
NOAC Ex. 1018 Page 696

WM (93‘;II]IIIQL_,AI. l " " , _IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII WILH IIIIII IIIII-III II, I ,w

TH1*} UNITED STATES OFAMERICAG

I
JI'I'}4 6 v i?

'3 4’ _wwmmmwmmwma ‘g,

94‘? UNITED STATES DEPARTMENT OF COMMERCE ,g
A ‘9 United States Patent and Trademark Office ‘

October 17, 2018

THIS IS TO CERTIFY THAT ANNEXED IS A TRUE COPY FROM THE 4??
RECORDS OF THIS OFFICE OF THE FILE WRAPPER AND CONTENTS =§2gi§
OF: I

#3:

APPLICATION NUMBER: 09/608,126 _,

FILING DATE: June 30, 2000 §§§‘

PATENT NUMBER: 6,839,751 ‘

ISSUE DATE: January 04, 2005

By Authority of the

Under Secretary of Commerce for Intellectual Property 'fii6‘3 \.

and Director of the United States Patent and Trademark Office 3. .
: I 1,:

‘2 w, :..

I’M“;
E I Ii

.MONTG MER .j E

Certifying Officer

PART (3) OF (3) PART(S)

“"""’"_"' :: V- " -';~_'~'3'-":""~”'.‘““"""""”a“; nl‘f 'lg‘,‘!“r "may it: .

NOAC Ex. 1018 Page 697

/

United States Patent [19:
Liu

[54] HISTORY BASED BRANCH PREDICTION
ACCESSED VIA A HISTORY BASED
EARLIER INSTRUCTION ADDRESS

f [75] Inventor: Lishing Liu,Pleasantville, NY.
[73] Assignee: International Business Machines

Corporation, Armonk, NY.

[21] Appl. No.: 370,342

[22] Filed: Jan. 9, 1995

Related US. Application Data

Continuation of Ser. No. 860,631, Mar. 30, 1992, aban-
daned.

[51] Int. Cl.‘5t 606F938
[52] US. Cl. 395/37 , 64/2613; 364/2611;

364/2618; 364IDIG. 1

[58] Field of Search .. 395/375

’ [63]

[56] Referenca Cited

U.S. PATENT DOCUMENTS

4,763,245 8/1988 EmmaetaL .. 395/375

 INSTR.ADDR.

42

.53

READ ADDR.

WRITE ADDR.

. a“ “w. lllllllllllllllllllllllllllllllllllll||I||II|l|llIlIlllllllllllllllllllllll
U8005507028A

[11] Patent Number:

[45] Date of Patent:

5,507,028

Apr. 9, 1996

4,831,517 5/1989 Cronse ct a]. 395/375
4.984.154 111991 Hanatani el al. ..
5.168.557 12/1992 Shibuya
5,175,827 12/1992 Morisads
5.237.666 8/1993 Suzuki et a]. 395/375

Primary Examiner—Kevin J. Teska
Assistant Examiner—Ayni Mohamed
Attorney, Agent, or Finn—Ronald L. Drumheller

[57] ABSTRACT

An improved history table is disclosed in which at least
some of the entries are stored and accessed based upon the
address of an instruction which historically pmeds the
branch instruction itself. The access address may be used to
determine the location of the entry in the table and/or may
be stored in whole or in part in the entry itself. Furthermore,
the improved history table may be of any known type
including but not limited to branch history table types and
decode history table types. The entries in the improved
history table preferably are stored and accessed by the
address of the preceeding taken branch target and preferably
contain a number indicative of the number of instructions
between the access address and the address of the branch
instruction or its target.

8 Claims, 9 Drawing Sheets

BRANCH
DUTCEIME

 HISTURY

TABLE

 CDMPARE

MATCH

FINAL PREDICTIUN
RESULT 11

r

_‘ _ “VII/Ht

NOAC EX. 1018 Page 697

NOAC Ex. 1018 Page 698

NT”Mfuwv.“-_V,_._.,.._,,..A.“m—..-..
v«~wr—mmmu

US. Patent

31

INSTRUCTION

 32

INSTRUCTION

33

INSTRUCTION

37

. INSTRUCTION -

INSTRUCTION

ISSUE

Apr. 9, 1996

FIG. 2

18

88

2

87

Sheet 2 of 9

PREDICTION

20

 INSTRUCTION

FETCH UNIT

11

BRANCH

PREDICTOR

18

NOAC EX. 1018 Page 698

5,507,028

13

10

BRANCH

OUTCOME

NOAC Ex. 1018 Page 699

US. Patent 0 Apr. 9, 1996 Sheet 2 of 9 5,507,028

FIG. 2

1

a

ADDRESS

22'

31

INSTRUCTIUN
13

INSTRUCTIUN

FETCH UNIT

PREDICTIUN

11

BRANCH

PREDICTDR

BRANCH

DUTCDME

32

INSTRUCTIUN
80

10

33 2

INSTRUCTION ADDRESS

37 27

‘ INSTRUCTION ADDRESS

INSTRUCTIDN

ISSUE

12

NOAC EX. 1018 Page 699

NOAC Ex. 1018 Page 700

. M.“

INS TR.ADDR.

 READ ADDR.

 5

MATCH HISTORY
FIELD

54

NO

MATCH h

FINAL PREDICTION RESULT 11

HISTORY

NOAC EX. 1018 Page 700

mailed'S'Il

9661‘6'Jdv

6JOEiaaqs

SZO‘LOS‘S

NOAC Ex. 1018 Page 701

8

Ma53mm7,2958qu.22E5.,a:_5.mmBun:mmizmo
9

.mE4VmManiMEN.)
S

%N?
w

,3

wan?aqua
A

mum:>NEFMHI10.7.2).

.mnn¢.m._.wZH

UZDUHDDIUZ¢mm

US. Patent

734..;§.,rill..2.cg,‘,(xxEb:IllqhflynEluiraxiafiA5::(5:5A..Acxlr”.z»1flu§§Efir.9
VNQAGEXTIOB Page 701

NOAC Ex. 1018 Page 702

”MM3'
,.‘n'rwmrw

mmmsu-Wmmm—»-L”~
‘~”:1‘3‘.

:mun:mxtz-nrmmwm‘.hm“mung"LPsuing»~,

~~:mms-nmrnxu.*x’H.~

US. Patent Apr. 9, 1996 Sheet sot 9 5,507,028

FIG. 4

MATCH

FIELD HISTORY OTHERS

FIG. 6
MATCH

FIELD HISTORY OTHERS

———

FIG. 7

MATOH
FIELD HISTORY OTHERS

-——

MATCH F IG' 8
FIELD HISTORY OTHERS

F I G. 9
MATCH

FIELD HISTORY OTHERS

SSA1 ENDA2 : SSA2 -

FIG. TO
MATCH

FIELD HISTORY OTHERS

BR_ADDR BR_OUTCOME-

NOAC EX. 1018 Page 702

NOAC Ex. 1018 Page 703

5,507,023Sheet 6 of 9Apr. 9, 1996US. Patent
139.2

10255

.3HJDWMEZDHFanmmm:32:auntiigflkfl;L

.mnn¢ELK).Naeqem”.I
.mmm¢.~_l_.wzH

NOAC EX. 1018 Page 703

NOAC Ex. 1018 Page 704

5,507,028Sheet 7 of 9Apr. 9, 1996Iiri‘k. US. Patent

.3hqawwmzquoHnumm46.2:\LrIJ6.:9.5

:uhci

mm05D;mm¢mzno
. ¢m

“mu—ms.>~=u._.wHI

.mnncn¢mm

wimp—buIUZ¢mm

v4LJI?Lsxavhx‘cuiiigfafidfif‘k3.):,tiriurlqwgggigififl¢‘‘
:1Frk%.§i§§x$i‘3

NOAC EX. 1018 Page 704

NOAC Ex. 1018 Page 705

US. Patent 7 Apr. 9, 1996 Sheet 8 of 9 5,507,028

F I6. 'I 3

gr . MATCH

I: FIELD HISTORY OTHERS

M__ADDFI BFLOUTCOME-

FIG. I4

80 81

INSTR ADDR

83

BR TARGET

MUX CONTROL

CURRENT

INSTRUCTION

ADDRESS

FIG. I5-

80 81 83

INSTR ADDR INCR BR TARGET

ADDRESS MUX CONTROL
FOR

PREDICTION

CURRENT

INSTRUCTION

ADDRESS
NOACVEX. 1018 Page 705

NOAC Ex. 1018 Page 706

5,507,028Sheet 9 of 9Apr. 9, 1996US. Patent

mmmzho

wmmIFO

 l3mm"$523
3mm“gnawm<mm"NEEN>m0._.m_IF>m0hm_IgL.0.“—N>EOFQIF>m0._.w_Im..03.

$99.19..

5(mm.DAN—n.I0._.<2
wimm.HNIKGZMA“(mm

(I:U:gagging-JIf!)

NOAC EX. 1018 Page 706

NOAC Ex. 1018 Page 707

5,507,028

1
HISTORY BASED BRANCH PREDICTION

ACCESSED VIA A HISTORY BASED
EARLIER INSTRUCTION ADDRESS

This is a continuation of application Ser. No. 07/860,631,
filed Mar. 30, 1992, now abandoned.

FIELD OF THE. INVENTION

This invention generally relates to control of instruction
flow in a computer system and more particularly to the
prediction of outcome of branch instructions using a history
based branch prediction table.

BACKGROUND OF THE INVENTION

In typical pipelined processors, the processing of each
instruction is divided into successive stages, with each stage
of an instruction processing being handled by a specialized
unit in a single cycle. Each successively earlier stage in the
pipeline of stages is ideally handling simultaneously the
successively next instruction. However, when a conditional
branch instruction is encountered, there are several cycles of

delay between the decoding of the branch instruction and its
final execution/resolution, so it is not immediately known
which instruction will be the next successive instruction. It
is wasteful of the computer resource, however, to wait for
the resolution of an instruction before starting with the
processing of a next instruction. Therefore, itis recognized
that it is advantageous to provide a mechanism for predict-
ing the outcome of a conditional branch instruction in
advance of its actual execution in order to provisionally
begin processing instructions which will need to be pro-
cessed if the prediction is correct When the prediction is
correct, the computer system can function without a delay in
processing time. There is a time penalty only when a correct
prediction cannot be attained ahead of time.

Throughout this application, the following terms and
conventions will be used and shall have the indicated

meaning. A branch instruction tests a condition specified by
the instruction If the condition is true, then the branch is
taken, that is, following instruction execution begins at the
target address specified by the branch instruction. If the
condition is false, the branch is not taken and instruction
execution continues with the instruction sequentially fol-
lowing the branch instruction. There may be branches that
are unconditionally taken all the time. Such unconditional
branches may simply be viewed as a special form of
branches when appropriate.

A number of patents are directed to branch prediction
mechanisms. For example, U.S. Pat. No. 4,370,711 to Smith
discloses a branch predictor for predicting in advance the
result of a conditional branch instruction in a computm'
system. The principle upon which the system is based is that
a conditional branch instruction is likely to be decided in the
same way as the instruction’s most recent executions.

A simple strategy for handling branches is to suspend
pipeline overlap until the branch is fully completed (i.e.,
resolved as taken or not taken). Iftaken, the target instruc-
tion is fetched from the memory. U.S. Pat. No. 3,325,785 to
Stephens sets forth a static branch prediction mechanism. An
improved method of this type is to perform static branch
prediction by making a fixed choice based on the type of
branch and statistical experience as to whether the branch
will be taken. When the choice indicates that the branch is

predicted to be not taken, normal overlap processing is
continued on a conditional basis pending the actual branch

5

10

15

20

30

35

45

55

65

2

outcome. If the choice proves wrong the conditionally
initiated instructions are abandoned and the W391 mm-
tion is fetched. The cycles devotedto the conditional instruc-
tions are then lost as well as the cycles to fetch the correct
target inslmction. However, the latter is often avoided in the
prior art by prefetching the target at the time the branch is
decoded.

A more sophisticated strategy is embodied in U.S. Pat.
No. 3,,559183 to Susscnguth, which patent is assigned to the
assignee of the present invention. 11'1s based on the obser—
vation that the outcome of most branches, considered indi-
vidually, tends to repeat. In this strategy, a history table of
taken branches is constructed, which is known as a Branch
History Table (Bl-1T). Etch entry in the table consists of the
address of a taken branch followed by the target address of
the branch. The table is a hardware construct and so it has

a predetermined size. When the table is full, making a new
entry requires displacing an older entry. This can be accom-
plished by a Least-Recently-Used (LRU) policy as in
caches. When a branch'rs resolved as taken during execu-
tion, the history information associated with the branch'rs
inserwd into or updated'to the BET. Branch prediction and
instruction prefetching me accomplished through constant
search for the next taken branches in the history table. Upon
final resolution/execution of a branch, any incorrect history
information associated with the branch will be reset/updated
properly. The major benefit of a BI-lT is to allow a separate
branch processing unit to prefetch instructions into the
instruction butter (I-Bufl’er) ahead of the instruction decode
stage. Such instruction prefctching into the I-bufier past
predicted takrm branches is possible due to the recording of
target addressee fortakenbranchcs in the BET. U.S. Pat. No.
4,679,141 to Pomerene er al, which patent is assigned to the
assignee of the present invention, improves the BET design
by recording more history information in a hierarchical
manner.

U.S. Pat. No. 4,477,872 to Losq et al, which patent is
assigned to the assignee of the present invention, proposes
a decode time branch prediction mechanism called a Decode
History Table (DHT). The DHT mechanism improves the
decode time static branch prediction methods of U.S. Pat.
No. 3,325,785, to Stephens, by employing a hardware table
to record simple histories of conditional branches. In the
simplest form a DHT consists of a bit vector of fixed length.
For each conditional branch instruction executed, a bit
position in the DHT is derived through a fixed hashing
algorithm, andrhe corresponding bitinthe DHTrccords the
outcome of the execution, indicating whether the branch was
taken or not taken. Similar to U.S. Pat. No. 3,325,785, the
BET method allows overlap processing on a conditional
basis past the decode of a conditional branch instruction if
the branch is predicted. based on the DHT history, as not
taken.

The common technique for the above cited branch pre-
diction methods that are based on the dynamic ltistories of
branches is to first record the previous outcome of branch
instructions in a history based dymmic table and to then use
such recorded histories for predicting the outcome of sub-
sequently encountered branch instructions. Etch branch
recorded in such ahistory based table is recorded with either
implicit or explicit information about the address of the
recorded branch instruction so that the addresses of later

encountered instructions can be correlated against the
recorded information (i.e., by using the address of the
instruction which is potentially a taken branch instruction in
order to access the table for historical branch information).
In order for branches to be predicted, the history table is

NOAC EX. 1018 Page 707

NOAC Ex. 1018 Page 708

.u-wur’fim.4mac-Wt»~‘
dukvflnu

5,507,028

3

checked for a relevant entry by correlating the address of the
instruction to be predicted against the implicitly or explicitly
recorded address information of recorded branch instruc-
tions. In the DHT method, the bit position in the history
vector is derived through hashing from the address of the
conditional branch. In the BET approach. an instruction is
predicted to be a conditional branch which is taken if there
is a match of the instruction address with a taken branch
address found in an entry in the BHT and the target address
recorded in this found entry is predicted as the current
branch target address.

Numerous variations and improvements have been pro—
posed in implementing aBHT. For example, in US. Pat. No.
4,679,141 to Pomcrene et a1, a technique is described for
recording histories by block (e.g., doubleword) addresses
instead of by individual branch instruction addresses. This
technique otters advantages in reducing cache fetch traflic
and the possibility of identifying the outcome of multiple
branches within a single block. However, through more
complex tags at each BHT entry, the block recording tech-
nique still conceptually operates as in conventional BHT
methods in terms of identifying taken branch history by
matching the addresses of the currently concerned instruc-
tions against the recorded addresses (or more precisely
matching a portion of each such address) of the branch
instructions recorded in the block.

US. Pat. No. 3,940,741 to Horikoshi et al sets forth an
information processing device for processing instructions,
including branches. A cache-like route memory is provided
for storing branch target addresses of a plurality of taken
branch instructions and the branch target instructions (code)
themselves in corresponding relationship to the branch tar-
get addrmses. The route memory is referenced by the target
address of a branch instruction, and the branch target
instruction at the corresponding branch target address is read
out. The Horikoshi et al patent utilizes the target address of
the branch, which is known upon decoding of the branch, to
retrieve target instruction code for decode if the target
address isrecordedas aprevious targetforatakenbranchin
the route memory. Such a mechanism generally requires
some delay beforethe access to the route memory due to the
address formation for the branch target.

In practical implementrnions for branch prediction based
on histories, timing is ofien found to be a mitical factor.
History table access generally involvesaddress calculations
and slower array, lookup operations. In order to efliciently
search constantly for potentially taken branches in BHT type
implementations also involves complexity in the recording
of history entries. Considering all of the tasks which need to
be accomplished in order to make a prediction and to utilize
it to advantage, it is desirable for practical reasons to be able
to start the prediction process with respect to a particular
instruction of interest as far in advance as possible and also
to achieve the prediction as far in advance as possible.
Neverthelem, there is no known art that ofl‘ers the capability
of either making a prediction decision or even initiating the
prediction decision process with respect to an instruction
which is potentially a taken branch instruction prior to
identifying the address of that instruction of interest. It
would be desirable to be able to predict instruction branches
even earlier than the point where the address of an instruc-
tion is brow which has the potential of being ataken branch
instruction, because it would ofi‘er an opportunity to imple-
ment and use branch prediction with simpler and less costly
circuits.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
an alternative approach to the prediction of branch outcome

10

15

30

4
based on histories in order to achieve an earlier prediction.

It is also an object to initiate the process of predicting the
outcome -of an instruction which is potentially a taken
branch instruction prior to the time when the address of that
instruction is known

A further object is to predict 3 taken branch without first
deter-ruining the address of the branch instruction.

It is another object to provide a history based branch
prediction table which can be maintained and accessed using
an instruction address which historically proceeds the branch
instruction.

Another object is to record in a history based branch
prediction table a number indicative of the number of
instructions by which such a preeeeding instruction histori-
cally proceeds the recorded branch instruction.

It is a further object to record the address of such a
proceeding instruction in a history based branch prediction
table.

These and further objects have been achieved by this.
invention with an improved history table in which at least
some of the entries are stored and accessed based upon the
address of an instruction which historically proceeds the
branch instruction itself. The access address may be used to
determine the location of the entry in the table and/or may
be stored in whole orin part in the entry itself. Furthermore,
the improved history table may be of any known type
including but not limited to branch history table types and
decode history table types. The entries in the improved
history table preferably are stored and accessed by the

. address of the proceeding taken branch target and preferably

35

45

50

55

contain a number indicative of the number of instructions
between the access address and the address of the branch

instruction or its target.

Theory ofOperation

Instructions are executed in a computer according to a
certain logical sequence. Each instruction resides in the
memory at a specific address. Two successive instructions in
the memory may be executed in sequential or non-sequential
orduing. When two instructions are sequentially adjacent to
each other the address ofthe second instruction is exactly the
address of the first instruction incremented by the length of
the first instruction code. Non-sequential flow of instructions
may occur during execution by various causes, among
which branch instruction exeartions are the most frequent.
Instructions in a typical computer system may be classified
into two categories: breaker and non-breaker. A non-breaker
instruction is the type that will cause the sequentially
following instruction to be executed next, tmless an excep-
tion condition (c.g., divide-by—zero) occurs. A breaker
instruction is the type that can cause natural jumps to a
non-sequentially related instruction to be executed next.
Taken branch instructions are typical breaker type instruc-
tions. For the simplicity of description of the basic concept
of the present invention only branch instructions will be
considered for breakers.

Without an exception condition, the instruction stream
executed is a sequence of sequential blocks (S-blocks), with
each sequential block consisting of zero or more non-
breakers followed by a branch instruction at the end. The
branch instruction of an S-block may be taken or not taken
during execution. Similarly. the instruction stream executed
is a sequence of sequential, segments (S—segments), with
each sequential segment consisting of one or more succes-
sive S—blocks such that only the last S-block has a taken

NOAC EX. 1018 Page 708

NOAC Ex. 1018 Page 709

5,507,028
5

branch at the end. FIG. 1 depicts such a pattern of instruction
flow during program execution. Only two S—segments (881
and 882) are illustrated. SSl consists of two S—blocks, 81311
and 8812. The branch instruction B11 at the end of 8811 is
not taken, while the branch instruction B12 of SB12 is taken
with the beginning of $82 as the branch target. Similarly
SSZ consists of three suwessive S-blocks 8321, 8822 and
SB23. The ending branches 321 and B22 for SB21 and

.8322, respectively, are not taken. The ending branch B3 of
81323 is taken with the beginning of another S-segment as
the target-

Considcring any conventional history based branch pre-
dictiOn method, the instruction stream is constantly exam-
ined for the next branch to be predicted Upon locating such
a branch instruction the branch predictor uses the branch
address (in whatever representation) to look for an appli—
cable history in the history table. For example, when con-
ventional BHT design is applied to the S-segment Sll in
FIG. 1, the S—segrnent 811 is scanned through for a taken

' branch in the history table. IfBlZ is the taken branch in the
history table the S-segment 811 can be rather long and
involves multiple cycles for the scan, even when block
recording technique is used. Only upon locating the taken
branch 312 in the history table prediction can then be can'ied
out Such conventional approach often leads to complex
encoding of the history table in order to locate the relevant
taken branches in a timely manner.

The present invention is based on the observation that the
main purpose of conventional branch prediction methods is
to resolve the flow of the instruction stream early in order to
bring instructions into the instruction buffer soon enough for
decoding. Branch addresses have been used for history table
look-up for the natural reason that branches are normally the
cause of non-sequential instruction flow. I have observed
that predicting the outcome of 8 taken branch can be done
without first locating the branch. For example, it is possible
to create all S-segment history table (SSHT) to rword the
flow patterns among successive S-segments. With an SSHT.
the instruction flow prediction can be achieved without
locating and predicting individual branches. This observa-
tion has been further generalized into the concept of pre-
dicting instruction flow (as dominated by taken branches)
based on addresses of instructions prior to the conccmed
branches. Use of such a technique for early resolution of
branch predictions not only allows more timely resolution of
instruction flow control but also offers flexibility for simpler

implementations. I

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
of the'invention will be betterunderstood from the following
detailed description of a preferred embodiment of theinven-
tion with reference to the drawings,in which.

FIG. 1is a block diagram showing the instruction flow
Patterns between successive sequential blocks and sequen-
tial segments;

FIG 2 is a block diagram showing the structm'e of60
Pipelining with branch prediction;

FIG. 3is a block diagram showing the gents-a1 structure
Of a history-based branch predictor,

FIG. 4 shows the format of history table entries for
prediction based on S-segments;

FIG. 5 is a block diagram showing a structure for the
Motor of S-segment flow:

10

30

35

45

50

55

65

6

FIG. 6 shows an aim-native format of history table entries
for S—segment flow prediction, with length information
recorded for the first S—segment;

FIG. 7 shows an alternative format of history table entries
for S-segment flow prediction, with end address recorded for
the first S-segment;

FIG. 8 sbows an alternative format of history table entries
for S—segment flow prediction. with length information
recorded for the second S-segment;

FIG. 9 shows an alternative format of history table entries
for S-segrnent flow prediction, with end address recorded for
the second S-segment;

FIG. 10 shows the format of history table entries for a
conventional DHT type branch prediction mechanism;

FIG. 11 is a block diagram showing a branch predictor in
which an address adder is used to form the precise branch
address;

FIG. 12 is a block diagram showing an alternative design
of the predictor shown in FIG. 11 which bypasses the
address adder for history table amess;

FIG. 13 shows an alternative to the history table entry
format shown in FIG. 10 with a more general address at the
MATCH FIELD;

FIG. 14 shows an alternative method of address genera-
tion from the method illustrated in FIG. 11;

FIG. 15 illustrates the method of carrying out branch
prediction always based on the address of the previous
instruction processed;

FIG. 16 shows a generalization of the history table entry
format shown in FIG. 8, with the successive flow between
more than two S—segments recorded; and

FIG. 17 shows a generalization of the history table entry
format shown in FIG. 9, with the sucmssive flow between
more than two S—segments recorded.

DETAILED DESCRIPIION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Refm'ing now to the drawings, and more particularly to
FIG. 2. there is illustramd a typical computer pipeline
structure with a branch prediction mechanism. The branch
predictor 10 performs the branch predicfiou and branch
history management operations. Instructions 31—37 are pro-
cessed according to a certain logical sequence for a particu-
lar pipeline design. Addresses 21—27 represent the corre-
sponding addresses of instruction stream 31-37. The branch
predictor 10 receives an input instruction address on line 20
from address 23 in the instruction address pipeline. The
prediction output 11 from the branch predictor 10 is nor—
mally used to determine the subsequent instructions to be
fetched into instruction buifer. The branch predictor 10 also
receives from input signal line 12 informan'on that allows it
to determine the correctness of prediction and the adjust—
ment ofhistory information. The issuing of an instruction 37
for actual processing (e.g., for decode or for a later step) is

' usually one or more cycles past the branch prediction stage
in the pipeline.

The function of the branch predictor 10 is highly depen-
dent upon the particular branch prediction design employed.
For instance. with respect to the DHT mechanism employed
in IBM 3090 systems, the branch predictor 10 is activated
during thedccode stage ofaninstructioninthepipeline with
the output 11 being as simple as a single bit indicating the
predicted outcome as taken or not taken for the instruction
being decoded. In a more sophisticamd BH'I‘ mechanism, the

NOAC EX. 1018 Page 709

NOAC Ex. 1018 Page 710

5,507,028
7

'ctor 10 can be activated for an instruction

$3221 $3115 earlier than the actual. decode of the instruc-
lion with the prediction output 11 indicating whether the
instruction is a taken branch or not and the target Instruction
address if the instruction is guessed as a taken branch
Although not a necessity, the output 11 of the branch

‘ctor is normally passed to an instruction fetch unit 13

for prefetching the predicted subsequent instructions. The
branch predictor 10 in prior art branch prediction schemes
for early branch resolution conceptually. guesses the out-
come Of a branch instruction 3 according to the branch
address 23 input from line 20.

Referring now to FIG. 3, which is a block diagram
representation of the branch predictor 10 with altistory table
43 milizcd for branch prediction An instruction address 40
from a register is the input instruction address for which
prediction steps are to be taken. For simplicity of description
of the invention, the history table 43 may be a 1-dimensional
table with a fixed number of entries. The selection of an
entry in the history table 43 for a given instruction address
40 is via proper hashing of cenain address bits, Each urtry
in the history table 43 generally consists of two portions:
MATCH FIELD and HISTORY. The MATCH FIELD por-
tion is used for matching with input address bits in order to
determine whether the history information recorded in the
HISTORY portion of the entry is applicable. In the simplest
casetheMATCHFIELDportioncanbenullwiththe
address match results considered always successful. The
address queue 42 is used to hold address indicators for
instructions with unfinished branch prediction status, The
left portion of each entry of the address queue 42 contains
address identifiers that are compatible with the MATCH
FIELD in the history table 43. The right porn'on of each
entry contains a tag allowing the identification of the entry
selection for the associated instruction address. The address

queue 42 is implemnted as a first-in-first—out queue, The
write address 52 signal is used for updating the history table
43. Upon update to the history table 43 the left portion ofthe
oldest entry in the address queue 42 supplies the new value
51 fortheMKI‘CHFlELDJ‘heresultqueueMisusedfor
queuing predictions that have not yet been verified as
correct,

The compare logic 45 is used for determining a match
between the MATCH FIELD value 54 of the selected entry
of the history table 43 and the con'espondence in the
instruction address 40. The output HISTORY value 55 at the
selected .try of the history table 43 is input to both the
result queue 44 and logic 46. The logic 46 simply readjusts
the HISTORY value received into a proper format. When a
match is found at the compare logic 45, MATCH line 64 is
raised (with value 1) and the AND logic 48 provides the
prediction result to the 0R logic 49 via line 67. If a match
is not found at the compare logic 45, the N0 MATCH line
63 is raised instead and causes a default guess result to be
passed to the 0R logic 49 via line 66. The output 11 from the
branch predictor consists of two portions 11a and 11b. The
output line 11a from the OR logic 49 gives the final result
of the prediction based on the contents of the instruction
address 40. The compare lmit 45 provides the MATCH
signal to the output line 1117. In certain implementations the
output line 11b can be eliminated. For example, in the IBM
3090 implementation of a DHT, the MATCH FIELD is null
and the MATCH signal 11b is conceptually on always and
hence the compare lmit 45 and the output line 11b can be
ignored. The correction logic 41 takes as input the actual
branch outcome 12 from the branch execution unit and via
signal line a the earlier prediction from the first-in-first—out

10

15

35

45

55

65

8

result from queue 44. By matching the branch prediction
with the actual branch outcome the correction logic 41
performs the function of verifying correctness of active
branch predictions and triggering necessary adjustments to
the HISTORY portion of a relevant entry in the history table
43. The two queues 42 and 44 are controlled such that the
history table 43 can be updated consistently with the corre-
sponding prediction verified by the correction unit 41. In an
implementation that allows only one access (Read or Write)
per cycle to the history table 43, priority needs to be
provided between concurrent accesses. For example, update
to the history table 43 due to signal 56 from correction logic
41 may delay the read access for a new prediction. Such
implementation choices are not critical to the present inven-
tion and will not be discussed in further detail. The MATCH

signal from the compare unit. 45 is also sent to the result
queue 44 via signal line 68. It is assumed that each entry of
the result queue 44 has a history hit bit (EH-bit) with the
value (0 or 1) received from the signal line 68 upon
prediction.

Upon history reset as triggered by signal 56 from the
correction lmit 41, all the subsequent instruction flow pre-
dictions may be regarded as abandoned. As a result, upon a
history reset condition, both the address queue 42 and the
result queue 44 will be emptied. Also as a direct conse-
quence, prefetched instructions in the instruction buifermust
be flushed as well.

In many implementations, the instruction address need
not always trigger prediction through the history table
Eliminating unnecessary prediction actions can reduce the
size requirements for the address queue 42 and the result
queue 44. Certain unspecified controls are assumed for
controlling the activation and deactivation of the predictionmode.

The general concept of the present invention may be
realized in various different ways. In order to illustrate this,
various techniques will be described now with ditferent
types of designs utilizing difi'erent kinds of histories for
prediction of instruction flow.

Instruction flow prediction will be described now using an
SSegment History Table (SSHT). In a conventional BI-IT‘
approach. theMATCHFIELDportion ofanentryinthe
history table 43 identifies the address of a previously taken
branch and the HISTORY portion records the target instruc-
tion address to which the branch was taken. In the SSI-IT

approach the history table 43 records the flow history of
S-segment instead. FIG. 4 depicts the format of an entry in
the history table 43 in which SSAl and SSA2 represent the
addresses of two S-segrnents such that a previous execution
of the program previotu flowed from the S-segment (SSl)
beginning at SSAl to the S-segment (SSZ) beginning at
SSA2 consecutively. Therefore, when the flow history entry
depicted in FIG. 4 gets recorded in the history table 43, an
execution flow to the first instruction of 882 (at. SSA2)
directly from the last (branch) instruction of 881 has justoccurred. -

Referring now to FIG. 5, which shows a modified version
of the block diagram of FIG. 3, for illustrating an SSI-IT
implementation. The compare unit 45 simply outputs the
MATCH signal 11b as part of the final prediction result 11.
The default guess 61 in FIG. 3 is discarded. Assuming that
the prediction mode is activated, there are two possibilities.
When theMAT‘CH line is raised (:1) in the output 111; ofthe
predictor, an S-segrnent flow history is found with the
instruction address 40 as the first S-segrnent and the address
of the next S-segment indicated in the prediction output 11a.

NOAC EX. 1018 Page 710

NOAC Ex. 1018 Page 711

5,507,028
9

0n the other hand, when the MATCH line is low (=0) in the
output line 1117, such an S—segment flow history is missing
in the history table 43. In the SSH'I’ implementation, the
branch prediction for instruction address 40 can be activated
only if the beginning of an S-segment is located, either
through the S-segment chain as searched from the SSHT
history table 43 or when a taken branch actually occurs
during execution. When the S-segment chain through his-
{my pairs <SSA1,SSA2> of the history table 43 reaches a
point where a next flow of S-segments is missing, three can
be several difi'erent ways of proceeding. One simple
approach to handling missing history in SSHT 43 is to hold
the prediction activation until desired flow information is
determined from a relevant taken branch. The correction

logic 41 is invoked only when a breaker (e.g., taken branch)
is found in execution. In principle, when the instruction to be
executed at the moment is in an S-segrnent at beginning
address SSA1, the oldest entry in the address queue 42
contains information for that S-segment and the oldest entry
of the result queue 44 contains the corresponding earlier
prediction result. The correction logic 41 is invoked when n
breaker of the currently active S—segrnent is detected during
execution, for which the correction logic 41 checks whether
the oldest entry in the result queue 44 contains correct
S-segment flow information. If at the oldest entry of the
result queue the history-hit flag HII—bit is on (=1) and the
target S—segment address matches the target for the currently
executed breaker, the prediction is regarded as successful.
Otherwise, either when the I-IH—bit is off (=0) or when the
target S-segment address is wrong, the earlier prediction is
regarded as unsuccessful. Upon detection of unsuccemful
prediction, the correction logic 41 triggers history update
operations by updating or inserting the relevant utry into
the history table 43. The new history information gets the
MATCHFIELD value fi'omlincSIfinmtheaddressqueue
42 and the HISTORY value from line 56 from the correction

S-segment prediction methods nh'lizing an SSI-IT have
been described above. A major purpose for prediction of

. instruction flow is to facilitate prefetching of instructions
into the instruction btrfl’er. Still referring to FIG. 5, the output
signalsllaandllbarepassedtoaseparateinstruction
prefetch unit. When the MATCH signal 11b is on (=1) the
output 11a contains the address SSA2 of the S—segmcnt
which is predicted to follow the currently predicted S—seg-
ment at address SSAl. The instruction prefetch control still
needs information on how long the S—segment at SSAl is in
order to determine when to start prefetching instructions for
the S—segment at SSA2. There are various solutions for
providingvsuch length information to the instruction prefetch
control. The most natural approach is to provide the infor-
mation through the history table 43. An enhancement to the‘
SSl-lT entry format shown in FIG. 4 is illustrated in FIG. 6,
in which the HISTORY portion also contains a new tag
IENGTTD. WGTHI describes the length of the S-seg-
ment at address SSAl. Upon a history-hit, as indicated by
MATCH=1 in the output line 11b of FIG. 5, the output line
11a also provides the LENGTHI information to the instruc-
tion prefetch controL With the LENGTHl information the
instruction prefetch control is able to determine how far
sequential instructions for the S—segment at address SSAl
needs to be prefetched into the instruction bufier before the
instruction prefetch for the S—segment at SSA2 should start.
’I‘heresultqueueM inFIG. S alsorecords thelLENGTI-Il,
SSA2] prediction information. Upon locating a breaker
during execution, the correction logic 41 calculates the
actual length for the S—segment at SSAl and determines

10

is

20

40

45

55

60

65

10

whether the IENGTI-Il prediction is correct. If not1 proper
instruction prefetch corrections need to be carried out in
addition to the update of history information in the SSHT
history table 41. There are various ways the instruction
prefetch unit may handle history nriss conditions (i.e., when
theMATCHsignalisofiinoutputlinellbt‘r-omthe
predictor). A straightforward approach is to carry out limited
sequential instruction prefetching for the S-segment at
address SSAI. For example, two consecutive doublewords
may be prefetched into the instruction buffer for the current
S-segment and the rest of instruction fetch might wait till
more information becomes available. The history tag
LENGTHl may be represented in various ways as well, for
which the most straightforward is to record the number of
bytes. In many computer systems, instructions are all of
equal length (e.g., a 4-byte word), in which case LENGTHI
only needs to .record the number of instruction words
involved. In IBM/390 architecture each instruction is of a

length which is a multiple (1. 2 or3) of2-byte halfwords, for
which LENGTl-Il only needs to record the number of
halfwords involved. In practice it is desirable to utilize few
bits forLENGTHI recording. From simulation studies it has
been observed that a great majority of S-segrnents are rather
short (e.g., £64 bytes). When the length of an S—segment is
beyond the capacity of recording in the LENGTHI tag, an
ova-flow condition might be flagged at the LENGTHI tag in
the SSHT history table 43. Upon a LENGI'HI overflow the
instruction prefetch control might simply treat the length of
the corresponding S-segment as infinite, which will not be
unreasonable in practice due to the rarity of long S~seg—
ments. Another possihle alternative is to break up a long
S-segment into multiple short partitions for recording as
different entries in the SSHT history table

A possible alternative to the recording of LENGTH]
information in FIG. 6 is to precisely identify the ending
address of an S-segment instead. FIG. 7 describes such an
alternative format forhistory table entry, in which an address
tag ENDAl is used for identifying the end of the S—segment
beginning at address SSAl. The instruction prefetch control
and the correction unit 41 might easily utilize the ENDAl
information for instruction prefetching and predimon veri—
fication.

In the above configuration, the LENGTl-Il tag in FIG. 6
and the ENDAI tag in FIG. 7 are both for identifying the
first S-segment (beginning at address SSAl). It is also
straightforward to modified the illustrated predictor con-
structs of FIG. 5 so that these tags are associated with the
target S-segment instead. That is, the WW tag could
bereplacedwith aLENGII-IZtagthatdescribcs thelength
for the target S-segment beginning at address SSA2. Simi—
larly, the ENDAl tag may be replaced with a ENDA2 tag
that describes the ending address of the target S-segment
beginning at address SSA2.

In the above described SSHT prediction mechanisms, the
instruction flow predictions are based on S-segrnent grann-
lan‘ty. The principles can be generalized into other granule
sizes, as long as the prediction opuations can be carried out
in a definitive manner with reasonable accuracies. For

example the history of instruction flow can be constructed
based on S—block granules instead. Prediction of S—block
flow may be carried out in the manner similar to conven-
tional BHT mechanisms. For example, it is not necessary to
record sequential flow of S-blocks upon a miss of S-block
flow in the history table. Sequential flow may be assumed
and the next S-block may be looked for in the history table.

The above described SSH'I‘ prediction mechanism illus-
trates a way of realizing the concept ofpredicting instruction

NOAC EX. 1018 Page 711

NOAC Ex. 1018 Page 712

5,507,028

11

flow prior to identifying a branch address. Now another form
of application of the concept will be described In conven-
tional history based branch prediction methods. the address
of a branch is the basis for history look up. FIG. 10 describes
a general format for history table entry for conventional
methods. The MATCH FIELD contains BR__ADDR, which
normally consists of a subset of the address bits of the
branch, that is used for matching with the branch being
predicted The HISTORY portion contains the history
BR_OUICOME for the actual outcome of the branch upon
a previous execution. In DI-IT type methods, the BR_OUT-
COME can be as simple as a 1-bit tag indicating whether the
associated conditional branch was taken or not taken.

Consider the branch predictor platform in FIG. 5. In many
branch prediction methods, instruction addresses are con-
stantly passed to the branch predictor. For example in the
DHT approach, the decode of each instruction will trigger a
possible branch prediction using the address of the currently
decoded instruction as the instruction address 40 for the

branch predictor. The prediction output 11a is considued
active only when the MATCH signal is on (=1) in the output
line 111). An instruction be reached (e.g., for decode)
generally in two ways: a) falling through sequentially from
the previous instruction; and b) being the targetfronr another
taken branch instruction. In most computer systems, a
programcounteris usedforholdingthe addressofactn-
rently active instruction. The address of the sequentially next
instruction can be derived by adding to the current program
counter the length increrirent of the first instruction. FIG. 11
modifies the block diagram of FIG. 5 to reflectthe process
of deriving a new instruction address in some implementa-
tions. In FIG. 11 the instruction address 40 input of FIG. 5
is replaced with three components: an instruction address
70, a length increment register INCR 71, and an address
adder ADDER 72. At the beginning of each cycle, ADDER
72 sums up the contents of INSTRADDR. 70 and]NCR 71
to output the next instruction address for branch prediction.
In certain more complex implementations more multiplex-
ing operations might be involved in deriving the instruction
address for branch prediction. The INCR 71 register content
may either be 0 (e.g., for a taken branch target) or>0 (e.g.,
for a sequentially fall-through instruction).

In high performance computer designs, ADDER 72 might
introduce a heavy burden on the critical path tinting for
branch prediction, which involves array accessing for the
history table. FIG. 12 is a modification of FIG. 11 for
reducing the timing burden ofbranch prediction. ADDER 72
is still used for generating the new instruction address from
INSTRADDR. 70 and INCR 71, since the address is
generally needed for various operations other than branch
prediction The input to the branch predictor itself is, how-
ever, not from the output of ADDER 72. Instead the
INSTR.ADDR. 70 itself supplies the input address for
branch prediction. In this arrangement the prediction of
branch outcome can be based on input address for an
instruction that is sequentially prewding the neural insu'uc-
tion being predicted The output 73 ofADDER 72 is passed
to other units that requirethe precise address ofthe current
instruction. This implementation clearly reduces the path
timing ofbranch prediction by at least the amount needed for
ADDER 72. The accuracy with this modification should be
aboutthesameastheoneinFIG. llsinccitishighly
repeatable how an instruction is reached during program
execution. In this illustration it is not necessary to include
length information in the entry for the history table 43, since
the register INCR 71 itself already provides the increment
information for the previous instruction.

10

15

30

35

4s

55

12
FIG. 13 describes a modification to the format of the

history table entry of FIG. 10. The MATCH FIELD now
contains M_ADDR, which identifies a more general
address that can be preceding the actual branch address
under consideration.

In some implementations the portion of FIG. 11 for
instruction address generation, including INS'I‘RADDR. 70,
INCR 71 and ADDER 72, can be carried out by an alter-
native method described in FIG. 14. In FIG. 14 an additional

BR TARGET register 83 and a multiplexer MUX 84 are
included. INSTR ADDR register 80 now always contains
the address of the instruction last processed (e.g., decoded).
BR TARGET 83 contains the address of target instruction if
the last processed instruction is a taken branch. The multi-
plexer MUX 84 is used to select an address from BR
TARGET 83 or from ADDER 82, depending upon whether
the last instruction processed results in sequential flow. The
MUX CONTROL 85 is a signal controlling the selection
(e.g., from the instruction decoder). The output 86 from ‘
MUXMprovidesthefinalinsttuctionaddress tobcpro-
ceased currently. When the last instruction processed is it
taken branch (or any kind of execution that results in a
non—sequential jump of instruction flow) BR TARGET reg-
ister 83 will provide the current instruction address. When
the instruction flow from the last processed instruction is
sequential the address of arrrent instruction is formed by
ADDER 82 as illustrated before. FIG. 15 describes a modi—
fieation to FIG. 14 for the purpose ofearly timing for branch
prediction. As described for FIG. 12 the branch predictor 10
can use address not belong to the currently processed
instruction. In FIG. 15 the INSTR ADDR register 80, which
always contains the address of the last processed instruction,
is passed for branch prediction via signal line 87. What
should be noted is that in FIG. 15 the branch prediction can
be acted upon the target of a taken branch based on the
address of the taken branch itself.

The concept and techniques described in this preferred
embodiment can be applied with difierent variations. For
example, it is well-known that the matching of history entry
through lnanch address can utilize only portion of the
address bits. Hence, the MATCH FIELD portion of a history
table entry described in this embodiment may cover only
partial address bit information. More generally, the MATCH
FIELD may cover information definitively derivable from
relevant instruction status. For instance, the MATCH FIELD
may contain a value bashed from an instruction address with
other definitive execution status (e.g., the Segment Table
Origin of IBM/390 architecture, which identifies the process
address space of a particular program). The recording of
length information of a S-segrnent may be in terms of the
number of instructions or the number of branches covered

by the S-segment, as long as certain pre—scanning mecha-
nism is provided by the instruction fetch control to identify
the relevant information through the prefetched instruction
stream.

It is possible to enhance the history table with additional
information when beneficial. For example, it is possible to
include in the SSHT history table entry of FIG. 8 an
additional field TARGET CODE, which stores the first
instruction code at the target S-segment beginning at address
SSA2. FIG. 16 and FIG. 17 contain extensions to the history
information described in FIG. 6 and FIG. 7, with the flow

patterns of three successive S-segmcnts at each history table
entry. Maintaining such explicitly the flow of more than two
S-segments, however, requires much higher complexity in
hardware design and should be exercised with caution.

While the invention has been described in terms of a

preferred embodiment. those skilled in the art will recognize

NOAC EX. 1018 Page 712

NOAC Ex. 1018 Page 713

13

‘ the invention can be practiwd with modification within
‘ - 1 and scope of the appended claims. .

Having thus described my invention, what I claim as new
We to secure by Letters Patent is as follows: .
Apparatus for prefetching instructions for execution.

‘ u a: . in i

l 1 II: based branch prediction table for storing infor-
’ ‘ mafion about previously executed segments of sequen-

fially addressed instructions, ‘said segments terminating
:. with :1 taken branch instruction;

_.: ‘; said table storing for each of said segments a target
address for said each segmmt, said target address being
an address ofa next executed instruction followmg sard
each segment when said each segment was previously

“i said table also storing for said each segment, an address
mg identifying a first instruction of said each segment
and information to determine a length of said each
segment, said length being variable from segment to

‘ segment;
«.3 means for holding in an instruction bufi‘er a prefetched

~45 sequence of instructions for execution, said prefetched
sequence including a last instruction having a last

. instruction address;

1» , midi-m comparing means for comparing said last instruc-
-‘ tion address to said address tags stored in said table in
‘ ‘ "orderto detect a matching address tag stored in said

table; and

V” prefetching means responsive to detection of a matching
‘ address tag in said table for prefetching storage said

segment of instructions identified by said matching

1

v!

5,507,028

14

address tag, adding» said prefetched segment to said
prefetched sequence, and making said target address of \
said prefetched segment said last instruction address of

said prefetched sequence.
2. Apparatus as defined in claim 1 wherein at least some

ofsaid address tags stored in said table correspond to atarget
address stored in said table.

3. Apparatus as defined in claim 2 wherein all of said

address tags stored in "said table correspond to a targe
address stored in said table. '

4. Apparatus as defined in claim 1 wherein some of said
segments terminating with a taken branch instruction
include at least one additional branch instruction in addition
to said terminating taken branch instruction.

5. Apparatus as defined in claim 4 whu‘ein said additional

branch instructions were not taken when said segments
containing said additional branch instructions were previ-
ously executed.

6. Apparatus as defined in claim 1 wherein at least some
of said segments have a size corresponding to at least three
instructions.

7. Apparatus as defined in claim 1 wherein each said
segment terminating with a taken branch instruction has for

a stored target address a target address of said each taken
branch instruction.

8. Apparatus as defined in claim 7 wherein all of said
30 segments terminate with 3. taken branch instruction.

10

ii

25

t t t t *

NOAC EX. 1018 Page 713

NOAC Ex. 1018 Page 714

United States Patent [19]

Kondo et a1.

|||||||l||l|||IllIllllIllIllllIIIllllIllllIIIIlllllIllllllllllllllllllllll
U5005586254A

[11] Patent Number: 5,586,254

[45] Date of Patent: Dec. 17, 1996

[54] SYSTEM FOR MANAGING AND
OPERATING A NETWORK BY PHYSICALLY
IMAGING THE NETWORK

[75] Inventors: Marika Kondo; Teruo Nakamura;
Yumiko Mori; Toshiynki Tsutsumi, all
of Yokohama, Japan

[73] Assignee: Hitachi Software Engineering Co.,
Ltd., Kanagawa-ken, Japan

[21) App]. No.: 13,430

[22] Filed: Feb. 16, 1993

[30] Foreign Application Priority Data

Feb. 13, 1992 [JP] Japan 4-026405
Sep. 18, 1992 [JP] Japan 4-249890

[51] Int. Cl.’5 G06F 15/40; GOGF 15/66;
G06F 13/94

[52] US. Cl. 395/200.1; 395/615; IMO/825.03;
364/228; 364/2294; 364/927.99

[58] Field of Search 395/51, 200, 600,
395/200.1; 340/825.03

[56] References Cited

U.S. PATENT DOCUMENTS

4,833,615 5/1989 Fisher et al.
4,964,088 11/1990 McAulifl'e et al.

...... 364/518
.. 364/200

5,175,800 12/1992 Galis et al. . 395/51
5,202,985 4/1993 Goyal 395/600
5,307,484 4/1994 Baker et a1. 395/600

FOREIGN PATENT DOCUMENTS

61-180340 8/1986 Japan .
63—117532 11/1986 Japan .
63-226772 9/1988 Japan .

OATA ON INFO
OF CONNECTION
WITHIN FLOOR

300

DATA ON INFO OF DATA W INFO
FLOOR LAYOUT OF BUILDINGS

303 ’304
BLDG b

gg ‘ .DATA ON INFO DATA ON INFOOF CONNECTION OF PLACES OF
BETWEN |N$TAIJ.ATIONFLOORS OF DEVICES

DATABASE DF MAF| INFORMATION

63-279643 11/1988
1-78053 3/1989

1-218236 8/1989
2—18651 lll990

2-305140 12/1990
3—101539 4/1991
3—973300 4/1991
3-195230 8/1991

Japan .
Japan .
Japan .
Japan .
Japan .
Japan .
Japan .
Japan .

Primary Examiner—Thomas C. Lee
Assistant Examiner—Rehana Perveen Krick

Atlamey, Agent, or Firm—Fay, Sharpe, Beall, Fagan, Min-
nich & McKee

[57] ABSTRACT

A system for operating and managing the network equip—
ment is so adapted as to operate and manage a network in
which plural computers and network devices are connected
to each other. The system is provided with database storing
data corresponding to the computers and the network
devices and with means for preparing a network specifica-
tion drawing which satisfies conditions required by the user
from the data, for checking the physical data as to whether
the network specification satisfies the physical data, for
checking the logical data as to whether the network speci—
fication satisfies the logical data, and for displaying the
network specification drawing in a two—dimensional or
three-dimensional manner on the basis of the data stored in

the database. The system for operating and managing the
network equipment can reduce and simplify management
business for network managers as well as management
business for managing materials and products by managers
managing the materials and products. Further, the system
can take necessary measures in case of a fault or a failure of
the network and save a resource by sharing the computer
resources and the data in an appropriate way.

17 Claims, 93 Drawing Sheets

DATA ON
INFORMATION OF

RANSPORTAT IONMEANS

NOAC EX. 1018 Page 714

NOAC Ex. 1018 Page 715

||||||lllllllllllllllllllllIllllllllllllllIllllllllllllll|||||l||||l|l|||||

U5005805816A

Unlted States Patent [19] [11] Patent Number: 5,805,816

Picazo, Jr. et a1. [45] Date of Patent: Sep. 8, 1998

[54] NETWORK PACKET SWITCH USING 5,440,690 8/1995 Rage et al. 395/2008
SHARED MEMORY FOR REPEATING AND 5,457,681 10/1995 Gaddis et al. .. 370/56
BRIDGING [JACKETS AT MEDIA RATE 5,477,547 12/1995 Sugiyama . .. 370/85

5,521,913 5/1996 Gridley 370/58.2

[75] Inventors: Jose J. Picazo, Jr., San Jose; Paul 5,560,029 9/1996 Papadopoulos et al. 395/8005
Kakul Lee, Union City; Robert P.
Zager, San Jose, all of Calif. Primary Examiner—Christopher B. Shin

Attorney, Agent, or Firm—Jenkens & Gilchrist

[73] Asstgnee. geoxmpaq Computer Corp., Houston, [57] ABSTRACT
Ahub circuit with an integrated bridge circuit carried out in

[21] APPI- N05 788,429 software including a switch for bypassing the bridge process

[22] Filed: Jan. 28, 1997 such that the two bridged networks elfectively become onenetwork. An in~band management process in software is

Related US. Application Data disclosed which receives and executes network managementcommands received as data packets from the LANs coupled

[62] Division of Ser. No. 694,491, Aug. 7’ 1996, which is a to the integrated hub/bridge.Also, hardware and software to
continuation of Ser. No. 498,116, Jul. 5, 1995, which is a implement an isolate mode where data packets which would
continuation-in-partol'Ser.No.881,931,May12,1992,Pal. ordinarily be, [[ansfcrfcd by the bridge Process are no[
N°' 5’4327907' transferred except in-band management packets are trans-

[51] Int. Cl.‘5 .. G06F 13/00 fefied [0 the in-band management process regardless 0f
[52] US. Cl. 395/200.53; 395/200.64; which network from which lhey arrived Also disclosed, a

395/200‘79; 395/200.8; 370/401; 370/230; packet switching machine having shared high-speed
370/315; 370/351 memory with multiple ports, one port coupled to a plurality

[58] Field of Search 395/20053, 200.64, of LAN commucr Chips coupled ‘0 indiVidual LAN 53%-
395/20079, 2008; 370/230, 315) 351’ ments and an Ethernet microprocessor that sets up and

401 manages a receive buffer for storing received packets and
transferring pointers thereto to a main processor. The main

[56] References Cited processor is coupled to another port of the memory and
analyzes received packets for bridging to other LAN seg-

U.S. PATENT DOCUMENTS ments or forwarding to an SNMP agent. The main micro-

4 641 307 2/1987 Russell 370,445 processor and the Ethernet proce$or coordinate to manage
4:715:030 12/1987 Koch et al. 370/85 the utilization of storage locations in the shared memory.
5,133,052 7/1992 Joshi et a1. . 395/500 Another port is coupled to an uplink interface to higher
5,210,749 5/1993 Firoozmand 370/463 speed backbone media such as FDDI, ATM etc. Speeds 11p
5,264,742 11/1993 Sourgen 307/465 to media rate are achieved by only moving pointers to
5,274,631 12/1993 BhflTdWflj .. 370/401 packets around in memory as opposed to the data of the
5399:313 3/1994 P5165811 Cl 31- 395/2001“ packets itself. A double password security feature is also

g’ggg’ggg g;133: Elma? hmlmt l """3332/2?) implemented in some embodiments to prevent accidental or
5:361:372 11 /1994 R:; “cafe-"e a ‘ .. 395/200_64 intentional tampering with system configuration settings.
5,434,863 7/1995 Onishi et al. . .. 395/200.64
5,440,546 8/1995 Bianchini, Jr. et al. .. 370/60 6 Claims, 13 Drawing Sheets

r———~h"—“——a rite—'1.
5254' m 53° Em i r—l 4136 L33.

uqewafimnn image form

60!

DESCNPIORRING

i 510
BUS ARBIRATM

FPGA
us

616
ll BUFFER

I 2

ll!
REV BUFFER

I 2

NOAC EX. 1018 Page 715

NOAC Ex. 1018 Page 716

‘ United States Patent [19]

Smith et al.

illlllllllllllllllllllIllllIll
USOO5822542A

[11} Patent Number: 5,822,542

Oct. 13, 1998[45] Date of Patent:

[54] ELECTRONIC AND STRUCTURAL
COMPONENTS OF AN INTELLIGENT
VIDEO INFORMATION MANAGEMENT
APPARATUS ’

[75] Inventors: Gordon W. Smith, San Marcos;
Charles Park Wilson, Santee; David
James Ousley, San Diego; Chris
Harvey Pedersen, Jr., Santee; Sherwin
Sheng-shu Wang; David Ross
MacCormack, both of San Diego, allof Calif.

73 Assi nee: Sensormatic Electronics Co, orationg rp

[21] Appl. No.‘ 729,620

[22] Ffled: ()cL 31,1996

[51] Int. Cl.6 ... H04N 1/413
[52] U.S. Cl. 395/200.77; 348/317; 348/700;

348/715

[58] Field of Search 395/20009, 114,
395/894, 200.77; 382/236; 348/317, 700,

715; 360/97 01

[56] References Cited

U.S. PATENT DOCUMENTS

3,988,533 10/1976 Mick et al.
5,109,278 4/1992 Erickson ct al
5,202,759 4/1993 Laycock 358/108
5,493,329 2/1996 Ohguchi 348/17

‘ OTHER PUBLICATIONS

Geutebrfick, “MultiSc0p Video Disc Recorder,” (brochure).No Date.

Robot (A Sensormatic Company), “Multivision Optima II,"
(brochure), 1995.

....... 178/68
.. 358/108

MULTl-LOCATION SYSTEM 510

w

a

Robot Research, Inc. (A Sensormatic Company), Multivi-
slon Optima II Multiplexers, Installation and Operation
Manual, 1995.

Primary Examiner—Emanuel Todd Voeltz
Assistant Examiner—Thomas Peeso

Attorney, Agent, or Firm—Robin, Blecker & Daley

{57] ABSTRACT

A structure for supporting a plurality of recording medium
drive units includes a base member supporting a floppy disk
drive and a DAT drive, an intermediate member supported
on the base member and supporting two hard disk drives,
and a top member supported on the intermediate member
and supporting one or two hard disk drives.

The recording medium drive unit support structure is
mounted within a housing, Within which are also housed a
motherboard, a second printed circuit board and a third
printed circuit board. The motherboard has mounted thereon
a microprocessor for controlling storage of video data on at
least one of the hard disks. The second printed circuit board
has integrated circuits mounted thereon for receiving plural
streams of video information and for selecting for storage
fields of video information included in the streams of video
information. The third printed circuit board has mounted
thereon a first digital signal processing integrated circuit
(DSP-IC) for applying a data compresslon to the streams of
video information, a second DSP-IC for controlling scaling
and overlay mixing processes applied to the streams of video
information, and a third DSP-IC for applying a moving
image content analysis algorithm to the streams of video
information. The first DSP-IC exchanges data with the
microprocessor and transmits command messages to, and
receives status messages from, the second and third DSP-
IC’s.

44 Claims, 158 Drawing Sheets

CAMERA ANAusw aCONTROL
STORAGE

L _____ .
530

MEX. 1018 Page 716

L.

NOAC Ex. 1018 Page 717

HIIIIlIIlIlIIIIllllIIIIIlllllllllIIlIllIlIIIIIIIIIIIIIIIII||||II|||

USOO6112238A

United States Patent [19} [11] Patent Number: 6,112,238

Boyd et al. [45] Date of Patent: Aug. 29, 2000

[S4] SYSTEM AND METHOD FOR ANALYZING Primary Examiner-—Kenneth Coulter
REMOTE TRAFFIC DATA IN A Attorney, Agent, or Firm—Marger Johnson & McCollom
DISTRIBUTED COMPUTING P.C
ENVIRONMENT

[57] ABSTRACT
[75] Inventors: William Glen Boyd; Elijahu Shapira,

both of Portland, Greg. A system, method and storage medium embodying
computer-readable code for analyzing traffic data in a dis-
tributed computing environment are described. The distrib—
uted computing environment includes a plurality of inter—
connected systems operatively coupled to a server, a source

[21] Appl. No.‘ 08/801,707 of traflic data hits and one or more results tables categorized
[22] Filed: Feb. 14, 1997 by an associated data type. Each results table includes a

7 plurality of records. The server is configured to exchange

[51] 11118 (21 """"""""" ’ " W70'922G“06%:1/3: data packets with each interconnected system. Each traffic
[2:] F: Id f SW11” ”“595 (/JO 5‘; 1200/2513 data hit corresponds to a data packet exchanged between the
I I 19 0 care """"" mfg/22:4 ’273 21E; server and one such interconnected system. Each traffic data’ ' ’ hit is collected from the traffic data bits source as access

[56] References Cited information into one such record in at least one results table
according to the data type associated with the one such

U 5- PATENT DOCUMENTS results table. Each of the records in the results table corre—

[73] Assignee: Webtrends Corporation, Portland,
Oreg.

5,675,510 10/1997 Coffey et al. 709/224 sponds to a different type of access information for the data
5,689,416 11/1997 STILIIIIZU Ct 81..v. 364/185 type associated W111) the results table. The RCCCSS informa-
5,727,129 3/1998 Barre" et a" 706/10 tion collected into the resul tabl s du ' time 1i '
5,732,218 3/1998 Bland elal. 709/224 ts 6 mg a S a ‘5

 5,796,952 8/1998 Davis et a1, .. 709/224 summarized periodically into analysis results. The time slice
5,878,223 3/1999 Becker et 31, ' 709/223 corresponds to a discrete reporting period. The access infor-

mation is analyzed from the results tables in the analysis
OTHER PUBLICATIONS results to form analysis summaries according to the data

WebTrendsTM Essential Reporting for your Web Server, types associated “nth the results tables.
Installation and User Guide, Jan. 1996 Edition, by e.g
Software, Inc., 62 page manual. 20 Claims, 12 Drawing Sheets

DEFINE TIME FRAME OF INTEREST

DO ANV
ANALYSIS RESULTS FOR

REQUESTED TIME FRAME
ALREADY

50

ADD THOSE ANALYSIS RESULTS TO
81

86
STILL MISSING ANY

ANALYSIS RESULTS?
110

COLLECT AND SUMMARIZE ACCESS INFO FOR EACH 21
TIME SLICE IN REQUESTED TIME FRAME FOR

REMAINING MISSING ANALYSIS HESLLTS

UNSUMMARlZED
ANALYSIS RESULTS

FOR TIME FRAME

SUMMARIZE ACCESS INFO FOR EACH REPORTING
PERIOD IN REQUEST TIME FRAME FDR UNSUMMARIZED

ACCESS INFO

T

NOAC EX. 1018 Page 717

NOAC Ex. 1018 Page 718

|IIIIIIIIIIIIIlIIlIlIIIIIII|l|I|IllllIlIllIlIIIIIIIl||I||IIIIII|||I|I||||||

(12) United States Patent
Yoshizawa et al.

USOO6262983B1

US 6,262,983 B1
Jul. 17, 2001

(10) Patent N0.:

(45) Date of Patent:

(54) PROGRAMMABLE NETWORK

Inventors: Satoshi Yoshizawa, Saratoga, CA (US);
Toshinki Suzuki, Kokubunji (JP);
Mitsuru Ikemwa, Asaka (JP); Itaru
Mimura, Sayama (JP); 'l‘atsuya
Kameyama, l-Iachioji (JP)

(75)

(73) Assignee: Hitachi, LTD, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. N0.: 09/391,404

Filed: Sep. 8, 1999

Foreign Application Priority Data

(JP) ... 10254228

(51) Int. Cl.7 H04L12/28
(52) U.S.Cl. 370/389
(58) Field of Search 370/351, 389,

370/390, 392, 394, 428

(21)

(22)

(30)

Sep. 8, 1998

References Cited

U.S. PATENT DOCUMENTS

5,473,609 * 12/1995 Chaney 370/312

(56)

PACKET PROCESSING PROGRAM PROCESSOR

21 PACKET INPUT/OUTPUT UNIT

22 PROCESSING HISTORY
UPDATE UNIT

23 PACKET PROCESSING FLOWCLASSIFICATION TABLE
UPDATE UNIT

24 PROCESSING HISTORY
REPOSITORY TABLE

PACKET CLASSIFICATION
UNIT

PACKET PROCESSING
FLOW CLASSIFICATION

TABLE

NETWORK INPUT
INTERFACE OUTPUTINTERFACE

NETWORK #1

2-1

$563,648 . 10/1996 Menand ctal.
5,619,501 ' 4/1997 Tameretal.
5,666,293 . 9/1997 Metz etal
6,172,990 * 1/2001 chetal.......
6,185,568 . 2/2001 Douccuretal

* cited by examiner

Primary Examiner—David R. Vincent
(74) Attorney, Agent, or Firm—Antonelli, Terry, Stout &
Kraus, LLP

(57)

At each network node, a packet classification unit makes a

judgement to transfer only a packet nece$ary to be pro-
cessed by software to a packet processing program processor
and transfer other packets direme to a routing procemr.
Processing history information indicating the process his-
tory executed at each network node on a network route is
transferred to the other network nodes so that other network

nodes can store the processing history information in respec-
tive processing history repository table. Each node refers to
this table and further transfers only the packet necessary to
be processed by software to the packet processing processor.

ABSTRACT

10 Claims 12 Drawing Sheets

NETWORK NODE

ROUTING PROCESSOR

NETWORK #N

2-N

é

\o
f-}

\‘J \'J

8"

n

\3
W

-3(fl

r—————N-0AGEX. 1018 Page 718

NOAC Ex. 1018 Page 719

FIG.1

PACKET PROCESSING PROGRAM PROCESSOR NETWORK “ODE

21 PACKET INPUT/OUTPUT UNIT 1

22 PROCESSING HISTORY
UPDATE UNIT

23 PACKET PROCESSING FLOW
CLASSIFICATION TABLE

UPDATE UNIT

:1
SD

"U
99n
(D

5n

H
E

24 PROCESSING HISTORY La
REPOSITORY TABLE :1

‘5Oy—I

‘9

PACKET CLASSIFICATION 8
UNIT :3

PACKET PROCESSING a
FLOW CLASSIFICATION :3

TABLE N

NETWORK INPUT NggTWFSJ’ErKINTERFACE
INTERFACE

C.
(A

NETWORK #N «E;
O\

H 4.1 H \ 3"
2-1 2-2 2-N 3%b.)

O:H

NOAC EX. 1018 Page 719

NOAC Ex. 1018 Page 720

FIG.2

SERVER

COMPUTER NETWORK CLIENT

#1 ._NODE 2-13 OMPUTER
2-11 20-1

60-10
NETWORK NODE NETWORK NODE

60'1 1 O PACKET o PACKET
I; PROCESSING 2-12 I; PROCESSING .
g 1: PROGRAM E2 1: PROGRAM

g a E; PROCESSOR 60 12 g a 2; PROCESSOR .- 50-13
SERVER : 5 rxn : a I?" _-'
OMPUTER 5 .4 3 .4

5 ROUTING I______ 5 ROUTING l_'L2 PROCESSOR L2 PROCESSOR 61 -1 3
I

50'2 10-1 1-1 5-16112 10-2 1-2 5-2

NOAC EX. 1018 Page 720

mm’S'fl

Iooz‘LI'Inl‘

ZIJ0Z”3‘18

18€86‘Z9Z‘9sn

NOAC Ex. 1018 Page 721

US. Patent Jul. 17,2001 Sheet 4 0f 12 US 6,262,983 B1

FIG.6

140 141-1 141-2 141-3 141-K

PROCESSING PROCESSING PROCESSING PROCESSING
HISTORY HISTORY HISTORY HISTORY
FIELD #1 FIELD #2 FIELD #3 FIELD #K
142—1 142—2 142—3 142-K

FIG .7

11 PACKET PROCESSING FLOWCLASSIFICATION TABLE 201 202

212 213 FLOW CLASS'F'CAT'ON 214 215 PACKET 200INFORMATION

SOURCE SOURCE DESTINATION DESTTNATION Zfigfigg
ADDRESS PORT ADDRESS PORT

PACKET
PROCESSING

PROGRAM
A" PROCESSOR

210-R
ROUTING

NOAC Ex. 1018 Page 722

US 6,262,983 B1Sheet 5 of 12Jul. 17, 2001tnetaPQMU

...=O=I=O=n=o:...=o__—=P——.:F:

zo.h<2m0uz_wwmmoo<ZO_._.<SEOn_Z_

zoEomamsoE05:2052.53292253momBmmomsow5505025308.”.292582.comazammooEEOEExofiimam53mzoEomamSo26.xm5NE
39?EotmonmmI:

vowmomSmE05:ozammooEvmwdE

X. 1018 Page 722N

NOAC Ex. 1018 Page 723

US. Patent

PACKET

PROCESSING JUDGE
PROGRAM TYPE OF DATA

S403

 TABLE

S41 1

TABLE LOAD PACKET
PROCESSING

PROGRAM

REGISTER IN
PROCESSING

HISTORY
REPOSITORY

 REEAELEEBT IN CLASSIFICATION

PROCESSING TABLE
FLOW

CLASSIFICATION

TO ROUTING PROCESSOR

Jul- 17, 2001 Sheet 6 of 12 US 6,262,983 B1

FIG.9

PACKET

INPUT I OUTPUT

S401

RECEIVE PACKET
FROM PACKET

CLASSIFICATION
UNIT

21

/‘/

S402

PROCESSING
HISTORY
INFORMATION

IN PACKET

NOT
COINCIDENT

COMPARE
WITH PROCESSING

HISTORY REPOSITORY
TABLE

COINCIDENT

UPDATE

PRogEgsgqe
EXECUTE UPDATE PACKET HI T R

PACKET PRoggfilNG REPTaEgggRY
PROCESSING

PROGRAM CLASSIFICATION S407TABLE

UPDATE PACKET
PROCESSING

FLOW

TRANSFER PACKET

WPage 723

NOAC Ex. 1018 Page 724

US. Patent Jul. 17, 2001 Sheet 7 of 12 US 6,262,983 B1

FIG.1O

22

PROCESSING

HISTORY UPDATE

S501

INQUIRE CONTENTS

OF PACKET

PROCESSING

PROGRAM

COMPARE WITH UPDATE PROCESSING

PROCESSING HISTORY PROCESSED HISTORY
REPOSITORY TABLE REPOSITORY TABLE

 ALREADY

PROCESSED

UPDATE PACKET

PROCESSING FLOW

CLASSIFICATION TABLE

 GENERATE

PROCESSING HISTORY

INFORMATION PACKET

AND TRANSFER IT TO

ROUTING PROCESSOR

NOAC Ex. 1018 Page 725

US. Patent \J/ul. 17, 2001 Sheet 8 0f 12 US 6,262,983 B1

FIG.1 1

PACKET

CLASSIFICATION

S301 RECEIVE
PACKET FROM

NETWORK

8302
READ PACKET

CLASSIFIER

8303

PACKET
FOR PACKET
PROCESSING
PROGRAM ?

TRANSFER PACKET

TO ROUTING
PROCESSOR

5305 READ SOURCE]
DESTINATION

ADDRESSES
AND PORTS

CORRESPONDING
FLOW ENTRY EXISTS
 PROCESSING FLOW

CLASSIFICATION
TABLE

NEXT PACKET

DESTINATION ?

ROUTING

PROCESSOR

S307 PACKET PROCESSING
PROGRAM PROCESSOR

TRANSFER PACKET TO

PACKET PROCESSING

PROGRAM PROCESSOR

NOAC Ex. 1018 Page 726

US 6,262,983 B1Sheet 9 of 12US. Patent ,/ Jul. 17, 2001

ONF

ovrzo_._.<_2mou_z_E055oz_mmm00muExogimm
mFFE0;zo:.<z:.wmomwmmoo<29.52:mevFF

N_..O_n_

mFFrrr
Fae;

momDOmmemam<40wmmmoo<meo<m
mom30m

 NFPOFFCOP

NOAC Ex. 1018 Page 727

US. Patent <Jul. 17, 2001 Sheet 10 of 12 US 6,262,983 B1

FIG.13

PACKET PROCESSING FLOW
3—1 CLASSIFICATION TABLE 201 203

212 213 FLOW CLASSIFICATION 214 215 PER-PACKET

INFORMATTON PROCESSING
SOURCE SOURCE DESTTNATION DESTINATION HISTORY

ADDRESS PORT ADDRESS PORT INFORMATION

.NOAC—EXFLOlBLPage 727

NOAC Ex. 1018 Page 728

US. Patent Jul. 17, 2001 Sheet 11 0f 12 US 6,262,983 B1

PACKET 1O FIG.14

CLASSIFICATION [J
S701

RECEIVE

PACKET FROM

NETWORK

3702
READ PACKET

CLASSIFIER

S703

PACKET
FOR PACKET
PROCESSING

PROGRAM ?

TRANSFER PACKET

TO ROUTING
PROCESSOR

S705 READ SOURCE!

DESTINATION
ADDRESSES
AND PORTS

 PROCESSING FLOW FLOW ENTRY EXISTS
CLASSIFICATION

TABLE

READ PER-PACKET
PROCESSING HISTORY

INFORMATION
FROM PACKET

COMPARE WITH
PACKET PROCESSING

TABLE

S707 NOT COINCIDENT

TRANSFER PACKET TO
PACKET PROCESSING

PROGRAM PROCESSOR
.__N-0AC—Ex.4018 Page 728,,

NOAC Ex. 1018 Page 729

m- 1
‘ 5

1

' I US. Patent Jul. 17, 2001 Sheet 12 0f 12 US 6,262,983 B1

SERVER NODE NODE NODE CLIENT

50-1 51 1 -1 1 —2 52
1 501

pROGRAM
TRANSMISSION

PROGRAM PROGRAM
LOAD PROGRAM DISCARD

LOAD
FLow
REGISTRATION FLow

IN TABLES REGISTRATION

; IN TABLES

DATA

TRANSMISSION

1 DATA PROCESS DATA
~ BY PROGRAM DATA PROCESS RECEPTION
w BY PROGRAM

PROCESSING

,1 HISTORY
3 INFORMATION‘~ GENERATION PROCESSING

AND TABLE UPDATE HlSTORY
TRANSMISSION TABLE UPDATE INFORMATION

DISCARD

DATA
TRANSFER

DATA PROCESS DATA
DATA BY PROGRAM DATA RECEPTION
TRANSMISSION FORWARDING
END

DATA

FLOW DELETION RECEPTION
FROM TABLES FLOW DELErION END

FROM TABLES

PROGRAM
DELETION

PROGRAM
DELETION

~11.La:

NOAC Ex. 1018 Page 730

US 6,262,983 B1
1

PROGRAMMABLE NETWORK

BACKGROUND OF THE INVENTION

The present invention relates to a programmable network
in which in a network system interconnecting a plurality of 5
computers via a network, a program is loaded to a network
node on a route of a flow constituted ofpackets, and the node
executes the program for each packet.

For a network system in which data is processed and then
transmitted, a method is known by which a video is com-

pressed and packetized for each wavelet band, as disclosed
in JP—A—7—15609. The invention provides a video transfer
method, a video transmitter, a video receiver and an video
transfer apparatus, in which a video is transferred in accor-
dance with a network bandwidth on a video reception side
and a decoding capability of the decoder, even if which
capabilities are inferior to a network bandwidth on a video
transmission side and an encoding capability of the encoder.
The video transmitter packetizes video data for each wavelet
band, adds a predetermined classifier to the packet, and then
transmits it. If video data transmitted by ATM

(Asynchronous Transfer Mode) network, a priority order is
added to a cell header to transmit a cell. On the network
which transfers video data, a cell having a higher priority
order is transferred with a priority over other cells when the
network is congested. The video receiver checks the clas-
sifier of the received video data, selects only necessary video
data and decodes it in accordance with the decoding capa-
bility of the decoder to reproduce the video data.

A programmable network is known as described in “A
Survey of Active Network Research" in “IEEE Communi-
cations Magazine”, January issue of 1997, at pp. 80-86. In
the programmable network, each network node constituting
the network executes a packet processing program for each
packet. For example, the above-described transfer with a
priority order by ATM is realized by software using a
program loaded at each network node. This system can be
realized on the network having a QoS (Quality of Service)
control function of ATM, e.g., on an IP (Internet Protocol)
network such as the Internet.

For the IP network, techniques are also known by which
a routing process for controlling a route of packets via
network nodes can be speeded up by using a dedicated

10

15

20

processor. 45
In the programmable network system according to the

conventional techniques described above, all packets are
processed by software using a program loaded at each
network node. Therefore, although packets to be processed
by software and packets not to be processed are both input 50
to a network node, software processing is performed for both
types of the packets so that a process efficiency is not good.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a 55
Programmable network for processing a packet by a packet
Processing program at each program node. Only the packet
necessary to be processed is processed and the packet
unnecessary to be processed is transferred to a routing
Processor, so that a transmission speed can be improved and 60
the throughput of the programmabIe network can be
Improved.

I! is another object of the present invention to provide a
method of loading a program in mociated program nodes of
a network dynamically and efficiently. 65

In order to achieve the above object, a network node
cOil-Shillling a network comprises: a program processor for

30

35

2

executing a packet processing program to each packet
corresponding to a flow; a routing processor for performing
a routing process for an input packet; and a packet classi-
fication unit for analyzing the input packet to transfer a
packet belonging to the flow to the program processor and
transfer other packets to the routing processor. The network
node has a function of receiving the packet processing
program via the network and making it executable.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the structure of a
network node of a programmable network system according
to this invention.

FIG. 2 is a block diagram explaining the structure and
operation of the programmable network system according to
the invention.

FIG. 3 is a diagram showing the format of a packet 100
according to a first embodiment.

FIG. 4 is a diagram showing the format of the packet 100
shown in FIG. 3 whose packet payload 120 is a packet
processing program.

FIG. 5 is a diagram showing the format of the packet 100
shown in FIG. 3 whose packet payload 120 is packet history
information 140.

FIG. 6 is a diagram showing the format of the packet
history information according to an embodiment.

FIG. 7 is a diagram showing the format of a packet
processing flow classification table 11 according to a first
embodiment.

FIG. 8 is a diagram showing the format of a processing
history repository table.

FIG. 9 is a flow chart illustrating the operation to be
executed by a packet input/output unit 21 of a packet
program processor 20 according to the first embodiment.

FIG. 10 is a flow chart illustrating the operation to be
executed by a processing history update unit 22 of a packet
program processor 20 according to the first embodiment.

FIG. 11 is a flow chart illustrating the operation to be
executed by a packet classification unit 10 according to the
first embodiment.

FIG. 12 is a diagram showing the format of the packet 100
according to a second embodiment.

FIG. 13 is a diagram showing the format of a packet
processing classification table 11 according to the second
embodiment.

FIG. 14 is a flow chart illustrating the operation to be
executed by the packet classification unit 10 according to the
second embodiment.

FIG. 15 is a sequence diagram illustrating a data trans-
mission procedure according to this invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

(1) Structure and Outline of System

FIG. 2 is a block diagram explaining an example of the
structure and operation of a programmable network system.

As shown in FIG. 2, the programmable network system of
this embodiment is constituted of networks 2, server com-
puters 50, network nodes 1, 51, and client computers 52.

The network may be the Internet, LAN or the like. The
network node is a network apparatus such as a router and a
gateway. The numbers of server computers, client computers
and netWork nodes are not limited to this embodiment.

NOAC Ex. 1018 Page 731

US 6,262,983 Bl

3

If there are a plurality of network nodes 1, they are
represented by 1-1, 1-2, . . . with branch numbers. The same
notation is also applied to the server computer 50 and
network 2.

It is assumed that a server computer 50-1 transmits a flow
60 representative of a series of data and a server computer
50-2 transmits a flow 61, respectively to the networks 2.

A plurality of network nodes are provided in order to
interconnect networks and it is assumed that conventional
network nodes 51 and programmable network nodes 1-1,
1-2 are used in a mixed state.

The programmable network node has a packet classifica-
tion unit 10, a packet processing program processor 20 and
a routing processor 5.

The server computer 50-1 transmits in advance a packet
processing program to the packet processing program pro-
cessor 20 at the network node 1-1, 1-2 to make the packet

processing program executable so as to execute a software
process for a data packet to be transmitted.

It is assumed herein that the packet processing program

processes a data packet belonging to the flow 60 and does
not process a data packet belonging to the flow 61.

At the network node 1-1, 1—2, the packet classification
unit 10 controls a next destination of each data packet
belonging to the flow 60 from the server computer 50-1 to
the client computer 52, in order to allow each packet
processing program processor 20 to execute the packet
processing program (refer to bold lines 60-10 to 60-13 in
FIG. 2).

The packet belonging to the flow 61 from the server
computer 50-2 to the client computer 52 is not necessary to
be processed by the packet processing program. Therefore,
at the network node 1-1, 1—2, the packet classification unit 10
controls a next destination of each data packet so that the
data packet is processed directly by the routing processor 5
without being transferred to the packet processing program
processor 20 (refer to broken lines 61—11 to 61-13 in FIG. 2).

(2) Programmable Network Node: First
Embodiment

Next, of the network nodes described above, the network
node of the type having the packet processing program
processor 20 will be detailed as to its structure.

As shown in FIG. 1, the network node 1 of the embodi-
ment is constituted of a network input interface 3, a network
output interface 4, a routing processor 5 and a packet
processing program processor 20. The network input inter—
faces 3 (3—i, i-1, . . . , N) and network output interfaces 4
(4-i, i=1, . . . , N) are connected to N networks 2 (2-i,
i=1, . . . , N) at their inputs and outputs.

Each network input interface 3 is provided with a packet
classification unit 10 which has a packet processing flow
classification table 11. The packet processing flow classifi-
cation table 11 stores information for judging whether a
packet belonging to each flow is to be transferred to the
packet processing program processor 20 or directly to the
routing processor 5.

The packet processing program processor 20 is made of a
CPU and a memory and includes a packet input/output unit
21, a processing history update unit 22, a packet processing
flow classification update unit 23, and a processing history
repository table 24. The packet processing flow classifica-
tion update unit 23 has a function of setting information to
the packet processing flow classification table 11. The units
21, 22 and 23 are realized by software which is executed by

10

15

20

30

35

45

50

55

60

65

4

the CPU. The packet processing program is stored in the
memory and executed when necessary.

The routing processor 5 controls a route of each packet
and is a processor dedicated to a routing process.

This embodiment will be described by taking as an
example that the server computer 50 trammits hierarchically
encoded video data 60-10. The server computer 50 transmits
compressed data by using a packet dilferent for each fre-
quency band. The programmable network node discards a
packet containing high frequency band data in response to a
request, and transfers the other packets to the next network
node or client computer 52. Prior to data transmission, the
server computer 50 transmits to the network nodes, as the
packet processing program, a software program for checking
the frequency band of a data packet and judging whether the
data packet is discarded or transferred. The packet process-
ing program has a function of determining the frequency
band of a data packet to be discarded at the network node
and storing this information, in response to a request from
the server computer 50 or client computer 52 and/or in
response to a check result of the status of networks to be
connected. It is assumed herein that the packet processing
program has a function of determining a discard packet
frequency band and notifying it to an external software
program, in response to a request from the external software
program.

The format of a packet to be received at the programmable
network node is shown in FIG. 3.

As shown in FIG. 3, the packet 100 is constituted of: a
packet header 110 for storing destination information and
the like of the packet; and a packet data field 120 for storing
data. The packet header 110 is constituted of a packet
classifier 111 for classifying a protocol type for the packet,
a source address 112 and a source port 113 for identifying a
source computer, and a destination addres 114 and a des-
tination port 115 for identifying a destination computer. For
example, in the case of a widely used IP(Intemet Protocol),
the source address 112 and destination address 114 corre-

spond to IP addresses, and the source port 113 and destina-
tion port 115 correspond to port numbers of TCP/UDP
(Transmission Control Protocol)/(User Datagram Protocol).
A flow can be discriminated by using these source/
destination addresses and ports.

As shown in FIG. 4, there is a packet 100 whose data 120
is a packet processing program 130. FIG. 4 shows the format
of a packet which is used when the server computer 50
transmits the packet processing program to the network node
1—1, 1-2 as shown in FIG. 2. The packet processing program
130 may be any type such as an object module executable at
the network node 1, a script written by text data, byte codes
written by Java language, or the like. If the packet proces-
ing program 130 has a length unable to be written in one
packet 100, it is possrble to transmit it by dividing to a
plurality of packets 100. The packet shown in FIG. 4 may
include a program module name of the packet processing
program 130.

There is another example of a packet 100 whose data 120
corresponds to processing history information. This format
of a packet is used when the network node 1-1, 1—2 transmits
the processing history information as shown in FIG. 2. Also
in this case, if the processing history information 140 has a
length unable to be written in one packet 100, it is possible
to transmit it by dividing to a plurality of packets 100.

For example, the processing history information 140 may
have the format such as shown in FIG. 6. In this example,
the processing history information 140 is constituted of: a bit

NOAC Ex. 1018 Page 732

US 6,262,983 B1
5

field (processing history field) 141 for storing “1” or “0”
indicating a processing execution history of each frequency
band; and its bit information 142. If the hierarchically
encoded video data described earlier is to be transmitted, the

frequency band is partitioned into K stages in such a manner
that a transfer of a packet storing the lowest frequency band
is allocated to 141—1 and a transfer of a packet storing the
highest frequency band is allocated to 141-K. For example,
an initial value “1” is written in each field 142, and “0” is
written in the field 142 corresponding to the packet at the
frequency band discarded by the packet processing program
processor 20. Although the processing history information
140 shown in FIG. 6 is realized by using the bit field, it may
be realized by a script written by text data or any other type.

An example of the format of the packet processing flow
classification table 11 is shown in FIG. 7. The packet

processing flow clasification table 11 is constituted of a
flow clasification information field 201 and a packet pro-
cessor classifier field 202.

'Ihe flow classification information field 201 is consti-
tuted of a source address 212, a source port 213, a destina-
tion address 214 and a destination port 215. These addresses
and ports 212 to 215 correspond to the addresses and ports
112 to 115 in the packet header 110 shown in FIG. 3. The
packet processor classifier field 202 stores a clasifier indi-
cating whether the packet 100 is transferred to the packet
processing program processor 20 or to the routing processor
5.

'Ihe packet processing flow classification table 11 is
constituted of a plurality of entries 210. An entry 210-P
indicates that the packet constituting the flow represented by
the addresses and ports 212 to 215 is transferred to the
packet processing program proce$or 20, whereas an entry
210-R indicates that the packet is transferred to the routing
processor 5. These entries 210 are set by the packet pro-
cessing flow classification table update unit 73 of the packet
processing program processor 20, and referred by the packet
classification unit 10 of the network input interface 3.

An example of the format of the processing history
repository table 24 is shown in FIG. 8. In this example, the
processing history repository table 24 is constituted of a flow
classification information field 601, a per-packet processing
history information field 603 and a packet processing pro-
gram classification information field 604. The flow classi-
fication information field 610 is constituted of a source

address 612, a source port 613, a destination address 614 and
a destination port 615. The addreses and ports 612 to 615
correspond to the addreses and ports 112 to 115 shown in
FIG. 3.

'Ihe per-packet processing history information 603 stores
the processing history information 140 shown in FIG. 6. The
timing when the per-packet processing history information
603 is updated is either the timing when the packet 100
whose data is the processing history information 140 shown
in FIG. 5 is transmitted to the network node, or the timing
when the processing history update unit 22 updates the
per-packet processing history 603 in accordance with the
process contents of the packet processing program to be
executed at this network node.

The packet processing program classification information
604 stores information of the packet processing program
which processes the packet 100, e.g., a program name. The
liming when this packet processing program classification
information 604 is updated is the timing when the packet
100 whose data is the packet processing program 130 shown
in FIG. 3 reaches this network node.

10

15

20

30

35

45

50

55

60

65

6

The processing history repository table 24 is constituted
of a plurality ofentries 610. An entry 610-2 indicates that the
packet constituting the flow represented by the addre$es
and ports 612 to 615 is processed by a packet processing
program “your”, and an entry 610-3 indicates that it is
precessed by a packet processing program “yyy”.

First, the operation to be executed by the packet input/
output unit 21 of the packet processing program processor
20 will be described with reference to the flow chart of FIG.
9.

The packet input/output unit 21 receives a packet 100
from the packet classification unit 10 (S401), and judges the
type of data stored in the packet payload 120 (5402).

The data type may be judged from the packet classifier
111 in the packet header or it may be judged by providing a
field representative of the data type at a predetermined
position in the packet payload 120.

If the packet processing program 130 is stored in the
packet payload 120, the program module name is read and
the packet processing program is loaded in the main memory
so as to make it executable (S403).

Entries are reg‘stered in the processing history repository
table 24 shown in FIG. 8 to set values to the fields of the flow

clasification information 601 and packet processing pro—
gram information 604 (S404). The setting in the example of
the entry 610-2 shown in FIG. 8 means that a program
having the program module name “m” is executed for the
flow belonging to the source address ofA-1, the source port
of P-1, the destination address of A—2 and the destination
port of P-2.

Similar entries (210-P) are set to the packet processing
flow classification table 11 shown in FIG. 7 by requesting to
the packet processing flow classification table update unit 73
(S411).

The packet 100 containing the program is transferred to
the routing processor 5 (S410).

If it is judged that the processing history information is
stored in the packet data field 120, this processing history
information is compared with the processing history infor-
mation stored in the processing history repository table 24
(5405).

If the comparison result shows a coincidence, it means
that this processing history information has already been
stored so that the processing history repository table 24 is
not necessary to be updated, and the flow advances to the
next step.

Since the process requested to this packet has already
been executed at the previous node in the case, the packet
processing flow classification table update unit 23 is acti-
vated to search the entry having the same flow classification
information 201 as that of this packet, and if the value of the
packet processor classifier field 202 of the packet processing
flow clasification table 11 is “packet processing program
processor”, then it is changed to “routing processor” (S409).

The packet including the processing history information is
transferred to the routing processor 5 (5410).

If not the same, the processing history repository table 24
is updated in accordance with the supplied processing his-
tory information (S406). The entries in the flow classifica-
tion information designated by the packet are updated.

The packet processing flow classification table update unit
23 is activated to update the packet processing flow classi-
fication table 11 (S407).

Updating is performed by analyzing the contents of the
processing history information 140 contained in the packet

NOAC Ex. 1018 Page 733

US 6,262,983 B1
7

100. This will be detailed by using as an example the entry
610-2 of the processing history repository table 24.

It is assumed that the processing history information 140

of (“1”, “1”, “1", . . .) is supplied by the packet belonging
to the flow of this entry. This case means that the packet
becomes not to be processed by the packet processing

program at the previous node, because the third frequency
band was changed from “0” to “1”. In order to process the

packet at this node, if the packet processor classifier field
202 at the entry having the same flow classification infor-
mation 201 of the packet processing flow classification table
11 as that of this packet, has the value of “routing

processor", it is changed to the value of “packet processing
program processor".

Alternately, it is assumed that the processing history
information 140 of (“1”, “0”, “0”, . . .) is supplied by the

packet belonging to the flow of this entry. This case means
that the packet becomes to be processed by the packet

processing program at the previous node, because the sec-
ond frequency band was changed from “1” to “0”. In this
case, it is not necessary to process the packet of the second
frequency band. Therefore, if the packet processor clasifier
field 202 at the entry having the same flow classification
information 201 of the packet processing flow classification
table 1.1 as that of this packet, has the value of “packet
processing program processor", it is changed to the value of
“routine processor”.

Then, the packet 100 including the processing history is
transferred to the routing processor 5 (S410). In this manner,
the processing history information is transferred to the next
node.

If the data 120 is neither the packet processing program
130 such as shown in FIG. 4 nor the processing history
information such as shown in FIG. 5, this data is the data to

be processed by the packet processing program. In this case,
the packet processing program is executed to process the
packet 100 (S408), and thereafter the packet 100 is trans-
ferred to the routing processor 5 (S410).

After the last step 410 is completed, the flow returns to the
step 401 whereat the next packet 100 from the packet
classification unit 10 is waited for.

Next, the operation to be executed by the processing
history update unit 22 of the packet processing program
processor 20 will be described with reference to the flow
chart shown in FIG. 10.

The timing when this operation starts is the timing when
the traffic status of the network 2 to which the packet is
transmitted changes or the timing when a notice is received
from the client computer 52 or server computer 50, or the
operation may start periodically at every predetermined
time.

First, the processing history update unit 22 supplies the
Current processing history information to the packet pro-
Cming program and inquires the process contents (8501). In
respouse to this, the packet processing program checks the
traffic of the network and determines how the packet is
Processed by the packet processing program, the determined
Pmccs contents being notified to the processing history
uPdate unit 22.

The operation will be described, also in this case, by
Liking as an example the entry 610-2 of the processing
I115001”)! repository table 24.

h is assumed that the packet processing program judges
that the packet of the third frequency band is processed in
Order to reduce the trafiic of the network. In this case, the

10

15

20

30

35

45

50

55

60

65

8

entry of the per«paeket processing history information 603
shown in FIG. 8 indicates that the packet of the third
frequency band has already been processed by the packet
processing program. Therefore, the process is terminated
without performing any operation.

Alternatively, it is assumed that the packet processing
program judges that the packet of the second frequency band
is processed. In this case, the entry of the per—packet
processing history information 603 shown in FIG. 8 indi-
cates that the packet of the second frequency band is not still
processed by the packet processing program.

In this case, therefore, the processing history update unit
22 changes the value in the per-packet prooe$ing history
information 603 of the entry 610-2 of the processing history
repository table 24 to (“1", “0”, “0”, . . .) (8503).

In order to proceg the packet at this node, if the packet
processor classifier field 202 at the entry having the same
flow classification information 201 of the packet processing
flow classification table 11 as that of this packet, has the
value of “routing processor”, it is changed to the value of
“packet processing program processor" (8504).

Next, a processing history information packet 100 having
the processing history information of (“1”, “0”, “0”, . . .) is
created and transferred to the routing processor 5 in order to
supply this processing history information to the next node
(8505).

In this manner, the process is terminated.
Lastly, the operation to be executed by the packet clas-

sification unit 10 will be described with reference to the flow
chart shown in FIG. 11.

First, the packet classification unit 10 receives a packet
100 from the network 2 (5301). Next, the packet classifi-
cation unit 10 reads the packet classifier 1.11 indicating the
packet type (3302) to judge whether the packet is to be
processed by the packet processing program 130 (S303).
The packet type to be processed by the packet procesing
program is determined in advance. Alternatively, the packet
type may be determined by referring to a correspondence
table which is prepared in the packet processing classifica-
tion table 11 and indicates a correspondence between each
packet classifier and a flag indicating whether or not the
packet is to be processed by the packet processing program.

Ifit is judged that the packet 100 is not the target packet
to be processed by the packet processing program 130, the
packet 100 is transferred to the routing processor 5 (3304)
to thereafter return to the step 5301 to wait for the next
packet.

If it is judged that the packet 100 is the target packet to be
processed by the packet processing program 130, the source
address 112, source port 113, destination address 114 and
destination port 115 are read from the packet header field
110 ($305), and the flow classification information 201 of
the packet processing flow classification table 11 is searched
to find the corresponding entry 210 ($306).

If the corresponding entry 210 does not exist, the packet
100 is transferred to the packet processing program proces-
sor 20 (8307) to thereafter return to the step $301 and wait
for the next packet.

If the corresponding entry 210 exists and the packet is the
data packet, the contents of the packet processor clamifier
202 at that entry are checked. If the contents indicate “packet
procesing program processor”, the packet is transfeer to
the packet processing program processor 20, whereas if the
contents indicate “routing processor”, the packet is trans-
ferred to the routing processor 5. If the corresponding entry

W

NOAC Ex. 1018 Page 734

US 6,262,983 B1

9

exists and the packet is not the data packet, the packet is
transferred to the packet processing program processor 20
($307).

The contents of the packet processor classifier 202 at this
entry are set in accordance with the algorithms described
with reference to FIGS. 9 and 10.

(3) Transmission of Data

Aseries of data transmission sequences will be described
with reference to FIG. 15.

A server 50-1, nodes 51, 1-1, and 1-2 and a client 52
shown in FIG. 15 correspond to those elements shown in
FIG. 2 and having the identical reference numerals. An
example of an operation of transmitting data from the server
50-1 to client 52 will be described.

First, the server 50-1 transmits the packet processing
program to the client 52 by using a packet having the format
shown in FIG. 4 (1501). The conventional type network
node 51 transfers the received packet to the next destination.
The programmable network nodes 1—1 and 1—2 load the
packet processing program contained in the packet in the
main memories and register the source/destination addresses
and ports in the processing history repository table 24 and
packet processing flow clasification table 11, and thereafter
transfer the packet to the next destination. The client 52
discards the packet containing the program.

Next, the server 50-1 transmits data as the packet having
the format shown in FIG. 3 to the client (1502). The
conventional type network node 51 transfers the received
packet to the next destination. The programmable network
nodes 1-1 and 1-2 process the data in the received packet by
using the already loaded packet processing program and
transfer the packet to the next destination. The client 52
receives the data processed at the nodes 1-1 and 1-2.

It is assumed that the network between the nodes 1-1 and

1-2 is congested. In this case, the node 1-1 changes the
process contents in cooperation with the packet processing
program, and updates the processing history repository table
24, and if necessary, the packet processing flow classifica-
tion table 11. Then, the node 1-1 generates a packet having
the format shown in FIG. 5 and containing the processing
history information, by using the source/destination
addresses and ports in the flow classification information,
and transmits the packet to the next destination (1503) Upon
reception of the processing history information packet, the
node 102 updates, if necessary, the processing history
repository table 24 and the packet processing flow classifi-
cation table 11. The client 52 discards the packet processing
information.

The server 50-1 transmits again data (1504). In the
example shown in FIG. 15, the node 1-2 stops processing the
data by the program and transfers the data to the client 52.
This is because the packet processing flow classification
table 11 was updated with the packet processing history at
15th.

The server 50-1 transmits the last data or a packet
DOlifying a data transmission end to the client 52 (1505).
After the last data was transferred to the next destination, the
nodes 1-1 and 1—2 delete the packet processing program in
the memory, and delete the corresponding entry of the flow
in the processing history repository table 24 and the packet
processing flow classification table 11.

For example, TCP is used as the protocol for the-above-
descrtbed sequences.

10

15

20

30

35

45

50

55

60

65

10

(4) ngrammable Network Node: Second
Embodiment

The second embodiment will be described.

As shown in FIG. 12, although a packet 100 of the second
embodiment is generally the same as that of the first
embodiment, per-packet processing history information 140
is added to the last of the packet header 110. This per-packet
processing history information 140 is updated when the
packet is processed by the packet processing program
processor, to store the history.

As different from the first embodiment, a packet process-
ing flow classification table 11 of the second embodiment
shown in FIG. 13 is different from that of the first embodi-
ment in that the last field is per-packet processing history
information 203. This means that the packet belonging to the
flow classification information 201 is processed in accor—
dance with contents of the per-packet processing history
information 203. The next destination is therefore deter-

mined through matching the information 203 with the per-
packet processing history information 140 in the packet 100.
The other constituent elements are similar to those of the
first embodiment shown in FIG. 7.

FIG. 14 is a flow chart illustrating the operation to be
executed by a packet classification unit 10 of the second
embodiment.

First, the packet classification unit 10 receives a packet
100 from the network 2 (S701). Next, the packet classifi-
cation unit 10 reads the packet classifier 111 indicating the
packet type (S702) to judge whether the packet is to be
processed by the packet processing program 130 (S703).

If it is judged that the packet 100 is not the target packet
to be processed by the packet processing program 130, the
packet 100 is transferred to the routing processor 5 (S704)
to thereafter return to the step S701 to wait for the next
packet.

If it is judged that the packet 100 is the target packet to be
procemed by the packet processing program 130, the source
address 112, source port 113, destination address 114 and
destination port 115 are read from the packet header field
110 (S705), and the flow classification information 201 of
the packet processing flow classification table 11 is searched
to find the corresponding entry 220 (S706).

If the corresponding entry 220 does not exist, the packet
100 is transferred to the packet processing program proces-
sor 20 (S707) to thereafter return to the step S701 and wait
for the next packet.

It is to be noted that the proceses described above are the
same as the first embodiment.

If the corresponding entry 220 exists, the per-packet
procesing history 140 of the packet 100 is read (S710) and
compared with the per-packet processing history 203 in the
packet processing flow classification table 11 (S710). If
coincident, it means that the packet has already been pro—
cessed. Therefore, the packet is transferred to the routing
processor 5 (S704).

If not coincident, the packet is tt'ansfened to the packet
processing program processor 20 and processed thereat. In
the example shown in FIG. 14, if the packet processing
information is not coincident, it is presumed that the packet
is required to be processed. Therefore, the packet is trans-
ferred to the packet processing program processor 20.

In this embodiment, the processing history repository
table 24 and its table operation process are unnecessary. The
algorithm can therefore be simplified and the structure of a
network node can also be simplified.

NOAC EX. 1018 Page 734

NOAC Ex. 1018 Page 735

US 6,262,983 B1

11

(5) Modifications

In the example shown in FIG. 15, the program transmis-
sion and the data transmission are continuously and con-
secutively executed. During the program transmission, a
flow is registered in the packet processing flow classification
table 11 and processing history repository table 24, and after
the data transmission, the flow and program are deleted from
the tables. However, the program transmission and the data
transmission may be executed at dilferent timings. Regis-
tration and deletion of a flow to and from the tables and
deletion of the program may be performed by the following
method. Namely, the server transmits a packet containing an
instruction command for such processes to a programmable
network node which receives and executes the instruction
command.

In the above embodiments, a bitmap indicating a packet
processing status for each frequency band is used as the
packet processing history. However, the packet processing
history may be various formats in accordance with the
process contents of the packet processing program.
Therefore, the packet processing history may be realized by
a script written by text data or any other type

in the first embodiment shown in FIG. 1, the packet
classification units 10 are provided in respective network
input interface 3. However, only one packet classification
unit 10 may be provided in the routing processor 5. In this
case, the network input interface 3 transfers all received
packets to the routing processor 5. The routing processor 5
judges using its packet classification unit 10 whether the
received packet is to be transferred to the packet processing
program processor 20, and transfers only necessary packets
to the packet processing program processor 20 and the other
packets directly to the network output interface 4.

What is claimed is:

1. A network including network nodes, wherein at least
one of the network nodes comprises:

program execuh'ng means for executing a packet process-
ing program relative to each packet belonging to a flow;

routing means for performing a routing process for an
input packet; and

packet classification means for analyzing the input packet
to transfer a packet belonging to the flow to said
program executing means and transfer other packets to
said routing means.

2. A netw0rk according to claim 1, wherein said program
executing means of the network node receives the packet
processing program via the network and makes the received
packet processing program executable.

3. A network according to claim 1, wherein said packet
classification means of the network node includes a corre-

spondence table between each flow and one of the program
executing means and the routing means to transfer the
packet in accordance with the table.

4. A network according to claim 1, wherein said network
node further comprises:

processing history repository means for storing packet
processing history of a packet process already executed
by another network node on a route of the flow; and

means for notifying the packet processing history of the
packet process to another network node,

wherein upon arrival of the packet at the subject network
node, said packet classification means refers to said
processing history repository means;

transfers the packet to said program executing means only
if the packet belonging to the flow has not been applied
with a process to be executed at the subject network
node; and

10

15

20

35

45

50

55

65

12

transfers the packet to said routing means if the packet has
already been applied with the process.

5. A network according to claim 1, wherein each packet
used by the network has a field for storing packet processing
history of a packet process executed by the network node on
a route of the flow, and the network node updates the field
when executing the packet proceming program, and

upon arrival of the packet at the subject network node,
said packet classification means refers to the field;

transfers the packet to said program executing means only
if the packet belonging to the flow has not been applied
with a process to be executed at the subject network
node; and

transfers the packet to said routing means if the packet has
already been applied with the process.

6. A network node constituting a network, comprising:

program executing means for executing a packet process-
ing program relative to each packet belonging to a flow;

routing means for performing a routing process for an
input packet; and

packet classification means for analyzing the input packet
to transfer a packet belonging to the flow to said
program executing means and transfer other packets to
said routing means.

7. A network node according to claim 6, wherein said
program executing means receives the packet processing
program via the network and makes the received packet
processing program executable.

8. A network node according to claim 6, wherein said
packet classification means includes a correspondence table
between each flow and one of the packet exewting means
and the routing means to transfer the packet in accordance
with the table.

9. A network node according to claim 6, further com-
prises:

processing history repository means for storing packet
proceming history of a packet process already executed
by another network node on a route of the flow; and

means for notifying the packet processing history of the
packet process to another network node,

wherein upon arrival of the packet at the subject network
node, said packet classification means refers to said
proceming history repository means;

transfers the packet to said program executing means only
if the packet belonging to the flow has not been applied
with a process to be executed at the network node; and

transfers the packet to said routing means if the packet has
already been applied with the process. program.

10. Astorage medium for storing program codes realizing
a method of processing a packet at a network node consti-
tuting a network, the packet procesing method comprising
the steps of:

receiving a packet processing program via the network
and storing a correspondence relation between a flow
and the packet processing program.

making executable in advance the packet processing
program relative to each packet belonging to the flow;
and

analyzing an input packet, inputting the input packet
belonging to the flow to the packet processing program,
and executing a routing process for the input packet not
belonging to the flow.

5. J. * *

Pa 6 735

NOAC Ex. 1018 Page 736

(.2; United States Patent
Kalyanpur et a1.

(54) SYSTEM AND METHOD FOR MONITORINGSERVICE QUALITY IN A
COMIHUNICATIONS NETWORK

(75) Inventors: Gaurang S. Kalyanpur, Allen; Chad
Daniel Harper, Grant Michael
Brehm, both of McKinney; Chunchun
Jonina Chan, Plano, all of TX (US)

(73) Assignee: Inet 'Ibchnologles, Inc., Richardson,
TX (US)

(‘) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/395,801 4/1) 7;;
(22) Filed: Sep. 14, 1999 > 4

Related US. Application Data

(63) Continuation-impart of application No. 09/093,955, filed on
Jun. 8, 1998, and a continuation-impart of application No.
09/093,824, filed on Jun. 8, 1998, now Pat. No. 6,249,675.

(51) Int. Cl.7 H04M 1m; H04M 15/00

(52) US. Cl. 379/134; 379/32.01; 379/3202;
379/133; 379/111; 379/112.01; 379/114.01

(58) Field at Search 379/34, 112, 113,
379/114, 1 , 134, 139, 140, 210, 32.01,

32.02, 111, 112.01, 112.06,112.07, 112.08,
114.01, 114.14, 114.28, 242, 243, 244

(56) References Cited
U.S. PATENT DOCUMENTS

5,008,929 A
5,333,153 A

4/1991 Olsen et a1. 379/112
7/1994 Herbert . 379/112

5,426,688 A 6/1995 Anand 379/5
5,438,570 A 8/1995 Karras etal. 370/942
5,448,624 A 9/1995 Hardy et a1. 379/67
5,457,729 A 10/1995 Hamann etal. 379/2
5,473,596 A 12/1995 Garafola a a1. 370/13
5,488,648 A 1/1996 Womble 375/13
5,521,902 A 5/1996 Ferguson 370/13

A mm. '11:" IIII III! II
mmummmnmmmmmmmm-

USOO6359976Bl

US 6,359,976 B1
Mar. 19, 2002

(10) Patent No.:

(45) Date of Patent:

5,539,804 A 7/1996 Hong et al. 379/33
5,550,914 A 8/1996 Clarke et al. 379/230

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

EP 0541145 A1 10/1992 H04M/3/36
W0 W0 97/05749 A3 211970 H04M/15/m
W0 WO 95133352 12/1995 H040fl/34
W0 W0 97/05749 A2 2/1997
W0 WO98/47275 10/1998 H04Mfl/(X)

OTHER PUBLICATIONS

International Search Report (PCT/US 00/25070) dated Dec.
14, 2000.
George Pavlou et 31., Intelligent Remote Monitoring, Oct.
16, 1995.

Primary Examiner—Birth Tieu
Assistant Examiner—Quoc D. Tran
(74) Artomey, Agent, or Fimt—Fulbright & Jaworski LLP

(57) ABSTRACT

A system and method for monitoring service quality using
Call Detail Records (CDR) in a communications network,
such as a Signaling System No. 7 (SS7) network, is dis-
closed. Network monitors capture substantially all signaling
units in the 557 network generate a complete record for all
calls, transactions and other communications over the net-
work. Users configure CDR profiles that are used to filter the
records. ACDR application filters the records by parsing out
signaling unit components that have been selected by the
user in the CDR profile. The selected message components
are then formatted into a CDR record, which is sent to an
external system that generates certain statistics for the
message records and stones the statistics to a database. A
report application recalls the statistics from the database and
presents statistics in a reporting format configured by the
user. The reports indicate the statistical performance of
network providers for seleded called or calling telephone
numbers or for selected services. The CDRs and statistics

are available to a user either in real-time or in response to a
query of historical CDR data. The network quality moni-
toring system is separate and independent from the network
monitoring equipment.

10 Claims, 4 Drawing Sheets

\/

NOAC Ex. 1018 Page 737

5,550,984 A 8/1996 6er
5,579,371 A ‘ 11/1996 Aridas ct 21.
5,590,171 A 12/1996 Howe at al.
5,592,530 A 1/1997 Brockman at al
5,675,635 A ’ 10/1997 Vos at al.
5,680,437 A 10/1997 Segal
5,680,442 A 10/1997 Bartholomew ct aL
5,694,451 A 12/1997 Arinell
5,699,348 A 1W1997 Baidon etal. ..
5,699,412 A 12/1997 Polcyn
5,703,939 A 1W1997 Bushnell ..
5,706,286 A 1/1998 Reiman et a1.
5,712,9(B A 1/1998 Brinkman ct 81.
5,729,597 A 3/1998 Bhusri
5,737,399 A ’ 4/1998 Wltzman et aL
5,757,895 A 5/1998 An'das at al.

U.S. PATENT DOCUMENTS

395/200.17
..... 37934

. 379B3

.. 379/34
379/113

. 379/10
. 379/67
. 379/34
370/242

. 379/89
379/113
370/401
379/119
379/115
379/112

.. 379/136

US 6,359,976 B1
Page 2

5,793,771 A
5,799,073 A
5,822,401 A
5,825,759 A
5,828,729 A
5,854,824 A
5,854,835 A
5,867,558 A
5,875,238 A
5,881,132 A
5,883,948 A
5,892,812 A
5,912,954 A
5,920,613 A
5,999,604 A
6,028,914 A

“ cited by examiner

8/1998
8/1998

10/1998
’ 10/1998

10/1998
12/1998
12’1998

7/1999
2’1999
3/1999
3/1999
4/1999
6/1999
7/1999

’ 12/1999
730(1)

Darland at al. 370/467
Fleischer, III at al. .. 379/113
Cave at al. . 379/34
O’Rcilly ct a1. . 370/360
Clcrmonl at a], 379l34
Bengal at a]. 379/34
Montgomery at a .. 379/119
Swanson 379/34
6111110 et al. .. 375/116
O’Brien at a]. 379l35
Dunn 379/210
Faster, III 379/34
Whited at al, .. 379/115
AlcolI ct a]. . .. 379/114
Walter 379/133
Lin et al. 379/14

NOAC Ex. 1018 Page 738

Mar. 19, 2002 Sheet 1 of 4 US 6,359,976 B1

FIG. 1 / 127

EXTERNAL

MONITOR

FIG. 3 /

CAPTURE SIGNALING UNITS IN
A COMMUNICATIONS NETWORK

PARSE OUT DESIRED CDR DATA

FROM TCAP TRANSACTION RECORD

FORMAT TCAP CDR DATA INTO
USER REQUESTED FORMAT

SEND FORMATTED TCAP CDR DATA
T0 USER'S EXTERNAL SYSTEM

 301

304

CORRELATE SIGNALING UNITS
FOR TCAP TRANSACTIONS INTO

A SINGLE TRANSACTION RECORD

302

305

FILTER TCAP TRANSACTION
RECORDS BASED UPON USER

303 CONFIGURED PARAMETERS 306

NOAC Ex. 1018 Page 739

US. Patent Mar. 19, 2002 Sheet 2 of 4 US 6,359,976 B1

20

\ 201

o

124 -

l_'.- 205 l—T->

132

IllI

\\\/

202 \ 0A
SEMER

202 rllli rllli
123 203

X 204
m

123

E
113 102

V .l I?
w31%!“ a"

m: J.

9

9IE1
116 104

MON

/ 123
123 12 _. —J N N

NOAC Ex. 1018 Page 740

US. Patent Mar. 19, 2002 Sheet 3 of4 US 6,359,976 B1

40

\‘ FIG. 4

WORKSTATION

CDR

126 CONFIGURATION

0A WORKSTATION

0A

REPORT GUI 205
GUI

 1 24

0A CDR
CONFIGURATION

I m
409

I-i
OA

STATISTICS 406

204

n CDR
120

NOAC_EX._10l8 Page 740

NOAC Ex. 1018 Page 741

US. Patent Mar. 19, 2002 Sheet 4 of 4 US 6,359,976 B1

501

 WEB

BROWSER

MONITORING

SYSTEM

SERVER CDR
REPORT

APPLICATION

503

507
NOAQELJQB Page 741

NOAC Ex. 1018 Page 742

were;,,

.:~CUE"

US 6,359,976 B1
3

detail records (CDR) are received from a network monitor-
ing system. The monitoring system generates CDRs for
calls, transactions, and/or other communication on a net-
work. For example, the monitoring systems may have net-
work monitors that capture communication messages and
message signal units (MSU) from links in a communications
network. The links may be between the originating,
intermediate, and terminating nodes, switches or end offices.
The messages or MSUs are captured and used to generate
call detail records. Anetwork of signal monitoring units may
capture and correlate all messages for a particular call,
transaction or other communication. Preferably, the moni-
tors have a plurality of processors for processing the cap-
tured me$ages or MSUs. The processors may run any of a
number of message or record processing applications.

Typically, CDR profiles are used to determine which
messages or other data should be included in the CDRs. The
CDR profile comprises particular parameters that are used to
identify relevant calls, transactions or other communica—
tions. After a transaction record is selected, specific infor-
mation is extracted to create a CDR record. Users define
both the CDR profile, which is used to select relevant
records, and the CDR format, which defines how the CDR
data will be sent to the user. The CDR data is sent to a quality
monitoring system in a formatted CDR stream. The CDR
data may be used to monitor network quality in real—time.
Additionally, the CDR data may be stored so that historical
network analysis may be performed. The CDRs may also be
processed by other applications, such as billing or fraud
applications.

Typically, the CDR is generated when a call is completed.
The CDR includes information such as the originating
network, terminating network, and length of trunk usage for
the call. Since the identity of the originating service provider
and the duration of the call or transaction are contained in

the CDR, a CDR billing application may be used for
generating interconnection revenue for reciprocal compen-
sation. External applications may use the CDR data to
generate bills or track SS7 bandwidth use. The CDR data can
be ported to a customer’s external application, where the call
can be rated and a bill or invoice can be generated for the
transaction or call.

In the present invention, a quality asurance application
provides an integrated platform for message tracking on a
per customer and/or a per service provider basis. The tracked
messages may be part of one of a number of message
protocols, such as Integrated Services Digital Network—
User Part (ISUP), Telephone User Part (TUP), Network User
Part (TUP), Transaction Capabilities Application Part
(TCAP), Advanced Intelligent Network (AIN) or Integrated
Network Application Part (INAP) calls or transactions. The
quality assurance application is useful for larger networks or
for evaluating service quality of application-layer services,
such as FNAP, Global System for Mobile Communications
(GSM), AIN, 18-41 and 800/LIDB/CLASS.

'Ihe system disclosed herein comprises a number of
monitors which are capable of non-intrusively monitoring
all of the links in a communication network, such as an SS7
network. CDR data is initially collected from the various
SS7 links. The monitors that are connected to the links store

the data in a binary format. The binary data is then continu-
ously sent to the central server where it is stored to disk. This
application can be used in conjunction with the monitor’s
server, or customers may choose to deploy a dedicated CDR
server, separate from the system. The server also correlates
partial CDRs that have been collected from different “legs”
of each individual call to formulate a complete CDR. At the

10

15

20

30

35

45

50

55

60

65

4

server, CDRs are formatted from binary into ASCII-
formatted records based on a CDR format that is selected by
the user. The size and processing power of the server are
scaled based on the number of CDRs, the network.wide call
rate, and the bandwidth capacity of the customer’s transport
network. The formatted CDR binary streams are sent to the
user’s billing system using any standard or customized File
Transfer Protocol (FTP). Additional data formatting may be
performed in the customer’s external billing system.

In order to generate CDRs, users create profiles that tell
the monitor system how to collect SS7 information from the
signaling links. The profiles contain all of the information
required to generate CDRs. Multiple profiles can be created
to be used simultaneously on the system. The profiles may
include parameters such as the calling party number, called
party number, mobile identification number (MIN), point
codes, and application type. Essentially, any component of
a transaction signaling unit may be used as a filter parameter.

In one embodiment, the quality assurance application runs
on a server that is external to the network monitoring
system. The monitoring system provides data to the external
server in the form of Call Detail Records (CDRs). The
quality murance application tracks the quality of service
that is provided to customers on a particular communica-
tions network. The present invention allows customers,
service providers and others to monitor how a service is
performing not only within the network infrastructure, but
also how well that service is working on a call-by-call,
customer-by-customer basis. Additionally, the present
invention allows service providers to efficiently manage
network services without requiring an increased support
staff.

The quality assurance application runs on an independent
server and processes CDRs that are received from the
monitoring system. In an exemplary embodiment, individual
monitoring units exchange and correlate messages into call
or transaction records. The monitoring unit then filters the
records using a CDR profile to determine which records, and
which messages, should be combined to form the CDR. The
monitoring units then transmit the CDRs directly to the
external server. In an alternate embodiment, some other
entity in the monitoring system such as a central server, may
generate and forward CDRs to the independent quality
asurance application.

A CDR collection process on a CDR server collects all of
the legs of a transaction, call or other communication and
correlates the individual leg information into a single CDR.
The CDR is then put in the required format. The CDR
consists of data from multiple message that are related to a
single transaction, call or me$age.

The CDR server, which may or may not be a dedicated
server, acts as a client and initiates the connection to an
external system on a predefined port number. A configura-
tion file on the CDR server designates an LP address and port
where all the formatted CDRs are to be directed. All CDRs

will be streamed to the external system and no application
level protocol will be followed. The underlying protocol will
be TCP/IP. All MSUs related to a single transaction are
packetized in a single CDR and a CDR will be generated and
sent for every transaction. The CDRs are destroyed as soon
as they are successfully transmitted from the CDR sewer to
the external system. No acknowledgment is expected from
the external system for CDR receipt. For each unique
pointcode in a profile the server spawns a TCP/IP connection
to an external system to send CDRs. If the pointcode is
repeated in multiple profiles, only one connection shall be

Wage742

NOAC Ex. 1018 Page 743

US 6,359,976 B1

5

established- A configuration file lists. the pointcode to
conneCtion/pcrt number mapping. If a pomtccde is not hsted
in the configuration file, CDRs generated for this pointcode
will be destroyed immediately. A log is kept to track when
the connections are established or down and to track the
numbers of CDRs sent and dropped hourly and daily.

The configuration file mapping method may also be
defined to provide a CDR profile to connection mapping. In
this case, all CDRS generated by a profile are sent to the
same destination.

The CDR server may store CDRs on a local disk using a

predefined file naming convention so that all CDRs for a
profile are stored in one file. New files are created for a
defined interval and, as soon as the file is closed, an external
system can retrieve the file using FTP, or some other
protocol.

The quality assurance application provides service quality
analysis tools and reports. The application generates histori-
cal statistic reporting for circuit-based services or for

application—layer services. The statistics are maintained in a
database which can be accessed to generate quality of
service reports. When used to monitor service on an SS7
network, the present invention provides users with the
capability to select from a number of parameters which can
be used to filter call, transaction or other communication
records. Filters may be based upon called and calling
numbers, or groups of digts within the called or calling
numbers. Additionally, application types and point codes
may be used as filter parameters.

The quality assurance application maintaim statistics for
all ISUP/TUP circuit-based calls. Statistics are maintained
by called number, calling number and translated number.
Users may generate reports for the statistical information by
accessing the database through a workstation. The reports
may be customized using various indices, such as by called,
calling, or translated number.

Additional statistics may be monitored and other reports
may be created for other communications networks or
protocols. For example, TCAP statistics may be monitored
and reports may be generated by service as well as by called,
calling and translated number. Statistics for other application
layer services could also be monitored. Such as for H‘IAP,
GSM, AIN, 18-41 and 800/LlDB/CLASS services.

Communications network monitoring equipment which
may be used in conjunction with the present invention is
disclosed in US. Pat. No. 5,592,530, entitled TELEPHONE
SWITCH DUAL MONITORS; and in the above-referenced
pending patent applications the disclosures of which have
been incorporated by reference herein. Additionally, the
present invention may be used with any network monitoring
equipment or other equipment that generates call detail
records. Such network monitoring equipment may include
hardware and/or software that is integral to a communica-
hons network node. Alternatively, the monitoring equipment
may be external hardware and/or software that detects call,
Emaction or other messages passing over communications
111115 betWeen network nodes. The systems and methods
disclosed herein are capable of receiving and processing call
detail records from any source. As used herein, the term call
detail record refers to any record or message that comprises

» data related to a call, transaction or other communication on8 network.

It is a feature of the present invention to track perfor-
“lance Statistics for a communications network. The inven-

hOD Provides statistical reports that allow users to determine
the reason for call failures and to identify portions of the
““WOIk which are not operating properly.

10

15

20

35

45

50

55

6O

65

6

It is another feature of the present invention to allow
customers, service providers and third parties with the
ability to monitor a the quality of service on a particular
communications network. Customers can use the statistical

reports to determine their service provider’s quality of
service. The present system can also be used by customers
to determine if the customers’ systems are providing
adequate service. For example, call centers can use the
statistical data to determine whether additional agents are
needed to answer calls that have been dropped due to busy
lines. Service providers may use the information to monitor
the service provided by their network and to identify failure
points on the network. Service providers can also monitor
the quality of service provided by other service providers on
other networks.

It is an additional feature of the invention to generate
statistical reports for called, calling or translated numbers or
for services. Additionally, users can designate particular link
sets to be used for the statistical report generation. As a
result, only those monitors capturing messages from the
designated link sets will send CDRs to the quality of service
application.

It is another feature of the present invention to provide
statistical reports in real-time on a network-wide basis for
both calls and transactions. Historical reports may also be
created from CDR data that is stored to a database.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the

subject of the claims of the invention. It should be appre-
ciated by those skilled in the art that the conception and the
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry—
ing out the same purposes of the present invention. It should
also be realized by those skilled in the art that such equiva-
lent constructions do not depart from the spirit and scope of
the invention as set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawings, in which:

FIG. 1 is a block diagram of an exemplary communica-
tions network and monitoring system;

FIG. 2 is a block diagram of exemplary quality assurance
system connected to a network monitoring system;

FIG. 3 is a flowehart that illustrates the creation of CDRs

in accordance with one embodiment of the present inven-
tion;

FIG. 4 is a block diagram that illustrates one embodiment
of a quality assurance system; and

FIG. 5 is a block diagram of a network quality monitoring
system that is independent of the network monitoring sys—tem.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of wmmunications network 10
in which telephones 101 and 102 communicate via a sig-
naling network, such as an SS7 network. It will be under-
stood that telephones 101, 102 are used for illustration
purposes only and that any voice or data communications
device may be connected to the network. In the embodiment

NOAC EX. 1018 Page 743

NOAC Ex. 1018 Page 744

US 6,359,976 B1
7

illustrated in FIG. 1, telephones 101 and 102. are connected
to end offices 103 and 104, which may be Signaling Points

(5p), as shown, or SSPs. End ofiices 103 and 104 are linked
to each other through a signaling network comprised of
STPS 105—108, which are connected via links 109—112. SPs
103 and 104 are connected to STPs 105—108 via links
113—116. Calls, transactions and other signals or messages
between end oflice 103 and end office 104 may take any of
a number of paths across links 109—116 and through STPs
105—108.

Typically, a series of signals that are related to one call or
transaction will traverse across the same path through net—
work 10 from one end office to another. For example, for a

particular transaction, all signaling units sent from SP 103
may cross links 113, 111, and 114 through STPs 105 and
106. However, network problems or system failures may
cause different signals for the same transaction to take
different paths. It is also typical that signals traversing the
system in the reverse direction may use a difierent path
through the network. For example, for the same transaction
illustrated above, signals from SP 104 may traverse links
116, 112, and 115 through STPs 108 and 107. Therefore, a
single link or network element may not see all the messages
or signals for one complete transaction or call.

In certain circumstances, such as for an 800 number call
or for a call to an exchange or number that has been ported
to a difierent switch, message may be sent to SCP 1.17 to
perform various database look-up functions Signals or
messages are exchanged with SCP 117 via links 118. In other
embodiments, there may be additional components in net-
work 10, such as Service Nodes (SN) or Intelligent Periph-
erals (IP), which would require additional signal paths.

1n network 10, monitors 119~122 are individually paired
with STPs 105—108. Each monitor 119—122 is coupled to
every link for a particular STP by connections 123, which
may be embodied as a branch or tee off of links 109—116.
This allows monitors 119-122 to capture or detect every
signaling unit that is sent to, or from, each STP 105—108. As
described in US. Pat. No. 5,592,530 and application Ser.
No. 09/057,940, monitors 119—122 are coupled via an inter-
monitor communications link (not shown) which allows
monitors 119—122 to transfer captured signaling units and
messages among themselves. Typically, the first monitor to
detect a signaling unit for a call or transaction is designated
as a controlling or anchor monitor. The other monitors then
send any later detected signaling units for the same tram—
action or call to the anchor monitor. The anchor monitors

correlates all of the messages from a particular transaction or
call into a single record. Usually, each signaling unit is
identified as belonging to a particular transaction by the
Transaction Identifier (TID).

Monitors 119—122 are connected to server 124 via con-

nection 125, which may be a Wide Area Network (WAN) or
any other data network connection. Once a call or transac-

tion record is complete, the record is then sent to server 124
for further proceSing. Monitors may determine that a record
15 complete when an end me$age is detected for that
Particular call or transaction. Workstation 126 is connected

to sewer 124 and may be directly connected to monitor
119—122. Workstation 126 provides network service provid—
ers or other users with access to retrieve data or to configure
server 124 or monitors 119—122.

Monitors 119—122 detect and correlate TCAP messages

from network 10. These messages are used to generated
bmary call detail records (CDRs) which are streamed to
59W" 124 over WAN 125. Server 124 formats each binary

10

15

20

30

35

45

50

55

60

65

8

TCAP CDR stream into a format selected by a user or
customer and forwards the formatted TCAP CDR data to the

customer’s external system 127. The TCAP CDR data may
be sent to external system 127 either from server 124 or
directly from the network monitors, such as from monitor
120 as illustrated.

The user sets up a profile on workstation 126, such as a
SUN workstation. The user may interact with workstation
126 via a Graphical User Interface (GUI) to configure the
CDR profile. The profile is a filter having certain criteria
configured by the user. System 127 may be comprised of a
server or other processor which is capable of using the CDR
data to rate and bill transactions on network 10. External

system 127 may be a quality of service application that
processes CDRs and generates historical and/or real-time
reports on network quality.

Typically, the CDRs are created at transaction termina-
tion. The binary CDRs are sent via Transmimion Control
Protocol/Internet Protocol (TCP/IP) to the server listed in
the CDR profile for further processing. A collection process
on server 124 then collects all legs of a transaction and
correlates the data into a single CDR. The CDR consists of
multiple signaling units which are related to a single
transaction, for example, the entire TCAP dialogue, includ-
ing prearranged ends and time—outs. Each CDR is amigned
a unique sequence number during the CDR collection pro-
cess. The CDR is then formatted as defined by the user and
sent to external system 127. In one embodiment, server 124
acts as a client and initiates a connection to the external

system on a predefined port number.
Monitors 119—122 are capable of monitoring a multitude

of SS7 links at one time. A unique identifier, or CDR
sequence number, is generated for every CDR and unique—
ness is guaranteed system wide. The CDR application can be
configured in a sampling mode with the sampling rate
determined on a per profile basis. The maximum sampling
rate is decided based on the monitor system sizing.
Preferably, the sampling rate can be selected from 1% to
100% in increments of 1%. In the preferred embodiment,
monitors 119-122 contain software that delivers the signal-
ing units captured from the SS7 network to a CDR filtering
process for evaluation. Server 124 is responsible for tracking
all CDR configurations set up by the user and for down-
loading CDR configurations to monitors 119—122 as neces-
sary. Depending upon the configuration selected by the user,
monitors 119L122 determine if a message has passed the
filter criteria. If a message does pass the criteria, it is sent to
a tracking task located on monitors 119—122 and then to
server 124. In the event a message does not match the
characteristics defined by a user, the message will be dis-
carded.

Server 124 may be a single server or it may be embodied
as two or more servers having separate flmctions. For
example, one server may act as a central information point
for all entities of the monitoring system and another server
may control CDR processes. Any entity needing common
information can obtain that information from a monitoring
system server database. The database control on the moni-
toring system server includes configurations for all monitor
applications. In this embodiment, the CDR configuration
information can be stored on the monitoring system server
in a configuration file. At the start of a CDR generation
session, the CDR configuration file is downloaded to spe-
cific monitors over network 125.

Either server 124, or a separate CDR server, maintains
another CDR configuration file to provide mapping of CDR

NOAC Ex. 1018 Page 745

US 6,359,976 B1
9

profile names to virtual connections. This file lists CDR
Profile names and the corresponding connection identifica-
tions on which external system is expecting the CDRs for
that profile. The CDR configuration file also comprises a
mapping of the virtual connection identifiers to their con-
nection names. In the preferred embodiment, multiple CDR

profiles can be mapped to a single virtual connection
identifier, but a single CDR profile cannot be mapped to
multiple connection identifiers.

server 124, or the CDR server, performs CDR processing.
The CDR process collects all binary CDRs from monitors
119—122 and format the CDRS. The formatted CDR is then
sent via TCP/IP to an external system. Each profile in the
configuration file can instruct monitors 119—122 to send
binary CDRs to different servers or workstations 126.
However, it is mandatory that a CDR collection process
should be rtmning and listening on the assigned IP address
and port.

External system 127 shall act as a server and listen on a

pre-defined port number for incoming CDRs. Server 124
shall act as a client and initiate a connection to the external

system on a predefined port number. Server 124 is capable
ofspawning multiple connectionsbased on the configuration
file and the number of configurations are configurable.
Server 124 is also capable of communicating with multiple
external servers. Server 124 can send formatted CDRs that
have been generated using different profiles to different
servers.

The formatted CDRs may be queued in a list to be sent to
external system 127. If there is a loss of communication on
a pon, up to 512 CDRs shall be stored per connection. When
the CDR queue is full, the (DES will be deleted on a
First-In—First-Out (FIFO) basis. On start-up, after a commu-
m'cation failure, any pre~existing CDRs shall be sent to the
external system before any of the new CDRs are sent. A
connection acceptance message from external system 127
contains the last sequence mimber received. Server 124
reads the sequence number and sends the next available
CDR. In some situations, the first CDR transmitted after
communication re-establishment may not be the CDR exter—
nal system 127 was expecting. Thus, there is a potential for
data loss if the connection is down for a long time.

The following messages may be logged to a daily file on
a per connection basis:

Connection Established;
Connection Down;

Number of CDRs Sent (per hour);
Number of CDRs Dropped (per hour); and
Daily Total Number of CDRs Sent and Dropped.

Local time and date are indicated on each mesage and the
logical connection name is included on each line.

As discussed above, workstation 126 has a GUI configu-
ration interface that enables users to select the signaling
groups and point codes to be used in configuring the CDRs.
The GUI allows users to add, modify, or delete CDR

. Profiles. The CDR configurations are active until they are
deleted. Once a profile is activated, the user is notified. The
CDR profiles indicate the address and port for the external

. system 127, which is collecting the CDRs. All CDRs gen-
" erated by a profile are sent to the destination IP address via

TCP/IP.

Filters may be selected for called, calling and translated
J mlInbers based on the selected protocol, such as INAP, 800,

or 15—41. The CDR configuration supports the use of wild-
.’ “Ids for point codes or system nodes. Additionally, wild-

‘ ends are supported for phone numbers. Wildcards allow the

10

15

20

30

35

45

50

55

60

65

10

“53f ‘0 Configure profiles which encompass all of the point
codes, network nodes, or telephone numbers having a com—
mon series of numbers, such as a common area code or
exchange. For example, the wildcard telephone number
“1-NPA—"’ for a called number can be used to filter out all
records for calls or transactions to a telephone number in the
“NPA” area code.

TABLE 1 is a list of the parameters that customers can use
to create CDR profiles. The CDR profiles tell monitors
119~122 how to collect SS7 information from the signaling
links. The profiles contain all of the information that is
necessary to generate CDRs. Asingle customer can generate
multiple profiles and each profile can include difierent
parameters.

TABLE 1 is a list of the parameters that can be used to
create CDR profiles.

TABLE 1

(Ell State that Triggers the CDR Generation
Address Complete
Answer
Call Termination

Applimtion TypeANSI ISUP
l'l‘U ISUP
ITU 'I‘UP
ITU NUP
1841
CLASS
LIDB
AIN
INAP
National Variants
Toll Free/800

Point Codes
OPC
DPC

("Ailing Parry Numbers
Called Party Numbers
Translated Numbers
Dialed Digits
Dutinatinn Digits
Mobile Identification Number (MIN)
Routing NumbersAccount Numbers
Electronic Serial Number
Lomtion Routing Number

TABLE 2 lists the fields of a preferred CDR format and
the definitions of the field contents.

TABLEZ

Length of Entire CDR
length of Fixed Fields Indicates the length of the Eaed CDR fields.

The value is the number of bytes alter the
“Length of Fixed” field to the “User Field
length” field.
Numeric value that uniquely identifies the all
record within the monitoring system.
Uniqueness is guaranteed system wide. The
system also uses this number to indicate the
delivery monitor and its process ID.CDR Condition Indimtor Indicates various conditions within a
coll/nansaction.

CDR Sequence Number

Date/1"Line of GMT time when a transaction begins.Transaction Start
Date/1"true of GMT time, when a transaction end message isTransaction End enwuntered.
CIC Carrier Identification Code
OPC Network indicator, protocol as well the

origination pointcede of the all.
DPC Network indicator, protocol as well the

destination pcintcode of the all.
Abort Reason Abort muse of the transaction.

W018 Page 745

NOAC Ex. 1018 Page 746

u).

it:
in

"u.4..an..~
.u

farem‘wfiafiai:v‘..
t .

if.

WM’;':

US 6,359,976 B1
13

coupled to a database (not shown) that is capable of storing
filtered TCAP transaction records or formatted TCAP CDRs.

FIG. 4 illustrates system 40 in which CDR applications
are running on the components of a monitoring network and
quality assurance applications are running on QA sewer 203
and workstation 206. Components of FIG. 4 are numbered
to correspond with like components of FIG. 1 and 2. Monitor
120 is capable of monitoring several hundred SS7 links at
one time. Monitor links 123 capture messages from network
links, such as 111, 110 and 114, in the SS7 network. The
messages are provided to a call/transaction processing
application, such as Call/Transaction Tracking Processor
(CITP) 401. Monitor 120 comprises a number of versatile
processors which may be assigned to process and correlate
calls, transactions, or other messages One or more of these
processors run CITP application 401 depending upon the
volume of message traflic received from the SS7 network.
As discussed above, monitor 120 communicates with other
monitors, such as 119, 121 and 122, and exchanges mes-
sages pertaining to the calls and transactions that are being
monitored.

Monitor 120 also comprises CDR application 402, which
runs on another processor. CDR application 402 receives
correlated message records from CI'I'P application 401 and
filters the records using a CDR profile. Ideally, CDR appli-
cation 402 receives complete records for each call and
transaction fi'om CITP application 401. However, depend—
ing upon the state of a particular call or transaction, partial
records may be provided. CDR application 402 collects
messages for call legs and generates a Call Detail Record.
The CDR contains summary information of the statistics for
each call. Application 402 generates a binary CDR that is
sent to QA server 203 via Transmission Control Protocol/
Internet Protocol (TCP/IP) for further processing. There
may be one or more QA servers coupled to the monitoring
network or to individual monitors. Monitor 120 sends the

CDR data to the QA server listed in a QA CDR profile.
Typically, the CDRs are not stored on monitor 120. The

binary CDR data is streamed to QA sewer 203 as soon as it
is created.Aunique identifier is created for each CDR so that
QAserver can distinguish among the CDRs that are received
from various monitors. Messages that are received out of
sequence by CITP application 401 are sent to CDR appli-
cation 202, which attaches the out of sequence message to
the CDR data stream.

Monitoring system server 124 is responsrble for traclcing
all CDR configurations that have been set up by users. QA
CDR configuration application 403 cooperates with CDR
application 404 on workstation 126 to provide a user inter-
face to configure the QA CDR profiles. Server 124 stores the
QA CDR profiles as files in memory 409. The profiles are
downloaded to monitors 119—122 as necessary so that the
monitors will have the proper configuration to process the
correlated message records.

Users configure the QA CDR profiles, and other moni-
toring system parameters, using workstation 126. CDR
configuration application 404, which may be a Graphical
User Interface (GUI), allows users to configure CDR profiles
for storage on server 124. Information provided by users on
Workstation 126 is stored as a configuration file in database
409. Sever 124 downloads the configuration file data to
Specific monitors 119—122 over Simple Network Manage-
ment Protocol (SNMP). Users may modify the CDR profile
configurations. Changes to old configurations are relayed to
the appropriate monitors 119—122.

QA server 203 is preferably a dedicated server for the
QUality assurance application because of the high volume of

10

15

20

3O

35

45

50

55

60

65

14
data associated with the call and transaction records. CDR
data streams from monitors, such as data on link 204 from
monitor 120, is processed by QA statistics application 405.
Database 406 holds the CDR data for QA server 203. QA
statistim application 405 collects CDRs from monitors
119—122 and stores the data to database 406. This data is

then later recalled by QA report application 407, which
reports statistics on the data when requested by users. QA
workstation 206 provides the user interface to QA report
application 407 through QA report GUI 208. Users config-
ure the desired parameters for the statistical reports via QA
report GUI 208. QA report application 407 then recalls and
formats the stored data from database 406.

Depending upon the user’s system, databases 406 and 409
may be an integral part of servers 124 and 203, or the
databases 406, 409, may be embodied as separate storage
devices.

The amount of data stored and the message traflic volume
are the key determinants of the size and proce$ing power of
QA server 203. Processing capabilities can be adjusted on a
per user basis. The minimum configuration of the preferred
embodiment is a server having 150 GB storage and 1 GB
memory. Aredundant server having equivalent capacity may
also be used. Workstation 206 provides users with a GUI
interface to configure statistic reports.

QA server 203 collects CDRs from monitors 119—122 and
extracts statistical information to be stored in database 406.

CDRs for calls in an SS7 network are available upon call
completion. QA statistics application 405 accumulates the
messages statistics completion of the call or transaction and
adds the statistics to database 406 at intervals based upon the
origination time of the call or transaction. The statistics are
continually collected and stored to database 406, but they are
reported only upon user request.

The format used to store the statistics data in database 406

is highly configurable and may be adapted for any storage
configuration that the user may desire. For example, in one
embodiment, separate data entries are made for each hour in
a daily table in database 20. 'llrus, if server 203 and database
406 are configured to hold a week’s worth of statistical data,
then seven daily tables, each having 24 intervals, are stored
on database 406. Each daily table is stored for seven days.
Daily tables are summarized into weekly tables at the end of
seven days. Weekly tables have seven intervals, each inter-
val representing a summarized daily table. Weekly tables are
stored for 90 days, at which point they are summarized into
monthly tables having 28-31 intervals. Monthly tables are
stored locally on database 406 as long as space permits. The
aging and summarizing process can be customized by users
to comply with individual requirements.

Table 5 is a list of statistics that are stored to database 406

for each CDR profile.

TABLES

Number of Call Attempts
Number of Call Attempts Answered
Number of User Busy Calls
Number of Ring No Answer (RNA) Call:Number of Normal Release Call:
Number of Abnormal Release Calls
Number of Unallouted Number Calla
Number of Address Incomplete CallsNumber of Transaction Aborts
Number of Congated Damactiuns
Number of Cungmted Call-
Number of Circuit Unavailable Call:
Number of Failed 'I‘ranudicns
Number of Failed Call:

W018 Page 746

NOAC Ex. 1018 Page 747

US 6,359,976 B1

15

TABLE 5-continued
________———————_—-—

Number of Undefined Release Cause Failed Calls
Number of Destination Out of Order Failed Calla
Average Call Set-Up 'Iime
Average Call Hold Time
Average Answer Seizure RatioUser Defined

__—___._______——-.———————

The user can define specific statistics, such as release causes,
that are to be stored for a particular CDR profile.

Table 6 is a list of aggregations that can be used to group
the above statistics for reports to be generated by QA report
application 407.

TABLE 6
________________—_————

C‘alling Numbers
Called Numberl
Translated Number:
Called Numbers, then by Calling Numbers
Translated Numbers, then by Calling Numbers
Called Numbers, then by Translated Numbers
Services
Servicel, then by Calling Numben
Servicel, then by Called Numbers________—._.—_————————

In Table 2 it will be understood that called, calling or
translated numbers may be either a complete telephone
number or a partial telephone number. For example, under
the NorthAmerican Numbering Plan, reports may be created
for full telephone numbers (i.e. 1-NPA—NXX—XXXX).
Alternatively, Wildcards can be used at the end of the
grouping telephone number so that statistics are reported for
all calls or transactions directed to a particular area code (i.e.
1-NPA) or a particular exchange code (i.e. 1-NPA-N)Q().

Users can also configure QA report application 407, via
QA report GUI 208, to create their own query parameters.
Queries can be stored in database 406 and stored queries can
be modified. Reports from QA report application 407 may be
displayed to the user on QA workstation 206. Alternatively,
reports may be printed, directed to an electronic mail
address, stored to a database file, or exported to an ASCII
file. Users can configure weekly, monthly, or other periodic
reports wtn'ch are sent at intervals to specific users. Such
periodic reports may be assigned to QA report application
407 to be run automatically.

Dynamic behavioral statistics may also be generated by
CA report application 407. Users can select to have the
statistics of Table 1 reported as to the highest and/or lowest
values. For example, a report may comprise the 16 highest
called numbers, or the 16 services that are used the least.
Behavioral statistics are retrieved using a Structured Query
Language (SQL) query. Triggers can be configure to update
a user’s display according to changes in database 406. Once
a group or aggregation of statistics is displayed, users can
refine the report to obtain more specific data, such as a
specific area code and exchange.

Users may track statistical events by designating a statis-
tics to be displayed based upon a first occurrence, a occur
rence that is more than some delta away from a certain value,
01' risinyfalling thresholds. When triggered, events may be
displayed to the user, or stored to a log file.

Users may also designate specific link sets or network
nodes to be used for the statistical reports. Only those
monitors that are coupled to the relevant links and nodes will
receive the CDR profile data and only those monitors will
send CDRs to QA server 203 for that profile.

Real-time statistics are also available from QA report
application 407. Statistics are then updated after call or

10

15

20

30

35

45

50

55

60

65

16

transaction completion and CDR generation. DisplayCd
reports may be in the form of peg counts, bar graphs. 0r trend
curves. Users may also configure reports based “130!1 a
sample of the calls or transactions or based upon a sample
of the CDRs. The sampling rate may be selected using CDR
generation GUI 404 on the user workstation.

It will be understood that workstation 126 and 206 may be
separate components as described herein, or one workstation
may be used to run both CDR wnfiguration GUI 404 and
QA report GUI 408.

It will also be understood that the QA server can accept
CDR data from any source, not only from the monitoring
system. For example, a switch or end oflice may generate
CDRs and provide the data directly to the QA server for
further processing. The QA server has a modularized front
end which allows it to receive data from any source.

Reporting and measuring of the CDR data allows users to
define any number of digit combinations. A leading digit
summary is defined as an aggregation of CDRs associated
with a selected prefix. This parameter returns a composite
result on numbers having the selected prefix, instead of
providing results for each discrete number within the num-
ber range. For example, an entry of 972 returns a single
measurement for all calls with the 972 prefix. An entry of
972-578-0000 returns two measurements; a measurement
for 972—578-0000 as well as a measurement in the 972

leading digit summary aggregation entry.
In a preferred embodiment, a service quality monitoring

system provides a stand—alone CDR processing system that
is separate from, and external to, a network monitoring
system. The service quality monitoring system provides
performance monitoring statistics based on CDRs that are
acquired from a network surveillance system. The CDR data
can be analyzed through a real-time interface or through a
historical reporting tool. The network quality monitoring
system is capable of monitoring any communications
network, such as an SS7 network, and provides information
about the network to a user or operator. The system inte-
grates data from CDRs on a per customer and/or per dialed
service basis and provides historical performance data that
helps to ensure that optimum service quality is provided to
network customers. The service quality application receives
CDRs that are streamed from the network monitoring sys-
tem and procemes the CDRs by filtering, analyzing and
storing the CDR information. CDRs are stored in a database
that is accessed by the historical reporting tool to generate
user-requested reports. The received CDRs are also filtered
and analyzed as they are received to generate real-time
reports and/or alarms for the user or operator.

The quality monitoring system software may run on one
or more system components. A dedicated CDR server may
be required if a high volume of historical data is expected
The data on the CDR server can be stored in an associated

database. The CDR server includes one or more processors
that are responsible for collecting and processing CDRs and
for generating performance monitoring statistics. The CDR
server also provides data to users and operators upon
request. The amount of data to be stored and the volume of
traflic expected determine the processing power that is
required in the CDR server.

Users access the historical reports and real-time data
through a PC client. The service quath monitoring system
may also include a web-reporting tool and a web server that
are used to provide platform independent access to the
historical data. As a result, the historical database and

real-time data may be accessed remotely, for example, via a
private computer network, such as a Local Area Network

NOAC Ex. 1018 Page 748

w». any...n ram-van.»q ’ that“.

US 6,359,976 B1

17

(LAN) or Wide Area Network (WAN), or via a global
computer network, such as the Internet or World Wide Web.

A stand-alone, independent service quality monitoring
system is illustrated in FIG. 5. Communication network
nodes 51 and 52 may be any two nodes that are connected
by link 53. Nodes 51 and 52 are each typically connected to
additional nodes by other links which are not shown in FIG.
5 to simplify the drawing. Calls, transactions and/or other
communication messages are exchanged between nodes 51
and 52 over link 53. Individual ones of these messages are
associated with any number of unrelated calls, transactions
and other communications across a network. Monitor 501

captures these messages as described herein and correlates
related messages into communications detail records, such
as call or transaction records. Monitor 501 may capture
messages from one or more links. A number of such moni-
tors 501 that are coupled to all or most of the links in a
communication network are used to capture substantially all
the messages in the network. Monitors 501 may be linked to
each other and they may exchange data via an inter-monitor
bus (not shown) as described in the related applications.

Monitoring unit 501 is coupled to monitoring system
server 503, which maintains system configuration informa-
tion. Monitor 501 may send CDRs and other message data
to server 503 for further processing or storage. NetWork
operators access monitors 501 and monitoring system server
503 via workstation 502. Operators use workstation 502 to
configure the monitoring system and to access CDR or other
data. Workstation 502 may also be used to configure and
receive alarms and real-time performance statistics.

Server 502 acts as the central information point for all
entities in the network monitoring system. Any entity, such
as monitor 501, that needs common information can obtain
that information from a database on server 502. Server 502

maintains the configuration information for all the applica-
tions that are provided by monitors 501. Network informa-
tion that is provided by the user or operator is stored in a
configuration file on server 502. A configuration process
downloads configurations to specific monitors 501, for
example, using SNMP. The configuration process also
accepts new configurations and receives changes to old
configurations from Workstation 502 or external client 504.
New or updated information is immediately relayed to the
appropriate monitors 501.

Monitor 501 may be configured to send CDR data to
external equipment, such as a CDR server 506. CDR server
506 may be an external network schice quality application.
External workstation 504 and web browser 505 allow users

to acces the CDR information and performance statistics
remotely. Monitor 501 collects message data for call and
transaction legs from a tracking process. Then monitor 501
correlates associated messages and generates a communica—
tion detail record or CDR. The CDR contains summary
information of the call, transaction or other communication.
Monitor 501 then generates a binary CDR stream that is sent
via Transmission Control Protocol/Internet Protocol (TCP/
IP) to devices that are listed in a configuration profile. The
Configuration profile may use pointcodes to designate exter-
nal devices or the CDR profile may be global. A unique
identifier is generated for every CDR to guarantee system-
Wide uniqueness. The binary CDR is sent to the external
device, such as to CDR server 506, as soon as it is created.
The CDRs can also be stored on monitor 501 and sent at

regular intervals or at a preset time. Typically, the CDR
information is sent as call or transaction legs are closed.

Server 503 may send a configuration profile to monitor
501 directing the monitor to send CDRs to server 506 for

10

15

20

30

35

45

50

55

60

65

18
storage in a historical statistics database. Monitor 501 can
also be configured to deliver real—time performance moni-
toring statistics to an application running on workstation
504. Workstation 504 can access historical CDR statistics
from server 506 in addition to receiving real~time data.

Attempt-based statistics are collected and stored in the
historical database at server 506. Service quality applica-
tions can generate performance statistics based on the digits
in the stored CDRs. 'Ihe digits may include all of, or part of,
the calling number, dialed number or translated number.
Historical data can be provided for indexes that are digit-
based or based on pointcode by simplex digit. Attempt-
based statistics are collected and stored in a historical
database for CDRs based on complex digit combinations.
The digit combinations for user provisioned calling numbers
may be based on, for example, calling number by dialed
number. For user provisioned dialed number, the statistics
may be collected and stored based on, for example, dialed
number by calling number, dialed number by translated
number, or translated number by calling number. In the
preferred embodiment, historical data for a complex index
will be CDR based only and not pointcode keyed.

The service quality monitoring system also may include a
web~reporting tool. Web browser client 505 is used to
provide platform independent access to both real-time and
historical CDR data The historical database is accessible

from any standard web browser via the web-reporting tool
505. This allows the user to execute and view reports
remotely via the web interface.

Completed CDRs are available at call—completion. Call
statistics for CDRs are accumulated after delivery of the
CDR to CDR server 506. Pointcode by simplex digit sta-
tistics are accumulated on monitors 501 and retrieved by
CDR server 506 on a user~defined interval basis. In a

preferred embodiment, all data is accumulated based on call
origination time. Statistics applicable to a current configu—
ration are collected continuously. Real—time data is typically
pointcode keyed on calling party and dialed number.

Table 7 illustrates the type of statistics that can be
generated from the historical CDR data on CDR server 506.

'I‘ABI..E7

Total Call Attempts
Total Call: Answered
Total Calls with Address Complete
Failed Calls
Release Cause
Abnormal Release
User Busy
Normal Release
Circuit Unavailable
Network CongestionNetwork Failures
Average Setup Time
Average Hold Tune
Average Conversation Tune

Table 8 illustrates the type of information that may be
used to configure a profile for the service quality monitoring
system.

TABLE8

Calling number:Dialed numbers
Telephone numbers to be
tracked
Complete number
Partial number

Provisioning index type

Number Provisioning

NOAC Ex. 1018 Page 749

US 6,35

19

TABLE 8-continued
/___——————-———————

Partial number with trailing
wildard
Alias name

Results Required, Real- Pointcode by alling number
'Iime performance

Pointcode by Dialed number
performance

Results Required, Calling number by Dialed
Historicll number performance

Pointcode by Calling number
performance
Calling number performance
on digits only
Pointeode by Dialed number
performance
Dialed number performance on
digits only
Dialed number by translated
number performance
Dialed number by calling
number performance
Translated number by milling
number performance

Filtering of pointcodes
Filtering of signaling groups
Application type used within the network
Number of digits for secondary number indexel

_‘_______.—__————-——

Operators can create their own queries or modify existing
queries. Reports that are generated from the historical data—
base can be viewed, printed or saved using a standard PC.
Using web-based or global access, a report can be generated
through any standard web-browser. Users can also configure

. , hourly, daily, weekly or monthly reports that are automati-
cally generated. These prescheduled reports can be sent to
specific users via electronic mail.

Preconfigured reports are also available to the users.
These reports depend upon the index tracking options, such
as calling party or dialed number, that are available to the
operator. The reporting tool also allows users to create new»
reports using the existing data.in the database. For example,
a report could be created for the ratio results of a comparison
of any measurements. Other reporting features include

. formatting, filtering and other options.
Users can format Reports using thresholds, sorting and

graphing parameters. Reports can be configured to highlight
data that exceeds a user defined threshold. Data results can

be sorted in ascending or descending order for any param-
eter. Users can graphically display report data on worksta-
tion 502 or 504.

Users can configure the reports so that the CDR data is
filtered to show selected parameters only. Threshold filtering
can also be used to create reports that show data that exceeds

. a user defined threshold. Time range filtering can be used to
. shows data within a user-selected period of time. Digits

.~ filtering is used to show CDR data for numbers that have a
guser-defined digits prefix. Digit level filtering aggregates

: data row totals using a user-defined digit level. Reports can
”150 be configured to provide a snapshot of the service

PcrfOTmance data and to provide difierent levels of summary
~~ totals for various report types.

‘ Number alias filtering displays data that is defined by a
inset-Selected number alias. A series of numbers or a group
0f numbers can be assigned to a number alias or a service

. name that is defined by the user. Reports can then be
“generated using the alias name. The statistics for all of the
*mlmbcm that belong to a selected number alias or service
name _Will be aggregated together. In a preferred

‘ SmbOdIFDWL a report selection macro in the form of a dialog
. ‘3 valded for the user to select a report to open based on

9,976 B1
20

report type, filter type (digit, alias, alias/digit), 311d aggre-
gation level. Standard reports and graphs including ‘ranking’
reports to show the ‘top 10’ disabled or dialing numbers for
a specific measurement. The reporting tool supports user-

5 defined exclusion entries, for example, by providing aggre-
gate measurements for all dialed numbers in a selected
NPA—NXX except for a specific number or numbers.

Reporting and measuring of the CDR data allows users to
define any number of digit combinations. A leading digit

10 Summary is defined as an aggregation of CDRs associated
with a selected prefix. This parameter returns a composite
result on numbers having the selected prefix, instead of
providing results for each discrete number within the num-
ber range. For example, an entry of 972 returns a single

15 measurement for all calls with the 972 prefix. An entry of
972—578-0000 reuu'ns two measurements; a measurement
for 972-578-0000 as well as a measurement in the 972
leading digit summary aggregation entry.

The quality monitoring system manages the CDR profiles
20 so that they do not generate several CDRs for the same call

leg. The system also correlates multiple related CDRs to
produce a single CDR per event. The CDR processing
system is also capable of processing translated numbers.
When the call legs are delivered to the CDR analysis system,

25 then the calling, dialed number and translated number fields
are populated.

Users can set up a statistical event alarm on any real-time
profile so that statistical event alarms are displayed when
alarm mnditions are detected.

30 In a preferred embodiment, the minimum granularity is
five minutes of data. The granularity can also be configured
to be traffic dependent. All data is entered in appropriate
hourly, daily, weekly, and monthly tables. The quantity of
hourly, daily, weekly, and monthly tables stored in the

35 database is dependent upon the amount of hard disk space
procured with the CDR server hardware 506. The system is
capable of using additional on-line CDR storage.

The quality monitoring system application can be config-
ured to sample only a percentage of CDRs to populate the

40 historical database. Users can select an appropriate sampling
rate through the CDR configuration profile set-up. The
system application hardware is mnfigured as per the cus-
tomers sampling requirements. All of the quality statistics
may be stored for the sampled set of CDRs.

45 The CDR analysis system also has analysis tools to
provide users with the ability to drill down and analyze data
at specific geographic, node, link, call, transaction or mes-
sage levels.

Although the invention has been described with respect to
50 an SS7 system, it will be understood that the present

invention may be adapted to monitor the quality of service
provided on any communications network.

The present invention and its advantages have been
described in detail herein, however, it should be understood

55 that various changes, substitutions and alterations can be
made herein without departing from the spirit and scope of
the invention as defined by the appended claims.

What is claimed is:

1. A method for monitoring the service quality in a
60 communications network, wherein a communication moni-

toring system generates communication detail records for
communications on said network, the method comprising
the steps of:

capturing, at monitoring units, messages from one or
65 more communication links in the communication

network, wherein each message corresponds to a spe-
cific one of a plurality of calls or transactions, and

NOAC EX. 1018 Page 749

3;
l;

i.
ll

NOAC Ex. 1018 Page 750

US 6,359,976 B1
21

wherein a plurality of messages are associated with
each of said calls or transactions;

identifying a first-detected message for a particular call or
transaction;

designating a monitoring unit that detected said first-
detected message as an anchor monitor for the particu-
lar call or transaction;

forwarding any other messages associated with the par-
ticular call or transaction to the anchor monitor,

correlating, at the anchor monitor, all of the messages
associated with the particular call or transaction into a
call detail record for the particular call or transaction,
wherein the call detail record comprises all of the
messages associated with the particular call or trans-
action that have been captured by all monitors from all
links in the communications network;

transmitting said call detail records directly from said
anchor monitor to a quality of service application;

filtering said call detail records to generate a historical
report of service quality on said network, wherein said
call detail records are filtered according to a user
configured profile to generate said historical reports;
and

filtering said call detail records as they are received to
generate real-time service quality reports.

2. The method of claim 1 further comprising the step of:

storing the call detail records at said anchor monitor upon
a loss of communication between said anchor monitor
and said quality of service application.

3. The method of claim 1 wherein said call detail records

are Transaction ControlApplication Part Call Detail Records
(TCAP CDR).

4. The method of claim 1 further comprising the step of:

allowing a user to modify said configuration profile via a
global computer network

5. The method of claim 1 further comprising the steps of:
monitoring said real-time service quality reports for alarm

conditions; and

notifying a user when an alarm condition is detected.
6. The method of claim 5 wherein said real-time service

quality reports are monitored using a user configured profile
to detect said alarm conditions.

7. Asystem for monitoring service quality in a commu-
nications network having associated network monitoring
equipment for monitoring communications across said
network, said system comprising:

10

15

20

30

35

45

22

communications network monitoring devices COUPled ‘0
communication links in the communication network,
each of the monitoring device comprising:
means for capturing mesages from said communica—

tion links, wherein each message corresponds to a
specific one of a plurality of calls or transactions, and
wherein a plurality of messages are associated with
each of said calls or transactions;

means for identifying a first—detected message for a
particular call or transaction;

means for designating one of said monitoring devices
as an anchor monitor for the particular call or
transaction, if that monitor detected the first-detected
message;

means for forwarding other messages associated with
the particular call or transaction to the anchor moni-
tor;

means for correlating all of the messages associated
with the particular call or transaction into a call detail
record for the particular call or transaction, wherein
the call detail record comprises all of the messages
associated with the particular call or transaction that
have been captured by all monitors from all links in
the communications network;

means for transmitting said call detail records directly
from said anchor monitor to a service quality applica-
tion processor that is separate from said communica-
tions network monitoring devices;

a database associated with said processor for storing said
communication detail records;

means for filtering said communication detail records
using a user defined profile to identify selected ones of
said communication detail records;

means for generating a report of historical network quality
using said selected ones of said communication detail
records; and

means for filtering said communications detail records to
identify communication detail recortk to be displayed
to a user in real-time.

8. The system of claim 7 further comprising;
means to display said historical reports to said user; and
means to display said call detail records to said user in

real-time.

9. The system of claim 8 wherein said historical display
means and said real-time display means are the same device.

10. The system of claim 8 wherein said display means
provide a graphical user interface for said users.

t # it ‘ it

NOAC EX. 1018 Page 750

NOAC Ex. 1018 Page 751

 HlllllllllllllllIllllllllllllllllllllllll||||||||||IlllHIlllHIIlllIHIIl

U5006389468B1

(12) United States Patent (10) Patent N0.: US 6,389,468 B1
Muller et al. (45) Date of Patent: May 14, 2002

(54) METHOD AND APPARATUS FOR W0 WO 99/00737 1/1999 606F/13/00
DISTRIBUTING NETWORK TRAFFIC W0 WO 99/00945 1/1999 H04L/12/46
PROCESSING ON A MULTIPROCESSOR W0 WO 99/00948 1/1999 . H04U12/56
COMPUTER W0 wo 99/00949 1/1999 H04L/12/56

(75) Inventors: Shimon Muller, Sunnyvale; Denton E.
Gentry, Jr., Fremont, both of CA (US)

(73) Assignee: Sun Micmsystems, Inc., Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/259,445

OTHER PUBLICATIONS

T.Suda. “Measuring the Performance of Parallel Message
Based Process Architectures". INFOCOM 95. Fourteenth

Annual Joint Conference. IEEE Computer and Communi-
cations Societies. Apr 2—6, 1995 ISBN: 0—8186—6990—x.
Page(s) 624—633.‘
D]. Yates. “Networking Support For Large Scale Multipro«
cessor Server”. GTPCS’95), 1995 Third IEEE workshop. pp.
153—157. Aug. 23—25, 1995.‘

(List continued on next page.)

Primary Examiner—Glenton B. Burgess

(22) Filed: Mar. 1! 1999 Assistant Examiner—Kenneth W. Fields

(51) Int. Cl? G06F 15/173; G06F 15/16 (74) Attorney Agent; or Firm-Park, Vaughan & Flaming
. (52) US. Cl. 709/226, 709/235 LLP
5 (58) Field of Search 709/224, 249, (57) ABSTRACT

~. 709/250, 226, 229, 235
5 A system and method are provided for distributing or
‘ (56) References Cited sharing the processing of network traffic (e.g., through a

, protocol stack on a host computer system) received at a
‘ U‘S- PMENT DOCUMENTS multiprocessor computer system. A packet formatted

5,414,704 A 5/1995 Spinney 370/60 accofding ‘0 one 0‘ m0“? communicmon PYOIOCQIS i?
.4” 5,583,940 A 12/1995 Vidrascu et a1. 380/49 received from a network entity at a network interface Circuit
' 5,684,954 A 11/1997 Kaiserswerth et a1. 395/2002 of a multiprocessor computer. Aheader portion of the packet
‘ 5,748,905 A 5/1998 l-lausereta]. 395/200.79 is parsed to retrieve information stored in one or more
9‘ 5,758,089 A 5/1998 Gentry et a1. . 395/200.64 protocol headers, such as source and destination identifiers

57785180 A 7/1998 Gefmfy 5‘ 3L 395/200-42 or a virtual communication connection identifier. In one
’ 0v 5,778,414 A 7/1998 Winter 6‘. a1. 711/5 embodiment, a source identifier and a destination identifier

‘ ' 5’793’954 A 8/1998 Baker et a1. """"""" 395/2003 are combined to form a flow key that is subjected to a hash
5’870’394 A 2/1999 Opt” """""" " 370/392 function The modulus of the result of the hash function over6,014,699 A ‘ 1/2000 Ratcliff et a1. 7090.24 ‘ . , _

the number of processors in the multiprocessor computer is
FOREIGN PATENT DOCUMENTS then calculated. In another embodiment a modulus operation

EP 0 447 775 9/1991 IIIIIIIIII GOéF/lS/IS is perforéned. on the packet’s virtual communicationcon-
EP 0 573 739 12/1993 . 1104141256 nection l entifier. The result of the modulus operation iden-
EP 0853 411 7/1998 H04L/29/06 tifies a.processor to which the packet is submitted for
EP 0865180 9/1998 H04L/12/56 Processmg.
W0 WO 95/14269 5/1995 GOGF/7/08
W0 WO 97/28505 8/1997 G06F/13/14 48 Claims, 49 Drawing Sheets

DVNAMAC
PACKET"mumsMODULE1 a:

LOADDISTIIBUYOR‘12:12011«max
r ,LL\ pm ENGtNE120

HEADER PMSERwe

m
- I t :i/8.t N. s

’5 :. V E:z 5 3 . wa, Y : mpurwonr (— l o
.4 E l moczssmc ’ .- fl
. u : manure _ x‘ 1m

. t
* . n
‘ l CMECKSUH 1: GENERATOR: m

r

a»van!hm.

751

NOAC Ex. 1018 Page 752

(12) United States Patent

Bullard et al.

||||l|llllllll|||||l||||||||ll||||||||||||Illll||||||||||llllllllllllllllll
US006405251B1

(10) Patent N0.: US 6,405,251 B1

(45) Date of Patent: Jun. 11, 2002

(54) ENHANCEMENT 0F NETWORK
ACCOUNTING RECORDS

(75) Inventors: William Carter Carroll Bullard, New
York, NY (US); Kevin Farrell,
Windham, NH (US); Steven Ball,
Sandown, NH (US); Daniel 0.
Malioney, II, Rollinsford, NH (US)

(73) Assignee: Nortel Networks Limited, Quebec
(CA)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
USC. 154(b) by 0 days.

(21) Appl. No.: 09/276,201

(22) Filed: Mar. 25, 1999

(51) Int. Cl.7 GOGF 13/00
(52) US. Cl. ... 709/224
(58) Field of Search 709/200, 210,

709/223, 224

(56) References Cited
U.S. PATENT DOCUMENTS

3,463,272 A 8/1969 Graines 165/10
4,396,058 A 8/1983 Kurscliner et al. 165/8
4,449,573 A 5/1984 Pettersson et al. .. 165/10
4,744,410 A 5/1988 Groves 165/10

OTHER PUBLICATIONS

XACCT Usage Overview, XACCT Technologies, 1997.
HP and Cisco Deliver Internet Usage Platform and Billing
and Analysis Solutions (http.//www.hp.com/smartintemet/
press/prapr28.html), Hewlett Packard Company, 1998.
Article, Quadri, et al., Internet Usage Platform White Paper
(http://www.hp.com/5martinternet/solutions/usagewp),
Hewlett Packard Company, 1998.

DEVICE “A". 142

140

52. DATA COLLECTOR

Article, Strategies for Managing 11’ Data (http://www.~
hp.com/smartinternet/press/nothtml), Hewlett Packard
Company Undated.
Article, Nattkemper, HP and Cisco Deliver Internet Usage
and Billing Solutions (http://Www.interex.org/hpworldnews/
hpW806.html), Hewlett Packard Company, Jun. 1, 1999(?).
HP Smart Internet Billing Solution (http://
hpcc925.external.hp.com/smartinternet/solutions/usagebill-
mg.html), Hewlett Packard Company, 1998.
HP Smart Internet Usage Analysis Solution (http://wwwh—
p.com/smartinternet/solutions/usageanalysis.html), Hewlett
Packard Company, 1998.
Press Release, New cisco IOS NetFlow Software and Utili—
ties Boost Service Provider Revenues and Service Manage-
ment Capabilities (http://www.cisco.com/warp/public/cc/
cisco/mkt/gen/pr/archive/cros pr.htm), Cisco Systems, Inc.,
Jul. 1, 1997.
Documentation, NewFlow FlowCollector 2.0 (http://
www.cisco.com/univerca/cc/td/doc/product/rtrmgmt/nfc/nfc
2 O/indexhtm), Cisco Systems, Inc., 1998.

(List continued on next page.)

Primary Examiner—Robert B. Harrell
(74) Attorney, Agent, or Firm—Fish & Richardson PC.

(57) ABSTRACT

A system for collecting and aggregating data from network
entities for a data consuming application is described. The
system includes a data collector layer to receive network
flow information from the network entities and to produce
records based on the information. The system also includes
a flow aggregation layer fed from the data collection layer
and coupled to a storage device. The flow aggregation layer
receiving records produced by the data collector layer and
aggregates received records. The system can also include an
equipment interface layer coupled to the data collector layer
and a distribution layer to obtain selected information stored
in the storage device and to distribute the select information
to a requesting, data consuming application.

22 Claims, 36 Drawing Sheets

DEVICE "B", 144

\

—————NGA€-Ex:—l~018 Page 752

NOAC Ex. 1018 Page 753

«3

a

(12) United States Patent
Blair et al.

l|||l||ll|||||lllllllllllll||||||l|||||||||||||l|l||||l||l|||||l||||||l|||l
USOO6404857B1

(10) Patent N0.: US 6,404,857 B1

(45) Date of Patent: Jun. 11, 2002

(54) SIGNAL MONITORING APPARATUS FOR
ANALYZING COMMUNICATIONS

(75) Inventors: Christopher Douglas Blair, Sussex;
Roger Louis Keenan, West Sussex,
both of (GB)

(73) Assignee: Eyretel Limited, West Sussex (GB)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. N0.: 09/500,800 ,

(22) Filed: Feb. 10, 2000

Related US. Application Data

(62) Division of application No. 08/936,428, filed on Sep. 24,
1997, now abandoned.

(30) Foreign Application Priority Data

Sep. 26, 1996 (GB) ... 9620082

(51) Int. C1.7 H04M 1/64; H04M 15/00
(52) US. Cl. 379/67.1; 379/85; 379/88.04;

379/135

(58) Field of Search 379/135, 67.1,
379/85, 88.09

(56) References Cited
U.S. PATENT DOCUMENTS

4,567,512 A
4,924,488 A *
4,969,136 A
4,975,896 A

1/1986 Abraham
5/1990 Kosich 379/135

11/1990 Chamberlin et al.
12/1990 D’Agosto, III et al.

'Ports' (nxlansmns or lmnks, 16digital or analogue)

l0 3g— a High lmpcilallen Tarn L '8
‘ i—fiLL—\(17.

Compuler

TclaplgxigXSwltch d—T-elephan }
1) (ch) Link

Is»

Replay Stallon

31

Conflgurallon
Management
Appllcnllun

3+ ___._.._

5,260,943 A
5,274,572 A
5,390,243 A

11/1993 Comroe et al
12/1993 O’Neill et al.

211995 Casselman et a1.

5,535,261 A * 7/1996 Brown et al. .. . 379/67.1
5,696,811 A ‘ 12/1997 Maloney et al. 379/85
5,818,907 A ‘ 10/1998 Maloney et al. . 379/85
5,946,375 A ‘ 8/1999 Pattison ct al. 379/85
6,035,017 A ’ 3/2000 Fenton et al. .. 379/88.04
6,058,163 A ‘ 5/2000 Pattison et al. 379/85

FOREIGN PATENT DOCUMENTS

EP 0 510 412 10/1992
GB 2 257 872 1/1993

OTHER PUBLICATIONS

So—Lin Yen et al., “Intelligent MTS Monitoring System”,
10/94, pp. 185—187, Scientific and Research Center for
Criminal Investigation, Taiwan, Republic of China.

* cited by examiner

Primary Examiner—William Qimming
(74) Attorney, Agent, or Firm—Young & Thompson

(57) ABSTRACT

A signal monitoring apparatus and method involving
devices for monitoring signals representing communications
traffic, devices for identifying at least one predetermined
parameter by analyzing the context of the at least one
monitoring signal, a device for recording the occurrence of
the identified parameter, a device for identifying the trafiic
stream associated with the identified parameter, a device for
analyzing the recorded data relating to the occurrence, and
a device, responsive to the analysis of the recorded data, for
controlling the handling of communications traffic within
the apparatus.

{NR31 Claims, 2 Drawing Sheets

9.0

 It,

Dlgltal Voice Recorder

Amy-m mmand nnm:

Speech/Data
Analysis
Enginc(s)

NOAC Ex. 1018 Page 754

45

1mm--.:i..-li..mn.» -imPA0.»AfloEmcm:o:3=ag<oh4,wm.m_m>_c:<EoEommanIlll:.I._6EmaEuooam3:53:50am.
m3mm

#./cesfim>513.
.u:En

:uuvunflacmy...“:LEQIN—1%

2-.f..n“.n..0.....Iu1mmI.lump1”n4wnu...
h

S«N
t

W.Va:E8M3308233>335Ac2323....£2.2630:33...E,.2:an0.
m

J2

8325;a.255.0d0N52::82222vaurea.HSflw

US. Patent

NOAC Ex. 1018 Page 755

US 6,404,857 B1Sheet 2 0f 2Jun. 11, 2002US. Patent

30

ill/iiijiiiij
883.85:«.23J

8:62‘38:5YiiilY>QOmwau<mme<wImeo<m

Sumo:E358%.EESESm:@239855055825

Data Length, L

Gain Applied

a Channel No.v

Date and Time

om

Data Format
(e.9. ADPCM 16kbps)

Packet lD

NOAC EX. 1018 Page 755

NOAC Ex. 1018 Page 756

US 6,404,857 B1
1

SIGNAL MONITORING APPARATUS FOR
ANALYZING COMMUNICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a division of application Ser. No.
08/936,428, filed Sep. 24, 1997 now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to signal monitoring appa-
ratus and in particular, but not exclusively to telecommuni-
cations monitoring apparatus which may be arranged for
monitoring a plurality of telephone conversations.

DESCRIPTION OF THE RELATED ART

Telecommunications networks are increasingly being
used for the access of information and for carrying out
commercial and/or financial transactions. In order to safe-

guard such use of the networks, it has become appropriate to
record the two-way telecommunications traffic, wether voice
traffic or data traffic, that arises as such transactions are
carried out. The recording of such traflic is intended par-
ticularly to safeguard against abusive and fraudulent use of
the telecommunications network for such purposes.

More recently, so-called “call-centers” have been estab-
lished at which operative personnel are established to deal
with enquiries and transactions required of the commercial
entity having established the call-center. An example of the
increasing use of such call-centers is the increasing use of
“telephone banking” services and the telephone ordering of
retail goods.

Although the telecommunications trailic handled by such
call-centers is monitored in an attempt to preserve the
integrity of the call-center, the manner in which such com~
munications netWorks, and their related call-centers, are
monitored are disadvantageously limited having regard to
the data/information that can be provided concerning the
traffic arising in association with the call-center.

For example, in large call-centers, it is difficult for super
visors to establish with any confidence that they have
accurately, and effectively, monitored the quality of all their
staffs work so as to establish, for example, how well their
staff are handling customers’ enquiries and/or transaction
requirements, or how well their staff are seeking to market/
publicise a particular product etc.

SUMMARY OF THE INVENTION

The present invention seeks to provide for telecommuni-
cations monitoring apparatus having advantages over known
such apparatus.

According to one aspect of the present invention there is
provided signal monitoring apparatus comprising

means for monitoring signals representing communica-
tions traflic;

means for identifying at least one predetermined param-
eter by analysing the content of at least one monitored
signal;

means for recording the occurrence of the identified
parameter;

means for identifying the traffic stream associated with
the identified parameter;

means for analysing the recorded data relating to the said
occurrence; and

means, responsive to the analysis of the said recorded
data, for controlling the handling of communications trallic
within the apparatus.

10

15

20

25

30

35

40

45

50

55

60

65

2

Preferably, the means for controlling the handling of the
communications traffic serves to identify at least one section
of traffic relative to another.

Also, the means for controlling may serve to influence
further monitoring actions within the apparatus.

Advantageously, the analysed contents of the at least one
signal comprise the interaction between at least two signals
of trafiic representing an at least two-way conversation. In
particular, the at least two interacting signals relate to
portions of interruption or stiltedness within the traflic.

Preferably, the means for monitoring signals can include
means for recording signals.

Preferably, the means for recording the occurrence of the
parameter comprises means for providing, in real time, a
possibly instantaneous indication of said occurrence, and/or
comprises means for storing, permanently or otherwise,
information relating to said occurrence.

Dependent upon the particular parameter, or parameters,
relevant to a call-center provider, the present invention
advantageously allows for the improved monitoring of traf—
fic so as to identify which one(s) of a possible plurality of
data or voice interactions might warrant further investigation
whilst also allowing for statistical trends to be recorded and
analysed.

The apparatus is advantageously arranged for monitoring
speech signals and indeed any form of telecommunication
traific.

For example, by analysing a range of parameters of the
signals representing traflic such as speech, data or video,
patterns, trends and anomalies within a plurality of interac-
tions can be readily identified and these can then be used for
example, to influence future automated analysis, and rank or
grade the conversations and/or highlight conversations
likely to be worthy of detailed investigation or playback by
the call-center provider. The means for monitoring the
telecommunications signals may be advantageously
arranged to monitor a plurality of separate two-way voice,
data or video conversations, and this makes the apparatus
particularly advantageous for use within a call-center.

The means for monitoring the telecommunications signals
advantageously arranged to monitor the signals digitally by
any one variety of appropriate means which typically
involve the use of high impedance taps into the network and
which have little, or no, effect on the actual network.

It should of course be appreciated that the invention can
be arranged for monitoring telecommunications Signals
transmitted over any appropriate medium, for example a
hard-wired network comprising twisted pair or co-axial lines
or indeed a telecommunications medium employing radiowaves.

In cases where the monitored signal is not already in
digital form, the apparatus can advantageously include
analogue/digital conversion means for operating on the
signal produced by the aforesaid means for monitoring the
telecommunications signals.

It should also be appreciated that the present invention
can comprise means for achieving passive monitoring of a
telecommunications network or call-centre etc.

The means for identifying the at least one predetermined
parameter advantageously includes a Digital Signal Proces-
sor which can be arranged to operate in accordance with any
appropriate algorithm. Preferably, the signal processing
required by the means for identifying the at least one
parameter can advantageously be arranged to be prov1ded by
spare capacity arising in the Digital Signal Processors found

I

NOACLX. 1018 Page 756 ,J

NOAC Ex. 1018 Page 757

4|“va

US 6,404,857 Bl
3

within the apparatus and primarily arranged for controlling
the monitoring, compression and/or recording of signals.

As mentioned above, the particular parameters arranged
to be identified by the apparatus can be selected from those
that are considered appropriate to the requirements of, for
example, the call—centre provider.

However, for further illustration, the following is a non-
exhaustive list of parameters that could be identified in
accordance with the present invention and assuming that the
telecommunications traflic concerned comprises a plurality
of two-way telephone interactions such as conversations:

non-voice elements within predominantly voice~related
interactions for example dialling, Interactive Voice
Response Systems, and recorded speech such as inter-
active voice response prompts, computer synthesized
speech or background noise such as line noise;

the relationship between transmissions in each direction,
for example the delay occurring, or the overlap
between, transmissions in opposite directions;

the amplitude envelope of the signals, so as to determine
caller anger or episodes of shouting;

the frequency spectrum of the signal in various frequency
bands;

advanced parameters characterizing the actual speaker
which may advantageously be used in speech authen—
tication;

measures of the speed of interaction, for example for
determining the ratio of word to inter-word pauses;

the language used by the speaker(s);
the sex of the speaker(s);
the presence or absence of particular words, for example

word spotting using advanced speech recognition tech-
niques;

the frequency and content of prosody including pauses,
repetitions, stutters and nonsensical utterances in the
conversation;

vibration or tremor within a voice; and
the confidence/accuracy with which words are recognized

by the receiving party to the conversation so as to
advantageously identify changes in speech patterns
arising from a caller.

Parameters such as the following, and having no direct
relationship to each call’s content, can also be monitored:

date, time, duration and direction of call:
externally generated “tagging” information for transferred

calls or calls to particular customers;
As will be appreciated, the importance of each of the

above parameters and the way in which they can be com-
bined to highlight particular good, or bad, caller interactions
can be readily defined by the call-center provider.

Advantageously, the apparatus can be arranged so as to
afford each of the parameters concerned a particular
weighting, or relative value.

The apparatus may of course also be arranged to identify
the nature of the data monitored, for example whether
speech, facsimile, modem or video etc. and the rate at which
the signals are monitored can also be recorded and adjusted
within the apparatus.

According to a further feature of the invention, the means
for identifying the at least one parameter can be arranged to
operate in real time or, alternatively, the telecommunications
signals can be recorded so as to be monitored by the means
for identifying at least one parameter at some later stage.

Advantageously, the means for recording the actual occur-
rence of the identified parameter(s) can be arranged to

10

15

20

25

30

35

40

45

50

55

60

65

4

identify an absolute value for such occurrences within the
communications network and/or call—centre as a whole or,
alternatively, the aforementioned recording can be carried
out on a per-conversation or a per-caller/operative basis.

The means for recording the occurrence of the identified
parameter(s) can advantageously be associated means for
analysing the results of the information recorded so as to
identify patterns, trends and anomalies within the telecom-
munications network and/or call-center.

Advantageously, the means for recording the occurrence
of the identified parameter(s) can, in association with the
means for identifying the predetermined parameter and the
means for monitoring the telecommunications signals, be
arranged to record the aforementioned occurrence in each of
the two directions of traffic separately.

Preferably, the means for identifying the source of the
two-way traffic includes means for receiving an identifier
tagged on to the traffic so as to identify its source, i.e. the
particular operative within the call-centre or the actual caller.
Alternatively, means can be provided within the telecom-
munications monitoring apparatus for determining the ter-
minal number, i.e. the telephone number, of the operative
and/or the caller.

The aforementioned identification can also be achieved by
way of data and/or speech recognition.

It should also be appreciated that the present invention
can include means for providing an output indicative of the
required identification of the at least one predetermined
parameter. Such output can be arranged to drive audio and/or
visual output means so that the call-centre provider can
readily identify that a particular parameter has been identi-
fied and in which particular conversation the parameter has
occurred. Alternatively, or in addition, the occurrence of the
parameter can be recorded, on any appropriate medium for
later analysis.

Of course, the mere single occurrence of a parameter need
not establish an output from such output means and the
apparatus can be arranged such that an output is only
provided once a decision rule associated with such
parameter(s) has been satisfied. Such a decision rule can be
arranged such that it depends on present and/or past values
of the parameter under consideration and/or other param-eters.

Further, once a particular conversation has been identified
as exhibiting a particular predetermined parameter, or sat-
isfying a decision rule associated with such parameters, the
apparatus can be arranged to allow ready access to the
telecommunications “line” upon which the conversation is
occurring so that the conversation can be interrupted or
suspended as required.

As mentioned previously, the apparatus can be arranged to
function in real time or, alternatively, the apparatus can
include recording means arranged particularly to record the
telecommunications trafiic for later monitoring and analysis.

Preferably, the apparatus includes means for reconstnict-
ing the signals of the telecommunications trafiic to their
original form so as, for example, to replay the actual speech
as it was delivered to the telecommunications network
and/or call-center.

The apparatus can therefore advantageously recall the
level of amplification, or attenuation, applied to the signal so
as to allow for the subsequent analysis of the originating
signal with its original amplitude envelope.

Further, the apparatus may include feedback means
arranged to control the means for monitoring the telecom-
munications signals responsive to an output from means
being provided to identify the source of the conversation in

NOACELHLIE Page 757

NOAC Ex. 1018 Page 758

US 6,404,857 B1

5

Which the parameter has been identified, or the decision rule
associated with the parameter has been exceeded.

A further embodiment of the present invention comprises
an implementation in which means for recording and anal.
ysing the monitored signals are built into the actual system
providing the transmission of the original signals so that the
inventiOn can advantageously take the form of an add-in
card to an Automatic Call Distribution System or any other
telecommunications system.

Also, it will be appreciated that the present invention can
be advantageously arranged so as to be incorporated into a
call-center and indeed the present invention can provide for
such a call-center including apparatus as defined above.

In accordance with another aspect of the present
invention, there is provided a method of monitoring signals
representing communications traffic, and comprising the
steps of:

identifying at least one predetermined parameter associ—
ated with a monitored signal:

recording the occurrence of the identified parameter: and
identifying the trafiic stream in which the parameter was

identified.

The invention is therefore particularly advantageous in
allowing the monitoring of respective parts of an at least
two-way conversation and which may include the of analy-
sis of the interaction of those parts.

Of course, the method of the present invention can
advantageously be arranged to operate in accordance with
the further apparatus features defined above.

The invention is described further hereinafter, by way of
example only, with reference to the accompanying drawings
in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical recording and
analysis system embodying the present invention; and

FIG. 2 is a diagram illustrating a typical data packetisation
format employed within the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As mentioned above, the apparatus can advantageously
form part of a call—centre in which a plurality of telephone
conversations can be monitored so as to provide the call-
centre operator with information relating to the “quality" of
the service provided by the call-center operatives. Of course,
the definition of “quality” will vary according to the require-
ments of the particular call-centre and, more importantly, the
requirements of the customers to that call—centre but typical
examples are how well the call-centre operatives handle
customers telephone calls, or how well an Interactive Voice
Response System serves customers calling for, for example,
product details.

The system generally comprises apparatus for the passive
monitoring of voice or data signals, algorithms for the
analysis of the monitored signals and, apparatus for the
storage and reporting of the results of the analysis.

Optional features can include apparatus for recording the
actual monitored signals particularly if real time operation is
not required, and means for reconstructing the monitored
signals into their original form so as to allow for, for
example, replay of the speech signal.

FIG. 1 is a block diagram of a recording and analysis
system for use in association with a call-centre 10 which

includes an exchange switch 14 from which [our telephone
terminals 12 extend: each of which is used by one of four

10

15

20

25

30

35

40

45

50

55

60

65

6

call~centre operatives handling customer enquiries/
transactions via the exchange switch 14.

The monitoring apparatus 16 embodying the present
invention, comprises a digital voice recorder 18 which is
arranged to monitor the two-way conversation trafiic asso-
ciated with the exchange switch 14 by way of high imped-
ance taps 20, 22 which are connected respectively to signal
lines 24, 26 associated with the exchange switch 14. As will
be appreciated by the arrows employed for the signal lines
24, 26, the high impedance tap 20 is arranged to monitor
outgoing voice signals from the call-centre 10 whereas the
high impedance tap 22 is arranged to monitor incoming
signals to the call-center 10. The voice tralfic on the lines 24,
26 therefore form a two—way conversation between a call-
centre operative using one of the terminals 12 and a cus—
tomer (not illustrated).

The monitoring apparatus 16 embodying the present
invention further includes a computer telephone link 28
whereby data traffic appearing at the exchange switch 14 can
be monitored as required.

The digital v01ce recorder 18 is connected to a network
connection 30 which can be in the form of a wide area

network (WAN), a local area network (LAN) or an internal
bus of a central processing unit of a computer.

Also connected to the network connection 30 is a replay
station 32, a configuration management application station
34, a station 36 providing speech and/or data analysis
engine(s) and also storage means comprising a first storage
means 38 for the relevant analysis rules and the results
obtained and a second storage means 40 for storage of the
data and/or speech monitor.

FIG. 2 illustrates the typical format of a data packet 42
used in accordance with the present invention and which
comprises a packet header 44 of typically 48 bytes and a
packet header 46 of typically of 2000 bytes.

The packet header is formatted so as to include the packet
identification 48, the data format 50, a date and time stamp
52, the relevant channel number within which the data arises
54, the gain applied to the signal 56 and the data length 58.

The speech, or other data captured in accordance with the
apparatus of the present invention, is found within the packet
body 46 and within the format specified within the packet
header 44.

The high impedance taps 20, 22 offer little or no effect on
the transmission lines 24, 26 and, if not in digital form, the
monitored signal is converted into digital form. For
example, when the monitored signal comprises a speech
signal, the signal is typically converted to a pulse code
modulated (PCM) signal or is compressed as an Adaptive
Differential PCM (ADPCM) signal.

Further, where signals are transmitted at a constant rate,
the time of the start of the recordings is identified, for
example by voltage or activity detection, i.e. so-called “vox”
level detection, and the time is recorded. With asynchronous
data signals, the start time of a data burst, and optionally the
intervals between characters, may be recorded in addition to
the data characters themselves.

The purpose of this is to allow a computer system to
model the original signal to appropriate values of time,
frequency and amplitude so as to allow the subsequent
identification of one or more of the various parameters
arising in association with the signal. The digital information
describing the original signals is then analysed at station 36,
in real time or later, to determine the required set of metrics,
i.e. parameters, appropriate to the particular application.

W018 Page 758

mmm-”ww~Wme4,...

NOAC Ex. 1018 Page 759

* 21.30.:

US 6,404,857 B1
7

Aparticular feature of the system is in recording the two
directions of data transmission separately so allowing fur-
ther analysis of information sent in each direction indepen-
dently. In analogue telephone systems, this may be achieved
by use of a four-wire (as opposed to two-wire) circuit whilst
in digital systems, it is the norm to have the two directions
of transmission separated onto separate wire pairs. In the
data world, the source of each data packet is typically stored
alongside the contents of the data packet.

Afurther feature of the system is in recording the level of
amplification or attenuation applied to the original signal.
This may vary during the monitoring of even a single
interaction (e.g. through the use of Automatic Gain Control
Circuitry). This allows the subsequent reconstruction and
analysis of the original signal amplitude.

Another feature of the system is that monitored data may
be “tagged” with additional information such as customer
account numbers by an external system (e.g. the delivery of
additional call information via a call logging port or com-
puter telephony integration (CTI) port).

The importance of each of the parameters and the way in
which they can be combined to highlight particularly good
or bad interactions is defined by the user of the system. One
or more such analysis profiles can be held in the system.
These profiles determine the weighting given to each of the
above parameters.

The profiles are normally used to rank a large number of
monitored conversations and to identify trends, extremes,
anomalies and norms. “Drill-down” techniques are used to
permit the user to examine the individual call parameters
that result in an aggregate or average score and, further,
allow the user to select individual conversations to be

replayed to confirm or reject the hypothesis presented by the
automated analysis.

Aparticular variant that can be employed in any embodi-
ment of the present invention uses feedback fiom the user’s
own scoring of the replayed calls to modify its own analysis
algorithms. This may be‘achieved usmg neural network
mor similar giving a system that learns from the
user’s own view of the quality of recordings.

Avariant of the system uses its own and/or the scoring/
ranking information to determine its further patterns of
operation i.e.

determining which recorded calls to retain for future
analysis,

determining which agents/lines to monitor and how often,
and

determining which of the monitored signals to analyse
and to what depth.

In many systems it is impractical to analyse all attributes
of all calls hence a sampling algorithm may be defined to
determine which calls will be analysed. Further, one or more
of the parties can be identified (e.g. by calling-line identifier
for the external party or by agent log-on identifiers for the
internal party). This allows analysis of the call parameters
over a number of calls handled by the same agent or coming
from the same customer.

The system can use spare capacity on the digital signal
processors (DSPs) that control the monitoring, compression
or recording of the monitored signals to provide some or all
of the analysis required. This allows analysis to proceed
more rapidly during those periods when fewer calls are
being monitored.

Spare CPU capacity on a PC at an agent’s desk could be
used to analyse the speech. This would comprise a second-
ary tap into the speech path being recorded as well as using

10

15

20

25

30

35

40

45

50

55

60

65

8

“free” CPU cycles. Such an arrangement advantageously
allows for the separation of the two parties, e.g. by tapping
the headset/handset connection at the desk. This allows
parameters relating to each party to be stored even if the
main recording point can only see a mixed signal.

A further variant of the system is an implementation in
which the systems recording and analysing the monitored
signals are built into the system providing the transmission
of the original Signals (e.g. as an add-in card to anAutomatic
Call Distribution (ACD) system).

The apparatus illustrated is particularly useful for identi-
fying the following parameters:

degree of interruption (i.e. overlap between agent talking
and customer talking);

comments made during music or on-hold periods;
delays experienced by customers (i.e. the period from the

end of their speech to an agent’s response);
caller/agent talk ratios, i.e. which agents might be talking

too much.

However, it should be appreciated that the invention could
be adapted to identify parameters such as:

“relaxed/stressed” profile of a caller or agent (i.e. by
determining changes in volume, speed and tone of
speech)

frequency of keywords heard (separately from agents and
from callers) e.g. are agents remembering to ask
follow-up questions about a certain product/ service
etc; or how often do customers swear at each agent? Or
how often do agents swear at customers?

frequency of repeat calls. A combination of line, ID and
caller ID can be provided to eliminate diflerent people
calling from single switchboard/business number

languages used by callers?
abnormal speech patterns of agents. For example if the

speech recognition applied to an agent is consistently
and unusually inaccurate for, say, half an hour, the
agent should be checked for: drug abuse, excessive
tiredness, drunkenness, stress, rush to get away etc.

It will be appreciated that the illustrated and indeed any
embodiments of the present invention can be set up as
follows.

The Digital Trunk Lines (e.g. 'I‘l/El) can be monitored
trunk side and the recorded speech tagged with the direction
of speech. A MediaStar Voice Recorder chassis can be
provided typically with one or two E1/T1 cards plus a
number of DSP cards for the more intense speech processing
requirements.

Much of its work can be done overnight and in time, some
could be done by the DSPs in the MediaStar’s own cards. It
is also necessary to remove or at least recognise, periods of
music, on-hold periods, IVR rather than real agents speaking
etc. thus, bundling with Computer Integrated Telephony
Services such as Telephony Services API ('I‘SAPI) in many
cases is appropriate.

Analysis and parameter identification as described above
can then be conducted. However, as noted, if it is not
possible to analyse all speech initially, analysis of a recorded
signal can be conducted.

In any case the monitoring apparatus may be arranged to
only search initially for a few keywords although re-play can
be conducted so as to look for other keywords.

It should be appreciated that the invention is not restricted
to the details of the foregoing embodiment. For example,
any appropriate form of telecommunications network, or
signal transmission media, can be monitored by apparatus
according to this invention and the particular parameters
identified can be selected, and varied, as required.

NOAC..EX. 1018 Page 759

NOAC Ex. 1018 Page 760

US 6,404,857 B1

9
What is claimed is:

1. A signal monitoring system for monitoring and ana-
lyzing communications passing through a monitoring point,
the system comprising:

a digital voice recorder (18) for monitoring two-way
conversation traflic streams passing through the moni-
toring point, said digital voice recorder having connec-
tions (20) for being operatively attached to the moni-
toring point;

a digital processor (30) connected to said digital voice
recorder for identifying at least one predetermined
parameter by analyzing the voice communication con-
tent of at least one monitored s1gnal taken from the
traffic streams;

a recorder (38) attached to said digital processor for
recording occurrences of the predetermined parameter;

a traffic stream identifier (36) for identifying the traffic
stream asociated with the predetermined parameter;

a data analyzer (36) connected to said digital processor for
analyzing the recorded data relating to the occurrences;
and

a communication traflic controller (34) operatively con-
nected to said data analyzer and, operating responsive
to the analysis of the recorded data, for controlling the
handling of communications traffic within said moni-
toring system,

wherein said at least one predetermined parameter is an
amplitude envelope of the voice communication con—
tent of the at least one monitored signal, and

said digital processor further identifies episodes of anger
or shouting by analyzing amplitude envelope.

2. A signal monitoring system for monitoring and ana-
lyzing communications passing through a monitoring point,
the system comprising:

a digital voice recorder (18) for monitoring two-way
conversation traflic streams passing through the moni—
toring point, said digital vorce recorder having connec-
tions (20) for being operatively attached to the moni-
toring point;

a digital processor (30) connected to said digital voice
recorder for identifying at least one predetermined
parameter by analyzing the voice communication con-
tent of at least one monitored signal taken from the
traffic streams;

a recorder (38) attached to said digital processor for
recording occurrences of the predetermined parameter;

a traflic stream identifier (36) for identifying the traffic
stream agociated with the predetermined parameter;

a data analyzer (36) connected to said digital processor for
analyzing the recorded data relating to the occurrences;
and

a communication traflic controller (34) operatively con-
nected to said data analyzer and, operating responsive
to the analysis of the recorded data, for controlling the
handling of communications traflic within said moni-
toring system,

Wherein said at least one predetermined parameter is a
prosody of the voice communication content of the at
least one monitored signal, and

the prosody content comprises a frequency and content of
pauses, repetitions, st'utters, and nonsensical utterances.

3. A signal monitoring system for monitoring and ana-
1lr'Zing communications passing through a monitoring point,
the system comprising:

10

15

20

25

30

35

4O

45

50

55

60

65

10

a digital voice recorder (18) for monitoring two-way
conversation traffic streams passing through the moni-
toring point, said digital voice recorder having connec-
tions (20) for being operatively attached to the moni-
toring point;

a digital processor (30) connected to said digital voice
recorder for identifying at least one predetermined
parameter by analyzing the voice communication con-
tent of at least one monitored signal taken from the
traffic streams;

a recorder (38) attached to said digital processor for
recording occurrences of the predetermined parameter;

a traffic stream identifier (36) for identifying the traflic
stream associated with the predetermined parameter;

a data analyzer (36) connected to said digital processor for
analyzing the recorded data relating to the occurrences;
and

a communication traflic controller (34) operatively con-
nected to said data analyzer and, operating responsive
to the analysis of the recorded data, for controlling the
handling of communications traflic within said moni—
toring system,

wherein said digital processor is a Digital Signal Proces-
sor (30) arranged to operate in accordance With an
analyzing algorithm,

the at least one predetermined parameter comprises plural
predetermined parameters, and

the analysis is arranged so as to afford each of the plural
predetermined parameters a particular weighting or
relative value.

4. The monitoring system of claim 3, wherein said com-
munication traffic controller serves to identify at least one
section of traffic relative to another so as to identify a source
of the predetermined parameter.

5. The monitoring system of claim 3, wherein said com-
munication traffic controller serves to influence further

monitoring actions within the apparatus.
6. The monitoring system of claim 3, wherein the ana-

lyzed contents of the at least one monitored signal comprise
the interaction between at least two signals representing an
at least two-way conversation.

7. The monitoring system of claim 3, wherein the recorder
operates in real time to provide a real-time indication of theoccurrence.

8. The monitoring system of claim 3, wherein said digital
voice recorder comprises an analog/digital converter (18)
for converting analog voice into a digital signal.

9. The monitoring system of claim 3, wherein the moni-
toring point is a telephone exchange switch and said con~
nections for being operatively attached to the telephony
exchange switch are attached via high impedance taps (20)
to telephone signal lines (24, 26) attached to said telephony
exchange switch.

10. The monitoring system of claim 3, wherein the digital
processor is arranged to operate in real time.

11. The monitoring system of claim 3, further comprising
a replay station (32) connected to said digital processor and
arranged such that the voice communication content of the
at least one monitored signal can be recorded and monitored
by said digital processor for identifying the at least one
parameter at some later time.

12. The monitoring system of claim 3, wherein said
recorder records the occurrence of the plural predetermined
parameters in each of the two directions of traffic separately.

13. The monitoring system ofclaim 3, wherein said traflic
stream identifier comprises a means for receiving an iden-
tifier tagged onto the traflic so as to identify its source.

Weld)“

NOAC Ex. 1018 Page 761

llllllllllllllllllllllIllllllllllllllllllllllllIlllllllllllllllllllllllllll

USOO6338081131

(12) United States Patent (10) Patent N0.: US 6,338,081 B1
Furusawa et al. (45) Date of Patent: *Jan. 8,2002

(54) MESSAGE HANDLING METHOD, MESSAGE 5,611,050 A * 3/1997 Theimer et al. 709/202
HANDLING APPARATUS, AND MEMORY 5,724,575 A * 3/1998 Hoover et al. .. 707/10
MEDIA FOR STORING A MESSAGE 5,768,505 A * 6/1998 Gilchrist et al. 709/202
HAN 5,790,789 A * 8/1998 Suarez 709/202
P11033161; APPARATUS CONTROLLING 5,815,665 A * 9/1998 Teper et al 709/2295,822,585 A * 10/1998 Noble et al. .. 709/202

(75) Inventors: Osamu Furusawa, Sagamihara; 5,335,337) 2 . 12/1992 11:22:11 """"""""""" 709/202
Akifmf" Nakdfl: Kawaéflkl; TOSWPFO 5,855,008 A * 12/1998 Goldhaberetal. 709/202
Suzuki, Yokohama; HaJrrne Tsuchrtani, 5,862,490 A * 1/1999 Sasuta et al. . .. 455/525
Kamakura, all of (JP) 5,884,324 A * 3/1999 Cheng etal. 707/201

5,887,171 A * 3/1999 Tada et al_ 1 709/303
(73) Assignee' International Business Machines 6,012,083 A * 3/1999 SaViley et al. - ~ 709/202

Corporation, Amonk‘, NY (Us) 5,937,161 A 1‘ 8/1999 Mulligan et al. . 709/206
5,961,594 A ‘ 10/1999 Bouvier et al. .. . 709/223

(*) Notice: This patent issued on a continued Pros- 2’38???) 2 * 3/1333 gawéioiet 21‘1"" $802~ , , * amc,r.ea,

61:05-15:13 Zggllizaslfineglig Edge—:3 CE: 6,047,310 A * 4/2000 Kanrakura et al. 709/201' ’ l . y 3' 6,055,512 A * 4/2000 Dean etal.
PM"m term WOW-“>10Ds 0f 35 U-5~C~ 6,065,039 A * 5/2000 Paciorek 709/202A El154(a)(2).

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S,C. 154(b) by 0 days.

(21) Appl. No.: 09/092,130

(22) Filed: Jun. 5, 1998

(30) Foreign Application Priority Data

Jun 12, 1997 (JP) ... 9—154688

(51) Int. C1.7 G06F 15/16; G06F 15/173;
G06F 9/44

(52) US. Cl. 709/202; 709/206; 709/223,
709/317

(58) Field of Search 709/202, 206,
709/223, 303, 317; 707/201

(56) References Cited

U.S. PATENT DOCUMENTS

5,603,031 A 2/1997 White et a1. 395/686

F acrhular
A gent

 6,119,229 9/2000 Martinez etal. . .. 713/200

“ cited by examiner

Primary Examiner—Robert B. Harrell
Assistant Examiner—Almari Romero

(74) Attorney, Agent, or Firm—Jerry W. Herndon; Marcia
L. Doubet, Esq.

(57) ABSTRACT

The broker agent asks a facilitator agent to locate a service
provider agent which is involved in its own job The broker
agent, upon receiving from a regular agent a message packet
indicating a request for mediation of a job, analyzes the
message packet to judge the outline of the requested job and
applies certain conversion to the request message for send-
ing it to the service provider agent which is relevant to the
request. The broker agent receives a reply from the service
provider agent and sends it to the regular agent after apply-
ing certain conversion.

20 Claims, 8 Drawing Sheets

Agent Communitym

Job_
Ap licmonroker

Agent

Servrne
Provider
Agent

Service
Provrder
Agent

NOAC EX. 1018 Page 761

NOAC Ex. 1018 Page 762

(12) United States Patent
Velamuri et al.

(54) SYSTEM AND METHOD FOR PROVIDING A
TRANSACTION LOG '

(75) Inventors: Syama S. Velamuri, Dunwoody; Julia
'Ibrbert, Stone Mountain; Prasad
Nimmagadda, Norcross, all of GA
(US)

(73) Assignee: BellSouth Intellectual Property
Corporation, Wilmington, DE (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) App]. No.: 09/369,550

(22) Filed: Aug. 6, 1999

Related US. Application Data

(62) Division of application No. 08/846,576, filed on Apr. 30,1997.

(51) Int. Cl.7 .. G06F 12/00

(52) U.S.Cl. 707/202; 707/101; 707/206;711/159

(58) Field of Search 707/200—204,
707/3—5, 101, 206; 711/159

(56) ' References Cited
U.S. PATENT DOCUMENTS

5,170,480 A ‘ 1fl1992 Mohan et al. 707/201
5,204,958 A ‘ 4/1993 Chcng 707/102
5,280,611 A ' 1/1994 Mohan et al. 707/8

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

0 350 918 A 1/1990
0 750 434 A 12/1996
0 751 691 A 1/1997

l|||l|lllllllllllIllll||||||ll|||||ll|||l||||||Illlllllll|lll|l||||l|||l|||
USOO6477546B1

(10) Patent No.: US 6,477,546 B1
(45) Date of Patent: Nov. 5, 2002l

OTHER PUBLICATIONS

Aho et a1., “Data Structures and Algorithms", Readinngd-
dison—Wesley, 1983, pp. 84-134 and 367—368.
QA76.9.D35A38 1982.‘

Kolovson, C. and Stonebraker, M. “Indexing Techniques for
Historical Databases”, Proceedings of the 5'“ International
Conference on Data Engineering, Feb. 6—10, 1989, pp.
127—137.’

Ahn, I. and Snodgrass, R. “Performance Evaluation of a
Temporal Database Management System”, Proceedings of
the 1986 ACM SIGMOD International conference on Man-

agement of Data, Jun. 1986, pp. 96—107.*
Aho, A.V. et al. Data Structures and Algorithms, Readin-
g:Addison—Wesley, 1983, pp. 37-102. QA76.9.D35A381982.‘

Notification Of Transmittal Of The International Search
Report Or The Declaration.

Primary Examiner—Jean R. Home“:
Assistant Examiner—Luke S Wassum

(74) Attorney, Agent, or Finn—Kilpatrick Stockton LLP

(57), ABSTRACT

Recording transactions using a chronological list superim-
posed on an indexed list. A transaction log of transaction
entries is maintained as a chronological list superimposed on
an indexed list. Preferably, each transaction entry includes a
transaction descriptor field, a time stamp field, a chrono-
logical list pointer field and an indexed list pointer field. A
first chronological list pointer points to the oldest transaction
entry in the transaction log and a last chronological list
pointer points to the latest transaction entry in the transac-
tion log. The chronological list pointer field of a transaction
entry points to the next oldest transaction entry. The indexed
list includes a number of indexed list entry pointers. Each
indexed list entry pointer corresponds to an index and points
to a transaction entry with the same index. The indexed list
pointer field of a transaction entry points to another trans-
action entry with the same index. Adding a transaction entry
to the transaction log or deleting a transaction entry from the
transaction log includes updating the chronological list
pointers and the indexed list pointers.

20 Claims, 8 Drawing Sheets

Mar—1018 Page162___.._a-t

NOAC Ex. 1018 Page 763

US 6,477,546 B1

Page 2

US. PATENT DOCUMENTS 5,966,708 A ~ 10/1999 Clark ct. a1. 707/101

7 7 5,996,054 A * 11/1999 Ledain ct. al . 711/203
5,225,894 A 2/1994 Dex-an 0/1 6,014,674 A , 1,2000 M C gar707/202
5 430,719 A 7/1995 ch1, Jr. 370/389 . .: . 6,021,408 A 2/2000 Lcdam eta]. . 707/8
5440,730 A ’ 8/1995 Elmasn ct. a1. . .. 707/203’ 6,073109 A * 6/2000 Flores et a1. . 705/8
5,551,027 A * 8/1996 Choy cl a1. 707/201 ’5,740,432 A ‘ 4/1998 Masters ..707/202 6,092,087 A ' 79°00 Mam“ """ 707902
5745 750 A . 4/1998 Pomaro .. 707,102 6,148,308 A ’ 11/200) Neubauex eta. 707/203
5332508 A . 11/1998 Shaman et a1. .. 707,200 6,219,662 B1 ’ 40001 Full eta1. 707/3
5,332,515 A - 11/1998 Ledain a a1. 707/202 5,1304“ Bl ‘ 5/2001 Wm“ 6‘ 31- - 707906
5832518 A . 11/1998 .. 707,202 6,286,011 B1 ’ 9/2001 Velamuri etal. . .. 707/104.1
5:878,410 A ' 3/1999 .. 707/2
5,956,489 A ‘ 9/1999 709/221 " cited by examiner

NOAC EX. 1018 Page 763 .-

NOAC Ex. 1018 Page 764

1B

%a2055 20.25mmm:H,h6‘.“:2.ammmmaozm 02:42an92m3
7

4,Wml/\Immu...m!»M«2:9
U

c:a:atE;a:«3_.I.I.IIIIllll__.||||Ill__mm__8I.m__1___m8?mm_«SK%Un_"3N___m_t5Eon._.mF:5Eon.W5:25:mummzép«X5,_229m.208nvm__.2206.203v._.2h_fluM_8m8“"\In:_m8m8_E__gt_E03Eon..6528_$035.9..6528n_moSmmw.209__35:3.209m_a___PrIIIIIIIIII.lII.rInIIIIIIII:InIIIIIIIII.m{ozmz<{0382
S.U

NOAC EX. 1018 Page 764

NOAC Ex. 1018 Page 765

US 6,477,546 B1Sheet 2 of 8Nov. 5, 2002US. Patent

8E5:

nv

to.

...I....'.'.‘ u“co..
OOIIII

00.oo0.otclololouooflxtoIiiInlliullll

moémmpz.Econ4556

m0<uEmkz_220.225

55:20052052

3555.£03.52

mm

xmfinm<I mo<umwh3m>ED

2,28502.80..cum9295325....

NOAC EX. 1018 Page 765

NOAC Ex. 1018 Page 766

7 US. Patent Nov. 5,2002 Sheet 3 0f 8 US 6,477,546 B1

300

a); §9§ 3.01.3
TRANSACTION CHRONOLOGICAL INDEXED

DESCRIPTOR LIST POINTER LIST POINTER
408

o 430

E.

NOAC EX. 1018 Page 766

“Ac-IQ.“M~-.s.,»,___

NOAC Ex. 1018 Page 767

US. Patent Nov. 5, 2002 Sheet 4 of 8 US 6,477,546 B1

WPage 767

NOAC Ex. 1018 Page 768

US. Patent Nov. 5, 2002 Sheet 5 0f 8 US 6,477,546 B1

FIG. 40

,—————N-QAGE*.—1018 Page 768

NOAC Ex. 1018 Page 769

US. Patent Nov. 5, 2002 Sheet 7 of 8

START 600

602

RECEIVE NEW TRANSACTION

604

IS THERE

AN AVAILABLE

TRANSACTION ENTRY IN

TRANSACTION LOG?

NO

PURGE OLDEST ENTRY FROM

CHRONOLOGICAL LIST

PURGE OLDEST ENTRY FROM
INDEXED LIST

610

YES

 DOES NEW TRANSACTION

MATCH EXISTING TRANSACTION

IN TRANSACTION LOG?

YES

NO

CREATE NEW TRANSACTION

ENTRY FOR TRANSACTION

PLACE NEW TRANSACTION ENTRY

IN CHRONOLOGICAL LIST

PLACE NEW TRANSACTION ENTRY
IN INDEXED LIST

620

US 6,477,546 B1

618

DETECT LOOP

FIG. 6A

~~—_—.NQAC EX. 1018 Page 769

m—m-«rn.

"h”A“... -,“mmfiwwmwwmfmw.-w~.-.~.

NOAC Ex. 1018 Page 770

g I ‘ US. Patent Nov. 5, 2002 Sheet 8 of8 US 6,477,546 B1

FROM STEP 608. FIG. 6A

632
 IDENTIFY INDEXED LIST ENTRY

POINTER CORRESPONDING TO
INDEX

DOES INDEXED LIST

ENTRY POINTER POINT TO A

TRANSACTION ENTRY?

NO

DOES TRANSACTION

INFORMATION

MATCH?

T0 STEP 618, FIG. 6A

DOES INDEXED LIST

POINTER POINT TO ANOTHER

TRANSACTION ENTRY?

_I

TO STEP 612. FIG. 6A FIG- 63
NOAC EX. 1018 Page 770

NOAC Ex. 1018 Page 771

US 6,477,546 B1

3

an overload condition on the network, causing legitimate
calls to fail. Several solutions have been proposed to solve
the looping problem. One proposed solution involves mark-
ing a message with a “dirty" bit. A dirty bit is set by the
originating network before the message is sent. The origi—
nating network checks the dirty bit for each me$age it
receives from another network. If the dirty bit is set, then the
originating network detects a loop. A disadvantage of the
dirty bit proposal is that the dirty bit must be preserved by
all local service providers. llowever, there is no provision
for a dirty bit in the existing message routing protocol, so
there is no guarantee that the dirty bit will be preserved.

Another proposed solution is “gateway screening”. This
solution requires that a network screen messages received
from other networks to detect a looping message. A message
received from another network is screened to determine

whether the message originated in the network receiving the
message. If the message originated in the network receiving
the message, then the message is dropped. Adisadvantage of
this solution is that it will only detect loops involving an
originating network. If a loop occurs between two non—
originating networks, it is not detected.

A third proposed solution is transaction ID logging.
Transaction ID logging maintains a log of messages recently
sent to other networks and compares a message received
from another network to the message log. If the received
message matches a message in the log, a loop is detected.
The log is maintained so that it only contains messages sent
within a predetermined period of time. An advantage of
transaction ID logging is that it is a self-sufiicient solution.
Transaction ID logging may be implemented by one local
service provider regardless of whether other local service
providers implement it. Another advantage is that it works
with existing message protocols.

Although transaction ID logging is theoretically
appealing, it has not been previously implemented because
of concerns that it would adversely impact network perfor-
mance. The Illinois Commera: Commission (“ICC"), a
group formed to study message looping in LNP enabled
telecommunications networks and to provide recommended
solutions, considered but did not pursue transaction ID
logging. The IIC Subcommittee concluded that transaction
ID logging was too processor intensive, and therefore, did
not pursue transaction ID logging.

Accordingly, there is a need in the art for an implemen~
tation of transaction ID logging in which the time to com-
pare a new transaction to the existing transaction entries in
the transaction log is minimized. There is also a need in the
art for an implementation of transaction ID logging in which
the time to maintain a transaction log is minimized.

SUMMARY OF THE INVENTION

The present invention satisfies the above-described needs
by using a chronological list superimposed on an indexed
list to implement transaction ID logging. The chronological
list expedites maintaining the log and the indexed list
expedites searching the log. In an LNP enabled telecommu-
nications network, the present invention may be used to
detect messages looping between networks. Generally
described, the present invention provides a system and
method for recording transactions, such as non-call associ-
ated memages, in a transaction log using a chronological list
superimposed on an indexed list. A transaction log includes
a number of transaction entries. Each transaction entry
corresponds to a previous transaction. When a new transac-
tion is received, the new transaction is compared to the

10

15

20

35

45

50

55

65

4

existing transactions in the transaction log. If a match is
detected between the new transaction and an existing
transaction, a loop is detected. Once a transaction loop is
detected, appropriate action may be taken to break the loop.
To ensure that a valid subsequent transaction is not detected
as a looping transaction, stale transaction entries are deleted
from the transaction log. Typically, a transaction entry is
stale if it has been in the transaction log longer than a
predetermined maintenance period.

A transaction entry typically includes a transaction
descriptor field, a time stamp field, a chronological list
pointer field and an indexed list pointer field. The transaction
descriptor field contains a transaction descriptor which iden-
tifies the transaction and other transaction information. The

time stamp field contains a time stamp indicating when the
transaction was initiated. The chronological list pointer field
may contain a chronological list pointer pointing to the next
oldest transaction entry. The indexed list pointer field may
contain an indexed list pointer pointing to another transac-
tion entry with the same index.

Each transaction entry in the transaction log is placed in
both the chronological list and the indexed list. The chro—
nological list orders the transaction entries from the oldest
transaction entry to the latest transaction entry. Chronolog-
cal list pointers are associated with the transaction entries in
the chronological list. For example, a first chronological list
pointer points to the oldest transaction entry and a last
chronological list pointer points to the latest transaction
entry. The order of the remaining transaction entries in the
chronological list is maintained using chronological list
pointers. A chronological list pointer links a transaction
entry to the next oldest transaction entry. The chronological
list minimizes the time needed to identify and delete a stale
transaction entry.

The indexed list is a list of indexed list entry pointers.
Each indexed list entry pointer corresponds to an index and
points to a transaction entry with the same index. The index
for a transaction entry may be determined by hashing the
transaction descriptor for the transaction entry. If there is
more than one transaction entry with the same index, then
the transaction entries are linked together via the indexed list
pointer fields of the transaction entries. For example, if there
are two transaction entries with the same index, then the
indexed list entry pointer points to the first transaction entry
and the indexed list pointer field of the first transaction entry
points to the next transaction entry. The indexed list reduces
the number of transaction entries which must be searched to
determine whether there is a match between a new transac—

tion and an existing transaction. Reducing the number of
transaction entries minimizes the time needed to compare a
new transaction with an existing transaction.

To maintain the transaction log, the transaction entries are
checked to determine whether any of the transaction entries
have been stored in the transaction log for longer than the
predetermined maintenance period. The first chronological
list pointer is used to identify the oldest transaction entry in
the transaction log. The time stamp field of the oldest
transaction entry is checked to determine whether the trans-
action entry is stale. If the oldest transaction entry is stale,
then the transaction entry is deleted from the chronological
list and the indexed list. To delete the oldest transaction entry
from the chronological list, the first chronological pointer is
updated to point to the next oldest transaction entry. To
delete the oldest transaction entry from the indexed list, the
indexed list entry pointer corresponding to the oldest trans—
action entry is updated. If the indexed list entry pointer field
of the oldest transaction entry contains an end of list

NOAC EX. 1018 Page 771

NOAC Ex. 1018 Page 772

US 6,477,546 B1

5

indicator, then there are no other transaction entries with the

same index and the indexed list entry pointer is updated to
contain an end of list indicator. If the indexed list entry
pointer field of the oldest transaction entrycontains a pointer
to another transaction entry, then the indexed list entry
pointer is updated to point to that transaction entry.

To compare a new transaction with the existing transac-
tions in the transaction log, the index for the new transaction
is calculated. The index identifies an indexed list entry
pointer corresponding to the index. If there is no transaction
entry which corresponds to the index, then the indexed list
entry pointer contains an end of list indicator. Otherwise, the
indexed list entry pointer contains a pointer to a transaction
entry corresponding to the index. If there is more than one
transaction entry corresponding to the index, then the
indexed list pointer field of the transaction entry correspond—
ing to the index contains a pointer to another transaction
entry. Once the transaction entries corresponding to the
index are identified, the transaction information for each
transaction entry is compared to the transaction information
for the new transaction. If there is a match, then a loop is
detected. If there is no match, a new transaction entry is
created for the new transaction and the new transaction entry
is added to the transaction log.

To add a new transaction entry to the tramaction log, the
last chronological list pointer is updated to point to the new
transaction entry. The chronological list pointer field of the
transaction entry previously pointed to by the last.chrono~
logical list pointer is updated to point to the new transaction
entry. If the indexed list entry pointer corresponding to the
index for the new transaction contains an end of list

indicator, the indexed list entry pointer is updated to point to
the new transaction entry. Otherwise, the indexed list pointer
field of the last transaction entry corresponding to the index
is updated to point to the new transaction identifier.

Using a chronological list superimposed on an indexed
list, solves the problems of quickly maintaining and search—
ing the transaction log. The chronological list minimizes the
time required to identify and delete the oldest transaction
entries. There is no need to search the ent'n'e transaction log
to locate the oldest transaction entry because the first chro-
nological list pointer points to the oldest transaction entry.
Similarly, only those transaction entries with the same index
as the new transaction are searched to determine if a new

transaction matches an existing transaction in the transaction
log. The search time is minimized because only those
transaction entries with the same index are searched.

These and other aspects, features and advantages of the
present invention may be more clearly understood and
appreciated from a review of the following detailed descrip-
tion of the disclosed embodiments and by reference to the
appended drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

.FIG. 1 is a block diagram of two switched telephone
networks illustrating the operating environment for an
exemplary embodiment of the present invention.

FIG. 2 is a block diagram of a computer illustrating the
operating environment for an exemplary embodiment of the
present invention.

FIG. 3 is an illustration of a transaction entry created by
an exemplary embodiment of the present invention.

FIG. 4Ais an illustration of a transaction log created by
an exemplary embodiment of the present invention.

FIG. 4B is an illustration of the transaction log of FIG. 4A
after the deletion of a transaction entry by an exemplary
embodiment of the present invention.

10

15

20

35

45

50

55

60

65

6
FIG. 4C is an illustration of a transaction log of FIG. 4A

after the addition of a transaction entry by an exemplary
embodiment of the present invention.

FIG. 5 is a logical flow diagram illustrating the steps for
maintaining a transaction log by deleting stale transaction
entries in accordance with an exemplary embodiment of the
present invention.

FIG. 6Ais a logical flow diagram illustrating the steps for
adding a transaction entry to a transaction log in accordance
with an exemplary embodiment of the present invention.

FIG. 6B is a logical flow diagram illustrating the steps for
comparing a transaction to the existing transactions in a
transaction log in accordance with an exemplary embodi-
ment of the present invention.

DETAILED DESCRIPTION

The present invention is directed toward a system and
method for recording transactions in a transaction log using
a chronological list superimposed on an indexed list. In one
embodiment, the present invention may be used to imple-
ment transaction ID logging in an LNP enabled telecommu-
nications network. Briefly described, a log of mesages
recently sent to other networks is maintained in a chrono-
logical list and in an indexed list. Each time a message is
received from another network, the message is compared to
the existing messages in the transaction log. If the message
matches an existing mesage in the transaction log, then a
loop is detected. The chronological list is used to detect and
delete stale transaction entries. The indexed list is used to

compare a new message to the existing messages in the
transaction log. The use of a chronological list superimposed
on an indexed list implements transaction ID logging with-
out adversely impacting network performance.

Exemplary Telecommunications Operating
Environment

FIG. 1 is a functional block diagram that illustrates a
portion of a public switched telecommunications network
(“PS'IN”) 10 configured for LNP. Two Advanced Intelligent
Networks (“AIN’s”) 11a and 11b represent the LNP-enabled
portion of the PSTN 10. Although FIG. 1 illustrates two
networks in the LNP—enabled portion of the PSTN 10,
additional networks for additional local service providers
may exist. Although FIG. 1 shows both networks asAIN’s,
a network is not necessarily implemented as anAIN.AnAlN
is well—known to those skilled in the art and is described in

the commonly-assigned patent to Weisser, IL, US. Pat. No.
5,430,719, which is incorporated herein by reference.

The AIN’s Ila and 11b may include a plurality of central
office switches (not shown). Some of the central office
switches are equipped with service switching points
(“SSP’s”). Representative SSP’s 12a and 12b are shown in
FIG. 1.An SSP (specifically, a Class 5 central otfice switch)
is the AIN component of a typical electronic central office
switch used by a local exchange carrier. The terms “SSP”
and “switch” are used interchangeably herein to refer to a
telecommunications switch for connecting voice-channel
circuits, including voice-channel lines. In FIG. 1, the voice-
channel lines for SSP 12a and SSP 12b are respectively
1411-11 and 17a-n.

The switches of AIN’s lla and 11b are interconnected by
a network of high capacity voice—channel circuits known as
trunks 22. Each switch of an AIN is operable for receiving
a communication, such as a telephone call, originating on a
line serviced by the switch, and for routing the telephone call

NOAC EX. 1018 Page 772

NOAC Ex. 1018 Page 773

s

US 6,477,546 Bl
9

be used to record transactions or other data in a log so that
the log may be quickly searched and maintained. FIG. 2 and
the following discussion provide a brief, general description
of a suitable computing environment for the invention.
Those skilled in the art will appreciate that the invention
may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainfiame computers, and the
like. The invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. In a distributed computing
environment, program modules may be looated in both local
and remote memory storage devices.

Mth reference to FIG. 2, an exemplary computer system
for implementing an embodiment of the invention includes
a conventional personal computer 220, including a process-
ing unit 221, a system memory 222, and a system bus 223
that couples the system memory to the processing unit 221.
The personal computer 220 further incluch a hard disk
drive 227, a magnetic disk drive 228, e.g., to read from or
write to a removable disk 229, and an optical disk drive 230,
e.g., for reading a CD-ROM disk 231 or to read from or
write to other optical media. The hard disk drive 227,
magnetic disk drive 228, and optical disk drive 230 are
connected to the system bus 223 by a hard disk drive
interface 232, a magnetic disk drive interface 233, and an
optical drive interface 234, respectively. The drives and their
associated computer-readable media provide nonvolatile
storage for the personal computer 220. Although the descrip-
tion of computer-readable media above refers to a hard disk,
a removable magnetic disk and a CD-ROM disk, it should
be appreciated by those skilled in the art that other types of
media which are readable by a computer, such as magnetic
cassettes, flash memory cards, digital video disks, Bernoulli
cartridges, and the like, may also be used in the exemplary
operating environment.

Anumber ofprogram modules may be stored in the drives
and RAM 225, including an operating system 235, one or
more application programs 236, other program modules 237,
such as a transaction ID logging program module 2371:, and
program data 238. A user may enter commands and infor-
mation into the personal computer 220 through a keyboard
240 and pointing device, such as a mouse 242. Other input
devices (not shown) may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the proce$ing unit 221
through a serial port interface 246 that is coupled to the
system bus, but may be connected by other interfaces, such
as a game port or a universal serial bus (USE). A monitor
247 or other type of display device is also connected to the
system bus 223 via an interface, such as a video adapter 248.
In addition to the monitor, personal computers typically
include other peripheral output devices (not shown), such as
speakers or printers.

The personal computer 220 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote computer 249. The
remote computer 249 may be a server, a router, a peer device
or other common network node, and typically includes many
or all of the elements described relative to the personal
computer 220, although only a memory storage device 250
has been illustrated in FIG. 21. The logical connections
depicted in Figure 21 include a local area network MN)
251 and a wide area network (WAN) 252. Such networking
environments are commonplace in oflices, enterprise-wide
computer networks, intranets and the Internet. ’

10

15

20

30

35

45

50

55

65

10

When used in a LAN networking environment, the per-
sonal computer 220 is connected to the LAN 251 through a
network interface 253. When used in a WAN networking
environment, the personal computer 220 typically includes
a modem 254 or other means for establishing communica-
tions over the WAN 252, such as the Internet. The modem
254, which may be internal or external, is connected to the
system bus 223 via the serial port interface 246. In a
networked environment, :program modules depicted relative
to the personal computer 220, or portions thereof, may be
stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

LNP Embodiment of the Present Invention

The present invention is an implementation of transaction
ID logging using a chronological list superimposed on an
indexed list. One embodiment of the present invention may
be used for detecting me$age looping in an LNP enabled
telecommunications network. In the LNP embodiment, a
transaction log is comprised of a number of transaction
entries, each transaction entry corresponds to a message,
such as a TCAP message, sent to another network. An
exemplary transaction entry 300 is shown in FIG. 3.
Preferably, the transaction entry includes a transaction
descriptor field an, a time stamp field 304, a chronological
list pointer field 306 and an indexed list pointer field 308.
The transaction descriptor field 302 includes a transaction
descriptor which identifies the transaction associated with
the message. The transaction descriptor field 302 also
includes other information associated with the transaction.

In the LNP embodiment, the transaction descriptor may
include the TCAP transaction ID, the TCAP message type,
the calling party point code from the SCCP header and the
TCAP message length. The time stamp field 304 contains a
time stamp which indicates the time the message was sent.
The chronological list pointer field 306 contains a chrono-
logical list pointer to the next entry in the chronological list.
The indexed list pointer field 308 contains an indexed list
pointer to the next entry with the same index in the indexed
list.

The transaction entries are placed in chronological order
in the chronological list using chronological list pointers.
Preferably, two chronological list pointers, a first chrono—
logical list pointer and a last chronological list pointer, keep
track of the beginning of the chronological list and the end
of the chronological list respectively. The first chronological
list pointer identifies the oldest transaction entry in the log
and the last chronological list identifies the most recent
transaction entry. The order of the intervening transaction
entries is maintained by the chronological list pointer fields
of the transaction entries.

The chronological list 406, illustrated in FIG. 4A, com—
prises a plurality of chronological pointers 402, 404, 426,
436, 446, 456, 466, and 476. The first chronological list
pointer 404 points to the oldest transaction entry 4201 in the
chronological list and the last chronological list pointer 402
points to the latest transaction entry 470 in the chronological
list. The chronological list pointer field of a transaction entry
points to the next oldest transaction entry. For example, the
oldest transaction entry 420 includes a chronological list
pointer field 426 which contains a chronological list pointer
to the second oldest transaction entry 460. The second oldest
transaction entry 460 includes a chronological list pointer
field 466 which contains a chronological list pointer to the
third oldest transaction entry 430. The chronological list

NOAC EX. 1018 Page 773

NOAC Ex. 1018 Page 774

lr
lll

US 6,477,546 B1
11

pointer field for the latest transaction entry 470 contains an
end of list indicator in the chronological list pointer field
476. The end of list indicator is illustrated in the figures by
“l”, the null pointer.

The chronological list helps solve the problem of elfi-
ciently maintaining the transaction log. The transaction log
is maintained by deleting stale transaction entries.
Preferably, a stale transaction entry is a transaction entry
which has been stored in the transaction log for longer than
a predetermined maintenance period. The oldest transaction
entries in the transaction log may be quickly and easily
identified because the oldest transaction entries are at the

front of the chronological list. The first chronological list
pointer identifies the oldest transaction entry. The chrono-
logical list pointer of the oldest transaction entry identifies
the second oldest transaction entry. In an LNP enabled
telecommunications network, maintaining the transaction
log by purging stale transaction entries insures that a sub-
sequent valid message is not detected as a looping message.

In addition to being placed in a chronological list, the
transaction entries are also placed in an indexed list. The
indexed list comprises a list of indexed list entry pointers.
Each indexed list entry pointer corresponds to an index and
points to a transaction entry which corresponds to the same
index. A transaction entry corresponds to an index if the
transaction descriptor for the transaction entry corresponds
to the index. In one implementation of the LNP embodiment,
the indexes range from 0000 to 4095. However, the range of
the indexes may vary from implementation to implementa-
tion. As discussed in more detail below, the lower index is

preferably zero and the upper index is preferably defined as
(2"—1), where n is an integer.

Preferably, a transaction entry corresponds to an index if
the “hashed” transaction descriptor for the transaction entry
matches that index. Hashing converts a transaction descrip-
tor into a pseudo random index. The index is not truly
random because for any given transaction descriptor, hash-
ing always results in the same pseudo random index.
However, the pseudo random indexes produced by hashing
are sufficiently random so that the transaction entries are
evenly distributed among the indexes. If the implementation
uses indexes ranging from 0000 to 4095, then preferably, the
transaction descriptor is hashed by calculating the modulo
4096 of the transaction descriptor. The modulo operation is
performed by dividing the transaction descriptor by 4096
and returning the remainder of the division operation. The
remainder of the division operation is used as an index into
the indexed list. The modulo number 4096 is preferred, in
part, because the modulo of the transaction descriptor for a
transaction entry may be determined by performing a logical
AND operation with the transaction descriptor and 4095, As
will be apparent to those skilled in the art, if the indexes
range from zero to 2"—1, then the modulo 2" may be
determined by performing a logical AND operation with the
transaction descriptor and 2"—1.

FIG. 4A also illustrates the indexed list 400. The indexed

list 400 comprises a list of indexed list entry pointers 4100,
410b, 410C . . . 410n. Each indexed list entry pointer
corresponds to an index. For example, indexed list entry
pointer 410a corresponds to 0000 and indexed list entry
pointer 41% corresponds to 0001.

Hashing transaction descriptors may result in multiple
transaction descriptors having the same index. For example,
modulo 4096 of transaction descriptor 1000 and modulo
4096 of transaction descriptor 9192 are both 1000. If there
are multiple transaction descriptors with the same index,

10

15

20

30

35

45

50

55

60

65

12

then all the transaction entries with the same index are linked
together via the indexed list pointer fields (e.g. 428 and 438)
of the transaction entries. As shown in FIG. 4A, transaction
entries 420, 430, and 440 and indexed list entry pointer 410a
all correspond to index 0000. Indexed list entry pointer 410a
points to transaction entry 420. Transaction entry 420 is
linked to transaction entry 430 via its indexed list pointer
field 428. Similarly, transaction entry 430 is linked to
transaction entr'y 440 via its indexed list pointer field 438.
Since there are no other transaction entries with index 0000,
transaction entry 440 contains an end of list indicator in its
indexed list pointer field 448.

The indexed list helps solve the problem of quickly
searching the transaction log to determine whether a new
transaction matches an eidsting transaction in the transaction
log. When a new transaction is received, the transaction
descriptor for the new transaction is hashed to determine its
index. The index is used to identify an indexed list entry
pointer which, in turn, is used to identify transaction entries
which correspond to the index. To determine whether there
is a match, the transaction information in the transaction
descriptor field of the new transaction is compared to the
transaction information in the transaction descriptor fields of
the transaction entries which correspond to the index. Only
the transaction entries which correspond to the index are
checked. If the transaction information in the transaction

descriptor field of the new transaction matches the transac-
tion information in the transaction descriptor field of an
existing transaction, the indexes for the two transaction
descriptors will match because hashing always produces the
same index for the same input

A chronological list superimposed on an indexed list,
solves the problems of efiiciently maintaining and searching
the transaction log. The chronological list minimizes the
time required Lo identify the oldest transaction entry. There
is no need to search the transaction log to locate the oldest
transaction entry because the first chronological list pointer
points to the oldest transaction entry. If the oldest transaction
entry is stale or if there are no available transaction entries,
then the oldest transaction entry may be deleted by modi-
fying the first chronological list pointer and by modifying
the indexed list entry pointer associated with the index for
the oldest transaction entry. The indexed list minimizes the
time required to search the list for transactions which match
a new transaction. Only those transaction entries with the
same index as the new transaction need be compared.

The steps for maintaining the transaction log by deleting
stale transaction entries may be illustrated by reference to
FIGS. 4A, 4B and 5. FIG. 4A illustrates an exemplary
transaction log 408 using a chronological list 406 superim-
posed on an indexed list 400. FIG. 4B illustrates the trans—
action log of FIG. 4A after a stale transaction entry is purged
from the transaction log. FIG. 5 is a logical flow diagram
illustrating the steps for deleting a stale transaction entry
from the transaction log. FIG. 4A illustrates the transaction
log 408 prior to the deletion of any stale transaction entries.
The transaction log 408 comprises six transaction entries
420, 430, 440, 450, 460 and 470. The first chronological list
pointer 404 points to transaction entry 420 and the last
chronological list pointer 402 points to transaction entry
470. The chronological order of the transaction entries is
420, 460, 430, 440, 450 and 470. The indexed list contains
indexes from 0000 to 4095. Transaction entries 420, 430,
and 440 correspond to index 0000, transaction entry 450
corresponds to index 0002, and transaction entries 460 and
470 correspond to index 0004.

FIG. 5 illustrates the steps for deleting stale transaction
entries from the transaction log. Preferably, a transaction is

NOAC EX. 1018 Page 774

NOAC Ex. 1018 Page 775

it

t
.
l
t

US 6,477,546 B1
13

stale if it has been stored in the transaction log for longer
than a predetermined maintenance period. Transaction log
maintenance may be initiated from an idle state as shown in
step 500. Alternatively, transaction log maintenance may be
initiated whenever a new transaction is received. In either

case, a timer may be used to keep track of the time elapsed
since the last maintenance operation was performed and to
indicate when the predetermined maintenance period has
expired. The timer is checked in step 502 to determine if the
predetermined maintenance period has expired. If the timer
indicates that the predetermined maintenance period has
expired, then the method proceeds to step 504. In step 504,
the transaction entry pointed to by the first chronological list
pointer is selected as the selected transaction entry. In FIG.
4A, the first chronolog‘cal list pointer 404 points to trans-
action entry 420, so transaction entry 420 is selected as the
selected transaction entry. Once a transaction entry is
selected as the selected transaction entry, the time stamp
field 4% of the selected transaction entry 420 is checked in
step 506 to determine whether the selected transaction entry
is stale. If the time stamp contained in the time stamp field
424 indicates that the selected transaction entry 420 has been
stored in the transaction log 408 for longer than the prede-
termined maintenance period, then the selected transaction
entry 420 is deleted from the chronological list 406 in step
508 and from the indexed list 400 in step 510.

To delete the selected transaction entry 420 from the
chronological list 406, the first chronological list pointer 404
is modified to point to the next oldest transaction entry 460.
Transaction entry 460 is identified as the next oldest trans-
action entry by the chronological list pointer in the chrono-
logical list pointer field 426 of the selected transaction entry
420. The other chronological list pointers remain the same.

The selected transaction entry 420 is also deleted from the
indexed list. To delete the selected transaction entry from the
indexed list, the index for the selected transaction entry 420
is calculated by hashing all or a predetermined portion of the
transaction descriptor. In one implementation of the LNP
embodiment, the index is calculated by computing the
modulo 4096 of a predetermined portion of the transaction
descriptor for the selected transaction entry. In FIG. 4A, the
index for the selected transaction entry 420 is 0000. The
index is used to identify an indexed list entry pointer 410a
corresponding to the index. If the indexed list pointer field
428 of the selected transaction entry 420 contains an indexed
list pointer to a next transaction entry 430, then the indexed
list entry pointer 4100 is modified to point to the next
transaction entry 430. If the indexed list pointer field 428 of
the selected transaction entry 420 contains an end of list
indicator, then the indexed list entry pointer 410a is modified
to include an end of list indicator. The other indexed list

entry pointers and indexed list pointers remain the same.
The oldest transaction entry for a given index is always

pointed to by the indexed list entry pointer because a new
transaction entry is always added to the end of the indexed
list. Thus, deleting a stale transaction entry from the indexed
list, only requires that the indexed list entry pointer be
modified. The details of adding a transaction entry to the
indexed list are described below.

After the selected transaction entry is deleted, the trans-
action log appears as shown in FIG. 4B. The transaction log
now comprises five transaction entries 430, 440, 450, 460
and 470. The first chronological list pointer points to trans—
action entry 460 and the last chronological list pointer points
to transaction entry 470. The chronolog'cal order of the
transaction entries is 460, 430, 440, 450 and 470. Transac-
tion entries 430 and 440 correspond to index 0000, trans-

10

15

20

30

35

45

50

55

60

65

14

action entry 450 corresponds to index 0002, and transaction
entrres 460 and 470 correspond to index 0004.

Preferably, if the selected transaction entry is deleted, then
the next oldest transaction entry is checked to determine
whether it is also stale. FIG. 5 shows that step 504 of
selecting a transaction entry as the selected transaction entry,
step 506 of making a determination as to whether the
selected transaction entry is stale, step 508 of deleting the
selected transaction entry from the chronological list and
step 510 of deleting the selected transaction entry from the
indexed list are repeated until the determination in step 506
is that the selected transaction entry is not stale. By using the
first chronological list pointer to select the selected transac-
tion entry, once a determination is made that the selected
transaction entry is not stale, no other transaction entries are
checked because the remaining transaction entries have been
stored in the transaction log for lesser periods of time.

If the determination in step 506 is that the selected
transaction entry is not stale or if the determination in step
502 is that the predetermined maintenance period has not
expired, then the method returns to the idle state of step 500.
Alternatively, if transaction log maintenance was initiated
by the receipt of a new transaction, the method proceeds
with the steps for handling a new transaction.

The steps for handling a new transaction may be illus-
trated by reference to FIGS. 4A, 4C, 6A and 6B. FIG. 4A
illustrates an exemplary transaction log 408 using a chro-
nological list 406 superimposed on an indexed list 400. FIG.
4C illustrates the transaction log of FIG. 4A after a new
transaction entry is added to the transaction log. FIG. 6A is
a logical flow diagram illustrating the steps for adding a new
transaction entry to the transaction log. FIG. 6B is a logical
flow diagram illustrating the steps for making a determina-
tion as to whether a new transaction matches an existing
transaction in the transaction log.

FIG. 4A illustrates the transaction log 408 before the new
transaction is received. The steps for adding a new transac-
tion to the transaction log begin at the START task of step
600 of FIG. 6A. In step 602, a new transaction is received.
In step 604, a determination is made as to whether there is
an available transaction entry in the transaction log for a new
transaction entry. Ifthere is an available transaction entry for
the new transaction, then the method proceeds to step 610
where a determination is made as to whether the new

transaction matches an existing transaction in the transaction
log.

The steps for making a determination as to whether the
new transaction matches an existing transaction in the
transaction log are illustrated in FIG. 6B. In FIG. 6B, the
index for the new transaction is calculated in step 630 by
hashing the transaction descriptor. In the LNP embodiment
illustrated by FIG. 4A, the index is calculated by taking the
modulo 4096 of the transaction descriptor for the new
transaction. For example, if the transaction descriptor for the
new transaction is 0004, the index for the new transaction is
hashed by calculating modulo 4096 of 0004 which is 0004.
Once the index for the new transaction is calculated, the
indexed list entry pointer corresponding to the index is
identified in step 632. If the index is 0004, then, as shown
in FIG. 4A, the indexed list entry pointer 4109 is identified.
In step 634, a determination is made as to whether the
indexed list entry pointer contains a pointer to a transaction
entry. If the indexed list entry pointer does not contain a
pointer to a transaction entry, then the determination is that
the transaction does not match an existing transaction in the
transaction log and the method continues to step 612. If the

NOAC EX. 1018 Page 775

NOAC Ex. 1018 Page 776

US 6,477,546 B1

15

indexed list entry pointer contains a pointer to a transaction
entry, then the transaction information for the existing
transaction entry is compared to the transaction information
for the new transaction in step 636. In FIG. 4A, the indexed
list entry pointer 4102 points to transaction entry 460 so the
transaction information for existing transaction entry 460 is
compared to the transaction information for the new trans-
action.

If the transaction information for the existing transaction
entry matches the transaction information for the new
transaction, then a loop is detected and the method proceeds
to step 618 of FIG. 6A In response to detecting a loop, the
network takes some action which may include closing the
transaction which originated the message or resending the
message. Alternatively, if the transaction information for the
existing transaction entry does not match the transaction
information for the new transaction, then the method pro-
ceeds to step 638. In this example, the transaction informa-
tion for the existing transaction entry 460 does not match the
transaction information for the new transaction so the

method proceeds to step 638. In step 638, a determination is
made as to whether the indexed list pointer field of fire
transaction entry points to another transaction entry. If the
indexed list pointer field of the transaction entry points to
another transaction entry, then the method returns to step
636. In FIG. 4A, the indexed list pointer field 468 of
transaction entry 460 points to transaction entry 470, so step
636 is repeated with transaction entry 470. In this example,
the determination in step 636 is that the transaction infor—
mation for transaction 470 does not match the transaction
information for the new transaction so the method proceeds
to step 638. If the determination in step 638 is that the
indexed list pointer field of the transaction entry does not
point to another transaction entry, then the method proceeds
to step 612 of FIG. 6A. The determination in step 638 for
transaction entry 470 is that the indexed list pointer field 478
of the transaction entry 470 does not point to another
transaction entry so the method proceeds to step 612 of FIG.
6A

The transaction is added to the transaction log in steps
612—616. In step 612, a new transaction entry for the
transaction is created. The new transaction entry contains a
transaction descriptor field, a time stamp field, a chrono-
logical list pointer field and an indexed list pointer field. In
the LNP embodiment, the transaction descriptor field pref—
erably contains a portion of the SS7 header and the time
stamp field mntains a time indicating when the message
modated with the new transaction occurred. The new

transaction entry 480 includes a transaction descriptor field
482, a time stamp field 484, a chronological list pointer field
486 and an indexed list pointer field 488 and is shown in
FIG. 4C. The new transaction entry is placed in the chro-
nological list in step 614.

To place the new transaction entry in the chronological
list, the last chronological list pointer is updated to point to
the new transaction entry. The chronological list pointer field
for the transaction entry previously pointed to by the last
chronological list pointer is also updated to point to the new
transaction entry. In FIG. 4C, the last chronological hst
pointer 402 is updated to point to the new transaction entry
430 and the last chronological list pointer field 476 for the
transaction entry 470 previously pointed to by the last
chronological list pointer is updated to point to the new
transaction entry 480. The chronological list pointer field
436 for the new transaction entry 480 contains an end of list
indicator.

To place the new transaction entry in the indexed list, the
new transaction entry is placed at the end of the list of

10

15

20

30

35

45

50

55

60

65

16

transaction entries with the same index. By plaCiIlg the new
transaction entry at the end of the list of transaction entries
with the same index, the oldest transaction entry for a given
index is always pointed to by the indexed list entry pointer.
The transaction entries with the same index were previously
identified in step 610 where a determination was made as to
whether the new transaction matches an existing transaction
in the transaction log. In the example ofFIG. 4C, transaction
entries 460 and 470 correspond to the same index as the
transaction. The new transaction entry is added after trans-
action entry 470 by modifying the indexed list pointer field
478 of transaction entry 470 to point to the new transaction
entry 480. The indexed list pointer field of the new trans-
action entry contains an end of list indicator. Alternatively,
if the indexed list entry pointer for the index corresponding
to the new transaction entry contains an end of list indicator,
then in step 616, the indexed list entry pointer is updated to
point to the new transaction entry.

The transaction log after the new transaction entry is
added is shown in FIG. 4C. The transaction log now
comprises seven transaction entries 420, 430, 440, 450, 460,
470 and 480. The first chronological list pointer points to
transaction entry 420 and the last chronological list pointer
points to transaction entry 480. The chronological order of
the transaction entries is 420, 460, 430, 440, 450, 470 and
480. Transaction entries 420, 430, and 440 correspond to
index 0000, transaction entry 450 corresponds to index
0002, and transaction entries 460, 470 and 480 correspond
to index 0004.

If a transaction entry is not available in the transaction log
when a transaction is received, then the oldest transaction
entry ispurged from the transaction log. The steps of making
a transaction entry available for a newly received transaction
are shown in FIG. 6A The transaction is received in step
602. In step 604, a determination is made as to whether there
is an available transaction entry in the transaction log. If a
transaction entry is not available, then the oldest transaction
entry is purged from the chronological list in step 606 and
is purged from the indexed list in step 608. Purging the
oldest transaction entry from the chronological list and the
indexed list follows the steps described above in connection
with maintaining the transaction log.

The present invention is directed toward a system and
method for logging transactions in a transaction log using a
chronological list superimposed on an indexed list. The
chronological list is used to identify and delete stale trans-
action entries. The time needed to identify and delete stale
transaction entries is minimized because the oldest transac-

tion entry is at the beginning of the chronological list and is
at the beginning of the list pointed to by the indexed list
entry pointer corresponding to the index for the oldest
transaction entry.

The indexed list is used to compare a new transaction to
the existing transactions in the transaction log to determine
whether the new transaction matches an existing transaction.
The new transaction is only compared to transaction entries
with the same index as the new transaction. The time to

determine whether the new transaction matches an existing
transaction is minimized by limiting the number of transac-
tion entries compared to only those transaction entries with
the same index as the new transaction.

In one embodiment, the present invention may be used to
implement transaction ID logging to detect non-call associ-
ated message looping in an LNP enabled telecommunica-
tions network. The use of a chronological list superimposed
on an indexed list implements transaction ID logging with-

NOAC EX. 1018 Page 776

NOAC Ex. 1018 Page 777

“1

US 6,477,546 B1
17

out adversely impacting network performance. Other
embodiments may be used to log other types of transactions
or data.

'Ihe present invention has been described in relation to
particular embodiments which are intended in all respects to
be illustrative rather than restrictive. Alternative embodi-

ments will become apparent to those skilled in the art to
which the present invention pertains without departing from
its spirit and scope. Accordingly, the scope of the present
invention is described by the appended claims and is sup-
ported by the foregoing description.

What is claimed is:

1. A method for purging stale transaction entries from a
transaction log having a plurality of transaction entries
organized as a chronological list superimposed on an
indexed list, wherein the chronological list is ordered from
an oldest transaction entry to a latest transaction entry and
the indexed list comprises a plurality of indexed list entry
pointers corresponding to a plurality of indexes, comprising
the steps of:

checking whether a predetermined maintenance period
has expired;

if the predetermined maintenance period has expired, then
selecting a transaction entry as a selected transaction
entry;

checking whether the selected transaction entry is stale;
and

if the selected transaction entry is stale, then
(a) purging the selected transaction entry from the

chronological list, and
(b) purging the selected transaction entry from the

indexed list.

2. The method of claim 1, wherein a first chronological
list pointer points to the oldest transaction entry in the
chronological list, and wherein the step of selecting one of
the plurality of transaction entries as a selected transaction
entry comprises:

selecting the oldest transaction entry as the selected
transaction entry.

3. The method of claim 1 wherein the selected transaction

entry corresponds to a selected transaction and comprises:
a transaction descriptor field comprising a transaction

descriptor to identify the selected transaction;
a time stamp field comprising a time identifier to indicate

a time when the selected transaction occurred;

a chronological list pointer field comprising a chronologi-
cal list pointer to identify a subsequent transaction
entry corresponding to a transaction occurring after the
selected transaction; and

an indexed list pointer field comprising an indexed list
pointer to identify a next transaction entry correspond-
ing to a transaction with the same index as the selected
transaction entry.

4. The method of claim 3, wherein the step of checking
whether the selected transaction entry is stale comprises
comparing the time stamp field of the selected transaction
entry to the predetermined maintenance period.

5. The method of claim 3 wherein the step of purging the
selected transaction entry from the chronological list com-
prises:

updating the first chronological list pointer to point to the
subsequent transaction entry.

6. The method of claim 3, wherein the indexed list
comprises a selected indexed list entry pointer correspond-
ing to a selected index and pointing to the selected transac-

10

15

20

30

35

45

50

55

60

65

18

tion entry, and wherein the step of purging the selected entry
from the indexed list comprises:

updating the selected indexed list entry pointer to point to
the next transaction entry.

7. The method of claim 3, further comprising the steps of:
if the selected transaction entry is stale, then selecting the

subsequent transaction entry as a second selected trans-
action entry;

checking whether the second selected transaction entry is
stale; and

if the second selected transaction entry is stale, then
(a) purging the second selected transaction entry from

the chronological list, and
(b) purging the second selected transaction entry fromthe indexed list.

8. A computer-readable medium having computer execut-
able instructions for maintaining a transaction log, the
transaction log comprising a plurality of transaction entries
organized as a chronological list superimposed on an
indexed list, wherein the transaction entries are arranged in
chronological order in the chronological list beginning with
an oldest transaction entry and ending with a latest transac-
tion entry and the transaction entries are arranged in the
indexed list according to indexes corresponding to the
transaction entries, comprising the steps of:

maintaining a first chronological list pointer to identify
the oldest transaction entry in the transaction log;

maintaining a last chronological list pointer to identify the
latest transaction entry in the transaction log;

maintaining a plurality of indexed list entry pointers to
identify transaction entries corresponding to the
indexes;

maintaining a plurality of indexed list pointers to identify
additional transaction entries corresponding to the
same index; and

maintaining a plurality of chronological list pointers to
identify transaction entries subsequent to the oldest
transaction entry.

9. The computer-readable medium of claim 8, wherein the
oldest transaction entry comprises a chronological list
pointer pointing to a second oldest transaction entry, and
wherein the step of maintaining a first chronological list
pointer comprises:

if the oldest transaction entry is purged from the chrono-
logical list, then updating the first chronological list
pointer to point to the second oldest transaction entry.

10. The computer—readable medium of claim 8, wherein
the step of maintaining a last chronological list pointer
comprises:

if a new transaction entry is added to the transaction log,
then updating the last chronological list pointer to point
to the new transaction entry.

11. The computer-readable medium of claim 8, wherein
the latest transaction entry comprises a chronological list
pointer, and wherein the step of maintaining a plurality of
chronological list pointers comprises:

if a new transaction entry is added to the transaction log,
then updating the chronological list pointer for the
latest transaction entry to point to the new transaction
entry.

12. The computer—readable medium of claim 8, wherein a
first indexed list entry pointer corresponds to a first index, a
first transaction entry has an index equal to the first index,
the first indexed list entry pointer points to the first trans-
action entry, and the first transaction entry comprises an

NOAC Ex. 1018 Page 777

NOAC Ex. 1018 Page 778

US 6,477,546 B1

19

indexed list pointer pointing to a next transaction entry, and
wherein the step of maintaining a plurality of indexed list
entry pointers comprises:

if the first transaction entry is purged, then updating the
first indexed list entry pointer to point to the next
transaction entry.

13. The computer-readable medium of claim 8, wherein a
second indexed list entry pointer corresponds to a second
index and the second indexed list entry pointer contains an
end of list indicator, and wherein the step of maintaining a
plurality of indexed list entry pointers comprises:

if a new transaction entry having an index equal to the
second index is added to the transaction log, then
updating the second indexed list entry pointer to point
to the new transaction entry.

14. The computer—readable medium of claim 8, wherein a
third indexed list entry pointer corresponds to a third index
and points to a third transaction entry with an index equal to
the third index, and the third transaction entry comprises an
indexed list pointer, and w herein the step of maintaining a
plurality of indexed list entry pointers comprises:

if a new transaction entry having an index equal to the
third index is added to the transaction log, then updat-
ing the indexed list pointer field of the third transaction
entry to point to the new transaction entry.

15. A method for creating a transaction log, comprising
the steps of:

providing a chronological list superimposed on an
indexed list, the chronological list having a first chro-
nological list pointer pointing to an oldest transaction
entry and a last chronological list pointer pointing to a
latest transaction entry, and the indexed list having a
plurality of indexed list entry pointers, each indexed list
entry pointer correSponding to an index and pointing to
a transaction entry that corresponds to the index;

entering a new transaction entryinto the chronological list
by:
updating the last chronological list pointer to point to

the new transaction entry; and

entering the new transaction entry into the indexed list by:
determining an index for the new transaction entry; and
updating the indexed list entry pointer that corresponds

to the index to point to the new transaction entry, so
that the transaction entry is entered into both the
chronological list and the indexed list.

10

15

20

25

30

35

45

20
16. The method of claim 15 wherein the new transaction

entry comprises:
a transaction descriptor field comprising a transaction

descriptor for identifying the transaction;
a time stamp field comprising a time identifier for indi-

cating a time when the transaction occurred;

a chronological list pointer field comprising a chronologi-
cal list pointer for identifying a subsequent transaction
entry corresponding to a transaction received after the
new transaction; and

an indexed list pointer field containing an indexed list
pointer for identifying a next transaction entry corre-
sponding to the same index as the new transaction
entry.

17. A transaction log comprising:
an indexed list having a plurality of indexed list entry

pointers, each indexed list entry pointer corresponding
to an index;

a chronological list superimposed on the indexed list, the
chronological list having a first chronological list
pointer that points to an oldest transaction entry in the
transaction log and a last chronological list pointer that
points to a latest transaction entry in the transaction log;
and

a plurality of transaction entries, each transaction entry
corresponding to an index in the indexed list and
having a chronological list pointer field including a
chronological list pointer for identifying a subsequent
transaction entry and an indexed list pointer field
containing an indexed list pointer for identifying a next
transaction entry corresponding to the same index.

18. The transaction log of claim 17, wherein each trans-
action entry further comprises:

a transaction descriptor field comprising a transaction
descriptor for identifying a transaction corresponding
to the transaction entry.

19. The transaction log of claim 18, wherein the index for
a transaction entry is calculated by hashing the transaction
descriptor.

20. The transaction log of claim 17, wherein a selected
indexed list entry pointer corresponding to a selected index
points to a transaction entry corresponding to the selected
index.

NOAC EX. 1018 Page 778

NOAC Ex. 1018 Page 779

i

01/ llllllllllllllllllllllllllllllllIllIlllllllllllllllllllllIlllllllllllllllll

US006651099B1

(12) Ulllted States Patent (10) Patent N0.: US 6,651,099 B1
Dietz et al. (45) Date of Patent: Nov. 18, 2003

(54) METHOD AND APPARATUS FOR 5,375,070 A 121994 Hershey et al. 364/550
MONITORING TRAFFIC IN A NETWORK 5,394,394 A Z1995 Crowther et al. 370/60

(75) Inventors: Russell s. Dietz, San Jose, CA (US); (”5‘ ”mm“ 0“ “6’“ Fag”
Joseph R. Maixner, Aptos, CA (US); OTHER PUBLICATIONS
Andrew A. Koppenhaver, Littleton,
CO (US); William H, Bares, “Technical Note: the Narus System,” Downloaded Apr. 29,
Germantown, TN (Us); Haig A. 1999 from www.narus.com, Narus Corporation, Redwood
Sarkissian, San Antonio, TX (US); City California.

{32385 F. Torgerson, Andover, MN Primary Examiner—Moustafa M. Meky
(74) Attorney, Agent, or Finn—Dov Rosenfeld; Inventek

(73) Assignee: 11an, Inc, Los Gatos, CA (US) (57) ABSTRACT

(") Notice: Subject to any disclaimer, the term of this A monitor for and a method of examining packets passing
patent is extended or adjusted under 35 throu a connection 0th on a com uter network. EachP P

U_S.C. 154(b) by 589 days. packets conforms to one or more protocols. The method
1 includes receiving a packet from a packet acquisition device

(21) APPI. N0.: 09/608,237 V; 0106 ' I’ 5 and performing one or more parsing/extraction operations
. on the packet to create a parser record comprising a function

(22) F1169: Jun. 30: 2000 of selected portions of the packet. The parsinyextraction
R l ted U S A l' t' D ta operations depend on one or more of the protocols to which

. _ e a _ j ' pp :63 40,903afil 30 the packet conforms. The method further includes looking
(60) I;533151011211 “Wham“ No‘ /1 1’ 3 ed 0“ J‘m‘ ’ up a flow-entry database containing flow—entries for previ-

' ously encountered conversational flows. The lookup uses the
(51) Int. Cl.7 .. G06F 13/00 selected packet portions and determining if the packet is of
(52) US. Cl. 709/224; 370/389 an existing flow. If the packet is of an existing flow, the
(58) Field of Search 709/200, 201, method classifies the packet as belonging to the found

709/220, 223, 224, 231, 232, 235, 238, existing flow, and if the packet is of a new flow, the method
239, 240, 245; 370/389, 392, 395.32 stores a new flow-entry for the new flow in the flow-entry

database, including identifying information for future pack-
(56) References Cited ets to be identified with the new flow-entry. For the packet

U.S. PATENT DOCUMENTS

4,736,320 A 4/1988 Bristol .. 3645C!)
4,891,639 A 1/1990 Naknmum . r 340/855
5,101,402 A 3/1992 Chui et al. 370/17
5,247,517 A 9/1993 Ross et a1. . .. 370/855
5,247,693 A 9/1993 Bristol 395/800
5,249,292 A 9/1993 Chiappa 395/650
5,315,580 A 5/1994 Phaal . 370/13
5,339,268 A 8/1994 Machida . 365/49
5,351,243 A 9/1994 Kalkuntc et a1. .. 370/92
5,365,514 A 11/1994 Hershey et al. 370/17

of an existing flow, the method updates the flow-entry of the
existing flow. Such updating may include storing one or
more statistical measures. Any stage of a flow, state is
maintained, and the method performs any state processing
for an identified state to further the process of identifying the
flow. The method thus examines each and every packet
passing through the connection point in real time until the
application program associated with the conversational flow
is determined.

10 Claims, 18 Drawing Sheets

NOAC EX. 1018 Page 779

NOAC Ex. 1018 Page 780

5,414,650
5,414,704
5,430,709
5,432,776
5,493,689
5,500,855
5,511,213
5,511,215
5,568,471
5,574,875
5,586,266
5,606,668
5,608,662
5,634,009
5,651,002
5,684,954
5,703,877
5,732,213
5,740,355
5,761,424
5,764,638
5,781,735
5,784,298
5,787,253

US 6,651,099 131

Page 2

Us. PATENT DOCUMENTS 5,802,054 A 9/1998 Bellenger 370/351
5,805,808 A 9/1998 IIansani el al. 395/2002

A 5/1995 Hekhuis 364/715.02 5,312,529 A 9/1998 Czamikelal. _______ 370/245
A 5/1995 Spmney » -. 370/60 5,819,028 A 10/1998 Manghinnalani
A 7/1995 Galloway .. 370/13 8:31. 395/185.1
A 7/1995 Harper ------ -- 370/17 5,825,774 A 10/1998 Ready cl al. 370/401
A 2/1996 Waclawsky d 41- - 395/821 5,835,726 A 11/1998 Shwed el al. .. 395/200.59
A 3/1996 Hershey e1 31. 370/17 5,838,919 A 11/1998 Schwallcr eta]. 395/20054
A 4/1996 Coma --------- ~395/300 5,841,895 A 11/1998 Huflman 382/155
A 4/1996 Terasaka et a]. 395/800 5,350,386 A 12/1998 Anderson el al. . 370/241
A 10/1996 Hershey et a]. 370/17 5,850,388 A 12/1998 Anderson ct a]. 370,752
A 11/1996 Slamficld ctal- - 395/403 5,862,335 A 1/1999 Welch, Jr. et a1. 395/20054
A 12/1996 Hershey etal- 395/200-11 5,878,420 A 3/1999 dc 18 Sch .. 707/10
A 21997 Shwed -- 395/200-11 5,893,155 A 4/1999 Cheriton .. 711/144
A 3/1997 large etal- - 364/724-01 5,903,754 A 5/1999 Pearson 395/680
A 5/1997 Iddon eta]. 395/200.11 5,917,821 A 6/1999 Gobuyan et al. 370392
A 7/1997 Van Sclers et al. 370/392 6,014,380 A 1/2000 Hendcl ct al. _ 370,392
A 11/1997 Kaiscxswerthetal. . 3950.002 6,118,760 A ‘ 9/2000 burner: eta]. 370229
A 12/1997 Nuber eta]. 370/395 6,243,667 B1 - 45/2001 K," e; a]. _, ,_ 703/27
A 3/1998 Gessel et a1. -- . 395/200.11 6,452,915 B1 ' 9/2002 Jorgensen .370/338
A 4/1998 Wannabe ct a1. 395/183.21 6,453,360 B1 * 9/2002 Muller ct a1. 709/250
A 6/1998 Adams cl 81- - 395/20047 6,466,985 B1 ' 10/2002 Goya] et a1. 709/238
A 6/1998 Ketchum 370/401 6,483,804 B1 9 11/2002 Muller et 31, 370mg
A 7/1998 50111th 395/20054 6,570,875 B1 ‘ 5/2003 Hcgdc 370/389A 7/1998 Hershey et al. 364/557
A 7/1998 McCreery at al. 395/200.61 " cited by examiner

NOAC EX. 1018 Page 780

NOAC Ex. 1018 Page 781

US. Patent Nov. 13, 2003 Sheet 1 of 18 US 6,651,099 B1

100 _ 108CLIENT 4

fl ANALYZER
107

116
—

SERVER 4

CLIENT 3 \1 10
106 121

 DATA COMMUNICATIONS
NETWORK

$4 102

125

123

— 118
SERVER A _ 105 —

‘\ CLIENT 2 CLIENT 1
112 104

FIG. 1

NOAC EX. 1018 Page 781

NOAC Ex. 1018 Page 782

US. Patent
651,099 B1

 I_____IEE_mNNvENENNlilwiNuENEN

US 6,

(\l

9
LL

..lylmwzueEamu

81

.mMHZm—ZO”
2aehSm02oo,1v.0N

............mmmmmm5m0mmmmmmmmhwmONNmmm.vNN.........mmmNNNFNNomN2NwFN5NENENEN

NOAC EX. 1018 Page 782

NOAC Ex. 1018 Page 783

US 6,651,099 B1Sheet 3 0f 18Nov. 18, 2003US. Patent

mow

.ZO_._.<mmn_Ouzwwmoomn.

ZOFOMJMMmG<DGz<4mw><._O_.E_Ommo
E<E0<H<D

mmN_S=._.n_ODZ<Ewing—00

mw<m<._.<ozOFODEbZ.mmemOOIn.

0:.”

ZO_._.<N3<2EZ._.<O_n=mm<|_0

ZO_._.<OE_._.ZmD_ZO_._.O<I._.Xm

QIOOmm

zkmfixmbfiwaoz<.._@mE.zmmtE9.5% 80055

q_

"mm<m<k<o

womoommEEV

cm:

950d00

Emoommz>>ozxEx.264“:205382.mm<m<p<o30d,>>mz20E_oEqwmm>zooMflfiaflwfi.2mmt<m_£62:3.8muzwoomE

._.O<mhxw

Dz<mN>4<z<

ElmEmmi_7!_llll|||||||||ll|||l

NOAC EX. 1018 Page 783

NOAC Ex. 1018 Page 784

US. Patent Nov

404

GENERATE
PACKET

PARSE AND
EXTRACT

OPERATIONS

406 7/ATrERN, PARS
AND

EXTRACTION
DATABASE

. 18,2003 Sheet 4 0f 18

. 401

v 402
HIGH LEVEL

PACKET
DECODING

l ESCRIPTION ‘

COMPILE
I ESCRIPTION ‘-

403

408 409

US 6,651,099 B1

405

PACKE
STATE

STATE
PROCESSOR
INSTRUCTION

DATABASE

 407

LOAD
PARSING LOAD STATENSTRUCTIO

DATABASE
MEMORY

SUBSYSTEM
MEMORY

400
NOAC EX. 1018 Page 784

NOAC Ex. 1018 Page 785

US. Patent Nov. 18,2003 Sheet 5 of 13 US 6,651,099 B1

503

504
 ORE IN PACK I'-

FETCH NODE AN I
PROCESS FROM

PROCESS T0
COMPONENT

510 500
NOAC EX. 1018 Page 785

NOAC Ex. 1018 Page 786

US. Patent Nov. 18, 2003 Sheet 6 of 18 US 6,651,099 Bl

o

PACKET 602
COMPONENT AND
PATTERN NODE

603

LOAD PACKET

COMPONENT 610

604

LOAD KEY
BUFFER MORE PACKE

COMPONENT

YES

FETCH EXTRACTION 6‘ ND PROCESS FRO
PATTERNS 605

606

NEXT

N O PACKET 609
COMPONEN

ORE EXTRACTIO ‘
ELEMENTS?

YES

507 APPLY EXTRACTIO ;

3%???
N N \

600

 MORE TO 508
EXTRACT?

YE

FIG. 6

NOAC EX. 1018 Page 786

._...me

NOAC Ex. 1018 Page 787

LS. Patent Nov. 18, 2003 Sheet 7 of 18 US 6,651,099 B1

0

EY BUFFER AND 702
PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

704 MORE PATTER OUTPUT T

NODES? ANALYZER

a
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

706)\
700

NEXT PACKET
COMPONENT

707

FIG. 7

709
NOAC EX. 1018 Page 787

NOAC Ex. 1018 Page 788

US. Patent Nov. 13, 2003 Sheet 8 0f 13 US 6,651,099 B1

. 801

UFKB ENTRY FOR
PACKET 802

300\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804

806

”0 SET UFKB FOR
PACKET AS 'NEW’

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET N® 808
YES

MARK RECORD BIN AND 310
BUCKET 'IN PROCESS' IN
CACHE AND TIMESTAMP

ORE BUCKET
IN THE BIN?

805

YES

809

SET UFKB FOR PACKET
3“ AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813». FIG. 8
NOAC EX. 1018 Page 788

NOAC Ex. 1018 Page 789

US. Patent Nov. 18,2003 Sheet 9 0f 18 US 6,651,099 B1

901 902 910

RPC
BIND LOOKU '

REQUEST ORTMAPP ' 'ORTMAPP -
909

EXTRACT PROGRAM

EXTRACT PORT

GET 'PROGRAM', GET 'PROGRAM',
'VERSION', 'PORT' AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL crop OR

UDP) UDP)‘

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

 CREATE SERVER STAT

SAVE 'PROGRAM',

904 'VERSION', 'PORT' AND 'PROTOCOL (TCP OR
'PROTOCOL (TCP OR UDP)’ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

GET 'PORT‘ AND

'PROTOCOL (TCP
0R UDP)’.

 LOOKUP REQUE ‘

FIND 'PROGRAM'
AND 'VERSION‘

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

900/

~h-v'u-

I FIG. 9
NOAC EX. 1018 Page 789

NOAC Ex. 1018 Page 790

US. Patent Nov. 13, 2003 Sheet 10 of 18 US 6,651,099 B1

100 EXTRACTION

RECOGNITION OPERATIONS
DATABASE DATABASE
MEMORY 1001 MEMORY

100 10311 0
0 1004

 CONTRLI

1031)

100 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100:

P K PARSER IN UT BUF ER (WEE?‘ P F PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA'

MEMORY

1012

1021

INTERFACE INTERFACE
I . CONTROL CONTROL , _PACKET ANA

READY
102

1023 FIG. 10 1027
NOAC EX. 1018 Page 790

NOAC Ex. 1018 Page 791

US. Patent Nov. 18, 2003 Sheet 11 of 18

1100 N

1101 1103 1115
1107

LOOKUP/
UPDATE
ENGINE

(LUE)

UNIFIED
FLOW

PARSER KEY
INTER- 1'": UFFER
FACE (UFKB)

 PROCESSR

(SP)

 .Ns%1%%w

DELETION -
ENGINE

(FIDE)

1110

FIG. 11

US 6,651,099 B1

1119 1123

UNlFlED MEMORY

NOAC EX. 1018 Page 791

NOAC Ex. 1018 Page 792

US. Patent Nov. 18, 2003 Sheet 12 0f 13 US 6,651,099 B1

1201

UFKB ENTRY FOR
PACKET WITH 1202
STATUS 'NEW'

1200

N ACCESS
CONVERSATION 1203

RECORD BIN

1204

REQUEST NEXT

BUCKET FROM 1205
1206 CACHE

NO INSERT KEY AND HASH ‘207
: N BUCKET, MARK 'USED

1208 WITH TIMESTAMP

ES 1 209
1210 AND BUCKET RECORDSET UFKB FOR

PACKET AS KEY TO PACKET
'DROP

 MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND 'NEW‘ IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1211

1213

FIG. 12
NOAC EX. 1018 Page 792

NOAC Ex. 1018 Page 793

US. Patent Nov. 13, 2003 Sheet 13 0f 18 US 6,651,099 B1

W1301
1300 N UFKB ENTRY FOR

PACKET WITH STATUS
'N W' o - 'F0 0' 1302

I
SET STATE PROCESSOR

| INSTRUCTION POINTER TO 1303
I ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

PROCESSOR

INSTRUCTION NO DONE PROCESSING
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?
CURRENT STATE

SAVE STATE
PROCESSOR
INSTRUCTION No DONE PROCESSING

 POINTER IN
CURRENT FLOW

RECORD

 TATES FOR THIS FLO

YES

SET AND SAVE FLOW REMOVA
STATE PROCESSOR 1311

INSTRUCTION IN CURRENT
FLOW RECORD

@1313 3
FIG. 13

f
I

1307

1308 YES :
1310

1309 *

1

NOAC EX. 1018 Page 793

NOAC Ex. 1018 Page 794

‘ x

g3‘

US 6,651,099 B1Sheet 14 0f 18Nov. 18, 2003US. Patent

2mkm>mm3mEwN>.<Z<

m_m>._<z<
.2mbfim

fin:

ZO_._.<N_._<Z_u_Z._.<0E_mm<._0

mmvF

ECHOmgmmmZ_IO<_2m._.<._.m

 2mm>mm3w_Emma/E

mZO_._.<mmmOZO_._.0<E._.xw

DmOOmE

zbfifixzo:.<o_u=mmfiowmmnmwumkm__=2mmt<l
WERE:

m>>O.E“.0mm<m<._.<0

m._.<._.w\400mm4Omz_OZ_>u=._.zmo_._.O<m._.xm

ZO_._.<S_mOn_Z_zmwtkn.wN_ZOOme
___________1_

NOAC EX. 1018 Page 794

NOAC Ex. 1018 Page 795

US 6,651,099 B1SheetlS 0f18Nov. 18, 2003
U.S. Patent

mo

wDE<Ov55m0<nEmFZ_xmozpwz

)‘5';

>IO_>_m_2FmOI

.Ommmoom._

momw

odw$0.520:

awmmmm<¢

mOSmD29.59300.hmx0<m

NOAC EX. 1018 Page 795

NOAC Ex. 1018 Page 796

US. Patent Nov. 18, 2003 Sheet 16 of 18 US 6,651,099 B1

NOAC EX. 1018 Page 796

NOAC Ex. 1018 Page 797

US. Patent Nov. 18, 2003

1702

1704
ffs

121073 _Wflllllfi.1

1 706

1708 Type (2)

-Hh 11710 as I K 1700
L 4

FIG. 17A
1712

IIAIIIWI:fifli’ffl’gfiflwgflllfl

L3t0 0" :3” :~ 'I-!:

{135,4 yam—1m: 1111111111
 Src Address

Dst Address_—
VIII/[5:11I‘Ifllsi’iilifiizlllllllllllli

-1]

Dst Address

Dst Hash (2)

Src Address

Src Hash (2)

-1 11>

L4 Off.et = L3 + (lHL/4)

Sheet 17 of 18

FIG. 178

US 6,651,099 B1

IDP = 0x0600*
IP = OXOBOO”

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD'

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS—SCOM = 0X3C00 —
OXSCOD#

DEC-MOP = 0x6001
DEC—RC = 0x6002

DEC-DRP = 0x6003”
DEC-LAT = Ox6004

DEC-DIAG = 0x6005
DEC-LAVC = Ox6007

RARP = 0X8035
ATALK = OXBOQB’

VLOOP = 0X8OC4
VECHO = OXBOC5
SNA—TH = 0x80D5*

ATALKARP = Ox80F3
IPX = 0x8137”

SNMP = Ox814C#
IPv6 = 0x8GDD "

LOOPBACK = Ox9000

Apple = 0x080007

* L3 Decoding
L5 Decoding

1 752

ICMP = 1
IGMP = 2
GGP = 3
TOP = 6*
EGP = 8

IGRP = 9
PUP = 12

CHAOS =16
UDP = 17*
IDP = 22 #

ISO-TP4 = 29
DDP = 37#

ISO-IP = 80
VIP = 83#

EIGRP = 88
OSPF = 89

* L4 Decoding
L3 Re-Decoding

NOAC EX. 1018 Page 797

NOAC Ex. 1018 Page 798

E

r US. Patent Nov. 18, 2003 Sheet 18 0f 18 US 6,651,099 B1

PROTOCOL

I
1

t

f

II......‘.‘.‘.

r1800
TYPE (I02

(LOC\AO

IFOZm;04m.“—

D.._m=n_m0mQOOm._.>m

05mm

AOOOHOum

FIG. 188

NOAC EX. 1018 Page 798

NOAC Ex. 1018 Page 799

US 6,651,099 B1

1

METHOD AND APPARATUS FOR
MONITORING TRAFFIC IN A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of US. Provisional
Patent Application Ser. No.: 60/141,903 for METHOD AND
APPARATUS FOR MONITORING TRAFFIC IN A NET-

WORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following US. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

US. patent application Ser. No. 09/609,179 for PRO-
CESSING PROTOCOL SPECIFIC INFORMATION
IN PACKETS SPECIFIED BY A PROTOCOL
DESCRIPTION LANGUAGE, to inventors
Koppenhaver, et al., filed Jun. 30, 2000, still pending,
and incorporated herein by reference. US. patent appli-
cation Ser. No. 09/608,126 for RE-USING INFORMA—
TION FROM DATA TRANSACTIONS FOR MAIN-
TAINING STATISTICS IN NETWORK

MONITORING, to inventors Dietz, et al., filed Jun. 30,
2000, still pending, and incorporated herein by refer—
ence. US. patent application Ser. No. 09/608,266 for
ASSOCIATIVE CACHE STRUCTURE FOR LOOK-
UPS AND UPDATES OF FLOW RECORDS IN A

NETWORK MONITOR, to inventors Sarkissian, et al.,
filed Jun. 30, 2000, still penting, and incorporated
herein by reference. US. patent application Ser. No.
09/608,267 for STATE PROCESSOR FOR PATTERN
MATCHING IN A NETWORK MONITOR DEVICE,
to inventors Sarkissian, et al., filed Jun. 30, 2000, still
pending, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, spe—
cifically to the real-time elucidation of packets communi-
cated within a data network, including classification accord-
ing to protocol and application program.

BACKGROUND TO THE PRESENT
INVENTION

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other internets—an
“internet” being any plurality of interconnected networks
which forms a larger, single network. With the growth of
networks used as a collection of clients obtaining services
from one or more servers on the network, it is increasingly
important to be able to monitor the use of those services and
to rate them accordingly. Such objective information, for
example, as which services (i.e., application programs) are
being used, who is using them, how often they have been
accessed, and for how long, is very useful in the mainte-
nance and continued operation of these networks. It is
ewecially important that selected users be able to mom a
uetw0rk remotely in order to generate reports on network
use in real time. Similarly, a need exists for a real-time
network monitor that can provide alarms notifying selected
users of problems that may occur with the network or site.

One prior art monitoring method uses log files. In this
method, selected network activities may be analyzed retro—
spectively by reviewing log files, which are maintained by

10

15

20

35

45

50

55

60

65

2

network servers and gateways. Log file monitors must
access this data and analyze (“mine”) its contents to deter-
mine statistics about the server or gateway. Several problems
exist with this method, however. First, log file information
does not provide a map of real-time usage; and secondly, log
file mining does not supply complete information. This
method relies on logs maintained by numerous network
devices and servers, which requires that the information be
subjected to refining and correlation. Also, sometimes infor-
mation is simply not available to any gateway or server in
order to make a log file entry.

One such case, for example, would be information con-
cerning NetMeeting® (Microsoft Corporation, Redmond,
Washington) sessions in which two computers connect
directly on the network and the data is never seen by a server
or a gateway.

Another disadvantage of creating log files is that the
process requires data logging features of network elements
to be enabled, placing a substantial load on the device, which
results in a subsequent decline in network performance.
Additionally, log files can grow rapidly, there is no standard
means of storage for them, and they require a significantamount of maintenance.

Though Netflow® (Cisco Systems, Inc., San Jose, Calif),
RMON2, and other network monitors are available for the

real-time monitoring of networks, they lack visibility into
application content and are typically limited to providing
network layer level information.

Pattern-matching parser techniques wherein a packet is
parsed and pattern filters are applied are also known, but
these too are limited in how deep into the protocol stack they
can examine packets.

Some prior art packet monitors classify packets into
connection flows. The term “connection flow" is commonly
used to describe all the packets involved with a single
connection. Aconversational flow, on the other hand, is the
sequence of packets that are exchanged in any direction as
a result of an activity—for instance, the running of an
application on a server as requested by a client It is desirable
to be able to identify and classify conversational flows rather
than only connection flows. The reason for this is that some
conversational flows involve more than one connection, and
some even involve more than one exchange of packets
between a client and server. This is particularly true when
using client/server protocols such as RPC, DCOMP, and
SAP, which enable a service to be set up or defined prior to
any use of that service.

An example of such a case is the SAP (Service Adver-
tising Protocol), a NetWare (Novell Systems, Provo, Utah)
protocol used to identify the services and addresses of
servers attached to a network. In the initial exchange, a client
might send a SAP request to a server for print service. The
server would then send a SAP reply that identifies a par-
ticular address—for example, SAP#5——as the print service
on that server. Such responses might be used to update a
table in a router, for instance, known as a Server Information

Table. Aclient who has inadvertently seen this reply or who
has access to the table (via the router that has the Service
Information Table) would know that SAP#5 for this particu-
lar server is a print service. Therefore, in order to print data
on the server, such a client would not need to make a request
for a print service, but would simply send data to be printed
specifying SAP#5. Like the previous exchange, the trans-
mission of data to be printed also involves an exchange
between a client and a server, but requires a second con-
nection and is therefore independent of the initial exchange.

NOAC EX. 1018 Page 799

NOAC Ex. 1018 Page 800

US 6,651,099 B1

3

In order to eliminate the possibility of disjointed conversa-
tional exchanges, it is desirable for a network packet monitor
to be able to “virtually concatenate”—that is, to link—the
first exchange with the second. If the clients were the same,
the two packet exchanges would then be correctly identified
as being part of the same conversational flow.

Other protocols that may lead to disjointed flows, include
RPC (Remote Procedure Call); DCOM (Distributed Com-
ponent Object Model), formerly called Network OLE
(Microsoft Corporation, Redmond, Wash.); and CORBA
(Common Object Request Broker Architecture). RPC is a
programming interface from Sun Microsystems (Palo Alto,
Calif.) that allows one program to use the services of another
program in a lo remote machine. DCOM, Microsoft’s coun-
terpart to CORBA, defines the remote procedure call that
allows those objects—objects are self-contained software
modules—to be run remotely over the network. And
CORBA, a standard from the Object Management Group
(OMG) for communicating between distributed objects,
provides a way to execute programs (objects) written in
diflerent programming languages running on different plat-
forms regardless of where they reside in a network.

What is needed, therefore, is a network monitor that
makes it possible to continuously analyze all user sessions
on a heavily trafiicked network. Such a monitor should
enable non-intrusive, remote detection, characterization,
analysis, and capture of all information passing through any
point on the network (i.e., of all packets and packet streams
passing through any location in the network). Not only
should all the packets be detected and analyzed, but for each
of these packets the network monitor should determine the
protocol (e.g., http, ftp, H.323, VPN, etc.), the application/
use within the protocol (e.g., voice, video, data, real-time
data, etc.), and an end user’s pattern of use within each
application or the application context (e.g., options selected,
service delivered, duration, time of day, data requested, etc.).
Also, the network monitor should not be reliant upon server
resident information such as log files. Rather, it should allow
a user such as a network administrator or an Internet service

provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and
to receive timely notification of network problems.

Considering the previous SAP example again, because
one features of the invention is to correctly identify the
second exchange as being associated with a print service on
that server, such exchange would even be recognized if the
clients were not the same. What distinguishes this invention
frOm prior art network monitors is that it has the ability to
recognize disjointed flows as belonging to the same conver-
sational flow.

The data value in monitoring network communications
has been recognized by many inventors. Chiu, et al.,
describe a method for collecting information at the session
level in a computer network in US. Pat. No. 5,101,402,
titled “APPARATUS AND METHOD FOR REAL-TIME
MONITORING OF NETWORK SESSIONS AND A

LOCAL AREA NETWORK“ (the “402 patent”). The 402
Patent specifies fixed locations for particular types of pack-
ets to extract information to identify session of a packet. For
example, if a DECnet packet appears, the 402 patent looks
at Six specific fields (at 6 locations) in the packet in order to
identify the session of the packet. If, on the other hand, an
11’ packet appears, a different set of six different locations is
SPCCified for an IP packet. With the proliferation of
Pl'Olocols, clearly the specifying of all the possible places to
100k to determine the session becomes more and more

10

15

20

30

35

45

50

55

60

65

4

difficult. Likewise, adding a new protocol or application is
difficult. In the present invention, the locations examined
and the information extracted from any packet are adap—
tively determined from information in the packet for the
particular type of packet. There is no fixed definition of what
to look for and where to look in order to form an identifying
signature. A monitor implementation of the present
invention, for example, adapts to handle diflenently IEEE
802.3 packet from the older Ethernet Type 2 (or Version 2)
DIX (Digital-Intel—Xerox) packet.

The 402 patent system is able to recognize up to the
session layer. In the present invention, the number of levels
examined varies for any particular protocol. Furthermore,
the present invention is capable of examining up to whatever
level is suflicient to uniquely identify to a required level,
even all the way to the application level (in the 081 model).

Other prior art systems also are known. Phael describes a
network activity monitor that processes only randomly
selected packets in US. Pat. No. 5,315,580, titled “NET-
WORK MONITORING DEVICE AND SYSTEM." Naka—

mura teaches a network monitoring system in US. Pat. No.
4,891,639, titled “MONITORING SYSTEM OF NET-

WORK.” Ross, et al., teach a method and apparatus for
analyzing and monitoring network activity in US. Pat. No.
5,247,517, titled “METHOD AND APPARATUS FOR
ANALYSIS NETWORKS,” McCreery, et al., describe an
Internet activity monitor that decodes packet data at the
Internet protocol level layer in US. Pat. No. 5,787,153,
titled “APPARATUS AND METHOD OF ANALYZING
INTERNET ACTIVITY.” The McCreery method decodes
IP-packets. It goes through the decoding operations for each
packet, and therefore uses the processing overhead for both
recognized and unrecognized flows. In a monitor implemen-
tation of the present invention, a signature is built for every
flow such that future packets of the flow are easily recog-
nized. When a new packet in the flow arrives, the recogni-
tion process can commence from where it last left otf, and
a new signature built to recognize new packets of the flow.

SUMMARY

In its various embodiments the present invention provides
a network monitor that can accomplish one or more of the
following objects and advantages:

Recogrize and classify all packets that are exchanges
between a client and server into respective client/server
applications.

Recognize and classify at all protocol layer levels con-
versational flows that pass in either direction at a pointin a network.

Determine the connection and flow progress between
clients and servers according to the individual packets
exchanged over a network.

Be used to help tune the performance of a network
according to the current mix of client/server applica-
tions requiring network resources.

Maintain statistics relevant to the mix of client/server
applications using network resources.

Report on the occurrences of specific sequences of pack-
ets used by particular applications for client/server
network conversational flows.

Other aspects of embodirnenls of the invention are:

Properly analyzing each of the packets exchanged
between a client and a server and maintaining infor—
mation relevant to the current state of each of these

conversational flows. p1 Providing a flexible process-

NOAC EX. 1018 Page 800

NOAC Ex. 1018 Page 801

US 6,651,099 B1

7

state processor can begin analyzing the packet payload to
further elucidate the identity of the application program
component of this packet. The exact operation of the state
processor and functions performed by it will vary depending
on the current packet sequence in the stream of a conver-
sational flow. The state processor moves to the next logical
operation stored from the previous packet seen with this
same flow signature. If any processing is required on this
packet, the state processor will execute instructions from a
database of state instruction for this state until there are
either no more left or the instruction signifies proce$ing.

In the preferred embodiment, the state processor functions
are programmable to provide for analyzing new application
programs, and new sequences of packets and states that can
arise from using such application.

If during the lookup process for this particular packet flow
signature, the flow is required to be inserted into the active
database, a flow insertion and deletion engine (FIDE) is
initiated. The state processor also may create new flow
signatures and thus may instruct the flow insertion and
deletion engine to add a new flow to the database as a new
item.

In the preferred hardware embodiment, each of the LUE,
state processor, and FIDE operate independently from the
other two engines.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
Specific embodiment because such embodiments are pro-
vided only for the purposes of explanation. The
embodiments, in trim, are explained with the aid of the
following figures.

FIG. 1 is a functional block diagram of a network embodi-
ment of the present invention in which a monitor is con—
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of some of
the packets and their formats that might be exchanged in
starting, as an illustrative example, a conversational flow
between a client and server on a network being monitored
and analyzed. A pair of flow signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents some of the posible flow signa-
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular server
applications that produce the discrete application packet
exchanges.

FIG. 3 is a frmctional block diagram of a process embodi-
ment of the present invention that can operate as the packet
monitor shown in FIG. 1. This proces may be implemented
in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization prooe$, which in one embodi-
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as
part of the parser in an embodiment of the inventive packet
monitor.

FIG. 6 is a flowchart of a packet element extraction
proce$ that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packetmonitor.

FIG. 8 is a flowchart of a monitor lookup and update
Process that is used as part of the analyzer in an embodiment
0f the inventive packet monitor.

10

15

20

30

35

45

50

55

60

65

8

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser
subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a frmctional block diagram of a hardware
analyzer including a state processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a state processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor.

FIG. 14 is a simple frmctional block diagram of a process
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and some of the elements that may be
extracted to form a signature according to one aspect of the
invention.

FIG. 17Ais an example of the header of an Ethertype type
of Ethernet packet of FIG. 16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a signature
according to one aspect of the invention.

FIG. 18Ais a three dimensional structure that can be used

to store elements of the pattern, parse and extraction data-
base used by the parser subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
subsystem in accordance to another embodiment of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include signal names. In most cases,
the names are sufficiently descriptive, in other cases how-
ever the signal names are not needed to understand the
operation and practice of the invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104—107
and servers 110 and 112. The network is shown schemati-

cally as a cloud with several network nodes and links shown
in the interior of the cloud. A monitor 108 examines the

packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with

NOAC EX. 1018 Page 801

NOAC Ex. 1018 Page 802

US 6,651,099 B1
9

each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the netw0rk interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, such as connection point 123
between the network 102 and the interface 118 of the client

104, or some other location, as indicated schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity—for example an appli»
cation program run by the client 104 (CLIENT 1) commu-
nicating with another running on the server 110 (SERVER
2)——wi]l produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par-
ticular application programs. The packets may need to be
parsed then anrflyzed in the context of various protocols, for
example, the transport through the application session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in tables form below,
serves as a basic reference for understanding the function-
ality of existing communication protocols.

[50 MODEL

layer Functionality Example

7 Applimtion Telnet, NFS, Novell NCP, HTI'P,

H.323
6 Presentation XDR
5 Sesaion RFC, NEI'BIOS, SNMP, etc.
4 Transport TCP, Novel SPX, UDP, etc.
3 Network 11’, Novell IFX, VIP, AppleTalk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
Physical Ethernet, Token Ring, Frame Relay,

ATM, T1 (Hardware Connection)
1...

Dilferent communication protocols employ ditferent lev-
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visrble to
protocols employed at other layers. For example, an appli-
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame" generally
refers to encapsulated data at 081 layer 2, including a
destination address, control bits for flow control, the data or
PRYIoad, and CRC (cyclic redundancy check) data for error
checking. The term “packet” generally refers to encapsu-
lated data at 051 layer 3. In the TCP/IP world, the term
ndatagmtfl” is also used. In this specification, the term
“Packet” is intended to encompass packets, datagrams,
frames, and cells. In general, a packet format or frame
fOl'mat refers to how data is encapsulated with various fields

10

15

20

30

35

45

50

55

60

65

10
and headers for transmission across a network. For example,

a data packet typically includes an address destination field,
a lengm field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format/’0 are generally synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
server to send a type-A packet, but so will another. If,
though, the particular application program always follows a
type-A packet with the sending of a type—B packeg and the
other application program does not, then in order to reoog~
nize packets of that application’s conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-A packet. Ifsuch is
recognized after a type-A packet, then the particular appli-
cation program’s conversational flow has started to revcrd
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying
other packet exchanges that are parts of conversational flows
associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real-world uses of the monitor 108, the number of
packets on the netWork 102 passing by the monitor 108’s
connection point can exceed a million per second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
state of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its classification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
associated application programs according to the packets
that their executions produce, is a multi—step process within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efliciently any
packets that belong to the same flow. In some cases, that
packet type may be sufliciently unique to enable the monitor
to identify the application that generated such a packet in the
conversational flow. The signature can then be used to
cfliciently identify all future packets generated in traflic
related to that application.

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are
necessary to identify the associated application program. In
such a case, a subsequent packet of a second type—but that
potentially belongs to the same conversational flow—is
recognized by using the signature. At such a second level,
then, only a few of those application programs will have

NOAC Ex. 1018 Page 803

n,

.5iv.:gréu‘fi
»”5‘1?

US 6,651,099 B1
11

conversational flows that can produce such a second packet
type. At this level in the process of classification, all appli-
cation programs that are not in the set of those that lead to
such a sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the second level signature. For each packet, therefore,
the monitor parses the packet and generates a signature to
determine if this signature identified a previously encoun-
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the sequence of
previously encountered packets (the state), and of the pos-
sible future sequences such a past sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated signature may
then be used to efficiently recognize future packets associ-
ated with the same conversational flow. Such an arrange-
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through some point
in the network 102 (for example, because of execution of the
applications by the client 105 or server 110), the monitor
sends a message to some general purpose proce$or on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being exchanged over the network. In other
words, once the monitor 108 has accomplished recognition
of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple-
mented with computer hardware and/or software. The sys-
tem 300 is similar to monitor 108 in FIG. 1. Apacket 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi-
level model, including what server application produced the
packet.

The packet acquisition device is a common interface that
converts the physical signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on
packets of dilferent types—accomplished by compiler and
Optimizer 310, (2) the processing——parsing and extraction of
selected portions—of packets to generate an identifying
Signature—accomplished by parser subsystem 301, and (3)
the analysis of the packets—accomplished by analyzer 31B.

The purpose of compiler and optimizer 310 is to provide
Protocol specific information to parser subsystem 301 and to

10

15

20

30

35

45

50

55

65

12

analyzer subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re—occur when
new protocols are to be added.

A flow is a stream of packets being exchanged between
any two addresses in the network. For each protocol there
are lmown to be several fields, such as the destination

(recipient), the source (the sender), and so forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
such as checksums, and those parts are not used for identi-
fication.

Parser subsystem 301 examines the packets using pattern
recognition process 304 that parses the packet and deter-
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
operations, e.g., extraction masks, are supplied from a
parsing-pattem-structures and extraction-operations data-
base (parsing/extractions database) 308 filled by the com-
piler and optimizer 310.

The protocol description language (PDL) files 336
describes both patterns and states of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor-
mation to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates
two sets of internal data structures. The first is the set of

parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be
recognized in the headers of packets; the extraction opera—
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operations includes infor-
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. These are
the different states and state transitions that occur in different
conversational flows, and the state operations that need to be
performed (e.g., patterns that need to be examined and new
signatures that need to be built) during any state of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro-
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in some embodiments the
layering selections information is inherent rather than
explicitly described. For example, since a PDL file for a
protocol includes the child protocols, the parent protocols
also may be determined.

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet buffer. The pattern
recognition process 304 is carried out by a pattern analysis

\

NOAC EX. 1018 Page 803

NOAC Ex. 1018 Page 804

to

US 6,651,099 B1
1 13

and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL—Intel—Xerox (DIX) packet. The PAR
also uses the pattern structures and extraction operations
database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations

(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (EII) eng‘ne that
extracts selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
sequence and then processed in block 312 to build a unique
flow signature (also called a “kef’) for this flow. A flow

I ' signature depends on the protocols used in the packet. For
i some protocols, the extracted components may include

source and destination addresses. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus, the signature typically includes
the client and server address pairs. The signature is used to
recognize further packets that are or may be part of this flow.

i‘ In the preferred embodiment, the building of the flow key
~ includes generating a hash of the signature using a hash

ftmction. The purpose if using such a hash is conventional——
to spread flow-entries identified by the signature across a

, database for eflicient searching. The hash generated is
’ preferably based on a hashing algorithm and such hash

generation is known to those in the art.
In one embodiment, the parser passes data from the

. packet—a parser record—that includes the signature (i.e.,
' selected portions of the packet), the hash, and the packet

itself to allow for any state processing that requires further
data from the packet. An improved embodiment of the parser
subsystem might generate a parser record that has some
predefined structure and that includes the signature, the

C hash, some flags related to some of the fields in the parser
~ record, and parts of the paeket’s payload that the parser

subsystem has determined might be required for further
processing, e.g., for state processing.

Note that alternate embodiments may use some function
other than concatenation of the selected portions of the
packet to make the identifying sigrature. For example, some
“digest function” of the concatenated selected portions may
be used.

The parser record is passed onto lookup process 314
which looks in an internal data store of records of known

flows that the system has already encountered, and decides
(In 316) Whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow—entry
matching this flow in a database of known flows 324. A

accord in database 324 is associated with each encounteredow.

The parser record enters a buffer called the unified flow
key buffer (UFKB). The UFKB stores the data on flows in
a data structure that is similar to the parser record, but that
Includes a field that can be modified. In particular, one or the

record fields stores the packet sequence number, and
another is filled with state information in the form of a

5,1,;m‘.,

~val‘c
,1".

10

15

30

35

45

50

55

60

65

14

program counter for a state processor that implements state
processing 328.

The determination (316) of whether a record with the
same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFICB records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
associated with the database 324. A lookup by the LUE for
a known record is carried out by accessing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the external
memory.

The flow-entry database 324 stores flow-entries that
include the unique flow-signature, state information, and
extracted information from the packet for updating flows,
and one or more statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser sub-
system 301 (i.e., the hash in the UFICB record). 'Ibe hash
spreads the flows acrom the database to allow for fast
lookups ofentries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embod’unent, each
flow-entry is 128 bytes long, so for 128K flow—entries, 16
Mbytes are required. Using a is 16-bit hash gives two
flow-entries per bucket. Empirically, this has been shown to
be more than adequate for the vast majority of cases. Note
that another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise stated or clear from the context.

If there is no flow—entry found matching the signature, i.e.,
the signature is for a new flow, then a protocol and state
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
where in the state sequence for a flow for this protocol’s this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 ofstate

patterns and processes. Process 318 is then followed by any
state operations that need to be executed on this packet by
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a proce$ 320
determines, from the looked-up flow-entry, if more classi-
fication by state processing of the flow signature is neces-
sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in
the flow-entry. In our embodiment, the statistical measures
are stored in counters in the flow-entry.

If state processing is required, state process 328 is com-
menced. State processor 328 carries out any state operations
Specified for the state of the flow and updates the state to the
next state according to a set of state instructions obtained
form the state pattern and processes database 326.

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol stack,
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state
based on predefined state transition rules and state opera-

NOAC EX. 1018 Page 804

NOAC Ex. 1018 Page 805

sad... .x.

US 6,651,099 B1
15

tions asspecified in state processor instruction database 326.
A state transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
state processor is in a particular state—for example, in order
to evaluate a quantity needed to apply the state transition
rule. The state processor goes through each rule and each
state process until the test is true, or there are no more tests
to perform.

In general, the set of state operations may be none or more
operations on a packet, and carrying out the operation or
operations may leave one in a state that causes exiting the
system prior to completing the identification, but possibly
knowing more about what state and state processes are
needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of state
operations) at a particular state may build a new signature
for future recognition packets of the next state.

By maintaining the state of the flows and knowing that
new flows may be set up using the information from
previously encountered flows, the network traffic monitor
300 provides for (a) single-packet protocol recognition of
flows, and (b) multiple-packet protocol recognition of flows.
Monitor 300 can even recognize the application program
from one or more disjointed sub-flows that occur in server
announcement type flows. What may seem to prior art
monitors to be some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
sub—flow associated with a previously encountered sub-flow.

'Ihus, state processor 328 applies the first state operation
to the packet for this particular flow—entry. A process 330
decides if more operations need to be performed for this
state. If so, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed—-
that is, there are no more operations for this packet in this
state. Aprocess 332 decides if there are further states to be
analyzed for this type of flow according to the state of the
flow and the protocol, in order to fully characterize the flow.
If not, the conversational flow has now been fully charac—
terized and a process 334 finalizes the classification of the
conversational flow for the flow.

In the particular embodiment, the state processor 328
starts the state processing by using the last protocol recog-
nized by the parser as an offset into a jump table (ump
vector). The jump table finds the state proce$or instructions
to use for that protocol in the state patterns and processes
database 326. Most instructions test something in the unified
flow key butler, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the
State processor is searching for one or more patterns in the
payload part of the UFKB.

Thus, in 332 in the classification, the analyzer decides
Whether the flow is at an end state. If not at an end state, the
flow-entry is updated (or created if a new flow) for this
flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is
determined that there are further states to be processed using
later packets, the flow—entry is updated in process 322.
_ The flow-entry also is updated after classification final—
lzation so that any further packets belonging to this flow will
be readily identified from their signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includes the set of
all the conversational flows that have occurred.

10

15

20

30

35

45

50

55

60

65

16

Thus, the embodiment of present invention shown in FIG.
3 automatically maintains flow-entries, which in one aspect
includes storing states. The monitor of FIG. 3 also generates
characteristic parts of packets—Abe signatures—that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once a packet is identified
to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be per-
formed in real time for each different protocol and applica-
tion. In a complex analysis, state transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their state
analysis continued from a previously achieved state. When
enough packets related to an application of interest have
been processed, a final recognition state is ultimately
reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow.
The signature for that final state enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Once a particular set ofstate transitions
has been traversed for the first time and ends in a final state,
a short-cut recognition pattem—~a signature—can be gener-
ated that will key on every new incoming packet that relates
to the conversational flow. Checking a signature involves a
simple operation, allowing high packet rates to be success-
fully monitored on the network.

In improved embodiments, several state analyzers are run
in parallel so that a large number of protocols and applica-
tions may be checked for. Every known protocol and appli-
cation will have at least one unique set of state transitions,
and can therefore be uniquely identified by watching such
transitions.

When each new conversational flow starts, signatures that
recognize the flow are automatically generated on-the—fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set
of state transitions for any potential application are further
traversed according to the state transition rules for the flow.
The new states for the flow—those associated with a set of

state transitions for one or more potential applications—are
added to the records of previously encountered states for
easy recognition and retrieval when a new packet in the flow
is encountered.

Detailed Operation

FIG. 4 diagrams an initialization system 400 that includes
the compilation process. That is, part of the initialization
generates the pattern structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur off—line or from a central location.

The different protocols that can exist in diflerent layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called level 0).
Each protocol is either a parent node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have zero or more children. Ethernet packets, for
example, have several variants, each having a basic format
that remains substantially the same. An Ethernet packet (the
root or level 0 node) may be an Ethertype packet—also
called an Ethernet Type/Version 2 and a DIX (DIGITAL-
Intel—Xerox packet)—-or an IEEE 803.2 packet. Continuing
with the IEEE 802.3 packet, one of the children nodes may
be the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

NOAC Ex. 1018 Page 806

..rtn‘m';',5ts

t.

us 6,651,099 B1
17

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and
includes information on the destination media access control

address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the signature.

FIG. 17A now shows the header information for the next

level (level-2) for an Ethertype packet 1700. For an Ether—
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
170) containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the

possible children for an Ethertype packet as indicated by
what child recognition pattern is found offset 12. FIG. 17B
shows the structure of the header of one of the possible next
levels, that of the IP protocol. The possible children of the
IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern rec-
ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching
packet headers for the next protocol. FIG. 18A shows such
a 3-D representation 1800 (which may be considered as an
indexed set of 2-D representations). A compresed form of
the 3-D structure is preferred.

An alternate embodiment of the data structure used in

database 308 is illustrated in FIG. 18B. Thus, like the 3—D
structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process
304 by indexing locations in a memory rather than perform-
ing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850
(PT) which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUT’s) that
are used to identify known protocols and their children. The
protocol table includes the parameters needed by the pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters needed by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PI‘
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
header length, an otl‘set to the child, a slicer command, and
some flags.

The pattern matching is carried out by finding particular
“child recognition codes" in the header fields, and using
these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node, and a null node to indicate a null entry.
The next LUT to lookup is also returned from a LUT lockup.

Compilation process is described in FIG. 4. The source-
code information in the form of protocol description files is
shown as 402. In the particular embodiment, the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer
selections 338, which describes the particular layering (sets
of trees of protocols) that the monitor is to be able to handle.

A compiler 403 compiles the descriptions. The set of
packet parse-and—extract operations 406 is generated (404),
and a set of packet state instructions and operations 407 is

10

15

20

30

35

45

50

55

60

65

18

generated (405) in the form of instructions for the state
processor that implements state processing process 328.
Data files for each type of application and protocol to be
recognized by the malyzer are downloaded from the pattern,
parse, and extraction database 406 into the memory systems
of the parser and extraction engines. (See the parsing process
500 description and FIG. 5; the extraction process 600
description and FIG. 6; and the parsing subsystem hardware
description and FIG. 10). Data files for each type of appli-
cation and protocol to be recognized by the analyzer are also
downloaded from the state-processor instruction database
407 into the state processor. (see the state processor 1108
description and FIG. 11,).

Note that generating the packet parse and extraction
operations builds turd links the three dimensional structure
(one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and
subtrees, the compiler process 400 includes optimization
that compares the trees and subtrees to see which children
share common parents. When implemented in the form of
the LUT’s, this process can generate a single HIT from a
plurality of LUT’s. The optimization process further
includes a compaction process that reduces the space needed
to store the data of the PRD.

As an example of compaction, consider the 3-D structure
ofFIG. 18A that can be thought of as a set of 2-D structures
each representing a protocol. To enable saving space by
using only one array per protocol which may have several
parents, in one embodiment, the pattern analysis subprocess
keeps a “current header" pointer. Each location (offset)
index for each protocol 2—D array in the 3—D structure is a
relative location starting with the start of header for the
particular protocol. Furthermore, each of the two-
dimensional arrays is sparse. The next step of the
optimization, is checking all the 2—D arrays against all the
other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often sparsely populated in that
they each have only a small number of valid entries. So, a
process of “folding” is next used to combine two or more
2-D arrays together into one physical 2-D array without
losing the identity of any of the original 2-D arrays (i.e., all
the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the
tree as long as certain conditions are met Multiple arrays
may be combined into a single array as long as the individual
entries do not conflict with each other. Afold number is then

used to mciate each element with its original array. A
similar folding process is used for the set of LUTs 1850 in
the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to
perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem
301 functions. Starting at 501, the packet 302 is input to the
packet butfer in step 502. Step 503 loads the next (initially
the first) packet component from the packet 302, The packet
components are extracted from each packet 302 one element
at a time. A check is made (504) to determine if the
load-packet-component operation 508 succeeded, indicating
that there was more in the packet to process. If not, indi—
cating all components have been loaded, the parser sub-
system 301 builds the packet signature (512)——the next stage
(FIG. 6).

If a component is successfully loaded in 503, the node and
processes are fetched (505) from the pattern, parse and
extraction database 308 to provide a set of patterns and

NOAC EX. 1018 Page 806

NOAC Ex. 1018 Page 807

us 6,651,099 B1
19

processes for that node to apply to the loaded packet
component. The parser subsystem 301 checks (506) to
determine if the fetch pattern—node operation 505 completed
successfully, indicating there was a pattern node that loaded
in 505. If not, step 511 moves to the next packet component.
If yes, then the node and pattern matching process are
applied in 507 to the component extracted in 503. Apattern
match obtained in 507 (as indicated by test 508) means the
parser subsystem 301 has found a node in the parsing
elements; the parser subsystem 301 proceeds to step 509 to
extract the elements.

If applying the node process to the component does not
produce a match (test 508), the parser subsystem 301 moves
(510) to the next pattern node from the pattern database 308
and to step 505 to fetch the next node and process. Thus,
there is an “applying patterns” loop between 508 and 505.
Once the parser subsystem 301 completes all the patterns
and has either matched or not, the parser subsystem 301
moves to the next packet component (511).

Once all the packet components have been the loaded and
processed from the input packet 302, then the load packet
will fail (indicated by test 504), and the parser subsystem
301 moves to build a packet signature which is described in
FIG. 6

FIG. 6 is a flow chart for extracting the information from
which to build the packet signature. The flow starts at 601,
which is the exit point 513 of FIG. 5. At this point parser
subsystem 301 has a completed packet component and a
pattern node available in a buffer (602). Step 603 loads the
packet component available from the pattern analysis pro-
ces of FIG. 5. If the load completed (test 604), indicating
that there was indeed another packet component, the parser
subsystem 301 fetches in 605 the extraction and process
elements received from the pattern node component in 602.
If the fetch was successful (test 606), indicating that there
are extraction elements to apply, the parser subsystem 301 in
step 607 applies that extraction process to the packet com-
ponent based on an extraction instruction received from that
pattern node. This removes and saves an element from the
packet component.

In step 608, the parser subsystem 301 checks if there is
more to extract from this component, and if not, the parser
subsystem 301 moves back to 603 to load the next packet
component at hand and repeats the process. If the answer is
yes, then the parser subsystem 301 moves to the next packet
component ratchet. That new packet component is then
loaded in step 603. As the parser subsystem 301 moved
through the loop between 608 and 603, extra extraction
processes are applied either to the same packet component
if there is more to extract, or to a diflerent packet component
if there is no more to extract.

The extraction process thus builds the signature, extract-
ing more and more components according to the information
in the patterns and extraction database 308 for the particular
packet. Once loading the next packet component operation
603 fails (test 604), all the components have been extracted.
The built signature is loaded into the signature buffer (610)
and the parser subsystem 301 proceeds to FIG. 7 to complete
the signature generation process.

Referring now to FIG. 7, the process continues at 701. The
Signature buffer and the pattern node elements are available
(702). The parser subsystem 301 loads the next pattern node
element. If the load was successful (test 704) indicating
there are more nodes, the parser subsystem 301 in 705
hashes the signature buffer element based on the hash
elements that are found in the pattern node that is in the

10

15

20

30

35

45

50

55

60

65

20

element database. In 706 the resulting signature and the hash
are packed. In 707 the parser subsystem 301 moves on to the
next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more
patterns of elements left (test 704). Once all the patterns of
elements have been hashed, processes 304, 306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the signature used by the analyzer subsystem
303.

Aparser record is loaded into the analyzer, in particular,
into the UFKB in the form of a UFKB record which is

similar to a parser record, but with one or more different
fields.

FIG. 8 is a flow diagram describing the operation of the
lookup/update engine (LUE) that implements lookup opera-
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a signature, the hash and at least
parts of the payload. In 802 those elements are shown in the
form of a UFKB-entry in the buffer. The LUE, the lookup
engine 314 computes a “record bin number" from the hash
for a flow-entry. A bin herein may have one or more
“buckets” each containing a flow-entry. The preferred
embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache,
all data accesses to records in the flowchart of FIG. 8 are

stated as being to or from the cache.
Thus, in 804, the system looks up the cache for a bucket

from that bin using the hash. If the cache successfully
retums with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entry’s
signature) from that in the bucket (i.e., the flow-entry
signature). If the signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process” and a
timestamp added. Step 811 indicates to the UFKB that the
UFKB—entry in 802 has a status of “found.” The “found”
indication allows the state processing 328 to begin process-
ing this UFKB element. The preferred hardware embodi-
ment includes one or more state processors, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment, a set ofstatistical operations
is performed by a calculator for every packet analyzed. The
statistical operations may include one or more of counting
the packets associated with the flow; determining statistics
related to the size ofpackets of the flow; compiling statistics
on diflerences between packets in each direction, for
example using times tamps; and determining statistical
relationships of timestamps of packets in the same direction.
The statistical measures are kept in the flow-entries, Other
statistical measures also may be compiled. These statistics
may be used singly or in combination by a statistical
processor component to analyze many different aspects of
the flow. This may include determining network usage
metrics from the statistical measures, for example to ascer-
tain the network’s ability to transfer information for this
application. Such analysis provides for measuring the qual-
ity of service of a conversation, measuring how well an
application is performing in the network, measuring network
resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine
updates one or more counters that are part of the flow—entry
(in the cache) in step 812. The process exits at 813. In our
embodiment, the counters include the total packets of the
flow, the time, and a diiferential time from the last timestamp
to the present timestamp.

It may be that the bucket of the bin did not lead to a
signature match (test 808). In such a case, the analyzer in

NOAC EX. 1018 Page 807

NOAC Ex. 1018 Page 808

US 6,651,099 B1
21

309 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match was found.

If no match was found, the packet belongs to a new (not
previously encountered) flow. In 806 the system indicates
that the record in the unified flow key buffer for this packet
is new, and in 812, any statistical updating operations are
performed for this packet by updating the flow—'entry in the
cache. The update operation exits at 813. A flow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus, the update/lookup engine ends with a UFIGB-entry
for the packet with a “new” status or a “found” slams.

Note that the above system uses a hash to which more
than one flow-entry can match. A longer hash may be used
that corresponds to a single flow-entry. In such an
embodiment, the flow chart of FIG. 8 is simplified as would
be clear to those in the art.

The Hardware System

Each of the individual hardware elements through which
the data flows in the system are now described with refer-
ence to FIGS. 10 and 11. Note that while we are describing
a particular hardware implementation of the invention
embodiment of FIG. 3, it would be clear to one skilled in the
art that the flow of FIG. 3 may alternatively be implemented
in software running on one or more general-purpose
processors, or only partly implemented in hardware. An
implementation of the invention that can operate in software
is shown in FIG. 14. The hardware embodiment (FIGS. 10
and 11) can operate at over a million packets per second,
while the software system of FIG. 14 may be suitable for
slower networks. To one sldlled in the art it would be clear

that more and more of the system may be implemented in
software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301,
shown here as subsystem 1000) as implemented in hard-
ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed
are stored. Memory 1002 is the extraction-operation data—
base memory, in which the extraction instructions are stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control
register 1005 via the internal buses 1003 and 1004. Note that
the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.

A packet enters the parsng system via 1012 into a parser
input butfer memory 1008 using control signals 1021 and
103, which control an input buffer interface controller
1022. The bufier 1008 and interface control 1022 connect to

a packet aaruisition device (not shown). The buffer acqui—
sition device generates a packet start signal 1021 and the
interface control 102 generates a next packet (i.e., ready to
receive data) signal 1023 to control the data flow into parser
input butfer memory 1008. Once a packet starts loading into
the bufler memory 1008, pattern recognition engine (PRE)
1006 carries out the operations on the input buffer memory
described in block 304 of FIG. 3. That is, protocol types and
associated headers for each protocol layer that exist in the
packet are determined.

The PRE searches database 1001 and the packet in buffer
1008 in order to recognize the protocols the packet contains.

10

15

20

30

35

45

50

55

60

65

22

In one implementation, the database 1001 includes a series
of linked lookup tables. Each lookup table uses eight bits of
addressing. The first lookup table is always at address zero.
The Pattern Recognition Engine uses a base packet olfset
from a control register to start the comparison. It loads this
value into a current offset pointer (COP). It then reads the
byte at base packet offset from the parser input buffer and
uses it as an address into the first lookup table.

Each lookup table returns a word that links to mother
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it returns the value to add to
the COP.

The PRE 1006 includes of a comparison engine. The
comparison engine has a first stage that checks the protocol
type field to determine if it is an 802.3 packet and the field
should be treated as a length. If it is not a length, the protocol
is checked in a second stage. The first stage is the only
protocol level that is not programmable. The second stage
has two full sixteen bit content addressable memories

(CAMs) defined for future protocol additions.
Thus, whenever the PRE recognizes a pattern, it also

generates a command for the extraction engine (also called
a “slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa-
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from
PRE 1006 to slicer 1007 in the form of extraction instruction
pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.e., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig-
nature and the process code is used to fetch the first
instruction from the instruction database 1002. Instructions
include an operation code and usually source and destination
ofl'sets as well as a length. The ofl'sets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy 11 bytes of data
unmodified from the input buffer 1008 to the output buffer
1010. The extractor contains a byte-Wise barrel shifter so
that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH.

This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element
(5) of the packet in the input bufier memory and transferring
the data to a parser output butfer memory 1010. Some
instructions also generate a hash.

The extraction engne 1007 and the PRE operate as a
pipeline. That is, extraction engine 1007 performs extraction
operations on data in input buffer 1008 already processed by
PRE 1006 while more (i.e., later arriving) packet informa-
tion is being simultaneously parsed by PRE 1006. This
provides high processing speed suflicient to accommodate
the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the
signature are extracted, the hash is loaded into parser output
bufier memory 1010. Any additional payload from the
packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output bufler
memory 1010, a data ready signal 1025 is asserted by

NOAC Ex. 1018 Page 808

NOAC Ex. 1018 Page 809

’5
it:2-L

v‘‘3,“..
a

.t
.i‘,"A

US 6,651,099 B1
23

analyzer interface control. The data from the parser sub-
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer subsystem that performs the functions of the
analyzer subsystem 303 of FIG. 3. The analyzer is initialized
prior to operation, and initialization includes loading the
state processing information generated by the compilation
process 310 into a database memory for the state processing,
called state processor instruction database (SPID) memory1109.

The analyzer subsystem 1100 includes a host bus interface
1122 using an analyzer host interface controller 1118, which
in turn has access to a cache system 1115. The cache system
has bi—directional access to and from the state processor of
the system 1108. State processor 1108 is responsible for
initializing the state processor instruction database memory
1109 from information given over the host bus interface
1122.

With the SPID 1109 loaded, the analyzer subsystem 1100
receives parser records comprising packet signatures and
payloads that come from the parser into the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. A UFKB record is essentially a
parser record; the UFKB holds records of packets that are to
be processed or that are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable status
flags to allow different processes to run concurrently.

Three processing engines run concurrently and access
records in the UFKB 1.103: the lockup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple-
mented by one or more finite state machines (FSM’s). There
is bi-directional access between each of the finite state

machines and the unified flow key bufier 1103. The UFKB
record includes a field that stores the packet sequence
number, and another that is filled with state information in
the form of a program counter for the state processor 1108
that implements state processing 328. The status flags of the
UFKB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the state
processor. The LUE done indicator is also used to indicate
what the next entry is for the LUE. There also is provided a
flag to indicate that the state processor is done with the
current flow and to indicate what the next entry is for the
state processor. There also is provided a flag to indicate the
state processor is transferring processing of the UFKB-entry
to the flow insertion and deletion engine.

Anew UFKB record is first processed by the LUE 1107.
A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
1110 after being processed by the state processor 1108 or
only by the LUE. Whether or not a particular engine has
been applied to any unified flow key bulfer entry is deter-
mined by status fields set by the engines upon completion.
In one embodiment, a status flag in the UFIGB-entry indi-
cates whether an entry is new or found. In other
embodiments, the LUE issues a flag to pass the entry to the
state processor for processing, and the required operations
for a new record are included in the SP instructions.

Note that each UFKB-entry may not need to be processed
by all three engines. Furthermore, some UFKB entries may
need to be processed more than once by a particular engine.

Each of these three engines also has bi—directional access
to a cache subsystem 1115 that includes a caching engine.

10

15

20

30

35

45

50

55

60

65

24

Cache 1115 is designed to have information flowing in and
out of it from five ditferent points within the system: the
three engines, external memory via a unified memory con-
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIE) 1122. The ana-
lyzer microprocessor (or dedicated logic processor) can thus
directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that
includes a set of content addressable memory cells (CAMS)
each including an addre$ portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the
cached flow-entries. The CAMS are arranged as a stack
ordered from a top CAM to a bottom CAM. The bottom
CAM’s pointer points to the least recently used (LRU) cache
memory entry. Whenever there is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, so the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an
associative cache with a true LRU replacement policy.

The LUE 1107 first processes a UFKB-entry, and basi-
cally performs the operation of blocks 314 and 316 in FIG.
3. A signal is provided to the LUE to indicate that a “new”
UFKB—entry is available. The LUE uses the hash in the
UFKB—entry to read a matching bin of up to four buckets
from the cache. The cache system attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107
looks at each bucket and compares it using the signature to
the signature of the UFKB-entry until there is a match or
there are no more buckets.

If there is no match, or if the cache failed to provide a bin
of flow-entries from the cache, a time stamp in set in the flow
key of the UFIGS record, a protocol identification and state
determination is made using a table that was loaded by
compilation process 310 during initialization, the status for
the record is set to indicate the LUE has processed the
record, and an indication is made that the UFIGB-entry is
ready to start state process'ng. The identification and state
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the state
processor which is kept by the UFKB for this UFKB-entry
and used by the state processor to start state processing for
the particular protocol. For example, the jump vector jumps
to the subroutine for processing the state.

If there was a match, indicating that the packet of the
UFKB-entry is for a previously encountered flow, then a
calculator component enters one or more statistical measures
stored in the flow-entry, including the timestamp. In
addition, a time difference from the last stored timestamp
may be stored, and a packet count may be updated. The state
of the flow is obtained from the flow-entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324. If that value indicates that no more classifi-

cation is required, then the status for the record is set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
state processor to a subroutine to state processing the
protocol, and no more classification is indicated in the
preferred embodiment by the jump vector being zero. If the
protocol identifier indicates more processing, then an indi-
cation is made that the UFKB—entry is ready to start state

NOAC Er. 1018 Rage-8;

NOAC Ex. 1018 Page 810

US 6,651,099 B1

25

processing and the status for the record is set to indicate the
LUE has processed the record.

The state processor 1108 processes information in the
cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the state
processor instruction database 1109 loaded by compiler
process 310 during initialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an
immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after a How Key isplaced in the UFIG3 by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the subroutine which
analyzes the protocol that was decoded.

The State Processor ALU (SPALU) contains all the
Arithmetic, Logical and String Compare functions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register.

The Search Engine in turn contains the Target Search
Register set, the Reference Search Register set, and a
Compare block which compares two operands by exclusive-
or—ing them together.

Thus, after the UFKB sets the program counter, a
sequence of one or more state operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFIGS—entry is
new or corresponding to a found flow—entry. This UFKB-
entry is retrieved from unified flow key buffer 1103 in 1301.
In 1303, the protocol identifier for the UFKB—entry is used
to set the state processor’s instruction counter. The state
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jump table. The jump table takes us to the instructions to use
for that protocol. Most instructions test something in the
unified flowkey buifer or the flow—entry if it exists. The state
processor 1108 may have to test bits, do comparisons, add or
subtract to perform the test.

The first state processor instruction is fetched in 1304
from the state processor instruction database memory 1109.
The state processor performs the one or more fetched
operations (1304) In our implementation, each single state
processor instruction is very primitive (e.g., a move, a
compare, etc.), so that many such instructions need to be
performed on each unified flow key bufler entry. One aspect
of the state processor is its ability to search for one or more
(up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine
component of the state processor responsive to special
searching instructions.

In 1307, a check is made to determine if there are any
more instructions to be performed for the packet. If yes, then
in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may

10

15

20

30

35

45

50

55

60

65

26

be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.

The next instruction to be performed is now fetched
(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions

to be performed.
At this stage, a check is made in 1309 if the processing on

this particular packet has resulted in a final state. That is, is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
and the flow is fully determined. If indeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Some final states may need to put
a state in place that tells the system to remove a flow—for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.

Once the appropriate flow removal instruction as specified
for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified flow key bulfer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the current flow-entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buficr entry at
1313.

Note that state processing updates information in the
unified flow key bufler 1103 and the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFKB
for the entry that the state processor is done. Furthermore, If
the flow needs to be inserted or deleted from the database of

flows, control is then passed on to the flow insertion/deletion
engine 1110 for that flow signature and packet entry. This is
done by the state processor setting another flag in the UFICB
for this UFKB-entry indicating that the state processor is
passing processing of this entry to the flow insertion and
deletion engine.

The flow insertion and deletion engine 1110 is responsible
for maintaining the flow—entry database. In panicular, for
creating new flows in the flow database, and deleting flows
from the database so that they can be reused.

The process of flow insertion is now described with the
aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine proce§es a UF'KB-entry that may be
new or that the state processor otherwise has indicated needs
to be created. FIG. 12 shows the case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFKB—entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main-
tained in the cache system 1115. If in 1205 the cache system
1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked “used” in the cache engine of cache 11.15
using a timestamp that is maintained throughout the process.
In 1209, the FIDE 1110 compares the bin and bucket record

flow signkture to the packet to verify that all the elements are
in place to complete the record. In 1211 the system marks the
record bin and bucket as “in process” and as “new” in the

NOAC EX. 1018 Page 810

NOAC Ex. 1018 Page 811

4.“;42b»,:2.‘

US 6,651,099 B1
27

cache system (and hence in the external memory). In 1212,
the initial statistical measures for the flow—record are set in

the cache system. This in the preferred embodiment clears
the set of counters used to maintain statistics, and may
perform other procedures for statistical operations requires
by the analyzer for the first packet seen for a particular flow. ,

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 and 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key bufier entry for
the packet is set as “drop,” indicating that the system cannot
process the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion

operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow
key bulfer entry by all of the engines required to access and
manage a particularpacket and its flow signature, the unified
flow key buffer entry is marked as “completed” That
element will then be used by the parser interface for the next
packet and flow signature coming in from the parsing and
extracting system.

All flow—entries are maintained in the external memory
and some are maintained in the cache 1115. The cache

system 1115 is intelligent enough to access the flow database
and to understand the data structures that exists on the other

side of memory interface 1123. The lockup/update engine
1107 is able to request that the cache system pull a particular
flow or “buckets” of flows from the unified memory con—
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache system once it is looked up by means of the lookup/
update engine request, and the flow insertion/deletion engine
1110 can create new entries in the cache system if required
based on information in the unified flow key butfer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are several interfaces to components of the system
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing system such as a micropro-
cemr or a multiplexer (MUX) system. Consequently, one
can connect the overall traffic classification system of FIGS.
11 and 12 into some other processing system to manage the
classification system and to extract data gathered by thesystem.

The memory interface 1123 is designed to interface to any
of a variety of memory systems that one may want to use to
store the flow—entries. One can use ditferent types of
memory systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic" interfaces. There is
a packet input interface 1012-—-a general interface that
Works in tandem with the signals of the input buffer interface
control 1022_ These are designed so that they can be used
‘flith any kind of generic systems that can then feed packet
information into the parser. Another generic interface is the
Interface ofpipes 103] and 1033 respectively 0‘1! 0f and in?“
h'“ ' “sterner. multiplexor and control regnlt’rfb iWS- “115

10

15

20

30

35

45

50

55

60

65

28

enables the parsing system to be managed by an external
system, for example a microprocessor or another kind of
external logic, and enables the external system to program
and otherwise control the parser.

The preferred embodiment of this aspect of the invention
is described in a hardware description language (HDL) such
as VHDL or Verilog. It is designed and created in an HDL
so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being
designed for purposes related to creating and analyzing
traffic within a network. Verilog or other HDL implemen—
tation is only one method of describing the hardware.

In accordance with one hardware implementation, the
elements shown in FIGS. 10 and 11 are implemented in a set
of six field programmable logic arrays (FPGA’s). The
boundaries of these FPGA’s are as follows. The parsing
subsystem of FIG. 10 is implemented as two FPGAS; one
FPGA, and includes blocks 1006, 1008 and 1012, parts of
1005, and memory 1001. The second FPGA includes 1002,
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the
unified look-up bufier 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor
instruction database memory 1109 is another FPGA Por-
tions of the state processor instruction database memory
1109 are maintained in external SRAM’s. The lookup/
update engine 1107 and the flow insertion/deletion engine
1110 are in another FPGA. The sixth FPGA includes the

cache system 1115, the unified memory control 1119, and the
analyzer host interface and control 1118.

Note that one can implement the system as one or more
VSLI devices, rather than as a set of application specific
integrated circuits (ASIC’s) such as FPGA’s. It is antici-
pated that in the future device densities will continue to
increase, so that the complete system may eventually form
a sub-unit (a “core") of a larger single chip unit.

Operation of the Invention
FIG. 15 shows how an embodiment of the network

monitor 300 might be used to analyZe traffic in a network
102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all
packets passing point 121 in either direction are supplied to
monitor 300. Monitor 300 comprises the parser sub-system
301, which determines flow signatures, and analyzer sub-
system 303 that analyzes the flow signature of each packet.
Amemory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer
1504, which might be any processor, for example, a general-
purpose computer, is used to analyze the flows in memory
324. As is conventional, host computer 1504 includes a
memory, say RAM, shown as host memory 1506. In
addition, the host might contain a disk. In one application,
the system can operate as an RMON probe, in which case the
host computer is coupled to a network interface card 1510
that is connected to the network 102.

The preferred embodiment of the invention is supported
by an optional Simple Network Management Protocol
(SNMP) implementation. FIG. 15 describes how one would,
for example, implement an RMON probe, where a network
interface card is used to send RMON information to the
network. Commercial SNMP implementations also are
available, and using such an implementation can simplify
the process of porting the preferred embodiment of the
invention to any platform.

In addition, MEB Compilers are available. An MTB
Compiler is a tool :1“: ... -ti. alt-glide: u... C“eation and
maintenance of proprietary MIB extensions.

NOAC EX. 1018 Page 811

NOAC Ex. 1018 Page 812

US 6,651,099 B1

29

Examples of Packet Elucidation

Monitor 300, and in particular, analyzer 303 is capable of
carrying out state analysis for packet exchanges that are
commonly referred to as “server announcement” type
exchanges. Server announcement is a process used to ease
communications between a server with multiple applications
that can all be simultaneously accessed from multiple cli—
ents. Many applications use a sewer announcement process
as a means of multiplexing a single port or socket into many
applications and services. With this type of exchange, mes-
sages are sent on the network, in either a broadcast or
multicast approach, to announce a server and application,
and all stations in the network may receive and decode these
messages. The me$ages enable the stations to derive the
appropriate connection point for communicating that par-
ticular application with the particular server. Using the
server announcement method, a particular application com-
municates using a service channel, in the form of a TCP or
UDP socket or port as in the [P protocol suite, or using a SAP
as in the Novell IPX protocol suite.

The analyzer 303 is also capable of carrying out “in—
stream analysis” of packet exchanges. The “in-stream analy—
sis” method is used either as a primary or secondary recog-
nition process. As a primary process, in-stream analysis
mists in extracting detailed information which will be used
to further recognize both the specific application and appli—
cation component. A good example of in-stream analysis is
any Web-based application. For example, the commonly
used PointCast Web information application can be recog-
nized using this process; during the initial connection
between a PointCast server and client, specific key tokens
exist in the data exchange that will result in a signature being
generated to recognize PointCast.

The in-stream analysis process may also be combined
with the server announcement process. In many cases
in-stream analysis will augment other recognition processes.
An example of combining in-stream analysis with server
announcement can be found in busine$ applications such as
SAP and BAAN.

“Se$ion tracking” also is lmown as one of the primary
processes for tracking applications in client/server packet
exchanges. The process of tracking se$ions requires an
initial connection to apredefined socket or port number. This
method of communication is used in a variety of transport
layer protocols. It is most commonly seen in the TCP and
UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a
server using a specific port or socket number. This initial
request will cause the server to create a TCP or UDP port to
exchange the remainder of the data between the client and

the server. The server then replies to the request of the client
using this newly created port. The original port used by the
client to connect to the server will never be used again
during this data exchange.

One example of session tracking is TFI‘P (Trivial File
Transfer Protocol), a version of the TCP/IP FTP protocol
“1a! has no directory or pasword capability. During the
Clitint/server exchange proce$ of TFI'P, a specific port (port
lmmber 69) is always used to initiate the packet exchange.
Thlls, when the client begins the process of communicating,
3 request is made to UDP port 69. Once the server receives
“115 request, a new port number is created on the server. The
Sfir‘v'er then replies to the client using the new port. In this
CXamplc, it is clear that in order to recognize TFI'P; network
monitor 300 analyzes the initial request from the client and
generates a signature for it. Monitor 300 uses that signature

10

15

30

35

45

50

55

60

65

30

to recognize the reply. Monitor 300 also analyzes the reply
from the server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data exchange.

Network monitor 300 can also understand the current
state of particular connections in the network. Connection—
oriented exchanges often benefit from state tracking to
correctly identify the application. An example is the com-
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data exchange is initiated, a TCP request for synchroni-
zation message is sent. This message contains a specific
sequence number that is used to track an acknowledgement
from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between
the client and the server. When communication is no longer
required, the client sends a finish or complete me$age to the
server, and the server acknowledges this finish request with
a reply containing the sequence numbers from the request.

. The states of such a connection—oriented exchange relate to
the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement proto—
cols vary. However, the basic underlying process remains
similar. A typical server announcement message is sent to
one or more clients in a network. This type of announcement
message has specific content, which, in another meet of the
invention, is salvaged and maintained in the database of
flow-entries in the system. Because the announcement is
sent to one or more stations, the client involved in a future

packet exchange with the server will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same
assumption.

Sun—RFC is the implementation by Sun Microsystems,
Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RPC),
a programming interface that allows one program to use the
services of another on a remote machine. A Sun-RFC

example is now used to explain how monitor 300 can
capture server announcements.

A remote program or client that wishes to use a server or
procedure must establish a connection, for which the RFC
protocol can be used.

Each server running the Sun-RPC protocol must maintain
a process and database called the port Mapper. The port
Mapper creates a direct association between a Sun-RFC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32—bit unique identifier assigned by ICANN (the
Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number ofparam-
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun—RFC server can present the mappings between a
unique program number and a specific transport socket
through the use of specific request or a directed announce-
ment. According to ICANN, port number 111 is asociated
with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown
as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper prom on the
sun RPC server receives the request, the specific mapping is
returned in a directed reply to the client.

1. Aclient (CLIENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER 2 (110 in FIG. 1) on port 111, with an RPC Bind

NOAC EX. 1018 Page 812

NOAC Ex. 1018 Page 813

US 6,651,099 Bl
31

Lookup Request (rpcBindLookup). TCP or UDP port 111 is
always associated Sun RPC. This request specifies the
program (as a program identifier), version, and might
specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the 5
program identifier and version identifier from the request.
The server also uses the fact that this packet came in using
the TCP transport and that no protocol was specified, and
thus will use the TCP protocol for its reply.

3. The server 110 sends a TCP packet to port number 111, 10
with an RPC Bind Lookup Reply. The reply contains the
specific port number (e.g., port number ‘port’) on which
future transactions will be accepted for the specific RPC
program identifier (e.g., Program ‘program’) and the proto-
col (UDP or TCP) for use.

It is desired that from now on every time that port number
‘port’ is used, the packet is associated with the application
program ‘program’ until the number ‘port’ no longer is to be
associated with the program ‘program’. Network monitor
300 by creating a flow-entry and a signature includes a
mechanism for remembering the exchange so that future
packets that use the port number ‘port’ will be associated by
the network monitor with the application program ‘pro-
gram’.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular pmgram——say
‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast
announcement of a particular association between an appli»
cation service and a port number, called a Sun RPC port-
MapperAnnouncement. Another, is when some server—say
the same SERVER 2—replies to some client—say CLIENT
l—requesting some portMapper assignment with a RPC
portMapper Reply. Some other client——say CLIENT
2—might inadvertently see this request, and thus know that
for this particular server, SERVER 2, port number ‘port’ is
associated with the application service ‘program’, It is
desirable for the network monitor 300 to be able to modate

any packets to SERVER 2 using port number ‘port’ with the
application program ‘program’,

FIG. 9 represents a dataflow 900 ofsome operations in the
monitor 300 of FIG. 3 for Sun Remote Procedure Call.

Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is com-
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG. 1) via the server’s interface to
the network 116. Further assume that Remote Procedure

Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server state creation step 904. Such RPC
bind lookup request includes values for the ‘program,’
‘version,’ and ‘protoeol’ to use, e.g., TCP or UDP. The
proce$ for Sun RPC analysis in the network monitor 300
includes the following aspects:

Proocss 909: Extract the ‘program,’ ‘version,’ and ‘pro-
Iocol’ (UDP or TCP).

_ Ef-Xtract the TCP or UDP port (procem 909) which is 111
Indicating Sun RPC.

Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paired
socket (i.e., dest for destination address, src for source
address). Decode ports and mapping, save ports with
soeket/addr key. There may be more than one pairing
per mapper packet. Form a signature (e.g., a key). A
flOW-cntry is created in database 324. The saving of the
"Quest is now complete.

15

3O

45

55

60

65

32

At some later time, the server (process 907) issues a RPC
bind lookup reply. The packet monitor 300 will extract a
signature from the packet and recognize it from the previ-
ously stored flow. The monitor will get the protocol port
number (906) and lookup the request (905). A new signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
signature in the flow-entry database. That signature now
may be used to identify packets associated with the server.

The server state creation step 904 can be reached not only
from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announce that it is able to
provide a particular application service. Embodiments of the
present invention preferably can analyre when an exchange
occurs between a client and a server, and also can track those
stations that have received the announcement of a service in
the network.

The RPC Announcement portMapper announcement 902
is a broadcast. Such causes various clients to execute a

similar set of operations, for example, saving the informa-
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the service
parameters.

Thus monitor 300 creates and saves all such states for

later classification of flows that relate to the particular
service ‘program’,

FIG. 2 shows how the monitor 300 in the example of Sun
RPC builds a signature and flow states. Aplurality ofpackets
206—209 are exchanged, e.g., in an exemplary Sun Micro-
systems Remote Procedure Call protocol. Amethod embodi-
ment of the present invention might generate a pair of flow
signatures, “signature-1” 210 and “signature-2” 212, from
information found in the packets 206 and 207 which, in the
example, correspond to a Sun RPC Bind Lookup request and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup-
pose packet 206 corresponds to such a request sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEYl 230 in FIG. 2) will also contain
these two fields, so the parser subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG.
2, if an address identifies the client 106 (shown also as 202),
the label used in the drawing is “C1”. If such address
identifies the server 110 (shown also as server 204), the label
used in the drawing is “S1”. The first two fields 214 and 215
in packet 206 are “S,” and “C1” because packet 206 is
provided from the server 110 and is destined for the client
106. Suppose for this example, “S,” is an address numeri-
cally less than address “C1”. Athird field “pl” 216 identifies
the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are
used to communicate port numbers that are used. The
conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify
a source-port pattern, and the hash pattern in field 218 is
used to identify the destination-port pattern. The order
indicates the client—server message direction. A sixth field
denoted “i1" 219 is an element that is being requested by the
client from the server. A seventh field denoted “51a” 220 is
the service requested by the client from server 110. The

NOAC EX. 1018 Page 813

NOAC Ex. 1018 Page 814

33.

US 6,651,099 B1
33

following eighth field “QA” 221 (for question mark) indi-
cates that the client 106 wants to know what to use to access

application “sla”. A tenth field “OF” 223 is used to indicate
that the client wants the sewer to indicate what protocol to
use for the particular application.

Packet 206 initiates the sequence of packet exchanges,
e.g., a RPC Bind Lookup Request to SERVER 2. It follows
a well-defined format, as do all the packets, and is trans-
mitted to the sewer 110 on a well-lmown service connection

identifier (port 111 indicating Sun RPC).
Packet 207 is the first sent in reply to the client 106 from

the server. It is the RPC Bind Lookup Reply as a result of
the request packet 206.

Packet 207 includes ten fields 224—233. The destination

and source addresses are carried in fields 224 and 225, e.g.,
indicated “C1” and “8,”, respectively. Notice the order is
now reversed, since the client-server message direction is
from the server 110 to the client 106. The protocol “p’” is
used as indicated in field 226. The request “i”’ is in field 29.
Values have been filled in for the application port number,
e.g., in field 233 and protocol “p2” in field 233.

The flow signature and flow states built up as a result of
this exchange are now described. When the packet monitor
300 sees the request packet 206 from the client, a first flow
signature 210 is built in the parser subsystem 301 according
to the pattern and extraction operations database 308. This
signature 210 includes a destination and a source address
240 and 241. One aspect of the invention is that the flow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best spread of signatures and hashes for the
lookup operations. In this case, therefore, since we assume
“Sl”<“Cl”, the order is address “S," followed by client
address “C1”. The next field used to build the signature is a
protocol field 242 extracted from packet 206’s field 216, and
thus is the protocol “p1". The next field used for the
signature is field 243, which contains the destination source
port number shown as a crosshatched pattern from the field
218 of the packet 206. This pattern will be recognized in the
payload of packets to derive how this packet or sequence of
packets exists as a flow. In practice, these may be TCP port
numbers, or a combination of TCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p1 that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind Lookups, are
directly determinable (“known”) at the parser level. So in
this case, the signature KEY-1 points to a known application
denoted “a” (Sun RPC Bind Lookup), and a next—state
that the state processor should proceed to for more complex
recognition jobs, denoted as state “stD” is placed in the field
245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow
Signature is again built by the parser. This flow signature is
identical to KEY-1. Hence, when the signature enters the
analyzer subsystem 303 from the parser subsystem 301, the
Complete flow-entry is obtained, and in this flow-entry
indicates state “stD”. The operations for state “stD” in the
State processor instruction database 326 instructs the state
Processor to build and store a new flow signature, shown as
m2 (212) in FIG. 2. This flow signature built by the state
processor also includes the destination and a source

addresses 250 and 251, respectively, for server “SI” fol-
lowed by (the numerically higher address) client “C1”. A

10

15

20

30

35

4s

50

55

60

65

34

protocol field 252 defines the protocol to be used, e.g., “p2"
which is obtained from the reply packet. Afield 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RPC, and field 254 indicates
this application “a2”. A next-state field 255 defines the next
state that the state processor should proceed to for more
complex recognition jobs, e.g., a state “stl”. In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a2”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
service requested in the original Bind Lookup Request, and
each will be recognized because the signature KEY-2 will be
built in each case.

The two flow signatures 210 and 212 always order the
destination and source address fields with server “S,” fol-
lowed by client “C1". Such values are automatically filled in
when the addresses are first created in a particular flow
signature. Preferably, large collections of flow signatures are
kept in a lookup table in a least—to—highest order for the best
spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of
packets, e.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and source address S1 and C1, in a pair of
fields 260 and 261. A field 262 defines the protocol as “p2”,
and a field 263 defines the destination port number.

Some network-server application recognition jobs are so
simple that only a single state transition has to occur to be
able to pinpoint the application that produced the packet.

Others require a sequence of state transitions to occur in
order to match a lmown and predefined climb from state-
to-state.

Thus the flow signature for the recognition of application
“a” is automatically set up by predefining what packet-
exchange sequences occur for this example when a rela-
tively simple Sun Microsystems Remote Procedure Call
bind lookup request instruction executes. More complicated
exchanges than this may generate more than two flow
signatures and their corresponding states. Each recognition
may involve setting up a complex state transition diagram to
be traversed before a “final” resting state such as “st,” in
field 255 is reached. All these are used to build the final set

of flow signatures for recognizing a particular application in
the future.

Embodiments of the present invention automatically gen-
erate flow signatures with the necessary recognition patterns
and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen-
erating state transitions to search for. Applications and
protocols, at any level, are recognized through state analysis
of sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of
devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as
used herein encompages all such devices and a computer
network as used herein includes networks of such comput«ers.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the an after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true spirit and scope of the
present invention.

NOAC EX. 1018 Page 814

NOAC Ex. 1018 Page 815

i
Q

US 6,651,099 B1
35

What is claimed is:

l. A packet monitor for examining packets passing
through a connection point on a computer network in
real—time, the packets provided to the packet monitor via a
packet acquisition device connected to the connection point,
the packet monitor comprising:

(a) a packet-bufler memory configured to accept a packet
from the packet acquisition device;

(b) a parsing/extraction operations memory configured to
store a database of parsing/extraction operations that
includes information describing how to determine at
least one of the protocols used in a packet from data in
the packet;

(c) a parser subsystem coupled to the packet bufier and to
the pattern/extraction Operations memory, the parser
subsystem configured to examine the packet accepted
by the buffer, extract selected portions of the accepted
packet, and form a funcuon of the selected portions
sufiicient to identify that the accepted packet is part of
a conversational flow-sequence;

(d) a memory storing a flow-entry database including a
plurality of flow-entries for conversational flows
encountered by the monitor;

(e) a lookup engine connected to the parser subsystem and
to the flow-entry database, and configured to determine
using at least some of the selected portions of the
accepted packet if there is an entry in the flow—entry
database for the conversational flow sequence of the
accepted packet;

(t) a state patterns/operations memory configured to store
a set of predefined state transition patterns and state
operations such that traversing a particular transition
pattern as a result of a particular conversational flow—
sequence of packets indicates that the particular con-
versational flow—sequence is associated with the opera-
tion of a particular application program, visiting each
state in a traversal including carrying out none or more
predefined state operations;

(g) a protocol/state identification mechanism coupled to
the state patterns/operations memory and to the lockup
engine, the protocol/state identification engine config—
ured to determine the protocol and state of the conver-
sational flow of the packet; and

(h) a state processor coupled to the flow-entry database,
the protocol/state identification engine, and to the state
patterns/operations memory, the state processor, con-
figured to carry out any state operations specified in the
state patterns/operations memory for the protocol and
state of the flow of the packet,
the carrying out of the state operations furthering the

process of identifying which application program is
associated with the conversational flow-sequence of
the packet, the state processor progressing through a
series of states and state operations until there are no
more state operations to perform for the accepted
packet, in which case the state proce$or updates the
flow-entry, or until a final state is reached that
indicates that no more analysis of the flow is
required, in which case the result of the analysis is
announced.

10

15

20

30

35

45

50

55

60

36

2. A packet monitor according to claim 1, wherein the
flow-entry includes the state of the flow, such that the
protocol/state identification mechanism determines the state
of the packet from the flow-entry in the case that the lockup
engine finds a flow-entry for the flow of the accepted packet.

3. Apacket monitor according to claim 1, wherein the
parser subsystem includes a mechanism for building a hash
from the selected portions, and wherein the hash is used by
the lockup engine to search the flow—entry database, the hash
designed to spread the flow-entries across the flow—entry
database.

4. A packet monitor according to claim 1, further com-
prising:

a compiler processor coupled to the parsing/extraction
operations memory, the compiler processor configured
to run a compilation process that includes:
receiving commands in a high-level protocol descrip-

tion language that describe the protocols that may be
used in packets encountered by the monitor, and

translating the protocol description language com—
mands into a plurality of parsing/extraction opera—
tions that are initialized into the parsing/extraction
operations memory.

5. A packet monitor according to claim 4, wherein the
protocol description language ccmmamb also describe a
correspondence between a set of one or more application
programs and the state transition patterns/operations that
occur as a result of particular conversational flow-sequences
associated with an application program, wherein the com-
piler processor is also coupled to the state patterns/
operations memory, and wherein the compilation process
further includes translating the protocol description lan-
guage commands into a plurality of state patterns and state
operations that are initialized into the state patterns/
operations memory.

6. A packet monitor according to claim 1, further com-
prising:

a cache memory coupled to and between the lockup
engine and the flow-entry database providing for fast
access of a set of likely—to-be-accessed flow-entries
from the flow-entry database.

7. A packet monitor accordmg to claim 6, wherein the
cache functions as a fully associative, least—recently-used
cache memory.

8. A packet monitor according to claim 7, wherein the
cache fimctions as a fully associative, least-recently-used
cache memory and includes content addresable memories
configured as a stack.

9. Apacket monitor according to claim 1, wherein one or
more statistical measures about a flow are stored in each

flow-entry, the packet monitor further comprising:
a calculator for updating the statistical measures in a

flow~entry of the accepted packet.
10. Apacket monitor according to claim 9, wherein, when

the application program of a flow is determined, one or more
network usage metrics related to said application and deter—
mined fiom the statistical measures are presented to a user
for network performance monitoring.

t t t t t

NOAC EX. 1018 Page 815

NOAC Ex. 1018 Page 816

(12) United States Patent

(54)

(75)

(73)

(‘)

(21)

(22)

(51)
(52)
(58)

(56)

Muller et al.

llllllllllllllllllllll|||l||||l||||||llllllllllIlllllllll|||||||||||||||||l
U SOO6650640B1

(10) Patent No.: US 6,650,640 B1 C4 9‘ "z" [754.

METHOD AND APPARATUS FOR
MANAGING A NETWORK FLOW IN A HIGH
PERFORMANCE NETWORK INTERFACE

Inventors: Shimon Muller, Sunnyvale, CA (US);
Denton E. Gentry, J11, Fremont, CA
(US)

Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

App]. No.: 09/259,932

Filed: Mar. 1, 1999

Int. Cl.7 .. G06F 13/00
 . 370/392; 370/473
Field of Search 370/275, 230,

370/231, 235, 236, 241, 389, 392, 401,
427, 428, 473

References Cited

U.S. PMENT DOCUIVIENTS

4,858,32 A ‘ 8/1989 Dial et al. 370/465
5,414,704 A 5/1995 Spinney 370/60
5,5Ki,940 A 12/1996 Vidrascu et a1. 380/49

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

O 447 725 9/1991 GO6F/15/16
0 573 739 12/1993 H04L/12/56
0 853 411 7/1998 .. H041/29/06
0 865 180 9/1998 .. H04U12/56
09247172 ‘ 9/1997 .. 1104111me

W0 95/142159 5/1995 GOGFN/US
W0 97/28505 8/1997 .. GO6F/l3/14
W0 99/00737 1/1999 GOéF/13/m
WO 99/00945 1/1999 H04U12/46
WO 99/00948 1/1999 H04L’12/56
WO 99/00949 1/1999 H04U12/56

/\
alumzuran«an:

India.“-

‘ustwowt ‘NTERFACE Rem uncurr too

(45) Date of Patent: Nov. 18, 2003

6 +504 5“? (V;

i: ,
OTHER PUBLICATIONS 3V? ...' q

‘ T’vt

Newman, Peter, et al., “1P Switching and Gigabit Routers” C h 0
IEEE Communications Magazine, vol. 335, No. 1, Jan. W a A; Y ./ ”o "A,
1997, pp. 64-69.

1.1: Faucheur, Francois, “IETF Multiprotocol Label Switch— (7 \/C6
0 a

ing (MPLS) Architecture” IEEE International Conference, 1 h , , ‘
Jun. 22, 1998 pp. 6—15.
Hallsall,F., “Data Communications, Computer Networks
and Open Systems”, Electronic Systems Engineering Series,
1996, pp. 451-452.
Cole, R., et al., “1P Over ATM: A Framework Document”
IETF Online, Apr. 1996, pp. 1—31.

(List continued on next page.)

Primary Examiner—Wellington Chin
Assistantt Examiner—William Schultz

(74) Attomey, Agent, or Firm—Park, Vaughan & Fleming,
LLP

(57)

A system and method are provided for managing informa—
tion concerning a network flow comprising packets sent
from a source entity to a destination entity served by a
network interface. A network flow is established for each

datagram sent from the source entity to the destination
entity. A flow key, identifying the source and destination
entities, is stored in a data structure along with information
concerning validity of the flow, sequence of data in the flow
datagram and how recently the flow was active. Once a flow
is established, it is updated each time a packet containing
data from the flow‘s datagram is received. When such a
packet is received, an operation code is generated for
identifying whether the packet is suitable for a particular
network interface function. An operation code may, for
example, indicate that a packet contains data to be
re—assembled with other data from the same flow. Another

operation code may indicate that a packet is not suitable for
data reassembly. Another operation code may specify that
the packet is simply a control packet, has no data, or that the
packet was received out of order.

ABSTRACT

59 Claims 49 Drawing Sheets

no-xnoz-mx

NOAC Ex. 1018 Page 817

' US 6,650,640 B1
Page 2

US. PATENT DOCUMENTS

5,684,954 A 11/1997 Kaisetswerth et a1. 295/2002
5,742,765 A " 4/1998 Wong et al. 709/30
5,748,905 A 5/1998 Hauser et a1. 395/200.79
5,758,089 A 5/1998 Gentry et a]. . 395/20064
5,778,180 A 7/1998 Gentry et al. 395/200.42
5,778,414 A 7/1998 Winter et al. 711/5
5,781,549 A ' 7/1998 Dai 370/398
5,787,%5 A 7/1998 Parlan et a1. 395/200.63
5,793,954 A 8/1998 Baker et a]. . . 395/2008
5,818,842 A " 10/1998 Burwell et al. .. 370/250
5,848,067 A ’ 12/1998 Osawa et al. . 370/394
5,870,394 A 2/1999 Oprea
5,949,786 A ‘ 9/1999 Bellenger . .
6,157,955 A ‘ 12/2000 Narad et a1.

OTHER PUBLICATIONS

Pending US. patent application Ser. No. 09/259,445,
entitled “Method and Apparatus for Distn'buting Network
Processing on a Multiprocessor Computer,” by Shimon
Muller et al., filed Mar. 1, 1999.
Pending US. patent application Ser. No. 09/260,367,
entitled “Method and Apparatus for Suppressing Interrupts
in a High—Speed Network Environment,” by Denton Gentry,
filed Mar. 1, 1999.
Pending US. patent application Ser. No. 09/259,736,
entitled “Method and Apparatus for Modulating Interrupts in
a Network Interface," by Denton Gentry et al., filed Mar. 1,
1999.

Pending US. patent application Ser. No. 09/259,765,
entitled “A High Performance Network Interface,” by Shi-
mon Muller et al., filed Mar. 1, 1999.
Pending US. patent application Ser. No. 09/260,618,
entitled “Method and Apparatus for Classifying Network
'l'raflic in a High Performance Network Interface,” by Shi-
mon Muller et al., filed Mar. 1, 1999.

Pending US. patent application Ser. No. 09/260,324,
entitled “Method and Apparatus for Dynamic Packet Batch-
ing with a High Performance Network Interface,” by Shi-
mon Muller et al., filed Mar. 1, 1999.

Pending US. patent application Ser. No. 09/258,952,
entitled “Method and Apparatus for Early Random Discard
of Packets,” by Shimon Muller et al., filed Mar. 1, 1999.

Pending US. patent application Ser. No. 09/260,333,
entitled “Method andApparatus for Data Re~Assembly with
a High Performance Network Interface,” by Shimon Muller
et al., filed Mar. 1, 1999.

Pending US. patent application Ser. No. 09/258,955,
entitled “Dynamic Parsing in a High Performance Network
Interface,” by Denton Gentry, filed Mar. 1, 1999.

Pending US. patent application Ser. No. 09/259,936,
entitled “Method and Apparatus for Indicating an Interrupt
in a Network Interface,” by Denton Gentry et al., filed Mar.
1, 1999.

Toong Shoon Chan, et al., “Parallel Architecture Support for
High—Speed Protocol Processing,” Feb. 1, 1997, Micropro-
cessors And Micmsysrems, vol. 20, No. 6, pp. 325—339.

Sally Floyd & Van Jacobson, Random EarIy Detection
Gateways for Congestion Avoidance, Aug., 1993, IEEE/
ACM Transactions on Networking.

US. patent application Ser. No. 08/893,862, entitled
“Mechanism for Reducing Interrupt Overhead in Device
Drivers,” filed JuL 11, 1997, inventor Denton Gentry.

“ cited by examiner

NOAC Ex. 1018 Page 818

US 6,650,640 B1Sheet 1 of 49Nov. 18, 2003
US. Patent

ZLul—BOEZX v-ON

vo—@5005.025mm00mm.EOQ.5n_z_wo—mmwm<ummo<wImowmmw<z<2mm<m<H<O30......

v:m0k<mmzm0EDmXOmION:mOHDmEHWE9.54orFmw<m<H<D30:

<_..9...—

w:mamDOmeo<mw:MDMDOJOmeOU«NF“500.202.I0._.<mkmxo<mo_s_<z>o

owrwz_02m<20
 CD>-U)I—LIJ2IOCDI— UOED—DI—LUO:

NOAC Ex. 1018 Page 819

' vvr‘ 1‘
uni); LatL‘Ifl‘Z. NOV. 18, JUUJ oucet A Of 49 . {J5 6,039,641} B1 7,

RECEIVE PACKET AT IPP
MODULE FROM NETWORK

NOTIFY HOST COMPUTER
OF PACKET TRANSFER

132 148

PARSE PACKET:

GENERATE FLOW KEY,
RETRIEVE HEADER INFO

134

STORE PACKET IN HOST
MEMORY

146

 STORE/UPDATE FLOW IN

FLOW DATABASE; ASSIGN
OPERATION CODE

136

SEARCH FOR RELATED

PACKERS)
144

YES

NO

ASSIGN PROCESSOR
NUMBER FOR MULTI—
PROCESSOR SYSTEM

138

PACKET
READY TO BE

TRANSFERRED?
142

POPULATE PACKET AND
CONTROL QUEUES

140

FIG. 1B

NOAC Ex. 1018 Page 820

, ‘ U.S_ fiPatent

HEADER PORTION
204

Nov. 13, 2003 Sheet3 of49

LAYER ONE HEADER
210

LAYER TWO HEADER
212

LAYER THREE HEADER
214

LAYER FOUR HEADER
216

DATA PORTION
202

TRAILER 206

PACKET200

US 6,650,640 B1

‘1~g;n?-65:55:":
"wa<

NOAC Ex. 1018 Page 821

US. Patent Nov. 18,2003 Sheet ‘4 of 49 ‘7 '7 {$6,650,640 B1

HEADER PARSER 106

HEADER MEMORY IPP
302 MODULE

INSTRUCTION MEMORY
306

IPP
MODULE

FLOW '

DATABASE
MANAGER

PARSER
304

NOAC Ex. 1018 Page 822

UN. 1 audit Nov. 18, mos Sheet-5 of 49 US 0,030,040 B1 - 1%

START ‘ 1
400 ‘5.

i

'}

COPY PACKET HEADER I
402 f

l

:1 5

VLAN TAGGED YES YES
HEADER?

404

N0 NO

II

OTHER/UNKNOWN 0 « E. {

ETHERNET

ETHERNET OR
802.3 HEADER?

408

VERIFY N0
LLC SNAP

ENCAPSULATION?
410

, "3"4 IPv4 OR IPv6

HEADER?
412

FIG. 4A

NOAC Ex. 1018 Page 823

W U.S. Patent Nov. 18,2003 Sheet 6 0f 49 us 6,650,640 151

GENERATE CONTROL INDICATOR
428

SET NO_ASS|ST FLAG FOR
PACKET

430

~ FIG. 4B

NOAC Ex. 1018 Page 824

fir...

C..5:2:22.5.38minin3
FLOW DATABASE 110

Iamsaga?

FLOW ACTIVITY
INDICATOR 524

FLOW
SEQUENCE #

522

ASSOCIATED PORTION 504

FLOW VALIDITY
INDICATOR 520

j
505

FIG. 5

N
0.6Tm

PACmmTITOS
ED.

DPORT 514

ASSOCIATIVE PORTION 502

IP DESTINATION TCP SOURCE
ADDRESS 512

IP SOURCE
ADDRESS 510

NOAC Ex. 1018 Page 825

US. Patent Nov. 18, 2003 Sheet 8 0f 49 US 6,650,640 B1

START
600

RECEIVE SEARCH
REQUEST

602

SEARCH FLOW DATABASE
606

FLAGGED FOR NO
ASSISTANCE?

604

 MATCH FLOW
KEY IN DATABASE?

608

RETRIEVE FLOW # AND
FLOW DATA

610

 ATTEMPT
TO ESTABLISH

CONNECTION?
614

DOES PACKET
CONTAIN DATA?

612

FIG. 6A

NOAC Ex. 1018 Page 826

US. Patent

FLOW

SEQUENCE
NUMBERS MATCH?

616

Nov. 18,2003

NO

YES

NO
FLAGS
OKAY?

618

YES

MORE DATA
TO FOLLOW?

620

YES

UPDATE FLOW SEQUENCE
NUMBER & ACTIVITY

INDICATOR; SET FLOW
VALIDITY INDICATOR

62

SELECT OPCODE 4 FOR

Sheet 9 0f 49 US 6,650,640 B1

 TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
628

 TEAR DOWN FLOW;
SELECT OPCODE 3 FOR

PACKET
626

PAC KET

624

FIG. 6B

NOAC Ex. 1018 Page 827

US. Patent N0v.18,2003 Sheet 10 of 49 US 6,650,640 B1

REPLACE FLOW:

SET FLOW SEQUENCE #;
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY
634

MORE DATA
TO FOLLOW?

630

TEAR DOWN FLOW;
SELECT OPCODE 2 FOR

PACKET
632

 SELECT OPCODE 7 FOR

PACKET
636

TEAR DOWN FLOW;
SELECT OPCODE 1 FOR

PACKET
640

SELECT OPCODE 0 FOR
PACKET

644

NO

UPDATE AS REQUIRED:

FLOW SEQUENCE #; YES 7
ACTIVITY INDICATOR; FLAGgagKAY.VALIDITY INDICATOR

642

FIG. 6C

NOAC EX. 1018 Page 827

NOAC Ex. 1018 Page 828

US. Patent Nov. 18, 2003 Sheet 11 0f 49 US 6,650,640 B1

NO YES

FLOW
DATABASE FULL?

646

RETRIEVE FLOW # OF
LEAST RECENTLY ACTIVE

FLOW
650

RETRIEVE LOWEST FLOW #
HAVING AN INVALID FLOW

INDICATOR
648

NO

DOES PACKET
CONTAIN DATA?

652

 MORE DATA

TO FOLLOW?
654

NOAC Ex. 1018 Page 829

US. Patent Nov. 18, 2003 Sheet 12 of 49 Us 6,650,640 B1

NO FLOW YES
DATABASE FULL?

658

REPLACE FLOW:

SET FLOW SEQUENCE #;
SET ACTIVITY INDICATOR;

SET FLOW VALIDITY
664

ADD FLOW:

SET FLOW SEQUENCE #.

SET ACTIVITY INDICATOR;
SEr FLOW VALIDITY

660

SELECT OPCODE 7 FOR
PACKET

666

 SELECT OPCODE 6 FOR
PACKET

662

SELECT OPCODE 5 FOR

PACKET
668

FIG. 6E

NOAC Ex. 1018 Page 830

7;”.

g,m

US. Patent Nov. 18, 2003

START
700

RECEIVE AND PARSE
PACKET

702

LOAD DISTRIBUTOR
RECEIVES FLOW KEY

704

HASH FLOW KEY
706

 PERFORM MODULUS
OPERATION ON HASH

VALUE
708

STORE PACKET AND

Sheet 13 0f 49

US 6,650,640 B1

PROCESS PACKET
718

ALERT SELECTED
PROCESSOR

716

 PACKET INFORMATION
STORED FOR PROCESSING
BY SELECTED PROCESSOR

714

ALERT HOST COMPUTER
71 2

PROCESSOR NUMBER
710

FIG. 7

NOAC Ex. 1018 Page 831

US. Patent Nov. 18, 2003 Sheet 14 of 49 US 6,650,640 B1

PACKET QUEUE 116

ENTRY 800 PACKEI' PORTION 802
READ

POINTER g FILLER 8023
810 CHECKSUM PACKET DIAGNOSTIC AND STATUS

VALUE LENGTH INFORMATION
804 806 808

WRITE
POINTER

812

FIG. 8

NOAC EX. 1018 Page 831

NOAC Ex. 1018 Page 832

V33

U-S- Patent NOV- 18, 2003 Sheet 15 0f 49 US 6,650,640 B1

CONTROL QUEUE 118 PACKET
#

ENTRY 900 CPU # NO_ OP. PAYLOAD PAYLOAD OTHER l
902 ASSIST CODE OFFSET SIZE STATUS 0904 906 908 910 912

m1READ

.5 POINTER‘ 914

N

A ; WRITE
0. POINTER
‘ 916

255

FIG. 9

'numi’umumzlhzmm _. » _ H‘s AfifltfixML. ~

NOAC Ex. 1018 Page 833

DMA ENGINE 120

FREE RING
MANAGER

DESCRIPTOR I
CACHE l

‘CCWfiEEfi6fi]
DESCWPTORI

CACHE

I
I
I
I

I. _______ J

mm—IC'DZOO—IU)OI
COMPLETION

RING MANAGER
1014

FLOW RE-

ASSEMBLY
TAB LE

1 004

MTU TABLE
1008 DMA MANAGER

1002
FIG. 10

I D
I

' I
I DYNAMm i

PACKET I
BATCHING

MODULE I
122 I

I
I

CONTROL
QUEUE

118

PACKET
QUEUE

116

mama'S'fl

£002‘81'AON

6171091139118

1210179‘099‘9Sfl

NOAC Ex. 1018 Page 834

<N_,.GE
00.2.Mmiizmn.mmumsm

US 6,650,640 B1

94f0811tcehSm02om,11v.0Ntn

w«5SuiEN?3mm”magmammtnmDamxmoz.>55285moEEowmoHE;SOrNr><mm<awn—“Smmum”.

 00$.02?.EOE—mommammmfi

NOAC Ex. 1018 Page 835

E:
COMPLETION DESCRIPTOR 1222 .m

"U
a:

I"?

DESCRIPTOR sfiféfigs DATA OFFSET DATA BUFFER DATA SIZE \\ 5»
TYPE 1238 1234 INDEX 1232 1230 x

1236 \

z

HEADER HEADER BUFFER HEADER SIZE NEXT BUFFER ,3

OFFSET 1246 INDEX 1244 1242 INDEX 1240 g;

/ COMPLETION ".5
LAYER THREE PROCESSOR FLOW ’ DESCR'PTOR mm 8NO ASSIST OPERATION / 1220

HEADER OFFSET IDENTIFIER SICNAL1254 CODE1252 NUMBER /
1258 1256 1250 ’2

/ é?OWNERSHIP PACKET / 6

OTHER 1266 INDICATOR LENGTH 3:58:393 / E
1264 1262 / e

aIn.
.A
\5

C
U)

9‘

a

FIG 123 9
§
55H

gwugwaE—méufm~T’EEX31‘0‘18 Page‘835““ ‘3‘“ 1"—

NOAC Ex. 1018 Page 836

“-1

US. Patent Nov. 18, 2003 Sheet 20 of 49 US 6,650,640 B1 I

—v---AWWWWW1"‘ START
1300

I
I PACKET STORED IN DATA -

QUEUE NO
1302

YES OPERATION
CODE 5?

I 1318

1 READ PACKET ENTRY
FROM CONTROL QUEUE

1304

NO

YES OPERATION
FETCH FLOW NUMBER CODE 4?

1306 1316

.-,

OPERATION
CODE 0?

1308

NO

OPERATTON

CODE 1?
1310

YES i a YES
OPERATION

CODE 3?
1314

NO

OPERATION

CODE 2?
1312YES H 3 YES

NO

FIG. 13

NOAC Ex. 1018 Page 837

US Patent NOV- 18, 2003 Sheet 21 of 49 US 6,650,640 B1

NO
HEADER

BUFFER VALID? PREPARE H1E;(\JDZER BUFFER
1400

YES

2 COPY PACKET INTO
HEADER BUFFER

1404

WRITE COMPLETION
DESCRIPTOR

1406

UPDATE HEADER BUFFER
TABLE

1412

HEADER
BUFFER FULL?

1408

INVALIDATE HEADER
BUFFER

1410

END
1499

NOAC Ex. 1018 Page 838

US. Patent Nov. 18, 2003 Sheet 22 0f 49 US 6,650,640 B1

NO

HEADER
BUFFER VALID?

1500

PREPARE HEADER BUFFER
1502

YES

, 2 COPY PACKET INTO
‘ HEADER BUFFER

1504

FLOW

WRgEs%%'IA:TL<3ERION RE—ASSEMBLY
, § 1508 BUFFER VALID?1506

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1510

WRITE COMPLETION
DESCRIPTOR

1512

HEADER
BUFFER FULL?

1514

UPDATE HEADER BUFFER

TABLE
1518

INVALIDATE HEADER

BUFFER
1516

FIG. 15

NOAC Ex. 1018 Page 839

U.S. Patent Nov. 18, 2003 Sheet 23 of 49 US 6,650,640 B1

FLOW
RE-ASSEMBLY

BUFFER VALID?
1600

WRITE COMPLETION
DESCRIPTOR

1602

INVALIDATE FLOW RE-
ASSEMBLY BUFFER

1604

a
k
g.
g.

E;

SMALL PACKET?
1606

JUMBO PACKET?

1608

FIG. 16A

,- “.19!qu ‘ , _...,.... a . , .
I " ' ’ "‘m‘m’ "’" ' v? 7.. _,- {Jinn m q A; ,w. Mmmnwpm- < u.

NOAC Ex. 1018 Page 840

US. Patent Nov. 18, 2003 Sheet 24 of 49 US 6,650,640 B1

HEADER
BUFFER VALID?

1610

PREPARE HEADER BUFFER
1612

COPY PACKET INTO

HEADER BUFFER
1614

WRITE COMPLETION

DESCRIPTOR
1616

UPDATE HEADER BUFFER
TABLE

1622

HEADER
BUFFER FULL?

1618

INVALIDATE HEADER
BUFFER

1620

FIG. 1GB

NOAC Ex. 1018 Page 841

US Patent NOV- 18, 2003 Sheet 25 of 49 US 6,650,640 B1

NO
MTU

BUFFER VALID? PREPARE1héIJZU BUFFER
1630

YES

COPY PACKET INTO MTU
BUFFER

1634

WRITE COMPLETION
DESCRIPTOR

1636

UPDATE MTU BUFFER
TABLE

1642

MTU

BUFFER FULL?
1638

INVALIDATE MTU BUFFER
1640

END
4 1699

FIG. 16C

NOAC Ex. 1018 Page 842

US. Patent Nov. 18, 2003 Sheet 26 of 49 US 6,650,640 Bl

NO

JUMBO
BUFFER VALID?

1650

PREPARE JUMBO BUFFER
1652

YES

SPLIT JUMBO
BUFFERS?

1654 YES 0
NO

TRANSFER FIRST PART OF
PACKET INTO CURRENT

JUMBO BUFFER
1662

PACKET
TOO LARGE FOR

ONE BUFFER?
1655

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1664

 TRANSFER PACKET INTO
JUMBO BUFFER

1658

WRITE COMPLETION
DESCRIPTOR

1660

INVALIDATE JUMBO END
BUFFER 16991668

FIG. 16D

WRITE COMPLETION
DESCRIPTOR

1666

NOAC Ex. 1018 Page 843

US. Patent Nov. 18, 2003 Sheet 27 0f 49 US 6,650,640 Bl

HEADER
BUFFER VALID?

1670

PREPARE HEADER BUFFER

1672

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1674

TRANSFER FIRST PART OF
PACKET DATA INTO JUMBO

BUFFER
1682

PACKET
TOO LARGE FOR

ONE BUFFER?
1676

TRANSFER REMAINDER OF

Tmfigfifi/EOCEEEFDEQTA PACKET DATA INTO
1678 SECOND JUMBO BUFFER1684

WRITE COMPLETION
DESCRIPTOR

‘ 1686

 WRITE COMPLETION
DESCRIPTOR

1680

FIG. 16E

NOAC EX. 1018 Page 843

NOAC Ex. 1018 Page 844

m

§ U.S. Patent Nov. 18, 2003 Sheet 28 of 49 US 6,650,640 B1

INVALIDATE JUMBO
BUFFER

1888

YES NO
 HEADER

' BUFFER FULL?
1690

UPDATE HEADER BUFFER
TABLE

1694

INVALIDATE HEADER
BUFFER

1692

FIG. 16F

we MAM"; n. (4... . .- w :- mmxwaflm3<ru 1
x M wwa-a;Wnew

NOAC Ex. 1018 Page 845

V"

US. Patent Nov. 18,2003 Sheet 29 0f 49 US 6,650,640 B1

NO
HEADER

BUFFER VALID? PREPARE HEY/BEER BUFFER.
1700

1 YES

5%; TRANSFER PACKET
3‘. HEADER INTO HEADER

:3 BUFFER
:5 1704
:5;

g;
’1»,
$51?» = NO

~ I RE—ASSEMBLY PREPARE FLow RE-
BUFFER VALID? ASSEMBLY BUFFER

1706 1708

YES

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

i, BUFFER1710

WRITE COMPLETION
DESCRIPTOR

1712

INVALIDATE FLOW RE—
ASSEMBLY BUFFER

1714

FIG. 17A

NOAC Ex. 1018 Page 846

m.“

US. Patent Nov. 18, 2003 Sheet 30 of 49 US 6,650,640 B1

TCP

PAYLOAD TOO
LARGE FOR

BUFFER?
1716

TRANSFER FIRST PORTION

OF PAYLOAD INTO FLOW
RE—ASSEMBLY BUFFER

1722

TRANSFER PAYLOAD INTO
FLOW RE—ASSEMBLY

BUFFER
1718

WRITE COMPLETION
DESCRIPTOR

1720

INVALIDATE ENTRY IN

FLOW RE—ASSEMBLY
BUFFER TABLE

1728

FIG. 17B

TRANSFER SECOND
PORTION OF PAYLOAD
INTO SECOND BUFFER

WRITE COMPLETION
DESCRIPTOR

1 724

1726

NOAC Ex. 1018 Page 847

US. Patent Nov. 18, 2003 Sheet 31 0f 49 US 6,650,640 B1

YES NO
 HEADER

BU FFER FULL?
1730

INVALIDATE HEADER

BUFFER
1732

UPDATE HEADER BUFFER

TABLE
1734

FIG. 17C

NOAC Ex. 1018 Page 848

US. Patent Nov. 18, 2003 Sheet 32 0f 49 US 6,650,640 B1

HEADER

BUFFER VALID?
1800

PREPARE HEADER BUFFER
1802

TRANSFER PACKEr

HEADER INTO HEADER

BUFFER
1804 '

TCP

PAYLOAD TOO
LARGE FOR

BUFFER?
1808

FLOW

RE-ASSEMBLY
BUFFER VALID?

1806

NOAC Ex. 1018 Page 849

US. Patent

TABLE
1 826

Nov.

YES

RELEASE FLOW IN FLOW
RE—ASSEMBLY BUFFER

Sheet 34 of 4918, 2003

 TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
1820

WR|TE COMPLETION
DESCRIPTOR

1822

 FLOW
RE—ASSEMBLY

BUFFER FULL?
1 824

FIG. 180

ASSEMBLY BUFFER TABLE

US 6,650,640 B1

NO

UPDATE FLOW RE—

1 828

NOAC Ex. 1018 Page 850

US. Patent Nov. 18, 2003 Sheet 35 of 49 US 6,650,640 Bl

 TRANSFER FIRST PORTION

OF PACKET PAYLOAD INTO
RE-ASSEMBLY BUFFER

1830

TRANSFER REMAINING
PACKET PAYLOAD INTO

SECOND BUFFER
1832

WRITE COMPLETION
DESCRI PTOR

1 834

UPDATE FLOW RE-

ASSEMBLY BUFFER TABLE
1836

HEADER
BUFFER FULL?

1838

INVALIDATE HEADER

BUFFER TABLE
1840

UPDATE HEADER BUFFER
1842

NOAC Ex. 1018 Page 851

~43; Uh. talent Nov. 18,2003 Sheet so of 49 ua 0,050,640 31

NO

YES

SMALL PACKET?
1900

JUMBO PACKET?
1902

YES
NO

NO

MTU

BUFFER VALID?
1904

PREPARE MTU BUFFER
1906 '

YES

WRITE COMPLETION
DESCRIPTOR

1910

TRANSFER PACKET INTO
MTU BUFFER

1908
291‘ka

1
Z?

,1: MTU UPDATE MTU BUFFER
3; BUFFER FULL? TABLE

1912 1916

3:»:

:73:1

INVALIDATE MTU BUFFER
1914

“an; END
1999

FIG. 19A

“'”'W'tvwmmm1».a.

NOAC Ex. 1018 Page 852

US. Patent Nov. 18, 2003 Sheet 37 of 49 US 6,650,640 Bl

H

HEADER

BUFFER VALID?
1920

PREPARE HEADER BUFFER
1922

TRANSFER PACKET INTO
HEADER BUFFER

1924

WRITE COMPLETION
DESCRIPTOR

1926

UPDATE HEADER BUFFER
TABLE

1932

HEADER

BUFFER FULL?
1928

INVALIDATE HEADER
BUFFER

1930

FIG. 193

NOAeEx. 1018 Page 852 J

NOAC Ex. 1018 Page 853

C143,;

US. Patent Nov. 18, 2003 Sheet 38 0f 49 US 6,650,640 B1

NO
JUMBO

BUFFER VALID? PREPARE £31230 BUFFER
1940 -

i; YES

YES
SPLIT JUMBO

PACKETS?
1944

NO

PACKET
TOO LARGE FOR

ONE BUFFER?
1946

TRANSFER FIRST PORTION
OF PACKET INTO CURRENT

JUMBO BUFFER
1952

TRANSFER REMAINDER OF
PACKET INTO SECOND

JUMBO BUFFER
1954

TRANSFER PACKET INTO
JUMBO BUFFER

1948

WRITE COMPLETION
DESCRIPTOR

1 950

WRITE COMPLETION
DESCRIPTOR

1 956

INVALIDATE JUMBO
END

BUFFER 19991958

FIG. 190

NOAC Ex. 1018 Page 854

US. Patent Nov. 18, 2003

HEADER
BUFFER VALID?

1960

TRANSFER PACKET
HEADER INTO HEADER

BUFFER
1964

PACKET
TOO LARGE FOR

ONE BUFFER?
1966

TRANSFER PACKET DATA

INTO JUMBO BUFFER
1968

WRITE COMPLETION
DESCRIPTOR

1970

a.“

FIG. 19D

“hr-atvw‘r q. r-MIX' -.

Sheet 39 of 49 US 6,650,640 B1

PREPARE HEADER BUFFER
1962

TRANSFER FIRST PORTION
OF PACKET DATA INTO

CURRENT JUMBO BUFFER
1972

TRANSFER REMAINDER OF
PACKET DATA INTO

SECOND JUMBO BUFFER
1974

WRITE COMPLETION
DESCRIPTOR

1976

NOAC Ex. 1018 Page 855

. US. Patent Nov. 13, 2003 Sheet 40 of 49 US 6,650,640 B1

; INVALIDATE JUMBO
.“ BUFFER

: 1978

5: YES HEADER NO

I BUFFER FULL? j
1 1980

?

INVALIDATE HEADER UPDATE HEADER BUFFER

BUFFER TABLE
1932 1984

FIG. 19E

Jam ~mm‘as‘ mmv,.t: , t a» 5 xMAW’W‘V'Wra .; w. ~

NOAC Ex. 1018 Page 856

US. Patent Nov. 13,2003 Sheet 41 of 49 Us 6,650,640 B1

HEADER
BUFFER VALID?

2000
PREPARE HEADER BUFFER

2002

TRANSFER PACKET

HEADER INTO HEADER
BUFFER

2004

~FLOW
RE—ASSEMBLY

BUFFER VALID?
2006

WRITE COMPLETION
DESCRIPTOR

2008

PREPARE FLOW RE—

ASSEMBLY BUFFER
2010

FIG. 20A

«an».-. . , -
b uni-219A". {I m: ‘3'

NOAC Ex. 1018 Page 857

.l

l. *5

E .e.u

&;3A
.

0.5. ratent

TRANSFER PACKET DATA
INTO FLOW RE-ASSEMBLY

BUFFER
2012

WRITE COMPLETION
DESCRIPTOR

2014

 UPDATE FLOW RE-

ASSEMBLY BUFFER TABLE
2016

HEADER

BUFFER FULL?
2018

INVALIDATE HEADER
BUFFER

2020

Nov. 18, 2003 Sheet 42 of 49

FIG. ZOB

UPDATE HEADER BUFFER
TABLE
2022

ob u,6:i),640 151

NOAC Ex. 1018 Page 858

'Us”6,650‘,640 B1Sheet 43 of 49Nov. 18, 2003U.S. Patent

,.««tiain.

mmm

rm.0_u_
mmFZOumtm>>

Norm>m02m§

meZOu04mm

o_._.N

warm

0mmmznz26dmmnmmfiq.8..”:EE>mhzmNNVMADOOS—OZ_IO._.<m._.wv_0<n_O_S_<Z>D
v0_.Nmmlfiomkzoo

. -13... .u ,~:..— nan."7n ‘W «at. “uni; MM‘ .v>mmwfflur>ugw~mMm..ma.M.m.

a Van-um

NOAC Ex. 1018 Page 859

US. Patent NW. 18, 2003 Sheet 44 0f 49 US 6,650,640 Bl

vi TRANSFER
”f PACKETTT)HOST?
I 2202

“f

3‘ IN\0KLHIATEEPIK3KET
I ENWTTYINIWENKJRY

fl 2204
:“

.5: INCHQERAENTIQEAD
: POINTER

 2206

 ‘..-v’-'‘ ‘

SEARCFIMENKDRYIWDR

RELATEDFHMSKET
2208

ALERTHOSTCOMPUTER
2210

a.» ‘1 V (Juan .. 0- », “V!“ J ~;.om“.-¢w‘.: mph,

NOAC Ex. 1018 Page 860

§ US. Patent Nov. 18, 2003 Sheet 45 of 49 US 6,650,640 B1

3 ii

CREATE NEW
ENTRY?

2222

MEMORY FULL? ; T
2224 .1

J GENERATE NEXT ENTRY f

‘1 2226 i;

3 i;‘ , 0
av 1;

INCREMENT WRITE ‘
POINTER T

2228 3

FIG. 223

E

NOAC Ex. 1018 Page 861

‘a.

US. Patent Nov. 18, 2003 Sheet 46 of 49 US 6,650,640 B1
I
,‘v

INSTRUCTION CONTENT 2306

(EXTRACTION MASK. COMPARE VALUE. OPERATOR.
SUCCESS OFFSET, SUCCESS INSTRUCTION, FAILURE OFFSET,

FAILURE INSTRUCTION, OUTPUT OPERATION. OPERATION ARGUMENT,
OPERATION ENABLER, SHIFT, OUTPUT MASK)

CFI 0x1000, 0x1000, E0, 0, DONE, 1, 802.3, NONE, 0x000, 0, O, OXOOOO

IPV4__1 OxFFFF, axoaoo, E0, 1, IPV4_2, o, IPV6_1, LD__SAP, 0x160, 3, o, OxFFFF

 3 IIIEE
2-I

7 IPV4_2 OXFFOO, 0x4500, E0, 3, IPV4_3, 0, DONE, LD_SUM, OXOOA, 1, O, 0X0000

TCP_1 OxOOOO, OXOOOO. E0. 0, TCP_2. 4, TCP_2. LD_SEQ, 0x081, 3, O, OxFFFF

TCP_2 0X0000, 0x0000, E0, 0, TCP_3, 0. TCP_3, ST__FLAG, 0x145, 3, 0. 0x002F

TCP_3 OXOOOO, OXOOOO, E0, 0, TCP_4, O, TCP_4, LD__R1, 0x205, 3, 0XB, 0xF000

TCP_4 0x0000, 0x0000. E0. 0, WAIT, O, WAIT. LD_HDR, OxOFF, 3. 0, OxFFFF

DONE 0x0000, 0X0000, E0, 0, WAIT, 0, WAIT, IM_CTL, 0x001, 3, OXOOOO

11

12

13

14

15

17

18

PROGRAM 2300

FIG. 23

NOAC Ex. 1018 Page 862

.m

.w.«-.3n:muufm-mwrb .,"am,”I.“00‘Imuvu. r“—4.“..-.I

mmum!1

..-,..,.‘4-H I.F'f”fl.Lr\‘Ir«Inn?!
-“9'." .WV

x.

<.‘~

PROBABILITY PROBABILITY PROBABILITY
INDICATOR INDICATOR INDICATOR

2412 2414 2416
PACKET

2400

TO HOST FROM
COMPUTER NETWORK

REGION ZERO
2402

REGION ONE
2404

REGION TWO
2406

COUNTER
2410

TRAFFIC
INDICATOR

2408

FIG. 24

cooz‘81'MN11mm;'0'0
6!?1"L17”9‘18

LTSInvo‘nco‘oSr]

NOAC Ex. 1018 Page 863

‘ :25: 53.11;,an ffijv. 18, “obj 0131223. 333 (A 4‘) r ., Lb 0,030,040 B1 ' W " ‘

IDENTIFY PACKET QUEUE
REGIONS OR THRESHOLDS

2502

CONFIGURE PROBABILITY

INDICATOR(S)
2504

SELECT CRITERIA FOR
NON-DISCARDABLE

PACKETS, IF ANY
2506

INITIALIZE COUNTER
2508

RECEIVE PACKET FROM ,‘
NETWORK ‘

2510

IS
PACKET

DISCARDABLE? I
2512 '

FIG. 25A

NOAC Ex. 1018 Page 864

. ~~ ~ -, U“). 1‘ atcflt Nov. 18, 2003 ‘ Sheet ‘49‘61‘39' ‘ US 6,650,640'131

(I a .,

, I DETERMINE ACTIVE

$3 REGION
.1} ’ 2514

; COMPARE COUNTER AND
' PROBABILITY INDICATOR

251s

“ INCREMENT COUNTER

2518 I
I

‘ iI

i DISCARD 37
PACKEF? ii2520 -.,

I

II
' STORE PACKET DISCARD PACKET 1

I 2522 2524 I

3 j

FIG. 25B

NOAC Ex. 1018 Page 865

w: 7- _ w)“

1

METHOD AND APPARATUS FOR
MANAGING A NETWORK FLOW IN A HIGH

PERFORMANCE NETWORK INTERFACE

TABLE OF CONTENTS
BACKGROUND
SUMMARY
BRIEF DESCRIPTION OF THE FIGURES
DETAILED DESCRIPTION

Introduction

One Embodiment of a High Performance Network Inter—
face Circuit

An Illustrative Packet
One Embodiment of a Header Parser

Dynamic Header Parsing Instructions in One Embodi-
ment of the Invention

One Embodiment of a Flow Database

One Embodiment of a Flow Database Manager
One Embodiment of a Load Distributor
One Embodiment of a Packet Queue
One Embodiment of a Control Queue

One Embodiment of a DMA Engine

Methods of Transferring a Packet Into a Memory Buffer
by a DMA Engine

A Method of Transferring a Packet with Operation Code
0

A Method of Transferring a Packet with Operation Code
1

A Method of Transferring a Packet with Operation Code
2

A Method of Transferring a Packet with Operation Code
3

A Method of Transferring a Packet with Operation Code
4

AMethod of Transferring a Packet with Operation Code
5

A Method of Transferring a Packet with Operation Code
6 or 7

One Embodiment of a Dynamic Packet Batching Module
Early Random Packet Discard in One Embodiment of the

Invention
CLAIMS

BACKGROUND

This invention relates to the fields of computer systems
and computer networks. In particular, the present invention
relates to a Network Interface Circuit (NIC) for processing
communication packets exchanged between a computer
network and a host computer system.

The interface between a computer and a network is often
a bottleneck for communications paging between the com-
puter and the network. While computer performance (e.g.,
processor speed) has increased exponentially over the years
and computer network transmission speeds have undergone
similar increases, inefficiencies in the way network interface
circuits handle communications have become more and
more evident. With each incremental increase in computer or
network speed, it becomes ever more apparent that the
interface between the computer and the network cannot keep
pace. These inefficiencies involve several basic problems in
the way communications between a network and a computer
are handled.

n «4-. My «new a: m.
a}... .. . , . ”MWVIV 1"

10

15

20

30

35

45

50

55

60

65

US 6,650,640 B1
2

Today’s most popular forms of networks tend to be
packet-based. These types of networks, including the Inter-
net and many local area networks, transmit information in
the form of packets. Each packet is separately created and
transmitted by an originating endstation and is separately
received and processed by a destination endstation. In
addition, each packet may, in a bus topology network for
example, be received and processed by numerous stations
located between the originating and destination endstatiom.

One basic problem with packet networls is that each
packet must be processed through multiple protocols or
protocol levels (known collectively as a “protocol stack”) on
both the origination and destination endstations. When data
transmitted between stations is longer than a certain minimal
length, the data is divided into multiple portions, and each
portion is carried by a separate packet. The amount of data
that a packet can carry is generally limited by the network
that conveys the packet and is often expressed as a maxi-
mum transfer unit (MTU) The original aggregation of data
is sometimes known as a “datagram,” and each packet
carrying part of a single datagram is processed very simi-
larly to the other packets of the datagram.

Communication packets are generally processed as fol-
lows. In the origination endstation, each separate data por-
tion of a datagram is processed through a protocol stack.
During this processing multiple protocol headers (e.g., TCP,
IP, Ethernet) are added to the data portion to form a packet
that can be transmitted across the network. The packet is
received by a network interface circuit, which transfers the
packet to the destination endstation or a host computer that
serves the destination endstation. In the destination

endstation, the packet is processed through the protocol
stack in the opposite direction as in the origination endsta-
tion. During this processing the protocol headers are
removed in the opposite order in which they were applied.
The data portion is thus recovered and can be made available
to a user, an application program, etc.

Several related packets (e.g., packets carrying data from
one datagam) thus undergo substantially the same process
in a serial manner (i.e., one packet at a time). The more data
that must be transmitted, the more packets must be sent, with
each one being separately handled and processed through
the protocol stack in each direction. Naturally, the more
packets that must be processed, the greater the demand
placed upon an endstation’s processor. The number of
packets that must be processed is affected by factors other
than just the amount of data being sent in a datagram. For
example, as the amount of data that can be encapsulated in
a packet increases, fewer packets need to be sent. As stated
above, however, a packet may have a maximum allowable
size, depending on the type of network in use (e.g., the
maximum transfer unit for standard Ethernet traflic is

approximately 1,500 bytes). The speed of the network also
affects the number of packets that a NIC may handle in a
given period of time. For example, a gigabit Ethernet
network operating at peak capacity may require a NIC to
receive approximately 1.48 million packets per second.
Thus, the number of packets to be processed through a
protocol stack may place a significant burden upon a com-
puter’s processor. The situation is exacerbated by the need to
process each packet separately even though each one will be
processed in a substantially similar manner.

A related problem to the disjoint processing of packets is
the manner in which data is moved between “user space”
(e.g., an application program’s data storage) and “system
space” (e.g., system memory) during data transmission and
receipt. Presently, data is simply copied from one area of

can». -'
a 4 ran subw,

-.., .54 gamma ' 6a; Iris-arm;

NOAC Ex. 1018 Page 866

.WM...

US 6,650,640 B1
3

memory assigned to a user or application program into
another area of memory dedicated to the procesor’s use.
Because each portion of a datagram that is transmitted in a
packet may be copied separately (e.g., one byte at a time),
there is a nontrivial amount of processor time required and
frequent transfers can consume a large amount of the
memory bus’ bandwidth. Illustratively, each byte of data in
a packet received from the network may be read from the
system space and written to the user space in a separate copy
operation, and vice versa for data trammitted over the
network. Although system space generally provides a pro-
tected memory area (e.g., protected from manipulation by
user programs), the copy operation does nothing of value
when seen from the point of view of a network interface
circuit. Instead, it risks over-burdening the host processor
and retarding its ability to rapidly accept additional network
traffic from the NIC. Copying each packet’s data separately
can therefore be very inefficient, particularly in a high-speed
network environment.

In addition to the inefficient transfer of data (e.g., one
packet’s data at a time), the processing of headers from
packets received from a network is also ineflicient. Each
packet carrying part of a single datagram generally has the
same protocol headers (e.g., Ethernet, IP and TCP), although
there may be some variation in the values within the packets’
headers for a particular protocol. Each packet, however, is
individually processed through the same protocol stack, thus
requiring multiple repetitions of identical operations for
related packets. Successively processing unrelated packets
through different protocol stacks will likely be much less
eflicient than progressively processing a number of related
packets through one protocol stack at a time.

Another basic problem concerning the interaction
between present network interface circuits and host com-
puter systems is that the combination often fails to capitalize
on the increased processor resources that are available in
multi-processor computer systems. In other words, present
attempts to distribute the processing of network packets
(e.g., through a protocol stack) among a number ofprotocols
in an efficient manner are generally inefiectivc. In particular,
the performance of present NICs does not come close to the
expected or desired linear performance gains one may
expect to realize from the availability of multiple processors.
In some multi-processor systems, little improvement in the
processing of network traflic is realized from the use of more
than 4—6 processors, for example.

In addition, the rate at which packets are transferred from
a network interface circuit to a host computer or other
communication device may fail to keep pace with the rate of
packet arrival at the network interface. One element or
another of the host computer (e.g., a memory bus, a
processor) may be over-burdened or otherwise unable to
accept packets with sufiicient alacrity. In this event one or
more packets may be dropped or discarded. Dropping pack-
ets may cause a network entity to re-transmit some trafiic
and, if too many packets are dropped, a network connection
may require re-initialization. Further, dropping one packet
or type of packet instead of another may make a significant
difference in overall network traffic. If, for example, a
control packet is dropped, the corresponding network con-
nection may be severely affected and may do little to
alleviate the packet saturation of the network interface
circuit because of the typically small size of a control packet.
Therefore, unless the dropping of packets is performed in a
manner that distributes the efiect among many network
connectiom or that makes allowance for certain types of
packets, network traflic may be degraded more than neces-
sary.

10

15

20

30

35

45

50

55

60

65

4

Thus, present NICs fail to provide adequate performance
to interconnect today’s high—end computer systems and
high-weed networks. In addition, a network interface circuit
that cannot make allowance for an over-burdened host

computer may degrade the computer’s performance.

SUMMARY

In one embodiment of the invention, a system and method
are provided for managing communication flows, or
connections, received at a communication device such as a
network interface. In particular, communication flows are
set up and torn down as network tratfic is received at a
network interface. Information concerning a flow is main-
tained for the duration of the flow to assist in determining the
suitability of flow packets for certain enhanced processing
operations. For example, such operations may be suitable for
packets adhering to one or more pre-selected communica-
tion protocols.

In this embodiment of the invention a high performance
network interface includes a flow database and a flow
database manager module. A flow database in this embodi-
ment contains an entry for each valid or active communi-
cation flow received by the network interface. Each flow
may be identified by a flow key, stored in the flow’s database
entry, and may be indexed by a flow number.

For each valid flow, the flow database stores information
indicating how recently a packet was received for the flow
and sequence information concerning a datagram (e.g., a
collection of data sent via multiple packets) being passed to
the destination entity by the source entity. The sequence
information may be used to verify correct receipt of data in
the flow.

Acommunication flow in this embodiment comprises one
or more packets sent from a source entity to a destination
entity served by the network interface. A flow is thus similar,
but not identical, to an end-to-end TCP (Transport Control
Protocol) connection. Illustratively, a flow key comprises a
combination of identifiers of the source and destination

entities. In one embodiment of the invention a flow key is a
combination of source and destination addresses extracted

from the packet’s layer three (e.g., IP or Internet Protocol)
protocol header and source and destination port numbers
extracted from the layer four (e.g., TCP) protocol header.

When a flow packet is received at the network interface,
a flow database manager receives the packet’s flow key. The
flow key may be assembled by a header parser module that
parses a header portion of the packet. The flow database
manager may also receive control information concerning
the packet, such as an indication of the size of a data portion
of the packet, a flow sequence number used to identify the
position of the packet data within the datagram, an indicator
of the status of one or more flags in the packet’s header(s),
etc. Using the flow key, the flow database is searched and a
database entry is added in the case of a new flow, or updated
if the flow already exists,

In one embodiment of the invention, the flow database
manager associates an operation code with the received
packet to indicate how the packet may be further processed
by the network interface and/or a host computer. The spe-
cific operation code assigned for a packet may indicate
whether the packet contains data that can be reassembled
with other data passed in the flow, whether the packet is a
control packet or is otherwise devoid of data, whether the
packet should not be processed through a particular network
interface function (e.g., due to a flag in a header of the
packet), etc.

NOAC Ex. 1018 Page 867

US 6,650,640 B1 "
5

Information derived from the packet, including the flow
key and control information, may be used by other portions
of the network interface and/or a host computer system.
Illustratively, the information may be used to re-assemble
data sent from the source entity to the destination entity, to
collectively process multiple packets from one HOW, to
distribute the processing of network traffic among multiple
processors, to verify the integrity of the packet (e.g., by
checksum), etc.

BRIEF DESCRIPTION OF THE FIGURES

FIG. lAis a block diagram depicting a network interface
circuit (NIC) for receiving a packet from a network in
accordance with an embodiment of the present invention.

FIG. 1B is a flow chart demonstrating one method of
operating the NIC of FIG. 1Ato transfer a packet received
from a network to a host computer in accordance with an
embodiment of the invention.

FIG. 2 is a diagram of a packet transmitted over a network
and received at a network interface circuit in one embodi-
ment of the invention.

FIG. 3 is a block diagam depicting a header parser of a
network interface circuit for parsing a packet in accordance
with an embodiment of the invention.

FIGS. 4A—4B comprise a flow chart demonstrating one
method of parsing a packet received from a network at a
network interface circuit in accordance with an embodiment

of the present invention.
FIG. 5 is a block diagam depicting a network interface

circuit flow database in accordance with an embodiment of
the invention.

FIGS. 6A—6E comprise a flowchart illustrating one
method of managing a network interface circuit flow data-
base in accordance with an embodiment of the invention.

FIG. 7 is a flow chart demonstrating one method of
distributing the proce$ing of network packets among mul-
tiple proce$ors on a host computer in accordance with an
embodiment of the invention.

FIG. 8 is a diagram of a packet queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 9 is a diagram of a control queue for a network
interface circuit in accordance with an embodiment of the
invention.

FIG. 10 is a block diagram of a DMA engine for trans-
ferring a packet received from a network to a host computer
in accordance with an embodiment of the invention.

FIG. 11 includes diagrams of data structures for managing
the storage of network packets in host memory buffers in
accordance with an embodiment of the invention.

FIGS. 12A-12B are diagams of a free descriptor, a
completion descriptor and a free buffer array in accordance
With an embodiment of the invention.

FIGS. 13—20 are flow charts demonstrating methods of
transferring a packet received from a network to a buffer in
a host computer memory in accordance with an embodiment
of the invention.

FIG. 21 is a diagram of a dynamic packet batching
module in accordance with an embodiment of the invention.

FIGS. 22A—22B comprise a flow chart demonstrating one
method of dynamically searching a memory containing
information concerning packets awaiting transfer to a host
Computer in order to locate a packet in the same communi-
cation flow as a packet being transferred, in accordance with
an embodiment of the invention.

10

15

20

30

35

45

50

55

60

65

6

FIG. B depicts one set of dynamic instructions for
parsing a packet in accordance with an embodiment of theinvention.

FIG. 24 depicts a system for randomly discarding a packet
from a network interface in accordance with an embodiment
of the invention.

FIGS. 25A—25B comprise a flow chart demonstrating one
method of discarding a packet from a network interface in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

The following description is presented to enable any
person skilled in the art to make and use the invention, and
is provided in the context of particular applications of the
invention and their requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled in the art and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
invention. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the
widest scope consistent with the principles and features
disclosed herein.

In particular, embodiments of the invention are described
below in the form of a network interface circuit (NIC)
receiving communication packets formatted in accordance
with certain communication protocols compatible with the
Internet. One skilled in the art will recognize, however, that
the present invention is not limited to communication pro-
tocols compatible with the Internet and may be readily
adapted for use with other protocols and in communication
devices other than a NIC.

The program environment in which a present embodiment
of the invention is executed illustratively incorporates a
general—purpose computer or a special purpose device such
a hand-held computer. Details of such devices (e.g.,
procegor, memory, data storage, input/output ports and
display) are well known and are omitted for the sake of
clarity.

It should also be understood that the techniques of the
present invention might be implemented using a variety of
technologies. For example, the methods described herein
may be implemented in software running on a program-
mable microprocessor, or implemented in hardware utilizing
either a combination of microprocessors or other specially
designed application specific integrated circuits, program-
mable logic devices, or various combinations thereof. In
particular, the methods described herein may be imple-
mented by a series of computer-executable instructions
residing on a storage medium such as a carrier wave, disk
drive, or other computer-readable medium.
Introduction

In one embodiment of the present invention, a network
interface circuit (NIC) is configured to receive and process
communication packets exchanged between a host computer
system and a network such as the Internet. In particular, the
NIC is configured to receive and manipulate packets for—
matted in accordance with a protocol stack (e.g., a combi—
nation of communication protocols) supported by a network
coupled to the NIC.

A protocol stack may be described with reference to the
seven-layer ISO-0S1 (International Standards Organization-
Open Systems Interconnection) model framework. Thus,
one illustrative protocol stack includes the Transport Control
Protocol (TCP) at layer four, Internet Protocol (IP) at layer
three and Ethernet at layer two. For purposes of discussion,

NOAC Ex. 1018 Page 868

.Y

.>

S;,.

:m‘4.,a

US 6,650,640 Bl
7

the term “Ethernet" may be used herein to refer collectively
to the standardized IEEE (Institute of Electrical and Elec-
tronics Engineers) 802.3 specification as well as version two
of the non-standardized form of the protocol. Where differ-
ent forms of the protocol need to be distinguished, the
standard form may be identified by including the “8023”
designation.

Other embodiments of the invention are configured to
work with communications adhering to other protocols, both
known (e.g., AppleTalk, IPX (Internetwork Packet
Exchange), etc.) and unknown at the present time. One
skilled in the art will recognize that the methods provided by
this invention are easily adaptable for new communication
protocols.

In addition, the processing of packets described below
may be performed on communication devices other than a
MC. For example, a modem, switch, router or other com-
munication port or device (e.g., serial, parallel, USB, SCSI)
may be similarly configured and operated.

In embodiments of the invention described below, a MC
receives a packet from a network on behalf of a host
computer system or other communication device. The MC
analyzes the packet (e.g., by retrieving certain fields from
one or more of its protocol headers) and takes action to
increase the efliciency with which the packet is transferred
or provided to its destination entity. Equipment and methods
discussed below for increasing the efliciency of processing
or transferring packets received from a network may also be
used for packets moving in the reverse direction (i.e., from
the NIC to the network).

One technique that may be applied to incoming network
traflic involves examining or parsing one or more headers of
an incomingpacket (e.g., headers for the layer two, three and
four protocols) in order to identify the packet’s source and
destination entities and posfbly retrieve certain other infor-
mation. Using identifiers of the communicating entities as a
key, data from multiple packets may be aggregated or
re-assembled. Typically, a datagram sent to one destination
entity from one source entity is transmitted via multiple
packets. Aggregating data from multiple related packets
(e.g., packets carrying data from the same datagram) thus
allows a datagram to be re—assembled and collectively
transferred to a host computer. The datagram may then be
provided to the destination entity in a highly efficient man-
ner. For example, rather than providing data from one packet
at a time (and one byte at a time) in separate “copy”
operations, a “page-flip” operation may be performed. In a
page-flip, an entire memory page of data may be provided to
the destination entity, possibly in exchange for an empty or
unused page.

In another technique, packets received from a network are
placed in a queue to await transfer to a host computer. While
awaiting transfer, multiple related packets may be identified
to the host computer. After being transferred, they may be
processed as a group by a host processor rather than being
processed serially (e.g., one at a time).

Yet another technique involves submitting a number of
related packets to a single processor of a multi-procemr
host computer system. By distributing packets conveyed
between different pairs of source and destination entities
among diflerent processors, the processing of packets
through their respective protocol stacks can be distributed
While still maintaining packets in their correct order.

The techniques discussed above for increasing the chi-
ciency with which packets are processed may involve a
Combination of hardware and software modules located on

a network interface and/or a host computer system. In one

10

15

20

30

35

45

50

55

60

65

8

particular embodiment, a parsing module on a host comput-
er’s NIC parses header portions ofpackets. Illustratively, the
parsing module comprises a microsequencer operating
according to a set of replaceable instructions stored as
micro-code. Using information extracted from the packets,
multiple packets from one source entity to one destination
entity may be identified. Ahardware re-assembly module on
the NIC may then gather the data from the multiple packets.
Another hardware module on the NTC is configured to
recognize related packets awaiting transfer to the host com-
puter so that they may be processed through an appropriate
protocol stack collectively, rather than serially. The
re-assembled data and the packet’s headers may then be
provided to the host computer so that appropriate software
(e.g., a device driver for the NIC) may process the headers
and deliver the data to the destination entity.

Where the host computer includes multiple processors, a
load distributor (which may also be implemented in hard-
ware on the NIC) may select a processor to process the
headers of the multiple packets through a protocol stack.

In another embodiment of the invention, a system is
provided for randomly discarding a packet from a NIC when
the NTC is saturated or nearly saturated with packets await-
ing transfer to a host computer.
One Embodiment of a High Performance Network Interface
Circuit

FIG. 1A depicts NIC 100 configured in accordance with
an illustrative embodiment of the invention. Abrief descrip-
tion of the operation and interaction of the various modules
of NIC 100 in this embodiment follows. Descriptions incor-
porating much greater detail are provided in subsequent
sections.

A communication packet may be received at NIC 100
from network 102 by a medium access control (MAC)
module (not shown in FIG. 1A) The MAC module performs
low~leve1 procesing of the packet such as reading the
packet from the network, performing some error checking,
detecting packet fragments, detecting over-sized packets,
removing the layer one preamble, etc.

Input Port Processing (IPP) module 104 then receives the
packet. The IPP module stores the entire packet in packet
queue 116, as received from the MAC module or network,
and a portion of the packet is copied into header parser 106.
In one embodiment of the invention IPP module 104 may act
as a coordinator of sorts to prepare the packet for transfer to
a host computer system. In such a role, IPP module 104 may
receive information concerning a packet from various mod‘
ules of NIC 100 and dispatch such information to other
modules.

Header parser 106 parses a header portion of the packet to
retrieve various pieces of information that will be used to
identify related packets (e.g., multiple packets from one
same source entity for one destination entity) and that will
affect subsequent processing of the packets. In the illustrated
embodiment, header parser 106 communicates with flow
database manager (FDBM) 108, which manages flow data-
base (FDB) 110. In particular, header parser 106 submits a
query to FDBM 108 to determine whether a valid commu-
nication flow (described below) exists between the source
entity that sent a packet and the destination entity. The
destination entity may comprise an application program, a
communication module, or some other element of a host
computer system that is to receive the packet.

In the illustrated embodiment of the invention, a commu-
nication flow comprises one or more datagram packets from
one source entity to one destination entity. A flow may be
identified by a flow key assembled from source and desti-

NOAC Ex. 1018 Page 869

$15,650,640 B1

9

nation identifiers retrieved from the packet by header parser
106. In one embodiment of the invention a flow key com-
prises address and/or port information for the source and
destination entities from the packet’s layer three (e.g., 1P)
and/or layer four (e.g., TCP) protocol headers.

For purposes of the illustrated embodiment of the
invention, a communication flow is similar to a TCP end-
to—end connection but is generally shorter in duration. In

particular, in this embodiment the duration of a flow may be
fimited to the time needed to receive all of the packets
associated with a single datagram passed from the source
entity to the destination entity.

Thus, for purposes of flow management, header parser
106 pastas the packet’s flow key to flow database manager
108. The header parser may also provide the flow database
manager with other information concerning the packet that
was retrieved from the packet (e.g., length of the packet).

Flow database manager 108 searches FDB 110 in
response to a query received from header parser 106.
Illustratively, flow database 1.10 stores information concem-
ing each valid communication flow involving a destination
entity served by NIC 100. Thus, FDBM 108 updates FDB
1.10 as necessary, depending upon the information received
from header parser 106. In addition, in this embodiment of
the invention FDBM 108 associates an operation or action
code with the received packet. An operation code may be
used to identify whether a packet is part of a new or existing
flow, whether the packet includes data or just control
information, the amount of data within the packet, whether
the packet data can be re-assembled with related data (e .g.,
other data in a datagram sent from the source entity to the
destination entity), etc. FDBM 108 may use information
retrieved from the packet and provided by header parser 106
to select an appropriate operation code. The packet’s opera-
tion code is then passed back to the header parser, along with
an index of the packet’s flow within FDB 110.

In one embodiment of the invention the combination of

header parser 106, FDBM 108 and FDB 110, or a subset of
these modules, may be known as a traflic classifier due to
their role in classifying or identifying network traflic
received at NIC 100.

In the illustrated embodiment, header parser 106 also
passes the packet’s flow key to load distributor 112. In a host
computer system having multiple processors, load distribu-
tor 112 may determine which processor an incoming packet
is to be routed to for processing through the appropriate
protocol stack. For example, load distributor 112 may ensure
that related packets are routed to a single processor. By
sending all packets in one communication flow or end-to-
end connection to a single processor, the correct ordering of
packets can be enforced. Load distributor 112 may be
omitted in one alternative embodiment of the invention. In

another alternative embodiment, header parser 106 may also
communicate directly with other modules of NIC 100
besides the load distributor and flow database manager.

This after header parser 106 parses a packet FDBM 108
alters or updates FDB 110 and load distnhutor 112 identifies
a procesor in the host computer system to process the
packet. After these actions, the header parser passes various
information back to [FF module 104. Illustratively, this
information may include the packet’s flow key, an index of
the packet’s flow within flow database 110, an identifier of
a procesor in the host computer system, and various other
data concerning the packet (e.g., its length, a length of a
packet header).

Now the packet may be stored in packet queue 116, which
holds packets for manipulation by DMA (Direct Memory

10

15

20

30

35

45

50

55

60

65

10

Access) engine 120 and transfer to a host computer. In
addition to storing the packet in a packet queue, a corre-
sponding entry for the packet is made in control queue 118
and information concerning the packet’s flow may also be
passed to dynamic packet batching module 122. Control
queue 118 contains related control information for each
packet in packet queue 116.

Packet batching module 122 draws upon information
concerning packets in packet queue 116 to enable the batch
(i.e., collective) processing of headers from multiple related
packets. In one embodiment of the invention packet batch-
ing module 122 alerts the host computer to the availability
of headers from related packets so that they may be pro-
cessed together.

Although the processing of a packet’s protocol headers is
performed by a processor on a host computer system in one
embodiment of the invention, in another embodiment the
protocol headers may be processed by aprocessor located on
NIC 100, In the former embodiment, software on the host
computer (e.g., a device driver for NIC 100) can reap the
advantages of additional memory and a replaceable or
upgradeable processor (e.g., the memory may be supple-
mented and the processor may be replaced by a faster
model).

During the storage of a packet in packet queue 116,
checksum generator 114 may perform a checksum opera-
tion. The checksum may be added to the packet queue as a
trailer to the packet. Illustratively, checksum generator 114
generates a checksum from a portion of the packet received
from network 102. In one embodiment of the invention, a
checksum is generated from the TCP portion of a packet
(e.g., the TCP header and data). If a packet is not formatted
according to TCP, a checksum may be generated on another
portion of the packet and the result may be adjusted in later
processing as necessary. For example, if the checksum
calculated by checksum generator 114 was not calculated on
the correct portion of the packet, the checksum may be
adjusted to capture the correct portion. This adjustment may
be made by software operating on a host computer system
(e.g., a device driver). Checksum generator 114 may be
omitted or merged into another module of NIC 100 in an
alternative embodiment of the invention.

From the information obtained by header parser 106 and
the flow information managed by flow database manager
108, the host computer system served by NIC 100 in the
illustrated embodiment is able to process network traflic
very efliciently. For example, data portions of related pack-
ets may be rte—assembled by DMA engine 120 to form
aggregations that can be more efliciently manipulated. And,
by assembling the data into buffers the size of a memory
page, the data can be more efficiently transferred to a
destination entity through “page-flipping," in which an
entire memory page filled by DMA engine 120 is provided
at once. One page—flip can thus take the place of multiple
copy operations. Meanwhile, the header portions of the
re—assembled packets may similarly be processed as a group
through their appropriate protocol stack.

As already described, in another embodiment of the
invention the processing of network traflic through appro-
priate protocol stacks may be efficiently distributed in a
multiprocessor host computer system. In this embodiment,
load distributor 112 assigns or distributes related packets
(e.g., packets in the same communication flow) to the same
processor. In particular, packets having the same source and
destination addresses in their layer three protocol (e.g., IP)
headers and/or the same source and destination ports in their
layer four protocol (e.g., TCP) headers may be sent to a
single processor. .

NOAC Ex. 1018 Page 870

~

..t

‘1

US 6,650,640 B1
11

In the NIC illustrated in FIG. 1A, the processing enhance-
ments discussed above (e.g., re-assembling data, batch pro-
cessiflg packet headers, distributing protocol stack
processing) are possible for packets received from network
102 that are formatted according to one or more pre-selected
protocol stacks. In this embodiment of the invention net-
work 102 is the Internet and NIC 100 is therefore configured
to process packets using one of several protocol stacks
compatible with the Internet. Packets not configured accord-
ing to the pre-selected protocols are also processed, but may
not receive the benefits of the full suite of processing
efficiencies provided to packets meeting the pre-sclected
protocols.

For example, packets not matching one of the pre-selected
protocol stacks may be distributed for processing in a
multi—processor system on the basis of the packets’ layer two
(e.g., medium access control) source and destination
addresses rather than their layer three or layer four
addresses. Using layer two identifiers provides less granu-
larity to the load distribution procedure, thus possrbly dis-
tributing the processing of packets less evenly than if layer
three/four identifiers were used.

FIG. 1B depicts one method of using NIC 100 ofFIG. 1A
to receive one packet from network 102 and transfer it to a
host computer. State 130 is a start state, possibly character-
ized by the initialization or resetting of NIC 100.

In state 132, a packet is received by NIC 100 from
network 102. As already described, the packet may be
formatted according to a variety of communication proto-
cols. The packet may be received and initially manipulated
by a MAC module before being passed to an IPP module.

In state 134, a portion of the packet is copied and passed
to header parser 106. Header parser 106 then parses the
packet to extract values from one or more of its headers
and/or its data. A flow key is generated from some of the
retrieved information to identify the communication flow
that includes the packet. The degree or extent to which the
packet is parsed may depend upon its protocols, in that the
header parser may be configured to parse headers of difl'erent
protocols to diflerent depths. In particular, header parser 106
may be optimized (e.g., its operating instructions
configured) for a specific set of protocols or protocol stacks.
If the packet conforms to one or more of the specified
protocols it may be parsed more fully than a packet that does
not adhere to any of the protocols.

In state 136, information extracted from the packet’s
headers is forwarded to flow database manager 108 and/or
load distributor 112. The FDBM uses the information to set

up a flow in flow database 110 if one does not already exist
for this communication flow. If an entry already exists for
the packet’s flow, it may be updated to reflect the receipt of
a new flow packet. Further, FDBM 108 generates an opera-
tion code to summarize one or more characteristics or

conditions of the packet. The operation code may be used by
other modules of NIC 100 to handle the packet in an
appropriate manner, as described in subsequent sections.
The operation code is returned to the header parser, along
with an index (e.g., a flow number) of the packet’s flow in
the flow database.

In state 138, load distributor 112 assigns a processor
number to the packet, if the host computer includes multiple
processors, and returns the processor number to the header
processor. Illustratively, the processor number identifies
which processor is to conduct the packet through its protocol
stack on the host computer. State 138 may be omitted in an
alternative embodiment of the invention, particularly if the
host computer consists of only a single processor.

10

15

20

30

35

45

50

55

60

65

12

In state 140, the packet is stored in packet queue 116. As
the contents of the packet are placed into the packet queue,
checksum generator 114 may compute a checksum. The
checksum generator may be informed by IPP module 104 as
to which portion of the packet to compute the checksum on.
The computed checksum is added to the packet queue as a
trailer to the packet. In one embodiment of the invention, the
packet is stored in the packet queue at substantially the same
time that a copy of a header portion of the packet is provided
to header parser 106.

Also in state 140, control information for the packet is
stored in control queue 118 and information concerning the
packet’s flow (e.g., flow number, flow key) may be provided
to dynamic packet batching module 122.

In state 142, NIC 100 determines whether the packet is
ready to be transferred to host computer memory. Until it is
ready to be transferred, the illustrated procedure waits.

When the packet is ready to be transferred (e.g., the
packet is at the head of the packet queue or the host
computer receives the packet ahead of this packet in the
packet queue), in state 144 dynamic packet batching module
12 determines whether a related packet will soon be
transferred. If so, then when the present packet is transferred
to host memory the host computer is alerted that a related
packet will soon follow. The host computer may then
process the packets (e.g., through their protocol stack) as a
group.

In state 146, the packet is transferred (e.g., via a direct
memory access operation) to host computer memory. And,
in state 148, the host computer is notified that the packet was
transferred. The illustrated procedure then ends at state 150.

One skilled in the art of computer systems and networking
will recognize that the procedure described above is just one
method of employing the modules of NIC 100 to receive a
single packet from a network and transfer it to a host
computer system. Other suitable methods are also contem-
plated within the scope of the invention.
An Illustrative Packet

FIG. 2 is a diagram of an illustrative packet received by
NIC 100 from network 102. Packet 200 comprises data
portion 202 and header portion 204, and may also contain
trailer portion 206. Depending upon the network environ-
ment traversed by packet 200, its maximum size (e.g., its
maximum transfer unit or MTU) may be limited.

In the illustrated embodiment, data portion 202 comprises
data being provided to a destination or receiving entity
within a computer system (e.g., user, application program,
operating system) or a communication subsystem of the
computer. Header portion 204 comprises one or more head-
ers prefixed to the data portion by the source or originating
entity or a computer system comprising the source entity.
Each header normally corresponds to a different communi-
cation protocol.

In a typical network environment, such as the Internet,
individual headers within header portion 204 are attached
(e.g., prepended) as the packet is processed through diflerent
layers of a protocol stack (e.g., a set of protocols for
communicating between entities) on the transmitting com-
puter system. For example, FIG. 2 depicts protocol headers
210, 212, 214 and 216, corresponding to layers one through
four, respectively, of a suitable protocol stack. Each protocol
header contains information to be used by the receiving
computer system as the packet is received and processed
through the protocol stack. Ultimately, each protocol header
is removed and data portion 202 is retrieved.

As described in other sections, in one embodiment of the

invention a system and method are provided for parsing

NOAC Ex. 1018 Page 871

US 6,650,040 B1
13

packel 200 to retrieve various bits of information. In this
embodiment, packet 200 Is parsed in order to identify the
beginning of data portion 202 and to retrieve one or more
values for fields within header portion 204. Illustratively,
however, layer one protocol header or preamble 210 com-
sponds to a hardware-level specification related to the cod-
ing of individual bits. Layer one protocols are generally only
needed for the physical process of sending or receiving the

packet across a conductor. Thus, in this embodiment of me
invention layer one preamble 210 is stripped from packet
200 shortly after being received by NIC 100 and is therefore
not parsed- .

The extent to which header portion 204 IS parsed may

depend upon how many, if any, of the protocols represented
in the header portion match a set of pre-selected protocols.
For example, the parsing procedure may be abbreviated or
aborted once it is determined that one of the packet’s headers
corresponds to an unsupported protocol.

In particular, in one embodiment of the invention NIC 100
is configured primarily for Internet trafiic. Thus, in this
embodiment packet 200 is extensively parsed only when the

layer two protocol is Ethernet (either traditional Ethernet or
802.3 Ethernet, with or without tagging for Virtual Local
Area Networks), the layer three protocol is IP (Internet
Protocol) and the layer four protocol is TCP (Transport
Control Protocol). Packets adhering to other protocols may
be parsed to some (e.g., lesser) extent. NIC 100 may,
however, be configured to support and parse virtually any
communication protocol’s header. Illustratively, the protocol
headers that are parsed, and the extent to which they are

parsed, are determined by the configuration of a set of
instructions for operating header parser 106.

As described above, the protocols corresponding to head-
ers 212, 214 and 216 depend upon the network environment
in which a packet is sent. The protocols also depend upon the
communicating entities. For example, a packet received by
a network interface may be a control packet exchanged
between the medium access controllers for the source and

destination computer systems. In this case, the packet would
be likely to include minimal or no data, and may not include
layer three protocol header 214 or layer four protocol header
216. Control packets are typically used for various purposes
related to the management of individual connections.

Another communication flow or connection could involve

two application programs. In this case, a packet may include
headers 212, 214 and 216, as shown in FIG. 2, and may also
include additional headers related to higher layers of a
protocol stack (e.g., session, presentation and application
layers in the ISO—OSI model). In addition, some applications
may include headers or header-like information within data
portion 202. For example, for a Network File System (NFS)
application, data portion 202 may include NPS headers
related to individual NFS datagrams. A datagram may be
defined as a collection of data sent fiom one entity to
another, and may comprise data transmitted in multiple
packets. In other words, the amount of data corstituting a
datagram may be greater than the amount of data that can be
included in one packet.

One skilled in the art will appreciate that the methods for
Parsing a packet that are described in the following section
are readily adaptable for packets formatted in accordance

, With Virtually any communication protocol.
One Embodiment of a Header Parser

FIG. 3 depicts header parser 106 of FIG. 1Ain accordance
“’1“! a present embodiment of the invention. Illustratively,
header parser 106 comprises header memory 302 and parser

. 304’ and parser 304 comprises instruction memory 306.

‘- Maw, n a... «am a.“
u aw m- ama-via m

10

15

20

30

35

45

50

55

60

65

14

Although depicted as distinct modules in FIG. 3, in an
alternative embodiment of the invention header memory 302
and instruction memory 306 are contiguous.

In the illustrated embodiment, parser 304 parses a header
stored in header memory 302 according to instructions
stored in instruction memory 306. The instnlctions are
designed for the parsing of particular protocols or a particu-
lar protocol stack, as discussed above. In one embodiment of
the invention, instruction memory 306 is modifiable (e.g.,
the memory is implemented as RAM, EPROM, EEPROM or
the like), so that new or modified parsing instructions may
be downloaded or otherwise installed. Instnrctions for pars-
ing a packet are further discussed in the following section.

In FIG. 3, a header portion of a packet stored in IPP
module 104 (shown in FIG. 1A) is copied into header
memory 302. Illustratively, a specific number of bytes (e.g.,
114) at the beginning of the packet are copied. In an
alternative embodiment of the invention, the portion of a
packet that is copied may be of a ditferent size. The
particular amount of a packet copied into header memory
302 should be enough to capture one or more protocol
headers, or at least enough information (e.g., whether
included in a header or data portion of the packet) to retrieve
the information described below. The header portion stored
in header memory 302 may not include the layer one header,
which may be removed prior to or in conjunction with the
packet being processed by IPP module 104.

After a header portion of the packet is stored in header
memory 302, parser 304 parses the header portion according
to the instructions stored in instruction memory 306. In the
presently described embodiment, instructions for operating
parser 304 apply the formats of selected protocols to step
through the contents of header memory 302 and retrieve
specific information. In particular, specifications of commu-
nication protocols are well known and widely available.
Thus, a protocol header may be traversed byte by byte or
some other fashion by referring to the protocol specifica-
tions. In a present embodiment of the invention the parsing
algorithm is dynamic, with information retrieved fiom one
field of a header often altering the manner in which another
part is parsed.

For example, it is known that the Type field of a packet
adhering to the traditional, form of Ethernet (e.g., version
two) begins at the thirteenth byte of the (layer two) header.
By comparison, the Type field of a packet following the
IEEE 802.3 version of Ethernet begins at the twenty-first
byte of the header. The Type field is in yet other locations if
the packet forms part of a Virtual Local Area Network
(VLAN) communication (which illustratively involves tag-
ging or encapsulating an Ethernet header). Thus, in a present
embodiment of the invention, the values in certain fields are
retrieved and tested in order to ensure that the information

needed fiom a header is drawn from the correct portion of
the header. Details concerning the form of a VLAN packet
may be found in specifications for the IEEE 8023p and
IEEE 8023!] forms of the Ethernet protocol.

The operation of header parser 106 also depends upon
other dilferences between protocols, such as whether the
packet uses version four or version six of the Internet
Protocol, etc. Specifications for versions four and six of IP
may be located in IETF (Internet Engineering Task Force)
RFCs (Request for Comment) 791 and 2460, respectively.

The more protocols that are “known” by parser 304, the
more protocols a packet may be tested for, and the more
complicated the parsing of a packet’s header portion may
become. One skilled in the art Will appreciate that the
protocols that may be parsed by parser 304 are limited only

m «
’w‘fl‘fikta '

NOAC Ex. 1018 Page 872

“£35

‘2‘.,

US 6,650,640 B1
15

by the instructions according to which it operates. Thus, by
augmenting or replacing the parsing instructions stored in
instruction memory 306, virtually all known protocols may
be handled by header parser 106 and virtually any informa-
tion may be retrieved from a packet’s headers.

If, of course, a packet header does not conform to an
expected or suspected protocol, the parsing operation may
be terminated. In this case, the packet may not be suitable for
one more of the efficiency enhancements offered by MC 100

(e.g., data re-assembly, packet batching, load distribution).
Illustratively, the information retrieved from a packet’s

headers is used by other portions of NIC 100 when process-
ing that packet. For example, as a result of the packet parsing
performed by parser 304 a flow key is generated to identify
the communication flow or communication connection that

comprises the packet. Illustratively, the flow key is
assembled by concatenating one or more addresses cone-
sponding to one or more of the communicating entities. In
a present embodiment, a flow key is formed from a combi-
nation of the source and destination addresses drawn from
the IP header and the source and destination ports taken from
the TCP header. Other indicia of the communicating entities
may be used, such as the Ethernet source and destination
addresses (drawn from the layer two header), NFS file
handles or source and destination identifiers for other appli-
cation datagrams drawn from the data portion of the packet.

One skilled in the art will appreciate that the communi-
cating entities may be identified with greater resolution by
using indicia drawn from the higher layers of the protocol
stack associated with a packet. Thus, a combination of IP
and TCP indicia may identify the entities with greater
particularity than layer two information.

Besides a flow key, parser 304 also generates a control or
status indicator to summarize additional information con-

cerning the packet. In one embodiment of the invention a
control indicator includes a sequence number (e.g., TCP
sequence number drawn from a TCP header) to ensure the
correct ordering of packets when re-assembling their data.
The control indicator may also reveal whether certain flags
in the packet’s headers are set or cleared, whether the packet
contains any data, and, if the packet contains data, whether
the data exceeds a certain size. Other data are also suitable
for inclusion in the control indicator, limited only by the
information that is available in the portion of the packet
parsed by parser 304.

In one embodiment of the invention, header parser 106
provides the flow key and all or a portion of the control
indicator to flow database manager 108. As discussed in a
following section, FDBM 108 manages a database or other
data structure containing information relevant to communi-
cation flows passing through MC 100.

In other embodiments of the invention, parser 304 pro—
duces additional information derived from the header of a

packet for use by other modules of NIC 100. For example,
header parser 106 may report the olIset, from the beginning
of the packet or from some other point, of the data or
payload portion of a packet received from a network. As
described above, the data portion of a packet typically
follows the header portion and may be followed by a trailer
portion. Other data that header parser 106 may report
include the location in the packet at which a checksum
operation should begin, the location in the packet at which
the layer three and/or layer four headers begin, diagnostic
data, payload information, etc. The term “payloa ” is often
used to refer to the data portion of a packet. In particular, in
one embodiment of the invention headerparser 106 provides
a payload offset and payload size to control queue 118.

10

15

20

30

35

45

50

55

60

65

16

In appropriate circumstances, header parser 106 may also
report (e.g., to IPP module 104 and/or control queue 118)
that the packet is not formatted in accordance with the
protocols that parser 304 is configured to manipulate. 'lhis
report may take the form of a signal (e.g., the NoyAssist
signal described below), alert, flag or other indicator. The
signal may be raised or issued Whenever the packet is found
to reflect a protocol other than the pre-selected protocols that
are compatible with the processing enhancements described
above (e.g., data re-assembly, batch processing of packet
headers, load distribution). For example, in one embodiment
of the invention parser 304 may be configured to parse and
efficiently process packets using TCP at layer four, lP at
layer three and Ethernet at layer two. In this embodiment, an
IPX (Intemetwork Packet Exchange) packet would not be
considered compatible and IPX packets therefore would not
be gathered for data re-assembly and batch processing.

At the conclusion of parsing in one embodiment of the
invention, the various pieces of information described above
are disseminated to appropriate modules of NIC 100. After
this (and as described in a following section), flow database
manager 108 determines whether an active flow is aged-
ated with the flow key derived from the packet and sets an
operation code to be used in subsequent processing. In
addition, IPP module 104 transmits the packet to packet
queue 116. [PP module 104 may also receive some of the
information extracted by header parser 106, and pass it to
another module of NIC 100.

In the embodiment of the invention depicted in FIG. 3, an
entire header portion of a received packet to be parsed is
copied and then parsed in one evolution, after which the
header parser turns its attention to another packet. However,
in an alternative embodiment multiple copy and/or parsing
operations may be performed on a single packet, In
particular, an initial header portion of the packet may be
copied into and parsed by header parser 106 in a first
evolution, after which another header portion may be copied
into header parser 106 and parsed in a second evolution. A
header portion in one evolution may partially or completely
overlap the header portion of another evolution. In this
manner, extensive headers may be parsed even if header
memory 302 is of limited size. Similarly, it may require
more than one operation to load a full set of instructions for
parsing a packet into instruction memory 306. Illustratively,
a first portion of the instructions may be loaded and
executed, after which other instructions are loaded.

With reference now to FIGS. 4A—4B, a flow chart is
presented to illustrate one method by which a header parser
may parse a header portion of a packet received at a network
interface circuit from a network. In this implementation, the
header parser is configured, or optimized, for parsing pack-
ets conforming to a set of pre-selected protocols (or protocol
stacks). For packets meeting these criteria, various informa-
tion is retrieved from the header portion to assist in the
re—assembly of the data portions of related packets (e.g.,
packets comprising data from a single datagram). Other
enhanced features of the network interface circuit may also
be enabled.

The information generated by the header parser includes,
in particular, a flow key with which to identify the commu-
nication flow or communication connection that comprises
the received packet. In one embodiment of the invention,
data fiom packets having the same flow key may be iden-
tified and re-assembled to form a datagram. In addition,
headers of packets having the same flow key may be
processed collectively through their protocol stack (e.g.,
rather than serially).

NOAC Ex. 1018 Page 873

US 6,650,640 Bl
17

In another embodiment of the invention, information
retrieved by the header parser is also used to distribute the

processing of network traflic received from a network. For
example, multiple packets having the same flow key may be
submitted to a single processor of a multi-processor host
computer system.

In the method illustrated in FIGS. 4A—4B, the set of

pie—selected protocols corresponds to communication pro-
tocols frequently transmitted via the Internet. In particular,
the set of protocols that may be extensively parsed in this
method include the following. At layer two: Ethernet

(traditional version), 802.3 Ethernet, Ethernet VLAN
(Virtual Local Area Network) and 802.3 Ethernet VLAN.At
layer three: IPv4 (with no options) and IPv6 (with no
options). Finally, at layer four, only TCP protocol headers
(with or without options) are parsed in the illustrated
method. Header parsers in alternative embodiments of the
invention parse packets formatted through other protocol
stack. In particular, a NIC may be configured in accordance
with the most common protocol stacks in use on a given
network, which may or may not include the protocols
compatible with the header parser method illustrated in
FIGS. 4A—4B.

As described below, a received packet that does not
correspond to the protocols parsed by a given method may
be flagged and the parsing algorithm terminated for that
packet. Because the protocols under which a packet has been
formatted can only be determined, in the present method, by
examining certain header field values, the determination that
a packet does not conform to the selected set of protocols
may be made at virtually any time during the procedure.
Thus, the illustrated parsing method has as one goal the
identification of packets not meeting the formatting criteria
for re-assembly of data.

Various protocol header fields appearing in headers for the
selected protocols are discussed below. Communication
protocols that may be compatible with an embodiment of the
present invention (e.g., protocols that may be parsed by a
header parser) are well known to persons skilled in the art
and are described with great particularity in a number of
references. They therefore need not be visited in minute
detail herein. In addition, the illustrated method ofparsing a
header portion of a packet for the selected protocols is
merely one method of gathering the information described
below. Other parsing procedures capable of doing so are
equally suitable.

In a present embodiment of the invention, the illustrated
procedure is implemented as a combination of hardware and
software. For example, updateable micro—code instructions
for performing the procedure may be executed by a microse—
quencer. Alternatively, such instructions may be fixed (e.g.,
stored in read-only memory) or may be executed by a
processor or microprocessor.

In FIGS. 4A—4B, state 400 is a start state during which a
packet is received by NIC 100 (shown in FIG. 1A) and initial
Pmcming is performed. NIC 100 is coupled to the Internet
for purposes of this procedure. Initial processing may
include basic error checking and the removal of the layer one
pmamble. After initial processing, the packet is held by IPP
module 104 (also shown in FIG. 1A). In one embodiment of
the invention, state 400 comprises a logical loop in which
the header parser remains in an idle or wait state until a
Packet is received.

In state 402, a header portion of the packet is copied into
memory (e.g., header memory 302 of FIG. 3). In a present
emb0diment of the invention a predetermined number of
bYICS at the beginning (e.g., 114 bytes) of the packet are

10

15

20

30

35

45

SD

55

60

65

18

copied. Packet portiom of different sizes are copied in
alternative embodiments of the invention, the sizes of which
are guided by the goal of copying enough of the packet to
capture and/or identify the necessary header information.
Illustratively, the full packet is retained by IPP module 104
while the following parsing operations are performed,
although the packet may, alternatively, be stored in packet
queue 116 prior to the completion of parsing.

Also in state 402, a pointer to be used in parsing the
packet may be initialized. Because the layer one preamble
was removed, the header portion copied to memory should
begin with the layer two protocol header. Illustratively,
therefore, the pointer is initially set to point to the twelfth
byte of the layer two protocol header and the two-byte value
at the pointer position is read. As one skilled in the art will
recognize, these two bytes may be part of a number of
different fields, depending upon which protocol constitutes
layer two of the packet’s protocol stack. For example, these
two bytes may comprise the Type field of a traditional
Ethernet header, the Length field of an 802.3 Ethernet header
or the TPID (Tag Protocol IDentifier) field of a VLAN-
tagged header.

In state 404, a first examination is made of the layer two
header to determine if it comprises a VLAN-tagged layer
two protocol header. Illustratively, this determination
depends upon whether the two bytes at the pointer position
store the hexadecimal value 8100. If so, the pointer is
probably located at the TPlD field of a VLAN-tagged
header. If not a VLAN header, the procedure proceeds to
state 408.

If, however, the layer two header is a VLAN-tagged
header, in state 406 the CPI (Canonical Format Indicator) bit
is examined. If the CPI bit is set (e.g., equal to one), the
illustrated procedure jumps to state 430, after which it exits.
In this embodiment of the invention the CPI bit, when set,
indicates that the format of the packet is not compatible with
(i.e., does not comply with) the pre~selected protocols (e.g.,
the layer two protocol is not Ethernet or 802.3 Ethernet). If
the CPI bit is clear (e.g., equal to zero), the pointer is
incremented (e.g., by four bytes) to position it at the next
field that must be examined.

In state 408, the layer two header is further tested.
Although it is now known whether this is or is not a
VLAN-tagged header, depending upon whether state 408
was reached through state 406 or directly from state 404,
respectively, the header may reflect either the traditional
Ethernet format or the 8023 Ethernet format. At the begin-
ning of state 408, the pointer is either at the twelfth or
sixteenth byte of the header, either of which may correwond
to a Length field or a Type field. In particular, if the two-byte
value at the position identified by the pointer is less than
0600 (hexadecimal), then the packet corresponds to 802.3
Ethernet and the pointer is understood to identify a Length
field. Otherwise, the packet is a traditional (e.g., version
two) Ethernet packet and the pointer identifies a Type field.

If the layer two protocol is 802.3 Ethernet, the procedure
continues at state 410. If the layer two protocol is traditional
Ethernet, the Type field is tested for the hexadecimal values
of 0800 and 08DD. If the tested field has one of these values,
then it has also been determined that the packet’s layer three
protocol is the Internet Protocol. In this case the illustrated
procedure continues at state 412. Lastly, if the field is a Type
field having a value other than 0800 or 86DD (hexadecimal),
then the packet’s layer three protocol does not match the
pre—selected protocols according to which the header parser
was configured. Therefore, the procedure continues at state
430 and then ends.

am .e...,..en~ aw’- 4» a. mum .r...‘ v.» . 34
.. . 3-»;v rm- rr.miu\n»nawws- -

NOAC Ex. 1018 Page 874

31w‘.

US 6,650,640 B1
19

In one embodiment of the invention the packet is exam-
ined in state 408 to determine if it is a jumbo Ethernet frame.
This determination would likely be made prior to deciding
whether the layer two header conforms to Ethernet or 802.3
Ethernet. Illustratively, the jumbo frame determination may
be made based on the size of the packet, which may be
reported by IPP module 104 or a MAC module. If the packet
is a jumbo frame, the procedure may continue at state 410;
otherwise, it may resume at state 412.

In state 410, the procedure verifies that the layer two
protocol is 8023 Ethernet with LLC SNAP encapsulation. In
particular, the pointer is advanced (e.g., by two bytes) and
the six-byte value following the Length field in the layer two
header is retrieved and examined. If the header is an 802.3
Ethernet header, the field is the LLC_SNAP field and
should have a value ofAAAA03000000 (hexadecimal). The
original specification for an LLC SNAP header may be
found in the specification for IEEE 802.2. If the value in the
packet’s LLC__SNAP field matches the expected value the
pointer is incremented another six bytes, the two—byte 802.3
Ethernet Type field is read and the procedure continues at
state 412. If the values do not match, then the packet does
not conform to the specified protocols and the procedure
enters state 430 and then ends.

In state 412, the pointer is advanced (e.g., another two
bytes) to locate the beginning of the layer three protocol
header. This pointer position may be saved for later use in
quickly identifying the beginning of this header. The packet
is now known to conform to an accepted layer two protocol
(e.g., traditional Ethernet, Ethernet with VLAN tagging, or
802.3 Ethernet with LLC SNAP) and is now checked to
ensure that the packet’s layer three protocol is IP. As
discussed above, in the illustrated embodiment only packets
conforming to the IP protocol are extensively processed by
the header parser.

Illustratively, if the value of the Type field in the layer two
header (retrieved in state 402 or state 410) is 0800
(hexadecimal), the layer three protocol is expected to be IP,
version four. If the value is 86DD (hexadecimal), the layer
three protocol is expected to be IP, version six. Thus, the
Type field is tested in state 412 and the procedure continues
at state 414 or state 418, depending upon whether the
hexadecimal value is 0800 or 86DD, respectively.

In state 414, the layer three header’s conformity with
version four of IP is verified. In one embodiment of the

invention the Version field of the layer three header is tested
to ensure that it contains the hexadecimal value 4, cone-
sponding to version four of IR If in state 414 the layer three
header is confirmed to be IP version four, the procedure
continues at state 416; otherwise, the procedure proceeds to
state 430 and then ends at state 432.

In state 416, various pieces of information from the IP
header are saved. This information may include the IHL (IP
Header Length), Total length, Protocol and/or Fragment
Otfset fields. The IP source address and the IP destination

addresses may also be stored. The source and destination
address values are each four bytes long in version four of IP.
These addresses are used, as described above, to generate a
flow key that identifies the communication flow in which
this packet was sent. The Total Length field stores the size
of the IP segment of this packet, which illustratively com-
prises the [P header, the TCP header and the packet’s data
portion. The TCP segment size of the packet (e.g., the size
of the TCP header plus the size of the data portion of the
packet) may be calculated by subtracting twenty bytes (the
size of the IP version four header) from the Total Length
Value. After state 416, the illustrated procedure advances to
state 422.

‘«~-z

10

15

20

30

35

45

50

55

60

65

20

In state 418, the layer three header’s conformity with
version six of [P is verified by testing the Version field for
the hexadecimal value 6. If the Version field does not contain

this value, the illustrated procedure proceeds to state 430.
In state 420, the values of the Payload Length (e.g., the

size of the TCP segment) and Next Header field are saved,
plus the IP source and destination addresses. Source and
destination addresses are each sixteen bytes long in versionsix of IP.

In state 422 of the illustrated procedure, it is determined
whether the IP header (either version four or version six)
indicates that the layer four header is TCP. Illustratively, the
Protocol field of a version four IP header is tested while the
Next Header field of a version six header is tested. In either

case, the value should be 6 (hexadecimal). The pointer is
then incremented as necessary (e.g., twenty bytes for IP
version four, forty bytes for IP version six) to reach the
beginning of the TCP header. If it is determined in state 422
that the layer four header is not TCP, the procedure advances
to state 430 and ends at end state 432.

In one embodiment of the invention, other fields of a
version four 1P header may be tested in state 422 to ensure
that the packet meets the criteria for enhanced processing by
NIC 100. For example, an IHL field value other than 5
(hexadecimal) indicates that IP options are set for this
packet, in which case the parsing operation is aborted. A
fragmentation field value other than zero indicates that the IP
segment of the packet is a fragment, in which case parsing
is also aborted. In either case, the procedure jumps to state
430 and then ends at end state 432.

In state 424, the packet’s TCP header is parsed and
various data are collected from it. In particular, the TCP
source port and destination port values are saved. The TCP
sequence number, which is used to ensure the correct
re-assembly of data from multiple packets, is also saved.
Further, the values of several components of the Flags
field—illustratively, the URG (urgent), PSH (push), RST
(reset), SYN (synch) and FIN (finish) bits—are saved. As
will be seen in a later section, in one embodiment of the
invention these flags signal various actions to be performed
or statuses to be considered in the handling of the packet.

Other signals or statuses may be generated in state 424 to
reflect information retrieved from the TCP header. For

example, the point from which a checksum operation is to
begin may be saved (illustratively, the beginning of the TCP
header); the ending point of a checksum operation may also
be saved (illustratively, the end of the data portion of the
packet). An offset to the data portion of the packet may be
identified by multiplying the value of the Header Length
field of the TCP header by four. The size of the data portion
may then be calculated by sibtracting the offset to the data
portion from the size of the entire TCP segment.

In state 426, a flow key is asembled by concatenating the
IP source and destination addresses and the TCP source and

destination ports. As already described, the flow key may be
used to identify a communication flow or communication
connection, and may be used by other modules of NIC 100
to proce$ network trafiic more efficiently. Although the
sizes of the source and destination addresses differ between

1P versions four and six (e.g., four bytes each versus sixteen
bytes each, respectively), in the presently described embodi-
ment of the invention all flow keys are of uniform size. In
particular, in this embodiment they are thirty-six bytes long,
including the two-byte TCP source port and two-byte TCP
destination port. Flow keys generated from IP, version four,
packet headers are padded as necessary (e.g., with twenty-
four clear bytes) to fill the flow key’s allocated space.

NOAC Ex. 1018 Page 875

r‘

US 6,650,640 BI
21

In state 428, a control or status indicator is assembled to
provide various information to one or more modules of NIC
100. In one embodiment of the invention a control indicator

includes the packet’s TCP sequence number, a flag or
identifier (e.g., one or more bits) indicating whether the
packet contains data (e.g., whether the TCP payload size is
greater than zero), a flag indicating whether the data portion
of the packet exceeds a pre-determined size, and a flag
indicating whether certain entries in the TCP Flags field are
equivalent to pre-determined values. The latter flag may, for
example, be used to inform another module of NIC 100 that
components of the Flags field do or do not have a particular
configuration. After state 428, the illustrated procedure ends
with state 432.

State 430 may be entered at several different points of the
illustrated procedure. This state is entered, for example,
when it is determined that a header portion that is being
parsed by a header parser does not conform to the preA
selected protocol stacks identified above. As a result, much
of the information described above is not retrieved. A

practical consequence of the inability to retrieve this infor-
mation is that it then cannot be provided to other modules of
NIC 100 and the enhanced procesing described above and
in following sections may not be performed for this packet.
In particular, and as discussed previously, in a present
embodiment of the invention one or more enhanced opera-
tions may be performed on parsed packets to increase the
efficiency with which they are processed. Illustrative opera-
tions that may be applied include the re-assembly of data
from related packets (e.g., packets containing data from a
single datagram), batch processing of packet headers
through a protocol stack, load distribution or load sharing of
protocol stack processing, efficient transfer of packet data to
a destination entity, etc.

In the illustrated procedure, in state 430 a flag or signal
(illustratively termed No_Assist) is set or cleared to indicate
that the packet presently held by IPP module 104 (e.g.,
which was just processed by the header parser) does not
conform to any of the pre—selected protocol stacks. This flag
or signal may be relied upon by another module of NIC 100
when deciding whether to perform one of the enhanced
operations.

Another flag or signal may be set or cleared in state 430
to initialize a checksum parameter indicating that a check-
sum operation, if performed, should start at the beginning of
the packet (e.g., with no offset into the packet). Illustratively,
incompatible packets cannot be parsed to determine a more
appropriate point from which to begin the checksum opera-
tion. After state 430, the procedure ends with end state 432.

After parsing a packet, the header parser may distribute
information generated from the packet to one or more
modules of NIC 100. For example, in one embodiment of the
invention the flow key is provided to flow database manager
108, load distributor 112 and one or both of control queue
118 and packet queue 116. Illustratively, the control indica-
tor is provided to flow database manager 108. This and other
control information, such as TCP payload size, TCPpayload
offset and the N0_Assist signal may be returned to IPP
module 104 and provided to control queue 118. Yet addi-
tional control and/or diagnostic information, such as offsets
to the layer three and/or layer four headers, may be provided
to IPP module 104, packet queue 116 and/or control queue
118.

Checksum information (e .g., a starting point and either an
ending point or other means of identifying a portion of the
packet from which to compute a checksum) may be pro-
vided to checksum generator 114.

10

15

20

30

35

45

50

55

65

22

As discussed in a following section, although a received
packet is parsed on NIC 100 (e.g., by headerparser 106), the
packets are still processed (e.g., through their respective
protocol stacks) on the host computer system in the illus-
trated embodiment of the invention. However, after parsing
a packet in an alternative embodiment of the invention, NIC
100 also performs one or more subsequent processing steps.
For example, NIC 100 may include one or more protocol
processors for processing one or more of the packet’s
protocol headers.
Dynamic Header Parsing Instructions in One Embodiment
of the Invention

In one embodiment of the presentinvention, header parser
106 parses a packet received from a network according to a
dynamic sequence of instructions. The instructions may be
stored in the header parser’s instruction memory (e.g.,
RAM, SRAM, DRAM, flash) that is re-programmable or
that can otherwise be updated with new or additional
instructions. In one embodiment of the invention software

operating on a host computer (e.g., a device driver) may
download a set of parsing instructions for storage in the
header parser memory.

The number and format of instructions stored in a header

parser’s imtruction memory may be tailored to one or more
specific protocols or protocol stacks. An instruction set
configured for one collection of protocols, or a program
constructed from that instruction set, may therefore be
updated or replaced by a different instruction set or program.
For packets received at the network interface that are for—
matted in accordance with the selected protocols (e.g.,
“compatible” packets), as determined by analyzing or pars-
ing the packets, various enhancements in the handling of
network trafiic become possfl31e as described in the follow-
ing sections. In particular, packets from one datagram that
are configured according to a selected protocol may be
re-assembled for efficient transfer in a host computer. In
addition, header portions of such packets may be processed
collectively rather than serially. And, the processing of
packets from different datagrams by a multi-processor host
computer may be shared or distributed among the proces-
sors. Therefore, one objective of a dynamic header parsing
operation is to identify a protocol according to which a
received packet has been formatted or determine Whether a
packet header conforms to a particular protocol.

FIG. 23, discussed in detail shortly, presents an illustrative
series of instructions for parsing the layer two, three and four
headers of a packet to determine if they are Ethernet, IP and
TCP, respectively. The illustrated instructions comprise one
possible program or microcode for performing a parsing
operation. As one skilled in the art will recognize, after a
particular set of parsing instructions is loaded into a parser
memory, a number of different programs may be assembled.
FIG. 23 thus presents merely one of a number of programs
that may be generated from the stored instructions. The
instructions presented in FIG. 23 may be performed or
executed by a microsequencer, a processor, a microproces-
sor or other similar module located within a network inter-
face circuit.

In particular, other instruction sets and other programs
may be derived for different communication protocols, and
may be expanded to other layers of a protocol stack. For
example, a set of instructions could be generated for parsing
NFS (Network File System) packets. Illustratively, these
instructions would be configured to parse layer five and six
headers to determine if they are Remote Procedure Call
(RFC) and External Data Representation (XDR), respec-
tively. Other instructions could be configured to parse a

NOAC Ex. 1018 Page 876

nrt...“.h,

3-Weigéé‘.

.g”#3535;
.‘

.'.‘wx

us 0,650,040 133; ,
23

portion of the packet’s data (which may be considered layer
seven). An NFS header may be considered a part of a
packet’s layer six protocol header or part of the packet’sdata.

One type of instruction executed by a microsequencer
may be designed to locate a particular field of a packet (e.g.,
at a specific offset within the packet) and compare the value
stored at that ofi'set to a value associated with that field in a

particular communication protocol. For example, one
instruction may require the microsequencer to examine a
value in a packet header at an otfset that would correspond
to a Type field of an Ethernet header. By comparing the
value actually stored in the packet with the value expected
for the protocol, the microsequencer can determine if the
packet appears to conform to the Ethernet protocol.
lllustratively, the next instruction applied in the parsing
program depends upon whether the previous comparison
was successful. Thus, the particular instructions applied by
the microsequencer, and the sequence in which applied,
depend upon which protocols are represented by the pack-
et’s headers.

The microsequencer may test one or more field values
within each header included in a packet. The more fields that
are tested and that are found to comport with the format of
a known protocol, the greater the certainty that the packet
conforms to that protocol. As one skilled in the art will
appreciate, one communication protocol may be quite dif-
ferent than another protocol, thus requiring examination of
different parts of packet headers for diflerent protocols.
Illustratively, the parsing of one packet may end in the event
of an error or because it was determined that the packet
being parsed does or does not conform to the protocol(s) the
instructions are designed for.

Each instruction in FIG. 23 may be identified by a number
and/or a name. A particular instruction may perform a
variety of tasks other than comparing a header field to an
expected value. An instruction may, for example, call
another instruction to examine another portion of a packet
header, initialize, load or configure a register or other data
structure, prepare for the arrival and parsing of another
packet, etc. In particular, a register or other storage structure
may be configured in anticipation of an operation that is
performed in the network interface after the packet isparsed.
For example, a program instruction in FIG. 23 may identify
an output operation that may or may not be performed,
depending upon the success or failure of the comparison of
a value extracted from a packet with an expected value. An
output operation may store a value in a register, configure a
register (e.g., load an argument or operator) for a post-
parsing operation, clear a register to await a new packet, etc.

A pointer may be employed to identify an oEset into a
packet being parsed. In one embodiment, such a pointer is
initially located at the beginning of the layer two protocol
header. In another embodiment, however, the pointer is
situated at a specific location within a particular header (e.g.,
immediately following the layer two destination and/or
source addresses) when parsing commences. Illustratively,
the pointer is incremented through the packet as the parsing
procedure executes. In one alternative embodiment,
however, offsets to areas of interest in the packet may be
computed from one or more known or computed locations.

In the parsing program depicted in FIG. 23, a header is
navigated (e.g., the pointer is advanced) in increments of
two bytes (e.g., sixteen-bit words). In addition, where a
particular field of a header is compared to a known or
expected value, up to two bytes are extracted at a time from
the field. Further, when a value or header field is copied for

10

15

20

30

35

45

50

55

60

65

24

storage in a register or other data structure, the amount of
data that may be copied in one operation may be expreged
in multiples of two-byte units or in other units altogether
(e.g., individual bytes). This unit of measurement (e.g., two
bytes) may be increased or decreased in an alternative
embodiment of the invention. Altering the unit of measure-
ment may alter the precision with which a header can be
parsed or a header value can be extracted.

In the embodiment of the invention illustrated in FIG. 23,
a set of instructions loaded into the header parser’s instruc-
tion memory comprises a number of possible operations to
be performed while testing a packet for compatibility with
selected protocols. Program 2300 is generated from the
instruction set. Program 2300 is thus merely one possible
program, microcode or sequence of instructions that can be
formed fiom the available instruction seL

In this embodiment, the loaded instruction set enables the
following sixteen operations that may be performed on a
packet that is being parsed. Specific implementations of
these operations in program 2300 are discussed in additional
detail below. These instructions will be understood to be

illustrative in nature and do not limit the composition of
instruction sets in other embodiments of the invention. In

addition, any subset of these operations may be employed in
a particular parsing program or microcode. Further, multiple
instructions may employ the same operation and have dif-
ferent effects.

A CLR__REG operation allows the selective initialization
of registers or other data structures used in program 2300
and, possibly, data structures used in functions performed
after a packet is parsed. Initialization may comprise storing
the value zero. Anumber of illustrative registers that may be
initialized by a CLR_REG operation are identified in the
remaining operations.

A LD__FID operation copies a variable amount of data
from a particular oEset within the packet into a register
configured to store a paeket’s flow key or other flow
identifier. This register may be termed a FLOWID register.
The effect of an LD_FID operation is cumulative. In other
words, each time it is invoked for one packet the generated
data is appended to the flow key data stored previously.

A ID_SEQ operation copies a variable amount of data
from a particular olfset within the packet into a register
configured to store a packet’s sequence number (e.g., a TCP
sequence number). This register may be assigned the label
SEQNO. This operation is also cumulative—the second and
subsequent invocations of this operation for the packet cause
the identified data to be appended to data stored previously.

A LD_CI‘L operation loads a value fi'om a specified
oEset in the packet into a CONTROL register. The CON-
TROL register may comprise a control indicator discussed in
a previous section for identifying whether a packet is
suitable for data re-assembly, packet batching, load distri-
bution or other enhanced fimctions of MC 100. In particular,
a control indicator may indicate whether a No_Assist flag
should be raised for the packet, whether the packet includes
any data, whether the amount of packet data is larger than a
predetermined threshold, etc. Thus, the value loaded into a
CONTROL register in a LD_CI‘L operation may affect the
post-parsing handling of the packet.

A LD_SAP operation loads a value into the CONTROL
register fi'om a variable ofiset within the packet. The loaded
value may comprise the packet’s etherty'pe. In one option
that may be associated with a LD_SAP operation, the oHset
of the packet’s layer three header may also be stored in the
CONTROL register or elsewhere. As one skilled in the art
will recognize, a packet’s layer three header may immedi-

NOAC Ex. 1018 Page 877

~Y~e~m~o~mtg1—35
“It! u,‘.r-w~;'\~ -

25

ately follow its layer two ethertype field if the packet
conforms to the Ethernet and IP protocols.

A LD_R1 operation may be used to load a value into a
temporary register (e.g., named R1) from a variable offset
within the packet. A temporary register may be used for a
variety of tasks, such as accumulating values to determine
the length of a header or other portion of the packet. A
LD__R1 operation may also cause a value from another
variable oifset to be stored in a second temporary register
(e.g., named R2). The values stored in the R1 and/or R2
registers during the parsing of a packet may or may not be
cumulative.

A LD_L3 operation may load a value from the packet
into a register configured to store the location of the packet’s
layer three header. This register may be named L30FFSET.
In one optional method of invoking this operation, it may be
used to load a fixed value into the ISOFFSET register. As
another option, the LD_L3 operation may add a value
stored in a temporary register (e.g., R1) to the value being
stored in the L30FFSET register.

ALDESUM operation stores the starting point within the
packet from which a checksurn should be calculated. The
register in which this value is stored may be named a
CSUMSTART register. In one alternative invocation of this
operation, a fixed or predetermined value is stored in the
register. As another option, the LDHSUM operation may
add a value stored in a temporary register (e.g., R1) to the
value being stored in the CSUMSTART register.

A LD_HDR operation loads a value into a reg’ster
configured to store the location within the packet at which
the header portion may be split. The value that is stored may,
for example, be used during the transfer of the packet to the
host computer to Store a data portion of the packet in a
separate location than the header portion. The loaded value
may thus identify the beginning of the packet data or the
beginning of a particular header. In one invocation of a
I_.D__HDR operation, the stored value may be computed
from a present position of a parsing pointer described above.
In another invocation, a fixed or predetermined value may be
store. As yet another alternative, a value stored in a tempo—
rary register (e.g., R1) and/or a constant may be added to the
loaded value.

A LD_LEN operation stores the length of the packet’s
payload into a reg'ster (e.g., a PAYLOADLEN rey'ster).

An IM_FID operation appends or adds a fixed or prede-
termined value to the existing contents of the FLOWID
register described above.

An 1M_SEQ operation appends or adds a fixed or pre-
determined value to the contents of the SEQNO register
described above.

An IM_SAP operation loads or stores a fixed or prede-
termined value in the CSUMSTART register described
above.

An IM_R1 operation may add or load a predetermined
value in one or more temporary registers (e.g., R1, R2).

An [MNCI'L operation loads or stores a fixed or prede—
termined value in the CONTROL register described above.

A ST_FLAG operation loads a value from a specified
offset in the packet into a FLAGS register. The loaded value
may comprise one or more fields or flags from a packet
header.

One skilled in the art will recognize that the labels
assigned to the operations and registers described above and
elsewhere in this section are merely illustrative in nature and
in no way limit the operations and parsing instructions that
may be employed in other embodiments of the invention.

Instructions in program 2300 comprise instruction num-
ber field 2302, which contains a number of an instruction

10

15

20

30

35

4s

50

55

60

65

26

within the program, and instruction name field 2304, which
contains a name of an instruction. In an alternative embodi-
ment of the invention instruction number and instruction

name fields may be merged or one of them may be omitted.
Instruction content field 2.306 includes multiple portions

for executing an instruction. An “extraction mask” portion
of an instruction is a two-byte mask in hexadecimal notation.
An extraction mask identifies a portion of a packet header to
be copied or extracted, starting from the current packet olfset
(e.g., the current position of the parsing pointer).
Illustratively, each bit in the packet’s header that corre-
sponds to a one in the hexadecimal value is copied for
comparison to a comparison or test value. For example, a
value of OxFFOO in the extraction mask portion of an
instruction signifies that the entire first byte at the current
packet offset is to be copied and that the contents of the
second byte are irrelevant. Similarly, an extraction mask of
0x3FFF signifies that all but the two most significant bits of
the first byte are to be copied. A two-byte value is con-
structed from the extracted contents, using whatever was
copied from the packet. Illustratively, the remainder of the
value is padded with zeros. One skilled in the art will
appreciate that the format of an extraction mask (or an
output mask, described below) may be adjusted as necessary
to reflect little endian or big endian representation.

One or more instructions in a parsing program may not
require any data extracted from the packet at the pointer
location to be able to perform its output operation. These
instructions may have an extraction mask value of 0x0000 to
indicate that although a two-byte value is still retrieved from
the pointer position, every bit of the value is masked 011?.
Such an extraction mask thus yields a definite value of zero.
This type of instruction may be used when, for example, an
output operation needs to be performed before another
substantive portion of header data is extracted with an
extraction mask other than 0x0000.

A“compare value” portion of an instruction is a two-byte
hexadecimal value with which the extracted packet contents
are to be compared. The compare value may be a value
known to be stored in a particular field of a specific protocol
header. The compare value may comprise a value that the
extracted portion of the header should match or have a
specified relationship to in order for the packet to be
considered compatible with the pre-selected protocols.

An “operator" portion of an instruction identifies an
operator signifying how the extracted and compare values
are to be compared. Illustratively, EQ signifies that they are
tested for equality, NE signifies that they are tested for
inequality, LT signifies that the extracted value must be less
than the compare value for the comparison to succeed, GE
signifies that the extracted value must be greater than or
equal to the compare value, etc. An instruction that awaits
arrival of a new packet to be parsed may employ an
operation of NP. Other operators for other functions may be
added and the existing operators may be assigned other
monikers.

A “sucaass offset" portion of an instruction indicates the
number of two-byte units that the pointer is to advance if the
comparison between the extracted and test values succeeds.
A “success instruction” portion of an instruction identifies
the next instruction in program 2300 to execute if the
comparison is successful.

Similarly, “failure ofiset” and “failure instruction” por-
tions indicate the number of two-byte units to advance the
pointer and the next instruction to execute, respectively, if
the comparison fails. Although oifsets are expressed in units
of two bytes (e.g., sixteen-bit words) in this embodiment of

L}-

NOAC Ex. 1018 Page 878

Us 6,650,640 B1
27

the invention, in an alternative embodiment of the invention
they may be smaller or larger units. Further, as mentioned
above an instruction may be identified by number or name.

Not all of the instructions in a program are necessarily
used for each packet that is parsed. For example, a program
may include instructions to test for more than one type or
version of a protocol at a particular layer. In particular,
program 2300 tests for either version four or six of the IP
protocol at layer three. The instructions that are actually
executed for a given packet will thus depend upon the format
of the packet. Once a packet has been parsed as much as
possible with a given program or it has been determined that
the packet does or does not conform to a selected protocol,
the parsing may cease or an instruction for halting the
parsing procedure may be executed. lllustratively, a next
instruction portion of an instruction (e.g., “success instruc-
tion” or “failure instruction”) with the value “DONE” indi-
cates the completion of parsing of a packet. A DONE, or
similar, instruction may be a dummy instruction. In other
words, “DONE” may simply signify that parsing to be
terminated for the present packet. Or, like instruction eigh-
teen of program 2300, a DONE instruction may take some
action to await a new packet (e.g., hy initialin'ng a register).

The remaining portions of instruction content field 2306
are used to specify and complete an output or other data
storage operation. In particular, in this embodiment an
“output operation” portion of an instruction corresponds to
the operations included in the loaded instruction set. Thus,
for program 2300, the output operation portion of an instruc-
tion identifies one of the sixteen operations described above.
The output operations employed in program 2300 are further
described below in conjunction with individual instructions.

An “operation argument" portion of an instruction com-
prises one or more arguments or fields to be stored, loaded
or otherwise used in conjunction with the instruction’s
output operation. lllustratively, the operation argument por-
tion takes the form of a multi-bit hexadecimal value. For

program 2300, operation arguments are eleven bits in size.
An argument or portion of an argument may have various
meanings, depending upon the output operation. For
example, an operation argument may comprise one or more
numerical values to be stored in a register or to be used to
locate or delimit a portion of a header. Or, an argument bit
may comprise a flag to signal an action or status. In
particular, one argument bit may specify that a particular
register is to be reset; a set of argument bits may comprise
an ofl’set into a packet header to a value to be stored in a
register, etc. lllustratively, the offset specified by an opera-
tion argument is applied to the location of the parsing pointer
position before the pointer is advanced as specified by the
applicable success offset or failure otfset. The operation
arguments used in program 2300 are explained in further
detail below.

An “operation enabler” portion of an instruction content
field specifies whether or when an instruction’s output
operation is to be performed. In particular, in the illustrated
embodiment of the invention an instruction’s output opera-
tion may or may not be performed, depending on the result
of the comparison between a value extracted from a header
and the compare value. For example, an output enabler may
be set to a first value (e.g., zero) if the output operation is
never to be performed. It may take different values if it is to
be performed only when the comparison does or does not
Satisfy the operator (e.g., one or two, respectively). An
Operation enabler may take yet another value (e.g., three) if
it is always to be performed.

A “shift” portion of an instruction comprises a value
indicating how an output value is to be shifted. A shift may

10

15

20

30

35

45

50

55

60

65

28

be necessary because different protocols sometime require
values to be formatted dilferently. In addition, a value
indicating a length or location of a header or header field
may require shifting in order to reflect the appropriate
magnitude represented by the value. For example, because
program 2300 is designed to use two-byte units, a value may
need to be shifted if it is to reflect other units (e.g., bytes).
Ashift value in a present embodiment indicates the number
of positions (e.g., bits) to right—shift an output value. In
another embodiment of the invention a shift value may
represent a different shift type or direction.

Finally, an “output mask" specifies how a value being
stored in a register or other data structure is to be formatted.
As stated above, an output operation may require an
extracted, computed or assembled value to be stored. Similar
to the extraction mask, the output mask is a two-byte
hexadecimal value. For every position in the output mask
that contains a one, in this embodiment of the invention the
corresponding bit in the two-byte value identified by the
output operation and/or operation argument is to be stored.
For example, a value of OXFFFF indicates that the specified
two-byte value is to be stored as is. Hlustratively, for every
position in the output mask that contains a zero, a zero is
stored. Thus, a value of 0xF000 indicates that the most
significant four hits of the first byte are to be stored, but the
rest of the stored value is irrelevant, and may he padded withzeros.

An output operation of “NONE” may be used to indicate
that there is no output operation to be performed or stored,
in which case other instruction portions pertaining to output
may be ignored or may comprise specified values (e.g., all
zeros). In the program depicted in FIG. 23, however, a
CLR__REG output operation, which allows the selective
re-initialization of registers, may be used with an operation
argument of zero to efiectively perform no output. In
particular, an operation argument of zero for the CLR__REG
operation indicates that no registers are to be reset. In an
alternative embodiment of the invention the operation
enabler portion of an instruction could be set to a value (e.g.,
zero) indicating that the output operation is never to be
performed.

The format and sequence of instructions in FIG. 23 will
be understood to represent just one method of parsing a
packet to determine whether it conforms to a particular
communication protocol. In particular, the instructions are
designed to examine one or more portions of one or more
packet headers for comparison to known or expected values
and to configure or load a register or other storage location
as necessary. As one skilled in the art will appreciate,
instructions for parsing a packet may take any of a number
of forms and be performed in a variety of sequences without
exceeding the scope of the invention.

With reference now to FIG. 23, instructions in program
2300 may be described in detail. Prior to execution of the
program depicted in FIG. 23, a parsing pointer is situated at
the beginning of a packet’s layer two header. The position of
the parsing pointer may be stored in a register for easy
reference and update during the parsing procedure. In
particular, the position of the parsing pointer as an offset
(e.g., from the beginning of the layer two header) may be
used in computing the position of a particular position
within a header.

Program 2300 begins with a WAIT instruction (e.g.,
instruction zero) that waits for a new packet (e.g., indicated
by operator NP) and, when one is received, sets a parsing
pointer to the twelfth byte of the layer two header. This offset
to the twelfth byte is indicated by the success offset portion

.va..m. V‘s-s:, ”Anne... .,. a»
. this, ..m.«.~.,.

.c,.,

t.

NOAC Ex. 1018 Page 879

US 6,650,640 B1
29

of the instruction. Until a packet is received, the WAIT
instruction loops on itself. In addition, a CLR_REG opera—
tion is conducted, but the operation enabler setting indicates
that it is only conducted when the comparison succeeds

(e.g., when a new packet is received).
The specified CLR_REG operation operates according to

the WAIT instruction’s operation argument (i.e., 0x3FF). In
this embodiment, each bit of the argument corresponds to a
register or other data structure. The registers initialized in
this operation may include the following: ADDR (e.g., to
store the parsing pointer’s address or location), FLOWID
(e.g., to store the packet’s flow key), SEQNO (e.g., to store
a TCP sequence number), SAP (e.g., the packet’s ethertype)
and PAYLOADLEN (e.g., payload length). The following
registers configured to store certain oflsets may also be reset:
FLOWOFF (e.g., otfset within FLOWID register), SEQOFF
(e.g., offset within SEQNO register), ISOFFSET (e.g.,
ofl’set of the packet’s layer three header), HDRSPLIT (e.g.,
location to split packet) and CSUMSTART (e.g., starting
location for computing a checksum). Also, one or more
status or control indicators (e.g., CONTROL or FLAGS
register) for reporting the status of one or more flags of a
packet header may be reset. In addition, one or more
temporary registers (e.g., R1, R2) or other data structures
may also be initialized. These registers are merely illustra-
tive of he data structures that may be employed in one
embodiment of the invention. Other data structures may be
employed in other embodiments for the same or different
output operations.

Temporary registers such as R1 and/or R2 may be used in
program 2300 to track various headers and header fields.
One skilled in the art will recognize the number of possible
combinations of communication protocols and the elfect of
those various combinations on the structure and format of a

packet’s headers. More information may need to be exam-
ined or gathered from a packet conforming to one protocol
or set of protocols than from a packet conforming to another
protocol or set of protocols. For example, if extension
headers are used with an Internet Protocol header, values
from those extension headers and/or their lengths may need
to be stored, which values are not needed if extension
headers are not used. When calculating a particular offset,
such as an offset to the beginning of a packet’s data portion
for example, multiple registers may need to be maintained
and their values combined or added. In this example, one
register or temporary register may track the size or format of
an extension header, whfle another register tracks the base IP
header.

Instruction VLAN (e.g., instruction one) examines the
two-byte field at the parsing pointer position (possibly a
Type, Length or TPID field) for a value indicating a VLAN-
tagged header (e.g., 8100 in hexadecimal). If the header is
VLAN-tagged, the pointer is incremented a couple of bytes
(e.g., one two-byte unit) and execution continues with
instruction CFI; otherwise, execution continues with instruc-
tion 802.3. In either event, the instruction’s operation
enabler indicates that an IM_CI‘L operation is always to be
performed.

As described above, an IM__C'I'L operation causes a
control register or other data structure to be populated with
one or more flags to report the status or condition of a
packet. As described in the previous section, a control
indicator may indicate whether a packet is suitable for
enhanced processing (e.g., whether a No__Assist signal
should be generated for the packet), whether a packet
includes any data and, if so, whether the size of the data
portion exceeds a specified threshold. The operation argu-

, a, a» m. ,ear-«1...,» «nu-4:- an..."
. w 542'. Ina-rm: H 2'M

10

15

20

35

45

50

55

60

65

30

ment 0x00A for instruction VLAN comprises the value to be
stored in the control register, with individual bits of the
argument corresponding to particular flags. lllustratively,
flags associated with the conditions just described may be
set to one, or true, in this IM_CI‘L operation.

Instruction CF] (e.g., instruction two) examines the CPI
bit or flag in a layer two header. If the CPI bit is set, then the
packet is not suitable for the processing enhancements
described in other sections and the parsing procedure ends
by calling instruction DONE (e.g., instruction eighteen). If
the CPI bit is not set, then the pointer is incremented another
couple of bytes and execution continues with instruction
8023. As explained above, a null output operation (e.g.,
“NONE”) indicates that no output operation is performed. In
addition, the output enabler value (e.g., zero) further ensures
that no output operation is performed.

In instruction 8023 (e.g., instruction three), a Type or
Length field (depending on the location of the pointer and
format of the packet) is examined to determine if the
packet’s layer two format is traditional Ethernet or 8023
Ethernet. If the value in the header field appears to indicate
8023 Ethernet (e.g., contains a hexadecimal value less than
0600), the pointer is incremented two bytes (to what should
be an LLC SNAP field) and execution continues with
instruction LLC_l. Otherwise, the layer two protocol may
be considered traditional Ethernet and execution continues
with instruction IPV4_1. Instruction 802.3 in this embodi—

ment of the invention does not include an output operation.
In instructions LLC_l and LLC__2 (e.g., instructions

four and five), a suspected layer two LLC SNAP field is
examined to ensure that the packet conforms to the 8023
Ethernet protocol. In instruction LLC_1, a first part of the
field is tested and, if successful, the pointer is incremented
two bytes and a second part is tested in instruction LLCfiZ.
If instruction LLC_2 succeeds, the parsing pointer is
advanced four bytes to reach what should be a Type field and
execution continues with instruction IPV4_1. If either test
fails however, the parsing procedure exits. In the illustrated
embodiment of the invention, no output operation is per-
formed while testing the LDC SNAP field.

In instruction IPV4_1 (e.g., instruction six), the parsing
pointer should be at an Ethernet Type field. This field is
examined to determine if the layer three protocol appears to
correspond to version four of the Internet Protocol. If this
test is successful (e.g., the Type field contains a hexadecimal
value of 0800), the pointer is advanced two bytes to the
beginning of the layer three header and execution of pro—
gram Z400 continues with instruction IPV4_2. If the test is
unsuccessful, then execution continues with instruction
[PV6_1. Regardless of the test results, the operation enabler
value (e.g., three) indicates that the specified LD_SAP
output operation is always performed.

As described previously, in a LD_SAP operation a pack-
et’s ethertype (or Service Access Point) is stored in a
register. Part of the operation argument of 0x100, in par-
ticular the right-most six bits (e.g., zero) constitute an offset
to a two—byte value comprising the ethertype. The offset in
this example is zero because, in the present context, the
parsing pointer is already at the Type field that contains the
ethertype. In the presently described embodiment, the
remainder of the operation argument constitutes a flag
specifying that the starting position of the layer three header
(e.g., an offset from the beginning of the packet) is also to
be saved (e.g., in the ISOFFSET register). In particular, the
beginning of the layer three header is known to be located
immediately after the two-byte Type field.

Instruction IPV4_2 (e.g., instruction seven) tests a sus-
pected layer three version field to ensure that the layer three

'5 t. imam. .‘6 a U\ \Snflfith'nu v
m -
We».

NOAC Ex. 1018 Page 880

US 6,650,640 B1
31

protocol is version four of IP. In particular, a specification for
version four of IP specifies that the first four bits of the layer
three header contain a value of 0x4. If the test fails, the

parsing procedure ends with instruction DONE. If the test
succeeds, the pointer advances six bytes and imtruction
lPV4fi3 is called.

The specified LD_SUM operation, which is only per-
formed if the comparison in instruction IPV4__2 succeeds,
indicates that an ofl’set to the beginning of a point from
which a checksum may be calculated should be stored. In
particular, in the presently described embodiment of the
invention a checksum should be calculated from the begin-
ning of the TCP header (assuming that the layer four header
is TCP). The value of the operation argument (e.g., OXOOA)
indicates that the checksum is located twenty bytes (e.g., ten
two—byte increments) from the current pointer. Thus, a value
of twenty bytes is added to the parsing pointer position and
the result is stored in a register or other data structure (e.g.,
the CSUMSTART register).

Instruction IPV4_,3 (e.g., instruction eight) is designed to
determine whether the packet’s IP header indicates [P frag-
mentation. If the value extracted from the header in accor-
dance with the extraction mask does not equal the compari-
son value, then the packet indicates fragmentation. If
fragmentation is detected, the packet is considered unsuit-
able for the processing enhancements described in other
sections and the procedure exits (e.g., through instruction
DONE). Otherwise, the pointer is incremented two bytes
and instruction IPV4_4 is called after performing a
LD_LEN operation.

In accordance with the LD_LEN operation, the length of
the IP segment is saved. The illustrated operation argument
(e.g., 0x03E) comprises an ofl’set to the Total Length field
where this value is located. In particular, the least-significant
six bits constitute the offset. Because the pointer has already
been advanced past this field, the operation argument com-
prises a negative value. One skilled in the art will recognize
that this binary value (e.g., 111110) may be used to represent
the decimal value of negative two. Thus, the present offset
of the pointer, minus four bytes (e.g., two two-byte units), is
saved in a register or other data structure (e.g., the PAY-
LOADLEN register). Any other suitable method of repre-
senting a negative ofiset may be used. Or, the IP segment
length may be saved while the pointer is at a location
preceding the Total Length field (e.g., during a previous
instruction).

In instruction IPV4__4 (e.g., instruction nine), a one-byte
Protocol field is examined to determine whether the layer
four protocol appears to be TCP. If so, the pointer is
advanced fourteen bytes and execution continues with
instruction TCP_1; otherwise the procedure ends.

The specified LD_FID operation, which is only per-
formed when the comparison in instruction IPV4_4
succeeds, involves retrieving the packet’s flow key and
storing it in a register or other location (e.g., the FLOWID
register) One skilled in the art will appreciate that in order
for the comparison in instruction IPV4_4 to be successful,
the packet’s layer three and four headers must conform to IP
(version four) and TCP, respectively. If so, then the entire
flow key (e.g., IP source and destination addresses plus TCP
§0ufc€ and destination port numbers) is stored contiguously
tn the paeket’s header portion. In particular, the flow key
Comprises the last portion of the IP header and the initial
Portion of the TCP header and may be extracted in one
Operation. The operation argument (e.g., 0x182) thus com-
prises tw0 values needed to locate and delimit the flow key.

Illustratively, the right-most six bits of the argument (e.g.,

10

15

20

30

35

45

50

55

60

65

32

0x02) identify an olIset from the pointer position, in two-
byte units, to the beginning of the flow key. The other five
bits of the argument (e.g., 0x06) identify the size of the flow
key, in two-byte units, to be stored.

In instruction IPV6_1 (e.g., instruction ten), which fol-
lows the failure of the comparison performed by instruction
IPV4_1, the parsing pointer should be at a layer two Type
field. If this test is successful (e.g., the Type field holds a
hexadecimal value of 86DD), instruction IPV6_2 is
executed after a LD_SUM operation is performed and the
pointer is incremented two bytes to the beginning of the
layer three protocol. If the test is unsuccessful, the procedure
exits.

The indicated LD_SUM operation in instruction IPV6_1
is similar to the operation conducted in instruction IPV4_2
but utilizes a different argument. Again, the checksum is to
be calculated from the beginning of the TCP header
(assuming the layer four header is TCP). The specified
operation argument (e.g., 0x015) thus comprises an offset to
the beginning of the TCP header—twenty-one two-byte
steps ahead. The indicated oflset is added to the present
pointer position and saved in a register or other data struc~
ture (e.g., the CSUMSTART register).

Instruction IPV6_2 (e.g., instruction eleven) tests a sus~
pected layer three version field to further ensure that the
layer three protocol is version six of [R If the comparison
fails, the parsing procedure ends with the invocation of
instruction DONE. If it succeeds, instruction IPV6_3 is
called. Operation IM_R1, which is performed only when
the comparison succeeds in this embodiment, saves the
length of the IP header from a Payload Length field. As one
skilled in the art will appreciate, the Total Length field (e.g.,
IP segment size) of an IP, version four, header includes the
size of the version four header. However, the Payload
Length field (e.g., 1P segment size) of an IP, version six,
header does not include the size of the version six header.
Thus, the size of the version six header, which is identified
by the right-most eight bits of the output argument (e.g.,
0x14, indicating twenty two-byte units) is saved.
Illustratively, the remainder of the argument identifies the
data structure in which to store the header length (e.g.,
temporary register R1). Because of the variation in size of
layer three headers between protocols, in one embodiment
of the invention the header sin is indicated in different units

to allow greater precision. In particular, in one embodiment
of the invention the size of the header is specified in bytes
in instruction IPV6_2, in which case the output argument
could be 0x128.

Instruction IPV6_3 (e.g., instruction twelve) in this
embodiment does not examine a header value. In this
embodiment, the combination of an extraction mask of
0x0000 with a comparison value of 0x0000 indicates that an
output operation is desired before the next examination of a
portion of a header. After the LD_FID operation is
performed, the parsing pointer is advanced six bytes to a
Next Header field of the version six IP header. Because the

extraction mask and comparison values are both 0x0000, the
comparison should never fail and the failure branch of
instruction should never be invoked.

As described previously, a LD_FID operation stores a
flow key in an appropriate register or other data structure
(e.g., the FLOWID register). Illustratively, the operation
argument of 0x484 comprises two values for identifying and
delimiting the flow key. In particular, the right-most six bits
(e.g., 0x04) indicates that the flow key portion is located at
an ofiset of eight bytes (e.g., four two-byte increments) from
the current pointer position. The remainder of the operation

NOAC Ex. 1018 Page 881

___..“M

in,,

US 6,650,640 B1 ‘
33

argument (e.g., 0x12) indicates that thirty—six bytes (e.g., the
decimal equivalent of 0x12 two—byte unit5) are to be copied
from the computed offset. In the illustrated embodiment of
the invention the entire flow key is copied intact, including
the layer three source and destination addresses and layer
four source and destination pons.

In instruction IPV6_4 (e.g., instruction thirteen), a sus-
pected Next Header field is examined to determine whether
the layer four protocol of the packet’s protocol stack appears
to be TCP. If so, the procedure advances thirty—six bytes
(e.g., eighteen two—byte units) and instruction TCP_l is
called; otherwise the procedure exits (e.g., through instruc-
tion DONE). Operation 1D_LEN is performed if the value
in the Next Header field is 0x06. As described above, this

operation stores the H3 segment size. Once again the argu-
ment (e.g., 0x03F) comprises a negative offset, in this case
negative one. This ofl’set indicates that the desired Payload
Length field is located two bytes before the pointer’s present
position. Thus, the negative offset is added to the present
pointer ofl’set and the result saved in an appropriate reg’ster
or other data structure (e.g., the PAYLOADLEN reg‘ster).

In instructions TCP_1, TCP_2, TCP_3 and TCP,4

(e.g., instructions fourteen through seventeen), no header
values—other than certain flags specified in the instruction’s
output operations—are examined, but various data from the
packet’s TCP header are saved. In the illustrated
embodiment, the data that is saved includes a TCP sequence
number, a TCP header length and one or more flags. For each
instruction, the specified operation is performed and the next
instruction is called. As described above, a comparison
between the comparison value of 0x0000 and a null extrac-
tion value, as used in each of these instructions, will never
fail. After instruction TCP_4, the parsing procedure returns
to instruction WAIT to await a new packet.

For operation ID_SEQ in instruction TCP_1, the opera-
tion argument (e.g., 0x081) comprises two values to identify
and extract a TCP sequence number. The right-most six bits
(e.g., 0x01) indicate that the sequence number is located two
bytes from the pointer’s current position. The rest of the
argument (e.g., 0x2) indicates the number of two-byte units
that must be copied from that position in order to capture the
sequence number. Illustratively, the sequence number is
stored in the SEQNO register.

For operation ST_FLAG in instruction TCP_2, the
operation argument (e.g., 0x145) is used to configure a
register (e.g., the FLAGS register) with flags to be used in
a post-parsing task. The right-most six bits (e.g., 0x05)
constitute an offset, in two-byte units, to a two—byte portion
of the TCP header that contains flags that may affect whether
the packet is suitable for post—parsing enhancements
described in other sections. For example, URG, PSH, RST,
SYN and FIN flags may be located at the ofiset position and
be used to configure the regster. The output mask (e.g.,
0x002F) indicates that only particular portions (e.g., bits) of
the TCP header’s Flags field are stored.

Operation LD_R1 of instruction TCP_3 is similar to the
operation conducted in instruction IPV6_2. Here, an opera-
tion argument of OflOS includes a value (e.g., the least-
Significant six bits) identifying an ofl’set of five two-byte
llllils from the current pointer position. That location should
mclude a Header Length field to be stored in a data structure
identified by the remainder of the argument (e.g., temporary
register R1). The output mask (e.g., 0xF000) indicates that
only the first four bits are saved (e.g., the Header Length
field is only four bits in size).

As one skilled in the art may recognize, the value
CXtracted from the Header Length field may need to be

10

15

20

30

35

4s

50

55

60

65

34

adjusted in order to reflect the use of two—byte units (e.g.,
sixteen bit words) in the illustrated embodiment. Therefore,
in accordance with the shift portion of instruction TCP__3,
the value extracted from the field and configured by the
output mask (e.g., OXFOOO) is shifted to the right eleven
positions when stored in order to simplify calculations.

Operation LD_HDR of instruction TCPi4 causes the
loading of an offset to the first byte of packet data following
the TCP header. As described in a later section, packets that
are compatible with a pre-selected protocol stack may be
separated at some point into header and data portions.
Saving an offset to the data portion now makes it easier to
split the packet later. Illustratively, the right-most seven bits
of the OXOFF operation argument comprise a first element of
the ofiset to the data. One skilled in the art will recognize the
bit pattern (e.g., 1111111) as equating to negative one. Thus,
an ofiset value equal to the current parsing pointer (e.g., the
value in the ADDR register) minus two bytes—which
locates the beginning of the TCP header—is saved. The
remainder of the argument signifies that the value of a
temporary data structure (e.g., temporary register R1) is to
be added to this offset. In this particular context, the value
saved in the previous instruction (e.g., the length of the TCP
header) is added. These two values combine to form an
offset to the beginning of the packet data, which is stored in
an appropriate register or other data structure (e.g., the
HDRSPLIT register).

Finally, and as mentioned above, instruction DONE (e.g.,
instruction eighteen) indicates the end of parsing of a packet
when it is determined that the packet does not conform to
one or more of the protocols associated with the illustrated
instructions. This may be considered a “clean—up” instruc-
tion. In particular, output operation LD_CI'L, with an
operation argument of 0x001 indicates that a No_A$ist flag
is to be set (e.g., to one) in the control register described
above in conjunction with instruction VLAN. The
N0_Assist flag, as described elsewhere, may be used to
inform other modules of the network interface that the

present packet, is umuitable for one or more processing
enhancements described elsewhere.

It will be recognized by one skilled in the art that the
illustrated program or microcode merely provides one
method of parsing a packet. Other programs, comprising the
same instructions in a diflerent sequence or diflerent instruc-
tions altogether, with similar or disimilar formats, may be
employed to examine and store portions of headers and to
configure reg'sters and other data structures.

The eficiency gains to be realized from the application of
the enhanced processing described in following sections
more than offset the time required to parse a packet with the
illustrated program. Further, even though a header parser
parses a packet on a NIC in a current embodiment of the
invention, the packet may still need to be processed through
its protocol stack (e.g., to remove the protocol headers) by
a processor on a host computer. Doing so avoids burdening
the communication device (e.g., network interface) with
such a task.
One Embodiment of a Flow Database

FIG. 5 depicts flow database (FDB) 110 according to one
embodiment of the invention. Illustratively FDB 110 is
implemented as a CAM (Content Addressable Memory)
using a re-writeable memory component (e.g., RAM,
SRAM, DRAM). In this embodiment, FDB 110 comprises
associative portion 502 and associated portion 504, and may
be indexed by flow number 506.

The scope of the invention does not limit the form or
structure of flow database 110. In alternative embodiments

NOAC Ex. 1018 Page 882

US 6,650,640 B1
35

of the invention virtually any form of data structure may be
employed (e.g., database, table, queue, list, array), either
monolithic or segmented, and may be implemented in hard-
ware or software. The illustrated form of FDB 110 is merely
one manner of maintaining useful information concerning
communication flows through NIC 100. As one skilled in the
art will recognize, the structure of a CAM allows highly
efficient and fast associative searching.

In the illustrated embodiment of the invention, the infor-
mation stored in FDB 110 and the operation of flow database
manager (FDBM) 108 (described below) permit functions
such as data re-assembly, batch processing of packet
headers, and other enhancements. These functions are dis-
cussed in detail in other sections but may be briefly
described as follows.

One form of data re—ammbly involves the re-ammbly or
combination of data from multiple related packets (e.g.,
packets from a single communication flow or a single
datagram). One method for the batch processing of packet
headers entails procesing protocol headers from multiple
related packets through a protocol stack collectively rather
than one packet at a time. Another illustrative ftmction of
NIC 100 involves the distribution or sharing of such proto-
col stack processing (and/or other functions) among proces-
sors in a multi—processor host computer system. Yet another
possible function of NIC 100 is to enable the transfer of
re—assembled data to a destination entity (e.g., an application
program) in an efficient aggregation (e.g., a memory page),
thereby avoiding piecemeal and highly ineflicient transfers
of one packet’s data at a time. Thus, in this embodiment of
the invention, one purpose of FDB 110 and FDBM 108 is to
generate information for the use of NIC 100 and/or a host
computer system in enabling, disabling or performing one or
more of these functions.

Associative portion 502 of FDB 110 in FIG. 5 stores the
flow key of each valid flow destined for an entity served by
NIC 100. Thus, in one embodiment of the invention asso-
ciative portion 502 includes IP source address 510, IP
destination address 512, TCP source port 514 and TCP
destination port 516. As described in a previous section these
fields may be extracted from a packet and provided to
FDBM 108 by header parser 106.

Although each destination entity served by NIC 100 may
participate in multiple communication flows or end-to-end
TCP connections, only one flow at a time will exist between
a particular source entity and a particular destination entity.
Therefore, each flow key in associative portion 502 that
corresponds to a valid flow should be unique from all other
valid flows. In alternative embodiments of the invention,
associative portion 502 is composed of different fields,
reflecting alternative flow key forms, which may be deter-
mined by the protocols parsed by the header parser and the
information used to identify communication flows.

Associated portion 504 in the illustrated embodiment
comprises flow validity indicator 520, flow sequence num-
ber 522 and flow activity indicator 524. These fields provide
information concerning the flow identified by the flow key
stored in the corresponding entry in associative portion 502.
The fields of associated portion 504 may be retrieved and/or
updated by FDBM 108 as described in the following section.

Flow validity indicator 520 in this embodiment indicates
Whether the associated flow is valid or invalid. Illustratively,
the flow validity indicator is set to indicate a valid flow when
the first packet ofdata in a flow is received, and may be reset
to reassert a fiow’s validity every time a portion of a flow’s
datagram (e.g., a packet) is correctly received.

Flow validity indicator 520 may be marked invalid after
the last packet ofdata in a flow is received. The flow validity

VK-“m~ __._«.»4. a .. -__...a..r. .
an

10

15

20

30

35

45

50

55

65

Daria» went

36
indicator may also be set to indicate an invalid flow when-
ever a flow is to be torn down (e.g., terminated or aborted)
for some reason other than the receipt of a final data packet.
For example, a packet may be received out of order from
other packets of a datagram, a control packet indicating that
a data transfer or flow is being aborted may be received, an
attempt may be made to re-establish or re-synchronize a
flow (in which case the original flow is terminated), etc. In
one embodiment of the invention flow validity indicator 520
is a single bit, flag or value.

Flow sequence number 522 in the illustrated embodiment
comprises a sequence number of the next portion of data that
is expected in the associated flow. Because the datagam
being sent in a flow is typically received via multiple
packets, the flow sequence number provides a mechanism to
ensure that the packets are received in the correct order. For
example, in one embodiment of the invention NIC 100
re-assembles data from multiple packets of a datagram. To
perform this re—assembly in the most efficient manner, the
packets need to be received in order. Thus, flow sequence
number 522 stores an identifier to identify the next packet or
portion of data that should be received.

In one embodiment of the invention, flow sequence num-
ber 52 corresponds to the TCP sequence number field
found in TCP protocol headers. As one skilled in the art will
recognize, a packet’s TCP sequence number identifies the
position of the packet’s data relative to other data being sent
in a datagram. For packets and flows involving protocols
other than TCP, an alternative method of verifying or
ensuring the receipt of data in the correct order may be
employed.

Flow activity indicator 524 in the illustrated embodiment
reflects the recency of activity of a flow or, in other words,
the age of a flow. In this embodiment of the invention flow
activity indicator 524 is associated with a counter, such as a
flow activity counter (not depicted in FIG. 5). The flow
activity counter is updated (e.g., incremented) each time a
packet is received as part of a flow that is already stored in
flow database 110. The updated counter value is then stored
in the flow activity indicator field of the packet’s flow. The
flow activity counter may also be incremented each time a
first packet of a new flow that is being added to the database
is received. In an alternative embodiment, a flow activity
counter is only updated for packets containing data (e.g., it
is not updated for control packets). In yet another alternative
embodiment, multiple counters are used for updating flow
activity indicators of diiferent flows.

Because it can not always be determined when a com—
munication flow has ended (e.g., the final packet may have
been lost), the flow activity indicator may be used to identify
flows that are obsolete or that should be torn down for some

other reason. For example, if flow database 110 appears to
be fully populated (e.g., flow validity indicator 520 is set for
each flow number) when the first packet of a new flow is
received, the flow having the lowest flow activity indicator
may be replaced by the new flow.

In the illustrated embodiment of the invention, the size of
fields in FDB 110 may differ from one entry to another. For
example, IP source and destination addresses are four bytes
large in version four of the protocol, but are sixteen bytes
large in version six. In one alternative embodiment of the
invention, entries for a particular field may be uniform in
size, with smaller entries being padded as necessary.

In another alternative embodiment of the invention, fields
within FDB 110 may be merged. In particular, a fiow’s flow
key may be stored as a single entity or field instead of being
stored as a number of separate fields as shown in FIG. 5.

:0 ~. _ . 3 “griffin-9 --

NOAC Ex. 1018 Page 883

UL) 0,036,040 Bl
37

Similarly, flow validity indicator 520, [low sequence number
522 and flow activity indicator 524 are depicted as separate
entries in FIG. 5. However, in an alternative embodiment of
the invention one or more of these entries may be combined.
In particular, in one alternative embodiment flow validity
indicator 520 and flow activity indicator 524 comprise a
single entry having a first value (e.g., zero) when the entry’s
agociated flow is invalid. As long as the flow is valid,
however, the combined entry is incremented as packets are
received, and is reset to the first value upon termination of
the flow.

In one embodiment of the invention FDB 110 contains a
maximum of sixty-four entries, indexed by flow number
506, thus allowing the database to track sixty-four valid
flows at a time. In alternative embodiments of the invention,
more or fewer entries may be permitted, depending upon the
size of memory allocated for flow database 110. In addition
to flow number 506, a flow may be identifiable by its flow
key (stored in associative portion 502).

In the illustrated embodiment of the invention, flow
database 110 is empty (e.g., all fields are filled with zeros)
when NIC 100 is initialized. When the first packet of a flow
is received header parser 106 parses a header portion of the

packet. As described in a previous section, the header parser
assembles a flow key to identify the flow and extracts other
information concerning the packet and/or the flow. The flow
key, and other information, is passed to flow database
manager 108. PDBM 108 then searches FDB 110 for an
active flow associated with the flow key. Because the
database is empty, there is no match.

In this example, the flow key is therefore stored (e.g., as
flow number zero) by copying the IP source address, IP
destination address, TCP source port and TCP destination
port into the corresponding fields. Flow validity indicator
520 is then set to indicate a valid flow, flow sequence
number 522 is derived from the TCP sequence number
(illustratively provided by the header parser), and flow
activity indicator 524 is set to an initial value (e.g., one),
which may be derived from a counter. One method of
generating an appropriate flow sequence number, which may
be used to verify that the next portion of data received for the
flow is received in order, is to add the TCPsequence number
and the size of the packet’s data. Depending upon the
configuration of the packet (e.g., whether the SYN bit in a
Flags field of the packet’s TCP header is set), however, the
sum may need to be adjusted (e.g., by adding one) to
correctly identify the next expected portion of data.

As described above, one method of generating an appro-
priate initial value for a flow activity indicator is to copy a
counter value that is incremented for each packet received as
part of a flow. For example, for the first packet received after
NIC 100 is initialized, a flow activity counter may be
incremented to the value of one. This value may then be
stored in flow activity indicator 524 for the associated flow.
The next packet received as part of the same (or a new) flow
causes the counter to be incremented to two, which value is
stored in the flow activity indicator for the associated flow.
In this example, no two flows should have the same [low
activity indicator except at initialization, when they may all
equal zero or some other predetermined value.

Upon receipt and parsing of a later packet received at NIC
100, the flow database is searched for a valid flow matching
that packet’s flow key. lllustratively, only the flow keys of
active flows (e.g., those flows for which flow validity
Indicator 520 is set) are searched. Alternatively, all flow keys
(c-gq all entries in associative portion 502) may be searched

: but a match is only reported if its flow validity indicator

in: . .
1:. - Wm: 7-1-1". n. .(. ut- _ an- WV. 11.) ‘2:

10

15

20

30

35

45

50

55

60

65

.3r.

38
indicates a valid llow. Will] a CAM such as FDB 110 in FIG.

5, flow keys and flow validity indicators may be searched in
parallel.

If a later packet contains the next portion of data for a
previous flow (e.g., flow number zero), that flow is updated
appropriately. In one embodiment of the invention this
entails updating flow sequence number 522 and increment-
ing flow activity indicator 524 to reflect its recent activity.
Flow validity indicator 520 may also be set to indicate the
validity of the flow, although it should already indicate that
the flow is valid.

As new flows are identified, they are added to FDB 110
in a similar manner to the first flow. When a flow is

terminated or torn down, the associated entry in FDB 110 is
invalidated. In one embodiment of the invention, flow
validity indicator 520 is merely cleared (e.g., set to zero) for
the terminated flow. In another embodiment, one or more
fields of a terminated flow are cleared or set to an arbitrary
or predetermined value. Because of the bursty nature of
network packet traffic, all or most of the data from a
datagram is generally received in a short amount of time.
Thus, each valid flow in FDB 110 normally only needs to be
maintained for a short period of time, and its entry can then
be used to store a diflerent flow.

Due to the limited amount of memory available for flow
database 110 in one embodiment of the invention, the size of
each field may be limited. In this embodiment, sixteen bytes
are allocated for [P source address 510 and sixteen bytes are
allocated for IP destination address 512. For IP addresses

shorter than sixteen bytes in length, the extra space may be
padded with zeros. Further, TCP source port 514 and TCP
destination port 516 are each allocated two bytes. Also in
this embodiment, flow validity indicator 520 comprises one
bit, flow sequence number 522 is allocated four bytes and
flow activity indicator 524 is also allocated four bytes.

As one skilled in the art will recognize from the embodi-
ments described above, a flow is similar, but not identical, to
an end-to—end TCP connection. ATCP connection may exist
for a relatively extended period of time, sufficient to transfer
multiple datagrams from a source entity to a destination
entity. A flow, however, may exist only for one datagram.
Thus, during one end-to—end TCP connection, multiple flows
may be set up and torn down (e.g., once for each datagram).
As descn‘bed above, a flow may be set up (e.g., added to
FDB 110 and marked valid) when NIC 100 detects the first
portion of data in a datagram and may be torn down (e.g.,
marked invalid in FDB 110) when the last portion of data is
received. lllustratively, each flow set up during a single
end-to-end TCP connection will have the same flow key
because the layer three and layer four address and port
identifiers used to form the flow key will remain the same.

In the illustrated embodiment, the size of flow database

110 (e.g., the number of flow entries) determines the maxi-
mum number of flows that may be interleaved (e.g., simul-
taneously active) at one time while enabling the functions of
data re—assembly and batch processing of protocol headers.
In other words, in the embodiment depicted in FIG. 5, NIC
100 can set up sixty-four flows and receive packets from up
to sixty-four diEemnt datagrams (i.e., sixty-four flows may
be active) without tearing down a flow. If a maximum
number of flows through NIC 100 were known, flow data-
base 110 could be limited to the corresponding number of
entries.

The flow database may be kept small because a flow only
lasts for one datagram in the presently described embodi-
ment and, because of the bursty nature of packet traffic, a
datagram’s packets are generally received in a short period

I)‘

NOAC Ex. 1018 Page 884

US 6,650,640 B1
39

of time. The Short duration of a flow compensates for a
limited number of entries in the flow database. In one
embodiment of the invention, if FDB 110 is filled with active
flows and a new flow is commenced (i.e., a first portion of
data in a new datagram), the oldest (e.g., the least recently
active) flow is replaced by the new one.

In an alternative embodiment of the invention, flows may
be kept active for any number of datagrams (or other
measul'c of network trafiic) or for a specified length or range
of time. For example, when one datagram ends its flow in
FDB 110 may be kept “open” (i.e., not torn down) if the
database is not full (e.g., the flow’s entry is not needed for
a different flow). This scheme may further enhance the
efiicient operation of NIC 100 if another datagram having
the same flow key is received. In particular, the overhead
involved in setting up another flow is avoided and more data
reassembly and packet batching (as described below) may
be performed Advantageously, a flow may be kept open in
flow database 110 until the end—to-cnd TCP connection that
encompasses the flow ends.
One Embodiment of a Flow Database Manager

FIGS. 6A—6E depict one method of operating a flow
database manager (FDBM), such as flow database manager
108 of FIG. 1A, for managing flow database (FDB) 110.
Illustratively, FDBM 108 stores and updates flow informa-
tion stored in flow database 110 and generates an operation
code for a packet received by MC 100. FDBM 108 also tears
down a flow (e.g., replaces, removes or otherwise invali-
dates an entry in FDB 110) when the flow is terminated or
aborted.

In one embodiment of the invention a packet’s operation
code reflects the packet’s compatibility with pre~determined
criteria for performing one or more ftmctions of MC 100
(e.g., data re-assembly, batch processing of packet headers,
load distribution). In other words, depending upon a pack-
et’s operation code, other modules of NIC 100 may or may
not perform one of these functions, as described in following
sections.

In another embodiment of the invention, an operation
code indicates a packet status. For example, an operation
code may indicate that a packet: contains no data, is a control
packet, contains more than a specified amount of data, is the
first packet of a new flow, is the last packet of an existing
flow, is out of order, contains a certain flag (e.g., in a
protocol header) that does not have an expected value (thus
possibly indicating an exceptional circumstance), etc.

The operation of flow database manager 108 depends
upon packet information provided by header parser 106 and
data drawn from flow database 110. After FDBM 108

processes the packet information and/or data, control infor-
mation (e.g., the packet’s operation code) is stored in control
queue 118 and FDB 110 may be altered (e.g., a new flow
may be entered or an existing one updated or torn down).

With reference now to FIGS. 6A—6E, state 600 is a start
state in which FDBM 108 awaits information drawn from a

packet received by MC 100 from network 102. In state 602,
: header parser 106 or another module of MC 100 notifies
‘ FDBM 108 of a new packet by providing the packet’s flow

k°y and some control information. Receipt of this data may
2 be interpreted as a request to search FDB 110 to determine

Whether a flow having this flow key already exists.
,_ 111 One embodiment of the invention the control informa-

‘ tron Famed to FDBM 108 includes a sequence number (e.g.,
' ‘ TCP Sequence number) drawn from a packet header. The

« Control information may also indicate the status of certain
‘ ;n‘@ in the packet’s headers, whether the packet includes

‘ data and, if so, whether the amount of data exceeds a certain

MVi'W‘Q‘i-ij'hrm " w

10

15

20

30

35

45

50

55

60

65

40
size. In this embodiment, FDBM 108 also receives a
No _Assist signal for a packet if the header parser deter-
mines that the packet is not formatted according to one of the
pre-selected protocol stacks (i.e., the packet is not
“compatible”), as discussed in a previous section.
Illustratively, the No__Assist signal indicates that one or
more funétions of MC 100 (e.g., data re-assembly, batch
processing, load-balancing) may not be provided for the
packet.

In state 604, FDBM 108 determines whether a NowAssist
signal was asserted for the packet. If so, the procedure
proceeds to state 668 (FIG. 6B). Otherwise, FDBM 108
searches FDB 110 for the packet's flow key in state 606. In
one embodiment of the invention only valid flow entries in
the flow database are searched.As discussed above, a flow’s
validity may be reflected by a validity indicator such as flow
validity indicator 520 (shown in FIG. 5). If, in state 608, it
is determined that the packet’s flow key was not found in the
database, or that a match was found but the associated flow
is not valid, the procedure advances to state 646 (FIG. 6D).

If a valid match is found in the flow database, in state 610
the flow number (e.g., the flow database index for the
matching entry) of the matching flow is noted and flow
information stored in FDB 110 is read. Illustratively, this
information includes fiow validity indicator 520, flow
sequence number 522 and flow activity indicator 524
(shown in FIG. 5).

In state 612, FDBM 108 determines from information
received from header parser 106 whether the packet contains
TCP payload data. If not, the illustrated procedure proceeds
to state 638 (FIG. 6C); otherwise the procedure continues to
state 614.

In state 614, the flow database manager determines
whether the packet comtitutes an attempt to reset a com-
munication connection or flow. Illustratively, this may be
determined by examining the state of a SYN bit in one of the
packet’s protocol headers (e.g., a TCP header). In one
embodiment of the invention the value of one or more

control or flag bits (such as the SYN bit) are provided to the
FDBM by the header parser. As one skilled in the art will
recognize, one TCP entity may attempt to reset a commu-
nication flow or connection with another entity (e.g.,
because of a problem on one of the entity’s host computers)
and send a first portion of data along with the re-connection
request. This is the situation the flow database manager
attempts to discern in state 614. If the packet is part of an
attempt to re-connect or reset a flow or connection, the
procedure continues at state 630 (FIG. 6C).

In state 616, flow database manager 108 compares a
gquence number (e.g., a TCP sequence number) extracted
from a packet header with a sequence number (e.g., flow
sequence number 522 of FIG. 5) of the next expected portion
ofdata for this flow. Asdiscussed in a previous section, these
muence numbers should correlate if the packet contains the
flow’5 next portion of data. If the sequence numbers do not
match, the procedure continues at state 628.

In state 618, FDBM 108 determines whether certain flags
extracted from one or more of the packet's protocol headers
match expected values. For example, in one embodiment of
the invention the URG, PSH, RST and FIN flags from the
packet’s TCP header are expected to be clear (i.e., equal to
zero). If any of these flags are set (e.g., equal to one) an
exceptional condition may exist, thus making it possrble that
one or more of the ftmctions (e.g., data re-assembly, batch
processing, load distribution) offered by MC 100 should not
be performed for this packet. As long as the flags are clear,
the procedure continues at state 620; otherwise the proce-
dure continues at state 626.

wmwwléumwg «1in“ . A

NOAC Ex. 1018 Page 885

US 6,650,640 B1

41

In state 620, the flow database manager determines
whether more data is expected during this flow. As discussed
above, a flow may be limited in duration to a single
datagram. Therefore, in state 620 the FDBM determines if
this packet appears to be the final portion of data for this
flow’5 datagram. Illustratively, this determination is made on
the basis of the amount of data included with the present
packet. As one skilled in the art will appreciate, a datagram
comprising more data than can be carried in one packet is
sent via multiple packets. The typical manner of dissemi-
nating a datagram among multiple packets is to put as much
data as possible into each packet. Thus, each packet except
the last is usually equal or nearly equal in size to the
maximum transfer unit (MTU) allowed for the network over
which the packets are sent. The last packet will hold the
remainder, usually causing it to be smaller than the MTU.

Therefore, one manner of identifying the final portion of
data in a flow’s datagram is to examine the size of each
packet and compare it to a figure (e.g., MTU) that a packet
is expected to exceed except when carrying the last data
portion. It was described above that control information is
received by FDBM 108 from header parser 106. An indi-
cation of the sin of the data carried by a packet may be
included in this information. In particular, header parser 106
in one embodiment of the invention is configured to com-
pare the size of each packet’s data portion to a pre-selected
value. In one embodiment of the invention this value is

programmable. This value is set, in the illustrated embodi-
ment of the invention, to the maximum amount of data a
packet can carry without exceeding MTU. In one alternative
embodiment, the value is set to an amount somewhat less
than the maximum amount of data that can be carried.

Thus, in state 620, flow database manager 108 determines
whether the received packet appears to carry the final
portion of data for the flow’5 datagram. Ifnot, the procedure
continues to state 626.

In state 622, it has been ascertained that the packet is
compatible with pre—selected protocols and is suitable for
one or more functions offered by NTC 100. In particular, the
packet has been formatted appropriately for one or more of
the functions discussed above. FDBM 108 has determined

that the received packet is part of an existing flow, is
compatible with the pre—selected protocols and contains the
next portion of data for the flow (but not the final portion).
Further, the packet is not part of an attempt to re—set a
flow/connection, and important flags have their expected
values. Thus, flow database 110 can be updated as follows.

The activity indicator (e.g., flow activity indicator 524 of
FIG. 5) for this flow is modified to reflect the recent flow
activity. In one embodiment of the invention flow activity
indicator 524 is implemented as a counter, or is amciated
with a counter, that is incremented each time data is received
for a flow. In another embodiment of the invention, an
activity indicator or counter is updated every time a packet
having a flow key matching a valid flow (e.g., whether or not
the packet includes data) is received.

In the illustrated embodiment, after a flow activity indi—
cator or counter is incremented it is examined to determine

if it “rolled over" to zero (i.e., whether it was incremented
past its maximum value). If so, the counter and/or the flow
activity indicators for each entry in flow database 110 are set
to zero and the current flow’s activity indicator is once again
incremented. Thus, in one embodiment of the invention the
rolling over of a flow activity counter or indicator causes the
re-initialization of the flow activity mechanism for flow
database 110. Thereafter, the counter is incremented and the
flow activity indicators are again updated as described

«mm-m. ~ ,.0 «mm. . .

t 1‘ were». . um. ~ 9.t

10

15

20

30

35

45

50

55

60

65

42

previously. One skilled in the art will recognize that there are
many other suitable methods that may be applied in an
embodiment of the present invention to indicate that one
flow was active more recently than another was.

Also in state 622, flow sequence number 522 is updated.
Illustratively, the new flow sequence number is determined
by adding the size of the newly received data to the existing
flow sequence number. Depending upon the configuration of
the packet (e.g., values in its headers), this sum may need to
be adjusted. For example, this sum may indicate simply the
total amount of data received thus far for the flow’s data-

gram. Therefore, a value may need to be added (e.g., one
byte) in order to indicate a sequence number of the next byte
of data for the datagram. As one skilled in the art will
recognize, other suitable methods of ensuring that data is
received in order may be used in place of the scheme
described here.

Finally, in state 622 in one embodiment of the invention,
flow validity indicator 520 is set or reset to indicate the
flow’5 validity.

Then, in state 624, an operation code is mciated with
the packet. In the illustrated embodiment of the invention,
operation codes comprise codes generated by flow database
manager 108 and stored in control queue 118. In this
embodiment, an operation code is three hits in size, thus
allowing for eight operation codes. Operation codes may
have a variety of other forms and ranges in alternative
embodiments. For the illustrated embodiment of the

invention, TABLE 1 describes each operation code in terms
of the criteria that lead to each code’s selection and the

ramifications of that selection. For purposes of TABLE 1,
setting up a flow comprises inserting a flow into flow
database 110. Tearing down a flow comprises removing or
invalidating a flow in flow database 110. The re—ammbly of
data is discu$ed in a following section descrlbing DMA
engine 120.

In the illustrated embodiment of the invention, operation
code 4 is selected in state 624 for packets in the present
context of the procedure (e.g., compatible packets carrying
the next, but not last, data portion of a flow). Thus, the
existing flow is not torn down and there is no need to set up
a new flow. As described above, a compatible packet in this
embodiment is a packet conforming to one or more of the
pre-selected protocols. By changing or augmenting the
pie-selected protocols, virtually any packet may be compat-
ible in an alternative embodiment of the invention.

Returning now to FIGS. 6A—6E, after state 624 the
illustrated procedure ends at state 670.

In state 626 (reached from state 618 or state 620),
operation code 3 is selected for the packet. Illustratively,
operation code 3 indicates that the packet is compatible and
matches a valid flow (e.g., the packet’s flow key matches the
flow key of a valid flow in FDB 110). Operation code 3 may
also signify that the packet contains data, does not constitute
an attempt to re-synchronize or reset a communication
flow/connection and the packet’s sequence number matches
the expected sequence number (from flow database 110).
But, either an important flag (e.g., one of the TCP flags
URG, PSH, RST or FIN) is set (determined in state 618) or
the packet’s data is less than the threshold value described
above (in state 620), thus indicating that no more data is
likely to follow this packet in this flow. Therefore, the
existing flow is torn down but no new flow is created.
Illustratively, the flow may be torn down by clearing the
flow’s validity indicator (e.g., setting it to zero). After state
626, the illustrated procedure ends at state 670.

In state 628 (reached from state 616), operation code 2 is
selected for the packet. In the present context, operation

~ "a .~ ~ 4 ga mp—u—‘~-Ih .x .m 4
homo-ivy. ~ 4,; ,

.uu. :M "finr‘h ..
. - amauavfiru

NOAC Ex. 1018 Page 886

V:

US 6,650,640 B1
43

code 2 may indicate that the packet is compatible, matches
a valid flow (e.g., the packet’s flow key matches the flow key
of a valid flow in FDB 110), contains data and does not
constitute an attempt to rte-synchronize or reset a commu—
nication flow/connection. However, the sequence number
extracted from the packet (in state 616) does not match the
expected sequence number from flow database 1.10. This
may occur, for example, when a packet is received out of
order. Thus, the existing flow is torn down but no new flow
is established. Illustratively, the flow may be torn down by
clearing the flow’s validity indicator (e.g., setting it to zero).
After state 628, the illustrated procedure ends at state 670.

State 630 is entered from state 614 when it is determined

that the received packet constitutes an attempt to reset a
communication flow or connection (e.g., the TCP SYN bit is
set). In state 630, flow database manager 108 determines
whether more data is expected to follow. As explained in
conjunction with state 620, this determination may be made
on the basis of control information received by the flow
database manager from the header parser. If more data is
expected (e.g., the amount of data in the packet equals or
exceeds a threshold value), the procedure continues at state
634.

In state 632, operation code 2 is selected for the packet.
Operation code 2 was also selected in state 628 in a difl'erent
context. In the present context, operation code 2 may
indicate that the packet is compatible, matches a valid flow
and mntains data. Operation code 2 may also signify in this
context that the packet constitutes an attempt to
re-synchronize or reset a communication flow or connection,
but that no more data is expected once the flow/connection
is reset. Therefore, the existing flowis torn down and no new
flow is established. Illustratively, the flow may be torn down
by clearing the flow’s validity indicator (e.g., setting it to
zero). After state 632, the illustrated procedure ends at state
670.

In state 634, flow database manager 108 responds to an
attempt to reset or re-synchronize a communication flow/
connection whereby additional data is expected. Thus, the
existing flow is torn down and replaced as follows. The
existing flow may be identified by the flow number retrieved
in state 610 or by the packet’s flow key. The flow’s sequence
number (e.g., flow sequence number 522 in FIG. 5) is set to
the next expected value. Illustratively, this value depends
upon the sequence number (e.g., TCP sequence number)
retrieved from the packet (e.g., by header parser 106) and the
amount of data included in the packet. In one embodiment
of the invention these two values are added to determine a

new flow sequence number. As discussed previously, this
sum may need to be adjusted (e.g., by adding one). Also in
state 634, the flow activity indicator is updated (e.g.,
incremented).As explained in conjunction with state 622, if
the flow activity indicator rolls over, the activity indicators
for all flows in the database are set to zero and the present
flow is again incremented. Finally, the flow validity indica-
tor is set to indicate that the flow is valid.

In state 636, operation code 7 is selected for the packet.
In the present context, operation code 7 indicates that the
packet is compatible, matches a valid flow and contains data.
Operation code 7 may further signify, in this context, that the
packet constitutes an attempt to re-synchronize or reset a
communication flow/connection and that additional data is
expected once the flow/connection is reset. In elfect,
therefore, the existing flow is torn down and a new one (with
the same flow key) is stored in its place. After state 636, the
illustrated procedure ends at end state 670.

State 638 is entered after state 612 when it is determined

that the received packet mntains no data. This often indi-

10

15

20

30

35

45

50

55

60

65

44

cates that the packet is a control packet. In state 638, flow
database manager 108 determines whether one or more flags
extracted from the packet by the header parser match
expected or desired values. For example, in one embodiment
of the invention the TCP flags URG, PSH, RST and FIN
must be clear in order for DMA engine 120 to re-assemble
data from multiple related packets (e.g., packets having an
identical flow key). As discussed above, the TCP SYN bit
may also be examined. In the present context (e.g., a packet
with no data), the SYN bit is also expected to be clear (e.g.,
to store a value of zero). If the flags (and SYN bit) have their
expected values the procedure continues at state 642. If,
however, any of these flags are set, an exceptional condition
may exist, thus making it possible that one or more functions
olfered by NIC 100 (e.g., data re-assembly, batch
processing, load distribution) are unsuitable for this packet,
in which case the procedure proceeds to state 640.

In state 640, operation code 1 is selected for the packet.
Illustratively, operation code 1 indicates that the packet is
compatible and matches a valid flow, but does not contain
any data and one or more important flags or bits in the
packet’s header(s) are set. Thus, the existing flow is torn
down and no new flow is established. Illustratively, the flow
may be torn down by clearing the flow’s validity indicator
(e.g., setting it to zero). After state 640, the illustrated
procedure ends at end state 670.

In state 642, the flow’s activity indicator is updated (e.g.,
incremented) even though the packet contains no data. As
described above in conjunction with state 622, if the activity
indicator rolls over, in a present embodiment of the inven-
tion all flow activity indicators in the database are set to zero
and the current flow is again incremented. The flow’s
validity indicator may also be reset, as well as the flow’s
sequence number.

In state 644, operation code 0 is selected for the packet.
Illustratively, operation code 0 indicates that the packet is
compatible, matches a valid flow, and that the packet does
not contain any data. The packet may, for example, be a
control packet. Operation code 0 further indicates that none
of the flags checked by header parser 106 and described
above (e.g., URG, PSH, RST and FIN) are set. Thus, the
existing flow is not torn down and no new flow is estab-
lished. After state 644, the illustrated procedure ends at end
state 670.

State 646 is entered from state 608 if the packet’s flowkey
does not match any of the flow keys of valid flows in the
flow database. In state 646, FDBM 108 determines whether
flow database 110 is full and may save some indication of
whether the database is full. In one embodiment of the
invention the flow database is considered full when the

validity indicator (e.g., flow validity indicator 520 of FIG. 5)
is set for every flow number (e.g., for every flow in the
database). If the database is full, the procedure continues at
state 650, otherwise it continues at state 648.

In state 648, the lowest flow number of an invalid flow
(e.g., a flow for which the associated flow validity indicator
is equal to zero) is determined. Illustratively, this flow
number is where a new flow will be stored if the received

packet warrants the creation of a new flow. After state 648,
the procedure continues at state 652.

In state 650, the flow number of the least recently active
flow is determined. As discussed above, in the illustrated
embodiment of the invention a flow’s activity indicator (e.g.,
flow activity indicator 524 of FIG. 5) is updated (e.g.,
incremented) each time data is received for a flow.
Therefore, in this embodiment the least recently active flow
can be identified as the flow having the least recently

NOAC Ex. 1018 Page 887

t.

US 6,650,640 B1 '
45

updated (e.g., lowest) flow activity indicator Illustratively, if
multiple flows have flow activity indicators set to a common
value (e.g., zero), one flow number may be chosen from
them at random or by some other criteria. After state 650, the
mcedure continues at state 652.
In state 652, flow database manager 108 determines

whether the packet contains data. Illustratively, the control
information provided to FDBM 108 by the header parser
indicates whether the packet has data. If the packet does not
include data (e.g., the packet is a control packet), the
illustrated procedure continues at state 668.

In state 654, flow database manager 108 determines
whether the data received with the present packet appears to
contain the final portion of data for the a$ociated datagram/
flow. As described in conjunction with state 620, this deter-
mination may be made on the basis of the amount of data
included with the packet. If the amount of data is less than
a threshold value (a programmable value in the illustrated
embodiment), then no more data is expected and this is
likely to be the only data for this flow. In this case the
procedure continues at state 668. If, however, the data meets
or exceeds the threshold value, in which case more data may
be expected, the procedure proceeds to state 656.

Inxpstate 656, the values of certain flags are examined.
These flags may include, for example, the URG, PSH, RST,
FIN bits of a TCP header. If any of the examined flags do not
have their expected or desired values (e.g., if any of the flags
are set), an exceptional condition may eidst making one or
more of the functions of NIC 100 (e.g., data re-assembly,
batch processing, load distribution) unsuitable for this
packet. In this case the procedure continues at state 668;
otherwise the procedure proceeds to state 658.

In state 658, the flow database manager retrieves the
information stored in state 646 concerning whether flow
database 110 is fulL If the database is full, the procedure
continues at state 664; otherwise the procedure continues at
state 660.

In state 660, a new flow is added to flow database 110 for
the present packet. Illustratively, the new flow is stored at the
flow number identified or retrieved in state 648. The addition

of a new flow may involve setting a sequence number (e.g.,
flow sequence number 522 from FIG. 5). Flow sequence
number 522 may be generated by adding a sequence number
(e.g., TCP sequence number) retrieved from the packet and
the amount of data included in the packet. As discussed
above, this sum may need to be adjusted (e.g., by adding
one).

Storing a new flow may also include initializing an
activity indicator (e.g., flow activity indicator 524 of FIG. 5).
In one embodiment of the invention this initialization

involves storing a value retrieved from a counter that is
incremented each time data is received for a flow.

Illustratively, if the counter or a flow activity indicator is
incremented past its maximum storable value, the counter
and all flow activity indicators are cleared or reset. Also in
state 660, a validity indicator (e.g., flow validity indicator
520 of FIG. 5) is set to indicate that the flow is valid. Finally,
the packet’s flow key is also stored in the flow database, in
the entry corresponding to the assigned flow number.

In state 662, operation code 6 is selected for the packet.
Illustratively, operation code 6 indicates that the packet is
compatible, did not match any valid flows and contains the
first portion of data for a new flow. Further, the packet’s flags
have their expected or nece$ary values, additional data is
eXpected in the flow and the flow database is not full. Thus,
Operation code 6 indicates that there is no existing flow to
tear down and that a new flow has been stored in the flow

database. After state 662, the illustrated procedure ends at
state 670.

10

15

20

30

35

45

50

55

60

65

46

In state 664, an existing entry in the flow database is
replaced so that a new flow, initiated by the present packet,
can be stored. Therefore, the flow number of the least
recently active flow, identified in state 650, is retrieved. This
flow may be replaced as follows. The sequence number of
the en'sting flow (e.g., flow sequence number 522 of FIG. 5)
is replaced with a value derived by combining a sequence
number extracted from the packet (e.g., TCP sequence
number) with the size of the data portion of the packet. This
sum may need to be adjusted (e.g., by adding one). Then the
existing llow’5 activity indicator (eg. llow activity indicator
524)Is replaced. For example, the value of a flow activity
counter may be copied into the flow activity indicator, as
discussed above. The flow’5 validity indicator (e.g., flow
validity indicator 520 of FIG. 5)1s then set to indicate that
the flow is valid. Finally, the flow key of the new flow isstored.

In state 666, operation code 7 is selected for the packet.
Operation code 7 was also selected in state 636. In the
present context, operation code 7 may indicate that the
packet is compatible, did not match the flow key of any valid
flows and contains the first portion of data for a new flow.
Further, the packet’s flags have compatible values and
additional data is expected in the flow. Lastly, however, in
this context operation code 7 indicates that the flow database
is full, so an existing entry was torn down and the new one
stored in its place. After state 666, the illustrated procedureends at end state 670.

In state 668, operation code 5 is selected for the packet.
State 668 is entered from various states and operation code
5 thus represents a variety of possible conditions or situa-
tions. For example, operation code 5 may be selected when
a No_A$1st signal15 detected (in state 604) for a packet. As
discussed above, the No__Assist signal may indicate that the
corresponding packet'rs not compatible with a set of pre-
selected protocols. In this embodiment of the invention,
incompatible packets are ineligible for one or more of the
various functions of NIC 100 (e.g., data re-assembly, batch
processing, load distribution).

State 668 may also be entered, and operation code 5
selected, from state 652, in which case the code may indicate
that the received packet does not match any valid flow keys
and, further, contains no data (e.g., it may be a control
packet).

State 668 may also be entered from state 654. In this
context operation code 5 may indicate that the packet does
not match any valid flow keys. It may further indicate that
the packet contains data, but that the size of the data portion
is less than the threshold discussed in conjunction with state
654. In this context, it appears that the packet’s data is
complete (e.g., comprises all of the data for a datagram),
meaning that there is no other data to re-assemble with this
packet’s data and therefore there is no reason to make a new
entry in the database for this one-packet flow.

Finally, state 668 may also be entered from state 656. In
this context, operation code 5 may indicate that the packet
does not match any valid flow keys, contains data, and more
data is expected, but at least one flag in one or more of the
packet’s protocol headers does not have its expected value.
For example, in one embodiment of the invention the TCP
flags URG, PSH, RST and FIN are expected to be clear. If
any of these flags are set an exceptional condition may exist,
thus making it possible that one of the functions offered by
NIC 100 is unsuitable for this packet.

As TABLE 1 reflects, there is no flow to tear down and no
new flow is established when operation code 5 is selected.
Following state 668, the illustrated procedure ends at state
670.

I
.1

or
tt

NOAC Ex. 1018 Page 888

r.

/‘

47

One skilled in the art will appreciate that the procedure
illustrated in FIGS. 6A—6E and discussed above is but one

suitable procedure for maintaining and updating a flow
database and for determining a packet’s suitability for
cer1ain processing fimctions. In particular, different opera-
tion codes may be utilized or may be implemented in a
diflerent manner, a goal being to produce information for
later processing of the packet through NIC 100.

Although operation codes are assigned for all packets by
a flow database manager in the illustrated procedure, in an
alternative procedure an operation code assigned by the
FDBM may be replaced or changed by another module of
NIC 100. This may be done to ensure a particular method of
treating certain types of packets. For example, in one
embodiment of the invention IPP module 104 assigns a
predetermined operation code (e.g., operation code 2 of
TABLE 1) to jumbo packets (e.g., packets greater in size
than MTU) so that DMA engine 120 will not re-assemble
them. In particular, the IPP module may independently
determine that the packet is a jumbo packet (e.g., from
information provided by a MAC module) and therefore
assign the predetermined code. Illustratively, header parser
106 and FDBM 108 perform their normal functions for a
jumbo packet and IPP module 104 receives a first operation
code assigned by the FDBM. However, the IPP module
replaces that code before storing the jumbo packet and
information concerning the packet. In one alternative
embodiment header parser 106 and/or flow database man-
ager 108 may be configured to recognize a particular type of
packet (e.g., jumbo) and assign a predetermined operation
code.

The operation codes applied in the embodiment of the
invention illustrated in FIGS. 6A—6E are presented and
explained in the following TABLE 1. TABLE 1 includes
illustrative criteria used to select each operation code and
illustrative results or effects of each code.

TABLEl

Op.
Code Criteria for Selection Result of Operation Code

0 Compatible control packet with Do not set up a new flow;
clear flag); a flow was previously Do not tear down existing
established for this flow key. flow; Do not reassemble data

(packet mntains no data).
1 Compatible control packet with at Do not set up a new flow;

least one flag or SYN bit set; a Tear down existing flow;
flow was previously established. Do no reassemble data

(packet contains no data).
2 Compatible packet whose sequence Do not set up a new flow;

number does not match sequence Tear down existing flow;
number in flow database, or SYN Do not re-aaaemble packet
bit is set (indimting aflempt to re- data.
establish a connection) but there is
no more data to come; a flowwas
previously established._ Or ..
Jumbo packet.

3 A compatible packet carrying a Do not set up a new flow;
final portion of flow data, or a flag Tear down existing flow;
is set (but packet is in sequence, Re»asaernhle data with
unlike operation code 2); a flow previous packets.
was previously established.

4 Receipt of next compatible packet Do not set up a new flow:
in sequence; a flow was previously Do not tear down existing
established. flow; Re-assemble data with

other packets.
5 Packet cannot be reassembled Do not set up a flow;

because: incompatible, a flag is set, There is no flow to tear down;
packet contains no (hta or there is Do not re-assemble.
no more data to come. No flow
was previously established.

10

15

20

30

35

45

50

55

60

65

48

TABLE 1-continued

Op.
Code Criteria for Selection Result of Operation Code

6 First compatible packet of a new
flow; no flow was previouslyestablished.

Set up a new flow;
There is no flow to tear down;
Re—assemble data with packets

, to follow.
7 First compatible packet of a new Replace existing flow;

flow, but flow database is full; no Re—assemble data with packets
flow was previously established. to follow._ o, ._
Compatible packeg SYN bit is set
and additional data will follow; a
llcw was previously established.

One Embodiment of a Load Distributor
In one embodiment of the invention, load distributor 112

enables the processing of packets through their protocol
stacks to be distributed among a number of processors.
Illustratively, load distributor 112 generates an identifier
(e.g., a processor number) of a processor to which a packet
is to be submitted. The multiple processors may be located
within a host computer system that is served by NIC 100. In
one alternative embodiment, one or more procegors for
manipulating packets through a protocol stack are located on
NTC 100.

Without an effective method of sharing or distributing the
processing burden, one processor could become overloaded
if it were required to process all or most network traffic
received at NIC 100, particularly in a high-speed network
environment. The resulting delay in processing network
traffic could deteriorate operations on the host computer
system as well as other computer systems communicating
with the host system via the network.

As one skilled in the art will appreciate, simply distrib-
uting packets among processors in a set of procegors (e.g.,
such as in a round-robin scheme) may not be an efficient
plan. Such a plan could easily result in packets being
processed out of order. For example, if two packets from one
communication flow or connection that are received at a
network interface in the correct order were submitted to two

different processors, the second packet may be processed
before the first. This could occur, for example, if the
proce$or that received the first packet could not immedi-
ately process the packet because it was busy with another
task. When packets are processed out of order a recovery
scheme must generally be initiated, thus introducing even
more inefiiciency and more delay.

Therefore, in a present embodiment of the invention
packets are distributed among multiple processors based
upon their flow identities. As described above, a header
parser may generate a flow key from layer three (e.g., IP)
and layer four (e.g., TCP) source and destination identifiers
retrieved from a packet’s headers. The flow key may be used
to identify the communication flow to which the packet
belongs. Thus, in this embodiment of the invention all
packets having an identical flow key are submitted to a
single processor. As long as the packets are received in order
by MC 100, they should be provided to the host computer
and processed in order by their assigned processor.

Illustratively, multiple packets sent from one source entity
to one destination entity will have the same flow key even
if the packets are part of separate datagrams, as long as their
layer three and layer four identifiers remain the same. As
discused above, separate flows are set up and torn down for
each datagram within one TCP end—to-end connection.
Therefore, just as all packets within one flow are sent to one

[Id-7 - Ijg‘V‘": ,1.2 .Lanieam - .. . ‘

NOAC Ex. 1018 Page 889

«w

49

processor, all packets within a TCP end—to-end connection
will also be sent to the same processor. This helps ensure the
correct ordering of packets for the entire connection, even
between datagrams.

Depending upon the network environment in which NIC
100 operates (e.g., the protocols supported by network 102),
the flow key may be too large to use as an identifier of a
processor. In one embodiment of the invention described
above, for example, a flow key measures 288 bits.
Meanwhile, the number of processors participating in the
load-balancing scheme may be much smaller. For example,
in the embodiment of the invention described below in
conjunction with FIG. 7, a maximum of sixty-four proces-
sors is supported. Thus, in this embodiment only a six—bit
number is needed to identify the selected processor. The
larger flow key may therefore be mapped or hashed into a
smaller range of values.

FIG. 7 depicts one method of generating an identifier

(e.g., a processor number) to specify a processor to process
a packet received by NIC 100, based on the packet’s llow
key. In this embodiment of the invention, network 102 is the
lntemet and a received packet is formatted according to a
compatible protocol stack (e.g., Ethernet at layer two, 11’ at
layer three and TCP at layer four).

State 700 is a start state. In state 702 a packet is received
by NIC 100 and a header portion of the packet is parsed by
header parser 106 (a method ofparsing a packet is described
in a previous section). In state 704, load distributor 112
receives the packet’s flow key that was generated by header
parser 106.

Because a packet’s flow key is 288 bits wide in this
embodiment, in state 706 a hashing function isperformed to
generate a value that is smaller in magnitude. The hash
operation may, for example, comprise a thirty-two bit CRC
(cyclic redundancy check) function such as ATM
(Asynchronous Transfer Mode)Adaptation Layer 5 (AAI5)
AALS generates thirty—two bit numbers that are fairly evenly
distributed among the 232 possible values. Another suitable
method of hashing is the standard Ethernet CRC-32 func-
tion. Other hash functions that are capable of generating
relatively small numbers from relatively large flow keys,
where the numbers generated are well distributed among a
range of values, are also suitable.

With the resulting hash value, in state 708 a modulus
operation is performed over the number of processors avail-
able for distributing or sharing the processing. lllustratively,
software executing on the host computer (e.g., a device
driver for MC 100) programs or stores the number of
processors such that it may be read or retrieved by load
distributor 112 (e.g., in a register). The number ofprocessors
available for load balancing may be all or a subset of the
number of proce$ors installed on the host computer system.
In the illustrated embodiment, the number of processors
available in a host computer system is programmable, with
a maximum value of sixty-four. The result of the modulus
operation in this embodiment, therefore, is the number of the
pmemr (e.g., from zero to sixty-three) to which the packet
is to be submitted for procesing. In this embodiment of the
invention, load distributor 112 is implemented in hardware,
thus allowing rapid execution of the hashing and modulus
functions. In an alternative embodiment of the invention,
Virtually any number of processors may be accommodated.

ln state 710, the number of the processor that will process
the packet through its protocol stack is stored in the host
computer’s memory. lllustratively, state 710 is performed in
parallel with the storage of the packet in a host memory
bufler. As described in a following section, in one embodi-

10

15

20

30

35

45

50

55

60

65

50

merit of the invention a descriptor ring in the host comput-
er’s memory is constructed to hold the processor number
and possibly other information concerning the packet (e.g.,
a pointer to the packet, its size, its TCP checksum).

A descriptor ring in this embodiment is a data structure
comprising a number of entries, or “descriptors,” for storing
information to be used by a network interface Circuit’s host
computer system. In the illustrated embodiment, a descriptor
temporarily stores packet information after the packet has
been received by NIC 100, but before the packet is pro-
cessed by the host computer system. The information stored
in a descriptor may be used, for example, by the device
driver for NIC 100 or for processing the packet through its
protocol stack.

ln state 712, an interrupt or other alert is issued to the host
computer to inform it that a new packet has been delivered
from NIC 100. In an embodiment of the invention in which

NIC 100 is coupled to the host computer by a PCI
(Peripheral Component Interconnect) bus, the INTA signal
may be asserted across the bus. APCI controller in the host
receives the signal and the host operating system is alerted
(e.g., via an interrupt).

In state 714, software operating on the host computer
(e.g., a device driver for MC 100) is invoked (e.g., by the
host computer’s operating system interrupt handler) to act
upon a newly received packet. The software gathers infor-
mation from one or more descriptors in the descriptor ring
and places information needed to complete the processing of
each new packet into a queue for the specified procesor
(i.e., according to the procesor number stored in the pack-
et’s descriptor). lllustratively, each descriptor corresponds to
a separate packet. The information stored in the processor
queue for each packet may include a pointer to a buffer
containing the packet, the packet’s TCP checksum, offsets of
one or more protocol headers, etc. In addition, each proces-
sor participating in the load distribution scheme may have an
associated queue for processing network packets. In an
alternative embodiment of the invention, multiple queues
may be used (e.g., for multiple priority levels or for different
protocol stacks).

lllustratively, one procesor on the host computer system
is configured to receive all alerts and/or interrupts associated
with the receipt of network packets from MC 100 and to
alert the appropriate software routine or device driver. This
initial processing may, alternatively, be distributed among
multiple processors. In addition, in one embodiment of the
invention a portion of the retrieval and manipulation of
descriptor contents is performed as part of the handling of
the interrupt that is generated when a new packet is stored
in the descriptor ring. The processor selected to process the
packet will perform the remainder of the retrieval/
manipulation procedure.

In state 716, the proce$or designated to process a new
packet is alerted or woken. In an embodiment of the inven—
tion operating on a Solaris"m workstation, individual pro-
cesses executed by the processor are configured as
“threads." A thread is a process running in a normal mode
(e.g., not at an interrupt level) so as to have minimal impact
on other processes executing on the workstation. A normal
mode process may, however, execute at a high priority.
Alternatively, a thread may run at a relatively low interrupt
level.

A thread responsible for processing an incoming packet
may block itself when it has no packets to process, and
awaken when it has work to do. A“condition variable” may
be used to indicate whether the thread has a packet to
process. lllustratively, the condition variable is set to a first

'4Pi

..v";..

NOAC Ex. 1018 Page 890

: x. ‘z

a.

US 6,650,640 B1
51

value when the thread is to process a packet (e.g., when a

packet is received for processing by the processor) and is set
‘0 a second value when there are no more packets to process.
In the illustrated embodiment of the invention, one condition
van‘able may be associated with each processor‘s queue.

In an alternative embodiment, the indicated processor is
filmed in state 716 by a “cross-processor call.” A cross—

pmcemor call is one way of communicating among proces-
sorS whereby one procemor is interrupted remotely by
another processor. Other methods by which one procemor
31cm, or dispatches a process to, another processor may be
used in place of threads and cross-processor calls.

In state 718, a thread or other process on the selected

pmeegor begins processing the packet that was stored in the
pmcessor’s queue. Methods of processing a packet through
its protocol stack are well known to those skilled in the art
and need not be described in detail. The illustrated procedure
then ends with end state 720.

In one alternative embodiment of the invention, a high-

speed network interface is configured to receive and process
ATM (Asynchronous Transfer Mode) traffic. In this
embodiment, a load distributor is implemented as a set of
instructions (e.g., as software) rather than as a hardware
module. As one skilled in the art is aware, ATM traflic is
connection—oriented and may be identified by a virtual
connection identifier (VCI), which corresponds to a virtual
circuit established between the packct’s source and destina-
tion entities. Each packet that is part of a virtual circuit
includes the VCI in its header.

., Advantageously, a VCI is relatively small in size (e.g.,
(sixteen bits). In this alternative embodiment, therefore, a

packet’s VCI may be used in place of a flow key for the
purpose of distributing or sharing the burden of processing
packets through their protocol stacks. Illustratively, trailic
from difl‘erent VCIs is sent to dilferent processors, but, to
ensure correct ordering of packets, all packets having the
same VCI are sent to the same processor. When an ATM
packet is received at a network interface, the VCI is retrieved
from its header and provided to the load distributor. The
modulus of the VCI over the number of processors that are
available for load distribution is then computed. Similar to
the illustrated embodiment, the packet and its associated
procmor number are then provided to the host computer.

As described above, load distribution in a present embodi-
ment of the invention is performed on the basis of a packet’s
layer three and/or layer four source and destination entity
identifiers. In an alternative embodiment of the invention,
however, load distribution may be performed on the basis of
layer two addresses. In this alternative embodiment, packets
having the same Ethernet source and destination addresses,
for example, are sent to a single processor.

As one ofskill in the art will recognize, however, this may
result in a processor receiving many more packets than it

. Would if layer three and/or layer four identifiers were used.
.1 For example, if a large amount of traffic is received through

“ a router situated near (in a logical sense) to the host
computer, the source Ethernet address for all of the traffic

may be the router’s address even though the traffic is from
I multitude of different end users and/or computers. In

‘, contrast, if the host computer is on the same Ethernet
fieglllcnt as all of the end users/computers, the layer two

a ’80ch addresses will show greater variety and allow more
a cfiective load sharing.

. other methods of distributing the processing of packets
. ,{ecerved from a network may differ from the embodiment
:2uustrated in FIG. 7 without exceeding the scope of the

“Wention. In particular, one skilled in the art. will appreciater

10

15

20

30

35

4s

50

55

65

52

that many alternative procedures for assigning a flow’s
packets to a processor and delivering those packets to the
processor may be employed.
One Embodiment of a Packet Queue

As described above, packet queue 116 stores packets
received from IPP module 104 prior to their re-assembly by
DMA engine 120 and their transfer to the host computer
system. FIG. 8 depicts packet queue 116 according to one
embodiment of the invention.

In the illustrated embodiment, packet queue 116 is imple—
mented as a FIFO (First-In First-Out) queue containing up to
256 entries. Each packet queue entry in this embodiment
stores one packet plus various information concerning the
packet. For example, entry 800 includes packet portion 802
plus a packet status portion. Because packets ofvarious sizes
are stored in packet queue 116, packet portion 802 may
include filler 802a to supplement the packet so that the
packet portion ends at an appropriate boundary (e.g., byte,
word, double word).

Filler 802a may comprise random data or data having a
specified pattern. Filler 802a may be distinguished from the
stored packet by the pattern of the fillerdata or by a tag field.

Illustratively, packet status information includes TCP
checksum value 804 and packet length 806 (e.g., length of
the packet stored in packet portion 802). Storing the packet
length may allow the packet to be easily identified and
retrieved from packet portion 802. Packet status information
may also include diagnostic/status information 808.
Diagnostic/status information 808 may include a flag indi~
cating that the packet is bad (e.g., incomplete, received with
an error), an indicator that a checksum was or was not
computed for the packet, an indicator that the checksum has
a certain value, an ofi'set to the portion of the packet on
which the checksum was computed, etc. Other flags or
indicators may also be included for diagnostics, filtering, or
other purposes. In one embodiment of the invention, the
packet’s flow key (described above and used to identify the
flow comprising the packet) and/or flow number (e.g., the
corresponding index of the packet’s flow in flow database
110) are included in diagnostic/status information 808. In
another embodiment, a tag field to identify or delimit filler
80211 is included in diagnostic/status information 808.

In one alternative embodiment of the invention, any or all
of the packet status information described above is stored in
control queue 118 rather than packet queue 116.

In the illustrated embodiment of the invention packet
queue 116 is implemented in hardware (e.g., as random
access memory). In this embodiment, checksum value 804 is
sixteen bits in size and may be stored by checksum generator
114. Packet length 806 is fourteen bits large and may be
stored by header parser 106. Finally, portions of diagnostic/
status information 808 may be stored by one or more of IPP
module 104, header parser 106, flow database manager 108,
load distributor 112 and checksum generator 114.

Packet queue 116 in FIG. 8 is indexed with two pointers.
Read pointer 810 identifies the next entry to be read from the
queue, while write pointer 812 identifies the entry in which
the next received packet and related information is to be
stored. As explained in a subsequent section, the packet
stored in packet portion 802 of an entry is extracted from
packet queue 116 when its data is to be-reassembled by
DMA engine 120 and/or transferred to the host computer
system.
One Embodiment of a Control Queue

In one embodiment of the invention, control queue 118
stores control and status information conceming a packet
received by NIC 100. In this embodiment, control queue 118

mac-.1 r w ~m I
~ W “threat 5.. we» r .

NOAC Ex. 1018 Page 891

2
f

US 6,650,640 B1
S3

retains information used to enable the batch processing of
rotocol headers and/or the re-assembly of data from mul-

tiplc related packets. Control queue 118 may also‘store
information to be used by the host computer or a senes of
instructions operating on a host computer (e.g., a device
driver for NIC 100). The information stored in control queue
118 may supplement or duplicate information stored in
packet queue 116.

FIG. 9 depicts control queue 118 in one embodiment of
the invention. The illustrated control queue contains one
entry for each packet stored in packet queue 116 (e.g., up to
256 entries). In one embodiment of the invention each entry
in control queue 118 corresponds to the entry (e.g., packet)
in packet queue 116 having the same number. FIG. 9 depicts
entry 900 having various fields, such as CPU number 902,
No’Assist signal 904, operation code 906, payload offset
908, payload size 910 and other status information 912. An
entry may also include other status or control information
(not shown in FIG. 9). Entries in control queue 118 in
alternative embodiments of the invention may comprise
different information.

CPU (or processor) number 902, discussed in a previous
section, indicates which one of multiple processors on the
host computer system should proce$ the packet’s protocol
headers. Illustratively, CPU number 902 is six bits in size.
NoflAssist signal 904, also described in apreceding section,
indicates whether the packet is compatible with (e.g., is
formatted according to) any of a set ofpre-selected protocols
that may be parsed by header parser 106. No*Assist signal
904 may comprise a single flag (e.g. one bit). In one
embodiment of the invention the state or value of No__A$ist

signal 904 may be used by flow database manager 108 to
determine whether a packet’s data is re—asemblcable and/or
whether its headers may be processed with those of related
packets. In particular, the FDBM may use the NogAssist
signal in determining which operation code to asign to the
packet.

Operation code 906 provides information to DMA engine
120 to assist in the re-assembly of the packet’s data. As
described in a previous section, an operation code may
indicate whether a packet includes data or whether a pack—
et’s data is suitable for re-assembly. Illustratively, operation
code 906 is three bits in size. Payload offset 908 and payload
size 910 correspond to the offset and size of the packet’s
TCP payload (e.g., TCP data), reSpectively. These fields may
be seven and fourteen bits large, respectively.

In the illustrated embodiment, other status information
912 includes diagnostic and/or status information concem-
ing the packet. Status information 912 may include astarting
position for a checksum calculation (which may be seven
bits in size), an offset of the layer three (e.g., IP) protocol
header (which may also be seven bits in size), etc. Status
information 912 may also include an indicator as to whether
the size of the packet exceeds a first threshold (e.g., whether
the packet is greater than 1522 bytes) or falls under a second
threshold (e.g., whether the packet is 256 bytes or less). This
information may be useful in re-assembling packet data.
Illustratively, these indicators comprise single-bit flags.

In one alternative embodiment of the invention, status
information 912 includes a packet’s flow key and/or flow
number (e.g., the index of the packet’s flow in flow database
110). The flow key or flow number may, for example, be
used for debugging or other diagnostic purposes. In one
embodiment of the invention, the packet’s flow number may
be stored in status information 912 so that multiple packets
in a single flow may be identified. Such related packet may
then be collectively transferred to and/or processed by a host
Computer.

10

15

20

30

35

45

50

(55

60

65

54

FIG. 9 depicts a read pointer and a write pointer for
indexing control queue 118. Read pointer 914 indicates an
entry to be read by DMA engine 120. Write pointer 916
indicates the entry in which to store information concerning
the next packet stored in packet queue 116.

In an alternative embodiment of the invention, a second
read pointer (not shown in FIG. 9) may be used for indexing
control queue 118. As described in a later section, when a
packet is to be transferred to the host computer, information
drawn from entries in the control queue is searched to
determine whether a related packet (e.g., a packet in the
same flow as the packet to be transferred) is also going to be
transferred. If so, the host computer is alerted so that
protocol headers from the related packets may be processed
collectively. In this alternative embodiment of the invention,
related packets are identified by matching their flow num-
bers (or flow keys) in status information 912. The second
read pointer may be used to look ahead in the control queue
for packets with matching flow numbers.

In one embodiment of the invention CPU number 902

may be stored in the 10 control queue by load distributor 112
and N0_Assist signal 904 may be stored by header parser
106. Operation code 906 may be stored by flow database
manager 108, and payload offset 908 and payload size 910
may be stored by header parser 106. Portions of other status
information may be written by the preceding modules and/or
others, such as IPPmodule 104 and checksum generator 114.
In one particular embodiment of the invention, however,
many of these items of information are stored by IPP module
104 or some other module acting in somewhat of a coordi-
nator role.

One Embodiment of a DMA Engine
FIG. 10 is a block diagram of DMA (Direct Memory

Access) engine 120 in one embodiment of the invention.
One purpose of DMA engine 120 in this embodiment is to
transfer packets from packet queue 116 into bufiem in host
computer memory. Because related packets (e.g., packets
that are part of one flow) can be identified by their flow
numbers or flow keys, data from the related packets may be
transferred together (e.g., in the same buffer). By using one
buffer for data from one flow, the data can be provided to an
application program or other destination in a highly eflicient
manner. For example, after the host computer receives the
data, a page-flip operation may be performed to transfer the
data to an application’s memory space rather than perform-
ing numerous copy operations.

With reference back to FIGS. lA—B, a packet that is to be
transferred into host memory by DMA engine 120 is stored
in packet queue 116 after being received from network 102.
Header parser 106 parses a header portion of the packet and
generates a flow key, and flow database manager 108 amigos
an operation code to the packet. In addition, the communi-
cation flow that includes the packet is registered in flow
database 110. The packet’s flow may be identified by its flow
key or flow number (e.g., the index of the flow in flow
database 110). Finally, information concerning the packet
(e.g., operation code, a packet size indicator, flow number)
is stored in control queue 118 and, possibly, other portions
or modules of NIC 100, and the packet is transferred to the
host computer by DMA engine 120. During the transfer
process, the DMA engine may draw upon information stored
in the control queue to copy the packet into an appropriate
buffer, as described below. Dynamic packet batching module
122 may also use information stored in the control queue, as
discussed in detail in a following section.

With reference now to FIG. 10, one embodiment of a
DMA engine is presented. In this embodiment, DMA man-

NOAC Ex. 1018 Page 892

US 6,650,640 B1
55

ager 1002 manages the transfer of a packet, from packet
queue 116, into one or more buffers in host computer
memory. Free ring manager 1012 identifies or receives
empty buffers from host memory and completion ring man—
ager 1014 releases the buffers to the host computer, as
described below. The free ring manager and completion ring
managers may be controlled with logic contained in DMA
manager 1002. In the illustrated embodiment, flow
re-assembly table 1004, header table 1006, MTU table 1008
and jumbo table 1010 store information concerning buffers
used to Store dilIerent types of packets (as described below).
Information stored in one of these tables may include a
reference to, or some other means of identifying, a buffer. In
FIG. 10, DMA engine 120 is partially or fully implemented
in hardware.

Empty buffers into which packets may be stored are
identified via a free descriptor ring that is maintained in host
memory. As one skilled in the art is aware, a descriptor ring
is a data structure that is logically arranged as a circular
queue. A descriptor ring contains descriptors for storing
information (e.g., data, flag, pointer, address). In one
embodiment of the invention, each descriptor stores is
index within the free descriptor ring and an identifier (e.g.,
memory address, pointer) of a free buffer that may be used
to store packets. In this embodiment a butler is identified in
a descriptor by its address in memory, although other means
of identifying a memory buffer are also suitable. In one
embodiment of the invention a descriptor index is thirteen
bits large, allowing for a maximum of 8,192 descriptors in
the ring, and a buffer address is sixty-four bits in size.

In the embodiment of FIG. 10, software that executes on
a host computer, such as a device driver for NIC 100,
maintains a free buffer array or other data structure (e.g., list,
table) for storing references to (e.g., addresses of) the buffers
identified in free descriptors. As descriptors are retrieved
from the ring their buffer identifiers are placed in the array.
Thus, when a bulfer is needed for the storage of a packet, it
may be identified by its index (e.g., cell, element) in the free
buffer array. Then, when the bufler is no longer needed, it
may be released to the host computer by placing its array
index or reference in a completion descriptor. A packet
stored in the buffer can then be retrieved by accessing the
buffer identified in the specified element of the array. Thus,
in this embodiment of the invention the size of a descriptor
index (e.g., thirteen bits) may not limit the number ofbuffers
that may be assigned by free ring manager 1012. In
particular, virtually any number of buffers or descriptors
could be managed by the software. For example, in one
alternative embodiment of the invention bufler identifiers

may be stored in one or more linked lists after being
retrieved from descriptors in a free descriptor ring. When the
buffer is released to the host computer, a reference to the
head of the buifer’s linked list may be provided. The list
could then be navigated to locate the particular buffer (e.g.,
by its address).

As one skilled in the art will appreciate, the inclusion of
a limited number of descriptors in the free descriptor ring
(e.g., 8,192 in this embodiment) means that they may be
re-used in a round-robin fashion. In the presently described
embodiment, a descriptor is just needed long enough to
retrieve its buffer identifier (e.g., address) and place it in the
free buffer array, after which it may be re-used relatively
quickly. In other embodiments of the invention free descrip-
t0r rings having different numbers of free descriptors may be
used, thus allowing some control over the rate at which free
descriptors must be re-used.

In one alternative embodiment of the invention, instead of

“Sing a separate data structure to identify a buffer for storing

10

15

20

30

35

45

SD

55

60

65

56

a packet, a bufier may be identified within DMA engine 120
by the index of the free descriptor within the free descriptor
ring that referenced the buffer. One drawback to this scheme
when the ring contains a limited number of descriptors,
however, is that a particular buffer’s descriptor may need to
be re—used before its buffer has been released to the host

computer. Thus, either a method of avoiding or skipping the
re-use of such a descriptor must be implemented or the
buffer referenced by the descriptor must be released before
the descriptor is needed again. Or, in another alternative, a
free descriptor ring may be ofsuch a large size that a lengthy
or even virtually infinite period of time may pass from the
time a free descriptor is first used until it needs to be re-used.

Thus, in the illustrated embodiment of the invention free
ring manager 1012 retrieves a descriptor from the free
descriptor ring, stores its buffer identifier (e.g., memory
address) in a free buffer array, and provides the array index
and/or buffer identifier to flow re-assembly table 1004,
header table 1006, MTU table 1008 or jumbo table 1010.

Free ring manager 1012 attempts to ensure that a buffer is
always available for a packet. Thus, in one embodiment of
the invention free ring manager 1012 includes descriptor
cache 1012a configured to store a number of descriptors
(e.g., up to eight) at a time. Whenever there are less than a
threshold number of entries in the cache (e.g., five), addi—
tional descriptors may be retrieved from the free descriptor
ring. Advantageously, the descriptors are of such a size (e.g.,
sixteen bytes) that some multiple (e.g., four) of them can be
efficiently retrieved in a sixty-four byte cache line transfer
from the host computer. ‘

Returning now to the illustrated embodiment of the
invention, each buffer in host memory is one memory page
in size. However, buffers and the packets stored in the
buffers may be divided into multiple categories based on
packet size and whether a packet’s data is being
re-asscmbled. Re—amembly refers to the accumulation of
data from multiple packets of a single flow into one buffer
for efficient transfer from kernel space to user or application
space within host memory. In particular, re-assembleable
packets may be defined as packets that conform to a pre—
selected protocol (e.g., a protocol that is parseable by header
parser 106). By filling a memory page with data for one
destination, page-flipping may be performed to provide a
page in kernel space to the application or user space. A
packet’s category (e.g., whether re-assembleable or non-re-
assembleable) may be determined from information
retrieved from the control queue or flow database manager.
In particular, and as described previously, an operation code
may be used to determine whether a packet contains a
re—assembleable portion of data.

In the illustrated embodiment of the invention, data por-
tions of related, re-assembleable, packets are placed into a
first category of buffers—which may be termed re-assembly
bufl'ers. A second category of bulfers, which may be called
header buffers, stores the headers of those packets whose
data portions are being rte—assembled and may also store
small packets (e.g., those less than or equal to 256 bytes in
size). A third category of buffers, MTU buffers, stores
non-re—asembleable packets that are larger than 256 bytes,
but no larger than MTU size (e.g., 1522 bytes). Finally, a
fourth category of buffers, jumbo buffers, stores jumbo
packets (e.g., large packets that are greater than 1522 bytes
in size) that are not being re-assembled. Illustratively, a
jumbo packet may be stored intact (e.g., its headers and data
portions kept together in one bulfer) or its headers may be
stored in a header buffer while its data portion is stored in an
appropriate (e.g., jumbo) non-re-assembly buffer.

NOAC Ex. 1018 Page 893

US 6,650,640 BI

57

In one alternative embodiment of the invention, no dis-
finction is made between MTU and jumbo packets. Thus, in
this alternative embodiment, just three types of buffers are
used: re-assembly and header buffers, as described above,

plus nou—re—assembly buffers. Illustratively, all non-small
packets (e.g., larger than 256 bytes) that are—not
l.¢_;.ss¢:mbled are placed in a non-re-assembly butfer.

In another alternative embodiment, jumbo packets may be
l.¢_assembled in jumbo buffers. In particular, in this embodi-
ment data portions of packets smaller than a predetermined
size (e.g., MTU) are re-assembled in normal re—assembly
buflets while data portions of jumbo packets (e.g., packets

greater in size than MTU) are re-assembled in jumbo
buflers. Re—assembly of jumbo packets may be particularly
etfective for a communication flow that comprises jumbo
frames of a size such that multiple frames can fit in one
bufler. Header portions of both types of packets may be
stored in one type of header bulfer or, alternatively, different
header buffers may be used for the headers of the dilIerent
types of re—assembleable packets.

In yet another alternative embodiment of the invention
buflers may be of varying sizes and may be identified in
different descriptor rings or other data structures. For
example, a first descriptor ring or other mechanism may be
used to identify buffers of a first size for storing large or
jumbo packets. A second ring may store descriptors refer-
encing buffers for MI‘U-sized packets, and another ring may
contain descriptors for identifying page-sized buffers (e.g.,
for data re-assembly).

Abulfer used to store portions of more than one type of
packet—such as a header butfer used to store headers and
small packets, or a non-re-assembly buffer used to store
MTU and jumbo packets—may be termed a “hybrid” buifer.

Illustratively, each time a packet or a portion of a packet
is stored in a buffer, completion ring manager 1014 popu-
lates a descriptor in a completion descriptor ring with
information concerning the packet. Included in the informa-
tion stored in a completion descriptor in this embodiment is
a number or reference identifying the flee bufler array cell
or element in which an identifier (e.g., memory addres) of
a buffer in which a portion of the packet is stored. The
information may also include an offset into the buffer (e.g.,
to the beghning of the packet portion), the identity of
another flee butfer array entry that stores a buffer identifier
for a buffer containing another portion of the packet, a size
0f the packet, etc. Apacket may be stored in multiple buifers,
for example, if the packet data and header are stored
SCPEWICI)’ (e.g., the packet’s data is being re-assembled in a
re-asembly buifer while the packet’s header is placed in a
header bufier). In addition, data portions of a jumbo packet
or a rerassembly packet may span two or more buffers,
depending on the size of the data portion.
_ A distinction should be kept in mind between a buifer
identifier (e.g., the memory addreS of a buffer) and the entry
In the flee bufier array in which the buffer identifier is stored.
In particular, it has been described above that when a
mefllory bufier is released to a host computer it is identified
t0 the host computer by its position within a free bulfer array
(01' other suitable data structure) rather than by its butfer
Identifier. The host computer retrieves the buffer identifier
from the specified array element and accesses the specified
Puffer to locate a packet stored in the butfer. As one skilled
“1 the art will appreciate, identifying memory buifers in
cOrllpletion descriptors by the buffers’ positions in a free
buti‘er array can be more efficient than identifying them by
Eheu'mcmory addresses. In particular, in FIG. 10 butfer
ldentrfiers are sixty-four bits in size while an index in a free

.m. um mu. 4.
v ‘ ‘Waamugxgw

10

15

20

35

45

50

55

60

65

-mrump

58

buffer array or similar data structure will likely be far
smaller. Using array positions thus saves space compared to
using butfer identifiers. Nonethele$, butfer identifiers may
be used to directly identify butfers in an alternative embodi-
ment of the invention, rather than filtering acces to them
through a free butfer array. However, completion descriptors
would have to be correspondingly larger in order to accom-
modate them.

A completion descriptor may also include one or more
flags indicating the type or size of a packet, whether the
packet data should be re-assembled, whether the packet is
the last of a datagram, whether the host computer should
delay proce$ing the packet to await a related packet, etc. As
descnhed in a following section, in one embodiment of the
invention dynamic packet batching module 122 determines,
at the time a packet is transferred to the host computer,
whether a related packet will be sent shortly. If so, the host
computer may be advised to delay processing the transferred
packet and await the related packet in order to allow more
eflicient processing.

Apacket’s completion descriptor may be marked appro-
priately when the buffer identified by its buffer identifier is
to be released to the host computer. For example, a flag may
be set in the descriptor to indicate that the packet’s butfer is
being released flom DMA engine 120 to the host computer
or software operating on the host computer (e.g., a driver
associated with NIC 100). In one embodiment of the
invention, completion ring manager 1014 includes comple-
tion descriptor cache 1014a. Completion descriptor cache
1014a may store one or more completion descriptors for
collective transfer from DMA engine 120 to the host com-
puter.

Thus, empty butfers are retrieved from a flee ring and
used buffers are released to the host computer through a
completion ring. One reason that a separate ring is employed
to release used buffers to the host computer is that buffers
may not be released in the order in which they were taken.
In one embodiment of the invention, a butfer (especially a
flow re-assembly butfer) may not be released until it is full.
Alternatively, a buffer may be released at virtually any time,
such as when the end of a communication flow is detected.

Free descriptors and completion descriptors are further
described below in conjunction with FIG. 12.

Another reason that separate rings are used for flee and
completion descriptors is that the number of completion
descriptors that are required in an embodiment of the
invention may exceed the number of free descriptors pro-
vided in a flee descriptor ring. For example, a buffer
provided by a flee descriptor may be used to store multiple
headers and/or small packets. Each time a header or small
packet is stored in the header bufier, however, a separate
completion descriptor is generated. In an embodiment of the
invention in which a header buifer is eight kilobytes in size,
a header butfer may store up to thirty-two small packets. For
each packet stored in the header buffer, another completion
descriptor is generated.

FIG. 11 includes diagrams of illustrative embodiments of
flow re-assembly table 1004, header table 1006, MTU table
1008 and jumbo table 1010. One alternative embodiment of
the invention includes a non-re—assembly table in place of
MTU table 1008 and jumbo table 1010, corresponding to a
single type of non-re-assembly bufier for both MTU and
jumbo packets. Jumbo table 1010 may also be omitted in
another alternative embodiment of the invention in which

jumbo buifers are retrieved or identified only when needed.
Because a jumbo buffer is used only once in this alternative
embodiment, there is no need to maintain a table to track its
use.

. t-n-v.. ._ x -. m .. t
a... a unmet—«A13. .r .»

We.-
5Q

NOAC Ex. 1018 Page 894

US 6,650,640 B1
59

Flow re—assembly table 1004 in the illustrated embodi—
ment stores information concerning the re-assembly ofpack-
615 in one or more communication flows. For each flow that

is active through DMA engine 120, separate flow
re—assembly buffers may be used to store the fiow’s data.
More than one butter may be used for a particular flow, but
each flow has one entry in flow re-asembly table 1004 with
which to track the use of a buffer. As described in a previous
section, one embodiment of the invention supports the
interleaving of up to sixty—four flows. Thus, flow
re-assembly buffer table 1004 in this embodiment maintains
up to sixty-four entries. A flow’s entry in the flow
re-assembly table may match its flow number (e .g,, the index
of the flow’s flow key in flow database 110) or, in an
alternative embodiment, an entry may be used for any flow.

In FIG. 11, an entry in flow re—assembly table 1004
includes flow re-assembly buffer index 1102, next address
1104. and validity indicator 1106. Flow re-assembly buifer
index 1102 comprises the index, or position, Within a free
buifer array or other data structure for storing buffer iden-
tifiers identified in free descriptors, of a buffer for storing
data from the associated flow. Illustratively, this value is
written into each completion descriptor associated with a
packet whose data portion is stored in the bufler. This value
may be used by software operating on the host computer to
access the buffer and process the data. Next address 1104
identifies the location within the bufier (e.g., a memory
address) at which to store the next portion of data.
Illustratively, this field is updated each time data is added to
the buifer. Validity indicator 1106 indicates whether the
entry is valid Illustratively, each entry is set to a valid state
(e.g., stores a first value) when a first portion of data is stored
in the flow’s re-assembly buffer and is invalidated (e.g.,
stores a second value) when the buffer is full. When an entry
is invalidated, the buffer may be released or returned to the
host computer (e.g., because it is full).

Header table 1006 in the illustrated embodiment stores

information concerning one or more header buffers in which
packet headers and small packets are stored. In the illus-
trated embodiment of the invention, only one header buffer
is active at a time. That is, headers and small packets are
stored in one buffer until it is released, at which time a new
buffer is used. In this embodiment, header table 1006
includes header buifer index 1112, next address 1114 and
validity indicator 1116. Similar to flow re-assembly table
1004, header buffer index 1112 identifies the cell or element
in the free bufier array that contains a buffer identifier for a
header buifer. Next address 1114 identifies the location
within the header bulIer at which to store the next header or

small packet. This identifier, which may be a counter, may
be updated each time a header or small packet is stored in the
header bufler, Validity indicator 116 indicates whether the
header bufier table and/or the header buiIer is valid. This
indicator may be set to valid when a first packet or header
is stored in a header buffer and may be invalidated when it
is released to the host computer.

MTU table 1008 stores information concerning one or
more MTU buffers for storing MTU packets (e.g., packets
larger than 256 bytes but less than 1523 bytes) that are not
being re-assembled. MTU bufler index 1122 identifies the
free buffer array element that contains a buifer identifier
(e.g., address) of a buifer for storing MI'U packets. Next
address 1124 identifies the location in the current MTU

buffer at which to store the next packet. Validity indicator
1126 indicates the validity of the table entry. The validity
indicator may be set to a valid state when a first packet is
stored in the MTU bufler and an invalid state when the buffer

is to be released to the host computer.

. .. e... a:
nvmwmm. .u «41‘9":"7,.“ ‘ w.

10

15

20

3O

35

45

50

55

60

65

60

Jumbo table 1010 stores information concerning one or
more jumbo buflers for storing jumbo packets (e.g., packets
larger than 1522 bytes) that are not being re-assembled.
Jumbo buffer index 1132 identifies the element within the

free buifer array that stores a bufier identifier corresponding
to a jumbo buifer. Next address 1134 identifies the location
in the jumbo buifer at which to store the next packet. Validity
indicator 1136 indicates the validity of the table entry.
Illustratively, the validity indicator is set to a valid state
when a first packet is stored in the jumbo buiIer and is set
to an invalid state when the bulfer is to be released to the

host computer.
In the embodiment of the invention depicted in FIG. 11,

a packet larger than a specified size (e.g., 256 bytes) is not
re-assembled if it is incompatible with the pre-selected
protocols for NIC 100 (e.g., TCP, IP, Ethernet) or if the
packet is too large (e.g., greater than 1522 bytes). Although
two types of buffers (e.g., MTU and jumbo) are used for
non-re—asembleable packets in this embodiment, in an
alternative embodiment of the invention any number may be
used, including one. Packets le$ than the specified size are
generally not re-assembled. Instead, as described above,
they are stored intact in a header buffer.

In the embodiment of the invention depicted in FIG. 11,
next address fields may store a memory address, offset,
pointer, counter or other means of identifying a position
within a buffer. Advantageously, the next addre§ field of a
table or table entry is initially set to the address of the buffer
assigned to store packets of the type associated with the table
(and, for re—assembly table 1004, the particular flow). As the
buffer is populated, the address is updated to identify the
location in die buffer at which to store the next packet or
portion of a packet.

Illustratively, each validity indicator stores a first value
(e.g., one) to indicate validity, and a second value (e.g., zero)
to indicate invalidity. In the illustrated embodiment of the
invention, each index field is thirteen bits, each address field
is sixty-four bits and the validity indicators are each one bitin Size.

Tables 1004, 1006, 1008 and 1010 may take other forms
and remain within the scope of the invention as contem-
plated. For example, these data structures may take the form
of arrays, lists, databases, etc., and may be implemented in
hardware or software. In the illustrated embodiment of the

invention, header table 1006, MTU table 1008 and jumbo
table 1010 each contain only one entry at a time. Thus, only
one header butter, MTU buffer and jumbo buffer are active
(e.g., valid) at a time in this embodiment. In an alternative
embodiment of the invention, multiple header buffers, MTU
buffers and/or jumbo buffers may be used (e.g., valid) atonce.

In one embodiment of the invention, certain categories of
buffers (e.g., header, non—re—assembly) may store a pre-
determined number of packets or packet portions. For
exzimple, where the memory page size of a host computer
procemor is eight kilobytes, a header buffer may store a
maximum of thirty-two entries, each of which is 256 bytes.
Illustratively, even when one packet or header is less than
256 bytes, the next entry in the bufier is stored at the next
256-byte boundary. A counter may be asociated with the
buffer and decremented (or incremented) each time a new
entry is stored in the bulfer. After thirty-two entries have
been made, the bufler may be released.

In one embodiment of the invention, buffers other than
header buffers may be divided into fixed-size regions. For
example, in an eight-kilobyte MTU buffer, each MTU
packet may be allocated two kilobytes. Any space remaining

’ ”L1:w "vi-La. IP§\ .

NOAC Ex. 1018 Page 895

US (3,050,640 BI

61

in a packet’s area after the packet is stored may be left
unused or may be padded.

In one alternative embodiment of the invention, entries in
a header buffer andJor non-re-assembly buffer (e.g., MTU,
jumbo) are aligned for more efficient transfer. In particular,
two bytes of padding (e.g., random bytes) are stored at the
beginning of each entry in such a buffer. Because a packet’s
layer two Ethernet header is fourteen bytes long, by adding
two pad bytes each packet’s layer three protocol header
(e.g., IP) will be aligned with a sixteen-byte boundary.
Sixteen-byte alignment, as one skilled in the art will
appreciate, allows efiicient copying of packet contents (such
as the layer three header). The addition of two bytes may,
however, decrease the size of the maximum packet that may
be stored in a header buffer (e.g., to 254 bytes).

As explained above, counters and/or padding may also be
used with non-re-assembly buffers. Some non-re-
assembleable packets (e.g., jumbo packets) may, however,
be split into separate header and data portions, with each
portion being stored in a separate butIer—similar to the
re-assembly of flow packets. In one embodiment of the
invention padding is only used with header portions of suit
packets. Thus, when a non-re-assembled (e.g., jumbo)
packet is split, padding may be applied to the header/small
buffer in which the packet’s header portion is stored but not
to the non-re-asembly bufler in which the packet’s data
portion is stored. When, however, a non-re-assembly packet
is stored with its header and data together in a non—re-
assembly butfer, then padding may be applied to that bufier.

In another alternative embodiment of the invention, a
second level of padding may be added to each entry in a
bufler that stores non-re-assembled packets that are larger
than 256 bytes (e.g., M'I‘U packets and jumbo packets that
are not split). In this alternative embodiment, a cache line of
storage (e.g., sixty—four bytes for a Solaris“ workstation) is
skipped in the bufler before storing each packet. The extra
padding area may be used by software that processes the
packets and/or their completion descriptors. The software
may use the extra padding area for routing or as temporary
storage for information needed in a secondary or later phase
of processing.

For example, before actually processing the packet, the
software may store some data that promotes efficient multi-
tasking in the padding area. The information is then avail-
able when the packet is finally extracted from the buffer. In
particular, in one embodiment of the invention a network
interface may generate one or more data values to identify
multicast or alternate addresses that correspond to a layer
two addre§ of a packet received from a network. The
multicast or alternate addresses may be stored in a network
interface memory by software operating on a host computer
(e.g., a device driver). By storing the data value(s) in the
padding, enhanced routing functions can be performed when
the host computer processes the packet.

Reserving sixty-four bytes at the beginning of a buffer
3150 allows header information to be modified or prepended
if necemary. For example, a regular Ethernet header of a
packet may, because of routing requirements, need to be
replaced with a much larger FDDI (Fiber Distributed Data
Interface) header. One skilled in the art will recognize the
size disparity between these headers. Advantageously, the
reserved padding area may be used for the FDDI header
rather than allocating another block of memory.

In a present embodiment of the invention DMA engine
120 may determine which category a packet belong in, and
Which type of buffer to store the packet in, by examining the
PaCket’s operation code. As described in a previous section,

4:»; n, ..
r~ Any-0e»: v a. .- u

10

15

20

30

35

45

50

55

60

65

m." A

62

an operation code may be stored in control queue 118 for
each packet stored in packet queue 116. Thus, when DMA
engine 120 detects a packet in packet queue 116, it may fetch
the corresponding information in the control queue and act
appropriately.

An operation code may indicate whether a packet is
compatible with the protocols pre-selected for NIC 100. In
an illustrative embodiment of the invention, only compatible
packets are eligible for data re-assembly and/or other
enhanced operations offered by NIC 100 (e.g., packet batch-
ing or load distribution). An operation code may also reflect
the size of a packet (e.g., less than or greater than a
predetermined size), whether a packet contains data or is a
control packet, and whether a packet initiates, continues or
ends a flow. In this embodiment of the invention, eight
different operation codes are used. In alternative embodi-
ments of the invention more or less than eight codes may be
used. TABLE 1 lists operation codes that may be used in one
embodiment of the invention.

FIGS. 12A—12B illustrate descriptors from a fiee descrip-
tor ring and a completion descriptor ring in one embodiment
of the invention. FIG. 12A also depicts a free butfer array for
storing buffer identifiers retrieved from free descriptors.

Free descriptor ring 1200 is maintained in host memory
and is populated with descriptors such as fi’ee descriptor
1202. Illustratively, fiee descriptor 1202 comprises ring
index 1204, the index of descriptor 1202 in free ring 1200,
and bufler identifier 1206. A bufler identifier in this embodi-

ment is a memory addrem, but may, alternatively, comprise
a pointer or any other suitable means of identifying a bufier
in host memory.

In the illustrated embodiment, free buffer array 1210 is
constructed by software operating on a host computer (e.g.,
a device driver). An entry in free buffer array 1210 in this
embodiment includes array index field 1212, which may be
used to identify the entry, and buffer identifier field 1214.
Each entry’s buffer identifier field thus stores a bufier
identifier retrieved from a free descriptor in free descriptor
ring 1200.

In one embodiment of the invention, fiee ring manager
1012 of DMA engine 120 retrieves descriptor 1202 from the
ring and stores bufier identifier 1206 in fiee bufler array
1210. The free ring manager also passes the buffer identifier
to flow re-assembly table 1004, header table 1006, MTU
table 1008 or jumbo table 1010 as needed. In another
embodiment the free ring manager extracts descriptors from
the free descriptor ring and stores them in a descriptor cache
until a bufl‘er is needed, at which time the buffer's buffer
identifier is Stored in the free buffer array. In yet another
embodiment, a descriptor may be used (e.g., the buffer that
it references may be used to store a packet) while still in the
cache.

In one embodiment of the invention descriptor 1202 is
sixteen bytes in length. In this embodiment, ring index 1204
is thirteen bits in size, buffer identifier 1206 (and buffer
identifier field 1214 in fiee butfer array 1210) is sixty-four
bits, and the remaining space may store other information or
may not be used.

The size of array index field 1212 depends upon the
dimensions of array 1210; in one embodiment the field is
thirteen bits in size.

Completion descriptor ring 1220 is also maintained in
host memory. Descriptors in completion ring 1220 are
written or configured when a packet is transferred to the host
computer by DMA engine 120. The information written to a
descriptor, such as descriptor 1222, is used by software
operating on the host computer (e.g., a driver associated with

NOAC Ex. 1018 Page 896

n. .~

US 6,650,640 B1
63

MC 100) to process the packet. Illustratively, an ownership
indicator (described below) in the descriptor indicates
whether DMA engine 120 has finished using the descriptor.
For example, this field may be set to a particular value (e.g.,
zero) when the DMA engine finishes using the descriptor
and a ditferent value (e.g., one) when it is available for use
by the DMAengine. However, in another embodiment of the
invention, DMA engine 120 issues an interrupt to the host
computer when it releases a completion descriptor. Yet
another means of alerting the host computer may be
employed in an alternative embodiment. Descriptor 1222, in
one embodiment of the invention, is thirty-two bytes in
length.

In the illustrated embodiment of the invention, informa-
tion stored in descriptor 1222 concerns a transferred packet
and/or the bulfer it was stored in, and includes the following
fields. Data size 1230 reports the amount of data in the

packet (e.g., in bytes). The data size field may contain a zero
if there is no data portion in the packet or no data buffer (e.g.,
flow re-assembly bulfer, non—re-assembly butler, jumbo
bufier, MTU buffer) was used. Data bulfer index 1232 is the
index, within free buffer array 1210, of the bufier identifier
for the flow re-assembly buffer, non-re-assembly bufler,
jumbo buffer or MTU buffer in which the packet’s data was
stored. When the descriptor corresponds to a small packet
fully stored in a header bufier, this field may store a zero or
remain unused. Data offset 1234 is the offset of the packet’s
data within the flow re-assembly buffer, non-re-assembly
bufl'er, jumbo buffer or MTU bufler (e.g., the location of the
first byte of data within the data buffer).

In FIG. 12B, flags field 1236 includes one or more flags
concerning a buffer or packet. For example, if a header
buffer or data is being released (e.g., because it is full), a
release header or release data flag, respectively, is set. A
release flow flag may be used to indicate whether a flow has,
at least temporarily, ended. In other words, if a release flow
flag is set (e.g., stores a value of one), this indicates that there
are no other packets waiting in the packet queue that are in
the same flow as the packet associated with descriptor 1222.
Otherwise, if this flag is not set (e.g., stores a value of zero),
software operating on the host computer may queue this
packet to await one or more additional flow packets so that
they may be processed collectively. A split flag may be
included in flags field 136 to identify whether a packet’s
contents (e.g., data) spans multiple bulfers. Illustratively, if
the split flag is set, there will be an entry in next data buffer
index 1240, described below.

Descriptor type 188, in the presently described embodi-
ment of the invention, may take any of three values. A first
value (e.g., one) indicates that DMA engine 120 is releasing
a flow butter for a flow that is stale (e.g., no packet has been
received in the flow for some period of time). Asecond value
(e.g., two) may indicate that a non-re-assembleable packet
was stored in a butfer. Athird value (e.g., three) may be used
to indicate that a flow packet (e.g., a packet that is part of a
flow through MC 100) was stored in a buffer.

Next bulfer index 1240 stores an index, in free buffer
array 1210, of an entry contaimng a bufler identifier corre-
Sponding to a buffer storing a subsequent portion of a packet
if the entire packet, or its data, could not fit into the first
assigned buffer. The offset in the next buffer may be assumed
to be zero. Header size 1242 reports the length of the header
(e.g., in bytes). The header size may be set to zero if the
header bulfer was not used for this packet (e.g., the packet
is not being re-assembled and is not a small packet). Header
buffer index 1244 is the index, in free butfer array 1210, of
the buffer identifier for the header buffer used to store this

10

15

20

30

35

4s

50

55

60

65

1.. Wm» ”has.-.«a a . ma.,»w.ma-
, as“, M-srnmwfl-fllt .

64

packet’s header. Header olIset 1246 is the offset of the
packet’s header within the bufier (e.g., header buffer) in
which the header was stored. The header oEset may take the
form of a number of bytes into the butter at which the header
can be found. Alternatively, the ofiset may be an index value,
reporting the index position of the header. For example, in
one embodiment of the invention mentioned above, entries
in a header buffer are stored in 256-byte units. Thus, each
entry begins at a 256-byte boundary regardless of the actual
size of the entries. The 256-byte entries may be numbered or
indexed within the butler.

In the illustrated embodiment, flow number 1250 is the
packet’s flow number (e.g., the index in flow database 110
of the packet’s flow key). Flow number 1250 may be used
to identify packets in the same flow. Operation code 1252 is
a code generated by flow database manager 108, as
described in a previous section, and used by DMA engine
120 to process the packet and transfer it into an appropriate
buffer. Methods of transferring a packet depending upon its
operation code are described in detail in the following
section. N0_Assist signal 1254, also described in a previous
section, may be set or raised when the packet is not
compatible with the protocols pre-selected for MC 100. One
result of incompatibility is that header parser 106 may not
extensively parse the packet, in which case the packet will
not receive the subsequent benefits. Processor identifier
1256, which may be generated by load distributor 112,
identifies a host computer system processor for processing
the packet. As described in a previous section, load distribu-
tor 112 attempts to share or distribute the load of processing
network packets among multiple processors by having all
packets within one flow processed by the same processor.
Layer three header offset 1258 reports an offset within the
packet of the first byte of the packet’s layer three protocol
(e.g., IP) header. With this value, software operating on the
host computer may easily strip off one or more headers or
header portions.

Checksurn value 1260 is a checksum computed for this
packet by checksurn generator 114. Packet length 1262 is the
length (e.g., in bytes) of the entire packet.

Ownership indicator 1264 is used in the presently
described embodiment of the invention to indicate whether

NIC 100 or software operating on the host computer “owns”
completion descriptor 1222. In particular, a first value (e.g.,
zero) is placed in the ownership indicator field when MC
100 (e.g., DMA engine 120) has completed configuring the
descriptor. lllustratively, this first value is understood to
indicate that the software may now process the descriptor.
When finished processing the descriptor, the software may
store a second value (e.g., one) in the ownership indicator to
indicate that NIC 100 may now use the descriptor for
another packet.

One skilled in the art will recognize that there are numer-
ous methods that may be used to inform host software that
a descriptor has been used by, or returned to, DMA engine
120. In one embodiment of the invention, for example, one
or more registers, pointers or other data structures are
maintained to indicate which completion descriptors in a
completion descriptor ring have or have not been used. In
particular, a head register may be used to identify a first of
a series of descriptors that are owned by host software, while
a tail register identifies the last descriptor in the series. DMA
engine 120 may update these registers as it configures and
releases descriptors. Thus, by examining these registers the
host software and the DMA engine can determine how many
descriptors have or have not been used.

Finally, other information, flags and indicators may be
stored in other field 1266. Other information that may be

NOAC Ex. 1018 Page 897

US 6,650,640 B1
65

stored in one embodiment of the invention includes the
length and/or offset of a TCP payload, flags indicating a
small packet (e.g., less than 257 bytes) or a jumbo packet
(e.g., more than 1522 bytes), a flag indicating a bad packet
(e.g., CRC error), a checksum starting position, etc.

In alternative embodiments of the invention only infor-
mation and flags needed by the host computer (e.g., driver
software) are included in descriptor 1222. Thus, in one
alternative embodiment one or more fields other than the
following may be omitted: data size 1230, data buffer index
1232, data offset 1234, a split flag, next data bufl‘er index
1240, header size 1242, header buffer index 1244, header
ofl‘set 1246 and ownership indicator 1264.

In addition, a completion descriptor may be organized in
virtually any form; the order of the fields of descriptor 1222
in FIG. 12 is merely one possible configuration. It is
advantageous, however, to locate ownership indicator 1264
towards the end of a completion descriptor since this indi-
cator may be used to inform host software when the DMA
engne has finished populating the descriptor. If the owner-
ship indicator were placed in the beginning of the descriptor,
the software may read it and attempt to use the descriptor
before the DMA engine has finished writing to it.

One skilled in the art will recognize that other systems and
methods than those described in this section may be imple-
mented to identify storage areas in which to place packets
being transferred from a network to a host computer without
exceeding the scope of the invention.
Methods of Transferring a Packet into a Memory Buffer by
a DMA Engine

FIGS. 13—20 are flow charts describing procedures for
transferring a packet into a host memory buffer. In these
procedures, a packet’s operation code helps determine
which buffer or bulfers the packet is stored in. An illustrative
selection of operation codes that may be used in this
procedure are listed and explained in TABLE 1.

The illustrated embodiments of the invention employ four
categories of host memory buffers, the sizes of which are
programmable. The buffer sizes are programmable in order
to accommodate various host platforms, but are pro-
grammed to be one memory page in size in present embodi-
ments in order to enhance the efliciency of handling and
processing network traffic. For example, the embodiments
discussed in this section are directed to the use of a host

computer system employing a SPARC'm processor, and so
each buffer is eight kilobytes in size. These embodiments are
easily adjusted, however, for host computer systems
employing memory pages having other dimensions.

One type of buffer is for re—assembling data from a flow,
another type is for headers of packets being re-assembled
and for small packets (e.g., those less than or equal to 256
bytes in size) that are not re-assembled. Athird type of bulfer
stores packets up to MTU size (e.g., 1522 bytes) that are not
rc-asembled, and a fourth type stores jumbo packets that are
greater than MTU size and which are not re-assembled.

‘ These bulIers are called flow re-assembly, header, MTU and
‘ Jumbo buffers, respectively.

The procedures described in this section make use of free
descriptors and completion descriptors as depicted in FIG.

, 12. In particular, in these procedures free descriptors
. retrieved from a free descriptor ring store buffer identifiers
. (e.g., memory addresses, pointers) for identifying buffers in
_ which to store a portion of a packet. Aused buffer may be
~ returned to a host computer by identifying the location
. W1fl’lin a free buffer array or other data structure used to store
the bufler’s buffer identifier. One skilled in the art will
”Cognize that these procedures may be readily adapted to

.. . a. “12...“. ”than ._....
.~ .Mqfipr kfintmw'; A, ,. p

10

15

20

30

35

45

50

55

60

65

66

work with alternative methods of obtaining and returning
bulfers for storing packets.

FIG. 13 is a top-level view of the logic controlling DMA
engine 120 in this embodiment of the invention. State 1300
is a start state.

In state 1302, a packet is stored in packet queue 116 and
associated information is stored in control queue 118. One
embodiment of a packet queue is depicted in FIG. 8 and one
embodiment of a control queue is depicted in FIG. 9. DMA
engine 120 may detect the existence of a packet in packet
queue 116 by comparing the queue’s read and write pointers.
As long as they do not reference the same entry, then it is
understood that a packet is stored in the queue. Alternatively,
DMA engine 120 may examine control queue 118 to deter-
mine whether an entry exists there, which would indicate
that a packet is stored in packet queue 116. As long as the
control queue’s read and write pointers do not reference the
same entry, then an entry is stored in the control queue and
a packet must be stored in the packet queue.

In state 1304, the packet’s associated entry in the control
queue is read. Illustratively, the control queue entry includes
the packet’s operation code, the status of the packet’s
No__Assist signal (e.g., indicating whether or not the packet
is compatible with a pre—selected protocol), one or more
indicators concerning the size of the packet (and/or its data
portion), etc.

In state 1306, DMA engine 120 retrieves the packet’s flow
number. As described previously, a packet’s flow number is
the index of the packet’s flow in flow database 110. A
packet’s flow number may, as described in a following
section, be provided to and used by dynamic packet batching
module 122 to enable the collective processing of headers
from related packets. In one embodiment of the invention, a
packet’s flow number may be provided to any of a number
of NIC modules (e.g., IPP module 104, packet batching
module 122, DMA engine 120, control queue 118) after
being generated by flow database manager 108. The flow
number may also be stored in a separate data structure (e.g.,
a register) until needed by dynamic packet batching module
122 and/or DMA engine 120. In one embodiment of the
invention DMA engine 120 retrieves a packet’s flow number
from dynamic packet batching module 122. In an alternative
embodiment of the invention, the flow number may be
retrieved from a different location or module.

Then, in states 1308—1318, DMA engine 120 determines
the appropriate manner of procesing the packet by exam-
ining the packet’s operation code. The operation code may,
for example, indicate which buffer the engine should transfer
the packet into and whether a flow is to be set up or torn
down in flow re-assembly buffer table 1004.

The illustrated procedure continues at state 1400 (FIG.
14) if the operation code is 0, state 1500 (FIG. 15) for
operation code 1, state 1600 071G. 16) for operation code 2,
state 1700 (FIG. 17) for operation code 3, state 1800 (FIG.
18) for operation code 4, state 1900 (FIG. 19) for operation
code 5 and state 2000 (FIG. 20) for operation codes 6 and
7.

A Method of Transferring a Packet with Operation Code 0
FIG. 14 depicts an illustrative procedure in which DMA

engine 120 transfers a packet associated with operation code
0 to a host memory bulfer. As reflected in TABLE 1,
operation code 0 indicates in this embodiment that the
packet is compatible with the protocols that may be parsed
by NIC 100. As explained above, compatible packets are
eligible for re-assembly, such that data from multiple pack—
ets of one flow may be stored in one buffer that can then be

efficiently provided (e.g., via a page-flip) to a user or

~:~ warn/m. «

NOAC Ex. 1018 Page 898

us 6,650,64031

69

small packet. The processing associated with a packet hav-
ing operation code 0 then ends with end state 1499. In one
embodiment of the invention, the ownership indicator field
of a descriptor that is written in state 1406 is not changed,
or an interrupt is not issued, until end state 1499. Delaying
the notification of the host computer allows the descriptor to
be updated or modified for as long as possible before turning
it over to the best.
A Method of Transferring a Packet with Operation Code 1

FIG. 15 depicts an illustrative procedure in which DMA

engine 120 transfers a packet mciated with operation code
1 to a host memory buffer. As reflected in TABLE 1, in this
embodiment Operation code 1 indicates that the packet is
compatible with the protocols that may be parsed by NIC
100. Apacket having operation code 1, however, may be a
control packet having a particular flag seL No new flow is set
up, but a flow should already exist and is to be torn down;
there is no data to re-assemble and the entire packet may be
stored in a header buifer.

In state 1500, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header buffer. Illustratively, this determination is made by
examining validity indicator 1116 of header butIer table
1006, which manages the active header buffer. If the validity
indicator is set, then there is a header buffer ready to receive
this packet and the procedure continues at state 1504.

Otherwise, in state 1502 a new header bufier is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer. If the cache is empty, new
descriptors may be retrieved from the fi'ee descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, its butfer identifier (e.g., pointer,
address, index) is stored in free bufier array 1210 and its
initial storage location (e.g., addre$ or cell location) is
stored in next address field 1114 of header buffer table 1006.

The index or position of the bufier identifier within the free
buffer array is stored in header buffer index 1112. Finally,
validity indicator 1116 is set to a valid state.

In state 1504 the packet is copied into the header bufler at
the addre$ or location specified in the next address field of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes are inserted before
the packet in order to align the beginning of the packet’s
layer three (e.g., IP) header with a sixteen-byte boundary.
And, the packet (with or without padding) may be placed
into a pre-defined area or cell of the buffer.

In the illustrated embodiment, operation code 1 indicates
that the packet’s existing flow is to be torn down. Thus, in
state 1506 it is determined whether a flow re-assembly bufler
is Valid (e.g., active) for this flow by examining the flow’s
Validity indicator in flow re—assembly butter table 1004. If,
for example, the indicator is valid, then there is an active
buffer storing data from one or more packets in this flow.
Illustratively, the flow is torn down by invalidating the flow
l'<=-assembly bufler and releasing it to the host computer. If

. [here is no valid flow re-assembly buffer for this flow, the
Illustrated procedure continues at state 1512. Otherwise, the
Pmcedure proceeds to state 1508.

In state 1508, a completion descriptor is configured to
release the flow’s re-assembly bufier and to provide infor.
Ination to the host computer for processing the current
PaCket. In particular, the header buffer index and the otfset
0f the first byte of the packet (or location of the packet’s cell)

10

15

20

30

35

45

50

55

60

65

70

within the header buiIer are placed in the descriptor. The
index within the free buiIer array of the entry containing the
re-assembly buifer’s buffer identifier is stored in a data index
field of the descriptor. The size of the packet is stored in a
header size field and a data size field is set to zero to indicate

that no separate buffer was used for storing this packet’s
data. A release header flag is set in the descriptor if the
header buffer is full and a release data flag is set to indicate
that no more data will be placed in this fiow’s present
re-assembly butfer (e.g., it is being released). In addition, a
release flow flag is set to indicate that DMA engine 120 is
tearing down the packet’s flow. The header buffer may not
be tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header
flag may be set at that time.

In state 1510, the flow’s entry in flow re—assembly buffer
table 1004 is invalidated. After state 1510, the procedure
continues at state 1514.

In state 1512, a completion descriptor is configured with
information somewhat dilferent than that of state 1508. In

particular, the header butfer index, the offset to this packet
within the header bufier and the packet size are placed
within the same descriptor fields as above. The data size field
is set to zero, as above, but no data index needs to be stored
and no release data flag is set (e.g., because there is no flow
re-assembly buffer to release). A release header flag is still
set in the descriptor if the header bufler is full and a release
flow flag is again set to indicate that DMA engine 120 is
tearing down the packet’s flow. Also, the descriptor type
field is changed to a value indicating that DMA engine 120
transferred a flow packet into host memory.

In state 1514, it is determined whether the header buffer
is now full. In this embodiment of the invention, where each
bufier is eight kilobytes in size and entries in the header
bufier are no larger than 256 bytes, a counter is used to keep
track of entries placed into each new header buffer. The
bufler is comidered full when thirty-two entries are stored.

If the bufler is full, in state 1516 the header buffer is
invalidated.

Illustratively, this involves setting the header buifer
table’s validity indicator to invalid and communicating this
status to the host computer via the descriptor configured in
state 1508 or state 1512. In this embodiment of the invention

a release header flag in the descriptor is set to indicate that
the header butter is full.

If the header butIer is not full, then in state 1518 the next
addre$ field of header bufler table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 1 then ends with end state 1599. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero), i$uing an interrupt, or some other
mechanism.

One skilled in the art will appreciate that in an alternative
embodiment of the invention a change in the descriptor type
field to any value other than the value (e.g., zero) it had when
DMA engine 120 was using it, may constitute a surrender of
“ownership” of the descriptor to the host computer or
software operating on the host computer. The host computer
will detect the change in the descriptor type field and
subsequently use the stored information to proce$ the
packet.
A Method of Transferring a Packet with Operation Code 2

FIGS. 16A—16F illustrate a procedure in which DMA
engine 120 transfers a packet associated with operation code

NOAC Ex. 1018 Page 899

,.r..»;.

US 6,650,640 B1
71

2 to a host memory bufler. As reflected in TABLE 1,
operation code 2 may indicate that the packet is compatible
with the protocols that may be parsed by NIC 100, but that
it is out of sequence with another packet in the same flow.
It may also indicate an attempt to re-establish a flow, but that
no more data is likely to be received after this packet. For
operation code 2, no new flow is set up and any existing flow
with the packet’s flow number is to be torn down. The

packet’s data is not to be re-assembled with data from other
packets in the same flow.

Because an eidsting flow is to be torn down (e.g., the
flow’s re-assembly bufler is to be invalidated and released to
the host computer), in state 1600 it is determined whether a
flow re-assembly bufler is valid (e.g., active) for the flow
having the flow number that was read in state 1306. This
determination may be made by examining the validity
indicator in the flow’s entry in flow reassembly bufl’er table
1004. Illustratively, if the indicator is valid then there is an
active butter storing data from one or more packets in the
flow. If there is a valid flow re-ammbly bufier for this flow,
the illustrated procedure continues at state 1602. Otherwise,
the procedure proceeds to state 1606.

In state 1602, a completion descriptor is written or con-
figured to release the existing flow re-assembly buffer. In
particular, the flow re—asembly bufier’s index (e.g., the
location within the free butler array that contains the butler
identifier corresponding to the flow re—assembly buffer) is
written to the descriptor. In this embodiment of the
invention, no offset needs to be stored in the descriptor’s
data otfset field and the data size field may be set to zero
because no new data was stored in the re—assembly butfer.
Similarly, the header buffer is not yet being released, there-
fore the header index and header offset fields of the descrip-
tor need not be used and a zero may be stored in the header
size field.

Illustratively, the descriptor’s release header flag is
cleared (e.g., a zero is stored in the flag) because the header
buffer is not to be released. The release data flag is set (e.g.,
a one is stored in the flag), however, because no more data
will be placed in the released flow re-assembly bufier.
Further, a release flow flag in the descriptor is also set, to
indicate that the flow associated with the released flow

re-assembly buffer is being torn down.
The descriptor type field may be changed to a value

indicating that DMA eng‘ne 120 is releasing a stale flow
buffer (e.g., a flow re-assembly bufier that has not been used
for some time). Finally, the descriptor is turned over to the
host computer by changing its ownership indicator field or
by issuing an interrupt or using some other mechanism. In
one embodiment of the invention, however, the descriptor is
not released to the host computer until end state 1699.

Then, in state 1604, the flow re—assembly butler is invali-
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assembly butler table 1004 appropriately.

In state 1606, it is determined whether the present packet
is a small packet (e.g., less than or equal to 2'56 bytes in
size), suitable for storage in a header butler. If so, the
illustrated procedure proceeds to state 1610. Information
stored in packet queue 116 and/or control queue 118 may be
used to make this determination.

In state 1608, it is determined whether the present packet
is ajumbo packet (e.g., greater than 1522 bytes in size), such
that it should be stored in ajumbo bulfer. If so, the illustrated
procedure proceeds to state 1650. If not, the procedure
continues at state 1630.

In state 1610 (reached from state 1606), it has been
determined that the present packet is a small packet suitable

10

15

20

30

35

45

50

55

6D

65

72

for storage in a header buffer. Therefore, DMA engne 120
(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buficr. Illustratively, this determi-
nation is made by examining validity indicator 1116 of
header bufler table 1006, which manages the active header
bufler. If the validity indicator is set, then there should be a
header bufler ready to receive this packet and the procedure
continues at state 1614.

Otherwise, in state 1612 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 and retrieving its reference
to an empty bufler. If the cache is empty, new descriptors
may be retrieved from the free descriptor ring in host
memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the butfer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
butfer array. The buffer’s initial address or some other
indicator of the first storage location in the butler is placed
in next address field 1114 of header bufier table 1006. The

buffer identifier’s position or index within the free bufier
array is stored in header butler index 1112, and validity
indicator 1.116 is set to a valid state.

In state 1614 the packet is copied or transferred (e.g., via
a DMA operation) into the header bulIer at the address or
location specified in the next address field of header butler
table 1006. As described above, in one embodiment of the
invention pad bytes are inserted before the header in order
to align the beginning of the packet’s layer three protocol
(e.g., IP) header with a sixteen-byte boundary. In addition,
the packet may be positioned within a cell of predetermined
size (e.g., 256 bytes) within the header butler.

In state 1616, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for processing the packet. In
particular, the header butler index (e.g. the position within
the free buffer array of the header buffer’s butter identifier)
and the packet’s offset within the header butler are placed in
the descriptor. Illustratively, this offset may serve to identify
the first byte of the packet, the first pad byte before the
packet or the beginning of the packet’s cell within the butler.
The size of the packet is also stored in the descriptor in a
header size field. Adata size field within the descriptor may
be set to zero to indicate that the entire packet was placed in
the header butler (e.g., no separate data portion was stored).
A release header flag is set in the descriptor if the header
butler is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. A release data flag is cleared
(e.g., set to a value ofzero), because there is no separate data
portion being conveyed to the host computer.

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
a$embleab1e packet into host memory. And, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention the ownership indicator field is not changed until
end state 1699 below. In one alternative embodiment of the

invention, DMA engine 120 issues an interrupt or other
signal to alert the host computer that a descriptor is being
released.

In state 1618, it is determined whether the header bufier
is full. In this embodiment of the invention, where each

NOAC Ex. 1018 Page 900

Ub (3,030,640 151
73

bulfer is eight kilobytes in size and entries in the header
butler are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header bufler.
The buffer is considered full when thirty-two entries are
stored-

If the bufier is full, in state 1620 the header Mer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header butfer table’s validity indi-
cator to an invalid state and communicating this status to the
host computer. In this embodiment of the invention, a
release header flag in the descriptor is set. The illustrated

procedure then ends with end state 1699.
If the header bufler is not full, then in state 1622 the next

address field of header bufi'er table 1006 is updated to
indicate the address or cell boundary at which to store the
next header or small packet. The illustrated procedure then
ends with end state 1699.

In state 1630 (reached from state 1608), it has been
determined that the packet is not a small packet or a jumbo

packet. The packet may, therefore, be stored in a non-re-
assembly butfer (e.g., an MTU buffer) used to store packets
that are up to MTU in size (e.g., 1522 bytes). Thus, in state
1630 DMA engine 120 determines whether a valid (e.g.,
active) MI'U bufi'er exists. Illustratively, this determination
is made by examining validity indicator 1126 of MTU butfer
table 1008, which manages an active MTU bulfer. 1f the
validity indicator is set, then there is an MTU bulfer ready
to receive this packet and the procedure continues at state
1634.

Otherwise, in state 1632 a new MTU butfer is prepared or
initialized for storing non-re-assembleable packets up to
1522 bytes in size. Illustratively, this initialization process
involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buffer (e.g., a buffer identifier). If the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in the
free buffer array. The butfer’s initial address or some other
indication of the first storage location in the buffer is placed
in next addres field 112.4 of MTU buffer table 1008. Further,
the position of the butfer identifier within the free butfer
array is stored in MTU butfer index 1.122 and validity
indicator 1126 is set to a valid state.

In state 1634 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU buffer at the addres or
location specified in the next address field. As described
above, in one embodiment of the invention pad bytes may be
inserted before the header in order to align the beginning of
the packet’s layer three protocol (e.g., IP) header with a
sixteen-byte boundary. In another embodiment of the inven-
tion packets may be aligned in an MTU buifer in cells of
predefined size (e.g., two kilobytes), similar to entries in a
header buffer.

In state 1636, a completion descriptor is written or con-
figured to provide necessary information to the host com—
puter (e.g., a software driver) for processing the packet. In
particular, the MTU buffer index (e.g. the free buffer array
element that contains the butfer identifier for the MTU

bufier) and oifset (e.g., the offset of the first byte of this
packet within the MTU bufier) are placed in the descriptor
in data index and data offset fields, respectively. The size of
the packet is also stored in the descriptor, illustratively
Within a data size field. A header size field within the

descriptor is set to zero to indicate that the entire packet was

10

15

20

30

35

4s

50

55

60

65

74

placed in the MTU bulIer (e.g., no separate header portion
was stored in a header bufler). A release data flag is set in the
descriptor if the MTU bulIer is full. However, the MTU
bufier may not be tested to see if it is full until a later state
of this procedure. In such an embodiment of the invention,
the release data flag may be set (or cleared) at that time. A
release header flag is cleared (e.g., set to zero), because there
is no separate header portion being conveyed to the host
computer. ‘

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In a present embodiment of the
invention the ownership field is not set until end state 1699
below. In one alternative embodiment of the invention,
DMA engine 120 issues an interrupt or other signal to alert
the host computer that a descriptor is being released, or
communicates this event to the host computer through the
descriptor type field.

In state 1638, it is determined whether the MTU butfer is
full. In this embodiment of the invention, where each buffer
is eight kilobytes in size and entries in the MTU bulfer are
allotted two kilobytes, a counter may be used to keep track
of entries placed into each new header buffer. The bulfer
may be considered full when a predetermined number of
entries (e.g., four) are stored. In an alternative embodiment
of the invention DMA engine 120 determines how much
storage space within the buffer has yet to be used. If no space
remains, or if less than a predetermined amount of space is
still available, the butfer may be considered full.

If the MTU butfer is full, in state 1640 it is invalidated to
ensure that it is not used again. Illustratively, this involves
setting the MTU butfer table’s validity indicator to invalid
and communicating this status to the host computer. In this
embodiment of the invention, a release data flag in the
descriptor is set. The illustrated procedure then ends with
end state 1699.

If the MTU bulfer is not full, then in state 1642 the next
addres field of MTU buffer table 10% is updated to indicate
the address or location (e.g., cell boundary) at which to store
the nextpacket. The illustrated procedure then ends with end
state 1699.

In state 1650 (reached from state 1608), it has been
determined that the packet is a jumbo packet (e.g., that it is
greater than 1522 bytes in size). In this embodiment of the
invention jumbo packets are stored in jumbo butfers and, if
splitting of jumbo packets is enabled (e.g., as determined in
state 1654 below), headers of jumbo packets are stored in a
header butfer. DMA engine 120 determines whether a valid
(e.g., active) jumbo butfer exists. Illustratively, this deter-
mination is made by examining validity indicator 1136 of
jumbo butfer table 1010, which manages the active jumbo
buffer. If the validity indicator is set, then there is a jumbo
buffer ready to receive this packet and the procedure con-
tinues at state 1654. As explained above, a jumbo buffer
table may not be used in an embodiment of the invention in
which a jumbo buffer is used only once (e.g., to store just
one, or just part of one, jumbo packet).

Otherwise, in state 1652 a new jumbo bulfer is prepared
or initialized for storing a non-re—assembleable packet that is
larger than 1522 bytes. This initialization process may
involve obtaining a free ring descriptor from a cache main-
tained by free ring manager 1012 and retrieving its reference
to an empty buffer (e.g., a bulfer identifier). If the cache is

NOAC Ex. 1018 Page 901

US 6,650,640 B1
75

empty, new descriptors may be retrieved from the free
descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, its buifer identifier (e.g., pointer,
address, index) is stored in a free bulfer array (or other data
structure). The bufier’s initial address or other indication of
the first storage location in the buffer is placed in next
address field 1134 of jumbo buffer table 1010. Also, the
location of the bulfer identifier within the free bulfer array
is stored in jumbo buffer index 1132 and validity indicator
1136 is set to a valid state.

Then, in state 1654 DMA engine 120 determines whether
splitting of jumbo buffers is enabled. If enabled, the header
of a jumbo packet is stored in a header buffer while the
packet’s data is stored in one or more jumbo buflers. If not
enabled, the entire packet will be stored in one or more
jumbo buflers. Illustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator (e.g., flag, bit1 register) that may be
set by software operating on the host computer (e.g., a
device driver). 1f splitting is enabled, the illustrated proce—
dure continues at state 1670. Otherwise, the procedure
continues with state 1656.

In state 1656, DMA engine 120 determines whether the
packet will fit into one jumbo buffer. For example, in an
embodiment of the invention using eight kilobyte pages, if
the packet is larger than eight kilobytes a second jumbo
buffer will be needed to store the additional contents. If the

packet is too large, the illustrated procedure continues at
state 1662.

In state 1658, the packet is copied or transferred (e.g., via
a DMA operation) into the current jumbo bulfer, at the
location specified in the next address field 1134 of jumbo
buffer table 1010. When the packet is transferred intact like
this, padding may be added to align a header portion of the
packet with a sixteen-byte boundary. One skilled in the art
will appreciate that the next address field may not need to be
updated to account for this new packet because the jumbo
buffer will be released. In other words, in one embodiment
of the invention a jumbo buffer may be used just once (e.g.,
to store one packet or a portion of one packet).

In state 1660, a completion descriptor is written or con-
figured to release the jumbo buffer and to provide informa-
tion to the host computer for processing the packet. The
jumbo buffer index (e.g., the position within the free bufler
array of the buffer identifier for the jumbo bufler) and the
olfset of the packet within the jumbo buffer are placed in the
descriptor. Illustratively, these values are stored in data
index and data offset fields, respectively. The size of the
packet (e.g., the packet length) may be stored in a data size
field.

A header size field is cleared (e.g., a zero is stored) to
indicate that the header bulfer was not used (e.g., the header
was not stored separately from the packet’s data). Because
there is no separate packet header, header index and header
ofi'set fields are not used or are set to zero (e.g., the values
stored in their fields do not matter). A release header flag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer (e.g., because it is
being released).

Also, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. And, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and tttrning over
ownership of the descriptor. In an alternative embodiment,

10

15

20

30

35

45

50

55

60

65

«wrath-Ion M

76

the descriptor may be released by issuing an interrupt or
other alert. In yet another embodiment, changing the
descriptor type field (e.g., to a non-zero value) may signal
the release of the descriptor. In one embodiment of the
invention the ownership indicator is not set until end state
1699 below. After state 1660, the illustrated procedure
resumes at state 1668.

In state 1662, a first portion of the packet is stored in the
present (e.g., valid) jumbo buffer, at the location identified in
the bulfer‘s next address field 1134. Then, because the fill
packet will not fit into this bulfer, in state 1664 a new jumbo
buffer is prepared and the remainder of the packet is stored
in that bufler.

In state 1666, a completion descriptor is written or con—
figured. The contents are similar to those described in state
1660 but this descriptor must reflect that two jumbo buffers
were used to store the packet.

Thus, the jumbo buffer index (e.g., the index, within the
free buffer array, of the buffer identifier that identifies the
header buffer) and the oflset of the packet Within the first
jumbo buffer are placed in the descriptor, as above. The size
of the packet (e.g., the packet length) is stored in a data size
field.

A header size field is cleared (e.g., a zero is stored) to
indicate that the header bulfer was not used (e.g., the header
was not stored separately from the packet’s data). Because
there is no separate packet header, header index and header
otfset fields are not used (e.g., the values stored in their fields
do not matter).

A release header flag is cleared and a release data flag is
set to indicate that no more data will be placed in these
jumbo bulfers (e.g., because they are being released).
Further, a split packet flag ’5 set to reflect the use of a second
jumbo buffer, and the index (within the free bufler array) of
the buffer identifier for the second bufler is stored in a next
index field.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
assembleable packet into host memory. Finally, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field, or some other mechanism is
employed, to indicate that DMA engine 120 is releasing a
packet to the host computer and turning over ownership of
the descriptor. In one embodiment of the invention, the
descriptor '5 not released to the host computer until end state
1699 below.

In state 1668, the jumbo buffer entry or entries in jumbo
buffer table 1010 are invalidated (e.g., validity indicator
1136 is set to invalid) to ensure that they are not used again.
In the procedure described above a jumbo packet was stored
in, at most, two jumbo buffers. In an alternative embodiment
of the invention a jumbo buffer may be stored across any
number of buflers. The descriptor(s) configured to report the
transfer of such a packet E/are constructed accordingly, as
will be obvious to one skilled in the art.

After state 1668, the illustrated procedure ends with end
state 1699.

In state 1670 (reached from state 1654), it has been
determined that the present jumbo packet will be split to
store the packet header in a header buffer and the packet data
in one or more jumbo buffers. Therefore, DMA engine 120
(e.g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. Illustratively, this determi-
nation is made by examining validity indicator 1116 of
header buffer table 1006, which manages the active header
buffer. If the validity indicator is set1 then there '5 a header
buffer ready to receive this packet and the procedure con-
tinues at state 1674.

NOAC Ex. 1018 Page 902

1 ‘):. ., LI ..
\JL u’u- by: M: iv.

77

Otherwise, in state 1672 a new header bulfer is prepared
or initialized for storing small packets and headers of other

Packets. lllustratively, this initialization process involves
obtaining a free ring descriptor from a cache maintained by
free drug manager 1012 and retrieving its reference to an
empty buifer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the bulIer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
bufi'cr array. The butfer’s initial addre$ or some other
indication of the first storage location or cell in the bulIer is

placed in next address field 1114 of header buffer table 1006.
Also, the index of the bufier identifier within the free bulfer
array is stored in header bufier index 1112 and validity
indicator 1116 is set to a valid state.

In state 1674 the packet’s header is copied or transferred

(e.g., via a DMA operation) into the header butler at the
addreg or location specified in the next address field of
header bulfer table 1006. As described above, in one
embodiment of the invention pad bytes are inserted before
the header in order to align the beginning of the packet’s
layer three protocol (e.g., IP) header with a sixteen-byte
boundary. In addition, the packet’s header may be positioned
within a cell of predetermined size (e.g., 256 bytes) within
the butler.

In state 1676, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload) will fit into one jumbo
bulfer. If the packet is too large, the illustrated procedure
continues at state 1682.

In state 1678, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the current jumbo bulfer, at
the location specified in the next address field 1134 of jumbo
bufi‘er table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo buifer will be
released. In other words, in one embodiment of the invention
a jumbo bufier may be used just once (e.g., to store one
packet or a portion of one packet).

In state 1680, a completion descriptor is written or con-
figured to release the jumbo buifer and to provide informa-
tion to the host computer for processing the packet. The
header bulfer index (e.g. the index of the header bufier’s
buffer identifier within the free bufier array) and offset of the
packet's header within the bufier are placed in the descriptor
in header index and header olfset fields, respectively.
Illustratively, this offset may serve to identify the first byte
of the header, the first pad byte before the header or the
location of the cell in which the header is stored. The jumbo
bufier index (e.g., the position or index within the free bulIer
array of the butfer identifier that identifies the jumbo bufier)
and the oflset of the first byte of the packet’s data within the
jumbo buffer are placed in data index and data offset fields,
respectively. Header size and data size fields are used to
store the size of the packet’s header (e.g., the offset of the
payload within the packet) and data (e.g., payload size),
respectively.

Arelease header flag is set in the descriptor if the header
buffer is full. However, the header buffer may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. Arelease data flag is also set,
because no more data will be placed in the jumbo bulIer
(e.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable

- . ~ur , .Nr. . “mum. ”.m-

10

15

20

30

35

45

50

55

60

65

78

packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not changed until end state 1699 below. In an alternative
embodiment, the descriptor may be released by issuing an
interrupt or other alert. In yet another alternative
embodiment, changing the descriptor type value may signal
the release of the descriptor.

After state 1680, the illustrated procedure proceeds to
state 1688.

In state 1682, a first portion of the packet's data is stored
in the present (e.g., valid) jumbo buffer, at the location
identified in the buifer’s next address field 1134.

Because all of the packet’s data will not fit into this buifer,
in state 1684 a new jumbo bufler is prepared and the
remainder of the packet is stored in that buffer.

In state 1686, a completion descriptor is written or con-
figured. The contents are similar to those described in states
1680 but this descriptor must reflect that two jumbo bujfers
were used to store the packet. The header buifer index (e.g.
the index of the the buffer array element containing the
header bufler’s buifer identifier) and offset (e.g., the location
of this packet’s header within the header bufier) are placed
in the descriptor in header index and header ofiset fields,
respectively. The jumbo buffer index (e.g., the index, within
the free bufier array, of the bufier identifier that references
the jumbo bufier) and the ofiset of the first byte of the
packet’s data within the jumbo bulIer are placed in data
index and data ofl’set fields, respectively. Header size and
data size fields are used to store the size of the packet’s
header (e.g., as measured by the offset of the packet’s
payload from the start of the packet) and data (e .g., payload
size), respectively.

A release header flag is set in the descriptor if the header
bufler is firll. However, the header bufl’er may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. Arelease data flag is also set,
because no more data will be placed in the jumbo butler
(e.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbo bufier
was used, and the location (within the free bufier array or
other data structure) of the second butfer’s bufler identifier
is stored in a next index field

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner-
ship indicator is not changed until end state 1699 below.

In state 1688, the jumbo bufier’s entry in jumbo bulIer
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buflers. In an alternative embodiment of the invention
a jumbo packet may be stored acro$ any number of buifers.
The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1690, it is determined whether the header buifer
is full. In this embodiment of the invention, where each
bufler is eight kilobytes in size and entries in the header
bulfer are no larger than 256 bytes, a counter may be used

was“.\ t.
~9v‘u-3 Wflufllv‘fi-«twh ~ ~

NOAC Ex. 1018 Page 903

US 6,650,640 B1
79

to keep track of entries placed into each new header buffer.
The buffer may be considered full when thirty-two entries
are stored.

If the buffer is full, in state 1692 the header butfer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1699.

If the header buffer is not full, then in state 1694 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or
small packet. The illustrated procedure then ends with end
state 1699.

In end state 1699, a descriptor may be turned over to the
host computer by changing a value in the descriptor’s
descriptor type field (e.g., from one to zero), as described
above. Illustratively, the host computer (or software operat-
ing on the host computer) detects the change and under—
stands that DMA engine 120 is returning ownership of the
descriptor to the host computer.
A Method of Transferring a Packet with Operation Code 3

FIGS. 17A—17C illustrate one procedure in which DMA
engine 120 transfers a packet associated with operation code
3 to a host memory buffer. As reflected in TABLE 1,
operation code 3 may indicate that the packet is compatible
with a protocol that can be parsed by NIC 100 and that it
carries a final portion of data for its flow. No new flow is set
up, but a flow should already exist and is to be torn down.
The packet’s data is to be re-assembled with data from
previous flow packets. Because the packet is to be
re—assembled, the packet’s header should be stored in a
header buffer and its data in the flow’s re-assembly buffer.
The flow’s active re-assembly bufi'er may be identified by
the flow’5 entry in flow re-mmbly buffer table 1004.

In state 1700, DMA engine 120 (e.g., DMA manager
1002) determines whether there is a valid (e.g., active)
header butfer. Illustratively, this determination is made by
examining validity indicator 1116 of header buffer table
1006, which manages the active header butfer. If the validity
indicator is set (e.g., equal to one), then it is assumed that
there is a header bufier ready to receive this packet and the
procedure continues at state 1704.

Otherwise, in state 1702 a new header buffer is prepared
or initialized for storing small packets and headers of
re—assembled packets. This initialization process may
involve obtaining a flee ring descriptor flom a cache main-
tained by free ring manager 1012 and retrieving its buffer
identifier (e.g., a reference to an available memory buffer).
If the cache is empty, new descriptors may be retrieved from
the free descriptor ring in host memory to replenish the
cache.

Illustratively, when a new descriptor is obtained from the
cache or from the flee descriptor ring, the buffer identifier
(e.g., pointer, address, index) contained in the descriptor is
stored in a flee butfer array. The buffer’s initial address or
some other indication of the first storage location or cell in
the buffer is placed in next address field 1114 of header
buffer table 1006. Further, the index of the bulfer identifier
Within the free butfer array is stored in header bufier index
1112 and validity indicator 1116 is set to a valid state.

In state 1704 the packet’s header is copied or transferred
into the header buffer at the address or location specified in
the next address field of header buffer table 1006. As

described above, in one embodiment of the invention pad
bytes may be inserted before the header in order to align the

10

15

20

75

30

35

45

50

55

65

80

beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the header
may be positioned within a cell of predetermined size (e.g.,
256 bytes) within the header buffer.

In the illustrated embodiment, operation code 3 indicates
that an existing flow is to be torn down (e.g., the flow
re-mmbly buffer is to be invalidated and released to the
host computer). Thus, in state 1706 it is determined whether
a flow re-assembly buffer is valid (e.g., active) for this flow
by examining the validity indicator in the flow’s entry in
flow re-assembly buffer table 1004. Illustratively, if the
indicator is valid then there should be an active buffer
storing data flom one or more packets in this flow. If there
is a valid flow re-assembly buffer for this flow, the illustrated
procedure continues at state 1712. Otherwise, the procedure
proceeds to state 1708.

In state 1708, a new flow reassembly butter is prepared
to store this packet’s data. Illustratively, a flee ring descrip-
tor is obtained from a cache maintained by free ring manager
1012 and its reference to an empty buffer is retrieved. If the
cache is empty, new descriptors may be retrieved from the
free descriptor ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a flee
bufier array. The buifer’s initial address or other indication
of its first storage location is placed in next address field
1104 of the flow’s entry in flow re-agembly buifer table
1004. The flow’s entry in the re-assembly buffer table may
be recognized by its flow number. The location within the
free buffer array of the buffer identifier is stored in
re-aSembly buffer index 1102, and validity indicator 1106 is
set to a valid state.

In state 1710, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next addres field of the flow’s entry in flow
re-assembly bufier table 1004.

In state 1712, a completion descriptor is written or con—
figured to release the flow’s re-assembly buifer and to
provide information to the host comphter for processing the
packet. Inparticular, the header buffer index (e.g., the index,
within the free buffer array, of the header butfer’s identifier)
and the oflset of the packet’s header within the header buffer
are placed in the descriptor. Illustratively, this offset serves
to identify the first byte of the header, the first pad byte
preceding the header or the cell in which the header is stored.
The flow re-assembly buffer index (e.g., the index, within
the free buffer array, of the flow re-assembly buffer’s
identifier) and the ofl’set of the packet’s data within that
buffer are also stored in the descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCPpayload) and header (e.g., the otfset of the TCP payload
within the packet) portions are stored in data size and header
size fields, respectively. The descriptor type field is given a
value that indicates that a flow packet has been transferred
to host memory. A release header flag may be set if the
header bufler is full and a release data flag may be set to
indicate that no more data will be placed in this flow
re-assembly bufler (e.g., because it is being released). In
addition, a release flow flag is set to indicate that DMA
engine 120 is tearing down the packet’s flow. The header
bulfer may not be tested to see if it is full until a later state
of this procedure. In such an embodiment, the release header
flag may be set (or cleared) at that time.

Then, in state 1714, the flow re-assembly bufier is invali—
dated by modifying validity indicator 1106 in the flow’s
entry in flow re-assernbly buffer table 1004 appropriately.
After state 1714, the procedure continues at state 1730.

~»—~nv.‘

NOAC Ex. 1018 Page 904

e...
pt, i),u_)u,o‘i0 BI

81

In slate 1716, DMA engine 120 determines whether the

packet’s TCP payload (e.g., the packet’s data portion) will fit
into the valid flow re-assembly buffer. If not, the illustrated

procedure continues at state 1722.
In state 1718, the packet data is copied or transferred (e.g.,

via a DMA operation) into the fiow’s re-assembly bulfer, at
the location specified in the next address field 1104 of the
flow’s entry in flow re-assembly table 1004. One skilled in
the art will appreciate that the next address field may or may
not be updated to account for this new packet because the
reassembly buffer is being released.

In state 1720, a completion descriptor is written or con-

figured to release the flow’s re-assembly buffer and to
provide information to the host computer for procesing the
packet. The header bufler index (e.g., the location or index,
within the free buffer array, of the header bufler’s identifier)
and the ofiset of the packet’s header within the header buffer
are placed in the descriptor. The flow re-assembly buffer
index (e.g., the location or index within the free bulIer array
of the flow re-assembly buffer’s identifier) and the offset of
the packet’s data within that bulfer are also stored in the
descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCPpayload) and header (e.g., the olfset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
that indicates that a flow packet has been transferred to host
memory. A release header flag is set if the header buffer is
full and a release data flag is set to indicate that no more data
Will be placed in this flow re-assembly buffer (e.g., because
it is being released). As explained above, the header buffer
may not be tested to see if it is full until a later state of this
procedure, at which time the release header flag may be set.
Finally, a release flow flag is set to indicate that DMAengine
120 is tearing down the packet’s flow. After state 1720, the
illustrated procedure resumes at state 1728.

In state 1722, a first portion of the packet’s payload (e.g.,
data) is stored in the flow’s present (e.g., valid) re-assembly
buffer, at the location identified in the buffer’s next address
field 1104.

Because the full payload will not fit into this buffer, in
state 1724 a new flow re-assembly butferisprepared and the
remainder of the payload is stored in that buffer. In one
embodiment of the invention information concerning the
first buffer is stored in a completion descriptor. This infor-
mation may include the position within the free bulIer array
of the first buffer’s buffer identifier and the ofiset of the first

portion of data within the bulIer. The flow’s entry in flow
re-assembly buffer table 1004 may then be updated for the
second bufler (e.g., store a first address in next address field
1104 and the location of bufler’s identifier in the free buffer

array in re-assembly butler index 1102).
In state 1726, a completion descriptor is written or con-

figured. The contents are similar to those described for states
1712 and 1720 but this descriptor must reflect that two
l'e-mmbly buffers were used.

Thus, the header buffer index (e.g., the position within the
free butler array of the buffer identifier corresponding to the
header bulIer) and the oflset of the packet’s header within
the header buffer are placed in the descriptor, as above. The
first flow re-assembly buffer index (e.g., the position, within
the free buffer array, of the buffer identifier corresponding to
the first flow re-assembly buffer used to store this packet’s
Payload) and the oflset of the packet’s first portion of data
Within that buffer are also stored in the descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCP payload) and header (e.g., the ofl'set of the TCP payload

10

15

20

35

45

50

55

60

65

«a ”y..m ,uamn mm . mu. Ht“Jim's“, .n.M Maw

82

within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
that indicates that a flow packet has been transferred to host
memory. A release header flag is set if the header buffer is
full and a release data flag is set to indicate that no more data
will be placed in this flow re-assembly bufier. A release flow
flag is set to indicate that DMA engine 120 is tearing down
the packet’s flow.

Because two re-assembly buffers were used, a split packet
flag is set and the index, within the free bulIer array, of the
re-assembly bulfer’s bufler identifier is stored in a next index
field. Additionally, because the packet contains the final
portion of data for the flow, a release next data buffer flag
may also be set to indicate that the second flow re-assembly
buffer is being released.

In state 1728, the flow’s entry in flow re-assembly bufier
table 1004 is invalidated to ensure that it is not used again.

In state 1730, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
buffer is eight kilobytes in size and entries in the header
buffer are no larger than 256 bytes, a counter is used to keep
track of entries placed into each new header bulIer. The
buffer is considered full when thirty-two entries are stored.

If the bufler is full, in state 1732 the header bufler is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header bufler table’s validity indi—
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set.

If the header buffer is not full, then in state 1734 the next
address field of header bufier table 1006 is updated to
indicate the address at which to store the next header or

small packet.
The processing associated with a packet having operation

code 3 then ends with end state 1799. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). Alternatively, some other mechanism may
be used, such as issuing an interrupt or changing the
descriptor’ descriptor type field. Illustratively, the descriptor
type field would be changed to a value indicating that DMA
engine 120 transferred a flow packet into host memory.

In one alternative embodiment of the invention an opti-
mization may be performed when processing a packet with
operation code 3. This optimization takes advantage of the
knowledge that the packet contains the last portion of data
for its flow. In particular, instead of loading a descriptor into
flow re-assembly butler table 1004 the descriptor may be
used where it is—in a descriptor cache maintained by free
ring manager 1012.

For example, instead of retrieving a butler identifier from
a descriptor and storing it in an array in state 1708 above,
only to store one packet’s data in the identified butler before
releasing it, it may be more efficient to use the descriptor
without removing it from the cache. In this embodiment,
when a completion descriptor is written the values stored in
its data index and data offset fields are retrieved from a

descriptor in the descriptor cache. Similarly, when the first
portion of a code 3 packet’s data fits into the llow’s active
buffer but a new one is needed just for the remaining data,
a descriptor in the descriptor cache may again be used
without first loading it into a free buffer array and the flow
re-assembly buffer table. In this situation, the completion
descriptor’s next index field is retrieved from the descriptor
in the descriptor cache.
A Method of Transferring a Packet with Operation Code 4

FIGS. 18A—18D depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-

NOAC Ex. 1018 Page 905

us 0,65U,64u
83

tion code 4 to a host memory buffer. As reflected in TABLE
1, operation code 4 in this embodiment indicates that the
packet is compatible with the protocols that may be parsed
by MC 100 and continues a flow that is already established.
No new flow is set up, the existing flow is not to be torn
down, and the packet’s data is to be re—assembled with data
from other flow packets. Because the packet is to be
re—assembled, the packet’s header should be stored in a
header bulfer and its data in the flow’s re-aSembly buffer.

In state 1800, DMA engine 120 determines whether there
is a valid (e.g., active) header buffer. Illustratively, this
determination is made by examining validity indicator 116
of header buifer table 1006, which manages the active
header buffer. 1f the validity indicator is set, then there
should be a header bulfer ready to receive this packet and the

procedure continues at state 1804.
Otherwise, in state 1802 a new header butter is prepared

or initialized for storing small packets and headers of
re—assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty butler. 1f the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buifer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
butfer array. The bufier’s initial address or some other
indication of the first storage location in the butfer is place
in next address field 1114 of header buifer table 1006. Also,
the position or index of the buffer identifier within the free
buffer array is stored in header bulfer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1804 the packet’s header is copied or transferred
into the header butler at the address or location specified in
the next address field of header buifer table 1006. As
described above, in one embodiment of the invention pad
bytes are inserted before the header in order to align the
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the pack
et’s header may be positioned within a cell of predetermined
size (e.g., 256 bytes) within the butfer.

In the illustrated embodiment, operation code 4 indicates
that an existing flow is to be continued. Thus, in state 1806
it is determined whether a flow re-asembly butfer is valid
(e.g., active) for this flow by examining the validity indicator
in the flow’s entry in flow re-assembly butfer table 1004.
Illustratively, if the indicator is valid then there is an active
butler storing data from one or more packets in this flow. If
there is a valid flow rte-assembly buifer for this flow, the
illustrated procedure continues at state 1808. Otherwise, the
procedure proceeds to state 1810.

In state 1808, it is determined whether the packet’s data
(e.g., its TCP payload) portion is too large for the current
flow re-assembly bufler. If the data portion is too large, two
flow rte-assembly buifers will be used and the illustrated
procedure proceeds to state 1830. Otherwise, the procedure
continues at state 1820.

In state 1810, because it was found (in state 1806) that
there was no valid flow re-assembly butfer for this packet,
at new flow re-assembly butfer is prepared. Illustratively, a
free ring descriptor is obtained from a cache maintained by
free ring manager 1012 and its reference to an empty buffer
is retrieved. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,

10

15

20

30

35

45

50

55

60

65

i ” B1

84

address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or other indicator of
its first storage location is placed in next address field 1104
of the flows entry in flow re-ammbly butler table 1004.
The flow’s entry in the table may be recognized by its flow
number. The location of the buffer identifier in the free butler

array is stored in re-assembly butfer index 1102, and validity
indicator 1106 is set to a valid state.

In state 1812, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re-assembly butter table 1004.

In state 1814, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header butfer index
(e.g., the index within the free butler array of the butfer
identifier that identifies the header butler) and the ofl’lset of
the packet’s header within the header buffer are placed in the
descriptor. Illustratively, this olIset may serve to identify the
first byte of the header, the first pad byte preceding the
header or the header’s cell within the header bulfer. The flow

re-assembly butler index (e.g., the index Within the free
buifer array of the bulfer identifier that identifies the flow
re-assembly bulfer) and the otfset of the packet’s data within
that butfer are also stored in the descriptor.

The size of the packet’s data (e.g., the size of the packet’s
TCPpayload) and header (e.g., the ofl’lset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release header flag is set if the header butfer is
full but a release data flag is not set, because more data will
be placed in this flow re-assembly butler. The header butfer
may not be tested to see if it is full until a later state of this
procedure. In such an embodiment, the release header flag
may be set (or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared (e.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
processing this one. By collectively processing multiple
packets from a single flow, the packets can be processed
more efficiently and less processor time is required. If,
however, no other packets in the same flow are identified, the
release flow flag may be set (e.g., a one is stored) to indicate
that the host computer should process the flowpackets it has
received so far, without waiting for more.

In state 1816, the flows entry in flow re-assembly butler
table 1004 is updated. In particular, next address field 1104
is updated to identify the. location in the re-ammbly butler
at which the next flow packet’s data should be stored. After
state 1816, the illustrated procedure continues at state 1838.

In state 1820 (reached from state 1808), it is known that
the packet’s data, or TCP payload, will fit within the fiow’s
current re-assembly buffer. Thus, the packet data is copied or
transferred into the buifer at the location identified in next

address field 1104 of the flow’s entry in flow re-assembly
buffer table 1004.

In state 1822, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header butler index
(e.g., the index within the free butfer array of the buifer
identifier that identifies the header buffer) and the ofiset of
the packet’s header within the header buffer are placed in the

NOAC Ex. 1018 Page 906

US 6,650,640 B1

descriptor.

The size of the packet’s data (e .g., the size of the packet’s
TCP payload) and header (e.g., the otfset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release header flag is set if the header buffer is
fun but a release data flag is set only if the flow re-a$embly
bufler is now full. The header and flow re-assembly bufl'ers
may not be tested to see if they are full until a later state of
this procedure. In such an embodiment, the flags may be set(or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared. This indicates that the host computer should await
the next flow packet before processing this one. By collec-
tively processing multiple packets from a single flow, the
packets can be processed more efliciently and less processor
time is required. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 1824, the flow re-assembly bufl'er is examined to
determine if it is full. In the presently described embodiment
of the invention this test is conducted by first determining
how much data (e.g., how many bytes) has been stored in the
bufl'er. Illustratively, the flow’s next address field and the
amount of data stored from this packet are summed. Then,

the size of the buffer (e.g., eight kilobytes).
If the amount of data currently stored in the buffer equals

the size of the buffer, then it is full. In the presently described
embodiment of the invention it is desirable to completely fill
flow re-assembly buffers. Thus, a flow re-assembly buifer is
not consldered full until its storage space is completely
processing of network packets

If the flow re-assembly buffer is full, in state 1826 the
bufl‘er is invalidated to ensure it is not used again.
Illustratively, this involves setting the header buffer table’s
validity indicator to invalid and communicating this status to
the host computer. In this embodiment of the invention, a
release data flag in the descriptor is set. After state 1826, the
procedure continues at state 1838.

If the flow re-assembly bulfer is not full, then in state 1828
next address field 1.104 in the flow’s entry in flow
re-assembly butIer table 1004 is updated to indicate the
address at which to store the next portion of flow data. After
state 1828, the procedure continues at state 1838.

In state 1830 (reached from state 1808), it is known that
the packet’s data will not fit into the flow’s current
re-assembly bufl'er. Therefore, some of the data is stored in
the current butfer and the remainder in a new buffer. In
particular, in state 1830 a first portion of data (e.g., an
amount suflicient to fill the buffer) is copied or transferred
into the current flow re-assernbly buffer.

In state 1832, a new descriptor is loaded from a descriptor
cache maintained by fiee ring manager 1012. Its identifier of

..., .-. mule.
. ,..,meu~m1- fl“

10

15

20

30

35

45'

50

55

60

65

86

a new bufl'er is retrieved and the remaining data from the
packet is stored in the new buffer. In one embodiment of the
invention, after the first portion of data is stored information
from the flow’s entry in flow re-assembly table 1004 is
stored in a completion descriptor. Illustratively, this infor-
mation includes re-assembly buffer index 1102 and the offset
of the first portion of data within the full buffer. Then the
new descriptor can be loaded—its index is stored in
re-assembly buffer index 1102 and an initial address is storedin next address 1104.

The size of the packet’s data (e.g., the size of the packet’s
TCP payload) and header (e.g., the offset of the TCPpayload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is given a value
indicating that a flow packet has been transferred to host
memory. A release header flag is set if the header bufl'er is
full and a release data flag is set because the first flow
re-assembly buffer is being released. The header buifer may
not be tested to see if it is full until a later state of this
procedure. In such an embodiment, the release header flag
may be set (or cleared) at that time.

Because two re-assembly buffers were used, a split packet
flag in the descriptor is set and the index, within the free
descriptor ring, of the descriptor that references the second
lit-assembly buffer is stored in a next index field.

In one embodiment of the invention a release flow flag

packets received so far, without waiting for more.
In state 1836, next address field 1104 in the flow’s entry

in flow re-assembly buffer table 1004 is updated to indicate
the address in the new buffer at which to store the nextportion of flow data.

stored.

If the buffer is full, in state 1840 the header buffer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set.

If the header buffer is not full, then in state 1842 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header orsmall packet.

NOAC Ex. 1018 Page 907

at) (5030,04 m D

87

The processing mociated with a packet having operation
code 4 then ends with end state 1899. In this end state, the
descriptor used for this packet is turned over to the host
computer by changing its ownership indicator field (e.g.,
fiom one to zero). In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or uses other
means to alert the host computer that a descriptor is being
released.

In one alternative embodiment of the invention the opti-
mization described above for packets associated with opera-
tiofl code 3 may be performed when processing a packet
with operation code 4. This optimization is useful, for
example, when a code 4 packet’s data is too large to fit in the
current flow re-assembly buffer. Instead of loading a new
descriptor for the second portion of data, the descriptor may
be used where it is—in a descriptor cache maintained by flee
ring manager 1012. This allows DMA engine 120 to finish
transferring the packet and turn over the completion descrip—
tor before adjusting flow re-assembly buffer table 1004 to
reflect a new buffer.

In particular, instead of loading information from a new
descriptor in state 1832 above, it may be more eflicient to
use the descriptor without removing it from the cache. In this
embodiment a new buffer for storing a remainder of the

packet’s data is accessed by retrieving its buffer identifier
from a descriptor in the free ring manager’s descriptor
cache. The data is stored in the buffer and, after the packet’s
completion descriptor is configured and released, the nec-
essary information is loaded into the flow re—assembly table
as described above.

Illustratively, re-asembly buffer index 1102 stores the
butIer identifier’s index within the flee buffer array, and an
initial memory address of the butfer, taking into account the
newly stored data, is placed in next address 1104.
A Method of Transferring a Packet with Operation Code 5

FIGS. 19A—19E depict a procedure. in which DMA
engine 120 transfers a packet asociated with operation code
5 to a host memory buffer. As reflected in TABLE 1,
operation code 5 in one embodiment of the invention may
indicate that a packet is incompatible with the protocols that
may be parsed by NIC 100. It may also indicate that a packet
contains all of the data for a new flow (e.g., no more data will
be received for the packet’s flow). Therefore, for operation
code 5, no new flow is set up and there should not be any
flow to tear down. The packet’s data, if there is any, is not
to be re-assernbled.

In state 1900, it is determined whether the present packet
is a small packet (e.g., less than or equal to 256 bytes in size)
suitable for storage in a header butler. If so, the illustrated
procedure proceeds to state 1920.

Otherwise, in state 1902 it is determined whether the
present packet is a jumbo packet (e.g., greater than 1522
bytes in size), such that it should be stored in a jumbo buffer.
If so, the illustrated procedure proceeds to state 1940. If not,
the procedure continues at state 1904.

In state 1904, it has been determined that the packet is not
a small packet or ajurnbo packet. The packet may, therefore,
be stored in a non-reassembly bulfer used to store packets
that are no greater in size than MTU (Maximum Transfer
Unit) in size, which is 1522 bytes in a present embodiment.
This buffer may be called an MTU bufler. Therefore, DMA
engine 120 determines whether a valid (e.g., active) MTU
buffer exists. Illustratively, this determination is made by
examining validity indicator 1126 of MTU buffer table 1008,
which manages the active MTU butIer. If the validity
indicator is set, then there should be a MTU bufl'er ready to
receive this packet and the procedure continues at state
1908.

10

15

20

30

35

45

50

55

60

65

I?
l

88

Otherwise, in state 1906 a new MTU bufler is prepared or
initialized for storing non-re—assembleable packets up to
1522 bytes in size. Illustratively, this initialization process
involves obtaining a flee ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
buffer identifier (e.g., a reference to an empty host memory
buffer). If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained flom the cache or from
the flee descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a flee
buffer array. The buffer’s initial address or some other
indication of the first storage location in the buffer is placed
in next address field 1124 of MTU buffer table 1008. The

buffer identifier’s index or position within the flee buffer
array is stored in MTU buffer index 1122, and validity
indicator 1126 is set to a valid state.

In state 1908 the packet is copied or transferred (e.g., via
a DMA operation) into the MTU buffer at the address or
location specified in the next address field of M'IU buffer
table 1008. As described above, in one embodiment of the
invention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
protocol (e.g., IP) header with a sixteen-byte boundary. In
addition, the packet may be positioned within a cell of
predetermined size (e.g., two kilobytes) within the MTU
buffer.

In state 1910, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter for processing the packet. In particular, the MTU
butter index (e.g. the location within the flee buffer array of
the buffer identifier for the MTU buffer) and ofiset (e.g., the
offset to the packet or the packet’s cell within the bulfer) are
placed in the descriptor in data index and data offset fields,
respectively. The size of the packet is stored in a data size
field. A header size field within the descriptor may be set to
zero to indicate that the entire packet was placed in the MTU
buffer (e.g., no separate header portion was stored in a
header bufler). A release data flag is set in the descriptor if
the M'IU buffer is full. The MTU butIer may not, however,
be tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release data flag
may be set (or cleared) at that time. A release header flag
may be cleared (e.g., not set), because there is no separate
header portion being conveyed to the host computer.

Further, the descriptor type field is changed to a value
indicating that DMA engine 120 transferred a non-re-
asembleable packet into host memory. Also, a predeter-
mined value (e.g., zero) is stored in the descriptor’s own-
ership indicator field to indicate that DMA engine 120 is
releasing a packet to the host computer and turning over
ownership of the descriptor. In one embodiment of the
invention, the ownership indicator is not set until end state
1999 below. In an alternative embodiment of the invention,
the descriptor may be released by issuing an interrupt or
other alert. In yet another alternative embodiment, changing
the descriptor’s descriptor type field may signal the descrip-
tor’s release.

In state 1912, DMA engine 120 determines whether the
MTU buffer is qu. In this embodiment of the invention,
where each buffer is eight kilobytes in size, each entry in the
MTU buffer may be allotted two kilobytes of space and a
counter may be used to keep track of entries placed into an
MTU bufler. The buffer may be considered full when a
predetermined number of entries (e.g., four) are stored. In an
alternative embodiment of the invention entries in an MTU

NOAC Ex. 1018 Page 908

ob 0,650,640 BI-

89

buJIer may or may not be allocated a certain amount of

space, in which case DMA engine 120 may calculate how
much storage space within the bulfer has yet to be used. If
no space remains, or if less than a predetermined amount of
space is still available, the butfer may be considered full.

If the MTU bulfer is full, in state 1914 the bulIer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the MTU bulfer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release data
flag in the descriptor is set. The illustrated procedure then
ends with end state 1999.

If the MTU bufier is not full, then in state 1916 the next
address field ofMTU bulfer table 1008 is updated to indicate
the address at which to store the next packet. The illustrated

procedure then ends with end state 1999.
In state 1920 (reached from state 1900), it has been

determined that the present packet is a small packet suitable
for storage in a header butler. Therefore, DMA engine 120
(e,g., DMA manager 1002) determines whether there is a
valid (e.g., active) header buffer. Illustratively, this determi-
nation is made by examining validity indicator 1116 of
header butfer table 1006, which manages the active header
bulfer. If the validity indicator is set, then there is a header
butfer ready to receive this packet and the procedure con-
tinues at state 1924.

Otherwise, in state 1922 a new header buffer is prepared
or initialized for storing small packets and headers of
re-assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty bulfer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the bulfer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The bulfer’s initial address or some other
indicator of the first storage location or cell in the bulfer is
placed in next addreg field 1114 of header bulfer table 1006.
Further, the buffer identifier’s position within the free buffer
array is stored in header buffer index 1112 and validity
indicator 1116 is set to a valid state.

In state 1924 the packet is copied or transferred (e.g., via
a DMA operation) into the header bulfer at the address or
location specified in the next address field of header buffer
table 1006. As described above, in one embodiment of the
invention pad bytes may be inserted before the header in
order to align the beginning of the packet’s layer three
protocol (e.g., IP) header with a sixteen-byte boundary. In
addition, the packet may be positioned within a cell of
predetermined size (e.g., 256 bytes) within the buffer.

In state 1926, a completion descriptor is written or con-
figured to provide necessary information to the host com-
puter (e.g., a software driver) for proceging the packet. In
particular, the header buffer index (e.g. the index of the free
buffer array element that contains the header bulfer’s
identifier) and otfset are placed in the descriptor, in header
index and header ofiset fields, respectively. Illustratively,
this offset serves to identify the first byte of the packet, the
first pad byte preceding the packet or the location of the
packet’s cell within the butfer. The size of the packet is also
Stored in the descriptor, illustratively within a header size
field. Adata Size field within the descriptor may be set to
zero to indicate that the entire packet was placed in the
header buffer (e.g., no separate data portion was stored in
another buffer). A release header flag may be set in the

10

15

20

30

35

45

50

55

60

65

90

descriptor if the header bulfer is full. However, the header
buffer may not be tested to see if it is full until a later state
of this procedure. In such an embodiment of the invention,
the release header flag may be set (or cleared) at that time.
A release data flag may be cleared (e.g., not set), because
there is no separate data portion being conveyed to the host
computer.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not set until end state 1999 below.

In state 1928 it is determined whether the header buffer is

full. In this embodiment of the invention, where each butfer
is eight kilobytes in size and entries in the header buffer are
no larger than 256 bytes, a counter is used to keep track of
entries placed into each new header buffer. The bulfer is
considered full when thirty-two entries are stored.

If the bulfer is full, in state 1930 the header butfer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header bulfer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1999.

If the header buifer is not full, then in state 1932 the next
addres field of header buffer table 1006 is updated to
indicate the addre$ at which to store the next header or

small packet. The illustrated procedure then ends with end
state 1999.

In state 1940 (reached from state 1902), it has been
determined that the packet is a jumbo packet (e.g., that it is
greater than 1522 bytes in size). In this embodiment of the
invention a jumbo packet’s data portion is stored in a jumbo
buffer. Its header is also stored in the jumbo buifer unless
splitting of jumbo packets is enabled, in which case its
header is stored in a header buffer. DMA engine 120 thus
determines whether a valid (e.g., active) jumbo butfer exists.
Illustratively, this determination is made by examining
validity indicator 1136 of jumbo bulfer table 1010, which
manages an active jumbo buifer. If the validity indicator is
set, then there is a jumbo bulfer ready to receive this packet
and the procedure continues at state 1944.

Otherwise, in state 1942 a new jumbo bufler is prepared
or initialized for storing a non-re-assembleable packet that is
larger than 1522 bytes. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty buifer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
addrex, index) contained in the descriptor is stored in a free
buffer array. The bufier’s initial addre$ or other indication
of the first storage location within the bulfer is placed in next
addm$ field 1134 of jumbo buffer table 1010. The position
of the bufler identifier within the free buffer array is stored
in jumbo buffer index 1132, and validity indicator 1136 is set
to a valid state.

Then, in state 1944, DMAengine 120 determines whether
splitting of jumbo buffers is enabled. If enabled, the header
of a jumbo packet is stored in a header bulfer while the
packet’s data is stored in one or more jumbo buffers. If not

NOAC Ex. 1018 Page 909

u.

us 0,650,640 Bl
91

enabled, the entire packet will be stored in one or more
jumbo buifers. Illustratively, splitting of jumbo packets is
enabled or disabled according to the configuration of a
programmable indicator (e.g., flag, bit, register) that is set by
software operating on the host computer (e.g., a device
driver). If splitting is enabled, the illustrated procedure
continues at state 1960. Otherwise, the procedure proceeds
to state 1946.

In state 1946, DMA engine 120 determines whether the
packet will fit into one jumbo buffer. For example, in an
embodiment of the invention using eight kilobyte pages, if
the packet is larger than eight kilobytes a second jumbo
buffer will be needed to store the additional contents. If the

packet is too large, the illustrated procedure continues at
state 1952.

Otherwise, in state 1948 the packet is copied or tram-
ferred (e.g., via a DMA operation) into the current jumbo
buffer, at the location specified in the next address field 1134
of jumbo bufier table 1010. When the packet is tramferred
intact like this, padding may be added to align a header
portion of the packet with a sixteen—byte boundary. One
skilled in the art will appreciate that the next address field
may not need to be updated to account for this new packet
because the jumbo buifer will be released. In other words, in
one embodiment of the invention a jumbo bufier is only used
once (e.g., to store one packet or a portion of one packet). In
an alternative embodiment of the invention a jumbo buffer
may store portions of two or more packets, in which case
next address field 1134 may need to be updated.

In state 1950, a completion descriptor is written or con-
figured to release the jumbo bufier and to provide informa-
tion to the host computer for processing the packet. The
jumbo buffer index (e.g., the index, within the free buffer
array, of the bufler identifier that corresponds to the jumbo
buffer) and the ofi‘set of the first byte of the packet within the
jumbo buffer are placed in the descriptor, in data index and
data size fields, respectively. The size of the packet (e.g., the
packet length) is stored in a data size field.

A header size field may be cleared (e.g., a zero is stored)
to indicate that the header buffer was not used (e.g., the
header was not stored separately from the packet’s data).
Because the packet was stored intact, header index and
header offset fields may or may not be used (e.g., the values
stored in their fields do not matter). A release header flag is
cleared and a release data flag is set to indicate that no more
data will be placed in this jumbo buffer (e.g., because it is
being released).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re—assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptor’s ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention, the owner-
ship indicator is not changed until end state 1999 below.

After state 1950, the illustrated procedure resumes at state
1958. In one alternative embodiment of the invention, DMA
engine 120 issues an interrupt or uses some other means,
possibly not until end state 1999, to alert the host computer
that a descriptor is being released.

In state 1952, a first portion of the packet is stored in the
present (e.g., valid)jumbo bufler, at the location identified in
the bufier’s next address field 134. Because the whole packet
will not fit into this buffer, in state 1954 a new jumbo buffer
is prepared and the remainder of the packet is stored in that
butler.

In state 1956, a completion descriptor is written or con-
figured. The contents are similar to those described in state

10

15

20

30

35

45

50

55

60

65

92

1950 but this descriptor must reflect that two jumbo bulIers
were used to store the packet. Thus, the jumbo bufier index
(e.g., the index, within the free buffer array, of the array
element containing the header buffer’s bufler identifier) and
the offset of the first byte of the packet within the first jumbo
buffer are placed in the descriptor, as above. The Sin of the
packet (e.g., the packet length) is stored in a data size field.

A header size field may be cleared (e.g., a zero is stored)
to indicate that the header buffer was not used (e.g., the
header was not stored separately from the packet’s data).
Because there is no separate packet header, header index and
header ofiset fields may or may not be used (e.g., the values
stored in their fields do not matter).

A release header flag is cleared and a release data flag is
set to indicate that no more data will be placed in these
jumbo buffers (e.g., because they are being released).
Further, a split packet flag is set to indicate that a second
jumbo bufier was used, and the index (within the free bufler
array) of the buffer identifier for the second butfer is stored
in a next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. And, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not changed until end state 1999 below.

In state 1958, the jumbo buffer’s entry in jumbo bufler
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the
invention, a jumbo buffer may be stored across any number
of buffers. The descriptor that is configured to report the
transfer of such a packet is constructed accordingly, as will
be obvious to one skilled in the art.

After state 1958, the illustrated procedure ends at end
state 1999.

In state 1960 (reached from state 1944), it has been
determined that the present jumbo packet will be Split to
store the packet header in a header buifer and the packet data
in one or more jumbo bulIers. Therefore, DMA engine 120
(e.g., DMA manager 1002) first determines whether there is
a valid (e.g., active) header bufier. Illustratively, this deter-
mination is made by examining validity indicator 1116 of
header bufler table 1006, which manages the active header
bufier. If the validity indicator is set, then there is a header
buffer ready to receive this packet and the procedure con-
tinues at state 1964.

Otherwise, in state 1962 a new header bufier is prepared
or initialized for storing small packets and headers of other
packets. Illustratively, this initialization process involves
obtaining a free ring descriptor from a cache maintained by
free ring manager 1012 and retrieving its reference to an
empty buffer. If the cache is empty, new descriptors may be
retrieved from the free descriptor ring in host memory to
replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the bufier identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The bufler’s initial address or some other
indication of the first storage location or cell in the bufier is
placed in next address field 1114 ofheader buffer table 1006.
The index or position of the bufier identifier within the free
buffer array is stored in header bufler index 1112, and
validity indicator 1116 is set to a valid state.

an «weA: ... AK’MKIK . 4.-‘ ‘A. «14-»ka L.) we

.w-...m..m-

NOAC Ex. 1018 Page 910

US 6,650,640 B1
93

In state 1964 the packet’s header is copied or transferred
(e.g., via a DMA operation) into the header bufler at the
address or location specified in the next address field of
header buffer table 1006. As described above, in one
embodiment of the invention pad bytes may be inserted
before the header in order to align the beginning of the
packet’s layer three protocol (e.g., IP) header with a sixteen-
byte boundary. In addition, the header may be positioned
within a cell of predetermined size (e.g., 256 bytes) in the
bufier.

In state 1966, DMA engine 120 determines whether the
packet’s data (e.g., the TCP payload) will fit into one jumbo
bufler. If the packet is too large to fit into one (e.g., the
current jumbo bufler), the illustrated procedure continues at
state 1972.

In state 1968, the packet’s data is copied or transfened
(e.g., via a DMAoperation) into the current jumbo buifer, at
the location specified in the next address field 1134 ofjumbo
buffer table 1010. One skilled in the art will appreciate that
the next address field may not need to be updated to account
for this new packet because the jumbo bufler will be
released. In other words, in one embodiment of the invention
a jumbo buifer is only used once (e.g., to store one packet
or a portion of one packet).

In state 1970, a completion descriptor is written or con—
figured to release the jumbo bufler and to provide informa-
tion to the host computer for processing the packet. The
header buffer index (e.g. the free bufier array position of the
bufler identifier corresponding to the header bufier) and
offset of the packet’s header are placed in the descriptor in
header index and header otfset fields, respectively.
Illustratively, this otfset serves to identify the first byte of the
header, the first pad byte preceding the header or the cell in
which the header is stored. The jumbo bufler index (e.g., the
index within the free buffer array of the bufler identifier that
references the jumbo buifer) and the otfset of the first byte
of the packet’s data within the jumbo bufler are placed in
data index and data offset fields, respectively. Header size
and data size fields are used to store the size of the packet’s
header (e.g., the otfset of the payload within the packet) and
data (e.g., payload size), respectively.

Arelease header flag may be set in the descriptor if the
header buffer is full. However, the header bufler may not be
tested to see if it is full until a later state of this procedure.
In such an embodiment of the invention, the release header
flag may be set (or cleared) at that time. A release data flag
is also set, because no more data will be placed in the jumbo
buifer (e.g., it is being released to the host computer).

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Also, a predetermined value (e.g.,
zero) is stored in the descriptor’s ownership indicator field
to indicate that DMA engine 120 is releasing a packet to the
host computer and turning over ownership of the descriptor.
In one embodiment of the invention the ownership indicator
is not set until end state 1999 below.

After state 1970, the illustrated procedure proceeds to
state 1978.

In state 1972, a first portion of the packet’s data is stored
in the present (e.g., valid) jumbo butfer, at the location
identified in the buifer’s next address field 1134. Because all

of the packet’s data will not fit into this bufler, in state 1974
a new jumbo butTer is prepared and the remainder of the
packet is stored in that butTer.

In state 1976, a completion descriptor is written or con-
figured. The contents are similar to those described in states
1970 but this descriptor must reflect that two jumbo buifers

l‘lflhhw

5

10

15

20

30

35

45

50

55

60

65

tsunami. <
anhumwwnsmumw‘.

94

were used to store the packet. The header butfer index (e.g.
the free bufier array element that contains the header buifer’s
identifier) and ofiset of the header are placed in the descrip-
tor in header index and header otfset fields, respectively. The
jumbo bufier index (e.g., the free bufler array element
containing the jumbo bufler’s buifer identifier) and the otfset
of the first byte of the packet’s data within the jumbo buifer
are placed in data index and data offset fields, respectively.
Header size and data size fields are used to store the size of

the packet’s header (e.g., the ofiset of the payload within the
packet) and data (e.g., payload size), respectively.

Arelease header flag is set in the descriptor if the header
bufler is full. However, the header bufler may not be tested
to see if it is full until a later state of this procedure. In such
an embodiment of the invention, the release header flag may
be set (or cleared) at that time. Arelease data flag is also set,
because no more data will be placed in the jumbo buifer
(e.g., it is being released to the host computer). Further, a
split packet flag is set to indicate that a second jumbo buifer
was used, and the position or index within the free buifer
array of the second bufler’s buffer identifier is stored in a
next index field.

The descriptor type field is changed to a value indicating
that DMA engine 120 transferred a non-re-assembleable
packet into host memory. Finally, a predetermined value
(e.g., zero) is stored in the descriptors ownership indicator
field to indicate that DMA engine 120 is releasing a packet
to the host computer and turning over ownership of the
descriptor. In one embodiment of the invention the owner—
ship indicator is not set until end state 1999 below. In an
alternative embodiment of the invention DMA engine 120
issues an interrupt or uses some other signal to alert the host
computer that a descriptor is being released.

In state 1978, the jumbo bufler’s entry in jumbo buifer
table 1010 is invalidated (e.g., validity indicator 1136 is set
to invalid) to ensure that it is not used again. In the procedure
described above, a jumbo packet was stored in, at most, two
jumbo buffers. In an alternative embodiment of the invention
a jumbo bufier may be stored across any number of buifers.
The descriptor that is configured to report the transfer of
such a packet is constructed accordingly, as will be obvious
to one skilled in the art.

In state 1980, it is determined whether the header buifer
is full. In this embodiment of the invention, where each
bufler is eight kilobytes in size and entries in the header
bufler are no larger than %6 bytes, a counter may be used
to keep track of entries placed into each new header butfer.
The buffer is considered full when thirty-two entries are
stored

If the bufler is full, in state 1982 the header bufler is
invalidated to ensure that it is not used again. mustratively,
this involves setting the header butfer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention a release
header flag in the descriptor is set. The illustrated procedure
then ends with end state 1999.

If the header buifer is not full, then in state 1984 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet. The illustrated procedure then ends with end
state 1999.

In end state 1999, a descriptor may be turned over to the
host computer by storing a particular value (e.g., zero) in the
descriptor’s ownership indicator field as described above.
Illustratively, the host computer (or software operating on
the host computer) detects the change and understands that
DMA engine 120 is returning ownership of the descriptor to
the host computer.

. . «s v
.44 “ML,“ Mi .. ”fluflwwa .“ Auv .-

NOAC Ex. 1018 Page 911

US 6,650,640 B1
95

A Method of Transferring a Packet with Operation Code 6
or Operation Code 7

FIGS. 20A—20B depict an illustrative procedure in which
DMA engine 120 transfers a packet associated with opera-
tion code 6 or 7 to a host memory bulfer. As reflected in
TABLE 1, operation codes 6 and 7 may indicate that a
packet is compatible with the protocols pre~selected for MC
100 and is the first packet of a new flow. The difi'erence
between these operation codes in this embodiment of the
invention is that operation code 7 is used when an existing
flow is to be replaced (e.g., in flow database 110 and/or flow
re-assembly buffer table 1004) by the new flow. With
operation code 6, in contrast, no flow needs to be torn down.
For both codes, however, a new flow is set up and the
associated packet’s data may be re-assembled with data
from other packets in the newly established flow. Because
the packet data is to be re-assembled, the packet’s header
should be stored in a header bufier and its data in a new flow

re-assemhly buffer.
As described in a previous section, the flow that is torn

down to make room for a new flow (in the case of operation
code 7) may be the least recently used flow. Because flow
database 110 and flow re—assembly buffer table 1004 contain
only a limited number of entries in the presently described
embodiment of the invention, when they are full and a new
flow arrives an old one must be torn down. Choosing the
least recently active flow for replacement is likely to have
the least impact on network traffic through NIC 100. In one
embodiment of the invention DMA eng'ne 120 tears down
the flow in flow re-ammbly buffer table 1004 that has the
same flow number as the flow that has been replaced in flow
database 110.

In state 2000, DMA engine 120 determines whether there
is a valid (e.g., active) header bufler. Illustratively, this
determination is made by examining validity indicator 1116
of header butfer table 1006, which manages the active
header bufler. If the validity indicator is set, then there is a
header bufi'er ready to receive this packet and the procedure
continues at state 2004.

Otherwise, in state 2002 a new header buffer is prepared
or initialized for storing small packets and headers of
re—assembled packets. Illustratively, this initialization pro-
cess involves obtaining a free ring descriptor from a cache
maintained by free ring manager 1012 and retrieving its
reference to an empty butfer. If the cache is empty, new
descriptors may be retrieved from the free descriptor ring in
host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the buffer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
buffer array. The buffer’s initial address or some other
indication of the first storage location or cell in the bufier is
placed in next address field 1114 of header bufier table 1006.
The position or index of the butfer identifier within the free
bulfer array is stored in header bufier index 1112, and
validity indicator 1116 is set to a valid state.

In state 2004 the packet’s header is copied or transferred
into the header bufier at the address or location specified in
the next address field of header bufier table 1006. As

described above, in one embodiment of the invention pad
bytes may be inserted before the header in order to align the
beginning of the packet’s layer three protocol (e.g., IP)
header with a sixteen-byte boundary. In addition, the pack-
et’s header may be positioned in a cell of predetermined size
(e.g., 256 bytes) within the butfer.

As discussed above, operation code 7 indicates that an old
flow is to be torn down in flow re-assembly buffer table 1004

aw.» A n mm I‘m or"
urn: .— ..: wan-minim! mu ., t

10

15

20

30

35

45

50

55

60

65

96

to make room for a new flow. This requires the release of any
flow re-assembly bufier that may be associated with the flow
being torn down.

Thus, in state 2006 it is determined whether a flow
re-assembly bufier is valid (e.g., active) for a flow having the
flow number that was read from control queue 118 for this
packet. As explained in a previous section, for operation
code 7 the flow number represents the entry in flow database
110 (and flow re-assembly bufler table 1004) that is being
replaced with the new flow. DMAengine 120 thus examines
the validity indicator in the flow’s entry in flow re-assembly
bulfer table 1004. Illustratively, if the indicator is valid then
there is an active bulfer storing data from one or more
packets in the flow that is being replaced. If there is a valid
flow re-assembly bufier for this flow, the illustrated proce-
dure continues at state 2008. Otherwise, the procedure
proceeds to state 2010. It will be understood that the
illustrated procedure will normally proceed to state 2008 for
operation code 7 and state 2010 for operation code 6.

In state 2008, a completion descriptor is written or con-
figured to release the replaced flow’s re-assembly buffer. In
particular, the flow re-assembly butfer index (e.g., the index
within the free buffer array of the flow re-assembly bulfer’s
bulfer identifier) is written to the descriptor. In this embodi-
ment of the invention, no ofiset needs to be stored in the
descriptor’s data oflset field and the data size field is set to
zero because no new data was stored in the bulfer that is

being released. Similarly, the header buffer is not yet being
released, and therefore the header index and header ofiset
fields of the descriptor need not be used and a zero may be
stored in the header size field.

The descriptor’s release header flag is cleared (e.g., a zero
is stored in the flag) because the header bulfer is not being
released. The release data flag is set (e.g., a one is stored in
the flag), however, because no more data will be placed in
the released flow re-assembly bufier. Further, a release flow
flag in the descriptor is set to indicate that the flow associ-
ated with the released flow re-assembly bulfer is being torn
down.

The descriptor type field is changed to a value indicating
that DMA engine 120 is releasing a stale flow bufler (e.g.,
a flow re-assembly bulfer that has not been used for some
time). Finally, the descriptor used to release the replaced
fiow’s re-assembly buffer and terminate the associated flow
is turned over to the host computer by changing its owner-
ship indicator field (e.g., from one to zero). In one alternative
embodiment of the invention, DMA engine 120 issues an
interrupt or employs some other means of alerting the host
computer that a descriptor is being released.

In state 2010, a new flow re-assembly butfer is prepared
for the flow that is being set up. Illustratively, a free ring
descriptor is obtained from a cache maintained by free ring
manager 1012 and its butfer identifier (e.g., a reference to an
empty memory bufier) is retrieved. If the cache is empty,
new descriptors may be retrieved from the free descriptor
ring in host memory to replenish the cache.

When a new descriptor is obtained from the cache or from
the free descriptor ring, the butfer identifier (e.g., pointer,
address, index) contained in the descriptor is stored in a free
bufler array. The bufler’s initial address or other indication
of the first storage location in the butfer is placed in next
address field 1104 of the flow’s entry in flow re-assembly
buffer table 1004. The flow’s entry in the table may be
recognized by its flow number. The position or index of the
bulfer identifier within the free bufier array is stored in
re-assernbly buffer index 1102, and validity indicator 1106 is
set to a valid state.

, e- ..____¢.._ ‘. .u-a...1- ». .,
wanna»... is”, “J,“ L

NOAC Ex. 1018 Page 912

US 6,650,640 B1
97

In state 2012, the packet’s data is copied or transferred
(e.g., via a DMA operation) into the address or location
specified in the next address field of the flow’s entry in flow
re—assembly bulfer table 1004.

In state 2014, a completion descriptor is written or con-
figured to provide information to the host computer for
processing the packet. In particular, the header bufler index
(e.g., the location or position Within the free buffer array of
the buifer identifier that references the header buffer) and the
offset of the packet’s header within the header buffer are
placed in the descriptor. Illustratively, the olfset identifies
the first byte of the header, the first pad byte preceding the
header or the location of the header’s cell in the header
bufier.

The flow re-assembly buffer index (e.g., the location or
position, within the free bufler array, of the buffer identifier
that references the flow re-assembly bulfer) and the offset of
the packet’s data within that buffer are also stored in the
descriptor. It will be recognized, however, that the offset
reported for this packet’s data may be zero, because the
packet data is stored at the very beginning of the new flow
re-assembly bufler.

The size of the packet’s data (e.g., the size of the packet’s
TCP payload) and header (e.g., the offset of the TCP payload
within the packet) are stored in data size and header size
fields, respectively. The descriptor type field is changed to a
value indicating that DMA engine 120 transferred a flow
packet into host memory. A release header flag is set if the
header buffer is full but a release data flag is not set, because
more data will be placed in this flow re-assembly buffer. The
header buffer may not be tested to see if it is full until a later
state of this procedure. In such an embodiment, the release
header flag may be set (or cleared) at that time.

In one embodiment of the invention a release flow flag
may also be set, depending upon dynamic packet batching
module 122. For example, if the packet batching module
determines that another packet in the same flow will soon be
transferred to the host computer, the release flow flag will be
cleared (e.g., a zero will be stored). This indicates that the
host computer should await the next flow packet before
procesing this one. By collectively processing multiple
packets from a single flow, the packets can be processed
more efficiently and less processor time will be required for
network traffic. If, however, no other packets in the same
flow are identified, the release flow flag may be set to
indicate that the host computer should process the flow
packets received so far, without waiting for more.

In state 2016, the flow’s entry in flow re-assembly buffer
table 1004 is updated. In particular, next address field 1104
is updated to identify the location in the re—assembly buffer
at which the next flow packet’s data should be stored.

In state 2018, it is determined whether the header buffer
is full. In this embodiment of the invention, where each
butfer is eight kilobytes in size and entries in the header
bulfer are no larger than 256 bytes, a counter may be used
to keep track of entries placed into each new header buffer.
The butler is considered full when thirty‘two entries are
stored.

If the buffer is full, in state 2020 the header buifer is
invalidated to ensure that it is not used again. Illustratively,
this involves setting the header buffer table’s validity indi-
cator to invalid and communicating this status to the host
computer. In this embodiment of the invention, a release
header flag in the descriptor is set.

If the header bufler is not full, then in state 2022 the next
address field of header buffer table 1006 is updated to
indicate the address at which to store the next header or

small packet.

10

15

20

30

35

45

50

55

60

65

98

The processing associated with a packet having operation
codes 6 and 7 then ends with end state 2099. In this end state,
the descriptor used for this packet (e.g., the descriptor that
was configured in state 2014) is turned over to the host
computer by changing its ownership indicator field (e.g.,
from one to zero). In one alternative embodiment of the
invention, DMA engine 120 issues an interrupt or employs
other means (e.g., such as the descriptor’s descriptor type
field) to alert the host computer that a descriptor is being
released.

One Embodiment of a Packet Batching Module
FIG. 21 is a diagram of dynamic packet batching module

122 in one embodiment of the invention. In this

embodiment, packet batching module 122 alerts a host
computer to the transfer, or impending transfer, of multiple
packets from one communication flow. The related packets
may then be processed through an appropriate protocol stack
collectively, rather than procesing one at a time. As one
skilled in the art will recognize, this increases the efiiciency
with which network traffic may be handled by the host
computer.

In the illustrated embodiment, a packet is transferred from
NIC 100 to the host computer by DMA engine 120 (e.g., by
copying its payload into an appropriate bufler). When a
packet is transferred, packet batching module 122 deter-
mines whether a related packet (e.g., a packet in the same
flow) will soon be transferred as well. In particular, packet
batching module 122 examines packets that are to be trans-
ferred after the present packet. One slcilled in the art will
appreciate that the higher the rate of packet arrival at NIC
100, the more packets that are likely to await transfer to a
host computer at a given time. The more packets that await
transfer, the more packets that may be examined by the
dynamic packet batching module and the greater the benefit
it may provide. In particular, as the number of packets
awaiting transfer increases, packet batching module 122
may identify a greater number of related packets for collec-
tive processing. As the number of packets processed
together increases, the amount of host proce$or time
required to process each packet decreases.

Thus, if a related packet is found the packet batching
module alerts the host computer so that the packets may be
processed as a group. As described in a previous section, in
one embodiment of the invention dynamic packet batching
module 122 alerts the host computer to the availability of a
related packet by clearing a release flow flag in a completion
descriptor associated with a transferred packet. The flag
may, for example, be cleared by DMA engine 120 in
response to a signal or alert from dynamic packet batching
module 122.

In contrast, in an alternative embodiment of the invention
dynamic packet batching module 122 or DMA engine 120
may alert the host computer when no related packets are
found or when, for some other reason, the host processor
should not delay processing a transferred packet. In
particular, a release flow flag may be set when the host
computer is not expected to receive a packet related to a
transferred packet in the near future (e.g., thus indicating
that the associated flow is being released or torn down). For
example, it may be determined that the transferred packet is
the last packet in its flow or that a particular packet doesn’t
even belong to a flow (e.g., this may be reflected in the
packet’s associated operation code).

With reference now to FIG. 21, packet batching module
122 in one embodiment of the invention includes memory
2102 and controller 2104. Illustratively, each entry in
memory 2102, such as entry 2106, comprises two fields:

a..N..w...-mmaW‘m__~..
._

NOAC Ex. 1018 Page 913

",.

Ub 6,650,640 331
99

flow number 2108 and validity indicator 2110. In alternative
embodiments of the invention, other information may be
stored in memory 2102. Read pointer 2112 and write pointer
2114 serve as indices into memory 2102.

In the illustrated embodiment, memory 2102 is an asso-
ciative memory (e.g., a CAM) configured to store up to 256
entries. Each entry corresponds to and represents a packet
stored in packet queue 116. As described in a previous
section, packet queue 116 may also contain up to 256
packets in one embodiment of the invention. When a packet
is, or is about to be transferred, by DMA engine 120 from
packet queue 116 to the host computer, memory 2102 may
be searched for an entry having a flow number that matches
the flow number of the transferred packet. Because memory
2102 is a CAM in this embodiment, all entries in the
memory may be searched simultaneously or nearly simul-
raucously. In this embodiment, memory 2102 is imple-
mented in hardware, with the entries logically arranged as a
ring. In alternative embodiments, memory 2102 may be
virtually any type of data structure (e.g., array, table, list,
queue) implemented in hardware or software. In one par—
ticular alternative embodiment, memory 2102 is imple-
mented as a RAM, in which case the entries may be
examined in a serial manner.

The maximum of 256 entries in the illustrated embodi-
ment matches the maximum number of packets that may be
stored in a packet queue. Because the depth of memory 2102
matches the depth of the packet queue, when a packet is
stored in the packet queue its flow number may be auto-
matically stored in memory 2102. Although the same num-
ber of entries are provided for in this embodiment, in an
alternative embodiment of the invention memory 2102 may
be configured to hold a smaller or greater number of entries
than the packet queue. And, as discussed in a previous
section, for each packet stored in the packet queue, related
information may also be stored in the control queue.

In the illustrated embodiment of the invention, flow
number 2108 is the index into flow database 110 of the flow

comprising the correspondingpacket. As described above, in
one embodiment of the invention a flow includes packets
carrying data from one datagram sent from a source entity to
a destination entity. Illustratively, each related packet has the
same flow key and the same flow number. Flow number
2108 may comprise the index of the packet’s flow key in
flow database 110.

Validity indicator 2110 indicates whether the information
stored in the entry is valid or current. In this embodiment,
validity indicator 2110 may store a first value (e.g., one)
when the entry contains valid data, and a second value (e.g.,
zero) when the data is invalid. For example, validity indi-
cator 2110 in entry 2106 may be set to a valid state when the
corresponding entry in packet queue 116 contains a packet
awaiting transfer to the host computer and belongs to a flow
(e.g., which may be indicated by the packet’s operation
code). Similarly, validity indicator 2110 may be set to an
invalid state when the entry is no longer needed (e.g., when
the corresponding packet is transferred to the host
computer).

Flow validity indicator 2110 may also be set to an invalid
state when a corresponding packet’s operation code indi-
cates that the packet does not belong to a flow. It may also
be set to an invalid state when the corresponding packet is
a control packet (e.g., contains no data) or is otherwise
non-re-assembleable (e.g., because it is out of sequence,
incompatible with a pre-selected protocol, has an unex-
pected control flag set). Validity indicator 2110 may be
managed by controller 2104 during operation of the packet
batching module.

10

15

20

30

35

45

50

55

60

65

100

In the illustrated embodiment of the invention, an entry’s
flow number is received from a register in which it was
placed for temporary storage. Apacket’s flow number may
be temporarily stored in a register, or other data structure, in
order to facilitate its timely delivery to packet batching
module 122. Temporary storage of the flow number also
allows the flow database manager to turn its attention to a
later packet. A flow number may, for example, be provided
to dynamic packet batching module 122 at nearly the same
time that the associated packet is stored in packet queue 116.
Illustratively, the flow number may be stored in the register
by flow database manager 108 or by IPP module 104. In an
alternative embodiment, the flow number is received from
control queue H8 or some other module of NIC 100.

In the illustrated embodiment of the invention, memory
2102 contains an entry corresponding to each packet in
packet queue 116. When a packet in the packet queue is
transferred to a host computer (e.g., when it is written to a
re-assembly buffer), controller 2104 invalidates the memory
entry that corresponds to that packet. Memory 2102 is then
searched for another entry having the same flow number as
the transferred packet. Afterwards, when a new packet is
stored in packet queue 116, perhaps in place of the trans-
ferred packet, a new entry is stored in memory 2102.

In an alternative embodiment of the invention, memory
2102 may be configured to hold entries for only a subset of
the maximum number of packets stored in packet queue 116
(e.g., just re-assembleable packets). Entries in memory 2102
may still be populated when a packet is stored in the packet
queue. However, if memory 2102 is full when a new packet
is received, then creation of an entry for the new packet must
wait until a packet is tramferred and its entry in memory
2102 invalidated. Therefore, in this alternative embodiment
entries in memory 2102 may be created by extracting
information from entries in control queue 118 rather than
packet queue 116. Controller 2104 would therefore continu-
ally attempt to copy information from entries in control
queue 118 into memory 2102. The function of populating
memory 2102 may be performed independently or semi-
independently of the function of actually comparing the flow
numbers of memory entries to the flow number of a packet
being transferred to the host computer.

In this alternative embodiment a second read pointer may
be used to index control queue 118 to assist in the population
of memory 2102. In particular, the second read pointer may
be used by packet batching module 122 to find and fetch
entries for memory 2102. Illustratively, if the second, or
“lookahead” read pointer references the same entry as the
control queue’s write pointer, then it could be determined
that no new entries were added to control queue 118 since
the last check by controller 2104. Otherwise, as long as there
is an empty (e.g., invalid) entry in memory 2102, the
necessary information (e.g., flow number) may be copied
into memory 2102 for the packet corresponding to the entry
referenced by the lookahead read pointer. The lookahead
read pointer would then be incremented.

Returning now to FIG. 21, read pointer 2112 of dynamic
packet batching module 122 identifies the current entry in
memory 2102 (e.g., the entry corresponding to the packet at
the front of the packet queue or the next packet to be
transferred). Illustratively, this pointer is incremented each
time a packet is transferred to the host computer. Write
pointer 2114 identifies the position at which the next entry
in memory 2102 is to be stored. Illustratively, the write
pointer is incremented each time an entry is added to
memory 2102. One manner of collectively processing head-
ers from related packets is to form them into one “super—

NOAC Ex. 1018 Page 914

"Q g «50 Ran Bl

101

”header. In this method, the packets’ data portions are stored
separately (e.g., in a separate memory page or buffer) from
the super-header.

lllustratively, a super~header comprises one combined
header for each layer of the packets’ associated protocol
stack (e.g., one TCP header and one IP header). To form each
layer’s portion of a super-header, the packet’s individual
headers may be merged to make a regular-sized header
whose fields accurately reflect the assembled data and
combined headers. For example, merged header fields relat-
ing to payload or header length would indicate the size of the
aggregated data or aggregated headers, the sequence number
of a merged TCP header would be set appropriately, etc. The
super~header portion may then be processed through its
protocol stack similar to the manner in which a single
packet’s header is processed.

This method of collectively processing related packets’
headers (e.g., with “super-”headers) may require modifica—
tion of the instructions for processing packets (e.g., a device
driver). For example, because multiple headers are merged
for each layer of the protocol stack, the software may require
modification to recognize and handle the super-headers. In
one embodiment of the invention the number of headers
folded or merged into a super-header may be limited. In an
alternative embodiment of the invention the headers of all

the aggregated packets, regardless of number, may be com-
bined.

In another method of collectively processing related pack-
ets’ header portions, packet data and headers may again be
stored separately (e.g., in separate memory pages). But,
instead of combining the packets’ headers for each layer of
the appropriate protocol stack to form a super—header, they
may be submitted for individual processing in quick suc-
cession. For example, all of the packets’ layer two headers
may be prooeged in a rapid sequence—one after the other——
then all of the layer three headers, etc. In this manner, packet
procesing instructiom need not be modified, but headers
are still processed more efficiently. In particular, a set of
instructions (e.g., for each protocol layer) may be loaded
once for all related packets rather than being separately
loaded and executed for each packet.

As discussed in a previous section, data portions of related
packets may be transferred into storage areas of predeter-
mined size (e.g., memory pages) for eflicient transfer from
the host computer’s kernel space into application or user
space. Where the transferred data is of memory page size,
the data may be transferred using highly eflicient “page-
flipping," wherein a full page of data is provided to appli-
cation or user memory space.

FIGS. 22A—22B present one method of dynamic packet
batching with packet batching module 122. In the illustrated
method, memory 2102 is populated with flow numbers of
packets stored in packet queue 116. In particular, a packet's
flow number and operation code are retrieved from contml
queue 118, IPP module 104, flow database manager 108 or
other module(s) of NIC 100. The packet’s flow number is
stored in the flow number portion of an entry in memory
2102, and validity indicator 2110 is set in accordance with
the operation code. For example, if the packet is not
re-assembleable (e.g., codes 2 and 5 in TABLE 1), the
validity indicator may be set to zero; otherwise it may be set
to one.

The illustrated method may operate in parallel to the
operation of DMA engine 120. In other words, dynamic
packet batching module 122 may search for packets related
to a packet in the process of being transferred to a host
memory bufier. Alternatively, a search may be conducted

10

15

20

30

35

45

50

55

60

65

102

shortly after or before the packet is transferred. Because
memory 2102 may be associative in nature, the search
operation may be conducted quickly, thus introducing little,
if any, delay into the transfer process.

FIG. 22A may be considered a method of searching for a
related packet, while FIG. 22B may be considered a method
of populating the dynamic packet batching module’s
memory.

FIGS. 22A—22B each reflect one “cycle” of a dynamic
packet batching operation (e.g., one search and creation of
one new memory entry). Illustratively, however, the opera-
tion of packet batching module 122 runs continuously. That
is, at the end of one cycle of operation another cycle
immediately begins. In this manner, controller 2104 strives
to ensure memory 2102 is populated with entries for packets
as they are stored in packet queue n6. lf memory 2102 is
not large enough to store an entry for each packet in packet
queue 116, then controller 2104 attempts to keep the
memory as full as possible and to quickly replace an
invalidated entry with a new one.

State 2200 is a start state for a memory search cycle. In
state 2202, it is determined whether a packet (e.g., the packet
at the front of the packet queue) is being transferred to the
host computer. This determination may, for example, be
based on the operation of DMA engine 120 or the status of
a pointer in packet queue 116 or control queue 118.
Illustratively, state 2202 is initiated by DMA engine 120 as
a packet is copied into a buffer in the host computer. One
purpose of state 2202 is simply to determine whether
memory 2102 should be searched for a packet related to one
that was, will be, or is being transferred. Until a packet is
transferred, or about to be transferred, the illustrated proce-
dure continues in state 2202.

When, however, it is time for a search to be conducted
(e.g., a packet is being transferred), the method continues at
state 2204. In state 2204, the entry in memory 2102 corre—
sponding to the packet being transferred is invalidated.
Illustratively, this consists of storing a predetermined value
(e.g., zero) in validity indicator 2110 for the packet’s entry.
In a present embodiment of the invention read pointer 2112
identifies the entry corresponding to the packet to be trans-
ferred. As one skilled in the art will recognize, one reason for
invalidating a transferred packet’s entry is so that when
memory 2102 is searched for an entry associated with a
packet related to the transferred packet, the tramferred
packet’s own entry will not be identified.

In one embodiment of the invention the transferred pack-
et’s flow number is copied into a register (e.g., a hardware
register) when dynamic packet batching module 122 is to
search for a related packet. This may be particularly helpful
(e.g., to assist in comparing the flow number to flow
numbers of other packets) if memory 2102 is implemented
as a RAMinstead ofa CAM.

In state 2206, read pointer 21.12 is incremented to point to
the next entry in memory 2102. If read pointer is incre-
mented to the same entry that is referenced by write pointer
2114, and that entry is also invalid (as indicated by validity
indicator 2110), it may be determined that memory 2102 is
now empty.

Then, in state 2208, memory 2102 is searched for a packet
related to the packet being transferred (e.g., the memory is
searched for an entry having the same flow number). As
described above, entries in memory 2102 are searched
associatively in one embodiment of the invention. Thus, the
result of the search operation may be a single signal indi-
cating whether or not a match was found.

In the illustrated embodiment of the invention, only valid
entries (e.g., those having a value of one in their validity

. ’ n-m . ,.. -—.,~.-M.9v.»
N13 veal-MA 5'

NOAC Ex. 1018 Page 915

4......

103

indicators) are searched. As explained above, an entry may
be marked invalid (e.g., its validity indicator stores a value
of zero) if the associated packet is considered incompatible.
Entries for incompatible packets may be disregarded
because their data is not ordinarily reassembled and their
headers are not normally batched. In an alternative embodi-
ment of the invention, all entries may be searched but a
match is reported only if a matching entry is valid.

In state 2210, the host computer is alerted to the avail-
ability or non-availability of a related packeL In this embodi-
ment of the invention, the host computer is alerted by storing
a predetermined value in a specific field of the transferred
packet’s completion descriptor (described in a previous
section). As discussed in the previous section, when a packet
is transferred a descriptor in a descriptor ring in host
memory is populated with information concerning the
packet (e.g., an identifier of its location in host memory, its
size, an identifier of a processor to process the packet’s
headers). In particular, a release flow flag or indicator is set
to a first value (e.g., zero) if a related packet is found, and
a second value if no related packet is found. lllustratively,
DMA engine 120 issues the alert or stores the necessary
information to indicate the existence of a related packet in
response to notification from dynamic packet batching mod—
ule 122. Other methods of notifying the host computer of the
presence of a related packet are also suitable (e.g., an
indicator, flag, key), as will be appreciated by one skilled in
the art.

In FIG. 22B, state 2220 is a start state for a memory
population cycle.

In state 2222, it is determined whether a new packet has
been received at the network interface. Illustratively, a new
entry is made in the packet batching module’s memory for
each packet received from the network. The receipt of a new
packet may be signaled by IPP module 104. For example,
the receipt of a new packet may be indicated by the storage
of the packet’s flow number, by IPP module 104, in a
temporary location (e.g., a register). Until a new packet is
received, the illustrated procedure waits. When a packet is
received, the procedure continues at state 2224.

In state 2224, if memory 2102 is configured to store fewer
entries than packet queue 116 (and, possibly, control queue
118), memory 2102 is examined to determine if it is full.

In one embodiment of the invention memory 2102 may be
considered fill if the validity indicator is set (e.g., equal to
one) for each entry or for the entry referenced by write
pointer 2114. If the memory is full, the illustrated procedure
waits until the memory is not full. As one skilled in the art
will recognize, memory 2102 and other data structures in
NIC 100 may be tested for saturation (e.g., whether they are
filled) by comparing their read and write pointers.

In state 2226, a new packet is represented in memory
2102 by storing its flow number in the entry identified by
Write pointer 2114 and storing an appropriate value in the
entry’s validity indicator field. If, for example, the packet is

‘ not re-assembleable (e.g., as indicated by its operation
Code), the entry’s validity indicator may be set to an invalid

~ state. For purposes of the operation of dynamic packet
: batching module 122, a TCP control packet may or may not

, be considered re-assembleable. Thus, depending upon the
implementation of a particular embodiment the validity
Indicator for a packet that is a TCP control packet may be set

, ‘0 8 Valid or invalid state.

111 an alternative embodiment of the invention an entry in
' 1119111017 2102 is populated with information from the con-
'h'ol queue entry identified by the second read pointer
described above. This pointer may then be incremented to
“1° next entry in control queue 118.

10

15

20

30

35

45

50

55

60

65

,.,. w4-l

104

In state 2228, write pointer 2114 is incremented to the
next entry of memory 2102, after which the illustrated
method ends at end state 2230. If write pointer 2114 refer-
ences the same entry as read pointer 2112, it may be
determined that memory 2102 is fiill. One skilled in the art
will recognize that many other suitable methods of manag-
ing pointers for memory 2102 may be employed.

As mentioned above, in one embodiment of the invention
one or both of the memory search and memory population
operations rim continuously. Thus, end state 2230 may be
removed from the procedure illustrated in FIG. 2B, in
which case the procedure would return to state 2222 after
state 2228.

Advantageously, in the illustrated embodiment of the
invention the benefits provided to the host computer by
dynamic packet batching module 122 increase as the host
computer becomes increasingly busy. In particular, the
greater the load placed on a host processor, the more delay
that will be incurred until a packet received from NIC 100
may be processed. As a result, padrets may queue up in
packet queue 116 and, the more packets in the packet queue,
the more entries that can be maintained in memory 2102.

The more entries that are stored in memory 2102, the
further ahead dynamic packet batching module can look for
a related packet. The further ahead it scans, the more likely
it is that a related packet will be found. As more related
packets are found and identified to the host computer for
collective processing, the amount of proce$or time spent on
network n'atfic decreases and overall processor utilization
increases.

One skilled in the an will appreciate that other systems
and methods may be employed to identify multiple packets
from a single communication flow or connection without
exceeding the scope of the present invention.
Early Random Packet Discard in One Embodiment of the
Invention

Packets may arrive at a network interface from a network
at a rate faster than they can be n'ansferred to a host
computer. When such a situation exists, the network inter-
face must often drop, or discard, one or more packets.
Therefore, in one embodiment of the present invention a
system and method for randomly discarding a packet are
provided. Systems and methods discussed in this section
may be applicable to other communication devices as well,
such as gateways, routers, bridges, modems, etc.

As one skilled in the art will recognize, one reason that a
packet may be dropped is that a network interface is already
storing the maximum number of packets that it can store for
transfer to a host computer. In particular, a queue that holds
packets to be transferred to a host computer, such as packet
queue 116 (shown in FIG. 1A), may be fully populated when
another packet is received from a network. Either the new
packet or a packet already stored in the queue may be
dropped.

Partly because of the bursty nature of much network
trafiic, multiple packets may often be dropped when a
network interface is congested. And, in some network
interfaces, if succeSive packets are dropped one particular
network connection or flow (e.g., a connection or flow that
includes all of the dropped packets) may be penalized even
if it is not remonsible for the high rate of packet arrival. If
a network connection or flow is penalized too heavily, the
network entity generating the traffic in that connection or
flow may tear it down in the belief that a “broken pipe” has
been encountered. As one skilled in the art will recognize, a
broken pipe occurs when a network entity interprets a
communication problem as indicating that a connection has
been severed.

v» «u». no...» rmra «a» , v .
.~ ,. 9- uka” ~ «CHM

NOAC Ex. 1018 Page 916

,.aqua...”.t,..

US 6,650,640 B1
105

For certain network traffic (e.g., TCP tralfic), the dmpping
of a packet may initiate a method of flow control in which
a network entity’s window (e.g., number of packets it
transmits before waiting for an acknowledgement) shrinks
or is reset to a very low number. Thus, every time a packet
from a TCP communicant is dropped by a network interface
at a receiving entity, the communicant must re-synchronize
its connection with the receiving entity. If one or a subset of
communicants are responsible for a large percentage of
network traffic received at the entity, then it seems fair that
those communicants should be penalized in proportion to the
amount of traflic that it is responsible for.

In addition, it may be wise to prevent certain packets or
types of packets from being discarded. For example, dis-
carding a small control packet may do very little to alleviate
congestion in a network interface and yet have a drastic and
negative elfect upon a network connection or flow. Further,
if a network interface is optimized for packets adhering to a
particular protocol, it may be more eflicient to avoid drop-
ping such packets. Even funher, particular connections,
flows or applications may be prioritized, in which case
higher priority trafiic should not be dropped.

Thus, in one embodiment of a network interface accord-
ing to the present invention, a method is provided for
randomly discarding a packet when a communication
device’s packet queue is full or is filled to some threshold
level. Intelligence may be added to such a method by
selecting certain types of packets for discard (e.g., packets
from a particular flow, connection or application) or except-
ing certain types of packets from being discarded (e.g.,
control packets, packets conforming to a particular protocol
or set of protocols).

A provided method is random in that discarded packets
are selected randomly from those packets that are considered
discardable. Applying a random discard policy may be
sufficient to avoid broken pipes by distributing the impact of
dropped packets among multiple connections or flows. In
addition, if a small number of transmitting entities are
responsible for a majority of the traffic received at a network
interface, dropping packets randomly may ensure that the
offending entities are penalized proportionately. Different
embodiments of the invention that are discussed below

provide various combinations of randomness and
intelligence, and one of these attributes may be omitted in
one or more embodiments.

FIG. 24 depicts a system and method for randomly
discarding packets in a present embodiment of the invention.
In this embodiment, packet queue 2400 is a hardware FIFO
(e.g., first-in first-out) queue that is 16 103 in size. In other
embodiments of the invention the packet queue may be
smaller or larger or may comprise another type of data
structure (e.g., list, array, table, heap) implemented in hard-
ware or software.

Similar to packet queue 116 discussed in a previous
section, packet queue 2400 receives packets from a network
and holds them for transfer to a host computer. Packets
arriving from a network may arrive from the network at a
high rate and may be processed or examined by one or more
modules (e.g., header parser 106, flow database manager
108) prior to being stored in packet queue 2400. For
example, where the network is capable of transmitting one
gigabit of traflic per second, packets conforming to one set
of protocols (e.g., Ethernet, IP and TCP) may be received at
a rate of approximately 1.48 million packets per second.
After being stored in packet queue 2400, packets are trans-
ferred to a host computer at a rate partially dependent upon
events and conditions internal to the host computer. Thus,

a .1 A:___.‘__ _.:_'“. ““ “’" W" .e. ‘~ . Hg.» 4, t. .r \v in.

10

15

20

30

35

45

50

55

65

106

the network interface may not be able to control the rate of
packet transmittal to the host computer.

In the illustrated embodiment, packet queue 2400 is
divided into a plurality of zones or regions, any of which
may overlap or share a common boundary. Packet queue
2400 may be divided into any number of regions, and the
invention is not limited to the three regions depicted in FIG.
24. Illustratively, region zero (represented by the numeral
2402) encompasses the portion of packet queue 2400 from
0 103 (e.g., no packets are stored in the queue) to 8 103 (e.g.,
half full). Region one (represented by the numeral 2404)
encompasses the portion of the packet queue from 8 103 to
12 KB. Region two (represented by the numeral 2406)
encompasses the remaining portion of the packet queue,
from 12 103 to 16 103. In an alternative embodiment, regions
may only be defined for a portion of packet queue 2400. For
example, only the upper half (e.g., above 8 103) may be
divided into one or more regions.

The number and size of the different regions and the
location of boundaries between the regions may vary
according to several factors. Among the factors are the type
of packets received at the network interface (e.g., the pro—
tocols according to which the packets are configured), the
size of the packets, the rate of packet arrival (e.g., expected
rate, average rate, peak rate), the rate of packet transfer to the
host computer, the size of the packet queue, etc. For
example, in another embodiment of the invention, packet
queue 2400 is divided into five regions. A first region
extends from 0 KB to 8 KB; 3 second reg’on ranges from 8
KB to 10 KB; a third from 10 KB to 12 KB; a fourth from
12 103 to 14 KB;, and a final region extends from 14 103 to
16 103.

During operation of a network interface according to a
present embodiment, traffic indicator 2408 indicates how
full packet queue 2400 is. Traffic indicator 2408, in one
embodiment of the invention, comprises read pointer 810
and/or write pointer 812 (shown in FIG. 8). In the presently
discussed embodiment in which packet queue 2400 is frilly
partitioned, traffic indicator 2408 will generally be located in
one of the regions into which the packet queue was divided
or at a dividing boundary. Thus, during operation of a
network interface appropriate action may be taken, as
described below, depending upon how full the packet queue
is (e.g., depending upon which region is identified by traffic
indicator 2408).

In FIG. 24, counter 2410 is incremented as packets arrive
at packet queue 2400. In the illustrated embodiment, counter
2410 continuously cycles through a limited range of values,
such as zero through seven. In one embodiment of the
invention, each time a new packet is received the counter is
incremented by one. In an alternative embodiment, counter
2410 may not be incremented when certain “non-
discardable" packets are received. Various illustrative crite-
ria for identifying non—discardable packets are presented
below.

For one or more regions of packet queue 2400, an
associated programmable probability indicator indicates the
probability that a packet will be dropped when traffic indi-
cator 2408 indicates that the level of traffic in the packet
queue has reached the associated region. Therefore, in the
illustrated embodiment probability indicator 2412 indicates
the probability that a packet will be dropped while the packet
queue is less than half full (e.g., when traflic indicator 2408
is located in region zero). Similarly, probability indicators
2414 and 2416 specify the probability that a new packet will
be dropped when traflic indicator 2408 identifies regions one
and two, respectively.

. ,m____.-... A.-___..._._..__-.M..w_.m.r.-a.m:«... 1 , ,
v' ‘ " Jr-‘Wrflr-‘P lbw‘u '

NOAC Ex. 1018 Page 917

_,.;A.3.

US 6,650,640 Bl
107

In the illustrated embodiment, probability indicators
2412, 2414 and 2416 each comprise a set, or mask, of
sub-indicators such as bits or flags. Illustratively, the number
of sub-indicators in a probability indicator matches the range
of counter values—in this case, eight. In one embodiment of
the invention, each sub—indicator may have one of two
values (e.g., zero or one) indicating whether a packet is
dropped. Thus, the sub-elements of a probability indicator
may be numbered from zero to seven (illustratively, from
right to left) to correspond to the eight possrble values of
counter 2410. For each position in a probability indicator
that stores a first value (e.g., one), when the value of counter
2410 matches the number of that bit, the next discardable

packet received for packet queue 2400 will be dropped. As
discussed above, certain types of packets (e.g., control
packets) may not be dropped. Illustratively, counter 2410 is
only incremented for discardable packets.

In FIG. 24, probability indicator 2412 (e.g., 00000000)
indicates that no packets are to be dropped as long as the
packet queue is le$ than half full (e.g., as long as traflic
indicator 2408 is in region zero). Probability indicator 2414
(e.g., 00000001) indicates that every eighth packet is to be
dropped when there is at least 8 KB stored in the packet
queue. In other words, when traflic indicator 2408 is located
in region one, there is a 12.5% probability that a discardable
packet will be dropped. In particular, when counter 2410
equals zero the next discardable packet, or a packet already
stored in the packet queue, is discarded. Probability indica-
tor 2416 (e.g., 01010101) specifies that every other discard-
able packet is to be dropped. There is thus a 50% probability
that a discardable packet will be dropped when the queue is
more than three-quarters full. Illustratively, when a packet is
dropped, counter 2410 is still incremented.

As another example, in the alternative embodiment
described above in which the packet queue is divided into
five regions, suitable probability indicators may include the
following. For regions zero and one, 00000000; for region
two, 00000001; for region three, 00000101; and for region
four, 01111111. Thus, in this alternative embodiment, region
one is treated as an extension to region zero. Further, the
probability of dropping a packet has a wider range, from 0%
to 875%.

In one alternative embodiment described above, only a
portion of a packet queue is partitioned into regions. In this
alternative embodiment, a default probability or null prob-
ability (e.g., 00000000) of dropping a packet may be asso-
ciated with the un-partitioned portion. lllustratively, this
ensures that no packets are dropped before the level of trafiic
stored in the queue reaches a first threshold. Even in an
embodiment where the entire queue is partitioned, a default
or null probability may be associated with a region that
encompasses or borders a 0 KB threshold.

Just as a packet queue may be divided into any number of
regions for purposes of the present invention, probability
indicators may comprise bit masks of any size or magnitude,
and need not be of equal size or magnitude. Further, prob-
ability indicators are programmable in a present
embodiment, thus allowing them to be altered even during
the operation of a network interface.

One sln'lled in the art will recognize that discarding
packets on the basis of a probability indicator injects ran-
domne$ into the discard process. A random early discard
policy may be suficient to avoid the problem of broken
pipes discussed above. In particular, in one embodiment of
the invention, all packets are considered discardable, such
that all packets are counted by counter 2410 and all are
candidates for being dropped. As already discussed,

10

15

20

25

30

35

45

50

55

60

65

108
however, in another embodiment of the invention intelli-
gence is added in the process of excluding certain types of
packets from being discarded.

It will be understood that probability indicators and a
counter simply constitute one system for enabling the ran-
dom discard of packets in a network interface. Other mecha-
nisms are also suitable. In one alternative embodiment, a
random number generator may be employed in place of a
counter and/or probability indicators to enable a random
discard policy. For example, when a random number is
generated, such as M, the Mth packet (or every Mth packet)
after the number is generated may be dropped. Or, the
random number may specify a probability of dropping a
packet. The random number may thus be limited to (e.g.,
hashed into) a certain range of values or probabilities. As
another alternative, a random number generator may be used
in tandem with multiple regions or thresholds within a
packet queue. In this alternative embodiment a program-
mable value, represented here as N, may be associated with
a region or queue threshold. Then, when a traflic indicator
reaches that threshold or region, the Nth packet (or every
Nth packet) may be dropped until another threshold or
boundary is reached.

In yet another alternative embodiment of the invention,
the probability of dropping a packet is expm$ed as a binary
fraction. As one skilled in the art will recognize, a binary
fraction consists of a series of bits in which each bit

represents. one half of the magnitude of its more significant
neighbor. For example, a binary fraction may use four digits
in one embodiment of the invention. From left to right, the
bits may represent 05, 0.25, 0.125 and 0.0625, respectively.
Thus, a binary fraction of 1010 would be interpreted as
indicating a 62.5% probability of dropping a packet (e.g.,
50% plus 12.5%). The more positions (e.g., bits) used in a
binary fraction, the greater precision that may be attained.

In one implementation of this alternative embodiment a
separate packet counter is associated with each digit. The
counter for the leftmost bit increments at twice the rate of the
next counter, which incremean twice as fast as the next
counter, etc. In other words, when the counter for the most
significant (e.g., left) bit increments from 0 to 1 the other
counters do not change. When the most significant counter
increments again, from 1 back to 0, then the next counter
increments from 0 to 1. Likewise, the counter for the third
bit does not increment from 0 to 1 until the second counter

returns to 0. In summary, the counter for the most significant
bit changes (i.e., increments) each time a packet is received.
The counter for the next most significant bit maintains each
value (i.e., 0 or 1) for two packets before incrementing.
Similarly, the counter for the third most significant bit
maintains each counter value for four packets before incre-
menting and the counter for the least significant bit main-
tains its values for eight packets before incrementing.

Each time a packet is received or a counter is incremented
the counters are compared to the probability indicator (e.g.,
the specified binary fraction). In one embodiment the deter-
mination of whether a packet is dropped depends upon
which of the fraction’s bits are equal to one. lllustratively,
for each fraction bit equal to one a random packet is dropped
if the corresponding counter is equal to one and the counters
for any bits of higher significance are equal to zero. Thus for
the example fraction 1010, whenever the most significant
bit’s counter is equal to one a random packet is dropped, In
addition, a random packet is also dropped whenever the
counter for the third bit is equal to one and the counters for
the first two bits are equal to zero.

Aperson skilled in the art may also derive other suitable
mechanisms for specifying and enforcing a probability of

NOAC Ex. 1018 Page 918

US 6,650,640 B1
109

dropping a packet received at a network interface without
exceeding the scope of the present invention.

As already mentioned, intelligence may be imparted to a
random discard policy in order to avoid discarding certain
types of packets. In a previous section, methods of parsing
a packet received from a network were described. In
particular, in a present embodiment of the invention a packet
received from a network is parsed before it is placed into a
packet queue such as packet queue 2400. During the parsing
procedure various information concerning the packet may be
gleaned. This information may be used to inject intelligence
into a random discard policy. In particular, one or more fields
of a packet header may be copied, an originating or desti-
nation entity of the packet may be identified, a protocol may
be identified, etc.

'Ilms, in various embodiments of the invention, certain
packets or types of packets may be immune from being
discarded. In the embodiment illustrated in FIG. 24, for
example, control packets are immune. As one skilled in the
art will appreciate, control packets often contain information
essential to the establishment, re-establishment or mainte-
nance of a communication connection. Dropping a control
packet may thus have a more serious and damaging etIect
than dropping a packet that is not a control packet. In
addition, because control packets generally do not contain
data, dropping a control packet may save very little space in
the packet queue.

Many other criteria for immunizing packets are possible.
For example, when a packet is parsed according to a
procedure describcd in a previous section, a No_Assist flag
or signal may be associated with the packet to indicate
whether the packet is compatible with a set of pre~selected
communication protocols. Illustratively, if the flag is set to
a first value (e.g., one) or the signal is raised, the packet is
considered incompatible and is therefore ineligible for cer-
tain processing enhancements (e.g., re-assembly of packet
data, batch processing of packet headers, load-balancing).
Because a packet for which a Nonsist flag is set to the
first value may be a packet conforming to an unexpected
protocol or unique format, it may be better not to drop such
packets. For example, a network manager may want to
ensure receipt of all such packets in order to determine
whether a parsing procedure should be augmented with the
ability to parse additional protocols.

Another reason for immunizing a No_Assist packet (e.g.,
packets that are incompatible with a set of selected
protocols) from being discarded concerns the reaction to
dropping the packet. Because the packet’s protocols were
not identified, it may not be known how the packet’s
protocols respond to the 10$ of a packet. In particular, if the
sender of the packet does not lower its transmission rate in
response to the dropped packet (e.g., as a form of congestion
control), then there is no benefit to dropping it.

Apacket’s flow number may be used to immunize certain
packets in another alternative embodiment of the invention.
As discussed in a previous section, a network interface may
include a flow database and flow database manager to
maintain a record of multiple communication flows received
by the network interface. It may be eflicacious to prevent
packets from one or more certain flows from being dis-
carded. Immunized flows may include a flow involving a
high-priority network entity, a flow involving a particular
application, etc. For example, it may be considered rela-
tively less damaging to discard packets from an animated or
streaming graphics application in which a packet, or a few
packets, may be lost Without seriously aflecting the desti-
nation entity and the packets may not even need to be

.~\.. ..,.~v....._._..x . . n. -w.-.-..n_...,i_-. . m rub... .
)” Nahum-an W unis. v .z

10

15

20

30

35

45

50

55

60

65

110
retransmitted. In contrast, the consequences may be more
severe if a few packets are dropped from a file transfer
connection. The packets will likely need to be retransmitted,
and the transmitting entity’s window may be shrunk as a
result—thus decreasing the rate of file transfer.

In yet another alternative embodiment of the invention, a
probability indicator may comprise a bit mask in which each
bit corresponds to a separate, specific flow through the
network interface. In particular, the bits may correspond to
the flows maintained in the flow database described in a

previous section.
Although embodiments of the invention discussed thus

far in this section involve discarding packets as they arrive
at a packet queue, in an alternative embodiment packets may
be discarded from within the packet queue. In particular, as
the packet queue is filled (e.g., as a traffic indicator reaches
pre-defined regions or thresholds), packets already stored in
the queue may be discarded at random according to one or
more probability indicators. In the embodiment illustrated in
FIG. 24, for example, when traffic indicator 2408 reaches a
certain threshold, such as the boundary between regions one
and two or the end of the queue, packets may be deleted in
one or more regions according to related probability indi-
cators. Such probability indicators would likely have differ—
ent values than those indicated in FIG. 24.

In a present embodiment of the invention, probability
indicators and/or the specifications (e.g., boundaries) into
which a packet queue is partitioned are programmable and
may be adjusted by software operating on a host computer
(e.g., a device driver). Criteria for immunizing packets may
also be programmable. Methods of discarding packets in a
network interface or other communication device may thus
be altered in accordance with the embodiments described in

this section, even during continued operation of such a
device. Various other embodiments and criteria for ran-

domly discarding packets and/or applying criteria for the
intelligent discard of packets will be apparent to those
skilled in the art.

FIGS. 25A—25B comprise a flow chart demonstrating one
method of implementing a policy for randomly discarding
packets in a network interface according to the embodiment
of the invention substantially similar to the embodiment
illustrated in FIG. 24. In this embodiment, a packet is
received while packet queue 2400 is not yet full. As one
slo'lled in the will appreciate, this embodiment provides a
method of determining whether to discard the packet. Once
packet queue 2400 is full, when another packet is received
the network interface generally must drop a packet—either
the one just received or one already stored in the queue—in
which case the only decision is which packet to drop.

In FIG. 25A, state 2500 is a start state. State 2500 may
reflect the initialization of the network interface (and packet
queue 2400) or may reflect a point in the operation of the
network interface at which one or more parameters or
aspects concerning the packet queue and the random discard
policy are to be modified.

In state 2502, one or more regions are identified in packet
queue 2400, perhaps by specifying boundaries such as the 8
KB and 12 KB boundaries depicted in FIG. 24. Although the
regions depicted in FIG. 24 fully encompass packet queue
2400 when viewed in unison, regions in an alternative
embodiment of the invention may encompass less than the
entire queue.

In state 2504, one or more probability indicators are
assigned and configured. In the illustrated embodiment, one
probability indicator is associated with each region.
Alternatively, multiple regions may be associated with one

. warm» - 55* “Law

NOAC Ex. 1018 Page 919

US 6,650,640 B1
111

probability indicator. Even further, one or more regions may
not be explicitly associated with a probability indicator, in
which case a default or null probability indicator may be
assumed. As described above, a probability indicator may
take the form of a multi—bit mask, whereby the number of
bits in the mask reflect the range of possrble values main-
tained by a packet counter. In another embodiment of the
invention, a probability indicator may take the form of a
random number or a threshold value against which a ran-
domly generated number is compared when a decision must
be whether to discard a packet.

In state 2506, if certain types of packets are to be
prevented from being discarded, criteria are expressed to
identify the exempt packets. Some packets that may be
exempted are control packets, packets conforming to
unknown or certain known protocols, packets belonging to
a particular network connection or flow, etc. In one embodi-
ment of the invention, no packets are exempt from being
discarded.

In state 2508, a packet or traflic counter is initialized. As
described above, the counter may be incremented, possrbly
through a limited range of values, when a discardable packet
is received for storage in packet queue 2400. The limited
range of counter values may correspond to the number of
bits in a mask form of a probability indicator. Alternatively,
the counter may be configured to increment through a
greater range, in which case a counter value may be filtered
through a modulus or hash function prior to being compared
to a probability indicator as described below.

In state 2510, a packet is received from a network and
may be processed through one or more modules (e.g., a
header parser, an IPP module) prior to its arrival at packet
queue 2400. Thus, in state 2510 the packet is ready to be
stored in the packet queue. One or more packets may already
be stored in the packet queue and a traflic indicator (e.g., a
pointer or index) identifies the level of traflic stored in the
queue (e.g., by a storage location and/or region in the
queue).

In state 2512, it may be determined whether the received
packet is discardable. For example, if the random discard
policy that is in elfect allows for the exemption of some
packets from being discarded, in state 2512 it is determined
whether the received packet meets any of the exemption
criteria. If so, the illustrated procedure continues at state
2522. Otherwise, the procedure continues at state 2514.

In state 2514, an active region of packet queue 2400 is
identified. In particular, the region of the packet queue to
which the queue is presently populated with traffic is deter-
mined. The level of traffic stored in the queue depends upon
the number and size of packets that have been stored in the
queue to await transfer to a host computer. The slower the
transfer process, the higher the level of traflic may reach in
the queue. Although the level of traffic stored in the queue
rises and falls as packets are stored and transferred, the level
may be identified at a given time by examining the traflic
indicator. The traflic indicator may comprise a pointer
identifying the position of the last or next packet to be stored
in the queue. Such a pointer may be compared to another
pointer that identifies the next packet to be transferred to the
host computer in order to reveal how much traflic is stored
in the queue.

In state 2516, the counter value (e.g., a value between zero
and seven in the embodiment of FIG. 24) is compared to the
probability indicator a$ociated with the active region. As
previously described, the counter is incremented as discard-
able packets are received at the queue. This comparison is
conducted so as to determine whether the received packet

. 3.x.., . e.», 5 .mnqmwwv‘.

5

10

15

20

30

35

45

50

55

65

112

should be discarded.As explained above, in the embodiment
of FIG. 24 the setting of the probability indicator bit
corresponding to the counter value is examined. For
example, if the counter has a value of N, then bit number N
of the probability indicator mask is examined. If the bit is set
to a first state (e.g., one) the packet is to be discarded;
otherwise it is not to be discarded.

In state 2518, the counter is incremented to reflect the
receipt of a discardable packet, whether or not the packet is
to be discarded. In the presently discussed embodiment of
the invention, if the counter contains its maximum value
(e.g., seven) prior to being incremented, incrementing it
entails resetting it to its minimum value (e.g., zero).

In state 2520, if the packet is to be discarded the illustrated
procedure continues at state 2524. Otherwise, the procedure
continues at state 2522. In state 2522, the packet is stored in
packet queue 2400 and the illustrated procedure ends with
end state 2526. In state 2524, the packet is discarded and the
illustrated procedure ends with end state 2526.

Sun, Sun Microsystems, SPARC and Solaris are trade-
marks or registered trademarks of Sun Microsystems, Incor—
porated in the United States and other countries.

The foregoing descriptions of embodiments of the inven-
tion have been presented for purposes of illustration and
description only. They are not intended to be exhaustive or
to limit the invention to the forms disclosed. Many modi-
fications and variations will be apparent to practitioners
skilled in the art. Accordingly, the above disclosure is not
intended to limit the invention; the scope of the invention is
defined by the appended claims.

What is claimed is:

1. A method of managing a communication flow com-
prising one or more packets received by a network interface,
the method comprising:

identifying a flow index of a packet received at a network
interface, wherein said flow index identifies a commu—
nication flow comprising said packet;

searching a flow database for a flow record comprising
said flow index;

at a flow database manager, generating an operation code
representing an eligibility of said packet for one or
more predetermined processes; and

forwarding said operation code to a reassembly engine
configured to reassemble a data portion of the packet
with a data portion of another packet in the communi-
cation flow.

2. The method of claim 1, further comprising storing said
operation code.

3. The method of claim 1, further comprising receiving
packet information extracted from a header of said packet.

4. The method of claim 3, wherein said packet informa-
tion comprises a sequence number of said packet.

5. The method of claim 3, wherein said packet informa-
tion comprises an indicator configured to indicate whether
said packet includes a data portion.

6. The method of claim 3, wherein said packet informa-
tion comprises an identifier of a source of said packet and an
identifier of a destination of said packet.

7. The method of claim 1, further comprising updatingsaid flow record.

8. The method of claim 7, wherein said updating com-
prises incrementing a flow activity indicator in said flowrecord.

9. The method of claim 8, wherein said updating further
comprises modifying a flow sequence number in said flow
record.

10. The method of claim 1, further comprising adding a
flow record to said flow database comprising said flow index

NOAC Ex. 1018 Page 920

pry

..‘a2‘:

\JD u,UJu,u~iu‘ iii
113

if a flow record comprising said flow index is not found in
said flow database.

11. The method of claim 1, further comprising replacing
said flow record.

12. The method of claim 1, wherein said identifying
comprises receiving said flow index from a network inter—
face module configured to examine a header portion of said
packet.

13. The method of claim 1, wherein said generating
comprises:

determining whether said packet is suitable for a function
that said network interface is configured to perform;
and

assigning an operation code for said packet to indicate
whether said function is to be performed.

14. The method of claim 13, wherein said generating
further comprises determining whether said packet includes
a data portion.

15. The method of claim 14, wherein said generating
further comprises determining whether said data portion
exceeds a pre-determined size.

16. The method of claim 13, wherein said generating
further comprises determining whether said packet was
received out of order.

17. The method of claim 13, wherein said generating
further comprises determining whether said flow database is
full.

18. The method of claim 1, further comprising:

determining whether said flow database is full;
for each flow record in said flow database, examining a

flow activity indicator configured to indicate a recency
of traffic in an associated communication flow;

selecting an aged flow record having a flow activity
indicator indicating least recent traflic among said
associated communication flows; and

replacing said aged flow record with a new flow record
comprising said flow index.

19. A method of manag'ng a communication flow com-
prising a collection of data directed from a source entity to
a destination entity, the method comprising:

receiving a first packet at a network interface, said first
packet comprising a first portion of a collection of data;

identifying a first flow key, said first flow key comprising
an identifier of a source of said first packet and an
identifier of a destination of said first packet;

setting up a first communication flow for said collection
of data, wherein said first communication flow is iden-
tifiable by said first flow key; and

assigning an operation code to said first packet, said
operation code indicating whether said first portion of
data is reassembleable with another portion of data in
said collection of data;

wherein said first communication flow is configured to be
terminated after said collection of data is received at
said network interface.

20. The method of claim 19, further comprising:

receiving a second packet at said network interface, said
second packet comprising a second portion of said
collection of data;

determining whether said second portion of said collec-
tion of data comprises a final portion of said collection
of data; and

terminating said first communication flow if said second
portion comprises said final portion.

10

15

20

30

35

45

50

55

60

65

114
21. The method of claim 20, wherein said setting up

comprises:
storing said first flow key in a database; and
indicating that said first communication flow is valid.
22. The method of claim 21, wherein said indicating

comprises configuring a validity indicator in said database.
23. The method of claim 22, wherein said terminating

comprises modifying said validity indicator to indicate that
said first communication flow is invalid.

24. The method of claim 21, wherein said terminating
comprises removing said first flow key from said database.

25. The method of claim 19, further comprising:

receiving a second packet at said network interface; and
associating an operation code with said second packet to

indicate whether said first communication flow is to be
terminated.

26. The method of claim 25, wherein said associating
comprises:

receiving information extracted from a header portion of
said second packet; and

examining said information to determine whether said
first communication flow is to be terminated.

27. The method of claim 26, wherein said associating
further comprises examining said information to determine
whether a second communication flow is to be established

and whether a data portion of said second packet is to be
re-assembled with a data portion of another packet.

28. A method of managing a network flow received at a
network interface, comprising:

parsing a packet received at a network interface;
assembling a flow identifier configured to identify a

network flow comprising said packet;
searching a flow database on said network interface for

said flow identifier;

updating a flow sequence number in a flow database
record comprising said flow identifier;

setting a flow activity indicator in said flow database
record to reflect receipt of said packet; and

setting a flow validity indicator in said flow database to
indicate said network flow is valid.

29.Amethod of processing a packet received at a network
interface, comprising:

receiving a packet at a network interface, wherein said
packet was sent from a source entity to a destination
entity;

parsing said packet to identify a flow between said source
entity and said destination entity that comprises said
packet;

receiving a status indicator extracted from said packet;
searching a flow database for said flow;
generating an operation code based on said status

indicator, wherein said operation code is configured to:
indicate whether said packet is a control packet; and
indicate whether a header portion of said packet con-

forms to one of a set of pre-selected communication
protocols; and

updating said flow database by:
updating a flow activity indicator associated with said

flow to reflect receipt of said packet; and
updating a flow validity indicator associated with said

flow to indicate said flow is valid.

30. The method of claim 29, wherein said generating
comprises determining whether said status indicator has a
predetermined value.

NOAC Ex. 1018 Page 921

. t.
n...

1, .3 U,dJU,U‘iIJ B1
115

31. The method of claim 29, wherein said generating
comprises determining whether said packet includes a data
portion.

32. The method of claim 29, wherein said generating
comprises determining whether a data portion of said packet
exceeds a predetermined size.

33. The method of claim 29, wherein said generating
comprises determining whether a sequence number of said
packet correlates with a sequence number associated with
said flow in said flow database.

34. The method of claim 29, wherein said generating
comprises determining whether said packet comprises a
request to reset a flow.

35. The method of claim 29, further comprising deter-
mining whether said flow database is full.

36. The method of claim 29, wherein said parsing com-
prises assembling a flow key configured to identify a com-
munication flow between said source entity and said desti-
nation entity.

37. The method of claim 36, wherein said searching
comprises searching a flow database for said flow key.

38. A network interface for receiving a communication
flow from a network, comprising:

a parser for examining a header portion of a first packet
received from a network, said first packet comprising a
first portion of data transmitted fiom a source entity to
a destination entity;

a data structure comprising:
a flow key for identifying said communication flow,

wherein said flow key comprises identifiers of said
source entity and said destination entity;

an activity indicator for indicating a recency with
which a packet in said communication flow has been
received; and

a validity indicator for indicating whether said com—
munication flow is valid;

a data manager for managing said data structure; and
a generator configured to generate an operation code for

every packet in said communication flow, to facilitate
forwarding of said data toward the destination entity
fi'om the network interface;

wherein said data manager establishes said communica-
tion flow and stores said flow key in said data structure
upon receipt of said first portion of data, and terminates
said communication flow upon receipt of a final portion
of said data.

39. A network interface, comprising:
a database configured to facilitate management of a

network flow, said network flow comprising one or
more packets sent from a source entity to a destination
entity, said database comprising:
a flow key configured to identify said network flow;

and

a validity indicator configured to indicate whether said
network flow is valid;

a database manager configured to manage said database;
and

an operation code generator configured to generate an
operation code for every packet within said network
flow, wherein said operation code is configured to
specify an operation to be performed with said packet;

wherein said database manager receives said flow key and
updates said database when said packet is received.

10

15

20

30

35

45

50

55

60

65

116

40. The network interface ofclaim 39, further comprising:
a control memory;
wherein said database manager further stores said opera-

tion code in said control memory when said packet isreceived.

41. The network interface of claim 39, wherein said
database manager comprises said operation code generator.

42. A computer readable storage medium storing instruc—
tions that, when executed by a computer, cause the computer
to perform a method of managing a network flow database
storing information relating to a network flow received by a
network interface, the method comprising:

identifying a flow index of a packet received at a network
interface, wherein said flow index identifies a commu-
nication flow comprising said packet;

searching a flow database for a flow record comprising
said flow index;

at a flow database manager, generating an operation code
representing an eligibility of said packet for one or
more predetermined processes; and

forwarding said operation code to a reassembly engine
configured to reassemble a data portion of the packet
with a data portion of another packet in the communi-
cation flow.

43. The network interface of claim 39, wherein said
database further comprises an activity indicator for indicat-
ing a recency with which a packet in said network flow has
been received.

44. The method of claim 1, wherein said one or more
predetermined processes include reassembly of a data por-
tion of the packet with a data portion of another packet in thecommunication flow.

45. The method of claim 1, wherein said one or more
predetermined proceses include batch processing of head-
ers of multiple packets in the communication flow, including
the packet.

46. The method of claim 1, wherein said one or more
predetermined processes include distributing packets of dif-
ferent communication flows to different host computer pro-cessors.

47. The method of claim 1, further comprising forwarding
said operation code to a packet batching module configured
to facilitate batch procesing of headers of multiple packets
in the communication flow.

48. A computer readable storage medium storing instruc—
tions that, when executed by a computer, cause the computer
to perform a method of managing a communication flow
comprising a collection of data directed from a source entity
to a destination entity, the method comprising:

receiving a first packet at a network interface, said first
packet comprising a first portion of a collection of data;

identifying a first flow key, said first flow key comprising
an identifier of a source of said first packet and an
identifier of a destination of said first packet;

setting up a first communication flow for said collection
of data, wherein said first communication flow is iden-
tifiable by said first [low key; and

assigning an operation code to said first packet, said
operation code indicating whether said first portion of
data is reassembleable with another portion of data in
said collection of data;

wherein said first communication flow is configured to be
terminated after said collection of data is received at
said network interface.

49. A computer readable storage medium storing instruc-
tions that, when executed by a computer, cause the computer

NOAC Ex. 1018 Page 922

us 0,650,640 Bl
117

to perform a method of proce$ing a packet received at a
network interface, the method comprising:

receiving a packet at a network interface, wherein said
packet was sent from a source entity to a destination
entity;

parsing said packet to identify a flow between said source
entity and said destination entity that comprises said
packet;

receiving a status indicator extracted from said packet;
searching a flow database for said flow;

generating an operation code based on said status
indicator, wherein said operation code is configured to:
indicate whether said packet is a control packet; and
indicate whether a header portion of said packet con-

forms to one of a set of pre-selected communication
protocols; and

updating said flow database by:
updating a flow activity indicator associated with said

flow to reflect receipt of said packet; and
updating a flow validity indicator associated with said

flow to indicate said flow is valid.

50. The method of claim 28, wherein said flow sequence
number comprises a sequence number of said packet.

51. The method of claim 28, wherein said flow activity
indicator is configured to indicate how recently said network
flow was active.

52. The method of claim 28, wherein said setting a flow
activity indicator comprises incrementing said flow activity
indicator.

53. The method of claim 28, further comprising:

generating an operation code configured to identify a
status of said packet.

10

15

20

30

118
54. The method of claim 53. wherein said operation code

is configured to indicate whether said packet includes a data
portion.

55. The method of claim 53, wherein said operation code
is configured to indicate whether said packet includes a data
portion larger than a pre-determined size.

56. The method of claim 53, wherein said operation code
is configured to indicate whether said packet was received
out of order.

57. The method of claim 53 wherein said operation code
is configured to indicate whether said packet is reas-
sembleable with another packet in said network flow.

58. The method of claim 53, said operation code is
configured to indicate whether said network flow is to be
terminated.

59. Acomputer readable storage medium storing instruc-
tions that, when executed by a computer, cause the computer
to perform a method of managing a network flow received
at a network interface, the method comprising:

parsing a packet received at a network interface;
assembling a flow identifier configured to identify a

network flow comprising said packet;
searching a flow database on said network interface for

said flow identifier;

updating a flow sequence number in a flow database
record comprising said flow identifier;

setting a flow activity indicator in said flow database
record to reflect receipt of said packet; and

setting a flow validity indicator in said flow database to
indicate said network flow is valid.

* I. t i i

. A» . . ».. A.» A _~ “own”;~ «MM-{fit r

t4

NOAC Ex. 1018 Page 923

1 1, 13. “Illlllllllllllllllll "III III" lillllllllllllllll Illllllllllllllllllllll'; ’ ' USOO6665725B1

(12) United States Patent , (10) Patent No.: US 6,665,725 B1

Dietz et al. (1 1.. L, 5. ‘5. ’ “l (45) Date of Patent: Dec. 16, 2003

(54) PROCESSING PROTOCOL SPECIFIC 5,414,704 A 5/1995 Spinney 370/150
INFORMATION IN PACKETS SPECIFIED BY
A PROTOCOL DESCRlPTION LANGUAGE

(75) Inventors: Russell S. Dietz, San Jose, CA (US);
Andrew A. Koppenhaver, Littleton,
CO (US); James F. Torgerson,
Andover, MN (US)

(73) Assignee: Hl/fn, Inc., Los Gatos, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 537 days.

(21) Appl. No.: 09/609,179

(22) Filed: Jun. 30, 2000

Related U.S. Application Data
(60) Provisional application No. 60/141,903, filed on Jun. 30,1999.

(51) Int. Cl.7 .. GMF 13/00
(52) U.S. Cl. 709/230; 709/246; 709/228;

370/389

(58) Field of Search 709/203, 206,
709/216, 217, 222, 246, 225, 228, 230,

232; 703/26; 370/489, 13, 17

(56) References Cited
U.S. PATENT DOCUMENTS

4,736,320 A 4/1988 Bristol 364/300
4,891,639 A 1/1990 Nakamura .. 340/8255

5,101,402 A 3/1992 Chui et al. .. 370/17
5,247,517 A 9/1993 Ros et al. . 370/855
5,247,693 A 9/1993 Bristol 709/203
5,315,580 A 5/1994 Phaal 370/13
5,339,268 A 3/1994 Machida 365/49
5,351,243 A 9/1994 Kalkunte et al. 370/92
5,365,514 A 11/1994 Hershey et a1. 370/17
5,375,070 A 12/1994 Hershey et a1. . .. 364/550
5,394,394 A 2/1995 Crowther et al. 370/60
5,414,650 A 5/1995 Hekhnis 364/715.02

(List continued on next page.)
OTHER PUBLICATIONS

“Technical Note: the Narus System,” Downloaded Apr. 29,
1999 from www.maruscom, Narus Corporation, Redwood
City California.

Primary Examiner—Hosain T. Alain
Assistant Examiner—Khanh Quang Dinh
(74) Attorney, Agent, or Firm—Dov Rosenfeld; Inventek

(57) ABSTRACT

A method of performing protocol wecific operations on a
packet passing through a connection point on a computer
network. The packet contents conform to protocols of a
layered model wherein the protocol at a at a particular layer
level may include one or a set of child protocols defined for
that level. The method includes receiving the packet and
receiving a set of protocol descriptions for protocols may be
used in the packet. A protocol description for a particular
protocol at a particular layer level includes any child pro-
tocols of the particular protocol, and for any child protocol,
where in the packet information related to the particular
child protocol may be found. A protocol description also
includes any protocol specific operations to be performed on
the packet for the particular protocol at the particular layer
level. The method includes performing the protocol specific
operations on the packet specified by the set of protocol
descriptions based on the base protocol of the packet and the
children of the protocols used in the packet. A particular
embodiment includes providing the protocol descriptions in
a high-level protocol description language, and compiling to
the descriptions into a data structure. The compiling may
further include compressing the data structure into a com—
pressed data structure. The protocol qiecific operations may
include parsing and extraction operations to extract identi-
fying information. The protocol specific operations may also
include state processing operations defined for a particular
State of a conversational flow of the packet.

17 Claims, 20 Drawing Sheets

HOST
' ROOESSO '

11
L1

NOAC Ex. 1018 Page 924

US 6,665,725 B1

U.S. PATENT DOCUMENTS

5,430,709 A
5,432,776 A
5,493,689 A
5,500,855 A
5,511,215 A
5,568,471 A
5,574,875 A
5,586,266 A
5,606,668 A
5,608,662 A
5,634,009 A
5,651,002 A
5,680585 A
5,684,954 A
5,703,877 A
5,721,827 A
5,732,213 A
5,740,355 A
5,761,424 A
5,764,638 A
5,781,735 A
5,784,298 A

u

u

7/1995
7/1995
2/1996
3/1996
4/1996

10/1996
11/1996
12/1996

2/1997
3/1997
5/1997
7/1997

10/1997
11/1997
12/1997
2/1998
3/1998
4/1998
6/1998
6/1998
7/1998
7/1998

Page 2

5,787,253 A 7/1998
5,805,808 A 9/1998

galloway 3718/1; 5,812,529 A 9/1998a‘1’“ ---------- ' 5 819 028 A 10 19
Waclawsky et al. 709/206 ’ ’ I 985,825,774 A 10/1998
Hershey el al. .. 370/17 5,826,017 A 10/1998Terasaka et al. 709/246

5,835,726 A 11/1998
Hershey et a]. .. 370/17 5,838,919 A 11/1998Stansfield et al. 395/403

5,841,895 A 11/1998Hershey eta]. .. 709/216 5,850,386 A 12/1998Shwed 709/216
lax 5,850,388 A 12/1998ge e2 a1. 364/72401 5,862,335 A 1/1999Iddon et a]. 709/206

5,878,420 A 3/1999Van Seters et a]. 370/392
5,893,155 A 4/1999

Bmell 703/26 5903 754 A 5 1999Kaiserswerflr a al. 709/203 3 4 /5,917,821 A 6/1999Nuber et a1. 370/395
10 6,014,380 A 1/2000gan et al. 709/217 6,272,151 B1 ' 8/2001Gesse! et a]. .. 709/216

6,430,409 B1 ' 8/2002Watanabc at al 395/183.21
6,516,337 B1 ' 2/2003

Adams el 81. 709f232 6 19 68 B1 . 2,2003Ketchum 3701401 5 5
Southard 709/238 .
Hershey er al. 364/557 ‘ cued by examiner

McCreery et al. 709/227
Hansani et al. 709/203
Czamik et a]. 370/245
Manghirmalani et 81. 709/203
Ready et a}. .. 370/401
Holzmann 709/206
Shwed et al. . 709/228
Schwaller et al. 709/208
Hutfman 382/155
Anderson et a]. .. 370/241
Anderson er al. .. 370/52
Welch, Jr. et a]. .. 709f232
de la Salle . .. 707/10
Cheriton 711/144
Pearson 709/238
Gobuyan et al. 370/392
Hendel et a]. .. 370/392
Gupta et al. .. 370/489
Rogmarm .. 455/4221
Tripp et al. .. 709/202
Harvey et al.

NOAC Ex. 1018 Page 925

US. Patent Dec. 16,2003 Sheet 1 0f 20 US 6,665,725 B1

100 _ 108
CUENT4-\ ANALYZER

107
116

-— SERVER .
CUENTS

fl W10
106 121

 DATA COMMUNICATIONS

NETWORK

102

125

123
— 118

SERVER A — 105 _

—\ CLIENT 2 CLIENT 1

112 104

FIG. 1

NOAC Ex. 1018 Page 926

I§

3
i
i
i

Illlll;

mama'S'n

€00Z‘9I'33(I‘

OZ10ZRails

19su‘s99‘9sn

NOAC EX. 1018 Page 926

NOAC Ex. 1018 Page 927

: m

,r..2..M{521.31w‘..u.3::{iLuhfinhuh‘A‘~AEd.14:.

1B

E_7.,_a5_mmni<z<

%_.zoEmmmo,92mmmooEmogozfi6_Eb:9.56meS_3555
U

_

_Oz
_

mmNEEO$5455oz<m_”a20:03.52.55.28.m_memmmooma
mbfim

3_zopfigzfim_onEamfio

h__.S__-.__ww<m<k<o.300mmzo_.Eo_..__Fzmo__zo_5<m§m823_2262!mbfim.m__92m_:39“...500.65_”mmE.zmmté_2_FEE:__%r--,__m_
D

850mmE<$

2Q

t950dno

Emoomm2265.Ex.39":20558;mmw<mE<o26d:5220E_o:<wmm>zooMflfifiwfizEEEt£950.._940.23o.=3mFo<mhxmMN_ZOOOmm_nowSo__oz<mN>._<z<_«8Ian._-IIIIIIIIIfl/I:I.”SammmmE_Son lllllllllllllil|||l
U

NOAC Ex. 1018 Page 928

US. Patent Dec. 16, 2003 Sheet 4 of 20 US 6,665,725 B1

. 401

402 E
HIGH LEVEL

PACKET
DECODING

u ESCRIPTION ~

404 405

‘

GER‘EEQIE PACKET
PARSE AND COMPILE STATE

3 EXTRACT I~ESCRIPTION
OPERATIONS

403

407 i
STATE 3

PROCESSOR ?EXTRACTION INSTRUCTION

DATABASE 408 409 DATABASE I

LOAD LOAD STATE v;
PARSING NSTRUCTIO

SUBSYSTEM DATABA E
MEMORY MEMORSY

400

V A A. ~.Am»."l"““JauAcVn-"ahm'vlfilv‘"; 1a., I:‘L’]‘)w>” ,

NOAC Ex. 1018 Page 929

US. Patent Dec. 16, 2003 Sheet 5 of 20 US 6,665,725 B1

502

503 LOADPACKET
COMPONENT

OREINPACK 9'

 PACKET

KEY

504

FETCHNODEANI
PROCESSFROM

PAllRN

513

MORE NEXT
PATTERN PACKET

NODES? COMPONE 511

--- 'Von A‘s

PROCESSTO
COMPONENT

510

500

v
‘

PATTERN
NODE

509

NOAC Ex. 1018 Page 930

US. Patent Dec. 16, 2003 Sheet 6 of 20 US 6,665,725 B1

. 601

PACKET 602 ;COMPONENTAND ;PATTERN NODE ;
3

LOAD PACKET

COMPONENT 610
604

MORE PACKE LOAD KEY
COMPONENT BUFFER

YES

FETCH EXTRACTION 6‘ ND PROCESS FRO
PATI'ERNS 605

NO 611

606 NEXT , 5
N o PACKET 609 .2;

COMPONEN 5
YES

607 APPLY EXTRACTION
PROCESS TO

COMPONENT \
600 f‘

608 ,

60

NOAC Ex. 1018 Page 931

US. Patent Dec. 16, 2003 Sheet 7 of 20 US 6,665,725 B1

. 701

EY BUFFER AND 702

PATTERN NODE

LOAD PATTERN

703 NODE ELEMENT 708

OUTPUT TO704
ANALYZER

MORE PATTER
NODES?

YES 9|
HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE

PACK KEY & HAS

706 \

NEXT PACKET

COMPONENT

707

FIG. 7

709

700

NOAC Ex. 1018 Page 932

US. Patent Dec. 16, 2003 Sheet 8 0f 20 US 6,665,725 B1

. 801

UFKB ENTRY FOR
PACKET 802

800\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/
BUCKET FROM CACHE 804

806

“0 SET UFKB FOR
PACKET AS 'NEW'

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXTBUCKET No @ 808
YES

ORE BUCKET
805 IN THE BIN?

YES

809 MARK RECORD BIN AND 310
BUCKET 'lN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
3“ AS 'FOUND'

812 UPDATE STATISTICS FOR
RECORD IN CACHE

813m. FIG. 8

“Na-I I . — r «at n W” “I
. uh. :3. 7* WI ,RP U‘Wwwu :4 4' N'N‘fi: .m

NOAC Ex. 1018 Page 933

US. Patent Dec. 16,2003 Sheet 9 of 20 US 6,665,725 B1

901 902 910

RPC
BIND LOOKU '

REQUEST ‘ NNOUNCME
'ORTMAPP '

' ORTMAPP '

909

EXTRACT PROGRAM EXTRACT PORT

GET 'PROGRAM', GEI' 'PROGRAM',
'VERSION‘, ‘PORT'AND 'VERSION' AND
'PROTOCOL (TCP OR 'PROTOCOL (TOF OR

UDP) UDP)‘

SAVE REQUEST

SAVE 'PROGRAM',
'VERSION' AND

CREATE SERVER STAT

 SAVE 'PROGRAM',

904 'VERSION'. 'PORT' AND ‘PROTOCOL crop OR
'PROTOCOL (rcp DR UDP)‘ WITH

UDP)‘ WITH NErWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY BOTH MAKE A KEY.
ON SERVER ADDRESS

AND TCP OR UDP PORT.

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

LOOKUP REQUE ‘

FIND 'PROGRAM'
AND 'VERSION‘

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

GET 'PORT' AND

'PROTOCOL (TCP
OR UDP)’.

,_ 449,,““what....... . v: I .m .n—u I E I . m
Sign-'3'} w';vv~n(wn‘

NOAC Ex. 1018 Page 934

US. Patent Dec. 16, 2003 Sheet 10 0f 20 US 6,665,725 B1

 PATTERN 100 EXTRACTION
RECOGNITION OPERATIONS

DATABASE DATABASE

MEMORY 1001 MEMORY

100 1031

100 1004

INFO OUT

HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL

1031

‘00 PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE SLI ER
(PRE) (C)

100

_ PARSER
A PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOA

MEMORY

1012

1021

Pé‘fiI‘IETT INPUT BUFFER ANALYZER DATA REA-Y
INTERFACE INTERFACE
CONTROL CONTROL

‘ .

PACKET READY

102

1023 FIG. 10 1027

m an». . M
r: *‘mgzmmww‘a .

NOAC Ex. 1018 Page 935

USJhmm Dmmmm $mnmm [mammfiBl

1101 1103

ANALYZE ' HOST

. .£¥En
.' .. FACE

(Hm)

PAHSER
INTER- ..=UFFER
FACE

PROCESSR

1H9 H23

'i

1l
1

11

NOAC Ex. 1018 Page 936

US. Patent Dec. 16, 2003 Sheet 12 of 20 US 6,665,725 B1

1201

UFKB ENTRY FOR

PACKET WITH
STATUS 'NEW'

1 202

1200
N ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
BUCKET FROM CACHE

REQUEST NEXT NO
BUCKET FROM <-lN/BUCKET EMPTY 1205

YES

NO INSERT KEY AND HASH
: N BUCKET, MARK ‘USED

1208 WITH TIMESTAMP

1 207

ES OMPARE CEURRREEelC'IJ' BI 12091210 AND BU K T RD

SET UFKB FOR
PACKET AS KEY TO PACKET

IDROP'

MARK RECORD BIN AND
BUCKET 'IN PROCESS'

AND 'NEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

. 1213

FIG. 12

1211

NOAC Ex. 1018 Page 937

US. Patent Dec. 16, 2003 Sheet 13 of 20 US 6,665,725 B1

1300 N UFKB ENTRY FOR
PACKET WITH STATUS

k A"0: 0 ‘0' 1302

I

SET STATE PROCESSOR -
INSTRUCTION POINTER TO 1303 I

ALUE FOUND IN UFKB ENTRY
FETCH INSTRUCTION FROM 1304

STATE PROCESSOR
INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

,3,“:1W“W..."

IIPROCESSOR II I:
INSTRUCTION DONE PROCESSING 1307 I IPOINTER TO STATES FOR THIS I IVALUE FOUND IN PACKET? I '

CURRENT STATE I I T;
II ’1308 YES J1310 g fSAVE STATE ; gPROCESSOR I 1‘

INSTRUCTION NO IONE PROCESSING 1309 * IPOINTER IN TATES FOR THIS FLO ‘
CURRENT FLOW f RECORD

I‘YES '

 SET AND SAVE FLOW REMOVA
STATE PROCESSOR

INSTRUCTION IN CURRENT
FLOW RECORD

I
$1313 1

FIG. 13

1311 I '3

NOAC Ex. 1018 Page 938

Ewkm>wm3wmmN>._<z<

 m_w>._<z<m._.<._.m

oz

>un~., * 7;.3' a . a‘ ~ ‘ MIAMI! ~,I r’t 1.. 5‘ v 4071'

US 6,665,725 B1

ZOF<N3<ZEz._.<0_u=mm<40

 0N:

m>>O._n_".0

m._.<._.m\20:.<_2I0n_z_ mmobmdm:.mmziog4$5..I596%?“wHEmmi_xm_.3S_.5.mzopémao_MW980$.295$me.azgozxoz<_m_.>>o._"___wmmakonEm_mmEEnSzmmtE_6,_1.._a_D_
_

mw<mfi<o.605a82.ZEMEE_OZCEFZmQmNEOOOmm5<m§moz<mN>._<z.

US. Patent

NOAC Ex. 1018 Page 939

m);.GE

US 6,665,725 B1

me

aom<o0m_
0

\Ill5A.mmofl

oddmotzoz

mE05:.0333.
m,50:

1

m.mo_>moD82.38“95500.
Eon

mmm<m§<omodQ82m.mN>._<z<Emmi
n...vmm

SU

Pm?

.A
a‘

if...kw

NOAC Ex. 1018 Page 940

US. Patent Dec. 16, 2003 Sheet 16 of 20 US 6,665,725 B1

NOAC Ex. 1018 Page 941

U.S. Patent Dec. 16, 2003

Sheet 17 0f 20 US 6,665,725 B1

1702

"04 '95=8"8388’offset = x *
‘ CHAOSNET = 0x080412:013' mm A§g=gxgggg: x *

VLOOP = OXOBAE
VECHO = OXOBAF

NETBIOS-BCOM = Ox3C00 -
0x3COD#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003'
DEC—LAT = 0x6004

1712

 = 0x8137*
SNMP = Ox814C#

IPv6 = 0x86DD*
LOOPBACK = 0X9000

Apple = 0x080007
*‘ L3 Decoding
L5 Decoding

mm“. $5.. 7mm!plaifitlfi'fldfl'gwrhiflllllll
 L3 to . - :3’0”": ICMP = 15,5354 mam—mammm .GMP =2

Src Address

GGP = 3- 1] TOP = 6 *
,ggr; :g'IIIIIIflZfiWMZfiiJ’WIJ/[II/[Illlfl CHKSE 3 12°;
#3: ; 3;;

“"5" '80353E33#
.so_.p ;80W Heme
OSPF

* L4 D d'-.l (1) FI G _ 1 7B # L3 Rifggggding
-et = L3 + (IHU4)

iél

fl
g
i

NOAC Ex. 1018 Page 942

US 6,665,725 B1

m.9\\UmABm009mm.._ow81EcoES1m,FkF
D

PROTOCOL

US. Patent

»823$)?“1.31!Fr...

NOAC Ex. 1018 Page 943

US. Patent Dec. 16,2003 Sheet 19 of 20 US 6,665,725 Bl

1901

COMMON.PDL 1903

VIRTUALPDL 1907
m 1913

192 . FIG.19

NOAC Ex. 1018 Page 944

US. Patent Dec. 16, 2003 Sheet 20 of 20 US 6,665,725 B1

. 2001

READ IN PDL SOURCE 2003

MODULES

PARSE MODULES FOR
SYNTAX 2005

FIRST PASS, CREATE
ALL PARSE ELEMENTS 2007

2009 I'ND PASS, BUILD FLO
SIGNATURE ELEMENT

THIRD PASS, CREATE 2011
PAYLOAD ELEMENTS

FORTH PASS, BUILD 2013
TATES FOR EACH LIN I

READ IN LAYERING 2015
SOURCE MODULES

WALK LAYERING LINKS 2017
FOR EACH PDL

OUTPUT CPL

2019 INTERMEDIATE FILE

2021». FIG. 20

NOAC Ex. 1018 Page 945

US 6,665,725 B1
1

PROCESSING PROTOCOL SPECIFIC
INFORMATION IN PACKETS SPECIFIED BY

A PROTOCOL DESCRIPTION LANGUAGE

CROSS—REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Serial No.: 60/141,903 for METHOD
AND APPARATUS FOR MONITORING TRAFFIC IN A

NETWORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

U.S. patent application Ser. No. 09/608,237 for
METHOD AND APPARATUS FOR MONITORING

TRAFFIC IN A NETWORK, to inventors Dietz, et aI.,
filed Jun. 30, 2000, and incorporated herein by refer-ence.

A U.S. patent application Ser. No. 09/608,126 forRE—USING INFORMATION FROM DATA TRANS-
ACTIONS FOR MAINTAINING STATISTICS IN

NETWORK MONITORING, to inventors Dietz, et al.,
filed Jun. 30, 2000, and incorporated herein by refer-ence.

U.S. patent application Ser. No. 09/608,266 for ASSO-
CIAT‘IVE CACHE STRUCTURE FOR LOOKUPS
AND UPDATES 0F FLOW RECORDS IN A NET-

WORK MONITOR, to inventors Sarkissian, et al., filed
Jun. 30, 2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/608,267 for STATE
PROCESSOR FOR PATTERN MATCHING IN A
NETWORK MONITOR DEVICE, to inventors
Sarlcissian, et al., filed Jun. 30, 2000, and incorporated
herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, spe-
cifically to the real-time elucidation of packets communi-
cated within a data network, including classification accord—
ing to protocol and application program.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Ofiice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other interconnected
networks. In particular, there is a need for a real-time
network monitor that can provide details as to the applica-
tion programs being used. Such a monitor should enable
non-intrusive, remote detection, characterization, analysis,
and capture of all information passing through any point on
the network (i.e., of all packets and packet streams paging
through any location in the network). Not only should all the
packets be detected and analyzed, but for each of these

10

15

35

45

50

55

65

2

packets the network monitor should determine the protocol
(e.g., http, ftp, H.323, VPN, etc.), the application/use within
the protocol (e.g., voice, video, data, real-time data, etc.),
and an end user’s pattern of use within each application or
the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also,
the network monitor should not be reliant upon server
resident information such as log files. Rather, it should allow
a user such as a network administrator or an Internet service

provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and
to receive timely notification of network problems.

The recognizing and classifying in such a network moni-
tor should be at all protocol layer levels in conversational
flows that pass in either direction at a point in a network.
Furthermore, the monitor should provide for properly ana~
lyzing each of the packets exchanged between a client and
a server, maintaining information relevant to the current
state of each of these conversational flows.

Related and incorporated by reference US. patent appli—
cation Ser. No. 09/608,237 for METHOD AND APPARA—
TUS FOR MONITORING TRAFFIC IN ANETWORK, to
inventors Dietz, et a1, describes a network monitor that
includes carrying out protocol specific operations on indi-
vidual packets including extracting information from header
fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for
recognizing future packets as belonging to a previously
encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the
protocols used. For each protocol recognized, a slicer
extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also
preferably generates a hash for rapidly identifying a flow
that may have this signature from a database of known
flows.

The flow signature of the packet, the hash and at least
some of the payload are passed to an analyzer subsystem. In
a hardware embodiment, the analyzer subsystem includes a
unified flow key bufier (UFKB) for receiving parts of
packets from the parser subsystem and for storing signatures
in process, a lockup/update engine (LUE) to 100ka a
database of flow records for previously encountered eon—
versational flows to determine whether a signature is from
an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for
inserting new flows into the database of flows, a memory for
storing the database of flows, and a cache for speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFKB, and to the
cache.

Each flow-entry includes one or more statistical measures,
e.g., the packet count related to the flow, the time of arrival
of a packet, the time diflerential.

In the preferred hardware embodiment, each of the LUE,
state procemr, and FIDE operate independently from the
other two engines. The state processor performs one or more
operations Specific to the state of the flow.

A network analyzer should be able to analyze many
ditferent protocols. At a base level, there are a number of
standards used in digital telecommunications, including
Ethernet, HDLC, ISDN, Lap B, KIM, X25, Frame Relay,
Digital Data Service, FDDI (Fiber Distributed Data
Interface), T1, and others. Many of these standards employ
different packet and/or frame formats. For example, data is

NOAC Ex. 1018 Page 946

US 6,665,725 B1
3

transmitted in ATM and frame—relay systems in the form of
fixed length packets (called “cells”) that are 53 octets (i.e.,
bytes) long. Several such cells may be needed to make up the
information that might be included in the packet employed
by some other protocol for the same payload information—
for example in a conversational flow that uses the frame-
relay standard or the Ethernet protocol.

In order for a network monitor to be able to analyze
ditferent packet or frame formats, the monitor needs to be
able to perform protocol specific operations on each packet
with each packet carrying information conforming to dif-
ferent protocols and related to different applications. For
example, the monitor needs to be able to parse packets of
different formats into fields to understand the data encapsu-
lated in the different fields. As the number of possible packet
formats or types increases, the amount of logic required to
parse these different packet formats also increases.

Prior art network monitors exist that parse individual
packets and look for information at different fields to use for
building a signature for identifying packets. Chiu, et al.,
describe a method for collecting information at the session
level in a computer network in US. Pat. No. 5,101,402,
titled “APPARATUS AND METHOD FOR REAL-TIME
MONITORING OF NETWORK SESSIONS AND A

LOCALAREANETWORK.” In this patent, there are fixed
locations specified for particular types of packets. For
example, if a DECnet packet appears, the Chin system looks
at six specific fields (at 6 locations) in the packet in order to
identify the session of the packet. If, on the other hand, an
IP packet appears, a different set of six locations are exam-
ined. The system looks only at the lowest levels up to the
protocol layer. There are fixed locations for each of the fields
that specified the next level, With the proliferation of
protocols, clearly the specifying of all the posible places to
look to determine the session becomes more and more

difficult. Likewise, adding a new protocol or application is
difficult.

It is desirable to be able to adaptively determine the
locations and the information extracted from any packet for
the particular type of packet. In this way, an optimal signa-
ture may be defined using a protoml-dependent and packet-
content—dependent definition of what to look for and where
to look for it in order to form a signature.

There thus is also a need for a network monitor that can

be tailored or adapted for different protocols and for diiferent
application programs. There thus is also a need for a network
monitor that can accommodate new protocols and for new
application programs. There also is a need for means for
specifying new protocols and new levels, including new
applications. There also is a need for a mechanism to
describe protocol specific operations, including, for
example, what information is relevant to packets and pack-
ets that need to be decoded, and to include specifying
parsing operations and extraction operations. There also is a
need for a mechanism to describe state operations to perform
on packets that are at a particular state of recognition of a
flow in order to further recognize the flow.

SUMMARY

One embodiment of the invention is a method of per-
f0rming protocol specific operations on a packet passing
through a connection point on a computer network. The
PaCket contents conform to protocols of a layered model
wherein the protocol at a particular layer level may include
One or a set of child protocols defined for that level. The

~ lIJcthod includes receiving the packet and receiving a set of

10

15

20

30

35

45

SD

55

60

65

4

protocol descriptions for protocols may be used in the
packet. Aprotocol description for a particular protocol at a
particular layer level includes any child protocols of the
particular protocol, and for any child protocol, where in the
packet information related to the particular child protocol
may be found. A protocol description also includes any
protocol specific operations to be performed on the packet
for the particular protocol at the particular layer level. The
method includes performing the protocol specific operations
on the packet specified by the set of protocol descriptions
based on the base protocol of the packet and the children of
the protocols used in the packet. A partiurlar embodiment
includes providing the protocol descriptions in a high—level
protocol description language, and compiling t0 the descrip-
tions into a data structure. The compiling may further
include compressing the data structure into a compressed
data structure. The protocol specific operations may include
parsing and extraction operations to extract identifying
information. The protocol specific operations may also
include state processing operations defined for a particular
state of a conversational flow of the packet.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
specific embodiment because such embodiments are pro-
vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures.

FIG. 1 is a functional block diagram of a network embodi-
ment of the present invention in which a monitor is con-
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of some of
the packets and their formats that might be exchanged in
starting, as an illustrative example, a conversational flow
between a client and server on a network being monitored
and analyzed. A pair of flow signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents some of the possible flow signa—
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular server
applications that produce the discrete application packet
exchanges.

FIG. 3 is a functional block diagram of a process embodi—
ment of the present invention that can operate as the packet
monitor shown in FIG. 1. This process may be implemented
in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi—
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing procem used as
part of the parser in an embodiment of the inventive packet
monitor.

FIG. 6 is a flowchart of a packet element extraction
process that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

NOAC Ex. 1018 Page 947

US 6,665,725 B1

5

FIG. 10 is a hmctional block diagram of a hardware parser
subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzer including a state processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a state processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor.

FIG. 14 is a simple functional block diagram of a process
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and some of the elements that may be
extracted to form a signature according to one aspect of the
invention.

FIG. 17Ais an example of the header of an Ethertype type
of Ethernet packet of FIG. 16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a signature
according to one aspect of the invention.

FIG. 18Ais a three dimensional structure that can be used

to store elements of the pattern, parse and extraction data-
base used by the parser subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
subsystem in accordance to another embodiment of the
invention.

FIG. 19 shows various PDL file modules to be compiled
together by the compiling process illustrated in FIG. 20 as
an example, in accordance with a compiling aspect of the
invention.

FIG. 20 is a flowchart of the process of compiling
high—level language files according to an aspect of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include signal names. In most cases,
the names are sufliciently descriptive, in other cases how-
ever the signal names are not needed to understand the
operation and practice of the invention.

Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102
that communicates packets (e.g., IP datagrams) between
Various computers, for example between the clients 104—107
and servers 110 and 112. The network is shown schemati-

cally as a cloud with several network nodes and links shown

10

15

20

30

35

45

50

SS

60

65

Nun-M”f." v‘vlnrmv
.Jaafi'mwh

6
in the interior of the cloud. A monitor 108 examines the

packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with
each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, such as connection point 123
between the network 102 and the interface 118 of the client

104, or some other location, as indicated schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity—for example an appli-
cation program run by the client 104 (CLIENT 1) commu-
nicating with another running on the server 110 (SERVER
2}—will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par-
ticular application programs. The packets may need to be
parsed then analyzed in the context of various protocols, for
example, the transport through the application session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in table from below,
serves as a basic reference for understanding the function—
ality of existing communication protocols.

ISO MODEL

layer I-‘tmctionaliry Example

7 Application Telnet, NFS, Novell NCP, HTTP,H.323
6 Presentation XDR
5 Session RPC, NBTBIOS, SNMP, etc.
4 Transport TCP, Novel SPX, UDP, etc.
3 Network IF, Novell IPX, VIP, Apple'lhlk, etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
1 Physical ELhemet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

Diferent communications protocols employ different lev-
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to
protocols employed at other layers. For example, an appli-
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2—3).

In some communication arts, the term “frame” generally
refers to encapsulated data at 081 layer 2, including a
destination address, control bits for flow control, the data or

payload, and CRC (cyclic redundancy check) data for error
checking. The term “packet” generally refers to encapsu-
lated data at 081 layer 3. In the TCP/IP world, the term

a
i

NOAC Ex. 1018 Page 948

US 6,665,725 B1
7

“datagram” is also used. In this specification, the term
“packet” is intended to encompass packets, datagrams,
frames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields
and headers for transmission across a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format," are generally synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
server to send a type-A packet, but so will another. If,
though, the particular application program always follows a
type—Apacket with the sending of a type-B packet, and the
other application program does not, then in order to recog—
nize packets of that application’s conversational flow, the
monitor can be available to recognize packets that match the
type—B packet to amociate with the type-Apacket. If such is
recognized after a type-A packet, then the particular appli—
cation program’s conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying
other packet exchanges that are parts of conversational flows
associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real-world uses of the monitor 108, the number of
packets on the network 102 passing by the monitor 108’s
connection point can exceed a million per second.
Consequently, the monitor has very little time available to
analyze and type each packet and identify and maintain the
state of the flows passing through the connection point. The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its clasification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
amciated application programs according to the packets
that their executions produce, is a multi—step process within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efiiciently any
packets that belong to the same flow. In some cases, that
packet type may be sufficiently unique to enable the monitor
to identify the application that generated such a packet in the
conversational flow. The signature can then be used to
efiiciently identify all future packets generated in traffic
related to that application.

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are
necessary to identify the associated application program. In

’ l“.m'
.1"..5.. w

10

15

30

35

45

50

55

60

65

8

such a case, a subsequent packet of a second type—but that
potentially belongs to the same conversational flow—is
recognized by using the signature. At such a second level,
then, only a few of those application programs will have
conversational flows that can produce such a second packet
type. At this level in the process of classification, all appli—
cation programs that are not in the set of those that lead to
such a sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the lmown patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the second level signature. For each packet, therefore,
the monitor parses the packet and generates a signature to
determine if this signature identified a previously encoun-
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the sequence of
previously encountered packets (the state), and of the pos-
sible future sequences such a past sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated signature may
then be used to efficiently recognize future packets mei-
ated with the same conversational flow. Such an arrange-
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through some point
in the network 102 (for example, because of execution of the
applications by the client 105 or server 110), the monitor
sends a message to some general purpose processor on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being exchanged over the network. In other
words, once the monitor 108 has acmmplished recognition
of the application program, eavesdropping can commence.

The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple-
mented with computer hardware and/or software. The sys-
tem 300 is similar to monitor 108 in FIG. 1. Apacket 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi-
level model, including what server application produced the
packet.

The packet acquisition device is a common interface that
converts the physical signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what Operations need to occur on
packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of

I".
”in ‘ 0. races«msvy mt

NOAC Ex. 1018 Page 949

US 6,665,725 B1

9

selected portions—of packets to generate an identifying
signature—accomplished by parser subsystem 301, and (3)
the analysis of the packets—accomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide
protocol specific information to parser subsystem 301 and to
analyzer subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.

A flow is a stream of packets being exchanged between
any two addresses in the network. For each protocol there
are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
such as checksums, and those parts are not used for identi-
fication.

Parser subsystem 301 examines the packets using pattern
recognition process 304 that parses the packet and deter-
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser subsystem 301 extracts characteristic
portions (signature information) fi’om the packet 302. Both
the pattern information for parsing and the related extraction
operations, e.g., extraction masks, are supplied from a
parsing~pattern-structures and extraction—operations data-
base (parsing/extractions database) 308 filled by the com-
piler and optimizer 310.

The protocol description language (PDL) files 336
describes both patterns and states of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor-
mation to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top ofwhat protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates
two sets of internal data structures. The first is the set of

parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be
recognized in the headers of packets; the extraction opera-
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 of parsing/extraction operations includes infor-
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. These are
the different states and state transitions that occur in different

conversational flows, and the state operations that need to be
performed (e.g., patterns that need to be examined and new
signatures that need to be built) during any state of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro-
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in some embodiments the
layering selections information is inherent rather than
explicitly described. For example, since a PDL file for a

9'33 was: “1"

10

15

20

30

35

45

50

55

65

1,, L. or bum-«w-

10

protocol includes the child protocols, the parent protocols
also may be determined.

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet buffer. The pattern
recognition process 304 is carried out by a pattern analysis
and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DlGlTAL—lntel—Xerox (DIX) packet. The PAR
also uses the pattern structures and extraction operations
database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (EH) engine that
extracts selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
sequence and then processed in block 312 to build a unique
flow signature (also called a “key”) for this flow. A flow
signature depends on the protocols used in the packet. For
some protocols, the extracted components may include
source and destination addresses. For example, Ethernet
frames have end—point addresses that are useful in building
a better flow signature. Thus, the signature typically includes
the client and server address pairs. The signature is used to
recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the signature using a hash
function. The purpose if using such a hash is conventional——
to spread flow~entries identified by the signature across a
database for eflicient searching. The hash generated is
preferably based on a hashing algorithm and such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet—a parser record—that includes the signature (i.e.,
selected portions of the packet), the hash, and the packet
itself to allow for any state processing that requires further
data from the packet. An improved embodiment of the parser
subsystem might generate a parser record that has some
predefined structure and that includes the signature, the
hash, some flags related to some of the fields in the parser
record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further
processing, e.g,, for state processing.

Note that alternate embodiments may use some function
other than concatenation of the selected portions of the
packet to make the identifying signature. For example, some
“digest function” of the concatenated selected portions may
be used.

The parser record is passed onto lookup process 314
which looks in an internal data store of records of known

flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow-entry
matching this flow in a database of known flows 324. A
record in database 324 is associated with each encountered
flow.

The parser record enters a buffer called the unified flow
key bufi‘er (UFKB). rIlre UFICB stores the data on flows in

era-er

NOAC Ex. 1018 Page 950

US 6,665,725 Bl
11

a data structure that is similar to the parser record, but that
includes a field that can be modified. In partictdar, one or the
UFKB record fields stores the packet sequence number, and
another is filled with state information in the form of a

program counter for a state processor that implements state 5
processing 328.

The determination (316) of whether a record with the
same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKB records and uses the
bash in the UFKB record to lookup if there is a matching 10
known flow. In the particular embodiment, the database of
known flows 32A is in an external memory. A cache is
modated with the database 324. A lockup by the LUE for
a known record is carried out by accessing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the bash) in the external
memory.

The flow—entry database 324 stores flow-entries that
include the unique flow-signature, state information, and
extracted information from the packet for updating flows,
and one or more statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow—entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser sub-
system 301 (i.e., the hash in the UFKB record). The hash
spreads the flows acro$ the database to allow for fast
lookups of entries, allowing shallower buckets. The designer
selects the bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embodiment, each
flow-entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a 16-bit hash gives two flow-
entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that
another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e.,
the signature is for a new flow, then a protocol and state
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and 45
where in the state sequence for a flow for this protocol’s this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 of state

patterns and processes. Process 318 is then followed by any
state operations that need to be executed on this packet by 50
a state processor 328.

If the packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked~up flow-entry, if more classi-
fication by state processing of the flow signature is neces- 55
sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in
the {low-entry. In our embodiment, the statistical measures
are stored in counters in the flow-entry. 60

If state processing is required, state process 328 is com-
menced. State processor 328 carries out any state operations
specified for the state of the flow and updates the state to the
next state according to a set of state instructions obtained
form the state pattern and processes database 326. 65

"the state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol stack,

15

20

35

12

ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state
based on predefined state transition rules and state opera-
tions as specified in state processor instruction database 326.
A state transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
state processor is in a particular state—for example, in order
to evaluate a quantity needed to apply the state transition
rule. The state processor goes through each rule and each
state process until the test is true, or there are no more tests
to perform.

In general, the set ofstate operations may be none or more
operations on a packet, and carrying out the operation or
operations may leave one in a state that causes exiting the
system prior to completing the identification, but possflily
knowing more about what state and state processes are
needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of state
operations) at a particular state may build a new signature
for future recognition packets of the next state.

By maintaining the state of the flows and knowing that
new flows may be set up using the information from
previously encountered flows, the network traflic monitor
300 provides for (a) single-packet protocol recognition of
flows, and (b) multiple-packet protocol recognition of flows.
Monitor 300 can even recognize the application program
from one or more disjointed sub-flows that occur in server
announcement type flows. What may seem to prior art
monitors to be some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
sub-flow associated with a previously encountered sub—flow.

Thus, state processor 328 applies the first state operation
to the packet for this particular flow—entry. A process 330
decides if more operations need to be performed for this
state. If so, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed—
that is, there are no more operations for this packet in this
state. Aprocess 332 decides if there are further states to be
analyzed for this type of flow according to the state of the
flow and the protocol, in order to fully character-in the flow.
If not, the conversational flow has now been frilly charac-
terized and a proce$ 334 finalizes the classification of the
conversational flow for the flow.

In the particular embodiment, the state processor 328
starts the state processing by using the last protocol recog-
nized by the parser as an oflset into a jump table (jump
vector). The jump table finds the state processor instructions
to use for that protocol in the state patterns and processes
database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the
state processor is searching for one or more patterns in the
payload part of the UFIG3.

Thus, in 332 in the classification, the analyzer decides
whether the flow is at an end state. If not at an end state, the
flow—entry is updated (or created if a new flow) for this
flow—entry in procem 322.

Furthermore, if the flow is known and if in 332 it is

determined that there are further states to be processed usng
later packets, the flow-entry is updated in process 322.

The flow-entry also is updated after classification final-

ization so that any further packets belonging to this flow will

, t 4 a... ‘... «upclmuam-mw.. no"...«a umum-

NOAC Ex. 1018 Page 951

US 6,665,725 B1
13

be readily identified from their signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includes the set of
all the conversational flows that have occurred.

Thus, the embodiment of present invention shown in FIG.
3 automatically maintains flow-entries, which in one aspect
includes storing states. The monitor of FIG. 3 also generates
characteristic parts of packets—the signatures—that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once apacket is identified
to be from a known flow, the state of the flow is known and

this knowledge enables state transition analysis to be per-
formed in real time for each different protocol and applica-
tion. In a complex analysis, state transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their state
analysis continued from a previously achieved state. When
enough packets related to an application of interest have
been processed, a final recognition state is ultimately
reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow.
The sigiature for that final state enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Once a particularset ofstate transitions
has been traversed for the first time and ends in a final state,
a short-cut recognition pattern—a signature—can be gener-
ated that will key on every new incoming packet that relates
to the conversational flow. Checking a signature involves a
simple operation, allowing high packet rates to be success-
fully monitored on the network.

In improved embodiments, several state analyzers are run
in parallel so that a large number of protocols and applica-
tions may be checked for. Every known protocol and appli—
cation will have at least one unique set of state transitions,
and can therefore be uniquely identified by watching suchtransitions.

When each new conversational flow starts, signatures that
recognize the flow are automatically generated on—the-fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set
of state transitions for any potential application are further
traversed according to the state transition rules for the flow.
The new states for the flow—those associated with a set of

state transitions for one or more potential applications—are
added to the records of previously encountered states for
easy recognition and retrieval when a newpacket in the flow
is encountered.

Detailed Operation

FIG. 4 diagrams an initialization system 400 that includes
the compilation process. That is, part of the initialization
generates the pattern structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur off—line or from a central location.

The different protocols that can exist in dillerent layers
may be thought of as nodes of one or more trees of linked

nodes. The packet type is the root of a tree (called level 0).
Each protocol is either a parent node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have zero or more children. Ethernet packets, for
example, have several variants, each having a basic format
that remains substantially the same. An Ethernet packet (the
root or level 0 node) may be an Ethertype packet—also

10

15

20

30

35

45

50

55

60

65

14

called an Ethernet Type/Version 2 and a DIX (DIGITAL-
lntel-Xerox packet)—or an IEEE 803.2 packet. Continuing
with the IEEE 802.3 packet, one of the children nodes may
be the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and
includes information on the destination media access control

address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the signature.

FIG. 17A now shows the header information for the next

level (level—2) for an Ethertype packet 1700. For an Ether-
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
1702 containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the

possible children for an Ethertype packet as indicated by
what child recognition pattern is found otfset 12. FIG. 17B
shows the structure of the header of one of the possible next
levels, that of the H’ protocol. The possible children of the
IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern rec-
ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching
packet headers for the next protocol. FIG. 18A shows such
a 3-D representation 1800 (which may be considered as an
indexed set of 2—D representations). A compre$ed form of
the 3-D structure is preferred.

An alternate embodiment of the data structure used in
database 308 is illustrated in FIG. 18B. Thus, like the 3-D
structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition process
304 by indexing locations in a memory rather than perform-
ing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850
(171') which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUT’s) that
are used to identify known protocols and their children. The
protocol table includes the parameters needed by the pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters needed by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PT
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
header length, an offset to the child, a slicer command, and
some flags.

The pattern matching is carried out by finding particular
“child recognition codes” in the header fields, and using
these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node, and a null node to indicate a null entry.
The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-
code information in the form of protocol description files is
shown as 402. In the particular embodiment, the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer

NOAC Ex. 1018 Page 952

US 6,665,725 B1

15 16
selections 338, which describes the particular layering (sets If a component issuccessfully loaded in 503, the node andof trees of protocols) that the monitor is to be able to handle. processes are fetched (505) from the pattern, parse andA compiler 403 compiles the descriptions. The set of extraction database 308 to provide a set of patterns andpacket parse-and-extract operations 406 isgenerated (404), processes for that node to apply to the Ioaded packetand a set of packet state instructions and operations 407 is 5 component. The parser subsystem 301 checks (506) togenerated (405). in the form 0f instructions for the state determine if the fetch pattern node operation 505 completedprocesor that implements state processing process 328- successfully, indicating there was apattem node that loaded

10 applied in 507 to the component extracted in 503. A pattern

extract the elements.

downloaded from the state-processor instruction database 15 If applying the node process to the component does not407 into the state processor. (see the state processor 1108 produce a match (test 508), the parser subsystem 301 movesdescription and FIG. 11.). (510) to the next pattern node from the pattern database 308
Note that generating the packet parse and extraction and to SteP 505 to fetch the next node and process. Thus,operations builds and links the three dimensional structure there is an “appl ‘ g patterns” loop between 508 and 505.(one embodiment) or the or all the lookup tables for the 20 Once the parser subsystem 301 completes all the patternsPRD. and has elther matched or not, the parser subsystem 301Because of the large number ofpossible protocol trees and moves to the next packet component (511).subtrees, the compIIer 15’1")“SS 400 includes optlmraatlon Once all the packet components have been the loaded and

_ _ processed from the input packet 302, then the load packetshare common parents. When Implemented in the form of 25 will fail (indicated by test 504), and the parser subsystemthe Ia‘lUT 5’ gmftpi‘ocmmcm generate 51 Single LUT £33m a 301 moves to build a packet signature which is described inP “I fly 0 S' e Optimuatlon process ther FIG. 6 FIG. 6 is a flow chart for extracting the informationincludes a com action rocess that reduces the s ace needed . .to store the datpa of tthPRD. P from which to build the packet Signature. The flow starts at
As an example of compaction, consider the 3-D structure 30 601’ WmCh is the exit pomt 513 Of FIG' 5' At this p01nt

leted acket com onentof FIG. 18A that can be thought of as a set of 2-D structures parser subsystem 301 has al comp p p
each representing a protocol. To enable saving space by and a pattern node available in a buffer (602). Step 603 loadsusing only one array per protocol Which may have several I

keeps a “current header” pointer. Each location (otfset) 35 mg that there was indeed another packet component, the
- - - . ‘ d from the attem node com oneutrelative location startlng With the start of header for the process elements recelve p . . 'pparticular protocol. Furthermore, each of the two— In 602' If the fetch was successful (“35‘ 606)’ indicating that

d' . al - . t t th there are extraction elements to apply, the parser subsystemOllfricqngn gigging 5251212: 231631;; agsailfstfil lb: 301 in step 607 apphes that extraction process to the packetother 2-D ari-ays to find out which ones can share memory 40 component based on an extraction instruction received from
Many of these 2-D arrays are often sparsely populated in that that pattern node. This removes and saves an element from
they each have only a small number of valid entries. So, a the packet component. . _process of “folding” is next used to combine two or more In step 608; the parser subsystem 301 checks If there 152-D arrays together into one physical 2-D array without 45 more to extract from thlS component, and If not, the parserlosing the identity of any of the original 2-D arrays 0.6., all subsystem 301 moves back to 603 to load the next packetthe 2-D arrays continue to exist logically). Folding can occur component at hand and repeats the process. If the answer is

may be combined into asingle array aslong asthe individual 50 loaded In step 603- AS the parser subsystem 301 movedentries do not conflict with each other.Afold numberisthen through the loop between 608 and 603, extra CXU'HCLIOD
used to associate each element with its original array. A processes are apphed either to the same packet componentsimilar folding proces is used for the set of LUTs 1850 in If there ismore to extract, or to a dlfi'erent packet componentthe alternate embodiment of FIG. 18B. if there is no more to extract.

In 410, the analyzer has been initialized and is ready to 55 The extraction process thus builds the signature, extract-perform recognition. ing more and more components according to the information
FIG. 5 shows a flowchart of how actual parser subsystem in the patterns and_extractlou database 308 for the particular301 functions. Starting at 501, the packet 302 is input to the packet: Once loading the next packet component operation

packet buffer in step 502. Step 503 loads the next (initially 603 falls (test 604),}H the componentshavc been extracted.
the first) packet component from the packet 302. The packet 60 The built Signature ’5 loaded into the Signature buffer (610)
components are extracted from each packet 302 one element and the parser subsystem 301 proceeds to FIG- 7 to completeat a time. A check is made (504) to determine if the the Signature generatlon process.
load-packet-component operation 503 succeeded, indicating Referring now to FIG. 7, the process continues at 701. Thethat there was more in the packet to process. If not, indi— signature buffer and the pattern node elements are availableeating all components have been loaded, the parser sub- 55 (702). The parser subsystem 301 loads the next pattern node
system 301 builds the packet signature (512)—the next stage element. If the load Was successful (test 704) indicating(FIG. 6). there are more nodes, the parser subsystem 301 in 705

mu.» -» "0"" t ,‘_,.,......t 2- A., , .,“Smxuwl-C‘M I'.\ I

NOAC Ex. 1018 Page 953

US 6,665,725 B1

are packed. In 707 the parser subsystem 301 moves on to the
next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more
patterns of elements left (test 704). Once all the patterns of
elements have been hashed, processes 304, 306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301

FIG. 8 is a flow diagram describing the operation of the
lookup/update engine (LUE) that implements lookup opera~
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a signature, the hash and at least
parts of the payload. In 802 those elements are shown in the

are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entry’s
signature) fi'om that in the bucket (i.e., the flow-entry
signature). Ifthe signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process” and a
timestamp added. Step 811 indicates to the UFIGS that the
UFKB-entry in 802 has a status of “found." The “found”
indication allows the state process' g 328 to begin process-
ing this UFKB element. The preferred hardware embodi-
ment includes one or more state procemrs, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment, a set ofstatistical operations
is performed by a calculator for every packet analyzed. The
statistical operations may include one or more of counting
the packets associated with the flow; determining statistics

{trample using timestamps; and determining statistical rela-
llonships of timestamps of packets in the same direction.
The Statistical measures are kept in the flow—entries. Other

,. Statistical measures also may be compiled. These statistics
* may be used singly or in combination by a statistical
, Procesor component to analyze many different aspects of
’ the flOW. This may include determining network usage

10

15

20

30

35.

45

50

55

60

65

18

It may be that the bucket of the bin did not lead to a
signature match (test 808). In such a case, the analyzer in
809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match’was found.

If no match was found, the packet belongs to a new (not
previously encountered) flow. In 806 the system indicates
that the record in the unified flow key bufier for this packet
is new, and in 812, any statistical updating operations are
performed for this packet by updating the flow-entry in the
cache. The update operation exits at 813. Aflow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus, the updatelookup engine ends with a UFKB-entry
for the packet with a “new” status or a “found” status.

Note that the above system uses a hash to which more
than one flow-entry can match. A longer hash may be used
that corresponds to a single flow-entry. In such an
embodiment, the flow chart of FIG. 8 is simplified as would
be clear to those in the art.

The Hardware System

Each of the individual hardware elements through which
the data flows in the system are now described with refer—
ence to GS. 10 and 11. Note that while we are describing

implementation of the invention
embodiment of FIG. 3, it would be clear to one skilled in the
art that the flow of FIG. 3 may alternatively be implemented
in software running on one

ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analde
are stored. Memory 1002 is the extraction-operation data-
base memory, in which the extraction instructions are stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control

the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser
input buffer memory 1008 using control signals 1021 and
1023, which control an input buffer interface controller
1022. The bufier 1008 and interface control 1022 connect to
a packet acquisition device (not shown). The buffer acqui-
sition device generates a packet strut signal 1021 and the
interface control 1022 generates a next packet (i.e., ready to
receive data) signal 1023 to control the data flow into parser
input bufier memory 1008. Once a packet stans loading into
the buffer memory 1008, pattern recognition engine (P
1006 carries out the operations on the input bufler memory
described in block 304 of FIG. 3. That is, protocol types and
associated headers for each protocol layer that exist in thepacket are determined.

NOAC Ex. 1018 Page 954

US 6,665,725 B1
19

The PRE searches database 1001 and the packet in bulIer
1008 in order to recognize the protocols the packet contains.
In one implementation, the database 1001 includes a series
of linked lookup tables. Each lookup table uses eight bits of
addressing. The first lookup table is always at address zero.
The Pattern Recognition Engine uses a base packet offset
from a control register to start the comparison. It loads this
value into a current offset pointer (COP). It then reads the
byte at base packet offset from the parser input buffer and
uses it as an address into the first lockup table.

Each lookup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it returns the value to add to
the COP.

The PRE 1006 includes of a comparison engine. The
comparison engine has a first stage that checks the protocol
type field to determine if it is an 8023 packet and the field
should be treated as a length. If it is not a length, the protocol
is checked in a second stage. The first stage is the only
protocol level that is not programmable. The second stage
has two full sixteen bit content addressable inemories

(CAMS) defined for future protocol additions.
Thus, whenever the PRE recognizes a pattern, it also

generates a command for the extraction engine (also called
a “slicer”) 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa—
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from
PRE 1006 to slicer 1007 in the form of extraction instruction

pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.e., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig-
nature and the process code is used to fetch the first
instruction from the instruction database 1002. Instructions

include an operation code and usually source and destination
offsets as well as a length. The offsets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy 11 bytes of data
unmodified from the input buffer 1008 to the output buffer
1010. The extractor contains a byte-wise barrel shifter so
that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH.

This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element
(5) of the packet in the input buffer memory and transferring
the data to a parser output buffer memory 1010. Some
instructions also generate a hash.

The extraction engine 1007 and the PRE Operate as a
pipeline. That is, extraction engine 1007 performs extraction
operations on data in input bulfer 1008 already processed by
PRE 1006 while more (i.e., later arriving) packet informa-
tion is being simultaneously parsed by PRE 1006. This
provides high processing speed sufficient to accommodate
the high anival rate speed of packets.

Once all the selected parts of the packet used to form the
Signature are extracted, the hash is loaded into parser output
buffer memory 1010. Any additional payload from the
Packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once

10

15

20

30

35

45

50

55

60

65

x’ait’wthuw ‘ t .

20

all the information of a packet is in the parser output buffer
memory 1010, a data ready signal 1025 is asserted by
analyzer interface control. The data from the parser sub-
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer subsystem that performs the functions of the
analyzer subsystem 303 of FIG. 3. The analyzer is initialized
prior to operation, and initialization includes loading the
state processing information generated by the compilation
process 310 into a database memory for the state processing,
called state processor instruction database (SPID) memory
1109.

The analyzer subsystem 1100 includes a host bus interface
1122 using an analyzer host interface controller 1118, which
in turn has access to a cache system 1115. The cache system
has bi—direetional access to and from the state processor of
the system 1108. State processor 1108 is responsible for
initializing the state processor instruction database memory
1109 from information given over the host bus interface
1122.

With the SPID 1109 loaded, the analyzer subsystem 1100
receives parser records comprising packet signatures and
payloads that come from the parser into the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. AUFKB record is essentially a
parser record; the UFKB holds records ofpackets that are to
be processed or that are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable status
flags to allow difierent processes to run concurrently.

Three processing engines run concurrently and access
records in the UFKB 1103: the lockup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple-
mented by one or more finite state machines (FSM’S). There
is bi-directional access between each of the finite state

machines and the unified flow key buifer 1103. The UFKB
record includes a field that stores the packet sequence
number, and another that is filled with state information in
the form of a program counter for the state processor 1108
that implements state processing 328. The status flags of the
UFICB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the state
processor. The LUE done indicator is also used to indicate
what the next entry is for the LUE. There also is provided a
flag to indicate that the state processor is done with the
current flow and to indicate what the next entry is for the
state prmemr. There also is provided a flag to indicate the
state processor is transferring processing of the UFKB-entry
to the flow insertion and deletion engine.

Anew UFKB record is first procesed by the LUE 1107.
A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
110 after being processed by the state processor 1108 or only
by the LUE. Whether or not a particular engine has been
applied to any unified flow key buffer entry is determined by
status fields set by the engines upon completion. In one
embodiment, a status flag in the UFKB-entry indicates
whether an entry is new or found. In other embodiments, the
LUE issues a flag to pas the entry to the state processor for
processing, and the required operations for a new record are
included in the SP instructions.

Note that each UFKB—entry may not need to be processed
by all three engines. Furthermore, some UFKB enhies may
need to be processed more than once by a particular engine.

.A tam.“ W" “fie“ ‘

..Invszw:-

NOAC Ex. 1018 Page 955

US 6,665,725 B1
21

Each of these three engines also has bi-directional access
to a cache subsystem 1115 that includes a caching engine.
Cache 1115 is designed to have information flowing in and
out of it from five different points within the system: the
three engines, external memory via a unified memory con-
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIB) 1122. The ana-
lyzer microprocessor (or dedicated logic processor) can thus
directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that
includes a set of content addressable memory cells (CAMS)
each including an address portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the
cached flow-entries. The CAMS are arranged a a stack
ordered from a top CAM to a bottom CAM. The bottom
CAM’s pointer points to the least recently used (LRU) cache
memory entry. Whenever there is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, so the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an
associative cache with a true LRU replacement policy.

The LUE 1107 first processes a UFlGB-entry, and basi-
cally performs the operation of blocks 314 and 316 in FIG.
3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the
UFKB-entry to read a matching bin of up to four buckets
from the cache. The cache system attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.

When a flow-entry is found using the bash, the LUE 1107
looks at each bucket and compares it using the signature to
the signature of the UFKB—entry until there is a match or
there are no more buckets.

If there is no match, or if the cache failed to provide a bin
of flow—entries from the cache, a time stamp in set in the flow
key of the UFKB record, a protocol identification and state
determination is made using a table that was loaded by
compilation process 310 during initialization, the status for
the record is set to indicate the LUE has processed the
record, and an indication is made that the UFICB-entry is
ready to start state processing. The identification and state
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the state
processor which is kept by the UFKB for this UFKB-entry
and used by the state processor to start state processing for
the particular protocol. For example, the jump vector jumps
to the subroutine for processing the state.

If there was a match, indicating that the packet of the
UFKBentry is for a previously encountered flow, then a
calculator component enters one or more statistical measures
stored in the flow-entry, including the timestamp. In
addition, a time dfiference from the last stored timest
may be stored, and a packet count may be updated. The state
of the flow is obtained from the flow-entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324. If that value indicates that no more classifi—

cation is required, then the status for the record is set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
state processor to a subroutine to state processing the
protocol, and no more classification is indicated in the
preferred embodiment by the jump vector being zero. If the

10

15

20

30

35

45

50

SS

60

65

unu«e:v'~.K.~lolA .t” .n .. “new-«r aw" i

22

protocol identifier indicates more processing, then an indi—
cation is made that the UFKB-entry is ready to start state
processing and the status for the record is set to indicate the
LUE has processed the record.

The state processor 1108 processes information in the
cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the state
processor instruction database 1109 loaded by compiler
process 310 during initialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexer which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an
immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after aFlow Key is placed in the UFKB by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the subroutine which
analyzes the protocol that was decoded.

The State Processor ALU (SPALU) contains all the
Arithmetic, Logical and String Compare functions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register

The Search Engine in turn contains the Target Search
Register set, the Reference Search Register set, and a
Compare block which compares two operands by exclusive-
or-ing them together.

Thus, after the UFKB sets the program counter, a
sequence of one or more state operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFICB-entry is
new or corresponding to a found flow—entry. This UFKB-
entry is retrieved from unified flow key buifer 1103 in 1301.
In 1303, the protocol identifier for the UFKB-entry is used
to set the state processor’s instruction counter. The state
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jump table. The jump table takes us to the instructions to use
for that protocol. Most instructions test something in the
unified flow key buffer or the flow-entry if it en'sts. The state
processor 1108 may have to test bits, do comparisons, add or
subtract to perform the test.

The first state processor instruction is fetched in 1304
from the state processor instruction database memory 1109.
The state processor performs the one or more fetched
operations (1304). In our implementation, each single state
processor instruction is very primitive (e.g., a move, a
compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect
of the state processor is its ability to search for one or more
(up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine
component of the state processor responsive to special
searching instructions.

In 1307, a check is made to determine if there are any
more instructions to be performed for the packet. If yes, then

 4-4.“ .. _ .4 .

NOAC Ex. 1018 Page 956

US 6,665,725 B1
23

in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may
be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.

The next instruction to be performed is now fetched
(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions

to be performed.
At this stage, a check is made in 1309 if the processing on

this particular packet has resulted in a final state. That is, is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
and the flow is fully determined. Ifindeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Some final states may need to put
a state in place that tells the system to remove a flow—for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal
state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.

Once the appropriate flow removal instruction as specified
for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified flow key butfer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the System saves the state
processor instruction pointer in the current flow—entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFKB that matches this flow. The processor now exits
processing this particular unified flow key buifer entry at
1313.

Note that state processing updates information in the
unified flow key buffer 1103 and the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFIGS
for the entry that the state processor is done. Furthermore, If
the flow needs to be inserted or deleted from the database of

flows, control is then passed on to the flow insertion/deletion
engine 1110 for that flow signature and packet entry. This is
done by the state processor setting another flag in the UFICB
for this UFKB-entry indicating that the state procesor is
passing processing of this entry to the flow insertion and
deletion engine.

The flow insertion and deletion engine 1110 is responsible
for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, and deleting flows
from the database so that they can be reused.

The process of flow insertion is now described with the
aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine processes a UFICB-entry that may be
new or that the state processor otherwise has indicated needs
to be created. FIG. 12 Shows the case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFIGS-entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main-
tained in the cache system 1115. If in 1205 the cache system
1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked “used” in the cache engine of cache 1115
using a timestamp that is maintained throughout the process.
In 1209, the FIDE 1110 compares the bin and bucket record
flow signature to the packet to verify that all the elements are

10

15

20

30

35

45

50

55

60

65

24

in place to complete the record. In 1211 the system marks the
record bin and bucket as “in process” and as “new” in the
cache system (and hence in the external memory). In 1212,
the initial statistical measures for the flow—record are set in
the cache system. This in the preferred embodiment clears
the set of counters used to maintain statistics, and may
perform other procedures for statistical operations requires
by the analyzer for the first packet seen for a particular flow.

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 and 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key bufier entry for
the packet is set as “drop," indicating that the system cannot
pIOCCS the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion

operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow
key butfer entry by all of the engines required to access and
manage a particularpacket and its flow signature, the unified
flow key bufier entry is marked as “completed.” That
element will then be used by the parser interface for the next
packet and flow signature coming in from the parsing and
extracting system.

All flow—entries are maintained in the external memory
and some are maintained in the cache 1115. The cache

system 1115 is intelligent enough to access the flow database
and to understand the data structures that exists on the other

side of memory interface 1123. The lockup/update engine
1107 is able to request that the cache system pull a particular
flow or “buckets" of flows from the unified memory con-
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache system once it is looked up by means of the lockup/
update engine request, and the flow insertion/deletion engine
1110 can create new entries in the cache system if required
based on information in the unified flow key buffer 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are several interfaces to components of the system
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing system such as a micropro-
cessor or a multiplexer (MUX) system. Consequently, one
can connect the overall traffic classification system of FIGS.
11 and 12 into some other processing system to manage the
clasification system and to extract data gathered by the
system.

The memory interface 1123 is designed to interface to any
of a variety of memory systems that one may want to use to
store the flow-entries. One can use different types of
memory systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is
a packet input interface 1012—a general interface that
works in tandem with the signals of the input buffer interface
control 1022. These are designed so that they can be used
with any kind of generic systems that can then feed packet
information into the parser. Another generic interface is the

NOAC Ex. 1018 Page 957

US 6,665,725 B1

25 26
interface ofpipes 1031 and 1033 respectively out of and into In addition, MIB Compilers are available. An MIB Com-host interface multiplexor and control registers 1005. This piler is a tool that greatly simplifies the creation and main-enables the parsing system to be managed by an external tenance of proprietary MIB extensions.
system, for example a microprocessor or another kind of , .external logic, and enables the external system to program 5 Examples 0f Packet Elucrdation
and otherwise control the parser. Monitor 300, and in particular, analyzer 303 is capable ofThe preferred embodiment ofthisaspect of the invention carrying out state analysis for packet exchanges that areis described in a hardware description language (HDL) such commonly referred to as “server announcement” typeas VHDL or Verilog. It is designed and created in an HDL exchanges. Server announcement is a process used to easeso that it may be used as a single chip system or, for instance, 10 communications between a server with multiple applicationsintegrated into another general-purpose system that is being that can all be simultaneously accessed from multiple cli-designed for purposes related to creating and analyzing ents. Many applicationsuse a server announcement processtraffic within a network. Verilog or other HDL implemen- as a means of multiplexing a single port or socket into manytation is only one method of describing the hardware. applications and services. VVrth this type of exchange, mes—In accordance with one hardware implementation, the 15 sages are sent on the network, in either a broadcast orelements shown in FIGS. 10 and 11 are implemented in a set multicast approach, [0 announce a server and applicationof six field programmable logic arrays (FPGA’s). The and all stations in the network may receive and decode theseboundaries of these FPGA’s are as follows. The parsing messages. The messages enable the stations to derive the

subsystem of FIG. 10 is implemented as two FPGAS; one appropriate 001111005011 point for communicating that par-FPGA, and includes blocks 1006,1008 and 1012, parts of 2° ficular application with the parlichlar server; U_sing the

instruction database memory 1109 is another FPGA. Por- 75 The analyzer 303 is also capable of carrying out “in-tions of the state processor instruction database memory stream analysis” ofpacket exchanges.'Ihe“in-stream analy-1109 are maintained in external SRAM’s. The lookup/ sis” method is used either as a primary or secondary recog-update engine 1107 and the flow msertron/deletion engine nition process. As a primary process, in-stream analysis1110 are in another FPGA. The sixth FPGA includes the assists in extracting detailed information which will be usedcache system 1115, the unified memory control 1119, and the 30 to further recognize both the specific application and appli—analyzer host interface and control 1118. cation component. A good example of in-stream analysis isNote that one can implement the system as one or more any Web-based application. For “31.111919 the commonly, . .i

. .. .‘ . 35

packets passing point 121 in either direction are supplied to 45 “SCSSiOH tracking” 3150 is known as one Of the primary “monitor 300. Monitor 300 comprises the parser sub-system processes for tracking applications in client/server packet ’ ‘301, which determines flow signatures, and analyzer sub- exchanges. The process 0f tracking 56551-015 requires ansystem 303 that analyzes the flow signature of each packet. initial connection to a predefined socket or port number. ThisA memory 324 is used to store the database of flows that are method 0f commtmication i5 “56d in a variety 0f t”1151301”tdetermined and updated by monitor 300_ A host computer 50 layer protocols. It is most commonly seen in the TCP and1504, which might be any processor, for example, a general- UDP transport protocols 0f the IP protocol.
purpose computer, is used to analyze the flOWS in memory During the session tracking, a client makes a request to a324. As is conventional, host computer 1504 includes a server using a specific port or socket number. This initial
memory, say RAM, shown as host memory 1506. [n request will cause the server to create a TCP or UDP port to
addition, the host might contain a disk. In one application, 55 exchange the remainder of the data between the client and ! by an optional Simple Network Management Protocol 60 One example of session tracking is TFTP (Trivial File(SNMP) implementation. FIG. 15 describes how one would, Transfer Protocol), a version of the TCP/[P FI‘P protocolfor example, implement an RMON probe, where a network that has no directory or password capability. During theinterface card is used to send RMON information to the client/server exchange process of TFI‘P, a specific port (port

available, and using such an implementation can simplify 65 Thus, when the client begins the process of communicating,the process of porting the preferred embodiment of the a request is made to UDP port 69. Once the server receives

t
tF

‘2 invention to any platform. this request, a new port number 15 created on the server. Theé

NOAC Ex. 1018 Page 958

US 6,665,725 B1
27

server then replies to the client using the new port. In this
example, it is clear that in order to recognize TFI‘P; network
monitor 300 analyzes the initial request from the client and
generates a signature for it. Monitor 300 uses that signature
to recognize the reply. Monitor 300 also analyzes the reply
from the server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data exchange.

Network monitor 300 can also understand the current

state of particular connections in the network. Connection-
oriented exchanges often benefit from state tracking to
correctly identify the application. An example is the com-
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data exchange is initiated, a TCP request for synchroni-
zation message is sent. This message contains a specific
sequence number that is used to track an acknowledgement
from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between
the client and the server. When communication is no longer
required, the client sends a finish or complete message to the
server, and the server acknowledges this finish request with
a reply containing the sequence numbers from the request.
The states of such a connection-oriented exchange relate to
the various types of connection and maintenance messages.

Server Announcement Example

The individual methods of server announcement proto-
cols vary. However, the basic underlying process remains
similar. A typical server announcement message is sent to
one or more clients in a network. This type of announcement
message has specific content, which, in another aspect of the
invention, is salvaged and maintained in the database of
flow-entries in the system. Because the announcement is
sent to one or more stations, the client involved in a future
packet exchange with the sewer will make an assumption
that the information announced is known, and an aspect of
the inventive monitor is that it too can make the same

assumption.
Sun-RPC is the implementation by Sun Microsystems,

Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RPC),
a programming interface that allows one program to use the
services of another on a remote machine. A Sun-RFC

example is now used to explain how monitor 300 can
capture server announcements.

Aremote program or client that wishes to use a server or
procedure must establish a connection, for which the RFC
protocol can be used.

Each server running the Sun—RPC protocol must maintain
a process and database called the port Mapper. The port
Mapper creates a direct association between a Sun-RFC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32-bit unique identifier assigned by ICANN (the
Internet Corporation for Assigned Names and Numbers,
wwwicannorg), which manages the huge number ofparam-
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each port Mapper
on a Sun-RPC server can present the mappings between a
unique program number and a specific transport socket
through the use of specific request or a directed announce-
ment. According to ICANN, port number 111 is associated
With Sun RFC.

As an example, consider a client (e.g., CLIENT3 shown
as 106 in FIG. 1) maldng a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined

“Avweml

5

ID

15

20

30

35

45

50

55

28

UDP or TCP socket. Once the port Mapper process on the
sun RPC server receives the request, the specific mapping is
returned in a directed reply to the client.

1. Aclient (CLIENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER 2 (110 in FIG. 1) on port 111, with an RPC
Bind Lookup Request (rpcBindLookup). TCP or UDP
port 111 is always associated Sun RPC. This request
specifies the program (as a program identifier), version,
and might specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the
program identifier and version identifier from the
request. The sewer also uses the fact that this packet
came in using the TCP transport and that no protocol
was specified, and thus will use the TCP protocol for its
reply.

3. The server 110 sends a TCP packet to port number 111,
with an RPC Bind Lookup Reply. The reply contains
the specific port number (e.g., port number ‘port’) on
which future transactions will be accepted for the
specific RPC program identifier (e.g., Program
‘program’) and the protocol (UDP or TCP) for use.

It is desired that from now on every time that port number
‘port’ is used, the packet is associated with the application
program ‘program’ until the number ‘port’ no longer is to be
associated with the program ‘program’. Network monitor
300 by creating a flow-entry and a signature includes a
mechanism for remembering the exchange so that future
packets that use the port number ‘port’ will be associated by
the network monitor with the application program ‘pro-
gram’.

In addition to the Sun RPC Bind Lookup request and
reply, there are other ways that a particular program-say
‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast
announcement of a particular association between an appli~
cation service and a port number, called a Sun RPC port—
Mapper Announcement. Another, is when some server-say
the same SERVER 2——replies to some client—say CLIENT
1———requesting some portMapper assignment with a RPC
portMapper Reply. Some other client—say CLIENT
2——might inadvertently see this request, and thus know that
for this particular server, SERVER 2, port number ‘port’ is
associated with the application service ‘program’. It is
desirable for the network monitor 300 to be able to associate

any packets to SERVER 2 using port number ‘port’ with the
application program ‘program’.

FIG. 9 represents a dataflow 900 of some operations in the
monitor 300 of FIG. 3 for Sun Remote Procedure Call.

SuppOse a client 106 (e.g., CLIENT 3 in FIG. 1) is com-
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG. 1) via the server’s interface to
the network 116. Further assume that Remote Procedure

Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server state creation step 904. Such RPC
bind lockup request includes values for the ‘program,’
‘version,’ and ‘protoool’ to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects:

Process 909: Extract the ‘program,’ ‘version,’ and ‘pro—
tocol’ (UDP or TCP). Extract the TCP or UDP port
(process 909) which is 111 indicating Sun RPC.

65 Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paired
socket (i.e., dest for destination address, src for source

.. .-... at,
W» 3.11. i a

N. [gnaw-:33

NOAC Ex. 1018 Page 959

US 6,665,725 B1
29

address). Decode ports and mapping, save ports with
socket/addr key. There may be more than one pairing
per mapper packet. Form a signature (e.g., a key). A
flow-entry is created in database 324. The saving of the
request is now complete.

At some later time, the sewer (process 907) issues a RPC
bind lockup reply. The packet monitor 300 will extract a
signature from the packet and recognize it from the previ-
ously stored flow. The monitor will get the protocol port
number (906) and lookup the request (905).Anew signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
signature in the flow-entry database. That signature now
may be used to identify packets associated with the server.

The server state creation step 904 can be reached not only
from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announce that it is able to
provide aparticular application service. Embodiments of the
present invention preferably can analyze when an exchange
occurs between a client and a server, and also can track those
stations that have received the announcement of a service in
the network.

The RPC Announcement portMapper announcement 902
is a broadcast. Such causes various clients to execute a

similar set of operations, for example, saving the informa-
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the service
parameters.

Thus monitor 300 creates and saves all such states for

later classification of flows that relate to the particular
service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun
RPC builds a signature and flow states. Aplurality ofpackets
206—209 are exchanged, e.g., in an exemplary Sun Micros
systems Remote Procedure Call protocol. Amethod embodi-
ment of the present invention might generate a pair of flow
signatures, “signature-1” 210 and “signature-2” 212, from
information found in the packets 206 and 207 which, in the
example, correspond to a Sun RPC Bind Lookup request and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup-
pose packet 206 corresponds to such a request sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEYl 230 in FIG. 2) will also contain
these two fields, so the parser subsystem 301 will include
hese two fields in signature KEY 1 (230) Note that in FIG.
I, if an address identifies the client 106 (shown also as 202),
he label used in the drawing is “C,”. If such address
dentifies the server 110 (shown also as server 204), the label
tsed in the drawing is “SI”. The first two fields 214 and 215
u packet 206 are “S,” and C1” because packet 206 is
trovided from the server 110 and is destined for the client

06. Suppose for this example, “5,” is an address numeri—
ally le$ than address “C1". A third field “pl” 216 identifies
lc particular protocol being used, e.g., TCP, UDP, etc.
In packet 206, a fourth field 217 and a fifth field 218 are

sad to communicate port numbers that are used. The
)nversation direction determines where the port number
=ld is. The diagonal pattern in field 217 is used to identify
source-port pattern, and the hash pattern in field 218 is

mm.

10

15

20

25

35

45

50

55

60

65

30

used to identify the destination—port pattern. The order
indicates the client-server message direction. A sixth field
denoted “i1” 219 is an element that is being requested by the
client from the server. A seventh field denoted “sla” 220 is
the service requested by the client from server 110. The
following eighth field “QA” 221 (for question mark) indi—
cates that the client 106 wants to know what to use to access

application “51a”. A tenth field “OF” 223 is used to indicate
that the client wants the server to indicate what protocol to
use for the particular application.

Packet 206 initiates the sequence of packet exchanges,
e.g., a RPC Bind Lookup Request to SERVER 2. It follows
a well-defined format, as do all the packets, and is trans-
mitted to the server 110 on a well—known service connection

identifier (port 111 indicating Sun RPC).
Packet 207 is the first sent in reply to the client 106 from

the server. It is the RPC Bind Lookup Reply as a result of
the request packet 206.

Packet 207 includes ten fields 224—233. The destination

and source addresses are carried in fields 224 and 225, e.g.,
indicated “C1” and “81", respectively. Notice the order is
now reversed, since the client»server message direction is
from the server 110 to the client 106. The protocol “11‘” is
used as indicated in field 226. The request “i1” is in field 229.
Values have been filled in for the application port number,
e.g., in field 233 and protocol ““p””’ in field 233.

The flow signature and flow states built up as a result of
this exchange are now described. When the packet monitor
300 sees the request packet 206 from the client, a first flow
signature 210 is built in the parser subsystem 301 according
to the pattern and extraction operations database 308. This
signature 210 includes a destination and a source address
240 and 241. One aspect of the invention is that the flow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best spread of signatures and hashes for the
lookup operations. In this case, therefore, since we assume
“81”d‘CJ”, the order is address “SJ” followed by client
address “C1". The next field used to build the signature is a
protocol field 242 extracted from packet 206’s field 216, and
thus is the protocol “p1". The next field used for the
signature is field 243, which contains the destination source
port number shown as a crosshatched pattern from the field
218 of the packet 206. This pattemwill be recognized in the
payload of packets to derive how this packet or sequence of
packets exists as a flow. In practice, these may be TCP port
numbers, or a combination ofTCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p1 that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind hookups, are
directly determinable (“known”) at the parser level. So in
this case, the signature KEY-1 points to a lmown application
denoted “a1” (Sun RPC Bind Lookup), and a next-state that
the state processor should proceed to for more complex
recognition jobs, denoted as state “stD” is placed in the field
245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow
signature is again built by the parser. This flow signature is
identical to KEY—1. Hence, when the signature enters the
analyzer subsystem 303 from the parser subsystem 301, the
complete flow-entry is obtained, and in this flow—entry
indicates state “stD”. The operations for state “stD” in the
state processor instruction database 326 instructs the state

arr— «w 1 no u «won '4‘

NOAC Ex. 1018 Page 960

.www.mflfi...V..."V... US 6,665,725 B1
31

processor to build and store a new flow signature, shown as
KEY-2 (212) in FIG. 2. This flow signature built by the state
processor also includes the destination and a source
addresses 250 and 251, respectively, for server “SI” fol-
lowed by (the numerically higher address) client “C,”. A
protocol field 252 defines the protocol to be used, e.g., “p2",
which is obtained from the reply packet. Afield 253 contains
a recognition pattern also obtained from the reply packet. In
this use, the application is Sun RPC, and field 254 indicates
this application “a2”. A next-state field 255 defines the next
state that the state processor should proceed to for more
complex recognition jobs, e.g., a state “stl”. In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
service requested in the original Bind Lookup Request, and
each willbe recognized because the signature KEY-2 will be
built in each case.

The two flow signatures 210 and 212 always order the
destination and source address fields with server “S," fol-
lowed by client “C1”. Such values are automatically filled in
when the addresses are first created in a particular flow
signature. Preferably, large collections of flow signatures are
kept in a lookup table in a least-to-highest order for the best
spread of flow signatures and hashes.

Thereafter, the client and server exchange a number of
packets, e.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and source address S1 and C1, in a pair of
fields 260 and 261. Afield 262 defines the protocol as “p2",
and a field 263 defines the destination port number.

Some network-server application recognition jobs are so
simple that only a single state transition has to occur to be
able to pinpoint the application that produced the packet.
Others require a sequence of state transitions to occur in
order to match a known and predefined climb from state-to-state.

Thus the flow signature for the recognition of application
“a2” is automatically set up by predefining what packet-
exchange sequences occur for this example when a rela-
tively simple Sun Microsystems Remote Procedure Call
bind lockup request instruction executes. More complicated
exchanges than this may generate more than two flow
signatures and their corresponding states. Each recognition
may involve setting up a complex state transition diagram to
be traversed before a “final” resting state such as “st,” in
field 255 is reached. All these are used to build the final set

of flow signatures for recognizing a particular application in
the future.

Embodiments of the present invention automatically gen—
erate flow signatures with the necessary recognition patterns
and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen-
erating state transitions to search for. Applications and
protocols, at any level, are recognized through state analysis
of sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many diiferent types of
devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as
used herein encompasses all such devices and a computer
network as used herein includes networks of such comput-ers.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as

10

15

20

30

35

45

50

55

60

65

32

limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the an after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true spirit and scope of the
present invention.

The Pattern Parse and Extraction Database Format

The different protocols that can exist in dilferent layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called base
level). Each protocol is either a parent node of some other
protocol at the next later or a terminal node. A parent node
links a protocol to other protocols (child protocols) that can
be at higher layer levels. Thus a protocol may have zero or
more children.

As an example of the tree structure, consider an Ethernet
packet. One of the children nodes may be the IP protocol,
and one of the children of the IP protocol may be the TCP
protocol. Another child of the IP may be the UDP protocol.

A packet includes at least one header for each protocol
used. The child protocol of a particular protocol used in a
packet is indicated by the contents at a location within the
header of the particular protocol. The contents of the packet
that specify the child are in the form of a child recognition
pattern.

A network analyzer preferably can analyze many dilferent
protocols. At a base level, there are a number ofpacket types
used in digital telecommunications, including Ethernet,
HDLC, ISDN, 111p B, ATM, X25, Frame Relay, Digital
Data Service, FDDI (Fiber Distributed Data Interface), and
T1, among others. Many of these packet types use different
packet and/or frame formats. For example, data '5 transmit-
ted in ATM and frame-relay systems in the form of fixed
length packets (called “ce ”) that are 53 octets (i.e., bytes)
long; several such cells may be needed to make up the
information that might be included in a single packet of
some other type.

Note that the term packet herein is intended to encompass
packets, datagrams, frames and cells. In general, a packet
format or fi'ame format refers to how data is encapsulated
with various fields and headers for transmi$ion across a

network. For example, a data packet typically includes an
address destination field, a length field, an error correcting
code (ECC) field or cyclic redundancy check (CRC) field, as
well as headers and footers to identify the beginning and end
of the packet. The terms “packet format,” “fi'ame format"
and “cell format” are generally synonymous.

The packet monitor 300 can analyze dilferent protocols,
and thus can perform different protocol specific operations
on a packet wherein the protocol headers of any protocol are
located at different locations depending on the parent pro-
tocol or protocols used in the packet. Thus, the packet
monitor adapts to diflerent protocols according to the con-
tents of the packet. The locations and the information
extracted fi'om any packet are adaptively determined for the
particular type of packet. For example, there is no fixed
definition of what to look for or where to look in order to

form the flow signature. In some prior art systems, such as
that described in US. Pat. No. 5,101,402 to Chiu, et al., there
are fixed locations specified for particular types of packets.
With the proliferation of protocols, the specifying of all the
possible places to look to determine the session becomes
more and more difficult. Likewise, adding a new protocol or
application is difficult. In the present invention, the number
of levels is variable for any protocol and is whatever number

NOAC Ex. 1018 Page 961

US 6,665,725 B1

while with an IEEE type, the child protocol is specified in a
recognition pattern.

FIG. 16 shows the header 1600 (base level 1) of a
complete Ethernet frame (i.e., packet) of information and

signature part of the parser record includes extracted part
1702. Also included is the 1-byte Hash component 1710from this information.

Other packet types are arranged differently. For example,
in an ATM system, each A'IM packet comprises a five-octet

10

15.

20

30

35

45

50

55

60

65

where the next level’s header would start in the packet.
Note that the information shown in FIGS. 16, 17A, and

17B would be specified to the monitor in the form of PDL
files and compiled into the database 308 ofpattern structures
and extraction operations.

FIG. 18A shows such a 3-D representation 1800 (which
may be considered as an indexed set of 2~D representations).
The three dimensions of this data structure are:

1. Type identifier [1:M]. This is the identifier that identi-
fies a type ofprotocol at a particular level. For example,
01 indicates an Ethernet frame. 64 indicates IP, 16
indicates an IEEE type Ethernet packet, etc. Depending
on how manyprotocols the packet parser can handle, M
may be a large number; M may grow over time as the
capability of analyzing more protocols is added to

2. Size [1:64]. The size of the field of interest within thepacket.

3. Location [1:512]. This is the offset location within the
packet, expressed as a number of octets (bytes).

At any one of these locations there may or may not be
valid data. Typically, there will not be valid data in most

aw"...-~

NOAC Ex. 1018 Page 962

US 6,665,725 B1

35

locations. The size of the 3-D array is M by 64 by 512, which
can be large; M for example may be 10,000. This is a sparse
3-D matrix with most entries empty (i.e., invalid).

Each array entry includes a “node code” that indicates the
nature of the contents. This node code has one of four

values: (1) a “protocol” node code indicating to the pattern
recognition process 304 that a known protocol has been
recognized as the next (i.e., child) protocol; (2) a “terminal”
node code indicating that there are no children for the
protocol presently being searched, i.e., the node is a final
node in the protocol tree; (3) a “n " (also called “flush”)
node code indicating that there is no valid entry.

In the preferred embodiment, the possible children and
other information are loaded into the data structure by an
initialization that includes compilation process 310 based on
the PDL files 336 and the layering selections 338. The
following information is included for any entry in the data
structure that represents a protocol.

(a) A list of children (as type IDs) to search next. For
example, for an Ethernet type 2, the children are
Ethertype (IP, IPX, etc, as shown in 1712 of FIG. 17).
These children are compiled into the type codes. The
code for IP is 64, that for IPX is 83, etc.

(b) For each of the IDS in the list, a list of the child
recognition patterns that need to be compared. For
example, 64:080015 in the list indicates that the value
to look for is 0800 (hex) for the child to be type ID 64
(which is the IP protocol). 831813716 in the list indi-
cates that the value to look for is 8137 (hex) for the
child to be type ID 83 (which is the IPX protocol), etc.

(c) The extraction operations to perform to build the
identifying signature for the flow. The format used is
(offset, length, fiow__signature_value_identifier), the
flow_sigiature_value_identifier indicating where the
extracted entry goes in the signature, including what
operations (AND, ORs, etc.) may need to be carried
out. If there is also a hash key component, for instance,
then information on that is included. For example, for
an Ethertype packet, the 2-byte type (1706 in FIG. 17)
is used in the signature. Furthermore, a 1—byte hash
(1708 in FIG. 17A) of the type is included. . Note
furthermore, the child protocol starts at otfset 14.

An additional item may be the “fold.” Folding is used to
reduce the storage requirements for the 3-D structure. Since
each 2-D array for each protocol ID may be sparsely
populated, multiple arrays may be combined into a single
2-D array as long as the individual entries do not conflict
with each other. Afold number is then used to associate each

element. For a given lockup, the fold number of the lookup
must match the fold number entry. Folding is described in
more detail below.

In the case of the Ethernet, the next protocol field may
indicate a length, which tells the parser that this is a IEEE
type packet, and that the next protocol is elsewhere.
Normally, the next protocol field contains a value which
identifies the next, i.e., child protocol.

The entry point for the parser subsystem is called the
Virtual base layer and contains the possible first children,
i.e., the packet types. An example set of protocols written in
a high level protocol description language (PDL) is included
herein. The set includes PDL files, and the file describing all
the possrble entry points (i.e., the virtual base) is called
Virtualde There is only one child, 01, indicating the
Ethernet, in this file. Thus, the particular example can only
handle Ethernet packets. In practice, there can be multiple
entry points.

In one embodiment, the packet acquisition device pro-
Vides a header for every packet acquired and input into

5

10

15

20

30

35

45

50

55

60

65

36

monitor 300 indicating the type of packet. This header is
used to determine the virtual base layer entry point to the
parser subsystem. Thus, even at the base layer, the parser
subsystem can identify the type of packet.

Initially, the search starts at the child of the virtual base,
as obtained in the header supplied by the acquisition device.
In the case of the example, this has ID value 01, which is the
2-D array in the overall 3-D structure for Ethernet packets.

Thus hardware implementing pattern analysis process 304
(e.g., pattern recognition engine (PRE) 1006 of FIG. 10)
searches to determine the children (if any) for the 2-D array
that has protocol ID 01. In the preferred embodiment that
uses the 3-D data structure, the hardware PRE 1006 searches
up to four lengths (i.e., sizes) simultaneously. Thus, the
process 304 searches in groups of four lengths. Starting at
protocol ID 01, the first two sets of 3-D locations searchedare

(1.1.1) . (1,1,2)
(1, 2, 1) - (1, 2, 2)
(1, 3. 1) (1. 3, 2)
(1, 4, 1) (1, 4, 2)

At each stage of a search, the analysis proce$ 304
examines the packet and the 3—D data structure to see if there
is a match (by looking at the node code). If no valid data is
found, e.g., using the node code, the size is incremented (to
maximum of 4) and the offset is then incremented as well.

Continuing with the example, suppose the pattern analysis
process 304 finds something at 1, 2, 12. By this, we mean
that the process 304 has found that for protocol ID value 01
(Ethernet) at packet ofiset 12, there is information in the
packet having a length of 2 bytes (octets) that may relate to
the next (child) protocol. The information, for example, may
be about a child for this protocol expressed as a child
recognition pattern. The list of possible child recognition
patterns that may be in that part of the packet is obtained
from the data structure.

The Ethernet packet structure comes in two flavors, the
Ethertype packet and newer IEEE types, and the packet
location that indicates the child is different for both. The

location that for the Ethertype packet indicates the child is
a “length” for the IEEE type, so a determination is made for
the Ethernet packet whether the “next protocol” location
contains a value or a length (this is called a “LENGTH”
operation). Asuocessful LENGTH operation is indicated by
contents less than or equal to OSDCJG, then this is an IEEE
type Ethernet frame. In such a case, the child recognition
pattern is looked for elsewhere. Otherwise, the location
contains a value that indicates the child.

Note that while this capability of the entry being a value
(e.g., for a child protocol ID) or a length (indicating further
analysis to determine the child protocol) is only used for
Ethernet packets, in the future, other packets may end up
being modified. Accordingly, this capability in the form of a
macro in the PDL files still enables such future packets to be
decoded.

Continuing with the example, suppose that the LENGTH
operation fails. In that case, we have an Ethertype packet,
and the next protocol field (containing the child recognition
pattern) is 2 bytes long starting at ofl'set 12 as shown as
packet field 1702 in FIG. 17A. This will be one of the
children of the Ethertype shown in table 1712 in FIG. 17A.
The PRE uses the information in the data structure to check

what the 11) code is for the found 2-byte child recognition
pattern. For example, if the child recognition pattern is 0800

NOAC Ex. 1018 Page 963

US 6,665,725 B1
37

(Hex), then the protocol is IP. If the child recognition pattern
is OBAD (Hex) the protocol is VIP (VlNES).

Note that an alternate embodiment may keep a separate
table that includes all the child recognition patterns and their
corresponding protocol ID’s

To follow the example, suppose the child recognition
pattern at 1, 2, 12 is 080016, indicating IP. The ID code for
the IP protocol is 6410). To continue with the Ethertype
example, once the parser matches one of the possible
children for the protocl—in the example, the protocol type
is [P with an ID of 64—then the parser continues the search
for the next level. The ID is 64, the length is unknown, and
offset is known to be equal or larger than 14 bytes (12 offset
for type, plus 2, the length of type), so the search of the 3-D
structure commences from location (64, l) at packet offset
14. A populated node is found at (64, 2) at packet otfset 14.
Heading details are shown as 1750 in FIG. 1713. The
posible children are shown in table 1752.

Alternatively, suppose that at (1, 2, 12) there was a length
121110. This indicates that this is an IEEE type Ethernet
frame, which stores its type elsewhere. The PRE now
continues its search at the same level, but for a new ID, that
of an IEEE type Ethernet frame. An IEEE Ethernet packet
has protocol ID 16, so the PRE continues its search of the
three-dimensional space with ID 16staru'ng at packet otfset
14.

In our example, suppose there is a “protocol” node code
found at (16, 2) at packet otfset 14, and the next protocol is
specified by child recognition pattern 080016. This indicates
that the child is the IP protocol, which has type ID 64. Thus
the search continues, starting at (64, 1) at packet offset 16.
Compremion.

As noted above, the 3-D data structure is very large, and
sparsely populated. For example, if 32 bytes are stored at
each location, then the length is M by 64 by 512 by 32 bytes,
which is M megabytes. If M-10,000, then this is about 10
gigabytes. It is not practical to include 10 Gbyte of memory
in the parser subsystem for storing the database 308. Thus a
compressed form of storing the data is used in the preferred
embodiment. The compression is preferably carried out by
an optimizer component of the compilation process 310.

Recall that the data structure is sparse. Different embodi-
ments may use difierent compression schemes that take
advantage of the sparseness of the data structure. One
embodiment uses a modification of multidimensional run

length encoding.
Another embodiment uses a smaller number two-

dimensional structures to store the information that other-

wise would be in one large three—dimensional structure. The
second scheme is used in the preferred embodiment.

FIG. 18A illustrated how the 3—D array 1800 can be
considered a set of 2-D arrays, one 2-D array for each
protocol (i.e., each value of the protocol ID). The 2-D
structures are shown as 1802-1, 1802-2, . . . , 1802-M for up
to M protocol ID’s. One table entry is shown as 1804. Note
that the gaps in table are used to illustrate that each 2—D
structure table is typically large.

Consider the set of trees that represent the possible
protocols. Each node represents a protocol, and a protocol
may have a child or be a terminal protocol. The base (root)
of the tree has all packet types as children. The other nodes
form the nodes in the tree at various levels from level 1 to
the final terminal nodes of the tree. Thus, one element in the
base node may reference node ID 1, another element in the
base node may reference node ID 2 and so on. As the tree
is traversed from the root, there may be points in the tree
where the same node is referenced next. This would occur,

10

15

20

30

35

45

50

55

65

38

for example, when an application protocol the Telnet can
run on several transport connections like TCP or UDP.
Rather than repeating the Telnet node, only one node is
represented in the patterns database 308 which can have
several parents. This eliminates considerable space explo-SlOn.

Each 2—D structure in FIG. 18A represents a protocol. To
enable saving space by using only one array per protocol
which may have several parents, in one embodiment, the
pattern analysis subprocess keeps a “current header” pointer.
Each location (offset) index for each protocol 2-D array in
the 3-D structure is a relative location starting with the start
of header for the particular protocol.

Each of the two-dimensional arrays is sparse. The next
step of the Optimization, is checking all the 2-D arrays
against all the other 2-D arrays to find out which ones can
share memory. Many of these Z-D arrays are often sparsely
populated in that they each have only a small number of
valid entries. So, a process of “folding” is next used to
combine two or more 2-D arrays together into one physical
2-D array without losing the identity of any of the original
2-D arrays (i.e., all the 2-D arrays continue to exist
logically). Folding can occur between any 2—D arrays irre-
spective of their location in the tree as long as certain
conditiors are met.

Assume two 2—D arrays are being considered for folding.
Call the first 2—D arraysAand the second 2-D array B. Since
both 2-D arrays are partially populated, 2-D array B can be
combined with 2-D arrays A if and only if none of the
individual elements of these two 2—D arrays that have the
same Z-D location conflict. If the result is foldable, then the
valid entries of 2-D array B are combined with the valid
entries of ZvD array A yielding one physical 2—D array.
However, it is necessary to be able to distinguish the original
2—D array A entries from those of 2—D array B. For example,
if a parent protocol of the protocol represented by 2—D array
B wants to reference the protocol ID of 2-D array B, it must
now reference 2-D array A instead. HoWever, only the
entries that were in the original 2-D array B are valid entries
for that lookup. To accomplish this, each element in any
given 2-D array is tagged with a fold number. When the
original tree is created, all elements in all the 2-D arrays are
initialized with a fold value of zero. Subsequently, if 2-D
array B is folded into 2-D array A, all valid elements of 2-D
array B are copied to the corresponding locations in 2-D
array A and are given different fold numbers than any of the
elements in 2-D array A. For example, if both 2—D array A
and 2—D array B were original 2-D arrays in the tree (i.e., not
previously folded) then, after folding, all the 2—D array A
entries would still have fold 0 and the 2-D array B entries
would now all have a fold value of 1. After 2-D array B is
folded into 2—D array A, the parents of 2-D array B need to
be notified of the change in the 2-D array physical location
of their children and the associated change in the expected
fold value.

This folding process can also occur between two 2—D
arrays that have already been folded, as long as none of the
individual elements of the two 2-D arrays conflict for the
same 2—D array location. As before, each of the valid
elements in 2—D array B must have fold numbers assigned to
them that are unique from those of 2—D array A. This is
accomplished by adding a fixed value to all the 2—D array B
fold numbers as they are merged into 2-D array A. This fixed
value is one larger than the largest fold value in the original
2—D array A. It is important to note that the fold number for
any given 2—D array is relative to that 2-D array only and
does not span across the entire tree of 2-D arrays.

NOAC Ex. 1018 Page 964

US 6,665,725 B1
39

This process of folding can now be attempted between all
combinations of two 2—D arrays until there are no more
candidates that qualify for folding. By doing this, the total
number of 2-D arrays can be significantly reduced.

Whenever a fold occurs, the 3-D structure (i.e., all 2-D
arrays) must be searched for the parents of the 2—D array
being folded into another array. The matching pattern which
previously was mapped to a protocol ID identifying a single
2—D array must now be replaced with the 2-D array ID and
the next fold number (i.e., expected fold).

Thus, in the compressed data structure, each entry valid
entry includes the fold number for that entry, and
additionally, the expected fold for the child.

An alternate embodiment of the data stmcture used in
database 308 is illustrated in FIG. 181]. Thus, like the 3—D
structure described above, it permits rapid searches to be
performed by the pattern recognition process 304 by index-
ing locations in a memory rather than performing address
link amputations. The structure, like that of FIG. 18A, is
suitable for implementation in hardware, for example, for
implementation to work with the pattern recognition engine
(PRE) 1006 of FIG. 10.

A table 1850, called the protocol table (PI) has an entry
for each protocol known by the monitor 300, and includes
some of the characteristics of each protocol, including a
description of where the field that specifies next protocol
(the child recognition pattern) can be found in the header, the
length of the next protocol field, flags to indicate the header
length and type, and one or more slicer commands, the slicer
can build the key components and hash components for the
packet at this protocol at this layer level.

For any protocol, there also are one or more lockup tables
(LUTs). Thus database 308 for this embodiment also
includes a set of LUTs 1870. Each LUT has 256 entries

indexed by one byte of the child recognition pattern that is
extracted from the next protocol field in the packet. Such a
protocol specification may be several bytes long, and so
several of LUTs 1870 may need to be looked up for any
protocol.

Each LUT’s entry includes a 2-bit “node code" that
indicates the nature of the contents, including its validity.
This node code has one of four values: (1) a “protocol” node
code indicating to the pattern recognition engine 1006 that
almown protocol has been recognized; (2) an “intermediate”
node code, indicating that a midti-byte protocol code has
been partially recognized, thus permitting chaining a series
of LUTs together before; (3) a “terminal” node code indi-
eating that there are no children for the protocol presently
being searched, i.e., the node is a final node in the protocol
tree; (4) a “null” (also called “flush" and “invalid") node
code indicating that there is no valid entry.

In addition to the node code, each LUT entry may include
the next LUT number, the next protocol number (for looking
up the protocol table 1850), the fold of the LUT entry, and
the next fold to expect. Like in the embodiment implement-
ing a compressed form of the 3-D representation, folding is
used to reduce the storage requirements for the set of LUTs.
Since the LUTs 1870 may he sparsely populated, multiple
LUTs may be combined into a single LUT as long as the
individual entries do not conflict with each other. A fold
number is then used to associate each element with its

original LUT.
For a given lockup, the fold number of the lockup must

match the fold number in the lookup table. The expected fold
is obtained from the previous table loolmp (the “next fold to
expect” field). The present implementation uses 5-bits to
describe the fold and thus allows up to 32 tables to be folded
into one table.

10

15

20

30

35

45

50

55

60

65

40

When using the data structure of FIG. 1813, when a packet
arrives at the parser, the virtual base has been pre-pended or
is known. The virtual base entry tells the packet recognition
engine where to find the first child recognition pattern in the
packet. The pattern recognition engine then extracts the
child recognition pattern bytes from the packet and uses
them as an address into the virtual base table (the first LUT).
If the entry looked up in the specified next LUT by this
method matches the expected next fold value specified in the
virtual base entry, the lockup is deemed valid. The node
code is then examined. If it is an intermediate node then the

next table field obtained from the LUT lockup is used as the
most significant bits of the address. The next expected fold
is also extracted from the entry. The pattern recognition
engine 1006 then uses the next byte fiom the child recog-
nition pattern as the for the next LUT lookup.

Thus, the operation of the PRE continues until a terminal
code is found. The next (initially base layer) protocol is
looked up in the protocol table 1850 to provide the PRE
1006 with information on what field in the packet (in input
buffer memory 1008 of parser subsystem 1000) to use for
obtaining the child recognition pattern of the next protocol,
including the size of the field. The child recognition pattern
bytes are fetched from the input buffer memory 1008. The
number of bytes making up the child recognition pattern is
also now known.

The first byte of the protocol code bytes is used as the
lookup in the next LUT. If a LUT lockup results in a node
code indicating a protocol node or a terminal node, the Next
LUT and next expected fold is set, and the “next protocol"
from LUT lockup is used as an index into the protocol table
1850. This provides the instructions to the slicer 1007, and
where in the packet to obtain the field for the next protocol.
Thus, the PRE 1006 continues until it is done processing all
the fields (i.e., the protocols), as indicated by the terminal
node code reached.

Note that when a child recognition pattern is checked
against a table there is always an expected fold. If the
expected fold matches the fold information in the table, it is
used to decide what to do next. If the fold does not match,
the optimizer is finished.

Note also that an alternate embodiment may use different
size LUTs, and then index a LUT by a different amount of
the child recognition pattern.

The present implementation of this embodiment allows
for child recognition patterns of up to four bytes. Child
recognition patterns of more than 4 bytes are regarded as
special cases.

In the preferred embodiment, the database is generated by
the compiler process 310. The compiler process first builds
a single protocol table of all the links between protocols.
Links consist of the connection between parent and child
protocols. Each protocol can have zero or more children. If
a protocol has children, a link is created that consists of the
parent protocol, the child protocol, the child recognition
pattern, and the child recognition pattern size. The compiler
first extracts child recognition patterns that are greater than
two bytes long. Since there are only a few of these, they are
handled separately. Next sub links are created for each link
that has a child recognition pattern size of two.

All the links are then formed into the LUTs of 256 entries.

Optimization is then carried out. The first step in the
optimization is checldng all the tables against all the other
tables to find out which ones can share a table. This process
proceeds the same way as described above for two—
dimensional arrays, but now for the sparse loolnrp tables.

Part of the initialization process (e.g., compiler process
310) loads a slicer instruction database with data items

I : age '64

NOAC Ex. 1018 Page 965

US 6,665,725 B1
41

including of instruction, source address, destination address,
and length. The PRE 1006 When it sends a slicer instruction
sends this instruction as an offset into the slicer instruction
database. The instruction or Op code tells the slicer what to
extract from the incoming packet and where to put it in the
flow signature. Writing into certain fields of the flow signa-
ture automatically generates a hash. The instruction can also
tell the slicer how to determine the connection status of
certain protocols.

Note that alternate embodiments may generate the
pattern, parse and extraction database other than by com—
piling PDL files.

The Compilation Process

The compilation proces 310 is now described in more
detail. This process 310 includes creating the parsing pat-
terns and extractions database 308 that provides the parsing
subsystem 301 with the information needed to parse packets
and extract identifying information, and the state processing
instructions database 326 that provides the state processes
that need to he performed in the state processing operation328.

Input to the compiler includes a set of files that describe
each of the protocols that can occur. These files are in a
convenient protocol description language (PDL) which is a
high level language. PDL is used for specifying new proto-
cols and new levels, including new applications. The PDL is
independent of the ditferent types of packets and protocols
that may be used in the computer networkAset ofPDL files
is used to describe what information is relevant to packets
and packets that need to be decoded. The PDLis further used
to specify state analysis operations. Thus, the parser sub-
system and the analyzer subsystems can adapt and be
adapted to a variety of diiferent kinds of headers, layers, and
components and need to be extracted or evaluated, for
example, in order to build up a unique signature.

There is one file for each packet type and each protocol.
Thus there is a PDL file for Ethernet packets and there is a
PDL file for frame relay packets. The PDL files are compiled
to form one or more databases that enable monitor 300 to

perform ditferent protocol specific operations on a packet
wherein the protocol headers of any protocol are located at
difierent locations depending on the parent protocol or
protocols used in the packet. Thus, the packet monitor adapts
to different protocols according to the contents of the packet.
In particular, the parser subsystem 301 is able to extract
ditferent types of data for different types of packets. For
example, the monitor can know how to interpret a Ethernet
packet, including decoding the header information, and also
how to interpret an frame relay packet, including decoding
the header information.

The set of PDL files, for example, may include a generic
Ethernet packet file. There also is included a PDL file for
each variation Ethernet file, for example, an EEE Ethernet
file.

The PDL file for a protocol provides the information
needed by compilation process 310 to generate the database
308. That database in turn tells the parser subsystem how to
parse and/or extract information, including one or more of
What protocol-specific components of the packet to extract
for the flow signature, how to use the components to build
the flow signature, where in the packet to look for these
components, where to look for any child protocols, and what
child recognition patterns to look for. For some protocols,
the extracted components may include source and destina-
tion addresses, and the PDL file may include the order to use

10

15

20

30

35

45

50

55

60

65

42

these addresses to build the key. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus the PDL file for an Ethernet
packet includes information on how the parsng subsystem
is to extract the source and destination addresses, including
where the locations and sizes of those addresses are. ln a

frame—relay base layer, for example, there are no specific end
point addresses that help to identify the flow better, so for
those type of packets, the PDL file does not include infor-
mation that will cause the parser subsystem to extract the
end-point addreses.

Some protocols also include information on connections.
TCP is an example of such a protocol. Such protocol use
connection identifiers that exist in every packet. The PDL
file for such a protocol includes information about what
those connection identifiers are, Where they are, and what
their length is. In the example of TCP, for example running
over IP, these are port numbers. The PDL file also includes
information about whether or not there are states that apply
to connections and disconnections and what the possible
children are states. So, at each of these levels, the packet
monitor 300 learns more about the packet. The packet
monitor 300 can identify that a particular packet is part of a
particular flow using the connection identifier. Once the flow
is identified, the system can determine the current state and
what states to apply that deal with connections or discon-
nections that exist in the next layer up to these particular
packets.

For the particular PDLused in the preferred embodiment,
a PDL file may include none or more FIELD statement each
defining a specific string of bits or bytes (i.e., a field) in the
packet. A PDL file may further include none or more
GROUP statements each used to tie together several defined
fields. Aset of such tied together fields is called a group. A
PDL file may further include none or more PROTOCOL
statements each defining the order of the fields and groups
within the header of the protocol. A PDL file may further
include none or more FLOW statements each defining a flow
by describing where the address, protocol type, and port
numbers are in a packet. The FLOW statement includes a
description of how children flows of this protocol are
determined using state operations. States associated may
have state operations that may be used for managing and
maintaining new states learned as more packets of a flow are
analyzed.

FIG. 19 shows a set of PDL files for a layering structure
for an Ethernet packet that runs TCP on top of IP. The
contents of these PDL files are attached as an APPENDIX

hereto. Commonpdl (1903) is a file containing the common
protocol definitions, i.e., some field definitions for com-

monly used fields in various network protocols. Flowspdl
(1905) is a file containing general flow definitions. Vutu-
al.pdl (1907) is a PDL file containing the definition for the
VirtualBase layer used. Ethernet.de (1911) is the PDL file
containing the definition for the Ethernet packet. The deci-
sion on Ethertype vs. IEEE type Ethernet file is described
herein. If this is Ethertype, the selection is made from the file
Ethertypepdl (1913). In an alternate embodiment, the Ether-
type selection definition may be in the same Ethernet file
1911. In a typical implementation, PDL files for other
Ethernet types would be included. IP.pdl (1915) is a PDL file
containing the packet definitions for the Internet Protocol.
TCdel (1917) is the PDL file containing the packet defi—
nitions for the Transmission Control Protocol, which in this
case is a transport service for the IP protocol. In addition to
extracting the protocol information the TCP protocol defi-
nition file assists in the process of identification of connec-

-ploh“

NOAC Ex. 1018 Page 966

US 6,665,725 B1
43

tions for the processing of states. In a typical set of files,
there also would be a file UDP.de for the User Datagram
Protocol (UDP) definitions. RPC.pdl (1919) is a PDL file file
containing the packet definitions for Remote Procedure
Calls.

NFS.pdl (1921) is a PDL file containing the packet
definitions for the Network File System. Other PDL files
would typically be included for all the protocols that might
be encountered by monitor 300.

Input to the compilation process 310 is the set of PDLfiles
(e.g., the files of FIG. 19) for all protocols of interest. Input
to process 310 may also include layering information shown
in FIG. 3 as datagram layer selections 338. The layer
selections information describes the layering of the
protocols—what protocol(s) may be on top of any particular
protocols. For example, IP may run over Ethernet, and also
over many other types ofpackets. TCP may run on top of IP.
UDP also may run on top of IP. When no layering informa-
tion is explicitly included, it is inherent; the PDL files
include the children protocols, and this provides the layering
information.

The compiling proces 310 is illustrated in FIG. 20. The
compiler loads the PDL source files into a scratch pad
memory (step 2003) and reviews the files for the correct
syntax (parse step 2005). Once completed, the compiler
creates an intermediate file containing all the parse elements
(step 2007). The intermediate file in a format called “Com-
piled Protocol Language” (CPL). CPL instructions have a
fixed layer format, and include all of the patterns,
extractions, and states required for each layer and for the
entire tree for a layer. The CPL file includes the number of
protocols and the protocol definitions. Aprotocol definition
for each protocol can include one or more of the protocol
name, the protocol ID, a header section, a group identifica-
tion section, sections for any particular layers, announce-
ment sections, a payload section, a children section, and a
states section. The CPL file is then run by the optimizer to
create the final databases that will be used by monitor 300.
It would be clear to those in the art that alternate imple-
mentations of the compilation process 310 may include a
diflerent form of intermediate output, or no intermediate
output at all, directly generating the final database(s).

After the parse elements have been created, the compiler
builds the flow signature elements (step 2009). This creates
the extraction operations in CPL that are required at each
level for each PDL module for the building of the flow
signature (and hash key) and for links between layers
(2009).

“With the flow signature operations complete, the PDL
compiler creates (step 2011) the operations required to
extract the payload elements from each PDL module. These
payload elements are used by states in other PDL modules
at higher layers in the processing.

The last pass is to create the state operations required by
each PDL module. The state operations are complied from
the PDL files and created in CPL form for later use (2013).

The CPL file is now run through an optimizer that
generates the final databases used by monitor 300.

PROTOCOL DEFINITION LANGUAGE (PDL)
REFERENCE GUIDE (VERSION A002)

Included herein is this reference guide (the “guide”) for
the page description language (PDL) which, in one aspect of
the invention, permits the automatic generation of the data-
bases used by the parser and analyzer sub-systems, and also
allows for including new and modified protocols and appli-
cations to the capability of the monitor.

10

15

20

25

30

35

45

50

55

60

65

44
COPYRIGHT NOTICE

Aportion of this of this document included with the patent
contains material which is subject to copyright protection.
The copyright owner (Apptitude, Inc., of San Jose, Calif.,
formerly Technically Elite, Inc.) has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure or this document, as it appears in the
Patent and Trademark Ofiice patent file or records, but
otherwise reserves all copyright rights whatsoever. Copy-
right© 1997—1999 by Apptitude, Inc. (formerly Technically
Elite, Inc.). All Rights Reserved.

1. INTRODUCTION

The inventive protocol Definition language (PDL) is a
special purpose language used to describe network protocols
and all the fields within the protocol headers. Within this
guide, protocol descriptions (PDL files) are referred to as
PDL or rules when there in no risk of confusion with other
types of descriptions.

PDL uses both form and organization similar to the data
structure definition part of the C programming language and
the PERL scripting language. Since PDL was derived fiom
a language used to decode network packet contact, the
authors have mixed the language format with the require-
ments of packet decoding. This results in an expre$ive
language that is very familiar and comfortable for describing
packet content and the details required representing a flow.

1.1 Summary

The PDL is a non-procedural Forth Generation language
(4GL). This means is describes what needs to be done
without describing how to do it. The details of how are
hidden in the compiler and the Compiled Protocol Layout
(CPL) optimization utility.

In addition, it is used to describe network flows by
defining which fields are the address fields, which are the
protocol type fields, etc.

Once a PDL file is written, it is compiled using the
Netscope compiler (nsc), which produces the MeterFlow
database (MeterFlow.db) and the Netscope database
(Netscopedb). The MeterFlow database contains the flow
definitions and the Netscope database contains the protocol
header definitions.

These databases are used by programs like: mtkeys,
which produces flow keys (also called flow signatures);
mfcpl, which produces flow definitions in CPL format;
mfpkts which produces sample packets of all known proto-
cols; and netscope, which decodes SnifferTM and tcpdumpfiles.

1.2 Guide Conventions

The following conventions will be used throughout this
guide:

Small courier typeface indicates C code examples or
function names. Functions are written with parentheses after
them [function 0], variables are written just as their names
[variables], and structure names are written prefixed with
“struct” [struct packet].

Italics indicate a filename (for instance, mworks/base/h/
base.h). Filenames will usually be written relative to the root
directory of the distribution.

Constants are expressed in decimal, unless written
“0x . . . ”, the C language notation for hexadecimal numbers.

Note that any contents on any line in a PDL file following
two hyphen (--) are ignored by the compiler. That is, they arecomments.

NOAC Ex. 1018 Page 967

a.

US 6,665,725 B1
45

2. PROGRAM STRUCIURE

A MeterFlow PDL decodes and flow set is a non-empty
sequence of statements.

There are four basic types of statements or definitions 5
available in MeterFlow PDL:

FIELD,
GROUP,
PROTOCOL and

FLOW. 1°

2.1 Field Definitions

The FIELD definition is used to define a specific string of
bits or bytes in the packet. The FIELD definition has the 15
following format:

Name FIELD

SYNTAX Type [{Enums }]
DISPLAY-HINT “FormatSlring”
LENGTH “Expremion”

FLAGS FieldFlags

ENCAP FieldName [, FieldNameZ]
LOOKUP LookupType [Filename]
ENCODING EncodingType
DEFAULT “Value”

DESCRIPTION “Description”
Where only the FIELD and SYNTAX lines are required.

All the other lines are attribute lines, which define special 30
characteristics about the FIELD. Attribute lines are optional
and may appear in any order. Each of the attnbute lines are
described in detail below:

2.1.1 SYNTAX Type [{Enums}]
This attribute defines the type and, if the type is an INT, 35

BYTESTRING, BITSTRING, or SNMPSEQUENCE type,
the enumerated values for the FIELD. The currently defined
types are: ’

20

 40

LNT(numBils) Integer that is numBits bits long.
UNSIGNED INT(numBits) Unsigned integer that is numBils

bit: long.
BYI'ESIRMG(numBytes) Suing that is numBytes bytes long.
BYTESI'RINGOU . . . R2) String that mgr: in size from 45

R1 to R2 bytes.
BI'I'SIRING(numBirs) String that is nntits bits long.
LSI'RINGOenBytes) String with lenBth header.
Nsr'RrNG Null terminated string.
DNSSIRING DNS encoded string.

SNMPOID SNMP Object Identifier. 50SNMPSEQUENCE SNMP Sequence.
SNMI’I'IMETICKS SNMP TimeTicks.
COMBO fieldl field2 Combination pseudo field.

2.1.2 DISPLAY-HINT “FormatString”
This attribute is for specifying how the value of the 55

FIELD is displayed. The currently supported formats are:

Numx Print as a num byte hexidecimal number. 60
Numd Print as a num byte decimal number.
Numo Print as a num byte octal number.
Numb Print as a num byte binary number.
Numa Print num bytes in ASCII format.
Text Print as ASCII tat.
HCXDJmp Print in hezdump formaL 65_—_—_———————

. ~ m «vau

.54.“.r.’.«- .u' r

. w.m‘” “W ‘mr.
. 5w.mummy-nu ,

46

2.13 LENGTH “Expression”
This attribute defines an expression for determining the

FIELD’s length. Expressions are arithmetic and can refer to
the value of other FlELD’s in the packet by adding a S to the
referenced field’s name. For example, “($tcpHeaderLen‘4)—
20” is a valid expression if tcpHeaderLen is another field
defined for the current packet.
2.1.4 FLAGS FieldFlags

The attribute defines some special flags for a FIELD. The
currently supported FieldFlags are:

SAMELAYER Display field on the same layer as the prevrous field.
NOLABEL Don’t display the field name with the value.
NOSHOW Decode the field but don’t display it.
SWAPPED The integer value is swapped.

2.15 ENCAP FieldName [, FieldNameZ]
This attribute defines how one packet is encapsulated

inside another. Which packet is determined by the value of
the FieldName field. If no packet is found using FieldName
then FieldName2 is tried.

2.1.6 LOOKUP IpokupType [Filename]
This attribute defines how to lookup the name for a

particular FIELD value. The currently supported Lookup-
Types are:

SERVICE Use getservbyport().
HOSI'NAME Use gethoatbyaddr()
MACADDRESS Use $MEIERFlDW/conf/mac2ip.cf.
FILE file Use file to loohrp value.

2.1.7 ENCODING EncodingType
This attribute defines how a FIELD is encoded. Currently,

the only supported Encoding'I‘ype is BER (for Basic Encod-
ing Rules defined by ASN.1).
2.1.8 DEFAULT “value”

This attribute defines the default value to be used for this

field when generating sample packets of this protocol.
2.1.9 DESCRIPTION “Description”

This attribute defines the description of the FIELD. It is
used for informational purposes only.

2.2 Group Definitions

The GROUP definition is used to tie several related

FIELDS together. The GROUP definition has the followingformat:
Name GROUP

LENGTH “Expression”
OPTIONAL “Condition”

SUMMARIZE “Condition”:“FormatString”
[“Condition”: “FormatString” . . .]

DESCRIPTION “Description”

::-{Name-FieldOrGroup [, Name-FieldorGroup . . .]}
Where only the GROUP and ::-lines are required. All the

other lines are attribute lines, which define special charac-
teristics for the GROUP. Attribute lines are optional and may
appear in any order. Each attribute line is described in detail
below:

2.2.1 LENGTH “Expression”

This attribute defines an expression for determining the
GROUP’s length. Expremions are arithmetic and can refer

to the value of other FIEID’s in the packet by adding a $ to
the referenced field’s name. For example,

.. ;~-"f| mu... ‘ ‘--‘s -...n~.._~
- 3 ‘~ fiznwrw-vu.

NOAC Ex. 1018 Page 968

US 6,665,725 B1
47

“(StcpHeaderIen*4)—20” is a valid expression if tcpHead—
erLen is another field defined for the current packet.
2.2.2 OPTIONAL “Condition”

This attribute defines a condition for determining whether Weld
a GROUP is present or not. Valid conditions are defined in 5 s‘field
the Conditions section below.

[“Condition”:“FormatString” . . .]..,New...»
are defined in the Conditions section below. Any FIELD’

48

continued

$:field Displays the field value (in raw format).Counts all oururrences of field
Lists all occurrences of field.
\

2.2.3 SUMMARIZE “Condition’”“FormatString” 2.3.2 DESCRIPTION “Description”
This attribute defines the description of the PROTOCOL.This attribute defines how a GROUP will be displayed in ,0 It is used for informational purposes only.Detail mode. A different format (FormatString) can be 23-3 REFERENCE “Reference”

specified for each condition (Condition). Valid conditions
This attribute defines the reference material used to deter-

s mine the protocol format. It is used for informational pur-value can be referenced within the FormatString by pro- P0565 0111)”
ceeding the FIELD’s name with a S. In addition to FIELD
names there are several other special 3 keywords: 15 2.3.4 ::={Name=FieldOrGroup [,

NamenFieldOrGroup . . .]}
This defines the order of the FIELDS and GROUPs withinthe PROTOCOL.

SLAYER
Displays the mnent protein] layer.

SGROUP Displays the entire GROUP as a table.
SIABEL Display: the GROUP label.
Sfield Displays the field Vllue (use

enumerated name if available).
Szfield Display: the field value (in raw format).

2.2.4 DESCRIPITION “Description”
This attribute defines the description of the GROUP. It is

used for informational purposes only.

2.2.5 ::-{Name-Field0rGroup [,
Name=Field0rGroup . . .]}

This defines the order of the fields and subgroups within

20 2.4 FLOW Definitions

The FLOW definition is used to define a network flow by
describing where the addres, protocol type, and port num-
bers are in a packet. The FLOW definition has the followingformat:

25 Name FLOW

HEADER {Option [, Option . . .]}
DLC-LAYER {Option [, Option . . .]}
NET-LAYER {OpLion [, Option . . .]}

30 CONNECIION {Option [, Option . . .]}
PAYLOAD {Option [, Option . . .]}the GROUP- CHILDREN {Option [, Option . . .]}

. . STATE-BASED

2.3 PROTOCOL Definitions 35 STATES “Definitions”
The PROTOCOL definition is used to define the order of Where only.the 1:qu hne 15 required. All the 01.11" hnesthe FIELDS and GROUPS within the protocol header. The

PROTOCOL definition has the following format:
Name PROTOCOL

SUMMARIZE “Condition”:“FormatString”] “Condition—
”:“FormatString” . . .]

DESCRIPTION “Description”
REFERENCE “Reference”

::={Name-=FieldOrGroup [, Name-FieldOrGroup . . .]}
Where only the PROTOCOL and ::=lines are required. All

the other lines are attribute lines, which define special
characteristics for the PROTOCOL. Attribute lines are
optional and may appear in any order. Each attribute line is
described in detail below:

2.3.1 SUMMARIZE “Condition”:“FormatString”
[“Condition”:“FormatString”. . .]

This attribute defines how a PROTOCOL will be dis-
played in Summary mode. Adifierent format (FormatStrirlg

ditions are defined 11] the Conditions section below. Any
FIELD’s value can be referenced within the FormatString by
proceeding the FIELD’S name with a 3. In addition to
FIELD names there are several other special 3 keywords:

$LAYER
Displays the current protoml layer.

SVARBIND Display: the entire SNMP VarBind list.
Sfield Displays the field value (use

enumerated name if available).

)55

2.4.1 HEADER {Option [, Option . . .]}
This attribute is used to describe the length of the protocol

header. The currently supported Options are:

LENGTH - number
Header is a fixed length of size number.

45

LENGTH - field Header is variable length determinedby value of field.

IN—WORDS The units of the header length are
50 in 32~bit words rather than bytes.
\

2.4.2 DLC-LAYER {Option [, Option . . .]}
If the protocol is a data link layer protocol, this attribute

describes it. The currently supponed Options are:

DESTINATION = field
Indians which field is the DISdestination addrms.

SOURCE = field Indians which field is the DIS
60 source address

PROTOCOL Indians this is a data linklayer protocol.

TUNNELING Indians this is n tunneling protocol.
\

65 2.43 NET-LAYER {Option [, Option . . .]}
If the protocol is a network layer protocol, then this

attribute describes it. The currently supported OptionS are:

iIt..

fir.,

NOAC Ex. 1018 Page 969

US 6,665,725 B1

49

DESTINATION - field lndimtes which field is the
network destination address.

SOURCE = field Indimtes which field is the
network source address.

TUNNEJJNG Indimtes this is a tunneling protocoL
FRAGMB‘I‘TATION = type Indimtes this protocol lupports

fragmentation. There are currently
two fragmentation types: H’V4 andIPV6.

2.4.4 CONNECTION {Option [, Option . . .]}
If the protocol is a connection-oriented protocol, then this

attribute describes how connections are established and torn
down. The currently supported Options are:

IDENTIFIER - field Indicates the connection
identifier field.

CONNECPSFARF - “flag” Indicates when a connection
is being initiated.

CONNECT-WWW = “flag” Indimtes when a connection
has been established.

DISCONN'ECF—STARI‘ = “flag” Initiates when a connection
is being torn down.

DISCONN'ECF—COMPLEI'E - “flag” Indicates when a connection
has been torn down.

INHERITED Indicates this is a
connectiotboriented protocol
but the parent protocol iswhere the connection is
established.

2.45 PAYLOAD {Option [, Option . . .]}
This attribute describes how much of the payload from a

packet of this type should be stored for later use during
analysis. The currently supported Options are:

INCLUDE—HEADER Indicates that the protocol headershould be included.
LENGTH -= number Indicates how many bytes of the payloadshould be stored.

DATA :- field Indimtes which field contains the payload.

2.4.6 CHILDREN {Option [, Option . . .]}
This attribute describes how children protocols are deter-

mined. The currently supported Options are:

DESTINATION = field Indicates which field is the destination port
SOURCE = field Indicates which field is the source port.LLCCHECK = flow Indimtes that if the DESTINATION field

is less than 0 x OSDC then use flow
instead of the current flow definition.———————-—_——_____

2.4.7 STATE-BASED

This attribute indicates that the flow is a state—based flow.
2.4.8 STATES “Definitions”

This attribute describes how children flows of this pro-
tocol are determined using states. See the State Definitions
section below for how these states are defined.

25 CONDITIONS

Conditions are used with the OPTIONAL and SUMMA-

RIZE attributes and may consist of the following:

10

15

20

30

35

45

50

55

60

65

50

Valuel — ValueZ Valuel equals Valuel.
Works with string values.

Valuel l= Valuel Value] does not equal Valuel.
Works with string values.

Valuel <2 Valuel Valuel is less than or equal to ValneZ.
Valuel >- ValueZ Valuel is greater than or equal to ValuelValuel < Value2 Valuel is less than Valuel.
Valuel > Valuel Value] is greater than Valuel.
Field xxx/regal Field matches the regular expression regex.————_—__—___

Where Valuel and ValueZ can be either FIELD references

(field names preceded by a S) or constant values. Note that
compound conditional statements (using AND and OR) are
not currently supported.

2.6 STATE DEFINITIONS

Many applications running over data networks utilize
complex methods of classifying traffic through the use of
multiple states. State definitions are used for managing and
maintaining learned states from traffic derived from the
network.

The basic format of a state definition is:

StateName: Operand Parameters [Operand
Parameters . . .]

The various states of a particular flow are described using
the following operands:

2.6.1 CHECKCONNECI‘, Operand

Checks for connection. Once connected executes oper-and.

2.6.2 GOTO State

Goes to state, using the current packet.
2.63 NEXT State

Goes to state, using the next packet.
2.6.4 DEFAULT Operand

Executes operand when all other operands fail.
2.6.5 CHILD Protocol

Jump to child protocol and perform state-based proces-
ing (if any) in the child.

2.6.6 WAIT Numpackets, Operandl, Operandl

Waits the specified number ofpackets. Executes operandl
when the specified number of packets have been received.
Executes operand2 when a packet is received but it is less
than the number of specified packets.

2.6.7 MATCH ‘String’ Weight Offset LF-oifset Range
LF-range, Operand

Searches for a string in the packet, executes operand iffound.

2.6.8 CONSTANT Number Offset Range, Operand

Checks for a constant in a packet, executes operand iffound.

2.6.9 EXTRACTIP Ofiset Destination, Operand
Extracts an IP address from the packet and then executes

operand.

2.6.10 EXTRACI'PORT Oflset Destination, Operand
Extracts a port number from the packet and then executes

operand.

2.6.11 CREATEREDIRECTEDFLOW, Operand

Creates a redirected flow and then executes operand.

NOAC Ex. 1018 Page 970

US 6,665,725 B1

51
3. EXAMPLE PDL RULES

1118 following section contains several examples of PDI,
Rule files.

3.1 Ethernet

The following is an example of the PDL for Ethernet:

MacAddress m1)
SYNTAX BY'I'ESI'RING (6)DISPLAY—HINT “11:"
LOOKUP MAC‘ADDRESS
DESCRIPTION

“MAC layer phyliml address”
etheflype FIELD

SYN'I‘J’DK INTCI 6)
DISPLAY—HINT "11:"
lDOKUP FILE “Ether'flpcct”
DESCRIPTION

“Ethernet type field”etherDau FIELD
SYNTAX BY'I‘ESI‘RING(46..1500)
ENChP cthnr'l‘ype
DISPLAY—HINT “HexDump”
DESCRIPTION

“Ethernet data"
cthemet PROTOCDL

DESCRIPTION
“Protocol for-met for In Ethernet frame”

REFERENCE “RFC 894”
::- { MacDeat-macAddresu, MaeSro-macAddxese, Ether'I‘ype-ethcr’lypc,

Data-ethezDala }ethemet FLOW
HEADER { IENGTI'I-M)
DLC—LAYER {

SOURCE—MacStc,
DESTINATION=MacDesg
TUNNELING,
PROTOCOL

}
CHILDREN { DESI‘INA'I‘IONsEthei’I‘ype,
IlC-CIIECK=IIC }

3.2 IP Version 4

Here is an example of the PDL for the IP protocol:

tpAddms mam
SYNTAX BY'I‘ESI‘RING(4)DISPLAY-HINT “1d.”
IDOKUP HOS'INAME
DESCRIPTION

“IP address"
ipvusion MED

SYNTAX INT(4)DEFAUILI' “4”
ipHcaderlength FIELD

SYNTAX INT“)
ip'I‘ypeOEervice FRED)

SYNTAX BI’I‘S’I’RING(8) { minCostCl),
manelinbiliry(2),
mnx’l‘hruput(3),
minDelay(4) }

iplength FIELD
SYNTAX UNSIGNED INTGG)

ipFlags FIELD
SYNTAX BITSI'RINGG) { morcFrags(0),

dontFragU) }
IpFragmcntOfi'set HEID

SYNTAX IN'II13)
ipProtocol FIELD

SYNTAX INKS)
LOOICUP FILE "IpProtocol.ct”

10

15

20

30

35

45

50

SS

60

65

52

continued

ipData FIELD
SYNTAX BYTESI'RING(0..1500)
ENCAP ipProtocoI
DISPLAYIIINT “HexDump”

ip PROTOCOLSUMMARIZE
“SFmgmcntOEsct 1= 0"

“[pFragmcnt ID=$Identification OtisctsSFmgmenwflket"“Default” I
“IP Protocul=$Protocol"

DESCRIPTION
“Protocol format for the Internet Protocol"

REFERENCE “RFC 791”
::= { Vetsion=ipVersion, Huderlength=iplleaderlfingth,

'I‘ypeOfService=ipTypeOIScrviee, Length=iplengtb,
IdentifimtionsUIntl 6, IpHaghipFIngs,
Fragmentoflsct=ipFragmentOEset, 'I'tmeTuIive=[nt8,
Pmtoool-ipProtocol, Checksum-ByteStrZ,
IpSrmipAddrcu, IpDeat=ipAddmas, Options=ip0ption3,
Fmgmcno-ipFragment, Dam-ipDnta }

ip FLOW
HEADER { LENGTH-IIeadcrLength, IN—WORDS }
NET-MYER {

SOURCE-IpSrc,
DES'I‘INATIONSIpDeSt,
FRAGMENTATION=IPV4,
TUNNELING

}
CHILDREN { DESI‘INA’I‘IONsProtocoI }

ipanData FEED
SYNTAX BYTESI'RING(1..1500)
LENGTH “ipLeugth — ipHcaderLength ’ 4”
DISPLAY~HINF “HexDump”

imegment GROUP
OPTIONAL “SanmentOtfset != 0“

:.= {Data=ipanData }
ipOptionCodc FIELD

SYNTAX INT(8) { ipRRGIXO'T), ipTimcstamp(0x44),
ipLSRR(0x83),
ipSSRR(Dx89))DESCRIPTION

“I? option code"
ipOptiunlAngth FIEID

SYNTAX UNSIGN'ED NT(8)DESCRIPTION
“Length of IP option"

ipOptionDam FIELD
SYNTAX BYTESTRING(0.JSDO)
ENCAP ipOptionCode
DISPLAY-HINT “chDump”

ipOpl‘lum GROUP
LENGTH “(ipHeaderLength “ 4) - 20"

:2: { Code=ip0pfionCode, Length=ip0ptionLengtb, Pninter=UInt8,
Dau=ip0ptionDam }

33 TCP

Here is an example of the PDL for the TCP protocol:

pron FIELD
SYNTAX UNSIGNE) IN'I‘(16)
LOOKUP FILE 'TcpPorch"

pruderLen FIELD
SYNTAX INT“)

thFlags FIELD
SYNTAX BI'ISTRINGUZ) { fin(0), syn(1), rst(2), psl:(3),

“144), 111w) I
tchatn FIELD

SYNTAX BYTESTRING(0..1564)
LENGTH “ (Siplength— ($ijcaderLength'4» —
(StcpI-IenderLeu’ll) "
ENCAI’ LCPPO“
DISPIAY—HINT “HexDump”

th PROTOCOL

' a N» I ‘ww’m‘rh’:
‘ \. ”a ‘v' _ I. . - J aLIA-m“ a" " 3‘ 3"” {33‘ ' I

NOAC Ex. 1018 Page 971

. US 6,665,725 B1

—conlinucd -conlinucd

SUMDcMAfngIZE Si: WAIT 2, GUIO S2, NEXI $1“ a ’ DEFAULT NEXT so
"It? ACK=$Ack WIN:$WquoWsze" 5 52: MATCH

DESCRIPTION ‘\u\l\n’ 900 0 0 255 0, NEXT 53

Rggigiééoxmat for Il’.3:eCT;1§1:1;smission Conlml Protocol” ‘\n\n' 900 0 0 35 0, NEXT 53“ " ‘POSI‘ llds?’ 50 0 0 127 1,
::= { chPon=lcpPon, DcsLPon=tcpPorg SequenceNum=UInl32, CHILD lybascWebsql

Ack=ULnBL Hudexl‘cngmdcpflcadcflxn, Tcpfiagsdcpflags, ‘.th HTI'P/LO’ 50 4 0 127 1,
WindowSizerIntl 6, Chacksum=BytcSIIZ 10 CHILD sybasddbc

gigocntPoinlchUImlé, Optiom=tcp0pfiom, Dam=tchata } ‘jdbczsybaseszs’ 50 4 0 127 1,mp W CHILD :ybaschs

mmNNDIéléIg015NN{Gm=Huduunth, IN-WORDS } ‘PCNII'hc Poin’ 500 4 :1 255 0,CHILD Luann

mmrIFIER=chucnchum, ‘z: BW—C—’ 100 4 1 Piss 0,
(DNNECI‘SI‘ARI‘=“Tchlag::1”, 15 (EDD backweb
mNNECF-COMPLEFE='I‘q3FIags:4", DEFAULT NEXT 53
DIS(DNNECI‘-S'FARI‘="I‘cpf-'lngn:0", L3: MATCH

} DXSCONNECF—COMP]EFE—“l‘chlngs:4” ‘\n\x\n' 50 0 o 0 0, Nam" 53‘\n\n' 5000 00,NEXT53
; PAYLOAD { INCLUDE-HEADER } ‘Conmnt-Iypea 300 o o 255 o,
. CHIIDREN { DESI'INA'I'ION=-DestPon, SOITRCB—SIcPon } G-HLD mime

(chpfionKind FIELD 2° ‘PCN—Thc Poin' 500 4 1 7.55 0,
SYNTAX UNSIGNED INT(8) { lchptEnd(0), CHILD poinlusl
:cpNopa), ‘z: BW—C—' 100 4 1 7.55 o,

lcpMSS(2), Maw-mice), tcp'fimestamfi4)) GflJJ) backwebDESCRIPTION DEFAUlII‘ NBKT SO"

'I‘ypc of TCP option” 75 sybanchbsql FLOWlchpIionDamFlELD STATE-BASED
SYNI‘AX BYX‘ESFRING(0..1500) sybmmbc FLOW
ENCAP ltpOplionKind STATE-BASED
FLAGS SAMELAYER lybuers FLOW

* DISPLAY—m “Hszump” STATEBASED
z tchplions GROUP pointmst FLOW
(LENGTH “(stcpH-muu - 4) — 20" 30 STATE-BASED

::= { OplionstchplionKind, OpLionJAmgthflJIntB, backwcb FLOW
Opu'nmamstqopfiounau } STATE-BASED

chMSS PROIDCOL mime. FLOW
2:: { WSeg-mcntsizcdflnflé } STATE-BASEDSTATES

35 “ so: MATCH
‘applicnlion’ 900 0 0 1 0,

3.4 H11? (With State) CHM) mimeApPfiu-ficm‘nudio' 900 D 0 1 0,

Here is an example of me. PDL for the HTTP protocol: ,. , amp mmu‘mImage 50 0 0 1 0,
40 CHILD mimelmngc‘mxt’ 50 o 0 1 o,

CHDJ') mimeTcxt

“PD“ HELD ‘video' 50 o o 1 o,
SYNTAX BYTESTRINGOAISOO) CHILD mimeVideo

LENGTH Eésiplmgth - (SipHiadaungth ’ 4)) — ‘x-wmld’ 5m 4 1 35 0IcpHeachLen ‘ 4 ” . ’
‘ DISPLAY-HINT ”rm” 45 ,, CHILD mmchwoxldFLAGS NOLABEL DEFAULT 6.0“) so

hltp PRUI‘OwL mmlApphcalmn FIDW
SUMMARLZE . . _ _ “m‘BASED

“Shtt‘pData ml Gm Hml‘mnrposrr': muncAudm FLOW
.m synpDau”_ . STATE-BASED

“ShttpDala ml [Ddhcl [Sskn'cri [Ll]ast— 50 STATES
[Mmbdjficdf’ : “SO: MATCH

“H'I'I'P synppaza" ‘hasic' 100 o o 1 o,

a "Shu‘EData ughEthGafnt-f' : d CH.[10.D deasicAudioH'I'I‘P _ ‘mi 1' 100 0 1 o,
ShnpDnm ml <HTML>I" : CHILD deidi

Sh 3:”? [WOWMII’ 55 ‘mpeg' 100 o o 1 o,ttp“ m ml 6H7]: . , CHILD depegZAudio
“mag? [GIF mast] ‘vndm—malaudio’ 100 o 0 1 o,

‘H'I'llP [DntnT GILLD deealAudio‘wav' 100 0 0 1 0
DESCRIPTION HELD ’

“Protocol furmat for HT 1?.” . . deav
::— { DaushttpDala } 60 x—ufi" 100 0 0 1 0,-
mp FLOW . _ CHILD pdAuI
HEADER { LENGTH=O } “'m‘d" 1°“ ° ° 1 0:

f CONNECI‘ION { mm } d-lILD PMidi
~ PAYLOAD { INCLUDE-HEADER, DATA=Daza, LENGTH=256 } ‘HIWS' 10° 0 ° 1 0: :

STATES CHILD depegZAudio i
“so: CHECKCONNECI‘, 6010 51 65 ‘x-mpgurl' 100 0 0 1 0, 1iDEFAULT NEKT SO CHILD depeg3Audio

9
Ia

NOAC Ex. 1018 Page 972

US 6,665,725 B1

55

-oontinued

‘x»pn—realaudio‘ 100 0 0 1 0,
CHILD deealAudio

‘x—wav’ 100 0 0 1 0,
CHILD deavDEFAULT 6010 SO"

mimelrnlgc FLOW
SI‘ATE»BASED

michext FLOW
SI‘ATE»BASED

mimeVixleo FLOW
“KPH-BASED

michworId FLOW
STATE-BASED

deasioAudio FLOW
STATE-BASED

deidi FLOW
STATE-BASED

depegZAudio FLOWSIRE-BASED
depegSAudio FLOWSI‘A’I‘E-BASED
deealAudio FLOWSI‘ATEBASED
deav FLOW

SFA'I'E‘BASED
pdAifi FIDWSTATE-BASED

Embodiments of the present invention automatically gen-
erate flow signatures with the necessary recognition patterns
and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen-
erating state transitions to search for. Applications and
protocols, at any level, are recognized through state analysis
of sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of

10

15

20

30

56

devices, including network appliances such as telephones,
“lntemet” radios, pagers, and so forth. The term computer as
used herein encompasses all such devices and a computer
network as used herein includes networks of such comput—ers.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary sldll in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true spirit and scope of the
present invention.

APPENDIX: SOME PDL FILES

The following pages include some PDL files as examples.
Included herein are the PDL contents of the following files.
A reference to PDL is also included herein. Note that any
contents on any line following two hyphen (—-) are ignored
by the compiler. That is, they are comments.

commonpdl;
flows.pdl;
virtual.pdl;
ethernet.pdl;
IEEF8032.pdl and IEEE8033.pdl (ethertype files);
IP.pdl;
TCP.pdl and UDP.pdl;
RPC.pdl;
NFS.pdl,' and
H'I'I'del.

lI

tllll
1

Copyright:

Description:
This file contains some field definitions for commonly uled fields
in various network protocols.

Common.de — Common protocol definitions

-— Copyright (c) 1996—1999 Appfitude, Inc.
—— (formerly Technically Elite, Inc.)
— All rights reserved.

—- RC5:
-— 51d: Commonpdly 1.7 1999/04/13 15:47-56 skip F14; S

1114 FIELD
SYNTAX lNT(4)Int8 FIELD
SYNTAX INT(8)

Int16 FIELD
SYNTAX INF(16)lnIlA FIELD
SYNTAX [NI‘(24)

InL32 FIELD
SYNTAX INT(32)lm64 FIELD
SYNTAX “(64)UIntB FIELD
SYNI‘AX UNSIGNH) INI‘(8)

UInth FIELD
SYNTAX UNSIGNE) INT(16)

UInL24 FIELD
SYNTAX UNSIGNED INT(24)

UInt32 FIELD

.u», «‘1' 15' t-
19 wva.w» ‘

NOAC Ex. 1018 Page 973

’ US 6,665,725 B1

57 58

—cominucd
M

Sme UNSIGNED mm)11111164 FIELD

SYNTAX UNSIGNED INT(64)SInLl6 FIELD
SYNrAx INT(16)FLAGS SWAPPED

sums FIELD

SYNTAX UNSIGNED mm6)FLAGS SWAPPED
SInI32 FIELD

SYNrAX INT(32)
FLAGS SWAPPED

BytcStr] FIELD
SYNTAX BY’I‘ESI'RING(1)

BytcStrZ FIELD
SYNTAX BYTES'mrNGa)

BytcStr4 FIELD
SYNDAX BY’I‘ESI‘RING(4)m1 HELD
SYNTAX BYTESI‘RING(1)FLAGS NOSHOW

PndZ FEED
SYNTAX BYTESI‘RING(2)HAGS NOSHOW

Pad3 FIELD
SYNTAX BYTESI‘RING(3)FLAGS NOSHOW

Pnd4 FIELD
SYNTAX BYTESI'RING(4)HAGS NOSHOW

PIdS FIELD
SYNTAX BYI'ESI’RNCKS)FLAGS NOSHOW

macAddIcss FIELD
SYNTAX BYTESTRING(6)DISPLAY-HINT “1m”
LOOKUP MACADDRFSS
DESCRIPTION

“MAC layer physiml lddrcss”
ipAddrms FIELD

SYNTAX BYTESI‘RING(4)DISPLAY—HINT “1d.”
LOOKU'P HOSI‘NAME
DESCRIPTION

“I? address"
ipv6Addrcss HELD

SYNTAX BYIESTRINGO 6)DISPLAY-HINT “1d."
DESCRH’I'ION

“IPVG Iddxess"

-— Flows.de - General FLOW definitions

— Desu'iplion:
— This file contains gcnnnl flow definitions.

— Copyright:
-- Copyright (c) 1998—1999 Apptimdc, Inc.
—- (fomcfly chhnimlly Elite, Inc.)
— All rights rcservcvi

—— RCS:

~ 51d: Flows.pdl,v 1.12 1999/04113 15:47:57 Afip Exp 5

chnoanet FLOW
spannLngTrce FLOW
mu FLOW
oncleTNS FLOW

PAYLOAD { INCLUDE-HEADER, IENGTH=256 } }ciscoOUI FIDW

— IP Protocols

igmp FIDW
GGP FIDW
SI‘ FIDW
UCL FLOW

NOAC Ex. 1018 Page 974

US 6,665,725 B1

59 60
continued

egp FLOW
igp FLOW
BBN—RCC—MON FLOW
NVP2 FLOW
PUP FLOW
ARGUS FLOW
EMCON FLOW
XNFI‘ FLOW
MUX FLOW
DCN~MEAS FLOW
HMP FLOW
PRM FLOW
TRUNK] FLOW
TRUNKz FLOW
LEAFI FLOW
LEAFZ FLOW
RDP FLOW
IRI‘P FLOW
150nm FLOW
NEI'BLT FLOW

MFE»NSP FLOW ,MERITJNP FLOW K ‘SEP FLOW 'ch FLOW
IDPR FLOW
m FLOW
DDP FLOW
IDPR~CMTP FLOW
'I'PPlus FLOW
LL FLOW
SIP FLOW
SDRP FIOW
SIP-SR HOW
SIP-FRAG FLOW
IDRP FIOW
RSVP HOW
MHRP HOW
BNA FIOW
SIPP-ESP FLOW
SIPP—AH FIDW
INLSP FIOW
SWIPE HOW
NHRP FLOW
CFI‘P HOW
SA'IIEXPAK HOW
ICRYFIDLAN HOW
RVD FLOW
[PFC FLOW
SA'IIMON HOW
VISA FLOW
[PCV HOW
CPNX FLOW
CPHB FLOW
WSN FLOW
va FLOW
BR~SAT~MON FLOW
SUN-ND FLOW
WB—MON FLOW
WB—EM’AK FLOW
ISO-1P FLOW
VM’I‘P FLOW
SECURE—VMI‘L’ FLOW
m FLOW
NSFN'ET—[GP FLOW
DGP FLOW

TCF FLOW .IGRP FLOW IIOSPFIGP FLOW ESprite-RFC FLOW ;
LARP FLOW
MT? FLOW
szs FLOW
LFIF FLOW
MICP FLOW
scesr FLOW
EIHERIP FLOW
enap FLOW
GMl‘P FLOW
N

W 1...» w, A.»
.. u. m) . ~ ”4‘ \“ mcwwu'vv‘u h"

NOAC Ex. 1018 Page 975

US 6,665,725 B1

61 62

mnlinued

—~ UDP Protocols
compxcssnez FLOW
xje FLOWwho FLOW
dismrd FLOW
lyslat FLOW
daytime FLOW
qohd FLOW
msp FLOW
chalgcu FLOW
biflf FLOW
who FLOW 5
syslog FLOW ‘loadav FLOW
notify FLOW
acmainLdbd FLOW
acmninl__unnsd FLOW
Impurp now
applix FLOWoak FLOW

~ TCP Protocols

Icpmux FLOWmlnct FLOW
CONNECTION { INHERH‘ED }

privMail FLOWnsw—fc FLOW
mg-icp FLOW
msg—auth FLOW
05p FLOW
privPrinL FLOWtime, FLOW
mp FLOW
rip FLOW
gmphics FLOWnamcscrvcr FLOW
nicmme FLOW
mpm-flags FLOW
mpm FLOW
mpmdnd FLOW
ni-np nownudihd FLOW
finger FLOW
xe—mail-ck FLOW
Ln-maint FLOW
mfime FLOW
ms~cb FLOW
iii-g1 FLOW
Ins—auth FLOW
privTerm FLOWm~mail FLOW
pdvFil: FLOW
xii—mail FLOW
ans FLOW
covia FLOW
Quads FLOW
sqLuet FLOW
gopher FLOW
ncujs~1 FLOW
nctxjs-Z FLOW
nchjs-3 FLOW
unis-4 FLOW
privaL FLOWduos FLOW
privRJ'E FLOW
vcttcp FLOWthsl—na FLOW
xfcr FLOW
clf FLOW
mit—ml-dev FLOW
mfcobol FLOW
kerbuos FLOW
lu-mng nowdmix FLOW
mil—dov FLOW
npp FLOW
dcp wow
(:13qu FLOW

I 18 Page 975

NOAC Ex. 1018 Page 976

. US 6,665,725 B1

63 64

continued

supdup HOWdilde HOW
swift-Ni FLOW
mcncws HOW
melagmm FLOWncwmxt HOW
hosmam: FLOW
iso—Lsap FLOW
gppilup HOWcsnct—ns FLOW
thccCum-tsmux
{telnet FLOW
snagas FLOW
mu'das FLOW
aulh HOW
audioncws HOW
:pr FLOW
unsanotify FLOW
ump—palh HOW
sqlserv FLOW
cfdptln HOW
crpc FLOW
smakyncl FLOW
nip HOW
msalmdcr FLOW
locus—map FLOW
unitary FLOWLocus-con HOW
gss-xliccn FLOW
pwdgen FLOW
dsco—fin FLOW
dsco—ma HOW
cisco-sys HOWstalsrv FLOW
ingrcs—nct FLOWIoc—srv FLOW
profile HOWcmfisdata FLOW
cmfls-cnfl FLOW
bl—idm FLOW
im1p2 FLOWnew: FLOW
um: FLOW
iso- FLOW
iso—ip FLOWcronus HOW
ted-512 FLOW
sql-net HOWhams HOW
bflp FLOW
sgmp FLOW
nuke—prod FLOWnelsc—dcv HOW
sqlsrv HOW
knet—cmp FLOW
pcmail—srv HOW
lass—muting FLOW
:gmp—traps FLOW
cmip—man FLOW
quip-agent HOWxns-oouricr HOW
I—neL FLOW
namp FLOWrsvd FLOW
send FLOW
prim~srv HOW
multiplex FLOWcl~1 FLOW
xyplcx—mux HOW
mailq FLOW
vmnet HOW
gcnmd—mux FLOW
xdmcp FLOW
nexlslcp HOW
bgp HOWfis HOW
unify FLOWnudu FLOW
ocbinder FLOW

FLOW

NOAC Ex. 1018 Page 977

US 6,665,725 B1

65 66

continued

oscrvcr FLOW
remo le—kis FLOW
Us FLOW
aci FLOW
mumps HOW
qfl. FLOW
gasp FLOW
pmspcm FLOWosu~nms FLOW
srmp FLOWixc FLOW
dn6-nlm—aud FLOW
dnS-smxn-md FLOW

dis FLOW
dirmon FLOW
amux FLOW
arc FLOW .
at—mnp FLOW
at—nbp FLOWn93 FLOW
tat—echo FLOW
«ms FLOW
at—zis FLOW
at—7 FLOW
31-8 FLOW
ram FLOW
13960 FLOW
met FLOW
vmpwsu FLOW
soflpc FLOW
:LLs FLOW
dbase FLOW
mpp FLOW
“ups FLOW
imap3 FLOW
fin—5px FLOW
[sh-5px FLOWalt: FLOW
sur—mcas FLOW
link FLOW
dsp3270 FLOW
pdap FLOW
pawsetv FLOWnew FLOW
fatscrv FLOW
ui—sgwp FLOWclcaxcase FLOW
ulkmew FLOW
Icgent-l FLOW
chcnt-Z FLOW
hassle FIOW
nip FLOWmETOS FLOW
daE‘IOS FLOW
is99c FLOW
£995 FLOW
hp—colleckox FLOW
hp—managcd—nodc FLOW
hp-alarm—mg FLOWurns HOW
ibm—app FLOWnsa FLOW
amp FLOW
unidnta—ldm FLOW
ldap FLOW
uis FLOW
synodcs-rclny FLOW
synolzics~bmkcr FLOW
dis FLOW
cmbl—nd: FLOW
nctcp FLOW
netwam-ip FLOW
mpm FLOW
kryptolan FLOWwork—sol FLOW
ups FLOW
genie FLOW
deep FLOW
need FLOW

NOAC Ex. 1018 Page 978

US 6,665,725 B1

67 68

-conlinucdM
ncld MW
imsp FLOW
limbukru FLOW
pnn-sm FLOW
pnn-nm FLOW
dedadebug FLOW{ml FIDW
synopfiu‘kap FLOW
smsp FIDW
infoseck FLJOW
butt FLOW
silvcrplattcr FIDWnnmux FLOW
hypcr-g FLOW
mic Ll FLOW
smptc FLOW
11'1ch FLOW
ancB FLOW
opc-job-sum FLOW
opc—job~tmck FLOW
ind-cl FLOW
smartsdp FLOWmloc FLOW
os_gmu FIDW
ocs_amu FLOW
uunpsd Flow
uunpcd FlDWizsd FLOW
nnsp FLOW
mobilcip-agcui FLOW
mobilip—mn FLOW
dim-cm! FLOW
comscm FLOW
dnfgw mow
dasp FLOW
sgcp FLOW
dccvms—lysmgt FIDW
cvc.hosrd FIDW
mp5 FLOW

supp CONNECTION { INHERITED }FlDW
micmsofi-ds FIDW
ddm-Idb
ddm—dfm
ddm—byte

FlDW
FIDW
FLOW

u-scrvennnp FLOWtscrvcr
CI“:

login
cmd

printm-

talk

ntalk

u Lime
cfs
timed
mmpo
comic r
conference
ncmcws
new-all
Ipcrnqup
uucp
uucp~rlogin
kloginlube“
ncw~rwho
dsf
mmomfs
monitor
monitur
chshcll
p9fs

FLOW
mw

OONNECTION{ mummy) }FLOW

CONNECTION { mmn }now

CONNECTION { mmn }mow

CONNECI‘ION{ INHERI'IED }FLOW

mNNECI‘ION{ INHERHED }FLOW

CONNECTION { INHERI’I‘ED }me
FLOW
now
now

wow
wow
mow
now
now

now
now

now
FLOW

now
now

now
mow
now
now

now

NOAC Ex. 1018 Page 979

' US 6,665,725 B1

69 70

continued
Mwhoami HOW
meter HOW
ipcsexver HOW
um: HOW
nqs HOW
sm‘ufl FLOW
npmp—tmp FLOW
npmp-loml HOW
npn'ip—gui HOW
gimd FLOW
doom FIOW
mdqs FIOW
clad HOW
entmstmanager HOW
netviewdm] FLOW
netvicwdml FLOW
netviewde FIOW
netgw HOW
new: HOW
flexlm FLOW
fujitsu—dev HOW
ris—cm HOW
kerbems—adm HOW
rfile FLOW
pump HOW
qrh mow
rrh HOW
tell HOW
nlogin HOW
can FIOW
ns HOW

Ixe HOW ‘
quotad HOW ‘
cyclcselv HOW ;omsetv FLOW '
Webster mow ‘
phonebook wow ivid FLOW ‘
mdlock HOW lmp FIOW Icydcseiv2 HOW
Iuhmit FIOW
rpauwd HOW
entomb HOW
wpages HOW
wpgs FLOW
Concert HOW
mdbs_daemon HOW
device FLOW
meelic HOW
mzitrd FLOW
busboy FLOW
garcon HOW
pupmuter HOW
socks FLOW
_~——§.§__~__._~_____‘

—— “111.111.de - Virtual Layer definition

-- Description:

~ This file contains the definition for the Vu‘tualBase layer used— hy the embodimenL
— COPvright
—~ Copyright (c) 1998—1999 Apptitude,
~ (formerly Technimlly Bite, Inc.)
— All rights reserved.
— RCS:

— Sid: Vmunl.pdl,v 1.13 1999/04/13 15:48:03 skip E4) 3

—— This includes two things: the flow signature (mlled HOWKEY) that the— system that is going to use

— not: that not all elements lie in the HASH. Reason '5 that these nonJ-IASHED
-— elements may be varied without the HASH changing, which IHDW! the system
-- to look up multiple buckets with a single HASH. That is, the MeyMatchFlag.— StalcStatus Flag and MulipackeLID may be Vlried.

FLowm { l
i

NOAC Ex. 1018 Page 980

« US 6,665,725 B1

71 72

continued

KeyMatchFlags, —— to tell the system which of the iii-HASH elements have to
— match for the this particular flow record.

- Flows for which complete signatures may not yet have
—-— been generated may then be stored in the system

StateStatusFlags,
Groupldl lN—HASH, -- user defined
GroupIdZ [bl-HASH, -— user defined
DLCProtocol IN—HASH, , -— data link protocol < lowest level we

—— evaluate. It is the type for the~— Ethernet V 2
NetworkProtocoI IN-HASH, - IP, etc.

‘ 'Ihnnell’ratocol lN-HASH, —— IP over [P1, etc.
K 'IhnnelTransport [PI-HASH,

Transportl’rotocol IN-HASH,
Applicationl’rotocol IN—HASH,
DIIIAddresses(8) IN—HASH, — lowest level address
NetworerddressesOG) IN—HASH,
'I‘unnelAddressesUG) [PI-HASH,
Connectionlds IN-HASH,
MultiPncketld —- used for fragmentation purposes

}
— now define all of the children In this example, only one virtual~— child - Ethernet.
virtualChildrcn FIELD

SYNTAX INT(") { ethemet(1) }
-— now define the base for the children. In this case, it is the same as
— for the overall system. There may be multipla.
VirmalBase PROTOCDL
::= { VimulChildrenavirmalChildren }

— The following is the header that every packet has to have and
—- that is placed into the system by the packet Inquisition system.

VirtualBase FLOW
HEADER { LENGTH=8 }
CHILDREN { DESHNmON=VnmnlChildren } -— this will be

-— Ethernet for this example.

—- the VtrttmlBAse will be 01 for these packets.

—- Ethernetpdl - Ethernet frame definition

— Description:
- This file contains the definition for the Ethernet frame. In this
— PDL file, the decision on EtherType vs. [EH2 is made. If this is
-— Ethefl‘ype, the selection is made from this file. It would be possible
-- to move the Ethefl‘ype selection to another file, if that would assist
— in the medium.

-— Cornish:
—- Copyright (c) 1994—1998 Apptitude, Inc.
~ (formerly Technimlly Bile, Inc.)
—— All rights reserved.

—- Rm:
—— 31d: Ethemet.dev 1.13 1999/01/26 15:15:57 skip Exp $

_- Enumemted type of a 16 bit integer that contains All of the
—— possible vslues of interest in the etheflype field of an
~ Ethernet V2 packet

ethei’I‘ype FIELD
SYNTAX M06) { m(0x0600), ip(010800),

chaosnet(0x0804), arp(0x0806),
vines(Ctxbnd),
vineslmp(010bne), vineslmp(0x80e4),
vinesEcho(Oxhaf), vintsEchomxSOd),
netbios(0)6c00, netbios(0x3e01),
netbios(0)6¢02), nelbios(0:3c03),
netbios(0flc04), netbios(0x3c05),
netbios(016006), netbios(0:3c07)
netbios(016c08), netbios(Ox.3cO9)
nelbios(0x3dll), netbios(0x.3c0b),
netbios(0)L3t:0c), nethios(013c0d)
dec(016000), mop(0x6001), mop2(0x6002)
drp(016003), lat(0x6004), decDiag(Ox6005),

NOAC Ex. 1018 Page 981

.3

US 6,665,725 BI
73

continued

lavc(0x6007), mrp(0x8035), apple'I‘alk(Ox809h),
sna(0x80d5), aarp(0x8OB), ipx(0x8137)
snrnp(0x8]4c), ipv6(Oxfi6dd), loopback(0fl000) }DISPLAY-HINT “13:"

LOOKUP m “Ether’lypecf'DESCRIPTION
“Ethernet type field"

-— The unformatted data field in and Ethernet V2 type {nine
etherData FIELD

SYNTAX BYI'ESYRING(46..]500)
ENCAP ethel’Iype
DISPLAY—HINT “HexDump”DESCRIPTION

“Ethernet data"

—— The layout and structure of an Ethernet V2 type frame with
— the address Ind protocol fields in the correct offset positionethernet PROTOCOL

DESCRIPTION
“Protocol format for an Ethernet flame"

REFERENCE “RFC 894”

:z- { MscDesb-rnneAddress, MacSrc—macAddress, Ether'l‘y-pe-ether’lype,
WheetherDatn)

-— The elements from this Ethernet frame used to build a flow key
-- to classify and hack the trafic. Notice that the total length
— of the header for this tyoc of packet is fixed and It 14 bytes or
—- octet! in length. The special field, [LC-CHECK, is specific to
—- Ethernet frames (or the decoding of the base Ethernet type Value.
— [fit is NOI‘ L12, the protocol field in the flow is set to the
~ Ether‘lype value decoded from the packet

ether-net FLOW
HEADER { LENGTH=14 }
Dm-LAYER {

SOURCE=MacSrc,
DESHNA’I‘ION=MacDest,
TUNNEUNG,
PROI‘OmL

}
CHILDREN (DESHNKIION=EtherType, LLC—CHECKsllc }

—- 115358022.de — [EEE 8022 frame definitions

- Descripfion:
—- This file contains the definition for the IEEE 8022 Link layer
-— protocols including the SNAP (Sub-network Access Pmtowl).

- Cornish:
-- Copyright (c) 1994—1998 Apptitude, Inc.
-— (formerly Technically Elite, Inc)
—— All rights reserved.

- R6:

- $Id: IEEESOZZdeV £18 1999/01f26 15:15:58 skip Exp 5

-— IEEE 802.2 LDC

JJCSap FIELD
SYNTAX mos) { ipx(0xFFFF), ipx(DxEOE0), isoNet(0xFEFE),

netbios(0xFUm), Vsnap(0XAAAA), ip(0x0606),
vina(0xBCBC), ms(0x8080), spanningTree(0x4242),
ena(0:0c0c), sna(010808), sns(0x0404) }DISPLAY~HINT “in”

DESCRIPTION
“Service Access Point"

11cContml FTEU)
— This is a special field. When the decoder encounters this field, it
—— invokes the hard—coded LIJC decoder to decode the rest of the packet
-— This is necessary hemuse LLC decoding requires the ability to-— handle forward references which the current PD]. format does not
— support It this time.
SYNTAX UNSIGNED INT(8)DESCRIYI‘ION

“Control field"

74

NOAC Ex. 1018 Page 982

US 6,665,725 B1

75 76

continued

llcPduType FIELD
SYNTAX BI'I’S'I'RING(2) { 1]:Information(0), 11cSupervisory(1),

llclnformationa), 11cUnnumbcrc1d(3) }lchata FIELD
SYNTAX BYTESI‘RING(38.J492)
ENCAP llcPdu'IypeFLAGS SAMELAYER
DISPLAY—HINT “chDlmp”11c PRUIDCOL
SUMZMARIE

“SllcPdu'Iy'pc = llcUnnumbercd" :
"up (SSAP) sModificr"

“SllcPdu’Iy-pc = 11c5upctvisory" :
“up (sSAP) Sfimclion N(R)=SNR”

“sucPduIypc = 012" :
“up (SSAP) 1400:5sz N(S)=$NS”“DCfault”

“LIE (SSAP) SDcPduType"DESCRIPHON
“IEEE 802.2 LLC immc format"

::- { SAP—IICSap, Connol-llcContml, Dam-lchata }11: HOW
HEADER { IENGTH=3 }
Due—LAYER { PROTOCOL}
CHILDREN { DESIINATION§AP }llcUnnumbercdData FIELD

SYNTAX BY’I‘FSI‘RING(0..1500)
mCAP 11cSap
DISPLAY—HINT “HexDump”llcUnnumbered PROTOCOL
SUMMARIZE

‘Defzult" :
“LIE (SSAP) SModificr"

::=- { Dau=11cUnnumberodData }
11cSupervisoryDala FIELD

SYNTAX BY'IFSI‘RING(O..1500)
DISPLAY-HINT “HexDump”

11cSupervisory PROTOCOL
SUMMARIZE

“Defnult” :
“LIC (SSA?) SFuncfion N(R)=SNR"

::= { Dala=11c5upexvisoryDala }
lichfomationData FIELD i

SYNTAX BYI'ESIRNG(0..1500) 3ENCAP 11c$ap
DISPLAY-HINT “HexDump”

11cInfoxmation PROTOCOL
SUMMARIZE

“Default” :
“up (SSAP) N(R)-$NR N(S)=$NS’

::= { Data-JJCInformationData }
-— SNAP
InapOngode FIELD

SYNTAX BYI‘FSI‘RINGG) (snap(“00:00:00”}, ciscuOUl(“00:00:OC'),
applcOUIC‘OSDODT') }DESCRIPTION

“Protocol ID 01 Organizational Coda"
vsnapI)ata FIELD

SYNTAX BmG(45..1500)
ENCAP snapOrgCodeFLAGS SAMEIAYER
DISPLAY—HINT “chDump”DFSCRIYI'ION

“SNAP LIE data"
vamp PROIOCOL

DFSCRIYI'ION
“SNAP LIC Frame"

::- { OrgCode—snaPOrgCodc, Dala=vsnapDala }
vamp PLOW

HEADER { LENGTH=3 }
DIE-LAYER { PRUIOCOL }
CHILDREN (DESTINATION=Ongodc }

snap'lypc FIELD
SYNTAX mas) { ms(0x0600), ip(0x0800), up(0x0806)

vines (Oxhad),
mop(0x6001), mop2(ox6002), drp(016003),
lat(0x6004), dchiagmeOOS), Iavc(016007)

NOAC Ex. 1018 Page 983

M("um—m.

US 6,665,725 B1

77

~continued

rarp(018035), appleTalk(Ox809B), sna(OxflOd5),
alrp(0x80F3), ipx(0x8137), snmp(01814c), ipv6(0x86dd) }DISPLAY—HINT “lxz”

LDOKUP FIIE “Ethel’lype.cf’DESCRIPTION
“SNAP type field"

InapDala FIELD
SYNTAX BWNG(46.,15(X))
ENCAP snap'I‘ype
DISPLAY-HINT “HexDump”
DESCRXmON

“SNAP data"
snap PROTOCOL

SUMMARIZE
“SOrgCode == 00:00:00"

“SNAP Type=$SnapType"“Default”
“VSNAP Org=$0rgCude Type-55mprype"DESCRIPTION

“SNAP Fume"

;;-{ Snap'I‘ypeEGnapType, DammsnnpDMa }
snap FLOW

HEADER { LENGTH=2 }
DIC~LAYER { PRUIOCOL }
crmmuzN { Damm0N=5mpIypc }

-— $338023.de - HEEE 802.3 frame definitions
—— Descriph'on:
— This file contains Lhe definition for the [EEE 802.3 (Ethernet)
—- protocols.

— Capyrishlz
— Copyright (c) 1994—1998 Applirude, Inc.
— (formerly Technically Elite, Inc.)
— All rights reserved.

— RC5:
— SId: [EEE8023.pdl,v 1.7 1999/01/26 15:15:58 skip E19 5

~ IEEE 802.3

ieee80231pnglh FIELD
SYNTAX UNSIGNED INT(16)ieee8023Dala FIELD
SYNTAX BYI'IEFRII‘IG(38..1492)ENCAP =11c
LENGTH “SieeeSDBlenth”
DISPlAY-HINT “HexDump”

icee8023 PROTOCOL
DESCRIFI‘ION

“IEEE 802.3 (Ethernet) frame"REFERENCE “RFC 1042”
1:: { MacDestancAddress, Mne:Src=mIcAddress, lengm=ieee80231ength,

DmieeemBDeta]

~ Idel — Internet Protocol (IP) definitions

— Description:
—— This file contains the packet definitions for the Internet
—- Protocol. These elements are all of the fields, templates and
—— processes required to recognize, decode and classify [P dnmgmms
—- found within packets.

— Copyright
—— Copyright (c) 1994—1998 Apphlude, Inc.
— (formerly Technically Elite, Inc.)
~ All rights reserved.

-— RCS:
— std: [P.pdl,v 1.14 1999/01f26 15:15:58 skip Exp 3

-- The following are Lhe fields Lhil make up In [P dalagmm.
— Some of Lhese fields are used to recognize dalagnm elements, build

NOAC Ex. 1018 Page 984

l l

- US 6,665,725 B1

79 80

-continued

~— flow signatures and determine the next layer in the decode process.

ipVersion FIELD
SYNTAX INT(4)
DEFAULT “4"

ipHeaderLenglh FIELD
SYNTAX INT(4)

ip'I‘ypeOlService FIELD
SYNTAXBITSI‘RING(B) { mama), maxReliability(2),

maa’I'hruput(3), minDelay(4) }
iplength FIELD

SYNTAX UNSIGNED INT(16)

—- This field will tell us if we need to do special processing to support
-— the payload of the datagmm exnting in multiple packets.

ipFlags FIEID
SYNTAX BmNG(3) { moreFraym), dontFmg(1) }

ipFrngmentOfEset FIELD
SYNTAX INI‘(13)

—~ This field is used to determine the children or next layer of the
— datagram

ipProtocol FIELD
SYNTAX IN'I‘(8)
IDOKUP FILE “Ipl’rotocol.ct”

ipData FIELD
SYNTAX BYTESIRING(0..1500)
ENCAP ipl’rotocol
DISPIAY—HINT “HexDump”

-- Detailed packet layout for the IP datagranL This includes all fields
— 1nd format. All olfsets are relative to the beginning of the header.
ip PRUIOCOL

SUMMARIE
"SFragmentOEfiet l= D”:

I‘Il’F‘ragment rD=$Identifimtion Ofl‘setaSFragmerttOfi’set”“Default” 2
“[P Protocol=SProtoml”

DESCRIPTION
“Protocol format for the Internet Protocol”

RH'ERENCE “RFC 791"

::= { Version-ipVersion, Headerlength—ipHeaderlength,
TypeOESemce=ipType0tService, length-iplength,
Identifimion-U'Intlé, Ithgs-ipfiags,
FmgmentoflisetnipFragmentOEset, TLmeTolive=Int8,
Protocol=ipProtocol, Checksum=ByteStr2,
lpSro=ipAddress, IpDest-ipAddress, Options=ip Options,
Fragment=ipFragmeuL Data=ip Data }

-— This is the description of the signature elements required to build a flow
—< that include: the IP network layer pmlocoL Notice that the flow builds on
-- the lower layers. Only the fields required to complete I? are included.
— This flow requires the support of the fragmentation engine as well as the
~ potential of having a tunneL The child field is found from the LP
-— protocol field

ip FIDW

HEADER { LENGTH=Header1ength, IN—WORDS}
NET-LAYER {

SOURCE=lpSrc,
DB’I‘INA'I‘ION=IpDest,
FRAGMENTATION=IPV4,
TUNNELING

}
CHIlDREN { DESI‘INATIONaProtocol }

imewaln ml) 2
SYNTAX BYI'ES']‘RING(1..1500) ‘
LENGTH “$ip1zngth — $ipHeaderlength - 4"
DISPIAY—IHNT “HexDump”

ipFr-agment Group
OPTIONAL 'SFmgmentOffset l- 0”

::= (Dam=ipanData }
ipOptionCode FlElD

SYN'I'AHNT(8) { ipRR(OXO7), ithmestamp(0x44),
ipISRR(0x83), ipSSRR(OxB9) }DESCRIPTION

“11’ option code"

NOAC Ex. 1018 Page 985

US 6,665,725 B1

81 82

continued 3'
ipOptionLcngth FIELD JSYNI‘AX UNSIGNED INT(8)

DESCRIPTION ‘2“length of IP option” 'ipOpIionDala m

SYNTAX BYT'ESI'RING(O..1500)
ENCAP ipOpLionCode
DISPIAY—HINT “chDump”ipOptions GROUP

mom “(sipnudexungth ~ 4) - 20"
:.= { Code=ip0ptionCode, length=ip0ptionlength, Pointer=UInt8,Data=ip0ptronData }

M l
—— Tfl’pdl - Transmission Control Protocol (TC?) definitions—— Description:

~ This file contains the packet definitions for the Transmission :—— Control Protocol. This protocol is a transport service for
—— the IP protocol. In addition to extruding the protocol information
~ the TC? protocol assists in the process of identification of connections—— for the processing ofetnles.

— Copyright:

— Copyright (c) 1994-1998 Apptitude, Inc.
—— (formerly Technically Elite, Inc.)—- All rights reserved.-- RC3:

— srd: TCP.pd.l,v 1.9 1999/01/26 15:16:02 skip Exp 5
R

—— This is the 16 bit field where the child protocol is located for :—— the next. layer beyond 'I‘CP.

tcpPort FIELD XSYNTAX UNSIGNED lNI'ClG) : IIDOKUP FILE ‘TcpPorLd” ;
thHeaderLen FIELD

SYNTAX lNT(4) ,
ICpF'laga FIELD ;smxmmmmm { we), sync). ma), 1311(3), aura), mam } ‘:chm FIELD ‘SYNTAX BY'I‘ES'I‘RING(O..1564)

LENGTH “(Sipleugth — (sipHmderlength - 4)) — (smpneadezun . 4)" .ENCAP thPort ;DISPLAY—HINT “Helflunp”

—— The layout of the TCP datagmn found in a packeL 0536. based on the- beginning of the header for TCP.
top PROIDCOL -SUMMARIZE

“Default" :

”ICP ACKfiACk WIN=SWmdowSize"DFSCRIPIION

“Protocol format for the Transmission Control Protocol"REFERENCE “RFC 793”

::= { Srcport=tcpPort, DestPorthort, chuenceNum=LHnt32, :Ack=ULnBL HmderLength=tcpHeaderLen, Tchlag3=tch1agg
WindowSizerIntl 6, Chechum-ByteShQ,
UrgentPointer=UIn116, Options-tapOptions, Data=tchata }

The flow elements required to build a key for a TCP datagrarn.
Noticed that this HOW descr'qaLion has a CONNECTION section. This is
used to describe what umnecfion state is reached for each settingof the Tchlags field.

I lFLOW xHEADER { LENGTH-Headedength, IN-WORDS}CONNECTION {

gllllll
CONNECPSI'ARI‘—“’I‘chlags:1",
CONNECPCOWIEIE=TcpHags:4",
DISCONNECF~START=“Tchlags :0",
DISCONNECT~COMPIETE="Iprhga:4”

CHILDREN { DESTINATION=DesLPort, SOURCE-=SrcPort }leOpLionKmd FIELD

SYNTAX UNSIGNED mus) { tchptEndm), :cpN0p(1), tcpMSS(2),

i
I

} z .
PAYLOAD { INCLUDE—HEADER } I

NOAC Ex. 1018 Page 986

' US 6,665,725 B1

83 84

continued

tchsmleCi), tcp’l'imestamp(4) }DESCRIPTION
“Iype of TCP option”

thOptionData FIELD
SYNTAX BYTES'I'RING(0..1500)
ENCAP mp0puonxjndFLAGS SAMEIAYER
DISPLAY-HINT "HexDump"

tchptions GROUP
LENGTH “(StcpHeaderlzn ' 4) - 20”— SUMMARIZE

—- “Default” :
- “OptionasOpfion, [en-SOpuonlength, $OptionData"
::= { Option=chOptionKind, optionlxngth=Ulnt8, OptionData=tq30plionData }
thMSS PROI‘CCOL
::= { MaxSegmenlSiszUlntlfi }

-— UDdel - Uacr Dang-mm Protocol (UDP) definitions

— Description:
—— This file contains the packet definitions for the User Datagram—— PmtccoL

-— Copynght:
x Copyright (c) 1994—1998 Applimde, Inc.
— (formerly Thchnimlly Elite, Inc.)
—- All tight: reserved.

-- RC5:
—- SId: UDP.pdl,v 1.9 1999/01/26 15:16:02 skip Exp 3

udpPort FIELD
SYNTAX UNSIGNED INT(16)
IDOKUPFILE “Udpporch’

udplength FIELD
SYNTAX UNSIGNED INT(16)

udpData FIELD
SYNTAX BYTES'I'RING(0..1500)
ENCAP udpPoxt
DISPLAY-HINT “chmmp”

udp PROIOCOLSUMARIZE
“Default” 2

‘UDP Dest-5DuLPoxt SmSSrcPort”
DESCRIPTION

“Protocol forum for the User Dung-am Protocol."REFERENCE “RFC 768"
:2: { SmPom—udpPon, DestPom—udpPort, Length=udplength,

‘, (mecksumByteSu’l, Data—udpData }
udp FLOW

HFADER { LENGTH=8 }
CHILDREN { DESI‘lNATIONsDesLPort, SOURCESICPOIK }

-- RPdel - Remote Proceduxe Calls (RFC) definitions

— Description:
— This file contains the packet definitions for Remote Proceduxe-— Calls,

— Copyright:
— Copyright (c) 1994—1999 Apptimde,
— (fonnerly Technically Elite, Inc.)
- All rights reserved.«- RCS:
— Hd: RPdeJ,V 1.7 1999/01/26 15:16:01 skip Exp 5

rpc'Iype PIP—1D
SYNTAX UNSIGNE) wrap.) {rchiIl(0), xpcReply(1) }

mum mm)

SYNTAX BYPES'I‘RING(0..100)
ENCAP rpc'l‘ype
FIAGS SAMEIAYER
DISPLAY-HINT “HexDump”

rpc PROIOCOL
SUMMARIZE

“Sl‘y'pe =- rchall"

NOAC Ex. 1018 Page 987

US 6,665,725 B1

85 86

continued
“H

“RPC Shogun)”
“SReplyStaLus -= rpcAcceptcdchly” :

“RPC Reply Status=$Smtus"
“SchlySvatus = Ipchnicdchly”

“RFC Reply Slalus=$25la1us, AuLhSIaan=$AuLhSlzms"“Default"
“RPC SProgmm"

DESCRIPTION
“Protocol format for RPC"

REFERENCE
“RFC 1057"

::= {)GD=UInt32, TyPc=rchypc, Dara=rpcDala }rpc FlDW
HEADER { LENGTH=0 }
PAYLOAD { DATA=XID, LENGTH=256 }

-- RPC Call

IpcProgmm FIELD

SYNTAX UNSIGNED [NT(32) {ponanpcr(100000), 110000003),
mounL(10(D05), lockaguoooom), slamsMonitox(100024) }rpcProcedmc GROUP

SUMMARIZE
“Default” :

"Prognm=$ngmm, Venion=$Version, Pmcedum-$Proocdurc"
::= { ngam=rpchogmm, Vemion=UIn132, Proccduxe=UInt32 }rpcAuthFlavor FIELD

SYNTAX UNSIGNE) [N'I‘(32) { “11(0), unix(1), shon(2) }IpcMachine FHELD
SYNTAX ISI'RINGG)

rptfi'roup GROUP
LENGTH “SNUmGroups ‘ 4”

::= { Gid=lnl32 }
zchchcnfials GROUP

LENGTH “SCxcdcnfialangth”
::= { Stamp=UInt32, Machine=rpcMachinc, Uid=Int32, Gid=Inl32,

NumG1uups-=U'Int32, Groups=rpchoup } !rpcVCrifichata FIELD 7
SYNTAX BmmG(D..4m)
LENGTH “SchifiuIcnglh”

rchneap FIELD
SYNTAX COMBO Prognm Procedme
IDOKUP FILE “RPCCF’

rchalanln FIELD
SYNTAX BYTESl'RlNG(O..100)
ENCAP rchnalp
DISPLAY—HINT “HelDump”

Ipch PROTOCOL
DESCRIPTION

“Protocol format for RPC (21.1”

::= { RPCchionaUInBZ, Proccduxe=rpchocsduxe, ‘CredcmialAuLhHavorsrpcAuLhHavox, Crcdcnliallznth=UInL32, ‘Credentials=xpc€lcdcnfials,
WrifierAuLhFlnvohxpcAuLhFhvor, VerificrkngUFUInlSZ,
Verifiex=rpchxifichalz, Enmp=xchnup, Dala=rchAllDala } v”

—— RPC Reply

IpcchlySlarus FIELD ~
SYNTAX [NT(32) { rpcchptcdReplym), rpcDeuiodchlyO) }rpcchlyDala Fl'ElD
SYNTAX BY’I‘ESIRING(0.AOODD)
ENCAP lpcchlySlatus
FIAGS SAMEIAYER
DISPLAY~HINT “HexDump”

rpcchly PROTOCOL
DESCRIPTION

“Protocol fauna! for RFC xcply’
:.— { ReplySlztus-rpcReplySmnu, Dim—rpcchlyDala }IpcAuxplSlatus FEED

SYNTAX INT(32) { Success(0), ProgUnaVailCl), ProgMismath),
ProcUnavail(3), GarbageArgs(4), SystemErmx(5)

rpMmchEnmp FIELD
SYNTAX BYIESI'RLNGm)FLAGS NOSHOW

rpCAccepLDala FIELD
SYNTAX BYTES'IRING(0..4ID00)
ENCAP rpcAccchEnup
DISPLAY-HINT 'chDump”

NOAC Ex. 1018 Page 988

' US 6,665,725 B1

87 88

continued

rpdkcceptedReply PROTOCOL
::= { VerifierAuthFlavoxsrpeAuLhflavox, Verifiezungth=UIn13L

Verifiel=rpcVexifierData, Slams=rpcAoceptStams,
Enap=rpcAocepLEnmp, Dala=rprAcceptDala }

rpchnicdslams FIELD
SYNTAX INT(32) { rpcVersionMismalch(0), xpcAulhEl-Iorfl) }

rpcAuthSlatus FIELD
SYNTAX NYC-)2) { Okay(0), BadCredenfiaICl), RejectedCredential(2),

Bachrifiex(3), ReDcctedVeIifiex(4), TooWeaHS),
luvalidResponsc(6), Failed(7) }

rpchnicdReply PRUI‘OCOL
::= { Status=xpcDeniedStams,AuLbSIams=xpcAuLhSIams }
— RFC Transactions

rpcBindlmkup PROTOCOLSUWARIZE
“Default" :

“RFC GeLPorl Prog=$Prog, Ver=$Ver, Pmto=$ProwcoI"
:z- { ngarpchgram, Ver-UIm32, Prolocol-UIntSZ }
rpcBindloolmpReply PRUIOCOLSUMMARIZE

“Default"
“RFC GeLPoxtReply Pon-SPorr"

::= { PortaUInBZ }

—— NFS.pdl - Network File System (NFS) dcfinifions

.. Dcsuiption:
- This file contains the packet definilions for the Network F11:
—— Syltem.
— Capyrightr
-- Copyright (c) 1994—1998 Apptirude, Inc.
—— (formerly chhhimfly Elite, Inc.)
-— All rights reserved.~ RCS:
— $IdzNFS.pd1,v 1.3 1999mm 15:15:59 skip Exp s

11foth man)
symxx ISI‘RING(4)

nsznndle FIELD
SYNTAX BYI‘ESI'RINGGZ)
DISPLAY—HINT “mm "

mom FIELD
SYNTAX BYI‘ES’I‘RING(0..100)
DISPLAY—HINT “HexDump”

nfocctss PROI‘OCOL
SUMMARIZE

“Default” :
“NFS Access SFilcnimc"

:2: { Handlennfsl-Iudle, filmmeflfssuing }ni'sSutus FIELD
SYNTAX INT(32) { 01((0), NoSuchFlle(2) }

ni'sAccsschly PRUIDCOL
SUMMARIES

“Defaulf’ :
“NFS AccessReply SStams”

'.'.== { Shms=n£sStams }nIsModc FIELD
SYNTAX UNSIGNED INT(32)DISPLAY-HINT “4o”

nfisCrcate PROTOCOL
SU'MMARIZE

“Default" :
“NB Cream $Fi1ename”

::- { Handle-nfsl-Inndle, Filmme—nfsSking, FillerdntB, Mode-nfsMode,
Uid-IDBZ, Crick-11182, Size-hBZ, AccessTmc=Int64, Mod'fimealnk64 }

nstile'I‘ype FIELD
SYNTAX INT(32) { Regularfl), Dimctory(2) }

nfisCIcateReply PROTOCOLSUMMARIZE
“Defaulf’ :

“NFS CretteReply 35h "
::= { SaussnBStams, Handle=nszandlc, FileType=nst11eTypc,

ModhnfsMode, Links=UInt32, Uid=InBZ, Gid=InI32, Sizc=Int32,
BlockSizr—LDBZ, NumBlocks=Int64, FileSysldsU'LuBZ, FlleId=UInl32,
AcocssTimo=lnl64, Mod'fimwlnl64, InodeChangc'IImezImM }

nstead PROTOCOL

. "a . . - .. : A
..«y . J“: n.1,. a..." n - A .1. .7. nag, M~ I ' v fl-m‘w “3'! v ‘

NOAC Ex. 1018 Page 989

.m;muum...»

US 6,665,725 B1

89

continued

SUWARIZE
“Default" :

“NFS Read Ofiset=$OEscl Length=SLenglh"
::= { Length=lnt32, Handle=uszandle, OfiseL=Ulnt64, Count=Int32 }
nsteadReply PRUIDCOLSUMMARIZE

“Default” ;
“NFS ReadReply Status”

::= { Stam=nfsszams, File'Iypwnstile'Iype,
Mode=nfsMode, Iinks=UIn332, Uid=Inl32, 6111411132, Size=Inl32,
BlockSize=Int32, NumBlocks=Int64, FileSysId=UInl32, Fileld=UInt32,
Accus'I'lmentM, ModTlmezlntfi4, lnodeChangeTLme=Lnt64 }nfiWrile PROIOCOL
SUMMARIZE

“Default" :
“NFS Write OESeL=$Olfset"

::= { Handle=nsznndle, Ofl‘set=lnt3?, Dam=nstala }
nfiWrileReply PROIDCOLSUMMARIZE

“Default" :
“NFS WriLeReply 55mins"

::- { Status-nfsStatus, Filc'Iype-nstile'Iype,
Mode=nfsMode, links-UlnBY, Uid=lm32, Gid-Inl32, Size=-[ul32,
BlockSIze-lnBZ, NumBlocb—Int64, FileSysId-UInL’lZ, FileldnUInBZ,
Access'I'Lme-Int64, Mod’I'Lmeulnt64, InodeChaugeTlme=Im64 }nstudDix PRUIOCDL
SUMMARIZE

“Default" :
“NFS ReadDiI"

::= { Handle-nszandle, Cookie=ln132, Count=lut32 }
afiReadeReply PROTOCOLSUMMARIZE

“Default" :
“NFS ReadDizReply SSlatus"

::= { Status=nfsStnms, Dahsnstata }nstelFlleAttI PROTOCOL
SUMMARIZE

“Default" :
‘NFS GclAm'"

::= { Handle-nszandle }
nsteLFlleAmReply PRUIOCOL

SUNIMARIZE
“Defaulf’ :

“NFS GetAtIrReply 55mm SFiJe'I‘ype"
::— { Sums—nfsszatus, Ffle'Iype-nstile'I‘ype,

Mode—nfsMode, links=UIn132, Uid-Im32, Gid=ln132, Size-[DBL
BlockSize—lnBZ, NumBlocks-Int64, FileSysId-sUInm, FileIdaUIntSZ,
Access'I'lme-[nt64, ModTLme=In164, InodeChangeTlmezlnléll }nsteadLink PROIOCOL
SUMMARIZE

“Default” :
“NFS Readlink"

::= { Handle-nszandle }
nsteIlenchply “010cm,SUMMARIZE

“Default" :
“NFS Readlinchply Path=$PaLh"

::= { Statm=nfsStatus, Pum=nfxsuing }nfsMount PROIOCOL
SUMMARIZE

“Default" :
“NFS Mount SPam"

::= { Path=nfssning
nfsMouaneply PROTOCOLSUMMARIZE

“Default" :
“N'FS MounLReply $MoumSlatus"

::= { MountSums=nfleatu:, dele-nfaflnndle }nfsSmlFs PRUIOCOL
SUMMARIZE

“Default" :
“NFS Stath”

::— { Handle-nszandle }
nfsSuthReply PROTOCOLSUNIMARIZE

“Def-uh" :
“NFS SlalFsReply Status"

::= { Stalus=nILSLalus, TmsferSiZhUInBL BlockSize=UInf32,
ToulBlocks=UInt32, FreeBlocks=UInt32, AvailBloch=UInt32 }

. gnu. lgggm- Mm...

90

NOAC Ex. 1018 Page 990

" US 6,665,725 B1

91 92

continued
“a
nBRemochir PROTOCOL

SUMNIARIZE
“Default" :

“NFS RmDir $Name”
::= { Handlc=nszandle, Name=nfsSlring }
nstemoveDirReply PROTOCOLSUWARIZE

“Default” :
“NFS RmDirReply Status"

::= { Status=nfsStarus }nfsMakeDiI PROTOCOL
SUMMARIZE

“Default” :
“NFS MkDu SName"

::= { Handle=nEsHandle, Name=nfsString }
nfsMachirReply PROTOCOLSUMMAREE

“Default" :

“NFS MkDirReply 55mm”
::— { Scam-nfsStatus }nstemove PROTOCOL

SUNIMARIZE
“Default" :

“NFS Remove $Name”

::= { Handle=nszandle, Name=nfsstring }
nstemoveReply PROTOCOLSUMMARIZE

“Default" :
“NFS RemoveReply SSIztus"

::= { Slams=nfsSlatus

—— H'ITdel - Hypertext Transfer Protocol (HTTP) definitions

—- Description:
—- This file contains the packet definitions for the Hypenm Transfer— Pmtocol,

~ Capyfighli
—- Copyright (c) 1994—1999 Apptitude, Inc.
— (formerly Technically Elite, Inc.)
—- All rights reserved.— RCS:

—— 51d: H'ITdeLV 1.13 1999/04/13 15:47:57 skip Exp 5

httpData FIELD
SYNTAX BYTESTRING(1..1500)
LENGTH “(Sichnth — (SipHcaderLenth ' 4)) - (StcpHeaderLcnt 4)”
DISPIAY—HINT "Text”
FLAGS NOLABEL

Imp PROTOCOL
SUMMARIZE ~

“ShupDalzm/ GEI‘IAHI‘I'PlAHEADIAPOSI‘I" :
“HTTP Shttham” , .

“$11“po m/ [Dd}ate| [Sskwcd [Uhst-[Mmbdifiedf’ :
“HTTP ShlLEData”

“ShttpData m/ [Ochmeubf’ :
“HTTP $thData”

“ShupData m/ <HTML>/" :
“HTTP [HTML documenl]’

“$thth m/‘GIFI" :
“HTTP [GIF imge]’“Default" :
“H'I'I‘P [DamI’DESCRIPHON

”Protocol format for HTTP."
::- { Dam-httpData }
Imp FLOW

CONNECTION { INHERITED }
PAYLOAD { INCLUDE—HEADER DATA=DIta, LENGTH=256 }STATES

“SO: CHECKCONNECT, 6010 S]
DEFAULT NEXT S0

S]: WAIT 2, 6010 SZ, NEXT 51
DEFAULT NEXT SO

52: HATCH

‘\n\r\n' 900 0 0 255 0, NEXT 53

NOAC Ex. 1018 Page 991

US 6,665,725 B1

93 94

continued

‘\n\n’ 900 D D 255 0, NEXT 53
‘FOSI‘ les'!’ SD 0 0 127 1, CHILD sybaschbsql
‘13:: HTTP/LO’ SD 4 0 127 1, CHILD sybascldbc
‘jdbczsybaseszs’ 50 4 0 127 1, CHILD sybasers
‘PCN-The Poin' 500 4 1 7.55 0, CHILD poinkzist
‘l: BW~C<’ 100 4 1 2'55 0, CHILD backwcb
DEFAULT NEXT S3

83: MKFCH

‘\u\t\n’ 5000 00,NEXT53 2
‘\n\n' 5000 00,NEXTS3 3)
‘C‘ontcnl—Typci’ 800 0 O 255 0, CHILD mime {
‘PCN—Thc Poin’ 500 4 1 255 0, CHILD poinkcast
‘L' BW—C—’ 100 4 1 255 0, CHILD backwcb
DEFAULT NECK SO"

beaschbsql FLOWSTATE-BASED
beastdbc FLOWSI‘ATE~BASED
sybaschs FLOWSTATE—BASED
poms! FLOWSLATE-BASED
bacszb FIDW

STATE—BASED
mime FLOW

STATE-BASED
STATES

“SO: MATCH
‘appliudon’ 900 0 0 1 0, CHILD michpplicaLion
‘uudio' 900 0 0 1 0, CHILD michudio
‘image' 50 0 0 1 0, CHILD mimzlmagc
‘tzxt’ 50 U 0 1 0, CHILD michm
‘vidco’ 50 0 0 1 0, CHILD mimeVLdeo
‘x-world' 500 4 1 255 0, CHILD mimdhvorld

DEFAUIII‘ GOTO 50”
mimeApplimfion FLOWSLATE-BASED
michudio FLOW

SLATE—BASED
STATES

“SO: MATCH
‘basic’ 100 0 0 1 O, CHILD deIsicAudio
‘midi’ 100 0 0 1 0, CHILD deidi
‘mpcg' 100 0 0 1 0, CHILD depegZAudio
‘vnd‘m-rcalaudio’ 100 0 0 1 0, CHILD decaIAudio
‘wav’ 100 0 0 1 0, CHILD deav 1
‘x—aifl‘ 1000010,CH[LDpdA.ifi‘ j
‘x—midi’ 100 0 0 1 0, CHILD deidi 1
‘x-mpcg' 100 0 0 1 0, CHIlD depegZAudio
‘x—mpgurl’ 100 0 0 1 0, CHILD depchAudio
‘x—pn—rcalaudio’ 100 0 0 1 0, CI-fllD decalAudio
‘x»wav’ 100 0 0 1 0, CHILD deav

DEFAULT GOTO SO” ,
mimclmagc FLOW

STATE—BASED

STATE-BASED
michext FLOW ‘

STATE—BASED ‘
mimeVldco FLOW 1

STATE—BASED
michworld FLOW

STATE-BASED
deasicAudio FIDW

STATE—BASED
deidi FLOW

STATE—BASED
depchAudio FLOWSLATE-BASED

depcgfiAudio FLOW
SI‘KI‘E-BASED

dezalAudio FIDW
STATE-BASED ,

deav FLOW :STATE—BASED {

pdAiff mow i

NOAC Ex. 1018 Page 992

W-fivm. 5

95
What is claimed is:

1. Amethod of performing protocol specific operations on
a packet passing through a connection point on a computer
network, the method comprising:

(a) receiving the packet:
(b) receiving a set of protocol descriptions for a plurality

ofprotocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the-one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par-
ticular layer level information at one or more loca-
tions in the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto-
col at the particular layer level, the one or more
protocol specific operations to be performed on the
packet for the particular protocol at the particular
layer level; and

(c) performing the protocol specific operations on the
packet specified by the set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

the method further comprising:
storing a database in a memory, the database generated

from the set of protocol descriptions and including a
data structure containing information on the possible
protocols and organized for locating the child protocol
related information for any protocol, the data structure
contents indexed by a set of one or more indices, the
database entry indexed by a particular set of index
values including an indication of validity,

wherein the child protocol related information includes a
child recognition pattern,
wherein step (c) of performing the protocol specific opera-
tions includes, at any particular protocol layer level starting
from the base level, searching the packet at the particular
protocol for the child field, the searching including indexing
the data structure until a valid entry is found, and
whereby the data structure is configured for rapid searches
using the index set.

2. A method according to claim 1, wherein the protocol
descriptions are provided in a protocol description language,
the method further comprising:

compiling the PDL descriptions to produce the database.
3. A method according to claim 1, wherein the data

structure comprises a set of arrays, each array identified by
a first index, at least one array for each protocol, each array
further indexed by a second index being the location in the
packet where the child protocol related information is
stored, such that finding a valid entry in the data structure
provides the location in the packet for finding the child
recognition pattern for an identified protocol.

4. A method according to claim 3, wherein each array is
further indexed by a third index being the size of the region
in the packet where the child protocol related information is
stored, such that finding a valid entry in the data structure
provides the location and the size of the region in the packet
for finding the child recognition pattern.

.-..mm......m.m..m,"H.“.n..

10

15

20

30

35

45

50

55

6O

65

“ US 6,665,725 B1

96

5. A method according to claim 4, wherein the data
structure is compressed according to a compression scheme
that takes advantage of the sparseness of valid entries in the
data structure.

6. A method according to claim 5, wherein the compres-
sion scheme combines two or more arrays that have no
conflicting common entries.

7. A method according to claim 1, wherein the data
structure includes a set of tables, each table identified by a
first index, at least one table for each protocol, each table
further indexed by a second index being the child recogni-
tion pattern, the data structure further including a table that
for each protocol provides the location in the packet where
the child protocol related information is stored, such that
finding a valid entry in the data structure provides the
location in the packet for finding the child recognition
pattern for an identified protocol.

8. A method according to claim 7, wherein the data
structure is compressed according to a compression scheme
that takes advantage of the sparseness of valid entries in the
set of tables.

9. Amethod according to claim 8, wherein the compres-
sion scheme combines two or more tables that have no

conflicting common entries.
10. A method of performing protocol specific operations

on a packet passing through a connection point on a com-
puter network, the method comprising:

(a) receiving the packet;
(b) receiving a set of protocol descriptions for a plurality

ofprotocols that conform to a layered model, a protocol
description for a particular protocol at aparticular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the-one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par—
ticular layer level information at one or more loca-
tions In the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto-
col at the particular layer level, the one or more
protocol specific operations to be performed on the
packet for the particular protocol at the particular
layer level: and

(c) performing the protocol specific operations on the
packet specified by the set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

wherein the protocol specific operations include one or more
parsing and extraction operations on the packet to extract
selected portions of the packet to form a function of the
selected ponions for identifying the packet as belonging to
a conversational flow.

11. A method according to claim 10, wherein step (c) of
performing protocol specific operations is performed recur—
sively for any children of the children.

12. A method according to claim 10, wherein which
protocol specific operations are performed is step (c)
depends on the contents of the packet such that the method
adapts to different protocols according to the contents of the
packet.

13. Amethod according to claim 10, wherein the protocol
descriptions are provided in a protocol description language.

NOAC Ex. 1018 Page 993

’ US 6,665,725 B1
97

14. A method according to claim 13, further comprising:
compiling the PDL descriptions to produce a database and

store the database in a memory, the database generated
from the set of protocol descriptions and including a
data structure containing information on the possible
protocols and organized for locating the child protocol
related information for any protocol, the data structure
contents indexed by a set of one or more indices, the
database entry indexed by a particular set of index
values including an indication of validity,

wherein the child protocol related information includes a
child recognition pattern, and
wherein the step of performing the protocol specific opera—
tions includes, at any particular protocol layer level starting
from the base level, searching the packet at the particular
protocol for the child field, the searching including indexing
the data structure until a valid entry is found,
whereby the data structure is configured for rapid searches
using the index set.

15. A method according to claim 10, further comprising:
looking up a flow-entry database comprising at least one

flow-entry for each previously encountered conversa-
tional flow, the looking up using at least some of the
selected packet portions and determining if the packet
matches an flow-entry in the flow-entry database

if the packet is of an existing flow, classifying the packet
as belonging to the found existing flow; and

if the packet is of a new flow, storing a new flow-entry for
the new flow in the flow-entry database, including
identifying information for future packets to be iden—
tified with the new flow-entry;

wherein for at least one protocol, the parsing and extraction
operations depend on the contents of one or more packetheaders.

16. A method according to claim 10, wherein the protocol
specific operations further include one or more state pro-
cessing operations that are a fimction of the state of the flow
of the packet.

5

10

15

20

30

35

98

17. A method of performing protocol specific operations
on a packet passing through a connection point on a com—
puter network, the method comprising:

(a) receiving the packet;
(b) receiving a set of protocol descriptions for a plurality

of protocols that conform to a layered model, a protocol
description for a particular protocol at a particular layer
level including:
(i) if there is at least one child protocol of the protocol

at the particular layer level, the one or more child
protocols of the particular protocol at the particular
layer level, the packet including for any particular
child protocol of the particular protocol at the par»
ticular layer level information at one or more loca-
tions in the packet related to the particular child
protocol,

(ii) the one or more locations in the packet where
information is stored related to any child protocol of
the particular protocol, and

(iii) if there is at least one protocol specific operation to
be performed on the packet for the particular proto-
col at the particular layer level, the one or more
protocol specific operations to be performed on the
packet for the particular protocol at the particular
layer level; and

(c) performing the protocol specific operations on the
packet specified by the set of protocol descriptions
based on the base protocol of the packet and the
children of the protocols used in the packet,

wherein the packet belongs to a conversational flow of
packets having a set of one or more states, and wherein the
protocol specific operations include one or more state pro-
cessing operations that are a ftmction of the state of the
conversational flow of the packet, the state of the conver-
sational flow of the packet being indicative of the sequence
of any previously encountered packets of the same conver-
sational flow as the packet.

* * it it *

NOAC Ex. 1018 Page 994

llllll|||||ll|lll|lll|lll|l|||||||||| "

USOO6839751B1

(12) Unrted States Patent (10) Patent No.: US 6,839,751 B1
Dietz et al. (45) Date of Patent: Jan. 4, 2005

(54) RE-USING INFORMATION FROM DATA 6,330,226 B1 * 12/2001 Chapman et a1. 370/232
TRANSACTIONS FOR MAINTAINING 6,363,056 B1 * 3/2002 Bergi et al. 370/252

6,381,306 B1 * 4/2002 Lawson etal. 379/32
STATISTICS IN NETWORK MONITORING 6,424,624 B1 * 7/2002 Galand et al 370/231

; , ,4 , B2 * 9/2002 T ka a1. .. 09 224
I (75) Inventors: Russell S. Dietz, San Jose, CA (US); 2625257 B] 4 9,2003 31:11“?__________ .. 309237

Joseph R. Maixner, Aptos, CA (US); 6,651,099 B1 * 11/2003 Dietz et al. 709/224
Andrew A. Koppenhaver, Littleton,
CO (US) OTHER PUBLICATIONS

. . NOV94: Packet Filtering in the SNMP Remote Monitor ;
(73) Ass1gnee: Hilfn,1nc-,Los Gates, CA (US) www.skrymir.comldobbs/articlesl1994/9411/9411h/

9411h.htm.*

(*) N01106: SUbJICCE ‘0 any disclaimer, the term Of this GTrace—A Graphical Traceroute Tool authored by Ram
patent 15 extended or adlustcd under 35 Peziakaruppan, Evi Nemeth ; http://www.caida.orglout-
U.S.C. 154(b) by 728 days. reach/papers/l 999/GTrace/index.xml.*

Advanced Methods for Storage and Retrieval in Image ;
(21) Appl. No.: 09/608,126 http://www.cs.tulane.edu/www/Prototype/proposal.html;1998.*

(22) Filed: Jun. 30, 2000 Measurement and analysis of the digital DECI‘ propagation
channel; IEEE 1998.*

Related U.S. Application Data at cited by e aminex 1'
(60) Provisional application No. 60/141,903, filed on Jun. 30,

1999. Primary Examiner—Thong Vu
(51) Int. Cl.7 .. G06F 15/173 (74) Attorney. Agent, or FinnvDov Rosenfeld;1nventck

(52) U.S. Cl. 7091224; 709/223; 709/230 (57) ABSTRACT
(58) Field of Search 709/223, 224,

709/231, 232, 230; 370/252, 231; 379/32; A method of and monitor apparatus for analyzing a flow of
704/43; 714/39; 340/825 packets passing through a connection point on a computer

network. The method includes receiving a packet from a
(56) References Cited packet acquisition device, and looking up a flowenn'y

database containing flow-entries for previously encountered
U.S. PATENT DOCUMENTS conversational flows. The looking up to determine if the

4,972,453 A * 11/1990 Daniel ct a1. 379/903 “36°in Packct is Of an ““933 flow- E3611 and every Pad”t
709,222 is processed. If the packet is of an existing flow, the method5,535,338 A * 7/1996 Krause et a1. . _ _ . _ _

. 370/395 updates the flow—entry of the ex1st1ng flow, mcludrng storing5,703,877 A 12/1997 Nuber et a1.

370/236
8/2000 Chen et a1. 370/231

5,892,754 A 4/1999 Kompellaet a1. ..
6,097,699 A
6,115,393 A

related to the flow. The metrics may be base metrics from
. 370/469 which quality of service metrics are determined, or may be

704,43 the quality of service metrics.

5,720,032 A * 2/1998 Picazo, Jr. et a1. 709/250 one or more statistical measures kept in the flow-entry. If the
5,761,429 A * 6/1998 Thompson 709/224 packet is of a new flow, the method stores a new flow~entry

: 5,799,154 A * 8/1998 Kuriyan 709/223 for the new flow in the flow/-3113)! database, including
; 5,802,054 A * 9/1993 Bellenger ------------ 370/401 storing one or more statistical measures kept in the flow-
; 53850388 A * 12,1998 Anderson at “1‘ ------ 370/252 entry. The statistical measures are used to determine metrics
3,8 t

“‘ 9/2000 Engelet a1.
* 7/2001 Cidon et a1. .at
at

6,269,330 B1
6,279,113 B1 8/2001 Vaidya , 713/201
6,282,570 B1 8/2001 Leung et al. 709/224 21 Claims, 18 Drawing Sheets

1‘Wm,"

 ‘T" »maeaua’zman

DATA COMMUNICATIONS
NETWORK

1 02

CLIENT 1

NOAC Ex. 1018 Page 995

US. Patent

10

CLIENT 3

O

N
106

W

112

Jan.4,2005 Sheetl_0fl8 US 6,839,751 B1

—

_\ ANALYZER
107

1 16
_

DATA COMMUNICATIONS

NETWORK

$4
123

------I 105

CLIENT 2

FIG. 1

SERVER 4

No
121

102

125

118

_~J

CLIENT 1

104

NOAC EX. 1018 Page 995

M5I-I

NOAC Ex. 1018 Page 996

mama'S‘n

SOOZ‘17"191'

811°Z133‘13

IaISL‘6E8‘9sn
NOAC EX. 1018 Page 996

NOAC Ex. 1018 Page 997

US. Patent Jan. 4, 2005 Sheet 4 of 18 US 6,839,751 B1

HIGH LEVEL
PACKET

DECODING
I ESCRIPTION ‘

GENERATE PACKET

PACKET COMPILE STATE
PARSE AND ESCRIPTION ~ INSTRUCTION

EXTRACT AND
OPERATIONS OPERATIONS

407

406 7/A'ITERN, PARS STATE
AND PROCESSOR

EXTRACTION INSTRUCTION
DATABASE DATABASE

LOAD LOAD STATE

PARSING NSTRUCTION
SUBSYSTEM DATABASE

MEMORY MEMORY

400

i NOAC EX. 1018 Page 997

NOAC Ex. 1018 Page 998

,. muss-Patent Jan. 4,2005 ”Sheéht-55f 13 N
US 6,839,751 B1

3‘} 503

504
FETCH NODE ANI
PROCESSFROM

513

PROCESS TO
COMPONENT

EXTRACT

ELEMENTS

FIG. 5

NOAC Ex. 1018 Page 999

, US. Patent Jan. 4, 2005 Sheet 6 of 18 US 6,839,751 B1

0

PACKET 602
COMPONENT AND

PATTERN NODE

603

LOAD PACKET

COMPONENT 610

604

MORE PACKE LOAD KEY
BUFFER

COMPONENT

YES

FETCH EXTRACTION @
A ND PROCESS FROM

PATTERNS 605

NO 511
606

NEXT

N O PACKET 609ORE EXTRACTIO ‘
COMPONENELEMENTS?

YES

507 APPLY EXTRACTION

SSfi‘éfiiL?
600

 MORE TO 503

EXTRACT?

YE

FIG. 6

NOAC Ex. 1018 Page 1000

US. Patent

703

704

706

707

Jan. 4, 2005 Sheet 7 of 18

o

EY BUFFER AND 702

PATTERN NODE

LOAD PATTERN

NODE ELEMENT

MORE PATTER

NODES?

YES

HASH KEY BUFFER

ELEMENT FROM 705
PATTERN NODE ~~

PACK KEY & HAS

NEXT PACKET

COMPONENT

FIG. 7

US 6,839,751 B1

708

OUTPUT TO
ANALYZER

709

700

NOAC EX. 1018 Page 1000

NOAC Ex. 1018 Page 1001

US. Patent Jan. 4, 2005 Sheet 8 of 18 US 6,839,751 B1

. 801

UFKB ENTRY FOR 802
PACKET

aoo\
COMPUTE CONVERSATION 803
RECORD BIN FROM HASH

REQUEST RECORD BIN/

BUCKET FROM CACHE 804 806

NO SET UFKB FOR
PACKET AS 'NEW’

COMPARE CURRENT BIN 807
AND BUCKET RECORD KEY

TO PACKET

NEXT BUCKET No @» 808
YES

ORE BUCKET

805 IN THE BIN?

YES

809 MARK RECORD BIN AND 810
BUCKET IIN PROCESS' IN
CACHE AND TIMESTAMP

SET UFKB FOR PACKET
8“ AS 'FOUND'

812 UPDATE STATISTICS FOR

RECORD IN CACHE

813». FIG. 8

NOAC EX. 1018 Page 1001

NOAC Ex. 1018 Page 1002

US. Patent Jan. 4,2005 Sheet 9 of 18 US 6,839,751 B1

901 902

RPC
BIND LOOKU '. . ‘ NNOUNCME

ORTMAPP . ORTMAPPE ., REQUEST
909

 EXTRACT PROGRAM

GET 'PROGRAM',
'VERSION‘, 'PORT' AND
'PROTOCOL (rep OR ‘

UDP)

EXTRACT PORT

GET ‘PROGRAM',
'VERSION' AND

'PROTOOOL (TCP OR
UDP)‘

903

SAVE REQUEST CREATE SERVER STAT

SAVE 'PROGRAM',
SAVE 'PROGRAM', ‘VERSION' AND

904 'VERSION', 'PORT' AND 'PROTOCOL (I'CP OR
'PROTOCOL (TCP OR UDP)‘ WITH

UDP)‘ WITH NETWORK DESTINATION
ADDRESS IN SERVER NETWORK ADDRESS.

STATE DATABASE. KEY
ON SERVER ADDRESS

AND TCP OR UDP PORT.

BOTH MAKE A KEY.

RPC
BIND

LOOKUP
REPLY

EXTRACT
PROGRAM

GET 'PORT' AND

'PROTOCOL (TCP
OR UDP)‘.

LOOKUP REQUE ‘

FIND 'PROGRAM'
AND 'VERSION'

WITH LOOKUP OF
SOURCE NETWORK

ADDRESS.

900/

FIG. 9

NOAC EX. 1018 Page 1002

NOAC Ex. 1018 Page 1003

US. Patent Jan. 4, 2005 Sheet 10 of 18 US 6,839,751 B1

100 EXTRACTION

OPERATIONS
DATABASE

RECOGNITION
DATABASE

MEMORY 1001

100 100 HOST INTERFACE MULTIPLEXR & CONTROL REGISTERS CONTRL N

1031

100' PATTERN 1007
RECOGNITN EXTRACTION ENGINE

ENGINE (SLICER)
(PRE)

100:

PARSER

PA KET PARSER INPUT BUFFER OUTPUT PACKET KEY
INPUT MEMORY BUFFER AND PAYLOAD

MEMORY

1012

1021

P§1QA<FETT INPUT BUFFER ANALYZER DATA REA I'
INTERFACE INTERFACE

CONTROL CONTROL

ANALYZER

‘ .

PACKET READY

102

1023 FIG. 10 1027

NOAC Ex. 1018 Page 1004

US. Patent

PARSER
INTER- “I
FACE

Jan. 4, 2005 Sheet 11 of 18 US 6,839,751 B1

1103 1115

111%112/
ENGINE ANALYZE ' [gassT
.. (LUE) _» 1., INTERFAC.‘ INTER-

AND FACE
CONTROL (HIB)

(ACIC)

INSTRUCN
DATABASE

(SPID)

UNIFIED
FLOW
KEY

UFFER

(UFKB)

PROCESSR

(SP) 1119 112

UNIFIED MEMORY

MEMORY INTER-
“ CONTROL h FACE

(UMC)

INsI:EL1=(1)TI/1VON/
“'1 DELETION I"

ENGINE

(FIDE)

1110

FIG. 11

NOAC EX. 1018 Page 1004

...,_..p‘:

NOAC Ex. 1018 Page 1005

US. Patent Jan. 4, 2005 Sheet 12 of 18 US 6,839,751 B1

1201

UFKB ENTRY FOR
PACKET WITH

STATUS 'NEW'

1 202

1200
\A ACCESS

CONVERSATION 1203
RECORD BIN

REQUEST RECORD BIN/ 1204
BUCKET FROM CACHE

REQUEST NEXT NO
BUCKET FROM <-IN/BUCKET EMPTY 1205

1206 CACHE

YES

NO INSERT KEY AND HASH
: N BUCKET, MARK 'USED1208 @ WITH TIMESTAMP

1207

21 ES OMPARE CURRENg Bl 12091 0 AND BUCKET REC RD
SET UFKB FOR KEY TO PACKET

PACKET AS
'DROP'

MARK RECORD BIN AND

BUCKET 'IN PROCESS'
AND lNEW' IN CACHE

SET INITIAL STATISTICS
FOR RECORD IN CACHE

1213

1211

NOAC Ex. 1018 Page 1006

US. Patent Jan. 4, 2005 Sheet 13 of 18 Us 6,839,751 B1

@1301
1300 \A UFKB ENTRY FOR

PACKET WITH STATUS

'NEW' 0 - 'Fo ND' 1302

I
SET STATE PROCESSOR

INSTRUCTION POINTER TO 1303
ALUE FOUND IN UFKB ENTRY

FETCH INSTRUCTION FROM 1304
STATE PROCESSOR

INSTRUCTION MEMORY

PERFORM OPERATION BASED 1305
ON THE STATE INSTRUCTION

PROCESSOR

INSTRUCTION NO DONE PROCESSING 1307
POINTER TO STATES FOR THIS

VALUE FOUND IN PACKET?

CURRENT STATE

1308 YES
1310

SAVE STATE

PROCESSOR

INSTRUCTION NO DONE PROCESSING 1309

POINTER IN

CURRENT FLOW
RECORD

TATES FOR THIS FLOW’7
YES

SET AND SAVE FLOW REMOVA

STATE PROCESSOR

INSTRUCTION IN CURRENT

FLOW RECORD

@1313
FIG. 13

1311

NOAC EX. 1018 Page 1006

NOAC Ex. 1018 Page 1007

__33mm.» mmoomzfim“$ij2_Z_uOmZ_>‘_._Oz

maxmcoacmmm>20mx._.m>0._._OzOfimm>jozwmé&%£......
mx43>04\mdfim30m _Umz._.=u<_zo_Z_uOm,.umOOr

 O>A>w>mmO.”mr0<<w

EOE—mOr>wm=u_0>dOz

m._.>._.m§>OI_zmmmrmOAOm

05mm=u5>azIZ>_._N>._._OZ>Z>r<Nmmmcmm<mam§

mama ST]5002 ‘17 “91'31 JD VI 199‘18Ifl ISL‘6ES‘9 Sf]

NOAC EX. 1018 Page 1007

NOAC Ex. 1018 Page 1008

1B1‘57,

w..s,mPOE
6SU

om<o

mmofimmpzMxmoEmz
Hm

mm|
8mmotzo:

5E0552m50:
24,

m.83J3m;

mm.mN>._<z<

ww<m<k<0

me

US. Patent

5.1mEmmi/«n.

Now

Nomw

FNF

NOAC EX. 1018 Page 1008

NOAC Ex. 1018 Page 1009

US. Patent Jan. 4, 2005 Sheet 16 of 18 US 6,839,751 B1

NOAC EX. 1018 Page 1009

NOAC Ex. 1018 Page 1010

US. Patent Jan. 4, 2005

1702
1704

offset ,
12 to 13 -Wfllllllllfi

! 1706

1708 Type (2)

H h 1

FIG. 17A
1712

1721111110Hfli'ffl’m‘ififléfgj’b'llqll
[($34 mam—mmmm
-1]

Dst Address_
'IIIIIIflL’iiiIfi’Iiiiifi'fillllllllllfl

Src Address

Src Hash (2)

-om>

-et = L3 + (lHL/4)

Sheet 17 of 18

FIG. 178

US 6,839,751 B1

IDP = 0x0600*
IP = 0x0800*

CHAOSNET = 0x0804
ARP = 0x0806
VIP = OXOBAD"

VLOOP = OXOBAE
VECHO = OxoBAF

NETBIOS-3COM = 0X3COO -
0x3COD#

DEC-MOP = 0x6001
DEC-RC = 0x6002

DEC-DRP = 0x6003*
DEC-LAT = 0x6004

DEC-DIAG = 0x6005
DEC-LAVC = 0x600?

RARP = 0x8035
ATALK = 0x8OQB*

VLOOP = 0x8004
VECHO = 0x80C5
SNA—TH = 0x80D5*

ATALKARP = 0x80F3
IPX = 0x8137*

SNMP = 0x814C#
IPv6 = 0x86DD *

LOOPBACK = 0x9000

Apple = 0x080007

* L3 Decoding
L5 Decoding

1752

ICMP =1
IGMP =2
GGP = 3
TOP = 6*
EGP = 8

IGRP = 9
PUP =12

CHAOS =16
UDP =17*
IDP = 22#

lSO-TP4 = 29
DDP = 37#

lSO-IP = 80
VIP = 83#

EIGRP = 88

OSPF = 89

* L4 Decoding
L3 Re—Decoding

NOAC EX. 1018 Page 1010

NOAC Ex. 1018 Page 1011

US 6,839,751 B1Sheet 18 of 18Jan. 4, 2005US. Patent

PROTOCOL

mEiIt!rhhhiiiln!ihhhhll!Ifliiii!..~\\inIn!!!

. hilimnhum"---:.~.&.in...in.ENPb“W1W“who
mN»

IFGZm:D._m=u_

.5...$1
1802-1

FIG. 18A

UT NUM
_____}

L
mo58AW

DIE—u....._O000mbrmJOUOFOMQ

FIG. 188

NOAC EX. 1018 Page 1011

NOAC Ex. 1018 Page 1012

US 6,839,751 B1

1
RE-USING INFORMATION FROM DATA

TRANSACTIONS FOR MAINTAINING
STATISTICS IN NETWORK MONITORING

CROSS—REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/141 ,903 for METHOD AND
APPARATUS FOR MONITORING TRAFFIC IN A NET-

WORK to inventors Dietz, et al., filed Jun. 30, 1999, the
contents of which are incorporated herein by reference.

This application is related to the following U.S. patent
applications, each filed concurrently with the present
application, and each assigned to Apptitude, Inc., the
assignee of the present invention:

U.S. patent application Ser. No. 09/608,237 for
METHOD AND APPARATUS FOR MONITORING

TRAFFIC INANETWORK, to inventors Dietz, et a1., filed
Jun. 30, 2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/609,179 for PRO-
CESSING PROTOCOL SPECIFIC INFORMATION IN
PACKETS SPECIFIED BYAPROTOCOL DESCRIPTION

LANGUAGE, to inventors Koppenhaver, et al., filed Jun.
30, 2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/608,266 for ASSO-
CIATIVE CACHE STRUCTURE FOR LOOKUPS AND
UPDATES OF FLOW RECORDS IN A NETWORK
MONITOR, to inventors Sarkissian, et al., filed Jun. 30,

2000, and incorporated herein by reference.

U.S. patent application Ser. No. 09/608,267 for STATE
PROCESSOR FOR PATTERN MATCHING IN A NET—

WORK MONITOR DEVICE, to inventors Sarkissian, et al.,
filed Jun. 30, 2000, and incorporated herein by reference.

FIELD OF INVENTION

The present invention relates to computer networks, spe-
cifically to the realatime elucidation of packets communi-
cated within a data network, including classification accord-
ing to protocol and application program.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

There has long been a need for network activity monitors.
This need has become especially acute, however, given the
recent popularity of the Internet and other interconnected
networks. In particular, there is a need for a real—time
network monitor that can provide details as to the applica-
tion programs being used. Such a monitor should enable
non-intrusive, remote detection, characterization, analysis,
and capture of all information passing through any point on
the network (i.e., of all packets and packet streams passing
through any location in the network). Not only should all the
packets be detected and analyzed, but for each of these
packets the network monitor should determine the protocol
(e.g., http, ftp, H.323, VPN, etc.), the application/use within
the protocol (e.g., voice, video, data, real—time data, etc.),

10

15

20

25

30

35

40

45

50

55

60

65

2

and an end user’s pattern of use within each application or
the application context (e.g., options selected, service
delivered, duration, time of day, data requested, etc.). Also,
the network monitor should not be reliant upon server
resident information such as log files. Rather, it should allow
a user such as a network administrator or an Internet service

provider (ISP) the means to measure and analyze network
activity objectively; to customize the type of data that is
collected and analyzed; to undertake real time analysis; and
to receive timely notificatior of network problems.

Related and incorporated by reference U.S. patent appli-
cation Ser. No. 09/607,237 for METHOD AND APPARA-
TUS FOR MONITORING TRAFFIC IN A NETWORK, to
inventors Dietz, et al, describes a network monitor that

includes carrying out protocol specific operations on indi—
vidual packets including extracting information from header
fields in the packet to use for building a signature for
identifying the conversational flow of the packet and for
recognizing future packets as belonging to a previously
encountered flow. A parser subsystem includes a parser for
recognizing different patterns in the packet that identify the
protocols used. For each protocol recognized, a slicer
extracts important packet elements from the packet. These
form a signature (i.e., key) for the packet. The slicer also
preferably generates a bash for rapidly identifying a flow
that may have this signature from a database of known
flows.

The flow signature of the packet, the hash and at least
some of the payload are passed to an analyzer subsystem. In
a hardware embodiment, the analyzer subsystem includes a
unified flow key buffer (UFKB) for receiving parts of
packets from the parser subsystem and for storing signatures
in process, a lockup/update engine (LUE) to lookup a
database of flow records for previously encountered con—
versational flows to determine whether a signature is from
an existing flow, a state processor (SP) for performing state
processing, a flow insertion and deletion engine (FIDE) for
inserting new flows into the database of flows, a memory for
storing the database of flows, and a cache for speeding up
access to the memory containing the flow database. The
LUE, SP, and FIDE are all coupled to the UFKB, and to the
cache.

Each flow-entry includes one or more statistical measures,
e.g., the packet count related to the flow, the time of arrival
of a packet. the time differential.

In the preferred hardware embodiment, each of the LUE,
state processor, and FIDE operate independently from the
other two engines. The state processor performs one or more
operations specific to the state of the flow.

It is advantageous to collect statistics on packets passing
through a point in a network rather than to simply count each
and every packet. By maintaining statistical measures in the
flow-entries related to a conversational flow, embodiments
of the present invention enable specific metrics to be col-
lected in real-time that otherwise would not be possible. For
example, it is desirable to maintain metrics related to
bi-directional conversations based on the entire flow for

each exchange in the conversation. By maintaining the state
of flow, embodiments of the present invention also enable
certain metrics related to the states of flows to be deter-
mined.

Most prior—art network traflic monitors that use statistical
metrics collect only end-point and end-of—session related
statistics. Examples of such commonly used metrics include
packet counts, byte counts, session connection time, session
timeouts, session and transport response times and others.

NOAC EX. 1018 Page 1012 V

NOAC Ex. 1018 Page 1013

US 6,839,751 B1

3

All of these deal with events that can be directly related to
an event in a single packet. These prior—art systems cannot
collect some important performance metrics that are related
to a complete sequence of packets of a flow or to several
disjointed sequences of the same flow in a network.

Time based metrics on application data packets are impor-
tant. Such metrics could be determined if all the timestamps
and related data could be stored and forwarded for later

analysis. However when faced with thousands or millions of
conversations per second on ever faster networks, storing all
the data, even if compressed, would take too much
processing, memory, and manager down load time to be
practical.

Thus there is a need for maintaining and reporting time—
base metrics from statistical measures accumulated from

packets in a flow.
Network data is properly modeled as a population and not

a sample. Thus, all the data needs to be processed. Because
of the nature of application protocols, just sampling some of
the packets may not give good measured related to flows.
Missing just one critical packet, such as one the specified an
additional port that data will be transmitted on, or what
application will be run, can cause valid data to be lost.

Thus there is also a need for maintaining and reporting
time-base metrics from statistical measures accumulated

from every packet in a flow.
There also is a need to determine metrics related to a

sequence of events. A good example is relative jitter. Mea-
suring the time from the end of one packet in one direction
to another packet with the same signature in the same
direction collects data that relates normal jitter. This type of
jitter metric is good for measuring broad signal quality in a
packet network. However, it is not specific to the payload or
data item being transported in a cluster of packets.

Using the state processing described herein, because the
state processor can search for specific data payloads,
embodiments of monitor 300 can be programmed to collect
the same jitter metric for a group of packets in a flow that are
all related to a specific data payload. This allows the
inventive system to provide metrics more focused on the
type of quality related to a set of packets. This in general is
more desirable than metrics related to single packets when
evaluating the performance of a system in a network

Specifically, the monitor system 300 can be programmed
to maintain any type of metric at any state of a conversa-
tional flow. Also the system 300 can have the actual statistics
programmed into the state at any point. This enables
embodiments of the monitor system to collect metrics
related to network usage and performance, as well as metrics
related to specific states or sequences of packets.

Some of the specific metrics that can be collected only
with states are events related to a group of traffic in one
direction, events related to the status of a communication
sequence in one or both directions, events related to the
exchange of packets for a specific application in a specific
sequence. This is only a small sample of the metrics that
requires an engine that can relate the state of a flow to a set
of metrics.

In addition, because the monitor 300 provides greater
visibility to the specific application in a conversation or flow,
the monitor 300 can be programmed to collect metrics that
may be specific to that type of application or service. In other
word, if a flow is for an Oracle Database server, an embodi-
ment of monitor 300 could collect the number of packets

required to complete a transaction. Only with both state and
application classification can this type of metric be derived
from the network.

10

15

20

25

30

35

45

50

55

60

65

4

Because the monitor 300 can be programmed to collect a
diverse set of metrics, the system can be used as a data
source for metrics required in a number of environments. In
particular, the metrics may be used to monitor and analyze
the quality and performance of traflic flows related to a
specific set of applications. Other implementation could
include metrics related to billing and charge-back for spe-
cific traflic flow and events with the traflic flows. Yet other

implementations could be programmed to provide metrics
useful for troubleshooting and capacity planning and related
directly to a focused application and service.

SUMIVIARY

Another aspect of the invention is determining quality of
service metrics based on each and every packet. A method
of and monitor apparatus for analyzing a flow of packets
passing through a connection point on a computer network
are disclosed that may include such quality of service
metrics. The method includes receiving a packet from a
packet acquisition device, and looking up a flow-entry
database containing flow-entries for previously encountered
conversational flows. The looking up to determine if the
received packet is of an existing flow. Each and every packet
is processed. If the packet is of an existing flow, the method
updates the flow-entry of the existing fiow, including storing
one or more statistical measures kept in the flow-entry. If the
packet is of a new flow, the method stores a new flow-entry
for the new flow in the flow-entry database, including
storing one or more statistical measures kept in the flow-
entry. The statistical measures are used to determine metrics
related to the flow. The metrics may be base metrics from
which quality of service metrics are determined, or may be
the quality of service metrics.

BRIEF DESCRIPTION OF THE DRAWINGS

Although the present invention is better understood by
referring to the detailed preferred embodiments, these
should not be taken to limit the present invention to any
specific embodiment because such embodiments are pro—
vided only for the purposes of explanation. The
embodiments, in turn, are explained with the aid of the
following figures.

FIG. 1 is a functional block diagram of a network embodi-
ment of the present invention in which a monitor is con—
nected to analyze packets passing at a connection point.

FIG. 2 is a diagram representing an example of some of
the packets and their formats that might be exchanged in
starting, as an illustrative example, a conversational flow
between a client and server on a network being monitored
and analyzed. A pair of flow signatures particular to this
example and to embodiments of the present invention is also
illustrated. This represents some of the possible flow signa-
tures that can be generated and used in the process of
analyzing packets and of recognizing the particular server
applications that produce the discrete application packet
exchanges.

FIG. 3 is a functional block diagram of a process embodi—
ment of the present invention that can operate as the packet
monitor shown in FIG. 1. This process may be implemented
in software or hardware.

FIG. 4 is a flowchart of a high-level protocol language
compiling and optimization process, which in one embodi—
ment may be used to generate data for monitoring packets
according to versions of the present invention.

FIG. 5 is a flowchart of a packet parsing process used as
part of the parser in an embodiment of the inventive packet
monitor.

_NOAC EX. 1018 Page 1013

NOAC Ex. 1018 Page 1014

US 6,839,751 B1

5

FIG. 6 is a flowchart of a packet element extraction
process that is used as part of the parser in an embodiment
of the inventive packet monitor.

FIG. 7 is a flowchart of a flow-signature building process
that is used as part of the parser in the inventive packet
monitor.

FIG. 8 is a flowchart of a monitor lookup and update
process that is used as part of the analyzer in an embodiment
of the inventive packet monitor.

FIG. 9 is a flowchart of an exemplary Sun Microsystems
Remote Procedure Call application than may be recognized
by the inventive packet monitor.

FIG. 10 is a functional block diagram of a hardware parser
subsystem including the pattern recognizer and extractor
that can form part of the parser module in an embodiment of
the inventive packet monitor.

FIG. 11 is a functional block diagram of a hardware
analyzer including a state processor that can form part of an
embodiment of the inventive packet monitor.

FIG. 12 is a functional block diagram of a flow insertion
and deletion engine process that can form part of the
analyzer in an embodiment of the inventive packet monitor.

FIG. 13 is a flowchart of a state processing process that
can form part of the analyzer in an embodiment of the
inventive packet monitor,

FIG. 14 is a simple functional block diagram of a process
embodiment of the present invention that can operate as the
packet monitor shown in FIG. 1. This process may be
implemented in software.

FIG. 15 is a functional block diagram of how the packet
monitor of FIG. 3 (and FIGS. 10 and 11) may operate on a
network with a processor such as a microprocessor.

FIG. 16 is an example of the top (MAC) layer of an
Ethernet packet and some of the elements that may be
extracted to form a signature according to one aspect of the
invention.

FIG. 17A is an example of the header of an Ethertype type
of Ethernet packet of FIG. 16 and some of the elements that
may be extracted to form a signature according to one aspect
of the invention.

FIG. 17B is an example of an IP packet, for example, of
the Ethertype packet shown in FIGS. 16 and 17A, and some
of the elements that may be extracted to form a signature
according to one aspect of the invention.

FIG. 18A is a three dimensional structure that can be used

to store elements of the pattern, parse and extraction data-
base used by the parser subsystem in accordance to one
embodiment of the invention.

FIG. 18B is an alternate form of storing elements of the
pattern, parse and extraction database used by the parser
subsystem in accordance to another embodiment of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Note that this document includes hardware diagrams and
descriptions that may include signal names. In most cases,
the names are sufficiently descriptive, in other cases how-
ever the signal names are not needed to understand the
operation and practice of the invention.
Operation in a Network

FIG. 1 represents a system embodiment of the present
invention that is referred to herein by the general reference
numeral 100. The system 100 has a computer network 102

10

15

20

25

30

35

40

45

50

55

60

65

6

that communicates packets (e.g., IP datagrams) between
various computers, for example between the clients 104—107
and servers 110 and 112. The network is shown schemati-

cally as a cloud with several network nodes and links shown
in the interior of the cloud. A monitor 108 examines the

packets passing in either direction past its connection point
121 and, according to one aspect of the invention, can
elucidate what application programs are associated with
each packet. The monitor 108 is shown examining packets
(i.e., datagrams) between the network interface 116 of the
server 110 and the network. The monitor can also be placed
at other points in the network, such as connection point 123
between the network 102 and the interface 118 of the client

104, or some other location, as indicated schematically by
connection point 125 somewhere in network 102. Not
shown is a network packet acquisition device at the location
123 on the network for converting the physical information
on the network into packets for input into monitor 108. Such
packet acquisition devices are common.

Various protocols may be employed by the network to
establish and maintain the required communication, e.g.,
TCP/IP, etc. Any network activity—for example an appli-
cation program run by the client 104 (CLIENT 1) commu-
nicating with another running on the server 110 (SERVER
2)——will produce an exchange of a sequence of packets over
network 102 that is characteristic of the respective programs
and of the network protocols. Such characteristics may not
be completely revealing at the individual packet level. It
may require the analyzing of many packets by the monitor
108 to have enough information needed to recognize par~
ticular application programs. The packets may need to be
parsed then analyzed in the context of various protocols, for
example, the transport through the application session layer
protocols for packets of a type conforming to the ISO
layered network model.

Communication protocols are layered, which is also
referred to as a protocol stack. The ISO (International
Standardization Organization) has defined a general model
that provides a framework for design of communication
protocol layers. This model, shown in table form below,
serves as a basic reference for understanding the function-
ality of existing communication protocols.

ISO MODEL

Layer Functionality Example

7 Applicanon Telnet, NFS, Novell NCP, HTTP,
H.323

6 Presentation XDR
5 Session RFC, NETBIOS, SNMP, etc.
4 Transport TCP, Novel SPX, UDP, etc.
3 Network IP, Novell IPX, VIP, AppleTalk. etc.
2 Data Link Network Interface Card (Hardware

Interface). MAC layer
1 Physical Ethernet, Token Ring, Frame Relay,

ATM, Tl (Hardware Connection)

Difierent communication protocols employ different lev-
els of the ISO model or may use a layered model that is
similar to but which does not exactly conform to the ISO
model. A protocol in a certain layer may not be visible to
protocols employed at other layers. For example, an appli—
cation (Level 7) may not be able to identify the source
computer for a communication attempt (Levels 2—3).

In so communication arts, the term “frame” generally
refers to encapsulated data at 081 layer 2, including a
destination address, control bits for flow control, the data or

NOAC EX. 1018 Page 1014

NOAC Ex. 1018 Page 1015

US 6,839,751 B1

7

payload, and CRC (cyclic redundancy check) data for error
checking. The term “packet" generally refers to encapsu-
lated data at 081 layer 3. In the TCP/IP world, the term
“datagram” is also used. In this specification, the term
“packet” is intended to encompass packets, datagrams,
flames, and cells. In general, a packet format or frame
format refers to how data is encapsulated with various fields
and headers for transmission across a network. For example,
a data packet typically includes an address destination field,
a length field, an error correcting code (ECC) field, or cyclic
redundancy check (CRC) field, as well as headers and
footers to identify the beginning and end of the packet. The
terms “packet format” and “frame format,” also referred to
as “cell format,” are generally synonymous.

Monitor 108 looks at every packet passing the connection
point 121 for analysis. However, not every packet carries the
same information useful for recognizing all levels of the
protocol. For example, in a conversational flow associated
with a particular application, the application will cause the
server to send a type-A packet, but so will another. If,
though, the particular application program always follows a
type-A packet with the sending of a type—B packet, and the
other application program does not, then in order to recog—
nize packets of that application’s conversational flow, the
monitor can be available to recognize packets that match the
type-B packet to associate with the type-A packet. If such is
recognized after a type-A packet, then the particular appli»
cation program’s conversational flow has started to reveal
itself to the monitor 108.

Further packets may need to be examined before the
conversational flow can be identified as being associated
with the application program. Typically, monitor 108 is
simultaneously also in partial completion of identifying
other packet exchanges that are parts of conversational flows
associated with other applications. One aspect of monitor
108 is its ability to maintain the state of a flow. The state of
a flow is an indication of all previous events in the flow that
lead to recognition of the content of all the protocol levels,
e.g., the ISO model protocol levels. Another aspect of the
invention is forming a signature of extracted characteristic
portions of the packet that can be used to rapidly identify
packets belonging to the same flow.

In real—world uses of the monitor 108, the number of

packets on the network 102 passing by the monitor 108’s
connection point can exceed a million per second.
Consequently, the monitor has very little t'une available to
analyze and type each packet and identify and maintain the
state of the flows passing through the connection point The
monitor 108 therefore masks out all the unimportant parts of
each packet that will not contribute to its classification.
However, the parts to mask-out will change with each packet
depending on which flow it belongs to and depending on the
state of the flow.

The recognition of the packet type, and ultimately of the
associated application programs according to the packets
that their executions produce, is a multi-step process within
the monitor 108. At a first level, for example, several
application programs will all produce a first kind of packet.
A first “signature” is produced from selected parts of a
packet that will allow monitor 108 to identify efficiently any
packets that belong to the same flow. In some cases, that
packet type may be sufficiently unique to enable the monitor
to identify the application that generated such a packet in the
conversational flow. The signature can then be used to
efiiciently identify all future packets generated in traffic
related to that application.

In other cases, that first packet only starts the process of
analyzing the conversational flow, and more packets are

10

15

25

30

35

45

50

55

60

65

8

necessary to identify the associated application program. In
such a case, a subsequent packet of a second type—but that
potentially belongs to the same conversational flow—is
recognized by using the signature. At such a second level,
then, only a few of those application programs will have
conversational flows that can produce such a second packet
type. At this level in the process of classification, all appli-
cation programs that are not in the set of those that lead to
such a sequence of packet types may be excluded in the
process of classifying the conversational flow that includes
these two packets. Based on the known patterns for the
protocol and for the possible applications, a signature is
produced that allows recognition of any future packets that
may follow in the conversational flow.

It may be that the application is now recognized, or
recognition may need to proceed to a third level of analysis
using the second level signature. For each packet, therefore,
the monitor parses the packet and generates a signature to
determine if this signature identified a previously encoun-
tered flow, or shall be used to recognize future packets
belonging to the same conversational flow. In real time, the
packet is further analyzed in the context of the sequence of
previously encountered packets (the state), and of the pos—
sible future sequences such a past sequence may generate in
conversational flows associated with different applications.
A new signature for recognizing future packets may also be
generated. This process of analysis continues until the
applications are identified. The last generated signature may
then be used to efficiently recognize future packets associ-
ated with the same conversational flow. Such an arrange
ment makes it possible for the monitor 108 to cope with
millions of packets per second that must be inspected.

Another aspect of the invention is adding Eavesdropping.
In alternative embodiments of the present invention capable
of eavesdropping, once the monitor 108 has recognized the
executing application programs passing through some point
in the network 102 (for example, because of execution of the
applications by the client 105 or server 110), the monitor
sends a message to some general purpose processor on the
network that can input the same packets from the same
location on the network, and the processor then loads its own
executable copy of the application program and uses it to
read the content being exchanged over the network. In other
words, once the monitor 108 has accomplished recognition
of the application program, eavesdropping can commence.
The Network Monitor

FIG. 3 shows a network packet monitor 300, in an
embodiment of the present invention that can be imple—
mented with computer hardware and/or software. The sys—
tem 300 is similar to monitor 108 in FIG. 1. A packet 302 is
examined, e.g., from a packet acquisition device at the
location 121 in network 102 (FIG. 1), and the packet
evaluated, for example in an attempt to determine its
characteristics, e.g., all the protocol information in a multi—
level model, including what server application produced the
packet.

The packet acquisition device is a common interface that
converts the physical signals and then decodes them into
bits, and into packets, in accordance with the particular
network (Ethernet, frame relay, ATM, etc.). The acquisition
device indicates to the monitor 108 the type of network of
the acquired packet or packets.

Aspects shown here include: (1) the initialization of the
monitor to generate what operations need to occur on
packets of different types—accomplished by compiler and
optimizer 310, (2) the processing—parsing and extraction of
selected portions—of packets to vent-rat” ,.. '‘jing

NOAC EX. 1018 Page 1015

NOAC Ex. 1018 Page 1016

US 6,839,751 B1
9

signature—accomplished by parser subsystem 301, and (3)
the analysis of the packetsmaccomplished by analyzer 303.

The purpose of compiler and optimizer 310 is to provide
protocol specific information to parser subsystem 301 and to
analyzer subsystem 303. The initialization occurs prior to
operation of the monitor, and only needs to re-occur when
new protocols are to be added.

A flow is a stream of packets being exchanged between
any two addresses in the network. For each protocol there
are known to be several fields, such as the destination
(recipient), the source (the sender), and so forth, and these
and other fields are used in monitor 300 to identify the flow.
There are other fields not important for identifying the flow,
such as checksums, and those parts are not used for identi—
fication.

Parser subsystem 301 examines the packets using pattern
recognition process 304 that parses the packet and deter
mines the protocol types and associated headers for each
protocol layer that exists in the packet 302. An extraction
process 306 in parser subsystem 301 extracts characteristic
portions (signature information) from the packet 302. Both
the pattern information for parsing and the related extraction
operations, e.g., extraction masks, are supplied from a
parsing~pattem~stmctures and extraction—operations data
base (parsing/extractions database) 308 filled by the com-
piler and optimizer 310.

The protocol description language (PDL) files 336
describes both patterns and states of all protocols that an
occur at any layer, including how to interpret header
information, how to determine from the packet header
information the protocols at the next layer, and what infor—
mation to extract for the purpose of identifying a flow, and
ultimately, applications and services. The layer selections
database 338 describes the particular layering handled by the
monitor. That is, what protocols run on top of what protocols
at any layer level. Thus 336 and 338 combined describe how
one would decode, analyze, and understand the information
in packets, and, furthermore, how the information is layered.
This information is input into compiler and optimizer 310.

When compiler and optimizer 310 executes, it generates
two sets of internal data structures. The first is the set of

parsing/extraction operations 308. The pattern structures
include parsing information and describe what will be
recognized in the headers of packets; the extraction opera-
tions are what elements of a packet are to be extracted from
the packets based on the patterns that get matched. Thus,
database 308 ofparsing/extraction operations includes infor-
mation describing how to determine a set of one or more
protocol dependent extraction operations from data in the
packet that indicate a protocol used in the packet.

The other internal data structure that is built by compiler
310 is the set of state patterns and processes 326. These are
the difi‘erent states and state transitions that occur in different

conversational flows, and the state operations that need to be
performed (e.g., patterns that need to be examined and new
signatures that need to be built) during any state of a
conversational flow to further the task of analyzing the
conversational flow.

Thus, compiling the PDL files and layer selections pro-
vides monitor 300 with the information it needs to begin
processing packets. In an alternate embodiment, the contents
of one or more of databases 308 and 326 may be manually
or otherwise generated. Note that in some embodiments the
layering selections information is inherent rather than
explicitly described. For example, since a PDL file for a
protocol mclvdes the chit-.3 protocols, the parent protocols
also may be determined.

10

15

20

25

30

35

4o

45

50

55

6O

65

10

In the preferred embodiment, the packet 302 from the
acquisition device is input into a packet buifer. The pattern
recognition process 304 is carried out by a pattern analysis
and recognition (PAR) engine that analyzes and recognizes
patterns in the packets. In particular, the PAR locates the
next protocol field in the header and determines the length
of the header, and may perform certain other tasks for certain
types of protocol headers. An example of this is type and
length comparison to distinguish an IEEE 802.3 (Ethernet)
packet from the older type 2 (or Version 2) Ethernet packet,
also called a DIGITAL—Intel-Xerox (DIX) packet. The PAR
also uses the pattern structures and extraction operations
database 308 to identify the next protocol and parameters
associated with that protocol that enables analysis of the
next protocol layer. Once a pattern or a set of patterns has
been identified, it/they will be associated with a set of none
or more extraction operations. These extraction operations
(in the form of commands and associated parameters) are
passed to the extraction process 306 implemented by an
extracting and information identifying (Ell) engine that
extracts selected parts of the packet, including identifying
information from the packet as required for recognizing this
packet as part of a flow. The extracted information is put in
sequence and then processed in block 312 to build a unique
flow signature (also called a “key”) for this flow. A flow
signature depends on the protocols used in the packet. For
some protocols, the extracted components may include
source and destination addresses. For example, Ethernet
frames have end-point addresses that are useful in building
a better flow signature. Thus, the signature typically includes
the client and server address pairs. The signature is used to
recognize further packets that are or may be part of this flow.

In the preferred embodiment, the building of the flow key
includes generating a hash of the signature using a hash
function. The purpose if using such a hash is conventional——
to spread flow—entries identified by the signature across a
database for efficient searching. The hash generated is
preferably based on a hashing algorithm and such hash
generation is known to those in the art.

In one embodiment, the parser passes data from the
packet—a parser record-that includes the signature (i.e.,
selected portions of the packet), the hash, and the packet
itself to allow for any state processing that requires further
data from the packet. An improved embodiment of the parser
subsystem might generate a parser record that has some
predefined structure and that includes the signature, the
hash, some flags related to some of the fields in the parser
record, and parts of the packet’s payload that the parser
subsystem has determined might be required for further
processing, e.g., for state processing.

Note that alternate embodiments may use some function
other than concatenation of the selected portions of the
packet to make the identifying signature. For example, some
“digest function" of the concatenated selected portions may
be used.

The parser record is passed onto lockup process 314
which looks in an internal data store of records of known

flows that the system has already encountered, and decides
(in 316) whether or not this particular packet belongs to a
known flow as indicated by the presence of a flow—entry
matching this flow in a database of known flows 324. A
record in database 324 is associated with each encountered
flow.

The parser record enters a buffer called the unified flow
key buffer (UFKB). The UFKB stores the data on flows in
a data structure that is similar to the parser record, but that
i" “‘W‘Ps r: fie‘ri that can be modified. In particular, one or the

NOAC Ex. 1018 Page 1016

NOAC Ex. 1018 Page 1017

US 6,839,751 B1

11

UFKB record fields stores the packet sequence number, and
another is filled with state information in the form of a

program counter for a state processor that implements state
processing 328.

The determination (316) of whether a record with the
same signature already exists is carried out by a lookup
engine (LUE) that obtains new UFKB records and uses the
hash in the UFKB record to lookup if there is a matching
known flow. In the particular embodiment, the database of
known flows 324 is in an external memory. A cache is
associated with the database 324. A lockup by the LUE for
a known record is carried out by accessing the cache using
the hash, and if the entry is not already present in the cache,
the entry is looked up (again using the hash) in the external
memory.

The flow—entry database 324 stores flow-entries that
include the unique flow-signature, state information, and
extracted information from the packet for updating flows,
and one or more statistical about the flow. Each entry
completely describes a flow. Database 324 is organized into
bins that contain a number, denoted N, of flow-entries (also
called flow-entries, each a bucket), with N being 4 in the
preferred embodiment. Buckets (i.e., flow-entries) are
accessed via the hash of the packet from the parser sub—
system 301 (i.e., the hash in the UFKB record). The hash
spreads the flows across the database to allow for fast
lookups of entries, allowing shallower buckets. The designer
selects the .bucket depth N based on the amount of memory
attached to the monitor, and the number of bits of the hash
data value used. For example, in one embodiment, each
flow—entry is 128 bytes long, so for 128K flow-entries, 16
Mbytes are required. Using a 16-bit hash gives two flow-
entries per bucket. Empirically, this has been shown to be
more than adequate for the vast majority of cases. Note that
another embodiment uses flow-entries that are 256 bytes
long.

Herein, whenever an access to database 324 is described,
it is to be understood that the access is via the cache, unless
otherwise stated or clear from the context.

If there is no flow-entry found matching the signature, i.e.,
the signature is for a new flow, then a protocol and state
identification process 318 further determines the state and
protocol. That is, process 318 determines the protocols and
where in the state sequence for a flow for this protocol’s this
packet belongs. Identification process 318 uses the extracted
information and makes reference to the database 326 of state

patterns and processes. Process 318 is then followed by any
state operations that need to be executed on this packet by
a state processor 328.

Ifthe packet is found to have a matching flow-entry in the
database 324 (e.g., in the cache), then a process 320
determines, from the looked-up flow-entry, if more classi-
fication by state processing of the flow signature is neces-
sary. If not, a process 322 updates the flow-entry in the
flow-entry database 324 (e.g., via the cache). Updating
includes updating one or more statistical measures stored in
the flow—entry. In our embodiment, the statistical measures
are stored in counters in the flow-entry.

If state processing is required, state process 328 is com-
menced. State processor 328 carries out any state operations
specified for the state of the flow and updates the state to the
next state according to a set of state instructions obtained
form the state pattern and processes database 326.

The state processor 328 analyzes both new and existing
flows in order to analyze all levels of the protocol stack,
ultimately classifying the flows by application (level 7 in the
ISO model). It does this by proceeding from state-to-state

10

15

20

25

30

35

40

45

50

55

60

65

12

based on predefined state transition rules and state opera~
tions as specified in state processor instruction database 326.
A state transition rule is a rule typically containing a test
followed by the next-state to proceed to if the test result is
true. An operation is an operation to be performed while the
state processor is in a particular state—for example, in order
to evaluate a quantity needed to apply the state transition
rule. The state processor goes through each rule and each
state process until the test is true, or there are no more tests
to perform.

In general, the set of state operations may be none or more
operations on a packet, and carrying out the operation or
operations may leave one in a state that causes exiting the
system prior to completing the identification, but possibly
knowing more about what state and state processes are
needed to execute next, i.e., when a next packet of this flow
is encountered. As an example, a state process (set of state
operations) at a particular state may build a new signature
for future recognition packets of the next state.

By maintaining the state of the flows and knowing that
new fiows may be set up using the information from
previously encountered flows, the network traffic monitor
300 provides for (a) single—packet protocol recognition of
flows, and (b) multiple—packet protocol recognition of flows.
Monitor 300 can even recognize the application program
from one or more disjointed sub-flows that occur in server
announcement type flows. What may seem to prior art
monitors to be some unassociated flow, may be recognized
by the inventive monitor using the flow signature to be a
sub-flow associated with a previously encountered sub-flow.

Thus, state processor 328 applies the first state operation
to the packet for this particular flow-entry. A process 330
decides if more operations need to be performed for this
state. If so, the analyzer continues looping between block
330 and 328 applying additional state operations to this
particular packet until all those operations are completed—
that is, there are no more operations for this packet in this
state. A process 332 decides if there are further states to be
analyzed for this type of flow according to the state of the
flow and the protocol, in order to fully characterize the flow.
If not, the conversational flow has now been fully charac-
terized and a proceSs 334 finalizes the classification of the
conversational flow for the flow.

In the particular embodiment, the state processor 328
starts the state processing by using the last protocol recog~
nized by the parser as an offset into a jump table (jump
vector). The jump table finds the state processor instructions
to use for that protocol in the state patterns and processes
database 326. Most instructions test something in the unified
flow key buffer, or the flow-entry in the database of known
flows 324, if the entry exists. The state processor may have
to test bits, do comparisons, add, or subtract to perform the
test. For example, a common operation carried out by the
state processor is searching for one or more patterns in the
payload part of the UFKB.

Thus, in 332 in the classification, the analer decides
whether the flow is at an end state. If not at an end state, the
flow-entry is updated (or created if a new flow) for this
flow-entry in process 322.

Furthermore, if the flow is known and if in 332 it is

determined that there are further states to be processed using
later packets, the flow—entry is updated in process 322.

The flow-entry also is updated after classification final—
ization so that any further packets belonging to this flow will
be readily identified from their signature as belonging to this
fully analyzed conversational flow.

After updating, database 324 therefore includes the set of
all the conversational flows that have occurred.

NOAC E35 101% Page 1017

NOAC Ex. 1018 Page 1018

US 6,839,751 B1

13

Thus, the embodiment of present invention shown in FIG.
3 automatically maintains flow-entries, which in one aspect
includes storing states. The monitor of FIG. 3 also generates
characteristic parts of packets—the signatures—that can be
used to recognize flows. The flow-entries may be identified
and accessed by their signatures. Once a packet is identified
to be from a known flow, the state of the flow is known and
this knowledge enables state transition analysis to be per-
formed in real time for each different protocol and applica-
tion. In a complex analysis, state transitions are traversed as
more and more packets are examined. Future packets that
are part of the same conversational flow have their state
analysis continued from a previously achieved state. When
enough packets related to an application of interest have
been processed, a final recognition state is ultimately
reached, i.e., a set of states has been traversed by state
analysis to completely characterize the conversational flow.
The signature for that final state enables each new incoming
packet of the same conversational flow to be individually
recognized in real time.

In this manner, one of the great advantages of the present
invention is realized. Once a particular set of state transitions
has been traversed for the first time and ends in a final state,

a short-cut recognition pattern—a signature—an be gener—
ated that will key on every new incoming packet that relates
to the conversational flow. Checking a signature involves a
simple operation, allowing high packet rates to be success—
fully monitored on the network.

In improved embodiments, several state analyzers are run
in parallel so that a large number of protocols and applica-
tions may be checked for. Every known protocol and appli-
cation will have at least one unique set of state transitions,
and can therefore be uniquely identified by watching such
transitions.

When each new conversational flow starts, signatures that
recognize the flow are automatically generated on-the-fly,
and as further packets in the conversational flow are
encountered, signatures are updated and the states of the set
of state transitions for any potential application are further
traVersed according to the state transition rules for the flow.
The new states for the flow—those associated with a set of

state transitions for one or more potential applications—are
added to the records of previously encountered states for
easy recognition and retrieval when a new packet in the flow
is encountered.

Detailed operation
FIG. 4 diagrams an initialization system 400 that includes

the compilation process. That is, part of the initialization
generates the pattern structures and extraction operations
database 308 and the state instruction database 328. Such
initialization can occur ofi-line or from a central location.

The different protocols that can exist in diiferent layers
may be thought of as nodes of one or more trees of linked
nodes. The packet type is the root of a tree (called level 0).
Each protocol is either a parent node or a terminal node. A
parent node links a protocol to other protocols (child
protocols) that can be at higher layer levels. Thus a protocol
may have zero or more children. Ethernet packets, for
example, have several variants, each having a basic format
that remains substantially the same. An Ethernet packet (the
root or level 0 node) may be an Ethertype packet—also
called an Ethernet Type/Version 2 and a DIX (DIGITAL-
Intel—Xerox packet)—or an IEEE 803.2 packet. Continuing
with the IEEE 802.3 packet, one of the children nodes may
be the IP protocol, and one of the children of the IP protocol
may be the TCP protocol.

FIG. 16 shows the header 1600 (base level I) of a
complete Ethernet frame (i.e., packet) of information and

10

15

20

25

30

35

40

45

50

55

60

65

14
includes information on the destination media access control

address (Dst MAC 1602) and the source media access
control address (Src MAC 1604). Also shown in FIG. 16 is
some (but not all) of the information specified in the PDL
files for extraction the signature.

FIG. 17A now shows the header information for the next

level (level-2) for an Ethertype packet 1700. For an Ether—
type packet 1700, the relevant information from the packet
that indicates the next layer level is a two-byte type field
1702 containing the child recognition pattern for the next
level. The remaining information 1704 is shown hatched
because it not relevant for this level. The list 1712 shows the

possible children for an Ethertype packet as indicated by
what child recognition pattern is found offset 12. FIG. 17B
shows the structure of the header of one of the possible next
levels, that of the IP protocol. The possible children of the
IP protocol are shown in table 1752.

The pattern, parse, and extraction database (pattern rec-
ognition database, or PRD) 308 generated by compilation
process 310, in one embodiment, is in the form of a three
dimensional structure that provides for rapidly searching
packet headers for the next protocol. FIG. 18A shows such
a 3—D representation 1800 (which may be considered as an
indexed set of 2-D representations). A compressed form of
the 3-D structure is preferred.

An alternate embodiment of the data structure used in

database 308 is illustrated in FIG. 18B. Thus, like the 3-D

structure of FIG. 18A, the data structure permits rapid
searches to be performed by the pattern recognition proce5s
304 by indexing locations in a memory rather than perform—
ing address link computations. In this alternate embodiment,
the PRD 308 includes two parts, a single protocol table 1850
(PT) which has an entry for each protocol known for the
monitor, and a series of Look Up Tables 1870 (LUT‘s) that
are used to identify known protocols and their children. The
protocol table includes the parameters needed by the pattern
analysis and recognition process 304 (implemented by PRE
1006) to evaluate the header information in the packet that
is associated with that protocol, and parameters needed by
extraction process 306 (implemented by slicer 1007) to
process the packet header. When there are children, the PT
describes which bytes in the header to evaluate to determine
the child protocol. In particular, each PT entry contains the
header length, an offset to the child, a slicer command, and
some flags.

The pattern matching is carried out by finding particular
“child recognition codes” in the header fields, and using
these codes to index one or more of the LUT’s. Each LUT

entry has a node code that can have one of four values,
indicating the protocol that has been recognized, a code to
indicate that the protocol has been partially recognized
(more LUT lookups are needed), a code to indicate that this
is a terminal node, and a null node to indicate a null entry.
The next LUT to lookup is also returned from a LUT lookup.

Compilation process is described in FIG. 4. The source-
code information in the form of protocol description files is
shown as 402. In the particular embodiment, the high level
decoding descriptions includes a set of protocol description
files 336, one for each protocol, and a set of packet layer
selections 338, which describes the particular layering (sets
of trees of protocols) that the momtor is to be able to bathe.

A compiler 403 compiles the descriptions. The set of
packet parse—and—extract operations 406 is generated (404),
and a set of packet state instructions and operations 407 is
generated (405) in the form of instructions for the state
processor that implements state processing process 328.
Data files for each type of application and protocol to be

NOAC EX. 1018 Page 1018

NOAC Ex. 1018 Page 1019

US 6,839,751 B1

15

recognized by the analyzer are downloaded from the pattern,
parse, and extraction database 406 into the memory systems
of the parser and extraction engines. (See the parsing process
500 description and FIG. 5; the extraction process 600
description and FIG. 6; and the parsing subsystem hardware
description and FIG. 10). Data files for each type of appli-
cation and protocol to be recognized by the analyzer are also
downloaded from the state—processor instruction database
407 into the state processor. (see the state processor 1108
description and FIG. 11.).

Note that generating the packet parse and extraction
operations builds and links the three dimensional structure
(one embodiment) or the or all the lookup tables for the
PRD.

Because of the large number of possible protocol trees and
subtrees, the compiler process 400 includes optimization
that compares the trees and subtrees to see which children
share common parents. When implemented in the form of
the LUT’s, this process can generate a single LUT from a
plurality of LUT’s. The optimization process further
includes a compaction process that reduces the space needed
to store the data of the PRD.

As an example of compaction, consider the 3—D structure
of FIG. 18A that can be thought of as a set of 2D structures
each representing a protocol. To enable saving space by
using only one array per protocol which may have several
parents, in one embodiment, the pattern analysis subprocess
keeps a “current header” pointer. Each location (offset)
index for each protocol 2-D array in the 3-D structure is a
relative location starting with the start of header for the
particular protocol. Furthermore, each of the two-
dimensional arrays is sparse. The next step of the
optimization, is checking all the 2-D arrays against all the
other 2-D arrays to find out which ones can share memory.
Many of these 2-D arrays are often sparsely populated in that
they each have only a small number of valid entries. So, a
process of “folding” is next used to combine two or more
2-D arrays together into one physical 2—D array without
losing the identity of any of the original 2—D arrays (i.e., all
the 2-D arrays continue to exist logically). Folding can occur
between any 2-D arrays irrespective of their location in the
tree as long as certain conditions are met. Multiple arrays
may be combined into a single array as long as the individual
entries do not conflict with each other. A fold number is then

used to associate each element with its original array. A
similar folding process is used for the set of LUTs 1850 in
the alternate embodiment of FIG. 18B.

In 410, the analyzer has been initialized and is ready to
perform recognition.

FIG. 5 shows a flowchart of how actual parser subsystem
301 functions. Starting at 501, the packet 302 is input to the
packet butfer in step 502. Step 503 loads the next (initially
the first) packet component from the packet 302. The packet
components are extracted from each packet 302 one element
at a time. A check is made (504) to determine if the

load—packet-component operation 503 succeeded, indicating
that there was more in the packet to process. If not, indi—
cating all components have been loaded, the parser sub-
system 301 builds the packet signature (512)—the next stage
(FIG. 6).

If a component is successfully loaded in 503, the node and
processes are fetched (505) from the pattern, parse and
extraction database 308 to provide a set of patterns and
processes for that node to apply to the loaded packet
component. The parser subsystem 301 checks (506) to
determine if the fetch pattern node operation 505 completed
successfully, indicating there was a pattern node that loaded

10

15

20

25

3O

35

40

45

50

55

60

65

16

in 505. If not, step 511 moves to the next packet component.
If yes, then the node and pattern matching process are
applied in 507 to the component extracted in 503. A pattern
match obtained in 507 (as indicated by test 508) means the
parser subsystem 301 has found a node in the parsing
elements; the parser subsystem 301 proceeds to step 509 to
extract the elements.

If applying the node process to the component does not
produce a match (test 508), the parser subsystem 301 moves
(510) to the next pattern node from the pattern database 308
and to step 505 to fetch the next node and process. Thus,
there is an “applying patterns” loop between 508 and 505.
Once the parser subsystem 301 completes all the patterns
and has either matched or not, the parser subsystem 301
moves to the next packet component (511).

Once all the packet components have been the loaded and
processed from the input packet 302, then the load packet
will fail (indicated by test 504), and the parser subsystem
301 moves to build a packet signature which is described in
FIG. 6

FIG. 6 is a flow chart for extracting the information from
which to build the packet signature. The flow starts at 601,
which is the exit point 513 of FIG. 5. At this point parser
subsystem 301 has a completed packet component and a
pattern node available in a buffer (602). Step 603 loads the
packet component available from the pattern analysis pro-
cess of FIG. 5. If the load completed (test 604), indicating
that there was indeed another packet component, the parser
subsystem 301 fetches in 605 the extraction and process
elements received from the pattern node component in 602.
If the fetch was successful (test 606), indicating that there
are extraction elements to apply, the parser subsystem 301 in
step 607 applies that extraction process to the packet com-
ponent based on an extraction instruction received from that
pattern node. This removes and saves an element from the
packet component.

In step 608, the parser subsystem 301 checks if there is
more to extract from this component, and if not, the parser
subsystem 301 moves back to 603 to load the next packet
component at hand and repeats the process. If the answer is
yes, then the parser subsystem 301 moves to the next packet
component ratchet. That new packet component is then
loaded in step 603. As the parser subsystem 301 moved
through the loop between 608 and 603, extra extraction
processes are applied either to the same packet component
if there is more to extract, or to a different packet component
if there is no more to extract.

The extraction process thus builds the signature, extract-
ing more and more components according to the information
in the patterns and extraction database 308 for the particular
packet. Once loading the next packet component operation
603 fails (test 604), all the components have been extracted.
The built signature is loaded into the signature buifer (610)
and the parser subsystem 301 proceeds to FIG. 7 to complete
the signature generation process.

Referring now to FIG. 7, the process continues at 701. The
signature buffer and the pattern node elements are available
(702). The parser subsystem 301 loads the next pattern node
element. If the load was successful (test 704) indicating
there are more nodes, the parser subsystem 301 in 705
hashes the signature buffer element based on the hash
elements that are found in the pattern node that is in the
element database. In 706 the resulting signature and the hash
are packed. In 707 the parser subsystem 301 moves on to the
next packet component which is loaded in 703.

The 703 to 707 loop continues until there are no more
patterns of elements left (test 704). Once all the patterns of

NOAC Ex. 1018 Page 1019

NOAC Ex. 1018 Page 1020

US 6,839,751 B1

17

elements have been hashed, processes 304, 306 and 312 of
parser subsystem 301 are complete. Parser subsystem 301
has generated the signature used by the analyzer subsystem
303.

A parser record is loaded into the analyzer, in particular,
into the UFKB in the form of a UFKB record which is

similar to a parser record, but with one or more different
fields.

FIG. 8 is a flow diagram describing the operation of the
lookup/update engine (LUE) that implements lookup opera—
tion 314. The process starts at 801 from FIG. 7 with the
parser record that includes a signature, the hash and at least
parts of the payload. In 802 those elements are shown in the
form of a UFKB—entry in the buffer. The LUE, the lookup
engine 314 computes a “record bin number” from the hash
for a flow-entry. A bin herein may have one or more
“buckets” each containing a flow-entry. The preferred
embodiment has four buckets per bin.

Since preferred hardware embodiment includes the cache,
all data accesses to records in the flowchart of FIG. 8 are

stated as being to or from the cache.
Thus, in 804, the system looks up the cache for a bucket

from that bin using the hash. If the cache successfully
returns with a bucket from the bin number, indicating there
are more buckets in the bin, the lookup/update engine
compares (807) the current signature (the UFKB-entry’s
signature) from that in the bucket (i.e., the flow-entry
signature). Ifthe signatures match (test 808), that record (in
the cache) is marked in step 810 as “in process" and a
timestamp added. Step 811 indicates to the UFKB that the
UFKB—entry in 802 has a status of “found.” The “found”
indication allows the state processing 328 to begin process-
ing this UFKB element. The preferred hardware embodi-
ment includes one or more state processors, and these can
operate in parallel with the lookup/update engine.

In the preferred embodiment, a set of statistical operations
is performed by a calculator for every packet analyzed. The
statistical operations may include one or more of counting
the packets associated with the flow; determining statistics
related to the size of packets of the flow; compiling statistics
on differences between packets in each direction, for
example using timestamps; and determining statistical rela-
tionships of timestamps of packets in the same direction.
The statistical measures are kept in the flow—entries. Other
statistical measures also may be compiled. These statistics
may be used singly or in combination by a statistical
processor component to analyze many different aspects of
the flow. This may include determining network usage
metrics from the statistical measures, for example to ascer-
tain the network’s ability to transfer information for this
application. Such analysis provides for measuring the qual-
ity of service of a conversation, measuring how well an
application is performing in the network, measuring network
resources consumed by an application, and so forth.

To provide for such analyses, the lookup/update engine
updates one or more counters that are part of the flow-entry
(in the cache) in step 812. The process exits at 813. In our
embodiment, the counters include the total packets of the
flow, the time, and a differential time from the last timestamp
to the present timestamp.

It may be that the bucket of the bin did not lead to a
signature match (test 808). In such a case, the analyzer in
809 moves to the next bucket for this bin. Step 804 again
looks up the cache for another bucket from that bin. The
lookup/update engine thus continues lookup up buckets of
the bin until there is either a match in 808 or operation 804
is not successful (test 805), indicating that there are no more
buckets in the bin and no match was found.

10

15

20

25

30

35

40

45

50

55

60

65

18

If no match was found, the packet belongs to a new (not
previously encountered) flow. In 806 the system indicates
that the record in the unified flow key buffer for this packet
is new, and in 812, any statistical updating operations are
performed for this packet by updating the flow-entry in the
cache. The update operation exits at 813. A flow insertion/
deletion engine (FIDE) creates a new record for this flow
(again via the cache).

Thus, the update/lookup engine ends with a UFKB-entry
for the packet with a “new” status or a “found” status.

Note that the above system uses a hash to which more
than one flow—entry can match. A longer hash may be used
that corresponds to a single flow—entry. In such an
embodiment, the flow chart of FIG. 8 is simplified as would
be clear to those in the art.

The Hardware System
Each of the individual hardware elements through which

the data flows in the system are now described with refer-
ence to FIGS. 10 and 11. Note that while we are describing
a particular hardware implementation of the invention
embodiment of FIG. 3, it would be clear to one skilled in the

art that the flow of FIG. 3 may alternatively be implemented
in software running on one or more general—purpose
processors, or only partly implemented in hardware. An
implementation of the invention that can operate in software
is shown in FIG. 14. The hardware embodiment (FIGS. 10
and 11) can operate at over a million packets per second,
while the software system of FIG. 14 may be suitable for
slower networks. To one skilled in the art it would be clear

that more and more of the system may be implemented in
software as processors become faster.

FIG. 10 is a description of the parsing subsystem (301,
shown here as subsystem 1000) as implemented in hard-
ware. Memory 1001 is the pattern recognition database
memory, in which the patterns that are going to be analyzed
are stored. Memory 1002 is the extraction-operation data-
base memory, in which the extraction instructions are stored.
Both 1001 and 1002 correspond to internal data structure
308 of FIG. 3. Typically, the system is initialized from a
microprocessor (not shown) at which time these memories
are loaded through a host interface multiplexor and control
register 1005 via the internal buses 1003 and 1004. Note that
the contents of 1001 and 1002 are preferably obtained by
compiling process 310 of FIG. 3.

A packet enters the parsing system via 1012 into a parser
input buffer memory 1008 using control signals 1021 and
1023, which control an input buffer interface controller
1022. The buffer 1008 and interface control 1022 connect to

a packet acquisition device (not shown). The buffer acqui-
sition device generates a packet start signal 1021 and the
interface control 1022 generates a next packet (i.e., ready to
receive data) signal 1023 to control the data flow into parser
input buffer memory 1008. Once a packet starts loading into
the buffer memory 1008, pattern recognition engine (PRE)
1006 canies out the operations on the input buiIer memory
described in block 304 of FIG. 3. That is, protocol types and
associated headers for each protocol layer that exist in the
packet are determined.

The PRE searches database 1001 and the packet in buffer
1008 in order to recognize the protocols the packet contains.
In one implementation, the database 1001 includes a series
of linked lookup tables. Each loolmp table uses eight bits of
addressing. The first lookup table is always at address zero.
The Pattern Recognition Engine uses a base packet offset
from a control register to start the comparison. It loads this
value into a current offset pointer (COP). It then reads the
byte at base packet ofiset from the parser input buffer and
uses it as an address into the first lookup table.

NOAC EX. 1018 Page 1020

NOAC Ex. 1018 Page 1021

US 6,839,751 B1

19

Each lockup table returns a word that links to another
lookup table or it returns a terminal flag. If the lookup
produces a recognition event the database also returns a
command for the slicer. Finally it retums the value to add to
the COP.

The PRE 1006 includes of a comparison engine. The
comparison engine has a first stage that checks the protocol
type field to determine if it is an 802.3 packet and the field
should be treated as a length. If it is not a length, the protocol
is checked in a second stage. The first stage is the only
protocol level that is not programmable. The second stage
has two full sixteen bit content addressable memories

(CAMs) defined for future protocol additions.
Thus, whenever the PRE recognizes a pattern, it also

generates a command for the extraction engine (also called
a “slicer") 1007. The recognized patterns and the commands
are sent to the extraction engine 1007 that extracts informa-
tion from the packet to build the parser record. Thus, the
operations of the extraction engine are those carried out in
blocks 306 and 312 of FIG. 3. The commands are sent from
PRE 1006 to slicer 1007 in the form of extraction instruction

pointers which tell the extraction engine 1007 where to a
find the instructions in the extraction operations database
memory (i.e., slicer instruction database) 1002.

Thus, when the PRE 1006 recognizes a protocol it outputs
both the protocol identifier and a process code to the
extractor. The protocol identifier is added to the flow sig-
nature and the process code is used to fetch the first
instruction from the instruction database 1002. Instructions

include an operation code and usually source and destination
oflsets as well as a length. The offsets and length are in
bytes. A typical operation is the MOVE instruction. This
instruction tells the slicer 1007 to copy n bytes of data
unmodified from the input buffer 1008 to the output buifer
1010. The extractor contains a byte-wise barrel shifter so
that the bytes moved can be packed into the flow signature.
The extractor contains another instruction called HASH.

This instruction tells the extractor to copy from the input
buffer 1008 to the HASH generator.

Thus these instructions are for extracting selected element
(5) of the packet in the input buffer memory and transferring
the data to a parser output buffer memory 1010. Some
instructions also generate a hash.

The extraction engine 1007 and the PRE operate as a
pipeline. That is, extraction engine 1007 performs extraction
operations on data in input buifer 1008 already processed by
PRE 1006 while more (i.e., later arriving) packet informa‘
tion is being simultaneously parsed by PRE 1006. This
provides high processing speed sufficient to accommodate
the high arrival rate speed of packets.

Once all the selected parts of the packet used to form the
signature are extracted, the hash is loaded into parser output
bufler memory 1010. Any additional payload from the
packet that is required for further analysis is also included.
The parser output memory 1010 is interfaced with the
analyzer subsystem by analyzer interface control 1011. Once
all the information of a packet is in the parser output bufler
memory 1010, a data ready signal 1025 is asserted by
analyzer interface control. The data from the parser sub
system 1000 is moved to the analyzer subsystem via 1013
when an analyzer ready signal 1027 is asserted.

FIG. 11 shows the hardware components and dataflow for
the analyzer subsystem that performs the functions of the
analyzer subsystem 303 ofFIG. 3. The analyzer is initialized
prior to operation, and initialization includes loading the
state processing information generated by the compilation
process 310 into a database memory for the state processing,
called state processor instruction database (SPID) memory
1109.

10

15

20

25

30

35

40

45

50

55

60

65

20

The analyzer subsystem 1100 includes a host bus interface
1122 using an analyzer host interface controller 1118, which
in turn has access to a cache system 1115. The cache system
has bi-directional access to and from the state processor of
the system 1108. State processor 1108 is responsible for
initializing the state processor instruction database memory
1109 from information given over the host bus interface
1122.

With the SPID 1109 loaded, the analyzer subsystem 1100
receives parser records comprising packet signatures and
payloads that come fiom the parser into the unified flow key
buffer (UFKB) 1103. UFKB is comprised of memory set up
to maintain UFKB records. A UFKB record is essentially a
parser record; the UFKB holds records of packets that are to
be processed or that are in process. Furthermore, the UFKB
provides for one or more fields to act as modifiable status
flags to allow different processes to run concurrently.

Three processing engines run concurrently and access
records in the UFKB 1103: the lockup/update engine (LUE)
1107, the state processor (SP) 1108, and the flow insertion
and deletion engine (FIDE) 1110. Each of these is imple—
mented by one or more finite state machines (FSM’s). There
is bi—directional access between each of the finite state

machines and the unified flow key buifer 1103. The UFKB
record includes a field that stores the packet sequence
number, and another that is filled with state information in

the form of a program counter for the state processor 1108
that implements state processing 328. The status flags of the
UFKB for any entry includes that the LUE is done and that
the LUE is transferring processing of the entry to the state
processor. The LUE done indicator is also used to indicate
what the next entry is for the LUE. There also is provided a
flag to indicate that the state processor is done with the
current flow and to indicate what the next entry is for the
state processor. There also is provided a flag to indicate the
state processor is transferring processing of the UFIG-entry
to the flow insertion and deletion engine.

A new UFKB record is first processed by the LUE 1107.
A record that has been processed by the LUE 1107 may be
processed by the state processor 1108, and a UFKB record
data may be processed by the flow insertion/deletion engine
1110 after being processed by the state processor 1108 or
only by the LUE. Whether or not a particular engine has
been applied to any unified flow key bufler entry is deter-
mined by status fields set by the engines upon completion.
In one embodiment, a status flag in the UFKB-entry indi-
cates whether an entry is new or found. In other
embodiments, the LUE issues a flag to pass the entry to the
state processor for processing, and the required operations
for a new record are included in the SP instructions.

Note that each UFKB—entry may not need to be processed
by all three engines. Furthermore, some UFKB entries may
need to be processed more than once by a particular engine.

Each of these three engines also has bi-directional access
to a cache subsystem 1115 that includes a caching engine.
Cache 1115 is designed to have information flowing in and
out of it from five diflerent points within the system: the
three engines, external memory via a unified memory con-
troller (UMC) 1119 and a memory interface 1123, and a
microprocessor via analyzer host interface and control unit
(ACIC) 1118 and host interface bus (HIB) 1122. The ana-
lyzer microprocessor (or dedicated logic processor) can thus
directly insert or modify data in the cache.

The cache subsystem 1115 is an associative cache that
includes a set of content addressable memory cells (CAMS)
each including an address portion and a pointer portion
pointing to the cache memory (e.g., RAM) containing the

NOAC EX. 1018 Page 1021

NOAC Ex. 1018 Page 1022

US 6,839,751 B1

21

cached flow-entries. The CAMs are arranged as a stack
ordered from a top CAM to a bottom CAM. The bottom
CAM’s pointer points to the least recently used (LRU) cache
memory entry. Whenever there is a cache miss, the contents
of cache memory pointed to by the bottom CAM are
replaced by the flow-entry from the flow-entry database 324.
This now becomes the most recently used entry, so the
contents of the bottom CAM are moved to the top CAM and
all CAM contents are shifted down. Thus, the cache is an

associative cache with a true LRU replacement policy.
The LUE 1107 first processes a UFKB-entry, and basi-

cally performs the operation of blocks 314 and 316 in FIG.
3. A signal is provided to the LUE to indicate that a “new”
UFKB-entry is available. The LUE uses the hash in the
UFKB-entry to read a matching bin of up to four buckets
from the cache. The cache system attempts to obtain the
matching bin. If a matching bin is not in the cache, the cache
1115 makes the request to the UMC 1119 to bring in a
matching bin from the external memory.

When a flow-entry is found using the hash, the LUE 1107
looks at each bucket and compares it using the signature to
the signature of the UFKB-entry until there is a match or
there are no more buckets.

If there is no match, or if the cache failed to provide a bin
of flow-entries from the cache, a time stamp in set in the flow
key of the UFKB record, a protocol identification and state
determination is made using a table that was loaded by
compilation process 310 during initialization, the status for
the record is set to indicate the LUE has processed the
record, and an indication is made that the UFKB—entry is
ready to start state processing. The identification and state
determination generates a protocol identifier which in the
preferred embodiment is a “jump vector” for the state
processor which is kept by the UFKB for this UFKB-entry
and used by the state processor to start state processing for
the particular protocol. For example, the jump vector jumps
to the subroutine for processing the state.

If there was a match, indicating that the packet of the
UFKB-entry is for a previously encountered flow, then a
calculator component enters one or more statistical measures
stored in the flow-entry, including the timestamp. In
addition, a time ditference from the last stored timestamp
may be stored, and a packet count may be updated. The state
of the flow is obtained from the flow—entry is examined by
looking at the protocol identifier stored in the flow-entry of
database 324. If that value indicates that no more classifi-

cation is required, then the status for the record is set to
indicate the LUE has processed the record. In the preferred
embodiment, the protocol identifier is a jump vector for the
state processor to a subroutine to state processing the
protocol, and no more classification is indicated in the
preferred embodiment by the jump vector being zero. If the
protocol identifier indicates more processing, then an indi—
cation is made that the UFKB-entry is ready to start state
processing and the status for the record is set to indicate the
LUE has processed the record.

The state processor 1108 processes information in the
cache system according to a UFKB-entry after the LUE has
completed. State processor 1108 includes a state processor
program counter SPPC that generates the address in the state
processor instruction database 1109 loaded by compiler
process 310 during initialization. It contains an Instruction
Pointer (SPIP) which generates the SPID address. The
instruction pointer can be incremented or loaded from a
Jump Vector Multiplexor which facilitates conditional
branching. The SPIP can be loaded from one of three
sources: (1) A protocol identifier from the UFKB, (2) an

10

15

20

25

30

35

45

50

55

65

22

immediate jump vector form the currently decoded
instruction, or (3) a value provided by the arithmetic logic
unit (SPALU) included in the state processor.

Thus, after a Flow Key is placed in the UFKB by the LUE
with a known protocol identifier, the Program Counter is
initialized with the last protocol recognized by the Parser.
This first instruction is a jump to the subroutine which
analyzes the protocol that was decoded.

The State Processor ALU (SPALU) contains all the
Arithmetic, Logical and String Compare functions necessary
to implement the State Processor instructions. The main
blocks of the SPALU are: The A and B Registers, the
Instruction Decode & State Machines, the String Reference
Memory the Search Engine, an Output Data Register and an
Output Control Register

The Search Engine in turn contains the Target Search
Register set, the Reference Search Register set, and a
Compare block which compares two operands by exclusive-
or—ing them together.

Thus, after the UFKB sets the program counter, a
sequence of one or more state operations are be executed in
state processor 1108 to further analyze the packet that is in
the flow key buffer entry for this particular packet.

FIG. 13 describes the operation of the state processor
1108. The state processor is entered at 1301 with a unified
flow key buffer entry to be processed. The UFKB—entry is
new or corresponding to a found flow-entry. This UFKB-
entry is retrieved from unified flow key buffer 1103 in 1301.
In 1303, the protocol identifier for the UFKB—entry is used
to set the state processor’s instruction counter. The state
processor 1108 starts the process by using the last protocol
recognized by the parser subsystem 301 as an offset into a
jump table. The jump table takes us to the instructions to use
for that protocol. Most instructions test something in the
unified flow key buffer or the flow-entry if it exists. The state
processor 1108 may have to test bits, do comparisons, add or
subtract to perform the test.

The first state processor instruction is fetched in 1304
from the state processor instruction database memory 1109.
The state processor performs the one or more fetched
operations (1304). In our implementation, each single state
processor instruction is very primitive (e.g., a move, a
compare, etc.), so that many such instructions need to be
performed on each unified flow key buffer entry. One aspect
of the state processor is its ability to search for one or more
(up to four) reference strings in the payload part of the
UFKB entry. This is implemented by a search engine
component of the state processor responsive to special
searching instructions.

In 1307, a check is made to determine if there are any
more instructions to be performed for the packet. If yes, then
in 1308 the system sets the state processor instruction
pointer (SPIP) to obtain the next instruction. The SPIP may
be set by an immediate jump vector in the currently decoded
instruction, or by a value provided by the SPALU during
processing.

The next instruction to be performed is now fetched
(1304) for execution. This state processing loop between
1304 and 1307 continues until there are no more instructions

to be performed.
At this stage, a check is made in 1309 if the processing on

this particular packet has resulted in a final state. That is, is
the analyzer is done processing not only for this particular
packet, but for the whole flow to which the packet belongs,
and the flow is fully determined. Ifindeed there are no more
states to process for this flow, then in 1311 the processor
finalizes the processing. Some final states may need to put

NOAC EX. 1018 Page 1022

NOAC Ex. 1018 Page 1023

US 6,839,751 B1

23

a state in place that tells the system to remove a flow—for
example, if a connection disappears from a lower level
connection identifier. In that case, in 1311, a flow removal

state is set and saved in the flow-entry. The flow removal
state may be a NOP (no-op) instruction which means there
are no removal instructions.

Once the appropriate flow removal instruction as specified
for this flow (a NOP or otherwise) is set and saved, the
process is exited at 1313. The state processor 1108 can now
obtain another unified fiow key buffer entry to process.

If at 1309 it is determined that processing for this flow is
not completed, then in 1310 the system saves the state
processor instruction pointer in the current flow-entry in the
current flow-entry. That will be the next operation that will
be performed the next time the LRE 1107 finds packet in the
UFIGB that matches this flow. The processor now exits
processing this particular unified flow key buffer entry at
1313.

Note that state processing updates information in the
unified flow key buffer 1103 and the flow-entry in the cache.
Once the state processor is done, a flag is set in the UFKB
for the entry that the state process or is done. Furthermore,
If the flow needs to be inserted or deleted from the database

of flows, control is then passed on to the flow insertion/
deletion engine 1110 for that flow signature and packet entry.
This is done by the state processor setting another flag in the
UFIGB for this UFIG3—entry indicating that the state proces-
sor is passing processing of this entry to the flow insertion
and deletion engine.

The flow insertion and deletion engine 1110 is responsible
for maintaining the flow-entry database. In particular, for
creating new flows in the flow database, and deleting flows
from the database so that they can be reused.

The process of flow insertion is now described with the
aid of FIG. 12. Flows are grouped into bins of buckets by the
hash value. The engine processes a UFKB—entry that may be
new or that the state processor otherwise has indicated needs
to be created. FIG. 12 shows the case of a new entry being
created. A conversation record bin (preferably containing 4
buckets for four records) is obtained in 1203. This is a bin
that matches the hash of the UFKB, so this bin may already
have been sought for the UFKB-entry by the LUE. In 1204
the FIDE 1110 requests that the record bin/bucket be main-
tained in the cache system 1115. If in 1205 the cache system
1115 indicates that the bin/bucket is empty, step 1207 inserts
the flow signature (with the hash) into the bucket and the
bucket is marked “used” in the cache engine of cache 1115
using a timestamp that is maintained throughout the process.
In 1209, the FIDE 1110 compares the bin and bucket record
flow signature to the packet to verify that all the elements are
in place to complete the record. In 1211 the system marks the
record bin and bucket as “in process" and as “new" in the
cache system (and hence in the external memory). In 1212,
the initial statistical measures for the flow-record are set in

the cache system. This in the preferred embodiment clears
the set of counters used to maintain statistics, and may
perform other procedures for statistical operations requires
by the analyzer for the first packet seen for a particular flow.

Back in step 1205, if the bucket is not empty, the FIDE
1110 requests the next bucket for this particular bin in the
cache system. If this succeeds, the processes of 1207, 1209,
1211 and 1212 are repeated for this next bucket. If at 1208,
there is no valid bucket, the unified flow key buffer entry for
the packet is set as “drop,” indicating that the system cannot
process the particular packet because there are no buckets
left in the system. The process exits at 1213. The FIDE 1110
indicates to the UFKB that the flow insertion and deletion

10

15

20

25

30

35

40

45

50

55

60

65

24

operations are completed for this UFKB-entry. This also lets
the UFKB provide the FIDE with the next UFKB record.

Once a set of operations is performed on a unified flow
key buffer entry by all of the engines required to access and
manage a particular packet and its flow signature, the unified
flow key buffer entry is marked as “completed.” That
element will then be used by the parser interface for the next
packet and flow signature coming in from the parsing and
extracting system.

All flow—entries are maintained in the external memory
and some are maintained in the cache 1115. The cache

system 1115 is intelligent enough to access the flow database
and to understand the data structures that exists on the other

side of memory interface 1123. The lookup/update engine
1107 is able to request that the cache system pull a particular
flow or “buckets” of flows from the unified memory con
troller 1119 into the cache system for further processing. The
state processor 1108 can operate on information found in the
cache system once it is looked up by means of the lookup/
update engine request, and the flow insertion/deletion engine
1110 can create new entries in the cache system if required
based on information in the unified flow key bufier 1103.
The cache retrieves information as required from the
memory through the memory interface 1123 and the unified
memory controller 1119, and updates information as
required in the memory through the memory controller 1119.

There are several interfaces to components of the system
external to the module of FIG. 11 for the particular hardware
implementation. These include host bus interface 1122,
which is designed as a generic interface that can operate with
any kind of external processing system such as a micropro—
cessor or a multiplexor (MUX) system. Consequently, one
can connect the overall traffic classification system of FIGS.
11 and 12 into some other processing system to manage the
classification system and to extract data gathered by the
system.

The memory interface 1123 is designed to interface to any
of a variety of memory systems that one may want to use to
store the flow-entries. One can use different types of
memory systems like regular dynamic random access
memory (DRAM), synchronous DRAM, synchronous
graphic memory (SGRAM), static random access memory
(SRAM), and so forth.

FIG. 10 also includes some “generic” interfaces. There is
a packet input interface 1012—a general interface that
works in tandem with the signals of the input buffer interface
control 1022. These are designed so that they can be used
with any kind of generic systems that can then feed packet
information into the parser. Another generic interface is the
interface of pipes 1031 and 1033 respectively out of and into
host interface multiplexor and control registers 1005. This
enables the parsing system to be managed by an external
system, for example a microprocessor or another kind of
external logic, and enables the external system to program
and otherwise control the parser.

The preferred embodiment of this aspect of the invention
is described in a hardware description language (IEL) such
as VHDL or Verilog. It is designed and created in an HDL
so that it may be used as a single chip system or, for instance,
integrated into another general-purpose system that is being
designed for purposes related to creating and analyzing
traflic within a network. Verilog or other HDL implemen-
tation is only one method of describing the hardware.

In accordance with one hardware implementation, the
elements shown in FIGS. 10 and 11 are implemented in a set
of six field programmable logic arrays (FPGA’s). The
boundaries of these FPGA’s are as follows. The parsing

NOAC EX. 1018 Page 1023

NOAC Ex. 1018 Page 1024

US 6,839,751 B1

25

subsystem of FIG. 10 is implemented as two FPGAS; one
FPGA, and includes blocks 1006, 1008 and 1012, parts of
1005, and memory 1001. The second FPGA includes 1002,
1007, 1013, 1011 parts of 1005. Referring to FIG. 11, the
unified look-up buffer 1103 is implemented as a single
FPGA. State processor 1108 and part of state processor
instruction database memory 1109 is another FPGA. Por—
tions of the state processor instruction database memory
1109 are maintained in external SRAM’s. The lookup/
update engine 1107 and the flow insertion/deletion engine
1110 are in another FPGA. The sixth FPGA includes the

cache system 1115, the unified memory control 1119, and the
analyzer host interface and control 1118.

Note that one can implement the system as one or more
VSLI devices, rather than as a set of application specific
integrated circuits (ASIC’s) such as FPGA’s. It is antici—
pated that in the future device densities will continue to
increase, so that the complete system may eventually form
a sub—unit (a “core”) of a larger single chip unit.
Operation of the Invention

FIG. 15 shows how an embodiment of the network

monitor 300 might be used to analyze trafiic in a network
102. Packet acquisition device 1502 acquires all the packets
from a connection point 121 on network 102 so that all
packets passing point 121 in either direction are supplied to
monitor 300. Monitor 300 comprises the parser sub-system
301, which determines flow signatures, and analyzer sub-
system 303 that analyzes the flow signature of each packet.
A memory 324 is used to store the database of flows that are
determined and updated by monitor 300. A host computer
1504, which might be any processor, for example, a general-
purpose computer, is used to analyze the flows in memory
324. As is conventional, host computer 1504 includes a
memory, say RAM, shown as host memory 1506. In
addition, the host might contain a disk. In one application,
the system can operate as an RMON probe, in which case the
host computer is coupled to a network interface card 1510
that is connected to the network 102.

The preferred embodiment of the invention is supported
by an optional Simple Network Management Protocol
(SNMP) implementation. FIG. 15 describes-how one would,
for example, implement an RMON probe, where a network
interface card is used to send RMON information to the

network. Commercial SNMP implementations also are
available, and using such an implementation can simplify
the process of porting the preferred embodiment of the
invention to any platform.

In addition, MIB Compilers are available. An MIB Com-
piler is a tool that greatly simplifies the creation and main-
tenance of proprietary MIB extensions.
Examples of Packet Elucidation

Monitor 300, and in particular. analyzer 303 is capable of
carrying out state analysis for packet exchanges that are
commonly referred to as “server announcement” type
exchanges. Server announcement is a process used to ease
communications between a server with multiple applications
that can all be simultaneously accessed from multiple cli-
ents. Many applications use a server announcement process
as a means of multiplexing a single port or socket into many
applications and services. With this type of exchange, mes—
sages are sent on the network, in either a broadcast or
multicast approach, to announce a server and application,
and all stations in the network may receive and decode these
messages. The messages enable the stations to derive the
appropriate connection point for communicating that par-
ticular application with the particular server. Using the
server announcement method, a particular application com—

10

15

20

25

30

35

45

50

55

60

65

26

municates using a service channel, in the form of a TCP or
UDP socket or port as in the IP protocol suite, or using a SAP
as in the Novell LPX protocol suite.

The analyzer 303 is also capable of carrying out “in-
stream analysis” of packet exchanges. The “in-stream analy-
sis” method is used either as a primary or secondary recog-
nition process. As a primary process, in-stream analysis
assists in extracting detailed information which will be used
to further recognize both the specific application and appli-
cation component. A good example of in-stream analysis is
any Web-based application. For example, the commonly
used PointCast Web information application can be recog-
nized using this process; during the initial connection
between a PointCast server and client, specific key tokens
exist in the data exchange that will result in a signature being
generated to recognize PointCast.

The in-stream analysis process may also be combined
with the server announcement process. In many cases
in-stream analysis will augment other recognition processes.
An example of combining in-stream analysis with server
announcement can be found in business applications such as
SAP and BAAN.

“Session tracking” also is known as one of the primary
processes for tracking applications in client/server packet
exchanges. The process of tracking sessions requires an
initial connection to a predefined socket or port number. This
method of communication is used in a variety of transport
layer protocols. It is most commonly seen in the TCP and
UDP transport protocols of the IP protocol.

During the session tracking, a client makes a request to a
server using a specific port or socket number. This initial
request will cause the server to create a TCP or UDP port to
exchange the remainder of the data between the client and
the server. The server then replies to the request of the client
using this newly created port. The original port used by the
client to connect to the server will never be used again
during this data exchange.

One example of session tracking is TFI'P (Trivial File
Transfer Protocol), a version of the TCP/[P FI‘P protocol
that has no directory or password capability. During the
client/server exchange process of TFI'P, a specific port (port
number 69) is always used to initiate the packet exchange.
Thus, when the client begins the process of communicating,
a request is made to UDP port 69. Once the server receives
this request, a new port number is created on the server. The
server then replies to the client using the new port. In this
example, it is clear that in order to recognize TFI‘P; network
monitor 300 analyzes the initial request from the client and
generates a signature for it. Monitor 300 uses that signature
to recognize the reply. Monitor 300 also analyzes the reply
from the server with the key port information, and uses this
to create a signature for monitoring the remaining packets of
this data exchange.

Network monitor 300 can also understand the current

state of particular connections in the network. Connection-
oriented exchanges often benefit from state tracking to
correctly identify the application. An example is the com-
mon TCP transport protocol that provides a reliable means
of sending information between a client and a server. When
a data exchange is initiated, a TCP request for synchroni-
zation message is sent. This message contains a specific
sequence number that is used to track an acknowledgement
from the server. Once the server has acknowledged the
synchronization request, data may be exchanged between
the client and the server. When communication is no longer
required, the client sends a finish or complete message to the
server, and the server acknowledges this finish request with

NOAC EX. 1018 Page 1024

NOAC Ex. 1018 Page 1025

US 6,839,751 B1

27

a reply containing the sequence numbers from the request.
The states of such a connection-oriented exchange relate to
the various types of connection and maintenance messages.
Server Announcement Example

The individual methods of server announcement proto-
cols vary. However, the basic underlying process remains
similar. A typical server announcement message is sent to
one or more clients in a network. This type of announcement
message has specific content, which, in another aspect of the
invention, is salvaged and maintained in the database of
flow—entries in the system. Because the announcement is
sent to one or more stations, the client involved in a future

packet exchange with the server will make an assumption
that the information announced is blown, and an aspect of
the inventive monitor is that it too can make the same

assumption.
Sun-RPC is the implementation by Sun Microsystems,

Inc. (Palo Alto, Calif.) of the Remote Procedure Call (RPC),
a programming interface that allows one program to use the
services of another on a remote machine. A Sun—RPC

example is now used to explain how monitor 300 can
capture server announcements.

A remote program or client that wishes to use a server or
procedure must establish a connection, for which the RFC
protocol can be used.

Each server running the Sun—RPC protocol must maintain
a process and database called the port Mapper. The port
Mapper creates a direct association between a Sun—RPC
program or application and a TCP or UDP socket or port (for
TCP or UDP implementations). An application or program
number is a 32-bit unique identifier assigned by ICANN (the
Internet Corporation for Assigned Names and Numbers,
www.icann.org), which manages the huge number of param-
eters associated with Internet protocols (port numbers,
router protocols, multicast addresses, etc.) Each portMapper
on a Sun-RPC server can present the mappings between a
unique program number and a specific transport socket
through the use of specific request or a directed announce-
ment. According to ICANN, port number 111 is associated
with Sun RPC.

As an example, consider a client (e.g., CLIENT 3 shown
as 106 in FIG. 1) making a specific request to the server
(e.g., SERVER 2 of FIG. 1, shown as 110) on a predefined
UDP or TCP socket. Once the port Mapper process on the
sun RPC server receives the request, the specific mapping is
returned in a directed reply to the client.

1. A client (CLENT 3, 106 in FIG. 1) sends a TCP packet
to SERVER 2 (110 in FIG. 1) on port 111, with an RPC
Bind Lookup Request (rpcBindLookup). TCP or UDP
port 111 is always associated Sun RPC. This request
specifies the program (as a program identifier), version,
and might specify the protocol (UDP or TCP).

2. The server SERVER 2 (110 in FIG. 1) extracts the
program identifier and version identifier from the
request. The server also uses the fact that this packet
came in using the TCP transport and that no protocol
was specified, and thus will use the TCP protocol for its
reply.

3. The server 110 sends a TCP packet to port number 111,
with an RPC Bind Lookup Reply. The reply contains
the specific port number (e.g., port number ‘port’) on
which future transactions will be accepted for the
specific RPC program identifier (e.g., Program
‘program’) and the protocol (UDP or T‘CP) for use.

It is desired that from now on every time that port number
‘port’ is used, the packet is associated with the application
program ‘program’ until the number ‘port’ no longer is to be

10

15

20

25

30

35

4o

45

50

55

65

28

associated with the program ‘program’. Network monitor
300 by creating a flow~entry and a signature includes a
mechanism for remembering the exchange so that future
packets that use the port number ‘port‘ will be associated by
the network monitor with the application program ‘pro-
gram’.

In addition to the Sun RPC Bind Lookup request and
rep’iy, there are other ways that a particular program—say
‘program’—might be associated with a particular port
number, for example number ‘port’. One is by a broadcast
announcement of a particular association between an appli-
cation service and a port number, called a Sun RPC port—
Mapper Announcement. Another, is when some server—say
the same SERVER 2—replies to some client—say CLIENT
l—requesting some portMapper assignment with a RPC
portMapper Reply. Some other client—say CLIENT
2—might inadvertently see this request, and thus know that
for this particular server, SERVER 2, port number ‘port’ is
associated with the application service ‘program’. It is
desirable for the network monitor 300 to be able to associate

any packets to SERVER 2 using port number ‘port’ with the
application program ‘program’.

FIG. 9 represents a datafiow 900 of some operations in the
monitor 300 of FIG. 3 for Sun Remote Procedure Call.

Suppose a client 106 (e.g., CLIENT 3 in FIG. 1) is com-
municating via its interface to the network 118 to a server
110 (e.g., SERVER 2 in FIG. 1) via the server’s interface to
the network 116. Further assume that Remote Procedure

Call is used to communicate with the server 110. One path
in the data flow 900 starts with a step 910 that a Remote
Procedure Call bind lookup request is issued by client 106
and ends with the server state creation step 904. Such RPC
bind lookup request includes values for the ‘program,’
‘version,’ and ‘protocol’ to use, e.g., TCP or UDP. The
process for Sun RPC analysis in the network monitor 300
includes the following aspects.:

Process 909: Extract the ‘program,’ ‘version,’ and ‘pro-
tocol’ (UDP or TCP). Extract the TCP or UDP port
(process 909) which is 111 indicating Sun RPC.

Process 908: Decode the Sun RPC packet. Check RPC
type field for ID. If value is portMapper, save paired
socket (i.e., dest for destination address, src for source
address). Decode ports and mapping, save ports with
socket/addr key. There may be more than one pairing
per mapper packet. Form a signature (e.g., a key). A
flow-entry is created in database 324. The saving of the
request is now complete.

At some later time, the server (process 907) issues a RPC
bind lookup reply. The packet monitor 300 will extract a
signature from the packet and recognize it from the previ—
ously stored flow. The monitor will get the protocol port
number (906) and lookup the request (905). A new signature
(i.e., a key) will be created and the creation of the server
state (904) will be stored as an entry identified by the new
signature in the flow-entry database. That signature now
may be used to identify packets associated with the server.

The server state creation step 904 can be reached not only
from a Bind Lookup Request/Reply pair, but also from a
RPC Reply portMapper packet shown as 901 or an RPC
Announcement portMapper shown as 902. The Remote
Procedure Call protocol can announce that it is able to
provide a particular application service. Embodiments of the
present invention preferably can analyze when an exchange
occurs between a client and a server, and also can track those
stations that have received the announcement of a service in
the network

The RPC Announcement portMapper announcement 902
is a broadcast. Such causes various clients to execute a

NOAC EX. 1018 Page 1025

NOAC Ex. 1018 Page 1026

US 6,839,751 B1

29

similar set of operations, for example, saving the informa-
tion obtained from the announcement. The RPC Reply
portMapper step 901 could be in reply to a portMapper
request, and is also broadcast. It includes all the service
parameters.

Thus monitor 300 creates and saves all such states for

later classification of flows that relate to the particular
service ‘program’.

FIG. 2 shows how the monitor 300 in the example of Sun
RPC builds a signature and flow states. A plurality of packets
206—209 are exchanged, e.g., in an exemplary Sun Micro-
systems Remote Procedure Call protocol. A method embodi-
ment of the present invention might generate a pair of flow
signatures, “signature-1” 210 and “signature-2” 212, from
information found in the packets 206 and 207 which, in the
example, correspond to a Sun RPC Bind Lookup request and
reply, respectively.

Consider first the Sun RPC Bind Lookup request. Sup-
pose packet 206 corresponds to such a request sent from
CLIENT 3 to SERVER 2. This packet contains important
information that is used in building a signature according to
an aspect of the invention. A source and destination network
address occupy the first two fields of each packet, and
according to the patterns in pattern database 308, the flow
signature (shown as KEYl 230 in FIG. 2) will also contain
these two fields, so the parser subsystem 301 will include
these two fields in signature KEY 1 (230). Note that in FIG.
2, if an address identifies the client 106 (shown also as 202),
the label used in the drawing is “C,”. If such address
identifies the server 110 (shown also as server 204), the label
used in the drawing is “SI”. The first two fields 214 and 215
in packet 206 are “S,” and “C1” because packet 206 is
provided from the server 110 and is destined for the client
106. Suppose for this example, “S,” is an address numeri-
cally less than address “C 1”. A third field “pl” 216 identifies
the particular protocol being used, e.g., TCP, UDP, etc.

In packet 206, a fourth field 217 and a fifth field 218 are
used to communicate port numbers that are used. The
conversation direction determines where the port number
field is. The diagonal pattern in field 217 is used to identify
a source-port pattern, and the hash pattern in field 218 is
used to identify the destination-port pattern. The order
indicates the client-server message direction. A sixth field
denoted “i1" 219 is an element that is being requested by the
client from the server. A seventh field denoted “sla” 220 is
the service requested by the client from server 110. The
following eighth field “QA” 221 (for question mark) indi—
cates that the client 106 wants to know what to use to access

application “s1a”. A tenth field “QP” 223 is used to indicate
that the client wants the server to indicate what protocol to
use for the particular application.

Packet 206 initiates the sequence of packet exchanges,
e.g., a RPC Bind Lookup Request to SERVER 2. It follows
a well-defined format, as do all the packets, and is trans-
mitted to the server 110 on a well~known service connection

identifier (port 111 indicating Sun RPC).
Packet 207 is the first sent in reply to the client 106 from

the server. It is the RFC Bind Lookup Reply as a result of
the request packet 206.

Packet 207 includes ten fields 224—233. The destination

md source addresses are carried in fields 224 and 22S, e.g.,
indicated “C1” and “8,", respectively. Notice the order is
now reversed, since the client—server message direction is
from the server 110 to the client 106. The protocol “p" is
used as indicated in field 226. The request “i1” is in field 229.
Values have been filled in for the application port number,
e.g., in field 233 and protocol ““p2"" in field 233.

10

IS

20

25

30

35

4s

50

55

60

65

30

The flow signature and flow states built up as a result of
this exchange are now described. When the packet monitor
300 sees the request packet 206 from the client, a first flow
signature 210 is built in the parser subsystem 301 according
to the pattern and extraction operations database 308. This
signature 210 includes a destination and a source address
240 and 241. One aspect of the invention is that the flow
keys are built consistently in a particular order no matter
what the direction of conversation. Several mechanisms may
be used to achieve this. In the particular embodiment, the
numerically lower address is always placed before the
numerically higher address. Such least to highest order is
used to get the best spread of signatures and hashes for the
lookup operations. In this case, therefore, since we assume
“Sl”<“Cl", the order is address “S,” followed by client
address “C1”. The next field used to build the signature is a
protocol field 242 extracted from packet 206’s field 216, and
thus is the protocol “p”. The next field used for the
signature is field 243, which contains the destination source
port number shown as a crosshatched pattern from the field
218 of the packet 206. This pattern will be recognized in the
payload of packets to derive how this packet or sequence of
packets exists as a flow. In practice, these may be TCP port
numbers, or a combination of TCP port numbers. In the case
of the Sun RPC example, the crosshatch represents a set of
port numbers of UDS for p1 that will be used to recognize
this flow (e.g., port 111). Port 111 indicates this is Sun RPC.
Some applications, such as the Sun RPC Bind Lookups, are
directly determinable (“known”) at the parser level. So in
this case, the signature KEY-I points to a known application
denoted “a"’ (Sun RPC Bind Lookup), and a next-state that
the state processor should proceed to for more complex
recognition jobs, denoted as state “stD” is placed in the field
245 of the flow-entry.

When the Sun RPC Bind Lookup reply is acquired, a flow
signature is again built by the parser. This flow signature is
identical to KEY-1. Hence, when the signature enters the
analyzer subsystem 303 from the parser subsystem 301, the
complete flow-entry is obtained, and in this flow-entry
indicates state “stD”. The operations for state “stD” in the
state processor instruction database 326 instructs the state
processor to build and store a new flow signature, shown as
KEY-2 (212) in FIG. 2. This flow signature built by the state
processor also includes the destination and a source
addresses 250 and 251, respectively, for server “SI” fol—
lowed by (the numerically higher address) client “C1". A
protocol field 252 defines the protocol to be used, e.g., “p2"
which is obtained from the reply packet. A field 253 contains
a recognition pattern also obtained from the reply packet. In
this case, the application is Sun RFC, and field 254 indicates
this application “a2”. A next-state held 255 defines the next
state that the state processor should proceed to for more
complex recognitionjobs, e.g., a state “st‘”. In this particular
example, this is a final state. Thus, KEY-2 may now be used
to recognize packets that are in any way associated with the
application “a”. Two such packets 208 and 209 are shown,
one in each direction. They use the particular application
service requested in the original Bind Lookup Request, and
each will be recognized because the signature KEY—2 will be
built in each case.

The two flow signatures 210 and 212 always order the
destination and source address fields with server “S,” fol-
lowed by client “C1". Such values are automatically filled in
when the addresses are first created in a particular flow
signature. Preferably, large collections of flow signatures are
kept in a lookup table in a least—to—highest order for the best
spread of flow signatures and hashes.

NOAC EX. 1018 Page 1026

NOAC Ex. 1018 Page 1027

US 6,839,751 B1

31

Thereafter, the client and server exchange a number of
packets, e.g., represented by request packet 208 and
response packet 209. The client 106 sends packets 208 that
have a destination and source address S1 and C1, in a pair of
fields 260 and 261. A field 262 defines the protocol as “p2”,
and a field 263 defines the destination port number.

Some network-server application recognition jobs are so
simple that only a single state transition has to occur to be
able to pinpoint the application that produced the packet.
Others require a sequence of state transitions to occur in
order to match a known and predefined climb from state-
to—state.

Thus the flow signature for the recognition of application
“a2” is automatically set up by predefining what packet-
exchange sequences occur for this example when a rela-
tively simple Sun Microsystems Remote Procedure Call
bind lockup request instruction executes. More complicated
exchanges than this may generate more than two flow
signatures and their corresponding states. Each recognition
may involve setting up a complex state transition diagram to
be traversed before a “final” resting state such as “stl” in
field 255 is reached. All these are used to build the final set

of flow signatures for recognizing a particular application in
the future.

Re—Using Information from Flows for Maintaining Metrics
The flow-entry of each flow stores a set of statistical

measures for the flow, including the total number of packets
in the flow, the time of arrival, and the diiferential time from
the last arrival.

Referring again to FIG. 3, the state processing process
328 performs operations defined for the state of the flow, for
example for the particular protocol so far identified for the
flow. One aspect of the invention is that from time to time,
a set of one or more metrics related t the flow may be
determined using one or more of the statistical measures
stored in the flow-entry. Such metric determining may be
carried out, for example, by the state processor mnning
instructions in the state processor instruction and pattern
database 326. Such metrics may then be sent by the analyzer
subsystem to a host computer connected to the monitor.
Alternatively, such metric determining may be carried out by
a processor connected to the flow~entry database 324. In our
preferred hardware implementation shown in FIG. 10, an
analyzer host interface and control 1118 may be configured
to configured to access flow—entry records via cache system
1115 to output to a processor via the host bus interface. The
processor may then do the reporting of the base metrics.

FIG. 15 describes how the monitor system can be set up
with a host computer 1504. The monitor 300 sends metrics
from time to time to the host computer 1504, and the host
computer 1504 carries out part of the analysis.

This following section describes how the monitor of the
invention can be used to monitor the Quality of Service
(QOS) by providing QOS Metrics.
Quality of Service Traflic Statistics (Metrics)

This next section defines the corrunon structure that may
be applied for the Quality of Service (QOS) Metrics accord—
ing to one aspect of the invention. It also defines the
“original" (or “base") set of metrics that may be determined
in an embodiment of the invention to support QOS. The base
metrics are determined as part of state processing or by a
processor connected to monitor 300, and the QOS metrics
are determined from the base metrics by the host computer
1504. The main reason for the breakdown is that the

complete QOS metrics may be computationally complex,
involving square roots and other functions requiring more
computational resources than may be available in real time.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

The base firnctions are chosen to be simple to calculate in
real time and from which complete QOS metrics may be
determined. Other breakdowns of functions clearly are pos—
sible within the scope of the invention.

Such metric determining may be carried out, for example,
by the state processor running instructions in the state
processor instruction and pattern database 326. Such base
metrics may then be sent by the analyzer subsystem via a
microprocessor or logic circuit connected to the monitor.
Alternatively, such metric determining may be carried out by
a microprocessor (or some other logic) connected to the
flow-entry database 324. In our preferred hardware imple-
mentation shown in FIGS. 10 and 11, such a microprocessor
is connected cache system 1115 via an analyzer host inter-
face and control 1118 and host bus interface. These com-

ponents may be configured to access flow-entry records via
cache system 1115 to enable the microprocessor to deter-
mine and report the base metrics.

The QOS Metrics may broken into the following Metrics
Groups. The names are descriptive. The list is not
exhaustive, and other metrics may be used. The QOS metrics
below include client-to—server (CS) and server-to-client (SC)
metrics.

Trafiic Metrics such as CSTraffic and SCTraflic.
Jitter Metrics such as CSTraflic and CS Traffic.

Exchange Response Metrics such
CSExchangeResponseTimeStartToStart,
CSExchangeResponseTimeEndToStart,
CSExchangeResponseTimeStartToEnd,
SCExchangeResponseTimeStartToStart,
SCExchangeResponseTimeEndToStart, and SCExchang-
eResponseTimeStartToEnd.

Transaction Response Metrics such as
CSTransactionResponseTimeStartToStart,
CS ApplicationResponseTimeEndToStart,
CSApplicationResponseTimeStartToEnd,
SCTransactionResponseTimeStartToStart,
SCApplicationResponseTimeEndToStart, and SCApplica-
tionResponseTimeStartToEnd.

Connection Metrics such as ConnectionEstablishment

and ConnectionGracefirlTermination, and ConnectionTim-
eoutTermination.

as

Connection Sequence Metrics such as
CSConnectionRetransmissions,
SCConnectionRetransmissions, and
CSConnectionOutOfOrders, SCConnectionOutOfOrders.

Connection Window Metrics, CSConnectionWindow,
SCConnectionWindow, CSConnectionFrozenWindows,
SCConnectionFrozenWindows,
CSConnectionClosedWindows, and SCConnectionClosed—
Windows.

QOS Base Metrics

The simplest means of representing a group of data is by
frequency distributions in sub—ranges. In the preferred
embodiment, there are some rules in creating the sub-ranges.
First the range needs to be known. Second a sub—range size
needs to be determined. Fixed sub-range sizes are preferred,
alternate embodiments may use variable sub-range sizes.

Determining complete frequency distributions may be
computationally expensive. Thus, the preferred embodiment
uses metrics determined by summation functions on the
individual data elements in a population.

The metrics reporting process provides data that can be
used to calculate usefirl statistical measurements. In one

embodiment, the metrics reporting process is part of the state
processing that is carried out from time to time according to
the state, and in another embodiment, the metrics reporting

NOAC EX. 1018 Page 1027

NOAC Ex. 1018 Page 1028

US 6,839,751 B1

33

process carried out from time to time by a microprocessor
having access to flow records. Preferably, the metrics report—
ing process provides base metrics and the final QOS metrics
calculations are carried out by the host computer 1504. In
addition to keeping the real time state processing simple, the
partitioning of the tasks in this way provides metrics that are
scalable. For example, the base metrics from two intervals
may be combined to metrics for larger intervals.

Consider, for example is the arithmetic mean defined as
the sum of the data divided by the number of data elements.

21
X=N

Two base metrics provided by the metrics reporting
process are the sum of the x, and the number of elements N.
The host computer 1504 performs the division to obtain the
average. Furthermore, two sets base metrics for two inter—
vals may be combined by adding the sum of the x’s and by
adding the number of elements to get a combined sum and
number of elements. The average formula then works just
the same.

The base metrics have been chosen to maximize the

amount of data available while minimizing the amount of
memory needed to store the metric and minimizing the
processing requirement needed to generate the metric. The
base metrics are provided in a metric data structure that
contains five unsigned integer values.

N count of the number of data points for the metric.

EX sum of all the data point values for the metric.

2(X2) sum of all the data point values squared for the
metric.

Xm maximum data point value for the metric.

X,“ minimum data point value for the metric.
A metric is used to describe events over a time interval.

The base metrics are determined from statistical measures

maintained in flow-entries. It is not necessary to cache all the
events and then count them at the end of the interval. The

base metrics have also been designed to be easily scaleable
in terms of combining adjacent intervals.

The following rules are applied when combining base
metrics for contiguous time intervals.

N 2N

2X 2(200)

20(2) 2(2(X2))

Xm MAX(Xm)

X,“ MIN(Xmi,I)
In addition to thc above five values, a “trend" indicator is

included in the preferred embodiment data structure. This is
provided by an enumerated type. The reason for this is that
the preferred method of generating trend information is by
subtract an initial first value for the interval from the final

value for the interval. Only the sign of the resulting number
may have value, for example, to determine an indication of
trend.

Typical operations that may be performed on the base
metrics include:

Number N.

N

Frequency Tunelnlerval '

Maximum Xm.
Minimum Xmm.

10

15

20

25

30

35

40

45

50

55

60

65

34

Range R:Xm—X,,,,.,,.

Z
Arithmetic Mean)7 = —N-

 Z (XI)
Root Mean Square RMS = N

Variance 17'2 =

Z (X — 7): _ (2 X2) — 2Y(Z x)+ N072)N _ .N

_ (2 X2))— 270; X)+N(72)_,i N .

Trend information, which may be the trend between

polled intervals and the trend within an interval. Trend-
ing between polled intervals is a management applica-
tion function. Typically the management station would
trend on the average of the reported interval. The trend
within an interval is presented as an enumerated type
and can easily be generated by subtracting the first
value in the interval from the last and assigning trend

based on the sign value.
Alternate Embodiments

Standard Deviation a' =

21w: if)N

One or more of the following difierent data elements may
be included in various implementation of the metric.

Sum of the deltas (i.e., difierential values). The trend
enumeration can be based on this easy calculation.

Sum of the absolute values of the delta values. This would

provide a measurement of the overall movement within
an interval.

Sum of positive delta values and sum of the negative delta
values. Expanding each of these with an associated
count and maximum would give nice information.

The statistical measurement of skew can be obtained by

adding 2(X3) to the existing metric.
The statistical measurement of kurtosis can be obtained

by adding 2(X3) and 2(X“) to the existing metric.

Data to calculate a slope of a least-squares line through
the data.

Various metrics are now described in more dctail.

Traflic Metrics

CSTraflic

Definition

This metric contains information about the volume of

traffic measured for a given application and either a specific
Client-Server Pair or a specific Server and all of its clients.

This information duplicates, somewhat, that which may
be found in the standard, RMON II, AL/NL Matrix Tables.

It has been included here for convenience to applications
and the associated benefit of improved performance by
avoiding the need to access different functional RMON
areas when performing QOS Analysis.

NOAC EX. 1018 Page 1028

NOAC Ex. 1018 Page 1029

US 6,839,751 B1

35

Metric Specification

 Metric Applicability Units Description

N Apphcable Packets Count of the # of Packets
from the Client(s) to the Server

2 Apphcable Octets Sum total of the it of Octets in
these packets from the Client(s)
to the Server.

Maximum Not Applicable
Minimum Not Apphcable

SCTrafiic
Definition

This metric contains information about the volume of

trafiic measured for a given application and either a specific
Client—Server Pair or a specific Server and all of its clients.

This information duplicates, somewhat, that which may
be found in the standard, RMON II, AL/NL Matrix Tables.
It has been included here for convenience to applications
and the associated benefit of improved performance by
avoiding the need to access different functional RMON
areas when performing QOS Analysis.

Metric Specification

 Metric Applicability Units Description

N Applicable Packets Count of the # of Packets
from the Sen/er to the Client(s)

2 Applicable Octets Sum total of the # of Oetets
in these packets from the Server
to the Client(s).

Maximum Not Applicable
lVIinirnum Not Applicable

Jitter Metrics
CSJitter
Definition

This metric contains information about the Jitter (e.g.
Inter-packet Gap) measured for data packets for a given
application and either a specific Client—Server Pair or a
specific Server and all of its clients. Specifically, CSJitter
measures the Jitter for Data Messages from the Client to the
Server.

A Data Message starts with the 1“ Transport Protocol
Data Packet/Unit (TPDU) from the Client to the Server and
is demarcated (or terminated) by 1'" subsequent Data Packet
in the other direction. Client to Server Inter-packet Gaps are
measured between Data packets within the Message. Note
that in our implementaions, ACKnowledgements are not
considered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets. The interval
between the last packet in a Data Message from the Client
to the Server and the 1'" packet of the Next Message in the
same direction is not interpreted as an Inter-Packet Gap.

 Metric Applicability Units Description

N Applicable Inter— Count of the # of Inter-Packet
Packet Gaps measured for Data from the
Gaps Client(s) to the Server

5

10

15

20

25

30

35

4o

45

50

55

60

65

36

-continued

Metric Specification

 Metric Applicability Units Description

2 Applicable uSeconds Sum total of the Delta Times in
these Inter-Packet Gaps

Maximum Applicable uSeconds The maximum Delta Time of Inter~
Packet Gaps measured

Minimum Applicable uSeconds The minimum Delta Time of Inter-
Packet Gaps measured.

SCJitter

Definition

This metric contains information about the Jitter (e.g.
Inter—packet Gap) measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCJitter
measures the Jitter for Data Messages from the Client to the
Server.

A Data Message starts with the 1“ Transport Protocol
Data Packet/Unit (TPDU) from the Server to the Client and

is demarcated (or terminated) by l“ subsequent Data Packet
in the other direction. Server to Client Inter-packet Gaps are
measured between Data packets within the Message. Note
that in our implementaions, ACKnowledgements are not
considered within the measurement of this metric.

Metric Smcrfication

 Metric Applicability Units Description

N Applicable Inter- Count of the 8 of Inter-Packet
Packet Gaps measured for Data from
Gaps the Server to the Client(s).

2 Applicable uSeconds Sum total of the Delta Times
in these Inter<Packet Gaps.

Maximum Applicable uSeconds The maximum Delta Time of
Inter—Packet Gaps measured

Minimum Apphcable uSeconds The minimum Delta Time of
Inter-Packet Gaps measured.

Exchange Response Metrics

CSExchangeResponseTimeStartToStart
Definition

This metric contains information about the Transport-
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSExchan-
geResponseTirneStartToStart measures the response time
between start of Data Messages from the Client to the Server
and the start of their subsequent response Data Messages
from the Server to the Client.

A Client->Server Data Message starts with the 1'" Trans-
port Protocol Data Packethnit (TPDU) from the Client to
the Server and is demarcated (or terminated) by 1'“ subse—
quent Data Packet in the other direction. The total time
between the start of the Client->Server Data Message and
the start of the Server—>C1ient Data Message is measured
with this metric. Note that ACKnowledgements are not
considered within the measurement of this metric.

NOAC EX. 1018 Page r029

NOAC Ex. 1018 Page 1030

US 6,839,751 B1

37

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric SEcification

 Metric Applicability Units Description

N Apphcable C1ient—> Count of the # Client—>Server
Server Messages measured for Data
Messages Exchanges from the Client(s)

to the Server

2 Applicable uSeconds Sum total of the Start-to-Start
Delta Times in these Exchange
Response Times

Maximum Apphcable uSeconds The mainmum Start-to-Start
Delta Time of these Exchange
Response Times

Minimum Apphcable uSeconds The minimum Start-to-Start
Delta Time of these Exchange
Response Times

CSExchangeResponseTimeEndToStart
Definition

This metric contains information about the Transport-
1eve1 response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSExchan-
geResponseTimeEndToStart measures the response time
between end of Data Messages from the Client to the Server
and the start of their subsequent response Data Messages
from the Server to the Client.

A Client->Server Data Message starts with the 1“ Trans—
port Protocol Data Packet/Unit (TPDU) from the Client to
the Server and is demarcated (or terminated) by 1“ subse—
quent Data Packet in the other direction. The total time
between the end of the Client—>Server Data Message and the
start of the Server->Client Data Message is measured with
this metric. Note that ACKnowledgements are not consid-
ered within the measurement of this metric.

Also, there is no consideration in the measurement for

retransmissions or out-of—order data packets.

Metric Specification

 Metric Applicability Units Description

N Applicable Client—> Count of the # Client->Server
Server Messages measured for Data
Messages Exchanges from the Client(s)

to the Server
2 Applicable uSeconds Sum total of the End-to-Stan

Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maxrmum End-toStart
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum End-to»Start
Delta Time of these Exchange
Response Times

CSExchangeResponseTimeStartToEnd
Definition

This metric contains information about the Transport-
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, CSExchan-
geResponseTimeEndToStart measures the response time
between Start of Data Messages from the Client to the
Server and the End of their subsequent response Data
Messages from the Server to the Client.

20

25

30

35

40

45

50

55

60

65

38

A Client—>Server Data Message starts with the 1" Trans—
port Protocol Data PacketlUnit (TPDU) from the Client to
the Server and is demarcated (or terminated) by 1" subse—
quent Data Packet in the other direction. The end of the
Response Message in the other direction (e.g. from the
Server to the Client) is demarcated by the last data of the

Message prior to the 1" data packet of the next Client to
Server Message. The total time between the start of the
Client->Server Data Message and the end of the Server—
>Client Data Message is measured with this metric. Note
that ACKnowledgements are not considered within the
measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of—order data packets.

win“

 Metric Applicability Units Description

N Applicable Client-9 Count of the # Client->Server
Server and Server—>Client Exchange
Message message pairs measured for Data
Exchanges Exchanges from the C1ient(s)

to the Server

2 Applicable uSeconds Sum total of the Start-to-End
Delta Times in these Exchange
Response Times

Maximum Applicable uSeconds The maximum Start-to-End
Delta Time of these Exchange
Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta
Time of these Exchange Response
Times

SCExchangeResponseTimeStartToStart
Definition

This metric contains information about the Transport—
1eve1 response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCExchan‘
geResponseTimeStartToStart measures the response time
between start of Data Messages from the Server to the Client
and the start of their subsequent response Data Messages
from the Client to the Server.

A Server—>Client Data Message starts with the 1“ Trans«
port Protocol Data Packet/Unit (TPDU) from the Server to
the Client and is demarcated (or terminated) by 1" subse—
quent Data Packet in the other direction. The total time
between the start of the Server->Client Data Message and
the start of the Client->Sever Data Message is measured
with this metric. Note that ACKnowledgements are not
considered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of-order data packets.

Metric Specification

Metric Applicability Units Description

Count of the it Server~>Client
Messages measured for Data
Exchanges from the C1ient(s)
to the Server
Sum total of the Stan-to—Start
Delta Times in these Exchange
Response Times

Server—>
Client
Messages

Applicable

2 Apphcable uSeconds

NOAC EX. 1018 Page 1030

NOAC Ex. 1018 Page 1031

US 6,839,751 B1

39

-c0ntinued

Metric Specification

 Metric Applicability Units Description

Maximum Apphcable uSeconds The maximum Start—to-Start
Delta Time of these Exchange
Response Times

Minimum Apphcable uSeconds The minimum Start-to—Start
Delta Time of these Exchange
Rasponse Times

SCExchangeResponseTimeEndToStart
Definition

This metric contains information about the Transport-
level response time measured for data packets for a given
application and either a specific Client~Server Pair or a
specific Server and all of its clients. Specifically, SCExchan—
geResponseTimeEndToStart measures the response time
between end of Data Messages from the Server to the Client
and the start of their subsequent response Data Messages
from the Client to the Server.

A Server->Client Data Message starts with the 1” Trans—
port Protocol Data Packet/Unit (TPDU) from the Server to
the Client and is demarcated (or terminated) by 1" subse-
quent Data Packet in the other direction. The total time
between the end of the Server->Client Data Message and the
start of the Client—>Server Data Message is measured with
this metric. Note that ACKnowledgements are not consid-
ered within the measurement of this metric.

Also, there is no consideration in the measurement for
retransmissions or out-of—order data packets.

Metric Specification

Metric Apphcability Units Description

N Count of the # Server—>Client
Messages measured for Data
Exchanges from the Client(s)
to the Server
Sum total of the End-to»Start
Delta Times in these Exchange
Response Times
The maximum End-to~Start
Delta Time of these Exchange
Response Times
The minimum End—to-Start Delta
Time of these Exchange Response
Times

Server—>
Client
Messages

Applicable

M Applicable uSeconds

uSecondsMaximum Apphcable

Minimum Applicable uSeconds

SCExchangeResponseTimeStartToEnd
Definition

This metric contains information about the Transport-
level response time measured for data packets for a given
application and either a specific Client-Server Pair or a
specific Server and all of its clients. Specifically, SCExchan-
geResponseTimeEndToStart measures the response time
between Start of Data Messages from the Server to the
Client and the End of their subsequent response Data
Messages from the Client to the Server.

A Server->Client Data Message starts with the 1“ Trans-
port Protocol Data Packet/Unit (TPDU) from the Server to
the Client and is demarcated (or terminated) by l“ subse-
quent Data Packet in the other direction. The end of the
Response Message in the other direction (e.g. from the
Server to the Client) is demarcated by the last data of the
Message prior to the 1" data packet of the next Server to

10

15

20

25

30

35

40

45

50

SS

60

65

40

Client Message. The total time between the start of the
Server->Client Data Message and the end of the Client
>Server Data Message is measured with this metric. Note
that ACKnowledgements are not considered within the
measurement of this metric.

Also, there is no consideration in the measurement for

retransmissions or out-of—order data packets.

Metric Sgcificahon

 Metric Apphcahility Units Description

N Applicable Client- Count of the # Server->C1ient
Server and Client—>Server Exchange
Message message pairs measured for Data
Exchanges Exchanges from the Server to the

Client(s)
Z Applicable uSeconds Sum total of the Start—to-End

Delta Tunes in these Exchange
Response Times

Maximum Applicable uSeconds The maximum Start-to-End Delta
Time of these Exchange ResponseTimes

Minimum Applicable uSeconds The minimum Start-to-End Delta
Time of these Exchange Response
Times

Transaction Response Metrics
CSTransactionResponseTimeStartToStart
Definition

This metric contains information about the Application-
level response time measured for application transactions for
a given application and either a specific Client-Server Pair or
a specific Server and all of its clients. Specifically, CSTrans-
actionResponseTimeStartToStart measures the response
time between start of an application transaction from the
Client to the Server and the start of their subsequent trans-
action response from the Server to the Client.

A Client->Server transaction starts with the 1” Transport
Protocol Data Packet/Unit (TPDU) of a transaction request
from the Client to the Server and is demarcated (or
terminated) by l" subsequent data packet of the response to
the transaction request. The total time between the start of
the Client->Server transaction request and the start of the
actual transaction response from the Server->Client is mea-
sured with this metric.

This metric is considered a “best-effort" measurement.

Systems implementing this metric should make a “best—
effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a
logical transaction. The lowest level of support for this
metric would make this metric the equivalent of CSExchan—
geResponseTimeStartToStart.

Metric Specification

 Metric Applicability Units Description

N Applicablc Client—>Svr Count of the # Client—>Server
Transaction Transaction Requests measured
Requests for Application requests from

the Client(s) to the Server
)2 Applicable uSeconds Sum total of the Siart-to—Start

Delta Times in these Apphcation
Response Times

Maximum Applicable uSeconds The maximum Stari-to—Stari
Delta Time of these Application
Response Times

NOAC EX. 1018 Page 1031 ’

NOAC Ex. 1018 Page 1032

US 6,839,751 B1

41

-continued

Meme Specification

Meme Applicability Units Description

The minimum Start-to-Start
Delta Time of these Application
Response Times

Minimum Applicable uSeconds

CSApplicationResponseTimeEndToStart
Definition

This metric contains information about the Application-
level response time measured for application transactions for
a given application and either a specific Client-Server Pair or
a specific Server and all of its clients. Specifically, CSAp—
plicationResponseTimeEndToStart measures the response
time between end of an application transaction from the
Client to the Server and the start of their subsequent trans—
action response from the Server to the Client.

A Client->Server transaction starts with the 1“ Transport
Protocol Data Packet/Unit (TPDU) of a transaction request
from the Client to the Server and is demarcated (or
terminated) by l" subsequent data packet of the response to
the transaction request The total time between the end of the
Client->Server transaction request and the start of the actual
transaction response from the Server->Client is measured
with this metric

This metric is considered a “best-eflort" measurement.

Systems implementing this metric should make a “best-
efiort" to demarcate the start and end of requests and
responses with the specific application’s definition of a
logical transaction. The lowest level of support for this
metric would make this metric the equivalent of CSExchan—
geResponseTimeEndToStarL

Metric Specification

 Metric Applicability Units Description

N Applicable Client—>Svr Count of the # Client—>Server
Transaction Transaction Requests measured
Requests for Application requests from

the Client(s) to the Sewer
Z Applicable uSeconds Sum total of the End-to-Start

Delta Times in these Application
Response Times

Manmum Applicable uSeconds The maximum End-to-Start
Delta Time of these Application
Response Times

Minimum Applicable uSeconds The minimum End—to-Start
Delta Time of these Application
Response Times

CSApplicationResponseTimeStartToEnd
Definition

This metric contains information about the Application-
level response time measured for application transactions for
a given application and either a specific Client-Server Pair or
a specific Server and all of its clients. Specifically, CSTrans-
actionResponseTimeStartToEnd measures the response time
between Start of an application transaction from the Client
to the Server and the End of their subsequent transaction
response from the Server to the Client.

A Client->Server transaction starts with the 1" Transport
Protocol Data Packet/Unit (TPDU) a transaction request
from the Client to the Server and is demarcated (or
terminated) by 1“ subsequent data packet of the response to
the transaction request. The end of the Transaction Response

10

15

20

25

30

35

40

45

50

55

60

65

42

in the other direction (e.g. from the Server to the Client) is
demarcated by the last data of the transaction response prior
to the 1“ data of the next Client to Server Transaction

Request. The total time between the start of the Client-
>Server transaction request and the end of the Server-
>Client transaction response is measured with this metric.

This metric is considered a “best-eflort” measurement.

Systems implementing this metric should make a “best-
efiort” to demarcate the start and end of requests and
responses with the specific application’s definition of a
logical transaction. The lowest level of support for this
metric would make this metric the equivalent of CSExchan-
geResponseTimeStartToEnd.

Memc Spectfication

Metric Apphcability Units Description

N Applicable Client~> Count of the it Client<—>Server
Server request/response pairs measured
Transacnons for transactions from the

Chent(s) to the Server
2 Applicable uSeconds Sum total of the Start-to-End

Delta Times in these Application
Response Times

Maxrmum Applicable uSeconds The maximum Start-to—End
Delta Time of these Application
Response Times

Minimum Applicable uSeconds The minimum Start-to-End Delta
Time of these Application
Response Times

SCTransactionResponseTimeStartToStart
Definition

This metric contains information about the Application-
level response time measured for application transactions for
a given application and either a specific Client—Server Pair or
a specific Server and all of its clients. Specifically, SCTrans-
actionResponseTimeStartToStart measures the response
time between start of an application transaction from the
Server to the Client and the start of their subsequent trans-
action response from the Client to the Server.

A Server->C1ient transaction starts with the 1" Transport
Protocol Data Packet/Unit (TPDU) of a transaction request
from the Server to the Client and is demarcated (or
terminated) by 1“ subsequent data packet of the response to
the transaction request. The total time between the start of
the Server->Client transaction request and the start of the
actual transaction response from the Client—>Server is mea-
sured with this metric.

This metric is considered a “best-etfort” measurement.

Systems implementing this metric should make a “best-
effort" to demarcate the start and end of requests and
responses with the specific application’s definition of a
logical transaction. The lowest level of support for this
metric would make this metric the equivalent of SCExchan~
geResponseTimeStartToStart.

Memc Specification

 Metric Applicability Units Desm'pticn

N Applicable Svr—>Client Count of the it Server—~>
Transaction Client Transaction Requests
Requests measured for Application

requests from the Server to
the Client(s)

NOAC EX. 1018 Page 1032

NOAC Ex. 1018 Page 1033

US 6,839,751 B1

43

-continued

Metric Spgcification

 Metric Applicability Units Description

2 Apphcable uSeconds Sum total of the Stan‘to-Stan
Delta Times in these Apphcation
Response Times

Maximum Apphcable uSeconds The maximum Start-to‘Start
Delta Time of these Application
Response Times

Minimum Applicable uSeconds The minimum Start-to-Start
Delta Time of these Application
Response Times

SCApplicationResponseTimeEndToStart
Definition

This metric contains information about the Application-
level response time measured for application transactions for
a given application and either a specific Client-Server Pair or
a specific Server and all of its clients. Specifically, SCAp—
plicationResponseTimeEndToStart measures the response
time between end of an application transaction from the
Server to the Client a and the start of their subsequent
transaction response from the Client to the Server.

A Server—>Client transaction starts with the 1" Transport
Protocol Data Packet/Unit (TPDU) of a transaction request
from the Server to the Client and is demarcated (or

terminated) by l" subsequent data packet of the response to
the transaction request The total time between the end of the
Server->Client transaction request and the start of the actual
transaction response from the Client->Server is measured
with this metric

This metric is considered a “best-eliort” measurement.

Systems implementing this metric should make a “best—
effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a
logical transaction. The lowest level of support for this
metric would make this metric the equivalent of SCExchan-
geResponseTimeEndTostart.

Metric Spec1fication

Metric Apphcability Units Description

N Applicable Svr -> Client Count of the it Server ~>
Transaction ' r s 'on
Requests Requests measured for

Application requests
from the Server to the Client(s)
Sum total of the End-tg-Stan

elta T'mes in
these Apphcation Response
Times
The maxtmum End-to-fitart
Delta Time of
these Apphcation Response
Times
The minimum End-to—Sgag
Religion: of
these Application Response
Times

2 Applicable uSeconds

Maximum Applicable uSeconds

Minimum Applicable uSeconds

SCApplicationResponseTimeStartToEnd
Definition

This metric contains information about the Application-
level response time measured for application transactions for
a given application and either a specific Client-Server Pair or
a specific Server and all of its clients. Specifically, SCI‘rans—
actionResponseTimeStartToEnd measures the response time

10

15

20

25

30

35

40

45

50

55

60

65

44

between Start of an application transaction from the Server
to the Client and the End of their subsequent transaction
response from the Client to the Server.

A Server->Client transaction starts with the 1" Transport
Protocol Data Packet/Unit (TPDU) a transaction request
from the Server to the Client and is demarcated (or
terminated) by l" subsequent data packet of the response to
the transaction request. The end of the Transaction Response
in the other direction (e.g. from the Client to the Server) is
demarcated by the last data of the transaction response prior
to the 1" data of the next Server to Client Transaction

Request. The total time between the start of the Server-
>Client transaction request and the end of the Client->Server
transaction response is measured with this metric.

This metric is considered a “best-effort” measurement.

Systems implementing this metric should make a “best—
effort” to demarcate the start and end of requests and
responses with the specific application’s definition of a
logical transaction. The lowest level of support for this
metric would make this metric the equivalent of SCExchan—
geResponseTimeStartToEnd.

Metric Specification

Metric Applicability Units Description

N Applicable Server —> Count of the it Server <—>
Chent ' n u on: ' s
Transactions measured for transactions

fiom the Server to the Client(s)
)2 Applicable uSeconds Sum total of the 5mm

Winn in
these Application Response
Times

Maximum Apphcahle uSeconds The maximum Stan-to—End
Delta [‘jme of
these Application Response
Times

Minimum Applicable uSeconds The minimum Stag—[g-End
Dfilfi 11mg of
these Application Response
Times

Connection Metrics
ConnectionEstablishment
Definition

This metric contains information about the transport-level
connection establishment for a given application and either
a specific Client-Server Pair or a specific Server and all of
its clients. Specifically, ConnectionsEstablishment measures
number of connections established the Client(s) to the
Server. The information contain, in essence, includes:

Transport Connections Successfully established

Set—up Times of the established connections
Max. # of Simultaneous established connections.

Failed Connection establishment attempts (due to either
timeout or rejection)

Note that the “# of CURRENT Established Transport
Connections” may be derived from this metric along with
the Connection GracefulTermination and ConnectionTim-
eoutTermination metrics, as follows:

current connections:=“# successfully established”
“#terminated gracefully”
“#terminated by time-out”

The set-up time of a connection is defined to be the delta
time between the first transport-level, Connection Establish-
ment Request (i.e., SYN, CR-TPDU, etc.) and the first Data
Packet exchanged on the connection.

NOAC EX. 1018 Page 1033

NOAC Ex. 1018 Page 1034

US 6,839,751 B1

45

Men'ic Specification

Metric Applicability Units Desmption

N Apphcable Connections Count of the it Connections
Established tom
the Client(s) to the Server
Sum total of the Connection
Scum in
these Established connections
Count of the MAXJMUM
simultaneous it Connections
Established from the Client(s)
to the Server
Count of the Failed
simultaneous Montana—m
Established from the Client(s)
to the Server

2 Apphcable uSeconds

Maximum Apphcable Connections

Minimum Not Connections
Applicable

ConnectionGracefulTermination
Definition

This metric contains information about the transport-level
connections terminated gracefully for a given application
and either a specific Client-Server Pair or a specific Server
and all of its clients. Specifically, ConnectionsGracefulTer-
mination measures gracefully terminated connections both
in volume and summary connection duration. The informa-
tion contain, in essence, includes:

Gracefully terminated Transport Connections

Durations (lifetimes) of gracefully terminated connec-
tions.

Metric Specification

Metric Applicability Units Description

N Apphcable Connections Count of the # Connections
e ted

between Client(s) to the Server
2 Apphcable mSeconds Sum total of the Connection

Malawi-mt of
these terminated connections

MaJumum Not
Applicable

Minimum Not
Applicable

ConnectionTimeoutTermination
Definition

This metric contains information about the transport-level
connections terminated non—gracefully (e.g. Timed-Out) for
a given application and either a specific Client-Server Pail~ 01'
a specific Server and all of its clients. Specifically, Connec—
tionsTimeoutTermination measures previously established
and timed—out connections both in volume and summary
connection duration, The information contain, in essence,
includes:

Timed-out Transport Connections
Durations (lifetimes) of timed-out terminated connec-

tions.

The duration factor of this metric is considered a “best-

effort” measurement. Independent network monitoring
devices cannot really know when network entities actually
detect connection timeout conditions and hence may need to
extrapolate or estimate when connection timeouts actuallyoccur.

5

10

15

20

25

30

35

40

45

50

55

60

65

46

Mm

Metric Applicability Units Description

N Apphcable Connections Count of the it Connections
W between Client(s)
to the Server
Sum total of the Connection
Durations (Lifetimesl of these
terminated connections

M Applicable mSeconds

Apphcable

Connection Sequence Metrics
CSConnectionRetransmissions
Definition

This metric contains information about the transport-level
connection health for a given application and either a
specific Client—Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionRetransmissions mea—
sures number of actual events within established connection

lifetimes in which Transport, data-bearing PDUs (packets)
from the Client->Server were retransmitted.

Note that retransmission events as seen by the Network
Monitoring device indicate the “duplicate” presence of a
TPDU as observed on the network.

Metric Sgcification

 Metric Applicability Units Description

N Applicable Events Count of the it Data TPDU
retransmissxons from the
Client(s) to the Server

2 Not Applicable
Maximum Not Apphcable
Minimum Not Apphcable

SCConnectionRetransmissions
Definition

This metric contains information about the transport—level
connection health for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionRetransmissions mea-
sures number of actual events within established connection

lifetimes in which Transport, data-bearing PDUs (packets)
from the Server->Client were retransmitted.

Note that retransmission events as seen by the Network
Monitoring device indicate the “duplicate" presence of a
TPDU as observed on the network.

Metric Specification

Metric Apphcability Units Description

N Apphcable Events Count of the flag
TPDU re ‘ sions
from the Server to the Client(s)

2 Not Apphcable
Maximum Not Apphcable
Minimum Not Apphcable

CSConnectionOutOfOrders
Definition

This metric contains information about the transport-level
connection health for a given application and either a

NOAC EX. 1018 Page 1034

NOAC Ex. 1018 Page 1035

US 6,839,751 B1

47

specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionOutOfOrders measures
number of actual events within established connection life-

times in which Transport, data-bearing PDUs (packets) from
the Client—>Server were detected as being out of sequential
order.

Note that retransmissions (or duplicates) are considered to
be difierent than out—of—order events and are tracked sepa-

rately in the CSConnectionRetransmissions metric.

Metric Specification

Metric Applicability Units Description

N Applicable Events Count of the # Out»of-Order
[PDQ events from the Client(s)
to the Server

2 Not Applicable
Maximum Not Applicable
Minimum Not Applicable

SCConnectionOutOfOrders

Definition

This metric contains information about the transport—level
connection health for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionOutOfOrders measures
number of actual events within established connection life—

times in which Transport, data-bearing PDUs (packets) from
the Server->Client were detected as being out of sequential
order.

Note that retransrnissions (or duplicates) are considered to
be different than out-of—order events and are tracked sepa-
rately in the SCConnectionRetransmissions metric.

Metric Specifi cation

 Metric Applicability Units Description

N Applicable Events Count of the # ng-of-gerer
PDH events fiom the Server

to the Client(s)
2 Not Applicable
Maximum Not Applicable
Minimum Not Applicable

Connection Window Metrics

CSConnectionWindow

Definition

This metric contains information about the transport—level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionWindow measures num—
ber of Transport-level Acknowledges within established
connection lifetimes and their relative sizes from the Client-
>Server.

Note that the number of DATA TPDUs (packets) may be
estimated by difierencing the Acknowledge count of this
metric and the overall trafiic from the Client to the Server

(see CSTrafiic above). A slight error in this calculation may
occur due to Connection Establishment and Termination

TPDUS, but it should not be significant.

10

15

20

25

30

35

40

45

50

55

65

48

Metric Smcificauon

Metric Applicability Umts Description

N Applicable Events Count of the g ACK IEDU
gngsmissjons from the
Client(s) to the Server

)2 Not Applicable Increments Sum total of the Window
Sizes of the Acknowledges

MaXinium Not Applicable Increments The maximum Window Size
of these Acknowledges

Minimum Not Applicable Increments The minimum Mg;
of these Acknowledges

SCConnectionWindow
Definition

This metric contains information about the transport—level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SSConnectionWmdow measures num-
ber of Transport-level Acknowledges within established
connection lifetimes and their relative sizes from the to
Server->Client.

Note that the number of DATA TPDUs (packets) may be
estimated by differencing the Acknowledge count of this
metric and the overall trafiic from the Client to the Server

(see SCI‘rafiic above). A slight error in this calculation may
occur due to Connection Establishment and Termination

TPDUS, but it should not be significant.

Metric Specification

Metric Applicability Umts Description

N Applicable Events Count of the # 532K IPDU
Wfrom the Server
to the Client(s)

E Applicable Increments Sum total of the W
Size; of the Acknowledges

Maximum Applicable Increments The maximumW
of these Acknowledges

Minimum Applicable Increments The minimum Mndow Size
of these Acknowledges

CSConnectionFrozenWindows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, CS ConnectionWindow measures num—
ber of Transport-level Acknowledges from Client->Server
within established connection lifetimes which validly
acknowledge data, but either

failed to increase the upper window edge,
reduced the upper window edge

Metric Specification

Metric Applicability Umts Description

N Applicable Events Count of theW
figozen/redugeg E‘ggows from
the Client(s) to the Server

)2 Not Applicable
Maximum Not Applicable
Minimum Not Apphcable

NOAC EX. 1018 Page 1035

NOAC Ex. 1018 Page 1036

US 6,839,751 B1

49
SCConnectionFrozenWindows
Definition

This metric contains information about the transport—level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionWindow measures num-
ber of Transport—level Acknowledges from Server->Client
within established connection lifetimes which validly
acknowledge data, but either

failed to increase the upper window edge,
reduced the upper window edge

Metric Specification

 Metric Apphcabihty Units Description

N Applicable Events Count of the # ACE TEDU with
frozen/reduced windows from
the Chent(s) to the Server

2 Not Applicable
Maximum Not Applicable
Minimum Not Apphcable

CSConnectionClosedWindows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Ghent-Server Pair or a specific Server and all of its
clients. Specifically, CSConnectionWindow measures num-
ber of Transport-level Acknowledges from Client->Server
within established connection lifetimes which fully closed
the acknowledge/sequence window.

Metric SBCCIfiCaUOn

 Metric Applicability Units Desmption

N Applicable Events Count of the ,2 ACK
PD 'th 05 d wind w

from the Client(s)
to the Server

2 Not Applicable
Maximum Not Applicable
Minimum Not Apphcable

SCConnectionClosedWindows
Definition

This metric contains information about the transport-level
connection windows for a given application and either a
specific Client-Server Pair or a specific Server and all of its
clients. Specifically, SCConnectionWindow measures num-
ber of Transport-level Acknowledges from Server~>Client
within established connection lifetimes which fully closed
the acknowledge/sequence window.

Metric ngfication

 Metric Applicabihty Units Desaipuon

N Apphcable Events Count of the it ACK
lPDU with Closed windows
from the Client(s) to the Server

2 Not Apphcable
Manmum Not Applicable
Minimum Not Apphcable

Embodiments of the present invention automatically gen—
erate flow signatures with the necessary recognition patterns

10

15

20

25

30

35

40

45

50

55

60

65

50

and state transition climb procedure. Such comes from
analyzing packets according to parsing rules, and also gen-
erating state transitions to search for. Applications and
protocols, at any level, are recognized through state analysis
of sequences of packets.

Note that one in the art will understand that computer
networks are used to connect many different types of
devices, including network appliances such as telephones,
“Internet” radios, pagers, and so forth. The term computer as
used herein encompasses all such devices and a computer
network as used herein includes networks of such comput—ers.

Although the present invention has been described in
terms of the presently preferred embodiments, it is to be
understood that the disclosure is not to be interpreted as
limiting. Various alterations and modifications will no doubt
become apparent to those or ordinary skill in the art after
having read the above disclosure. Accordingly, it is intended
that the claims be interpreted as covering all alterations and
modifications as fall within the true spirit and scope of the
present invention.

What is claimed is:

l. A method of analyzing a flow of packets passing
through a connection pointron a computer network, the
method comprising:

(a) receiving a packet from a packet acquisition device
coupled to the connection point;

(b) for each received packet, looking up a flow-entry
database for containing one or more flow-entries for
previously encountered conversational flows, the look-
ing up to determine if the received packet is of an
existing flow, a conversational flow including an
exchange of a sequence of one or more packets in any
direction between two network entities as a result of a

particular activity using a particular layered set of one
or more network protocols, a conversational flow fur-
ther having a set of one or more states, including an

\initial state;

(c) if the packet is of an existing flow, identifying the last
encountered state of the flow, performing any state
operations specified for the state of the flow, and
updating the flow-entry of the existing flow including
storing one or more statistical measures kept in the
flow-entry; and

d) if the packet is of a new flow, performing any state
operations required for the initial state of the new flow
and storing a new flow—entry for the new flow in the
flow-entry database, including storing one or more
statistical measures kept in the flow—entry,

wherein every packet passing though the connection point is
received by the packet acquisition device, and
wherein at least one step of the set consisting of of step (a)
and step (b) includes identifying the protocol being used in
the packet from a plurality of protocols at a plurality of
protocol layer levels,
such that the flow—entry database is to store flow entries for
a plurality of conversational flows using a plurality of
protocols, at a plurality of layer levels, including levels
above the network layer.

2. A method according to claim 1, wherein step (b)
includes

extracting identifying portions from the packet,
wherein the extracting at any layer level is a function of the
protocol being used at the layer level, and
wherein the looking up uses a function of the identifying
portions.

NOAC EX. 1018 Page 1036

NOAC Ex. 1018 Page 1037

US 6,839,751 B1

51

3. A method according to claim 1, wherein the steps are
carried out in real time on each packet passing through the
connection point.

4. A method according to claim 1, wherein the one or
more statistical measures include measures selected from the

set consisting of the total packet count for the flow, the time,
and a differential time from the last entered time to the

present time.
5. A method according to claim 1,

reporting one or more metrics related to the flow of a
flow-entry from one or more of the statistical measures in the
flow-entry.

(— 6. A method according to claim 1, wherein the metrics
include one or more quality of service (QOS) metrics.

7. A method according to claim 5, wherein the reporting
is carried out from time to time, and wherein the one or more
metrics are base metrics related to the time interval from the

last reporting time.
8. A method according to claim 7, further comprising

calculating one or more quality of service (QOS) metrics
from the base metrics.

9. A method according to claim 7, wherein the one or
more metrics are selected to be scalable such that metrics

from contigious time intervals may be combined to deter—
mine respective metrics for the combined interval.

10. A method according to claim 1, wherein step (c)
includes if the packet is of an existing flow, identifying the
last encountered state of the flow and performing any state
operations specified for the state of the flow starting from the
last encountered state of the flow; and wherein step (d)
includes if the packet is of a new flow, performing any state
operations required for the initial state of the new flow.

11. A method according to claim 10, further including
reporting one or more metrics related to the flow of a
flow-entry frdm one or more of the statistical measures in the
flow-entry.

12. A method according to claim 11, wherein the reporting
is carried out from time to time, and wherein the one or more
metrics are base metrics related to the time interval from the

last reporting time.
13. A method according to claim 12, wherein the reporting

is part of the state operations for the state of the flow.
14. A method accong to claim 10, wherein the state

operations include updating the flow-entry, including storing
identifying information for future packets to be identified
with the flow-entry.

15. A method according to claim 14, further including
receiving further packets, wherein the state processing of
each received packet of a flow furthers the identifying of the
application program of the flow.

16. A method according to claim 15, wherein one or more
metrics related to the state of the flow are determined as part

of the state operations specified for the state of the flow.
17. A packet monitor for examining packets passing

through a connection point on a computer network, each
packets conforming to one or more protocols, the monitor
comprising:

further including ‘

5

10

15

20

25

30

35

45

50

52

(a) a packet acquisition device coupled to the connection
point and configured to receive packets passing through
the connectiOn point;

_ (b) a memory for storing a database for containing one or
more flow—entries for previously encountered conver-
sational flows to which a received packet may belong,
a conversational flow including an exchange of a
sequence of one or more packets in any direction
between two network entities as a result of a particular
activity using a particular layered set of one or more
network protocols, a conversational flow further having
a set of one or more states, including an initial state; and

(c) an analyzer subsystem coupled to the packet acquisi-
tion device configured to lookup for each received
packet whether a received packet belongs to a flow-
entry in the flow—entry database, to update the flow-
entry of the existing flow including storing one or more
statistical measures kept in the flow—entry in the case
that the packet is of an existing flow, and to store a new
flow-entry for the new flow in the flow-entry database,
including storing one or more statistical measures kept
in the flow—entry if the packet is of a new flow,

wherein the analyzer subsystem is further configured to
identify the protocol being used in the packet from a
plurality of protocols at a plurality of protocol layer levels,
and

wherein the database is to store flow entries for a plurality
of conversational fiows using a plurality of protocols, at a
plurality of layer levels, including levels above the network
layer.

18. A packet monitor according to claim 17, further
comprising:

a parser subsystem coupled to the packet acquisition
device and to the analyzer subsystem configured to
extract identifying information from a received packet,

wherein each flow—entry is identified by identifying infor-
mation stored in the flow-entry, and wherein the cache
lookup uses a function of the extracted identifying informa-
tion.

19. A packet monitor according to claim 17, wherein the
one or more statistical measures include measures selected

from the set consisting of the total packet count for the flow,
the time, and a differential time from the last entered time to

the present time.
20. A packet monitor according to claim 17, further

including a statistical processor configured to determine one
or more metrics related to a flow from one or more of the

statistical measures in the flow-entry of the flow.

21. A packet monitor according to claim 20, wherein the
statistical processor determine and reports the one or more
metrics from time to time.

NOAC EX. 1018 Page 1037

NOAC Ex. 1018 Page 1038

3

Application 0! Docket Number

‘

PATENT APPUCA‘HON FEE DETEWN RECORD
Effective ajawj, 2W ‘ O q / I ‘ : 9* o

CLAIMS AS FILED - PART I SMALL ENTTTY OTHER mm
_ Column 1 ' Column 2 ' TYPE 1:} 0R SMALLENTRY

—~vam _,. u mw_:-‘~.""" '1’" “r15" ' "

 BASIC FEE '

mms __
WWms_—
MUL'flPLE DEPENDENT CLAIM PRESENT

* If he difference in column 1 is less than zero. enter ‘0' in column 2

CLAIMS AS AMENDED- PART II omen THAN

- . ‘SMALLENTTIY OR SMALLColumn 3

Column 2
HIGHEST

 @
TR AMENDMENTA

I

FIRST PRESENTATION OF MULTIPLE DEPENDE

Column 2 Column :3

03 ' PRESENT
E EXTRA TE 'lTONAL
m - a E

) Eg - 0R x518: -w

E - 0R ”(3’0 -
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

E on--
_ ' ~ TOTW 0R AmFEE—
' ' Columnl Colurzina

'--'.. " CLAIMS ‘-'-
.- ADDI-REMAINING RESE

AFTER P NT 110NAL
AMENDMENT FEE

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

‘ °ummhwmtemmmmhmzmlthookxma
“ummmnomymwwmmummnm‘mfi
wummwmwwmmummaflw‘r '
WWWWMWUMKWhNWWWhWWMMW I.

" m. 7‘ mwrwmusoepmwfofwmo 4 "an"

NOAC EX. 1018 Page 1038

NOAC Ex. 1018 Page 1039

' ' Application or Docket Number

PATENT APPLICATION FEE DETERMINATION RECORD

Effective December 29, 1999 O a ’ D K l 24;

CLAIMS AS FILED ' PART I I SMALL ENTITY OTHER THAN
Column 1 Column 2 TYPE :I OR SMALL ENTITY

FOR ‘ NUMBER FILED NUMBER EXTRA -RATE RATE

2.1‘- N .‘L ‘ ' ‘ - i

MULTIPLE DEPENDENT CLAIM PRESENT

' If the difference in column 1 is less than zero, enter “0" in column‘2

CLAIMS AS AMENDED - PART II ‘ * OTHER THAN

1: " ” CLAIMS ‘~ , HIGHEST

< t L ,. REMAINING '- NUMBER pRESENT ADDI' ADD"
1 E ‘ x AFTER ; PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL

m , ff} AMENDMENT PAID FOR FEE FEE
2

Lu T

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

--oh--
TOTAL TOTAL

ADDIT. FEE-OR ADDIT. FEE-
Column 1 Column 2 Column 3

~ CLAIMS "

m A REMAINING NUMBER pRESENT ADD': ADDI‘
E . ' _ It; AFTERA PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL
|.|.l ;;...W.ofl AMENDMENT .._.. PAID FOR FEE FEE

E---_-

< FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

IIORII
, TOTAL TOTAL

./ ADDIT. FEE-OR ADDIT. FEE-
Column 1 Column 2 Column 3

CLAIMS HIGHEST

REMAINING NUMBER pRESENT ADDI- ADDI-
’ AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL

AMENDMENT ,PAID FOR FEE FEE

 Total X$ 9:

-

OR X$18=

i

-w _

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
‘.

OR X78:

AMENDMENTC

+130: OR +260:

' it the entry in column 1 is less than the entry in column 2, write “0" in column 3. TOTAL TO
" lithe “Highest Number Previously Paid For" IN THIS SPACE is less than 20, enter ”20." ADDlT FEE OR ADDIT FTQE
"“II the “Highest Number Previously Paid For”~lN THIS’SPACE is less than 3, enter “3.” ‘ ‘

The "Highest Number Previously Paid For" (Total or Independent) is the highest number found in the appropriate box in column 1.

FORM PTO-875 Patent and Trademark OltIce, US. DEPARTMENT OF COMMERCE

NOAC EX. 1018 Pa‘ge"1039w

NOAC Ex. 1018 Page 1040

C__J g'EETFORcomfymcna _ "”"

Filing Date Status

as 320??

' ondifion and St: I Codes for Continuin

W
71 Continuation of application No.
8| Which iI I continuation of application No

‘ ~——\ 9] and I continuation ofapplication No.

72 Continuation-impart of application No.
82 Which is I continuation-impart of application No.
75 and I confinuafim-in-pan of application No.

74 Division of application No.
84 Which is I division of application No.
76 and I division of application No.

86. , said application No.
89 Application No.
90 and application No.
92 each

65 filed as application No.

66 substitute for application No. 1
68 Provisional application No.

w
01 Paton! No)
03 abandoned
O4 SIR No.

NOTE I' When the code 86 and 92 art used. they must be followed byr81,82 or 8-4 —condition bcginning with “which is"
NOTE I]: Codcs7l,72 and74 mybcusodmonflicfitstlinc; oncoflhcm muslbcusodcrnthc first imcinrogularcmltinuing
data. 66 or 68 may bc used on the first lmc in Substitutc or Provisional case: Rcmcmbcr, however, that 1!" than is a Provisional and
othcr continuing data the Provisional IS always liswd last

E-o (Rcwsod)0/05/00)

NOAC EX. 1018 Page 1040

NOAC Ex. 1018 Page 1041

SEARCH NOTES

(INCLUDING SEARCH STRATEGY)

é/(q/o ; 7%"
DJ 9 L '

W“

(RIGHT OUTSIDE)

.

I

,

\

1

.

NOAC EX. 1018 Page 1041 ,4

>

I

)

I

1Jx

NOAC Ex. 1018 Page 1042

I i . A ~=~ won. t utmmfiumm u. _ t , , W nun m..." .7 l w.
”w ‘ r W “(mm-Mutt... » M.— .. ” - - ,7 “W" “ 30—.meM.M.W_' --—--
{MW-1" “—5.... , i“... _ . a . .‘ mu m» , W Vw.” __ i I _.. ,

ISSUE SLIP STAPLE AREA (for additional cross references)

, Q;

POSITION INITIALS ID NO. ' ' DATE 1 FEE DETERMINATION

O.I.P.E. CLASSIFIER

Non-elected . . g.
intengrence i r / ‘ ’

~ ~ ., _ .. .Appei_, ’. ‘
': ‘.'...... ' . u “ ‘ ' :. jected S “

Date

J’i

Originai[—4Final 33Original 1.1.4— F .4——~—-
 EL? éa; .L

 (fig

{—4
J

J “I §éj'élJr

(l1'l‘
"1

at .J

HuU\\i'\IUu]!it 1"_i—‘i"
{L

__L _._l__. L't:L

7'—_i'_ r “55%

 I"

E

ii
33

i—L— _ii__i:J. J— ,
}V____ta_a._E

MN CDC!) 4";
//

L8 r
m

.l

.__J.

__L
(.0 U1 F F

J4 wow cox:

%

F

i E“

ii i ih

If more than 150 claims or 10 actions

staple additional sheet here

(LEFT INSIDE)

NOAC EX. 1018 Page 1042

NOAC Ex. 1018 Page 1043

Mfllflllllilllllfi“1mm: :3;

V1,. Apflli'cation. 52. L (£3: ‘

 9H m '1-

09608 126

1 Ya if papers.

PATENT -AI"I"L|UA I IUN

“‘“IWIEI|1!¥!!@!54!! . »

Date Received ,3 5,, " ' V _' Date Recelv
(Incl. C. at M.) r -_ .-

Date Mailed ~ Date Mailed

L9103/DD 43.

i

i

CONTENTS

' (Incl. 0.1:)! M.)
or . ‘ or 7

42. . °

