal is active the analyzer sets it’s registers to

MCLK IN Module Clock.

All internal and external transfers except for memory
transfers are s nchronized b this si_nal.

m- Width

their default condition and suspends operation. It will only

5.1.1.2

Memory Interface

mum—w
MemClkIn IN 1 Memory clock in.

This si nal is used to _enerate the memor interface timin.

Memory Row Address Strobe bus - active low.
* uses AN_MEM_RASWIDTH

---Memory Column Address Strobe bus— active low.* uses AN_MEM_CASWIDTI-I

Memory Clock Out.

This signal is used by synchronous memory for all

MemBA OUT Memory Bank Address.

Used by multi-bank memory to select the bank the current
oeration is to oerate on.

—I__
U

operations. MemClkIn is buffered and sent out on this pin.

MemByteEn_N

MemClkEn OUT 1 Memory Clock Enable.

Some memories require this signal to be disabled for a

MemClkOut OUT

This helps reduce skew between this clock and the other
si nals.

MemAddress

certain amount of time after reset.

MemWR_N 1

MemDataOut OUT

r-l

Memory Byte Enable bus— active low.
* uses AN_MEM_BEWIDTH

Memory Address bus.
* uses AN_MEM_AWIDTH

t-I

* uses AN_MEM_DWIDTH

* uses AN_MEM_DWIDTH

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 11 of 51 -

NOAC EX. 1019 Page 276

NOAC Ex. 1019 Page 277

Technically Elite CONFIDENTIAL
5.1.1.2 Memory Interface

mam-m— MemDirRead OUT Memory Data bus Direction is Read.

This signal is used to control the tri-state enable on the

bidirectional memory data bus. If MemDirRead is active

data is coming into the analyzer from the memory. If it is
inactive the anal zer is drivin data out to the memor .

5.1.1.3

Host Interface Signals

m

AnalyzerSeLN :I-Host interface Analyzer Select- active low.AnalyzerSeLN is sampled on the rising edge of MCLK. If it

HostWrite

is active, it signifies that the external host is attempting to
access the anal zer.

Write.

Write is sampled on the rising edge of MCLK. This signal is

only valid when AnalyzerSeLN is active. If this signal is

active, the host is attempting to write to the analyzer. Inactive

this signal sign signifies a read from the analyzer. It should
also be used to control the direction of the host data bus if it
is bidirectional.

Burst Last — active low.

HostBlast_N is sampled on the rising edge of MCLK.

HostBlast_N tells the analyzer that the current transfer is the
last transfer in this burst.

Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers

between itself and the analyzer. This could also be used by

additional interface logic to slow transfers so it can multiplex
the bus down to a smaller size without additional FIFOs. If

wait is active, HostRead _N is blocked.

Analyzer to Host Ready — active low.

AnaHostReady _N should be sampled on the rising edge of

MCLK. The analyzer returns AnaHostReady _N when the

current cycle is completed. For a write operation,

AnaHostReady _N means that the HostDataIn bus has been

latched. For a read operation AnaHostReady __N means that

the requested data is on the HostDataOut bus and is valid.
AnaHostRead _N is blocked b HostWait_N.
Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
AnalizerSeLN is active. This bus defines the first address in

this burst to access in the 32 Megabyte address space of the

analyzer. See Section x.x.x for the Address Utilization Map.
* Uses AN_HOST_AWIDTH

Host Byte Enable bus — Active low.

HostWait_N is sampled on the rising edge of MCLK.
* Uses AN_HOST_BEWIDTH

 HostBlast__N

HostWait_N

I.

AnaHOStReady_NI.
I.

IN *

HostAddress

HostByteEn_N

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 12 of 51 -

NOAC EX. 1019 Page 277

NOAC Ex. 1019 Page 278

Technically Elite CONFIDENTIAL
5.1.1.3 Host Interface Signals

mm— Descri-tion
HostDataIn IN Host Data Input bus.

HostDataIn is sampled on the rising edge of MCLK if
HostWrite is active and HostWait_N is inactive.
* Uses AN_HOST_DWIDTH

AnaHostDataOut OUT Analyzer Host Data Output bus.

AnaHostDataOut should be sampled on the rising edge of

MCLK. Data on this bus is valid during a read cycle when
AnaHostReady _N is active.
* Uses AN_HOST_DWIDTH

5.1.1.4

Parser Interface

WIDE—_—
Thissi_naltells the narser that the anal zer can accet data.
This signal tells the parser that the analyzer does not need
an more of the flow ke . *

ParserKeyDelim IN Parser Key Delimiter.

The ParserKeyDelim signal becomes active when the first

quadword of a new key is ready to transfer to the analyzer. It

goes inactive when the last quadword of the key is transferred
or Anal zerAbort Is active.

ParserDataAvail IN Parser Data Available.

If this si_nal is active the data on the ParserData bus is valid.

_-_I-

5.1.1.5 Known Flow Interface

-m Width
PacketRef OUT Packet Reference number bus.

This bus outputs the packet reference number copied from
the UFKB.

* Uses AN_FR_WIDTH
Protocol OUT * Protocol bus.

This bus outputs the highest level protocol the State

Processor has determined the packet contains.
* Uses AN_APP_WIDTH

KnownFlowStb OUT Known Flow Strobe.

_I.When this signal is active, the data on the PacketRef and theProtocol busses are valid.

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 13 of 51 *

NOAC EX. 1019 Page 278

NOAC Ex. 1019 Page 279

Technically Elite CONFIDENTIAL

6 MeterFlow Accelerator Analyzer Module Top Level VHDL
Entity

7 MeterFlow Accelerator Analyzer Module Top Level Verilog
Module

8 MeterFlow Accelerator Analyzer Module Top Level Schematic

Insert Schematic Here

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 14 of 51 -

NOAC EX. 1019 Page 279

NOAC Ex. 1019 Page 280

Technically Elite CONFIDENTIAL

9 Analyzer Module Constants Files

The analyzer module constants files contain a list of constants used to allow rapid configuration of the

module. For example the size of the Analyzer's input buffer data bus:

Verilog

‘define AN_UFKB_DWIDTH 64 // Unified Flow Key Buffer Data Bus Width

VHDL

constant AN_UFKB_DWIDTH : integer z: 64; -- Unified Flow Key Buffer Data Bus Width

9.1 Analyzer module Verilog Constants File - ParserConstants.v

Insert AnalyzerConstants. v here

9.2 Analyzer module VHDL Constants File - ParserConstants.vhd

Insert AnalyzerConstants. vhd here

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 15 of 51 -

NOAC EX. 1019 Page 280

NOAC Ex. 1019 Page 281

Technically Elite CONFIDENTIAL

10 Sub-module Descriptions

10.1 Unified Flow Key Buffer - UFKB

10.1.1 Symbol

10.1.2 Highlights

Scaleable implementation

Can be build from four separate dual port RAM cells

Wraps either RAM instantiation or can be synthesized latches

Separate read and write interfaces

10.1.3 Description

The Unified Flow Key Buffer is a wrapper for the buffers that are used to store the flow keys from the
Parser and modified flow keys from the Lookup and Update Engine and the State Processor. It is four

ported with separate read and write interfaces. The four connections are to the Parser/Parser Interface
Control, the Lookup and Update Engine, the State Processor and the Flow Insertion and Deletion Engine. ln '
the Unified Flow Key Buffer logic hides from the interface which of the buffers is being accessed.

When the first word of the flow key arrives from the Parser, the Lookup and Update Engine is notified. The

Lookup and Update Engine places the first address it wants on the LUEnUFKBAdd bus and asserts
LUEnUFKBRdReq. If the address requested is in the buffer the Unified Flow Key Buffer asserts
UFKBuLUERdy. If not it waits for either the data to arrive or the transfer is terminated. Once the Lookup
and Update Engine finishes processing the flow key it asserts LUEDone. At the same time it will assert
LUEHoldBuf. LUEHoldBuf tells the system that the buffer is to be sent to the State Processor.

The State Processor and Flow Insertion and Deletion Engine have similar interfaces except that the data is

assumed to be already in the buffer so no ready is returned. Also Flow Insertion and Deletion Engine has no
need to hold the buffer for another process so that once FIDEDone is asserted the buffer is freed.

10.1.4 Implementation Information

The module can be synthesized or RAM cells can be instantiated into the wrapper. The instantiated RAM
should be four separate dual ported RAM cells.

The RAM must complete a write or read in a single cycle with simultaneous read and write to SEPARATE
locations.

10.1.5 File Names

Top: UFKB.v(hd)

Uses: AnalyzerConstants.v(hd), Generic4PortRAM.v(hd)

10.1.6 Pin Descriptions

10.1.6.1 General Interface Signals

”mm

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 16 of 51 .

NOAC EX. 1019 Page 281

NOAC Ex. 1019 Page 282

Technically Elite CONFIDENTIAL
10.1.6.1

-m_
Reset - active 10W-

_-_Module Clock-
_-_Anal zer Enable bit from the control re_ister

General Interface Signals

10.1.6.2

Descrition

AnalyzerReady OUT Analyzer Ready.
This si_nal tells the narser that the anal zer can acceot data.

AnalyzerAbort '-Analyzer Abort.This signal tells the parser that the analyzer does not need

any more of the flow key. It is generated if the Lookup and

ParserKeyDelim

ParserDataAvail

Update Engine asserts LUEDone and not LUEHoldBuf

10.1.6.3

Parser Interface

before ParserKe Delim _oes inactive.

Parser Key Delimiter.

The ParserKeyDelim signal becomes active when the first

word of a new key is ready to transfer to the analyzer. It goes
inactive when the last word of the kc is transferred.

Parser Data Available.

If this signal is active, the data on the ParserData bus is
valid.

Lookup and Update Engine Interface

mm— Descrition

UFKBuLUEData OUT Unified Flow Key Buffer to Lookup and Update Engine read
Data bus.

* Uses AN_UFKB_DWIDTH

LUEnUFKBData IN * Lookup and Update Engine to Unified Flow Key Buffer write

-I- * Uses AN_ UFKB _DWIDTH

Lookup and Update Engine to Unified Flow Key Buffer
Address bus.

* Uses AN_ UFKB _AWIDTH

FlowKeySt OUT 1 Flow Key Start.
This signal tells the Lookup and Update Engine that the

Unified Flow Key Buffer module has placed the first word of
a flow ke buffer.

_---_Read .

—--_—Error. Asserted if a read re uesl times out.

Re uest. '

—_Write Strobe. -

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 17 of 51 q

NOAC EX. 1019 Page 282

NOAC Ex. 1019 Page 283

Technically Elite CONFIDENTIAL
10.1.6.3 Lookup and Update Engine Interface

“mm
LUEDone IN Lookup and Update Engine Done.

This input is used to tell the Unified Flow Key Buffer that the

Lookup and Update Engine has finished with the current

flow. The Unified Flow Key Buffer also uses this signal to
. increment it’s internal pointer so that the next address from

Looku- and U date En_ine will noint to the next flow buffer.

LUEHoldBuf IN 1 Lookup and Update Engine Hold Buffer.

This input is used to tell the Unified Flow Key Buffer that the

Lookup and Update Engine is transferring processing of this
buffer to the State Processor.

10.1.6.4 State Processor Interface

—-—-* Uses AN_UFKB_AWIDTH

—--_* Uses AN_ UFKB _AWIDTH

--* Uses AN_ UFKB _AWIDTH

SPFlowKeyAv OUT State Processor Flow Key Available.

This signal tells the State Processor that the Unified Flow
Ke Buffer module a flow ke for it to .rocess.

SPrUFKBWrStb —_ State Processor to Unified Flow Ke Buffer Write Strobe.
SPDone IN State Processor Done.

This input is used to tell the Unified Flow Key Buffer that the
State Processor has finished with the current flow. The

Unified Flow Key Buffer also uses this signal to increment

it’s internal pointer so that the next address from State
Processor will noint to the next flow buffer.

SPHoldBuf IN 1 State Processor Hold Buffer.

This input is used to tell the Unified Flow Key Buffer that the-I-State Processor is transferring processing of this buffer to theFlow Insertion and Deletion En ine.

10.1.6.5

 Flow Insertion and Deletion Engine Interface

nun-_-
UFKBuFIDEData OUT Unified Flow Key Buffer to Flow Insertion and Deletion

Engine read Data bus.

FIDEnUFKBAdd
* Uses AN_UFKB_AWIDTH

FIDEFlowKeyAv OUT 1

Flow Insertion and Deletion Engine to Unified Flow Key
Buffer Address bus.

* Uses AN_ UFKB _AWIDTH

Flow Insertion and Deletion Engine Flow Key Available.

This signal tells the Flow Insertion and Deletion Engine that

the Unified Flow Key Buffer module a flow key for it to
process.

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 18 of 51 Q:

NOAC EX. 1019 Page 283

NOAC Ex. 1019 Page 284

Technically Elite CONFIDENTIAL
10.1.6.5 Flow Insertion and Deletion Engine Interface

-III Width

FIDEDone I.Flow Insertion and Deletion Engine Done.
This input is used to tell the Unified Flow Key Buffer that the

10.1.7 Verilog Module

 Flow Insertion and Deletion Engine has finished with the

current flow. The Unified Flow Key Buffer also uses this

signal to increment it’s internal pointer so that the next

address from Flow Insertion and Deletion Engine will point
to the next flow buffer.

module UFKB(Reset_N, MCLK ,AnalyzerEn ,AnalyzerReady ,AnalyzerAbort

,ParserKeyDelim ,ParserDataAvail ,UFKBuLUEData ,LUEnUFKBData

,LUEnUFKBAdd ,FlowKeySt ,UFKBuLUERdy ,UFKBuLUEErr ,LUEnUFKBRdReq
,LUEnUFKBWrStb ,LUEDone ,LUEHoldBuf ,UFKBuSPData ,SPrUFKBData

,SPrUFKBAdd ,SPFlowKeyAv ,SPrUFKBWrStb ,SPDone ,SPHoldBuf ,UFKBuFIDEData

,FIDEnUFKBAdd ,FIDEFlowKeyAv ,FIDEDone);

// General Interface Interface

input Reset_N;

input MCLK;

input AnalyzerEn;
// Parser Interface

output AnalyzerReady;

output AnalyzerAbort;

input ParserKeyDelim;

input ParserDataAvail;

// Lookup and Update Engine Interface

output [‘AN_UFKB_DNIDTH-1 : 0] UFKBuLUEData;

input [‘AN_UFKB_DNIDTH-1 : 0] LUEnUFKBData;

input [‘AN_UFKB_AWIDTH-1 : O] LUEnUFKBAdd;

output FlowKeySt;

output UFKBuLUERdy;

output UFKBuLUEErr;

input LUEnUFKBRdReq;

input LUEnUFKBWrStb;

input LUEDone;

input LUEHoldBuf;
// State Processor Interface

output [‘AN_UFKB_DNIDTH—1 : 0] UFKBuSPData;

input [‘AN_UFKB_DWIDTH-1 : O] SPrUFKBData;

input [‘AN_UFKB_AWIDTH-l : O] SPrUFKBAdd;

output SPFlowKeyAv;

input SPrUFKBWrStb;

input SPDone;
input SPHoldBuf;

// Flow Insertion and Deletion Engine

output [‘AN_UFKB_DWIDTH-1 : O] UFKBuFIDEData;

input [‘AN_UFKB_AWIDTH-l : O] FIDEnUFKBAdd;

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 19 of 51 ‘

NOAC EX. 1019 Page 284

NOAC Ex. 1019 Page 285

Technically Elite CONFIDENTIAL
output FIDEFlowKeyAv;

input FIDEDone;

10.1.8 VHDL Component

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 20 of 51 P

NOAC EX. 1019 Page 285

NOAC Ex. 1019 Page 286

Technically Elite CONFIDENTIAL

10.2Lookup and Update Engine - LUE

10.2.1 Symbol

10.2.2 Highlights

Looks up flow entries

Compares flow key from parser to flow entries

Updates packet count and byte count tables

64 bit byte count adder with early out

Checks flow state to see if processing by the state processor is required

10.2.3 Description

The Lookup and Update Engine begins processing as soon as a flow key arrives from the parser. The first

transfer from the parser contains a hash value that is used as an offset into the flow entry database. The LUE

checks the entry to see if it matches the flow key by comparing the unique identification for that flow. If

there is a match, the LUE updates the counters for the flow entry. The LUE also check the entry‘s flow state
to see if the flow key needs to be sent to the state processor.

The Lookup and Update Engine also outputs on a special data bus, two 16 bit values. One value is a word

from the flow key that can be a packet identifier or any thing else the design wants. The other is the protocol

identifier for the flow. This can be programmed to output this data on every packet or only for packets that
the corresponding flow is in the IDENTIFIED state.

10.2.4 Implementation Information

10.2.5 File Names

Top: LUE.v(hd)

Uses: AnalyzerConstants.v(hd)

10.2.6 Pin Descriptions

10.2.6.1 General Interface Signals

m-__—
—-__
MCLK -_Module Clock.
_-_Anal zer Enable bit from the control re ister

10.2.6.2 Unified Flow Key Buffer Interface

UFKBuLUEData IN Unified Flow Key Buffer to Lookup and Update Engine read
Data bus

* Uses AN_UFKB_DWIDTH

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 21 of 51 *

NOAC EX. 1019 Page 286

NOAC Ex. 1019 Page 287

Cache Interface

O O

Technically Ellte CONFIDENTIAL

* Uses AN_ UFKB _DWIDTH

Lookup and Update Engine to Unified Flow Key Buffer
Address bus. ,

FlowKeySt IN

a flow ke buffer.

UFKBuLUERdy --Unified Flow Key Buffer to Lookup and Update EngineRead .

UFKBuLUEErr IN Unified Flow Key Buffer to Lookup and Update Engine
Error. Asserted if a read re uest times out.

Lookup and Update Engine has finished with the current
flow. The Unified Flow Key Buffer also uses this signal to

increment it’s internal pointer so that the next address from

buffer to the State Processor.

10.2.6.3

Sinal IE] Width .
CaLUEReady Cache to Lookup Engine Ready.

LUEnCaData OUT * Lookup Engine to Cache Data bus.
* Uses AN_CA_DWIDTH

LUEAdd OUT Lookup Engine to Cache Address bus.
* Uses AN_CA_AWIDTH

LUEMemReq OUT - Lookup Engine Memory Request.

10.2.6.2 Unified Flow Key Buffer Interface

* Uses AN_ UFKB _AWIDTH

LUEnUFKBRdReq OUT Lookup and Update Engine to Unified Flow Key Buffer Read
Rea uest.

date En ine will .oint‘ to the next flow buffer.

This signal tells the Lookup Engine that during a read, the

If this signal is active, the address on the LUEAdd bus is

LUEMemWr

m- Width Descrition

LUEnUFKBData --Lookup and Update Engine to Unified Flow Key Buffer write

Flow Key Start.

This signal tells the Lookup and Update Engine that the

LUEnUFKBWrStb OUT Lookup and Update Engine to Unified Flow Key Buffer
Write Strobe.

LUEDone OUT Lookup and Update Engine Done.

Lookup and Update Engine Hold Buffer.

This input is used to tell the Unified Flow Key Buffer that the

data on the CaLUEData bus is valid and during a write that

the Cache has latched the data on the LUEnCaData bus.

valid.

Lookup Engine Memory Write.

Data bus.

LUEnUFKBAdd .-
Unified Flow Key Buffer module has placed the first word of

This input is used to tell the Unified Flow Key Buffer that the

LUEHoldBuf OUT

Lookup and Update Engine is transferring processing of this

IN

CaLUEData IN Cache to Lookup Engine Data bus.
* Uses AN_CA_DWIDTH

If this sinal is active, the current transaction is a write..

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 22 of 51 -

NOAC EX. 1019 Page 287

NOAC Ex. 1019 Page 288

Technically Elite CONFIDENTIAL
10.2.6.4 Known Flow Interface

mm—
PacketRef OUT Packet Reference number bus,

This bus outputs the packet reference number copied from
the UFKB.

* Uses AN_FR_WIDTH
Protocol Protocol bus.

This bus outputs the highest level protocol the State

Processor has determined the packet contains.
* Uses AN_PRO_WIDTH

KnownFlowStb OUT Known Flow Strobe.

When this signal is active, the data on the PacketRef and the
Protocol busses are valid.

10.2.7 Verilog Module

module LUE(Reset_N, MCLK ,AnaIyzerEn ,UFKBuLUEData ,LUEnUFKBData

,LUEnUFKBAdd ,FIowKeySt ,UFKBuLUERdy ,UFKBuLUEErr ,LUEnUFKBRdReq
,LUEnUFKBWrStb ,LUEDone ,LUEHoIdBuf ,CaLUEData ,LUEnCaData ,LUEAdd

,LUEMemReq ,LUEMemWr);

// General Interface Interface

input Reset_N;

input MCLK;

input AnaiyzerEn;

// Unified FIow Key Buffer Interface

input [‘AN_UFKB_DWIDTH—1 : O] UFKBuLUEData;

output [‘AN_UFKB_DNIDTH-I : 0] LUEnUFKBData;

output [‘AN_UFKB_AWIDTH-I : O] LUEnUFKBAdd;

input FIowKeySt;

input UFKBuLUERdy;

input UFKBuLUEErr;

output LUEnUFKBRdReq;
output LUEnUFKBWrStb;

output LUEDone;

output LUEHoIdBuf;
// Cache Interface

input CaLUEReady;

input [‘AN_CA_DWIDTH-I : 0] CaLUEData;

output [‘AN_CA_DWIDTH-1 : 0] LUEnCaData;

output [‘AN_CA_AWIDTH-I : 0] LUEAdd;

output LUEMemReq;

output LUEMemWr;
// Known FIow Interface

output [‘AN_FR_WIDTH-I : O] PacketRef;

output [‘AN_PRO_WIDTH-1 : O] ProtocoI;

output KnownFIowStb;

10.2.8 VHDL Component

Technically Elite MeterFlow Accelerator Analyzer Module Specification -
Confidential Page 23 of 51 A.

NOAC EX. 1019 Page 288

NOAC Ex. 1019 Page 289

Analyzersel—N .-

Technically Elite CONFIDENTIAL

10.3Analyzer CPU Interface and Control - ACIC

10.3.1 Symbol

10.3.2 Description

The Analyzer CPU Interface Control module controls the communication between the external CPU and the

Analyzer. The ACIC contains MUX’s for the CPU read back path. It also contains the control register for
the Analyzer.

10.3.3 File Names

Top: ACIC.v(hd)

Uses: AnalyzerConstants.v(hd)

10.3.4 Pin Descriptions

 10.3.4.1 General Interface Signals

-Iml-—_
—-_

 10.3.4.2 Host Interface Signals

WEE——
Host interface Analyzer Select - active low.

AnalyzerSeLN is sampled on the rising edge ofMCLK. If it

is active, it signifies that the external host is attempting to
access the anal zer.

Write.

Write is sampled on the rising edge of MCLK. This signal is

only valid when AnalyzerSeLN is active. If this signal is
active, the host is attempting to write to the analyzer. Inactive

this signal sign signifies a read from the analyzer. It should
also be used to control the direction of the host data bus if it

is bidirectional.

Burst Last - active low.

HostBlast_N is sampled on the rising edge of MCLK.

HostBlast_N tells the analyzer that the current transfer is the
last transfer in this burst.

Wait — active low.

HostWait_N is sampled on the rising edge of MCLK. The
host asserts HostWait_N when it wishes to slow transfers

between itself and the analyzer. This could also be used by

additional interface logic to slow transfers so it can multiplex
the bus down to a smaller size without additional FIFOs. If

wait is active, HostRead _N is blocked.

.I.
HOStBlaSt—N .-

I.
HostWait__N

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 24 of 51 ‘

NOAC EX. 1019 Page 289

NOAC Ex. 1019 Page 290

Technically Elite CONFIDENTIAL
10.3.4.2

“IE——
AnaHostReady_N OUT Analyzer to Host Ready — active low.

‘ AnaHostReady _N should be sampled on the rising edge of
MCLK. The analyzer returns AnaHostReady _N when the

current cycle is completed. For a write operation,

AnaHostReady _N means that the HostDataln bus has been

latched. For a read operation AnaHostReady _N means that

the requested data is on the HostDataOut bus and is valid.
AnaHostRead _N is blocked b HostWait_N.
Host Address bus.

HostAddress is sampled on the rising edge of MCLK if
AnalizerSeLN is active. This bus defines the first address in

Hosmataln '-

this burst to access in the 32 Megabyte address space of the

AnaHostDataOut

analyzer. See Section x.x.x for the Address Utilization Map.

10.3.4.3

* Uses AN_HOST_AWIDTH

mm Width -

Host Byte Enable bus — Active low.

CaACICReady Cache to Analyzer CPU Interface Control Ready.

Host Interface Signals

 HostAddress

MCLK. Data on this bus is valid during a read cycle when

AnaHostReady _N is active.
* Uses AN_HOST_DWIDTH

 Cache Interface

HostWait_N is sampled on the rising edge of MCLK.

Host Data Input bus.

HostDataIn is sampled on the rising edge of MCLK if
HostWrite is active and HostWait_N is inactive.

* Uses AN_I-IOST_DWIDTH

AnaHostDataOut should be sampled on the rising edge of

IN

This signal tells the Analyzer CPU Interface Control that

during a write that the Cache has latched the data on the
ACICnCaData bus.

CaACICData IN Cache to Analyzer CPU Interface Control Data bus.
* Uses AN_CA_DWIDTH

ACICAdd OUT Analyzer CPU Tnterface Control to Cache Address bus.
* Uses AN_CA_AWIDTH

ACICMemReq OUT Analyzer CPU Interface Control Memory Request.
If this signal is active, the address on the ACICAdd bus is
valid.

ACICMemWr OUT 1 Analyzer CPU Interface Control Memory Write.
If this si - nal is active, the current transaction is a write..

* Uses AN_HOST_BEWIDTH

Analyzer Host Data Output bus.

during a read, the data on the CaACICData bus is valid and

ACICoCaData OUT Analyzer CPU Interface Control to Cache Data bus
* Uses AN_CA DWIDTH

Technically Elite MeterFlow Accelerator Analyzer Module Specification .
Confidential Page 25 of 51 ‘

NOAC EX. 1019 Page 290

NOAC Ex. 1019 Page 291

Technically Elite CONFIDENTIAL
1&3AA

1 Widthw
ACICoSPIDWr OUT Analyzer CPU Interface Control to State Processor

Instruction Database Write Strobe

ACICoSPIDAdd OUT * Analyzer CPU Interface Control to State Processor
Instruction Database Address bus

* uses AN_SPID_AWIDTH

State Processor Instruction Database Data bus

* uses AN_SPID _DWIDTH

ACICoSPIDData OUT Analyzer CPU Interface Control to State Processor
Instruction Database Data bus

* uses AN_SPID _DWIDTH

10.3.5 Verilog Module

State Processor Instruction Database Interface

module ACIC(Reset_N, MCLK ,AnalyzerEn ,AnalyzerSeI_N ,HostWrite

,HostBlast_N ,Hostwait_N ,AnaHostReady_N ,HostAddress ,HostByteEn_N
,HostDataIn ,AnaHostDataOut ,CaACICReady ,CaACICData ,ACICoCaData

,ACICAdd , ACICMemReq ,ACICMemWr ,ACICoSPIDWr ,ACICoSPIDAdd ,SPIDData
,ACICoSPIDData);

// General Interface Interface

input Reset_N;

input MCLK;

output AnalyzerEn;
// Host Interface

input AnalyzerSel_N;

input HostWrite;

input HostBIast_N;

input HostWait_N;

output AnaHostReady_N;

input [‘AN_HOST_AWIDTH—1 : 0] HostAddress;

input [‘AN_HOST_BEWIDTH-1 : 0] HostByteEn_N;

input [‘AN_HOST_DWIDTH-1 : 0] HostDataIn;

output [‘AN_HOST_DNIDTH-1 : O] AnaHostDataOut;
// Cache Interface

input CaACICReady;

input [‘AN_CA_DWIDTH-1 : 0] CaACICData;

output [‘AN_CA_DWIDTH-l : O] ACICoCaData;

output [‘AN_CA_AWIDTH-1 : 0] ACICAdd;

output ACICMemReq;

output ACICMemWr;

// State Processor Instruction Database Interface

output ACICoSPIDWr;

output [‘AN_SPID_AWIDTH-1 : O] ACICoSPIDAdd;

input [‘AN_SPID_DWIDTH-1 : 0] SPIDData;

output [‘AN_SPID_DwIDTH-1 : O] ACICoSPIDData;

10.3.6 VHDL Component

i

Technically Elite MeterFlow Accelerator Analyzer Module Specification -

Confidential Page 26 of 51 ‘

NOAC EX. 1019 Page 291

NOAC Ex. 1019 Page 292

Technically Elite CONFIDENTIAL

10.4 Flow Insertion and Deletion Engine - FIDE

10.4.1 Symbol

10.4.2 Highlights

0 Maintains flow entry database

0 Deletes and inserts flows based on a LRU algorithm

- Builds flows from flow key and State Processor instructions

10.4.3 Description

The Flow Insertion and Deletion Engine maintains the flow entry database. Flows are grouped into buckets

by hash value. When a new flow needs to be inserted first the FIDE sees which of the entries
in the corresponding bucket is the oldest. It then builds the flow entry from the flow key and State Processor
instructions. Finally it places the entry in the database.

10.4.4 Implementation Information

10.4.5 File Names

Top: FIDE.v(hd)

Uses: AnalyzerConstants.v(hd)

10.4.6 Pin Descriptions

 10.4.6.1

; m Width .
Reset_N -_Reset — active low.
MCLK _— Module Clock.

I—

 General Interface Signals

IN

IN

Anal zerEn Anal zer Enable bit from the control re_ister

10.4.6.2 Unified Flow Key Buffer Interface

UFKBuFIDEData I * Unified Flow Key Buffer to Flow Insertion and Deletion
IN

Engine read Data bus.

FIDEHUFKBAdd

N 1

* Uses AN_UFKB_AWIDTH

FIDEFlowKeyAv I

Flow Insertion and Deletion Engine to Unified Flow Key
Buffer Address bus.

* Uses AN_ UFKB _AWIDTH

Flow Insertion and Deletion Engine Flow Key Available.

This signal tells the Flow Insertion and Deletion Engine that
the Unified Flow Key Buffer module a flow key for it to
process.

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 27 of 51 ~

NOAC EX. 1019 Page 292

NOAC Ex. 1019 Page 293

Technically Elite CONFIDENTIAL
10.4.6.2 Unified Flow Key Buffer Interface

Emu—mm—

FIDEDone I.Flow Insertion and Deletion Engine Done.
This input is used to tell the Unified Flow Key Buffer that the

10.4.6.3

 Flow Insertion and Deletion Engine has finished with the

current flow. The Unified Flow Key Buffer also uses this

signal to increment it’s internal pointer so that the next

address from Flow Insertion and Deletion Engine will point
to the next flow buffer.

-Iml Width »
CaFIDEReady IN Cache to Flow Insertion and Deletion Engine Ready.

This signal tells the Flow Insertion and Deletion Engine that

during a write that the Cache has latched the data on the
FIDEnCaData bus.

CaFIDEData IN Cache to Flow Insertion and Deletion Engine Data bus.
* Uses AN_CA_DWIDTH

_* Uses AN_CA_DWIDTI-l
FIDEAdd OUT Flow Insertion and Deletion Engine to Cache Address bus.

* Uses AN_CA_AWIDTH

FIDEMemReq OUT

If this signal is active, the address on the FIDEAdd bus is

Cache Interface

during a read, the data on the CaFIDEData bus is valid and

FIDEnCaData Flow Insertion and Deletion Engine to Cache Data bus.

Flow Insertion and Deletion Engine Memory Request.

10.4.7 Verilog Module

valid.

Flow Insertion and Deletion Engine Memory Write.
If this si_nal is active, the current transaction is a write..

module FIDE(Reset_N, MCLK ,AnalyzerEn ,UFKBuFIDEData ,FIDEnUFKBAdd
,FIDEFlowKeyAv ,FIDEDone ,CaFIDEData ,FIDEnCaData ,FIDEAdd ,FIDEMemReq
,FIDEMemwr);

// General Interface Interface

input Reset_N;

input MCLK;

input AnalyzerEn;

// Unified Flow Key Buffer Interface

input [‘AN_UFKB_DWIDTH-l : 0] UFKBuFIDEData;
output [‘AN_UFKB_AWIDTH-1 : 0] FIDEnUFKBAdd;
input FIDEFlowKeyAv;
output FIDEDone;
// Cache Interface

input CaFIDEReady;

input [‘AN_CA_DWIDTH-1 : O] CaFIDEData;
output [‘AN_CA_DNIDTH-1 : 0] FIDEnCaData;

Technically Elite Meter-Flow Accelerator Analyzer Module Specification

Confidential Page 28 of 51 -

NOAC EX. 1019 Page 293

NOAC Ex. 1019 Page 294

Technically Elite CONFIDENTIAL
output [‘AN_CA_ANIDTH-1 : O] FIDEAdd;

output FIDEMemReq;

output FIDEMemWr;

10.4.8 VHDL Component

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 29 of 51 -

NOAC EX. 1019 Page 294

NOAC Ex. 1019 Page 295

Technically Elite CONFIDENTIAL

1 0.5State Processor Instruction Database - SPID

10.5.1 Symbol

10.5.2 Highlights

0 Scaleable implementation

0 Wraps either RAM or ROM instantiation or can be synthesized latches

10.5.3 Description

The State Processor Instruction Database module is a wrapper for the storage medium used to hold the State
Processor Instruction database. Only the CPU can write this memory. The CPU interface is active if

AnalyzerEn is active.

10.5.4 Implementation Information

The module can be synthesized or a RAM or ROM cell can be instantiated into the wrapper.

10.5.5 File Names

Top: SPID.v(hd)

Uses: AnalyzerConstants.v(hd)

10.5.6 Pin Descriptions

10.5.6.1 General Interface Signals

Reset - active low.

Module Clock.

Anal zer Enab bit from the control re ister

10.5.6.2 Analyzer CPU Interface Control Interface

Instruction Database Write Strobe

ACICoSPIDAdd IN * Analyzer CPU Interface Control to State Processor
Instruction Database Address bus

* uses AN_SPID_AWIDTH

* uses AN_SPID _DWIDTH

--Analyzer CPU Interface Control to State Processor .Instruction Database Data bus

* uses AN_SPID _DWIDTH .

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 30 of 51 -

NOAC EX. 1019 Page 295

NOAC Ex. 1019 Page 296

it"
‘8

Technically Elite CONFIDENTIAL
10.5.6.3 State Processor Interface

mm— ~

SPrSPIDAdd --State Processor to State Processor Instruction DatabaseAddress bus

10.5.7 Verilog Module

* uses AN_SPID_AWIDTH

module SPID(Reset_N, MCLK ,AnaIyzerEn ,ACICoSPIDWr ,ACICoSPIDAdd
,SPIDData ,ACICoSPIDData ,SPrSPIDAdd);

// Genera] Interface Interface

input Reset_N;

input MCLK;

input AnalyzerEn;

// Anaiyzer CPU Interface Controi Interface

input ACICoSPIDWr;

input [‘AN_SPID_AWIDTH-l : 0] ACICoSPIDAdd;

output [‘AN_SPID_DWIDTH-1 : OJ SPIDData;

input [‘AN_SPID_DWIDTH-I : 0] ACICoSPIDData;
// State Processor Interface

input [‘AN_SPID_ANIDTH-1 : 0] SPrSPIDAdd;

10.5.8 VHDL Component

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 31 of 51 ‘

NOAC EX. 1019 Page 296

NOAC Ex. 1019 Page 297

Technically Elite CONFIDENTIAL

10.6Unified Memory Controller - UMC

10.6.1 Symbol

10.6.2 Highlights

0 Supports Both SDRAM and SGRAM
o Maintains RAM refresh

10.6.3 Description

The Unified Memory Controller module controls the caches’ access to the flow database contained in
external RAM. Synchronous DRAM is controlled through a series of instructions feed to the RAM through
the control pins. Synchronous DRAM requires at startup a specific series of commands for initialization.
The Unified Memory Controller handles both processes thorough a state machine. Since the nature of the
flow database requires random access, there is little use in attempting to keep multiple banks open. Auto-
refresh is continuous when memory is not being accessed by the cache.

10.6.4 Implementation Information

The Unified Memory Controller module is implemented as a Moore type finite state machine. Each of the
outputs of the state machine are registered to assure maximum setup time for the external device.

10.6.5 File Names

Top: UMC.v(hd)

Uses: AnalyzerConstants.v(hd)

10.6.6 Pin Descriptions

10.6.6.1 General Interface Signals

-m Width
-_—
MCLK Module Clock

Anal zerEn I Anal zer Enable bit from the control re ister

 ii

Memory clock in.
This si nal is used to

Memory Row Address Strobe bus — active low.
* uses AN MEM RASWIDTH

Memory Column Address Strobe bus— active low.
* uses AN_MEM_CASWIDTH

Memory Clock Enable.

Some memories require this signal to be disabled for a
certain amount of time after reset.

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 32 of 51 —

NOAC EX. 1019 Page 297

NOAC Ex. 1019 Page 298

Technically Elite CONFIDENTIAL
10.6.6.2 Memory Interface

WHEE— Descri-tion
MemClkOut OUT 1 Memory Clock Out.

This signal is used by synchronous memory for all

operations. MemClkIn is buffered and sent out on this pin.

MemBA OUT 1 Memory Bank Address.

Used by multi-bank memory to select the bank the current
oeration is to oerate on.

Memo Secial Function select.

Memory Byte Enable bus— active low.
* uses AN_MEM_BEWIDTH

Memory Address bus.
* uses AN_MEM_AWIDTH

Memory Data Input bus.
* uses AN_MEM_DWIDTH

Memory Data Output bus.
* uses AN_MEM_DWIDTH

Memory Data bus Direction is Read.

This signal is used to control the tri-state enable on the
bidirectional memory data bus. If MemDirRead is active

data is coming into the analyzer from the memory. If it is
inactive the anal zer is drivin data out to the memor .

 10.6.6.3

mm-
UMCoCaReady IN

Cache Interface

 Unified Memory Controller to Cache Ready.

This signal tells the Cache that during a read, the data on the
UMCoCaData bus is valid and during a write that the

Unified Memory Controller has latched the data on the
CaUMCData bus.

UMCoCaData IN * Unified Memory Controller to Cache Data bus.
* Uses AN_CA_DWIDTH

CaUMCData OUT * Cache to Unified Memory Controller Data bus.
* Uses AN_CA_DWIDTl-l

Cache to Unified Memory Controller Address bus.
* Uses AN_CA_AWIDTI-l

Cache Memory Request.

If this signal is active, the address on the CaUMCAdd bus is
valid.

Cache Memory Write.
If this si nal is active, the current transaction is a write..

Oa:c:Eo>a.a. oca

I

10.6.7 Verilog Module

module UMC(Reset_N, MCLK ,AnalyzerEn ,MemCikIn ,MemRAS_N ,MemCAS_N

,MemClkEn ,MemClkOut ,MemWR_N ,MemBA ,MemDSF ,MemByteEn_N ,MemAddress

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 33 of 51 *

NOAC EX. 1019 Page 298

NOAC Ex. 1019 Page 299

Technically Elite CONFIDENTIAL

,MemDataIn ,MemDataOut ,MemDirRead ,UMCoCaReady ,UMCoCaData ,CaUMCData
,CaUMCAdd ,CaMemReq ,CaMemwr);

// General Interface Interface

input Reset_N;

input MCLK; \

input AnalyzerEn;

// Memory Interface

input MemClkIn;

output [‘AN_MEM_RASWIDTH-l

output [‘AN_MEM_CASWIDTH-l

output MemClkEn;

output MemClkOut;

output MemWR_N;

output MemBA;

output MemDSF;

output [‘AN_MEM_BEWIDTH-1 :

output [‘AN_MEM_AWIDTH-1 : 0] MemAddress;

input [‘AN_MEM_DWIDTH-1 : O] MemDataIn;

output [‘AN_MEM_DWIDTH-1 : O] MemDataOut;
output MemDirRead;
// Cache Interface

input UMCoCaReady;
input [‘AN_CA_DWIDTH—1

output I‘AN_CA_DWIDTH—l

output [‘AN_CA_ANIDTH-1 :

output CaMemReq;

output CaMemWr;

: O] MemRAS_N;

: 0] MemCAS_N;

: O] UMCoCaData;

: O] CaUMCData;

0] CaUMCAdd;

10.6.8 VHDL Component

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidenfial Page34of51

O] MemByteEn_N;

NOAC EX. 1019 Page 299

NOAC Ex. 1019 Page 300

Technically Elite CONFIDENTIAL

10. 7 Cache

10.7.1 Symbol

10.7.2 Highlights

0 Fully associative

0 True least recently used cache updating
o Simultaneous one write and two reads.

10.7.3 Description

The Cache module contains a fully associative, true LRU cache memory. Full associatively is achieved

through the use of a content addressable memory (CAM). The need for a fully associative cache arises from
the fact that the hash uses to generate the initial look up into the flow entry database spreads the entries

pseudo randomly throughout the memory. Each hash value corresponds to a bucket containing N flow
entries. N is set by the designer (see section xxx).

The Cache can service two read transfers at one time. If there are more than two read requests active at one
time the Cache services them in the order shown in section xxx.

The CAM contains the hash value associated with the corresponding bucket in the cache memory. When

there is a cache hit, the CAM produces the most significant bits of the address in cache memory where the

bucket is stored. The cache then accesses the cache memory at the address indicated concatenating the

lower address bits provided by the requesting module. The cache then remembers that the requesting

module had a cache hit and the memory location returned. This allows a cache lookup for a requesting

module to occur only once per request. When the requesting module requires a different bucket, it drops

then again raises its request and another CAM cycle is initiated.

The least recently used algorithm requires the CAM to also be a stack. When there is a cache hit the CAM

location that produced the hit is put on the top of the stack. The other locations above the hit location are

shifted down to fill in the gap. If there is a miss, the bottom location is read to determine the address in the

cache memory to put the new bucket. All the locations shifted down as normally. Finally the new hash value

and cache memory address are put at the top of the stack.

10.7.3.1 Priority

The Cache processes requests from the attached modules in the following order:

1 - LRU dirty write back. The Cache writes back the least recently used bucket if it is dirty so that there will

always be a space for the fetching of cache misses.

2 — Lookup and Update Engine.
3 — State Processor.

4 — Flow Insertion and Deletion Engine.

5 - Analyzer CPU Interface and Control

6 - Dirty write back from LRU —l to MRU. When there is nothing else pending the Cache writes dirty
entries back to memory.

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 35 of 51 -

NOAC EX. 1019 Page 300

NOAC Ex. 1019 Page 301

i

Technically Elite CONFIDENTIAL
10.7.4 Implementation Information

10.7.5 File Names

Top: Cache.v(hd)
Uses: AnalyzerConstants.v(hd)

10.7.6 Pin Descriptions

10.7.6.1 General Interface Signals

Reset — active low.

Module Clock.

Anal zer Enable bit from the control re_ister

 Unified Memory Controller Interface

Cache Memory Write. .
If this si nal is active, the current transaction is a write..

10.7.6.2

UMCoCaData bus is valid and during a write that the

Cache to Unified Memory Controller Data bus.

If this signal is active, the address on the CaUMCAdd bus is

mam-I511: Width -

Unified Memory Controller has latched the data on the

* Uses AN_CA_DWIDTH

10.7.6.3

UMCoCaReady OUT Unified Memory Controller to Cache Ready.
This signal tells the Cache that during a read, the data on the

CaUMCData bus.

UMCoCaData OUT * Unified Memory Controller to Cache Data bus.
* Uses AN_CA_DWIDTH

CaUMCAdd IN Cache to Unified Memory Controller Address bus.
* Uses AN_CA_AWIDTH

CaMemReq Cache Memory Request.

mam-m Width
CaFIDEReady OUT

Flow Insertion and Deletion Engine Interface

 Cache to Flow Insertion and Deletion Engine Ready.

This signal tells the Flow Insertion and Deletion Engine that
during-a read, the data on the CaFIDEData bus is valid and
during a write that the Cache has latched the data on the
FIDEnCaData bus.

--Cache to Flow Insertion and Deletion Engine Data bus.* Uses AN_CA_DWIDTH

—--Flow Insertion and Deletion Engine to Cache Data bus.* Uses AN_CA_DWIDTH

Flow Insertion and Deletion Engine to Cache Address bus.

* Uses AN_CA_AWIDTH

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 36 of 51 -

NOAC EX. 1019 Page 301 ‘

NOAC Ex. 1019 Page 302

Technically Elite CONFIDENTIAL
10.7.6.3

 Flow Insertion and Deletion Engine Interface

FIDEMemReq IN Flow Insertion and Deletion Engine Memory Request.
If this signal is active, the address on the FIDEAdd bus is
valid.

10.7.6.4

Flow Insertion and Deletion Engine Memory Write.
If this si_nal is active, the current transaction is a write..

-IEI Width -
CaACICReady Cache to Analyzer CPU Interface Control Ready.

OUT

This signal tells the Analyzer CPU Interface Control that

CaACICData -

during a read, the data on the CaACICData bus is valid and

ACICoCaData

 Analyzer CPU Interface Control Interface

during a write that the Cache has latched the data on the
ACICnCaData bus.

Cache to Analyzer CPU Interface Control Data bus.
* Uses AN_CA_DWIDTH

Analyzer CPU Interface Control to Cache Data bus.
* Uses AN_CA_DWIDTH

Analyzer CPU Interface Control to Cache Address bus.
* Uses AN_CA_AWIDTH

Analyzer CPU Interface Control Memory Request.

If this signal is active, the address on the ACICAdd bus is
valid.

Analyzer CPU Interface Control Memory Write.
If this sinal is active, the current transaction is a write.

ACICAdd

ACICMemReq

ACICMemWr

10.7.6.5

_--IM -
CaLUEReady OUT Cache to Lookup Engine Ready.

This signal tells the Lookup Engine that during a read, the
data on the CaLUEData bus is valid and during a write that
the Cache has latched the data on the LUEnCaData bus.

_-—* Uses AN_CA_DWIDTH

LUEnCaData Lookup Engine to Cache Data bus.IN

- * Uses AN_CA_DWIDTH
LUEAdd Lookup Engine to Cache Address bus.

LUEMemReq

 Lookup Engine Interface

a:

ale

Lookup Engine Memory Request.

If this signal is active, the address on the LUEAdd bus is
valid.

Lookup Engine Memory Write.
Ifthis sinal is active, the current transaction is a write.

* Uses AN_CA_AWIDTH

LUEMemWr l

Technically Elite MeterFlow Accelerator Analyzer Module Specification y

Confidential Page 37 of 51 '

NOAC EX. 1019 Page 302

NOAC Ex. 1019 Page 303

Technically Elite CONFIDENTIAL

10.7.6.6

-_Im .
CaSPReady Cache to State Processor Ready.

This signal tells the Lookup Engine that during a read, the

CaSPData -

data on the CaSPData bus is valid and during a write that the

OUT

SPnCaData

N

N

N

State Processor Interface

* Uses AN_CA_DWIDTH

State Processor to Cache Address bus.

* Uses AN_CA_AWIDTH

State Processor Memory Request.
If this sinal is active, the address on the SPAdd bus is valid.

State Processor Memory Write.
If this sinal is active, the current transaction is a write.

Cache has latched the data on the SPnCaData bus.

Cache to State Processor Data bus.

SPMemReq

* Uses AN_CA_DWIDTH

State Processor to Cache Data bus.

SPMemWr

10.7.7 Verilog Module

module Cache(Reset_N, MCLK ,AnalyzerEn ,UMCoCaReady ,UMCoCaData

,CaUMCData ,CaUMCAdd ,CaMemReq ,CaMemWr ,CaFIDEReady ,CaFIDEData
,FIDEnCaData ,FIDEAdd ,FIDEMemReq ,FIDEMemwr ,CaACICReady ,CaACICData
,ACICoCaData ,ACICAdd ,ACICMemReq ,ACICMemWr ,CaLUEReady ,CaLUEData
,LUEnCaData ,LUEAdd ,LUEMemReq ,LUEMemWr ,CaSPReady ,CaSPData ,SPnCaData
,SPAdd ,SPMemReq ,SPMemWr);

// General Interface Interface

input Reset_N;

input MCLK;

input AnalyzerEn;

// Unified Memory Controller Interface

output UMCoCaReady;

output [‘AN_CA_DNIDTH-l : O] UMCoCaData;

input [‘AN_CA_DNIDTH-l : O] CaUMCData;
input [‘AN_CA_ANIDTH-1 : 0] CaUMCAdd;

input CaMemReq;
input CaMemWr;

// Flow Insertion and Deletion Engine Interface
output CaFIDEReady;

output [‘AN_CA_DWIDTH-l : O] CaFIDEData;

input [‘AN_CA_DWIDTH-1 : O] FIDEnCaData;
input [‘AN_CA_AWIDTH-1 : 0] FIDEAdd;

input FIDEMemReq;
input FIDEMemWr; -

// Analyzer CPU Interface Control Interface

output CaACICReady;

output [‘AN_CA_DWIDTH—l : 0] CaACICData;

input [‘AN_CA_DWIDTH-1 : OJ ACICoCaData;
input [‘AN_CA_ANIDTH-1 : O] ACICAdd;
input ACICMemReq;

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 38 of 51 -

NOAC EX. 1019 Page 303

NOAC Ex. 1019 Page 304

Technically Elite
input ACICMemWr;

// Lookup Engine Interface

output CaLUEReady;

output [‘AN_CA_DWIDTH-1 : O] CaLUEData;

input [‘AN_CA_DWIDTH-1 : 0] LUEnCaData;

input [‘AN_CA_AWIDTH—1 : 0] LUEAdd;

input LUEMemReq;

input LUEMemWr;
// State Processor Interface

output CaSPReady;

output [‘AN_CA_DWIDTH-1 : O] CaSPData;
input [‘AN_CA_DWIDTH—1 : 0] SPnCaData;
input [‘AN_CA_AWIDTH-1 : O] SPAdd;

input SPMemReq;

input SPMemWr;

10.7.8 VHDL Component

CONFIDENTIAL

Confidential Page 39 of 51Technically Elite MeterFlow Accelerator Analyzer Module Specification '

NOAC EX. 1019 Page 304

NOAC Ex. 1019 Page 305

Technically Elite CONFIDENTIAL

10.8 State Processor - SP

10.8.1 Symbol

10.8.2 Highlights

0 Flexible Rule-based Traffic Classification

0 State-based Tracking of Traffic

0 Multiple Packets for Layer Processing

- Programmable Rules/State Processor
0 Selectable Protocols in Flows

0 Future Protocols Support

10.8.3 Description

The State Processor module analyzes both new and existing flows in order to classify them by application.

It does this by proceeding from state to state based on rules defined by the engineer. A rule is a test

followed by the next state to proceed to if the test is true. The State Processor goes through each rule until
the test is true or there are no more tests to perform. The State Processor starts the process by using the last

protocol recognized by the Parser as an offset into a jump table. The jump table takes us to the instructions

to use for that protocol. Most instructions test something in the Unified Flow Key Buffer or the flow entry if
it exists. The State Processor may have to test bits, do comparisons, add or subtract to perform the test.

10.8.4 Architecture

The State Processor contains several sub-blocks:

10.8.4.1 Scratch Pad Registers

The State Processor contains four scratch pad registers. These registers are the source and/or the destination

for all instructions. It is implemented as a register file with one write and two read ports.

10.8.4.2 Instruction Pointer and Stack

The Instruction Pointer is used to point to the State Processor Instruction Database address that the State

Processor is executing. The Instruction Pointer is initialized with the last protocol recognized by the Parser.

This first instruction is a jump to the subroutine where the protocol is decoded. The State Processor

supports calls so the Instruction Pointer block contains a two level stack. A one bit stack pointer points to

the top of the stack that the Instruction Pointer is pushed to or popped from.

10.8.4.3 Flag Register

The Flag Register contains several bits used for conditional branching.

10.8.4.3.1 Flag Register Word Definition

-3- Descri tion

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 40 of 51 '

NOAC EX. 1019 Page 305

NOAC Ex. 1019 Page 306

Technically Elite CONFIDENTIAL
10.8.4.3.1 Flag Register Word Definition

10.8.4.4 Compare Block

The Compare Block compares two operands by exclusive-oring them together. The Compare Mask Register
is contained in this block. lfa bit is set in the Compare Mask Register, that bit is ignored in the compare
operation.

10.8.4.5 Flow Key Pointer

The Flow Key Pointer provides the address that the State Processor is accessing in the Unified Flow Key
Buffer. The Flow Key Pointer can perform both direct and indirect addressing. Indirect addressing is used
to offset into a protocols’ header.

10.8.4.6 Flow Entry Pointer

The Flow Entry Pointer provides the address that the State Processor is accessing in the Flow Entry in the
Cache. If the flow entry exists, the upper address bits come from the hash used to lookup the bucket in the
Flow database. The middle bits come from the bucket entry found. The lower bits come from the offset the
State Processor is using.

10.8.5 Instruction Definitions

The following sections describe the instructions available in the State Processor. It should be noted that no

assembler is provided for the State Processor. This is because the engineer need not write code for this
processor. The MeterFlow Compiler writes the database entered into the State Processor Instruction

Database from the protocols defined in the Protocol List.

10.8.5.1 Jump

This instruction causes the Instruction Pointer to be loaded with the address in the JumpAddress field of the
State Processor Instruction Database. This instruction is always conditional. Whether the branch is taken or

not depends on the on the ConditionCode field in the instruction and the state of the flag register.

10.8.5.2 Call

This instruction causes the Instruction Pointer to be loaded with the address in the JumpAddress field of the
State Processor Instruction Database. At the same time the current address in the Instruction Pointer is

pushed onto the stack. This instruction is always conditional. Whether the call is taken made or not depends
on the on the ConditionCode field in the instruction and the state of the flag register.

10.8.5.3 Return

This instruction causes the Instruction Pointer to be loaded with the address at the top of the stack. This

instruction is always conditional. Whether the return is executed or not depends on the on the
ConditionCode field in the instruction and the state of the flag register.

Technically Elite MeterFlow Accelerator Analyzer Module Specification ‘

Confidential Page 41 of 51 ‘

NOAC EX. 1019 Page 306

NOAC Ex. 1019 Page 307

Technically Elite CONFIDENTIAL
10.8.5.4 Copy

The Copy instruction moves data from:

Flow Key to Scratch Pad Register

Cache to Scratch Pad Register

ImmediateData to Scratch Pad Register

Scratch Pad Register to Flow Key

Scratch Pad Register to Cache

Scratch Pad Register to Compare Mask Register

The external address can be either a direct or indirect access.

10.8.5.5 Compare

This instruction compares two operands . The operands must be either from a Scratch Pad Register or an
immediate value from the instruction's ImmediateData field. The Compare Mask Register is used to set bit
to don't care.

Instruction Word Definition

Descri . tion

10.8.5.6

10.8.6 Implementation Information

10.8.7 File Names

Top: SP.v(hd)

Uses: AnalyzerConstants.v(hd)

10.8.8 Pin Descriptions

10.8.8.1 General Interface Signals

mun—'—

_—_Modulecmck.

10.8.8.2 Unified Flow Key Buffer Interface

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 42 of 51 -

NOAC EX. 1019 Page 307

NOAC Ex. 1019 Page 308

Technically Elite CONFIDENTIAL
10.8.8.2 Unified Flow Key Buffer Interface

Descri-tion

---—* Uses AN_UFKB_AWIDTH

State Processor to Unified Flow Key Buffer write Data bus.
* Uses AN_ UFKB _AWIDTH

N--State Processor to Unified Flow Key Buffer Address bus.* Uses AN UFKB _AWIDTH

SPFlowKeyAv State Processor Flow Key Available.

This signal tells the State Processor that the Unified Flow
Ke Buffer module a flow ke for it to orocess.

SPrUFKBWrStb UT State Processor to Unified Flow Ke Buffer Write Strobe.

SPDone

SPHoldBuf

10.8.8.3

Unified Flow Key Buffer also uses this signal to increment

it’s internal pointer so that the next address from State
Processor will ooint to the next flow buffer.

State Processor Hold Buffer.

This input is used to tell the Unified Flow Key Buffer that the

State Processor is transferring processing of this buffer to the
Flow Insertion and Deletion En ine.

Cache Interface

OUT State Processor Done.

This input is used to tell the Unified Flow Key Buffer that the
State Processor has finished with the current flow. The

main—_—
CaSPReady Cache to State Processor Ready.

This signal tells the Lookup Engine that during a read, the

data on the CaSPData bus is valid and during a write that the
Cache has latched the data on the SPnCaData bus.

CaSPData Cache to State Processor Data bus.

, * Uses AN_CA_DWIDTH

—-—* Uses AN_CA_DWIDTH '

—--—* Uses AN_CA_AWIDTH

—--—-If this si _nal is active, the address on the SPAdd bus is valid.

_--State Processor Memory Write.If this si nal is active, the current transaction is a write.

10.8.8.4 State Processor Interface

mam-IN— WidthSPIDData State Processor to State Processor Instruction Database Data
bus

* uses AN_SPID_DWIDTH

SPrSPIDAdd OUT State Processor to State Processor Instruction Database
Address bus

* uses AN_SPID_AWIDTH

Confidential
Technically Elite MeterFlow Accelerator Analyzer Module Specification

Page 43 of 51 ‘-

NOAC EX. 1019 Page 308

NOAC Ex. 1019 Page 309

Technically Elite CONFIDENTIAL

10.8.9 Verilog Module

moduIe SP(Reset_N, MCLK ,AnaiyzerEn ,UFKBuSPData ,SPrUFKBData

,SPrUFKBAdd ,SPFIowKeyAv ,SPnUFKBWrStb ,SPDone ,SPHoldBuf ,CaSPData

,SPrCaData ,SPAdd ,SPMemReq ,SPMemwr);

// General Interface Interface

input Reset_N;

input MCLK;

input AnalyzerEn;

// Unified Flow Key Buffer Interface

input [‘AN_UFKB_DWIDTH-1 : O] UFKBuSPData;

output [‘AN_UFKB_DWIDTH—1 : 0] SPrUFKBData;

output [‘AN_UFKB_ANIDTH-1 : O] SPrUFKBAdd;

input SPFIowKeyAv;

output SPrUFKBWrStb;

output SPDone;

output SPHoIdBuf;
// Cache Interface

input CaSPReady;

input [‘AN_CA_DWIDTH—1 : 0] CaSPData;

output [‘AN_CA_DWIDTH-1 : O] SPrCaData;

output [‘AN_CA_AWIDTH-1 : O] SPAdd;

output SPMemReq;

output SPMemWr;
// State Processor Instruction Database

input [‘AN_SPID_DWIDTH-1 : OJ SPIDData;

output [‘AN_SPID_AWIOTH-1 : 0] SPrSPIDAdd;

10.8.10 VHDL Component

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 44 of 51 -

NOAC EX. 1019 Page 309

NOAC Ex. 1019 Page 310

Technically Elite CONFIDENTIAL

11 Appendix A - Multi-Packet State Processing

11.1 Overview

The MeterFlow Accelerator system is composed of four major subsystems. Each system interacts with the

others by passing specific information and identification to parse, extract, generate flows and analyze single

or multiple packets in data flow on a communications network.

One of the major subsystems is the Analyzer. This component is responsible for creating and maintaining

classified traffic flows, processing statistics for packets and flows, managing the traffic flow database and

cache, and performing state-based analysis of traffic flows.

This document describes the processes required for recognizing and maintaining state information for traffic

flows. There are several different processes, which are detailed in the following sections.

11.2Analyzer Data Input Requirements

In order for the Analyzer to successfully classify traffic by application, there are several data elements

required from each packet to be analyzed. Prior to sending a packet of information to the Analyzer, all
additional information must be formatted and sent along with the appropriate packet content.

The Analyzer must specifically receive each packets in a conversation in the order which they are exchange
between the client and the server. The order is crucial for proper state based classification.

11.3 State-base Traffic Classification

More applications running over data networks utilize complex methods of classifying traffic through the

creation of multiple states. The creation of the state based traffic classification causes the need for

managing and maintaining learned states from traffic derived in the network.

There are several different methods in place for the creation of states in client/server network traffic. Even

though there are several different methods for the creation of state. It is possible to isolate these different

approaches into two basic categories.

The first category is commonly referred to as “server announcement”. In the server announcement mode

there are messages which are put out onto the network, in either a broadcast or multicast approach which,
all stations in the network receive and decode to derive the appropriate connection point for communicating

for that particular application. with the particular server. There are several examples for this type of server

announcement implementation with state based protocols. Using the server announcement method, a

particular application communicates using a service channel, in the form of a TCP or UDP socket or Port as

in the IP protocol suite, or using a SAP as in the Novell IPX protocol suite.

The second category is referred to as “in-stream analysis”. This method is used either as a primary or

secondary recognition process. As a primary process, in-stream analysis assists in extracting detailed

information which will be used to further recognize both the specific application and application

component. A good example of in-stream analysis is any Web-based applications. The commonly used

Pointcast Web information application can be recognized using this process. During the initial connection

between a Pointcast server and client, specific key tokens exist in the data exchange that will result in a

signature for Pointcast.

The in stream analysis process may also be combined with the server announcement process. In many cases

in stream analysis will augment other recognition processes. An example of combining in stream analysis

with server announcement can be found in business applications such as SAP and BAAN.

11.3.1 Session Tracking

One of the primary processes for tracking applications in the stream of the client/server packet exchange, is

through session tracking. The process of tracking sessions requires an initial connection to a predefined

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 45 of 51 -

NOAC EX. 1019 Page 310

NOAC Ex. 1019 Page 311

Technically Elite CONFIDENTIAL
socket or Port. This method of communication is used in a variety of transport layer protocols. It is most
commonly seen in the TCP and UDP transports of the IP protocol.

During the process of session tracking, a client will make the request of a server using a specific Port or
socket number. This initial request will cause the server to create a TCP or UDP Port to exchange the

remainder of the data between the client and the server. The server then replies to the request of the client
using this newly created Port. The original Port used by the client to connect to server will never be used
again during this data exchange.

One of the best examples of session tracking is TFTP. During the client/server exchange process of TFI‘P,

a specific Port is always used to initiate the conversation. When the client begins the process of

communicating, a request is made to UDP Port 67. Once the server receives this request, a new Port is

created on the server. The server then replies to the client using the new Port. In this example, it is clear

that in order to recognize TFI‘P the process must analyze the initial request from the client. Also, the reply
from the server with the key Port information must be analyzed and used to create a key for monitoring the
remainder of this data exchange.

Another important component in session tracking is the understanding of the current state for particular

connections in the network. Many of the application protocols, which can be monitored, are transported via

protocols that have built-in state information. An example of such a transport protocol is TCP. This
transport provides a reliable means of sending information between a client and a server. When he data

exchange is initiated a TCP request for synchronization message is sent. This message contains a specific
sequence number that is used to track and acknowledgement from the server. Once the server has

knowledge to the synchronization request, data is exchange between the client and the server. When

communications are no longer required, the client would send a finish or complete message to the server.
The server willing knowledge this finish request, with a reply containing the sequence numbers from the

request. This sequence of events is known as a connection oriented data exchange. Many of the events

used to track the state in a conversation are directly related to these types of connection and maintenance
messages.

All of the processes discussed above are required to track sessions. The capability to track sessions is a
requirement for understanding the current state to analyze.

11.3.2 Server Announcement

The process of server announcement consists of a server with multiple applications, which are all required

to be simultaneously accessed from multiple clients. Many applications are beginning to use this process as
a means of multiplexing a single Port or socket into many applications and services. The individual

methods of server announcement protocols tend very. However, the basic underlying process remains
similar between all of these different announcement exchanges.

11.3.2.1 Sun RPC Analysis

Sun-RFC and Net-RPC are to good examples of server announcement oriented communications processes.

In this section we will analyze the requirements for recognizing applications which utilize the sun

implementation of RFC. RPC stands for remote procedure call. This is a quite clear description of the
process. A remote or client that wishes to use a server or procedure must establish a' connection using the
RFC protocol.

Using the Sun~RPC protocol as a model for server announcement is completed through the following

process. Each server running the Sun-RFC protocol must maintain a process and database called the Port

Mapper. The Port Mapper creates a direct association between a Sun-RPC program or application and a
TCP or UDP socket or Port. An application or program number is a 32-bit unique identifier assigned by

IANA. Each Port Mapper on a Sun-RPC server can present the mappings between a unique program
number and a specific transport socket through the use of specific request or a directed announcement.

The first approach we will review is the specific request method. Using this process the client makes a
specific request to the server on a predefined UDP or TCP socket. Once the Port Mapper process on the

sun RPC server receives the request, the specific mapping is returned in a directed reply to the client.

l) A client sends a TCP packet to Port ill, with an RPC Bind Lookup Request.

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 46 of 51 ‘

NOAC EX. 1019 Page 311

NOAC Ex. 1019 Page 312

Technically Elite CONFIDENTIAL
2) The server extracts the program identifier and version identifier from the request. The server also

uses the fact that this packet came in the using the TCP transport.

3) The server sends a TCP packet to Port ll l, with an RPC Bind Lookup Reply. The reply contains
the specific ports on which future transactions will be accepted for the specific RPC program
identifier.

11.3.2.2 Process for Sun RPC Analysis
1. Decode Sun RPC by TCP or UDP Port 1 l 1

Check RPC type field for Id

If value is PortMapper, save paired socket (i.e. dest for dest, src for src)

Decode ports and mapping, save ports with socket/addr key

There may be more than one pairing per mapper packet999W!"
Saving is complete

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 47 of 51 -

NOAC EX. 1019 Page 312

NOAC Ex. 1019 Page 313

t"?!

Technically Elite CONFIDENTIAL

RPC RPC RPC
Reply Announcment Bind Lookup

PortMapper PortMapper Request

Extract Program

Get 'program'. Get 'program',
‘version', 'port' and 'version' and
'protocot (TCP or 'protocol (TCP or

UDP) UDP)‘

si

! Create Server Save RequestN State

Save 'program', Save 'prolgram',
'version'. 'port' and . verSIon and
'protocol (TCP or protocot (T_CP or

UDP)‘ with UDPI)' wtth
Network Address Destmatlon

in Server State Network Address.
Database. Key on Both make a key.Server address
and TCP or UDP

port.

. RPC

Bind Lookup
Reply

Lookup Request Extract Program

Find 'program' and
'version' with

lockup 01 Source
Network Address.

Get 'port‘ and
'protocol (TCP or

UDP)‘.

A
y lechnrcallylelllt. FLOW . DATA FLOWman-my ynr «mum

COMPANY CONFIDENTIAL DESCRW‘NON

New“ A VISIO TEMPLATE FOR CREATING DATA FLOW DIAGRAMS uer
SHAPES FROM FL_DATA.VSS.

V o o c ‘n -

DRAWNGéPYRIGHT © 1993 fl“ 700‘5°"s” fl

Tec nically Elit MeterFlo Acce erato Anayzer odu e Spe ificatron

Confidential Page 48 of 51 -

NOAC EX. 1019 Page 313

NOAC Ex. 1019 Page 314

 ~.4”!
Technically Elite CONFIDENTIAL

PortMapper Protocol Specification (in RFC-Language)

const PMAP_PORT = l l l; /* portmapper port number */

A mapping of (program, version, protocol) to port number:

struct mapping { unsigned int prog; unsigned int vers; unsigned int prot; unsigned int port; };

Supported values for the "prot" field:

const IPPROTO_TCP = 6; /* protocol number for TCP/[P */ const IPPROTO_UDP = 17; /* protocol

number for UDP/1P */ A list of mappings: struct *pmaplist { mapping map; pmaplist next; };

Arguments to callit: struct call_args { unsigned int prog; unsigned int vers; unsigned int proc; opaque

args<>; }; Results of callit: struct call_result { unsigned int port; opaque res<>; }; Port mapper procedures:
program PMAP_PROG { version PMAP_VERS { void PMAPPROC_NULL(void) = 0; bool

PMAPPROC_SET(mapping) = l; bool PMAPPROC_UNSET(mapping) = 2; unsigned int
PMAPPROC_GETPORT(mapping) = 3; pmaplist PMAPPROC_DUMP(void) = 4; call_result

PMAPPROC_CALLIT(call_args) = 5; } = 2;] = 100000;A.2 Port Mapper Operation The portmapper

program currently supports two protocols (UDP and TCP). The portmapper is contacted by talking to it on

assigned port number 11 l (SUNRPC) on either of these protocols. The following is a description of each of
the portmapper

Sun RPC Decode Process

1) Parse frame to TCP or UDP

2) Lookup paired sockets if no standard match

3) If RPC found, same new Key

The port mapper program maps RPC program and version numbers to transport-specific port numbers. This

program makes dynamic binding of remote programs possible. This is desirable because the range of

reserved port numbers is very small and the number of potential remote programs is very large. By running

only the port mapper on a reserved port, the port numbers of other remote programs can be ascertained by
querying the port mapper. The port mapper also aids in broadcast RPC. A given RPC program will usually

have different port number bindings on different machines, so there is no way to directly broadcast to all of

these programs. The port mapper, however, does have a fixed port number. So, to broadcast to a given

program, the client actually sends its message to the port mapper located at the broadcast address. Each port
mapper that picks up the broadcast then calls the local service specified by the client. When the port mapper
gets the reply from the local service, it sends the reply on back to the client.

PortMapper Protocol Specification (in RFC Language)

const PMAP_PORT = l l l ; /* portmapper port number */

A mapping of (program, version, protocol) to port number:

struct mapping { unsigned int prog; unsigned int vers; unsigned int prot; unsigned int port; };

Supported values for the "prot" field:

const IPPROTO_TCP = 6; /* protocol number for TCP/1P */ const IPPROTO_UDP = 17; /* protocol

number for UDP/1P */ A list of mappings: struct *pmaplist { mapping map; pmaplist next; };

Arguments to callit: struct call_args { unsigned int prog; unsigned int vers; unsigned int proc; opaque

args<>; }; Results of callit: struct call_result { unsigned int port; opaque res<>; }; Port mapper procedures:
program PMAP_PROG { version PMAP_VERS { void PMAPPROC_NULL(void) = 0; bool

PMAPPROC_SET(mapping) = 1; bool PMAPPROC_UNSET(mapping) = 2; unsigned int
PMAPPROC_GETPORT(mapping) = 3; pmaplist PMAPPROC_DUMP(void) = 4; call_result
PMAPPROC_CALLIT(call_args) = 5; } = 2; } = 100000;

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 49 of 51 “

NOAC EX. 1019 Page 314

NOAC Ex. 1019 Page 315

Technically Elite CONFIDENTIAL
11.3.3 Port Mapper Operation

The portmapper program currently supports two protocols (UDP and TCP). The portmapper is contacted by
talking to it on assigned port number 111 (SUNRPC) on either of these protocols. The following is a
description of each of the portmapper procedures: PMAPPROC_NULL: This procedure does no work. By
convention, procedure zero of any protocol takes no parameters and returns no results.

PMAPPROC_SET: When a program first becomes available on a machine, it registers itself with the port
mapper program on the same machine. The program passes its program number "prog", version number

"vers", transport protocol number "prot", and the port "port" on which it awaits service request. The
procedure returns a boolean reply whose value is "TRUE" if the procedure successfully established the

mapping and "FALSE" otherwise. The procedure refuses to establish a mapping if one already exists for the
tuple "(prog, vers, prot)".

PMAPPROC_UNSET: When a program becomes unavailable, it should unregister itself with the port
mapper program on the same machine. The parameters and results have meanings identical to those of

"PMAPPROC_SET". The protocol and port number fields of the argument are ignored.

PMAPPROC_GETPORT: Given a program number ”prog", version number "vers", and transport protocol
number "prot", this procedure returns the port number on which the program is awaiting call requests. A

port value of zeros means the program has not been registered. The "port" field of the argument is ignored.
PMAPPROC_DUMP: This procedure enumerates all entries in the port mapper‘s database. The procedure
takes no parameters and returns a list of program, version, protocol, and port values.

PMAPPROC_CALLIT: This procedure allows a client to call another remote procedure on the same

machine without knowing the remote procedure's port number. It is intended for supporting broadcasts to

arbitrary remote programs via the well—known port mapper's port. The parameters "prog", "vers", "proc",
and the bytes of "args" are the program number, version number, procedure number, and parameters of the
remote procedure. Note: (1) This procedure only sends a reply if the procedure was successfully executed

and is silent (no reply) otherwise. (2) The port mapper communicates with the remote program using UDP
only. The procedure returns the remote program's port number, and the reply is the reply of the remote
procedure.

11.3.4 Service Announcement

Service announcement method of the application recognition is very similar to server announcement. One

specific difference in service announcement is that the announcements are made regularly and contain fixed
information. Also, service announcement based applications only provide the key information for locating
applications in each announcement. There is no capability to request a specific service. Each client must
learn the key information required to access an application.

Novell’s IPX SAP is a good example of service announcement oriented communications process. A Novel]
server will have many different services, which it may provide to clients on network. IPX uses service

access points or SAP as a way to identify specific applications and services.

11.3.5 In-stream Recognition and Extraction

The process of identifying more of the business applications on networks today requires analysis of
information in stream of the network data. Simply, this means that in order to contain the visibility to
application traffic flow, a process must routinely analyze the network stream itself.

SMB is a protocol used to in networks today which has textual information during the data exchange that
can be used to further determine the type of end-user application involved in communications. An SMB

packet is usually transported above the NetBIOS session protocol. Inside the SMB header is a function

code. This function code is one octet in length and assists in the classification of the type of SMB data in
the payload.

11.3.5.1 Web-based Applications .

The best example of applications requiring in-stream recognition mainly Web—based. These applications
generally utilize two well—known ports for all conversations. Because of this, they can be considered

multiplex ports. There is one big difference, the client and server have no well-known exchange mechanism
outside of the normal data stream. Therefore, these applications require combining session tracking and in
stream recognition to derive end-user application.

Technically Elite MeterFlow Accelerator Analyzer Module Specification

Confidential Page 50 of 51 ‘

NOAC EX. 1019 Page 315

NOAC Ex. 1019 Page 316

Technically Elite CONFIDENTIAL
As discussed earlier, point cast is one of the most widely used Web based application. The steps required to
detail point cast can be rid repeated for other Web based applications. This is also a good example for
understanding the process used in combining session tracking with other recognition techniques.

The process begins when a client Web the browser initiates a request to a point cast Web server. This
request

Technically Elite MeterFlow Accelerator Analyzer Module Specification
Confidential Page 51 of 51 ‘

NOAC EX. 1019 Page 316

NOAC Ex. 1019 Page 317

at:

0 Exhibit A4: Protocol Tracking Summary (Document MFAProtocolLayoutpdt)

NOAC EX. 1019 Page 317

NOAC Ex. 1019 Page 318

30.000.460.03.955.53.
030.....0:N02.63.6.61.40

2.0$636>336m9:2.52766.>w>.w62622,»«was».0030.:M62:36$.5.»003330M62636.9366....00$0606>000..<6wOr9.68106.>wm.M626.3.02.280..wo..M626.
3.0can

.000.809563.0.mr.05....00ano@0623.93962$8.060..003N0...206...vx2>z.200.85.3..Em.mxn:m:06I106030..N2.{$903686..wiau30..mu.§m.mxozm:06I_?.>.u..50..my.75.683036IrUZuw::m.mxo:w=omI.wO05.403.?M2...Em.mxn:m:mmIx300MN.im.m.8:w:06I00mm:auo.:.2600.800.0Samm..0x6:.m.:0.32.00.0mid?0261MMr00.022....uo<62wm_.8.0m6:0<6~mm.-00.0r02...06.mm..8.03.0de06.mm..00.03.0.0038.0.6.wmr00.046.:6.0<62mmr8.0.220.06.mm?00.0.2006.mm..8.0.uOflu06.mm..05.0502.33.000.000.66.5602.010.50.216600.0230:5:06..966320183.0<DOC<62.0366.6:

5.05088..w<m63.503.w626.50.02.203..333060:66M6280:0o.w=.cc.60.:6..90006:2500208.0250020c.....3.02:62.60026$05
.80.0...50.03.0.x

6.0.2636.$0.2.0:0..50.
8.0.030.3.0.<.m..wmb......600.00600.026.20:..15603.060..243

05.0...>0>0m8.026.0.8mmzo6....0.uS026.0.32?.961.003.0wiw.26.26.0.00momma:8.005.85529:2.006620:...4603300.;E6.56.

.....26.3302:26.3302:26....992:26.3902:26.3902:26....902:26.3902:26...X:o2:26.3302:26.3902:26...902:

562:02:26.3902:26.3902:26.3902:26.3902:26.3902:26.3902:26.3902:26.3902:26.3992:26....302:26.3902:

26.3302:26.3902:56.3902:26.3902:26.3992:26.3902:26.3302:26.3902:26.2902:26:23.2:26.3902:26.3902:26.3902:26.3302:26.3902:26.3902:26.3902:26.3902:26.3902:

26.3902:.00.00

u1.400026:.00:63

«03.0>363

2:02:00.080.88.500.M80.00
.58mmuhuoobVo.fins-003:.23:32.2:31:003.:—.3383...25005:.Quanta—6:..iantunoi3w$0908000080SM0000.!new:8220.40.0$0..0.$.58fig39.30..8..n.0..~.8.m.ou~80N80mg.m8..$aw:0.000.5.0000.0N0..80Scnbccw.NH.0

2:02:000$0VaghoaohkvunEN00....20.mg
.00M58580:2..~00umnu..00.~08mgm:900000.Sum.«0200Song.no00

.uwcm.

26..2:02:.Evax0x80.00Daugbuwm0x08..7..x.00.00.Y..00.00

E:8.0..8a.5:.00.8.00.E...x.000.09.660.0:003:06:26.
m2:0:080fix.0032..0....00.00.00.00.00.00.00.00

26..2:02:<.v\<mv.u

.00.60.50.00.00.00.00.00.00.00

26..2:02:<60.00.00.00.00.6....00.g.60.00.00

0.36.

m:00o.:.Km..a

202006:5

méwokua.0200K.>w>6.50.3002250.39.

0005.0....3'
NOAC EX. 1019 Page 318

NOAC Ex. 1019 Page 319

3330.«SofiamcaamJ.
PoDomingo90$0583.mb3.2223

90.5568:2.852035329953
SoDamoxjamm‘o<.<o>o=<¢e.ow:onxim<¢

5.03,565.3.Amémmxvos‘gmozv2.0<<¢c.w0rAmsummm.9~.o_Oo=:¢n<._omoAmvammmv3.»0.36.46:390.:2250}9.35.8
6bwOr.Z¢_5b:wbowo5bvmoufimo:3bm2".mfo.vémmamamze:mmb9:52”35:38.

nub:05:W9023nub<¢=o£twommnubasmmwmaz{~5onnub82mmnubunwelamuumanubamlamuufl

nubz_m+.2263»._:_o§m=o:M¢2.n¢v
”we33.mmb295..m2...

mu.»im.mxormac¢4563.23:99¢wflmEm.mxn:m:n¢I95oz:NHNZm.mxn:¢:c¢I23>mm‘mDommnomauve...»:83.Ano:=._¢mmvmm:Unmnfiomanna:.5359.80:36:95.:
M9053mm=uO.EUvmob<3¢mwimo<¢~muv3,0<S¢m3::9.9<5¢m>m<=nnab95x

mmbS280:ZmE¢¢§o
uwbx300

00mm.3.1.34umagam003man.9532”Voaamuuflmacm=¢003m3..1.T¢m3¢2¢zo=macmam003m.3.$2523CowMaeio003mam.Snow:596:6003mam.<3¢mm2".maowam003m3.2m38$mac§¢00mmam.082500Zmuuflmacmzm001mam.OommvoOrimuumqmzcmzm003m30.038642mmammam002m:2.Zo<¢=m2”.mzomam48:38.2m_=¢‘:8.

9¢5mummn92¢w¢m¢a92¢mmmma92¢mmuma92¢wmmg93mwmmmn92¢w~m¢a9m8mumma92¢w¢m¢a92¢mung9E¢wmmoa92¢mumma99¢mmmoa92¢ammg92¢m¢m¢amfipmmummn92¢ammma92¢wmm¢a93¢mmmoa9m~¢mumma92¢mwmma92¢ammoa92¢m¢¢¢n92¢mmm¢q92¢mummq92¢mmmma9m~¢mumma92¢wmmoa92¢mvmma92¢mmwmu93¢mama92¢m¢m¢n92¢mummn9amwmmma92¢mummq92¢momma93¢m¢w¢a92¢mmwmn92¢E58

,‘1.0.

22¢:>253

403:.>083

<<¢=.992:359%

1.1:“.5.30036:.3:53

$30..»—3002m3
003.—uuocomm3003mON833003t.02.0.—83383a.83.—

.wuf‘wwm._m~u

003m.9003m5003um83‘N83.N83:N33gm835.03¢tn83tn83‘n

nOlm-:98.396chSauna.58?.

40vno:mo.oo::¢n=0?o:¢=_¢a.w4>4m.m>mmo888.IiiCgvno:2..no::¢n=o=..¢¢m.m4>4m.w>mmc8:19tonzmwunma533:63.88:m._.>4m.m>wmo83Bunnie=¢c3¢2mam.365m::05:035639.33CU.uuo:wuo.oo:=¢n:o:._¢mm.m4>4m.w>mmono;63353033.o35:33onno:#305.5.29...00:23:03.9623.9123.2,me868=¢ox<=u0$383:2m:mmmmaamv<wvv83326361959m4>._.m.w>mm009¢8.Box<wuu¢¢mm83mco.:o?£¢=.x=¢i=398$40.»no:3mm.no::¢9.o:.o:¢2¢9m4>4m.w>wmono~¢83255352:5CU.U$0:>mw633¢anozzmozozéagaa.m4>4m.w>mmo86.0.commnomanuowa326:6no::¢n_.o:._¢mmma>4m.w>mm086.900mDvomaauoi.Emuuim40.".to:.mmSmmohumw.8:32.63012:3.mq>4m.w>wm086.0.O‘¢n_¢42m$3.035858833962.63.md>4m.m>mmc883‘9:38>a<¢am¢3¢3388:.A993BunniePou:¢.¢£Eaooaagza

<<¢__.302:<=¥<mvv
$3...992:<=..o

039002mcm002m3:5.x

manna;gm...n

36¢m

91

Z¢i33833e
g

aP9101x.E

norm.5w
83.5

8.6:0O83:oN
83.5

‘5‘.

003963ti

NOAC Ex. 1019 Page 320

$3.03.43256McBSmQ
Dawn:.30:

90vi:0.033.

MbSmeUmBEaimEom
Mb33.mb:Qimx.Mb«.5138Mb82.95:.wea:we38MbEn.We59:25Mb593.3Mb85Mb995meMb96Mb.1Mb:2Mb«3;:anPo28555Mb333.936Mb33H90agavwceou‘o<<><Po‘mwrmcamoMbZ5.

90xiiaosmdcagammoPo303.290..»Mb<3:ub2:85.25ub:68»ngMbmorsamoub..mm..w:&o9035.385MbmsWe<z?mn=<mWe33.05:»..anub3mn.m_c==PoEmoéima‘Po8:663ubN6WecanwbEaobnem.x..m.Po95.6.9o869o.820ab0.91.abg:3m-m:m=
Po8.

u.o00.2.9mePomm<mmn1u~Po3cmc$=a6¢Po:owimxn9o6x90.399°.93:ub03.5110ob0am

amnzanm:m5?So,

47,Mas323M66wmmwaM35M38M38M38M68953M38M33M56ummwaM56mamaM35mmmaM55MumoaM65wmmmaM88558M53M33M55wmmmnMESmamaMESM33M36M33M56mamaM383quMESmmmoaM56M38M58wwmmaM56wmmma92mwmmmaM5652392m$58M58ammmaMiaammoaMES33..M55wannaM58M33Min$meM565meMin958M65M33MsaammmaM55953M36958M53033MESMmmwaM665meM58wmmoaMEEmummnM85953M66MummaM85MmmmaM65mammaM53.533M~m8wmmmaM58ammmaM.m.mM33M88mmmmam5.»958M359meM35M38M55M33M55M38M65M33
Ijfl03624_..$555.33.9:55Ex..05mcao9559532.909.309.309.90958x501”.

133:53

<<m=:32:40v

SE:.3053c0.v

0:6.85:00.6:0033gt.33a.8338—6..83:
.‘A

56:x35:.EQMnx

$89532Ea003.5933
M)“.Km...n

<<m=.392:<=u\<mvv
SS:.902:<=uo

97m.

to:amid

manna...gm....

v30.u

2%:

362m9:9003.628'
NOAC EX. 1019 Page 320

NOAC Ex. 1019 Page 321

3803.43296man—2:5.
0b.3stPogramWe33033:.We:93ab3363:..205Po3533:.mx3.wb35082605805.9035.03:.9303wro6.566350.We_oEm.=¢m_m:noWe8.5;8Po_o~:m.muuamnzm.o_o~cm.¢<oauao

Po.32abinaumzmaub€33.90Po:maoimxcuPouoamnlgPo<55mbwas.ub“520325?PO..mm..m:&o9°gen—2&3Pomoan.»—wb.oEmfioSm
4603383mam.Sn.

MESmumma92m3%..MESmummammzmmmwmamEm$58was3mem§mmumma9.3mmwmwn92m$30wSEmummamamammmwamfiammmaa9&0mmmma92mwmmmumfiamamam§mmwmma92m$3893m$58MESmumma92mmummawEmmmmwa92w95892awmmmamrfimmwmwawfiawmuma

 van-66$man003.332

13ma
00330:.E

NOAC EX. 1019 Page 321

NOAC Ex. 1019 Page 322

0 Exhibit B0 is 21 dated computer directory of test data and documents used therefore.

NOAC EX. 1019 Page 322

NOAC Ex. 1019 Page 323

BEST AVAILABLE cow

. “Ca/”ofler-a’ir. txt
D Ctory 0f M:\aaa-----INVENTEK._CLIENT$ H7 fn\Patents\APPT-001-1-1 filed&Proof of Reductn to Pract7ce\ C0mp7'7er\

M: \aaa-----INIfE/VTEK CLIENT5\H1'fn\PateqtsMPPr-om-J—l ff led “Proof ofReductn to Pract1ce\”€omp1ler\

big. cp7 548 KB 04:17:18 AM a

b1_gif:gc3.cp7 1164 KB 04:06:18 PM a
b7_gfqpc.cp7 1164 KB 04:06:18 PM a
b1_gfpay7.cp7 1051 KB 09:57:44 AM a
b7gfpay72.cp7 1054 KB 10:17:18 AM a
bigfpgrp. cp7 115.9 KB 11:04:40 AM a
b7gfpgrp2.c7:p7 1163 KB 10:11:06 AM abig rag.cp 995 KB 07:17:34 AM a
bi fragZ. cp7 999 KB 10:21:52 AM a
I” aptkey. txt 1 KB 03:05:54 PM a
mfaptkeyz. txt 1 KB 07:54:12 AM a
mfaptpkt. txt 4 KB 03:07:00 PM a
mfaptpkt2. txt 4 KB 01:52:42 AM a
MFA TEST. HEX 213 KB 02:53:04 PM a
MFATEST. TXT 70 KB 03:00:48 PM a

MFs-PDL -Reference.,odf 97 KB 04:10:18 AM a
MFs-State-C7a557'f7cat1'on.pdf 121 KB 04:11:28 AM a
output. cp7 209 KB 08:45:34 AM a
packets. txt 46 KB 09:29:04 AM a
Protocols.cp7 204 KB 10:12:10 AM a
'5hort.cp7 150 KB 08:38:42 AM a

5hrt¢pg2. cp7 V 290 KB 10:14:38 AM a
shrtfp53.cp7 256 KB 02:25:12 PM a
shrtfps4.cp7 86 KB 10:35:56 AM ashrt ps5.cp7 86 KB 10:35:56 AM a
shrttun7.cp7 171 KB 12:21:42 PM a

AAAAAAAAA/MAA/1

Total 0 fo7a’er(5): 26 fi7e(s)

Total f7'7es size: 11 MB; 11315 KB; 11586502 Bytes

AAAAAAAAAAAAAAAAAAAAAAAAAAA/MAAAAAAAAAAAAAAAAAAAAAAA

Page 1

NOAC EX. 1019 Page 323

NOAC Ex. 1019 Page 324

Exhibit B1: Technically Elite MeterFlow Accelerator Modules Testbench

Specification (Document MFATest.pdf in directory of Exhibit A0)

NOAC EX. 1019 Page 324

NOAC Ex. 1019 Page 325

" " Technlcany Elite CONFIDENHAL
DRAFT

Technically Elite

MeterFlow Accelerator

Modules Testbench

Specification

Not For External Release!

Revision Histor

Collect earlier documents.
Format document.

“L I Technical] Elite review release.

Technically Elite MeterFlow Accelerator Modules Testbench Specification

Confidential Page 1 of 6 _
NOAC EX. 1019 Page 325

NOAC Ex. 1019 Page 326

Technically Elite .VQQNEIPENHTIAL

1 Introduction

This document describes the methodology to be used to build testbenches for the MeterFlow Accelerator

Modules Verilog and VHDL implementations. The goal is to have fully automated testing. This means

that the unit under tests (UU'I‘) output is compared to expected data generated by the C model and the

results can be reported as pass/fail. The input to the testbenches are files generated by the MeterFlow

Compiler.

1.1 Technically Elite MeterFIow Accelerator Modules Testbench

0 Written in both the Verilog and VHDL

0 Asynchronous interfaces each have a separate clock

0 Automated testing and result reporting

0 The same input files read by the testbenches and the C model

.1 .. _- _.~‘

3,
l‘

Technically Elite MeterFlow Accelerator Modules Testbench Specification .

Confidential Page 2 of 6 -

NOAC EX. 1019 Page 326

NOAC Ex. 1019 Page 327

Technically Elite CONFIDENTIAL

2 Test Flow Chart

Packet Description
Language Files

Hardware DescriptionProtocol List File .
File

MeterFlow Compiler

Q

v Hardware Description

. Ana yzer File
Pattern Recogniton InstructionDatabase Database

-
Slicer Instructon(((l D atabase

MeterFlow 0 Model

Expected Data Files

Databases From

MeterFlow Compiler

Verilog or VHDL Testbench

Technically Elite MeterFlow Accelerator Modules Testbench Specification

Confidential Page 3 of 6 ‘

NOAC EX. 1019 Page 327

NOAC Ex. 1019 Page 328

Technically. Elite ‘ ,.._§9NFIPENTIAL

2.1 Test Flow Chart Description

The MeterFlow Compiler takes as it’s input three sets of files. The first is the Protocol List file. This file

describes the protocols this implementation of the hardware must recognize and process. The compiler

will then lookup each of the protocols in the list for their Packet Description Language file. Each of these

files describes how to recognize and process the protocol. Finally the compiler may be given a Hardware

Description files that specifies the hardware resources available for this implementation. The compiler can

also generate this file by determining the minimum resources required to implement all the protocols in
the list.

The compiler outputs the databases used by the MeterFlow accelerator. These databases can be read into
the C model, the UUT and the actual hardware (if it exists). It also outputs a set of input stimulus files for
both the C model and the testbenches.

The C model emulates the functions of the UUT and produces expected data files. These files contain

cycle by cycle data that the testbench uses to check the results of the test.

Technically Elite MeterFlow Accelerator Modules Testbench Specification .

Confidential Page 4 of 6 . “

NOAC EX. 1019 Page 328

NOAC Ex. 1019 Page 329

Technicaiiy Elite ._ MCQNFIDENTIAL

3 Testbench Block Diagram

DataPort Stimulus

Clock and Reset Process

CPU Input interface
Process Start DataPort Interface Process

SD/SGRAM Memory \/
Process V Unit Under Test Start

Databases

EXPemed Data CPU Output interfaceProcess

Technically Elite MeterFlow Accelerator Modules Testbench Specification

Confidential Page 5 of 6

NOAC EX. 1019 Page 329

NOAC Ex. 1019 Page 330

Techgisally Elite _ SQNFIDENTIAL

3.1 Testbench Block Diagram Description

The testbenches are built up of separate processes run concurrently. The Clock and Reset Process

generates the system clock and system reset signals. If a process requires a different clock, such as the
SD/SGRAM Memory Process, it generates that clock itself.

The SD/SGRAM Memory Process instantiates the target memory the system is to use. An accurate model

of the memory is required to assure valid results.

The three processes that are shown importing files, each instantiate memories to hold the data read from

the files. These memories act as patterns to be either driven into the UUT or patterns the output of the

UUT are compared against. Since the UUT must be programmed before testing can begin, there is a
handshake between each of the three processes. This is shown in the diagram as the Start signals.

The test begins with the CPU Input Interface Process programming the UUT. Once the UUT is

programmed, the CPU Input Interface Process raises it’s Start output. This tells the DataPort Interface

Process to begin sending packets into the UUT. After the packets are completed the DataPort Interface

Process raises it’s Start output. The CPU Output Interface Process then begins reading the flow database.

It checks the flows against the expected data and writes the Test Results file.

Technically Elite MeterFlow Accelerator Modules Testbench Specification

Confidential Page 6 of 6 --. .u‘

NOAC EX. 1019 Page 330

NOAC Ex. 1019 Page 331

Exhibit B2: The first page of file big.cpl.

The cpl files (big.cpl, bigfgc3.cpl, bigfgpccpl, bigfpayl.cpl, bigfpay12.cpl,

bigfpgrp.cpl, bigfpgrp2.cpl, bigfragcpl, bigfrag2.cpl, outputcpl, Protocolscpl,

short.cpl, shrtfpg2.cpl, shrtfps3.cpl, shrtfps4.cpl, shrtfpsS.cpl, shrttunl.cpl) are files

for the protocol compiler of all the actual protocols recognized by the system. These

files include a description of the parser information for the parser to perform the

parsing/extracting operation according to the protocol. They also contain the state

processing states for the state operations of elements (d) and (e) of claim 54. The

first page of one file is provided.

NOAC EX. 1019 Page 331

NOAC Ex. 1019 Page 332

'—- Generated on-22:04:05

0x017C -— Total number of protocols (380 dec)

__ **********t****it*i********i'********‘kttti*******i****w't***ttt**t*ii*ifiiti'fi'k

—- Virtual Layer Decodes

__ *1”!*‘tii********iiiiiifi’*********iii****fl*****ti*ttfii****i******ii*i**i*****il‘

VirtualBase -- Text Name
0x00 —- InternalProtocolCode

0x01 —- HeaderLengthFixed (0x00 - no [computed], 0x01 - yes [fixed])
0x00 -- HeaderLengthElementsize (0x00 - byte, 0x01 nibble)
0x00 —- HeaderLengthWord (0x00 - byte count, 0x01 word count (32 bits))
0x01 —— HeaderLengthField (byte offset or nibble offset)
0x00 —- DLCLayerFlag (NO)
0x00 -- DLCLayerDestoffset (NULL)
0x00 -- DLCLayerDestMask (NULL)
0x00 -— DLCLayerSrcoffset (NULL)
0x00 -- DLCLayerSrcMask (NULL)
0x00 -- NetLayerFlag (NO)
0x00 —- NetLayerAddressSize (NULL)
0x00 -— NetLayerDestOffset (NULL)
0x00 -- NetLayerDeetMask (NULL)
0x00 —— NetLayerSrcOffset (NULL)
0x00 -- NetLayerSrcMask (NULL)
0x00 -- NetLayerFragments (NULL)
0x00 -- TunnelLayerFlag (No)
0x00 —- TunnelLayerAddresssize (NULL)
0x00 -- TunnelLayerDestOffset (NULL)
0x00 —- TunnelLayerDestMask (NULL)
0x00 —- TunnelLayerSrcOffset (NULL)
0x00 -- TunnelLayerSrcMask (NULL)
0x00 -- TunnelLeyerFragments (NULL)
0x00 -- ConnectionLayerFlag
0x00 -- ChildRecognitionTypeLengthFlag
0x01 -- ChildRecognitionIgnoreSource (0x00 - no, 0x01 - yes [ignore])
0x01 —- ChildRecognitionSize
0x00 -- Chi1dRecognitionDestOffset
0x00 -— ChildRecognitionSrcoffeet
0x01 -— Numchildren (1 children)

0x01 -— RecognitionCode
0x01 -- Ethernet Base

-- ti********iitti*******iifii***i*l‘tt***t***ttt'ki'i'kiiitiifii'kiiiiifi‘ktit*i***iit*fi

-— DLC Layer Decodes

__ itt'ki'ki‘itiifi*******i*ti”.*I'Qi*ifi'kfifiiiiiiiii*fi**ti*****‘I‘V‘kiiiiifi’ttiiifiiifiifit

-- DLC (base) Ethernet V2 Decodes

EtherType -— Text Name
0x01 —- InternalProtocolCode

0x01 -- HeaderLengthFixed (0x00 — no [computed], 0x01 - yes [fixed])
0x00 -- HeaderLengthElementsize (0x00 - byte, 0x01 nibble)
0x00 -- HeaderLengthWord (0x00 — byte count, 0x01 word count (32 bits))
0x02 -— HeaderLengthField (byte offset or nibble offset)
0x01 —— DLCLayerFlag (YES)
0x00 —- DLCLayerDestOffset (0 — 5)
OxFF —- DLCLayerDestMask (A11 bits)
0x06 —- DLCLayerSrcoffset (6 - 11)

NOAC EX. 1019 Page 332

NOAC Ex. 1019 Page 333

Exhibit B3: The file MFATESTHEX that contains the actual packets captured by
the packet acquisition device described in element (a) of claims 11 and 54, and

corresponding to the contents of element (b), the input buffer memory of claim 29.

The packet acquisition device for the experiment was a SUN workstation connected

to a connection point of a network.

NOAC EX. 1019 Page 333

NOAC Ex. 1019 Page 334

42

08 00 20 13 10 D2 00 A0 24 75 C7 78 08 00 45 00
00 30 30 6C 40 00 80 06 94 14 59 06 06 03 59 07
FE 36 09 53 00 6E 1A 5D 8A 6E 50 DA 49 60 50 18
1D 43 BF 97 00 00 52 45 54 52 20 32 OD 0A FD 6E
9D F5
*_*_*_t_*_*_*_*_*_*_*—*_*_*_*_*_*_*_R_*_*_*_*..*_*

00 00 00 00 08 00 20 13 10 D2 00 A0 24 75 C7 78
00 08 59 07 FE 36 00 00 00 00 00 00 00 00 00 00
00 00 59 06 06 O3 00 00 00 00 00 00 00 00 00 00
00 00 00 28 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 47 00 6E 00 00 09 53 00 00
*_*_*_*_*_i_*_*_*_*—'4'_i_'l_*_i_*_i_*_*_*_*_*_*_*_*

4B

00 A0 24 75 C7 78 08 00 20 13 10 D2 08 00 45 00
00 39 16 03 00 00 3C 06 B2 75 59 07 FE 36 59 06
06 03 00 6E 09 53 50 DA 49 60 1A 5D 8A 76 50 18

; 10 00 5D 6C 00 00 2E 4F 48 20 31 33 35 31 20 6F
§ 63 74 65 74 73 GB GR CA E0 6A Bl*_*_*_*_*_*_i_*_*_t_*_*_Q_*_*_*-*_*_*_*_*_i_t_i_*

00 00 00 00 00 A0 24 75 C7 78 O8 00 20 13 10 D2
00 08 59 06 06 03 00 00 00 00 00 00 00 00 00 00
00 00 59 07 FE 36 00 00 00 00 00 00 00 00 00 00
00 00 00 23 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 47 09 53 00 00 00 6E 00 00
*-*_t_*.—*_*_'l_*_*..*_*_*_I‘_*_*_*_*_*_*_*_i_*_*_*_*

40

08 00 20 13 10 D2 00 A0 24 75 C7 78 08 00 45 00
00 28 El 6C 40 00 80 06 93 1C 59 06 06 03 59 07
FE 36 09 53 00 6E 1A SD SE 76 50 DA 49 71 50 10
1D 3A 93 73 00 00 00 00 00 00 00 00 02 03 21 C2
*_t_fi_*_*_*_i_*_*_*_t_*_*_*_*_*_*_*_*_*_*_*_i_*_*

00 00 00 00 08 00 20 13 10 D2 00 A0 24 75 C7 78
00 08 59 07 FE 36 00 00 00 00 00 00 00 00 00 00
00 00 59 06 06 03 00 00 00 00 00 00 00 00 00 00
00 00 00 23 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 47 00 6E 00 00 09 53 00 00
*_*_*_*_*_*_*_*_*-*_*_*_*_*_*_*_!_i_i_*_i_*_*_i_*

4 TO: oonoz475c77e -22:53:51<o.002>-FROM: 0800201310D2

Pkt: 4, Len: 1120/1390
0000 00 A0 24 75 C7 78 08 00 20 13 10 D2 08 00 45 00 ..$u.x..E.
0010 05 5C 16 05 00 00 3C 06 AD 50 59 07 FE 36 59 06 .\....<..PY..6Y.
0020 06 03 00 6E 09 53 50 DA 49 71 1A 5D 8A 76 50 18 ...n.SP.Iq.].vP.
0030 10 00 53 11 00 00 52 65 74 75 72 6E 2D 50 61 74 ..S...Return—Pat
0040 68 3A 20 3C 6A 6D 65 74 7A 67 65 72 40 74 65 63 h: <jmetzger@tec
0050 65 6C 69 74 65 2E 63 6F 6D 3E 0D 0A 52 65 63 65 elite.com>..Rece
0060 69 76 65 64 3A 20 66 72 6F 6D 20 6E 61 74 61 64 ived: from natad
0070 6D 2E 74 65 63 65 6C 69 74 65 2E 63 6F 6D 20 62 m.tecelite.com b
0080 79 20 73 75 7O 65 72 2E 74 65 63 65 6C 69 74 65 y super.tecelite
0090 2E 63 6F 6D 20 28 34 2E 31 2F 53 4D 49 2D 34 2E .com (4.1/SMI-4.
OOAO 31 29 0D 0A 09 69 64 20 41 41 32 38 34 30 38 3B 1)...1d AA28408;
0080 20 54 68 75 2C 20 31 30 20 53 65 70 20 39 38 20 Thu, 10 Sep 98
OOCO 31 37 3A 33 37 3A 33 37 20 50 44 54 0D 0A 52 65 17:37:37 PDT..Re
OODO 63 65 69 76 65 64 3A 20 66 72 6F 6D 20 73 6D 74 ceived: from amt
OOEO 70 6C 69 6E 63 2E 74 65 63 65 6C 69 74 65 2E 63 plink.tecelite.c
OOFO 6F 6D 20 28 73 6D 74 70 6C 69 6E 68 20 SB 38 39 cm (smtplink [89
0100 2E 37 2E 37 2E 31 30 30 5D 29 0D 0A 09 62 79 20 .7.7.100])...by

NOAC EX. 1019 Page 334

NOAC Ex. 1019 Page 335

0110 63 61 74 61 64 6D 2E 74 65 63 65 6C 69 74 65 2E natadm.tece1ite.

i 0120 63 6F 6D 20 28 38 2E 38 ZE 37 2F 38 2E 38 2E 37 com (8.8.7/8.8.7
0130 29 20 77 69 74 68 20 53 4D 54 50 20 69 64 20 52) with SMTP id R
0140 41 41 31 37 32 34 35 3E 0D 0A 09 54 68 75 2c 20 AA17245;...Thu,
0150 31 30 20 53 65 70 20 31 39 39 38 20 31 37 3A 33 10 Sep 1998 17:3
0160 39 3A 30 34 20 2D 30 37 30 30 on 0A 52 65 63 65 9:04 -0700..Rece
0170 69 76 65 64 3A 20 66 72 6F 6D 20 63 63 3A 4D 61 ived: from cc:Ma

0180 69 6c 20 62 79 20 73 6D 74 70 6C 69 SE 68 2E 74 11 by smtplink.t
0190 65 63 65 6C 69 74 65 2E 63 6F 6D on 0A 09 69 64 I ecelite.com...id
01A0 20 41 41 39 30 35 34 37 34 38 32 39 20 54 68 75 AA905474829 Thu

0180 2C 20 31 30 20 53 65 70 20 39 38 20 31 37 3A 34 , 10 Sep 98 17:4
01C0 37 3A 30 39 20 50 44 54 0D 0A 44 61 74 65 3A 20 7:09 PDT..Date:

01D0 54 68 75 2C 20 31 30 20 53 65 70 20 39 38 20 31 Thu, 10 Sep 98 1
01E0 37 3A 34 37 3A 30 39 20 50 44 54 CD on 46 72 6? 7:47:09 PDT..Fro

01F0 GD 3A 20 4A 6F 68 6E 20 4D 65 74 7A 67 65 72 20 m: John Metzger
0200 3C 6A 6D 65 74 7A 67 65 72 40 74 65 63 65 6C 69 <jmetzgereteceli
0210 74 65 2E 63 6F SD 3E on DA 45 GE 63 6F 64 69 6E te.com>..Encodin

0220 67 3A 20 33 32 34 20 54 65 78 74 an OA 4D 65 73 g: 324 Text..Mee
0230 73 61 67 65 2D 49 64 3A 20 3c 39 38 30 38 31 30 sage-Id: <980810
0240 39 30 35 34 ZE 41 41 39 30 35 34 37 34 38 32 39 9054.AA905474829

0250 40 73 6D 74 70 6C 69 6E 63 2E 74 65 63 65 SC 69 @smtplink.tece11
0260 74 65 2E 63 6? 6D 3E on 0A 54 6F 3A 20 62 6c 65 te.com>..To: ble

0270 61 76 79 40 74 65 63 65 6C 69 74 65 2E 63 6? 6D avyGtecelite.com
0280 2C 20 61 63 68 61 64 64 61 40 74 65 63 65 6C 69 , achaddaGteceli
0290 74 65 ZE 63 6F 6D 2C 20 64 61 76 65 63 40 74 65 te.com, davecGte
02A0 63 65 60 69 74 65 2E 63 6? 6D 2c on DA 20 20 20 celite.com,..
0280 20 20 20 20 20 44 61 76 69 64 20 4C 75 6F 20 3C David Luo <
02C0 64 6C 75 6F 40 74 65 63 65 6C 69 74 65 2E 63 6F d1uo@tece1ite.co

02D0 6D 33 2C 20 6C 6F 77 64 65 72 40 74 65 63 65 6C m>, lowderGtecel
02E0 69 74 65 2E 63 6F 6D 2C 0D 0A 20 20 20 20 20 20 ite.com,..
02F0 20 20 65 77 68 65 65 6C 65 72 40 74 65 63 65 60 ewheelerGtecel

0300 69 74 65 2E 63 6F 6D 2C 20 66 SE SF 6F 68 40 74 ite.com, fnoonet
0310 65 63 65 6c 69 74 65 22 63 6? 6D 2C 20 66 72 65 ecelite.com, Ere
0320 64 6D 40 74 65 63 65 6C 69 74 65 2E 63 6F 6D 2C detecelite.com,

0330 OD 0A 20 20 20 20 20 20 20 20 6A 6D 61 69 78 SE .. jmaixn
0340 65 72 40 74 65 63 65 6C 69 74 65 2E 63 6? 6D 2C er@tece11te.com,
0350 20 6A 6F 74 69 73 40 74 65 63 65 6C 69 74 65 28 jotisetecelite.
0360 63 6F 6D 2C on 0A 20 20 20 20 20 20 20 20 4B 69 com... Ki
0370 6D 20 44 61 76 69 73 20 3C 68 64 61 76 69 73 40 m Davis <kdavis@
0380 74 65 63 65 6C 69 74 65 2E 63 6F SD 32 2C 20 72 tecelite.com>, r
0390 61 6D 40 74 65 63 65 6C 69 74 65 2E 63 6F 6D 2C ametecelite.com,
03AO 013 0A 20 20 20 20 20 20 20 20 52 6F 62 20 52 69 .. Rob Ri
0380 74 7A 20 3C 72 72 69 74 7A 40 74 65 63 65 6c 69 tz <rritz@teceli

03C0 74 65 ZE 63 6F 6D 3E 2C 20 72 73 64 69 65 74 7A te.com>, rsdietz
03D0 40 74 65 63 65 6C 69 74 65 2E 63 6? 6D 2c 20 73 @tecelite.com, e
03E0 6B 69 70 40 74 65 63 65 6c 69 74 65 2E 63 SE SE kipetecelite.com
03Fo on 0A 53 75 62 6A 65 63 74 3A 20 4E 65 78 74 20 ..Subject: Next
0400 47 65 6E 65 72 61 74 69 6? 6E 20 50 72 6F 64 75 Generation Produ
0410 63 74 20 44 69 73 63 75 73 73 69 6F 63 on DA on ct Discussion...
0420 GA on 0A 53 75 62 6A 65 63 74 3A 20 4E 65 78 74 ...Subject: Next

0430 20 47 65 6E 65 72 61 74 69 6F GE 20 50 72 6F 64 Generation Prod
0440 75 63 74 20 44 69 73 63 75 73 73 69 6? GE 0D 0A uct Discussion..
0450 0D 0A 49 20 77 6F 75 6C 64 20 6C 69 68 65 20 74 ..I would like t

-**_I_*_*..*_*_'fi_*_fi_*-*_*_*_*_*_t_*_i_*..*_*_*

5 TO: 0800201310D2 -2:53:51<0.198>_FROM: 00A02475C77B “‘

Pkt: 5, Len: 64/64
0000 08 00 20 13 10 D2 00 A0 24 75 C7 78 08 00 45 00$u.x..E.
0010 00 28 32 6C 40 00 80 06 92 1C 59 06 06 03 59 07 .(.1@.....Y...Y.

NOAC EX. 1019 Page 335

NOAC Ex. 1019 Page 336

0020 FE 36 09 53 00 6E 1A 5D 8A 76 50 DA 4E A5 50 10 .6.S.n.].vP.N.P.
0030 22 38 89 41 00 00 00 00 00 00 00 00 BA 3C 68 D6 "8.A.........<k.

*—*_*-*_*-*_*_*—*_*-*_*_*-*_*_*_*_*_*_*_*_i_*_*_*

6 TO: 0800201310D2 -:53:53<2.556>—FROM: 00A02475C778

Pkt: 6, Len: 66/66

0000 08 00 20 13 10 D2 00 A0 24 75 C7 78 08 00 45 00$u.x..E.
0010 00 30 B3 6C 40 00 80 06 91 14 59 06 06 03 59 07 .0.l@.....Y...Y.
0020 FE 36 09 53 00 SE 1A 5D 8A 76 50 DA 42 A5 50 18 .6.S.n.].vP.N.P.
0030 22 38 C8 6A 00 00 44 45 4C 45 20 32 0D 0A BC F6 “8.3..DELE 2....
0040 77 D9 w.

*_*_*_*_*_*_*—*_*_I'_*_*-*_*-*_*_*_*_*_*_i_*_*_*_*

7 TO: 00A02475C778 -:53:53<o.001> —FROM: 0800201310D2

Pkt: 7, Len: 91/91
0000 00 A0 24 75 C7 78 08 00 20 13 10 D2 08 00 45 00 ..$u.x..E.
0010 00 49 16 09 00 00 3C 06 32 5F 59 07 FE 36 59 06 .I....<.._Y..6Y.
0020 06 03 00 6E 09 53 50 DA 42 A5 1A 5D 8A 7E 50 18 ...n.SP.N..].~P.
0030 10 00 3F 4C 00 00 23 4F 43 20 4D 65 73 73 61 67 ..?L..+OK Meseag
0040 65 20 32 20 68 61 73 20 62 65 65 SE 20 64 65 6C a 2 has been del
0050 65 74 65 64 2E 0D 0A 52 EB E2 05 eted...R...

*_*_*_*_*_*_*_*_*_*_i_*-*-*_*_*-*_*_t_*_t_*_*_*_*

a T0: 0800201310D2 ‘2:53:53<o.002>-FROM: 00A02475C778

Pkt: 8, Len: 64/64
0000 08 00 20 13 10 D2 00 A0 24 75 C7 78 08 00 45 00$u.x..E.
0010 00 23 B4 SC 40 00 80 06 90 16 59 06 06 03 59 07 ...1@Y...Y.

0020 FE 36 09 53 00 GE 1A 5D 8A 7E 50 DA 4E C6 50 18 .6.s.n.I.~P.N.P.
0030 22 17 E1 77 00 00 51 55 49 54 0D 0A 66 C7 F0 F5 "..w..QUIT..f...

*_"_*_*-i‘-*_*-*_*..*_I'_i-*_*-*-*-*_*_*_*_t-*_*_*_*

9 To: 00A02475C778 -:53:53<0.029>.FROM: 0800201310D2

Pkt: 9, Len: 96/96
0000 00 A0 24 75 C7 78 08 00 20 13 10 D2 08 00 45 00 ..$u.x..E.
0010 00 43 16 0A 00 00 3C 06 32 59 59 07 FE 36 59 06 .N....<..YY..6Y.
0020 06 O3 00 6E 09 53 50 DA 43 C6 1A 5D 8A 84 50 18 ...n.SP.N..]..P.
0030 10 00 A0 4C 00 00 23 4F 48 20 50 6F 70 20 73 65 ...L..+OK Pop Be
0040 72 76 65 72 20 61 74 20 73 75 70 65 72 20 73 69 rver at super 51
0050 67 6E 69 6E 67 20 6F 66 66 2E on DA on 7A D8 45 gning off....z.E

f4

*_i_*_*_*-*_i-*_i-‘_*_i_t_*_*-*_*_*_*_*-'~_*_*_*_*

, 10 TO: ooaoza75c77e -22:53:53<0.003>-FROM: 0800201310D2

Pkt: 10, Len: 64/64

NOAC EX. 1019 Page 336

NOAC Ex. 1019 Page 337

0000 00 A0 24 75 C7 78 08 00
0010 00 28 16 OB 00 00 3C 06
0020 06 03 00 6E 09 53 50 DA
0030 10 00 SB 23 00 00 00 00 00

20 13 10 D2 08 00 45 00
82 7E 59 07 FE 36 59 06
4E EC 1A

00 00

..$u.x..E.

.(....<..~Y..6Y.

...n.SP.N..]..P.

...#.. +.nj

5D 8A 84 50 11
00 23 A5 6E 6A

*_*_*_'~_*_*_*_*_*_*_*_*_t_*_*_*_*_'~_*_*_i_*_*_fl_*

11 TO: 0800201310D2
FROM: 00A02475C778

Pkt: 11, Len: 64/64
0000 08 00 20 13 10 D2 00 A0 24
0010 00 28 BS 6C 40 00 80 06 SF
0020 PE 36 09 53 00 6E 1A 5D 8A
0030 21 F1 89 32 00 00 00 00 00

t.*_*_*_*-*_*_*_*_*_*_*_*_*_*.*_*_*_

12 TO: 0800201310D2
FROM: 00A02475C778

Pkt: 12, Len: 64/64
0000 O8 00 20 13 10 D2 00 A0 24
0010 00 28 36 6C 40 00 80 06 SE
0020 FE 36 09 53 00 6E 1A 5D 8A
0030 21 F1 89 31 00 00 00 00 00

75 C7
1C 59
84 50
00 00

*_*_i'

75 C7
1C 59
84 50
00 00

—:53:53<o.ooo>-

78 08 00 45 00$u.x..E.
06 06 03 59 07 .(.1@Y...Y.
DA 4E ED 50 10 .6.S.n.]..P.N.P.
00 BA 06 A9 CC l..2............

--*-*

‘:53:53<o.031>-

78 08 00 45 00$u.x..E.
06 06 03 59 07 .(.1@.....Y...Y.
DA 4E ED 50 11 .6.S.n.]..P.N.P.
00 1C BC F9 85 l..1............

*_*_*-*_*_*-*_*_t_*_i_*_*_i_*_*-*_*_*_*_*_i_*_*_*

13 To: 00A02475C778
FROM: 0800201310D2

Pkt: 13, Len: 64/64
0000 00 A0 24 75 C7 78 08 00 20
0010 00 28 16 0C 00 00 3C 06 32
0020 06 03 00 6E 09 53 50 DA 4E
0030 10 00 SB 22 00 00 00 00 00

13 10
7D 59
ED 1A 5D 8A 85 50 10
00 00

’22:53:53<o.oo1>-E
i

D2 08 00 45 00
07 PE 36 59 06

..$u.x..E.

.(....<..}Y..6Y.

...n.SP.N..]..P.
00 E0 F4 BC BO ..."............

*_*_*_*_*_*_*_*_*_*_t-i_*_*_*-*_*_l'_*_'_*_*-*_'_*

14 TO: 006008COD710
FROM: 00A076A010F2

Pkt: 14, Len: 64/64
0000 00 60 08 C0 D7 10 00 A0 76 A0 10
0010 00 2C 5F FE 40 00 80 06 39
0020 17 18 05 B4 00 BB 01 BE 3A
0030 20 00 53 E9 00 00 02 04 05

OB 59
7E 00
B4 20

-:53:58<4.755>—

F2 08 00 45 00 .‘......V.....E.
59 18 06 59 48 .,_.@.....YY..YK
00 00 00 60 02: ‘.
00 D9 FB 20 4D .5 M

-*-*-**_*_*..*_*_*_*_*_*_*_*_*_~_i_*_*_*_‘_*—*

15 TO: 00A076A010F2
FROM: 006008COD710

Pkc: 15, Len: 64/64
0000 00 A0 76 A0 10 F2 00 60 08
0010 00 2C 49 7C 40 00 80 06 CF
0020 18 06 00 SB 05 B4 1E CD 51

C0 D7
8D 59
3B 01

‘2:53:se<o.oo1>-

..v....‘.;....E.'

.,I|@.....YK .n

1o 08 oo 45’ oo
43 17 1e 59 59
BE 3A 71-“ so 12Q;..:

NOAC EX. 1019 Page 337

NOAC Ex. 1019 Page 338

Exhibit B4: The file packets.txt that describes the nature of the packets in-
MFATESTHEX.

NOAC EX. 1019 Page 338

NOAC Ex. 1019 Page 339

packets. txt

***** Packet ID: 1 *****
ETHERNET===

Destination Address: 080020-1310d2 (super)
Source Address: 006097-9d6b1d (embedded-pc)
Ethernet Type: 08-00 (IP)
IP===
Version: 4

Header Length: 5 (0x5)
Type of Serv7ce: 00
T05 Precedence: Routine (0)

T05 Delay: Normal Delaym)T05 Throu h_put: Norma Throughput(0)
T05 Relia ility: Normal Reliability(0)
Total Length: 44 (0x2c)
Identification: 56918 (0xde56)
Reserved: 0

Don't Fragment (DF): Don’t Fragment(l)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (TTL): 32 (0X20)
Protocol: TCP(6)
Header Checksum: 78 B5

Source IP: 8.9. 76.80.54 (embedded-pc)
Destination IP: 89. 7.254. 54 (super)

Source Port: (1427)
Destination Port: POP3(110)

Sezuence Number: 16058242 (0xf50782)Ac nowledgement Number: 0
Data offset: 6 (0x6)
Reserved: 0

Ur ent Field (URG): 0
Ac nowledgement field (ACK): 0
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): .Z
No More Data (FIN): 0
window Size: 8192 (0x2000)
Checksum: 68 EE

Urgent Painter: 0

***** PaCket ID: 2 *ahi'd'd'

Dest ina t ion Address : 006097— 9d6b1d (embedded-pc)
Source Address: 080020-1310d2 (super)
Ethernet Type: 08-00 (IP)

Version: 4

Header Length: 5 (0X5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Dela (0)
TOS Throu hput: Norma Thraughput(0)
TOS Relia ility: Normal Reliability(0)
Total Length: 44 (0x2c)
Identification: 1630 (0x65e)
Reserved: 0

Don 't Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)
Fragment Offset: 0

Page 1

IP==_

NOAC EX. 1019 Page 339

NOAC Ex. 1019 Page 340

packets. txt
Time to Live (TTL): 60 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 AE

Source IP: 8.9.7.254.54 (super)
Destination IP: 89. 76. 80. 54 (embedded-pc)

Source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192000 (0x49ebd400)Ac nowledgement Number: 16058243 (0xf5076’3)
Data Offset: 6 (0x6)
Reserved: 0

ur ent Field (URG): 0
Ac nowledgement field (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): 1
No More Data (FIN): 0
Window Size: 4096 (0x1000)
Checksum: 5A F1

Urgent Pointer: 0

***** Packet ID: 3 *****
ETHERNET:===

Destination Address: 080020-1310d2 (super)
Source Address: 006097-9d6b1d (embedded-pt)
Ethernet Type: 08-00 (IP)
IP==

Version: 4

Header Length: 5 (0x5)
Type of Serv7ce: 00
T05 Precedence: Routine(0)
T05 Delay: Normal Dela (0)

T05 Throughput: Norma Throughput(0)T05 Relia ility: Normal Reliability(0)
Total Length: 40 (0x28)
Identification: 57174 (0xdf56)
Reserved: 0

Don’t Fragment (DF): Don't Fragment(1)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to L ive (77L) : 32 (0x20)
Protocol: TCP(6)
Header Checksum: 7A 59

Source IP: 8.9. 76. 80. 54 (embedded-pc)
Destination IP: 89.7.254.54 (super)
TCP:==

Source Port: (1427)
Destination Port: POP3(110)
Se uence Number: 16058243 (0xf50783)
Ac nowledgement Number: 1240192001 (0x49ebd401)
Data offset: 5 (0x5)
Reserved: 0

Urgent Field (URG): 0Ac nowledgement field (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): .0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window Size: 8760 (0x2238)

Checksum: .60 76
Urgent Painter: 0

Page 2

NOAC EX. 1019 Page 340

NOAC Ex. 1019 Page 341

packe ts. txt

***** Packet ID: 4 *****

ETHERNET=.===
Destination Address: 006097-9d6b1d (embedded-pc)
Source Address: 080020-1310d2 (super)

Ethernet Type: 08-00 (IP)
IP==

Version: 4 .

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Dela (0)
T05 Throu hput: Norma Throughput(0)
T05 Relia ility: Normal Reliability(0)
Total Length: 120 (0x78)
Identification: 164.9 (0x671)
Reserved: 0

Don ’t Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)v
Fragment offset: 0
Time to Live (77L): 60 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 4F

Source IP: 89. 7. 254.54 (super)
Destination IP: 89. 76. 80. 54 (embedded-pc)

Source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192001 (0x49ebd401)Ac nowledgement Number: 16058243 (0Xf50783)
Data offset: 5 (0x5)
Reserved: 0

Urgent Field (URG): 0Ac nowledgement f7eld (ACK): 1
Push Function (PSH): 1
Reset Connection (RST): 0

Synchronize sequence (SYN): 0
No More Data (FIN): 0
Window Size: 4096 (0x1000)
Checksum: BA 88

Urgent Painter: 0
DA TA==
0a ta .'

0000
0010
0020
0030
0040
0050
0060
0070

23 4F 43 20 51 55 41 4C 43 4F
40 4D 20 50 6F 70 20 73 65 72
76 65 72 20 64 65 72 6.9 76 65
64 20 66 72 6F 60 20 55 43 42
20 28 76 65 72 73 69 6F 6E 20
32 2E 31 25 34 20 52 33 29 20
61 74 20 73 75 70 65 72 20 73
74 61 72 74 69 6E 67 25 00 0A

***** Packet ID: 5 *****

ETHERNET=.===
Destination Address: 080020—1310d2 (super)
Source Address: 006097—9d6bld (embedded—pc)
Ethernet Type: 08-00 (IP)
IP==
Version: 4

Header Length: 5 (0x5)
Type of Service: 00

+0K QUALCO

MM P90 server er7 ve

d from UCB

(version
2.1.4-R3)

at super 5
tartmg. . .

Page 3

NOAC EX. 1019 Page 341

NOAC Ex. 1019 Page 342

packets. txt
T05 Precedence: Routine(0)
T05 Delay: Normal Dela (0)

T05 Throu hput: Norma Throughput(0)
T05 Relia ility: Normal Reliability(0)
Total 'Length: 55 (0x37)
Identification: 57430 (0xe056)
Reserved: 0

Don't Fragment (DF): Don’t Fragment(l)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 32 (0x20)
Protocol: TCP(6)
Header Checksum: 79 AA

Source IP: 89. 76.80. 54 (embedded-pc)
Destination IP: 8.9.7.254.54 (super)

Source Port: (1427)
Destination Port: POP3(110)

Sezuence Number: 16058243 (0xf50783)Ac nowledgement Number: 1240192081 (0X49ebd451)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac nawledgement field (ACK): 1
Push Function (PSH): 1
Reset connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window Size: 8680 (0x21e8)
Checksum: E4 02

Urgent Painter: 0
DA TA==
Data:

, 0000 -- 55 53 45 52 20 6A 60 61 6.9 78 USER jmaix
0010 -- 6E 65 72 00 0A ner..

*ahhhé‘ PaCket ID: 6 *ahhffi'
ETHERNET==

Destination Address: 006097-9d6bld (embedded-pc)
Source Address: 080020-1310d2 (super)
Ethernet Type: 08-00 (IP)
IP==

Version: 4

Header Length: 5 (0X5)
Type of Service: 00 _
T05 Precedence: Rout7ne(0)
T05 Delay: Normal Dela (0)

T05 Throu hput: Norma Throughput!0)
T05 Relia ility: Normal Reliability(0)
Total Length: 77 (0x4d)
Identification: 1650 (0x672)
Reserved: 0

Don 't Fragment (DF): May Fragment(0)
\More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 60 (0x3c)
Protocol: TCP(6‘)
Header Checksum: 77 79

Source IP: 8.9. 7. 254.54 (super)
Destination IP: 89.76.80. 54 (embedded-pc)
TCP===

Source Port: POP3(110)
Page 4

NOAC EX. 1019 Page 342

NOAC Ex. 1019 Page 343

packets. txt
Destination Port: (1427)
Se uence Number: 1240192081 (0x49ebd451)

Ac nowledgement Number: 16058258 (0xf50792)
Data offset: 5 (0x5)
Reserved: 0

Urgent Field (URG): 0Ac nowledgement field (ACK): 1
Push Function (PSH): 1
Reset connection (RST): 0

Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window Size: 4096 (0x1000)
Checksum: C1 E2

Urgent Pointer: 0

Data:

0000 -— 23 4F 48 20 50 61 73 73 77 6F +0K Passwo

0010 -- 72 64 20 72 65 71 75 69 72 65 rd require
0020 -- 64 20 66 6F 72 20 6A 60 61 69 d for jmai
0030 —- 78 6E 65 72 2E 00 0A xner. . .

***** Packet ID: 7 *****

Destination Address: 080020—1310d2 (super)
Source Address: 006097—9d6b1d (embedded-pc)
Ethernet Type: 08-00 (IP)

Version: 4

Header Length: 5 (0X5)
Type of Service: 00 .
T05 Precedence: Rout7ne(0)
T05 Delay: Normal Dela (0) ’
T05 Throu hput: Norma Throughput(0)
T05 Relia ility: Normal Reliability(0)
Total Length: 55 (0x37)
Identification: 57686 (0xe156)
Reserved: 0

Don't Fragment (DF): Don’t Fragment(1)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 32 (0x20)
Protocol: TCP(6)
Header Checksum: 78 AA

Source IP: 89. 76. 80.54 (embedded-pc)
Destination IP: 89. 7.254. 54 (super)
TCP===

Source Port: (1427)
Destination Part: POP3(110)

Sezuence Number: 16058258 (0xf50792)Ac nowledgement Number: 1240192118 (0x49ebd476)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac nowledgement field (ACK): 1
Push Function (PSH): 1
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window Size: 8643 (0x21c3)
checksum: DB 04

Urgent Painter: 0

Page 5

DA TA==

ETHERNET==

IP::==

DATA===_

NOAC EX. 1019 Page 343

NOAC Ex. 1019 Page 344

packets . txt
Da ta :

0000 -- 50 41 53 53 20 6A 60 61 6.9 78 PASS jmaix
0010 -— 6E 65' 72 00 0A ner. .

***** Packet ID: 8 *****

Destination Address: 006097—9d6b1d (embedded—pa)
Source Address: 080020—1310d2 (super)
Ethernet Type: 08-00 (IP)
IP===

Version: 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Delay/(0)T05 Throu hput: Norma Throughput(0)
T05 Relia 77ity: Normal Reliability(0)
Total Length: 40 (0x28)
Identification: 1651 (0x673)
Reserved: 0

Don ’t Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 60 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 90

Source IP: 89. 7.254. 54 (super)
Destination IP: 6’9. 76. 80. 54 (embedded-pc)

Source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192118 (0x49ebd476)Ac nowledgement Number: 16058273 (0xf507a1)
Data offset: 5 (0x5) .
Reserved: 0

Ur ent Field (URG): 0
Ac nowledgement field (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
window Size: 40.96 (0X1000)
Checksum: 72 15

Urgent Painter: 0

***** Packet ID: .9 *****
ETHERNET===

Destination Address: 006097-9d6b1d (embedded-pc)
Source Address: 080020-1310d2 (super)
Ethernet Type: 08-00 (IP)

Vers ion : 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 De lay: Norma 7 De lay(0)T05 Throu hput: Norma Throughput(0)
T05 Re lia 1 lity: Norma 7 Re liabi lity(0)
Total Length: 83 (0x53)
Identification: 1654 (0x676)
Reserved: 0

Page 6

ETHERNET===

IP===

NOAC EX. 1019 Page 344

NOAC Ex. 1019 Page 345

ackets. txt

Don ’t Fragment (DF): May Fragment(0
More Fragment (MF): Last Fragment(0)
Fragment Offset: 0
Time to Live (77L): 60 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 6F

Source IP: 89.7.254.54 (super)
Destination IP: 89. 76. 80. 54 (embedded-pc)
TCP===

Source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192118 (0x49ebd476)Ac nowledgement Number: 16058273 (0xf507a1)
Data Offset: 5 (0x5)
Reserved: 0

Urgent Field (URG): 0Ac nowledgement field (ACK): 1
Push Function (PSH): 1
Reset Connection (RST): 0

Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window Size: 4096 (0X1000)
Checksum: 40 BC

Urgent Painter: 0
DA TA==
Data:

0000 -- 28 4F 43 20 6A 60 61 69 78 6E +0K jmaixn
0010 -- 65 72 20 68 61 73 20 30 20 6D er has 0 III'
0020 -— 6'5 73 73 61 67 65 28 73 2.9 20 essage(S)
0030 -- 28 30 20 6F 63 74 6'5 74 73 2.9 (0 octets)
0040 -- ZE 00 0A

***** Packet ID: 10 *****
ETHERNET==

Destination Address: 080020—1310d2 (super)
Source Address: 006097—9d6b1d (embedded-pt)

Ethernet Type: 08-00 (IP)
IP==
Version: 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence : Rout ine (0)

T05 Delay: Normal Dela (0)
ms Throu hput: Norma Throughput(0)
TOS Relia 7lity: Normal Reliability(0)
Total Length: 46 (0x2e)
Identifica t ion : 57942 (0er56)
Reserved: 0

Don’t Fragment (DF): Don’t Fragment(1)
More Fragment (MF): Last Fragment(0)
Fragment Offset: 0
Time to Live (77L): 32 (0x20)
Protocol: TCP(6)
Header Checksum: 77 83
Source IP: 89.76. 80. 54 (embedded—pc)
Destination IP: 89.7.254.54 (super)

Source Port: (1427)
Destination Port: POP3(110)
Se uence Number: 16058273 (0xf507a1)

Ac nowledgement Number: 1240192161 (0x49ebd4a1)
Data offset: 5 (0x5)

Page 7

NOAC EX. 1019 Page 345

NOAC Ex. 1019 Page 346

packe ts. txt
Reserved: 0

Urgent Field (URG): 0Ac nowledgement field (ACK): 1
Push Function (PSH): 1
Reset connection (RST): 0
Synchronize sequence (SYN): 0
No More Data (FIN): 0
window Size: 8600 (0x2198)
Checksum: BE 97

Urgent Painter: 0

Data: 53 54 41 54 00 0A 5TA7'..

*d'd'ai'd‘ Packet- ID: 11 *fl'fl'd'd'
ETHERNET===

Dest ina t ion A ddress : 006097-9d6b1d (embedded-pc)
Source Address: 080020-1310d2 (super)
Ethernet 7ype: 08—00 (IP)
IP===
Version: 4

Header Length: 5 (0x5)
Type of Serv7ce: 00
T05 Precedence : Rout ine (0)
TOS Delay: Normal Dela (0)
T05 Throu hput: Norma Throughput(0)
ms Relia ility: Normal Reliability(0)
Total Length: 49 (0x31)
Identification: 1655 (0x677)
Reserved: 0

Don ’t Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (771): 6'0 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 90

Source IP: 89. 7. 254.54 (super)
Destination IP: 89.76.130.54 (embedded-pc)

Source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192161 (0x49ebd4a1)Ac nowledgement Number: 16058279 (0xf507a7)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac nowledgement field (ACK): 1
Push Function (PSH): 1
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
window Size: 4096 (0X1000)
Checksum: 91 3C

Urgent Painter: 0

Data: 23 4F 45' 20 30 20 30 00 0A +0/(0 0..

***** Packet ID: 12 *****

Destination Address: 080020—1310d2 (super)
Source Address: 006097-9d6b1d (embedded-pc)
Ethernet 7ype: 08-00 (IP)

Page 8

DA TA===

ETHER/VET===

NOAC EX. 1019 Page 346

NOAC Ex. 1019 Page 347

packe ts. txt
IP:==

Version: 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Delay(0)T05 Throu hput: Norma Throughput(0)
T05 Relia ility: Normal Reliability(0)
Total Length: 46 (0X2e)
Identification: 58198 (0xe356)
Reserved: 0

Don ’t Fragment (DF): Don ’t Fragment(l)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 32 (0x20)
Protocol: TCP(6')
Header Checksum: 76 B3

source IP: 89. 76. 80. 54 (embedded-pc)
Destination IP: 89.7.254. 54 (super)

Source Port: (1427)
Destination Port: POP3(110)

Sezuence Number: 16058279 (0xf507a7)Ac now7edgement Number: 1240192170 (0x49ebd4aa)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac now7edgement field (ACK): 1
Push Function (PSH): 1
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No more Data (FIN): 0
window Size: 8591 (0x218f)
Checksum: B8 90

Urgent Painter: 0

Data: 51 55 4.9 54 00 0A 0UIT..

***** Packet ID: 13 *****

Destination Address: 006097-9d6'bld (embedded—pc)
Source Address: 080020—1310d2 (super)
Ethernet Type: 08-00 (IP)

version: 4

Header Length: 5 (0x5)
Type of Service: 00 .
T05 Precedence: Rout1ne(0)
T05 Delay: Normal Dela (0)

T05 Throu hput: Norma Throughput(0)
T05 Relia 77ity: Normal Reliability(0)
Total Length: 78 (0x4e)
Identification: 1656' (0x678)
Reserved: 0

Don 't Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 60 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 72

Source IP: 89. 7.254. 54 (super)

Destination IP: 89.76.80. 54 (embedded-pc) 9Page

IP===

NOAC EX. 1019 Page 347

NOAC Ex. 1019 Page 348

packets. txt
TCP===

Source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192170 (0x49ebd4aa)Ac nowledgement Number: 16058285 (0xf507ad)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac nowledgement field (ACK): 1
Push Function (PSH): 1
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
mndow Size: 40.96 (0x1000)
Checksum: 76 DD

Urgent Painter: 0

Data:

0000 —- 28 4F 43 20 50 6F 70 20 73 65 +0K Pop se
0010 -— 72 76 65' 72 20 61 74 20 73 75 rver at SU

0020 -- 70 65 72 20 73 6.9 67 6E 69 6E fper S1'gn7'n0030 -- 67 20 6F 66 66 2E 00 04 g 0 f...

***** Packet ID: 14 *****

Destination Address: 080020—1310d2 (super)
Source Address: 006097—9d6b1d (embedded-pc)
Ethernet Type: 08-00 (IP)
IP==

Version: 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Delaft/(O)T05 Throu hput: Norma Throughput(0)
T05 Re-lia ility: Normal Reliab171ty(0)
Total Length: 40 (0x28)
Identification: 58454 (0xe456)
Reserved: 0

Don 't Fragment (DF): Don ’t Fragment(1)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 32 (0x20)
Protocol: TCP(6)
Header Checksum: 75 39

Source IP: 89. 76. 80.54 (embedded—pc)
Destination IP: 8.9.7.254.54 (super)

Source Port: (1427)
Destination Port: POP3(110)

Sezuence Number: 16058285 (0xf507ad)Ac nowledgement Number: 1240192208 (0x49ebd4d0)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac nowledgement field (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 1
window Size: 8553 (0x2169)
Checksum: 60 48

Page 10

DA TA=========_-....-_=======================================

ETHERNET:===

NOAC EX. 1019 Page 348

NOAC Ex. 1019 Page 349

-'4-.~.-;~=~‘<-"'3:

packets. txt
Urgent Painter: 0

***** Packet ID: 15 *****

Destination Address: 006097-9d6b1d (embedded-pc)
Source Address: 080020-1310d2 (super)
Ethernet type: 08-00 (IP)

Version: 4

Header Length: 5 (0x5)
Type of Service: 00 _
T05 Precedence: Rout7ne(0)
T05 Delay: Normal Dela (0)
T05 Throu hput: Norma Throughput(0)
T05 Relia ility: Normal Reliability(0)
Total Length: 40 (0x28)
Identification: 1657 (0x679)
Reserved: 0

Don ’t Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 60 (0x3c)
Protocol: TCP(6)
Header Checksum: 77 .97

Source IP.’ 89. 7. 254.54 ' (super)
Destination IP: 89. 76'. 80. 54 (embedded-pc)
TCP==

source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192208 (0x49ebd4d0)Ac nowledgement Number: 16058286 (0xf507ae)
Data offset: 5 (0x5)
Reserved: 0

Urgent Field (URG): 0
Acknowledgement field (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
window Size: 40.96 (0X1000)
Checksum: 71 34

Urgent Painter: 0

***** Packet ID: 16 *****
ETHERNET===

Dest ina t ion Address : 0060.97-9d6b1d (embedded-pc)
Source Address: 080020—1310d2 (super)
Ethernet Type: 08-00 (IP)

Version: 4

Header Length: 5 (0X5)
Type of Service: 00 .
T05 Precedence: Rout7ne(0)
T05 De lay: Normal De la (0)

T05 Throu hput: Norma Throughput(0)
T05 Relia 7 lity: Normal Reliabi 77 ty(0)
Total Length: 40 (0x28)
Identification: 1658 (0X67a)
Reserved: 0

Don ’t Fragment (DF): May Fragment(0)
More Fragment (MF): Last Fragment(0)

Page 11

IF:==

NOAC EX. 1019 Page 349

NOAC Ex. 1019 Page 350

packets. txt

Fragment offset: 0
Time to Live (77L): 60 (0X3C)
Protocol: TCP(6)

Header Checksum: 77 96
Source IP: 89. 7. 254.54 (super)
Destination IP: 89. 76.80.54 (embedded—pc)

source Port: POP3(110)
Destination Port: (1427)

Sezuence Number: 1240192208 (0x49ebd4d0)Ac now7edgement Number: 16058286 (0xf507ae)
Data offset: 5 (0x5)

Reserved: 0
Ur ent Field (URG): 0
Ac now7edgement field (ACK): 1
Push Function (PSH): 0
Reset connection (RST): 0

Synchronize Sequence (SYN): 0
No More Data (FIN): 1
Window Size: 40.96 (0x1000)
Checksum: 71 83

Urgent Painter: 0

***** Packet ID: 17 *****

Destination Address: 080020—1310d2 (super)
Source Address: 006097-9d6b1d (embedded—pc)
Ethernet Type: 08-00 (IP)

Version: 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Delafy(0)T05 Throu hput: Norma Throughput(0)
T05 Relia ility: Norma7 Reliability(0)
Total Length: 40 (0x28)
Identification: 58710 (0xe556)
Reserved: 0

Don 't Fragment (DF): Don 't Fragment(l)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 32 (0x20)
Protocol: TCP(6)
Header Checksum: 74 B9

Source IP: 89. 76. 80. 54 (embedded-pc)
Destination IP: 89. 7.254.54 (super)

Source Port: (1427)
Destination Port: POP3(110)

Sezuence Number: 16058286 (0xf507ae)Ac now7edgement Number: 1240192209 (0x49ebd4d1)
Data offset: 5 (0x5)
Reserved: 0

Urgent Field (URG : 0Ac now7edgement ield (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window Size: 8553 (0X2169)
Checksum: 60 4A

Page 12

TCP===

ETHERNET==

IP==

NOAC EX. 1019 Page 350

NOAC Ex. 1019 Page 351

, packets. txt
Urgent Painter: 0

***** PaC/(et ID: 18 *ahhhf
ETHERNET:===

Destination Address: 080020-0dddf9 (c3po)
Source Address: 0000a3—b0022a (TecElite—N.b0022a)
Ethernet Type: 08-00 (IP)
IP:===

Version: 4

Header Length: 5 (0x5)
Type of Service: 00
T05 Precedence: Routine(0)

T05 Delay: Normal Delaft/(O)Tos Throu hput: Norma Throughput(0)
Tos Relia ility: Normal Reliability(0)
Total Length: 40 (0x28)
Identification: 37459 (0x9253)
Reserved: 0

Don 't Fragment (0F): May Fragment(0)
More Fragment (MF): Last Fragment(0)
Fragment offset: 0
Time to Live (77L): 61 (0x3d)
Protocol: TCP(6)
Header Checksum: 15 30

Source IP: 192.190.175.254 (ft)
Destination IP: 89.111.12.20 (Z3pa)

source Part: TELNET(23)
Destination Port: (32779)

Sezuence Number: 3652221321 (0xd9b07989)Ac now7edgement Number: 4022713487 (0xefc5bc6’f)
Data offset: 5 (0x5)
Reserved: 0

Ur ent Field (URG): 0
Ac now7edgement field (ACK): 1
Push Function (PSH): 0
Reset Connection (RST): 0
Synchronize Sequence (SYN): 0
No More Data (FIN): 0
Window size: 32736 (0x7fe0)
Checksum: DA 01

Urgent Po inter: 0

***** Packet ID: 19 *****
ETHERNET==

Des tina tian Address : 0000a3—b0022a (TecEl i te-N. b0022a)
Source Address : 080020-0dddf9 (c3po)
Ethernet Type: 08-00 (IP)
IP==

Vers ion : 4

Header Length: 5 (0x5)
Type of Service: 00 .
Tos Precedence : Routine (0)

Tos De lay: Normal De lay(0)ms Throu hput: Norma Throughput (0)
ms Relia 1lity: Normal Re liabi 71 ty(0)
To ta 7 L ength : 40 (0x28)
Identi fica tion : 21585 (0x5451)
Reserved: 0

Don't Fragment (DF): Don’t Fragment(1)
More Fragment (MF): Last Fragment(0)

Page 13

NOAC EX. 1019 Page 351

NOAC Ex. 1019 Page 352

NOAC Ex. 1019 Page 353

NOAC Ex. 1019 Page 354

NOAC Ex. 1019 Page 355

NOAC Ex. 1019 Page 356

NOAC Ex. 1019 Page 357

NOAC Ex. 1019 Page 358

NOAC Ex. 1019 Page 359

NOAC Ex. 1019 Page 360

NOAC Ex. 1019 Page 361

NOAC Ex. 1019 Page 362

NOAC Ex. 1019 Page 363

NOAC Ex. 1019 Page 364

NOAC Ex. 1019 Page 365

NOAC Ex. 1019 Page 366

NOAC Ex. 1019 Page 367

NOAC Ex. 1019 Page 368

NOAC Ex. 1019 Page 369

NOAC Ex. 1019 Page 370

NOAC Ex. 1019 Page 371

NOAC Ex. 1019 Page 372

NOAC Ex. 1019 Page 373

NOAC Ex. 1019 Page 374

NOAC Ex. 1019 Page 375

NOAC Ex. 1019 Page 376

NOAC Ex. 1019 Page 377

NOAC Ex. 1019 Page 378

NOAC Ex. 1019 Page 379

NOAC Ex. 1019 Page 380

NOAC Ex. 1019 Page 381

NOAC Ex. 1019 Page 382

NOAC Ex. 1019 Page 383

NOAC Ex. 1019 Page 384

NOAC Ex. 1019 Page 385

NOAC Ex. 1019 Page 386

NOAC Ex. 1019 Page 387

NOAC Ex. 1019 Page 388

NOAC Ex. 1019 Page 389

NOAC Ex. 1019 Page 390

NOAC Ex. 1019 Page 391

NOAC Ex. 1019 Page 392

NOAC Ex. 1019 Page 393

NOAC Ex. 1019 Page 394

NOAC Ex. 1019 Page 395

NOAC Ex. 1019 Page 396

NOAC Ex. 1019 Page 397

NOAC Ex. 1019 Page 398

NOAC Ex. 1019 Page 399

NOAC Ex. 1019 Page 400

NOAC Ex. 1019 Page 401

NOAC Ex. 1019 Page 402

NOAC Ex. 1019 Page 403

NOAC Ex. 1019 Page 404

NOAC Ex. 1019 Page 405

NOAC Ex. 1019 Page 406

NOAC Ex. 1019 Page 407

NOAC Ex. 1019 Page 408

NOAC Ex. 1019 Page 409

NOAC Ex. 1019 Page 410

NOAC Ex. 1019 Page 411

NOAC Ex. 1019 Page 412

NOAC Ex. 1019 Page 413

NOAC Ex. 1019 Page 414

NOAC Ex. 1019 Page 415

NOAC Ex. 1019 Page 416

NOAC Ex. 1019 Page 417

NOAC Ex. 1019 Page 418

NOAC Ex. 1019 Page 419

NOAC Ex. 1019 Page 420

NOAC Ex. 1019 Page 421

NOAC Ex. 1019 Page 422

NOAC Ex. 1019 Page 423

NOAC Ex. 1019 Page 424

NOAC Ex. 1019 Page 425

NOAC Ex. 1019 Page 426

NOAC Ex. 1019 Page 427

NOAC Ex. 1019 Page 428

NOAC Ex. 1019 Page 429

NOAC Ex. 1019 Page 430

NOAC Ex. 1019 Page 431

NOAC Ex. 1019 Page 432

NOAC Ex. 1019 Page 433

NOAC Ex. 1019 Page 434

NOAC Ex. 1019 Page 435

NOAC Ex. 1019 Page 436

NOAC Ex. 1019 Page 437

NOAC Ex. 1019 Page 438

NOAC Ex. 1019 Page 439

NOAC Ex. 1019 Page 440

NOAC Ex. 1019 Page 441

NOAC Ex. 1019 Page 442

NOAC Ex. 1019 Page 443

NOAC Ex. 1019 Page 444

NOAC Ex. 1019 Page 445

NOAC Ex. 1019 Page 446

NOAC Ex. 1019 Page 447

NOAC Ex. 1019 Page 448

NOAC Ex. 1019 Page 449

NOAC Ex. 1019 Page 450

NOAC Ex. 1019 Page 451

NOAC Ex. 1019 Page 452

NOAC Ex. 1019 Page 453

NOAC Ex. 1019 Page 454

NOAC Ex. 1019 Page 455

NOAC Ex. 1019 Page 456

NOAC Ex. 1019 Page 457

NOAC Ex. 1019 Page 458

NOAC Ex. 1019 Page 459

NOAC Ex. 1019 Page 460

NOAC Ex. 1019 Page 461

NOAC Ex. 1019 Page 462

NOAC Ex. 1019 Page 463

NOAC Ex. 1019 Page 464

NOAC Ex. 1019 Page 465

NOAC Ex. 1019 Page 466

NOAC Ex. 1019 Page 467

NOAC Ex. 1019 Page 468

NOAC Ex. 1019 Page 469

NOAC Ex. 1019 Page 470

NOAC Ex. 1019 Page 471

NOAC Ex. 1019 Page 472

NOAC Ex. 1019 Page 473

NOAC Ex. 1019 Page 474

NOAC Ex. 1019 Page 475

NOAC Ex. 1019 Page 476

NOAC Ex. 1019 Page 477

NOAC Ex. 1019 Page 478

NOAC Ex. 1019 Page 479

NOAC Ex. 1019 Page 480

NOAC Ex. 1019 Page 481

NOAC Ex. 1019 Page 482

NOAC Ex. 1019 Page 483

NOAC Ex. 1019 Page 484

NOAC Ex. 1019 Page 485

NOAC Ex. 1019 Page 486

NOAC Ex. 1019 Page 487

NOAC Ex. 1019 Page 488

NOAC Ex. 1019 Page 489

NOAC Ex. 1019 Page 490

NOAC Ex. 1019 Page 491

NOAC Ex. 1019 Page 492

NOAC Ex. 1019 Page 493

NOAC Ex. 1019 Page 494

NOAC Ex. 1019 Page 495

NOAC Ex. 1019 Page 496

NOAC Ex. 1019 Page 497

NOAC Ex. 1019 Page 498

NOAC Ex. 1019 Page 499

NOAC Ex. 1019 Page 500

NOAC Ex. 1019 Page 501

NOAC Ex. 1019 Page 502

NOAC Ex. 1019 Page 503

NOAC Ex. 1019 Page 504

NOAC Ex. 1019 Page 505

NOAC Ex. 1019 Page 506

NOAC Ex. 1019 Page 507

NOAC Ex. 1019 Page 508

NOAC Ex. 1019 Page 509

NOAC Ex. 1019 Page 510

NOAC Ex. 1019 Page 511

NOAC Ex. 1019 Page 512

NOAC Ex. 1019 Page 513

NOAC Ex. 1019 Page 514

NOAC Ex. 1019 Page 515

NOAC Ex. 1019 Page 516

NOAC Ex. 1019 Page 517

NOAC Ex. 1019 Page 518

NOAC Ex. 1019 Page 519

NOAC Ex. 1019 Page 520

NOAC Ex. 1019 Page 521

NOAC Ex. 1019 Page 522

NOAC Ex. 1019 Page 523

NOAC Ex. 1019 Page 524

NOAC Ex. 1019 Page 525

NOAC Ex. 1019 Page 526

NOAC Ex. 1019 Page 527

NOAC Ex. 1019 Page 528

NOAC Ex. 1019 Page 529

NOAC Ex. 1019 Page 530

NOAC Ex. 1019 Page 531

NOAC Ex. 1019 Page 532

NOAC Ex. 1019 Page 533

NOAC Ex. 1019 Page 534

NOAC Ex. 1019 Page 535

NOAC Ex. 1019 Page 536

NOAC Ex. 1019 Page 537

NOAC Ex. 1019 Page 538

NOAC Ex. 1019 Page 539

NOAC Ex. 1019 Page 540

NOAC Ex. 1019 Page 541

NOAC Ex. 1019 Page 542

NOAC Ex. 1019 Page 543

NOAC Ex. 1019 Page 544

NOAC Ex. 1019 Page 545

NOAC Ex. 1019 Page 546

NOAC Ex. 1019 Page 547

NOAC Ex. 1019 Page 548

NOAC Ex. 1019 Page 549

NOAC Ex. 1019 Page 550

NOAC Ex. 1019 Page 551

NOAC Ex. 1019 Page 552

NOAC Ex. 1019 Page 553

NOAC Ex. 1019 Page 554

NOAC Ex. 1019 Page 555

NOAC Ex. 1019 Page 556

NOAC Ex. 1019 Page 557

NOAC Ex. 1019 Page 558

NOAC Ex. 1019 Page 559

NOAC Ex. 1019 Page 560

